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The relation between packing geometry and force network statistics is studied for granular media. Based on
simulations of two-dimensional packings of Hertzian spheres, we develop a geometrical framework relating the
distribution of interparticle forcesPsfd to the weight distributionPswd, which is measured in experiments. We
apply this framework to reinterpret recent experimental data on strongly deformed packings and suggest that
the observed changes ofPswd are dominated by changes in contact network whilePsfd remains relatively
unaltered. We furthermore investigate the role of packing disorder in the context of theq model and address the
question of how force fluctuations build up as a function of the distance beneath the top surface.
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I. INTRODUCTION

Inside a granular material forces are distributed very in-
homogeneously: a small number of particles carries a large
fraction of the internal forces[1]. These large fluctuations are
reflected in the force probability density functions, which
typically decay exponentially[2–5]. The behavior for small
forces is not as well understood as the generic exponential
tail: the q model appears to predict a vanishing probability
density for small forces[5], whereas experiments and simu-
lations clearly show that this probability remains nonzero
[2–4]. The characterization and understanding of this prob-
ability remains a challenge, especially since the force distri-
bution is believed to play an important role for the dynamical
arrest or “jamming” of granular and other disordered mate-
rials [6]. In particular, the force distribution has been ob-
served to develop a small peak(around the average value) in
simulations of supercooled liquids, foams, and granular mat-
ter undergoing a jamming transition[6,7]. However, there is
still no microscopic understanding how this effect relates to
the properties of the force network.

This paper is a full exposition and expansion of an ap-
proach which was briefly outlined in[8]. We will unravel the
effect of the local contact geometry on the distributions of
interparticle force F and effective particleweight W; the
weight is defined as the sum of the vertical components of all
downward pointing forces on a particle—see Fig. 1. While
the distribution of forcesF is the primary object one ulti-
mately wishes to characterize, it is difficult to access experi-
mentally. Experiments with photoelastic materials are able to
depict the spatial structure of bulk forces in two dimensions
(2D), but their precision to resolve individual contact forces
is limited [9]. Only recently, there have been first reports of
3D bulk measurements on forces in compressed emulsions
[10]. Most quantitative information on the force probability
distribution is at present only accessible through measure-
ments of theparticle-wall forcesfrom imprints on carbon
paper[2] or by force sensors[3]. Each particle-wall force has
to balance all interparticle forces that are exerted on the cor-
responding particle from above—see Fig. 1. This means that
experiments essentially measure a combination of forces that
we refer to as theweightsof the bottom particles. For sim-

plicitly, we will focus on frictionless spheres for which these
weights are defined as

Wj ; mjg + o
kil

sFW i jdz. s1d

Heremj denotes mass,g denotes gravity,FW i j are the interpar-
ticle forces, andnc is the number of particles exerting a force
on particlej from above; the sum runs over all these forces.
There arenc particles excerting a force on particlej from
above, so the sum hasnc terms. So, to relate the experimental
results to the bulk force distributions, one has to understand
the relation between weights and forces.

In this paper we will show how thelocal packing geom-
etry plays the crucial role in the relation between the force
distributionsPsfd and the weight distributionsPswd (we de-
fine f =F / kFl and w=W/ kWl as the appropriately rescaled
forces and weights). Our central point is that while the dis-
tribution of f is robust, the distribution ofw is profoundly
influenced by the contact geometry, in particular bythe num-
ber of downward pointing contact forces nc. In s.imulations
of Hertzian sphere packings we will find thatPboundaryswd is
different from Pbulkswd, due to the rather special packing
geometry near a boundary. However, for many(but not all)
experimentally relevant situations, the special packing geom-
etry near a boundary makesPboundaryswd rather close, but not
equal, to the bulkPsfd. This fortunate but nontrivial coinci-

FIG. 1. (a) Detail of a typical packing in our simulations; the
heighth denotes the distance from the bottom. The force network is
represented by the black lines whose thickness is proportional to the
force magnitude.(b) Definition of interparticle forcesF and weight
W, for a frictionless particle withnc=2; see Eq.(1).
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dence can be understood easily within our framework. We
will, however, also provide two examples wherePboundaryswd
and bulkPsfd are significantly different.

Additional motivation for studying the relation between
forces, weights, and geometry comes from theq model [5].
Once the distinction between forces and weights has been
made, one notices that theq model is a lattice model in
which weightsare randomly redistributed over a fixed num-
ber of supporting grains. Theq model displays a weight dis-
tribution that is qualitatively different from both experimen-
tally observed weight distributions and numerically obtained
force distributions. We will show that this is due to the fixed
connectedness of theq model. RealisticPswd can be ob-
tained if we allow for the connectivity to vary within theq
model—e.g., by introducing random connectivity.

Our work then serves three purposes. First of all, it helps
to interpret data obtained by measurements of particle-wall
forces: this paper includes a section where we explicitly ap-
ply our framework to recent experimental data of highly
compressed packings[11]. Second, it shows how the simple
q model can be extended to obtain very realistic weight dis-
tributions for both regular and irregular packings. Since the
model is known to give incorrect predictions of spatial
propagation[12], our intention is not to fine-tune the model
and its parameters, but rather to indicate how the contact
geometry is essential to describe force and weight fluctua-
tions in more realistic packings. Third, we address the ques-
tion of how force fluctuations build up as a function of the
distance beneath the top surface, providing another funda-
mental test for theoretical models.

The paper is organized as follows. In Sec. II we first ex-
plain our numerical method and then discuss the force dis-
tributions observed in amorphous packings: it turns out that
Psfd is rather insensitive to the packing geometry. We then
show in Sec. III that the weight distributionsPswd, on the
other hand, are very sensitive to the packing geometry. Using
simple phase-space considerations, we relatePswd to Psfd
for a given geometry. This provides a recipe how to recon-
struct the bulkPsfd from the experimental data, and in Sec.
IV we explicitly apply this to recent experimental data on
highly compressed packings[11]. In particular, our analysis
strongly suggests thatPsfd is essentially unaffected by the
tremendous deformations encountered in the experiments.
We then indicate some limitations of our framework in Sec.
V, where we address subtle packing problems like the effect
of gravity. In Sec. VI we investigate to what extent theq
model can describe the results of the numerical packings of
Hertzian spheres: we derive a surprising exact result for the
bond quantitiesqw, and we investigate the role of disorder in
the packing geometry. Finally, we address the top-down re-
laxation of force fluctuations in Sec. VII. We find no evi-
dence in the Hertzian sphere packings for the power-law re-
laxation predicted by theq model, indicating that the model
is not able to capture this spatial aspect of the force network.
The paper ends with a discussion.

II. STATISTICS OF INTERPARTICLE FORCES

In this section we study the distribution of interparticle
forces via simulations of 2D packings of frictionless spheres.

After introducing our numerical method in Sec. II A, we dis-
cuss the similarities betweenPsfd in the bulk and near the
boundary(Sec. II B). We also study the angular distribution
and the probability distribution of thez components of the
contact forces in Sec. II C and close with a brief summary of
results in Sec. II D.

A. Numerical method and parameters

Our two-dimensional packings consist of frictionless
spheres(3D) under gravity. The packings are created from
molecular dynamics simulations of spheres that interact
through normal Hertzian forces, whereF~d3/2 andd denotes
the overlap distance[13]. Since Hertz’s law for 2D disks is
linear in d, we use 3D spheres. These particles reside in a
container that is 24 particle diameters wide, with periodic
boundary conditions in the horizontal direction. The bottom
support is rigid and also has a frictionless Hertzian interac-
tion with the particles. We construct our stationary packings
by letting the particles relax from a gaslike state by introduc-
ing a dissipative force that acts whenever the overlap dis-
tance is nonzero. In this paper we use two different polydis-
persities: the radiir are drawn from a flat distribution
between either 0.49, r ,0.51 or 0.4, r ,0.6. The masses
are proportional to the radii cubed. In the former case of
almost monodisperse particles, the particles tend to crystal-
lize into a triangular lattice(Sec. IV A), whereas the more
polydisperse particles lead to amorphous packings such as
shown in Fig. 1(a). This allows us to study how the packing
geometry affects the force network. The results shown in this
paper are obtained with particles that deform 0.1% under
their own weight. Simulations of harder particles(deforma-
tion 0.01%) gave similar results as those shown here[14].

The various data were obtained from 1100 realizations
containing 1180 particles each. We study the force and
weight distributions at various heightsh. To do so, we divide
each packing into horizontal slices of one particle diameter
thickness and rescale all forces and weights in each layer to
the corresponding average(absolute) values. The rescaled

interparticle forces and weights will be denoted byfW andw,

respectively, with distributionsPsfWd andPswd.

B. Absolute values off¢: P„f…

We first analyze the statistics of the absolute valuesf

= ufWu, whose probability density functionPsfd is usually re-
ferred to as the distribution of(interparticle) forces; our main
finding will be thatPsfd in bulk and near the boundary are
very similar. In Fig. 2(a) we showPsfd as measured in the
bulk of the amorphouspackings (particle radii between
0.4, r ,0.6). At different heights between 10,h,30, Psfd
was not observed to change; the open circles represent an
average over these various heights. Even very close to the
bottom support, we find thatPsfd remains almost unchanged:
the dotted data set has been obtained from the forces between
the bottom particles and the particles in the layer above. We
refer to these forces aslayer-to-layer forces near the
bottom—see Fig. 2(b). So, although the bottom wall locally
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alters the packing geometry, the shape ofPsfd is essentially
unaffected.

As can be seen from the inset of Fig. 2, the probability
density decays slightly faster than exponentially. This is con-
sistent with simulations by Makseet al. [15] who found that
Psfd crosses over to a Gaussian for large particle deforma-
tions; we have used rather “soft” particles in our simulations
for which deformations are relatively large—i.e., up to 2%.
We come back to the effect of deformation in experiments in
Sec. IV B. For small forces,Psfd approaches a finite value.

C. Orientations of f¢ and P8„fz…

After studying the absolute values offWi j , let us investigate
the orientationsof the interparticle forces. We therefore de-

fine wi j as the angle betweenfWi j and the horizontal axis. In
Fig. 3(a) we show the scatter plot ofsf ij ,wi jd in the bulk: the
angles are uniformly distributed and independent of the ab-

solute value offW. So the packings are highly disordered away
from the bottom. Near the boundary, however, this isotropy
is broken strongly. The presence of the bottom wall aligns
the bottom particles and as a consequence their interparticle
forces become almost purely horizontal—see Fig. 2(b). It is
clear that near the bottom the interparticle forces naturally
divide up into these almost horizontalintralayer forces and
layer-to-layerforces connecting bottom particles with those
in the layer above. The orientations of these layer-to-layer
forces are indeed concentrated aroundp /3 and 2p /3, as can
be seen from Figs. 2(b) and 3(b).

Since the particleweightsare derived from thez compo-

nents of the forces,fz=sfWi jdz, we now investigate their distri-

bution P8sfzd. The bottom-induced orientational order dis-
cussed above is reflected in the statistics of thefz. According
to Fig. 4, there is a substantial difference betweenP8sfzd in
the bulk(open circles) andP8sfzd for the layer-to layer forces
near the bottom(dots). This difference can be understood as
follows. Assuming that thewi j are indeed uncorrelated to the
f ij , we can write

P8sfzd =E
0

p

dwFswdE
0

`

dfPsfdd„fz − f sinswd…, s2d

whereFswd is the angle distribution andPsfd is the distribu-

tion of the absolute valuesufWu of Fig. 2. Note thatkfzl,1.
For the layer-to-layer forces near the bottom, we have seen
from the scatter plot that the values of sinswd are concen-
trated around1

2
Î3<0.866. In the approximation that the dis-

tribution of sinswd is sharply peaked, the shape ofP8sfzd
equals that ofPsfd (up to a scale factor). This is indeed
confirmed by direct comparison of the dotted data sets of
Figs. 2 and 4.

In the bulk, we have seen that the packing geometry is
isotropic. A consequence of this isotropy is that the probabil-
ity density function of the horizontal components,P8sfxd, is
identical toP8sfzd (not shown here). Again, one can use Eq.

FIG. 2. (a) Psfd for amorphous packing in the bulk(open
circles) and for the layer-to-layer forces near the bottom(dots); the
inset showsPsfd on a log-lin scale. Note that the force distributions
are very similar, except for a small difference for smallf. (b) Detail
of a typical packing near the bottom showing layer-to-layer forces
(black lines) and the intralayer forces(white lines) near the bottom.
It is clear that the layer-to-layer forces are dominant in determining
the weightsw of the bottom particles. The numbers show the values
of nc, the number of(layer-to-layer) forces that contribute to these
weights.

FIG. 3. Scatter plot ofsf i j ,wi j d for (a) the bulk forces, and(b)
the layer-to-layer forces near the bottom in the amorphous pack-

ings; wi j is the angle between the horizontal axis and the vectorfWi j .

FIG. 4. P8sfzd in the bulk (open circles) and for the layer-to-
layer forces(dots). The solid line was obtained by numerical inte-
gration of Eq.(3). The inset showsP8sfzd versus logfz, confirming
the logarithmic divergence for smallfz.

PACKING GEOMETRY AND STATISTICS OF FORCE… PHYSICAL REVIEW E 70, 011301(2004)

011301-3



(2) to understand the shape ofP8sfzd. Taking a uniform angle
distributionFswd=1/p, we obtain(Appendix A)

P8sfzd =
2

p
E

fz

`

df
Psfd

Îf2 − fz
2
. s3d

Numerical integration of this equation withPsfd from Fig. 2
yields the solid line in Fig. 4, which closely corresponds to
the P8sfzd as measured in the bulk(open circles). In Appen-
dix A, we show that the integral of Eq.(3) is weakly diver-
gent for smallfz:

P8sfzd = −
2

p
Ps0dlnsfzd + Os1d. s4d

The inset of Fig. 4 shows that our data forP8sfzd is indeed
consistent with this logarithmic divergence.

D. P„f…: Summary

Let us briefly summarize the results of this section. The
geometrical constraint imposed by the bottom wall locally
induces a packing geometry which is different from the bulk
geometry. Whereas this is strongly reflected in the orienta-

tions of thefWi j , the distribution of the absolute valuesPsfd is

very robust. The probabilities for the components of thefWi j
can be obtained with great precision, including the logarith-
mic divergence, by the transformation of Eq.(2).

III. PACKING GEOMETRY AND WEIGHT
DISTRIBUTIONS P„w…

In this section, we demonstrate that the local packing ge-
ometry has a dramatic effect on the weight distribution of
Pswd. As stated in the Introduction, experiments can only
measure the particle-wall forces at the boundary of a granu-
lar packing, and not the interparticle(bulk) forces that were
discussed in the previous section. Since these particle-wall
forces are essentially equal to the weights of the bottom par-
ticles, it is important to understand the relation between the
weight distributionPswd and the distribution of interparticle

forces PsfWd. In the first part of this section we develop a
simple geometrical framework to understand this relation,
based on phase-space considerations. We then show that this
explains, to a large extent, the weight distributionsPswd as
measured in our simulations of Hertzian spheres. In particu-
lar, we observe substantial differences between weight distri-
butions for different packing geometries.

A. Geometrical framework: Decomposition ofP„w… according
to number of contactsnc from above

If we interpret Eq.(1) as a transformation of stochastic
variables, it is possible to relate the corresponding probabil-
ity density functions as

Pnc
sWd =E

0

`

dsFW 1dz¯ E
0

`

dsFW nc
dzP„sFW 1dz, . . . ,sFW nc

dz…

3dSW− o
i=1

nc

sFW idzD . s5d

Here, we have neglected the termmg, sincemg/ kWl!1 far
below the top surface of the packing. The number of forces
over which we integrate differs from grain to grain, and it
turns out to be crucial to label the weight distribution in Eq.
(5), Pnc

sWd, according to this numbernc. This can be seen as
follows. The d function constrains the integral on ansnc

−1d dimensional hyperplane of the total phase space, and the
“area” of this hyperplane scales asWnc−1. We thus anticipate
the following scaling behavior for small weights:

Pnc
sWd ~ Wnc−1 for w → 0, s6d

provided that the joint probability density approaches a finite

value when allsFW idz→0. Such scaling is also implicit in the
q model [5], although therencù2 so thatPs0d=0. The par-
ticles that do not feel a force from above,nc=0, give ad-like
contribution at W=mg; for deep layers this occurs for
mg/ kWl!1. In a disordered packing, the number of particles
that exert a force from above can vary from grain to grain.
The total weight distributionPsWd, therefore, is a superpo-
sition of Pnc

sWd:

PsWd = o
nc

rnc
Pnc

sWd, s7d

wherernc
is the fraction of particles withnc contacts from

above. This means that the small weight behavior ofPsWd
depends very much on the fractionsrnc

and thus on the local
packing geometry, via Eqs.(6) and (7).

The steepness of the tail of the total weight distribution
depends strongly onrnc

as well. To explain this, let us as-
sume that all vertical forcesFz contributing to the weight are
uncorrelated. We considerP8sfzd~e−afz—i.e., P8sFzd
~e−aFz/kFzl for large forces. It follows from Eq.(5) that the
weight distribution takes over this same exponenta / kFzl, so
that Pnc

sWd~e−aW/kFzl. However, thePnc
sWd’s are not prop-

erly normalized:kWlnc
=kFzlnc, since each of theFz gives an

average contributionkFzl. This yields a total average weight
kWl=kFzlonc

rnc
nc=kFzlkncl. In order to compare with ex-

perimental and theoretical results we have to rescale the
weights so thatkwl=1, yielding the following large weight
behavior:

Pswd ~ e−gw with g = akncl. s8d

This simple calculation shows that, for a given value ofa,
the steepness of the tail of the experimentally measured
weight distribution is very sensitive to the local packing ge-
ometry. This is a direct consequence of keepingkwl fixed to
unity: a decrease of probability for small weights must lead
to a steeper tail for large weights in order to leave the aver-
age weight unaltered. Note that this general argument is not
restricted to uncorrelatedFz or exponential tails. A generali-
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zation to other than exponential tails is given in Appendix B.
So we have advanced a simple picture, in which the shape

of Pswd depends strongly on the local packing geometryvia
the fractionsrnc

. The small force behavior follows from Eqs.
(6) and(7), whereas Eq.(8) relates to a good approximation
the exponential tails ofP8sfzd andPswd. The object one ul-
timately wishes to characterize is of course the force distri-
bution Psfd. Since close to the boundaryPsfd andP8sfzd are
identical up to a scaling factorkfzl (Sec. II C), the above
equations allow us to trace the features of the force distribu-
tion from experimental measurements. Along this line, we
analyze recent experimental data in Sec. IV B.

B. P„w… in Hertzian sphere packings

We now discuss the weight distributions observed in the
Hertzian sphere packings and interpret the results within the
framework developed above. Figure 5(a) shows that in the
amorphous packingPswd in the bulk(open circles) is signifi-
cantly different fromPswd of the bottom particles(dots). The
probability for small weights is much larger at the bottom,
and the decay for large weights is not as steep as for the bulk

particles. Furthermore, the transition from bottom to bulk
behavior is remarkably sharp: in the slice 2,h,3 (solid
curve), the weight distribution is already bulk like.

Using the concepts developed in the preceding para-
graphs, we now show how this change inPswd can be ex-
plained by a change in the local packing geometry. Consider
the typical bottom configuration of Fig. 2(b). The intralayer
forces (white lines) are almost purely horizontal and hence
do not contribute to the weights. This reduces the effective
values ofnc, leading to the following fractions for the bottom
particles: hr0,r1,r2,r3j=h0.08,0.46,0.44,0.02j, where we
did not count the intralayer forces for determining the values
of nc [16]. In the bulk, these fractions are different—namely,
hr0,r1,r2,r3j=h0.01,0.11,0.52,0.36j. According to Eq.(7),
these differences between thernc

in the bulk and at the bot-
tom should lead to a substantially differentPswd. Figures
5(b) and 5(c) explicitly show the decomposition into the
Pnc

swd. Indeed, one observes the scaling behavior for small
w proposed in Eq.(6). Moreover, the variousPnc

swd are
essentially the same at the bottom and in the bulk: a direct
comparison is given in Fig. 6, where we rescaled the average
values to unity. There is only a small difference in theP1swd
due to the fact that bottom particles withnc=1 are typically
smaller than average[Fig. 6(a)]. For these particles, the in-
tralayer forces will add a small contribution to the weights,
enhancingP1swd for small w at the expense ofP1s0d. The
same argument holds forP0swd, whosed-like shape appears
a bit broadened in Fig. 5(c). However, it is clear that the

FIG. 5. (a) Pswd in the bulk (open circles) and at the bottom
(dots) in amorphous packings. At 2,h,3, Pswd is already bulk
like (solid line). (b),(c) Decomposition ofPswd according to Eq.(7)
(b) in the bulk (open circles) and (c) at the bottom(dots). The
measured bulk values for the fractionshr0,r1,r2,r3j in Eq. (7) are
h0.01,0.11,0.52,0.36j, and the bottom values are
h0.08,0.46,0.44,0.02j; as explained in[16], we excluded the intra-
layer (almost horizontal) forces at the bottom when determiningnc.

FIG. 6. Direct comparison of(a) P1swd and (b) P2swd for bulk
(open circles) and bottom particles(dots). All distributions are
scaled such thatkwl=1.
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differences betweenPswd in the bulk and at the bottom are
mainly due to a change in contact geometry.

Finally, let us remark that the good agreement between
Pbulksfd andPboundaryswd for w.0.3 is fortuitous and due to
the relatively large fraction of bottom particles withnc=1.
We will argue below that this is also the case in many(but
not all) carbon paper experiments.

C. Summarizing the simple picture

Our simple framework as developed in the sections above
can be summarized as follows: The geometry of the contact
network has a strong effect onPswd, while Psfd is very
robust. The weight distribution for particles with a givennc,
Pnc

swd, is robust and behaves aswnc−1 for smallw. Pswd can
be decomposed asPswd=onc

rnc
Pnc

swd, where rnc
are the

fractions of particles that havenc=0,1,2, . . .“up” contacts.
Differences ofrnc

between boundary particles and bulk par-
ticles explain the differentPswd’s for these cases. Whenr0

andr1 are large, the total weight distributionPswd exhibits a
plateau at small weights and a slow decay at large weights;
whenr2 andr3 become large,Pswd becomes sharply peaked.
In this way, thePswd small weight behavior and its exponen-
tial decay rate for large weights reflect the packing geometry.

IV. MANIPULATING THE GEOMETRY: EXPERIMENTAL
RELEVANCE

So far we have focused on the role of the bottom bound-
ary for disordered packings of frictionless particles. In this
section we provide explicit examples of other types of pack-
ing geometries and their effect onPswd. We first discuss our
simulations of weakly polydisperse particles, which give rise
to rather crystalline packings—see Fig. 7(a). We then apply
the geometrical framework derived in the previous section to
experimental(carbon paper) data by Eriksonet al. [11] of
highly deformed packings of soft rubber particles. Their re-
sults have a natural interpretation within our framework and
form a nice illustration of how the number of contact affects
the weight distribution. Both the simulations of crystalline
packings and the experiments on deformed packings are ex-
amples where the experimentally accessiblePboundaryswd is
significantly different fromPsfd in the bulk; we discuss why
in many other carbon paper experimentsPboundaryswd is prob-
ably very similar to the realPsfd.

A. Crystalline versus disordered frictionless packings

We now present the results of the more or less crystalline
packings, obtained from simulations with particle radii be-
tween 0.49, r ,0.51. First, the force distributionPsfd
shown in Fig. 7(b) is indistinguishable from the force distri-
butions in the amorphous packings[compare with Fig. 2(a)].
So, despite the order in particle positions, there are still large
fluctuations in the force network. There is of course some
disorder in the “contact network” since not all particles are in
contact with their six neighbors[Fig. 7(a)]. It is nevertheless
surprising that for this very different contact geometry, the
force fluctuations are characterized by the same probability

distribution as was observed for highly disordered packings.
This strongly suggests thatPsfd is a very robust quantity and
independent of the packing geometry.

The weight distributionPswd, on the other hand, is very
sensitive to the geometry. In a perfect triangular packing all
particles would havenc=2; in our simulations we find that
r2=0.9 andr1=0.1 due to lattice imperfections. From our
geometrical framework we expect that the shape of the
weight distribution is dominated byP2swd. Figure 7(c)
shows that this is indeed the case—e.g., compare with Fig.
6(b).

In an earlier paper[8], we reported how one can break the
regular packing geometry by using curved boundaries. This
led to a dramatic change inPswd that again could be under-
stood from a change in thernc

.

B. Experiments on strongly deformed particles

We now demonstrate how the strategy to decompose the
weight distributions according tonc can be applied to experi-
ments measuringPswd at the boundary of a granular mate-
rial. This is best illustrated by recent carbon paper experi-
ments by the Chicago group on soft rubber beads, in
particular Fig. 3 of Ref.[11], in which the effect of particle
deformations was investigated. Although our numerical
study has been done in two dimensions with frictionless par-
ticles, the general phase-space considerations presented in
Sec. III A are independent of dimensionality and are there-
fore expected to be applicable to the experimental situation.
The raw data of these experiments were kindly made avail-

FIG. 7. (a) Weakly polydisperse particles(radii between
0.49, r ,0.51) spontaneously crystallize into a hexagonal packing.
(b) The correspondingPsfd is indistinguishable from the force dis-
tributions in amorphous packings.(c) The weight distributionsPswd
in the bulk(open circles) and at the bottom(dots) are dominated by
particles withnc=2.
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able by the authors, allowing us to perform the analysis pre-
sented below.

The experimental results of Fig. 3 of Ref.[11] display
three trends as the compression is increased:(i) The d-like
peak atw=0 decreases,(ii ) limw↓0 Pswd decreases, and(iii )
The exponential tail becomes steeper.

These behaviors emerge naturally when considering the
role of the fractionsrnc

. The first trend arises from a decrease
in r0, since only particles withnc=0 give ad-like contribu-
tion to Pswd. The second trend comes from a decrease inr1:
from Eqs.(6) and (7) it is clear that limw↓0 Pswd=r1P1swd.
The changes inPswd can thus be understood from an in-
creasing number of contacts, which is what one would ex-
pect for a compressed system[15]. The fractionsr2 and r3
will increase at the expense ofr0 andr1. Also the third trend,
the steepening of the exponential tail, is directly related to
the increase inkncl via Eq. (8). However, Eqs.(6)–(8) allow
us to further quantify this change in contact geometry from
the experimental data. The value ofr1P1s0d can be read off
from the plots, after subtracting thed-like data points, since
r1P1s0d=limw↓0 Pswd. The value ofr0 is obtained by the
height of thed peak times the bin width. Using the raw
experimental data, we obtained the figures given in the first
colomn of Table I, where we tookP1s0d=0.5 [17]. Unfortu-
nately, the values ofr2 andr3 cannot be determined directly
from the data.

An intriguing issue is that numerical simulations by
Makseet al. [15] indicate thatPsfd crosses over to a Gauss-
ian for large particle deformations. This contradicts the ex-
perimental data for which one observes an exponential tail
even though particle deformations are up to no less than 45%
[11]. Moreover, we speculate below that the steepening of
the tails is only due to changes in thernc

and that the bulk
force distributionsPsfd actually remain unaffected by the
particle deformations. The way to test this scenario is to
examine whether the exponential decay constant ofPsfd
~e−âf remains fixed, even though the steepness ofPswd
~e−gw increases. We use Eq.(8) to determine the value of
a=g / kncl, wherea andg are the decay rates ofP8sfzd and
the experimentalPswd, respectively. Since we found in Sec.
II C that PsFd andP8sFzd near the bottom are almost identi-
cal up to a scaling factorkFzl / kFl, the actual decay rate of
Psfd~e−âf is exactly the same as that of the(renormalized)

P8sfzd, so thatâ=a. Hence, we can approximate the expo-
nential decay constant of the force distribution as

â =
g

kncl
. s9d

To estimate the values ofkncl, we worked out two scenarios:
we take eitherr2=r3 or r3=0. Together with the values of
r0, r1, andg, taken from the experimental data, this yields
the values ofâ listed in the second and third columns of
Table I. Surprisingly, the root-mean-square deviation inâ is
only 18%, which is rather small considering our rather crude
estimates of thernc

and the fact that Eqs.(8) and(9) are only
approximate.

Let us briefly recapitulate the discussion above. First, we
have interpreted the changes in experimental particle-wall
force distributions of strongly compressed packings[11] as a
change in the packing geometry. To be more precise, the
overall trends can be understood from the expected increase
of the number of contacts due to compression. We demon-
strated how one can determine the fractionsr0 andr1 from
the experimental data. At first sight the obtained percentages
of particles withnc=0 or 1 in Table I may appear to be rather
high for 3D packings. However, one should keep in mind
that in the experiment the number of bottom particles is often
known, but that some particles clearly do not leave an im-
print. This indicates that there is a significant number of
bottom particles that really havenc=0, even for these 3D
systems. Clearly this issue is not settled, so direct measure-
ments of these fractions would therefore be very welcome as
a test of our framework. Furthermore, our crude estimates in
Table I give reason to believe that the force distributionPsfd
is actually not much affected by the compression. Again, this
scenario should be verified by measuring thernc

more di-
rectly. Finally, it seems that for most experimental results,
where particle deformations are relatively small,r0 and r1
are substantial at the boundary, so thatPboundaryswd is similar
to Pbulksfd (apart from ad peak atw=0). The same argument
probably holds for recent simulations by Silbertet al. [18].

V. BEYOND THE SIMPLE PICTURE

In the picture that we have constructed above we charac-
terize the packing geometry by the fractionsrnc

, and we
found that thePnc

swd are very robust. This is of course a vast
simplification, since we characterize the local environment
of a particle by only one number—namely,nc. In this section
we address the question why this crude approach works so
remarkably well. For bottom particles the situation is particu-
larly simple and insightful, since the geometry of the con-
tacts is more or less fixed. There is one contact with the
bottom, one or two almost horizontal intralayer contacts, and
nc forces from above—Fig. 2(b). As we have shown in Fig.
3(b), the angles of these forces display little scatter, so the
local texture is more or less fixed oncenc is given. For bot-
tom particles one can thus understand thatnc indeed provides
a good description of the local packing geometry, which jus-
tifies the decompostion according tonc. Although for par-
ticles in the bulk the situation is more complicated, there are

TABLE I. The calculated values for the exponentsâ, after esti-
mating the fractionsrnc

from the experimental data of Figs. 3(a)–
3(d) of Ref. [11]. The percentage in the first column represents the
degree of particle deformation. The values ofg are taken from
Table I of Ref.[11].

Deform. g r0 r1

r2=r3 r3=0

kncl â= g

kncl
kncl â= g

kncl

25% 2.4 0.23 0.58 1.05 2.29 0.96 2.51

30% 2.6 0.21 0.26 1.60 1.63 1.33 1.96

37% 2.8 0.14 0.18 1.88 1.49 1.54 1.81

45% 3.8 0.00 0.05 2.42 1.57 1.95 1.95
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similar arguments whyPnc
swd is indeed a robust quantity

—i.e., insensitive to packing geometry. These will be dis-
cussed in Sec. V A. We then address the up-down symmetry
of the system. Our framework only involves the number of
contacts from above,nc, and not the number of contacts from
below, nb. For bottom particlesnc is the obvious parameter,
but in the bulk of an amorphous packing, where the angle
distribution is isotropic, there is no reason whync should be
more important thannb. In Sec. V B we therefore investigate
weight distributions for particles with a given combination
hnc,nbj, which we denote byPncnb

swd. Special attention will
be paid to particles that havencÞnb in Sec. V C.

A. Why is Pnc
„w… for bulk particles robust?

It is not a priori clear whyPnc
swd is rather insensitive for

the packing geometry, since the definition ofPnc
swd in Eq.

(5) involves the joint distribution of thesfWidz that push on a

particle from above—i.e.,P(sfW1dz, . . . ,sfWnc
dz). This joint dis-

tribution has an explicit geometry dependence since the pro-
jections in thez direction involve the distribution of contact
angleswi. Even if we assume that the forcemagnitudeis
uncorrelated to itsorientation, i.e.,

PsfW1, . . . ,fWnc
d = Psf1, . . . ,fnc

dFsw1, . . . ,wnc
d, s10d

we obtain the distribution of the vertical components

P(sfW1dz, . . . ,sfWnc
dz) by integration over the joint angle distri-

butionFsw1, . . . ,wnc
d. Therefore, thePnc

swd have an explicit
geometry dependence.

We already saw that this angle distribution is more or less
fixed for bottom particles. For the polydispersities used in
this study, the bulk angles have also limited room for fluc-
tuations oncenc has been specified. For example ifnc=3,
one typically finds one angle close top /2 and two relatively
small angles—see Fig. 8(a); this is because the three particles
should all touch the upper half of the bead supporting them.
Particles withnc=2 also have such an “excluded-volume”-
like constraint[Fig. 8(b)], albeit less strong than fornc=3.
Particles withnc=1 have an enhanced probability for angles
aroundp /2, because such contacts make the presence of a
second contact from above less probable[Fig. 8(c)]. So the
shape ofPnc

swd is limited by the geometric constraints on
the angle distributionsFsw1, . . . ,wnc

d, which are rather
peaked. This justifies the picture that the geometry depen-
dence ofPswd is mainly due to thernc

and that thePnc
swd

can be considered invariant.
Note that the above-mentioned constraints on the angle

distributions imply that the averageskwlnc
are not simply

proportional tonc. Comparing, for example,nc=1 and nc
=3, we see that the two “extra” forces fornc=3 have a rela-
tively small vertical component; the average weight will thus
grow less than linearly withnc. We should therefore correct
Eq. (8) for the steepness of the tails by replacingkncl with
onc

rnc
kwlnc

. Making a correction of this type would further
refine our analysis of the experiment with rubber beads dis-
cussed in Sec. IV B.

B. Gravity and up-down symmetry

In our analysis ofPswd we have explicitly broken the
up-down symmetry, since it only involved the number of
contacts from above. At the bottom, this is an obvious
choice. Away from the boundary, however, the amorphous
packings have an isotropic angle distribution even though the
packings were created under gravity. Moreover, we have ne-
glected the termmg in Eq. (1), which makes the sum of
forces from below equal to the sum of forces from above. So
in principle one could also decomposePswd according to the
number of contacts from belownb. We therefore investigate
Pncnb

swd; this can be regarded as a “component” ofPnc
swd,

sincernc
Pnc

swd=onb
rncnb

Pncnb
swd.

Figure 9(b) shows thatP13swd, P22swd, and P31swd are
almost identical. The same holds forP23swd andP32swd [Fig.
9(c)], so the total coordination numbernc+nb appears to be a
more fundamental quantity than justnc or nb. Figure 9(d)
furthermore shows that the quadratic scaling ofP33swd is
somewhat more pronounced than forP23swd andP32swd; it
seems that the presence of two contacts from above or below
inhibits the pure quadratic scaling.

The presence of gravity is noticed, however, forP12swd
and P21swd which do show some differences[Fig. 9(a)].

FIG. 8. (a) For particles withnc=3, we plot the probability
densities for the anglesF3sw1d, F3sw2d, and F3sw3d, where the
three angles have been sorted such thatw1,w2,w3. (b) The prob-
ability densitiesF2sw1d andF2sw2d for particles withnc=2. (c) The
probability densityF1sw1d for particles withnc=1.
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These particles have only three contacts and were less re-
stricted during the formation of the static force network by
the “cage” surrounding them. This allowed gravity to influ-
ence their final movements more than for particles withnc
+nb.3. Obviously, this effect is even stronger for particles
with only two contacts, which typically havehnc,nbj=h0,2j.

To further investigate the up-down symmetry, we list the
fractionsrncnb

of particles with a certainnc andnb in Table II.
For all particles with three or more contacts these fractions
are almost perfectly symmetric. From this we conclude that
in the amorphous packings, the up-down asymmetry due to
gravity is only noticed by particles that have two or three
contacts.

C. Particles with ncÅnb

We have seen that for particles withhnc,nbj=h3,1j or vice
versa, the small weight behavior is,w1, which is different
from the scaling predicted by Eq.(6). This breakdown of our
simple picture can be understood as follows. A particle that
has four contacts can either havehnc,nbj=h3,1j, hnc,nbj
=h2,2j, or hnc,nbj=h1,3j depending on the precise orienta-
tions of the forces with respect to gravity. However, if we

were to define the weights by projecting theFW i j at a small
angle with respect to gravity, a particle with four contacts
can easily change fromhnc,nbj=h3,1j to h2,2j or even to
{1,3}. However, we have seen that there is no “preferred”
projection direction, since gravity has only very little effect
on our packings. Hence, it is not surprising that thePnbnc

swd
depend onnc+nb and not onnc or nb individually.

But what determines the precise scaling for small
weights? Consider a particlei with nc=3 and nb=1. The

three forces pushing it from above,FW i1, FW i2 andFW i3, are not
independent: force equilibrium in the direction perpendicular

to FW i4 (the force pushing from below) requires sFW i1+FW i2

+FW i3d ·eW'=0, whereFW i4·eW'=0. This reduces the number of
independent forces from above to only 2, since the third is
determined by mechanical equilibrium. As a consequence,
the scaling behavior for smallw will be P31swd~w.

For particles withnc=3 andnb=2, the five forces are also
coupled through mechanical equilibrium. In this case, how-
ever, one cannot distill a relation between the forces from
above only, such as we did for particles withhnc,nbj
=h3,1j. So one still expects thatP32swd~w2, as is observed

FIG. 9. (a) P12swd (solid line) and P21swd (dotted line). (b)
P13swd, P22swd, andP31swd. (c) P23swd andP32swd. (d) P33swd.

TABLE II. Fractions rncnb
expressed in percentages; the num-

bers are almost up-down symmetric, except for rattlers(particles
with two contacts). From these fractions one finds the average co-
ordination numberknc+nbl=4.51.

nc\nb 0 1 2 3 4

0 0 0 0.6 0 0

1 0 0.3 5.6 4.7 0.2

2 0 4.7 26.1 20.5 0.7

3 0 5.1 21.6 8.9 0

4 0 0.3 0.7 0 0
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in Fig. 9(c). Nevertheless, this illustrates that two-
dimensional mechanical equilibriumdoesintroduce correla-
tions between all forces pushing from above. This limits the
validity of our arguments used in Sec. III, for bulk particles.
At the bottom our analysis is still valid: horizontal equilib-
rium can be accomplished by the forces between neighboring
bottom particles[see Fig. 2(b)], so the forces from above can
really be considered as independent.

D. Summary

In this section we have addressed the limitations of our
simple geometrical framework. We have shown that the ob-
servation thatPnc

swd is insensitive to packing geometry
originates from excluded-volume-like correlations between
the angles at which forces press upon a bead(Fig. 8). This is
the subtle underlying reason why our simple picture, where
we characterize the local packing geometry by only one
numbernc, is good enough to interpret experimental and nu-
merical data. We have furthermore studied the effect of grav-
ity by decomposing the weight distribution according to the
number of particles from belowsnbd as well. We found that
gravity breaks the up-down symmetry only mildly in our
simulations; the distributionsPncnb

swd depend on the coordi-
nation numbernc+nb rather than onnc or nb independently
(Fig. 9). This further refines the analysis of the relation be-
tween packing geometry and force network statistics in the
bulk of a packing; at the boundary, it is sufficient to consider
only the number of contacts from abovesncd.

VI. WEIGHT AND FORCE DISTRIBUTIONS IN THE q
MODEL: THE ROLE OF CONNECTIVITY

In this section, we investigate to what extent the results
obtained for the Hertzian sphere packings can be understood
within the context of theq model and its generalizations. In
the standard version of the model, the particles are posi-
tioned on a regular lattice, and the particle weights are sto-
chastically transmitted to the neighbors in the layer below
[5]. The weight on a particlei splits up intonc fractionsqij ,
and the total weight exerted on a particlej in the layer below
then becomes

Wj = mg+ o
i

qijWi , s11d

where the termmg can be neglected at large depth. The
fractionsqij obey the constraint

o
j

qij = 1, s12d

which assures mechanical equilibrium in the vertical direc-
tion. In both Eqs.(11) and(12), the sum runs overnc terms.
Theseqij can in principle be deduced from the forces in more
realistic packings: from definition(1), one finds qij

=sFW i jdz/Wi.
The simple form of theq model has allowed for a number

of exact results of which the most important is the solution
for the uniform q distribution. This uniformq distribution

assigns an equal probability to each set ofhqijj that obeys Eq.
(12) and serves as a generic case. The rescaled weightsw
then become distributed as[5]

Pnc
swd = cwnc−1e−ncw, s13d

wherenc is fixed for a given lattice andc is a normalization
constant. Note that these solutions have the same qualitative
behavior as those found in our molecular dynamics simula-
tions: for small weightsPnc

swd~wnc−1, and the probability
for large weights decays exponentially.

The q model is thus an effective minimal model for the
weightsW. It is clear that the product ofqij and Wi has a

natural interpretion as the vertical component ofFW i j . Since
these interparticle forces are more fundamental than the
weights, we investigate the statistics of the quantityqW in
Sec. VI A; this will shed light on the discrepancy for small
forces between theq model and experimental data. In the
light of our finding that the contact geometry and in particu-
lar nc play a crucial role, the standardq model is clearly
limited since it fixesnc. In Sec. VI B we therefore extend the
q model to have randomness in itsconnectivity(i.e., to allow
for a range ofnc’s) and find that, as expected, thePswd can
be manipulated by changes in the connectivity.

A. Distribution of interparticle forces: P„qw…

A direct comparison of Eqs.(1) and (11) shows that the
productqijwi has a natural interpretation as the vertical com-

ponent offWi j . Since the interparticle forces are more impor-
tant than the weights, it is interesting to investigate the sta-
tistical properties of the bond quantityqw. To obtain the
distribution Psqwd, let us start with the transformation from
Psqwd to Pnc

swd:

Pnc
swd =E

0

`

dsqwd1P„sqwd1… ¯ E
0

`

dsqwdnc
P„sqwdnc

…

3 dSw − o
i=1

nc

sqwdiD . s14d

Here we assumed that thesqwdi are uncorrelated, which is
valid for the uniformq distribution[19]. For the correspond-

ing Laplace transforms, denoted byP̃ssd and P̃nc
ssd, respec-

tively, this relation becomes

P̃nc
ssd = „P̃ssd…nc. s15d

Since the Laplace transform of Eq.(13) is of the form
1/s1+sdnc, the distribution ofqw reads

P̃ssd =
1

1 + s
⇒ Psqwd = e−qw. s16d

We thus find(for the uniformq distribution) that Psqwd is a
pure exponential, independent of the number of contacts,nc.
Again, this is very similar to the results for our Hertzian
sphere packings: the distribution of “interparticle forces”,
Psqwd, is finite for small forces, whereas the distribution of
weights depends onnc as given by Eq.(6). Moreover, this
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resolves the discrepancy for small forces mentioned in the
Introduction: theq model predicts a vanishing probability
densitity for small weights,but not for small forces.

B. Including geometry effects

From Sec. III, it is clear that the weight distributionPswd
in Hertzian sphere packings is very sensitive to the local
packing geometry. Since theq model is defined on a regular
lattice, with fixed connectivity, it cannot capture the behavior
of Pswd in disordered packings with fluctuatingnc. This ex-
tra degree of disorder can be included, for example, by “cut-
ting” some of the bonds of the regular lattice. We illustrate
this with the two-dimensional square lattice depicted in Fig.
10. For each site, the weight is transmitted downwards
through either two or three bonds with probabilitiesp and
1−p, respectively; in the former case we randomly cut one
of the available bonds and generate the two remainingqij
according to a uniform distribution satisfying Eq.(12). This
generates particles withnc=0, 1, 2, and 3, since all bonds
arriving at a site have a probability ofp/3 to be missing. For
simplicity, we introduced the disorder innc by means of one
parameterp only; as a consequence, we can only obtain a
limited set ofhrnc

j.
With this model, we have tried to mimic the bulk-bottom

behavior ofPswd that was observed in the amorphous pack-
ings [Fig. 5(a)]. In the bulk layers we took out bonds with
probability p=0.3, and for the bottom layer we tookp=0.9;
the result is shown in Fig. 10. Indeed, the change in the
fractionsrnc

is sufficient to reproduce a transition ofPswd
reminiscent of what has been observed in our Hertzian
sphere packings[compare with Fig. 5(a)].

C. Conclusions for theq model

Although it is known that theq model does not properly
describe the spatial structure of the force network[12], it
remains a very instructive theoretical framework for thesta-

tistics of force fluctuations. While in the standard case the
disorder in the system is represented by the stochastic frac-
tions qij only, we have shown that when also the connected-
ness is chosen to be random, the model displays most fea-
tures of realistic packings.

Let us conclude this section by mentioning that the idea to
leave out some of the bonds of a regular lattice is not new
[20]. In these studies, however, bonds were cut in a particular
manner to build up long-ranged force correlations. We have
shown that such long-ranged structures are not important for
the behavior ofPswd, since they only depend on thelocal
packing geometry.

VII. TOP-DOWN RELAXATION OF FLUCTUATIONS

So far, the discussion has been limited to situations well
below the top surface of the packings. The data of the Hert-
zian sphere simulations were taken at least 15 layers below
the top surface and the results of theq model (presented in
the previous section) all correspond to the limit of large
depths. In this section we investigate the top-down relaxation
of the force and weight distributions. At the top surface of
the Hertzian sphere packings, there are only weight fluctua-
tions due to grain polydispersity. The question we address is
how fast the force and weight fluctuations build up towards a
bulk distribution, as a function of depth.

These results can then be compared to the relaxation in
the q model. Interpreting the downward direction as time,
this corresponds to transient behavior towards the “station-
ary” solutions given in Eqs.(13) and (16). This top-down
relaxation of fluctuations forms an additional test to qualify
various theoretical models, very much like the Green’s func-
tion measuring the response to a localized load on the top
surface[12]. In our case, we start from spatially(nearly)
homogeneous conditions in the top layer and see how fluc-
tuations build up.

A. Top-down relaxation in Hertzian sphere packings

A good way to quantify changes inPswd and Psfd is to
study their second momentskw2l andkf2l. For a distribution
of zero width these second moments are unity, and they in-
crease as the fluctuations become larger[21]. In Fig. 11 we
show the second moments as a function of the heighth,
which is defined as the distance from the bottom boundary.
Since the packings are strongly disordered, the precise loca-
tion of the top surface will be slightly different for each
realization; it turns out to be located aroundh=46.

Let us first consider the broadening of the weight distri-
bution shown in Fig. 11(a). As already mentioned above, the
weight fluctuations at the top surface are entirely due to the
polydispersity of the grains. Using a flat distribution between
0.4, r ,0.6 this corresponds tokw2l<1.11, which is consis-
tent with our simulation data. The second moment ap-
proaches its bulk value already at a depth of approximately
ten particle diameters. The figure also shows the sharp tran-
sition of Pswd at the bottom boundary. The second moments
of Psfd are shown in Fig. 11(b). One again observes a relax-
ation over approximately ten layers, towards a bulk value;

FIG. 10. Theq model with a random connectivity: with a prob-
ability p we cut one of the three bonds(inset). We recover the
bottom effect forPswd in this model. In the bulkp=0.3 (open
circles) and at the bottomp=0.9 (dots); this corresponds to
hr0,r1,r2,r3j=h0.00,0.03,0.24,0.73j and h0.03,0.19,0.44,0.34j,
respectively.
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Psfd does not change significantly near the bottom boundary.
Note that both the force and weight distributions become
slightly narrower as the depth increases below heigths of the
order of 30. This may be attributed to an increase in particle
deformations[15].

We thus find that the typical length scale for force and
weight fluctuations to saturate is approximately ten particle
diameters. This provides another important criterion to dis-
tinguish between different theoretical models.

B. Top-down relaxation in the q model

The top-down relaxation is well understood for theq
model without the so-calledinjection term—i.e., mg=0 in
Eq. (11) [19,22]. Before extending these results to theq
model with injection[23], we briefly recapitulate the results
of theq model without the injection termmg. This version of
the model can be interpreted as a packing of weightless par-
ticles, supporting a homogeneously applied force. To distin-
guish between theq model without injection from the model
with injection, we denote the weight distributions at deptht

by Rstdswd (without injection) and by Pstdswd (with injec-
tion).

For the uniformq distribution, it has been shown that[19]

Rstdswd . Pswd + S 1
Ît
Dd−1

Fswd for t → `, s17d

whered is the dimensionality of the packing. The stationary
solutionPswd is given by Eq.(13) andFswd is the shape of
a typical deviation. It is clear that all second- and higher-
order momentskwkl approach their asymptotic values ac-
cording to the same power law. This slow relaxation towards
Pswd is caused by thediffusion of correlations, which takes
place insd−1d-dimensional correlation space[24].

Let us now investigate how the injection termmg affects
the top-down relaxation. We first note that the recursive re-
lation for the weights, Eq.(11), is a linear equation. Theq
model with injection can therefore be interpreted as a super-
position ofq models without injection, with differently posi-
tioned initial layers. Although it is nota priori clear how this
superposition property is reflected in the weight distributions
Rstdswd (with injection) and Rstdswd (without injection), we
propose the following approximate mapping:

Pstdswd =
1

t + 1o
t8=0

t

Rst8dswd. s18d

If we combine this with the exact result of Eq.(17), we
obtain the following relaxation ast→`:

Pstdswd − Pswd ~ Fswd
1

t + 1 o
t8Þ0

t S 1
Ît8

Dd−1

~ Fswd5
1
Ît

, d = 2,

logstd
t

, d = 3,

1

t
, d ù 4.

s19d

This relaxation behavior is indeed observed in our numerical
simulations withd=2 andd=3, using a uniformq distribu-
tion. In Fig. 12, we show the results for an fcc packingsd
=3d. We plot tukw2lstd−4/3u as function of deptht, where
kw2ls`d=4/3. Theclimbing straight line on the lin-log plot
confirms the remarkable logstd / t relaxation. This result is
also implicit in Ref.[23]. We also plot the same data for the
q model without injection; this curve becomes flat, in agree-
ment with Eq.(17).

Although the mapping of Eq.(18) is definitely not exact,
it apparently captures the main physics of the relaxation pro-
cess. This can be understood as follows. There are two slow
processes involved:(i) the increasing number of layers re-
duces the contribution of each layer of “injected” weights
effectively as 1/t; (ii ) each layer of injected weights relaxes
as s1/Îtdsd−1d individually. Naturally, the total relaxation is
dominated by the slower of these two processes. In the spe-
cial case ofd=3 both powers are 1/t, leading to a logarith-

FIG. 11. The second moments(a) kw2l and(b) kf2l as a function
of heighth in simulations of Hertzian sphere packings. The arrow
indicates the location of the top surface, aroundh=46. For both the
forces and the weights one finds a fast top-down relaxation of the
moments.
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mic correction. Finally note that since the downwardq val-
ues are statistically independent from the weights, the
“force” fluctuations simply follow fromksqwd2l=kq2lkw2l
and thus display the same relaxation as the weights fluctua-
tions.

C. Conclusions concerning top-down relaxation

We have studied the top-down relaxation of the second
moments kw2l and kf2l, which quantifies how “fast” the
weight and force distributions approach their bulk shapes.
Theq model predicts a power-law relaxation with a logarith-
mic correction for 3D packings, Eq.(19). However, we find
no evidence for such a slow relaxation in our simulations of
Hertzian spheres, which indicate that a bulk distribution is
reached after approximately ten layers of particles(Fig. 11).
In the q model with injection, for example, the second mo-
ment after ten layers still differs around 20% from its
asymptotic value.

Let us provide two possible explanations why theq model
fails to describe this relaxation process. A first problem of the
model is that it assumes some fixedq distributionhsqd: we
have seen that theq’s can in principle be derived from the

forces asqij =sFW i jdz/Wi, so a relaxation inPsfd and Pswd
should result in a relaxation ofhsqd itself. This clearly shows
the difficulty of encoding the force behavior into a stochastic
variableq in a self-consistent manner. Another problem of
the model is that it assumes a top-down propagation of
forces. The up-down symmetry is therefore broken explicitly
in the q model, whereas in our Hertzian sphere packings we
find only a very weak symmetry breaking. In principle, force
networks are defined by the equations of mechanical equilib-
rium, which generically areunderdetermined[25,26] and
hence cannot be solved by an iterative(top-down) procedure.
Instead, one has to solve this set of coupled equations “si-
multaneously” for all particles in the system, and except for
the (small) mg term, there is a natural up-down symmetry in

this system. The absence of this up-down symmetry in theq
model could of course strongly affect the top-down relax-
ation.

VIII. DISCUSSION

We have argued that in order to understand the statistics
of forces in granular packings, it is crucial to distinguish
between interparticle forces and weights. We have found in
our simulations that the force distributionPsfd is very robust,
in the sense that its shape does not depend on details of
packing geometry. The weight distributionPswd, on the
other hand, is very sensitive to the local packing geometry.
We have demonstrated that a decomposition according to the
number of contacts that press on a particle from above,nc, is
sufficient to understand this geometry dependence. Reinter-
preting experiments on strongly deformed rubber particles
[11] within this framework, we find strong evidence thatPsfd
essentially remains unaffected even by very large particle
deformations. To further test our framework experimentally,
one can manipulate the number of contacts at the boundary
by placing a layer of relatively small or large beads at the
bottom. For small beads, the fractionsr0 andr1 will be en-
hanced, leading to a largePswd for small w and a slow
exponential decay for largew. Relatively large bottom beads
should lead to aPswd that is strongly peaked.

The present work provokes a number of questions. First,
we observe that most of our simulation results, like the
shapes ofP8sfzd and Pswd, can to a large extent be under-
stood in terms oflocal packing geometry only. This suggests
that at least for the “one-point” force, weight, and angle
probability distributions, long-range correlations are not
dominant. We therefore question whether the behavior of
Psfd observed at the jamming transition[6,7] reflects a long-
range structural change of the force network. In particular,
we expect that the role of “force chains” can only be under-
stood from two- or more-point correlation functions, and not
from Psfd only.

A related problem is that theq model fails to describe
problems that involve the spatial structure of the force net-
work. Although the model is able to capture many features of
force and weight statistics(Sec. VI), it does not produce the
top-down relaxation ofPswd that is observed in the more
realistic Hertzian packings. Alongside the incorrect predic-
tion of the response function[12], this indicates that spatial
dependence is not correctly incorporated within theq model.
This may be due to the fact that, in general, recursive models
do not acknowledge the structure of the equations describing
mechanical equilibrium. These equations are typically under-
determined[25] and cannot be solved in a recursive manner.
In a recent paper[26], we therefore propose a different the-
oretical approach, in which we start from the equations of
mechanical stability and exploit the undetermined degrees of
freedom.

Another important issue for future study is clearly the role
of friction and dimensionality. Our numerical study has been
done in two dimensions with frictionless spheres; however,
recent studies indicate[15] that the coordination number for
3D packings with friction is similar to those of 2D friction-

FIG. 12. Relaxation of the second moments with injection
(climbing line) and without injection (flat line) towards their
asymptotic values 4/3 in the 3Dq model. Since we plottukw2lstd

−4/3u along the vertical axis, the climbing straight line confirms the
logstd / t relaxation for theq model with injection. Without injection
the relaxation is simply 1/t.
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less packings. Qualitatively, the picture we have advanced is
therefore expected to capture the realistic case of three di-
mensions with friction, because our phase-space arguments
are independent of dimension.
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APPENDIX A: LOGARITHMIC DIVERGENCE OF P8„fz…

In Sec. II C, we encounter the following integral:

P8sfzd =E
0

p

dw
1

p
E

0

`

dfPsfdd„fz − f sinswd…

=E
0

`

dfPsfdE
0

p/2

dw
2

p

1

f
dS fz

f
− sinswdD

=
2

p
E

fz

`

df
1

Îf2 − fz
2
Psfd. sA1d

The functionPsfd represents the probability density function

of f = !fW!, which we can assume to be regular on the entire
interval (see Fig. 2). The behavior for smallfz is not trivial,
since the integrand diverges at the lower bound of the inte-
gration interval. For each nonzerofz this does not lead to a
singularity, since

P8sfzd =
2

p
E

fz

` df

fz

Psfd
Îsf/fzd2 − 1

=
2

p
E

1

`

du
Psufzd
Îu2 − 1

.

sA2d

The integral over 1/Îu2−1 is convergent foru→1 and the
function Psufzd falls fast enough assufzd→`. For fz=0,
however, the integral diverges asu→`. To obtain the
asymptotic behavior we rewrite the integral as

P8sfzd =
2

p
E

1

`

du
Psufzd

u
+

2

p
E

1

`

duPsufzdS 1
Îu2 − 1

−
1

uD .

sA3d

The second term is convergent since the term between brack-
ets behaves as 1/u3 as in the limitu→`. We thus find that

P8sfz → 0d .
2

p
E

fz

`

df
Psfd

f
+ Os1d . −

2

p
Ps0dlnsfzd + Os1d.

sA4d

APPENDIX B: RELATION BETWEEN TAILS OF P8„fz…

AND Pnc
„w…

In this appendix we derive the large weight behavior of
from the tail ofPnc

swd from the tail ofP8sFzd, assuming that

the varioussFW idz in Eq. (5) are uncorrelated. We consider
decays both faster and slower than exponential, of the form

P8sFzd ~ exps− aFz
b/kFzlbd for Fz → `. sB1d

We show that, after rescalingkwl to unity, this leads to

Pnc
swd ~ e−gwb

, sB2d

with

g = Hanc, b ù 1,

anc
b, b ø 1.

sB3d

This means that the tail of the weight distribution is of the
same nature as that of the forces, but with a different pref-
actor g. The tails get steeper for increasingnc, since the
reduced probability for smallw (due to a lack of phase
space) must be compensated to keepkwl=1.

The above results are obtained as follows. Rescaling all
forces in Eq.(5) asxi =sFzdi /W, one obtains the probability
for large weights:

Pnc
sWd ~ Wnc−1E

S
dx1 ¯ dxnc

3expS−
a

kFzlbWbsx1
b + ¯ + xnc

b dD , sB4d

whereS denotes the hyperplane 1−oixi with all xi ù0.
For b.1, the probability density onS has a maximum at

xi =1/nc, which becomes sharply peaked for increasingW.
Physically, this means that the dominant contribution for
large weights will come from allFz being equal—namely,
W/nc. Approximating the integrand by a Gaussian around its
maximum value, we find that the “width” decreases as a
power of W only—namely, 1/Wsnc−1db/2. Hence the leading
behavior for largeW is given by the maximum value of the
integrand—i.e., expf−sa / kFzlbdWb / sncdb−1g.

For b,1, the probability density has a minimum atxi
=1/nc, and the dominant contribution now comes fromxi
=1 andxjÞi =0. This means that typically only one of the
forces accounts for the whole weight. The part of the integral
aroundxi =1 can be approximated by

expS−
a

kFzlbWbDE
Se

dx1 ¯ dxn expS−
a

kFzlbWbo
jÞi

xj
bD ,

sB5d

where Se denotes the part ofS for which 1−xi øe. This
approximation becomes exact forW→` as long asWbe
!1; we takee=1/W1−d with 0,d,1−b. Working out the
integration overSe, one finds

expS−
a

kFzlbWbD
Wnc−1 FE

0

`

dy expS−
a

kFzlb ybDGnc−1

, sB6d

as W→`. The part of the integral outside the areasSe is
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smaller thanWnc−1expf−sa / kFzlbdWbs1+Wddg and can thus
be neglected. So also forb,1, the leading behavior for large
W is simply given by the maximum value—i.e.,
expf−sa / kFzlbdWbg.

As mentioned in Sec. III, thePnc
sWd obtained by Eq.(5)

are not properly normalized, sincekWl=kfzlnc. If we rescale
the average weight to unity, we obtain the results of Eqs.
(B2) and (B3).
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