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Packing geometry and statistics of force networks in granular media
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The relation between packing geometry and force network statistics is studied for granular media. Based on
simulations of two-dimensional packings of Hertzian spheres, we develop a geometrical framework relating the
distribution of interparticle forceP(f) to the weight distributior”(w), which is measured in experiments. We
apply this framework to reinterpret recent experimental data on strongly deformed packings and suggest that
the observed changes #fw) are dominated by changes in contact network whi{€) remains relatively
unaltered. We furthermore investigate the role of packing disorder in the contexta@fiibdel and address the
question of how force fluctuations build up as a function of the distance beneath the top surface.
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I. INTRODUCTION plicitly, we will focus on frictionless spheres for which these

Inside a granular material forces are distributed very in-Weights are defined as
homogeneously: a small number of particles carries a large R
fraction of the internal forcefl]. These large fluctuations are W, =mg+ E (Fij)2- (1)
reflected in the force probability density functions, which (i)
typically decay exponentially2-5]. The behavior for small .
forces is not as well understood as the generic exponentidlerem; denotes masg} denotes gravityk; are the interpar-
tail: the g model appears to predict a vanishing probabilityticle forces, andh, is the number of particles exerting a force
density for small force$5], whereas experiments and simu- on particlej from above the sum runs over all these forces.
lations clearly show that this probability remains nonzeroThere aren, particles excerting a force on particjefrom
[2-4]. The characterization and understanding of this probabove, so the sum hagterms. So, to relate the experimental
ability remains a challenge, especially since the force distrivesults to the bulk force distributions, one has to understand
bution is believed to play an important role for the dynamicalthe relation between weights and forces.
arrest or “jamming” of granular and other disordered mate- In this paper we will show how thical packing geom-
rials [6]. In particular, the force distribution has been ob- etry plays the crucial role in the relation between the force
served to develop a small peéround the average valuim  distributionsP(f) and the weight distribution®(w) (we de-
simulations of supercooled liquids, foams, and granular matfine f=F/(F) and w=W/(W) as the appropriately rescaled
ter undergoing a jamming transitigf,7]. However, there is  forces and weighis Our central point is that while the dis-
still no microscopic understanding how this effect relates taribution of f is robust, the distribution ofv is profoundly
the properties of the force network. influenced by the contact geometry, in particularthy num-

This paper is a full exposition and expansion of an ap-er of downward pointing contact forces.nn s.imulations
proach which was briefly outlined ii8]. We will unravel the  of Hertzian sphere packings we will find thBboundanfW) iS
effect of the local contact geometry on the distributions ofdifferent from P, (w), due to the rather special packing
interparticle force Fand effective particleweight W the eometry near a boundary. However, for mahyt not al)
WE|ght is defined as the sum of the vertical components of a xperimentally relevant situations, the special packing geom-
downward pointing forces on a particle—see Fig. 1. Whileetry near a boundary mak@,nqanW) rather close, but not
the distribution of forced= is the primary object one ulti- equal, to the bulkP(f). This fortunate but nontrivial coinci-
mately wishes to characterize, it is difficult to access experi-
mentally. Experiments with photoelastic materials are able to .
depict the spatial structure of bulk forces in two dimensions (a) /b)
(2D), but their precision to resolve individual contact forces F &/
is limited [9]. Only recently, there have been first reports of h ZF
3D bulk measurements on forces in compressed emulsions mg tﬂ
[10]. Most quantitative information on the force probability \|/ W
distribution is at present only accessible through measure- |
ments of theparticle-wall forcesfrom imprints on carbon
paper{2] or by force sensorf3]. Each particle-wall force has  F|G. 1. (a) Detail of a typical packing in our simulations; the
to balance all interparticle forces that are exerted on the Colheighth denotes the distance from the bottom. The force network is
responding particle from above—see Fig. 1. This means thatpresented by the black lines whose thickness is proportional to the
experiments essentially measure a combination of forces th&rce magnitude(b) Definition of interparticle force§ and weight
we refer to as thaveightsof the bottom particles. For sim- W, for a frictionless particle witm.=2; see Eq(1).

(b)

1539-3755/2004/10)/01130115)/$22.50 70011301-1 ©2004 The American Physical Society



SNOEIJERet al. PHYSICAL REVIEW E 70, 011301(2004)

dence can be understood easily within our framework. WeAfter introducing our numerical method in Sec. Il A, we dis-

will, however, also provide two examples WhéPg, ngarf W) cuss the similarities betwedp(f) in the bulk and near the

and bulkP(f) are significantly different. boundary(Sec. Il B). We also study the angular distribution
Additional motivation for studying the relation between and the probability distribution of the components of the

forces, weights, and geometry comes from ¢hmodel[5].  contact forces in Sec. Il C and close with a brief summary of
Once the distinction between forces and weights has beewrsylts in Sec. 11 D.

made, one notices that thee model is a lattice model in
which weightsare randomly redistributed over a fixed num-
ber of supporting grains. The model displays a weight dis- A. Numerical method and parameters
tribution that is qualitatively different from both experimen-  Our two-dimensional packings consist of frictionless
tally observed weight distributions and numerically obtainedsphereg3D) under gravity. The packings are created from
force distributions. We will show that this is due to the fixed molecular dynamics simulations of spheres that interact
connectedness of the model. RealisticP(w) can be ob-  through normal Hertzian forces, wheffec 5*2 and & denotes
tained if we allow for the connectivity to vary within thg  the overlap distancgl3]. Since Hertz’s law for 2D disks is
model—e.g., by introducing random connectivity. linear in 8, we use 3D spheres. These particles reside in a
Our work then serves three purposes. First of all, it helpgontainer that is 24 particle diameters wide, with periodic
to interpret data obtained by measurements of particle-walhoundary conditions in the horizontal direction. The bottom
forces: this paper includes a section where we explicitly apsupport is rigid and also has a frictionless Hertzian interac-
ply our framework to recent experimental data of highlytion with the particles. We construct our stationary packings
compressed packing&1]. Second, it shows how the simple by letting the particles relax from a gaslike state by introduc-
g model can be extended to obtain very realistic weight dising a dissipative force that acts whenever the overlap dis-
tributions for both regular and irregular packings. Since thetance is nonzero. In this paper we use two different polydis-
model is known to give incorrect predictions of spatial persities: the radiir are drawn from a flat distribution
propagatior{12], our intention is not to fine-tune the model between either 0.4@r<0.51 or 0.4 r<0.6. The masses
and its parameters, but rather to indicate how the contacire proportional to the radii cubed. In the former case of
geometry is essential to describe force and weight fluctuaaimost monodisperse particles, the particles tend to crystal-
tions in more realistic packings. Third, we address the quesize into a triangular latticgSec. IV A), whereas the more
tion of how force fluctuations build up as a function of the polydisperse particles lead to amorphous packings such as
distance beneath the top surface, providing another fundahown in Fig. 1a). This allows us to study how the packing
mental test for theoretical models. geometry affects the force network. The results shown in this
The paper is organized as follows. In Sec. Il we first ex-paper are obtained with particles that deform 0.1% under
plain our numerical method and then discuss the force distheir own weight. Simulations of harder particl@eforma-
tributions observed in amorphous packings: it turns out thation 0.01% gave similar results as those shown hgir4].
P(f) is rather insensitive to the packing geometry. We then The various data were obtained from 1100 realizations
show in Sec. Ill that the weight distributiori3(w), on the  containing 1180 particles each. We study the force and
other hand, are very sensitive to the packing geometry. Usingreight distributions at various heights To do so, we divide
simple phase-space considerations, we reR(i®) to P(f) each packing into horizontal slices of one particle diameter
for a given geometry. This provides a recipe how to reconthickness and rescale all forces and weights in each layer to
struct the bulkP(f) from the experimental data, and in Sec. the corresponding averagabsolutg¢ values. The rescaled

IV we explicitly apply this to recent experimental data on interparticle forces and weights will be denoted bgndw,

highly compressed packing41]. In particular, our analysis espectivel ith distribution®(f) and
strongly suggests tha(f) is essentially unaffected by the respectively, with distribution®(f) PW).

tremendous deformations encountered in the experiments.
We then indicate some limitations of our framework in Sec. B. Absolute values off: P(f)
X]L vg\]/:\:\/rictey?/v%aggges\z ngtliifeasctgg?epg?/ﬁ;s gtg;?iqe;f ect )Ne first analyze the statistics of the absolute valfies
model can describe the results of the numerical packings &F|fl, whose probability density functioR(f) is usually re-
Hertzian spheres: we derive a surprising exact result for théerred to as the distribution ginterparticlg forces; our main
bond quantitiesjw, and we investigate the role of disorder in finding will be thatP(f) in bulk and near the boundary are
the packing geometry. Finally, we address the top-down revery similar. In Fig. 2a) we showP(f) as measured in the
laxation of force fluctuations in Sec. VII. We find no evi- bulk of the amorphouspackings (particle radii between
dence in the Hertzian sphere packings for the power-law red.4<r <0.6). At different heights between ¥0h< 30, P(f)
laxation predicted by thg model, indicating that the model was not observed to change; the open circles represent an
is not able to capture this spatial aspect of the force networkaverage over these various heights. Even very close to the
The paper ends with a discussion. bottom support, we find th@(f) remains almost unchanged:
the dotted data set has been obtained from the forces between
Il. STATISTICS OF INTERPARTICLE FORCES the bottom particles and the particles in the layer above. We
In this section we study the distribution of interparticle refer to these forces a$ayer-to-layer forces near the
forces via simulations of 2D packings of frictionless spheresbottom—see Fig. @). So, although the bottom wall locally
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bution P’(f,). The bottom-induced orientational order dis-
I 2 1 2 2 1 1 2 01 1 1 cussed above is reflected in the statistics offthéccording
to Fig. 4, there is a substantial difference betw@&(f,) in
circles and for the layer-to-layer forces near the bott@noty; the the bulk(open Clrcleysand'P’(fZ) for the layer-to layer forces
inset shows(f) on a log-lin scale. Note that the force distributions near the bOtton_qutg' This dlffere_nce can be understood as
are very similar, except for a small difference for snfallb) Detail ~ follows. Assuming that the; are indeed uncorrelated to the
of a typical packing near the bottom showing layer-to-layer forcesfii' we can write
(black lineg and the intralayer force@vhite lineg near the bottom. - ©
Itis cle_ar that the Iayer-to-layer_ forces are dominant in determining P'(f,) = f d(pq)((p)J dfP(f)s(f, - f sin(e)), (2)
the weightsw of the bottom particles. The numbers show the values 0 0
of n;, the number oflayer-to-layey forces that contribute to these ) o ] o
weights. where®(¢) is the angle dls'Erlbutlon anB(f) is the distribu-
tion of the absolute valued| of Fig. 2. Note thatf,) <1.
alters the packing geometry, the shapeP¢f) is essentially ~ For the layer-to-layer forces near the bottom, we have seen
unaffected. from the scatter plot that the values of & are concen-
As can be seen from the inset of Fig. 2, the probabilitytrated arounc%\fS%O.866. In the approximation that the dis-
density decays slightly faster than exponentially. This is coniribution of sif(¢) is sharply peaked, the shape Bf(f,
sistent with simulations by Makset al. [15] who found that equals that ofP(f) (up to a scale factgr This is indeed
P(f) crosses over to a Gaussian for large particle deformaegonfirmed by direct comparison of the dotted data sets of
tions; we have used rather “soft” particles in our simulationsFigs. 2 and 4.
for which deformations are relatively large—i.e., up to 2%. In the bulk, we have seen that the packing geometry is
We come back to the effect of deformation in experiments inisotropic. A consequence of this isotropy is that the probabil-
Sec. IV B. For small forcesR(f) approaches a finite value. ity density function of the horizontal componenE(f,), is
identical toP’(f,) (not shown herg Again, one can use Eq.

FIG. 2. (@ P(f) for amorphous packing in the bulkopen

C. Orientations of f and P'(f)

After studying the absolute values 51-1‘, let us investigate L.5
the orientationsof the interparticle forces. We therefore de-

fine ¢;; as the angle betweef?ﬁ and the horizontal axis. In
Fig. 3@ we show the scatter plot ¢f;;, ¢;;) in the bulk: the N 1.0

angles are uniformly distributed and independent of the ab- N

solute value of. So the packings are highly disordered away E:

from the bottom. Near the boundary, however, this isotropy 0.5

is broken strongly. The presence of the bottom wall aligns

the bottom particles and as a consequence their interparticle

forces become almost purely horizontal—see Figp).2t is 0.0

clear that near the bottom the interparticle forces naturally

divide up into these almost horizontaltralayer forces and 0 1 2 3 4

layer-to-layerforces connecting bottom particles with those

in the layer above. The orientations of these layer-to-layer z

forces are mdeed concentrated arouri® and 27/3, as can FIG. 4. P'(f,) in the bulk (open circles and for the layer-to-

be S_een from FIgS.(B) _and 3b). . layer forces(dots. The solid line was obtained by numerical inte-
Since the particlaveightsare derived from tha compo-  gration of Eq.(3). The inset show®”(f,) versus logf,, confirming

nents of the forced,=(f;;),, we now investigate their distri- the logarithmic divergence for sméfi).
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(2) to understand the shape Bf(f,). Taking a uniform angle © L © - -
distribution ®(¢) =1/, we obtain(Appendix A P (W) = fo d(Fy),- - fo d(Fy)P((F)z ... (Fn)2)
2 (% . P <
P'(fz)z—f df % 3) Xé(W—E(Fi)z)- (5)
i, NfP-f] i=1

Here, we have neglected the temm, sincemg/(W)<1 far
Numerical integration of this equation wit(f) from Fig. 2 pelow the top surface of the packing. The number of forces
yields the solid line in Fig. 4, which closely corresponds toover which we integrate differs from grain to grain, and it
the P'(f,) as measured in the bullopen circleg In Appen-  turns out to be crucial to label the weight distribution in Eq.
dix A, we show that the integral of E@3) is weakly diver-  (5), Pnc(\/\/), according to this numba,. This can be seen as

gent for smallf;: follows. The & function constrains the integral on dn,
-1) dimensional hyperplane of the total phase space, and the
, 2 “area” of this hyperplane scales %&<X. We thus anticipate
P'(f) =~ ;P(O)In(fz) +0(1). (4) the following scaling behavior for small weights:
P (W) Wt for w— 0, (6)

The inset of Fig. 4 shows that our data #f(f,) is indeed . o - ) o
consistent with this logarithmic divergence. provided that th§ joint probability density approaches a finite
value when all(F;),— 0. Such scaling is also implicit in the
g model[5], although theren.=2 so thatP(0)=0. The par-
ticles that do not feel a force from above=0, give as-like

Let us briefly summarize the results of this section. Thecontribution at W=mg, for deep layers this occurs for
geometrical constraint imposed by the bottom wall locallymg/(W)<1. In a disordered packing, the number of particles
induces a packing geometry which is different from the bulkthat exert a force from above can vary from grain to grain.
geometry. Whereas this is strongly reflected in the orientaThe total weight distributiorP(W), therefore, is a superpo-

tions of thef;, the distribution of the absolute valuggf) is ~ Sition of P (W):
very robust. The probabilities for the components of fhe W =S PnCPnC(VW, )

can be obtained with great precision, including the logarith-
mic divergence, by the transformation of K8).

D. P(f): Summary

Ne

where Pn, is the fraction of particles withn. contacts from
above. This means that the small weight behavioP0#V)
depends very much on the fractiopv,$C and thus on the local
packing geometry, via Eq$6) and (7).

In this section, we demonstrate that the local packing gea The dstettepnefs of the tail ﬁf _trhe tm?l .W?;?ht Idltstrlbutlon
ometry has a dramatic effect on the weight distribution of>cPc"AS SITONGl 0P, as Well. 10 expiain this, 1et us as-
P(w). As stated in the Introduction, experiments can onlySUme that all vertical forcess, cor,1tr|but|r1%fto the We'ght are
measure the particle-wall forces at the boundary of a granLHn(fgg,?Fl"’;ted' We considerP’(f,)<e"=—i.e. P'(F)
lar packing, and not the interpartic{bulk) forces that were *€ ’ fqr Ia_rge forces. It foII_ows from Eqc5) that the
discussed in the previous section. Since these particle-wa\ﬂ’elght dlstrlbutl\cl)v?Ftakes over this same exponefit=,), so
forces are essentially equal to the weights of the bottom pathat Pn (W) <e™ F2. However, theP, (W)'s are not prop-
ticles, it is important to understand the relation between thé&rly normalized(W), =(F,n;, since each of th&, gives an
weight distribution?(w) and the distribution of interparticle average contributiogF,). This yields a total average weight
forces P(f). In the first part of this section we develop a (W) =(F2)2npnnc=(F(nc). In order to compare with ex-
simple geometrical framework to understand this relationperimental and theoretical results we have to rescale the
based on phase-space considerations. We then show that tMi§ights so thatw)=1, yielding the following large weight
explains, to a large extent, the weight distributidhsv) as  behavior:
measured in our simulations of Hertzian spheres. In particu- _ .
lar, we observe substantial differences bet\?veen weigr?t distri- Pw) o e with y = a(ng). (8)
butions for different packing geometries. This simple calculation shows that, for a given valueagf
the steepness of the tail of the experimentally measured
weight distribution is very sensitive to the local packing ge-
ometry. This is a direct consequence of keepiny fixed to
unity: a decrease of probability for small weights must lead

If we interpret Eq.(1) as a transformation of stochastic to a steeper tail for large weights in order to leave the aver-
variables, it is possible to relate the corresponding probabilage weight unaltered. Note that this general argument is not
ity density functions as restricted to uncorrelatel, or exponential tails. A generali-

Ill. PACKING GEOMETRY AND WEIGHT
DISTRIBUTIONS P(w)

A. Geometrical framework: Decomposition of P(w) according
to number of contactsn; from above
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(open circley and bottom particlegdots. All distributions are
FIG. 5. (a) P(w) in the bulk (open circles and at the bottom scaled such thaw)=1.
(doty in amorphous packings. Ath<3, P(w) is already bulk
like (solid line). (b),(c) Decomposition of?(w) according to Eq(7)  particles. Furthermore, the transition from bottom to bulk
(b) in the bulk (open circles and (c) at the bottom(dots. The  phehayior is remarkably sharp: in the slice<d<3 (solid
measured bulk values for the fractiofi, p1,p2,pst in Eq.(7) are  ¢yrve, the weight distribution is already bulk like.
{0.01,0.11,0.52,0.36 and ~ the bottom values —are ging the concepts developed in the preceding para-
{0.08,0.46,0.44,0.02as explained iff16], we excluded the intra- graphs, we now show how this change7aw) can be ex-
layer (almost horizontglforces at the bottom when determining . ! . : .
plained by a change in the local packing geometry. Consider
) ) o _ ~_ the typical bottom configuration of Fig(®. Theintralayer
zation to other than exponential tails is given in Appendix B.forces (white lineg are almost purely horizontal and hence
So we have advanced a simple picture, in which the shapgo not contribute to the weights. This reduces the effective
of P(w) depends strongly on the local packing geometsy  yayes ofn,, leading to the following fractions for the bottom
the fractionSpnc. The small force behavior follows from Eqgs. particles: {pg, p1.p2, p3t={0.08,0.46,0.44,0.02 where we
(6) and(7), whereas Eq(8) relates to a good approximation did not count the intralayer forces for determining the values
the exponential tails oP’(f,) andP(w). The object one ul-  of n, [16]. In the bulk, these fractions are different—namely,
timately wishes to characterize is of course the force distri{p,, p;,p,,p3}={0.01,0.11,0.52,0.36According to Eq(7),
bution P(f). Since close to the boundaB(f) andP’(f,) are  these differences between thg in the bulk and at the bot-
identical up to a scaling factoff,) (Sec. Il G, the above tom should lead to a substantially differeBtw). Figures
equations allow us to trace the features of the force distribus(b) and Hc) explicitly show the decomposition into the
tion from experimental measurements. Along this line, wep, (w). Indeed, one observes the scaling behavior for small
analyze recent experimental data in Sec. IV B. w proposed in Eq(6). Moreover, the variousP, (w) are
essentially the same at the bottom and in the bulk: a direct
comparison is given in Fig. 6, where we rescaled the average
We now discuss the weight distributions observed in thevalues to unity. There is only a small difference in Rgw)
Hertzian sphere packings and interpret the results within thdue to the fact that bottom particles witQ=1 are typically
framework developed above. Figuréapshows that in the smaller than averagirig. 6(@)]. For these particles, the in-
amorphous packing(w) in the bulk(open circlegis signifi-  tralayer forces will add a small contribution to the weights,
cantly different fromP(w) of the bottom particlegdots. The  enhancingP,(w) for small w at the expense dP,(0). The
probability for small weights is much larger at the bottom, same argument holds f@t,(w), whosed-like shape appears
and the decay for large weights is not as steep as for the bukk bit broadened in Fig.(6). However, it is clear that the

B. P(w) in Hertzian sphere packings
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differences betwee®(w) in the bulk and at the bottom are
mainly due to a change in contact geometry.

Finally, let us remark that the good agreement between
Poui(f) and PpoyngarnfW) for w>0.3 is fortuitous and due to
the relatively large fraction of bottom particles with=1.

We will argue below that this is also the case in mabyt i) 1=, ]
not all) carbon paper experiments. P P®H 10_2 ]
050°°°%0, 10 1
=L o, 10° U
C. Summarizing the simple picture N %0 g 1 2 ] 3 4 57
Our simple framework as developed in the sections above 0.0C B P
can be summarized as follows: The geometry of the contact 0 1 2 3 4
network has a strong effect of(w), while P(f) is very 10 f
robust. The weight distribution for particles with a giveg (o) ]
Pnc(w), is robust and behaves @& for smallw. P(w) can P(w) r °a°9°,o° 1
be decomposed a@(w):EncpnCPnC(w), where pn, are the 0.5f ;0 °o; . N
fractions of particles that have.=0,1,2,...“up” contacts. L e e ]
Differences ofpnc between boundary particles and bulk par- s °5% . ]
ticles explain the differenP(w)’s for these cases. Whem 000 ) 5 ona 5 i
andp, are large, the total weight distributid®(w) exhibits a w

plateau at small weights and a slow decay at large weights;
whenp, andp; become largeP(w) becomes sharply peaked. FIG. 7. (8 Weakly polydispers_e particle$radii between_
In this way, theP(w) small weight behavior and its exponen- 0.49<r <0.5) spontaneously crystallize into a hexagonal packing.

tial decay rate for large weights reflect the packing geometry(P) The correspondin(f) is indistinguishable from the force dis-
tributions in amorphous packing) The weight distribution$(w)

in the bulk(open circlegand at the bottonidoty are dominated by

IV. MANIPULATING THE GEOMETRY: EXPERIMENTAL particles withn,=2.

RELEVANCE

So far we have focused on the role of the bottom bounddistribution as was observed for highly disordered packings.
ary for disordered packings of frictionless particles. In thisThis strongly suggests th&(f) is a very robust quantity and
section we provide explicit examples of other types of packindependent of the packing geometry.
ing geometries and their effect g(w). We first discuss our The weight distributiorfP(w), on the other hand, is very
simulations of weakly polydisperse particles, which give risesensitive to the geometry. In a perfect triangular packing all
to rather crystalline packings—see FigajZz We then apply particles would haven.=2; in our simulations we find that
the geometrical framework derived in the previous section tp,=0.9 andp;=0.1 due to lattice imperfections. From our
experimental(carbon paperdata by Eriksoret al. [11] of = geometrical framework we expect that the shape of the
highly deformed packings of soft rubber particles. Their re-weight distribution is dominated byP,(w). Figure 7c)
sults have a natural interpretation within our framework andshows that this is indeed the case—e.g., compare with Fig.
form a nice illustration of how the number of contact affects6(b).
the weight distribution. Both the simulations of crystalline  In an earlier papej8], we reported how one can break the
packings and the experiments on deformed packings are exegular packing geometry by using curved boundaries. This
amples where the experimentally accessiBlg,nqarW) iS  led to a dramatic change iR(w) that again could be under-
significantly different fromP(f) in the bulk; we discuss why stood from a change in the, .
in many other carbon paper experimemts, nganfW) is prob-
ably very similar to the reaP(f).

B. Experiments on strongly deformed particles

A. Crystalline versus disordered frictionless packings We now demonstrate how the strategy to decompose the

We now present the results of the more or less crystallineveight distributions according ta. can be applied to experi-
packings, obtained from simulations with particle radii be-ments measuring(w) at the boundary of a granular mate-
tween 0.49%<r<0.51. First, the force distributionP(f) rial. This is best illustrated by recent carbon paper experi-
shown in Fig. fb) is indistinguishable from the force distri- ments by the Chicago group on soft rubber beads, in
butions in the amorphous packingompare with Fig. @)]. particular Fig. 3 of Ref[11], in which the effect of particle
So, despite the order in particle positions, there are still largeleformations was investigated. Although our numerical
fluctuations in the force network. There is of course somestudy has been done in two dimensions with frictionless par-
disorder in the “contact network” since not all particles are inticles, the general phase-space considerations presented in
contact with their six neighboiig-ig. 7(a)]. It is nevertheless Sec. Il A are independent of dimensionality and are there-
surprising that for this very different contact geometry, thefore expected to be applicable to the experimental situation.
force fluctuations are characterized by the same probabilitfhe raw data of these experiments were kindly made avail-
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TABLE I. The calculated values for the exponeatsafter esti- P’(f,, so thata=a. Hence, we can approximate the expo-
mating the fractiong,_from the experimental data of Figs(&®-  nential decay constant of the force distribution as
3(d) of Ref.[11]. The percentage in the first column represents the
degree of particle deformation. The values pfare taken from ~_ Y
Table | of Ref.[11]. @= o’ ©)

To estimate the values @fi;), we worked out two scenarios:
we take eithelp,=p; or p3=0. Together with the values of
Deform. v po  p1 (N0 a=g5 () a=p5  po, py, andy, taken from the experimental data, this yields
25% 24 023 058 105 229 096 251 the values ofg“z _Iisted in the second and third f:o!urpps of
30% 26 021 026 160 163 133 196 Table I. Surpr_lsm_gly, the root-mean-square deviatiorviis
only 18%, which is rather small considering our rather crude

37% 28 014 018 188 149 154 18l estimates of thg, and the fact that Eq$8) and(9) are only
45% 38 000 005 242 157 195 195 gpproximate.

Let us briefly recapitulate the discussion above. First, we
have interpreted the changes in experimental particle-wall

able by the authors, allowing us to perform the analysis pre; Lo .
sented below. force distributions of strongly compressed packifit§ as a

The experimental resuits of Fig. 3 of Ry dispiay - CTTA, 0 PGS BERCtt, 0 e dtod ncrease
three trends as the compression is increaséd: The &-like v u xp !

peak atw=0 decreasesii) lim,, o P(w) decreases, angi) of the number of contacts dpe to compr'ession. We demon-
The exponential tail becomes\,vg)teeper ' strated how one can determine the fractipgsand p, from

These behaviors emerge naturally when considering ththe experime_ntal data. At_first sight the obtained percentages
role of the fractiong,, . The first trend arises from a decreaseSf particles withne=0 or 1 in Table | may appear to be rather

: . Ne’ : . _ : high for 3D packings. However, one should keep in mind
In po, since only particles witm:=0 give aé-like contribu- 7+ the experiment the number of bottom particles is often
tion to P(w). The secpn_d trend comes from a decreasein known, but that some particles clearly do not leave an im-
from Egs.(6) and (7) it is clear that limy;o P(W)=p1P1(W).  print. This indicates that there is a significant number of
The changes inP(w) can thus be understood from an in- pottom particles that really have,=0, even for these 3D
creasing number of contacts, which is what one would exsystems. Clearly this issue is not settled, so direct measure-
pect for a compressed systditb]. The fractionsp, andp;  ments of these fractions would therefore be very welcome as
will increase at the expense pf andp,. Also the third trend, 5 test of our framework. Furthermore, our crude estimates in
the _steepenir)g of the exponential tail, is directly related torgpje | give reason to believe that the force distributigf)

the increase in;) via Eq.(8). However, Eqs(6)«8) allow s actually not much affected by the compression. Again, this
us to further quantify this change in contact geometry fromscenario should be verified by measuring fiye more di-

the experimental data. The value @fP;(0) can be read off octly. Finally, it seems that for most experimental results,
from the plots, after subtracting tkt%likg data points, since \ywhere particle deformations are relatively smalj,and p;
PlPl(O)zl'meO Pw). The value O_fPo IS obtamed by the  are substantial at the boundary, so tR88undarnfW) iS similar
height of the o peak times the bin width. Using the raw o p, . (f) (apart from ad peak atw=0). The same argument
experimental data, we obtained the figures given in the ﬁrsbrobably holds for recent simulations by Silbettal. [18].
colomn of Table I, where we tooR;(0)=0.5[17]. Unfortu-

nately, the values gf, andp; cannot be determined directly
from the data. V. BEYOND THE SIMPLE PICTURE

An intriguing issue is that numerical simulations by |, the picture that we have constructed above we charac-
Makseet al. [15] indicate thatP(f) crosses over to a Gauss- iarize the packing geometry by the fractiops, and we
C

ian_for large particle de_for nations. This contradicts th_e €XFound that theP,, (w) are very robust. This is of course a vast
m C
perimental data for which one observes an exponential tal implification, since we characterize the local environment

even though particle deformations are up to no less than 45 ¥ a particle by only one number—namehy, In this section

11]. Moreover, we speculate below that the steepening o : .
Ehe] tails is only due tF(; changes in tpe and that thg bulkg we address the question why this crude approach works so
C

R ! remarkably well. For bottom particles the situation is particu-
force distributionsP(f) actually remain unaffected by the larly simple and insightful, since the geometry of the con-

particle deformations. The way to test this scenario is (Qacts is more or less fixed. There is one contact with the
examine whether the exponential decay constanP@  poitom, one or two almost horizontal intralayer contacts, and
«e ' remains fixed, even though the steepnessPof)  p_forces from above—Fig.(B). As we have shown in Fig.
xe ™ increases. We use E(B) to determine the value of 3(), the angles of these forces display little scatter, so the
a=yl(n;), wherea and y are the decay rates &' (f,)) and  |ocal texture is more or less fixed onngis given. For bot-
the experimentalP(w), respectively. Since we found in Sec. tom particles one can thus understand thahdeed provides
Il C that P(F) andP’(F,) near the bottom are almost identi- a good description of the local packing geometry, which jus-
cal up to a scaling factoff,)/(F), the actual decay rate of tifies the decompostion according tg. Although for par-
P(f)x e is exactly the same as that of tienormalizeg ticles in the bulk the situation is more complicated, there are

P2=p3 p3=0
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similar arguments whyP, (w) is indeed a robust quantity 0.03 '
—i.e., insensitive to packing geometry. These will be dis- nc=3 (a)
cussed in Sec. V A. We then address the up-down symmetry & 0.02
of the system. Our framework only involves the number of
contacts from above., and not the number of contacts from S 0.01
below, n,. For bottom particles, is the obvious parameter,
but in the bulk of an amorphous packing, where the angle 0.0
distribution is isotropic, there is no reason whyshould be 0 /2 T
more important tham,. In Sec. V B we therefore investigate )
weight distributions for particles with a given combination
{nc,ny}, which we denote byP, , (w). Special attention will 0.03
be paid to particles that have # n, in Sec. V C. n= (b)
= 0.02+ n
A. Why is ’Pnc(w) for bulk particles robust? é:l 001k |
Itis nota priori clear whyP, (w) is rather insensitive for
the packing geometry, since the definition?éﬁc(w) in Eq. 0.0 :
(5) involves the joint distribution of théf,), that push on a 0 /2 T
particle from above—i.e.P((fl)z, ...»(fn)7). This joint dis- ¢
tribution has an explicit geometry dependence since the pro- 0.03
jections in thez direction involve the distribution of contact nc=1 (©)
anglesg,. Even if we assume that the foreeagnitudeis ~ 0.02} .
uncorrelated to it®rientation i.e., 9_
. $ 0.01} -
P(fy, ... .fo) =P(fy, ... f)P(en, .. vpn),  (10) 0.0 /“\\

we obtain the distribution of the vertical components 0 /2 T

P((Fl)z, ,(Fnc)z) by integration over the joint angle distri- 0]
bution® (¢, ... ,<pnc). Therefore, théDnC(w) have an explicit . . N
geometry dependence. FIG. 8. (a) For particles withn.=3, we plot the probability

We already saw that this angle distribution is more or lesgensities for the angle®s(¢y), ®3(¢,), and @5(ps), where the
three angles have been sorted such #hat ¢, < ¢3. (b) The prob-

fixed for bottom particles. For the polydispersities used in”, - > . ;
this study, the buFI)k angles have als% I?lmitgd room for fluc-2211Y densitiesby(¢,) and®y(e,) for particles withne=2. (c) The
’ probability density®,(¢,) for particles withn.=1.

tuations oncen. has been specified. For examplenif=3,
one typically finds one angle close 192 and two relatively B. Gravity and up-down symmetry

small angles—see Fig(®; this is because the three particles |, oyr analysis ofP(w) we have explicitly broken the
should all touch the upper half of the bead supporting themy,_qown symmetry, since it only involved the number of
Particles withn.=2 also have such an “excluded-volume™ contacts from above. At the bottom, this is an obvious
like constraint[Fig. 8(b)], albeit less strong than fo1.=3.  chojce. Away from the boundary, however, the amorphous
Particles withn.=1 have an enhanced probability for angles packings have an isotropic angle distribution even though the
around /2, because such contacts make the presence of gackings were created under gravity. Moreover, we have ne-
second contact from above less probafigy. 8c)]. So the  glected the termmg in Eq. (1), which makes the sum of
shape ofP, (w) is limited by the geometric constraints on forces from below equal to the sum of forces from above. So
the angle distributions®(¢y, ... ,gonc), which are rather in principle one could also decompo®&éw) according to the
peaked. This justifies the picture that the geometry depemumber of contacts from below,. We therefore investigate
dence ofP(w) is mainly due to thep, and that theP, (w) P, (w); this can be regarded as a “component’7f(w),

can be considered invariant. sincepnCPnc(W)=Enbpncnb7?ncnb(w).

Note that the above-mentioned constraints on the angle Figure 9b) shows thatP;5(w), P,y (w), and Ps,(w) are
distributions imply that the averagéw), are not simply  almost identical. The same holds fBp3(w) andPa,(w) [Fig.
proportional ton.. Comparing, for examplen.=1 andn.  9(c)], so the total coordination numbeg+n, appears to be a
=3, we see that the two “extra” forces fog=3 have a rela- more fundamental quantity than just or n,. Figure 9d)
tively small vertical component; the average weight will thusfurthermore shows that the quadratic scaling7(w) is
grow less than linearly witlm.. We should therefore correct somewhat more pronounced than #@s5(w) and Pay(w); it
Eqg. (8) for the steepness of the tails by replacifig) with  seems that the presence of two contacts from above or below
Encpnc<w>nc' Making a correction of this type would further inhibits the pure quadratic scaling.
refine our analysis of the experiment with rubber beads dis- The presence of gravity is noticed, however, fr,(w)
cussed in Sec. IV B. and P,4(w) which do show some differencgig. 9a)].
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FIG. 9. (8) P1y(w) (solid line) and P,q(w) (dotted ling. (b)
P13(w), Par(w), andPzy(w). (C) Paz(w) and Pz(w). (d) Paz(w).

PHYSICAL REVIEW E 70, 011301(2004)

TABLE 1I. FractionSpncnb expressed in percentages; the num-
bers are almost up-down symmetric, except for ratt{@erticles
with two contacts From these fractions one finds the average co-
ordination numbefn.+ny)=4.51.

nc\ny 0 1 2 3 4
0 0 0 0.6 0 0
1 0 0.3 5.6 4.7 0.2
2 0 4.7 26.1 20.5 0.7
3 0 5.1 21.6 8.9 0
4 0 0.3 0.7 0 0

These particles have only three contacts and were less re-
stricted during the formation of the static force network by
the “cage” surrounding them. This allowed gravity to influ-
ence their final movements more than for particles with
+n,> 3. Obviously, this effect is even stronger for particles
with only two contacts, which typically havie.,n,}={0, 2}.

To further investigate the up-down symmetry, we list the
fractionSpnCnb of particles with a certain; andn, in Table II.
For all particles with three or more contacts these fractions
are almost perfectly symmetric. From this we conclude that
in the amorphous packings, the up-down asymmetry due to
gravity is only noticed by particles that have two or three
contacts.

C. Particles with n.# ny,

We have seen that for particles wiih,,n,}={3, 1} or vice
versa, the small weight behavior 4sw!, which is different
from the scaling predicted by E¢p). This breakdown of our
simple picture can be understood as follows. A particle that
has four contacts can either haye;,n,}={3,1}, {n.,ny}
={2,2}, or {n.,n,}={1, 3} depending on the precise orienta-
tions of the forces with respect to gravity. However, if we
were to define the weights by projecting tﬁg at a small
angle with respect to gravity, a particle with four contacts
can easily change frofn;,ny}={3,1} to {2,2} or even to
{1,3}. However, we have seen that there is no “preferred”
projection direction, since gravity has only very little effect
on our packings. Hence, it is not surprising that m@nc(w)
depend om.+n, and not onn, or n, individually.

But what determines the precise scaling for small
weights? Consider a partlcllewnh n.=3 and Np= 1. The

three forces pushing it from abovE,l, F, i» and F|3, are not
mdependent force equilibrium in the direction perpendlcular

to F,4 (the force pushlng from belo)/vrequwes(F 1+F,2

+Fi3)-eL—0, whereFi4-eL—0. This reduces the number of
independent forces from above to only 2, since the third is
determined by mechanical equilibrium. As a consequence,
the scaling behavior for small will be Pg;(w)ccw.

For particles withn,=3 andn,=2, the five forces are also
coupled through mechanical equilibrium. In this case, how-
ever, one cannot distill a relation between the forces from
above only, such as we did for particles wifm.,n,}
={3,1}. So one still expects tha;,(w) =w?, as is observed
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in Fig. 9c). Nevertheless, this illustrates that two- assigns an equal probability to each sefft that obeys Eq.
dimensional mechanical equilibriudoesintroduce correla- (12) and serves as a generic case. The rescaled weights
tions between all forces pushing from above. This limits thethen become distributed 45]

validity of our arguments used in Sec. lll, for bulk particles. B 1w

At the bottom our analysis is still valid: horizontal equilib- Pr (W) = cwee e, (13
rium can be accomplished by the forces between neighborin
bottom particlegsee Fig. 2b)], so the forces from above can
really be considered as independent.

Q/herenC is fixed for a given lattice and is a normalization
constant. Note that these solutions have the same qualitative
behavior as those found in our molecular dynamics simula-
tions: for small weightsPnc(w)ocw“c‘l, and the probability

D. Summary for large weights decays exponentially.
In this section we have addressed the limitations of our The q model is thus an efiective minimal model for the

simple geometrical framework. We have shown that the obyve|ghtsW. Itis F:Iear that the product o andyvi hgs a
servation that’])nc(w) is insensitive to packing geometry natura.l. Interprgtlon as the vertical Componenthf Since
originates from excluded-volume-like correlations betweerfn€se interparticle forces are more fundamental than the
the angles at which forces press upon a b@agl. 8). Thisis ~ Weights, we investigate the statistics of the quanij/ in

the subtle underlying reason why our simple picture, where>€C- VI A; this will shed light on the discrepancy for small
we characterize the local packing geometry by only ondorces between the model and experimental data. In the
numbern,, is good enough to interpret experimental and nu-ight of our f|nd|ng.that the contact geometry an.d in particu-
merical data. We have furthermore studied the effect of gravlar Nc play a crucial role, the standami model is clearly
ity by decomposing the weight distribution according to thelimited since it fixesn.. In Sec. VIBwe th_eref(_)re extend the
number of particles from belown,) as well. We found that model to havef randomness in @snnectivity(i.e., to allow
gravity breaks the up-down symmetry only mildly in our O @range oin;’s) and find that, as expected, tfw) can
simulations; the distribution®,, , (w) depend on the coordi- be manipulated by changes in the connectivity.

nation numbem.+n, rather than om, or n, independently

(Fig. 9). This further refines the analysis of the relation be- A. Distribution of interparticle forces: P(qw)

tween packing geometry and force network statistics in the A direct comparison of Eqg1) and(11) shows that the
bulk of a packing; at the boundary, it is sufficient to considerproductg;w; has a natural interpretation as the vertical com-

only the number of contacts from aboie,). ponent off;. Since the interparticle forces are more impor-
tant than the weights, it is interesting to investigate the sta-
VI. WEIGHT AND FORCE DISTRIBUTIONS IN THE g tistical properties of the bond quantityw. To obtain the
MODEL: THE ROLE OF CONNECTIVITY distribution P(qw), let us start with the transformation from
P(qw) to P, (w):
In this section, we investigate to what extent the results ¢
obtained for the Hertzian sphere packings can be understood (" *
within the context of they model and its generalizations. In " W) = fo d(qw);P((aw)y) -~ Jo d(aw)s P((QW)n)
the standard version of the model, the particles are posi-
tioned on a regular lattice, and the particle weights are sto- e
chastically transmitted to the neighbors in the layer below X 5<W‘_E (qw)i).
[5]. The weight on a particle splits up inton, fractionsgj;, =1
and the total weight exerted on a parti¢le the layer below  Here we assumed that thigw); are uncorrelated, which is
then becomes valid for the uniformq distribution[19]. For the correspond-

(14)

W, = mg+ D o Wi, (11) ing Laplr_;\ce tra_nsforms, denoted BYs) andPnC(s), respec-
i tively, this relation becomes
where the termmg can be neglected at large depth. The %nc(s):(ﬁ(s))nc_ (15)

fractionsq; obey the constraint
Since the Laplace transform of E@l3) is of the form

> g =1, (12)  1/(1+9)", the distribution ofqw reads
j
~ 1
which assures mechanical equilibrium in the vertical direc- P(s) = Trs O P(qw) =e 9%, (16)
s

tion. In both Egs(11) and(12), the sum runs oven; terms.

Theseg;; can in principle be deduced from the forces in morewe thus find(for the uniformq distribution) that P(qw) is a
realistic packings: from definition(1), one finds q;  pyre exponential, independent of the number of contagts,
=(Fij))/ Wi Again, this is very similar to the results for our Hertzian
The simple form of the model has allowed for a number sphere packings: the distribution of “interparticle forces”,
of exact results of which the most important is the solutionP(qw), is finite for small forces, whereas the distribution of
for the uniformq distribution. This uniformq distribution  weights depends on. as given by Eq(6). Moreover, this

011301-10



PACKING GEOMETRY AND STATISTICS OF FORCE.

0.9 ' '

P 2%, \
™ o6l

PHYSICAL REVIEW E 70, 011301(2004)

tistics of force fluctuations. While in the standard case the
disorder in the system is represented by the stochastic frac-
tions g; only, we have shown that when also the connected-
ness is chosen to be random, the model displays most fea-
tures of realistic packings.

Let us conclude this section by mentioning that the idea to
leave out some of the bonds of a regular lattice is not new

03r ° ] [20]. In these studies, however, bonds were cut in a particular
° ®s manner to build up long-ranged force correlations. We have

LI shown that such long-ranged structures are not important for
0.0 . . 088880000 the behavior ofP(w), since they only depend on thecal

0 1 2 3 4 packing geometry.

FIG. 10. Theq model with a random connectivity: with a prob- VII. TOP-DOWN RELAXATION OF FLUCTUATIONS

ability p we cut one of the three bondise). We recover the So far, the discussion has been limited to situations well
Eﬁg@g ZﬁZCtaIOrtﬁe(wi)ggot;'s_g‘;d‘(agog_tr:ﬁisb”g';?r:e(;ﬁogzjzeqo below the top surface of the packings. The data of the Hert-
° P ! zian sphere simulations were taken at least 15 layers below
igg,péég\gléfg}—{o.oo,o.03,0.24,0.-}3and {0.03,019,044,03¢ 4o top surface and the results of thenodel (presented in
P y- the previous sectignall correspond to the limit of large
depths. In this section we investigate the top-down relaxation
resolves the discrepancy for small forces mentioned in thef the force and weight distributions. At the top surface of
Introduction: theq model predicts a vanishing probability the Hertzian sphere packings, there are only weight fluctua-
densitity for small weightsbut notfor small forces. tions due to grain polydispersity. The question we address is
how fast the force and weight fluctuations build up towards a
bulk distribution, as a function of depth.

These results can then be compared to the relaxation in
From Sec. IlI, it is clear that the weight distributi@®w)  the q model. Interpreting the downward direction as time,
in Hertzian sphere packings is very sensitive to the locathis corresponds to transient behavior towards the “station-

packing geometry. Since tteemodel is defined on a regular ary” solutions given in Eqs(13) and (16). This top-down
lattice, with fixed connectivity, it cannot capture the behaviorrelaxation of fluctuations forms an additional test to qualify
of P(w) in disordered packings with fluctuatimg. This ex-  various theoretical models, very much like the Green’s func-
tra degree of disorder can be included, for example, by “cuttion measuring the response to a localized load on the top
ting” some of the bonds of the regular lattice. We illustratesurface[12]. In our case, we start from spatiallyearly)
this with the two-dimensional square lattice depicted in Fig.homogeneous conditions in the top layer and see how fluc-
10. For each site, the weight is transmitted downwardsuations build up.
through either two or three bonds with probabilitipsand
1-p, respectively; in the former case we randomly cut one
of the available bonds and generate the two remaiigng
according to a uniform distribution satisfying Ed.2). This A good way to quantify changes iR(w) and P(f) is to
generates particles with,=0, 1, 2, and 3, since all bonds study their second momenta?) and(f2). For a distribution
arriving at a site have a probability @3 to be missing. For of zero width these second moments are unity, and they in-
simplicity, we introduced the disorder m by means of one crease as the fluctuations become laf@di. In Fig. 11 we
parametemp only; as a consequence, we can only obtain ashow the second moments as a function of the hefght
limited set Of{pnc}. which is defined as the distance from the bottom boundary.
With this model, we have tried to mimic the bulk-bottom Since the packings are strongly disordered, the precise loca-
behavior ofP(w) that was observed in the amorphous pack-tion of the top surface will be slightly different for each
ings [Fig. 5@]. In the bulk layers we took out bonds with realization; it turns out to be located arouhd 46.
probability p=0.3, and for the bottom layer we tog=0.9; Let us first consider the broadening of the weight distri-
the result is shown in Fig. 10. Indeed, the change in théoution shown in Fig. 1(g). As already mentioned above, the
fractionSpnc is sufficient to reproduce a transition @f(w) weight fluctuations at the top surface are entirely due to the
reminiscent of what has been observed in our HertziaPolydispersity of the grains. Using a flat distribution between
sphere packingfcompare with Fig. &)]. 0.4<r < 0.6 this corresponds w2 ~1.11, which is consis-
tent with our simulation data. The second moment ap-
proaches its bulk value already at a depth of approximately
ten particle diameters. The figure also shows the sharp tran-
Although it is known that thej model does not properly sition of P(w) at the bottom boundary. The second moments
describe the spatial structure of the force netwfitk], it of P(f) are shown in Fig. 1(b). One again observes a relax-
remains a very instructive theoretical framework for gte-  ation over approximately ten layers, towards a bulk value;

B. Including geometry effects

A. Top-down relaxation in Hertzian sphere packings

C. Conclusions for theq model
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1.50 ' ' ' ' by RO(w) (without injection and by PY(w) (with injec-
tion).
2 For the uniformq distribution, it has been shown thdt9]
<w™>

d-1
RO (w) zP(w)+<i> Fw) for t—o, (17
1.25} . v
whered is the dimensionality of the packing. The stationary
solutionP(w) is given by Eq.(13) and F(w) is the shape of
(a) — a typical deviation. It is clear that all second- and higher-
order momentswX) approach their asymptotic values ac-
1.00 , , , . cording to the same power law. This slow relaxation towards
‘P(w) is caused by theliffusion of correlationswhich takes
0 10 20 30 40 50 place in(d-1)-dimensional correlation spag¢24.
height h Let us now investigate how the injection temy affects
the top-down relaxation. We first note that the recursive re-
1.50 . . . r lation for the weights, Eq(11), is a linear equation. Theg

model with injection can therefore be interpreted as a super-
position ofg models without injection, with differently posi-
2> tioned initial layers. Although it is ncd priori clear how this

<f
superposition property is reflected in the weight distributions
RO(w) (with injection) and R®(w) (without injectior), we

1.25¢ 7 propose the following approximate mapping:
1 t
POW) = —— 2 ROw). (18)
(b) 1.7,
1.00 . . . . If we combine this with the exact result of EqL7), we
) obtain the following relaxation ais— oe:
0O 10 20 30 40 50 . .
. 1 1\"
height h POW) = PWw) o F(w) —— > (T)
20 \ ¥
FIG. 11. The second momen( (w?) and(b) (f?) as a function 1
of heighth in simulations of Hertzian sphere packings. The arrow —-, d=2,
indicates the location of the top surface, arotwdt6. For both the vVt
forces and the weights one finds a fast top-down relaxation of the log(t)
moments. o F(w)S I d=3, (19
P(f) does not change significantly near the bottom boundary. }, d=4.
Note that both the force and weight distributions become L t

slightly harrower as the depth increases pelow heigths Of. th?his relaxation behavior is indeed observed in our numerical
order of 30. This may be attributed to an increase in particle . \iations withd=2 andd=3 using a uniformy distribu-
deformations{15]. tion. In Fig. 12, we show the results for an fcc packimy

We thus find that the typical length scale for force and:3). We plot tw?-4/3 as function of deptt, where

weight fluctuations to saturate is approximately ten particle

2y(%) = imbi i i in-
diameters. This provides another important criterion to dis-<W> =4/3. Theclimbing straight line on the lin-log plot

tinguish between different theoretical models. confirms the remarkable I¢g/t relaxation. This result is
also implicit in Ref.[23]. We also plot the same data for the
o g model without injection; this curve becomes flat, in agree-
B. Top-down relaxation in the g model ment with Eq.(17).

The top-down relaxation is well understood for the Although the mapping of Eq18) is definitely not exact,
model without the so-callethjection term—i.e., mg=0 in it apparently captures the main physics of the relaxation pro-
Eqg. (11) [19,22. Before extending these results to the cess. This can be understood as follows. There are two slow
model with injection[23], we briefly recapitulate the results processes involvedi) the increasing number of layers re-
of theg model without the injection terrmg This version of  duces the contribution of each layer of “injected” weights
the model can be interpreted as a packing of weightless paeffectively as 1f; (ii) each layer of injected weights relaxes
ticles, supporting a homogeneously applied force. To distinas (1/t)? individually. Naturally, the total relaxation is
guish between thg model without injection from the model dominated by the slower of these two processes. In the spe-
with injection, we denote the weight distributions at depth cial case ofd=3 both powers are 1/leading to a logarith-

011301-12



PACKING GEOMETRY AND STATISTICS OF FORCE. PHYSICAL REVIEW E 70, 011301(2004)

4 ' ' this system. The absence of this up-down symmetry irgthe
model could of course strongly affect the top-down relax-
— 3} ation.
Q
b VIIl. DISCUSSION
L2 . -
2 We have argued that in order to understand the statistics
' of forces in granular packings, it is crucial to distinguish
= 1r between interparticle forces and weights. We have found in
our simulations that the force distributiét{f) is very robust,
0 - - —— in the sense that its shape does not depend on details of
packing geometry. The weight distributioR(w), on the
1 10 100 1000 other hand, is very sensitive to the local packing geometry.
t We have demonstrated that a decomposition according to the

number of contacts that press on a particle from aboyéas
sufficient to understand this geometry dependence. Reinter-
asymptotic values 4/3 in the 38 model. Since we plot[(w?)® p{itln%hex?ﬁrlr?ents on kstron?Iyd dfformed.drubbert peilfrtlcles
—4/3 along the vertical axis, the climbing straight line confirms the[ ] within this framework, we find strong evidence tif)

log(t)/t relaxation for theq model with injection. Without injection ~ €SSeéntially remains unaffected even by very large particle
the relaxation is simply 1/ deformations. To further test our framework experimentally,

one can manipulate the number of contacts at the boundary
by placing a layer of relatively small or large beads at the
bottom. For small beads, the fractiopgand p; will be en-
ef1anced, leading to a largB(w) for small w and a slow
exponential decay for largs. Relatively large bottom beads
%hould lead to &(w) that is strongly peaked.
The present work provokes a number of questions. First,
we observe that most of our simulation results, like the
C. Conclusions concerning top-down relaxation shapes of?’(f,) andP(w), can to a large extent be under-
. ) stood in terms ofocal packing geometry only. This suggests
We have studied the top-down relaxation of the seconghay gt least for the “one-point” force, weight, and angle
moments(w?) and (f%), which quantifies how “fast” the =, opapility distributions, long-range correlations are not
weight and force distributions approach their bulk shapesgominant. We therefore question whether the behavior of
Theq model predicts a power-law relaxation with a logarith- p(f) observed at the jamming transiti, 7] reflects a long-
mic correction for 3D packings, Eq19). However, we find  ange structural change of the force network. In particular,
no evidence for such a slow relaxation in our simulations ofe expect that the role of “force chains” can only be under-

Hertzian spheres, which indicate that a bulk distribution isgtgod from two- or more-point correlation functions, and not
reached after approximately ten layers of parti¢leg. 11.  from P(f) only.

In the g model with injection, for example, the second mo- A related problem is that thg model fails to describe

ment after ten layers still differs around 20% from itS 5roplems that involve the spatial structure of the force net-
asymptotic value. _ _ work. Although the model is able to capture many features of
_Let us provide two possible explanations why theodel 406 and weight statistiosSec. V), it does not produce the
fails to _descnpe this relaxation prpces_s.Aﬁr.ﬁ problem of thecop—down relaxation ofP(w) that is observed in the more
model is that it ass,umes some f|>_<qdj|str|but|_on 7(Q): we realistic Hertzian packings. Alongside the incorrect predic-
have seen that the's can in principle be derived from the iqn of the response functiofL.2], this indicates that spatial
forces asq;=(F;;), /W, so a relaxation inP(f) and P(w)  dependence is not correctly incorporated within ghaodel.
should result in a relaxation of(q) itself. This clearly shows This may be due to the fact that, in general, recursive models
the difficulty of encoding the force behavior into a stochasticdo not acknowledge the structure of the equations describing
variableq in a self-consistent manner. Another problem of mechanical equilibrium. These equations are typically under-
the model is that it assumes a top-down propagation ofletermined25] and cannot be solved in a recursive manner.
forces. The up-down symmetry is therefore broken explicitlyln a recent papej26], we therefore propose a different the-
in the g model, whereas in our Hertzian sphere packings weretical approach, in which we start from the equations of
find only a very weak symmetry breaking. In principle, force mechanical stability and exploit the undetermined degrees of
networks are defined by the equations of mechanical equilibfreedom.
rium, which generically araunderdetermined25,2q and Another important issue for future study is clearly the role
hence cannot be solved by an iteratit@p-down procedure. of friction and dimensionality. Our numerical study has been
Instead, one has to solve this set of coupled equations “sdone in two dimensions with frictionless spheres; however,
multaneously” for all particles in the system, and except forrecent studies indicatl5] that the coordination number for
the (small) mgterm, there is a natural up-down symmetry in 3D packings with friction is similar to those of 2D friction-

FIG. 12. Relaxation of the second moments with injection
(climbing line) and without injection (flat line) towards their

mic correction. Finally note that since the downwardal-
ues are statistically independent from the weights, th
“force” fluctuations simply follow from{(qw)?)=(g?}(w?)
and thus display the same relaxation as the weights fluctu
tions.
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less packings. Qualitatively, the picture we have advanced ihe various(F;), in Eq. (5) are uncorrelated. We consider

therefore expected to capture the realistic case of three diecays hoth faster and slower than exponential, of the form
mensions with friction, because our phase-space arguments

are independent of dimension. P'(F,) = exp(— aF2/(F )#) for F,— . (B1)
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VIDI grant. This means that the tail of the weight distribution is of the
APPENDIX A: LOGARITHMIC DIVERGENCE OF P,(fz) same nature aS- that of the forces, but Wlth a di-ﬂ:erent prEf-
actor y. The tails get steeper for increasimg, since the
In Sec. II C, we encounter the following integral: reduced probability for smallv (due to a lack of phase
T 9 (" space must be compensated to kegp)=1.
P'(f) :f d(,o—f dfP(f)s(f, - f sin(¢)) The above results are obtained as follows. Rescaling all
o TJo forces in Eq.(5) asx,=(F,);/W, one obtains the probability
» M2 o1 [f for large weights:
:f dfP(f)f dgo--é(-z—sidqp))
0 0 mf \f
P (V\l)ocVV"c‘lf dx -+ dx,
2 [~ 1 ¢ S ¢
= :Tf dfﬁp(f). (A1)
f, N z ><exp<— a W,B(le.,_ +xf)>, (B4)
The functionP(f) represents the probability density function (F)f ¢

of f=|f|, which we can assume to be regular on the entirgyhereS denotes the hyperplane Erx with all x=0.

interval (see Fig. 2 The behavior for smalf, is not trivial, For 8> 1, the probability density o§ has a maximum at
since the integrand diverges at the lower bound of the intex =1/n_, which becomes sharply peaked for increasitg
gration interval. For each nonzefgthis does not lead to @ physically, this means that the dominant contribution for

singularity, since large weights will come from alF, being equal—namely,
2 (df  P(f) 2 (% P(uf) W/n.. Approximating the integrand by a Gaussian around its
P'(f)=— —=:—f U——=. maximum value, we find that the “width” decreases as a

ml, B2 -1 7l -1 power of W only—namely, 1¥M"<D52 Hence the leading

(A2) behavior for largeVV is given by the maximum value of the
integrand—i.e., eXp-(a/{F,)#)WE/(n,)"™1].

The i.ntegral over 1yu’-1 is convergent fou—1 and the For B<1, the probability density has a minimum xt
function P(uf,) falls fast enough asuf,) —o. For f,=0,  -1/n "and the dominant contribution now comes frogm
however, the integral diverges as—. To obtain the =1 andx,;=0. This means that typically only one of the
asymptotic behavior we rewrite the integral as forces accounts for the whole weight. The part of the integral

2 (*  P(uf 2 (* 1 1 aroundx;=1 can be approximated by

P'(f) = —f du% + —f duP(ufZ)(—z—l - u).
m™J1 TJ1 vu= - [{ « @
ex ——WB)J dxg - -+ dx, exp(— WY, xﬁ),
(A3) FP )]st (FyP 57

The second term is convergent since the term between brack- (B5)

ets behaves as 0 as in the limitu— . We thus find that ) ]
where S, denotes the part of for which 1-x,<e. This

, _2(" P 2 approximation becomes exact f—« as long asWPe
P'(f,—0) =~ f df f o) = WP(O)ln(fZ) +0Q). <1; we takee=1/W'° with 0< §<1-p. Working out the
‘ integration overS,, one finds

mJf
(A4)

o
B YY:
APPENDIX B: RELATION BETWEEN TAILS OF  P'(f,) eXp( <|:Z>,8W ) & p( N B) ne-1
——Z——| | dyexp-—3 , (B6

AND P, (W) WL f L Y (B6)

In this appendix we derive the large weight behavior of
from the tail OanC(W) from the tail ofP’(F,), assuming that asW—o. The part of the integral outside the arefisis
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smaller thanW'texd —(a/(F)#)WF(1+W?)] and can thus

PHYSICAL REVIEW E 70, 011301(2004)

As mentioned in Sec. Ill, th@, (W) obtained by Eq(5)

be neglected. So also f@< 1, the leading behavior for large are not properly normalized, sin¢&/)=(fn.. If we rescale

W is simply given
exd —(al/(FP)WPA].

by the maximum value—i.e., the average weight to unity, we obtain the results of Egs.
(B2) and(B3).
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