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Nonlocality of high-dimensional two-photon orbital angular momentum states
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We propose an interferometric method to investigate the nonlocality of high-dimensional two-photon orbital
angular momentum states generated by spontaneous parametric down conversion. We incorporate two half-
integer spiral phase plates and a variable-reflectivity output beam splitter into a Mach-Zehnder interferometer
to build an orbital angular momentum analyzer. This setup enables testing the nonlocality of high-dimensional
two-photon states by repeated use of the Clauser-Horne-Shimony-Holt inequality.
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I. INTRODUCTION

Entangled qubits play a key role in many applications of
quantum information [1] and quantum cryptography [2]. An
example of a qubit is the polarization state of a photon. More
generally, a qudit is a quantum system whose state lies in a
d-dimensional Hilbert space. The higher dimensionality im-
plies a greater potential for applications in quantum informa-
tion processing and this explains the continuously growing
interest in methods for creating entangled qudits.

Among these methods, spontaneous parametric down
conversion (SPDC) appears to be the most reliable one for
creating entangled photon pairs [3]. Recently, several tech-
niques have been used to create entangled qudits from down-
converted photons. For example, conservation of orbital
angular momentum (OAM) in SPDC has been used to create
entangled states with d=3 [4,5], and a time binning method
was employed to realize states with d=11 [6]. Recently,
spatial degrees of freedom in SPDC [7] have been exploited
to demonstrate entanglement for the cases d=4,8 [8] and
d=6[9].

It is well known that wuseful high-dimensional entangle-
ment can be witnessed by violation of Bell-type inequalities
[10], which also furnish a test of nonlocality for a quantum
system. However, tests of d-dimensional inequalities for bi-
partite quantum systems require the use of at least 2d detec-
tors, which becomes exceedingly difficult (if not impossible)
for large d.

In a previous paper [11] we proposed an experiment to
show the entanglement of high-dimensional two-photon
OAM states, with two detectors only. This scheme indeed
allows us to verify the existence of high-dimensional non-
separability, as demonstrated by our subsequent experimental
results [12]. In Ref. [11] we went on to use a two-
dimensional Bell inequality to check the nonlocality of our
OAM-entangled photons. In the meantime we have realized
that this implicitly assumes dichotomic variables, a condition
that was not fulfilled by the scheme proposed in Ref. [11].

In the present paper, we propose an experimental scheme
to explicitly test the nonlocality (namely, the useful entangle-
ment) of very-high-dimensional two-photon OAM states
(d~), by using just four detectors. The advantages of our
method with respect to those using 2d detectors are obvious
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for d>?2. Additionally, we stress that the scheme we propose
is designed to realize dichotomic observables. The idea is
first to project the infinite-dimensional two-photon state onto
several different four-dimensional subspaces (in order to se-
lect different four-dimensional two-photon states), and then
to apply the Clauser-Horne-Shimony-Holt (CHSH) inequal-
ity [13] to each selected state. It is not obvious a priori
whether such a scheme will work or not. In fact several
legitimate questions can be raised: (i) Does this dimensional
reduction spoil the entanglement of the two-photon state? (ii)
Do selected four-dimensional states maximally violate the
CHSH inequality? (iii) Are distinct four-dimensional sub-
spaces equivalent? In the rest of this paper we will address
these questions.

II. THE PROPOSED EXPERIMENT

As shown in Fig. 1, a nonlinear crystal yields OAM-
entangled photon pairs, and the two photons (say a and b)
are fed into two balanced Mach-Zehnder interferometers
which are shown in detail in Fig. 2. Each Mach-Zehnder
MZ, (x=a,b) is made of a 50-50 input beam splitter (BS)

photon a

stal
crysia photon b

FIG. 1. Schematic of the proposed experimental setup. The
boxes MZ, and MZ,, represent the Mach-Zehnder interferometers in
the path of the photon a and b, respectively. The thick gray lines
F.(x=a,b; i=1,2), represent the single-mode optical fibers. Each
of them is coupled with a detector D,;. Further details are given in
the text.
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FIG. 2. Detailed scheme of the OAM analyzer in the path of the
photon x=a,b. BS denotes a 50-50 beam splitter, and VBS, a
variable-reflectivity beam splitter. The two channels “1” and “2” of
the interferometer are indicated. With SPP we denoted the two spi-
ral phase plates (y=a, 8), and M;,M,,M; represent three ordinary
mirrors. The role of M3 is to ensure that the photon undergoes an
even number of reflections (thus maintaining the spatial symmetry
of the input wave function), whichever path it takes.

and a variable-reflectivity output beam splitter (VBS,). We
denote with 7, and r, the transmission and reflection coeffi-
cients of each VBS, and assume t,=cos 6, r.=isin 6,,
where x=a,b and 6, €[0,2). The role of the VBS in such
a scheme is that of a “channel selector” which can change
the relative weight of the two arms of the interferometer.
Such a VBS can be easily realized, for example, by exploit-
ing the polarization degrees of freedom of the SPDC pho-
tons. Type I crystals emit photon pairs with a well-defined
linear polarization [14]. Then, the combination of a half-
wave plate before the Mach-Zehnder and a polarizing beam
splitter as output BS of the same interferometer realizes the
desired VBS. Another possibility is to use a Fabry-Pérot éta-
lon whose mirror separation can be varied, to realize a so-
called “Lorentzian beam splitter” [15], which acts as a VBS.

In channel 1 of interferometer MZ, there is a spiral phase
plate (SPP) [16] with step index L oriented at « (see Fig. 3),
while in channel 2 there is a SPP with the same step index
but oriented at @+ 7r. When the step index is half-integer, that
is when £L=€+1/2, (€=1,2,...), these two antiparallel geo-
metrical orientations (o and a+) define, in combination
with single-mode fibers (see below), two orthogonal spatial
modes [11]. Similarly, in channel 1 of interferometer MZ,,
there is a spiral phase plate (SPP) with negative step index
—L oriented at B, while in channel 2 there is a SPP with the
same step index but oriented at B+ .

Each output port of the interferometers is coupled to a

FIG. 3. Schematic drawing of a spiral phase plate (SPP) with
a step index (= phase shift per unit angle) £L=h(n—ng)/\, where
hy is the step height, n and n, are the refractive indices of
the SPP and the surrounding medium, respectively, and A\ is the
wavelength of the incident light. In this paper we assume
L=€+1/2,{¢=1,2,...}. The orientation angle « is indicated.
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single-mode fiber which sustains the Laguerre-Gaussian
mode LG;;%. When a photon in the arbitrary state |£) is
coupled to such a single-mode fiber, the fiber projects the
input state of the photon on the Laguerre-Gaussian state
|I=0,p=0)=10,0) with probability [{0,0]&)|*. The output
port of each fiber is coupled with a single-photon detector.
Finally, each photon propagates from the crystal to the
single-mode fibers through a suitable system of lenses (not
shown in Fig. 1), which images the twin photons from the
crystal to the SPPs, and from the SPPs to the input facets of
the fibers. In this way, free-space propagation effects reduce
to an azimuthal-independent longitudinal phase factor.

III. THE MACH-ZEHNDER INTERFEROMETER

Each photon enters the Mach-Zehnder interferometer
through a single input port, say “port 1.” The quantum state
of the down-converted photon pair at the entrance of both
interferometers, can be written as [17]

[win) o f d>xAp(r)d}(x)b](x)[0) (1)

where Ap(r)ELGg(r,w) describes the transverse profile of
the pump beam, r=|x|, and w is the pump beam waist. The
entangled photons cross both Mach-Zehnders, and are even-
tually detected. After a lengthy but straightforward calcula-
tion, it is possible to show [ 18] that the probability P;;(6,, 6,)
that the detector D,; fires in coincidence with the detector
D,; is given by

Pyi(6,.6,) = [€0,010.0|Uy( e, 6,) @ UL(B.6,)[ W™, (2)
where
X > . i=1,2,
Ux.0) =2 Rj(0DS(x). | _ (3)
=1 x=a,b,

is the operator representing the propagation of a photon

through the channel “i” of MZ,, and S’(XJ-) is the quantum-
mechanical operator representing a half-integer SPP oriented
at angle y; [18], where x;=x+(j—1)m, with y=a, 8. Finally,
we introduced

cos 0, —sin 6,

R(t9x)=< ) (x=a,b), (4)

sin 6, cos 6,

as the orthogonal matrix representing the VBS,. Explicit ex-
pressions for P;;(6,,6,) are given in [18]. For our present
purpose it is important to note that P;(6,,0,) satisfies the
no-signaling conditions

2 2

2 P(0,.6,)=P(6,), 2 Pi(0,.0,)=P/(6). (5)

=1 i=1
expected for a bipartite, 2 X2 dimensional system. From
Eqgs. (2) and (3) it follows that when a coincidence detection
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(i,j) occurs, the input state |W") is projected onto the state
|ui(a, 0,))]it/(B. 6,)), where

|ui(e, 0,)) = IAJ?'(a, 0,)

2
0,0) = X R;(6,)[S(e)),  (6)
j=1

and |S(aj)>E§T(aj) 0,0). In a similar manner we define

(8. 6,))=U;(B.6,)0.0) and [S(8,))=5(8,)|0.0). From the
orthogonality relations [19]

(S(a)[S(a) = 6= (S(BIIS(B)), )

it follows that {|S(a)),|S(a+m))} and {|S(B)),|S(B+m))}
form an orthogonal two-dimensional basis for the photons a
and b, respectively. Equations (4) and (6) show that the state
|ui(er, 6,))]it;(B, 6,)) onto which the initial state |¥™) is pro-
jected, remains confined to the four-dimensional two-photon
subspace spanned by the basis {|S(,))® [S(B))}, (i,j=1,2)
when the VBS’s “angles” 6, and 6, are varied. Moreover,
we can see that, e.g., the basis {|S(@)),|S(a+ 7))} defines a
dichotomic subspace, as the basis {|H),|V)} does in polariza-
tion space. It is clear then that, when we choose a pair («, 8)
of SPP’s orientations, we uniquely fix a four-dimensional
two-photon subspace.

IV. ADDRESSING THE QUANTUM NONLOCALITY

At this point we know how to calculate the coincidence
probabilities P;;(6,,6,) from the state [¥"') at the output of
both interferometers. However, to proceed further and test
the quantum nonlocality of the input state |¥"), we have to
specify our scenario more precisely. We have two parties, say
Alice and Bob, who share the two-photon entangled state
|Win) given in Eq. (1). Each one of the two entangled photons
belongs to an (in principle) infinite-dimensional Hilbert
space. Alice and Bob each have a measuring apparatus: M,
and M,, respectively. Each apparatus M, (x=a,b) consists of
a two-channel Mach-Zehnder interferometer MZ,, with a pa-
rameter 6, at the experimenter’s disposal, followed by two
(one per channel i=1,2) single-mode fibers F,;. The output
ports i=1,2 of each M, are monitored by two detectors D,
and D, respectively. We stress that in this scenario the SPP
rotation angles « and S are not experimental “knobs” that are
changed during an experiment. Different pairs {«, 8} define
different experiments which use the same initial two-photon
entangled state |W"). In analogy with the polarization case,
Alice can choose between two different measurements, say A
and A’, corresponding to two different choices for the
varying-beam-splitter “angles” 6, and 6/, respectively. Simi-
larly, Bob can choose between B and B’, corresponding to 6,
and 6;, respectively. Each time Alice and Bob perform a
measurement, M, (x=a,b) gives the string {x;,x,}, where
x;=1 when the detector D,; fires and x;=0 when it does not.
So, we have two parties (Alice and Bob), two measurements
(6, and 6;) per party, and two possible outcomes ({1,0} and
{0,1}) per measurement for each party. This situation is usu-
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ally indicated as a d X N, X N,=2 X2 X2 Bell scenario. For
this case, as is well known [20], the most important test of
nonlocality is the CHSH inequality [21]

S =|E(6,.6,) - E(6,,0,) + E(0,,6,) + E(6,,6,)| <2, (8)

where, in our notation, E(6,, 6,) is given by

Py1(6,,6,) = P12(6,.6,) = Py,(6,,6,) + P»(6,.,6,)
P11(6,,6,) + P12(6,.6,) + Py, (0,,0,) + P(6,,6,)

9)

We first choose as a special case a common orienta-
tion a=£ for the SPPs for the two photons. It is then
straightforward to show that E(6,,6,)=cos[2(6,—6,)] and,
with the particular choice of varying-beam-splitter angles
0,=0, 6 =m/4, O,=/8, 6,=3m/8, we achieve the maxi-
mum violation §=2+2 of the CHSH inequality. This result is
valid for all values of «. For this special case, we find thus
the same result as one would achieve describing an experi-
ment involving dichotomic variables, as in the case of
polarization-entangled two-photon states. However, unlike
the polarization case, here we have an additional parameter
at our disposal, namely the SPP orientation angle .

Next, we pass to the more general case a# (. For this
case we have to use numerical methods. We found, by
numerical search, many pairs o # 8 which produce violation
close to 212. This result is quite interesting since it is a
signature that the entanglement of the photon pair may sur-
vive this “dimensional reduction” even when different sub-
spaces (viz, different degrees of freedom) are tested.
Now, provided that the state vectors {|S(x)),|S(x+m)),
IS IS+ ), IS IS+ 7)), ... H(x=a, B) are cho-
sen to be linearly independent, we can extend the CHSH test
to the N pairs {(a,8),(a’.8'),(a",B"),...,(a™, M)} de-
fining N pairs of two-dimensional subspaces whose union
defines a 2N X 2N two-photon subspace. In this way we can
demonstrate the nonlocal nature of the high-dimensional
two-photon OAM-entangled states.

Let us compare our results with the questions (i—iii) posed
in the Introduction. From an initial entangled c-dimensional
state [Eq. (1)] we obtain entangled four-dimensional states;
each dimensionally reduced state is maximally entangled; all
four-dimensional subspaces are, in this sense, equivalent. All
questions posed in the Introduction have thus been positively
answered.

V. CONCLUSIONS

In this paper we proposed an experimental setup to inves-
tigate the nonlocality (viz, the degree of useful entangle-
ment) of very high-dimensional two-photon OAM-entangled
states, by using four detectors only. We use a pair of modi-
fied Mach-Zehnder interferometers as OAM analyzers. They
reduce the effective dimensionality of the two-photon Hilbert
space from o« to 4. This entanglement-preserving dimen-
sional reduction permits us to check the nonlocality of the
two-photon state with a 2 X 2 X 2 inequality [20]. In this way
we find the maximum violation 212 of the CHSH inequality
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for any four-dimensional two-photon subspace we choose.

Moreover, because of the strict analogy between our four-
dimensional two-photon sub-spaces and four-dimensional
two-photon polarization space, other interesting experiments
(e.g., teleportation of spatial degrees of freedom) can be
implemented by using our scheme.
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