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We propose an interferometric method to investigate the nonlocality of high-dimensional two-photon orbital
angular momentum states generated by spontaneous parametric down conversion. We incorporate two half-
integer spiral phase plates and a variable-reflectivity output beam splitter into a Mach-Zehnder interferometer
to build an orbital angular momentum analyzer. This setup enables testing the nonlocality of high-dimensional
two-photon states by repeated use of the Clauser-Horne-Shimony-Holt inequality.
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I. INTRODUCTION

Entangled qubits play a key role in many applications of
quantum information �1� and quantum cryptography �2�. An
example of a qubit is the polarization state of a photon. More
generally, a qudit is a quantum system whose state lies in a
d-dimensional Hilbert space. The higher dimensionality im-
plies a greater potential for applications in quantum informa-
tion processing and this explains the continuously growing
interest in methods for creating entangled qudits.

Among these methods, spontaneous parametric down
conversion �SPDC� appears to be the most reliable one for
creating entangled photon pairs �3�. Recently, several tech-
niques have been used to create entangled qudits from down-
converted photons. For example, conservation of orbital
angular momentum �OAM� in SPDC has been used to create
entangled states with d=3 �4,5�, and a time binning method
was employed to realize states with d=11 �6�. Recently,
spatial degrees of freedom in SPDC �7� have been exploited
to demonstrate entanglement for the cases d=4,8 �8� and
d=6 �9�.

It is well known that useful high-dimensional entangle-
ment can be witnessed by violation of Bell-type inequalities
�10�, which also furnish a test of nonlocality for a quantum
system. However, tests of d-dimensional inequalities for bi-
partite quantum systems require the use of at least 2d detec-
tors, which becomes exceedingly difficult �if not impossible�
for large d.

In a previous paper �11� we proposed an experiment to
show the entanglement of high-dimensional two-photon
OAM states, with two detectors only. This scheme indeed
allows us to verify the existence of high-dimensional non-
separability, as demonstrated by our subsequent experimental
results �12�. In Ref. �11� we went on to use a two-
dimensional Bell inequality to check the nonlocality of our
OAM-entangled photons. In the meantime we have realized
that this implicitly assumes dichotomic variables, a condition
that was not fulfilled by the scheme proposed in Ref. �11�.

In the present paper, we propose an experimental scheme
to explicitly test the nonlocality �namely, the useful entangle-
ment� of very-high-dimensional two-photon OAM states
�d���, by using just four detectors. The advantages of our
method with respect to those using 2d detectors are obvious

for d�2. Additionally, we stress that the scheme we propose
is designed to realize dichotomic observables. The idea is
first to project the infinite-dimensional two-photon state onto
several different four-dimensional subspaces �in order to se-
lect different four-dimensional two-photon states�, and then
to apply the Clauser-Horne-Shimony-Holt �CHSH� inequal-
ity �13� to each selected state. It is not obvious a priori
whether such a scheme will work or not. In fact several
legitimate questions can be raised: �i� Does this dimensional
reduction spoil the entanglement of the two-photon state? �ii�
Do selected four-dimensional states maximally violate the
CHSH inequality? �iii� Are distinct four-dimensional sub-
spaces equivalent? In the rest of this paper we will address
these questions.

II. THE PROPOSED EXPERIMENT

As shown in Fig. 1, a nonlinear crystal yields OAM-
entangled photon pairs, and the two photons �say a and b�
are fed into two balanced Mach-Zehnder interferometers
which are shown in detail in Fig. 2. Each Mach-Zehnder
MZx �x=a ,b� is made of a 50-50 input beam splitter �BS�

FIG. 1. Schematic of the proposed experimental setup. The
boxes MZa and MZb represent the Mach-Zehnder interferometers in
the path of the photon a and b, respectively. The thick gray lines
Fxi�x=a ,b ; i=1,2�, represent the single-mode optical fibers. Each
of them is coupled with a detector Dxi. Further details are given in
the text.
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and a variable-reflectivity output beam splitter �VBSx�. We
denote with tx and rx the transmission and reflection coeffi-
cients of each VBSx and assume tx=cos �x, rx=i sin �x,
where x=a ,b and �x� �0,2��. The role of the VBS in such
a scheme is that of a “channel selector” which can change
the relative weight of the two arms of the interferometer.
Such a VBS can be easily realized, for example, by exploit-
ing the polarization degrees of freedom of the SPDC pho-
tons. Type I crystals emit photon pairs with a well-defined
linear polarization �14�. Then, the combination of a half-
wave plate before the Mach-Zehnder and a polarizing beam
splitter as output BS of the same interferometer realizes the
desired VBS. Another possibility is to use a Fabry-Pérot éta-
lon whose mirror separation can be varied, to realize a so-
called “Lorentzian beam splitter” �15�, which acts as a VBS.

In channel 1 of interferometer MZa there is a spiral phase
plate �SPP� �16� with step index L oriented at � �see Fig. 3�,
while in channel 2 there is a SPP with the same step index
but oriented at �+�. When the step index is half-integer, that
is when L=�+1/2, ��=1,2 , . . . �, these two antiparallel geo-
metrical orientations �� and �+�� define, in combination
with single-mode fibers �see below�, two orthogonal spatial
modes �11�. Similarly, in channel 1 of interferometer MZb
there is a spiral phase plate �SPP� with negative step index
−L oriented at �, while in channel 2 there is a SPP with the
same step index but oriented at �+�.

Each output port of the interferometers is coupled to a

single-mode fiber which sustains the Laguerre-Gaussian
mode LGp=0

l=0 . When a photon in the arbitrary state ��� is
coupled to such a single-mode fiber, the fiber projects the
input state of the photon on the Laguerre-Gaussian state
�l=0, p=0���0,0� with probability �	0,0 ����2. The output
port of each fiber is coupled with a single-photon detector.
Finally, each photon propagates from the crystal to the
single-mode fibers through a suitable system of lenses �not
shown in Fig. 1�, which images the twin photons from the
crystal to the SPPs, and from the SPPs to the input facets of
the fibers. In this way, free-space propagation effects reduce
to an azimuthal-independent longitudinal phase factor.

III. THE MACH-ZEHNDER INTERFEROMETER

Each photon enters the Mach-Zehnder interferometer
through a single input port, say “port 1.” The quantum state
of the down-converted photon pair at the entrance of both
interferometers, can be written as �17�

��in� 	
 d2x
P�r�â1
†�x�b̂1

†�x��0� �1�

where 
P�r��LG0
0�r ,w� describes the transverse profile of

the pump beam, r= �x�, and w is the pump beam waist. The
entangled photons cross both Mach-Zehnders, and are even-
tually detected. After a lengthy but straightforward calcula-
tion, it is possible to show �18� that the probability Pij��a ,�b�
that the detector Dai fires in coincidence with the detector
Dbj is given by

Pij��a,�b� 	 �	0,0�	0,0�Ûi��,�a� � Ûj
†��,�b���in��2, �2�

where

Ûi��,�x� = �
j=1

2

Rij��x�Ŝ�� j�, 
 i = 1,2,

x = a,b ,
� �3�

is the operator representing the propagation of a photon

through the channel “i” of MZx, and Ŝ�� j� is the quantum-
mechanical operator representing a half-integer SPP oriented
at angle � j �18�, where � j =�+ �j−1��, with �=� ,�. Finally,
we introduced

R��x� = �cos �x − sin �x

sin �x cos �x
�, �x = a,b� , �4�

as the orthogonal matrix representing the VBSx. Explicit ex-
pressions for Pij��a ,�b� are given in �18�. For our present
purpose it is important to note that Pij��a ,�b� satisfies the
no-signaling conditions

�
j=1

2

Pij��a,�b� = Pi��a�, �
i=1

2

Pij��a,�b� = Pj��b� , �5�

expected for a bipartite, 2�2 dimensional system. From
Eqs. �2� and �3� it follows that when a coincidence detection

FIG. 2. Detailed scheme of the OAM analyzer in the path of the
photon x=a ,b. BS denotes a 50-50 beam splitter, and VBSx a
variable-reflectivity beam splitter. The two channels “1” and “2” of
the interferometer are indicated. With SPP we denoted the two spi-
ral phase plates ��=� ,��, and M1,M2,M3 represent three ordinary
mirrors. The role of M3 is to ensure that the photon undergoes an
even number of reflections �thus maintaining the spatial symmetry
of the input wave function�, whichever path it takes.

FIG. 3. Schematic drawing of a spiral phase plate �SPP� with
a step index �
 phase shift per unit angle� L=hs�n−n0� /�, where
hs is the step height, n and n0 are the refractive indices of
the SPP and the surrounding medium, respectively, and � is the
wavelength of the incident light. In this paper we assume
L=�+1/2 , ��=1,2 , . . . �. The orientation angle � is indicated.
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�i , j� occurs, the input state ��in� is projected onto the state
�ui�� ,�a���ūj�� ,�b��, where

�ui��,�a�� = Ûi
†��,�a��0,0� � �

j=1

2

Rij��a��S�� j�� , �6�

and �S�� j��� Ŝ†�� j��0,0�. In a similar manner we define

�ūj�� ,�b��= Ûj�� ,�b��0,0� and �S̄�� j��� Ŝ�� j��0,0�. From the
orthogonality relations �19�

	S��i��S�� j�� = �ij = 	S̄��i��S̄�� j�� , �7�

it follows that ��S���� , �S��+���� and ��S̄���� , �S̄��+����
form an orthogonal two-dimensional basis for the photons a
and b, respectively. Equations �4� and �6� show that the state
�ui�� ,�a���ūj�� ,�b�� onto which the initial state ��in� is pro-
jected, remains confined to the four-dimensional two-photon

subspace spanned by the basis ��S��i�� � �S̄�� j���, �i , j=1,2�
when the VBS’s “angles” �a and �b are varied. Moreover,
we can see that, e.g., the basis ��S���� , �S��+���� defines a
dichotomic subspace, as the basis ��H� , �V�� does in polariza-
tion space. It is clear then that, when we choose a pair �� ,��
of SPP’s orientations, we uniquely fix a four-dimensional
two-photon subspace.

IV. ADDRESSING THE QUANTUM NONLOCALITY

At this point we know how to calculate the coincidence
probabilities Pij��a ,�b� from the state ��out� at the output of
both interferometers. However, to proceed further and test
the quantum nonlocality of the input state ��in�, we have to
specify our scenario more precisely. We have two parties, say
Alice and Bob, who share the two-photon entangled state
��in� given in Eq. �1�. Each one of the two entangled photons
belongs to an �in principle� infinite-dimensional Hilbert
space. Alice and Bob each have a measuring apparatus: Ma
and Mb respectively. Each apparatus Mx �x=a ,b� consists of
a two-channel Mach-Zehnder interferometer MZx, with a pa-
rameter �x at the experimenter’s disposal, followed by two
�one per channel i=1,2� single-mode fibers Fxi. The output
ports i=1,2 of each Mx are monitored by two detectors Dx1
and Dx2 respectively. We stress that in this scenario the SPP
rotation angles � and � are not experimental “knobs” that are
changed during an experiment. Different pairs �� ,�� define
different experiments which use the same initial two-photon
entangled state ��in�. In analogy with the polarization case,
Alice can choose between two different measurements, say A
and A�, corresponding to two different choices for the
varying-beam-splitter “angles” �a and �a�, respectively. Simi-
larly, Bob can choose between B and B�, corresponding to �b
and �b�, respectively. Each time Alice and Bob perform a
measurement, Mx �x=a ,b� gives the string �x1 ,x2�, where
xi=1 when the detector Dxi fires and xi=0 when it does not.
So, we have two parties �Alice and Bob�, two measurements
��x and �x�� per party, and two possible outcomes ��1,0� and
�0,1�� per measurement for each party. This situation is usu-

ally indicated as a d�Na�Nb=2�2�2 Bell scenario. For
this case, as is well known �20�, the most important test of
nonlocality is the CHSH inequality �21�

S = �E��a,�b� − E��a�,�b� + E��a,�b�� + E��a�,�b��� � 2, �8�

where, in our notation, E��a ,�b� is given by

P11��a,�b� − P12��a,�b� − P21��a,�b� + P22��a,�b�
P11��a,�b� + P12��a,�b� + P21��a,�b� + P22��a,�b�

. �9�

We first choose as a special case a common orienta-
tion �=� for the SPPs for the two photons. It is then
straightforward to show that E��a ,�b�=cos�2��a−�b�� and,
with the particular choice of varying-beam-splitter angles
�a=0, �a�=� /4, �b=� /8, �b�=3� /8, we achieve the maxi-
mum violation S=2�2 of the CHSH inequality. This result is
valid for all values of �. For this special case, we find thus
the same result as one would achieve describing an experi-
ment involving dichotomic variables, as in the case of
polarization-entangled two-photon states. However, unlike
the polarization case, here we have an additional parameter
at our disposal, namely the SPP orientation angle �.

Next, we pass to the more general case ���. For this
case we have to use numerical methods. We found, by
numerical search, many pairs ��� which produce violation
close to 2�2. This result is quite interesting since it is a
signature that the entanglement of the photon pair may sur-
vive this “dimensional reduction” even when different sub-
spaces �viz, different degrees of freedom� are tested.
Now, provided that the state vectors ��S���� , �S��+��� ,
�S����� , �S���+��� , �S����� , �S���+��� , . . . ���=� ,�� are cho-
sen to be linearly independent, we can extend the CHSH test
to the N pairs ��� ,�� , ��� ,��� , ��� ,��� , . . . , ���N� ,��N��� de-
fining N pairs of two-dimensional subspaces whose union
defines a 2N�2N two-photon subspace. In this way we can
demonstrate the nonlocal nature of the high-dimensional
two-photon OAM-entangled states.

Let us compare our results with the questions �i–iii� posed
in the Introduction. From an initial entangled �-dimensional
state �Eq. �1�� we obtain entangled four-dimensional states;
each dimensionally reduced state is maximally entangled; all
four-dimensional subspaces are, in this sense, equivalent. All
questions posed in the Introduction have thus been positively
answered.

V. CONCLUSIONS

In this paper we proposed an experimental setup to inves-
tigate the nonlocality �viz, the degree of useful entangle-
ment� of very high-dimensional two-photon OAM-entangled
states, by using four detectors only. We use a pair of modi-
fied Mach-Zehnder interferometers as OAM analyzers. They
reduce the effective dimensionality of the two-photon Hilbert
space from � to 4. This entanglement-preserving dimen-
sional reduction permits us to check the nonlocality of the
two-photon state with a 2�2�2 inequality �20�. In this way
we find the maximum violation 2�2 of the CHSH inequality
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for any four-dimensional two-photon subspace we choose.
Moreover, because of the strict analogy between our four-

dimensional two-photon sub-spaces and four-dimensional
two-photon polarization space, other interesting experiments
�e.g., teleportation of spatial degrees of freedom� can be
implemented by using our scheme.
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