3. Harmonizing European land cover maps

Jaap Slootweg, Jean-Paul Hettelingh, Wil Tamis*, Maarten van 't Zelfde*

*Institute of Environmental Sciences (CML), Leiden, the Netherlands

3.1 Introduction

Several bodies under the Convention have addressed the issue of defining a common land cover dataset during 2003, inter alia the TFIAM (EB.AIR.GE.1/2003/4), the EB and the ICP M&M (Final draft minutes of the taskforce meeting 2003). It was stressed that the land cover data should be the same for all steps in air pollution assessment work and working bodies under the Convention and that it should be freely and easily available. In order to harmonize the land cover maps, the currently used European maps are made compatible with regard to land cover classes and coordinate system, and then compared to each other. Results of the comparison have been presented to an ad-hoc expert meeting on harmonization of land cover information for applications under the Convention on LRTAP by CCE, CIAM, MSC-W and SEI. This meeting recommended a new dataset which merges CORINE data and SEI data to be produced.

This chapter introduces the currently used land cover maps and describes how their classifications are harmonized into the EUNIS classification system. The theoretical background and results of a comparison are presented, including maps that show the largest local differences between the maps, the distinction maps. Finally this chapter documents the creation of a land cover map than can be used for all European applications under the LRTAP Convention.

3.2 Description of relevant maps

An earlier study into existing land cover databases (De Smet and Hettelingh, 2001) narrowed the comparison to three relevant sources:

- the CORINE land cover database (Version 12/2000 extended coverage),
- the Pan-European Land Cover Monitoring (PELCOM) and
- the Land Cover Map of Europe of the Stockholm Environmental Institute (SEI).

All three have been updated since, making an update of the comparison of the three sources useful.

CORINE

The CORINE land cover database is the result of the ongoing CORINE Land Cover project of the European Environment Agency (EEA). Version 12/2000, used in this comparison, covers the EU-25 countries (with the exception of Cyprus and Malta), as well as Albania, Andorra, Bosnia and Herzegovina, Macedonia and the coastal zone of Tunisia and Northern Morocco (see Figure 3-1).

The map consists of national contributions, most of which used Landsat and/or SPOT satellite images, aerial photographs and other data sources to distinguish 44 land cover categories. The 100 meter grid has been made available for the work under the convention. This map is by far the most elaborate and accurate of the three maps, and is used as reference map, the 'truth' for the comparison. (http://dataservice.eea.eu.int/dataservice/)

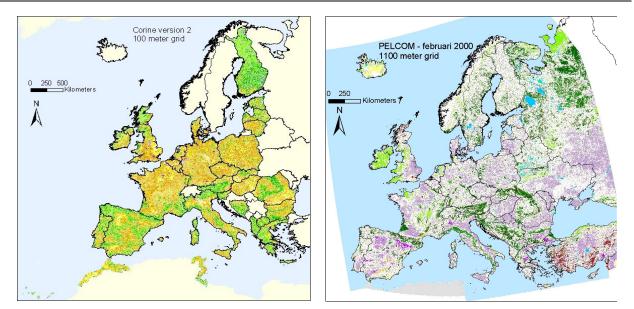


Figure 3-1 CORINE - 100 meter grid

Figure 3-2 PELCOM 1100-grid (February 2000).

PELCOM

The 1-km pan-European land cover database is based on the integrative use of multi-spectral and multi-temporal 1-km resolution NOAA-AVHRR satellite data and ancillary data. PELCOM was a three years project under the Environment & Climate section of the European Union's 4th framework RTD programme. The methodology developed in the PELCOM project is based on combining both unsupervised and supervised classification approaches. The training samples are derived from selected homogeneous areas of the CORINE land cover database. The spectral characteristics of each training sample are used to determine class boundaries and pixel assignments in the supervised classification into the 15 categories used.

The version 02/2000, used in the comparison, covers Europe (http://www.gis.wageningen-ur.nl/cgi)

SEI

The SEI land cover database was originally developed for use in modelling of the impacts of various air pollutants at a continental scale. Its classification reflexes the attempts to identify an ecologically meaningful cover type and/or dominant species across Europe. Several datasets are utilized, among which PELCOM, various soil maps and other maps from international organisations related to agriculture.

The version 07/2003, used in the comparison, covers Europe including the European part of Russia, Turkey, Kazakhstan, Armenia and Azerbaijan (see Figure 3-3) (<u>http://www.york.ac.ul/inst/sei/APS/projects.html</u>)

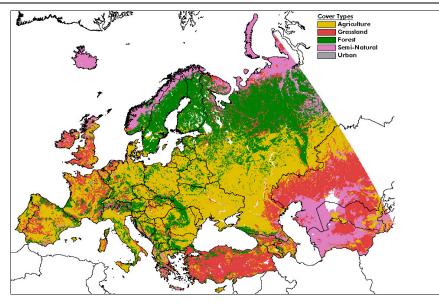


Figure 3-3. SEI coverage version 2003.

In order to identify a common land cover data set the available maps were compared. All of the maps have been created with different objectives and using different sources leading to different classification systems and different resolution and coordination systems. Therefore the next step is the reclassification of the land cover maps to one classification system. (EUNIS)

3.3 Reclassification to the EUNIS classification system

To improve on the uniformity of the ecosystem definitions for the work under the Convention a study was conducted to used classifications (Hall, 2001). The EUNIS (European Nature Information System) Habitat classification (Davies and Moss, 1999) was considered as the best 'target' classification scheme for the harmonization of the three above mentioned maps.

EUNIS is a hierarchic habitat classification system developed by the European Topic Centre for Nature Conservation (http://eunis.eea.eu.int) that uses a common framework with links to other classifications. The EUNIS system aims at defining ecological habitats, taking into account what species are present, but also incorporates features of the landscape.

Method:

The following steps in the cross-classification can be discerned:

- 1. An aggregated EUNIS-scheme for calculations and map presentations was derived, based on the inventory of relevant ecosystems for critical load calculations (Hall, 2001). This scheme will be referred to as EUNIS-LRTAP.
- 2. Two new classes were added to the EUNIS-scheme within class I (Regularly or recently agricultural, horticultural and domestic habitats):
 - a. II (irrigated arable land)
 - b. IN (non-irrigated arable land)
- 3. Inventory of existing cross-classification schemes (or schemes in development)
- 4. For those land use/ land cover maps for which cross-classification schemes to EUNIS do not exist yet or do exist partly, additional cross-classification was carried out. This was carried out in two steps
 - a. CORINE, SEI and PELCOM were cross-classified to the second level of EUNIS
 - b. These 'basic' cross-classifications were further aggregated and simplified, using a number of rules of thumb
- 5. For CORINE a complete cross-classification scheme was already available (Moss and Davies, 2002), but for SEI and PELCOM this was not the case.

- a. For SEI a partial cross-classification scheme was available. It concerned the cross-classification of the second level of the SEI-grasslands to the second level of EUNIS (SEI, 2003). The remaining SEI-classes on the second level were cross-classified to the second level of EUNIS (with exception of the SEI classes for dominant tree species).
- b. For PELCOM no cross-classification scheme was available and all 14 relevant classes were crossclassified to the second level of EUNIS.
- 6. As a consequence of this first cross-classification step quite often a single class within CORINE, SEI or PELCOM was cross-classified to several classes in EUNIS-level 2 (one-to-many relationship). The following rules of thumb were used in the second step to minimize the number of one-to-many relationships.
 - a. Cross-classifications were as much as possible aggregated according to the EUNIS-LRTAP scheme. (For example, within CORINE several classes could be cross-classified to several different secondary levels within the EUNIS-category J (Constructed, industrial and other artificial habitats). However, within the EUNIS-LRTAP-scheme no distinction is made on the second level within this category.)
 - b. When a source class was cross-classified to all EUNIS level 2 classes within a EUNIS level 1 class (because the source class contained no information, which made it possible to distinguish between level 2 classes within EUNIS); then only the cross-classification to the higher EUNIS level 1 was used.
 - c. The different cross-classifications for one source class were evaluated by their importance. Less important cross-classifications were omitted; their weight was set to zero (0).
 - d. EUNIS has several classification characteristics which might not be present in CORINE, SEI or PELCOM. Cross-classifications between source classes and EUNIS-classes based on features not present in the source classification were omitted; their weight was set to zero (0). N.B. This must not be misinterpreted as the absence of these EUNIS-classes!
- 7. The one-to-many relationships that remained after these aggregations were treated as combinations of two (or exceptionally three) EUNIS classes. Each class within the combination has the same proportional weight. Combinations are characterized with a starting X, so the combination of dry (E1) and mesic (E2) grasslands, becomes XE1E2. The combinations are only important for the GIS-manipulations of the maps. In the final use of these combinations, the information of the individual classes of the combinations will be used.

Results:

The aggregated EUNIS-LRTAP-scheme

In Table 3-1 the aggregated EUNIS-LRTAP-scheme is presented of the most relevant ecosystems for the work under the Convention, supplemented with all other ecosystems in order to cover all land use types. On the second level of EUNIS non-relevant classes have been combined, and they are marked with an X.

Table 3-1. Aggregated EUNIS-LRTAP-scheme of all relevant ecosystems marked with a 1 (level 1) or 2 (level 2) in the column L (LRTAP relevant), supplemented with other ecosystems in order to cover all land use/cover types.

vp	C.S.					
	Code	EUNIS-description	L	Code	EUNIS-description	L
	А	Marine habitats	-	E1	Dry grasslands	2
	В	Coastal habitats	-	E2	Mesic grasslands	2
	С	Inland surface waters habitats	1	E3	Seasonally wet & wet grasslands	2
	C1	Standing waters	2	E4	Alpine & sub-alpine grasslands	2
	C2	Running waters	2		Other grassland and tall forb	-
	C3	Littoral zone of inland surface	2	EX	habitats	
		waterbodies		F	Heathland, scrub and tundra	1
	D	Mire, bog and fen habitats	1		habitats	
	D1	Raised & blanket bog	2	F2	Arctic, alpine &sub-alpine scrub	2
	D2	Valley mires, poor fens, transition	2	F3	Temperate & Mediterranean	2
		mires			montane scrub	
	DX	Other mire, bog and fen habitats	-	F4	Temperate scrub heathland	2
	Е	Grassland and tall forb habitats	1	FX	Other heathland, scrub and tundra	-

Code	EUNIS-description	L	Code	EUNIS-description	L
	habitats			and coppice	
G	Woodland and forest habitats and other wooded land	1	Η	Inland unvegetated or sparsely vegetated habitats	-
G1	Broadleaved deciduous woodland	2	Ι	Regularly or recently cultivated	-
G2	Broadleaved evergreen woodland	2		agricultural, horticultural and	
G3	Coniferous woodland	2		domestic habitats	
G4	Mixed deciduous and coniferous	2	II	Irrigated arable land	-
	woodland		IN	Non-irrigated arable land	-
G5	Lines of trees, small anthropogenic woodlands, recently felled woodland, early-stage woodland	-	J	Constructed, industrial and other artificial habitats	-

The total number of EUNIS-LRTAP map classes is 10 (level 1) or 32 (level 1 + level 2).

Cross-classification

PELCOM-EUNIS cross-classification

As an example a part of the cross-classification table for PELCOM to EUNIS is presented in Table 3-2 (The complete cross-classification table is stored in Annex 3A. In the third column (EUNIS L2) the results of the first step of the cross-classification are presented: classification to the second level of EUNIS. In the fourth column the aggregation/ simplification of the one-to-may cross-classifications and the conversion to the EUNIS-LRTAP-scheme is presented.

Some comments on the cross-classification table PELCOM-EUNIS to illustrate this procedure:

- For the first PELCOM-class, 11 (Coniferous forest), we see that it could be cross-classified to four level 2 classes within EUNIS: B1, B2, G3 and G5. Classes B1 and B2 are coastal areas on different types of soils. Because these class characteristics are not available in PELCOM, these cross-classifications were omitted (0 in fourth column). The same holds for G5: lines of trees etc.

- For the second PELCOM-class, 12 (Deciduous forest), we see in the eighth row that deciduous forest is also cross classified to EUNIS-G2 level: (broad leaved evergreen forest). This is of course contradictory (deciduous and evergreen), but this is the best cross-classification that could be made for this EUNIS-class. Finally this cross-classification is omitted, because PELCOM do not contain information on deciduousness. So in the final cross-classification between PELCOM and EUNIS, class G2 is not present. This must not be misinterpreted that broad-leaved evergreen forests are not present. They are included probably within the category G1, broad leaved deciduous forest.

		0	
	DELCOM nome	EUNIS	EUNIS
e	PELCOM name	L2	LRTAP
	Coniferous forest	B1	0
1	Coniferous forest	B2	0
1	Coniferous forest	G3	G3
1	Coniferous forest	G5	0
2	Deciduous forest	B1	0
2	Deciduous forest	B2	0
2	Deciduous forest	G1	G1
12	Deciduous forest	G2	0
2	Deciduous forest	G5	0
13	Mixed forest	B1	0
3	Mixed forest	B2	0
13	Mixed forest	G4	G4

Table 3-2. Cross-classification table for PELCOM translated to the second level of EUNIS and subsequently to the EUNIS-LRTAP classes; 0 = cross-classification omitted.

CORINE-EUNIS cross-classification

CORINE has three hierarchical levels, already cross-classified to all levels of EUNIS. The existing crossclassification contains many one-to-many relationships and these relationships often contain many relations (on average 3-4 for each CORINE 3 level class). Many of these relationships had been evaluated as less important. The whole cross-classification table (330 lines) is listed in Annex 3A

SEI-EUNIS cross-classification

SEI has up to four levels (for grasslands and semi-natural areas). A part of the grassland and semi-natural areas already had been cross-classified to the second level of EUNIS by SEI itself. A definitive description of the different levels and classes had not been available for the most recent version of the SEI map. This hampered the cross classification of the SEI-classes in some cases. The following choices have been made in order to produce a SEI-EUNIS cross classification:

SEI dominant crops in general and SEI dominant crops irrigated have been cross classified to EUNIS nonirrigated and irrigated agriculture. SEI dominant crops in general which were present twice or even three times with the same name or meaning (e.g. grapes and vineyard) but with different codes in the SEI classification have been cross classified to one dominant EUNIS-crop code.

There are several inconsistencies (as of November 2003) in the SEI-classification (e.g. presence of type 'dry marsh') and in the partial SEI-EUNIS cross classification produced by SEI (e.g. SEI - Wet improved tall grassland -> EUNIS - Dry grassland etc.), which have to be improved in future (cross) classifications.

The whole cross-classification table (525 lines) is listed in Annex 3A

3.4 Comparing maps using contingency matrix and kappa statistics

Comparing maps is often done by creating a contingency matrix or by Kappa statistics. Each cell of a contingency matrix gives the fraction of raster cells classified in a particular category in one map and another category in the other map. Given k categories, i and j the indexes of the categories in the maps, a contingency table looks like:

		map	J (j=co	lumns	5)	Total
		1	2		k	
map I	1	p_{11}	p_{12}		p_{1k}	p_{1+}
(i=row)	2	p_{21}	p_{22}		p_{2k}	p_{2+}
		•••			•••	
	k	p_{k1}	$p_{\rm k2}$		$p_{ m kk}$	p_{k+}
Total		p_{+1}	p_{+2}		p_{+k}	1

With
$$p_{+j} = \sum_{i=1}^{k} p_{ij}$$
 and $p_{i+} = \sum_{j=1}^{k} p_{ij}$.

Kappa gives the similarity of the maps and adjusts for the probability, p_e , that cells are equal by chance a priori to the comparison (pe). $kappa = \frac{sim - p_e}{1 - p_e}$ with $sim = \sum_{i=1}^{k} p_{ii}$

If we neglect the auto-correlation of the maps this probability p_e can be calculated from the histograms of the maps as $P_e = \sum_{i=1}^{n} p_{+i} p_{i+}$. *Kappa* equals 1 with perfect agreement and nears zero when the agreement is random. More can be found in Cohen (1960) and in Monserud and Leemans (1992).

The land cover maps in this comparison are compiled with different objectives, resulting in different classifications. The harmonisation of the classifications will most likely result in category definitions that do not match perfectly. Also the co-ordinate system and resolution of the maps differ, leading to dislocations between the maps. To allow further analysis of the most important differences between the maps two methods have been applied. The first is to split kappa into a measure for the differences in histograms, and a measure for differences in the location of similar categories, respectively $Kappa_{Histo}$ and $Kappa_{Location}$. These quantities are defined by

$$Kappa_{Histo} = \frac{p_{max} - p_e}{1 - p_e}$$
 and $Kappa_{Location} = \frac{sim - p_e}{p_{max} - p_e}$ where p_{max} holds the maximum possible similarity,

given the histograms of the distribution: $p_{\text{max}} = \sum_{i=1}^{k} \min(p_{i+}, p_{+i})$. The second method to distinguish small from

important differences in the maps is the introduction of fuzziness in category as well as in location. To compare the maps in a fuzzy way the grade of applicability of the category of the other map counts. This grade gives a fuzzy value between 0 for not applicable to 1 for completely equal. Categories of neighbouring cells as well as similarities between categories contribute to this fuzzy value. The fuzzy similarity of two corresponding raster cells is the minimum of the fuzzy value of one map compared to the other, and the value for the comparison the other way around. The fuzzy similarity between the two maps is the average of the similarities of all the corresponding rasters-cells. From this it is possible to calculate a '*Kappa_{Fuzzy}*' that is less sensitive for small differences then the classical *Kappa*.

$$Kappa_{fuzzy} = \frac{sim_{fuzzy} - p_{e, fuzzy}}{1 - p_{e, fuzzy}}$$

By applying fuzzy set theory the similarity increases in most cases, but also the probability that cells are more or less equal has increased. A way to describe the additional change is described in Hagen (2002). That article describes also the complete method in more detail. Another, but elaborate way of calculating the a priori probability of similarity is by Monte Carlo analysis. If the randomly generated maps would simulate the spatial auto-correlation this way could also adjust for this phenomena.

3.5 Results of the comparison

The histogram's of the maps, as far as they overlap spatially, is given in Table 3-3. From this, the calculated $Kappa_{Histo}$ is calculated as 0.959 between SEI and Corine, and 0.954 for PELCOM and Corine. This indicated a very high similarity for the overal contributions of the land use classes.

Table 3-3. Histograms of the maps for the overlapping area in promilles.

	CORINE	SEI	PELCOM
Water	16	18	15
Vegetation	229	268	197
Broadleaved	117	116	124
Coniferious	175	164	212
Barren	22	1	14
Agricultural	415	413	417
Urban	26	20	21

Table 3-4 and 3-5 show the contingency tables for both comparisons. The resulting Kappa's are 0.275 for CORINE vs. SEI and 0.376 for CORINE vs. PELCOM. There is a large misfit for 'Vegetation'. In the part of the SEI map that overlaps with CORINE a total of 268% of the raster cells is classified as such. This includes 101% cells that are classified as 'Agricultural' in CORINE, and only 95% is also classified as 'Vegetation' in CORINE. Also a large part of the agricultural areas in SEI are classified as vegetation in CORINE.

Table 3-4. Contingency table for the comparison of the CORINE map versus the SEI map. All numbers are in promilles, blank = 0 values.

SEI	Water	Vegetat.	Broadl.	Conif.	Barren	Agricult.	Urban	Sum
CORINE								
Water	9	2	1	2		2		16
Vegetation	2	95	24	33		73	2	229
Broadleaved	1	28	34	13		40	1	117
Coniferous	4	27	16	88		40	1	175
Barren		9	2	2		6	2	22
Agricultural	3	101	38	24		242	7	415
Urban		5	2	1		11	7	26
Sum	18	268	116	164	1	413	20	1000

Table 3-5. Contingency table for the comparison of the CORINE map versus the PELCOM map. All numbers are in promilles, blank = 0 values.

PELCOM	Water	Vegetat.	Broadl.	Conif.	Barren	Agricult.	Urban	Sum
CORINE								
Water	7	2	0	3	0	3	0	16
Vegetation	2	97	24	46	3	55	2	229
Broadleaved	1	18	47	19	1	30	1	117
Coniferous	3	24	19	99	2	29	1	176
Barren	0	4	1	5	4	5	2	22
Agricultural	2	50	31	37	4	284	7	415
Urban	0	3	2	2	0	12	7	26
Sum	15	197	124	212	14	417	21	1000

The differences between the maps are not uniformly distributed over Europe. For integrated assessments on a European scale, and mapping ecosystem dependant exceedences a map containing a distribution of ecosystems for each EMEP-50km. grid cell is needed. To compare the maps on this scale the Kappa-Histo's were calculated for each 50km. EMEP grid, see Figure 3-4.

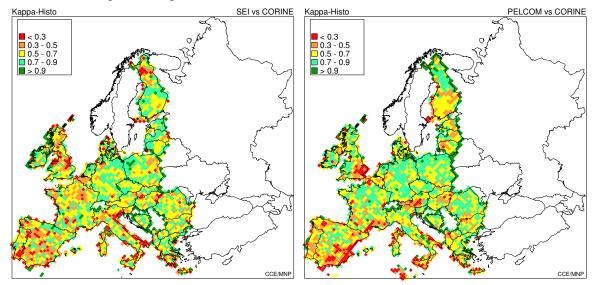


Figure 3-4. Kappa-Histo calculated for each EMEP 50km. grid. CORINE is compared to SEI (left) and PELCOM (right).

The results show a good match for most of Europe, but some areas, like for instance the Mediterranian differ considerably. On this scale PELCOM and SEI resemble CORINE to the same degree.

To investigate the differences between the maps further, the can be plotted next to each other, but only showing the areas in which they differ.

3.6 Distinction maps

Given the fact that the maps differ, it is interesting to search for the areas with the most systematic differences. In order to find those differences, the area with little or no differences needs to be obscured. This has for instance been done for Spain, Portugal and Corse by (1) resampling to a 2.5 km grid, (2) applying a fuzziness in categories according to the cross classification, (3) applying a fuzziness for small dis-locations between the maps. Application of the software made by RIKS (Research Institute for Knowledge Systems) provided a grid-map with $Kappa_{fuzzy}$ values. This map was used as a mask, to show only areas with kappa-fuzzy equal to 0. Figure 3-5 shows the masked SEI map next to the CORINE map with the same masking applied. Both maps only show original, but clustered classes to enable recognition of the colors used in the legend.

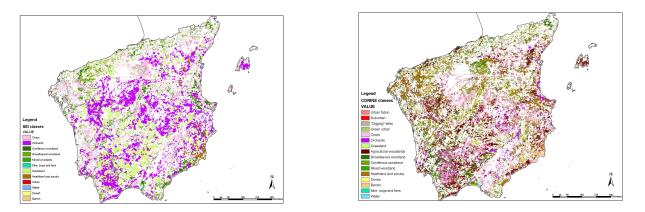


Figure 3-5. Differences between SEI (left) and CORINE (right) for Spain, Portugal and Corse.

Now it is easy to pick an area of interest and investigate the reason for differences. For instance the 'Agricultural Woodlands' in Corse on the CORINE map (in detail 'Annual crops associated with permanent crops' translated to the Agriculture in EUNIS) are in fact classified as 'Fruit' in SEI, and translated to the EUNIS class 'Broadleaved deciduous woodland.' These classes are not as contradicting as the cross classifications suggest. The same is true for an area in the south of Spain which has the classes 'Wet Neutral Unimproved Grassland' (SEI) and 'Water bodies' (CORINE) given the seasonal influences. These samples (and others) suggest that the SEI and CORINE map are more similar than the kappa statistics reveal. A detailed class to class comparison between SEI and CORINE can provide information about the actual land cover.

3.7 Conclusions and recommandations

The overall histograms of the CORINE, PELCOM and SEI maps are very much alike. For integrated studies on a European scale and for coarser resolutions like the EMEP 50km grid the maps are quite similar. For most parts of Europe the distribution of ecosystems within 50 km. EMEP grids give a good match between SEI and CORINE, as well as PELCOM and CORINE. The distributions of critical loads in the European background database are not likely to vary much by the use of either of the three land cover maps.

The contingency tables from the comparisons between SEI and CORINE, and for PELCOM and CORINE on a 250m resolution (Table 3-4 and 3-5) show relatively low similarities and low values for Kappa. Clear quality checks for the land cover category of every ecosystem that is submitted by a NFC will not be possible, but a comparison of the submitted data with a common land cover map can contribute to a consistent critical loads database.

Better results, more in line with earlier reports, are achieved if the maps are aggregated to a resolution similar to the coarser maps, PELCOM and SEI, using the majority of the 250m map. Including fuzziness in location, allowing land cover to be shifted a little between the maps, does generally not raise values for Kappa. Given the fact that 50 km. EMEP grids have relatively high values for KappaHisto, the occurrence of similar land cover in different maps are likely within the region, but not necessary in the close vicinity.

Figure 3-4 shows that the maps differ mostly in the Mediterranean area. The maps showing the differences between the maps clearly show many regions with consistent deviations. This might give clues for improving the compilation process of the maps. More investigations of these areas might also expose the different interpretations of the used categories in all of the maps used to compile CORINE, SEI and PELCOM.

PELCOM is more similar to CORINE then SEI, but this can be expected, because both maps share partly the same data sources. The slightly higher similarity of PELCOM does not nessicarily mean it is closer to the actual land cover, because also CORINE deviates from the 'thruth.'

It is possible to convert the CORINE, PELCOM and SEI maps to the EUNIS classification system. Some subjective choices/weighing had to be made in order to achieve a practical classification. To differentiate between irrigated and non-irrigated land, two EUNIS catagories were added.

The problem of one-to-many relationships has been solved by omitting the less relevant cross-classifications and also cross-classifications to EUNIS-classes for which the source classes actually do no not contain enough information. The last point relates to the problem of classification characteristics used in EUNIS but not in CORINE, SEI and/or PELCOM, see e.g. Table 3-2, PELCOM to EUNIS level 1 B Coastal habitats. There is a risk of misinterpretation that these omitted classes are absent.

Each class in a combination gets a proportional share; e.g. in case of two classes 50%. A more realistic distribution of the shares is possible on basis of map comparisons, in combination with regional differentiation

The development of EUNIS is a large step forwards in the harmonisation of ecosystem description.

Nevertheless EUNIS has some major flaws:

- it is not systematically hierarchical
- landscape and site factor properties are mixed, producing a not completely consistent classification (see e.g. coastal habitats).

A better approach would be to recognize that the classification factors are indeed strict hierarchical.

For the Netherlands a hierarchical system have been developed using factors as salinity, vegetation structure, moisture availability, nutrient availability and acidity (Tamis et al., 2005)

3.8 A harmonised land cover map of Europe

Generally the CORINE map is considered the best available land cover data, but only part of the spatial EMEP modelling domain is available. The best available map, at the time of writing this report, is a combination of CORINE, where available, and SEI data where CORINE is missing. This map has been created by the CCE as a grid map, in the EMEP coordination system. The gridsize is 250*250 meters. Also on the bases of this combination of maps, EMEP compiled a dataset of the distribution of land cover classes for each EMEP grid containing terrestrial area, focussing on dispersion of airborne pollutants. The classes used for this map are listed in Table 3-5.

Land cover classes

Temperate coniferous forest Temperate deciduous forest Mediterranean needleleaf forest Mediterranean broadleaf forest Wheat (artificial) Temperate crops Mediterranean crops Root crops Grassland Semi-natural Mediterranean scrub Wetland Tundra Desert/Barren Water Ice Urban

Table 3-5. Land cover classes used by EMEP for

their dispersion modelling

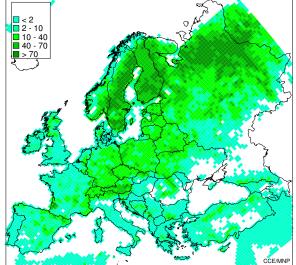


Figure 3-6. Spatial distribution of temperate coniferous forest in the EMEP compilation of the CORINE and SEI land cover data

The disadvange of this merging is the limitations in the classification of CORINE, especially after translation into the EUNIS classification system. It is possible to use the information from SEI to define the actual land cover more precisely. If an area is classified in CORINE as 'Natural grasslands', it will be listed as 'E - Grassland and tall forb habitats' in the general map used for the convention. But if the same area is indicated as being 'Dry Alpine Meadow' in SEI, it can be classified in the EUNIS system as 'E4 - Alpine & sub-alpine grasslands.' If the CORINE and SEI land cover class are not contradicting then the use of the SEI information is straight forward. But also the presents of a compatible SEI land cover class in the vicinity of the CORINE class could be used to improve on the level of the EUNIS classification used in the next version of a general land cover map.

References

Cinderby S (2002) Description of 2002 revised SEI Land-cover map, http://www.york.ac.uk/inst/sei/APS/projects.html

Davies CE, Moss D (1999) EUNIS Habitat Classification, Final Report to the European Environmental Agency

De Smet PAM, Hettelingh J-P (2001) Intercomparison of Current European Land Use/Land Cover Databases, Status Report 2001 Coordination Center for Effects RIVM Report 259101010, Bilthoven, Netherlands, pp. 41-52

Hagen A (2002) Fuzzy set approach to assessing similarity of categorical maps, Int. J. Geographical Information Science 17.3 235-249

Hall, J (2001) Harmonisation of Ecosystem Definitions, Status Report 2001 Coordination Center for Effects pp. 63-66

Monserud R, Leemans R (1992) Comparing global vegetation maps with kappa statistic, Ecological Modelling, 62 275-293

Mücher CA, Champeaux J-L, Steinnocher KT, Griguolo S, Wester K, Heunks C, Winiwarter W, Kressler FP, Goutorbe JP, Ten Brink B, Van Katwijk VF, Furberg O, Perdigao V, Nieuwenhuis GJA (2001) Development of a consistent methodology to derive land cover information on a European scale from remote sensing for environmental monitoring: the PELCOM report, Alterra Report 178, http://cgi.girs.wageningenur.nl/cgi/projects/eu/pelcom/public/index.htm

Tamis WLM, Van 't Zelfde M, Van der Meijden R, Groen CLG, Udo de Haes HA (2005) Ecological interpretation of changes in the Dutch flora in the 20th century. Biological Conservation 125: 211-224

Annex 3A Cross-classification to EUNIS

	the mai	n text. CE* are combined EUNIS	S-classes which are a	lescribed	l in Table 3A-4	
CORINE name		COPINE name	EUNIS	CORINE	CORINE name	EUNIS
	code	CORINE name	code	code	CORINE name	code
	1.1.1	Continuous urban fabric	CE1		natural vegetation	
	1.1.2	Discontinuous urban fabric	CE1	2.4.4	Agro-forestry areas	Ι
	1.2.1	Industrial or commercial units	J	3.1.1	Broad-leaved forest	G1
	1.2.2	Road and rail networks and associated	J	3.1.2	Coniferous forest	G3
		land		3.1.3	Mixed forest	G4
	1.2.3	Port areas	J	3.2.1	Natural grasslands	Е
	1.2.4	Airports	J	3.2.2	Moors and heathland	F
	1.3.1	Mineral extraction sites	CE4	3.2.3	Sclerophyllous vegetation	CE3
	1.3.2	Dump sites	CE4	3.2.4	Transitional woodland-shrub	F
	1.3.3	Construction sites	CE4	3.3.1	Beaches, dunes, sands	В
	1.4.1	Green urban areas	CE2	3.3.2	Bare rocks	Н
	1.4.2	Sport and leisure facilities	CE2	3.3.3	Sparsely vegetated areas	Н
	2.1.1	Non-irrigated arable land	IN	3.3.4	Burnt areas	Н
	2.1.2	Permanently irrigated land	II	3.3.5	Glaciers and perpetual snow	Н
	2.1.3	Rice fields	II	4.1.1	Inland marshes	D
	2.2.1	Vineyards	FX	4.1.2	Peat bogs	D
	2.2.2	Fruit trees and berry plantations	G1	4.2.1	Salt marshes	А
	2.2.3	Olive groves	G2	4.2.2	Salines	А
	2.3.1	Pastures	E2	4.2.3	Intertidal flats	А
	2.4.1	Annual crops associated with	Ι	5.1.1	Water courses	С
		permanent crops		5.1.2	Water bodies	С
	2.4.2	Complex cultivation patterns	Ι	5.2.1	Coastal lagoons	А
	2.4.3	Land principally occupied by	I	5.2.2	Estuaries	А
		agriculture, with significant areas of		5.2.3	Sea and ocean	А

Table 3A-1 Conversion table of CORINE to EUNIS. The descriptions of the EUNIS codes are listed in table 3-1 of the main text. CE are combined EUNIS-classes which are described in Table 3A-4*

Table 3A-2 Conversion table of PELCOM to EUNIS. The descriptions of the EUNIS codes are listed in table 3-1 of the main text. PE* are combined EUNIS-classes which are described in Table 3A-4

PELCOM	PELCOM name	EUNIS
code		code
11	Coniferous forest	G3
12	Deciduous forest	G1
13	Mixed forest	G4
20	Grassland	Е
31	Rainfed arable land	IN
32	Irrigated arable land	II
40	Permanent crops	PE1
50	Shrub land	F
60	Barren land	Н
80	Wetlands	D
91	Inland waters	С
92	Sea	А
100	Urban areas	J

3.1.1.3

Dry Alkali Alpine Meadow

E4

3.32.1.2

Dry Neutral Forest Short Grass Pasture EX

SEI code	SEI name	EUNIS code	SEI code	SEI name	EUNIS code
1.1.1	Wheat	I	3.1.2.0	Wet Alpine Meadow	E4
1.1.1		I	3.1.2.0	Wet Acid Alpine Meadow	E4 E4
1.1.11	Sugar Beet Potatoes	I	3.1.2.1		E4 E4
1.1.12	Cotton	I	3.1.2.2	Wet Alkali Alpine Meadow	E4 E4
				Wet Alkali Alpine Meadow	
1.1.16	Olives	G2	3.100.1.0	Dry Acid Arctic Heath	F2
1.1.18	Grapes	FX	3.100.2.0	Wet Acid Arctic Heath	F2
1.1.19	Fruit	G1		Dry Acid Peat Bog	SE01
1.1.2	Barley	I		Wet Acid Peat Bog	SE01
1.1.24	Vineyards	FX	3.11.1.0	Dry Alpine Steppe Meadow	E4
1.1.25	Orchards	G1	3.11.1.1	Dry Acid Alpine Steppe Meadow	E4
1.1.27	Wheat & Barley	I	3.11.1.2	Dry Neutral Alpine Steppe Meadow	E4
1.1.28	Wheat & Barley & Orchards	I	3.11.1.3	Dry Alkali Alpine Steppe Meadow	E4
1.1.3	Rye	II	3.11.2.1	Wet Acid Alpine Steppe Meadow	E4
1.1.30	Nuts	G1	3.11.2.2	Wet Neutral Alpine Steppe Meadow	E4
1.1.31	Flowers	Ι	3.11.2.3	Wet Alkali Alpine Steppe Meadow	E4
1.1.32	Berries	I		Dry Alkali Scrub	F4
1.1.6	Maize	Ι		Wet Acid Scrub	F4
1.1.7	Rice	Ι		Dry Snow & Ice	Н
1.1.8	Soya	Ι		Wet Snow & Ice	Н
1.2.101	Wheat	Ι	3.13.1.2	Dry Neutral Alpine Tugai Meadow	E4
1.2.102	Barley	Ι	3.13.1.3	Dry Alkali Alpine Tugai Meadow	E4
1.2.103	Rye	II	3.14.1.3	Dry Alkali Alpine Tundra Meadow	E4
1.2.106	Maize	Ι		Dry Neutral Solonchak & Heath Tundra	
1.2.107	Rice	Ι		Dry Neutral Solnchak & Marsh	SE03
1.2.108	Soya	Ι		Dry Alkali Solnchak & Tundra	SE02
1.2.111	Sugar Beet	Ι	3.18.1.3	Dry Alkali Creeper Pasture	SE04
1.2.112	Potatoes	Ι		Dry Alkali Sparse Vegetation	Н
1.2.115	Cotton	Ι	3.1800.2.0	Wet Sparse Vegetation	Н
1.2.116	Olives	G2	3.19.1.3	Dry Alkali Creeper Short Grass Pasture	
1.2.118	Grapes	FX		Dry Alkali Tugai	SE05
1.2.119	Fruit	G1	3.200.2.0	Wet Acid Arctic Heath & Peat Bog	SE06
1.2.124	Vineyards	FX	3.2000.1.0	Dry Neutral Tundra	FX
1.2.125	Orchards	G1	3.2000.2.0	Wet Acid Tundra	FX
1.2.127	Wheat & Barley	Ι	3.2100.1.0	Dry Acid Tundra with Marsh	SE07
1.2.128	Wheat & Barley & Orchards	Ι	3.2100.2.0	Wet Acid Tundra with Marsh	SE07
1.2.130	Nuts	G1	3.2200.2.0	Wet Acid Tundra with Peat Bog	SE08
1.2.131	Flowers	Ι	3.2300.1.0	Dry Acid Tundra with Wetland	SE07
1.2.132	Berries	Ι	3.2300.2.0	Wet Acid Tundra with Wetland	SE07
.3.1	Wheat	II	3.24.1.0	Dry Desert Grassland	E1
1.3.11	Sugar Beet	II	3.24.1.2	Dry Neutral Desert Grassland	E1
.3.12	Potatoes	II	3.24.1.3	Dry Alkali Desert Grassland	E1
.3.13	Cotton	II	3.2400.1.0	Dry Acid Wetland	DX
1.3.18	Grape	FX	3.2400.2.0	Wet Acid Wetland	DX
1.3.19	Fruit	G1	3.26.1.0	Dry Desert Steppe Pasture	E1
1.3.2	Barley	II	3.26.1.3	Dry Alkali Desert Steppe Pasture	E1
1.3.24	Unaccounted	II	3.28.1.0	Dry Desert Tundra Pasture	E1
1.3.6	Maize	II	3.28.1.3	Dry Alkali Desert Tundra Pasture	E1
.3.7	Rice	II	3.300.1.0	Dry Bare Stone	Н
2.1.1	Needle Leaf	G3	3.300.2.0	Wet Alkali Bare Stone	Н
2.1.2	Needle Leaf - Restricted Lumbering	G3	3.31.1.0	Dry Forest Pasture	EX
.1.3	Broad Leaf	G1	3.31.1.1	Dry Acid Forest Pasture	EX
2.1.3	Broad Leaf	G2	3.31.1.2	Dry Neutral Forest Pasture	EX
2.1.4	Broad Leaf - Restricted Lumbering	G1	3.31.1.3	Dry Alkali Forest Pasture	EX
2.1.4	Broad Leaf - Restricted Lumbering	G2	3.31.2.0	Wet Forest Pasture	EX
2.1.5	Mixed	G2 G4	3.31.2.1	Wet Acid Forest Pasture	EX
2.1.6	Mixed - Restricted Lumbering	G4 G4	3.31.2.2	Wet Neutral Forest Pasture	EX
3.1.1.0	Dry Alpine Meadow	E4	3.31.2.3	Wet Alkali Forest Pasture	EX
3.1.1.1	Dry Acid Alpine Meadow	E4	3.32.1.0	Dry Forest Short Grass Pasture	EX
3.1.1.2	Dry Neutral Alpine Meadow	E4	3.32.1.0	Dry Acid Forest Short Grass Pasture	EX
3.1.1.2	Dry Alkali Alpine Meadow	E4 E4	3.32.1.1	Dry Neutral Forest Short Grass Pasture	

Table 3A-3 Conversion table of SEI to EUNIS. The descriptions of the EUNIS codes are listed in table 3-1 of the main text. SE are combined EUNIS-classes which are described in Annex Table 3A-4*

Page 60 of 171

SEI	SEI name	EUNIS	SEI	SEI name	EUNI
ode		code	code		code
3.32.1.3	Dry Alkali Forest Short Grass Pasture	EX	3.43.1.1	Dry Acid Improved Short Grassland	SE09
3.32.2.0	Wet Forest Short Grass Pasture	EX	3.43.1.2	Dry Neutral Improved Short Grassland	SE09
3.32.2.1	Wet Acid Forest Short Grass Pasture	EX	3.43.1.3	Dry Alkali Improved Short Grassland	SE09
3.32.2.3	Wet Alkali Forest Short Grass Pasture	EX	3.43.2.0	Wet Improved Short Grassland	SE04
3.33.1.1	Dry Acid Forest Short Montane Grass	EX	3.43.2.1	Wet Acid Improved Short Grassland	SE04
	Pasture		3.43.2.2	Wet Neutral Improved Short Grassland	SE04
3.33.1.2	Dry Neutral Forest Short Montane	EX	3.43.2.3	Wet Alkali Improved Short Grassland	SE04
	Grass Pasture		3.44.1.1	Dry Acid Improved Short Montane	E4
3.33.1.3	Dry Alkali Forest Short Montane Grass	EX		Grassland	
	Pasture		3.44.2.0	Wet Improved Short Montane Grassland	1E4
3.34.1.0	Dry Forest Tall Grass Pasture	EX	3.44.2.1	Wet Acid Improved Short Montane	E4
3.34.1.1	Dry Acid Forest Tall Grass Pasture	EX		Grassland	
3.34.1.2	Dry Neutral Forest Tall Grass Pasture	EX	3.44.2.2	Wet Neutral Improved Short Montane	E4
3.34.1.3	Dry Alkali Forest Tall Grass Pasture	EX		Grassland	
3.34.2.1	Wet Acid Forest Tall Grass Pasture	EX	3.44.2.3	Wet Alkali Improved Short Montane	E4
3.36.1.0	Dry Grassland	SE09		Grassland	
3.36.1.1	Dry Acid Grassland	SE09	3.45.2.3	Wet Alkali Improved Tall Grassland	SE01
8.36.1.2	Dry Neutral Grassland	SE09	3.46.1.0	Dry Meadow	E2
3.36.1.3	Dry Alkali Grassland	SE09	3.46.1.1	Dry Acid Meadow	E2
3.36.2.0	Wet Grassland	SE04	3.46.1.2	Dry Neutral Meadow	E2
3.36.2.1	Wet Acid Grassland	SE04	3.46.1.3	Dry Alkali Meadow	E2
3.36.2.2	Wet Neutral Grassland	SE04	3.46.2.0	Wet Meadow	SE04
3.36.2.3	Wet Alkali Grassland	SE04	3.46.2.1	Wet Acid Meadow	SE04
3.37.1.0	Dry Grassland/Meadow/Hay	E2	3.46.2.2	Wet Neutral Meadow	SE04
3.37.1.1	Dry Acid Grassland/Meadow/Hay	E2	3.46.2.3	Wet Alkali Meadow	SE04
3.37.1.2	Dry Neutral Grassland/Meadow/Hay	E2	3.47.1.0	Dry Pasture	E2
3.37.1.3	Dry Alkali Grassland/Meadow/Hay	E2	3.47.1.1	Dry Acid Pasture	E2
3.37.2.0	Wet Grassland/Meadow/Hay	SE04	3.47.1.2	Dry Neutral Pasture	E2
3.37.2.1	Wet Acid Grassland/Meadow/Hay	SE04	3.47.1.3	Dry Alkali Pasture	E2
3.37.2.2	Wet Neutral Grassland/Meadow/Hay	SE04	3.47.2.0	Wet Pasture	SE04
3.37.2.3	Wet Alkali Grassland/Meadow/Hay	SE04	3.47.2.1	Wet Acid Pasture	SE04
3.38.1.1	Dry Acid Hay Meadow	5204 E2	3.47.2.2	Wet Neutral Pasture	SE04
3.38.1.2	Dry Neutral Hay Meadow	E2	3.47.2.3	Wet Alkali Pasture	SE04
3.38.1.3	Dry Alkali Hay Meadow	E2 E2	3.50.1.1	Dry Acid Semi-Arid Forest Pasture	EX
3.38.2.1	Wet Acid Hay Meadow	SE04	3.50.1.3	Dry Alkali Semi-Arid Forest Pasture	EX
3.38.2.2	Wet Neutral Hay Meadow	SE04 SE04	3.500.1.0	Dry Alkali Dunes & Tidal Flats	SE01
3.38.2.3	Wet Alkali Hay Meadow	SE04 SE04	3.500.2.0	Wet Acid Dunes & Tidal Flats	SE01
3.39.2.0	-	5£04 E4	3.51.1.0	Dry Semi-Arid Grass	E1
	Wet Improved Alpine Short Grassland Wet Acid Improved Alpine Short	E4 E4			E1 E1
3.39.2.1	Grassland	E4	3.51.1.1 3.51.1.2	Dry Acid Semi-Arid Grass	E1 E1
20.2.2		E4		Dry Neutral Semi-Arid Grass	
3.39.2.2	Wet Neutral Improved Alpine Short	E4	3.51.1.3	Dry Alkali Semi-Arid Grass	E1
20.2.2	Grassland	E4	3.52.1.0	Dry Semi-Arid Steppe Pasture	E1
3.39.2.3	Wet Alkali Improved Alpine Short	E4	3.52.1.1	Dry Acid Semi-Arid Steppe Pasture	E1
400.1.0	Grassland	SE010	3.52.1.2	Dry Neutral Semi-Arid Steppe Pasture	E1
3.400.1.0	Dry Desert	SE010	3.52.1.3	Dry Alkali Semi-Arid Steppe Pasture	E1
3.400.2.0	Wet Desert	SE010	3.53.1.2	Dry Neutral Semi-Arid Tugai Meadow	E1
3.41.1.0	Dry Improved Grassland	SE09	3.53.1.3	Dry Alkali Semi-Arid Tugai Meadow	E1
3.41.1.1	Dry Acid Improved Grassland	SE09	3.54.1.0	Dry Semi-Arid Tundra Pasture	E1
3.41.1.2	Dry Neutral Improved Grassland	SE09	3.54.1.1	Dry Acid Semi-Arid Tundra Pasture	E1
3.41.1.3	Dry Alkali Improved Grassland	SE09	3.54.1.2	Dry Neutral Semi-Arid Tundra Pasture	E1
.41.2.0	Wet Improved Grassland	SE04	3.54.1.3	Dry Alkali Semi-Arid Tundra Pasture	E1
.41.2.1	Wet Acid Improved Grassland	SE04	3.55.1.0	Dry Short Grass	SE09
.41.2.2	Wet Neutral Improved Grassland	SE04	3.55.1.1	Dry Acid Short Grass	SE09
.41.2.3	Wet Alkali Improved Grassland	SE04	3.55.1.2	Dry Neutral Short Grass	SE09
.42.1.0	Dry Improved Pasture	E2	3.55.1.3	Dry Alkali Short Grass	SE09
.42.1.1	Dry Acid Improved Pasture	E2	3.55.2.0	Wet Short Grass	SE04
3.42.1.2	Dry Neutral Improved Pasture	E2	3.55.2.1	Wet Acid Short Grass	SE04
3.42.1.3	Dry Alkali Improved Pasture	E2	3.55.2.2	Wet Neutral Short Grass	SE04
3.42.2.0	Wet Improved Pasture	SE04	3.55.2.3	Wet Alkali Short Grass	SE04
3.42.2.1	Wet Acid Improved Pasture	SE04	3.56.1.0	Dry Short Grass Meadow	E2
3.42.2.2	Wet Neutral Improved Pasture	SE04	3.56.1.1	Dry Acid Short Grass Meadow	E2
	-	SE04	3.56.1.2	Dry Neutral Short Grass Meadow	E2
3.42.2.3	Wet Alkali Improved Pasture	3E04	5.50.1.2	Dry Neutral Short Grass Meadow	

Netherlands E	Environmental	Assessment A	Agency
---------------	---------------	--------------	--------

SEI	SEI name	EUNIS
code		code
3.56.2.0	Wet Short Grass Meadow	SE04
3.56.2.1	Wet Acid Short Grass Meadow	SE04
3.56.2.2	Wet Neutral Short Grass Meadow	SE04
3.56.2.3	Wet Alkali Short Grass Meadow	SE04
3.57.1.0	Dry Short Montane Grass	E4
3.57.1.1	Dry Acid Short Montane Grass	E4
3.57.1.2	Dry Neutral Short Montane Grass	E4
3.57.1.3	Dry Alkali Short Montane Grass	E4
3.57.2.0	Wet Short Montane Grass	E4
3.57.2.1	Wet Acid Short Montane Grass	E4
3.57.2.2	Wet Neutral Short Montane Grass	E4
3.57.2.3	Wet Alkali Short Montane Grass	E4
3.60.1.1	Dry Acid Steppe Meadow	SE04
3.600.2.0	Wet Acid Heath	F4
3.61.1.0	Dry Steppe Pasture	E2
3.61.1.1	Dry Acid Steppe Pasture	E2 E2
3.61.1.2		E2 E2
	Dry Neutral Steppe Pasture	
3.61.1.3	Dry Alkali Steppe Pasture	E2
3.61.2.0	Wet Steppe Pasture	SE04
3.61.2.1	Wet Acid Steppe Pasture	SE04
3.61.2.2	Wet Neutral Steppe Pasture	SE04
3.61.2.3	Wet Alkali Steppe Pasture	SE04
3.62.1.0	Dry Steppe Short Grass Pasture	E2
3.62.1.1	Dry Acid Steppe Short Grass Pasture	E2
3.62.1.2	Dry Neutral Steppe Short Grass Pasture	E2
3.62.1.3	Dry Alkali Steppe Short Grass Pasture	E2
3.62.2.1	Wet Acid Steppe Short Grass Pasture	SE04
3.62.2.2	Wet Neutral Steppe Short Grass Pasture	
3.62.2.3	Wet Alkali Steppe Short Grass Pasture	SE04
3.63.1.1	Dry Acid Steppe Short Montane Grass	E4
5.05.1.1	Pasture	LT
3.63.1.2		E4
5.05.1.2	Dry Neutral Steppe Short Montane	E/4
2 (2 1 2	Grass Pasture	E4
3.63.1.3	Dry Alkali Steppe Short Montane Grass	E4
	Pasture	-
3.63.2.1	Wet Acid Steppe Short Montane Grass	E4
	Pasture	
3.63.2.2	Wet Neutral Steppe Short Montane	E4
	Grass Pasture	
3.63.2.3	Wet Alkali Steppe Short Montane Grass	E4
	Pasture	
3.64.1.0	Dry Steppe Tall Grass Pasture	E2
3.64.1.2	Dry Neutral Steppe Tall Grass Pasture	E2
3.64.1.3	Dry Alkali Steppe Tall Grass Pasture	E2
3.64.2.1	Wet Acid Steppe Tall Grass Pasture	SE04
3.65.1.0	Dry Tall Grass	SE09
3.65.1.1	Dry Acid Tall Grass	SE09
3.65.1.2	Dry Neutral Tall Grass	SE09
3.65.1.3	Dry Alkali Tall Grass	SE09
3.65.2.0	-	
	Wet Tall Grass	SE04
3.65.2.1	Wet Acid Tall Grass	SE04
3.65.2.2	Wet Neutral Tall Grass	SE04
3.65.2.3	Wet Alkali Tall Grass	SE04
3.68.1.2	Dry Neutral Tugai Meadow	SE04
3.68.1.3	Dry Alkali Tugai Meadow	SE04
3.700.1.0	Dry Alkali Heath Tundra	SE013
3.700.2.0	Wet Acid Heath Tundra	SE013
3.71.1.0	Dry Tundra Pasture	E2
3.71.1.1	Dry Acid Tundra Pasture	E2
3.71.1.2	Dry Neutral Tundra Pasture	E2
3.71.1.3	Dry Alkali Tundra Pasture	E2
3.71.2.0	Wet Tundra Pasture	SE04
3.71.2.1	Wet Acid Tundra Pasture	SE04
		-

	Page 6.	1 01 1/1
SEI	SEI name	EUNIS
code		code
3.71.2.2	Wet Neutral Tundra Pasture	SE04
3.71.2.3	Wet Alkali Tundra Pasture	SE04
3.72.1.0	Dry Tundra Short Grass Pasture	E2
3.72.1.1	Dry Acid Tundra Short Grass Pasture	E2
3.72.1.2	Dry Neutral Tundra Short Grass Pasture	E2
3.72.1.3	Dry Alkali Tundra Short Grass Pasture	E2
3.72.2.0	Wet Tundra Short Grass Pasture	SE04
3.72.2.1	Wet Acid Tundra Short Grass Pasture	SE04
3.72.2.2	Wet Neutral Tundra Short Grass Pasture	SE04
3.72.2.3	Wet Alkali Tundra Short Grass Pasture	SE04
3.73.1.0	Dry Tundra Short Montane Grass	E4
	Pasture	
3.73.1.1	Dry Acid Tundra Short Montane Grass	E4
	Pasture	
3.73.1.3	Dry Alkali Tundra Short Montane Grass	E4
	Pasture	
3.74.1.0	Dry Tundra Tall Grass Pasture	E2
3.74.1.1	Dry Acid Tundra Tall Grass Pasture	E2
3.74.1.2	Dry Neutral Tundra Tall Grass Pasture	E2
3.74.1.3	Dry Alkali Tundra Tall Grass Pasture	E2
3.74.2.1	Wet Acid Tundra Tall Grass Pasture	SE04
3.74.2.2	Wet Neutral Tundra Tall Grass Pasture	SE04
3.75.2.1	Wet Acid Unimproved Alpine Short	E4
	Grassland	
3.75.2.2	Wet Neutral Unimproved Alpine Short	E4
	Grassland	
3.75.2.3	Wet Alkali Unimproved Alpine Short	E4
2 5 4 1 0	Grassland	D 1
3.76.1.0	Dry Unimproved Desert Grassland	E1
3.76.1.2	Dry Neutral Unimproved Desert	E1
27612	Grassland	E 1
3.76.1.3	Dry Alkali Unimproved Desert Grassland	E1
3.77.1.0	Dry Unimproved Grassland	SE09
3.77.1.1	Dry Acid Unimproved Grassland	SE09 SE09
3.77.1.2	Dry Neutral Unimproved Grassland	SE09 SE09
3.77.1.3	Dry Alkali Unimproved Grassland	SE09
3.77.2.0	Wet Unimproved Grassland	SE04
3.77.2.1	Wet Acid Unimproved Grassland	SE04 SE04
3.77.2.2	Wet Neutral Unimproved Grassland	SE04
3.77.2.3	Wet Alkali Unimproved Grassland	SE04
3.78.1.0	Dry Unimproved Pasture	E2
3.78.1.1		E2
3.78.1.2	Dry Neutral Unimproved Pasture	E2
3.78.1.3	Dry Alkali Unimproved Pasture	E2
3.78.2.0	Wet Unimproved Pasture	SE04
3.78.2.1	Wet Acid Unimproved Pasture	SE04
3.78.2.2	Wet Neutral Unimproved Pasture	SE04
3.78.2.3	Wet Alkali Unimproved Pasture	SE04
3.79.1.0	Dry Unimproved Short Grassland	SE09
3.79.1.1	Dry Acid Unimproved Short Grassland	SE09
3.79.1.2	Dry Neutral Unimproved Short	SE09
	Grassland	
3.79.1.3	Dry Alkali Unimproved Short Grassland	SE09
3.79.2.0	Wet Unimproved Short Grassland	SE04
3.79.2.1	Wet Acid Unimproved Short Grassland	SE04
3.79.2.2	Wet Neutral Unimproved Short	SE04
	Grassland	
3.79.2.3	Wet Alkali Unimproved Short	SE04
	Grassland	
3.8.1.0	Dry Alpine Meadow Grass	E4
3.8.1.1	Dry Acid Alpine Meadow Grass	E4
3.8.1.2	Dry Neutral Alpine Meadow Grass	E4

Page 62 of 171

Netherlands Environmental Assessment Agency

SEI	SEI name	EUNIS
code		code
3.8.1.3	Dry Alkali Alpine Meadow Grass	E4
3.8.2.0	Wet Alpine Meadow Grass	E4
3.8.2.1	Wet Acid Alpine Meadow Grass	E4
3.8.2.2	Wet Neutral Alpine Meadow Grass	E4
3.8.2.3	Wet Alkali Alpine Meadow Grass	E4
3.80.1.0	Dry Unimproved Short Montane	E4
	Grassland	
3.80.1.1	Dry Acid Unimproved Short Montane	E4
	Grassland	
3.80.1.2	Dry Neutral Unimproved Short	E4
	Montane Grassland	
3.80.1.3	Dry Alkali Unimproved Short Montane	E4
	Grassland	
3.80.2.0	Wet Unimproved Short Montane	E4
	Grassland	
3.80.2.1	Wet Acid Unimproved Short Montane	E4
	Grassland	
3.80.2.2	Wet Neutral Unimproved Short	E4
	Montane Grassland	
3.80.2.3	Wet Alkali Unimproved Short Montane	F4

Table 3A-4 Combined EUNIS-classes with percentages.

Combined	EUNIS	Percentage	Combined
Eunis Code	e code	of Area	Eunis Cod
CE1	Н	25	SE05
CE1	J	75	SE05
CE2	E2	33.33	SE06
CE2	Ι	33.33	SE06
CE2	J	33.33	SE07
CE3	E	50	SE07
CE3	F	50	SE08
CE4	Н	50	SE08
CE5	J	50	SE09
PE1	FX	50	SE09
PE1	G1	50	SE10
SE01	D1	50	SE10
SE01	D2	50	SE11
SE02	EX	50	SE11
SE02	F1	50	SE11
SE03	EX	50	SE12
SE03	FX	50	SE12
SE04	E2	50	SE13
SE04	E3	50	SE13

		0
SEI	SEI name	EUNIS
code		code
	Grassland	
3.800.1.0	Dry Acid Marsh	DX
3.800.2.0	Wet Acid Marsh	DX
3.81.1.0	Dry Unimproved Tall Grassland	SE09
3.81.1.1	Dry Acid Unimproved Tall Grassland	SE09
3.81.1.2	Dry Neutral Unimproved Tall Grassland	SE09
3.81.1.3	Dry Alkali Unimproved Tall Grassland	SE09
3.81.2.1	Wet Acid Unimproved Tall Grassland	SE04
3.81.2.3	Wet Alkali Unimproved Tall Grassland	SE04
3.9.1.2	Dry Neutral Alpine Short Grass	E4
3.9.1.3	Dry Alkali Alpine Short Grass	E4
3.9.2.0	Wet Alpine Short Grass	E4
3.9.2.1	Wet Acid Alpine Short Grass	E4
3.9.2.2	Wet Neutral Alpine Short Grass	E4
3.9.2.3	Wet Alkali Alpine Short Grass	E4
3.900.1.0	Dry Acid Mediterranean Scrub	FX
3.900.2.0	Wet Neutral Mediterranean Scrub	FX
4	Urban	J
5.2	Inland Water	С
5.3	Coastal Water	А

Combined	EUNIS	Percentage
Eunis Code	code	of Area
SE05	FX	50
SE05	G1	50
SE06	DX	50
SE06	F2	50
SE07	DX	50
SE07	FX	50
SE08	D2	50
SE08	FX	50
SE09	E1	50
SE09	E2	50
SE10	EX	50
SE10	FX	50
SE11	E1	33.33
SE11	E2	33.33
SE11	E3	33.33
SE12	А	50
SE12	В	50
SE13	FX	50
SE13	F1	50