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Propagating fingerlike patterns in type-II superconductors are studied through a boundary layer model that
takes into account the coupling with the temperature of the sample. By formulating an approach based on an
interfacial description for a domain of vortices, we determine the shape-preserving fronts and study the
properties and scale of the patterns, such as the fingers’ shape and width. We show that the formation and the
characteristics of these instabilities are strictly related to the local overheating of the material and depend on
the substrate temperature, in agreement with the experiments and suggestions from linear stability calculations.
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The dynamics of vortices in type-II superconductors ex-
hibits a wide variety of instabilities of thermomagnetic
origin.1 Beyond phenomena such as avalanches and flux
jumps, recent experiments have revealed interesting out-of-
equilibrium patterns involving the formation of ramified den-
dritic or finger-shaped domains of vortices in Nb and MgB2
thin films and dropletlike patterns in NbSe2 single
crystals.2–6 It is generally accepted that the nonuniform pen-
etration of the magnetic flux is a thermomagnetic effect due
to the local overheating produced by the dissipative motion
of vortices. As a consequence of the increased local tempera-
ture, the pinning barrier is lowered, leading to a large-scale
flux invasion and to a final nonuniform magnetic flux
distribution.7

The thermomagnetic nature of the instability underlying
the evolution of a flat front between the vortex and the su-
perconducting states into narrow fingers and dendrites has
been proposed in some recent theoretical models,8–10 aug-
mented by numerical simulations and linear stability analy-
sis. However, the shapes of the fingers, their remarkably
well-defined widths between 20 and 50 �m, and their depen-
dence on the substrate temperature were not obtained explic-
itly in this earlier work. In this paper we concentrate particu-
larly on these finger-type growth forms and propose that they
are self-organized propagating shapes with a relatively high
temperature and mobility at the tip and a low temperature
and mobility on the sides.

A detailed analysis for the shape of the fingers requires a
more tractable mathematical model than the ones proposed
previously. In particular, the formulation of an interfacial de-
scription for the vortex front is an effective and simple
method to study the problem in its essential features. Local
growth models have proven to be a useful tool to analyze
front propagation in other physical systems, such as den-
drites in crystal growth, and also magnetic flux penetration in
type-I superconductors.11–14 The sharp interface limit is ap-
propriate when the vortex density and temperature change
rapidly in a layer whose thickness is thin in comparison to
the radius of the curvature of the front.

In the case of a type-II superconductor, the coarse-grained
density of vortices can be represented by a continuous field
that decays near the interface with the vortex-free supercon-
ducting state over a distance set by the penetration depth �.

For a type-II superconductor, � is of the order of 102 nm.
Moreover, for the fast-moving vortex fingers of Ref. 4, the
thermal decay length can become significantly smaller than
the width of the domain. Therefore, there is a strong separa-
tion of scales between the domain size �typically of the order
of 0.1 mm� and the width of the interface. As a consequence,
an interfacial description of fingerlike patterns is an appro-
priate and accurate approach.

We consider a thin film with the thickness d�� that is in
contact with a substrate at a temperature T0. The magnetic
induction B is perpendicular to the plane that represents the
film. By assuming a domain of vortices with a uniform den-
sity of magnetization in the bulk, we consider the approxi-
mation in which there is a constant current density j only
along the interface. For a more realistic description, one
should account for a spatially varying current, itself derived
from the long range interaction between vortices, as in Ref.
3. Since in successive experiments vortex fingers shoot into
the sample at different positions, sample inhomogeneities do
not appear to play an important role, so we ignore these here.

By adopting a boundary layer approximation, we repre-
sent the front between the vortices and the superconducting
state by a one-dimensional curve in the plane of the film. A
point on the interface is defined by its arclength coordinate s,
a distance r�s� from a fixed origin, the local Frenet-Serret
frame of the tangent and normal vectors �t ,n�, and the angle
��s� between the normal to the curve and the direction of
propagation. The curvature of the interface is then defined by
��s�=−�� /�s.

For the dynamics of the vortices we consider a local dis-
sipative motion with a viscosity � defined by the Bardeen-
Stephen model.15 Vortices move in the direction normal to
the interface with a velocity vn�s�=n ·�r�s� /�t given by

� vn�s� = f„j,Ti�s�…��0j

c
�, � =

B�0

� fc
2 , �1�

where Ti is the temperature at the interface, � f =�nB /Bc2 is
the flux flow resistivity and the function f�j ,Ti� gives the
E-j characteristic through the following dependence:
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E = � f f�j,Ti�j . �2�

The steepness of the electric field-current characteristic is an
important feature necessary to observe these patterns.7 For
the dynamics of vortices we take into account the two rel-
evant regimes of flux flow and creep. For j� jc, with jc the
critical current density at which the E-j characteristic be-
comes linear, E�� f�j− jc�Ti��. In the creep regime for j
	 jc in which the vortex motion can be considered thermally
activated,16 the E-j relation can be approximated as E
�� f exp��j− jc�Ti�� / j1	, with a flux creep rate j1
 jc inde-
pendent of Ti for a low-Tc superconductor.17 The simplest
approximation for the function f�j ,Ti� is thus to consider that
vortices are pinned when jc exceeds j. Thus f�j ,Ti� is dis-
continuous with

f�j,Ti� = �1 − jc�Ti�/j�, for j � jc�Ti� ,
�3�

f�j,Ti� = 0, for j 	 jc�Ti� ,

where the pinning current decreases with the temperature.
We linearize it as jc= j0�1−Ti /Tc� and j0= jc�T0�. In reality
the current-electric field characteristic is never so sharp, and
is represented by a continuous smooth function; a reasonable
expression for the function f�j ,Ti�, which interpolates be-
tween the two dynamical behaviors described above, is given
by8

f�j,Ti� = �j1/j� ln�1 + exp��j − jc�Ti��/j1�	 . �4�

In order to study the front dynamics, we must account for the
coupling to the local temperature at the interface Ti�s�, as
given by �1�. As we have already mentioned, the temperature
T�r� at a point r of the film is enhanced by the joule heating;
this is expressed by the product E · j. As the system is also
coupled to a substrate, we also consider the relaxation of the
temperature to T0. Therefore, the temperature field T�r�
satisfies8

C�tT�r� = � K � T�r� − �T�r� − T0�h/d + E„j,T�r�… · j ,

�5�

where C and K are, respectively, the heat capacitance and the
thermal conductivity of the superconducting film and h is the
heat transfer coefficient to the substrate.

The crux of our sharp interface approximation is the idea
that we can characterize the temperature field in the local
system of coordinates �t ,n�, as T�s ,�� with � a coordinate
along the normal component, through an effective boundary
layer thickness l�s�14

T�s,�� = Ti�s�exp�− �/l�s�� . �6�

In a co-moving frame in which the front at a point of the
interface moves with a velocity vn�s�, �tTi= 
�tTi
�
−vn�s���Ti. An equation for the interface temperature Ti is
then obtained by expressing the diffusion contribution in
terms of the local coordinates �s ,�� and curvature ��s� and

integrating Eq. �5� through the boundary layer


vn�s� = f„j,Ti�s�…j �7a�

�t�Ti�s�l�s�� = − �vn�s� + ��s��Ti�s� − Ti�s�

+ �f�j,Ti�j2 + �s
2
†l�s�Ti�s�‡ . �7b�

The first term on the right derives from the co-moving frame
and from diffusion in the direction normal to the front,
whereas the other terms represent respectively the relaxa-
tion to the substrate temperature, the heat due to dissipa-
tion, and the lateral diffusion. In this system of equations
we have rescaled the variables by measuring the tempera-
ture Ti at the interface in units of �Ti−T0� / �Tc−T0�, lengths
in units of Lh=�Kd /h, time in units of th=Cd /h, currents in
units of jc�0�, and fields as b=B /B1, B1= �4�Jc�0�Lh� /c. The
only remaining parameters are the constants

=4�K / ��nc2C�Bc2 /B1 and �=�njc

2d / �h�Tc−T0��B /Bc2.
Typical parameters of the Nb thin films of Ref. 2 are d

�0.5 �m, �n�1.7�10−6 � and C�10−2 J /cm3 K. For the
heat transfer coefficient h and conductivity K we can assume
h�1 W/cm2 K and K�1 W/cm K.7,8 We thus estimate the
characteristic length of our system as Lh�50 �m, and the
time th�10−6–10−7 s.

The dimensionless constant � quantifies the ratio between
the energy produced by joule dissipation and the heat loss to
the substrate. In order to observe the instability, ��1.7 For a
magnetic field B�20 mT and Bc2�2 T, a critical pinning
current jc�106 A/cm2,2,4 one finds ��10–102. The con-
stant 
 compares time scales for the magnetic field diffusion
and the thermal diffusion. Using parameters estimated for a
Nb thin film, we find 
�10−1–10−2, implying that the vortex
flux density responds much faster to the inhomogeneities
than the temperature. This justifies the picture of a sharp-
edged domain of almost constant vortex density, whose mo-
tion is coupled to a temperature that decays within a bound-
ary layer of thickness l�s�.

The boundary layer thickness is derived by assuming that
the curvature of the pattern is small with respect to the inner
scale of the front, ��s�
 l�s�−1. Solving the heat equation in
the direction normal to the front, outside the region where
the current density j is present, we obtain

l�s� = 2�vn�s� + �vn�s�2 + 4�−1. �8�

Since we are interested in determining nontrivial fingerlike
front solutions, we concentrate on the shape-preserving
growth forms, such that at each point the interface moves
with a constant velocity,

vn�s� = v0 cos ��s� , �9�

while in the frame with a fixed angle � the fields are station-
ary,


�t�Ti�s�l�s��
� = 0. �10�

The boundary layer approximation enables us to determine
the shape of the fingers by reducing the problem to a single
equation for the curvature of the front. Examining the rela-
tionship between the time derivative in the direction normal
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to the interface and the frame that moves with constant ve-
locity, we obtain

�t„Ti�s�l�s�… = − ���vn��„Ti�s�l�s�… . �11�

Together with �7�–�9�, this leads to a nonlinear differential
equation for the angle ��s�. We determine the solution both
for the simplified form �3� of the function f�j ,Ti� and for the
expression given by �4�. In both cases the problem is reduced
to solving a nonlinear equation of second order for ��s�. We
seek trajectories in the � ,� ,�=�s� space that are finger so-
lutions that start at �=0 with �=0, and flow to the fixed point
�=� /2, �=0, �=0.

In the first case, we assume a discontinuous electric field-
current characteristic. This implies also a discontinuity for
the curvature � of the interface at a point s* and a value
Ti�s*�=1− j in the dimensionless variable for the tempera-
ture, such that f(j , �Ti�s*��)=0. In particular, there is a sharp
transition in the front dynamics at this point, since for s
	s*, vortices are pinned, and the curvature vanishes with
�=� /2, whereas for s�s* the dynamical behavior is
dominated by a flux flow regime. Therefore, we allow the
curvature of the front to be discontinuous, but we have to
impose the continuity of the physical temperature field to-
gether with its derivatives at s*. In the region in which vn
=0, the heat source E · j=0, from �7� we find that the tem-
perature field decays exponentially to T0. By matching the
boundary conditions at s=s* we derive two relations for cur-
vature � and its derivative �=�s�. These, together with the
second-order equation for ��s� define a unique expression for
the current density j as a function of the the fixed parameters

 and v0. Finally, by shooting from the point �=� /2 to �
=0, a unique velocity for the front is selected.

The case with a smooth function for the E-j characteristic,
defined by �4�, does not require any restrictions on the con-
tinuity of the Ti field. The description of the creep regime in
terms of an activation barrier implies that the velocity of the
vortices at the boundary for ��� /2 vanishes exponentially
as v0�cos ���
−1 exp��j− �1−Ti�� / j1�. As a consequence, for
a finite value of the flux creep rate, the vortex velocity be-
comes extremely small but nonzero, so we integrate from �
=0 to �0�� /2. At �=�0, we impose for the Ti field the
asymptotic value for a straight front that corresponds to the
equilibrium temperature for which the heat released by the
joule effect is transfered to the substrate.

Figure 1 shows the comparison of the � profile and the
temperature distribution as a function of the arclength s for
the cases of discontinuous and continuous current-voltage
characteristic, respectively, with the same value of the tip
velocity v0 and current density j. As the plot shows, the
curve related to the smooth current-electric field relation
f�j ,Ti� overlaps in the limit j1→0, with the one with a sharp
function f�j ,Ti�. The temperature field is larger at the tip,
where vortices move faster and thus more heat is generated,
whereas it vanishes as � that approaches � /2. In Fig. 2 we
represent instead the shape of the fingers for different values
of the coefficient � and a fixed value of the velocity �v0
=1.431 in our units Lh / th� that corresponds to the typical
order found in the experiments �v0�104–105 cm/s�. The

width of the flux filaments for a correspondent current den-
sity j�0.925 jc varies in the range 50–150 �m for �
=8–20, as is shown in Fig. 3, in good agreement with the
experimental studies. According to the experiments, as the
substrate temperature decreases, fingers get narrower. The
dependence of the width on � is consistent with this behav-
ior. Indeed, jc�T0�= jc�0��1−Ti /Tc� implies �� �Tc−T0�.
Thus, the finger width decreases as � gets larger in agree-
ment with our results. Taking into account the physical
mechanism that triggers the instability, we can interpret this
behavior in these terms: For an enhanced heat dissipation,
vortices are driven faster due to the local thermomagnetic
instability in the direction in which the Lorentz force is
maximal, so, for the same amount of flux, the fingers are
narrower. Too narrow fingers are however suppressed by
thermal diffusion. This picture is consistent qualitatively also
with the results of Ref. 10.

FIG. 1. �Color online� Comparison of the ��s� and T�s� fields
profiles in the cases with discontinuous and continuous functions
f�j ,T�. The data correspond to the values v0=1.0193, flux creep
rate j1=0.0043, �=3.9, 
=0.1, j=0.9648.

FIG. 2. �Color online� Fingers shapes in the case with smooth
f�j ,Ti� for different values of the coefficient � for a velocity v0

=1.431 in our dimensionless variables, j=0.925, 
=10−1 and j1

=0.004. By increasing � the fingers become less wide.
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Finally, we remark that while for the smooth model we
find a continuous family of finger solutions, parametrized,

e.g., by v0, the discontinuous model has only solutions for a
particular velocity. This discrepancy can be interpreted as a
consequence of the fact that a discontinuous function f�j ,Ti�
implies a “fictitious” constraint for the velocity of the Ti

field. From a more mathematical perspective, we expect that
the introduction of a surface-tension-type term in Eq. �1�
could lead to the “selection” of a unique shape and velocity
from the family of solutions in the smooth model, in analogy
with the dendrites in crystal growth or viscous fingering.
However, we believe it is a delicate open issue whether such
a surface-tension-type term would make sense for the vortex
problem. First of all, the finger propagation is an extreme
out-of-equilibrium problem. Secondly, even if it could define
a positive surface tension at the interface in analogy with the
case between the solid and liquid phases,18 the long-range
repulsive interaction between vortices would indeed play the
major role in the front dynamics. We leave this issue for the
future.

We are grateful to A. T. Dorsey and P. H. Kes for illumi-
nating discussions.
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