
An Assertional Proof System for

Multithreaded Java

– Theory and Tool Support –

Erika Ábrahám

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leiden University Scholary Publications

https://core.ac.uk/display/388694778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Assertional Proof System for

Multithreaded Java

– Theory and Tool Support –

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus Dr. D. D. Breimer,
hoogleraar in de Faculteit der Wiskunde en

Natuurwetenschappen en die der Geneeskunde,
volgens besluit van het College voor Promoties

te verdedigen op donderdag 20 januari 2005
te klokke 14.15 uur

door

Erika Ábrahám
geboren te Szeged (Hongarije)

in 1970

Promotiecommissie

Promotores: Prof. Dr. J. N. Kok

Prof. Dr. W.-P. de Roever
Christian-Albrechts-University, Kiel

Copromotores: Dr. F. S. de Boer

Dr. M. Steffen
Christian-Albrechts-University, Kiel

Referent: Prof. Dr. M. Wirsing
Ludwig-Maximilians-University, Munich

Overige leden: Prof. Dr. S. M. Verduyn Lunel

Prof. Dr. B. Jacobs
Katholieke Universiteit Nijmegen

Prof. Dr. E.-R. Olderog
University of Oldenburg

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

Part of this work has been financially supported by IST project Omega (IST-
2001-33522) and NWO/DFG project Mobi-J (RO 1122/9-1, RO 1122/9-2).
Work carried out at the Christian-Albrechts-University, Kiel.

An Assertional Proof System for Multithreaded Java
– Theory and Tool Support –
Erika Ábrahám.
Thesis Universiteit Leiden. - With ref.

ISBN 90-9018908-4
IPA Dissertation Series 2005-01
Cover: ”Java Island”, designed by Judith Mumm
c© 2005, Erika Ábrahám, all rights reserved.

“When I am working on a

problem, I never think about beauty. I think only of how to solve

the problem. But when I have finished, if the solution is not beau-

tiful, I know it is wrong.”

– Buckminster Fuller

Preface

Now the work is done, and I would like to thank all people who helped me
during my Ph.D. research.

I thank my professor Willem-Paul de Roever. He has provided and main-
tained a stimulating and challenging scientific environment in which my research
could be successfully carried out. He did not only take care of the organization
and research coordination between the various working groups of our projects,
but contributed also to the research, and adapted the working conditions to
my personal needs - arranging for me the possibility to move, as a member of
his group, while supported by the Deutsche Forschungsgemeinschaft (DFG), to
David Basin’s group at Freiburg. I would also like to express my gratitude to
Gerit Sonntag for making my move possible.

I am grateful to Frank de Boer. He acted as research leader of our bilateral
Mobi-J project, which enabled me to undertake this piece of research. The
Centre for Mathematics and Computer Science (CWI) was host to many working
meetings, providing a platform for fruitful discussions and improvements. Frank
was always full of new ideas and always willing to discuss them with me, during
the day, or even in the evening in the pub.

I thank Martin Steffen, my daily research leader at the University of Kiel,
who was closely involved in everything, and who was always there when I needed
his help. He guided me unselfishly without forcing me into any particular di-
rection, letting me find my own path and follow my own interests, while always
accompanying me in scientific matters. I’ve always enjoyed our discussions, the
ups and downs of problem solving, and his way of teaching me to keep the
overall view of what I am doing in my mind, while working out the details.

The original theme of my thesis was born during a lecture by Martin Wirsing,
during which Willem-Paul realized that a Hoare-style proof theory for concur-
rent Java was now within reach of his team and could be made into the centre
piece of what was to become the Mobi-J project.

The work presented in this thesis has been carried out in the context of
the Dutch-German bilateral research project Mobi-J (“Assertional methods for
mobile asynchronous channels in Java”) having the partners CAU (Christian-
Albrechts-University, Kiel), LIACS (Leiden Institute of Advanced Computer
Science, Leiden), and CWI (Centrum voor Wiskunde en Informatica, Amster-
dam). This project aims at the development of a programming environment
which supports component-based design and assertional verification of concur-

vii

rent Java programs. Frequent meetings between the working groups gave room
for intensive discussions and new ideas. The FMCO’02 (First International Sym-
posium on Formal Methods for Components and Objects), organized as part of
the Mobi-J project, was a fruitful platform for exchanging ideas with other re-
search groups working on related topics. I would like to thank the DFG and
the Netherlands Organization for Scientific Research (NWO) for their financial
support.

I thank David Basin for enabling me to be a guest at his chair. His support
was not restricted to an official working place, only, but also offered me new
possibilities to exchange ideas and to learn more about research in other areas.
I am especially grateful for his remarks on my thesis and for teaching me the
importance of not getting lost in theoretical results, by putting them into a
scientific context, and pointing out their use and advantages.

I am grateful to Stefan Friedrich and all other people who read (parts of)
this thesis and gave useful remarks.

I thank Ulrich Hannemann for all his support during the first two years
of my research activities when I was analyzing hybrid systems. Work at Kiel
would have been almost impossible without the support of Änne Straßner, who
reliably solved all bureaucratic issues for the whole chair, and who always had
time for smoking a cigarette with me. Dear Softtech groups in Freiburg and in
Kiel, I am sorry for the occasional noise made by my children when they were
playing on the floor...

I would like to thank all friends who helped me in everyday life, taking care
of my children and giving me the power to persevere when I thought that I
wouldn’t make it... My special thanks go to our child minder Tante Waltraut.
It would have been very hard to arrange life without her help and love. I thank
my parents and family, who showed great understanding for my work. Finally, I
thank all other people who helped me in some way or another during those last
four years to keep my family together while I worked on the research described
in this thesis.

Contents

1 Introduction 1
1.1 The proof system . 3
1.2 Monitors . 8
1.3 Hoare logic . 11
1.4 Overview . 14

2 The sequential language 15
2.1 Syntax . 15
2.2 Semantics . 18

2.2.1 States and configurations 19
2.2.2 Operational semantics . 20

2.3 The assertion language . 22
2.3.1 Syntax . 22
2.3.2 Semantics . 23

2.4 The proof system . 26
2.4.1 Proof outlines . 27

Augmentation . 28
Annotation . 30

2.4.2 Verification conditions . 32
Initial correctness . 33
Local correctness . 34
The interference freedom test 35
The cooperation test . 38
Examples . 45

2.5 Conclusions and related work . 47
2.5.1 Semantics . 48
2.5.2 Proof system . 49

3 The concurrent language 53
3.1 Syntax . 53
3.2 Semantics . 54
3.3 The proof system . 54

3.3.1 Proof outlines . 55
3.3.2 Verification conditions . 55

ix

x CONTENTS

Initial correctness . 55
Local correctness . 56
The interference freedom test 56
The cooperation test . 59
Examples . 59

3.4 Conclusions and related work . 61
3.4.1 Semantics . 61
3.4.2 Proof system . 61

4 Reentrant monitors 63
4.1 Syntax . 63
4.2 Semantics . 64
4.3 The proof system . 66

4.3.1 Proof outlines . 66
4.3.2 Verification conditions . 67

The interference freedom test 68
The cooperation test . 69
Examples . 70

4.4 Conclusions and related work . 71
4.4.1 Semantics . 72
4.4.2 Proof system . 73

5 Weakest precondition calculus 75
5.1 Substitution operations . 75
5.2 Verification conditions . 76
5.3 Conclusions . 79

6 Soundness and completeness 81
6.1 Soundness . 82
6.2 Completeness . 85

7 Proving deadlock freedom 91
7.1 Expressing deadlock freedom . 91
7.2 Examples of proofs of deadlock freedom 92

7.2.1 Reentrant monitors . 93
7.2.2 A simple wait-notify example 96
7.2.3 A producer-consumer example 98

7.3 Conclusions and related work . 100

8 Possible extensions 101
8.1 Java’s memory model . 101
8.2 Weakening the language restrictions 105
8.3 Constructors . 107
8.4 Static variables and methods . 107
8.5 Exceptions . 107
8.6 Inheritance . 108

CONTENTS xi

9 Tool support 109
9.1 The theorem prover PVS . 109
9.2 Verger . 110

9.2.1 Representation of states in PVS 111
9.2.2 Built-in augmentation . 112
9.2.3 Proof outline . 115
9.2.4 Initial correctness conditions 116
9.2.5 Local correctness conditions 117
9.2.6 Interference freedom conditions 118
9.2.7 Cooperation test for communication 119
9.2.8 Cooperation test for object creation 120
9.2.9 Properties of the wait method 121

9.3 Conclusions and related work . 123

10 Concluding remarks 127

Bibliography 129

Index 145

Notation index 151

A Proofs 157
A.1 Properties of substitutions and projection 157
A.2 Soundness . 160

A.2.1 Invariant properties . 161
A.2.2 Proof of the soundness theorem 164

A.3 Completeness . 168

B Deadlock freedom examples 183
B.1 Reentrant monitors . 183
B.2 A simple wait-notify example . 184
B.3 A producer-consumer example 186

Summary 189

Samenvatting 193

Curriculum Vitae 195

xii CONTENTS

Chapter 1

Introduction

Java [GJS96] is a widely used programming language. Its growing popular-
ity, since its first release in 1995, parallels the growth of the Internet for the
programming of which it was designed.

Java’s history begins in late 1990, when Sun Microsystems initiated the Oak
project. The goal was to design a technology that could integrate electronic
consumer devices via the Internet with other computing devices using a standard
programming language.

The Java platform is based on the power of networks and the idea that the
same software should run on many different kinds of computers. During the last
years, Java technology has rapidly grown in popularity because of its portability.

The syntax of the Java language is similar to the syntax of C and C++.
Therefore, it is both familiar to and easily learned by C and C++ programmers.
However, some features of those languages —like pointers, the lack of automatic
memory management, and multiple inheritance— were changed.

Java programs are compiled into bytecode, which can be interpreted by the
Java Virtual Machine (JVM). Bytecode programs are platform-independent,
i.e., they can be run on any platform to which a JVM has been ported. The
JVM bytecode verifier checks JVM code for type consistency and other static
properties.

Since the language is increasingly used in safety-critical applications, ver-
ification techniques for Java programs become increasingly important. Java
has several interesting and challenging features like object-orientation, inheri-
tance, and exception handling. Furthermore, Java integrates concurrency via
its Thread-class, allowing for a multithreaded flow of control.

To reason about safety properties of multithreaded Java programs, this the-
sis introduces a tool-supported assertional proof method for a concurrent sub-
language of Java. The language includes dynamic object creation, object refer-
ences with aliasing, method invocation, reentrant code, and, specifically, concur-
rency together with Java’s monitor discipline. The concurrency model includes
shared-variable concurrency via instance variables, coordination via reentrant

1

2 CHAPTER 1. INTRODUCTION

synchronization monitors, synchronous message passing, and dynamic thread
creation. The results of this thesis are formulated for a Java sublanguage, but
they can be adapted to other concurrent class-based object-oriented program-
ming languages having similar features.

We illustrate our assertional proof system on a number of examples, which
have been verified using the tool Verger (VERification condition GEneratoR).
This tool takes a Java program together with its specification, a so-called proof
outline, as input and generates the verification conditions which assure invari-
ance of the specification. We use the theorem prover PVS [ORS92] to verify
those conditions.

In [Lam94] Lamport asserts that “although these methods [basing on the
Owicki-Gries approach] have been reasonably successful at verifying simple al-
gorithms, they have been unsuccessful at verifying real programs. I do not know
of a single case in which the Owicki-Gries approach has been used for the formal
verification of code that was actually compiled, executed, and used. I do not
expect the situation to improve any time soon. Real programming languages
are too complicated for this type of language-based reasoning to work.”

This thesis will not brake the wall, but it is a step in that direction. We
formalize an assertional proof system for a real concurrent object-oriented lan-
guage, develop tool support for the correct and complete generation of the
verification conditions, and use the theorem prover PVS to prove the conditions
interactively.

Though we apply the tool to several examples (see Section 9), we did not
carry out any large case studies yet. Besides the extension of the proof system
to further language features and the optimization of the tool support and the
PVS implementation, such a case study belongs to the topics of interest in the
Mobi-J project.

The verification process consists of three phases (see Figure 1.2): First the
user has to annotate the given program with predicates which should hold during
program execution when the flow of control reaches the annotated point. After-
wards, the proof system has to be applied to the annotated program, resulting
in so-called verification conditions. These conditions assure that the annotation
describes program execution correctly. Finally, the verification conditions must
be proven using the theorem prover.

Our experience has shown that most of the user effort must be put into the
specification of the annotation. The Verger tool takes care of the second phase,
i.e., it automatically generates the verification conditions for an annotated pro-
gram in the syntax of PVS. The third phase, the actual verification process
within the theorem prover, is interactive. However, for our examples most of
the conditions could be proven automatically, without user interaction, using
the built-in proof strategies of PVS. Human interaction was needed mostly for
the proof of properties whose formulation required quantifiers.

As a consequence, in the future we will concentrate to the development of
further computer support for the first phase, specifying the invariant program
properties. The Verger tool is already able to automatically generate the weak-

1.1. THE PROOF SYSTEM 3

est preconditions of assignments, if required. That means, the user only needs
to define the postcondition of an assignment, and let the tool generate the pre-
condition automatically. However, due to shared-variable concurrency, these
predicates are not always invariant.

It would be also interesting to restrict the logic to a decidable subset for
which fully automatic verification is possible within the theorem prover.

We expect that the above observations would hold also for larger case studies.
Though for larger programs more verification conditions are generated, their
proofs are independent of each other. Thus the program size influences the
number but not the complexity of single conditions.

In the following we informally describe the contents of this thesis in Sec-
tion 1.1. We discuss Java’s monitor concept in Section 1.2, and give a short
introduction to Hoare logic in Section 1.3. Finally, Section 1.4 gives an overview
of the remainder of the work.

Related work is discussed at the end of each chapter. A wider field of research
topics on Java like, for example, the semantics of bytecode, type checking, model
checking, etc., is discussed in e.g. [HM01].

1.1 The proof system

As mentioned above, in this thesis we formulate an assertional proof system
for a multithreaded sublanguage of Java, excluding inheritance, subtyping, and
exception handling.

To transparently describe the proof system, we present it incrementally in
three stages: We start with a proof method for a sequential sublanguage of Java,
allowing for dynamic object creation and method invocation. This first stage
shows how to handle activities of a single process, i.e., a single thread of execu-
tion. In the second step we additionally allow dynamic thread creation, leading
to multithreaded execution. The corresponding proof system extends the one
for the sequential case with conditions handling dynamic thread creation and
the new interleaving aspects. Finally, we integrate Java’s monitor synchroniza-
tion mechanism. Monitor synchronization allows the implementation of mutual
exclusion within objects.

This incremental development shows how the proof system can be extended
stepwise to deal with additional features of the programming language. We
are currently working on the integration of exception handling [ÁdBdRS04b].
Further extensions by, for example, inheritance and subtyping are topics for
future work (see Section 8) [PdB03].

A program is given by a set of classes, where each class defines its own meth-
ods and instance variables. Concurrently executing threads can communicate
using the shared instance variables of class instances, i.e., objects.

To support a clean interface between internal and external object behavior,
we exclude qualified references o.x referring to instance variables x of objects o.
I.e., the values of instance variables of an object can be accessed and modified

4 CHAPTER 1. INTRODUCTION

only within the object. As a consequence, shared-variable concurrency is caused
by simultaneous execution within a single object, only, but not across object
boundaries. Of course, each program containing qualified references can be
transformed into another one without qualified references, by defining for each
class special methods for reading and writing the values of instance variables,
and replacing each qualified reference by a method call invoking those special
methods. For example, the classes
public class C1{

public void m(C2 o, int n){
int u;

u = n;
o.x = u;

}
}

public class C2{
public int x;

}

can be transformed into the following ones without qualified references:
public class C1{

public void m(C2 o, int n){
int u;

u = n;
o.set_x (u);

}
}

public class C2{
private int x;

public void set_x (int v){
x = v;

}
}

Why is it advantageous from a proof-theoretical point of view to exclude
qualified references to instance variables? Without qualified references, prop-
erties of an object’s state are automatically invariant under execution in other
objects. For the above examples, assume that instances of the class C2 have the
invariant property that the value of x is non-negative. To prove this property,
for the first example we have to show its invariance under execution in instances
of both classes, since the assignment o.x=u executed in a C1-instance changes
the state of the instance o of C2. In the second example, the given property
of a C2-instance is independent of execution in other objects. Thus to show
invariance we only have to take execution within the C2-instance into account.

In order to capture this modular program behavior, the assertional logic and
the proof system are formulated at two levels, a local and a global one. The
local assertion language describes the internal object behavior. A local assertion
in the specification of a method m of an object o refers to the instance variables
of o and to the local variables of m of o. Such a local assertion can state, for
example, that the value of the integer instance variable x of o is positive, or
that the local variables u and v of the same type have the same value.

1.1. THE PROOF SYSTEM 5

The global behavior, including the communication topology of objects, is
expressed in the global language. As in the Object Constraint Language (OCL)
[WK99], properties of object-structures are described in terms of a navigation
or dereferencing operator. A global assertion may state for example that the
value of the instance variable x of an object o1 equals the value of the instance
variable x of another object o2, or that the number of all existing, i.e., already
created, objects is stored in the integer instance variable n of an object o3.

As explained in the following sections, most of the verification conditions are
formulated in the local assertion language, which is free from qualified references
and from quantification over objects. Our experience has shown that proving
local assertions using a theorem prover can be done with a large degree of
automation. In most cases, user interaction is needed only for proving global
conditions which contain quantification.

The assertional proof system is formulated in terms of proof outlines [OG76],
i.e., of programs augmented by auxiliary variables and annotated with Hoare-
style assertions [Flo67, Hoa69]. To give a feeling of how an annotation looks
like, assume the following partial1 annotation for the previous example without
qualified references, which defines local assertions {p} attached to control points
in the methods of the classes C1 and C2. Additionally, the class C2 has a so-called
class invariant x ≥ 0.
public class C1{

public void m(C2 o, int n){
int u;

{n ≥ 0}
u = n;
{u ≥ 0}
o.set_x(u);

}
}

public class C2{
private int x;
{x ≥ 0}

public void set_x(int v){
{v ≥ 0}
x = v;

}
}

This annotation states that if during program execution control stays prior to
the assignment u = n in method m of an instance of C1 then n ≥ 0 holds, and
similarly for the method call o.set x(u), u ≥ 0 is assumed to hold prior to its
execution. The annotation in C2 is similar, where the class invariant x ≥ 0 is
required to hold during the whole life cycle of C2-instances.

The satisfaction of the program properties specified by the assertions is guar-
anteed by the verification conditions of the proof system. The initial correctness
conditions cover satisfaction of the program properties in the initial program
configuration. The execution of a single method body in isolation is captured

1Control points which are not explicitly annotated get assigned the assertion true.

6 CHAPTER 1. INTRODUCTION

by standard local correctness conditions, using the local assertion language. In-
terference between concurrent method executions is covered by the interference
freedom test [OG76, LG81], formulated also in the local language. It has espe-
cially to accommodate reentrant code and the specific synchronization mecha-
nism. Possibly affecting more than one instance, method call and object creation
is treated in the cooperation test, using the global language. Method calls can
take place within a single object or between different objects. As these cases
cannot be distinguished syntactically, our cooperation test combines elements
from similar rules in [AFdR80] and in [LG81] for CSP.

For the above example, assume that we would like to prove invariance of the
annotation. Local correctness assures that if n ≥ 0 holds prior to the execution
of u = n, then u ≥ 0 holds afterwards. Interference freedom takes care, for
example, of the invariance of the class invariant: If the precondition v ≥ 0 of
the assignment x = v and the class invariant x ≥ 0 hold prior to the execution of
the assignment, then the class invariant is required to hold afterwards. Finally,
the cooperation test requires that if the precondition u ≥ 0 of the method call
o.set x(u) holds prior to the call, then the precondition v ≥ 0 of the method
body holds after invocation.

Our proof method is modular in the sense that it allows for separate in-
terference freedom and cooperation tests (Figure 1.1). This modularity, which
in practice simplifies correctness proofs considerably, is obtained by disallowing
the assignment of the result of communication and object creation to instance
variables. Clearly, such assignments can be avoided by additional assignments
to fresh local variables and thus at the expense of new interleaving points. This
restriction could be omitted, without loosing the mentioned modularity, but it
would increase the complexity of the proof system (see Section 8.2).

Figure 1.1: Modularity of the proof system

Thus we have three kinds of modularity:

• modularity of the programming language: a clean interface between inter-
nal and external object behavior,

1.1. THE PROOF SYSTEM 7

• modularity of the logic: local and global assertions describe object-internal
and object-external behavior, respectively, and

• modularity of the proof system: separate verification conditions for intra-
object and inter-object computation.

Our modular proof system allows one to verify object-internal properties on
the local level, independently of the context, using assumptions about the envi-
ronment’s communication properties. These assumptions are validated on the
global level by the cooperation test. Consequently, if instances of a class are
proven to satisfy some specification in a given context, then they will satisfy
the specification also in all other contexts as far as the context satisfies the
assumptions about the communication structure. That means, if a class of a
program gets replaced by another one, we do not have to prove again the whole
new program to be correct with respect to its specification: local proofs are
reusable, only the global proofs must be redone.

Computer-support is given by the tool Verger (VERification condition GEn-
eratoR), taking a proof outline as input and generating the verification condi-
tions as output. We use the interactive theorem prover PVS to verify the con-
ditions (cf. Figure 1.2). The verification conditions are generated by a Hoare

Figure 1.2: The verification process

logic which is based on a syntactic modeling of assignments by means of substi-
tutions; the verification conditions are standard logical implications. Therefore,
we only need to encode the semantics of the assertion language in PVS, instead
of the semantics of assignments, whose encoding is needed for more semantically-
oriented approaches based on the global store model [AL97, JKW03, vON02].

This thesis puts together uniformly and extends earlier results. Amer-
ica and de Boer [AdB90b] formulate the first time a cooperation test for an

8 CHAPTER 1. INTRODUCTION

object-oriented language called SPOOL with synchronous message passing. In
[ÁMdB00] we generalize this work to Java and extend it to concurrency, but
without reentrant monitors. This generalization consists of an extension of the
cooperation test to method calls and a definition of an interference freedom
test. Reentrant monitor synchronization was incorporated in [ÁMdBdRS02c,
ÁdBdRS03b]. An incremental description of the proof system, starting with a
sequential language and stepwise adding additional language features, is given in
[ÁMdBdRS02b]. In [ÁMdBdRS02b] we also introduce proof conditions for dead-
lock freedom. A more informal and intuitive discussion of the proof system with
and without monitor synchronization can be found in the extended abstracts
[ÁMdBdRS01] and [ÁdBdRS03d], respectively. Currently we are working on the
incorporation of Java’s exception handling mechanism [ÁdBdRS04b]. We for-
malize the semantics of our programming language in a compositional manner
in [ÁdBdRS04a].

The proof system and its application is explained in detail in technical re-
ports [ÁMdBdRS02a, ÁMdBdRS02d, ÁdBdRS03a, ÁdBdRS03c], including also
the corresponding soundness and relative completeness proofs.

This thesis integrates and extends the above results with additional exam-
ples illustrating annotation, augmentation, the application of the verification
conditions, and how to prove deadlock freedom. The above papers formalize
the verification conditions as standard Hoare triples. We define their formal se-
mantics by means of substitutions. Finally, we describe the tool support, which
is not published yet, and give some examples illustrating its use.

Our work defines the first sound and relatively complete tool-supported as-
sertional proof method for a multithreaded sublanguage of Java including its
monitor discipline. The main contribution of this thesis lies on concurrency
and monitors. Related work, which is discussed at the end of each chapter,
deals mostly with sequential languages.

1.2 Monitors

Monitors, first outlined in Hoare’s article [Hoa74], offer a special mechanism of
concurrency control used to simplify the implementation of mutual exclusion. A
monitor consists of some local data together with some procedures and functions
to acquire and release resources. From [Hoa74] we quote: “The procedures of a
monitor are common to all running programs, in the sense that any program may
at any time attempt to call such a procedure. However, it is essential that only
one program at a time actually succeeds in entering a monitor procedure, and
any subsequent call must be held up until the previous call has been completed.”

It is, therefore, sometimes necessary to delay a program wishing to acquire
a resource which is not available, and to resume that program after some other
program has released the resource required. Thus monitors offer a “wait” and
a “signal” operation. The “wait” operation causes the calling program to be
delayed. The “signal” operation causes exactly one of the waiting programs
to be resumed. If there are no waiting programs, the signal operation has no

1.2. MONITORS 9

effect. In order to enable other programs to release resources during a wait
operation, this operation must relinquish the mutual exclusion which would
otherwise prevent entry to the releasing procedure.

In Java, the monitors are the objects. The monitor procedures, whose ex-
ecution is mutually exclusive, can be declared by the modifier synchronized.
Each object has a lock which can be owned by at most one thread, i.e., by at
most one of the concurrently running processes. Synchronized methods of an
object can be invoked only by a thread that owns the lock of that object. If
the thread does not own the lock, it has to wait until the lock gets free. A
thread owning the lock of an object can recursively invoke several synchronized
methods of that object; this corresponds to the notion of reentrant monitors.

Besides mutual exclusion through the usage of the lock-mechanism for syn-
chronized methods, Java objects offer the monitor methods wait, notify, and
notifyAll. A thread owning the lock of an object can block itself (“go to sleep”)
and free the lock by invoking wait on the given object. The blocked thread can
be reactivated by another thread owning the object’s lock via the object’s notify
method, which corresponds to the “signal” operation of Hoare; the reactivated
thread must reapply for the lock before it may continue its execution. The
method notifyAll generalizes notify in that it notifies all threads blocked on the
object.

It is often said that synchronized methods and the wait / notify constructs
together implement Hoare’s monitors. But there are some important differences
between Hoare’s monitors and Java’s monitors [Jok98].

Signaling in Hoare’s monitor concept lets the signaled thread continue its
execution immediately after the lock gets free, so if some thread is waiting
for a resource it will obtain it. From [Hoa74] we quote: “We [...] need a
’wait’ operation, issued from inside a procedure of the monitor, which causes
the calling program to be delayed; and a ’signal’ operation, also issued from
inside a procedure of the same monitor, which causes exactly one of the waiting
programs to be resumed immediately. [...] we decree that a signal operation be
followed immediately by resumption of a waiting program, without possibility
of an intervening procedure call from yet a third program. It is only in this
way that a waiting program has an absolute guarantee that it can acquire the
resource just released by the signaling program without any danger that a third
program will interpose a monitor entry and seize the resource instead.”

Java’s notify method differs from the signal operation of Hoare. Quoting
from [GJS96]: “The awakened thread will not be able to proceed until the
current thread relinquishes the lock on this object. The awakened thread will
compete in the usual manner with any other threads that might be actively
competing to synchronize on this object; for example, the awakened thread
enjoys no reliable privilege or disadvantage in being the next thread to lock this
object.”

This difference implies that the following simple resource-allocation pro-
gram2 [Jok98, SG94] would assure mutual exclusion using Hoare’s monitors,

2For readability, we omit the code for catching of InterruptedException for the call of the

10 CHAPTER 1. INTRODUCTION

but does not work correctly in Java:
public class Resource {

private boolean busy = false;

public synchronized void acquire (){
if (busy){ wait() ; }
busy = true;

}

public synchronized void release (){
busy = false;
notify ();

}
}

Consider the following situation:

1. Initially busy is false.

2. Thread t1 calls acquire and gets the ownership of the resource. The variable
busy gets assigned the value true, and acquire returns.

3. Thread t2 calls also acquire. Since busy is true, it goes to sleep.

4. Thread t1 gets done with the resource and calls release. The variable busy
gets assigned false, t1 wakes up t2, and release returns.

5. Now t1 wants the resource again and calls acquire. The variable busy gets
assigned true, and acquire returns.

6. After t1 gives the lock free, t2 may continue after the wait-statement. It
will set busy to true again and returns.

Thus both t1 and t2 have access to the resource. If notify had guaranteed that t2
is the next one running, as defined by Hoare, the program had worked correctly.
The program can be made correct by replacing “if (busy)” by “while (busy)” so
that the busy-state will be checked again every time the wait call returns.

Another main point in Hoare’s article is a notion of a condition variable:
A thread can be put to sleep waiting for a condition to happen. Java allows
only the monitor itself as such a condition. As a consequence, in Java we
cannot distinguish between threads waiting for different kinds of events in the
same object. The following example makes the difference clear. It is a Java
implementation of a simple producer-consumer example [Jok98, CW96]:
class CubbyHole {

private int contents ;
private boolean available = false;

public synchronized int get () {
while (available == false) { wait (); }
available = false;
notify ();
return contents ;

}

wait method.

1.3. HOARE LOGIC 11

public synchronized void put(int value) {
while (available == true) { wait(); }
contents = value;
available = true;
notify ();

}
}

The following interleaving leads to a deadlock:

1. Initially, available is false.

2. Two consumer threads tc1 and tc2 both call get. Since available is false, both
go to sleep.

3. A producer thread tp calls put, sets available to true, awakes tc1 and returns.

4. Now the producer tp calls put again and, since available is true, goes to
sleep.

5. The notified thread tc1 continues, see that available is true, sets it to false,
and notifies tc2.

6. The consumer tc1 calls get again, available is false, so it goes to sleep.

7. Finally, the notified thread tc2 continues its execution, sees that available
is false, and goes to sleep again.

Now we have a deadlock, since all three threads are waiting for notification and
there are no other threads left which could notify. What went wrong? After
consuming, the consumer thread tc1 wanted to awake the producer thread tp,
but because the producer was waiting in the same object as the consumer tc2,
the notification reached tc2 instead of tp. With condition variables one could
distinguish between different threads waiting for different events. In Java such
condition variables are not available. The program can be corrected by replacing
all notify by notifyAll. In this case, every sleeping thread will be awaken by every
notification, and they all test their while-condition to make sure that one of them
gets the correct wake-up call.

1.3 Hoare logic

Most of the research in program verification concentrates on the verification
of safety properties [AS87] of programs. Such properties assert that the pro-
gram never reaches some unexpected “bad” states. A typical safety property
is deadlock freedom, asserting that the program cannot enter a deadlock state.
Another example is mutual exclusion, expressing that two processes are never
simultaneously in their critical sections.

The history of assertional proof methods for the verification of safety prop-
erties of programs goes back to Floyd [Flo67]. He introduced the concept of
partial correctness for sequential programs. Each control point of the program
is annotated with an assertion which should hold whenever control is at that

12 CHAPTER 1. INTRODUCTION

point. Assertions attached to the control points in front of and after a statement
are called the pre- and the postcondition of the statement. The program is par-
tially correct, if for each terminating computation starting in a state satisfying
the program’s precondition, the final state satisfies the program’s postcondition.

Hoare [Hoa69] recast Floyd’s method into a logical framework. Whereas
Floyd considered programs with an arbitrary control structure (flowcharts),
Hoare’s approach is based upon the structural decomposition of structured pro-
grams. A formula in Hoare logic has the form {ϕ}P{ψ}, and means that if the
program P starts its execution in a state satisfying the precondition ϕ and if it
terminates, then its final state satisfies the postcondition ψ. Inference rules re-
duce the proof of such a formula to the proofs of similar formulas for individual
program statements.

Ashcroft [Ash75] extended the assertional reasoning of Floyd to parallel pro-
grams. As in Floyd’s method, one assigns to each control point an assertion,
which should hold whenever control is at that point. However, due to concur-
rency, control now can stay simultaneously at different control points. Thus the
simple locality of Floyd’s method is lost. For concurrent programs, the anno-
tation is viewed as a single invariant, and one must prove that executing each
statement leaves this invariant true. To capture synchronization, the assertions
may mention the control state explicitly.

Owicki and Gries [OG76] and Lamport [Lam77] developed a generalization
of Hoare’s method to concurrent programs with shared-variable concurrency.
Additionally to Hoare’s rules, they introduced a new rule for the parallel com-
position, which requires the composed programs to be interference free. Inter-
ference freedom for the parallel composition of n programs Pi, i = 1, . . . , n,
requires that the execution of any statement in any Pi with its precondition
true leaves each assertion in the annotation of each Pj with j �= i true. The
Owicki-Gries method avoids mentioning the control state in the annotation by
introducing auxiliary variables to capture the control information. This leads
to program augmentation which extends the program by assignments to auxil-
iary variables. A typical auxiliary variable is a “program counter” storing the
current control point of execution. Its value gets updated in each computation
step by additional auxiliary assignments.

The Owicki-Gries method has been adapted and extended by several research
groups. For example, CSP (Communicating Sequential Processes) [Hoa78] was
treated independently by Apt, Francez, and de Roever [AFdR80] and by Levin
and Gries [LG81]. CSP allows synchronous communication between concur-
rent processes. Synchronous communication requires different proof-theoretical
treatment as shared variable concurrency. The cooperation test collects condi-
tions which assure the invariance of the properties of synchronously communi-
cating processes.

Following Owicki and Gries, the general method to show correctness of a
Hoare formula for concurrent programs is to find an invariant program property
I such that:

1. the precondition implies I,

1.3. HOARE LOGIC 13

2. if the program starts in a state satisfying I, then every reachable state
satisfies I, and

3. I implies the postcondition.

The first and last conditions are static, i.e., they depend only on the program
syntax (or more exactly, on the annotation definition), whereas the second cri-
terion is a dynamic property, which describes the run-time behavior of the pro-
gram. The second point, the invariance of I, can be proven by induction showing
that each atomic action executed in a state satisfying I terminates in a state in
which I is true again.

This thesis combines and extends the results of [OG76], [Lam77], [AFdR80],
and [LG81]. We formulate a proof system for a concurrent class-based object-
oriented language —a Java sublanguage— allowing both shared-variable con-
currency and synchronous communication in the form of method calls, as well
as reentrant monitor synchronization and dynamic object and process creation.

In our class-based setting, the proof method requires an annotation of classes
and their methods using a local assertion language (see Section 1.1), adhering to
the principle of data encapsulation. A global invariant formulated in the global
assertion language combines properties of objects, describing their communica-
tion structure.

The Hoare rules of our proof system are grouped into four groups:

1. initial correctness,

2. local correctness,

3. the interference freedom test, and

4. the cooperation test.

Initial correctness states that the program starts in a state which satisfies the
program’s precondition. Local correctness, as in Hoare’s method, assures in-
variance of properties of a single process under its own execution.

The notion of interference freedom is introduced by Owicki and Gries and
covers the effect of shared-variable concurrency. It assures that properties of
processes are invariant under the execution of other concurrently running pro-
cesses. Our interference freedom test extends that of the Owicki-Gries method
to cover shared-variable concurrency in a class-based object-oriented setting
allowing recursion and reentrant monitor synchronization.

Finally, the cooperation test deals with invariance of properties of commu-
nicating processes. Such rules for communication were introduced for CSP in
[AFdR80] and in [LG81]. In our object-oriented language, communication via
method call can take place between different objects. We model the rendezvous
of a method call as two CSP-like communication between objects: The first com-
munication invokes the method and passes on the actual parameter values to the
callee, whereas the second communication returns the control and the result of

14 CHAPTER 1. INTRODUCTION

the method, i.e., the return value, from the invoked method to the caller. Note
that while in CSP communication takes place between processes, communica-
tion via method call is between objects. Processes, i.e., threads, communicate
only via shared variables.

All verification condition groups together imply invariance of the whole pro-
gram annotation under program execution.

1.4 Overview

The thesis is organized as follows: Chapter 2 describes syntax and semantics
of a sequential sublanguage of Java. After introducing the assertional logic, we
present a proof system for the sequential case. Chapter 3 extends the results to a
concurrent sublanguage. The language introduced in Chapter 4 includes Java’s
monitor-synchronization mechanism. The verification conditions in the above
sections are formulated as standard Hoare triples. Section 5 reformulates the
verification conditions to logical implications using a weakest-precondition cal-
culus. Soundness and relative completeness are discussed in Chapter 6. Chap-
ter 7 shows how we can prove deadlock freedom, and gives some examples.
Chapter 8 describes possible extensions of the proof system to cover additional
language features of Java. We introduce the verification tool and sketch its use
in Chapter 9. Section 10 contains some concluding remarks. The appendix con-
tains proofs of those theorems which state soundness and relative completeness
of the proof system for multithreaded Java programs with monitor synchroniza-
tion.

Chapter 2

The sequential language

In this chapter we introduce a sequential sublanguage Javaseq of Java. The
language allows assignments, dynamic object creation, aliasing, method invoca-
tion, and recursion. We define the syntax in Section 2.1, and the semantics in
Section 2.2. After defining the assertion language in Section 2.3, we introduce a
proof system for verifying safety properties of programs written in the language
in Section 2.4. Section 2.5, finally, concludes with some remarks and related
work.

Programs, as in Java, are given by a collection of classes containing instance
variable and method declarations. Instances of the classes, i.e., objects, are
dynamically created, and communicate via method invocation, i.e., synchronous
message passing.

We ignore in Javaseq the issues of concurrency, inheritance, and consequently
subtyping, overriding, and late-binding. For simplicity, we neither allow method
overloading, i.e., we require that each method name has been assigned a unique
list of formal parameter types and a return type. In short, being concerned with
the verification of the run-time behavior, we assume a simple monomorphic type
discipline for Javaseq .

2.1 Syntax

Javaseq is a strongly typed language; besides class types c, it supports booleans
Bool and integers Int as primitive types, and pairs t×t and lists list t as composed
types. We use the type Void for methods without return value. Since Javaseq

is strongly typed, all program constructs of the abstract syntax are silently
assumed to be well-typed. In other words, we work with a type-annotated
abstract syntax where we omit the explicit mentioning of types when this causes
no confusion.

For each type, the corresponding value domain is equipped with a standard
set of operators with typical element f. Each operator f has a unique type
t1 × · · · × tn → t and a fixed interpretation f , where constants are operators

15

16 CHAPTER 2. THE SEQUENTIAL LANGUAGE

of zero arity. Apart from the standard repertoire of arithmetical and boolean
operations, the set of operators also contains operations on tuples and sequences
like projection, concatenation, etc.

For variables, we notationally distinguish between instance variables and
local (temporary) variables. Instance variables hold the state of an object and
exist throughout the object’s lifetime. Local variables are stack-allocated; they
play the role of formal parameters and variables of method definitions and only
exist during the execution of the method to which they belong. We define IVar
to be the set of instance variables with typical element x, and TVar as the set
of local variables with typical elements u, u′, v, Let Var = IVar ∪̇ TVar
with typical element y be the set of program variables, where ∪̇ is the disjoint
union operator.

The abstract syntax is summarized in Table 2.1. It slightly differs from
the corresponding Java syntax. Though we use the abstract syntax for the
theoretical part of this work, our tool supports Java syntax (cf. Chapter 9).

e ::= x | u | this | null | f(e, . . ., e)
eret ::= ε | e
stm ::= x := e | u := e | u := newc

| u := e.m(e, . . ., e) | e.m(e, . . ., e)
| ε | stm; stm | if e then stm else stm fi | while e do stm od . . .

meth ::= m(u, . . ., u){ stm; return eret}
meth run ::= run(){ stm; return }

class ::= class c{meth. . .meth}
classmain ::= class c{meth. . .meth methrun}

prog ::= class . . .class classmain

Table 2.1: Javaseq abstract syntax

Besides using instance and local variables, expressions e ∈ Exp are built
from the self-reference this, the empty reference null, and from subexpressions
using the given operators. To support a clean interface between internal and
external object behavior, Javaseq does not allow qualified references to instance
variables (cf. Section 1.1). Note that all expressions of the language are side-
effect free, i.e., their evaluation does not modify the program state. Only the
execution of statements may have such an effect.

As statements stm ∈ Stm , we allow assignments, object creation, method
invocation, and standard control constructs like sequential composition, condi-
tional statements, and iteration. We write ε for the empty statement.

A method definition m(u1, . . . , un){stm; return eret} consists of a method
name m, a list of formal parameters u1, . . . , un, and a method body of the
form stm; return eret , i.e., we require that method bodies are terminated by a
single return statement of the form return or return e, giving back the control
and possibly a return value. We sometimes syntactically omit return statements

2.1. SYNTAX 17

without return value in method definitions. The set Methc contains the meth-
ods of class c. We denote the body of method m of class c by bodym,c. We
sometimes explicitly mention the types of return value and formal parameters
in Java-style t m(t1 u1, . . . , tn un).

A class is defined by its name c and its methods, whose names are assumed
to be distinct. A program, finally, is a collection of class definitions having
different class names, where a main class classmain defines by its run method the
entry point of the program execution. We call the body of the run method of
the main class the main statement of the program.1 The run method cannot be
called.

The set IVar c of instance variables of a class c is given implicitly by the
instance variables occurring in the class; the set of local variables of method
declarations is given similarly. In the examples we sometimes explicitly define
the instance and local variables in Java-style: the declaration t y; in classes
outside of method definitions declare y as an instance variable of type t of the
class, whereas the same declaration inside of a method specifies y as a local
variable.

Besides the mentioned simplifications of the type system, we impose for
technical reasons the following restrictions: We require that method invoca-
tion statements contain only local variables, i.e., that none of the expressions
e0, . . . , en in a method invocation e0.m(e1, . . . , en) contains instance variables.
Furthermore, formal parameters must not occur on the left-hand side of as-
signments. These restrictions imply that during the execution of a method the
values of the actual and formal parameters are not changed. Finally, the re-
sult of object creation and method invocation may not be assigned to instance
variables. This restriction allows a proof system with separated verification con-
ditions for interference freedom and cooperation. The above restrictions could
be relaxed, without loosing the mentioned modularity, but it would increase the
complexity of the proof system (see Section 8.2).

It should be clear that it is possible to transform a program to adhere to
the above restrictions at the expense of additional local variables and thus new
interleaving points. To demonstrate such a transformation, assume the following
class:
class C{

Int x1;

Void m1(C o){
x1 := o.m2(x1);
return

}

Int m2(Int u){
return u+1

}

1In Java, the entry point of a program is given by the static main method of the main class.
Relating the abstract syntax to that of Java, we assume that the main class is a Thread-class
whose main method just creates an instance of the main class and starts its thread. The reason
to make this restriction is, that Java’s main method is static, but our proof system does not
support static methods and variables.

18 CHAPTER 2. THE SEQUENTIAL LANGUAGE

}

The following transformation satisfies the requirements, but inserts additional
control points before and after the call in method m1:
class C{

Int x1;

Void m1(C o){
Int u,v;

u := x1;
v := o.m2(u);
x1 := v;
return

}

Int m2(Int u){
return u+1

}
}

2.2 Semantics

There are several ways to describe the semantics of programs formally. Three
commonly used approaches are operational, denotational, and axiomatic seman-
tics.

An operational semantics defines the meaning of a program by a set of rules
specifying how the program state changes while executing a program. The
overall state is typically divided into a number of components, e.g. stack, heap,
registers etc. Each rule specifies certain preconditions on the contents of some
components and their new contents after the application of the rule. One of the
earliest papers was by McCarthy [McC65]. Operational semantics is quite con-
crete with a low-level description of program execution. A structural approach
to operational semantics was initiated by Plotkin [Plo81].

Denotational semantics is a technique for describing the meaning of programs
in terms of mathematical functions on programs and program components. Pro-
grams are translated into functions about which properties can be proved using
the standard mathematical theory of functions, and especially domain theory.
Landin [Lan64, Lan65, Lan66] made major early steps towards denotational se-
mantics. Some semantical problems appearing in connection with recursion were
analyzed by Scott and lead to domain theory [Sco70, Sco76]; see also [Sto77].

The axiomatic semantics [Hoa69] defines the language semantics by a system
of logical axioms and inference rules. In an axiomatic semantics not the meaning
of a program but its properties are defined. Such a semantics directly aims to
support program verification.

In this section, we define the operational semantics of Javaseq . After in-
troducing the semantic domains, we describe states and configurations in the
following section. The operational semantics is presented in Section 2.2.2. The
meaning of a program is defined by a set of transition rules specifying how the
program configuration changes while executing program statements.

2.2. SEMANTICS 19

2.2.1 States and configurations

Let Val t be disjoint domains for the various types t. For class names c, the
disjoint sets Valc with typical elements α, β, . . . denote infinite sets of object
identities. The value of null in type c is nullc /∈ Valc. In general we just write
null , when c is clear from the context. We define Valcnull as Valc ∪̇ {nullc},
and correspondingly for composed types. The set of all possible non-null values⋃

t Val t is written as Val , and Valnull denotes
⋃

t Val tnull . Let Init : Var →
Valnull be a function assigning an initial value to each variable y ∈ Var , i.e., null ,
false, and 0, for class, boolean, and integer types, respectively, and analogously
for composed types, where sequences are initially empty. We define this /∈ Var ,
such that the self-reference is not in the domain of Init .

The configuration of a program consists of the set of existing objects together
with the values of their instance variables, and the configuration of the executing
thread. Before formalizing the global configurations of a program, we define
local states and local configurations. In the sequel we identify the occurrence of
a statement in a program with the statement itself.

A local state τ ∈ Σloc of a method execution holds the values of the method’s
local variables and is modeled as a partial function of type TVar ⇀ Valnull .
We refer to local states of method m of class c by τm,c. The initial local
state τm,c

init assigns to each local variable u from its domain the value Init(u).
A local configuration (α, τ, stm) of a method of an object α �= null spec-
ifies, in addition to its local state τ , its point of execution represented by
the statement stm. A thread configuration ξ is a stack of local configurations
(α0, τ0, stm0)(α1, τ1, stm1) . . . (αn, τn, stmn), representing the chain of method
invocations of the given thread, i.e., process. We write ξ ◦ (α, τ, stm) for push-
ing a new local configuration onto the stack.

Objects are characterized by their instance states σinst ∈ Σinst of type
IVar ∪̇ {this} ⇀ Valnull such that this is in the domain dom(σinst) of σinst .
We write σc

inst to denote states of instances of class c. The semantics will main-
tain σc

inst (this) ∈ Valc as invariant. The initial instance state σc,init
inst assigns a

value from Valc to this, and to each of its remaining instance variables x the
value Init(x).

A global state σ ∈ Σ of type (
⋃

c Valc) ⇀ Σinst stores for each currently ex-
isting object, i.e., an object belonging to the domain of σ, its instance state. The
set of existing objects of type c in a state σ is given by Valc(σ), and Valcnull (σ) =
Valc(σ) ∪̇ {nullc}. For the remaining types, Val t(σ) and Val tnull (σ) are defined
correspondingly. We refer to the set

⋃
t Val t(σ) by Val (σ); Valnull (σ) denotes⋃

t Val tnull (σ). The instance state of an object α ∈ Val (σ) is given by σ(α) with
the invariant property σ(α)(this) = α. We require that, given a global state, no
instance variable in any of the existing objects refers to a non-existing object,
i.e., σ(α)(x) ∈ Valnull (σ) for all classes c and objects α ∈ Valc(σ). This will be
an invariant of the operational semantics of the next section.

A global configuration 〈T, σ〉 describes the currently existing objects by the
global state σ, where the set T contains the configuration of the executing
thread. For the concurrent languages of the later sections, T will be the set of

20 CHAPTER 2. THE SEQUENTIAL LANGUAGE

configurations of all currently executing threads. Analogously to the restriction
on global states, we require that local configurations (α, τ, stm) in 〈T, σ〉 refer
only to existing object identities, i.e., α ∈ Val (σ) and τ(u) ∈ Valnull (σ) for
all variables u from the domain of τ ; again this will be an invariant of the
operational semantics. In the following, we write (α, τ, stm) ∈ T if there exists
a local configuration (α, τ, stm) within one of the execution stacks of T .

The semantic function [[]] ,
E : (Σinst × Σloc) → (Exp ⇀ Valnull) evaluates in

the context of an instance local state (σinst , τ) expressions containing variables
from dom(σinst) ∪ dom(τ), where dom(f) denotes the domain of the function
f . Instance variables x and local variables u are evaluated to σinst (x) and
τ(u), respectively, this evaluates to σinst (this), and null has the null -reference as
value, where composed expressions are evaluated by homomorphic lifting (see
Table 2.2).

[[x]]σinst ,τ
E = σinst (x)

[[u]]σinst ,τ
E = τ(u)

[[this]]σinst ,τ
E = σinst (this)

[[null]]σinst ,τ
E = null

[[f(e1, . . . , en)]]σinst ,τ
E = f([[e1]]

σinst ,τ
E , . . . , [[en]]σinst ,τ

E)

Table 2.2: Semantics of program expressions

We denote by τ [u �→ v] the local state which assigns the value v to u and
agrees with τ on the values of all other variables; σinst [x �→ v] is defined analo-
gously, where σ[α.x �→ v] results from σ by assigning v to the instance variable
x of object α ∈ Val (σ). We use these operators analogously for vectors of
variables. We use τ [�y �→�v] also for arbitrary variable sequences, where instance
variables are untouched; σinst [�y �→�v] and σ[α.�y �→�v] are defined analogously.
Finally, for global states, σ[α �→σinst] equals σ except on α; in case α /∈ Val (σ),
the operation extends the set of existing objects by α, which has its instance
state initialized to σinst .

2.2.2 Operational semantics

Before having a closer look at the semantical rules for the transition relation −→,
let us start by defining the entry point of a program. The initial configuration
〈T0, σ0〉 of a program satisfies dom(σ0) = {α}, σ0(α) = σc,init

inst [this �→α], and
T0 = {(α, τ run,c

init , body run,c)}, where c is the main class, and α ∈ Valc is the initial
object.

We call a configuration 〈T, σ〉 of a program reachable if there exists a com-
putation 〈T0, σ0〉−→∗〈T, σ〉 such that 〈T0, σ0〉 is the initial configuration of the
program and −→∗ the reflexive transitive closure of −→. A local configuration

2.2. SEMANTICS 21

(α, τ, stm) ∈ T is enabled in 〈T, σ〉, if it can be executed, i.e., if there is a com-
putation step 〈T, σ〉 → 〈T ′, σ′〉 executing stm in the local state τ and object
α.

The operational semantics of Javaseq is given inductively by the rules of
Table 2.3 as transitions between global configurations. The rules are formulated
in such a way that we can reuse them also for the concurrent languages of the
later sections. Note that for the sequential language, the sets T in the rules
are empty, since there is only one single thread in global configurations. We
omit the rules for the remaining sequential constructs —sequential composition,
conditional statement, and iteration— since they are standard. Remember that
∪̇ is the disjoint union operator.

Assinst〈T ∪̇ {ξ ◦ (α, τ, x:=e; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ[α.x �→[[e]]
σ(α),τ
E]〉

Assloc〈T ∪̇ {ξ ◦ (α, τ, u:=e; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ [u �→[[e]]
σ(α),τ
E], stm)}, σ〉

β ∈ Valc\Val (σ) σinst = σc,init
inst [this �→β] σ′ = σ[β �→σinst]

New

〈T ∪̇ {ξ ◦ (α, τ, u:=newc; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ [u �→β], stm)}, σ′〉

m(�u){ body } ∈ Methc

β = [[e0]]
σ(α),τ
E ∈ Valc(σ) τ ′ = τm,c

init [�u �→[[�e]]
σ(α),τ
E]

Call

〈T ∪̇ {ξ ◦ (α, τ, u := e0.m(�e); stm)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ, receive u; stm) ◦ (β, τ ′, body)}, σ〉

τ ′′ = τ [uret �→[[eret]]
σ(β),τ ′
E]

Return

〈T ∪̇ {ξ ◦ (α, τ, receive uret ; stm) ◦ (β, τ ′, return eret)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ ′′, stm)}, σ〉

Returnrun〈T ∪̇ {(α, τ, return)}, σ〉 −→ 〈T ∪̇ {(α, τ, ε)}, σ〉

Table 2.3: Javaseq operational semantics

Assignments to instance or local variables update the corresponding state

22 CHAPTER 2. THE SEQUENTIAL LANGUAGE

component, i.e., either the instance state or the local state (rules Assinst and
Assloc). Object creation by u := newc, as shown in rule New, creates a new
object of type c with a fresh identity stored in the local variable u, and initializes
the instance variables of the new object. Invoking a method extends the call
chain by a new local configuration (rule Call). We use the auxiliary statement
receive u to remember the variable in which the result of the invoked method
will be stored at returning. After initializing the local state and passing the
parameters, the thread begins to execute the method body. When returning
from a method call (rule Return), the callee evaluates its return expression
and passes it to the caller, which subsequently updates its local state. The
method body terminates its execution and the caller can continue. We have
similar rules not shown in the table for the invocation of methods without
return value. The executing thread ends its lifespan by returning from the run
method of the initial object (rule Returnrun).

2.3 The assertion language

In this section we introduce assertions to specify program properties. The
assertion logic consists of a local and a global sublanguage. Local assertions
describe instance local states, and are used to annotate methods in terms of
their local variables and of the instance variables of the class to which they
belong. Global assertions describe the global state, i.e., a whole system of
objects and their communication structure.

In the assertion language we add the type Object as the supertype of all
classes. Note that we allow this type solely in the assertion language, but not in
the programming language, thus preserving the assumption of monomorphism.

2.3.1 Syntax

In the language of assertions, we introduce a countably infinite set LVar of well-
typed logical variables with typical element z, where we assume that instance
variables, local variables, and this are not in LVar . We use LVar t for the set of
logical variables of type t. Logical variables are used for quantification in both
the local and the global language. Besides that, they are used as free variables
to represent local variables in the global assertion language: To express a local
property on the global level, each local variable in a given local assertion will
be replaced by a fresh logical variable.

Table 2.4 defines the syntax of the assertion language. For readability, we
use the standard syntax of first-order logic in the theoretical part; the Verger
tool supports an adaptation of JML (cf. Chapter 9).

Local expressions e ∈ LExp are expressions of the programming language
possibly containing logical variables. The set of local expressions of type t is
denoted by LExpt. Abusing our notation, we use e, e′, . . . not only for pro-
gram expressions of Table 2.1, but also for typical elements of local expressions.
Local assertions p, p′, q, . . . ∈ LAss are standard logical formulas over boolean

2.3. THE ASSERTION LANGUAGE 23

local expressions. We allow three forms of quantification over logical variables:
Unrestricted quantification ∃z. p is solely allowed for domains without object
references, i.e., the type of z is required to be Int, Bool, or a composed type built
from them. For reference types c, this form of quantification is not allowed, as
for those types the existence of a value dynamically depends on the global state,
something one cannot speak about on the local level, or more formally: Dis-
allowing unrestricted quantification for object types ensures that the value of
a local assertion indeed only depends on the values of the instance and local
variables, but not on the global state. Nevertheless, one can assert the existence
of objects on the local level satisfying a predicate, provided one is explicit about
the set of objects to range over. Thus, the restricted quantifications ∃z ∈ e. p
and ∃z e. p assert the existence of an element, respectively, the existence of a
subsequence of a given sequence e, for which a property p holds.

Global expressions E, E′, . . . ∈ GExp are constructed from logical variables,
null, operator expressions, and qualified references E.x to instance variables x
of objects E. We write GExpt for the set of global expressions of type t. Global
assertions P, Q, . . . ∈ GAss are logical formulas over boolean global expressions.
Unlike the local language, the meaning of the global one is defined in the context
of a global state. Thus unrestricted quantification is allowed for all types and
is interpreted to range over the set of existing values and null , i.e., the set of
values Valnull (σ) in a global configuration 〈T, σ〉.

e ::= z | x | u | this | null | f(e, . . . , e) e ∈ LExp
p ::= e | ¬p | p ∧ p

| ∃z. p | ∃z ∈ e. p | ∃z e. p p ∈ LAss

E ::= z | null | f(E, . . . , E) | E.x E ∈ GExp
P ::= E | ¬P | P ∧ P | ∃z. P P ∈ GAss

Table 2.4: Syntax of assertions

We sometimes write quantification over t-typed values in the form ∃(z : t). p
to make the domain of the quantification explicit; we use the same notation also
in the global language. We use ∀z. p for ¬∃z.¬p.

2.3.2 Semantics

Next, we define the interpretation of the assertion language. The semantics is
fairly standard, except that we have to cater for dynamic object creation when
interpreting quantification.

Logical variables are interpreted relative to a logical environment ω ∈ Ω,
that is, a partial function of type LVar ⇀ Valnull , assigning values to logical
variables. We denote by ω[�z �→�v] the logical environment that assigns the values
�v to the logical variables �z, and agrees with ω on all other variables. Similarly as
for local and instance state updates, we use also ω[�y �→�v] for arbitrary variable

24 CHAPTER 2. THE SEQUENTIAL LANGUAGE

sequences �y to denote the logical environment which assigns to each logical
variable in �y the corresponding value in �v, and agrees with ω on all other variable
values. For a logical environment ω and a global state σ we say that ω refers
only to values existing in σ, if ω(z) ∈ Valnull (σ) for all z ∈ dom(ω). This
property matches with the definition of quantification which ranges only over
existing values and null , and with the fact that in reachable configurations local
variables may refer only to existing values or to null .

The semantic function [[]] , ,
L of type (Ω×Σinst ×Σloc) → (LExp ∪LAss ⇀

Valnull) evaluates local expressions and assertions in the context of a logical
environment ω and an instance local state (σinst , τ) (cf. Table 2.5). The evalua-
tion function is defined for expressions and assertions that contain only variables
from dom(ω)∪ dom(σinst)∪ dom(τ). The instance local state provides the con-
text for giving meaning to programming language expressions as defined by the
semantic function [[]] ,

E ; the logical environment evaluates logical variables. An
unrestricted quantification ∃z. p with z ∈ LVar t evaluates to true in the logical
environment ω and instance local state (σinst , τ) iff there exists a value v ∈ Val t

such that p holds in the logical environment ω[z �→ v] and instance local state
(σinst , τ), where for the type t of z only Int, Bool, or composed types built from
them are allowed. The evaluation of a restricted quantification ∃z ∈ e. p with
z ∈ LVar t and e ∈ LExp list t is defined analogously, where the existence of an
element in the sequence is required. An assertion ∃z e. p with z ∈ LVar list t

and e ∈ LExp list t states the existence of a subsequence of e for which p holds. In
the following we also write ω, σinst , τ |=L p for [[p]]ω,σinst ,τ

L = true. By |=L p we
express that ω, σinst , τ |=L p holds for arbitrary logical environments, instance
states, and local states.

[[z]]ω,σinst ,τ
L = ω(z)

[[x]]ω,σinst ,τ
L = σinst (x)

[[u]]ω,σinst ,τ
L = τ(u)

[[this]]ω,σinst ,τ
L = σinst (this)

[[null]]ω,σinst ,τ
L = null

[[f(e1, . . . , en)]]ω,σinst ,τ
L = f([[e1]]

ω,σinst ,τ
L , . . . , [[en]]ω,σinst ,τ

L)

([[¬p]]ω,σinst ,τ
L =true) iff ([[p]]ω,σinst ,τ

L =false)

([[p1 ∧ p2]]
ω,σinst ,τ
L =true) iff ([[p1]]

ω,σinst ,τ
L =true and [[p2]]

ω,σinst ,τ
L =true)

([[∃z. p]]ω,σinst ,τ
L =true) iff ([[p]]ω[z �→ v],σinst ,τ

L =true for some v ∈ Valnull)

([[∃z∈e. p]]ω,σinst ,τ
L =true) iff ([[z∈e∧p]]ω[z �→ v],σinst ,τ

L =true for some v∈Valnull)

([[∃ze. p]]ω,σinst ,τ
L =true) iff ([[ze∧p]]ω[z �→ v],σinst ,τ

L =true for some v∈Valnull)

Table 2.5: Local evaluation

Since global assertions do not contain local variables and non-qualified ref-

2.3. THE ASSERTION LANGUAGE 25

erences to instance variables, the global assertional semantics does not refer to
instance local states but to global states. The semantic function [[]] ,

G of type
(Ω × Σ) ⇀ (GExp ∪ GAss ⇀ Valnull), shown in Table 2.6, gives meaning to
global expressions and assertions in the context of a logical environment ω and a
global state σ. To be well-defined, ω is required to refer only to values existing in
σ, and the expression respectively assertion may only contain free variables from
the domain of ω. Logical variables, null, and operator expressions are evaluated
analogously to local assertions. The value of a global expression E.x is given by
the value of the instance variable x of the object referred to by the expression
E. The evaluation of an expression E.x is defined only if E refers to an object
existing in σ. Note that when E and E′ refer to the same object, that is, E and
E′ are aliases, then E.x and E′.x denote the same variable. The semantics of
negation and conjunction is standard. A quantification ∃z. P with z ∈ LVar t

evaluates to true in the context of ω and σ if P evaluates to true in the context
of ω[z �→ v] and σ, for some value v ∈ Val tnull (σ). Note that quantification over
objects ranges over the set of existing objects and null , only.

[[z]]ω,σ
G = ω(z)

[[null]]ω,σ
G = null

[[f(E1, . . . , En)]]ω,σ
G = f([[E1]]

ω,σ
G , . . . , [[En]]ω,σ

G)
[[E.x]]ω,σ

G = σ([[E]]ω,σ
G)(x)

([[¬P]]ω,σ
G = true) iff ([[P]]ω,σ

G = false)
([[P1 ∧ P2]]

ω,σ
G = true) iff ([[P1]]

ω,σ
G = true and [[P2]]

ω,σ
G = true)

([[∃z. P]]ω,σ
G = true) iff ([[P]]ω[z �→ v],σ

G = true for some v ∈ Valnull (σ))

Table 2.6: Global evaluation

For a global state σ and a logical environment ω referring only to values
existing in σ we write ω, σ |=G P when P is true in the context of ω and σ. We
write |=G P if P holds for arbitrary global states σ and logical environments ω
referring only to values existing in σ.

To express a local property p in the global assertion language, we define
the lifting substitution p[z/this] by simultaneously replacing in p all occurrences
of the self-reference this by the logical variable z, which is assumed not to oc-
cur in p, and transforming all occurrences of instance variables x into qualified
references z.x. For notational convenience we view the local variables occur-
ring in the global assertion p[z/this] as logical variables. Formally, these local
variables are replaced by fresh logical variables. For unrestricted quantifications
(∃z′. p)[z/this] the substitution applies to the assertion p. Local restricted quan-
tifications are transformed into global unrestricted ones where the relations ∈
and are expressed at the global level as operators. The main cases of the

26 CHAPTER 2. THE SEQUENTIAL LANGUAGE

substitution are defined as follows:

this[z/this] = z

x[z/this] = z.x

u[z/this] = u

(∃z′. p)[z/this] = ∃z′. p[z/this]
(∃z′ ∈ e. p)[z/this] = ∃z′. (z′ ∈ e[z/this] ∧ p[z/this])
(∃z′ e. p)[z/this] = ∃z′. (z′ e[z/this] ∧ p[z/this]) ,

where z is fresh. We write P (z) for p[z/this], and similarly for expressions.
This substitution will be used to combine properties of instance local states

on the global level. The substitution preserves the meaning of local assertions,
provided the meaning of the local variables is matchingly represented by the
logical environment:

Lemma 2.3.1 (Lifting substitution) Let σ be a global state, ω and τ a log-
ical environment and local state, both referring only to values existing in σ. Let
furthermore p be a local assertion containing local variables �u. If τ(�u) = ω(�u)
and z a fresh logical variable, then

ω, σ |=G p[z/this] iff ω, σ(ω(z)), τ |=L p .

The proof can be found in Appendix A.1.

2.4 The proof system

Program verification is concerned with proving that a particular program meets
its specification. In this section we develop a deductive Hoare-style proof sys-
tem for the sequential language Javaseq . A general introduction to Hoare-style
verification can be found in Section 1.3.

The proof of correctness of a program property consists of three steps. First,
the required property must be specified by augmenting and annotating the pro-
gram, i.e., by extending the program with auxiliary assignments which do not
influence the control flow of the original program, and by attaching predicates
to syntactical program constructs. An augmented and annotated program is
called a proof outline. Second, the proof system must be applied to the par-
ticular proof outline, resulting in a set of verification conditions. Finally, the
verification conditions must be proven.

In this section we introduce the proof system; its application and tool sup-
port are discussed in Chapter 9. The proof system has to accommodate dynamic
object creation, aliasing, method invocation, and recursion. The following sec-
tion defines how to augment and annotate programs resulting in proof outlines;
Section 2.4.2 describes the proof method.

For technical convenience, we first formulate verification conditions as stan-
dard Hoare triples of the form {p} stm {q} , where the statement stm is a multiple

2.4. THE PROOF SYSTEM 27

assignment or the sequential composition of multiple assignments, representing
state updates. In verification conditions formulated in the local assertion lan-
guage, the multiple assignments in the Hoare triples may refer to instance and
local variables. The statements in global conditions may use logical variables
and qualified references to instance variables. Remember that local variables
are represented in the global language by logical variables.

Example 2.4.1 The Hoare triple {u > 0∧v > 0} x := u∗v {x > 0} , formulated
in the local language, states that if both u and v have positive values, then after
the execution of the assignment x := u ∗ v the value of x is positive.

The Hoare triple {u > 0 ∧ v > 0} z.x := u ∗ v {z.x > 0} , formulated in the
global language, states that if u and v have both positive values, then after the
execution of the assignment z.x := u ∗ v, i.e., after assigning the value of u ∗ v
to the instance variable x of the object z, the value of z.x is positive.

In Chapter 5 we reformulate these Hoare triples to logical implications, using
a weakest precondition calculus [Dij76, DS90] to represent the effect of assign-
ments as in [dB99].

2.4.1 Proof outlines

For a relatively complete proof system it is necessary that the transition se-
mantics of Javaseq can be encoded in the assertion language. As the assertion
language reasons about the local and global states, we have to augment the pro-
gram with fresh auxiliary variables to represent information about the control
points and stack structures within the local and global states. Invariant pro-
gram properties are specified by the annotation. An augmented and annotated
program is called a proof outline or an asserted program.

Let us dwell on the augmentation to show its motivation. Roughly speaking,
the operational semantics of the programming language defines transition rules
of the form2

A(T, σ)
TransRule

〈T, σ〉 −→ 〈T ′, σ′〉
,

where A is an enabledness predicate over global configurations.
Soundness of a proof system means that the verification conditions assure

inductivity of the annotation, i.e., its invariance under computation steps of
the above form. In other words, in each reachable global configuration, the
assertions attached to all current control points (and the global and class in-
variants, see the section on annotation below) are required to hold. Note that
a single thread can stay simultaneously at several control points, one for each
local configuration in its call chain. I.e., since we model method calls by syn-
chronous communication, we need that for every local configuration in the call

2Rules of other forms are used, too, but they can be expressed in this form.

28 CHAPTER 2. THE SEQUENTIAL LANGUAGE

chain of a thread the associated assertion is satisfied, and not only for the local
configuration on the top of the stack.

A proof system which ensures that the annotation is invariant under ar-
bitrary computation steps would already be sound. But one would also wish
(relative) completeness, i.e., that each invariant property is provable. Such a
proof system requires that the annotation is invariant under enabled computa-
tion steps executed in reachable configurations only. That means, we must be
able to express enabledness of computation steps in the antecedents of the verifi-
cation conditions and reachability in the annotation. Since assertions may refer
to variables only, i.e., the verification conditions argue only about the states
in global configurations but not about control points and stack structures, we
introduce auxiliary variables which we use to encode control information in the
states. With the help of the auxiliary variables we can define a predicate Â
over states such that reachable configurations 〈T̂ , σ̂〉 of the augmented program
satisfy A iff the state components of 〈T̂ , σ̂〉 satisfy Â. Note that the augmenta-
tion must not influence the original program behavior, but is only used to make
observations about how a configuration is reached.

Using the predicate Â we can formulate the verification conditions, which
assure that the annotation is invariant under computation steps provided that
the execution is enabled.

Augmentation

An augmentation extends a program by atomically executed multiple assign-
ments �y := �e to distinct auxiliary variables, which we call observations. Fur-
thermore, the observations have, in general, to be “attached” to statements
which they observe in an atomic manner. For object creation this is syntac-
tically represented by the augmentation u := newc 〈�y := �e〉new which attaches
the observation to the object creation statement. Observations �y1 := �e1 of a
method call and observations �y4 := �e4 of the corresponding reception of a return
value are denoted by u := e0.m(�e) 〈�y1 := �e1〉!call 〈�y4 := �e4〉?ret . The augmentation
〈�y2 := �e2〉?call stm; return eret 〈�y3 := �e3〉!ret of method bodies specifies �y2 := �e2 as
the observation of the reception of the method call and �y3 := �e3 as the obser-
vation attached to the return statement. Assignments can be observed using
�y := �e 〈�y′ := �e ′〉ass . A stand-alone observation not attached to any statement is
written as 〈�y := �e〉 . It can be inserted at any point in the program.

Note that we could also use the same syntax for all kinds of observations.
However, such a notation would be disadvantageous for partial augmentations,
i.e., for the specification of augmentations where not all statements are ob-
served. For example, using the notation introduced above, the augmentation
e0.m(�e) 〈stm〉 uniquely specifies stm as a stand-alone observation following an
unobserved method call; using the same augmentation syntax 〈stm〉 for all kinds
of observations, we would have to write e0.m(�e) 〈〉 〈〉 〈stm〉 to specify the same
setting. The same remark can be made also for the annotation syntax, intro-
duced below.

The augmentation does not influence the control flow of the program but

2.4. THE PROOF SYSTEM 29

enforces a particular scheduling policy of the observations. An assignment state-
ment and its observation are executed simultaneously. Object creation and its
observation are executed in a single computation step, in this order. For method
call, communication, sender, and receiver observations are executed in a single
computation step, in this order (see Figure 2.1). Note that the order of the obser-

7

1

1

3

2

4

5

5 6

 point
control auxiliary

 point

"receive call" stmt; return eret

e .m(e)
0

receive u

callee:

caller:

32<y :=e >2

<y :=e >44<y :=e >1 1

<y :=e >3
!ret

?ret

?call

!call

Figure 2.1: Execution order of a method call and its observations

vations plays a role for self-calls only, i.e., for method calls where the caller and
the callee object are identical. Points between a statement and its observation
are no control points, since the statement and its observation are executed in a
single computation step; we call them auxiliary points. Note that control points
are interleaving points, that means, while control stays at such points, other
threads can execute concurrently; auxiliary points are no interleaving points.

To exclude the possibility that two observations executed in a single com-
putation step both modify the instance state of the same object, we require
that the caller observation in a self-communication may not change the values
of instance variables. Without this restriction, we would have to show interfer-
ence freedom under assignment-pairs, which would increase the complexity of
the proof system (see Section 8.2). Formally, in each observation of a method
invocation statement e0.m(�e), assignments to instance variables must have the
form x := (if e0 = this then x else e fi).

In the following we call assignment statements with their observations also
multiple assignments, since they are executed simultaneously.

Similarly to program variables, in the examples we sometimes explicitly de-
fine auxiliary variables: 〈t y; 〉 occurring in a class outside of method definitions
declares y to be an auxiliary instance variable of type t. The same definition
inside of a method declares y to be an auxiliary local variable of type t.

Example 2.4.2 Extending an assignment x := e to x := e 〈u := x〉ass stores the
value of x prior to the execution of x := e in the auxiliary variable u. Extending
it to x := e 〈u := x〉 stores the value of x in u after the execution of x := e.

Example 2.4.3 We can store the number of objects created by an instance of
a class c using an auxiliary integer instance variable n with initial value 0, and
extending each object creation statement u := newc′ in c to u := newc′ 〈n :=
n + 1〉new .

30 CHAPTER 2. THE SEQUENTIAL LANGUAGE

Example 2.4.4 We extend Example 2.4.3 by additionally observing each call
u := e0.m(�e) in c by u := e0.m(�e) 〈k := n〉!call 〈k := n − k〉?ret . Then the value of
the auxiliary local integer variable k after method call and its observation, but
before returning stores the number of objects created up to the call. After return,
it stores the number of objects created during method evaluation.

Example 2.4.5 Let l be an auxiliary integer instance variable of a class c.
We can count the number of local configurations executing in an instance of c
by augmenting the body stm; return eret of each method in class c resulting in
〈l := l + 1〉?call stm; return eret 〈l := l − 1〉!ret .

The above examples show how to count objects, local configurations in an
object, etc. But this information is not sufficient for a complete proof system:
we have to be able to identify those entities. We identify a local configuration
by the object in which it executes together with the value of a built-in auxiliary
local variable conf storing a unique object-internal identifier. Its uniqueness is
assured by the auxiliary instance variable counter, incremented for each new
local configuration in that object. The callee receives the “return address” as
an auxiliary formal parameter caller of type Object × Int, storing the identities
of the caller object and the calling local configuration. The run method of the
initial object is executed with the parameter caller having the value (null , 0).

Syntactically, each method declaration m(�u){stm; return eret} gets extended
by the built-in augmentation to m(�u, caller){〈conf, counter := counter, counter +
1〉?call stm; return eret}. Correspondingly for method calls u := e0.m(�e), the ac-
tual parameter list gets extended, resulting in u := e0.m(�e, (this, conf)). This
syntactical built-in augmentation is described in more detail in Section 9.2.2.
The values of the built-in auxiliary variables must not be changed by the user-
defined augmentation but may be used in the augmentation and annotation. In
the examples of the following sections we do not list the built-in augmentation;
it is meant to be automatically included in all proof outlines.

Annotation

To specify invariant properties of the system, the augmented programs are an-
notated by attaching local assertions to each control and auxiliary point. We use
the Hoare triple notation {p} stm {q} and write pre(stm) and post(stm) to refer
to the pre- and the postcondition of a statement. For assertions at auxiliary
points we use the following notation: The annotation

{p0} u := newc {p1}new 〈�y := �e〉new {p2}

of an object creation statement specifies p0 and p2 as pre- and postconditions,
whereas p1 at the auxiliary point should hold directly after object creation but
before its observation. The annotation

{p0}u := e0.m(�e) {p1}!call 〈�y1 := �e1〉!call {p2}wait {p3}?ret 〈�y4 := �e4〉?ret {p4}

2.4. THE PROOF SYSTEM 31

assigns p0 and p4 as pre- and postconditions to the method invocation statement;
p1 is assumed to hold directly after method call, but prior to its observation; p2

describes the control point of the caller after method call and its observation but
before returning; finally, p3 specifies the state directly after return but before
its observation. The annotation of method bodies stm; return eret is defined as
follows:

{p0}?call 〈�y2 := �e2〉?call {p1} stm; {p2} return eret {p3}!ret 〈�y3 := �e3〉!ret {p4}

The callee postcondition of the method call is p1; the callee pre- and postcon-
ditions for return are p2 and p4. The assertions p0 respectively p3 specify the
states of the callee between method call, respectively, return and its observation.

Besides pre- and postconditions, for each class c, the annotation defines a
local assertion Ic called class invariant, specifying invariant properties of in-
stances of c in terms of its instance variables. We require that for each method
of a class, the class invariant is the precondition of the method body.3

Finally, a global assertion GI called the global invariant specifies proper-
ties of communication between objects. As such, it should be invariant under
object-internal computation. For that reason, we require that for all qualified
references E.x in GI with E of type c, all assignments to x in class c occur in the
observations of communication or object creation. We require furthermore that
in the annotation no free logical variables occur. In the following we will use
also partially annotated statements; assertions which are not explicitly specified
are by definition true.

Example 2.4.6 The (partial) annotation u := newc {u �= this} of an object
creation statement in a class c′ expresses that the new object’s identity differs
from the identity of the creator object. Invariance of this annotation can be
shown by proving some verification conditions generated for the above object
creation statement. However, the validity of the assertion does not depend on
the rest of the program, since the only shared variable in the assertion is the
self-reference, which may not be assigned to.

The same property can be expressed using the class invariant. Since the class
invariant may refer to instance variables only, we have to store the new object’s
identity in an auxiliary instance variable x in order to refer to it in the class
invariant. We define the annotation u := newc 〈x := u〉new {x = u} and the class
invariant by x �= this. In this case, invariance of the given assertions depends
also on the rest of the class definition: an observation x := this executed in
the same object would of course violate the class invariant. This annotation
is useful, if different assertions in the same class refer to x, and especially if
the information expressed by the class invariant is needed to show properties of
incoming method calls.

Also the global invariant can be used to express the above property: Assume
again u := newc 〈x := u〉new {x = u} and let the global invariant be defined

3That means, the complete annotation of method bodies is of the form {Ic} {p0}?call 〈�y2 :=
�e2〉?call {p1} stm; return eret{p3}!ret 〈�y3 := �e3〉!ret {p4} .

32 CHAPTER 2. THE SEQUENTIAL LANGUAGE

by ∀(z : c′). z.x �= z. Again, the invariance of the annotation depends on the
rest of the class. But now it additionally depends on the definition of other
classes, possibly creating new instances of c′, thereby extending the domain of
the quantification. Such annotations are used to express dependencies between
different instance states.

2.4.2 Verification conditions

The proof system formalizes a number of verification conditions, which induc-
tively ensure that for each reachable configuration, the local assertions attached
to the current control points in the thread configuration, as well as the global
and the class invariants, hold. The conditions are grouped, as usual, into ini-
tial conditions, and for the inductive step into local correctness and tests for
interference freedom and cooperation (see Section 1.3).

The initial correctness conditions cover satisfaction of the properties in the
initial program configuration. The execution of a single method body in isolation
is captured by standard local correctness conditions, using the local assertion
language. Interference between concurrent method executions is covered by
the interference freedom test, formulated also in the local language. It has
especially to accommodate reentrant code. The effects of communication and
object creation are treated in the cooperation test. As communication can take
place within a single object or between different objects, the cooperation test is
formulated in the global assertion language.

The verification conditions assure invariance of the annotation as follows:
Initial satisfaction of the annotation is guaranteed by the initial conditions. If a
computation step executes an assignment, then the local correctness conditions
assure inductivity of the executing local configuration’s properties; the inter-
ference freedom test assures invariance under the execution of the assignment
for the properties of all other local configurations and the class invariants. For
communication, invariance for the executing partners and the global invariant
is assured by the cooperation test for communication. Communication itself
does not affect the global state; invariance of the remaining properties under
the corresponding observations is assured again by the interference freedom test.
Finally for object creation, invariance for the global invariant, for the local prop-
erties of the creator, and for the created object’s class invariant is assured by
the conditions of the cooperation test for object creation; all other properties
are invariant due to the interference freedom test.

Before specifying the verification conditions, we first introduce some nota-
tion. Let Init be a syntactical operator with interpretation Init (cf. page 19).
Given IVar c as the set of instance variables of class c without the self-reference,
and z as a logical variable of type c, let InitState(z) be the global assertion
z �= null ∧ ∧

x∈IVarc
z.x = Init(x), expressing that the object denoted by z is in

its initial instance state.
Arguing about two different local configurations makes it necessary to dis-

tinguish between their local variables, since they may have the same names; in

2.4. THE PROOF SYSTEM 33

such cases we will rename the local variables in one of the local states. We use
primed assertions p′ to denote the given assertion p with every local variable u
replaced by a fresh one u′; we use the same notation also for expressions.

Initial correctness

A proof outline of a program is initially correct, if the precondition of the main
statement, the class invariant of the initial object, and the global invariant are
satisfied initially, i.e., in the initial global configuration after the execution of
the callee observation at the beginning of the main statement. Furthermore,
the precondition of the observation should be satisfied prior to its execution.
Since we reason about the initial global configuration, the condition for initial
correctness is formulated in the global assertion language.

Definition 2.4.7 (Initial correctness) Let the body of the run method of the
main class c be {p2}?call 〈�y2 := �e2〉?call {p3} stm; return with local variables �v without
the formal parameters, z ∈ LVarc, and z′ ∈ LVarObject. A proof outline is
initially correct, if

|=G {InitState(z) ∧ ∀z′. z′ = null ∨ z = z′} (2.1)
�v, caller := Init(�v), (null, 0)

{P2(z)} , and
|=G {InitState(z) ∧ ∀z′. z′ = null ∨ z = z′} (2.2)

�v, caller := Init(�v), (null, 0); z.�y2 := �E2(z)
{GI ∧ P3(z) ∧ Ic(z)} .

The assertion InitState(z) ∧ ∀z′. z′ = null ∨ z = z′ states that the initial
global state defines exactly one existing object z being in its initial instance
state. Initialization of the local configuration is represented by the assignment
�v, caller := Init(�v), (null, 0). The observation �y2 := �e2 at the beginning of the run

method of the initial object z is represented by the assignment z.�y2 := �E2(z).

Example 2.4.8 Assume the following proof outline:

{∃(z1 : Initial). z1 �= null ∧ ∀(z2 : Initial). z2 �= null → z1 = z2} //global invariant

class Initial {
Int x;

{started} //class invariant

Void run (){
Int v;
〈Int u; 〉

{u = 0 ∧ v = 0 ∧ x = 0}?call // precondition of observation
〈u := 1〉?call // observation of call
{u = 1 ∧ v = 0 ∧ x = 0} // postcondition of observation
...

}
}

34 CHAPTER 2. THE SEQUENTIAL LANGUAGE

Note that the built-in augmentation extends the observation {u := 1}?call to
{u, started := 1, true}?call . The first initial condition

|=G {z �= null ∧ z.x = 0 ∧ ∀(z′ : Object). z′ = null ∨ z = z′}
v, u, caller := 0, 0, (null, 0)
{u = 0 ∧ v = 0 ∧ z.x = 0}

assures that the precondition of the observation holds after initialization but
prior to its execution. The second condition

|=G {z �= null ∧ z.x = 0 ∧ ∀(z′ : Object). z′ = null ∨ z = z′}
v, u, caller := 0, 0, (null, 0); u, z.started := 1, true

{GI ∧ (u = 1 ∧ v = 0 ∧ x = 0) ∧ (z.started)}
assures that the global invariant, the postcondition of the observation, and the
class invariant hold after the observation. Satisfaction of the global invariant
can be shown by instantiation with z. We use this example also in Section 9.2.4
to illustrate the usage of the Verger tool.

Local correctness

A proof outline is locally correct, if the properties of method instances as speci-
fied by the annotation are invariant under their own execution, i.e., if the usual
verification conditions [Apt81b] for standard sequential constructs hold. For
example, the precondition of an assignment must imply its postcondition af-
ter its execution. Besides conditions for assignments, local correctness defines
additional conditions for control structures like loops and conditional state-
ments. The following condition should hold for all multiple assignments being
an assignment statement with its observation, an unobserved assignment, or a
stand-alone observation:

Definition 2.4.9 (Local correctness: Assignment) A proof outline is lo-
cally correct with respect to assignments, if for all multiple assignments {p1}�y :=
�e {p2} in class c, which are not the observation of object creation or communi-
cation,

|=L {p1 ∧ Ic} �y := �e {p2} . (2.3)

Prior to the execution of the assignment �y := �e, the assertion attached to the
current control point of the executing local configuration, i.e., the precondition
of the assignment, is required to hold. Execution causes the control to move
to the point after the assignment. Thus the assertion at the new control point,
i.e., the postcondition of the assignment, should hold after execution.

We use the class invariant as antecedent whose invariance is assured by the
interference freedom test. Note that including the class invariant as antecedent
in the local correctness conditions is not necessary for a minimal proof system,
since the class invariant itself can be stated in the local assertions, too. However,

2.4. THE PROOF SYSTEM 35

it reduces the annotation. The same holds for the interference freedom and
cooperation tests.

The conditions for loops and conditional statements are standard. Note
that we have no local verification conditions for observations of communication
and object creation. The postconditions of such statements express assump-
tions about the communicated values. These assumptions will be verified in the
cooperation test.

Example 2.4.10 Assume the following augmented and annotated method which
computes the faculty u! for its parameter u:
Int fac (Int u){

Int result ;
{u > 0}
result :=1; {result = 1 ∧ u > 0}
v:=u; {u! = result ∗ v! ∧ u > 0 ∧ v > 0}
while (v>1) do {u! = result ∗ v! ∧ u > 0 ∧ v > 1}

result := result *v; {u! = result ∗ (v − 1)! ∧ u > 0 ∧ v > 1}
v:=v-1; {u! = result ∗ v! ∧ u > 0 ∧ v > 0}

od; {u! = result}
return result

}

The above proof outline satisfies the conditions of local correctness. There are
7 local correctness conditions (there are no initial correctness, interference free-
dom, and cooperation test conditions for this example). For example, for the
assignment result := result ∗ v local correctness defines the verification condition

|=L {u! = result ∗ v! ∧ u > 0 ∧ v > 1}
result := result ∗ v {u! = result ∗ (v − 1)! ∧ u > 0 ∧ v > 1} ,

whose satisfaction is easy to see.

The interference freedom test

Interference between concurrent method executions is covered by the proof obli-
gations of the interference freedom test. Since we are dealing with a sequential
language, we only need to show invariance of assertions attached to control
points waiting for return in a call chain under execution of the local configura-
tion on the top of the stack. Interference freedom covers also invariance of the
class invariants.

Since Javaseq does not support qualified references to instance variables,
execution in an object cannot influence the evaluation of local assertions in other
objects. That means, we only have to deal with invariance under execution
within the same object. Therefore, the corresponding verification conditions
are formulated in the local assertion language. Affecting only local variables,
communication and object creation do not change the instance states of the
executing objects4. Thus we only have to cover invariance of assertions at control
points under assignments, including observations of communication and object

4It is due to the restriction that method call and object creation statements may not
contain instance variables.

36 CHAPTER 2. THE SEQUENTIAL LANGUAGE

creation. To distinguish local variables of the different local configurations, we
rename those of the assertion. Note that assertions at auxiliary points do not
have to be shown invariant, since auxiliary points are no interleaving points.

Let q be an assertion at a control point and �y := �e a multiple assignment
in the same class c. In which cases does q have to be invariant under the ex-
ecution of the assignment? Since the language is sequential, i.e., q and �y := �e
belong to the same thread, the only assertions endangered are those at con-
trol points waiting for return earlier in the current execution stack. Invariance
of a local configuration under its own execution, however, does not need to
be considered and is excluded by requiring conf �= conf′. For an assertion
at a control point waiting for returning from a self-call, interference with the
matching return statement needs neither be considered: The communicating
partners execute simultaneously changing also the control point of the caller.
The assertion caller = (this, conf′) describes this setting: It holds if the local
configuration described by q′ and the identity conf′ is the caller of the local con-
figuration with local variable caller which executes �y := �e in the same object.
Let caller obj be the first and caller conf the second component of caller. We
define waits for ret(q, �y := �e) by

• conf′ �= conf, for assertions {q}wait attached to control points waiting for
return, if �y := �e is not the observation of return;

• conf′ �= conf ∧ (this �= caller obj∨ conf′ �= caller conf), for assertions {q}wait ,
if �y := �e observes return;

• false, otherwise.

For the example configuration intuitively shown in Figure 2.2, the assertion
p3, attached to a control point waiting for return, has to be invariant under
the execution of the assignment by its callee, while p4 does not have to be
invariant under its own execution. However, if the assignment would be the
callee observation of a return statement, then p3, describing the communication
partner, would not have to be invariant under the assignment. The assertions
p1 and p2 are automatically invariant, since they describe an object different
from the one in which the execution takes place. Note that satisfaction of p5

after execution is assured by the local correctness conditions.
The interference freedom test can now be formulated as follows:

Definition 2.4.11 (Interference freedom) A proof outline is interference
free, if for all classes c and multiple assignments �y := �e with precondition p in
c,

|=L {p ∧ Ic} �y := �e {Ic} . (2.4)

Furthermore, for all assertions q at control points in c,

|=L {p ∧ q′ ∧ Ic ∧ waits for ret(q, �y := �e)} �y := �e {q′} . (2.5)

2.4. THE PROOF SYSTEM 37

Method
execution

p
y:=e

p p

p

Object

4 5
3

2

1
Thread

p

Figure 2.2: Interference for a single thread

Note that if we would allow qualified references in program expressions, we
would have to show interference freedom for all assertions under all assignments
in programs, not only for those occurring in the same class. For a program with
n classes where each class contains k assignments and l assertions at control
points, the number of interference freedom conditions is in O(c · k · l), instead
of O((c · k) · (c · l)) with qualified references.

Example 2.4.12 Let {p1} this.m(�e) {p2}!call 〈stm1〉!call {p3}wait {p4}?ret 〈stm2〉?ret {p5}
be an annotated method call statement in a method m′ of a class c with an in-
teger auxiliary instance variable x, such that each assertion implies conf = x.
I.e., the identity of the executing local configuration is stored in the instance
variable x. The annotation expresses that no pairs of control points in m′ of c
can be simultaneously reached.

The assertions p2 and p4 need not be shown invariant, since they are attached
to auxiliary points. Interference freedom neither requires invariance of the as-
sertions p1 and p5, since they are not at control points waiting for return, and
thus the antecedents of the corresponding conditions evaluate to false. Invari-
ance of p3 under the execution of the observation stm1 with precondition p2 re-
quires validity of |=L {p2∧p′3∧waits for ret(p3, stm1)} stm1 {p′3}. The assertion
p2∧p′3∧waits for ret(p3, stm1) implies (conf = x)∧ (conf′ = x)∧ (conf ′ �= conf),
which evaluates to false. Invariance of p3 under stm2 follows analogously.

Example 2.4.13 Assume a partially5 annotated method invocation statement
of the form {p1} this.m(�e) {conf = x ∧ p2}wait {p3} in a class c with an integer
auxiliary instance variable x, and assume that method m of c has the annotated
return statement {q1} return {caller = (this, x)}!ret 〈stm〉!ret {q2} . The annotation
expresses that the local configurations containing the above statements are in
caller-callee relationship. Thus upon return, the control point of the caller moves
from the point at conf = x ∧ p2 to that at p3, i.e., conf = x ∧ p2 does not have
to be invariant under the observation of the return statement.

Again, the assertion caller = (this, x) at an auxiliary point does not have to be
shown invariant. For the assertions p1, p3, q1, and q2, which are not at a control

5As already mentioned, missing assertions are by definition true.

38 CHAPTER 2. THE SEQUENTIAL LANGUAGE

point waiting for return, the antecedent is false. Invariance of conf = x ∧ p2

under the observation stm with precondition caller = (this, x) is covered by the
interference freedom condition

|=L { caller = (this, x) ∧ (conf′ = x ∧ p′2)∧
waits for ret((conf = x ∧ p2), stm) } stm {conf′ = x ∧ p′2} .

The waits for ret assertion implies caller �= (this, conf′), which contradicts the
assumptions caller = (this, x) and conf′ = x; thus the antecedent of the condition
is false.

Satisfaction of conf = x ∧ p2 after the call, satisfaction of caller = (this, x)
directly after return, and satisfaction of p3 and q2 after the observation stm is
assured by the cooperation test.

The cooperation test

Whereas the interference freedom test assures invariance of assertions under
steps in which they are not involved, the cooperation test deals with induc-
tivity for communicating partners, assuring that the global invariant, and the
preconditions and the class invariants of the involved statements imply their
postconditions after the joint step. Additionally, the preconditions of the cor-
responding observations must hold immediately after communication.

The global invariant refers to auxiliary instance variables which can be
changed by observations of communication, only. Consequently, the global in-
variant is automatically invariant under the execution of non-communicating
statements. For communication and object creation, however, the invariance
must be shown as part of the cooperation test.

We start with the cooperation test for method invocation. The semantics
of method call and returning from a method is intuitively shown in Figures 2.3
and 2.4. After communication, i.e., after creating and initializing the callee local
configuration and passing on the actual parameters (2.3 b), first the caller (2.3
c), and then the callee (2.3 d) execute their corresponding observations, all in a
single computation step. Correspondingly for return, after communicating the
result value (2.4 f), first the callee (2.4 g) and then the caller observation (2.4
h) gets executed.

To avoid name clashes between local variables of the partners, we rename
those of the callee. Since different objects may be involved, the cooperation test
is formulated in the global assertion language. Local properties are expressed
in the global language using the lifting substitution. As already mentioned, we
use the shortcuts P (z) and Q′(z′) for p[z/this] and for q′[z′/this], respectively,
and similarly for expressions.

Let z and z′ be logical variables whose values represent the caller, respec-
tively, the callee object in a method call. We assume the global invariant, the
class invariants of the communicating partners, and the preconditions of the
communicating statements to hold prior to communication. For method invo-
cation, the precondition of the callee is its class invariant. That the two state-
ments indeed represent communicating partners is captured by the assertion

2.4. THE PROOF SYSTEM 39

Thread

caller local configuration1
p

caller object

callee object

GI

c’I

cI

a) Before call

u:=e .m(e);

callee local configuration
q2

Ic

Ic’

0
p

2

b) Communication (call)

2q

Ic

Ic’

!call
1 1u:=e .m(e); <y :=e >

3p
0

c) Caller observation

GI

p
3

q
3

c’I

Ic

u:=e .m(e); <y :=e > 0
!call

11

2<y :=e > 2
?call

d) Callee observation

Figure 2.3: Execution of a method call {p1}u := e0.m(�e) {p2}!call 〈�y1 :=
�e1〉!call {p3}wait with callee method body {q2}?call 〈�y2 := �e2〉?call {q3} stm; return e ′.
Control points are marked by a dot.

40 CHAPTER 2. THE SEQUENTIAL LANGUAGE

0

GI

Ic’

Ic

q4

u:=e .m(e); <y :=e > 1 1
!call

p
3

2 2
?call

<y :=e > stm;

e) Method evaluation

p4

q5

I

Ic’

c

<y :=e > stm; 2 2
?call return e’;

u:=e .m(e); <y :=e > 0

!callreceive u;1 1

f) Communication (return)

Ic

Ic’

q6

p4

0 1
!call

u:=e .m(e); <y :=e > receive u;

<y :=e > stm; return e’; 2 2
?call

3<y :=e >3
!ret

1

g) Callee observation

q
6

Ic’

Ic
GI

0 1u:=e.m(e);<y:=e>receive u; 1

2
?call

2
!ret

3

5
p

!call
?ret

4<y :=e >4

<y :=e > stm; return e’;<y :=e >3

h) Caller observation

Figure 2.4: Execution of return for a method call
{p1}u := e0.m(�e) {p2}!call 〈�y1 := �e1〉!call {p3}wait {p4}?ret 〈�y4 := �e4〉?ret {p5}
with callee method body
{q2}?call 〈�y2 := �e2〉?call {q3} stm; {q4} return e ′ {q5}!ret 〈�y3 := �e3〉!ret {q6} .
Control points are marked by a dot.

2.4. THE PROOF SYSTEM 41

comm, which depends on the type of communication: For method invocation
e0.m(�e), the assertion E0(z) = z′ states that the value of z′ indeed identifies the
callee object. Remember that method invocation hands over the return address
as an auxiliary parameter, and that the values of formal parameters remain un-
changed. Furthermore, actual parameters may not contain instance variables,
i.e., their interpretation does not change during method execution. Therefore,
the formal and actual parameters can be used at returning from a method to
identify partners being in caller-callee relationship, using the built-in auxiliary
variables. Thus for the return case, comm additionally states �u′ = �E(z), where �u
and �e are the formal and the actual parameters. Returning from the run method
terminates the executing thread; this does not have communication effects.

As in the previous conditions, state changes are expressed by assignments.
For the example of method invocation, communication is expressed by the as-
signment �u′ := �E(z), where initialization of the remaining local variables �v is
covered by �v′ := Init(�v). The assignments z.�y1 := �E1(z) and z′.�y′

2 := �E′
2(z′)

stand for the caller and callee observations �y1 := �e1 and �y2 := �e2, executed in
the objects z and z′, respectively. Note that we rename all local variables of the
callee to avoid name clashes.

Definition 2.4.14 (Cooperation test: Communication) A proof outline
satisfies the cooperation test for communication, if

|=G {GI ∧ P1(z) ∧ Ic(z) ∧ Q′
1(z

′) ∧ Ic′(z′) ∧ comm ∧ z �= null ∧ z′ �= null}
fcomm

{P2(z) ∧ Q′
2(z

′)} and (2.6)
|=G {GI ∧ P1(z) ∧ Ic(z) ∧ Q′

1(z′) ∧ Ic′(z′) ∧ comm ∧ z �= null ∧ z′ �= null}
fcomm ; fobs1 ; fobs2

{GI ∧ P3(z) ∧ Q′
3(z′)} (2.7)

hold for distinct fresh logical variables z ∈ LVarc and z′ ∈ LVarc′
, in the fol-

lowing cases:

1. Call: For all statements {p1}uret := e0.m(�e) {p2}!call 〈�y1 := �e1〉!call {p3}wait

(or such without receiving a value) in class c with e0 of type c′, where
method m of c′ has body {q2}?call 〈�y2 := �e2〉?call {q3} stm; return eret , formal
parameters �u, and local variables �v except the formal parameters. The
callee class invariant is q1 = Ic′ . The assertion comm is given by E0(z) =
z′. Furthermore, fcomm is �u′, �v′ := �E(z), Init(�v), fobs1 is z.�y1 := �E1(z),
and fobs2 is z′.�y′

2 := �E′
2(z

′).

2. Return: For all uret := e0.m(�e) 〈stm〉!call {p1}wait {p2}?ret 〈�y4 := �e4〉?ret {p3}
(or such without receiving a value) occurring in c with e0 of type c′, such
that method m of c′ has the return statement {q1} return eret {q2}!ret 〈�y3 :=
�e3〉!ret {q3} , and formal parameter list �u, the above equations must hold
with comm given by E0(z) = z′ ∧ �u′ = �E(z), and where fcomm is uret :=
E′

ret(z
′), fobs1 is z′.�y′

3 := �E′
3(z

′), and fobs2 is z.�y4 := �E4(z).

42 CHAPTER 2. THE SEQUENTIAL LANGUAGE

3. Returnrun : For {q1} return {q2}!ret 〈�y3 := �e3〉!ret {q3} occurring in the
run method of the main class, p1 = p2 = p3 = true, comm = true,
and furthermore fcomm and fobs2 are the empty statement, and fobs1 is
z′.�y′

3 := �E′
3(z

′).

Example 2.4.15 This example illustrates how one can prove properties of pa-
rameter passing. Let {p} e0.m(v,�e), with p given by v > 0, be a (partially)
annotated statement in a class c with e0 of type c′, and let method m(u, �w)
of c′ have a body of the form {q} stm; return where q is u > 0. Inductivity of
the proof outline requires that if p is valid prior to the call (besides validity of
the global and class invariants), then q is satisfied after the invocation. Omit-
ting irrelevant details, Condition 2.7 of the cooperation test requires proving
|=G {P (z)} u′ := v {Q′(z′)}, which expands to |=G {v > 0} u′ := v {u′ > 0}.
Example 2.4.16 The following example demonstrates how one can express de-
pendencies between instance states in the global invariant and use this informa-
tion in the cooperation test.

Let {p}e0.m(�e), with p given by x > 0 ∧ e0 = o, be an annotated state-
ment in a class c with e0 of type c′, x an integer instance variable, and o
an instance variable of type c′, and let method m(�u) of c′ have the anno-
tated body {q} stm; return where q is y > 0 and y an integer instance vari-
able. Let furthermore z ∈ LVarc and let the global invariant be given by
∀z. (z �= null ∧ z.o �= null ∧ z.x > 0) → z.o.y > 0. Inductivity requires that
if p and the global invariant are valid prior to the call, then q is satisfied after
the invocation (again, we omit irrelevant details). The cooperation test Condi-
tion 2.7, i.e., |=G {GI ∧P (z)∧ comm∧ z �= null∧ z′ �= null} �u′ := �E(z) {Q′(z′)}
expands to

|=G {(∀z. (z �= null ∧ z.o �= null ∧ z.x > 0) → z.o.y > 0)∧
(z.x > 0 ∧ E0(z) = z.o) ∧ E0(z) = z′ ∧ z �= null ∧ z′ �= null }

�u′ := �E(z)
{z′.y > 0} .

Instantiating the quantification by z, the antecedent implies z.o.y > 0∧z′ = z.o,
i.e., z′.y > 0. Invariance of the global invariant is straightforward.

Example 2.4.17 This example illustrates how the cooperation test handles ob-
servations of communication. Let {¬b} this.m(�e){b}wait be an annotated state-
ment in a class c with boolean auxiliary instance variable b and let m(�u) of c
have a body of the form {¬b}?call 〈b := true〉?call {b} stm; return. Condition 2.6 of
the cooperation test assures inductivity for the precondition of the observation.
We have to show |=G {¬z.b ∧ comm}�u′ := �E(z){¬z′.b} (again, we omit irrele-
vant details), i.e., since it is a self-call, |=G {¬z.b ∧ z = z′}�u′ := �E(z){¬z′.b} ,
which is trivially satisfied. Condition 2.7 of the cooperation test for the postcon-
ditions requires |=G {comm}�u′ := �E(z); z′.b := true{z.b∧ z′.b} which expands to
|=G {z = z′}�u′ := �E(z); z′.b := true{z.b ∧ z′.b} , whose validity is easy to see.

2.4. THE PROOF SYSTEM 43

Besides method calls and returns, the cooperation test needs to handle object
creation, taking care of the preservation of the global invariant, the postcondi-
tion of the new-statement and its observation, and the new object’s class invari-
ant. We can assume that the precondition of the object creation statement, the
class invariant of the creator, and the global invariant hold in the configuration
prior to instantiation. The extension of the global state with a freshly created
object is formulated in a strongest postcondition style, i.e., it is required to hold
immediately after the instantiation. We use existential quantification to refer to
the old value: z′ of type LVar listObject represents the existing objects prior to the
extension. Moreover, that the created object’s identity stored in u is fresh and
that the new instance is properly initialized is expressed by the global assertion
Fresh(z′, u) defined as InitState(u) ∧ u �∈ z′ ∧ ∀(v : Object). v ∈ z′ ∨ v = u (see
page 32 for the definition of InitState). To express that an assertion refers to
the set of existing objects prior to the extension of the global state, we need
to restrict any quantification in the assertion to range over objects from z′,
only. So let P be a global assertion and z′ ∈ LVar listObject a logical variable not
occurring in P . Then P ↓ z′ is the global assertion P with all quantifications
∃z. P ′ replaced by ∃z. obj(z) ⊆ z′ ∧ P ′, where obj (v) denotes the set of objects
occurring in the value v. The following lemma formulates the basic property of
the projection operator:

Lemma 2.4.18 Assume a global state σ, an extension σ′ = σ[α �→σc,init
inst] for

some α ∈ Valc, α /∈ Val (σ), and a logical environment ω referring only to values
existing in σ. Let v be the sequence consisting of all elements of

⋃
c Valcnull (σ).

Then for all global assertions P and logical variables z′ ∈ LVar listObject not
occurring in P ,

ω, σ |=G P iff ω[z′ �→ v], σ′ |=G P ↓ z′.

Its proof can be found in Appendix A.1. Thus a predicate (∃u. P) ↓ z′, evaluated
immediately after the instantiation u := newc, expresses that P holds prior to
the creation of the new object. This leads to the following definition of the
cooperation test for object creation.

Definition 2.4.19 (Cooperation test: Instantiation) A proof outline sat-
isfies the cooperation test for object creation, if for all classes c′ and statements
{p1}u := newc {p2}new 〈�y := �e〉new {p3} in c′:

|=G z �=null ∧ z �=u ∧ ∃z′.
(
Fresh(z′, u) ∧ (GI ∧ (∃u. P1(z)) ∧ Ic′(z)) ↓ z′

)

→ P2(z) ∧ Ic(u) and (2.8)
|=G {z �=null ∧ z �=u ∧ ∃z′.

(
Fresh(z′, u) ∧ (GI ∧ (∃u. P1(z)) ∧ Ic′(z)) ↓ z′

)}
z.�y := �E(z)
{GI ∧ P3(z)} (2.9)

hold with z ∈ LVarc′
and z′ ∈ LVar listObject fresh.

44 CHAPTER 2. THE SEQUENTIAL LANGUAGE

Example 2.4.20 Assume a statement u := newc{u �= this} in a program, where
the class invariant of c is x ≥ 0 for an integer instance variable x. Condi-
tion 2.8 of the cooperation test for object creation assures that the class in-
variant of the new object holds after its creation. We have to show validity of
|=G (∃z′. Fresh(z′, u)) → u.x ≥ 0, i.e., |=G u.x = 0 → u.x ≥ 0, which is trivial.
Remember that integer variables have the initial value 0. For the postcondition,
Condition 2.9 requires |=G {z �= u} ε {u �= z} with ε the empty statement (no
observations are executed), which is true.

Example 2.4.21 Assume now a statement u := newc{u �= x} in a class c′ with
instance variable x of type c, where the class invariants are true, and the global
invariant is ∀(z1 : c′). z1 �= null → ∃(z2 : c) : z1.x = z2. Condition 2.9 requires

|=G {z �= null ∧ z �= u∧
∃z′.

(
u �= null ∧ u /∈ z′ ∧ (∀v. v ∈ z′ ∨ v = u) ∧ GI ↓ z′

)}
ε {u �= z.x} ,

where ε is again the empty statement. Now, the antecedent implies that there is
a sequence z′ of objects such that u /∈ z′. Furthermore, from z �= u and from
∀v. v ∈ z′ ∨ v = u we conclude that z ∈ z′. The assertion GI ↓ z′ is given by

(∀(z1 : c′). z1 �= null → ∃(z2 : c) : z1.x = z2) ↓ z′ ,

i.e.,
∀(z1 : c′). z1 ∈ z′ → z1 �= null → ∃(z2 : c) : z2 ∈ z′ ∧ z1.x = z2 .

Instantiating the above assertion with z we get that z2 ∈ z′ ∧ z.x = z2 for some
z2, i.e, z.x ∈ z′. Since u /∈ z′, it implies that z.x �= u, as required.

In the example above we used a tautology ∀(z1 : c′). z1 �= null → ∃(z2 : c) :
z1.x = z2 as global invariant in order to prove the required property u �= x of
the creator. This was necessary since the assertion Fresh(z′, u) expresses only
that z′ is the sequence of all existing objects without u and that u is in its initial
state, but not that u is fresh in the sense that no variables refer to it in the
states prior to its creation. However, since the verification condition assumes
GI ↓ z′, the above tautology as global invariant restricted to z′ expresses this
missing information for the instance variable x of the creator!

With an alternative definition of the assertion Fresh(z′, u) which would ad-
ditionally state

⎛
⎝ ∧

v∈TVar\{u}
v �= u

⎞
⎠ ∧

⎛
⎝∀(z : Object). z �= null →

∧
x∈IVar (z)

z.x �= u

⎞
⎠

for the set TVar of local variables —to be precise, we need only those of the cre-
ator local configuration—, and the set IVar (z) of instance variables of objects
z, we could prove properties like x �= u above without additional information.
However, this information is not needed for a minimal proof system, as demon-
strated by the above example.

2.4. THE PROOF SYSTEM 45

Examples

Example 2.4.22 The following proof outline computes the integer division i
of two natural numbers n and d, as stated by the annotation:

class IntegerDivision{
Void run (){

Int n,d,i;
...
{n ≥ 0 ∧ d > 0}
i := m(n,d); {n ≥ 0 ∧ d > 0}wait {i ∗ d ≤ n ∧ n < (i + 1) ∗ d}
...

}

Int m(Int n, Int d){
Int u,i;

{n ≥ 0}
u := n; {u = n ∧ u ≥ 0}
i := 0; {n = i ∗ d + u ∧ i ≥ 0 ∧ u ≥ 0}
while (u ≥ d) do

{n = i ∗ d + u ∧ i ≥ 0 ∧ u ≥ 0 ∧ u ≥ d}
u := u-d; {n = i ∗ d + u + d ∧ i ≥ 0 ∧ u ≥ 0}
i := i+1; {n = i ∗ d + u ∧ i ≥ 0 ∧ u ≥ 0}

od;
{n = i ∗ d + u ∧ i ≥ 0 ∧ u ≥ 0 ∧ u < d}
return i

}

}

We have 7 local conditions, all for statements in the method m, and two global
conditions for the invocation of and for returning from the method m. Since the
only assertion at a control point waiting for return contains local variables only,
its invariance under execution is easy to see; all interference freedom conditions
are trivial. All conditions have been automatically proven in the theorem prover
PVS.

Example 2.4.23 The following program consists of a single main class with
instance variables x and y, an auxiliary instance variable at, and class invari-
ant x≥0. The class declares two methods run and m. The method m simply
decrements the value of x by the value of y. The run method invokes m in case
x≥y. To express that after the invocation the new value of x is the old value
minus y, we store the old value in the auxiliary local variable v.
class Annotation {

Int x,y;
〈Int at; 〉 // auxiliary instance variable
{x ≥ 0} //class invariant

Void run (){
〈Int v; 〉 //auxiliary local variable
. . .
{at = 0}
if (x≥y) then

{x ≥ y ∧ at = 0}
m(); 〈v := x〉!call {(at = 1 ∧ x = v) ∨ (at = 2 ∧ x = v − y)}wait
{x = v − y}

fi
. . .

}

46 CHAPTER 2. THE SEQUENTIAL LANGUAGE

Void m(){
{at = 0}?call 〈at := 1〉?call {at = 1 ∧ x ≥ y}
x:=x-y; 〈at := 2〉ass {at = 2}
return

}
}

We have two local conditions, one for entering the body of the conditional if-
statement, and one for the multiple assignment x:=x-y; 〈at := 2; 〉ass in m. We
have 6 interference freedom conditions: One interference freedom condition is
generated for the invariance of the class invariant under the assignment x:=x-y
with its observation in m, and two for the invariance of the assertion at the
control point waiting for return in run under the above assignment and under the
observation 〈at := 1; 〉?call in m. The remaining interference freedom conditions
are trivial. Two cooperation test conditions take care for the properties of the
method call and the corresponding return. All conditions have been automatically
proven in the theorem prover PVS.

Example 2.4.24 Assume the following class containing an annotated method
which computes the faculty u! of its parameter u, similarly to Example 2.4.10
but now using recursive method calls:

class FacRec {
Int fac(Int u){

Int v;
{u > 0}
if (u ≤ 1) then {u = 1}

v := 1; {u > 0 ∧ v = u!}
else {u > 1}

v := fac(u -1) ; {u > 1 ∧ v = (u − 1)!}
v := u*v; {u > 1 ∧ v = u!}

fi {u > 0 ∧ v = u!}
return v

}
}

The class and global invariants are by definition true. For the above proof out-
line 8 verification conditions are generated (6 local correctness conditions and 2
cooperation test conditions for calling and returning from the method fac). All
conditions are verified automatically in PVS using the grind strategy. Note that
since the method does not refer to instance variables, no interference freedom
conditions are generated. Note furthermore that for this example no augmenta-
tion is needed.

The local conditions are straightforward. For the call v := fac(u − 1) the
cooperation test Condition 2.7 requires

|=G {u > 1 ∧ z = z′ ∧ z �= null ∧ z′ �= null} u′ := u − 1 {u′ > 0} .

Note that, since no instance variables are involved, the above global condition is
equivalent to the local condition

|=L {u > 1 ∧ z = z′ ∧ z �= null ∧ z′ �= null} u′ := u − 1 {u′ > 0} .

2.5. CONCLUSIONS AND RELATED WORK 47

For the corresponding return case the cooperation test requires according to Con-
dition 2.7

|=G {u′ > 0 ∧ v′ = u′! ∧ z = z′ ∧ u′ = u − 1 ∧ z �= null ∧ z′ �= null} v := v′

{u > 1 ∧ v = (u − 1)!} ,

whose validity is easy to see. Also this condition does not refer to instance
variables, and thus it is also equivalent to a local condition.

Example 2.4.25 Assume the following recursive method which returns the value
of the integer instance variable x at the time of its invocation:
Int m() {

Int v;
if (x>0) then

x:=x-1;
v:=m();
x:=v+1;

fi;
return x

}

We would like to prove the property that the return value of the method is the
value of x at the time of its invocation. To express this requirement, we can
store the value of x at invocation in an auxiliary integer local variable u by
inserting the callee observation 〈u := x〉?call of the call, and define u = x as the
precondition of the return statement. To be able to define a proof outline which
satisfies the verification conditions and implies the above annotation we need to
encode properties of the recursive invocations in sequences, which is possible but
quite complex.

However, allowing also user-defined auxiliary parameters would lead to a
much natural and simpler solution, listed below. Such an extension of the aug-
mentation is straightforward and does not require any modification of the veri-
fication conditions.
Int m(int u) {

Int v;
{u = x}
if (x>0) then {u = x}

x:=x-1; {u = x + 1}
v:=m(u -1) ; {v = u − 1 ∧ u = x + 1}
x:=v+1; {u = x}

fi; {u = x}
return x

}

2.5 Conclusions and related work

In this chapter we have introduced a sequential class-based object-oriented lan-
guage, specified its semantics, and developed a proof system to prove safety
properties of programs written in the language. The programming language
allows dynamic object creation, aliasing, method invocation, and recursion.

We represent method invocations by two synchronous communication events
between the caller and the callee object, one for the call and one for returning.

48 CHAPTER 2. THE SEQUENTIAL LANGUAGE

Thus, though the language is sequential, i.e., we don’t have shared-variable
concurrency between threads, we have concurrency between objects.

To support a clean interface between internal and external object behavior,
we have excluded qualified references e.x to instance variables. To mirror this
modularity in the logic, the assertion language, used to describe program prop-
erties, consists of two levels: The local language allows to describe the execution
of method instances in terms of their local variables and of the instance vari-
ables of the object to which they belong. The global language reasons about the
global state and is used to describe communication properties. This two-level
assertion language allows a modular annotation and verification process: The
invariance of object properties, as specified by the class annotation, is indepen-
dent of the definition and annotation of other classes, as long as the assumptions
about the communication properties hold.

The proof system defines a number of verification conditions, which, applied
to proof outlines, assure inductivity and thus invariance of their annotation.
This is proved in Section 6. The above modularity is present also in the verifica-
tion conditions: Local correctness and interference freedom describe intra-object
execution and interleaving, and are formulated in the local language. Commu-
nication and object creation refer in general6 to inter-object computation; the
corresponding conditions of the cooperation test use the global language.

In the following we discuss related work on the semantics of sequential Java
sublanguages in Section 2.5.1. Research results related to our proof system are
handled in Section 2.5.2.

2.5.1 Semantics

Though we use an abstract syntax, the programming language can be seen as a
Java subset. Besides the official Sun reference [GJSB00] there exists a number
of introductions and references to the Java language, see, e.g., [Gra97].

The official Sun references for Java are sometimes inconsistent and incom-
plete; thus there is a need to develop formal models describing the behavior of
Java programs. The size of the language makes it hard to develop a complete
formal specification for it. Studies usually focus on some special aspects and
abstract away other details. The book [AF99] is a collection of works in the
field of Java’s formal syntax and semantics.

There are many research groups working on the formalization of sequential
Java sublanguages. Drossopoulou et al. [DEK99] give a formal description of the
type system and operational semantics of a sequential Java sublanguage with
inheritance, and prove soundness of the type system. Syme [Sym97, Sym99] en-
codes some of the models of Drossopoulou et al. in his DECLARE system, and
gives a machine-checked type-soundness proof. Drossopoulou and Valkevych
[DV00] present a type system and a semantics for a Java subset including excep-
tion handling, where they distinguish if a thrown exception is handled (caught)
or not.

6When the object communicated with is not identical to the value of this.

2.5. CONCLUSIONS AND RELATED WORK 49

A language with inner classes and inheritance is formalized by Igarashi and
Pierce [IP00]. Igarashi et al. [IPW99] develop type rules and an operational
semantics for a small sequential sublanguage with subtyping (Featherweight
Java) and prove type safety. Their calculus is smaller than CLASSICJAVA
proposed by Flatt et al. in [FKF99].

Alves-Foss and Lam [AFL99] present a dynamic denotational semantics of a
Java subset. The semantics covers almost the full range of the base language,
but excludes concurrency.

Glesner and Zimmermann [GZ98] specify the type system for a Java fragment
with inheritance as an example of their work on many-sorted logic.

2.5.2 Proof system

In contrast to our work, not all deductive approaches for concurrent systems
use auxiliary variables7. Lamport [Lam88] uses control predicates, which are
assertions explicitly mentioning the control state. Our proof system defines some
built-in auxiliary variables which are similar to Lamport’s control predicates.
The built-in auxiliary variables are updated by a built-in augmentation; the
user does not have to augment the program with them, but may use their
values in the user-definable part of the augmentation and in the annotation.
Additionally, in our approach the user may define further arbitrary auxiliary
variables, according to his or her need to specify the annotation. From this
point of view, one can say that our proof system combines control predicates
and auxiliary variables.

Other approaches [AL97, JKW03, vON02] based on the global store model
use a full semantic embedding to reason about invariant program properties.
This means that assertions are predicates over configurations and not over
states. Implicitly, those approaches do not require augmentation. Invariance
of the annotation under execution can be shown directly using the (usually
denotational) semantics.

In our approach, invariance of the annotation is assured by the verification
conditions of our proof system, which are logical implications (see Chapter 5)
evaluated in states. The main advantages of our syntactic approach is that
we only have to encode states and the semantics of assertions in the theorem
prover, since the verification conditions are implications evaluated in states. In
contrast, the semantic approaches require an embedding of the programming
language semantics in the theorem prover.

The grouping of the verification conditions of our proof system is stan-
dard. As already mentioned in Section 1.3, the issue of local correctness goes
back to Hoare’s logic [Hoa69] developed for a sequential language. Owicki and
Gries [OG76] (see also [Owi75]) and Lamport [Lam77] extended the logic to
shared-variable concurrency, thereby formalizing an interference freedom test,
and giving the notion of a proof outline the first time. The cooperation test

7They are also called “dummy variables”, “ghost variables”, and “thought variables”.

50 CHAPTER 2. THE SEQUENTIAL LANGUAGE

was first introduced for CSP by Apt, Francez, and de Roever [AFdR80] and by
Levin and Gries [LG81].

In the field of deductive verification support for object-oriented programs,
research mostly concentrated on sequential languages. Early examples of Hoare-
style proof systems for sequential object-oriented languages are worked out by
de Figueiredo [dF95] and by Leavens and Wheil [LW90, LW95].

De Boer [dB91b, dB99] develops a first sound and relatively complete proof
system for a sequential object-oriented language called SPOOL. Later work
[PdB03, dBP03, dBP02] includes more features, especially inheritance and sub-
typing.

The aim of the work in the Loop project (Logic of Object-Oriented Pro-
gramming) [Loo01] is to specify and verify properties of classes in class-based
object-oriented languages. The project research concentrates on a sequential
subpart of Java; the main focus of application is JavaCard.

A compiler [vdBJ02] translates programs and their specifications into PVS
[JvdBH+98, JvdBH+98] and Isabelle/HOL [vdBHJP00]. The translation is
based on the embedding of a coalgebraic semantics of a sequential Java sub-
set into Higher Order Logic (HOL). Soundness of the representation is shown in
[Hui01]. Loop specifications, formalized in JML, are represented in HOL by a
set of proof rules [JP01]. Jacobs presents also a coalgebraic view of exceptions
in [Jac01]. Modeling inheritance in higher order logic is the topic of [HJ00]. The
Loop tool and its methodology have been applied to several case studies; see,
e.g., [PvdBJ01, PvdBJ00, vdBJP01, HJvdB01, JKW03].

Though research within the Loop project deals with many of the complex-
ities of Java, they neither handle concurrency, nor investigate completeness.

The project Bali [Bal03] is concerned with the formalization of various as-
pects of Java in the theorem prover Isabelle/HOL [Pau93]. Nipkow and von
Oheimb [NvO98, vON99] prove type soundness of their Javalight subset, a large
sequential sublanguage of Java. They formalize its abstract syntax, its type
system, and well-formedness conditions, and develop an operational semantics.
Based on this formalization, they express and prove type soundness within
the theorem prover Isabelle/HOL. To complement the operational semantics
of Javalight , von Oheimb presents an axiomatic semantics [vO00a, vO00b], and
proves soundness and completeness of the latter with respect to the operational
semantics.

With μJava, Nipkow et al. [NvOP00] offer an Isabelle/HOL embedding of
Java’s imperative core with classes. They present a static and a dynamic se-
mantics of the language both at the Java level and the JVM level.

Based on [NvOP00], von Oheimb [vO01] presents a Hoare-style calculus for
a JavaCard subset and proves soundness and completeness in Isabelle/HOL.
Nipkow [Nip02] selects some of the technically difficult language features and
deals with their Hoare logic in isolation. The combination of [vO01] and [Nip02]
in one language (NanoJava) is formulated in [vON02].

2.5. CONCLUSIONS AND RELATED WORK 51

In contrast to our approach, the Bali project aims to cover only sequential
subsets of Java. Furthermore, a semantic representation of assertions is used;
program execution is specified by state transformations. Our proof system uses
a syntactic representation and substitution operators instead of state transfor-
mations. We see the main advantage of such a syntactical representation in
an increased automation of computer-supported verification: Using a theorem
prover to prove program properties correct requires only the representation of
the assertion semantics in the theorem prover, but not the programming lan-
guage semantics as in more semantically-oriented approaches. Our experience
shows that this simple representation leads to a high degree of automation. A
disadvantage inherent to the syntactical approach is that it does not support a
computer-assisted soundness proof.

Poetzsch-Heffter and Müller [PH97a, PH97b, PHM98, PHM99] develop a
Hoare-style programming logic for a sequential kernel of Java, featuring inter-
faces, subtyping, and inheritance. Translating the operational and the axiomatic
semantics into the HOL theorem prover allows a computer-assisted soundness
proof. Neither this group deals with concurrent sublanguages of Java.

Reus, Wirsing, and Hennicker [RW00, RHW01] use a modification of the
object constraint language OCL (OCLlight) as assertional language to annotate
UML class diagrams and to generate proof conditions for Java-programs. They
treat inheritance and show soundness of the proof system.

Abadi and Leino [AL97] present a Hoare-style proof-system for a sequential
object-oriented language in the form of an object calculus [AC96]. They also
prove soundness of their logic. Their language features heap-allocated objects
(but no classes), side-effects and aliasing, and its type system supports subtyp-
ing. Their assertion language is presented as an extension of the object calculus’
language of type and analogously, the proof system extends the type derivation
system. The close connection of types and specifications in the presentation
is exploited by Tang and Hofmann in [TH02] for the generation of verification
conditions.

The aim of the KeY project [KeY03] is to integrate formal software specifica-
tion and verification into the industrial software engineering process [ABB+00].
The starting point is a commercial CASE tool which will be augmented by ca-
pabilities for formal specification and verification. The paper [Bec01] describes
a dynamic logic for JavaCard and a sequent calculus for this logic, which is the
basis for the KeY system’s software verification component. The research is
guided and evaluated through an extended case study using JavaCard applets
as an application domain. A case study can be found in [BH03].

52 CHAPTER 2. THE SEQUENTIAL LANGUAGE

Chapter 3

The concurrent language

In this chapter we extend the language Javaseq to a concurrent language Javaconc

by allowing dynamic thread creation. Again, we define syntax and semantics of
the language in the Sections 3.1 and 3.2, before formalizing the proof system for
the concurrent language in Section 3.3. Section 3.4 contains concluding remarks
and discusses related work.

3.1 Syntax

Expressions, statements, and methods can be constructed as in Javaseq . The
abstract syntax of the remaining constructs is summarized in Table 3.1. As

class ::= class c{meth. . .meth methrun methstart}
classmain ::= class

prog ::= class . . .class classmain

Table 3.1: Javaconc abstract syntax

we focus on concurrency aspects, all classes are Thread classes in the sense
of Java: Each class contains a predefined start method that can be invoked
only once for each object, resulting in a new thread of execution. The new
thread starts to execute the user-defined run method of the given object while
the initiating thread continues its own execution. The run methods cannot
be invoked directly. The parameterless start method without return value is
not implemented syntactically; see the next section for its semantics. Note,
that the syntax does not allow qualified references to instance variables. As a
consequence, shared-variable concurrency is caused by simultaneous execution
within a single object only, but not across object boundaries.

53

54 CHAPTER 3. THE CONCURRENT LANGUAGE

3.2 Semantics

The operational semantics of Javaconc extends the semantics of Javaseq by dy-
namic thread creation. The additional rules are shown in Table 3.2. The invo-

β = [[e]]
σ(α),τ
E ∈ Val c(σ) ¬started (T ∪ {ξ ◦ (α, τ, e.start(); stm)}, β)

Callstart

〈T ∪̇ {ξ ◦ (α, τ, e.start(); stm)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ, stm), (β, τ run,c

init , body run,c)}, σ〉

β = [[e]]
σ(α),τ
E ∈ Val (σ) started (T ∪ {ξ ◦ (α, τ, e.start(); stm)}, β)

Call
skip
start〈T ∪̇ {ξ ◦ (α, τ, e.start(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Table 3.2: Javaconc operational semantics

cation of a start method brings a new thread into being (rule Callstart) which
starts to execute the run method of the callee object1. Only the first invo-
cation of the start method has this effect (rule Call

skip
start).2 This is captured

by the predicate started(T, β) which holds iff there exists a stack of the form
(α0, τ0, stm0) . . . (αn, τn, stmn) ∈ T such that β = α0. A thread ends its lifespan
by returning from a run method (rule Returnrun of Table 2.3).3

3.3 The proof system

In contrast to the sequential language, the proof system additionally has to
accommodate dynamic thread creation and shared-variable concurrency. From
a proof theoretical view, the latter is the main difference with respect to the
sequential case. Before describing the proof method, we show how to extend
the built-in augmentation of the sequential language.

1We define thread creation to be atomic. In Java, however, first the predefined start method
is called. During the execution of the start method a new thread gets created, which finally
invokes the callee’s run method. Note that run methods must not be synchronized, and that
during thread creation no instance states get modified. Consequently, though Java defines
a finer-grained semantics allowing additional control points, reachability for the remaining,
common control points is identical in both semantics.

2In Java an exception is thrown if the thread is already started but not yet terminated.
3The worked-off local configuration (α, τ, ε) is kept in the global configuration to ensure

that the thread of α cannot be started twice.

3.3. THE PROOF SYSTEM 55

3.3.1 Proof outlines

To obtain a complete proof system, for the concurrent language we additionally
have to be able to identify threads. We identify a thread by the object in which
it has begun its execution. We use the type Thread thus as abbreviation for the
type Object. This identification is unique, since an object’s thread can be started
only once. During a method call, the callee thread receives its own identity as a
built-in auxiliary formal parameter thread. Additionally, we extend the auxiliary
formal parameter caller by the caller thread identity, i.e., let caller be of type
Object× Int×Thread, storing the identities of the caller object, the calling local
configuration, and the caller thread. Note that the thread identities of caller and
callee are the same in all cases except for the invocation of a start method. We
need this additional information identifying the caller thread, because in a self-
invocation of the start method the corresponding observation of the caller thread
must not change the instance state (see page 29); thus the only way to refer to
the caller thread in an observation of the call is to make this identity known
by the new thread, which may execute observations modifying the instance
state. The run method of the initial object is executed with the parameters
(thread, caller) having the values (α0, (null , 0,null)), where α0 denotes the initial
object. The value of the boolean built-in auxiliary instance variable started,
finally, remembers whether the object’s start method has already been invoked.

Syntactically, each formal parameter list �u in the original program gets ex-
tended to (�u, thread, caller). Correspondingly for the caller, each actual param-
eter list �e in statements invoking a method different from start gets extended to
(�e, thread, (this, conf, thread)). The invocation of the parameterless start method
of an object e0 gets the actual parameter list (e0, (this, conf, thread)). Finally, the
callee observation at the beginning of the run method executes started := true.
The variables conf and counter are updated as in the previous chapter. Again,
for a detailed description of the syntactical built-in augmentation we refer to
Section 9.2.2.

Remember that the caller observation of self-calls may not modify the in-
stance state, as required in Section 2.4.1. Invoking the start method by a self-call
is specific in that, when the thread is already started, the caller is the only active
entity. In this case, it has to be the caller that updates the instance state; the
corresponding observation has the form x := if e0 = this∧¬started then x else e fi.

Since a thread calling a start method does not wait for return but continues
execution, the augmentation and annotation of such method invocations have
the form {p1}e0.start(�e) {p2}!call 〈stm〉!call {p3} .

3.3.2 Verification conditions

Initial correctness

Initial correctness changes only in that the formal parameters thread and caller
get assigned the initial values α and (null , 0,null), where α is the initial object.
We modify the initial correctness conditions of the previous chapter (page 33)
correspondingly as follows:

56 CHAPTER 3. THE CONCURRENT LANGUAGE

Definition 3.3.1 (Initial correctness) Let the body of the run method of the
main class c be {p2}?call 〈�y2 := �e2〉?call {p3} stm; return with local variables �v without
the formal parameters, z ∈ LVarc, and z′ ∈ LVarObject. A proof outline is
initially correct, if

|=G {InitState(z) ∧ ∀z′. z′ = null ∨ z = z′} (3.1)
�v, thread, caller := Init(�v), z, (null, 0, null)

{P2(z)} , and
|=G {InitState(z) ∧ ∀z′. z′ = null ∨ z = z′} (3.2)

�v, thread, caller := Init(�v), z, (null, 0, null); z.�y2 := �E2(z)
{GI ∧ P3(z) ∧ Ic(z)} .

Again, the assertion InitState(z) ∧ ∀z′. z′ = null ∨ z = z′ states that the initial
global state defines exactly one existing object z being in its initial instance
state, and the observation �y2 := �e2 at the beginning of the run method of the
initial object z is represented by the assignment z.�y2 := �E2(z). The difference
is in the initialization of the local configuration, which is now represented by
the assignment �v, thread, caller := Init(�v), thread, (null, 0, null).

Local correctness

Local correctness is not influenced by the new issue of concurrency. Note that
local correctness applies now to all concurrently executing threads.

The interference freedom test

Interference of a single thread under its own execution remains the same as for
the sequential language. However, we additionally have to deal with invariance
of properties of a thread under the execution of a different thread. Note that
assertions at auxiliary points do not have to be shown invariant.

An assertion q at a control point has to be invariant under an assignment
�y := �e in the same class only if the local configuration described by the assertion
is not active in the computation step executing the assignment. Again, to
distinguish local variables of the different local configurations, we rename those
of the assertion which has to be shown invariant, resulting in primed variables,
expressions, and assertions. For example, in the conditions we use thread to
identify the thread executing the assignment, and thread′ to identify the thread
described by q.

If q and �y := �e belong to the same thread, i.e., thread′ = thread, then we
have the same antecedent as for the sequential language. If the assertion and the
assignment belong to different threads, interference freedom must be shown in
all cases except for the self-invocation of the start method: The callee observation
of a self-invocation of a start method cannot interfere with the precondition
of the invocation. To describe this setting, we define self start(q, �y := �e) by
caller = (this, conf′, thread′) iff q is the precondition of a method invocation

3.3. THE PROOF SYSTEM 57

e0.start(�e) and the assignment is the callee observation at the beginning of the
run method, and by false, otherwise.

The example of Figure 3.1 illustrates the execution of an assignment in an
object, in which two threads are executing concurrently, sharing the instance
variables of the object. The assignment occurs in a method which was invoked
by a self-call; p7 describes the control point in the caller configuration, and p8

and p9 are the pre- and postconditions of the assignment. The other thread has
currently two control points in the object: p4 describes the local configuration
on the top of the stack, and p2 is at a control point waiting for return. All other
control points are in objects different from the one in which the assignment is
executed.

Both p2 and p4, describing a thread different from the executing one, have to
be invariant under the assignment. Also p7 has to be invariant if the assignment
does not observe return. The assertion p8 does not have to be invariant, where
satisfaction of p9 after execution is assured by local correctness. We do not have
to show invariance of p1, p3, p5, and p6, since these assertions describe objects
different from the one in which the assignment is executed.

p

p

p

p

p

p

Thread

Object

Method
execution

6

1
3

7

2
p

y:=e

4

p5

9p8

Figure 3.1: Interference between threads

Definition 3.3.2 (Interference freedom) A proof outline is interference
free, if the conditions of Definition 2.4.11 hold with waits for ret(q, �y := �e) re-
placed by

interferes(q, �y := �e)
def
= thread = thread′ → waits for ret(q, �y := �e) ∧

thread �= thread′ → ¬self start(q, �y := �e) .

Example 3.3.3 Assume an annotated assignment {p} stm in a method, and
an assertion q at a control point not waiting for return in the same method,
such that both p and q imply thread = this. I.e., the method is executed only

58 CHAPTER 3. THE CONCURRENT LANGUAGE

by the thread of the object to which it belongs. Clearly, p and q cannot be
simultaneously reached by the same thread. For invariance of q under the
assignment stm, the antecedent of the interference freedom condition implies
p ∧ q′ ∧ interferes(q, stm). From p ∧ q′ we conclude thread = thread′, and thus
by the definition of interferes(q, stm) the assertion q should be at a control point
waiting for return, which is not the case, and thus the antecedent of the condition
evaluates to false.

Example 3.3.4 Consider the following method which increments the value of
an instance variable x:

inc (){ x:=x+1 }

Under which conditions can we prove invariance of the specification

inc (){ {x = 0} x:=x+1 {x = 1} }

under the assignment x := x + 1?
One possible condition is that only the thread originating from the object

itself can execute this method:

inc (){ {x = 0 ∧ thread = this} x:=x+1 {x = 1} }

We have the following interference freedom condition for invariance of the pre-
condition of the assignment under the execution of the assignment:

|=L (x = 0∧ thread = this)∧ (x = 0∧ thread′ = this)∧ thread �= thread′ → x = 0 .

Note that since the assertion x = 0 ∧ thread = this is not at a control point
waiting for return, the definition of interferes assures thread �= thread′.

The specification would also be invariant under the weaker requirement that
though also other threads may execute m, but not concurrently. This property
we can express using an auxiliary instance variable t storing the identity of the
thread executing m:

inc (){ {t = null ∧ thread �= null}?call 〈t := thread〉?call
{x = 0 ∧ thread = t �= null} x:=x+1; {x = 1 ∧ thread = t �= null}
return {thread = t �= null}!ret 〈t := null〉!ret

}

As a last example, we could also state that the method is not executed con-
currently, by storing the identity of the executing configuration in t:

inc (){ {t = −1}?call 〈t := conf ; 〉?call
{x = 0 ∧ conf = t ≥ 0} x:=x+1; {x = 1 ∧ conf = t ≥ 0}
return {conf = t ≥ 0}!ret 〈t := −1〉!ret

}

where the class invariant states counter ≥ 0.
Note that in the latter both cases the preconditions of the observation of the

call and of the return,as well as the precondition of the assignment are justified
in the cooperation test.

3.3. THE PROOF SYSTEM 59

The cooperation test

The cooperation test for object creation is not influenced by adding concurrency.
Also the invocation of methods different from start, executed by a single thread,
is not affected by the presence of concurrency. However, we have to extend the
cooperation test for communication by defining additional conditions for thread
creation. In the definition below, the first case (Callstart) covers the creation
of a new thread by invoking a start method. Again, z and z′ are fresh logical
variables representing the caller and the callee object. Besides the precondition
of the call, the global, and the class invariants, we assume that the execution is
enabled, i.e., that the thread of the callee object is not yet started, as expressed
by ¬z′.started. Invoking the start method of an object whose thread is already
started does not have communication effects (Call

skip
start). The same holds for

returning from a run method, which is already included in the conditions for the
sequential language as for the termination of the only thread (case Returnrun

on page 42). Note that this condition applies now to all threads.

Definition 3.3.5 (Cooperation test: Communication) A proof outline
satisfies the cooperation test for communication, if the conditions of Defini-
tion 2.4.14 hold for the statements listed there with m �= start, and additionally
in the following cases:

1. Callstart : For all statements {p1}e0.start(�e) {p2}!call 〈�y1 := �e1〉!call {p3} in
class c with e0 of type c′, comm is given by E0(z) = z′ ∧ ¬z′.started,
where {q2}?call 〈�y2 := �e2〉?call {q3} stm; return is the body of the run method
of c′ having formal parameters �u, and local variables �v except the formal
parameters. The callee class invariant is q1 = Ic′ . Furthermore, fcomm is
�u′, �v′ := �E(z), Init(�v), fobs1 is z.�y1 := �E1(z), and fobs2 is z′.�y′

2 := �E′
2(z

′).

2. Call
skip
start : For the above statements, the equations must additionally hold

with the assertion comm given by E0(z) = z′ ∧ z′.started, q2 = q3 = true,
q1 and fobs1 as above, and fcomm and fobs2 are the empty statement.

Examples

Example 3.3.6 Assume the following augmented and annotated class with in-
teger instance variables thr, nr, and sum, an auxiliary integer instance variable
between, and where its class invariant I is given by sum=(thr-between)*nr:

class Sum{
Int thr ,nr ,sum;
〈Int between; 〉
{sum = (thr − between) ∗ nr}

Void inc (){
thr := thr +1; 〈between := between + 1〉ass
sum := sum+nr 〈between := between − 1〉ass

}
}

60 CHAPTER 3. THE CONCURRENT LANGUAGE

Each thread that executes the method inc increases the value of the instance
variable thr by one and the value of the instance variable sum by the constant
value nr. This way, thr stores the number of invocations of inc and if no threads
are in the inc method then sum equals thr*nr, as expressed by the annotation.

There are no local correctness and no cooperation test conditions. Two in-
terference freedom conditions assure the invariance of the class invariant under
the assignments in the inc method. Both conditions are verified automatically
in PVS.

Example 3.3.7 Assume the following proof outline which offers mutual exclu-
sion for the execution of a critical section within the method mutex:

class MutEx extends Thread {
Int t;
〈list Thread tseq; 〉
〈Thread crit; 〉

{t = |tseq|}
Void mutex (){

Bool done;

{thread �= null ∧ thread �= crit}
done := false ;

{done ∨ (thread �= null ∧ thread �= crit)}
while (¬done) do

{thread �= null ∧ thread �= crit}
t := t+1; 〈tseq := tseq ◦ thread〉ass
{thread �= null ∧ thread �= crit ∧ thread ∈ tseq}
if (t>1) 〈crit := (if t > 1 then crit else thread fi)〉 then

{thread �= null ∧ thread �= crit ∧ thread ∈ tseq}
t:=t-1; 〈tseq := tseq − thread〉ass
{thread �= null ∧ thread �= crit}

else
{thread �= null ∧ thread = crit ∧ thread ∈ tseq}
//critical section
done:= true;
{thread �= null ∧ thread = crit ∧ thread ∈ tseq ∧ done}
t:=t-1; 〈crit, tseq := null, tseq − thread〉ass
{done}

fi

{done ∨ (thread �= null ∧ thread �= crit)}
od

}
}

The annotation thread=crit for the critical section expresses that there is at
most one thread executing the critical section, whose identity is stored in the
auxiliary instance variable crit. The identities of the threads which has in-
creased but not yet decreased the value of t are stored in the auxiliary instance
variable tseq.

The Verger tool generates4 11 local and 29 interference freedom conditions5.
Cooperation test conditions are not generated. All conditions are verified in
PVS.

4for an equivalent program in Java syntax
5The tool does not generate trivial conditions, like for example the invariance of an assertion

under an assignment to a variable which does not occur in the assertion.

3.4. CONCLUSIONS AND RELATED WORK 61

3.4 Conclusions and related work

This chapter extends the previous one by adding concurrency. After describing
syntax and semantics of the concurrent language, we discussed how to extend
the proof system to cover multithreading.

The rules of the operational semantics of the sequential language are ex-
tended by rules for dynamic thread creation; the transition rules for the sequen-
tial language are not modified. Also the verification conditions are extended,
i.e., the conditions of the sequential language are not modified, we just define
additional conditions to cover concurrency. This fact reflects the one-to-one
connection between the transition rules of the semantics and the verification
conditions of the proof system.

In his book, Lea [Lea99] gives a general introduction to concurrency in
Java. Other introductory books on Java multithreading are, e.g., [OW99, CT00,
Hol00, Hyd01, LB99]. Magee and Kramer offer in [MK99] an approach for de-
signing, analyzing and implementing concurrent programs.

First we collect related work on the semantics of multithreaded Java sublan-
guages, before discussing proof systems for such languages.

3.4.1 Semantics

Börger et al. presented several results on formal specifications of Java, the JVM,
and the compiler. Their work is based on the Abstract State Machine (ASM)
formalism [BS03]. Two earlier papers specify a modular semantics of a subset of
the JVM [BS99a] and a subset of Java [BS99b]. In [BS98] they state correctness
of the compiler for parts of these subsets. In [BS00] these authors discuss
the exception handling mechanism, and formulate the correctness of compiling
exception handling with a full proof.

The book [SSB01] by Stärk, Schmid, and Börger provides a formal specifi-
cation of Java and of the JVM, developed incrementally in different layers. The
work includes a compiler of Java programs to JVM code and a bytecode verifier.
Correctness of the compiler with respect to the given semantics of Java and the
JVM , and its completeness with respect to the bytecode verifier are formally
proven (see also [SS03]).

Gurevich, Schulte, and Wallace [Wal97, GSW00a, GSW00b] give the speci-
fication of a multithreaded Java subset with exception handling. Their work is
also based on the Abstract State Machine framework.

3.4.2 Proof system

Work on proof systems for parallel object-oriented languages in general and for
multithreading aspects of Java in particular is rather scarce.

America and de Boer [AdB90a, AdB93] develop proof systems for a language
with dynamic process creation. De Boer [dB99, dB91b, dB91a, dB90] presents a
sound and relatively complete proof system in weakest precondition formulation

62 CHAPTER 3. THE CONCURRENT LANGUAGE

for a parallel object-based language called POOL, i.e., without inheritance and
subtyping, and also without reentrant method calls. POOL has a different
object-oriented concurrency model where each object specifies its own thread of
control.

While our proof systems takes full concurrency into account, other research
directions try to reduce the complexity by putting constraints on programs.
Flanagan, Freund, and Qadeer describe in [FFQ02] a static checker for multi-
threaded software systems. The programmer should specify environment as-
sumptions that put constraints onto the interaction between threads. The
checker uses this information to reduce the verification of the original multi-
threaded program to the verification of several sequential programs.

Chapter 4

Reentrant monitors

In this chapter we extend the concurrent language with monitor synchroniza-
tion. Again, we define syntax and semantics of the language Javasynch in the
Sections 4.1 and 4.2 before formalizing the proof system in Section 4.3. We
conclude in Section 4.4 with some remarks and related work.

As a mechanism of concurrency control, methods can be declared as syn-
chronized. Each object has a lock which can be owned by at most one thread.
Synchronized methods of an object can be invoked only by a thread that owns
the lock of that object. If the thread does not own the lock, it has to wait until
the lock gets free. A thread owning the lock of an object can recursively invoke
several synchronized methods of that object; this corresponds to the notion of
reentrant monitors.

Besides mutual exclusion, using the lock-mechanism for synchronized meth-
ods, objects offer the methods wait, notify, and notifyAll as means to facilitate
thread coordination at the object boundary. A thread owning the lock of an
object can block itself and free the lock by invoking wait on the given object.
The blocked thread can be reactivated by another thread owning the lock via
the object’s notify method; the reactivated thread must reapply for the lock
before it may continue its execution. The method notifyAll, finally, generalizes
notify in that it notifies all threads blocked on the object.

4.1 Syntax

Expressions and statements can be constructed as in the previous languages.
The abstract syntax of the remaining constructs is summarized in Table 4.1.

Methods are decorated by a modifier modif distinguishing between non-
synchronized and synchronized methods.1 In the sequel we also refer to state-
ments in the body of a synchronized method as being synchronized. Further-
more, we consider the additional predefined methods wait, notify, and notifyAll,

1Java does not have the “non-synchronized” modifier: methods are non-synchronized by
default.

63

64 CHAPTER 4. REENTRANT MONITORS

modif ::= nsync | sync
meth ::= modif m(u, . . ., u){ stm; return expret}

methrun ::= nsync run(){ stm; return }
methwait ::= nsync wait(){ ?signal; returngetlock }

methnotify ::= nsync notify(){ !signal ; return }
methnotifyAll ::= nsync notifyAll(){ !signal all; return }
methpredef ::= methstart methwait methnotify methnotifyAll

class ::= class c{meth. . .meth methrun methpredef }
classmain ::= class

prog ::= class . . .class classmain

Table 4.1: Javasynch abstract syntax

whose definitions use the auxiliary statements !signal, !signal all, ?signal, and
returngetlock , which describe at a high level of abstraction the signal-and-continue
mechanism underlying the wait, notify, and notifyAll methods.2

4.2 Semantics

The operational semantics extends the semantics of Javaconc by the rules of
Table 4.2, where the Call rule is replaced. For synchronized method calls, the
lock of the callee object has to be free or owned by the executing thread, as
expressed by the predicate owns , defined below.

The remaining rules handle the semantics of the monitor methods wait,
notify, and notifyAll. In all three cases the caller must own the lock of the
callee object (rule Callmonitor). A thread can block itself on an object whose
lock it owns by invoking the object’s wait method, thereby relinquishing the lock
and placing itself into the object’s wait set. Formally, the wait set wait(T, α)
of an object is given as the set of all stacks in T with a top element of the
form (α, τ, ?signal; stm). After having put itself on ice, the thread awaits noti-
fication by another thread which invokes the notify method of the object. The
!signal-statement in the notify method thus reactivates a non-deterministically
chosen single thread waiting for notification on the given object (rule Signal).
Analogously to the wait set, the notified set notified(T, α) of α denotes the set
of all stacks in T with top element of the form (α, τ, returngetlock), i.e., threads
which have been notified and trying to get hold of the lock again. Accord-
ing to rule Returnwait , the receiver can continue after notification in exe-
cuting returngetlock only if the lock is free. Note that the notifier does not
hand over the lock to the one being notified but continues to own it. This
behavior is known as the signal-and-continue monitor discipline [And00] (cf.

2Java’s Thread class additionally supports methods for suspending, resuming, and stopping
a thread, but they are deprecated and thus not considered here.

4.2. SEMANTICS 65

m /∈ {start, run, wait, notify, notifyAll} modif m(�u){ body } ∈ Methc

β = [[e0]]
σ(α),τ
E ∈ Val c(σ) τ ′ = τm,c

init [�u �→[[�e]]
σ(α),τ
E]

(modif = sync) → ¬owns(T, β)
Call

〈T ∪̇ {ξ ◦ (α, τ, u := e0.m(�e); stm)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ, receive u; stm) ◦ (β, τ ′, body)}, σ〉

m ∈ {wait, notify, notifyAll}
β = [[e]]

σ(α),τ
E ∈ Val c(σ) owns(ξ ◦ (α, τ, e.m(); stm), β)

Callmonitor

〈T ∪̇ {ξ ◦ (α, τ, e.m(); stm)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ, receive; stm) ◦ (β, τm,c

init , bodym,c)}, σ〉

¬owns(T, β)
Returnwait

〈T ∪̇ {ξ ◦ (α, τ, receive; stm) ◦ (β, τ ′, returngetlock)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Signal

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)} ∪̇ {ξ′ ◦ (α, τ ′, ?signal; stm ′)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ, stm)} ∪̇ {ξ′ ◦ (α, τ ′, stm ′)}, σ〉

wait(T, α) = ∅
Signalskip〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

T ′ = signal(T, α)
SignalAll

〈T ∪̇ {ξ ◦ (α, τ, !signal all; stm)}, σ〉 −→ 〈T ′ ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Table 4.2: Javasynch Operational semantics

66 CHAPTER 4. REENTRANT MONITORS

Section 1.2). If no threads are waiting on the object, the !signal of the no-
tifier is without effect (rule Signalskip). The notifyAll method generalizes
notify in that all waiting threads are notified via the !signal all-broadcast (rule
SignalAll). The effect of this statement is given by defining signal (T, α) as
(T \ wait(T, α)) ∪ {ξ ◦ (α, τ, stm) | ξ ◦ (α, τ, ?signal; stm) ∈ wait(T, α)}.

Using the wait and notified sets, we can now formalize the owns predicate: A
thread ξ owns the lock of β iff ξ executes some synchronized method of β, but not
its wait method. Formally, owns(T, β) is true iff there exists a thread ξ ∈ T and
a (β, τ, stm) ∈ ξ with stm synchronized and ξ /∈ wait(T, β)∪notified(T, β). The
definition is used analogously for single threads. An invariant of the semantics
is that at most one thread can own the lock of an object at a time.

4.3 The proof system

The proof system has additionally to accommodate synchronization and reen-
trant monitors. First we define how to extend the augmentation of Javaconc,
before we describe the proof method.

4.3.1 Proof outlines

To capture mutual exclusion and the monitor discipline, the built-in auxiliary
instance variable lock of type Thread× Int stores the identity of the thread who
owns the lock, if any, together with the number of synchronized calls in its call
chain. The initial lock value free = (null , 0) indicates that the lock is free. The
instance variables wait and notified of type list(Thread× Int) are the analogues of
the wait and notified sets of the semantics and store the threads waiting at the
monitor, respectively, those having been notified. Besides the thread identity,
the number of synchronized calls is stored. In other words, these variables
remember the old lock-value prior to suspension which is restored when the
thread becomes active again. Since the order of these sequences does not play a
role, in the following we handle them as sets, and apply set-theoretical operations
to them. All auxiliary variables are initialized as usual. For values thread of
type Thread and wait of type list(Thread× Int), we will also write thread ∈ wait
instead of (thread , n) ∈ wait for some n.

Syntactically, besides the built-in augmentation of the previous chapter,
the callee observation at the beginning and at the end of each synchronized
method body executes lock := inc(lock) and lock := dec(lock), respectively.
The semantics of incrementing the lock [[inc(lock)]]σinst ,τ

E is (τ(thread), n + 1) for
σinst (lock) = (v, n). Note that the identity of the lock owner is set to the
identity of the executing thread not only in case the lock is free, but also if a
thread is already owning the lock. However, since these updates are executed
in synchronized methods, the semantics assures for the latter case that the lock
owner is the executing thread, i.e., if the lock is not free then the thread com-
ponent of the lock is not modified. That means, incrementing the lock value
(α, n) yields (α, n + 1), whereas incrementing a free lock (null , 0) by a thread

4.3. THE PROOF SYSTEM 67

α results in (α, 1). Decrementing dec(lock) is done inversely: [[dec(lock)]]σinst ,τ
E

with σinst (lock) = (α, n) is (α, n − 1) if n > 1, and free, otherwise.
Instead of the auxiliary statements of the semantics, notification is repre-

sented in the state-based proof system by auxiliary assignments operating on
the wait and notified variables: The auxiliary !signal and !signal all statements
are replaced by auxiliary assignments3. The auxiliary ?signal statements are
not represented. That means, notification is represented by a single auxiliary
assignment executed by the notifier. For threads being notified, the control
points before and after notification are described by a single assertion in the
wait method. The different control points can be distinguished by the values of
the built-in auxiliary variables wait and notified.

Representing the auxiliary statements of notification by auxiliary assign-
ments has two main advantages: First, we do not have to define verification
conditions for communicating pairs of local configurations, but we can cover
notification by local correctness conditions for the notifier and by interference
freedom conditions for the notified partner. Second, we do not need to define
special interference freedom conditions for notification. Instead, notification,
being represented by auxiliary assignments, can be handled as usual assign-
ments.

Syntactically, entering the wait method gets the observation wait, lock :=
wait ∪ {lock}, free; returning from the wait method observes lock, notified :=
get(notified, thread), notified\{get(notified, thread)}. For a thread α ∈ ValThread

and a list notified ∈ Val list(Thread×Int), get(notified , α) retrieves the value (α, n)
from the list. The semantics assures uniqueness of the association. The !signal-
statement of the notify method is represented by the auxiliary multiple assign-
ment wait, notified := notify(wait, notified), where the value notify(wait ,notified)
is the pair of the given sets with one element, chosen nondeterministically, moved
from the wait into the notified set; if the wait set is empty, it is the identity func-
tion4. Finally, the !signal all-statement of the notifyAll method is represented by
the auxiliary assignment notified, wait := notified ∪ wait, ∅. See Section 9.2.2 for
a detailed description of the syntactical augmentation.

4.3.2 Verification conditions

Initial and local correctness agree with those for Javaconc. For local correctness,
note that the conditions now additionally cover invariance for threads executing
notification. However, we do not need additional conditions for this case, as
the effect of notification is captured by an auxiliary assignment. For threads
being notified, the control points before and after notification are described
by a single assertion. The interference freedom test assures invariance of this

3In Java, the implementation of the monitor methods are syntactically not included in
class definitions. Their augmentation and annotation can be specified by special comments,
see Section 9.2.3.

4Though the function notify is non-deterministic, it is represented in the implementation
by a deterministic function, where the logic is extended by an axiom stating the properties of
notify.

68 CHAPTER 4. REENTRANT MONITORS

assertion under the assignment of the notifier, such that neither for this case
are additional local conditions necessary.

The interference freedom test

Synchronized methods of a single object can be executed concurrently only if one
of the corresponding local configurations is waiting for return: If the executing
threads are different, then one of the threads executes in the non-synchronized
wait method of the object; otherwise, both executing local configurations are
in the same call chain. Thus we assume that either the assignment or the
assertion occur outside of synchronized methods, or the assertion is at a control
point waiting for return.5

Definition 4.3.1 (Interference freedom) A proof outline is interference
free, if the conditions of Definition 3.3.2 hold for all classes c, all multiple
assignments �y := �e with precondition p in c, and all assertions q at control
points in c, such that either not both p and q occur in a synchronized method,
or q is at a control point waiting for return.

Note that for notification, we also require invariance of the assertions of threads
waiting for notification. We do so, as notification is described by an auxiliary
assignment executed by the notifier. That means, both the waiting and the no-
tified status of a suspended thread are represented by a single control point in
the wait method. The two statuses can be distinguished by the values of the wait
and notified variables. The invariance of the precondition of the return state-
ment in the wait method under the assignment in the notify method represents
the notification process, whereas invariance of that assertion over assignments
changing the lock represents the synchronization mechanism. Information about
the lock value will be imported from the cooperation test as this information
depends on the global behavior.

Example 4.3.2 This example shows how the fact that at most one thread can
own the lock of an object can be used to show mutual exclusion. We use the
assertion owns(thread, lock) for thread �= null ∧ thread(lock) = thread, where
thread(lock) is the first component of the lock value. Let free for(thread, lock) be
thread �= null ∧ (owns(thread, lock) ∨ lock = free).

Let q, given by owns(thread, lock), be an assertion at a control point and let

{p}?call 〈stm〉?call with p
def
= free for(thread, lock) be the callee observation at the

beginning of a synchronized method in the same class. Note that the observation
stm changes the lock value. The interference freedom condition |=L {p ∧ q′ ∧
interferes(q, stm)}stm{q′} assures invariance of q under the observation stm.
The assertions p and q′ imply thread = thread′. The points at p and q can be
simultaneously reached by the same thread only if q describes a point waiting for
return. This fact is mirrored by the definition of the interferes predicate: If q is

5This condition is not necessary for a minimal proof system, but reduces the number of
verification conditions.

4.3. THE PROOF SYSTEM 69

not at a control point waiting for return, then the antecedent of the condition
evaluates to false. Otherwise, after the execution of the built-in augmentation
lock := inc(lock) in stm we have owns(thread, lock), i.e., owns(thread′, lock),
which was to be shown.

The cooperation test

We extend the cooperation test for Javaconc with the synchronization mecha-
nism and with the invocation of the monitor methods. In the previous languages,
the assertion comm expressed that the given statements indeed represent com-
municating partners. In the current language with monitor synchronization,
communication is not always enabled. Thus the assertion comm has addition-
ally to capture enabledness of the communication: In case of a synchronized
method invocation, the lock of the callee object has to be free or owned by
the caller. This is expressed by z′.lock = free ∨ thread(z′.lock) = thread, where
thread is the caller thread, z′ is the callee object, and where thread(z′.lock) is
the first component of the lock value, i.e., the thread owning the lock of z′. For
the invocation of the monitor methods we require that the executing thread is
holding the lock. Returning from the wait method assumes that the thread has
been notified and that the callee’s lock is free.

Remember that the global invariant may only refer to instance variables
whose values are modified by observations of communication or object creation
only. Since the object-internal monitor signaling mechanism is represented by
stand-alone auxiliary assignment, notification cannot affect the global invariant.

Definition 4.3.3 (Cooperation test: Communication) A proof outline
satisfies the cooperation test for communication, if the conditions of Defini-
tion 3.3.5 hold for the statements listed there with the exception of the Call-
case, and additionally in the following cases:

1. Call: Invocations of non-synchronized methods m with m /∈ {start, wait,
notify, notifyAll} are treated as before. For all statements {p1}uret :=
e0.m(�e) {p2}!call 〈�y1 := �e1〉!call {p3}wait (or such without receiving a value) in
class c with e0 of type c′, where method m /∈ {start, wait, notify, notifyAll}
of c′ is synchronized with body {q2}?call 〈�y2 := �e2〉?call {q3} stm; return eret ,
formal parameters �u, and local variables �v except the formal parame-
ters, Conditions 2.6 and 2.7 must hold with the following definitions:
The callee class invariant is q1 = Ic′ . The assertion comm is given by
E0(z) = z′ ∧ (z′.lock = free ∨ thread(z′.lock) = thread). Furthermore,
fcomm is �u′, �v′ := �E(z), Init(�v), fobs1 is given by z.�y1 := �E1(z), and fobs2

is z′.�y′
2 := �E′

2(z
′).

2. Callmonitor : For m ∈ {wait, notify, notifyAll}, comm is given by E0(z) =
z′ ∧ thread(z′.lock) = thread.

3. Returnwait : For {q1} returngetlock {q2}!ret 〈�y3 := �e3〉!ret {q3} in a wait method,
comm is E0(z) = z′ ∧ �u′ = �E(z) ∧ z′.lock = free ∧ thread′ ∈ z′.notified.

70 CHAPTER 4. REENTRANT MONITORS

Example 4.3.4 Assume the invocation of a synchronized method m of a class
c, where m of c has the body 〈stm〉?call {thread(lock) = thread} stm ′; return. Note
that the built-in augmentation in stm sets the lock owner by the assignment
lock := inc(lock). Omitting irrelevant details again, the cooperation test requires
|=G {true}z′.lock := inc(z′.lock){thread(z′.lock) = thread′}, which holds by the
definition of inc.

Examples

Example 4.3.5 The following proof outline is a producer-consumer implemen-
tation using synchronized methods and notification to assure mutual exclusion:

class ProdCons {
Int buffer ;
Bool written ;

Void sync produce (Int u){
while (written) do wait() od;
{¬written}
buffer := u;
written := true;
notifyAll ()

}

Int sync consume (){
Int u;
while (¬written) do wait() od;
{written}
u := buffer ;
written := false ;
notifyAll ();
return u

}
}

The annotation expresses that prior to write access of the producer the shared
buffer is not written (or already read); similarly for the consumer, prior to read
access the buffer is written (and not yet read).

To prove invariance of the annotation we only have to show two local cor-
rectness conditions, stating that the loop-condition is false directly after exiting
a while-loop. The interference freedom test does not generate any conditions,
since the assertions in the synchronized methods are not at control points wait-
ing for return. Finally, the pre- and postconditions of method bodies and method
invocation statements are by definition true, and the class does not contain any
object creation statement, such that also the cooperation test does not specify
any conditions.

The conditions have been proven automatically in the theorem prover PVS.

Example 4.3.6 Assume the annotated class below, which implements a simple
account, offering interfaces for deposit and withdraw (see also Section 9.2.3).
To assure that the balance x remains non-negative, the withdraw method is syn-
chronized; implicitly, the balance does not get decreased between the evaluation
of x ≥ i in the withdraw method and the withdrawal. The annotation expresses

4.4. CONCLUSIONS AND RELATED WORK 71

that for each class instance, under the assumption, that the methods deposit
and withdraw are called with positive parameters only, the balance x has al-
ways a non-negative value, as stated in the class invariant. In the annotation
we use the functions owns(thread , lock)

def
= thread �= null ∧ proj (lock , 1) =

thread and free for (thread , lock)
def
= thread �= null ∧ (proj (lock , 1) = thread ∨

proj (lock , 1) = null) for thread of type Thread and lock of type Thread× Int and
with proj ((v1, . . . , vn), i) = vi for n-tuples (v1, . . . , vn) and 1 ≤ i ≤ n.

class Account {
Int x;

{x ≥ 0} //class invariant

Void wait (){
{false}?call {false}
return {false}!ret

}

Void change_balance(int i){

{i > 0 ∨ (x + i ≥ 0 ∧ owns(thread, lock))}
x := x+i

{i > 0 ∨ owns(thread, lock)}
}

Void deposit (int i){
{i > 0}
change_balance(i)

}

sync Void withdraw (int i){

{free for(thread, lock)}?call
{i > 0 ∧ owns(thread, lock)}
if (x ≥ i) {

{x ≥ i ∧ i > 0 ∧ owns(thread, lock)}
change_balance(-i);
{i > 0}wait
{owns(thread, lock)}

} {owns(thread, lock)}
return

{owns(thread, lock)}!ret
}

}

For the above proof outline 26 verification conditions are generated (4 local cor-
rectness conditions, 19 interference freedom conditions, and 3 cooperation test
conditions); see Section 9.2 for a detailed description of the conditions.

4.4 Conclusions and related work

In this chapter we extended the concurrent language of the previous chapter
by adding synchronization and reentrant monitors. Soundness and relative
completeness are discussed in Chapter 6; the full proofs can be found in the
appendix.

This work defines the first sound and relatively complete tool-supported
assertional proof method for a multithreaded sublanguage of Java including its
monitor discipline. In the following we discuss related work on the semantics

72 CHAPTER 4. REENTRANT MONITORS

of and on proof systems for multithreaded Java sublanguages with monitor
synchronization.

4.4.1 Semantics

A denotational semantics is offered by Cenciarelli [Cen99] handling multithread-
ing and exceptions. Cenciarelli et al. present in [CKRW97] a structural oper-
ational semantics of a concurrent Java sublanguage. This language includes
dynamic creation of objects, blocks, and synchronization of threads. The au-
thors start with an operational description for a sequential sublanguage. At the
next stage, shared-memory interaction is described in terms of event spaces.

Based on [CKRW97], Cenciarelli et al. analyze the Java Memory Model
(JMM) in [RKCW97]. They compare implementations of the memory model
with and without prescient store actions (cf. Section 8.1). The authors prove
that the two semantics coincide for properly synchronized programs. The struc-
tural operational semantics presented in [CKRW99] includes starting and stop-
ping of threads, thread interaction via shared memory, monitoring and notifica-
tion, and sequential control mechanisms such as exception handling and return
statements. The operational semantics is parametric in the notion of event
space. This allows different computational models to be obtained by modifying
the well-formedness conditions on event spaces while leaving the operational
rules untouched.

Coscia and Reggio [CR98, CR99] present an operational semantics of a mul-
tithreaded Java sublanguage. They discuss the memory model and state that
correct use of synchronization guarantees that all processes agree on the values
of shared variables.

Kassab and Greenwald [KG98] create a state-based abstraction of Java
threads and security policies to study the enhanced Java 2 security model.

Attali et al. [ACR98] discuss a formal executable semantics of a concurrent
subset of Java including inheritance, using the Centaur system. A formal exe-
cutable specification of the concurrent Java Memory Model (JMM) is presented
by Roychoudhury and Mitra [RM02]. Their specification is operational and uses
guarded commands. They use their executable model also for verification.

Gontmakher et al. investigate the Java Memory Model in [GS00, GPS02].
They provide a trace-based characterization of the memory model, and compare
it with other existing memory models. Pugh discusses the JMM in [Pug00].
Manson and Pugh [MP01a, MP01b] suggest alternative memory models with
formal semantics, overcoming some of the problems raised by the JMM. Yang
et al. [YGL02] give an implementation in the Uniform Memory Model. Another
alternative is worked out by Maessen et al. [MAS00], using an enriched version
of the Commit/Reconcile/Fence (CRF) memory model.

4.4. CONCLUSIONS AND RELATED WORK 73

4.4.2 Proof system

Research on proof systems for concurrent class-based object-oriented languages
with a monitor mechanism is very rare.

Buhr et al. [BFC95] give a survey about monitors in general, including proof-
rules for various monitor semantics.

Verification is not restricted to Java source code: Moore et al. [Moo99,
MKLP01, Moo02, LM03, MP03] show how the ACL2 theorem prover is capable
not only of executing simple Java bytecode programs, but also of proving the
correctness of such programs with respect to a specification. Their language
covers inheritance, multithreading, and synchronization.

74 CHAPTER 4. REENTRANT MONITORS

Chapter 5

Weakest precondition
calculus

To increase readability, the verification conditions of the previous chapters have
been formulated as standard Hoare triples. Our goal is to use a theorem prover
to prove these conditions. Instead of implementing the semantics of Hoare
triples within the theorem prover, we reformulate them into logical implications
using a weakest precondition calculus. In this way we only have to implement
the semantics of assertions within the theorem prover.

We first introduce substitutions in Section 5.1, before reformulating the ver-
ification conditions for Javasynch in Section 5.2 into logical implications, using
the substitutions. The proofs of the lemmas in this chapter can be found in
Appendix A.1.

5.1 Substitution operations

The verification conditions defined in the next section involve three substitution
operations: the local, the global, and the lifting substitutions. The lifting sub-
stitution is already defined in Section 2.3. The local substitution will be used
to express the effect of assignments in local assertions. The global substitution
is used similarly for global assertions.

The local substitution p[�e/�y] is the standard capture-avoiding substitution,
replacing in the local assertion p all free occurrences of the given distinct vari-
ables �y by the local expressions �e. We apply the substitution also to local
expressions. The following lemma expresses the standard property of the above
substitution, relating it to state update. The relation between substitution and
update formulated in the lemma asserts that p[�e/�y] is the weakest precondi-
tion of p with respect to the assignment �y := �e. The lemma is formulated for
assertions, but the same property holds for expressions.

75

76 CHAPTER 5. WEAKEST PRECONDITION CALCULUS

Lemma 5.1.1 (Local substitution) For arbitrary logical environments ω
and instance local states (σinst , τ) we have

ω, σinst , τ |=L p[�e/�y] iff ω, σinst [�y �→[[�e]]ω,σinst ,τ
L], τ [�y �→[[�e]]ω,σinst ,τ

L] |=L p .

The effect of assignments is expressed on the global level by the global substi-
tution P [�E/z.�x], which replaces in the global assertion P the instance variables
�x of the object referred to by z by the global expressions �E. To accommodate
properly the effect of assignments, though, we must not only syntactically re-
place the occurrences z.xi of the instance variables, but also all their aliases
E′.xi, when z and the result of the substitution applied to E′ refer to the same
object. As the aliasing condition cannot be checked syntactically, we define the
main case of the substitution by a conditional expression [AdB93]:

(E′.xi)[�E/z.�x] = (if E′[�E/z.�x] = z then Ei else (E′[�E/z.�x]).xi fi) .

This substitution is extended to global assertions homomorphically. We will
also use the substitution P [�E/z.�y] for arbitrary variable sequences �y possibly
containing logical variables, whose semantics is defined by the simultaneous sub-
stitutions [�Ex/z.�x] and [�Eu/�u], where �x and �u are the sequences of the instance
and logical variables1 of �y, and �Ex and �Eu the corresponding subsequences of
�E and [�Eu/�u] is the usual capture-avoiding substitution like in the local substi-
tution; if only logical variables are substituted, we simply write P [�E/�u]. That
the substitution accurately catches the semantical update, and thus represents
the weakest precondition relation, is expressed by the following lemma:

Lemma 5.1.2 (Global substitution) For arbitrary global states σ and logi-
cal environments ω referring only to values existing in σ we have

ω, σ |=G P [�E/z.�y] iff ω′, σ′ |=G P ,

where ω′ = ω[�y �→[[�E]]ω,σ
G] and σ′ = σ[[[z]]ω,σ

G .�y �→[[�E]]ω,σ
G].

5.2 Verification conditions

In the local verification conditions, the effect of an assignment �y := �e is ex-
pressed by substituting �e for �y in the assertions. In the global conditions of
the cooperation test, the effect of communication, changing local states only,
is expressed by simultaneously substituting those variables which will store the
result by the communicated values. I.e., for the case of method call, the formal
parameters are replaced by the actual ones expressed in the global language.
The effect of the caller observation 〈�y := �e〉!call upon a global assertion P is
expressed by the substitution P [�E(z)/z.�y], where z represents the caller. The
effect of the callee-observation is handled similarly. Note the order: first commu-
nication takes place, followed by the sender, and then the receiver observation.

1Local variables are viewed as logical ones in the global assertion language.

5.2. VERIFICATION CONDITIONS 77

To describe the joint effect, we first have to substitute for the receiver, then for
the sender observation, and, finally, for communication. For a method call, we
additionally have to substitute for the initialization of the local variables.

For readability, in the following definitions we use the notation p◦f with f =
[�e/�y] for the substitution p[�e/�y]; we use a similar notation for global assertions.
Note that the substitution binds stronger than logical operators.

Definition 5.2.1 (Initial correctness) A proof outline is initially correct, if

|=G InitState(z) ∧ (∀z′. z′ = null ∨ z = z′) → (5.1)
P2(z) ◦ finit ∧ (GI ∧ P3(z) ∧ Ic(z)) ◦ fobs ◦ finit ,

where c is the main class, {p2}?call 〈�y2 := �e2〉?call {p3} stm; return is the body and �v
the local variables of the run method of c, z ∈ LVarc, and z′ ∈ LVarObject. The
global assertion InitState is defined on page 32. Furthermore,

finit = [z, (null, 0, null)/thread, caller][Init(�v)/�v] , and

fobs = [�E2(z)/z.�y2] .

Definition 5.2.2 (Local correctness: Assignment) A proof outline is lo-
cally correct, if for all multiple assignments {p1} �y := �e {p2} in class c, which
is not the observation of communication or object creation,

|=L p1 ∧ Ic → p2 ◦ fass , (5.2)

with fass = [�e/�y].

Definition 5.2.3 (Interference freedom) A proof outline is interference
free, if for all classes c, and for all multiple assignments �y := �e with precondition
p in c,

|=L p ∧ Ic → Ic ◦ fass , (5.3)

with fass = [�e/�y]. Furthermore, for all assertions q at control points in c, such
that either not both p and q occur in a synchronized method, or q is at a control
point waiting for return,

|=L p ∧ q′ ∧ Ic ∧ interferes(q, �y := �e) → q′ ◦ fass . (5.4)

with the assertion interferes as defined on page 57.

Definition 5.2.4 (Cooperation test: Communication) A proof outline
satisfies the cooperation test for communication, if

|=G GI ∧ P1(z) ∧ Ic(z) ∧ Q′
1(z

′) ∧ Ic′(z′) ∧ comm ∧ z �=null ∧ z′ �=null →
(P2(z) ∧ Q′

2(z
′)) ◦ fcomm ∧

(GI ∧ P3(z) ∧ Q′
3(z

′)) ◦ fobs2 ◦ fobs1 ◦ fcomm (5.5)

holds for distinct fresh logical variables z ∈ LVarc and z′ ∈ LVarc′
, in the

following cases:

78 CHAPTER 5. WEAKEST PRECONDITION CALCULUS

1. (a) Call: For all calls {p1}uret := e0.m(�e) {p2}!call 〈�y1 := �e1〉!call {p3}wait

(or such without receiving a value) in class c with e0 of type c′, where
method m /∈ {start, wait, notify, notifyAll} of c′ is synchronized with
body {q2}?call 〈�y2 := �e2〉?call {q3} stm; return eret , formal parameters �u,
and local variables �v except the formal parameters. The callee class
invariant is q1 = Ic′ . The assertion comm is given by E0(z) = z′ ∧
(z′.lock = free ∨ thread(z′.lock) = thread). Furthermore, fcomm =
[�E(z), Init(�v)/�u′, �v′], fobs1 = [�E1(z)/z.�y1], fobs2 = [�E′

2(z
′)/z′.�y′

2]. If
m is not synchronized, z′.lock = free ∨ thread(z′.lock) = thread in
comm is dropped.

(b) Callmonitor : For m ∈ {wait, notify, notifyAll}, comm is given by
E0(z) = z′ ∧ thread(z′.lock) = thread.

(c) Callstart : For m = start, comm is E0(z) = z′ ∧ ¬z′.started, where
{q2}?call 〈�y2 := �e2〉?call {q3} stm; return is the body of the run method of
c′.

(d) Call
skip
start : For m = start, additionally, (5.5) must hold with comm

given by E0(z) = z′∧ z′.started, q2 = q3 = true, and fcomm and fobs2

are the identity functions.

2. (a) Return: For all method call statements uret := e0.m(�e) 〈�y1 :=
�e1〉!call {p1}wait {p2}?ret 〈�y4 := �e4〉?ret {p3} (or such without receiving a
value) occurring in c with e0 of type c′, such that method m(�u) of
c′ has the return statement {q1} return eret {q2}!ret 〈�y3 := �e3〉!ret {q3} ,
Equation (5.5) must hold with comm given by E0(z) = z′ ∧ �u′ =
�E(z), and where fcomm = [E′

ret(z′)/uret], fobs1 = [�E′
3(z′)/z′.�y′

3], and
fobs2 = [�E4(z)/z.�y4].

(b) Returnwait : For {q1} returngetlock {q2}!ret 〈�y3 := �e3〉!ret {q3} in a wait

method, comm is E0(z) = z′ ∧ �u′ = �E(z) ∧ z′.lock = free ∧ thread′ ∈
z′.notified.

(c) Returnrun : For {q1} return {q2}!ret 〈�y3 := �e3〉!ret {q3} occurring in a
run method, p1 = p2 = p3 = true, comm = true, and furthermore
fcomm and fobs2 the identity function.

Definition 5.2.5 (Cooperation test: Instantiation) A proof outline satis-
fies the cooperation test for object creation, if for all classes c′ and statements
{p1}u := newc {p2}new 〈�y := �e〉new {p3} in c′:

|=G z �=null ∧ z �=u ∧ ∃z′.
(
Fresh(z′, u) ∧ (GI ∧ (∃u. P1(z)) ∧ Ic′(z)) ↓ z′

) →
P2(z) ∧ Ic(u) ∧ (GI ∧ P3(z)) ◦ fobs , (5.6)

with z ∈ LVarc′
and z′ ∈ LVar listObject fresh, fobs = [�E(z)/z.�y], and Fresh and

↓ as defined in Section 2.4.2 on page 43.

5.3. CONCLUSIONS 79

5.3 Conclusions

This chapter reformulates the Hoare-style verification conditions for the parallel
language with monitor synchronization to logical implications. The effect of
assignments is described by substitutions.

The Verger tool generates not only the conditions, but applies also the sub-
stitutions to the assertions. Thus the verification conditions are logical impli-
cations. Consequently, we only need to encode the semantics of the assertion
language in the theorem prover. This simple representation of the verification
conditions in the theorem prover increases the automation of the proofs.

The more semantically-oriented approaches based on the global store model
[AL97, JKW03, vON02, PHM99] require an explicit encoding of the semantics
of assignments.

80 CHAPTER 5. WEAKEST PRECONDITION CALCULUS

Chapter 6

Soundness and
completeness

This section discusses soundness and relative completeness proofs for the proof
method of Section 5.2; these proofs are listed in the appendix.

Given a program together with its annotation, the proof system stipulates a
number of verification conditions for the various types of assertions and program
constructs. Soundness of the proof system means that for a proof outline satis-
fying the verification conditions, all configurations reachable in the operational
semantics satisfy the given assertions. Completeness, conversely, means that if
a program does satisfy an annotation, this fact is provable.

Gödel’s Incompleteness Theorem (1931) states that there is no proof system
where all valid assertions are provable. This implies that Hoare logic is not
complete either. However, we can show relative completeness of Hoare logic,
which means completeness relative to the underlying logic: If we assume that
we have proofs for the assertions, then Hoare logic is complete. In the following,
if we talk about completeness, we always mean relative completeness.

Cook introduced the notion of relative completeness in [Coo78], and proves
that the Hoare logic of while programs [Hoa69] is sound and relatively complete.
In [TZ88] Tucker and Zucker extend Cook’s result to iteration and recursion.
Apt [Apt81a, Apt83] has shown that both for shared variable concurrency and
for synchronous message passing, the completeness proofs have to be based on
merging lemmas, which he introduced.

The survey of various results concerning Hoare’s approach to proving pro-
gram correctness is presented in [Apt81b].Emphasis is placed on the soundness
and completeness issues. [dRdBH+01]is a systematic and comprehensive in-
troduction both to compositional and to noncompositional proof methods for
the state-based verification of concurrent programs, including soundness and
completeness results.

For convenience, let us introduce the following notations: Given a program
prog, we will write ϕprog or just ϕ for its annotation, and write prog |= ϕ, if

81

82 CHAPTER 6. SOUNDNESS AND COMPLETENESS

prog satisfies all requirements stated in the assertions, and prog ′ � ϕ′, if prog ′

with annotation ϕ′ satisfies the verification conditions of the proof system:

Definition 6.0.1 Given a program prog with annotation ϕ, then prog |= ϕ iff
for all reachable configurations 〈T, σ〉 of prog, for all (α, τ, stm) ∈ T , and for
all logical environments ω referring only to values existing in σ:

1. ω, σ(α), τ |=L pre(stm), and

2. ω, σ |=G GI .

Furthermore, for all classes c, objects β ∈ Valc(σ), and local states τ ′:

3. ω, σ(β), τ ′ |=L Ic .

For proof outlines, we write prog ′ � ϕ′ iff prog ′ with annotation ϕ′ satisfies the
verification conditions of the proof system.

In the following sections we discuss the basic ideas of the soundness and
relative completeness proofs. The formal proofs can be found in the appendix.

6.1 Soundness

Soundness, as mentioned, means that all reachable configurations do satisfy
their assertions for an annotated program that has been verified using the proof
conditions. Soundness of the method is proved by a straightforward, albeit
tedious, induction on the number of computation steps.

Before embarking upon the soundness formulation and its proof, we need
to clarify the connection between the original program and the proof outline,
i.e., the one extended by auxiliary variables, and decorated with assertions.
The transformation is done for the sake of verification, only, and as far as the
unaugmented portion of the states and the configurations is concerned, the
behavior of the original and the transformed program are the same.

To make the connection between original program and the proof outline
precise, we define a projection operation ↓ prog , that erases all additions of the
transformation. So let prog ′ be a proof outline for prog , and 〈T ′, σ′〉 a global
configuration of prog ′. Then σ′ ↓ prog is defined by removing all auxiliary
instance variables from the instance state domains. For the set of thread con-
figurations, T ′ ↓ prog is given by restricting the domains of the local states to
non-auxiliary variables and removing all augmentations. Additionally, for lo-
cal configurations (α, τ, returngetlock 〈stm〉!ret) ∈ T ′, if the executing thread is in
the wait set, i.e., if (τ(thread), n) ∈ σ′(α)(wait) for some n, then the statement
returngetlock gets replaced by ?signal; returngetlock . Furthermore, for local config-
urations (α, τ, stm; return 〈stm ′〉!ret) ∈ T ′ with stm �= ε an auxiliary assignment
in the notify or the notifyAll method, the auxiliary assignment stm gets replaced
by !signal and !signal all, respectively. The following lemma expresses that this
transformation does not change the behavior of programs:

6.1. SOUNDNESS 83

Lemma 6.1.1 Let prog ′ be a proof outline for a program prog. Then 〈T, σ〉 is a
reachable configuration of prog iff there exists a reachable configuration 〈T ′, σ′〉
of prog ′ with 〈T ′ ↓ prog , σ′ ↓ prog〉 = 〈T, σ〉.

The augmentation introduced a number of specific built-in auxiliary variables
that reflect the predicates used in the semantics. That the semantics is faithfully
represented by the variables is formulated in the following lemmas. For the
variables thread and conf we show that their values are unique identifiers:

Lemma 6.1.2 (Identification) Let 〈T, σ〉 be a reachable configuration of a
proof outline. Then:

1. for all stacks ξ and ξ′ in T and for all local configurations (α, τ, stm) ∈ ξ
and (α′, τ ′, stm ′) ∈ ξ′ we have τ(thread) = τ ′(thread) iff ξ = ξ′, and

2. for each stack (α0, τ0, stm0) . . . (αn, τn, stmn) in T and indices 0 ≤ i, j ≤
n,

(a) τi(thread) = α0;

(b) i < j and αi = αj implies τi(conf) < τj(conf) < σ(αi)(counter),

(c) 0 < j implies τj(caller) = (αj−1, τj−1(conf), τj−1(thread)), and

(d) proj(τ0(caller), 3) �= τ0(thread),

where proj (v, i) is the ith component of the tuple v.

The following lemma states that the lock ownership, and the wait and
notified sets of the semantics are correctly represented by the variables lock,
wait, and notified. Furthermore, the lemma assures disjunctness of the sequences
stored in the wait and notified variables; if the order of the elements is unimpor-
tant, we use set notation for their values.

Lemma 6.1.3 (Lock, Wait, Notify) Let 〈T, σ〉 be a reachable configuration
of a proof outline for the original program prog, α ∈ Val (σ) an object identity,
and let ξ = (α0, τ0, stm0)◦ξ′ ∈ T . Let furthermore n be the number synchronized
method executions of ξ in α, i.e., n = |{(α, τ, stm) ∈ ξ | stm synchr.}|. Then:

1. (a) ¬owns(T ↓ prog , α) iff σ(α)(lock) = free

(b) owns(ξ ↓ prog , α) iff σ(α)(lock) = (α0, n)

2. (a) ξ ∈ wait(T ↓ prog , α) iff (α0, n) ∈ σ(α)(wait)

(b) ξ ∈ notified(T ↓ prog , α) iff (α0, n) ∈ σ(α)(notified)

(c) proj (σ(α)(wait)[i], 1) = proj (σ(α)(wait)[j], 1) implies i = j

(d) proj (σ(α)(notified)[i], 1) = proj (σ(α)(notified)[j], 1) implies i = j

(e) if (α0, m) ∈ σ(α)(wait) or (α0, m) ∈ σ(α)(notified) then m = n

(f) σ(α)(wait) ∩ σ(α)(notified) = ∅,

84 CHAPTER 6. SOUNDNESS AND COMPLETENESS

where s[i] is the ith element of the sequence s.

Finally, the auxiliary instance variable started of an object correctly stores
if the thread of the object is already started or not:

Lemma 6.1.4 (Started) For all reachable configurations 〈T, σ〉 of a proof out-
line for a program prog, and all objects α ∈ Val (σ), we have started(T ↓ prog , α)
iff σ(α)(started).

Let prog be a program with annotation ϕ, and prog ′ a corresponding proof
outline with annotation ϕ′. Let GI ′ be the global invariant of ϕ′, I ′c denote
its class invariants, and for an assertion p of ϕ let p′ denote the assertion of ϕ′

associated with the same control point. We write |= ϕ′ → ϕ iff |=G GI ′ → GI ,
|=L I ′c → Ic for all classes c, and |=L p′ → p, for all assertions p of ϕ associated
with some control point. To give meaning to the auxiliary variables, the above
implications are evaluated in the context of states of the augmented program.
The following theorem states the soundness of the proof method.

Theorem 6.1.5 (Soundness) Let prog ′ be a proof outline with annotation
ϕprog′ .

If prog ′ � ϕprog′ then prog ′ |= ϕprog′ .

The soundness proof consists basically of an induction argument on the
length of computation, simultaneously on all three parts from Definition 6.0.1.
For the inductive step, we assume that the verification conditions are satisfied
and assume a reachable configuration satisfying the annotation. We make case
distinction on the syntax of the next computation step: If the computation step
executes an assignment, then we use the local correctness conditions to prove
inductivity of the executing local configuration’s properties, and the interference
freedom test for all other local configurations and the class invariants. For
communication, invariance for the executing partners and the global invariant
is shown using the cooperation test for communication. Communication itself
does not affect the global state; invariance of the remaining properties under
the corresponding observations is shown again with the help of the interference
freedom test. Finally, for object creation, invariance for the global invariant,
the creator local configuration, the created object’s class invariant is assured by
the conditions of the cooperation test for object creation; all other properties
are shown to be invariant using the interference freedom test.

Theorem 6.1.5 is formulated for reachability of augmented programs. With
the help of Lemma 6.1.1, we immediately get:

Corollary 6.1.6 If prog ′ � ϕprog′ and |= ϕprog′ → ϕprog , then prog |= ϕprog .

6.2. COMPLETENESS 85

6.2 Completeness

Next we, conversely, show that if a program satisfies the requirements asserted
in its proof outline, then this is indeed provable, i.e., then there exists a proof
outline which can be shown to hold and which implies the given one:

∀prog . prog |= ϕprog ⇒ ∃prog ′. prog ′ � ϕprog′ ∧ |= ϕprog′ → ϕprog .

Given a program satisfying an annotation prog |= ϕprog , the consequent can be
uniformly shown, i.e., independently of the given assertional part ϕprog , by in-
stantiating ϕprog′ to the strongest annotation still provable, thereby discharging
the last clause |= ϕprog′ → ϕprog . Since the strongest annotation still satisfied
by the program corresponds to reachability, the key to completeness is to:

1. augment each program with enough information (see Definition 6.2.1 be-
low), to be able to

2. express reachability in the annotation, i.e., annotate the program such that
a configuration satisfies its local and global assertions exactly if reachable
(see Definition 6.2.2 below), and, finally,

3. to show that this augmentation indeed satisfies the verification conditions.

We begin with the augmentation, using the transformation from Section 4.3
as starting point, where the programs are augmented with the specific auxiliary
variables.

In the following we define an augmentation which allows to formulate the
reachability annotation. In this thesis we do not focus on a minimal augmen-
tation, that means, we record also information in additional auxiliary variables
which would not be necessary for the reachability annotation but which sim-
plify the formalization and the proofs. For example, in the paragraph below
we introduce a location counter, which is not necessary but which simplifies
the proofs by the recorded information about the control point of the executing
thread. Also in the history variables introduced further below we record more
information than it would be necessary for the formalization of the reachability
annotation. A more abstract formulation builds a topic for future work.

To facilitate reasoning, we introduce an additional auxiliary local variable
loc, which stores the current control point of the execution of a local configura-
tion. Given a function which assigns to all control points unique location labels,
we extend each assignment with the update loc := l, where l is the label of the
control point after the given occurrence of the assignment. Also unobserved
statements are extended with the update. We write l ≡ stm if l represents the
control point in front of stm.

The standard method for obtaining a completeness augmentation is to add
information into the states about the way how it has been reached, i.e., to add
the history of the computation leading to the configuration. This information
is recorded using history variables.

86 CHAPTER 6. SOUNDNESS AND COMPLETENESS

The assertion language is split into a local and a global level, and, likewise,
the proof system is tailored to separate local proof obligations from global ones
to obtain a modular proof system. The history will be recorded in instance
variables, and thus each instance can keep track only of its own past. To mirror
the split into a local and a global level in the proof system, the history per
instance is recorded separately for internal and external behavior. The sequence
of internal state changes local to that instance is recorded in the local history
hinst and the external behavior in the communication history hcomm .

The local history keeps track of the state updates. We store in the local
history the updated local and instance states of the executing local configuration
and the object in which the execution takes place. Note that the local history
stores also the values of the built-in auxiliary variables, and thus the identities
of the executing thread and the executing local configuration.

The communication history contains information about the kind of com-
munication, the communicated values, and the identity of the communication
partners involved. For communication, we distinguish as cases object creation,
ingoing and outgoing method calls, and, likewise, ingoing and outgoing commu-
nication for the return value. We use the set

⋃
c∈C {newc} ∪ ⋃

m∈M {!m, ?m} ∪
{!return, ?return} of constants for this purpose, where C and M are the sets
of all class and method names, respectively. Notification does not update the
communication history, since it is object-internal computation. For the same
reason, we do not record self-communication in hcomm . Note in passing that
the information stored in the communication history matches exactly the infor-
mation needed to decorate the transitions in order to obtain a compositional
variant of the operational semantics of Section 4.2. See [ÁdBdRS04a] for such
a compositional semantics.

Definition 6.2.1 (Augmentation with histories) Every class is further ex-
tended by two auxiliary instance variables hinst and hcomm , both initialized to
the empty sequence. They are updated as follows:

1. Each multiple assignment �y := �e in each class c that is not the observation
of a method call or of the reception of a return value is extended with

hinst := hinst ◦ ((�x,�v)[�e/�y]) ,

where �x are the instance variables of class c containing also hcomm but
without hinst , and �v are the local variables. Observations �y := �e of
uret := e0.m(�e ′) and of the corresponding reception of the return value
are extended with the assignment

hinst := if (e0 = this) then hinst else hinst ◦ ((�x,�v)[�e/�y]) fi ,

instead, if m �= start. For e0.start(�e ′); 〈�y := �e〉!call we use the same update
with the condition e0 = this replaced by e0 = this ∧ ¬started.

2. Every communication and object creation statement is observed by

hcomm := if (partner = this) then hcomm else

hcomm ◦ (sender, receiver, values) fi ,

6.2. COMPLETENESS 87

where the expressions partner, sender, receiver, and values depend on the
kind of communication as follows:

communication partner sender receiver values

u := newc null this null newc u, thread
uret := e0.m(�e) e0 this e0 !m(�e)
receive return e0 e0 this ? return uret , thread
receive call m(�u) caller obj caller obj this ?m(�u)
return eret caller obj this caller obj ! return eret , thread

with caller obj given by the first component of the variable caller.

In the update of the history variable hinst , the expression (�x, �u)[�e/�y] identifies
the active thread and local configuration given by the local variables thread and
conf, and specifies its instance local state after the execution of the assignment.
Note that especially the values of the auxiliary variables introduced in the aug-
mentation are recorded in the local history. In the following we will also write
(σinst , τ), when referring to elements of hinst .

Note furthermore that the communication history records also the identities
of the communicating threads in values.

Next we introduce the annotation for the augmented program.

Definition 6.2.2 (Reachability annotation) We define the following anno-
tation for the augmented program:

1. ω, σ |=G GI iff there exists a reachable 〈T, σ′〉 such that Val (σ) = Val (σ′),
and for all α ∈ Val (σ), σ(α)(hcomm) = σ′(α)(hcomm).

2. For each class c, let ω, σinst , τ |=L Ic iff there is a reachable 〈T, σ〉 such
that σ(α) = σinst , where α = σinst (this). For each class c and method m
of c, the pre- and postconditions of m are given by Ic.

3. For assertions at control points, ω, σinst , τ |=L pre(stm) iff there is a
reachable 〈T, σ〉 with σ(α) = σinst for α = σinst (this), and such that
(α, τ, stm ; stm′) ∈ T .

4. For preconditions p of observations of communication or object creation,
let ω, σinst , τ |=L p iff there is a reachable 〈T, σ〉 with σ(α) = σinst for
α = σinst (this), and with (α, τ ′, stm; stm ′) ∈ T enabled to communicate
resulting in the local state τ directly after communication, where stm is
the corresponding communication statement.

For observing the reception of a method call, instead of the existence of
the enabled (α, τ ′, stm; stm′) ∈ T , we require that a call of the method
of α is enabled in 〈T, σ〉 with resulting callee local state τ directly after
communication1.

1For the precondition of the observation stm at the beginning of the run method of the
main class, 〈T, σ〉 can also be the initial configuration before the execution of the observation
stm.

88 CHAPTER 6. SOUNDNESS AND COMPLETENESS

It can be shown that these assertions are expressible in the assertion language
(see [TZ88]). Expressing reachability in the annotation relies heavily on quan-
tification over sequences. The augmented program together with the above
annotation build a proof outline that we express by prog ′.

What remains to be shown for relative completeness is that the proof outline
prog ′ indeed satisfies the verification conditions of the proof system. Initial and
local correctness are straightforward.

Completeness for the interference freedom test and the cooperation test are
more complex, since, unlike initial and local correctness, the verification condi-
tions in these cases mention more than one local configuration in their respective
antecedents. Now, the reachability assertions of prog ′ guarantee that, when sat-
isfied by an instance local state, there exists a reachable global configuration
responsible for the satisfaction. So a crucial step in the completeness proof for
interference freedom and the cooperation test is to show that individual reach-
ability of two local configurations in the same instance state implies that they
are reachable in a common computation. This is also the key property for the
history variables: They record enough information such that they allow one to
uniquely determine the way a configuration has been reached; in the case of the
instance history uniqueness applies only as far as the chosen instance is con-
cerned. This property is stated formally in the following local merging lemma.

Lemma 6.2.3 (Local merging lemma) Assume two reachable global config-
urations 〈T1, σ1〉 and 〈T2, σ2〉 of prog ′ and (α, τ, stm) ∈ T1 with α ∈ Val (σ1) ∩
Val (σ2). Then σ1(α)(hinst) = σ2(α)(hinst) implies (α, τ, stm) ∈ T2.

For completeness of the cooperation test, connecting two possibly different
instances, we need an analogous property for the communication histories. Ar-
guing on the global level, the cooperation test can assume that two control
points are individually reachable but agree on the communication histories of
the objects. This information must be enough to ensure common reachability.
Such a common computation can be constructed, since the internal compu-
tations of different objects are independent from each other, i.e., in a global
computation, the local behavior of an object is interchangeable, as long as the
external behavior does not change. This leads to the following lemma:

Lemma 6.2.4 (Global merging lemma) Assume two reachable global con-
figurations 〈T1, σ1〉 and 〈T2, σ2〉 of prog ′ and α ∈ Val (σ1) ∩ Val (σ2) with the
property σ1(α)(hcomm) = σ2(α)(hcomm). Then there exists a reachable configu-
ration 〈T, σ〉 with Val (σ) = Val (σ2), σ(α) = σ1(α), and σ(β) = σ2(β) for all
β ∈ Val (σ2)\{α}.

Note that together with the local merging lemma this implies that all local
configurations in 〈T1, σ1〉 executing in α and all local configurations in 〈T2, σ2〉
executing in β �= α are contained in the commonly reached configuration 〈T, σ〉.

This brings us to the completeness result:

6.2. COMPLETENESS 89

Theorem 6.2.5 (Relative completeness) For a program prog, the proof out-
line prog ′ satisfies the verification conditions of the proof system from Sec-
tion 5.2.

90 CHAPTER 6. SOUNDNESS AND COMPLETENESS

Chapter 7

Proving deadlock freedom

The previous chapters described a proof system which can be used to prove
safety properties of Javasynch programs. In this section we show how to apply
the proof system to prove deadlock freedom.

7.1 Expressing deadlock freedom

A system of processes is in a deadlocked configuration if no one of them is
enabled to compute but not yet all processes are terminated. A typical deadlock
situation can occur, if two threads t1 and t2 both try to reserve the locks of
two objects o1 and o2, but in reverse order: t1 first applies for access to the
synchronized methods of o1, and then for those of o2, while t2 first collects the
lock of o2, and tries to become the lock owner of o1. Now, it can happen, that t1
gets the lock of o1, t2 gets the lock of o2, and both are waiting for the other lock,
which will never become free. Another typical source of deadlock situations are
threads which suspended themselves by calling wait and which will never get
notified.

So, what kind of statements can be disabled and under which conditions?
The important cases, to which we restrict, are:

• The invocation of synchronized methods, if the lock of the callee object is
neither free nor owned by the executing thread.

• If a thread tries to invoke a monitor method of an object whose lock it
does not own.

• If a thread tries to return from a wait method, but either the lock is not
free or the thread is not yet notified.

To be precise, the semantics specifies method calls to be disabled also if the
callee object is the empty reference. However, we do not deal with this case;
it can be excluded in the preconditions by stating that the callee object is not
null .

91

92 CHAPTER 7. PROVING DEADLOCK FREEDOM

Assume a proof outline with global invariant GI . For a logical variable z
of type Object, let I(z) = I[z/this] be the class invariant of z expressed on
the global level. Let the assertion terminated(z) express that the thread of z is
already terminated. Formally, we define terminated(z) by ∃�v. q[z/thread][z/this],
where q is the postcondition of the run method of z, and �v its local variables.
For assertions p in an object represented by z′ let furthermore blocked(z, z′, p)
express that the thread of z is disabled in the object z′ at the control point
described by p. Formally, we define blocked(z, z′, p) by:

• ∃�v. p[z/thread][z′/this]∧ e0.lock �= free∧ thread(e0.lock) �= thread if p is the
precondition of a call invoking a synchronized method of e0,

• ∃�v. p[z/thread][z′/this]∧ thread(e0.lock) �= thread if p is the precondition of
a call invoking a monitor method of e0,

• ∃�v. p[z/thread][z′/this]∧ (z′.lock �= free ∨ z /∈ z′.notified) if p is the precon-
dition of the return statement in the wait method, and

• false, otherwise,

where �v is the vector of local variables in p, and z and z′ are fresh. Note that
thread is substituted by a logical variable and thus the quantification over thread
is without effect. Let finally blocked(z, z′) express that the thread of object z is
blocked in the object z′. It is defined by the assertion

∨
p∈Ass(z′) blocked(z, z′, p),

where Ass(z′) is the set of all assertions in z′. Now we can formalize the verifi-
cation condition for deadlock freedom:

Definition 7.1.1 A proof outline satisfies the test for deadlock freedom, if

|=G (GI ∧ (7.1)
(∀z. z �= null → (I(z) ∧

(z.started → (terminated(z) ∨ (∃z′. z′ �= null ∧ blocked(z, z′)))))) ∧
(∃z. z �= null ∧ z.started ∧ (∃z′. z′ �= null ∧ blocked(z, z′))))
→ false .

Soundness of the above condition, i.e., that the condition indeed assures
absence of deadlock, is easy to show. Relative completeness results from the
relative completeness of the proof method.

7.2 Examples of proofs of deadlock freedom

Next we illustrate the application of the proof system to show absence of dead-
lock on some examples. All examples are verified using PVS.

7.2. EXAMPLES OF PROOFS OF DEADLOCK FREEDOM 93

For readability, we define the following functions, which describe properties
of synchronization:

owns : (Thread × (Thread × Int)) → Bool,

owns(thread , lock)
def
= thread �= null ∧ proj (lock , 1) = thread

not owns : (Thread × (Thread × Int)) → Bool,

not owns(thread , lock)
def
= thread �= null ∧ proj (lock , 1) �= thread

depth : (Thread × Int) → Int,

depth(lock)
def
= proj (lock , 2) .

The function proj is defined in Lemma 6.1.2; the owns function is already used
in Example 4.3.2. In the following we apply the test for deadlock freedom to
some examples. The built-in augmentation is not listed in the code. Again,
we additionally list instance and local variable declarations type name;, where
〈type name;〉 declares auxiliary variables. We sometimes skip return statements
without giving back a value, and write explicitly ∀(z : t).p for quantification over
t-typed values. All missing assertions are by definition true. An empty auxiliary
observation 〈〉 in a notify or notifyAll method represents the built-in auxiliary
assignment in the given method.

7.2.1 Reentrant monitors

To demonstrate the basic idea of proving absence of deadlock, we first define
a simple program, which does the following: The initial object, an instance of
class Main, creates an instance of class Synch, starts its thread, and calls its syn-
chronized m1 method. The thread of the created instance also invokes m1, which
simply calls the synchronized method m2 of itself. Since synchronized meth-
ods cannot be executed simultaneously by different threads1, either the initial
thread or the thread of the new object calls m1, and then m2. The other thread
has to wait until control returns from m1, before it can execute the invocations.
The program is deadlock free, since Java’s monitor concept is reentrant, i.e., a
thread owning the lock of an object may invoke several synchronized methods
of that object.

Appendix B.1 contains a proof outline which satisfies the verification condi-
tions and which implies the following invariant program properties:
class Main{

〈 Bool in_Synch ; 〉
〈 Synch created ; 〉
nsync Void wait (){ {false} }

nsync Void run (){
Synch obj;

obj := newSynch; 〈created := obj 〉new
obj.start ();

1if non of them is in the wait or notified set of the given object

94 CHAPTER 7. PROVING DEADLOCK FREEDOM

{(¬in Synch) ∧ created = obj ∧ thread = this ∧ obj �= null ∧ obj �= this}
obj.m1() 〈in Synch := (if obj = this then in Synch else true fi)〉!call

〈in Synch := (if obj = this then in Synch else false fi)〉?ret
{¬in Synch}

}
}

class Synch{

nsync Void wait(){ {false} }

sync Void m1(){

{owns(thread , lock)}
m2()

}

sync Void m2(){}

nsync Void run (){

{not owns(thread , lock) ∧ thread = this ∧ started}
m1()

{not owns(thread , lock)}
}

}

with global invariant

GI
def
=

(∀(z : Synch). z �= null → (z.lock = (null , 0)∨
(∃(t : Main). owns(t, z.lock) ∧ t.started ∧ t.created = z)∨
(owns(z, z.lock) ∧ z.started)))∧

(∀(t : Main). (t �= null ∧ (¬t.in Synch)) → (t.created = null ∨ not owns(t, t.created .lock)))∧
(∀(t : Main). t �= null → (∀(z : Synch). (z �= null ∧ owns(t, z.lock)) → t.created = z)).

The annotation shows properties at control points with terminated or possibly
disabled execution, and implies that a disabled or terminated thread owns the
lock of a Synch-instance only if its current control point resides in a synchronized
method of the object. For threads of Main-instances this property cannot be
expressed locally, thus we use the boolean auxiliary instance variable in Synch
to remember if the control point of the thread of the Main-instance is in itself
or in the Synch-instance obj. To be able to refer to the identity of obj in the
global language, we store the same identity in the auxiliary instance variable
created. The global invariant GI combines properties of Main- and Synch-
instances, stating that the lock of Synch-instances is either free or owned by the
creator of the instance or by the instance itself. Furthermore, if the variable
in Synch of a Main-instance z has the value false, then the thread of z does
not hold the lock of z.created; Main-instances can own only the lock of the
Synch-instance which they have been created.

The left-hand-side of the implication in the deadlock freedom condition
states that there is an object z �= null whose thread is already started and
whose execution is disabled in another object z′ �= null, i.e., blocked(z, z′). First
assume that z′ refers to a Main-instance. Then the assertion blocked(z, z′) im-
plies that z = z′ is of type Main, and the thread of z tries to invoke method m1
of z′.created with

z′.created �= null , (7.2)

7.2. EXAMPLES OF PROOFS OF DEADLOCK FREEDOM 95

where the lock of z′.created is neither free nor owned by z, and ¬z′.in Synch
holds. Using the global invariant we obtain that there is an already started
thread which owns the lock of z′.created.

The antecedent of the deadlock freedom condition assures furthermore that
the execution of the lock owner is either disabled or terminated. Let the current
control point of the lock owner reside in an object z′′. This object cannot be
a Main-instance: The assertions at both possible control points imply that the
executing thread is the thread of z′′ and that ¬z′′.in Synch holds. Using the
global invariant we obtain on the one hand

z′′.created = null ∨ not owns(z′′, z′′.created.lock) , (7.3)

and on the other hand GI states that the lock of z′.created can be owned by
the object itself or by its creator, i.e., the assumption owns(z′′, z′.created.lock)
implies z′′.created = z′.created, i.e.,

owns(z′′, z′.created.lock) ∧ z′′.created = z′.created . (7.4)

Note that 7.2, 7.3, and 7.4 together lead to a contradiction. Thus the lock owner
executes in a Synch-instance. We have three possible control points of the lock
owner:

• The first possibility, prior to the invocation of m2 in m1 of z′′, directly leads
to a contradiction by the definition of the assertion blocked: The precon-
dition of the invocation states that the thread does own the lock of z′′,
and blocked extends this assertion by the assumption that the execution
is not enabled, i.e., that the thread does not own the given lock.

• In the second case the lock owner is about to invoke m1 in the run method
of z′′. From the precondition of the invocation we get that the execut-
ing thread is the thread of z′′. The global invariant implies that Synch-
instances cannot own the lock of other Synch-instances. Now, by assump-
tion z′′ owns the lock of z′.created, and with the above observation we
obtain that z′′ = z′.created, i.e., z′′ owns its own lock. But the precondi-
tion of the invocation implies that the thread does not own the lock of z′′,
which leads to a contradiction.

• In the third case, the lock owner is the thread of z′′ and is terminated.
Again, the assumption that the executing thread, i.e., z′′, owns the lock of
z′.created implies with GI that z′′ = z′.created, i.e., that z′′ owns its own
lock. But the assertion at the given control point implies that z′′ does not
own its own lock, which leads again to a contradiction.

For the case that z′ refers to a Synch-instance, we obtain from blocked(z, z′)
that the lock of z′ is not free, but z is not the owner. The global invariant
implies again that there is an object whose thread is started and owns the lock
of z′. The rest is analogous to the above case, where z′.created is replaced by
z′.

96 CHAPTER 7. PROVING DEADLOCK FREEDOM

7.2.2 A simple wait-notify example

Now let’s have a look at an example demonstrating deadlock freedom for a
notification process. Assume a program which defines two classes: The initial
instance of the main class Main creates an instance of the class Monitor, and
invokes its synchronized method m1, which starts its thread, and suspends the
executing thread, thereby giving the lock free. Now the thread of the Monitor-
instance can execute the synchronized method m2, probably producing some
results which the other thread is waiting for. After the computation is com-
pleted, the lock owner sends a notification, and returns from m2. Now the other
thread can continue its execution and use the produced data.

Again, Appendix B.2 lists a proof outline, which satisfies the verification
conditions, and which implies the following invariant program properties:

GI
def
=

(∀(z1, z2 : Main).(z1 �= null ∧ z2 �= null) → z1 = z2)∧
(∀(z1, z2 : Monitor).(z1 �= null ∧ z2 �= null) → z1 = z2)∧
(∀(z : Main).z �= null → (

z.started∧
(z.x = 1 → (z.created �= null ∧ z.created.lock = (null , 0)))∧
(z.x = 3 → (z.created �= null ∧ z.created.x = 8))))∧

(∀(z1 : Main).z1 �= null →
(∀(z2 : Monitor).(z2 �= null ∧ owns(z1, z2.lock)) → z2 = z1.created))∧

(∀(z1 : Monitor).z1 �= null →
(∀(z2 : Monitor).(z2 �= null ∧ owns(z1, z2.lock)) → (z1.started ∧ z2 = z1)))

IMonitor
def
=

((x = 2 ∨ x = 7) → (lock = (creator , 1) ∧ started))∧
((x = 4 ∨ x = 5) → (lock = (this, 1) ∧ started))∧
(x = 6 → (lock = (null , 0) ∧ creator ∈ notified ∧ started)))∧
((x = 3 ∨ x = 8) → lock = (null , 0) ∧ started)

class Main{

〈 Int x; 〉
〈 Monitor created ; 〉
nsync Void wait(){ {false} }

nsync Void run (){
Monitor obj;

obj := newMonitor; 〈created , x := obj , 1〉new
{x = 1 ∧ thread = this ∧ created = obj ∧ obj �= null}
obj.m1() 〈x := (if obj = this then x else 2 fi)〉!call

〈x := (if obj = this then x else 3 fi)〉?ret
{x = 3}

}
}

class Monitor {

〈 Main creator ; 〉
〈 Int x; 〉
nsync Void wait(){

〈x := 3〉?call
{3 ≤ x ∧ x ≤ 6 ∧ thread = creator}
returngetlock 〈x := 7〉!ret

}

7.2. EXAMPLES OF PROOFS OF DEADLOCK FREEDOM 97

nsync Void notify (){ 〈〉 return 〈x := 5〉!ret }

sync Void m1(){
〈creator , x := thread , 1〉?call
start ();
{x = 2 ∧ thread = creator}
wait();
return 〈x := 8〉!ret

}

nsync Void run (){
〈x := 2〉?call
{(x = 2 ∨ x = 3) ∧ thread = this}
m2()
{x = 6 ∨ x = 7 ∨ x = 8}

}

sync Void m2(){
〈x := 4〉?call
{x = 4 ∧ thread = this}
notify ();
return 〈x := 6〉!ret

}
}

Note that the precondition of the method invocation in the run method of
Main together with the global invariant implies that the lock of the callee is
free, i.e., threads cannot be blocked at this control point. Furthermore, the
preconditions of both monitor method calls in Monitor imply with the class
invariant that the executing thread owns the lock, i.e., also at these control
points execution is always enabled.

We start again with the assumption that there is an object z whose thread
is started but not yet terminated, and whose execution is disabled in the object
z′, where the values of both z and z′ are different from the empty reference. The
object z can be an instance of one of the classes Main or Monitor. According
to the above observations, z′ must be an instance of Monitor, and the control
point is in the wait method or prior to the invocation of m2 in the run method.

In the first case, the local assertion attached to the control point in the
wait method implies that z = z′.creator, an instance of Main, does not own
the lock of z′ and that the thread of z′ is started. Due to the assumptions of
the deadlock freedom condition, the execution of the thread of z′ is disabled or
terminated. However, using the annotation, termination would imply z′.x = 6
and by the class invariant the execution of the thread of z would be enabled. The
thread of z′ can neither be in the wait method, because the local assertion there
implying thread = creator would lead to a type contradiction. Thus the thread
of z′ executes the run method of z′, and is going to invoke the synchronized
method m2. Since z = z′.creator does not own the lock of z′ by assumption,
the precondition of the invocation and the class invariant imply that the lock is
free, and thus that the execution of z′ is enabled.

The second case, when the thread of z resides in the run method of z′ prior
to the call of m2, is similar.

98 CHAPTER 7. PROVING DEADLOCK FREEDOM

7.2.3 A producer-consumer example

The proof outline below defines two classes Producer and Consumer, where
Producer is the main class. The initial thread of the initial Producer-instance
creates a Consumer-instance and calls its synchronized produce method. This
method starts the consumer thread and enters a non-terminating loop, produc-
ing some results, notifying the consumer, and suspending itself by calling wait.
After the producer suspended itself, the consumer thread calls the synchronized
consume method, which consumes the result of the producer, notifies, and calls
wait, again in a non-terminating loop.

Again, we only list a partial annotation and augmentation, which already
implies deadlock freedom; see Appendix B.3 for the complete inductive proof
outline.

GI
def
=

(∀(p : Producer).(p �= null ∧ ¬p.outside ∧ p.consumer �= null) →
p.consumer .lock = (null , 0))∧

(∀(c : Consumer).(c �= null ∧ c.started) → (c.producer �= null ∧ c.producer .started))∧
(∀(c1 : Consumer).(c1 �= null → (∀(c2 : Consumer).c2 �= null → c1 = c2))

IProducer
def
= true

IConsumer
def
= length(wait) ≤ 1∧

(lock = (null , 0) ∨ (owns(this, lock) ∧ started) ∨ owns(producer , lock))

class Producer {

〈 Consumer consumer ; 〉
〈 Bool outside ; 〉
nsync Void wait(){ {false} }

nsync Void run (){
Consumer c;

c := newConsumer ; 〈consumer := c〉new
{c = consumer ∧ ¬outside ∧ consumer �= null ∧ consumer �= this ∧ thread = this}
c.produce () 〈outside := (if c = this then outside else true fi)〉!call
{false}

}
}

class Consumer {
Int buffer ;

〈 Producer producer ; 〉
nsync Void wait(){

{started ∧ not owns(thread , lock) ∧ (thread = this ∨ thread = producer)∧
(thread ∈ wait ∨ thread ∈ notified)}

}

sync Void produce (){
Int i;

〈producer := proj (caller , 1)〉?call
i:=0;
start ();
while (true) do

//produce i here
buffer := i;

{owns(thread , lock)}
notify ();

7.2. EXAMPLES OF PROOFS OF DEADLOCK FREEDOM 99

{owns(thread , lock)}
wait ()

od
}

nsync Void run (){

{not owns(thread , lock) ∧ thread = this}
consume ()
{false}

}

sync Void consume (){
Int i;

while (true) do
i := buffer ;
//consume i here

{owns(thread , lock)}
notify ();

{owns(thread , lock)}
wait ()

od
}

}

Both run methods have false as postcondition, stating that the corresponding
threads do not terminate. The preconditions of all monitor method invocations
express that the executing thread owns the lock, and thus execution cannot be
enabled at these control points. The wait method of Producer-instances is not
invoked; we define false as the precondition of its return-statement, implying
that disabledness is excluded also at this control point.

The condition for deadlock freedom assumes that there is a thread which is
started but not yet terminated, and whose execution is disabled. This thread is
either the thread of a Producer-instance or that of a Consumer-instance.

We discuss only the case that the disabled thread belongs to a Producer-
instance z different from the empty reference; the other case is similar. Note that
the control of the thread of z cannot stay in the run method of a Consumer-
instance, since the corresponding local assertion implies thread = this, which
would contradict to the type assumptions. Thus the thread can have its control
point prior to the method call in the run method of a Producer-instance, or in
the wait method of a Consumer-instance. In the first case, the corresponding
local assertion and the global invariant imply that the lock of the callee is
free, i.e., that the execution is enabled, which leads to a contradiction. In the
second case, if the thread of z executes in the wait method of a Consumer-
instance z′, the local assertion in wait together with the type assumptions
implies z′.started ∧ not owns(z, z′.lock) ∧ z = z′.producer, and that z is either in
the wait or in the notified set of z′.

According to the assumptions of the deadlock freedom condition, also the
started thread of z′ is disabled or terminated; its control point cannot be in a
Producer-instance, since that would contradict to the type assumptions. Thus
the control of z′ stays in the run or in the wait method of a Consumer-instance;
the annotation implies that the instance is z′ itself.

If the control stays in the run method, then the corresponding local assertion
and the class invariant imply that the lock is free, since neither the producer,

100 CHAPTER 7. PROVING DEADLOCK FREEDOM

nor the consumer owns it, which leads to a contradiction, since in this case the
execution of the thread of z′ would be enabled. Finally, if the control of the
thread of z′ stays in the wait method of z′, then the annotation assures that
the thread does not own the lock of z′; again, using the class invariant we get
that the lock is free.

Now, both threads of z and z′ have their control points in the wait method
of z′, and the lock of z′ is free. Furthermore, both threads are disabled, and are
in the wait or in the notified set. If one of them is in the notified set, then its
execution is enabled, which is a contradiction. If both threads are in the wait
set, then from z �= z′ we imply that the wait set of z′ has at least two elements,
which contradicts the class invariant of z′.

Thus the assumptions lead to a contradiction, which was to be shown.

7.3 Conclusions and related work

This chapter introduced a verification condition for establishing deadlock free-
dom and illustrated its use on some examples.

There are just a few works on proof systems for establishing deadlock free-
dom of Java programs.

Demartini et al. [DIS98, IDS99] describe how core features of multithreaded
Java can be mapped into the Promela language of the SPIN model checker to
prove deadlock freedom.

Boyapati et al. [BSBR03] present a static type system for multithreaded
programs. Well-typed programs are guaranteed to be free of deadlock. However,
they only take synchronization via object locks into account, but no wait-notify
constructs.

Chapter 8

Possible extensions

In the previous sections we introduced proof systems for three languages, defined
incrementally by extensions. Though we used an abstract syntax for readability,
the languages can be seen as Java sublanguages; tool support is developed for
Java syntax. Besides some semantical differences between Java and our lan-
guages, in this chapter we discuss a number of possible further extensions of the
language and the proof system.

8.1 Java’s memory model

In our language we assume a global state. Each expression gets evaluated in
this global state, and the execution of assignments affects directly the global
state.

In contrast, in Java’s memory model every thread has a working memory, in
which it keeps its own working copy of variables that it uses or assigns. Threads
operate on these working copies. The main memory contains the master copy
of every variable. From [GJSB00]: “ There are rules about when a thread is
permitted or required to transfer the contents of its working copy of a variable
into the master copy and vice versa. [...] If the implementation correctly fol-
lows these rules and the application programmer follows certain other rules of
programming, then data can be reliably transferred between threads through
shared variables. The rules are designed to be ’tight’ enough to make this pos-
sible but ’loose’ enough to allow hardware and software designers considerable
freedom to improve speed and throughput through such mechanisms as regis-
ters, queues, and caches.” For a detailed description of the Java memory model
we refer to [GJSB00]. Here we only briefly describe a part of the model and
demonstrate it on a small example.

We call operations on memories actions. A read action by the main memory
transmits the contents of the master copy of a variable to a thread’s working
memory for use by a later load action. A load action of a thread puts a value
transmitted from the main memory by a read action into the thread’s working

101

102 CHAPTER 8. POSSIBLE EXTENSIONS

copy of a variable. Whenever a thread executes a virtual machine instruction
that uses the value of a variable, it transfers the contents of the thread’s working
copy of the variable to the thread’s execution engine. We use the name use for
this action.

An assign action of a thread is performed whenever a thread executes a
virtual machine instruction that assigns to a variable, and it transfers a value
from the thread’s execution engine into the thread’s working copy of a variable.
A store action of a thread transmits the contents of the thread’s working copy
of a variable to the main memory for use by a later write action. A write action
by the main memory puts a value transmitted from a thread’s working memory
by a store action into the master copy of a variable in the main memory.

Thus threads operate on variables by use, assign, load, and store actions,
where the main memory performs a read action for every load and a write
action for every store. The order of the above actions is not strongly coupled.
For example, under some restrictions it is possible that a store action happens
before the corresponding assign action: In this case the store action sends to
the main memory the value that the assign action will put into the working
memory of the executing thread. This is called a prescient store action.

Additionally, a thread’s interaction with a lock of an object over time consists
of a sequence of lock and unlock actions. A lock action acts as if it flushes all
variables from the thread’s working memory; before use they must be assigned
to or loaded from the main memory. If a thread performs an unlock action on
any lock, it must first copy all assigned values in its working memory back to
the main memory.

The guarantees made by the memory model are weaker than most program-
mers intuitively expect, and are also weaker than those typically provided on
any JVM implementation. Locking objects before accessing any instance vari-
ables guarantee that values are correctly transmitted from one thread to another
through shared variables. Note that locking any lock flushes all variables from
the thread’s working memory, and unlocking any lock forces the writing out of
all variables that the thread has assigned into the main memory. That the lock
is associated with an object does not play any role in this context.

The following example demonstrates how the complexities arising in concur-
rent Java programs can be avoided using synchronization.

Example 8.1.1 This example is a modification of an example from [GJSB00].
Assume two assignments x := y and y := x to instance variables x and y,
executed by the threads t1 and t2, respectively, in the same object in a state
satisfying x = 1 and y = 2.

What is the required set of actions and what are the ordering constraints?
Execution of t1 causes the following actions1, where the read and the write ac-
tions are by the main memory, and the remaining ones by the thread, and where

1The implementation may also choose not to perform the store and write actions, or only
one of the two pairs for t1 and t2, leading to further possible results.

8.1. JAVA’S MEMORY MODEL 103

an arrow from action A to action B indicates that A must precede B:

read y → load y → use y → assign x → store x → write x

For the thread t2 we have similarly:

read x → load x → use x → assign y → store y → write y

The only constraint on the order of the main memory actions is that not both
write actions precede both read actions. Let xi and yi denote the working copies
of x and y for the thread ti, i = 1, 2. The three possible orderings of the main
memory actions and the resulting states are given by

if write x → read x and read y → write y

then x = 2, y = 2, x1 = 2, y1 = 2, x2 = 2, y2 = 2
if read x → write x and write y → read y

then x = 1, y = 1, x1 = 1, y1 = 1, x2 = 1, y2 = 1
if read x → write x and read y → write y

then x = 2, y = 1, x1 = 2, y1 = 2, x2 = 1, y2 = 1

That means, either the value of y is copied into x, or the value of x is copied
into y, or the values of x and y are swapped; moreover, the working copies of
the variables might or might not agree.

Now we modify the example by assuming that both assignments represent the
body of synchronized methods of the same object. In this case both threads must
perform a lock action on the object before execution, and an unlock action on
the same instance after the body of the method completes. These actions provide
further constraints on the ordering: The lock action of one of the threads cannot
occur between the lock and unlock actions of the other thread. Moreover, after
the lock actions all used variables must be assigned to or loaded from the main
memory (since the lock action flushes all variables from the working memory);
the unlock actions require that the store and write actions occur, i.e., all assigned
values must be copied from the working memory into the main memory before
the lock gets released. Thus the actions of t1 are:

lock → read y → load y → use y → assign x → store x → write x → unlock

For the thread t2 we have similarly:

lock → read x → load x → use x → assign y → store y → write y → unlock

It follows that we have only two possible sequences of the main memory actions
read and write:

if write x → read x and read y → write y

then x = 2, y = 2, x1 = 2, y1 = 2, x2 = 2, y2 = 2
if read x → write x and write y → read y

then x = 1, y = 1, x1 = 1, y1 = 1, x2 = 1, y2 = 1

The threads necessarily agree on the values of x and y; they cannot be swapped.

104 CHAPTER 8. POSSIBLE EXTENSIONS

Our assertional proof system for the concurrent Javasynch language basing
on a global state is already complex. Though it would be possible to formalize
an assertional proof system taking Java’s real memory model into account, its
complexity would be enormous. The better way would be to avoid or reduce
somehow these complexities.

As we have seen, a simple solution is given by synchronization. Of course,
allowing exclusively synchronized methods —or at least assuming all methods
containing references to instance variables to be synchronized— would be a very
strong restriction on concurrency. So let us search for further solutions.

Instead of making all computations involving instance variables mutually
exclusive, we make a less restrictive requirement, namely that all access or up-
date to instance variables can be seen as atomic. A possibility to implement
this requirement is offered by the Java modifier volatile. Declaring an instance
variable as volatile is nearly identical in effect to using a little fully synchronized
class protecting only that instance variable via get/set methods; it differs only
in that no locking is involved, but it assures mutually exclusive access or up-
dates to the volatile instance variable itself. Declaring volatile instance variables
seems to be cheaper than synchronization at the first site. However, frequent
access to volatile instance variables leads to slower performance then locking.
Another solution is to implement synchronized get and set methods for all in-
stance variables, and access them only through the invocation of these methods.
If synchronization using the object’s lock is disadvantageous, the same effect can
be reached by creating for each object another object whose lock can be used
for synchronization for instance variable access.

The semantics of the previous chapters define assignment, object creation,
the invocation of a method, and returning from a method to be atomic, i.e.,
to be executed in one computation step without interleaving. In the following
we discuss how to modify the proof system if only instance variable access and
update can be assumed to be atomic.

Assume a thread t executing the annotated assignment x := y {x = y} ,
where x and y are instance variables. This execution could interleave with
other threads, such that first t reads y, then another thread changes the value
of y by executing {u �= y} y := u with local variable u, and then t assigns the
old value of y to x. As a consequence, it is possible that after the execution of
the assignment x := y the assertion x = y is not satisfied.

At first sight one might have the impression that the proof system does not
handle this interleaving case. But it does so: The interference freedom test
condition requiring invariance of x = y under {u �= y} y := u fails.

Unfortunately, it does not work in cases where both assignments contain in-
stance variables on both their right- and left-hand sides, i.e., if both assignments
read and write instance variable values, like it is the case in Example 8.1.1. The
assignments x := y {x = y} and y := x {x = y} of the example executed by the
threads t1 and t2, respectively, in the same object in a state satisfying x = 1 and
y = 2, can be interleaved as follows: t1 reads y having the value 2, t2 executes
y := x resulting in x = y = 1, and, finally, t1 sets the value of x to the old value
of y leading to x = 2 and y = 1. Since the proof system is based on a semantics

8.2. WEAKENING THE LANGUAGE RESTRICTIONS 105

with atomic assignments, the annotation satisfies the verification conditions.
However, real Java semantics can lead to a state where the annotation is not
satisfied.

There are different solutions to overcome this semantical difference: First, we
could change the semantics and extend the annotation by attaching additional
assertions to each real Java control point. For the above example, besides the
annotation {p1} x := y {p3} we could define an additional assertion p2 which
should additionally hold directly after storing the value of y in an auxiliary local
variable uy (representing the working copy of y) and before writing x. Local
correctness should require that p1 implies p2 after assigning the value of y to
uy, and that p2 implies p3 after assigning the value of uy to x. The assertion
p2 should be included into the interference freedom test, to assure its invariance
under execution. Note that we would need such an additional assertion for each
occurrence of instance variables on the right-hand side of assignments, which
should hold directly after reading the value of the given instance variables.

Another —perhaps more natural— solution would be to replace the assign-
ment x := y by u := y; x := u, where u is a local variable. In this case, if
there is at most one occurrence of instance variables per assignment, we can
consider assignments as atomic. The control point between u := y and x := u
is the one where p2 from above should hold after reading but prior to writing.
Due to this replacement, the proof system assures inductivity without further
modifications.

For communication and object creation we do not have such semantical
problems, since we do not allow the occurrence of instance variables in such
statements.

But anyhow, the best solution is to use proper synchronization in Java pro-
grams which assures that the program does what one would expect. If a Java
program does not satisfy the assumption that assignments which do not contain
side-effect expressions on the right-hand side are executed without interleav-
ing, then even for the programmer it will not be clear what the program does.
Our interleaving abstraction is a natural one; if a program does not satisfy our
requirements than probably the best solution is to reformulate the program.

8.2 Weakening the language restrictions

In our languages we made some syntactical restrictions. One of these restric-
tions is that for self-communication the caller observation may not change the
instance state. The reason for introducing this restriction is to simplify the
interference freedom test: If both the caller and the callee observation in a self-
communication modify the instance state, then we have to show invariance not
only under multiple assignments, but also under assignment pairs, since caller
and callee observations are executed in a single computation step. We can re-
lease this restriction by modifying the formulation of the interference freedom
test as follows: The condition for invariance of assertions under assignments
which do not observe communication does not change. For observations of com-

106 CHAPTER 8. POSSIBLE EXTENSIONS

munication we use the same condition under the assumption that the call is not
a self-call, which can be expressed using the built-in augmentation. We need an
additional interference freedom condition for invariance of assertions under the
assignment-pairs of caller and callee observations for self-calls. Similar condi-
tions apply for the return case.

A further restriction is that the results of communication and object cre-
ation must not be assigned to instance variables. This restriction could be
released without loosing the modularity of the proof system, i.e., while still
keeping separate tests for interference freedom and cooperation. To do so, we
should separately handle communication itself and the assignment of the result
to the instance variable. Assume a (partially) annotated method call state-
ment {p1} x := e0.m(�e) {p2}wait {p3}?ret 〈stm〉?ret {p4} . We introduce an additional
auxiliary local variable ux, which allows us to refer to the return value in the
assertion p3, which should hold directly after communication but before assign-
ing the return value to x. The observation stm should additionally contain the
assignment x := ux representing the storage of the result. The cooperation test
for the return case gets modified in that the substitution representing commu-
nication replaces ux by the return expression, instead of replacing x. The other
conditions do not change.

We could similarly release the restriction that actual parameters may not
contain instance variables. We used this restriction to assure that the values
of the actual parameters are not modified during method evaluation, and thus
the actual parameter expressions can be used to express caller-callee relation-
ship also for returning from the method. If we do allow references to instance
variables in actual parameter expressions, then we have to store the actual pa-
rameter values at method invocation in additional auxiliary local variables, so
that we can refer to the actual parameter values in the condition for the return
case. We extend the observation of the caller for a method call by assigning the
actual parameter expressions to those auxiliary variables. Only the cooperation
test for the return case changes, where the actual parameter expressions get re-
placed by the auxiliary variables storing the actual parameter values at method
call.

We can similarly allow that the expression e0 specifying the callee object in
method call statements e0.m(�e) contains instance variables. As for the actual
parameters, we need to store the callee identity in an additional auxiliary local
variable, and modify the cooperation test for the return case correspondingly
in order to refer to the auxiliary variable storing the callee identity instead of
referring to e0.

Also formal parameters could be assigned to, if we store their values at
method call in special auxiliary local variables, and use those variables to express
caller-callee relationship in the cooperation test for the return case.

Another restriction we made on the language is that variables occurring
in the global invariant may be assigned to only in the observations of object
creation and communication. In other words, the global invariant is meant

8.3. CONSTRUCTORS 107

to express properties of object creation and communication, i.e., referring to
inter-object behavior, only, but not intra-object properties. Our experience
during the application of the proof system to some examples has shown that
this restriction sometimes increases the complexity of the augmentation and
annotation, because we additionally have to express dependencies between inter-
and intra-object behavior in class invariants in order to combine properties
expressed in the global invariant with those formulated in local assertions.

Also this restriction can be released. If we allow the assignment to variables
occurring in the global invariant also outside of observations of communication
and object creation, we have to extend the cooperation test with a condition,
which assures invariance of the global invariant under such assignments. This
condition should state that if the global invariant, the class invariant of the
object in which the execution takes place, and the precondition of the assignment
hold, then the global invariant holds after the execution of the assignment.

8.3 Constructors

Constructors allow one to execute some statements directly after the creation of
an object, leading to the new object’s user-defined initialization. Constructors
can be handled simply by treating object creation in two steps: the creation
itself together with a method invocation calling the constructor method. If
constructor methods may contain also communication statements, interference
freedom must apply also to their statements and assertions.

We could also restrict the usage of constructors by requiring that they do
not contain communication or object creation statements. In this case no inter-
leaving can take place in the new object during the execution of the constructor
method, and thus we wouldn’t have to apply the interference freedom test to
constructor methods.

8.4 Static variables and methods

Static variables and methods belong to classes instead of objects, and exist dur-
ing the whole program execution. They can be represented by special objects,
one for each class, containing the static variables and methods of the class.
These special objects are already included into the initial configuration, and no
new instances of their types can be created, i.e, their existence is static and not
dynamic like the existence of objects. In these objects no new threads can be
started. All verification conditions would apply also to the static constructs.

8.5 Exceptions

The extension of the programming language and the proof system with excep-
tion handling (without inheritance) is underway [ÁdBdRS04b]. It is a straight-
forward translation of the transition rules of the operational semantics into

108 CHAPTER 8. POSSIBLE EXTENSIONS

verification conditions, as demonstrated for other language constructs during
the incremental development of the proof system for the concurrent language
with monitor synchronization.

8.6 Inheritance

The extension of the proof system to cover inheritance requires more effort.
Dealing with subtyping on the logical level requires a notion of behavioral sub-
typing [Ame89]. The work [PdB03] introducing an assertional proof system for
a sequential language covering inheritance might provide a basis for a similar
proof system for our concurrent language. This should be possible, since concur-
rency and inheritance are “orthogonal” in a proof-theoretical sense. Of course,
we additionally have to cover the effect of interleaving.

Chapter 9

Tool support

We see the formulation of a sound and complete proof system, providing a logical
and modular characterization of the concurrency aspects of Java, not only as
interesting in itself. The usage of the proof rules like the ones presented here
in actual verification needs a reasonable amount of mechanized tool support.
The theory presented in the previous sections forms, therefore, the theoretical
foundation for the verification tool Verger which takes Java programs asserted
in an adaptation of JML notation and generates verification conditions for the
PVS theorem prover. The conditions can be verified interactively using PVS.

Most of the examples of this chapter are already treated in the previous
chapters. Here we reformulate the examples in Java syntax and discuss the
syntactical verification conditions generated by Verger.

9.1 The theorem prover PVS

Theorem provers offer mechanized support for logical reasoning in general and
for program verification in particular. Unlike verification systems for fully au-
tomated reasoning such as model checkers [CGP99], theorem provers provide
machine-assistance, i.e., an interactive proof environment. Interactive means
that the user is requested to organize the proof, for instance to come up with
an induction hypothesis, to split the proof in appropriate lemmas, etc. While
doing so, the verification environment takes care of tedious details like matching
and unifying lemmas with the proof goals and assists in the proof organization
by keeping track of open proof goals, the collected lemmas and properties. Last
but not least it offers a range of automatic decision or semi-decision procedures
in special cases. Well-known examples of theorem provers are Isabelle [Pau93],
Coq [Coq98], PVS [ORS92], and HOL [GM93].

To assure rigorous formal reasoning, we employ the theorem prover PVS
(Prototype Verification System) developed at SRI International Computer Sci-
ence Laboratory. PVS is written in Common Lisp and has been used for a wide
range of applications; see [Rus01] for an extensive bibliography.

109

110 CHAPTER 9. TOOL SUPPORT

PVS’s built-in specification language is a typed higher-order logic, extended
with predicate subtypes and dependent types. Type declarations, their opera-
tions and properties are bundled together into so-called theories which can be
organized hierarchically using the IMPORTING construct. Theories may contain
declarations, definitions, axioms, lemmas, and theorems, and can be parame-
terized with type or value parameters. PVS has a extensive prelude with many
predefined types such as natural numbers, integers, reals, sets, relations, func-
tions, etc., and associated lemmas about their properties. Type construction
mechanisms are available for building complex types, e.g., lists, function types,
records, and recursively defined abstract data types. Being based on a typed
logic, PVS automatically performs type-checking to ensure consistency of the
specification and the proof-in-progress. Furthermore, the type checking mech-
anism generates new proof obligations, so-called Type-Correctness Conditions
(TCCs), which are often very useful for an early detection of inconsistencies.

Besides the typed internal logic, the PVS environment supports the inter-
active verification by predefined and user-definable proof strategies. It offers
facilities for proof maintenance, such as editing and rerunning (partial) proofs,
easy reuse of already existing proofs, and the like. PVS notation will be intro-
duced when used in the examples; for a complete description of PVS we refer
to the PVS manual [OSRSC99]. In the sequel, the typewriter font indicates
formalization in the PVS language.

9.2 Verger

In the following we apply the proof system to examples, using the Verger tool.
As already mentioned, the tool generates the verification conditions in PVS
syntax for an input proof outline. The tool checks also for syntactical and
type correctness of the input proof outline. Furthermore, it checks if the proof
outline fulfills the restrictions introduced in the previous sections, for example
that actual parameters do not contain instance variables, that formal parameters
are not assigned to, that the result of communication is not assigned to instance
variables, etc. Verger generates also the weakest precondition of assignments, if
required, which can be indicated by empty assertions /∗{}∗/ . Verger allows also
partial annotation; missing assertions are by definition true.

Since the state changes caused by a computation step are represented in
the proof system by substitutions, we only need to encode the semantics of
the assertion language in PVS (cf. Figure 1.2 on page 7). The more semantic
approaches based on the global store model [AL97, JKW03, vON02] require an
explicit encoding of the programming language semantics.

Our experience shows, that most of the work must be put into the definition
of proof outlines; verification conditions which does not contain quantification,
could be usually shown automatically using PVS’s grind strategy.

While the proof system is introduced for an abstract language, the tool
supports programs in Java- and annotations in an adaptation of the JML-syntax.
There are some minor syntactical differences: For example, Java uses = for

9.2. VERGER 111

assignments, and == for equality. Conditional expressions if b then e1 else e2 fi
of the abstract syntax are denoted in Java by (b?e1 : e2). Quantification in
JML-syntax (\forall t z ; p1 ; p2) expresses that all values z of type t with the
property p1 satisfy p2, where (\exists t z ; p1 ; p2) expresses that there is a value
z of type t with the property p1, which satisfies p2. The logical operators &&
and || of JML (and Java) correspond to ∧ and ∨.

Augmentation and annotation are represented by special comments: Aug-
mentations 〈stm〉 can be inserted in the Java program as special comments of
the form /∗〈stm〉∗/ . Augmentations 〈stm〉new , 〈stm〉ass , etc. are represented by
/∗new〈stm〉∗/ , /∗ass〈stm〉∗/ , etc. Multiple assignments 〈�y := �e〉 are syntactically
represented by /∗〈y1 = e1; . . . , yn = en; 〉∗/ .

The syntax of annotation is similar: we use /∗{p}∗/ instead of the notation
{p} of the theoretical part; furthermore, we use /∗new{p}∗/ instead of {p}new ,
/∗ass{p}∗/ instead of {p}ass , etc.

9.2.1 Representation of states in PVS

Before dealing with verification conditions, let us have a look how objects are
represented in PVS. Besides a theory defining objects, two additional theories
are generated for each class: One defining the reference type, and one specifying
the state of class instances. This way, the classes can use each other’s type
definition without mutual dependency.

For the class class c {int x;. . .}, Verger generates the following type def-
initions:
Object : THEORY
BEGIN

null: int
Object_type : NONEMPTY_TYPE = {p:PRED[int] | p(null)}

CONTAINING (LAMBDA (i:int): TRUE)
Object ?: Object_type
Object : NONEMPTY_TYPE = (Object ?) CONTAINING null
class_name : NONEMPTY_TYPE = { cn:string | cn = "c"}

CONTAINING "c"
class : [Object ->class_name]
Thread : NONEMPTY_TYPE = Object CONTAINING null

END Object

c_type : THEORY
BEGIN

IMPORTING Object
c?: [Object ->bool] = LAMBDA (i:Object):

i=null OR class (i)="c"
c: NONEMPTY_TYPE = (c?) CONTAINING null
c_nn: TYPE = {i:c | i/= null}

END c_type

c: THEORY
BEGIN

IMPORTING c_type
x : [c_nn -> int] ...

END c

General specifications of classes and objects are grouped into the theory Object.
Object identifiers are represented by the integers. Constants of a given type
can be declared by <name>:<type>; for example null:int specifies the null

112 CHAPTER 9. TOOL SUPPORT

reference as an object identifier constant. Object identifier sets, specified by
predicates over integers and containing the null reference, build the domain
for the type Object type, where Object? is a value from this domain which
corresponds to ValObject

null (σ). Object is a type with domain Object?. The type
class name specifies the names of the classes in a program, and class is a
function assigning class names, i.e., types, to the existing objects. The type
Threads is an abbreviation for the type Object.

The theory c type specifies the corresponding class type. The domain c?
of the type c implements the set Valcnull (σ) of the semantics and consists of all
existing objects of type c and the null reference; c nn excludes null.

Finally, the theory c specifies states of c-instances: The values of the integer
instance variable x of existing instances of the class are specified by the function
x assigning to each existing object of type c nn an integer x-value. Note that
the representation differs from that of global states: A global state assigns to
each existing object an instance state, which again assigns values to the instance
variables. In the PVS representation, for each instance variable x of a class c,
we assign to each object o of type c nn a value c.x(o) from the correspond-
ing domain, where the PVS expression c.x(o) denotes the application of the
function x in theory c to o.

The instance state definitions are used in global conditions only. Local con-
ditions define the instance variables of the given object locally in the theories
containing the verification conditions. Also local variables are represented this
way.

9.2.2 Built-in augmentation

The augmentation with the built-in auxiliary variables is automatically included
and is not visible to the user, but their values may be used in the user-defined
augmentation and annotation.

Tuples and their types, i.e., product types, have the notation (e1,. . .,en)
and [t1,...,tn] in PVS, where the ith element of a tuple s is specified by
proj i(s); however in Java code this notation could lead to syntactical con-
flicts. Thus in proof outlines we use the notation (:e1,. . .,en:) for tuples
and [:t1,...,tn:] for product types; proj(s,i) is the projection on the ith
component.

For the update of lists, which are represented in PVS by finite sequences
finseq[t] of values of type t, we need the following functions, whose PVS
definition is automatically generated: Given a sequence s and an element e,
the expression index(s,e) retrieves the index of an occurrence of e in s, if
any, and gives -1 otherwise. The function choose assigns to each non-empty
sequence a non-negative integer smaller than the length of the sequence; for the
empty sequence its value is -1. The function get applied to a sequence s of type
finseq[[t1,t2]] and an element e of type t1 gives the index of an element of s
with first component e, if any, and -1 otherwise. The expression remove(s,i)
gives s without its ith element if 0 ≤ i < |s|, and returns s otherwise. The
predicate e ∈ s is syntactically represented by includes(s,e). The function

9.2. VERGER 113

append appends an element at the end of a sequence, and finally o concatenates
two sequences. The above functions are deterministic.

In proof outlines, auxiliary variables x1,. . .,xn of type t can be defined
by the augmentation syntax /*< t x1,. . .,xn;>*/. Correspondingly to Java,
auxiliary instance variables get declared in classes outside of method definitions,
where auxiliary variable declarations inside of methods specify local variables.
All instance and local variables must be defined at the beginning of classes and
methods, respectively.

We illustrate the use of the specific auxiliary variables by the following Java
class definition:
public class Annotation extends Thread {

void m1(){ this.start (); }
synchronized void m2(){}
public void run (){ this.m2(); }

}

Verger generates the following built-in augmentation (which is not visible to the
user):

public class Annotation extends Thread {
/* < finseq[[:Thread ,int :]] wait; >*/
/* < finseq[[:Thread ,int :]] notified ; >*/
/* < boolean started; >*/
/* < int counter; >*/
/* < [:Thread ,int :] lock; >*/

void m1(Thread thread , [: Object ,int ,Thread :] caller) {
/* < int conf; >*/
/*?call <conf=counter ; counter=counter+1;>*/
this.start(this , (:this ,conf ,thread :));
return ;

}

synchronized void m2(Thread thread , [: Object ,int ,Thread :] caller) {
/* < int conf; >*/
/*?call <conf=counter ; counter=counter +1; lock=(: thread ,proj(lock

,2)+1:);>*/
return ;
/*!ret <lock=(: proj(lock ,2) == 1 ? null : proj(lock ,1),proj(lock ,2)

-1:);>*/
}

public void run(Thread thread , [: Object ,int ,Thread :] caller) {
/* < int conf; >*/
/*?call <conf=counter ; counter=counter +1; started=true;>*/
this.m2(thread , (:this ,conf ,thread :));
return ;

} }

As described in the previous chapters, the class gets extended with the built-
in auxiliary instance variables wait, notified, started, counter, and lock.
Furthermore, each method header includes the additional auxiliary formal pa-
rameters thread and caller. Finally, each method declares an auxiliary local
variable conf.

Each method invocation reserves a fresh identity for the callee local con-
figuration by increasing the value of counter, after its old value, the callee
identity, is stored in the callee’s local variable conf. Remember that the lock
variable stores the identity of the thread owning the lock, and the number

114 CHAPTER 9. TOOL SUPPORT

of synchronized method executions within the given object in the stack of
the lock owner. The value (null,0) corresponds to a free lock. The lock
value gets increased upon synchronized method invocation by the observation
lock=(:thread,proj(lock,2)+1:) of the callee, and decreased by returning
from such a method. If the lock gets free after returning is computed runtime
by a conditional expression: The lock is given free only if returning terminates
the last synchronized method execution in the given object by the lock owner,
i.e., if proj(lock,2)==1. Finally, starting a new thread sets started of the
given object to true.

The class is further extended with the specification of the monitor methods:
public void wait(Thread thread , [: Object ,int ,Thread :] caller) {

/* < int conf; >*/
/*?call <conf=counter; counter=counter +1;

wait=append(wait ,lock); lock=(:null ,0:);>*/
return ;
/*!ret <lock=notified[get(notified ,thread)];

notified=remove(notified,get(notified,thread));>*/
}

public void notify (Thread thread , [: Object ,int ,Thread :] caller) {
/* < int conf; >*/
/*?call <conf=counter; counter=counter+1;>*/
/*<wait=remove(wait ,choose(wait));

notified =(choose(wait)== -1 ? notified
: append(notified,wait[choose(wait)])

); >*/
return ;

}

public void notifyAll (Thread thread , [: Object ,int ,Thread :] caller)
{

/* < int conf; >*/
/*?call <conf=counter; counter=counter+1;>*/
/*<notified=o(notified ,wait); wait=empty_seq ();>*/
return ;

}

The statements of the monitor methods, generated by Verger, do not use the
auxiliary statements !signal, !signal all, and ?signal of the semantics. Instead
we implement the wait and notify methods by means of auxiliary instance
variables wait and notified which represent the corresponding sets of the
semantics. In the augmented wait method both the waiting and the notified
status of the executing thread are represented by a single control point. The two
statuses can be distinguished by the values of the wait and notified variables.

Invoking the wait method gives the lock free and stores the old lock value
in the wait set, which is restored if the wait method terminates. Remember
that returning from the wait method is possible only if the executing thread is
already notified, and if additionally the lock of the object is free. Notification
using the notify method moves an element from the wait into the notified set.
Notifying all waiting threads in the notifyAll method moves all elements from
the wait set into the notified set.

Though we listed the specification of the monitor methods above to demon-
strate the usage of the built-in auxiliary variables, these methods are not in-
cluded syntactically in Java class definitions. The user may additionally aug-
ment and annotate the monitor methods by special comments (see the proof

9.2. VERGER 115

outline below).

9.2.3 Proof outline

To demonstrate the proof system, we will use the following class, which imple-
ments a simple account, offering interfaces for deposit and withdraw (see also
Example 4.3.6). To assure that the balance x remains non-negative, the with-
draw method is synchronized; implicitly, the balance does not get decreased
between the evaluation of x>=i in the withdraw method and the withdrawal.
The annotation expresses that for each class instance, under the assumption,
that the methods deposit and withdraw are called with positive parameters
only, the balance x has always a non-negative value, as stated in the class
invariant, which is defined as a local assertion /∗{I}∗/ inside of the class but
outside of method definitions. Functions, like owns and free for in the exam-
ple below, can be defined as special annotations outside of class definitions:
/∗{t f(t1 x1, . . . , tn xn) = e}∗/ defines a function f of type (t1, . . . , tn) → t
with specification f(x1, . . . , xn) = e.

The monitor methods are not included syntactically in Java class definitions.
However, they can be augmented and annotated using special comments. For
example, augmentation and annotation for the wait method can be inserted
between the comments /*[wait]*/ and /*[]*/. In the example below the
annotation of the wait method expresses that it is not called, and thus the
assertions of the program need not be invariant under its built-in augmentation.
Note that the built-in augmentation is inserted by the tool, i.e., it is not defined
in the input proof outlines, and is not visible to the user.
1 // function definitions
2 /*{ boolean owns(Thread thread , [: Thread ,int:] lock) =
3 thread!=null && thread==proj(lock ,1) }*/
4 /*{ boolean free_for(Thread thread , [:Thread ,int:] lock) =
5 thread!=null && (thread==proj(lock ,1) || proj(lock ,1)==null

) }*/

7 public class Account {
8 private int x;

10 /*{ x>=0 }*/ //class invariant

12 //annotation of the wait method
13 /*[wait]*/ /*?call{ false }*/ /*{ false }*/
14 /* < return; >*/ /*!ret{ false }*/ /*[]*/

16 private void change_balance(int i){
17 /*{ i >0 || (x+i>=0 && owns(thread ,lock)) }*/
18 x = x+i;
19 /*{ i >0 || owns(thread ,lock) }*/
20 }

22 public void deposit (int i){
23 /*{i>0}*/
24 change_balance(i);
25 }

27 public synchronized void withdraw (int i){
28 /*?call{ free_for(thread ,lock) }*/
29 /*{ i >0 && owns(thread ,lock) }*/
30 if (x>=i) {

116 CHAPTER 9. TOOL SUPPORT

31 /*{ x>=i && i>0 && owns(thread ,lock) }*/
32 change_balance(-i);
33 /*wait{ i>0 }*/
34 /*{ owns(thread ,lock) }*/
35 } /*{ owns(thread ,lock) }*/
36 return ;
37 /*!ret{ owns(thread ,lock) }*/
38 }
39 }

For the above proof outline 26 verification conditions are generated (4 local
correctness conditions, 19 interference freedom conditions, and 3 cooperation
test conditions; see the following sections). All conditions have been proven
automatically by PVS, using the grind strategy.

9.2.4 Initial correctness conditions

Since the above proof outline does not specify the main class of a program,
we use another proof outline to demonstrate initial correctness (see also Exam-
ple 2.4.8). The following proof outline consists of the specification of its main
class only. Note that the static main method just creates an instance of the
main class, starts its thread, and terminates1. Thus we can assume in the proof
system, that the initial configuration of a proof outline contains a single instance
of the main class, being in its initial state, and a single thread, executing the
run method of the initial object. The global invariant is specified as a global
assertion /∗{GI }∗/ outside of class definitions.
//global invariant
/*{(\ exists Initial z1; z1!=null; (\ forall Initial z2; z2!=null;

z1==z2))}*/

public class Initial extends Thread {
int x;

//class invariant
/*{ started }*/

public static void main(String [] args){
Initial obj ;
obj = new Initial ();
obj.start ();

}

public void run (){
int v;
/* < int u; >*/
/*?call{ u==0 && v==0 && x==0 }*/ // precondition of observation
/*?call < u = 1; >*/ //observation of call
/*{ u==1 && v==0 && x==0 }*/ // postcondition of observation

}
}

Initial correctness requires satisfaction of the precondition p2 of the observation
at the beginning of the run method after initializing the values of the local and
instance variables, and after initializing the formal parameters. Furthermore,
the global invariant GI , the postcondition p3 of the observation, and the class

1This restriction is checked syntactically by Verger.

9.2. VERGER 117

invariant I of the initial object should hold after observation. Using the syntax
of the previous chapters, we have to show the satisfaction of

|=G InitState(z) ∧ (∀z′. z′ = null ∨ z = z′) →
P2(z)[z, (null, 0, null)/thread, caller][0, 0/v, u] ∧
(GI ∧ P3(z) ∧ I(z))[1/u][z, (null, 0, null)/thread, caller][0, 0/v, u]

Verger composes the above implication, carries out the substitutions, and gen-
erates the resulting condition in PVS syntax. For example, the assertion p2 is
u = 0 ∧ v = 0 ∧ x = 0. Expressing p2 is the global language gives P2(z) defined
by u = 0∧v = 0∧ z.x = 0. Carrying out the substitution (u = 0∧v = 0∧ z.x =
0)[z, (null, 0, null)/thread, caller][0, 0/v, u] yields 0 = 0∧ 0 = 0∧ z.x = 0, which is
expressed in PVS syntax by 0=0 AND 0=0 AND Initial.x(z)=0.

Verger generates the following initial condition:
FORALL (z:Initial) :

(Initial .init(z) AND
(FORALL (obj:Object) : (obj=null OR z=obj)))

IMPLIES
%precondition of observation :

((0=0 AND 0=0 AND Initial .x(z)=0) AND
%global invariant:

(EXISTS (z1:Initial) : z1/=null AND
FORALL (z2:Initial) : (z2/=null IMPLIES z1=z2)) AND

%postcondition of observation :
(1=1 AND 0=0 AND Initial .x(z)=0) AND

%class invariant :
true)

where the init function in theory Initial is defined by
init(o:Initial): bool = (o/= null AND Initial .x(o)=0 AND Initial .

started (o)=false AND ...

9.2.5 Local correctness conditions

For the account proof outline of Section 9.2.3 Verger generates 4 local cor-
rectness conditions. The first one for the assignment in line 18 expresses that
the class invariant together with the precondition of the assignment imply the
assignment’s postcondition:
((i>0 OR (x+i >=0 AND owns(thread ,lock))) AND x >=0)
IMPLIES (i>0 OR owns(thread ,lock))

The second one shows, that the precondition of the if-statement in line 29 in
withdraw, the class invariant, and the boolean condition of the if-statement
together imply the assertion of line 31:
((i>0 AND owns(thread ,lock)) AND x >=0 AND x>=i)
IMPLIES (x>=i AND i>0 AND owns(thread ,lock))

The remaining two conditions are generated for the postcondition of the if-
statement. Remember that for local verification conditions, the instance and
local variables are defined locally in the theories containing the lemmas.

118 CHAPTER 9. TOOL SUPPORT

9.2.6 Interference freedom conditions

For interference freedom, the tool implements renaming by extending the name
of each local variable of the local configuration executing the assignment with
1, where the names of local variables in the assertion get extended with 2; the
names of instance variables get the extension inst. Verger does not generate
conditions for trivial cases, for example if the assertion is true by definition, or
if the substitution does not change the assertion.

Satisfaction of the class invariant of the example proof outline is assured by
the condition

%precondition assignment
((i_1 >0 OR (x_inst +i_1 >=0 AND owns(thread_1 ,lock_inst))) AND

%class invariant
x_inst >= 0)

IMPLIES
%class invariant after execution

(x_inst +i_1 >=0)

generated for the only assignment at 18, which changes the balance x. That
the assertion at 31 is invariant under the same assignment, is assured by the
condition

%preconditions assignment
((i_1 >0 OR (x_inst +i_1 >=0 AND owns(thread_1 ,lock_inst))) AND

%assertion
x_inst >= i_2 AND i_2 >0 AND owns(thread_2 , lock_inst) AND

%class invariant
x_inst >= 0 AND

%interleavable
(thread_1 =thread_2 IMPLIES false) AND (thread_1 /= thread_2 IMPLIES

true))
IMPLIES
%assertion after execution

(x_inst +i_1 >=i_2 AND i_2 >0 AND owns(thread_2 ,lock_inst))

If i 1>0, then x inst>=i 2 implies x inst+i 1>=i 2, and the condition is sat-
isfied, which corresponds to the concurrent execution of the methods withdraw
and deposit. Otherwise, thread 1/=thread 2, owns(thread 1,lock inst),
and owns(thread 2,lock inst) lead to a contradiction. This case corresponds
to the concurrent execution of withdraw, which is not possible. There is a
similar condition for the case that two threads are concurrently executing the
change balance method, showing that the assertion at 17 is invariant under
the execution of the assignment at 18.

The remaining conditions are all generated for invariance under changing
the lock value. There are altogether 6 assertions at control points, which have
to be shown invariant under entering and exiting the wait method. As the wait
method, however, is not invoked, as expressed by its annotation, the left-hand
side of the generated implications is false.

The only remaining assignments changing the lock value are the observations
at the beginning and at the end of the synchronized withdraw method. Asser-
tions in that method which are not at a control point waiting for return, does
not have to be invariant under the execution of withdraw. Thus only the as-
sertions at 17 and at 19 in change balance have to be shown invariant, which

9.2. VERGER 119

yields 4 conditions. For invariance of the assertion at 17 under entering the
withdraw method we get:
%precondition assignment

(free_for (thread_1 ,lock_inst) AND
%assertion

(i_2 >0 OR (x_inst +i_2 >=0 AND owns(thread_2 ,lock_inst))) AND
%class invariant

x_inst >=0 AND
%interleavable

(thread_1 =thread_2 IMPLIES false) AND (thread_1 /= thread_2 IMPLIES
true))

IMPLIES
%assertion after execution

(i_2 >0 OR (x_inst +i_2 >=0 AND owns(thread_2 ,(thread_1 ,(PROJ_2 (
lock_inst)+1)))))

Note that free for(thread 1,lock inst), owns(thread 2,lock inst), and
thread 1/=thread 2 together lead to a contradiction: If a thread executing
the private change balance method owns the lock, then no other thread can
enter the synchronized withdraw method. The remaining three conditions are
analogous.

9.2.7 Cooperation test for communication

Next we apply the cooperation test to the account example. Renaming is im-
plemented by extending the name of each local variable of the caller with 1,
where local variables of the callee get extended with 2. The PVS expression
c.x(z) represents the qualified reference z.x for z of type c.

Three cooperation conditions are generated: one for the method call in line
24, one for the call at 32, and one for the corresponding return from the second
call. Note that we do not have any conditions for returning from the first call
at 24, because all postconditions are by definition true. The first condition
FORALL (caller :Account) : caller /= null IMPLIES
FORALL (callee :Account) : callee /= null IMPLIES
%precondition caller

((i_1 >0 AND
%class invariant caller and callee + caller -callee relationship

Account .x(caller) >=0 AND Account .x(callee) >=0 AND caller =callee)
IMPLIES
%postcondition callee

(i_1 >0 OR (Account .x(callee)+i_1 >=0 AND owns(thread_1 ,Account .
lock(callee)))))

states that the class invariants and the preconditions of caller and callee imply
the postcondition of the callee. Note that the global invariant, the postcondition
of the caller, and the assertions at the auxiliary points are by definition true. The
caller-callee relationship of the partners is assured by requiring caller=callee,
since it is a self-call. The condition for the second call is similar. The condition
for return assures the caller-callee relationship of the partners by additionally
requiring, that the formal parameters equal the actual ones. Applied to the
built-in auxiliary parameter thread, this requirement implies for example that
caller and callee are the same thread, i.e., thread 1=thread 2, which we need
to show that the caller owns the lock after communication:

120 CHAPTER 9. TOOL SUPPORT

FORALL (caller :Account) : caller /=null IMPLIES
FORALL (callee :Account) : callee /=null IMPLIES
%precondition caller

((i_1 >0 AND
%class invariant caller

Account .x(caller) >=0 AND
%precondition callee

(i_2 >0 OR owns(thread_2 ,Account .lock(callee))) AND
%class invariant callee

Account .x(callee) >=0 AND
%caller -callee relationship

caller =callee AND i_2 =(- i_1) AND thread_2 =thread_1 AND caller_2 =(
caller ,conf_1 ,thread_1))

IMPLIES
%postcondition caller

owns(thread_1 ,Account .lock(caller)))

9.2.8 Cooperation test for object creation

Finally, to demonstrate the cooperation test for object creation, the proof out-
line below specifies two classes, called Creator and Created. Instances of
the Creator class offer the method create() which creates an instance of the
Created class and gives it back as a return value. The global invariant states
that there exists at most one instance of the Creator class, and that its auxiliary
instance variable nr stores the number of the existing Created instances.
1 //function definition
2 /*{ boolean disjunct(finseq[Created] z) =
3 (\forall int i; 0<=i && i<length(z); z[i]!= null &&
4 (\forall int j; 0<=j && j<length(z) && i!=j ; z[i]!=z[j]))}

*/

6 //global invariant
7 /*{ (\ forall Creator o; o!=null;
8 (\forall Creator o2; o2!=null; o2==o) &&
9 (\forall finseq[Created] z; disjunct(z) && (\ forall Created

z2; z2!=null; includes(z,z2)); o.nr == length(z)))
10 }*/

12 class Creator {
13 /* < int nr; >*/

15 public Created create (){
16 Created u;
17 u = new Created ();
18 /*new < nr = nr + 1; >*/
19 return u;
20 }
21 }

23 class Created {}

We apply the proof system to these two classes. Of course, the global invari-
ant describes a program, which contains these classes, only then correctly, if
the context of these classes also preserve it. Thus we verify these classes to be
correct under the assumption that the remaining verification conditions hold
for the environment. Verger generates the following cooperation test condition
for the object creation statement, where the domain of the type Object old in
theory Object is the value of the logical variable z′ in the cooperation test. Cor-
respondingly for the type of the newly created instance, the type Created old

9.2. VERGER 121

covers all existing instances of the Created class but the new object.
Object : THEORY
BEGIN ...

new_Object : Object
Object_old : NONEMPTY_TYPE = {o:Object | o=null OR o /=

new_Object } CONTAINING null
END Object

Created_type: THEORY
BEGIN ...

Created_old : NONEMPTY_TYPE = {o:Created | o=null OR o /=
new_Object } CONTAINING null

END Created_type

Created : THEORY
BEGIN ...

init(o:Created): bool = (o= new_Object AND o/= null AND ... AND
Created .lock(o)=(null ,0))

END Created
...
global_cond_0 : THEORY
BEGIN ...
condition : LEMMA
%z/=null /\

FORALL (creator :Creator) : creator /= null IMPLIES
%z/=u /\ Fresh(z’,u)

((creator /=u AND Created .init(u) AND
%GI restricted to z’

(FORALL (o:Creator) : o/= null IMPLIES
((FORALL (o2:Creator) : o2/= null IMPLIES o2=o) AND
(FORALL (z:finseq [Created_old]) : ((disjunct (z) AND
(FORALL (z2:Created_old) : (z2/=null IMPLIES includes (z,z2))))

IMPLIES
(Creator .nr(o)=length (z)))))))

IMPLIES
%GI after execution

(FORALL (o:Creator) : (o/=null IMPLIES
((FORALL (o2:Creator) : (o2/=null IMPLIES o2=o)) AND
(FORALL (z:finseq [Created]) : ((disjunct (z) AND
(FORALL (z2:Created) : (z2/= null IMPLIES includes (z,z2))))

IMPLIES
(IF (o=creator) THEN (Creator .nr(creator)+1) ELSE Creator .nr(o)

ENDIF = length (z))))))))

END global_cond_0

In the antecedent of the cooperation test, quantifications in the global invariant
GI ↓ z′ are restricted to objects existing already before the creation. You can
see in the above example, how this restriction is applied: the quantification
FORALL (z2:Created):p got replaced by FORALL (z2:Created old):p. Note
that this replacement applies also to composed types: the quantification FORALL
(z:finseq[Created]):p is replaced by FORALL (z:finseq[Created old]):p.

9.2.9 Properties of the wait method

The following example illustrates properties of the wait method.2 The wait
method can be called only by a thread owning the lock of the callee object, as
expressed by the assertion in line 24. After invoking wait, the thread gives the

2We currently do not handle exceptions in Javasynch and its proof theory. To call the wait

method, however, we must syntactically catch InterruptedExceptions. But, since we do not
support the interrupt method, it cannot be thrown.

122 CHAPTER 9. TOOL SUPPORT

lock free, as formalized in the assertion in line 26. When returning, it becomes
the lock owner again, as stated by the predicate in line 27. The tool generates
16 verification conditions for the proof outline below (14 interference freedom
and 2 cooperation test conditions). All conditions are proven in PVS.

1 /*{ boolean owns(Thread thread , [:Thread ,int:] lock) =
2 thread!=null && proj(lock ,1)==thread }*/
3 /*{ boolean not_owns(Thread thread , [:Thread ,int :] lock) =
4 thread!=null && proj(lock ,1)!=thread }*/
5 /*{ boolean free_for(Thread thread , [:Thread ,int :] lock) =
6 thread!=null && (thread==proj(lock ,1) || lock==(:null ,0:))

}*/
7 /*{ boolean disjunct(finseq[[: Thread ,int :]] x) =
8 (\forall int i,j; 0<=i && 0 <=j && i<length(x)&& j<length(x)

&& i!=j; proj(x[i],1)!=proj(x[j],1)) }*/

10 public class Monitor {
11 /* < finseq[[: Thread ,int :]] x;>*/

13 /*{ disjunct(x) }*/ //class invariant

15 /*[wait]*/ /*?call{ owns(thread ,lock) }*/
16 /*{ not_owns(thread ,lock) && proj(caller ,1)==this &&

includes(x,(:thread ,proj(caller ,2):)) }*/
17 /*<return;>*/
18 /*!ret{ lock==(:null ,0:) && proj(caller ,1)==this &&

includes(x,(:thread ,proj(caller ,2):)) && get(notified,
thread)!=-1 }*/

19 /*[]*/

21 public synchronized void m(){
22 /*?call{ free_for(thread ,lock) && (\ forall int i;true;!

includes(x,(: thread ,i:))) }*/
23 /*?call < x=append(x,(: thread ,counter :)); >*/
24 /*{ owns(thread ,lock) && includes(x,(:thread ,conf:)) }*/
25 try { this.wait() ;} catch (InterruptedException e){}
26 /*wait{ not_owns(thread ,lock) && includes(x,(: thread ,

conf:)) }*/
27 /*{ owns(thread ,lock) && includes(x,(:thread ,conf:)) }*/
28 return ;
29 /*!ret{ owns(thread ,lock) && includes(x,(:thread ,conf:))

}*/
30 /*!ret < x=remove(x,index(x,(:thread ,conf:))); >*/
31 }
32 }

We use the auxiliary instance variable x to store for each local configuration
executing m the thread and local configuration identities. We use this informa-
tion to identify local configurations in caller-callee relationship: We can exclude
from the interference freedom test for example the invariance of the assertion
at 26 under the built-in return-observation of its callee, setting the lock owner
to the identity of the executing thread. Clearly, the assertion at 26 would not
be invariant under the return-observation of its callee; caller and callee execute
a common step, and the control point of the caller moves from 26 to 27. We
get the following interference freedom condition for this setup, where the case
thread 1=thread 2 leads to a contradiction:

%precondition assignment
(lock_inst =(null ,0) AND PROJ_1 (caller_1)=this AND includes (x_inst

,(thread_1 ,PROJ_2 (caller_1))) AND get(notified_inst ,thread_1)
/=(-1) AND

%assertion

9.3. CONCLUSIONS AND RELATED WORK 123

not_owns (thread_2 ,lock_inst) AND includes (x_inst ,(thread_2 ,conf_2
)) AND

%class invariant
disjunct (x_inst) AND

%interleavable
(thread_1 =thread_2 IMPLIES (conf_1 /= conf_2 AND (this /= PROJ_1 (

caller_1) OR conf_2 /= PROJ_2 (caller_1)))) AND (thread_1 /=
thread_2 IMPLIES true))

IMPLIES
%assertion after execution

(not_owns (thread_2 ,seq(notified_inst)(get(notified_inst ,thread_1)
)) AND includes (x_inst ,(thread_2 ,conf_2)))

For the cooperation test, we handle only the condition for the invocation of
the wait method at 25; we have a similar condition for the corresponding return
case.
FORALL (caller :Monitor) : caller /= null IMPLIES
FORALL (callee :Monitor) : callee /= null IMPLIES
%precondition caller

(owns(thread_1 ,Monitor .lock(caller)) AND includes (Monitor .x(
caller) ,(thread_1 ,conf_1)) AND

%class invariant caller
disjunct (Monitor .x(caller)) AND

%class invariant callee
disjunct (Monitor .x(callee)) AND

%caller -callee relationship
caller =callee AND PROJ_1 (Monitor .lock(callee))=thread_1)

IMPLIES
%precondition callee observation

(owns(thread_1 ,Monitor .lock(callee)) AND
%postcondition caller

not_owns (thread_1 ,IF caller =callee THEN (null ,0) ELSE Monitor .
lock(caller) ENDIF) AND includes (Monitor .x(caller),(thread_1 ,
conf_1)) AND

%postcondition callee
not_owns (thread_1 ,(null ,0)) AND PROJ_1 ((caller ,conf_1 ,thread_1))=

callee AND includes (Monitor .x(callee) ,(thread_1 ,PROJ_2 ((
caller ,conf_1 ,thread_1)))))

After renaming the local variables, the precondition of the method invocation
directly implies owns(thread 1,Monitor.lock(caller)), and thus the precon-
dition of the callee observation after substituting the actual parameter thread 1
for the formal one thread 2. This implication means, that if the caller thread
owns the lock, then, since the caller and the callee threads are the same, the
callee thread owns the lock, too. The built-in augmentation at the beginning of
the wait method releases the lock of the callee object. Since caller and callee
object are the same, after substituting for the built-in augmentation and for
communication, the caller precondition also directly implies the postconditions
of both the caller and the callee.

9.3 Conclusions and related work

In this chapter we described the theorem prover PVS and the Verger tool, which
generates for an input proof outline the verification conditions in the syntax of
PVS. The use of the tool is demonstrated on some examples.

Our experience shows that most of the human effort must be put into the
specification of proof outlines, i.e., into the augmentation and the annotation.

124 CHAPTER 9. TOOL SUPPORT

The verification conditions, which are generated as separate logical implications,
were verified mostly automatically using the grind strategy of PVS. Only some
of those conditions which contained quantification needed human interaction in
the PVS verification process.

We did not carry out any larger case studies yet. However, we expect the
above observations to hold also for larger case studies. Though for larger pro-
grams more verification conditions are generated, their proofs are independent
of each other. In other words, the program size influences the number but not
the complexity of single conditions.

As to further development of the tool, we plan to optimize the PVS type
and state representations, and to work out further PVS strategies to increase
the degree of automation. It would also be interesting to restrict the logic to a
decidable subset, for which a fully automatic verification is possible within the
theorem prover.

Further effort will be put into the automatic generation of assertions by
means of weakest preconditions. Runtime checks of the annotations could detect
non-invariant assertions at an early stage of the verification process. Cheon et
al. present such an approach to runtime assertion checking of JML assertions in
[Che03, LCC+03].

The Jass tool (Java with assertions) [BFMW01], developed by Bartetzko
et al., is a Design by Contract extension of Java. The tool allows runtime
checks of the assertions of annotated Java programs. Brörkens and Möller deal
with runtime checking at the bytecode level [Möl02, BM02]. The underlying
framework jasda allows one to test the dynamic behavior of multiple Java
virtual machines by monitoring whether the trace of all relevant events is a
member of the trace semantics of a given CSP process or not.

As already mentioned, the verification conditions of our proof system are
logical implications. Furthermore, we generate those verification conditions au-
tomatically using the Verger tool. That means, we only have to encode the
semantics of assertions in the theorem prover.

In the previous Sections 2.5, 3.4, and 4.4 we discussed also more semantically-
oriented approaches which define the syntax, the semantics, and the proof sys-
tem for a programming language within a theorem prover. The idea of such
representations goes back at least to Gordon [Gor89], who developed a Hoare
logic for a simple imperative language. Using a theorem prover, the Hoare rules
are mechanically derived from the programming language semantics. These
rules form the basis for a simple program verifier.

Theorem prover are not only used to show correctness of Java source code.
For example, Basin et al. [BFPV99, BFGP02] present a model checking algo-
rithm and its implementation in Isabelle/HOL to check type correctness of Java
bytecode. They use Isabelle/HOL to formalize and prove correctness of their
approach [BFG02].

The Compaq Extended Static Checker for Java (ESC/Java) [ESC00] is a
programming tool for finding errors in Java programs. ESC/Java detects, at

9.3. CONCLUSIONS AND RELATED WORK 125

compile time, common programming errors that ordinarily are not detected
until run time, and sometimes not even then; for example, null dereference
errors, array bounds errors, type cast errors, and race conditions. Detlefs et
al. describe and motivate extended static checking in [DLNS98]. A verification
condition generator produces logical formulas assuring that a program is free of
a particular class of errors. A theorem prover is used to prove the conditions;
the checker has been implemented for Modula-3. In [LSS99], Leino et al. use an
intermediate guarded-command language for verification condition generation.

126 CHAPTER 9. TOOL SUPPORT

Chapter 10

Concluding remarks

In this thesis we presented a tool-supported assertional proof method for a
Java sublanguage covering multithreading and Java’s monitor discipline. We
introduced the language and the proof system incrementally in three steps: We
started with a sequential Java sublanguage and its proof system. In the next
step we included dynamic thread creation, resulting in a multithreaded sublan-
guage. Finally, we extended the language and the proof system to cover monitor
synchronization. We gave proofs of soundness and relative completeness. The
proof system also allows to prove deadlock freedom.

The development of the proof system was an interesting and challenging
task. During this process we changed the definitions and formalizations over
and over again, until we reached the current version, which clearly mirrors the
semantics of the language.

We have illustrated the use of our assertional proof system on a number of
examples, which have been verified using the tool Verger. The tool takes an
augmented and annotated Java program, a so-called proof outline, as input and
generates those verification conditions which assure invariance of the annotation.
We used the theorem prover PVS to verify these conditions.

The verification conditions are defined by standard logical formulas, where
the effect of execution is captured by substitutions. This representation requires
only the embedding of the assertion semantics in the theorem prover, but not of
the semantics of the programming language. The simplicity of the representation
increases the automation of the proofs.

The assertional logic and the proof system are modular in that they allow one
to describe and analyze object-internal and object-external execution separately.
This modularity makes local proofs reusable.

Concurrency in class-based object-oriented languages is not just an exten-
sion of sequentiality, but a fundamentally new concept. The way of thinking
about a program, about its structure and its behavior, is qualitatively different.
The state-based approach for sequential programs must be extended with an
interface-based approach.

127

128 CHAPTER 10. CONCLUDING REMARKS

On the one hand, the complexity of a sound and relatively complete Hoare-
style proof system for a programming language immediately reflects the com-
plexity of the semantics of that language. In the case of multithreaded Java,
it is doable to extend our proof system to, e.g., the Java Memory Model (see
Section 8.1). However, the sheer size of technical machinery involved indicates
that, without massive computer support, the limits of this style of proof systems
have been reached.

On the other hand, the complexity of a proof system for a programming
language is inversely proportional to the chance that programs written in that
language are correct. That means, not only the correctness proofs of concurrent
Java programs are complex, but it is also hard to develop correct multithreaded
Java programs.

A natural solution to reduce the complexity of the behavior and of the ver-
ification procedure for concurrent programs could be to restrict interference
between different threads, for example using synchronization. From the view
point of the semantics, such a restriction would allow a better understanding
of program behavior and would make it easier to write correct programs. From
the verification side, it would slow down the exponential increase of the number
of verification conditions for increasing program size.

Future work The preceding chapter on possible extensions shows that there
are a lot of challenging and interesting research topics in the field, which need
further analysis.

The incremental development illustrated how to extend the language and
the proof system to deal with additional language features. As to future work,
we plan to extend the programming language by further constructs, like in-
heritance, subtyping, and exception handling. Since these extensions naturally
increase the complexity of the proof system, further development of the tool is
highly important. Restricting the logic to a decidable subset would allow fully
automatic proof of the verification conditions.

Computer support for the specification of proof outlines, i.e., for the augmen-
tation and annotation, would be of great practical relevance. The specification
of the annotation could use a weakest precondition calculus. However, due to
concurrency, those annotations are in general not yet inductive. I.e., they must
be made stronger in order to exclude from the interference freedom test those
pairs of control points which are not simultaneously reachable.

We are also interested in the development of a compositional proof system,
based on a compositional semantics [ÁdBdRS04a].

Bibliography

[ABB+00] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese,
Elmar Habermalz, Reiner Hähnle, Wolfram Menzel, and Peter H.
Schmitt. The KeY approach: Integrating object oriented design and
formal verification. In Ojeda-Aciego et al. [OAdGBP00], pages 21–36.

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Monographs
in Computer Science. Springer, 1996.

[ACM03] ACM. ACM Conference on Programming Language Design and Im-
plementation, June 2003.

[ACR98] Isabelle Attali, Denis Caromel, and Marjorie Russo. A formal exe-
cutable semantics for Java. In OOPSLA’98 [OOP98]. In SIGPLAN
Notices 30(10).

[AdB90a] Pierre America and Frank S. de Boer. A proof system for process cre-
ation. In IFIP TC-2 Working Conference on Programming Concepts
and Methods, pages 303–332, 1990.

[AdB90b] Pierre America and Frank S. de Boer. A sound and complete proof
system for SPOOL. Technical Report 505, Philips Research Labora-
tories, 1990.

[AdB93] Pierre America and Frank S. de Boer. Reasoning about dynamically
evolving process structures. Formal Aspects of Computing, 6(3):269–
316, 1993.

[ÁdBdRS03a] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Mar-
tin Steffen. A Hoare logic for monitors in Java. Techical report
TR-ST-03-1, Lehrstuhl für Software-Technologie, Institut für Infor-
matik und Praktische Mathematik, Christian-Albrechts-Universität
zu Kiel, April 2003. Available at http://www.informatik.uni-kiel.
de/inf/deRoever/techreports/03/tr-st-03-%1.pdf.

[ÁdBdRS03b] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Mar-
tin Steffen. Inductive proof-outlines for monitors in Java. In Najm
et al. [NNS03], pages 155–169. A longer version appeared as technical
report TR-ST-03-1, April 2003 (http://www.informatik.uni-kiel.
de/inf/deRoever/techreports/03/tr-st-03%-1.pdf).

[ÁdBdRS03c] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Mar-
tin Steffen. Inductive proof outlines for multithreaded Java with ex-
ceptions. Technical Report 0313, Institut für Informatik und Praktis-
che Mathematik, Christian-Albrechts-Universität zu Kiel, December

129

130 BIBLIOGRAPHY

2003. Available at http://www.informatik.uni-kiel.de/reports/

2003/0313.html.

[ÁdBdRS03d] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Mar-
tin Steffen. A tool-supported assertional proof system for multi-
threaded Java. In Susan Eisenbach, Gary T. Leavens, Peter Müller,
Arnd Poetzsch-Heffter, and Erik Poll, editors, Proc. of the Workshop
on Formal Techniques for Java-like Programs - FTfJP’2003, 2003.

[ÁdBdRS04a] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Mar-
tin Steffen. A compositional operational semantics for JavaMT . In
Derschowitz [Der04], pages 290–303. A preliminary version appeared
as Technical Report TR-ST-02-2, May 2002.

[ÁdBdRS04b] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Mar-
tin Steffen. Inductive proof outlines for exceptions in multithreaded
Java. 2004. Submitted for publication, June 2004.

[AF99] Jim Alves-Foss, editor. Formal Syntax and Semantics of Java, volume
1523 of Lecture Notes in Computer Science State-of-the-Art-Survey.
Springer-Verlag, 1999.

[AF03] Thomas Arts and Wan Fokkink, editors. Eighth International Work-
shop on Formal Methods for Industrial Critical Systems, volume 80
of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 2003.

[AFdR80] Krzysztof R. Apt, Nissim Francez, and Willem-Paul de Roever. A
proof system for communicating sequential processes. ACM Trans-
actions on Programming Languages and Systems, 2:359–385, 1980.

[AFL99] Jim Alves-Foss and Fong Shing Lam. Dynamic denotational seman-
tics of Java. In Alves-Foss [AF99], pages 201–240.

[AH00] Mark Aagaard and John Harrison, editors. Theorem Proving in
Higher Order Logics (TPHOL 2000), volume 1869 of Lecture Notes
in Computer Science. Springer-Verlag, 2000.

[AJ01] Isabelle Attali and Thomas Jensen, editors. Java on Smart Cards:
Programming and Security. Revised Papers, Java Card 2000, Inter-
national Workshop, Cannes, France, 2001.

[AL97] Mart́ın Abadi and K. Rustan M. Leino. A logic of object-oriented
programs. In Bidoit and Dauchet [BD97], pages 682–696. An ex-
tended version of this paper appeared as SRC Research Report 161
(September 1998).

[ÁMdB00] Erika Ábrahám-Mumm and Frank S. de Boer. Proof-outlines for
threads in Java. In Palamidessi [Pal00], pages 229–242.

[ÁMdBdRS01] Erika Ábrahám-Mumm, Frank S. de Boer, Willem-Paul de Roever,
and Martin Steffen. Deductive verification for multithreaded Java
(extended abstract). In Proceedings of the “11. Kolloquium Program-
miersprachen und Grundlagen der Programmierung”, 2001, Rurberg,
pages 121–126, 2001.

[ÁMdBdRS02a] Erika Ábrahám-Mumm, Frank S. de Boer, Willem-Paul de Roever,
and Martin Steffen. A compositional operational semantics for

BIBLIOGRAPHY 131

JavaMT . Technical Report TR-ST-02-2, Lehrstuhl für Software-
Technologie, Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität zu Kiel, May 2002.

[ÁMdBdRS02b] Erika Ábrahám-Mumm, Frank S. de Boer, Willem-Paul de Roever,
and Martin Steffen. A tool-supported proof system for monitors in
Java. In Bonsangue et al. [BdBdRG03], pages 1–32.

[ÁMdBdRS02c] Erika Ábrahám-Mumm, Frank S. de Boer, Willem-Paul de Roever,
and Martin Steffen. Verification for Java’s reentrant multithreading
concept. In Nielsen and Engberg [NE02], pages 4–20. A longer ver-
sion, including the proofs for soundness and completeness, appeared
as Technical Report TR-ST-02-1, March 2002.

[ÁMdBdRS02d] Erika Ábrahám-Mumm, Frank S. de Boer, Willem-Paul de Roever,
and Martin Steffen. Verification for Java’s reentrant multithread-
ing concept: Soundness and completeness. Technical Report TR-
ST-02-1, Lehrstuhl für Software-Technologie, Institut für Informatik
und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel,
2002.

[Ame89] Pierre America. A behavioural approach to subtyping in object-
oriented programming languages. 443, Phillips Research Laborato-
ries, January/April 1989.

[And00] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and
Distributed Programming. Addison-Wesley, 2000.

[Apt81a] Krzysztof R. Apt. Recursive assertions and parallel programs. Acta
Informatica, 1981.

[Apt81b] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey – part I. ACM
Transactions on Programming Languages and Systems, 3(4):431–483,
October 1981.

[Apt83] Krzysztof R. Apt. Formal justification of a proof system for communi-
cating sequential processes. Communications of the ACM, 30(1):197–
216, January 1983.

[AS87] Bowen Alpern and Fred B. Schneider. Recognizing safety and live-
ness. Distributed Computing, 2:117–126, 1987.

[Ash75] Edward A. Ashcroft. Proving assertions about parallel programs.
Journal of Computer and System Sciences, 10:110–135, February
1975.

[Bal03] The project Bali. http://isabelle.in.tum.de/Bali/, 2003.

[BCM00] Didier Bert, Christine Choppy, and Peter Mosses, editors. Recent
Trends in Algebraic Development Techniques, volume 1827 of Lecture
Notes in Computer Science. Springer-Verlag, 2000.

[BD97] Michel Bidoit and Max Dauchet, editors. Theory and Practice of Soft-
ware Development, Proceedings of the 7th International Joint Confer-
ence of CAAP/FASE, TAPSOFT’97, volume 1214 of Lecture Notes
in Computer Science, Lille, France, April 1997. Springer-Verlag.

[BdBdRG03] Marcello M. Bonsangue, Frank S. de Boer, Willem-Paul de Roever,
and Susanne Graf, editors. Proceedings of the First International

132 BIBLIOGRAPHY

Symposium on Formal Methods for Components and Objects (FMCO
2002), Leiden, volume 2852 of Lecture Notes in Computer Science.
Springer-Verlag, 2003.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of Java
Card programs. In Attali and Jensen [AJ01], pages 6–24.

[BFC95] Peter A. Buhr, Michel Fortier, and Michael H. Coffin. Monitor clas-
sification. ACM Computing Surveys, 27(1):63–107, March 1995.

[BFG02] David Basin, Stefan Friedrich, and Marek Gawkowski. Verified byte-
code model checkers. In Carreño et al. [CMT02], pages 47–66.

[BFGP02] David Basin, Stefan Friedrich, Marek Gawkowski, and Joachim
Posegga. Bytecode model checking: An experimental analysis. In
Bošnački and Leue [BL02], pages 42–59.

[BFMW01] Detlef Bartetzko, Clemens Fischer, Michael Möller, and Heike
Wehrheim. Jass - Java with assertions. In Havelund and Rosu [HR01].

[BFPV99] David Basin, Stefan Friedrich, Joachim Posegga, and Harald Vogt.
Java byte code verification by model checking. In Halbwachs and
Peled [HP99], pages 491–494.

[BGZ98] Lubos Brim, Jozef Gruska, and Jiŕı Zlatuska, editors. Interna-
tional Symposium on Mathmatical Foundations of Computer Sci-
ence (MFCS), volume 1450 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[BH03] Richard Bubel and Reiner Hähnle. Formal specification of security-
critical railway software with the key system. In Arts and Fokkink
[AF03]. Available at http://johann.math.tulane.edu/~entcs/.

[BL02] Dragan Bošnački and Stefan Leue, editors. Model Checking Software,
9th International SPIN Workshop, volume 2318 of Lecture Notes in
Computer Science. Springer-Verlag, April 2002.

[BM02] Mark Brörkens and Michael Möller. Dynamic event generation for
runtime checking using the JDI. In Havelund and Rosu [HR02].

[Bör99] Egon Börger, editor. Architecture Design and Validation Methods.
Springer-Verlag, 1999.

[BP02] Manfred Broy and Markus Pizka, editors. Models, Algebras and
Logic of Engineering Software, Summer School (Marktoberdorf, Ger-
many, 2002), volume 191 of Series F: Computer and System Sciences.
NATO Advanced Study Institute, IOS Press, 2002.

[BS89] Graham Birtwhistle and Pasupati A. Subrahmanyam, editors. Cur-
rent Trends in Hardware Verification and Automated Theorem Prov-
ing, number 15 in Workshops in Computing. Springer-Verlag, 1989.

[BS97] Rudolf Berghammer and Friedeman Simon, editors. Proceedings of
Programming Languages and Fundamentals of Programming. Insti-
tut für Informatik und Praktische Mathematik, Christian-Albrechts-
Universität zu Kiel, November 1997. Bericht Nr. 9717.

[BS98] Egon Börger and Wolfram Schulte. Defining the Java Virtual Machine
as platform for provably correct Java compilation. In Brim et al.
[BGZ98], pages 17–35.

BIBLIOGRAPHY 133

[BS99a] Egon Börger and Wolfram Schulte. Modular design for the Java
virtual machine architecture. In Börger [Bör99], pages 297–356.

[BS99b] Egon Börger and Wolfram Schulte. A programmer-friendly modular
definition of the semantics of Java. In Alves-Foss [AF99], pages 353–
404.

[BS00] Egon Börger and Wolfram Schulte. A practical method for specifi-
cation and analysis of exception handling - a Java/JVM case study.
IEEE Transactions on Software Engineering, 26(10):872–887, Octo-
ber 2000.

[BS03] Egon Börger and Robert Stärk. Abstract State Machines - A Method
for High-Level System Design and Analysis. Springer-Verlag, 2003.

[BSBR03] Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, and
Martin Rinard. Ownership types for safe region-based memory man-
agement in real-time Java. In ACM Conference on Programming Lan-
guage Design and Implementation (San Diego, California) [ACM03].

[Cen99] Pietro Cenciarelli. Towards a modular denotational semantics of
Java. In Moreira and Demeyer [MD99], page 105.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Check-
ing. MIT Press, 1999.

[Che03] Yoonsik Cheon. A runtime assertion checker for the Java Modeling
Language. Technical Report TR-03-09, Department of Computer
Science, Iowa State University, April 2003.

[CKRW97] Pietro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin
Wirsing. From sequential to multi-threaded Java: An event-based
operational semantics. In Johnson [Joh97], pages 75–90.

[CKRW99] Pietro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin
Wirsing. An event-based structural operational semantics of multi-
threaded Java. In Alves-Foss [AF99], pages 157–200.

[CMT02] Victor A. Carreño, César A. Muñoz, and Sofiène Tahar, editors. The-
orem Proving in Higher Order Logics (TPHOLs’02), volume 2410 of
Lecture Notes in Computer Science. Springer-Verlag, August 2002.

[Coo78] Stephen A. Cook. Soundness and completeness of an axiom system
for program verification. SIAM Journal on Computing, 7(1):70–90,
February 1978.

[Coq98] The Coq project. http://pauillac.inria.fr/coq/, 1998.

[CR98] Eva Coscia and Gianna Reggio. A proposal for a semantics of a subset
of multi-threaded good Java. In Susan Eisenbach, editor, Proceedings
of the Workshop on the formal Underpinnings of Java, Vancouver,
1998.

[CR99] Eva Coscia and Gianna Reggio. An operational semantics for Java.
Technical Report DISI-TR-99-06, DISI- UniversitÃ di Genova, 1999.

[CT00] Thomas W. Christopher and George K. Thiruvathukal. High-
Performance Java Platform Computing: Multithreaded and Net-
worked Programming. Prentice Hall PTR and Sun Microsystems
Press, 2000.

134 BIBLIOGRAPHY

[CW96] Mary Campione and Kathy Walrath. The Java Tutorial. The Java
series. Addison-Wesley, 1996. Available at http://java.sun.com/

docs/books/tutorial/.

[dB90] Frank S. de Boer. A proof system for the parallel object-oriented
language POOL. In Paterson [Pat90].

[dB91a] Frank S. de Boer. A proof system for the language POOL. In
de Bakker et al. [dBdRR91], pages 124–150.

[dB91b] Frank S. de Boer. Reasoning about Dynamically Evolving Process
Structures. A Proof Theory for the Parallel Object-Oriented Language
POOL. PhD thesis, Free University of Amsterdam, 1991.

[dB99] Frank S. de Boer. A WP-calculus for OO. In Thomas [Tho99], pages
135–156.

[dBdRR91] Jaco W. de Bakker, Willem-Paul de Roever, and Grzegorz Rozenberg,
editors. Foundations of Object-Oriented Languages (REX Workshop),
volume 489 of Lecture Notes in Computer Science. Springer-Verlag,
1991.

[dBdRR94] Jaco W. de Bakker, Willem-Paul de Roever, and Grzegorz Rozenberg,
editors. A Decade of Concurrency 1993 (REX Workshop), volume
803 of Lecture Notes in Computer Science. Springer-Verlag, 1994.

[dBP02] Frank S. de Boer and Cees Pierik. Computer-aided specification and
verification of annotated object-oriented programs. In Jacobs and
Rensink [JR02], pages 163–177.

[dBP03] Frank S. de Boer and Cees Pierik. Towards an environment for the
verification of annotated object-oriented programs. Technical report
UU-CS-2003-002, Institute of Information and Computing Sciences,
University of Utrecht, January 2003.

[DEK99] Sophia Drossopoulou, Susan Eisenbach, and Sarfraz Khurshid. Is the
Java type system sound? Theory and Practice of Object Systems,
5(1):3–24, 1999.

[Der04] Nachum Derschowitz, editor. Proceedings of the International Sym-
posium on Verification (Theory and Practice), Celebrating Zohar
Manna’s 64th Birthday, Taormina, Sicily, June 29–July 4, 2003,
volume 2772 of Lecture Notes in Computer Science. Springer-Verlag,
2004.

[dF95] Carlos Camarao de Figueiredo. A proof system for a sequential
object-oriented language. Technical Report UMCS-95-1-1, University
of Manchester, 1995. The technical report corresponds the author’s
PhD thesis.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall,
1976.

[DIS98] Claudio Demartini, Radu Iosif, and Riccardo Sisto. Modeling and
validation of Java multithreading applications using SPIN. In Najm
et al. [NSH98].

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B.
Saxe. Extended static checking. SRC Technical Note 159, Com-
paq Systems Research Center, December 1998. Available at http:

//gatekeeper.dec.com/pub/DEC/SRC/technical-notes/.

BIBLIOGRAPHY 135

[dRdBH+01] Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef
Hooman, Yassine Lakhnech, Mannes Poel, and Job Zwiers. Concur-
rency Verification: Introduction to Compositional and Noncomposi-
tional Proof Methods. Cambridge University Press, 2001.

[DS90] Edsger W. Dijkstra and C. S. Scholten. Predicate Calculus and Pro-
gram Semantics. Springer-Verlag, 1990.

[DV00] Sophia Drossopoulou and Tatyana Valkevych. Java exceptions throw
no surprises. Technical report, Dept. of Computing, Imperial College
of Science, London, 2000.

[ECO00] Proceedings of the 14th European Conference on Object-Oriented Pro-
gramming (ECOOP 2000), Sophia Antipolis and Cannes, volume
1850 of Lecture Notes in Computer Science. Springer-Verlag, June
2000.

[EL02] Lars-Henrik Eriksson and Peter A. Lindsay, editors. Proceedings
of Formal Methods Europe: Formal Methods – Getting IT Right
(FME’02), volume 2391 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[ESC00] Extended static checking for Java. http://research.compaq.com/

SRC/esc/, 2000.

[FFQ02] Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. Thread-
modular verification for shared-memory programs. In Métayer
[Mét02], pages 262–277.

[FKF99] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A
programmer’s reduction semantics for classes and mixins. In Alves-
Foss [AF99], pages 241–269.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz,
editor, Proc. Symp. in Applied Mathematics, volume 19, pages 19–32,
1967.

[FOO02] Proceedings of the 9th International Workshop on Foundations of
Object-Oriented Languages (FOOL’02), 2002.

[GdR98] David Gries and Willem-Paul de Roever, editors. Programming Con-
cepts and Methods (PROCOMET ’98). International Federation for
Information Processing (IFIP), Chapman & Hall, 1998.

[GJS96] James Gosling, Bill Joy, and Guy L. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[GJSB00] James Gosling, Bill Joy, Guy L. Steele, and Gilad Bracha. The Java
Language Specification. Addison-Wesley, Second edition, 2000.

[GKOT00] Yuri Gurevich, Philipp W. Kutter, Martin Odersky, and Lothar
Thiele, editors. Abstract State Machines: Theory and Applications,
volume 1912 of lncs. Springer-Verlag, 2000.

[GM93] Michael J. C. Gordon and Thomas F. Melham, editors. Introduction
to HOL: A Theorem Proving Environment for Higher-Order Logic.
Cambridge University Press, 1993.

[Gor89] Michael J. C. Gordon. Mechanizing programming logics in higher
order logic. In Birtwhistle and Subrahmanyam [BS89], pages 387–
439.

136 BIBLIOGRAPHY

[GPS02] Alex Gontmakher, Sergey Polyakov, and Assaf Schuster. Complex-
ity of verifying Java shared memory executions. Parallel Processing
Letters, 2002.

[Gra97] Mark Grand. Java Language Reference. O’Reilly, Second edition,
1997.

[GS00] Alex Gontmakher and Assaf Schuster. Java consistency: non-
operational characterizations for Java memory behavior. ACM Trans-
actions On Computer Systems (TOCS), 18(4):333–386, 2000.

[GSW00a] Yuri Gurevich, Wolfram Schulte, and Charles Wallace. Investigating
Java concurrency using Abstract State Machines. In Gurevich et al.
[GKOT00], pages 151–176.

[GSW00b] Yuri Gurevich, Wolfram Schulte, and Charles Wallace. Investigating
Java concurrency using Abstract State Machines. Technical Report
2000-04, University of Delaware, 2000.

[GZ98] Sabine Glesner and Wolf Zimmermann. Using many-sorted natu-
ral semantics to specify and generate semantic analysis. In SI2000
[SI298], pages 249–262.

[HJ00] Marieke Huisman and Bart Jacobs. Inheritance in higher order logic:
Modeling and reasoning. In Aagaard and Harrison [AH00], pages
301–319.

[HJvdB01] Marieke Huisman, Bart Jacobs, and Joachim van den Berg. A case
study in class library verification: Java’s vector class. Software Tools
for Technology Transfer, 3(3):332–352, 2001.

[HM01] Pieter H. Hartel and Luc Moreau. Formalizing the safety of Java,
the Java virtual machine, and Java Card. ACM Computing Surveys,
33(4):517–558, 2001.

[Hoa69] Charles A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576–580, 1969.

[Hoa74] Charles A. R. Hoare. Monitors: An operating system structuring
concept. Communications of the ACM, 17(10):549–557, 1974.

[Hoa78] Charles A. R. Hoare. Communicating sequential processes. Commu-
nications of the ACM, 21(8):666–677, 1978.

[Hol00] Allen Holub. Taming Java Threads. Apress, 2000.

[HP99] Nicolas Halbwachs and Doron Peled, editors. CAV ’99: Computer
Aided Verification, volume 1633 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1999.

[HR01] Klaus Havelund and Grigore Rosu, editors. RV’2001 Runtime Veri-
fication, volume 55 of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, 2001.

[HR02] Klaus Havelund and Grigore Rosu, editors. RV’2002 Runtime Veri-
fication, volume 70 of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, 2002.

[Hui01] Marieke Huisman. Java Program Verification in Higher-Order Logic
with PVS and Isabelle. PhD thesis, University of Nijmegen, 2001.

BIBLIOGRAPHY 137

[Hus01] Heinrich Hussmann, editor. Fundamental Approaches to Software
Engineering, volume 2029 of Lecture Notes in Computer Science.
Springer-Verlag, 2001.

[Hyd01] Paul Hyde. Java Thread Programming. SAMS Publishing, 2001.

[IDS99] Radu Iosif, Claudio Demartini, and Riccardo Sisto. A deadlock de-
tection tool for concurrent Java programs. Software - Practice and
Experience, 29(7):577–603, July 1999.

[IP00] Atsushi Igarashi and Benjamin Pierce. On inner classes. In
ECOOP2000 [ECO00], pages 129–154.

[IPW99] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Feather-
weight Java: A minimal core calculus for Java and GJ. In OOP-
SLA’99 [OOP99], pages 132–146. In SIGPLAN Notices.

[Jac01] Bart Jacobs. A formalisation of Java’s exception mechanism. In
Sands [San01], pages 284–301.

[JKW03] Bart Jacobs, Joseph Kiniry, and Martijn Warnier. Java program
verification challenges. In Bonsangue et al. [BdBdRG03], pages 202–
219.

[Joh97] Michael Johnson, editor. Algebraic Methodology and Software Tech-
nology (Proceedings of AMAST ’97, Sydney, Australia), volume 1349
of Lecture Notes in Computer Science. Springer-Verlag, December
1997.

[Jok98] Jyke Jokinen. Concurrent programming in Java is NOT the user-
friendly way. http://mail.python.org/pipermail/thread-sig/

1998-February/000096.html, 1998.

[JP01] Bart Jacobs and Eric Poll. A logic for the Java Modelling Language
JML. In Hussmann [Hus01], pages 284–299.

[JR02] Bart Jacobs and Arend Rensink, editors. Formal Methods for Open
Object-Based Distributed Systems V, IFIP TC6/WG6.1 Fifth In-
ternational Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS 2002), March 20-22, volume 209.
Kluwer, 2002.

[JvdBH+98] Bart Jacobs, Joachim van den Berg, Marieke Huisman, Martijn van
Barkum, Ulrich Hensel, and Hendrik Tews. Reasoning about classes
in Java (preliminary report). In OOPSLA’98 [OOP98], pages 329–
340. In SIGPLAN Notices 30(10).

[Kap92] Deepak Kapur, editor. Automated Deduction (CADE-11), volume
607 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

[KeY03] KeY: Integrated deductive software design. http://i12www.ira.

uka.de/~key/index.htm, 2003.

[KG98] Lora L. Kassab and Steven J. Greenwald. Towards formalizing the
Java security architecture of JDK 1.2. In European Symposium on
Research In Computer Security, 1998.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering, 3(2):125–143, 1977.

138 BIBLIOGRAPHY

[Lam88] Leslie Lamport. Control predicates are better than dummy variables
for reasoning about program control. ACM Transactions on Pro-
gramming Languages and Systems, 10(2):267–281, April 1988.

[Lam94] Leslie Lamport. Verification and specification of concurrent pro-
grams. In de Bakker et al. [dBdRR94], pages 347–374.

[Lan64] Peter J. Landin. The mechanical evaluation of expressions. The
Computer Journal, 6(4):308–320, January 1964.

[Lan65] Peter J. Landin. A correspondence between Algol 60 and Church’s
lambda calculus. Communications of the ACM, 8(3):89–101; 158–165,
1965.

[Lan66] Peter J. Landin. The next 700 programming languages. Communi-
cations of the ACM, 9(3):157–166, March 1966.

[LB99] Bil Lewis and Daniel J. Berg. Multithreaded Programming with Java
Technology. Sun Microsystems Press Series. Pearson Education, 1999.

[LCC+03] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and
David R. Cok. How the design of JML accommodates both run-
time assertion checking and formal verification. In Bonsangue et al.
[BdBdRG03], pages 262–284.

[Lea99] Doug Lea. Concurrent Programming in Java: Design Principles and
Patterns, volume 2. Addison-Wesley, 1999.

[LG81] Gary Levin and David Gries. A proof technique for communicating
sequential processes. Acta Informatica, 15(3):281–302, 1981.

[LM03] Hanbing Liu and J. Strother Moore. Executable JVM model for ana-
lytical reasoning: A study. In Proc. of the ACM SIGPLAN 2003
Workshop on Interpreters, Virtual Machines and Emulators, San
Diego, CA, June 2003.

[Loo01] The LOOP project: Formal methods for object-oriented systems.
http://www.cs.kun.nl/\home{bart}/LOOP/, 2001.

[LSS99] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking
Java programs via guarded commands. SRC Technical Note 1999-
002, Compaq, May 1999.

[LW90] Gary T. Leavens and William E. Wheil. Reasoning about object-
oriented programs that use subtypes. In OOPSLA’90 [OOP90], pages
212–223. Extended Abstract.

[LW95] Gary T. Leavens and William E. Wheil. Specification and verifica-
tion of object-oriented programs using supertype abstraction. Acta
Informatica, 32(8):705–778, 1995. An expanded version appeared as
Iowa State University Report, 92-28d.

[MAS00] Jan-Willem Maessen, Arvind, and Xiaowei Shen. Improving the Java
memory model using CRF. In OOPSLA’00 [OOP00a]. In SIGPLAN
Notices.

[McC65] John McCarthy. A formal description of a subset of ALGOL. In
T.B. Steel Jr., editor, Formal Language Description Languages, pages
1–7, 1965.

BIBLIOGRAPHY 139

[MD99] Ana M. D. Moreira and Serge Demeyer, editors. Object-Oriented
Technology, ECOOP’99 Workshop Reader, ECOOP’99 Workshops,
Panels, and Posters, Lisbon, Portugal, June 14-18, 1999, Proceed-
ings, volume 1743 of Lecture Notes in Computer Science. Springer,
1999.

[Mét02] Daniel Le Métayer, editor. Programming Languages and Sys-
tems: Proceedings of the 11th European Symposium on Programming
(ESOP 2002), Held as Part of the Joint European Conferences on
Theory and Practice of Software (ETAPS 2002), (Grenoble, France,
April 8-12, 2002), volume 2305 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[MK99] Jeff Magee and Jeff Kramer. Concurrency: State Models and Java
Programs. Wiley, 1999.

[MKLP01] J. Strother Moore, Robert Krug, Hanbing Liu, and George Porter.
Formal models of Java at the JVM level - A survey from the ACL2
perspective. In Workshop on Formal Techniques for Java Programs.
June 2001.

[Möl02] Michael Möller. Specifying and checking Java using CSP. In Proc.
of the Workshop on Formal Techniques for Java-like Programs - FT-
fJP’2002, 2002. Computing Science Department, University of Ni-
jmegen, June 2002. Technical Report NIII-R0204.

[Moo99] J. Strother Moore. Proving theorems about Java-like byte code. In
Olderog and Steffen [OS99], pages 139–162.

[Moo02] J. Strother Moore. Proving theorems about Java and the JVM with
ACL2. In Broy and Pizka [BP02], pages 227–290.

[MP01a] Jeremy Manson and William Pugh. Core multithreaded semantics
for Java. In Proceedings of the Joint ACM Java Grande - ISCOPE
2001 Conference, Stanford, 2001.

[MP01b] Jeremy Manson and William Pugh. Semantics of multithreaded Java.
Technical report, Dept. of Computer Science, University of Maryland,
2001.

[MP03] J. Strother Moore and George Porter. The apprentice challenge. ACM
Transactions on Programming Languages and Systems, 2003. submit-
ted for publication.

[MY02] Tiziana Margaria and Wang Yi, editors. Tools and Algorithms for
the Construction and Analysis of Systems(TACAS’ 02), volume 2031
of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[NE02] Mogens Nielsen and Uffe H. Engberg, editors. Proceedings of the
5th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS 2002), Held as Part of the Joint
European Conferences on Theory and Practice of Software (ETAPS
2002), (Grenoble, France, April 8-12, 2002), volume 2303 of Lecture
Notes in Computer Science. Springer-Verlag, April 2002.

[Nip02] Tobias Nipkow. Hoare logics in Isabelle/HOL. In Schwichtenberg
and Steinbrüggen [SS02], pages 341–367.

140 BIBLIOGRAPHY

[NNS03] Elie Najm, Uwe Nestmann, and Perdita Stevens, editors. Proceed-
ings of the 6th IFIP International Conference on Formal Methods
for Open Object-Based Distributed Systems (FMOODS ’03), Paris,
volume 2884 of Lecture Notes in Computer Science. Springer-Verlag,
November 2003.

[NSH98] Elie Najm, Ahmed Serhrouchni, and Gerard Holzmann, editors.
Electronic Proceedings of the Fourth International SPIN Workshop,
Paris, France, November 1998.

[NvO98] Tobias Nipkow and David von Oheimb. Java-light is type-safe —
definitely. In POPL’98 [POP98], pages 161–170.

[NvOP00] Tobias Nipkow, David von Oheimb, and Cornelia Pusch. μJava: Em-
bedding a programming language in a theorem prover. In F. L. Bauer
and R. Steinbrüggen, editors, Foundations of Secure Computation.
Proc. Int. Summer School Marktoberdorf 1999, pages 117–144. IOS
Press, 2000.

[OAdGBP00] Manuel Ojeda-Aciego, Inma P. de Guzmán, Gerhard Brewka, and
Lúıs Moniz Pereira, editors. Proceedings of the 8th European Work-
shop on Logics in AI (JELIA), volume 1919 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2000.

[OG76] Susan Owicki and David Gries. An axiomatic proof technique for
parallel programs. Acta Informatica, 6(4):319–340, 1976.

[OOP90] ACM. Object Oriented Programing: Systems, Languages, and Appli-
cations (OOPSLA) ’90, 1990. In SIGPLAN Notices 25(10).

[OOP98] ACM. Object Oriented Programing: Systems, Languages, and Ap-
plications (OOPSLA) ’98 (Vancouver, Canada), 1998. In SIGPLAN
Notices 30(10).

[OOP99] ACM. Object Oriented Programing: Systems, Languages, and Appli-
cations (OOPSLA) ’99, 1999. In SIGPLAN Notices.

[OOP00a] ACM. Object Oriented Programing: Systems, Languages, and Appli-
cations (OOPSLA) ’00, 2000. In SIGPLAN Notices.

[OOP00b] Proceedings of the Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications European Conference on Object-
Oriented Programming (OOPSLA) (ECOOP), 2000.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A pro-
totype verification system. In Kapur [Kap92], pages 748–752.

[OS99] Ernst-Rüdiger Olderog and Bernhard Steffen, editors. Correct System
Design - Recent Insights and Advances, volume 1710 of Lecture Notes
in Computer Science. Springer-Verlag, 1999.

[OSRSC99] Sam Owre, Natarajan Shankar, John M. Rushby, and David W. J.
Stringer-Calvert. PVS Manual (Language Reference, Prover Guide,
System Guide). Computer Science Laboratory, SRI International,
Menlo Park, CA, September 1999.

[OW99] Scott Oaks and Henry Wong. Java Threads. O’Reilly, Second edition,
January 1999.

BIBLIOGRAPHY 141

[Owi75] Susan Owicki. Axiomatic Proof Techniques for Parallel Programs.
PhD thesis, Cornell University, 1975.

[Pal00] Catuscia Palamidessi, editor. CONCUR 2000: Concurrency Theory
(11th International Conference, University Park, PA, USA), volume
1877 of Lecture Notes in Computer Science. Springer-Verlag, August
2000.

[Pat90] Michael S. Paterson, editor. Seventeenth Colloquium on Automata,
Languages and Programming (ICALP) (Warwick, England), volume
443 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

[Pau93] Lawrence C. Paulson. The Isabelle reference manual. Technical Re-
port 283, University of Cambridge, Computer Laboratory, 1993.

[PdB03] Cees Pierik and Frank S. de Boer. A syntax-directed Hoare logic
for object-oriented programming concepts. In Najm et al. [NNS03],
pages 64–78. An extended version appeared as University of Utrecht
Technical Report UU-CS-2003-010.

[PH97a] Arnd Poetzsch-Heffter. A logic for the verification of object-oriented
programs. In Berghammer and Simon [BS97], pages 31–42. Bericht
Nr. 9717.

[PH97b] Arnd Poetzsch-Heffter. Specification and Verification of Object-
Oriented Programs. Technische Universität München, January 1997.
Habilitationsschrift.

[PHM98] Arnd Poetzsch-Heffter and Peter Müller. Logical foundations for
typed object-oriented languages. In Gries and de Roever [GdR98],
pages 404–423.

[PHM99] Arnd Poetzsch-Heffter and Peter Müller. A programming logic for
sequential Java. In Swierstra [Swi99], pages 162–176.

[Plo81] Gordon Plotkin. A structural approach to operational semantics.
Report DAIMI FN-19, Computer Science Department, Aarhus Uni-
versity, September 1981.

[POP98] ACM. 25th Annual Symposium on Principles of Programming Lan-
guages (POPL) (San Diego, CA), 1998.

[Pug00] William Pugh. The Java memory model is fatally flawed. Concur-
rency: Practice and Experience, 12(6):445–455, 2000.

[PvdBJ00] Eric Poll, Joachim van den Berg, and Bart Jacobs. Specification of
the JavaCard API in JML. In J. Domingo-Ferrer, D. Chan, and
A. Watson, editors, Fourth Smart Card Research and Advanced Ap-
plication Conference (CARDIS’2000), pages 135–154. Kluwer Acad.
Publ., 2000.

[PvdBJ01] Eric Poll, Joachim van den Berg, and Bart Jacobs. Formal specifi-
cation of the Java Card API in JML: the APDU class. Computer
Networks, 36(4):407–421, 2001.

[RHW01] Bernhard Reus, Rolf Hennicker, and Martin Wirsing. A Hoare calcu-
lus for verifying Java realizations of OCL-constrained design models.
In Hussmann [Hus01], pages 300–316.

142 BIBLIOGRAPHY

[RKCW97] Bernhard Reus, Alexander Knapp, Pietro Cenciarelli, and Martin
Wirsing. Verifying a compiler optimization for multi-threaded Java.
In Workshop on Algebraic Development Techniques, pages 402–417,
1997.

[RM02] Abhik Roychoudhury and Tulika Mitra. Specifying multithreaded
Java semantics for program verification. In ACM/IEEE International
Conference on Software Engineering (ICSE), pages 489-499., pages
489–499, 2002.

[Rus01] John M. Rushby. PVS bibliography, 2001. http://www.csl.sri.

com/papers/pvs-bib/.

[RW00] Bernhard Reus and Martin Wirsing. A Hoare-logic for object-oriented
programs. Technical report, LMU München, 2000.

[San01] David Sands, editor. Programming Languages and Systems: Proceed-
ings of the 10th European Symposium on Programming (ESOP 2001),
Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software (ETAPS 2001), (Genova, Italy, April 2001), volume
2028 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

[Sco70] Dana S. Scott. Outline of a mathematical theory of computation.
In 4th Annual Princeton Conference on Information Sciences and
Systems, pages 169–176, 1970.

[Sco76] Dana S. Scott. Data types as lattices. SIAM Journal on Computing,
5(3):522–587, 1976.

[SG94] Abraham Silberschatz and Peter B. Galvin. Operating System Con-
cepts. Addison-Wesley, 4th edition, 1994.

[SI298] Proceedings of the Systems Implementation Conference (SI2000).
Chapman & Hall, 1998.

[SS02] Helmut Schwichtenberg and Ralf Steinbrüggen, editors. Proof and
System-Reliability. Kluwer, 2002.

[SS03] Robert F. Stärk and Joachim Schmid. Completeness of a bytecode
verifier and a certifying Java-to-JVM compiler. J. of Automated Rea-
soning, 2003. Accepted for publication.

[SSB01] Robert Stärk, Joachim Schmid, and Egon Börger. Java and the
Java Virtual Machine: Definition, Verification, Validation. Springer-
Verlag, 2001.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Ap-
proach to Programming LAnguage Semantics. MIT Press, 1977.

[Swi99] S. Doaitse Swierstra, editor. Proceedings of the 8th European Sympo-
sium on Programming (ESOP ’99), volume 1576 of Lecture Notes in
Computer Science. Springer, 1999.

[Sym97] Don Syme. Proving Java type soundness. Technical Report 427,
Cambridge University, 1997.

[Sym99] Don Syme. Proving Java type soundness. In Alves-Foss [AF99], pages
83–118.

BIBLIOGRAPHY 143

[TH02] Francis Tang and Martin Hofmann. Generation of verification condi-
tions for Abadi and Leino’s logic of objects (extended abstract). In
FOOL2002 [FOO02]. A longer version is available as LFCS technical
report.

[Tho99] Wolfgang Thomas, editor. Proceedings of the Second International
Conference on Foundations of Software Science and Computation
Structures (FoSSaCS ’99), Held as Part of the Joint European Con-
ferences on Theory and Practice of Software (ETAPS’99), (Amster-
dam, The Netherlands, April 1999), volume 1578 of Lecture Notes in
Computer Science. Springer-Verlag, 1999.

[TZ88] John V. Tucker and Jeffery I. Zucker. Program Correctness over
Abstract Data Types, with Error-State Semantics, volume 6 of CWI
Monograph Series. North-Holland, 1988.

[vdBHJP00] Joachim van den Berg, Marieke Huisman, Bart Jacobs, and Eric
Poll. A type-theoretic memory model for verification of sequential
Java programs. In Bert et al. [BCM00], pages 1–21. An earlier ver-
sion appeared as Computer Science Institute, University of Nijmegen,
Technical Report CSI-R9926, 1999.

[vdBJ02] Joachim van den Berg and Bart Jacobs. The Loop compiler for Java
and JML. In Margaria and Yi [MY02], pages 299–312.

[vdBJP01] Joachim van den Berg, Bart Jacobs, and Eric Poll. Formal specifi-
cation and verification of JavaCard’s application identifier class. In
Attali and Jensen [AJ01], pages 137–150.

[vO00a] David von Oheimb. Axiomatic semantics for Javalight . In OOP-
SLA2000 [OOP00b].

[vO00b] David von Oheimb. Axiomatic sematics for Javalight in Isabelle/HOL.
Technical Report CSE 00-008, Oregon Graduate Institute, 2000.

[vO01] David von Oheimb. Hoare logic for Java in Isabelle/HOL. Concur-
rency and Computation: Practice and Experience, 13(13):1173–1214,
2001.

[vON99] David von Oheimb and Tobias Nipkow. Machine-checking the Java
specification: Proving type-safety. In Alves-Foss [AF99].

[vON02] David von Oheimb and Tobias Nipkow. Hoare logic for NanoJava:
Auxiliary variables, side effects and virtual methods revisited. In
Eriksson and Lindsay [EL02], pages 89–105.

[Wal97] Charles Wallace. The semantics of the Java programming language.
Technical Report CSE-TR-355-97, University of Michigan, 1997.

[WK99] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint
Language: Precise Modeling With Uml. Object Technology Series.
Addison-Wesley, 1999.

[YGL02] Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom. Specifying
Java thread semantics using a uniform memory model. In Proc Joint
ACM-ISCOPE Conference on Java, pages 192–201, 2002.

144 BIBLIOGRAPHY

Index

!signal, 64
!signal all, 64
?signal, 64

Abadi, Mart́ın, 7, 49, 51, 79, 110
Ábrahám, Erika, 3, 8, 86, 107
Ahrendt, Wolfgang, 51
aliasing, 1, 25, 26, 76
Alpern, Bowen, 11
Alves-Foss, Jim, 48, 49
America, Pierre, 7, 61, 76, 108
Andrews, Gregory R., 64
annotation, 5, 11, 26, 27, 30–32

in Verger, 111
partial, 110
reachability, 85, 87
weakest precondition, 110

Apt, Krzysztof R., 6, 12, 13, 34, 50,
81

Arvind, 72
Ashcroft, Edward A., 12
ASM, 61
asserted program, see proof outline
assertion, 5, 11, 30

automatic generation, 124
global, 22, 23
language, 4, 22–26

global, 5, 32, 33, 38
local, 4, 32, 35
syntax, 22

local, 22
primed, 33
PVS semantics, 7, 49, 51, 79,

110, 124
restriction, 43
runtime-checking, 124
semantics, 23–26

syntax, 22–23
assertional proof method, 1, 11
assignment

semantics, 21
syntax, 16

Attali, Isabelle, 72
augmentation, 12, 26–30, 55, 66–67

built-in, 30, 55, 66, 83–84, 112–
115

in Verger, 111
reachability, see history variable
removing, 82

auxiliary assignment, 12
auxiliary point, see point
auxiliary variable, see variable

Baar, Thomas, 51
Bali, 50
Bartetzko, Detlef, 124
Basin, David, 124
Beckert, Bernhard, 51
Beebee, William, 100
Berg, Daniel J., 61
Börger, Egon, 61
Boyapati, Chandrasekhar, 100
Bracha, Gilad, 48, 101, 102
Brörkens, Mark, 124
Bubel, Richard, 51
Buhr, Peter A., 73

Campione, Mary, 10
Cardelli, Luca, 51
Caromel, Denis, 72
Cenciarelli, Pietro, 72
Cheon, Yoonsik, 124
Christopher, Thomas W., 61
Clarke, Edmund M., 109

145

146 INDEX

class, 17
main, 17

class invariant, 31
Clifton, Curtis, 124
Coffin, Michael H., 73
Cok, David R., 124
communication, 13
completeness, 81, 85–89, 92
computer support, 7
concurrency, 1, 8, 12, 13, 53
condition variable, 10
configuration

enabled, 21, 28
global, 19
initial, 20
local, 19, 30
projection, 82
reachable, 20, 28, 82
thread, 19

constructors, 107
control point, see point
control predicate, 49
control state, 12, 49
Cook, Stephen A., 81
cooperation test, 6, 7, 12, 13, 32, 38,

50, 59, 69
for communication, 38–43, 59,

69–70, 77–78, 119–120
for object creation, 43–44, 78,

120–121
Coscia, Eva, 72
CSP, 6, 12, 13, 50, 124

data encapsulation, 13
de Boer, Frank, 81
de Boer, Frank S., 3, 7, 8, 27, 50,

61, 76, 86, 107, 108
de Figueiredo, 50
de Roever, Willem-Paul, 3, 6, 8, 12,

13, 50, 86, 107
de Roever,Willem-Paul, 81
deadlock, 8, 11, 91
Demartini, Claudio, 100
Detlefs, David L., 125
Dijkstra, Edsger Wybe, 27
Drossopoulou, Sophia, 48

Eisenbach, Susan, 48
ESC/Java, 124
evaluation function

global, 25
local, 24
program expression, 20

exception handling, 1, 3, 8, 107
expression

evaluation, see evaluation func-
tion

global, 23
local, 22
program, 16

Felleisen, Matthias, 49
Fischer, Clemens, 124
Flanagan, Cormac, 62
Flatt, Matthew, 49
Floyd, Robert W., 5, 11, 12
formal parameter, 16, 17
Fortier, Michel, 73
Francez, Nissim, 6, 12, 13, 50
Freund, Stephen N., 62
Friedrich, Stefan, 124

Galvin, Peter B., 9
Gawkowski, Marek, 124
Giese, Martin, 51
Glesner, Sabine, 49
global invariant, 31
global store model, 7, 49, 79, 110
Gontmakher, Alex, 72
Gopalakrishnan, Ganesh, 72
Gordon, Michael J. C., 109, 124
Gosling, James, 1, 9, 48, 101, 102
Grand, Mark, 48
Greenwald, Steven J., 72
Gries, David, 5, 6, 12, 13, 49, 50
Grumberg, Orna, 109
Gurevich, Yuri, 61

Habermalz, Elmar, 51
Hähnle, Reiner, 51
Hannemann, Ulrich, 81
Hartel, Pieter H., 3
Hennicker, Rolf, 51

INDEX 147

Hensel, Ulrich, 50
history variable, 85–89

augmentation with, 86
Hoare

formula, 12
logic, 7, 12
triple, 26, 30, 75

Hoare, Charles A. R., 5, 8–12, 49,
81

Hofmann, Martin, 51
Holub, Allen, 61
Hooman, Jozef, 81
Huisman, Marieke, 50
Hyde, Paul, 61

Igarashi, Atsushi, 49
inheritance, 3, 108
initial correctness, 5, 13, 32–33, 55,

67, 77, 116–117
instance variable, see variable
interference freedom, 6, 8, 12, 13,

32, 35–38, 49, 56–58, 68–
69, 77, 118–119

interleaving point, see point
Iosif, Radu, 100
Isabelle/HOL, 50, 109

Jacobs, Bart, 7, 49, 50, 79, 110
Java, 1
JML, 22, 50, 109, 110, 124
Jokinen, Jyke, 9, 10
Joy, Bill, 1, 9, 48, 101, 102

Kassab, Lora L., 72
KeY, 51
Khurshid, Sarfraz, 48
Kiniry, Joseph, 7, 49, 50, 79, 110
Kleppe, Anneke G., 5
Knapp, Alexander, 72
Kramer, Jeff, 61
Krishnamurthi, Shriram, 49
Krug, Robert, 73

Lakhnech, Yassine, 81
Lam, Fong Shing, 49
Lamport, Leslie, 2, 12, 13, 49

Landin, Peter J., 18
Lea, Doug, 61
Leavens, Gary T., 50, 124
Leino, K. Rustan M., 7, 49, 51, 79,

110, 125
Levin, Gary, 6, 12, 13, 50
Lewis, Bil, 61
Lindstrom, Gary, 72
Liu, Hanbing, 73
local correctness, 6, 13, 32, 34–35,

49, 56, 67, 77, 117
local variable, see variable
lock, 9, 66
logical environment, 23
logical variable, see variable
Loop, 50

Maessen, Jan-Willem, 72
Magee, Jeff, 61
Manson, Jeremy, 72
McCarthy, John, 18
Melham, Thomas F., 109
memory model, 101–105
Menzel, Wolfram, 51
merging lemma, 81

global, 88
local, 88

method
body, 16
definition, 16
invocation, 1, 8, 13, 15, 17, 26

semantics, 22
syntax, 16

monitor, 9
name, 16
notify, 9, 63, 64
notifyAll, 9, 64
run, 17, 22, 53, 54
start, 53, 54
synchronized, 9, 63, 64, 68
wait, 9, 63, 64

Mitra, Tulika, 72
Mobi-J, 2
Möller, Michael, 124
monitor, 1–3, 8–11, 64, 66, 69
Moore, J. Strother, 73

148 INDEX

Moreau, Luc, 3
Müller, Peter, 51, 79
multiple assignment, 28, 29
multithreaded, 1, 3
mutual exclusion, 3, 8, 11

Nelson, Greg, 125
Nipkow, Tobias, 7, 49, 50, 79, 110
notification, 67, 68
notified set, 64, 66
null , 19, 23, 25
null, 16, 19

Oaks, Scott, 61
Object, 22
object, 15

existing, 19, 20
identity, 19
initial, 20

object creation, 1, 15, 17, 26
semantics, 22
syntax, 16

observation, 28, 29
OCL, 5, 51
Owicki, Susan, 5, 6, 12, 13, 49
owns , 64, 66
Owre, Sam, 2, 109, 110

partial correctness, 11
Paulson, Lawrence C., 50, 109
Peled, Doron, 109
Pierce, Benjamin, 49
Pierik, Cees, 3, 50, 108
Plotkin, Gordon, 18
Poel, Mannes, 81
Poetzsch-Heffter, Arnd, 51, 79
point

auxiliary, 29
control, 29
interleaving, 29

Poll, Eric, 50
Polyakov, Sergey, 72
POOL, 62
Porter, George, 73
Posegga, Joachim, 124
postcondition, 12, 30

strongest, 43
precondition, 12, 30

weakest, 3, 75
program, 17
proof outline, 2, 5, 26, 27, 49, 110

completeness, 88
proof system

completeness, see completeness
deadlock freedom, see deadlock
Javaconc, 54
Javaseq , 26
Javasynch , 66
modular, 6
soundness, see soundness

Pugh, William, 72
Pusch, Cornelia, 50
PVS, 2, 7, 50, 109–125

Qadeer, Shaz, 62
qualified reference, 3, 16, 23, 37
quantification, 23

restriction, 43

reachability
annotation, see annotation
augmentation, see augmentation

recursion, 26
reentrant, 1
Reggio, Gianna, 72
returngetlock , 64
Reus, Bernhard, 51, 72
Rinard, Martin, 100
Roychoudhury, Abhik, 72
Ruby, Clyde, 124
Rushby, John M., 2, 109, 110
Russo, Marjorie, 72

safety, 1, 11
Salcianu, Alexandru, 100
Saxe, James B., 125
Schmid, Joachim, 61
Schmitt, Peter H., 51
Schneider, Fred B., 11
Scholten, Carel S., 27
Schulte, Wolfram, 61
Schuster, Assaf, 72

INDEX 149

Scott, Dana S., 18
semantics

assertion, see assertion
axiomatic, 18
compositional, 8
denotational, 18
operational, 18, 20, 54, 64

Shankar, Natarajan, 2, 109, 110
shared variable, see variable
Shen, Xiaowei, 72
signal operation, 8–10
Silberschatz, Abraham, 9
Sisto, Riccardo, 100
soundness, 81–84, 92
SPOOL, 8, 50
Stärk, Robert, 61
Stata, Raymie, 125
state

global, 19
instance, 19
instance local, 20
local, 19

statement, 16
main, 17
return, 16

static variables and methods, 107
Steele, Guy L., 1, 9, 48, 101, 102
Steffen, Martin, 3, 8, 86, 107
Stoy, Joseph E., 18
Stringer-Calvert, David W. J., 110
strongest postcondition, see postcon-

dition
substitution, 7, 51, 77, 110

global, 76
lifting, 25–26, 38
local, 75–76

Syme, Don, 48
synchronization, 2, 3, 8, 66, 69
synchronized

method, see method
modifier, 9, 63
statement, 63

synchronous message passing, 2, 8
syntax

abstract, 16, 53, 63
assertion, see assertion

Tang, Francis, 51
TCCs, 110
Tews, Hendrik, 50
Thiruvathukal, George K., 61
this, 16
Thread, 55
thread, 3, 9, 14, 27

configuration, see configuration
coordination, 63, 64
creation, 2, 3, 53, 54, 59
disabled, 92
identity, 55
interference, see interference free-

dom
terminated, 92

Tucker, John V., 81, 88

UML, 51

Valkevych, Tatyana, 48
van Barkum, Martijn, 50
van den Berg, Joachim, 50
variable

auxiliary, 12, 49
built-in auxiliary, 30, 55, 66
initial value, 19
instance, 16, 17
local, 16, 17
logical, 22
shared, 1, 3, 12, 13

Verger, 2, 7, 22, 110–125
verification condition, 5, 26, 32, 76
verification process, 2
Vogt, Harald, 124
von Oheimb, David, 7, 49, 50, 79,

110

Wadler, Philip, 49
wait operation, 8–10
wait set, 64, 66
Wallace, Charles, 61
Walrath, Kathy, 10
Warmer, Jos B., 5
Warnier, Martijn, 7, 49, 50, 79, 110
weakest precondition, see precondi-

tion

150 INDEX

Wehrheim, Heike, 124
Wheil, William E., 50
Wirsing, Martin, 51, 72
Wong, Henry, 61

Yang, Yue, 72

Zimmermann, Wolf, 49
Zucker, Jeffery I., 81, 88
Zwiers, Job, 81

Notation index

The sequential language (Javaseq)

Notation Meaning Page

c class type 15
Bool boolean type 15
Int integer type 15
t × t tuple type 15
list t sequence type 15
f operator 15
f interpretation of operator f 15
∪̇ disjoint union operator 16
x ∈ IVar instance variable 16
u, v, . . . ∈ TVar local variables 16
y ∈ Var variable 16
this self-reference 16
null empty reference 16
e ∈ Exp expression 16
eret return expression 16
stm ∈ Stm statement 16
ε empty statement 16
Methc set of methods of class c 17
bodym,c body of method m of class c 17
IVar c set of instance variables of class c 17
Val t values of type t 19
α, β, . . . ∈ Valc object identifiers of type c 19
nullc value of nullc 19
Valcnull Valc ∪̇ {nullc} 19
Val

⋃
t Val t 19

Valnull

⋃
t Val tnull 19

Init function assigning initial values to vari-
ables

19

τ ∈ Σloc local state 19
τm,c local state of method m of c 19

151

152 NOTATION INDEX

τm,c
init initial local state of method m of c 19

(α, τ, stm) local configuration 19
ξ thread configuration 19
σinst ∈ Σinst instance state 19
σc
inst instance state of an object of type c 19

σc,init
inst initial instance state of an object of type

c
19

σ ∈ Σ global state 19
Valc(σ) set of existing objects of type c 19
Valcnull (σ) Valc(σ) ∪̇ {nullc} 19
Val t(σ) set of existing values of type t 19
Val tnull (σ) set of existing values of type t with

empty references
19

Val (σ)
⋃

t Val t(σ) 19
Valnull (σ)

⋃
t Val tnull (σ) 19

〈T, σ〉 global configuration 19
[[]] ,

E program expression evaluation function 20
(σinst , τ) instance local state 20
τ [u �→ v], τ [�y �→�v] modified local state 20
σinst [x �→ v], σinst [�y �→�v] modified instance state 20
σ[α.x �→ v], σ[α.�y �→�v] modified global state 20
σ[α �→σinst] extended global state 20
−→ transition relation 20
〈T0, σ0〉 initial global configuration 20
−→∗ the reflexive transitive closure of −→ 20
Object the supertype of all classes 22
z ∈ LVar logical variable 22
LVar t the set of logical variables of type t 22
e ∈ LExp local expression 22
LExpt set of local expressions of type t 22
p, p′, q, . . . ∈ LAss local assertions 22
E, E′, . . . ∈ GExp global expressions 23
GExpt the set of global expressions of type t 23
P, Q . . . ∈ GAss global assertions 23
ω ∈ Ω logical environment 23
ω[�z �→�v], ω[�y �→�v] modified logical environment 23
[[]] , ,

L local evaluation function 24
|=L local ’models’ relation 24
[[]] ,

G global evaluation function 25
|=G global ’models’ relation 25
p[z/this], P (z) lifting substitution applied to p 25
〈�y := �e〉new , 〈�y := �e〉!call , . . . observation of object creation, method

call, . . .
28

conf built-in auxiliary local variable (local
configuration identifier)

30

NOTATION INDEX 153

counter built-in auxiliary instance variable 30
caller built-in auxiliary formal parameter

(“return address”)
30

{p} stm {q} Hoare triple 30
pre(stm) precondition of stm 30
post(stm) postcondition of stm 30
{p} , {p}new , {p}!call , . . . assertions attached to control and aux-

iliary points
30

Ic class invariant of class c 31
GI global invariant 31
Init syntactical operator with interpretation

Init
32

InitState(z) global assertion expressing that z is in
its initial state

32

p′ primed local assertion 33
waits for ret(q, �y := �e) local assertion in the interference free-

dom test
36

comm global assertion in the cooperation test
for communication

41

Fresh(z′, u) global assertion in the cooperation test
for object creation

43

P ↓ z′ restriction operator applied to P 43
obj (v) the set of objects occurring in the value

v
43

The concurrent language (Javaconc)

Notation Meaning Page

started(T, α) predicate expressing that the thread of
α is started

54

Thread thread type 55
thread built-in auxiliary formal parameter

(thread identifier)
55

caller built-in auxiliary formal parameter
(“return address”)

55

started built-in auxiliary instance variable
(stores if the thread of an object is al-
ready started)

55

self start(q, �y := �e) local assertion in the interference free-
dom test

56

interferes(q, �y := �e) local assertion in the interference free-
dom test

57

154 NOTATION INDEX

Reentrant monitors (Javasynch)

Notation Meaning Page

wait(T, α) the wait set of α 64
notified(T, α) the notified set of α 64
signal(T, α) set of threads after a !signal all broad-

cast
66

owns(T, α) predicate expressing that a thread in T
owns the lock of α

66

lock built-in auxiliary instance variable (lock
owner)

66

free value of a free lock 66
wait built-in auxiliary instance variable

(wait set)
66

notified built-in auxiliary instance variable (no-
tified set)

66

inc(lock) operator incrementing the lock value 66
dec(lock) operator decrementing the lock value 66
get(notified , α) retrieves the value (α, n) from notified 67
notify(wait ,notified) represents the effect of notification 67

Weakest precondition calculus

Notation Meaning Page

p[�e/�y] local substitution applied to p 75
P [�E/z.�x], P [�E/�u] global substitution applied to P 76

Soundness and completeness

Notation Meaning Page

ϕprog the annotation of prog 81
prog |= ϕ prog satisfies the specification ϕ 81
prog ′ � ϕ′ prog ′ with annotation ϕ′ satisfies the

verification conditions of the proof sys-
tem

82

↓ prog restriction operator 82
proj (v, i) the ith component of the tuple v 83
s[i] the ith element of the sequence s 84
|= ϕ′ → ϕ the annotation ϕ′ implies ϕ 84
loc auxiliary local variable (program

counter)
85

NOTATION INDEX 155

l ≡ stm l represents the control point in front of
stm

85

hinst auxiliary instance variable (local his-
tory)

86

hcomm auxiliary instance variable (communi-
cation history)

86

Proving deadlock freedom

Notation Meaning Page

I(z) I[z/this] 92
terminated(z) global assertion expressing that the

thread of z is terminated
92

blocked(z, z′, p) global assertion expressing that the
thread of z is disabled in the object z′

at control point p

92

blocked(z, z′) global assertion expressing that the
thread of z is blocked in the object z′

92

Ass(z′) the set of all assertions in z′ 92
owns(thread , lock) thread owns lock 93
not owns(thread , lock) thread does not own lock 93
depth(lock) number of reentrant synchronized

method invocations
93

156 NOTATION INDEX

Appendix A

Proofs

A.1 Properties of substitutions and projection

Proof A.1.1 (of Lemma 2.3.1) By induction on the structure of local expres-
sions and assertions. The base cases for local expressions are listed below, where
the ones for instance and local variables are covered by the respective provisos
of the lemma.

[[x[z/this]]]ω,σ
G = [[z.x]]ω,σ

G = σ([[z]]ω,σ
G)(x) = σ(ω(z))(x) = [[x]]ω,σ(ω(z)),τ

L
[[u[z/this]]]ω,σ

G = [[u]]ω,σ
G = ω(u) = τ(u) = [[u]]ω,σ(ω(z)),τ

L
[[this[z/this]]]ω,σ

G = [[z]]ω,σ
G = ω(z) = [[this]]ω,σ(ω(z)),τ

L
[[null[z/this]]]ω,σ

G = null = [[null]]ω,σ(ω(z)),τ
L

[[z′[z/this]]]ω,σ
G = [[z′]]ω,σ

G = ω(z′) = [[z′]]ω,σ(ω(z)),τ
L .

Compound expressions are treated by straightforward induction:

[[f(e1, . . . , en)[z/this]]]ω,σ
G

= f ([[e1[z/this]]]ω,σ
G , . . . , [[en[z/this]]]ω,σ

G) semantics of assertions
= f ([[e1]]

ω,σ(ω(z)),τ
L , . . . , [[en]]ω,σ(ω(z)),τ

L) by induction
= [[f(e1, . . . , en)]]ω,σ(ω(z)),τ

L semantics of assertions .

For local assertions, negation and conjunction are straightforward. Unrestricted
quantification ∃z′. p in the local assertion language is only allowed for variables
of type t ∈ {Int, Bool} and for types composed from them, for which Val tnull (σ) =
Val t. We get

[[(∃z′. p)[z/this]]]ω,σ
G = true

⇐⇒ [[∃z′. p[z/this]]]ω,σ
G = true def. substitution

⇐⇒ [[p[z/this]]]ω[z′ �→ v],σ
G = true for some v ∈ Val t assertion semantics

⇐⇒ [[p]]ω[z′ �→ v],σ(ω(z)),τ
L = true for some v ∈ Val t by induction

⇐⇒ [[∃z′. p]]ω,σ(ω(z)),τ
L = true assertion semantics.

157

158 APPENDIX A. PROOFS

For restricted quantification over elements of a sequence let z′ ∈ LVar t . Then

[[(∃z′ ∈ e. p)[z/this]]]ω,σ
G = true

⇐⇒ [[∃z′. z′ ∈ e[z/this] ∧ p[z/this]]]ω,σ
G = true by definition

⇐⇒ [[z′ ∈ e[z/this] ∧ p[z/this]]]ω
′,σ

G = true semantics
for some v ∈ Val tnull(σ) and ω′ = ω[z′ �→ v]

⇐⇒
“
[[z′]]ω

′,σ
G ∈ [[e[z/this]]]ω

′,σ
G ∧ [[p[z/this]]]ω

′,σ
G

”
= true semantics

for some v ∈ Val tnull(σ) and ω′ = ω[z′ �→ v]

⇐⇒
“
[[z′]]ω

′,σ(ω(z)),τ
L ∈ [[e]]

ω′ ,σ(ω(z)),τ
L ∧ [[p]]

ω′ ,σ(ω(z)),τ
L

”
= true by induction

for some v ∈ Val tnull(σ) and ω′ = ω[z′ �→ v]

⇐⇒ [[(z′ ∈ e) ∧ p]]
ω′,σ(ω(z)),τ
L = true semantics

for some v ∈ Val tnull(σ) and ω′ = ω[z′ �→ v]

⇐⇒ [[∃z′ ∈ e. p]]
ω,σ(ω(z)),τ
L = true semantics .

The last step uses the assumption that the local state τ and the instance state
σ(ω(z)) assign values from Valnull (σ) to all variables, i.e., e does not refer to
values of non-existing objects (see Lemma A.1.4). Consequently, v ∈ Val tnull

together with [[z′ ∈ e]]ω[z′ �→ v],σ(ω(z)),τ
L = true implies v ∈ Val tnull (σ). The case

for restricted quantification over subsequences is analogous. �

Proof A.1.2 (of Lemma 5.1.1) We proceed by straightforward induction on
the structure of local assertions. Let σ́inst = σ̀inst [�y �→[[�e]]ω,σ̀inst ,τ̀

L] and τ́ =
τ̀ [�y �→[[�e]]ω,σ̀inst ,τ̀

L]. In the case for local variables u = yi we get

[[u[�e/�y]]]ω,σ̀inst ,τ̀
L = [[ei]]

ω,σ̀inst ,τ̀
L

= τ́ (u)

= [[u]]ω,σ́inst ,τ́
L .

For instance variables x = yi similarly:

[[x[�e/�y]]]ω,σ̀inst ,τ̀
L = [[ei]]

ω,σ̀inst ,τ̀
L

= σ́inst (x)

= [[x]]ω,σ́inst ,τ́
L .

The remaining cases are straightforward. �

Proof A.1.3 (of Lemma 5.1.2) Let ώ = ὼ[�y �→[[�E]]ὼ,σ̀
G] and let σ́ be defined

by σ̀[[[z]]ὼ,σ̀
G .�y �→[[�E]]ὼ,σ̀

G]. We proceed by induction on the structure of global ex-
pressions and assertions. The base cases for null and z′ are straightforward.
For the induction cases, we start with the crucial one for qualified reference to

A.1. PROPERTIES OF SUBSTITUTIONS AND PROJECTION 159

instance variables. For expressions E′.x[�E/z.�y] with x not in �y the property
holds by induction. So assume that x is in �y:

[[(E′.yi)[�E/z.�y]]]ὼ,σ̀
G = [[if E′[�E/z.�y] = z thenEi else (E′[�E/z.�y]).yi fi]]ὼ,σ̀

G .

This conditional assertion evaluates to [[Ei]]
ὼ,σ̀
G if [[E′[�E/z.�y]]]ὼ,σ̀

G = [[z]]ὼ,σ̀
G and

to [[(E′[�E/z.�y]).yi]]
ὼ,σ̀
G otherwise. So in the first case we get

[[(E′.yi)[�E/z.�y]]]ὼ,σ̀
G = [[Ei]]

ὼ,σ̀
G

= σ́([[z]]ὼ,σ̀
G)(yi) by def. of σ́

= σ́([[E′[�E/z.�y]]]ὼ,σ̀
G)(yi) by the case assumption

= σ́([[E′]]ώ,σ́
G)(yi) by induction

= [[E′.yi]]
ώ,σ́
G by def. of [[]]G .

If otherwise [[E′[�E/z.�y]]]ὼ,σ̀
G �= [[z]]ὼ,σ̀

G , then

[[(E′.yi)[�E/z.�y]]]ὼ,σ̀
G = [[(E′[�E/z.�y]).yi]]

ὼ,σ̀
G

= σ̀([[E′[�E/z.�y]]]ὼ,σ̀
G)(yi) by def. of [[]]G

= σ́([[E′[�E/z.�y]]]ὼ,σ̀
G)(yi) case assumption+def. σ́

= σ́([[E′]]ώ,σ́
G)(yi) by induction

= [[E′.yi]]
ώ,σ́
G by def. of [[]]G .

For operator expressions we get:

[[(f(E1, . . . , En))[�E/z.�y]]]ὼ,σ̀
G

= [[f(E1[�E/z.�y], . . . , En[�E/z.�y])]]ὼ,σ̀
G def. substitution

= f([[E1[�E/z.�y]]]ὼ,σ̀
G , . . . , [[En[�E/z.�y]]]ὼ,σ̀

G) def. [[]]G
= f([[E1]]

ώ,σ́
G , . . . , [[En]]ώ,σ́

G) by induction
= [[f(E1, . . . , En)]]ώ,σ́

G def. [[]]G .

For global assertions, the cases of negation and conjunction are straightforward.
For quantification,

[[(∃z′. P)[�E/z.�y]]]ὼ,σ̀
G = true

⇐⇒ [[∃z′. P [�E/z.�y]]]ὼ,σ̀
G = true def. substitution

⇐⇒ [[P [�E/z.�y]]]ὼ[z′ �→ v],σ̀
G = true for some v∈Valnull (σ̀) def. [[]]G

⇐⇒ [[P]]ώ[z′ �→ v],σ́
G = true for some v ∈ Valnull (σ̀) by induction

⇐⇒ [[∃z′. P]]ώ,σ́
G = true , Val (σ̀)=Val (σ́)

where z′ is not in �y (otherwise the substitution renames z′). �

Lemma A.1.4 Let σ be a global state and ω a logical environment referring
only to values existing in σ. Then [[E]]ω,σ

G ∈ Valnull (σ) for all global expressions
E ∈ GExp that can be evaluated in the context of ω and σ.

160 APPENDIX A. PROOFS

Proof A.1.5 (of Lemma A.1.4) By structural induction on the global asser-
tion. The case for logical variables z ∈ LVar t is immediate by the assump-
tion about ω, the ones for null and operator expressions are trivial, respectively
follows by induction. For qualified references E.x with E a global expression
of type c and x an instance variable of type t in class c, if E.x can be eval-
uated in the context of ω and σ, then [[E]]ω,σ

G �= null. Hence by induction
[[E]]ω,σ

G ∈ Valnull (σ), more specifically [[E]]ω,σ
G ∈ Val (σ). Therefore by defini-

tion of global states σ([[E]]ω,σ
G)(x) ∈ Valnull (σ). �

Proof A.1.6 (of Lemma 2.4.18) We prove the lemma by structural induc-
tion on global assertions. Assume a global state σ̀, and let σ́ = σ̀[α �→σc,init

inst]
be an extension of σ̀ with a new object α ∈ Valc, α /∈ Val (σ̀). Assume fur-
thermore a logical environment ω referring only to values existing in σ̀, and let
v be the sequence consisting of all elements of

⋃
c Valcnull (σ̀). Let finally P be

a global assertion, z′ ∈ LVar listObject a logical variable not occurring in P , and
ώ = ὼ[z′ �→ v]. Since z′ is fresh in P , we have for all logical variables z in P

that [[z]]ὼ,σ̀
G = ὼ(z) = ώ(z) = [[z]]ώ,σ́

G = [[z ↓ z′]]ώ,σ́
G . For qualified references to

instance variables, the argument is as follows:

[[E.x]]ὼ,σ̀
G = σ̀([[E]]ὼ,σ̀

G)(x) semantics
= σ́([[E]]ὼ,σ̀

G)(x) [[E]]ὼ,σ̀
G �=α by Lemma A.1.4 and α/∈Val (σ̀)

= σ́([[E ↓ z′]]ώ,σ́
G)(x) by induction

= [[(E ↓ z′).x]]ώ,σ́
G semantics

= [[(E.x) ↓ z′]]ώ,σ́
G def. ↓ z′ .

The interesting case is the one for quantification. For z ∈ LVar t :

ὼ, σ̀ |=G ∃z. P
⇐⇒ ὼ[z �→u], σ̀ |=G P for some u ∈ Val tnull (σ̀) semantics
⇐⇒ ώ[z �→u], σ́ |=G P ↓ z′ for some u ∈ Val tnull (σ̀) induction
⇐⇒ ώ[z �→u], σ́ |=G obj(z) ⊆ z′∧P ↓ z′ obj (u) ⊆ v

for some u ∈ Val tnull (σ̀)
⇐⇒ ώ, σ́ |=G ∃z. obj(z) ⊆ z′ ∧ P ↓ z′ semantics
⇐⇒ ώ, σ́ |=G (∃z. P) ↓ z′.

The remaining cases are straightforward. �

A.2 Soundness

This section contains the inductive proof of soundness of the proof method.
We start with some ancillary lemmas about basic invariant properties of proof
outlines, for instance properties of the built-in auxiliary variables added in the
transformation. Afterwards, we show soundness of the proof system.

A.2. SOUNDNESS 161

A.2.1 Invariant properties

Proof A.2.1 (of the transformation Lemma 6.1.1) We proceed for both
directions by straightforward induction on the length of reduction. The only
interesting property of the transformation is the representation of notification by
a single auxiliary assignment of the notifier. For this case we use Lemma 6.1.3
showing soundness of the representation of the wait and notified sets by the
auxiliary instance variables wait and notified. �

Proof A.2.2 (of Lemma 6.1.2) All parts by straightforward induction on the
length of computations. �

Proof A.2.3 (of Lemma 6.1.3) If the order of the elements is unimportant,
in the following we also use set notation for the values of the wait and notified
variables. Correctness of the projection operation uses the results of this lemma
and is formulated in Lemma 6.1.1.

The cases 2a and 2b are satisfied by the definition of the projection operator.
Inductivity for the cases 2c and 2d are easy to show using Lemma 6.1.2 and the
cases 2a and 2b of this lemma. For the other cases we proceed by induction on
the length of the run 〈T0, σ0〉−→∗〈T́ , σ́〉 of the proof outline prog ′.

In the base case of an initial configuration 〈T0, σ0〉 (cf. page 20), the set T0

contains exactly one thread (α, τ, stm), executing the non-synchronized main-
statement of the program, i.e., ¬owns(T0 ↓ prog , α), and initially the lock of the
only object α is set to free. Furthermore, the instance variables wait and notified
of the initial object are set to ∅, and the wait and notified sets of the semantics
are also empty.

For the inductive step, assume 〈T0, σ0〉−→∗〈T̀ , σ̀〉 −→ 〈T́ , σ́〉. We distin-
guish on the kind of the last computation step.
Case: Callstart , Call

skip
start , Returnrun

In these cases none of the concerned variables or predicates are touched, and
the property follows directly by induction.
Case: Assinst , Assloc

Note that this case handles assignments, but not the observations of communica-
tion and object creation. Remember furthermore that the signaling mechanism
is implemented in proof outlines by auxiliary assignments, and thus this case
covers also the rules Signal, Signalskip, and SignalAll.

If the assignment is not in a notify or in a notifyAll method representing
notification, then the case is analogous to the above one.

Assume first that the assignment in the last computation step represents
notification in a notify method of the proof outline, and that the wait set is not
empty. I.e., a thread ξ1 ∈ T̀ notifies another thread ξ2 = (α2, τ, stm) ◦ ξ′2 ∈ T̀
in the wait set of α. Remember that notification is represented by a single
assignment of the notifier, and thus the stack of the notified thread ξ2 does not
change. However, according to the projection definition, as the notifier changes

162 APPENDIX A. PROOFS

the value of wait of α, the projection ξ2 ↓ prog represents a thread being in the
wait set in 〈T̀ , σ̀〉 and being in the notified set in 〈T́ , σ́〉.

The only relevant effect of the step is moving (α2, n) ∈ σ̀(α)(wait) from
the wait set into the notified set of α, where n is by induction the number
of synchronized invocations of ξ2 in α. Thus the properties 1a, 1b and 2e are
automatically invariant. Induction implies also uniqueness of the representation
of the wait and notified sets, i.e., α2 is contained neither in σ̀(α)(notified) nor
in σ́(α)(wait). Thus moving the thread of α2 from the wait into the notified set
does not violate uniqueness of the representation.

If the wait set σ̀(α)(wait) is empty, then no notification takes place; the
property follows directly by induction.

The case for the assignment in the notifyAll method is analogous, with the dif-
ference that all threads in the wait set get notified by ξ1. The notifier observation
sets the value of the auxiliary instance variable notified of α to σ̀(α)(notified) ∪̇
σ̀(α)(wait), whereas the corresponding wait variable gets the value ∅. By induc-
tion we have σ̀(α)(notified) ∩ σ̀(α)(wait) = ∅, and thus the required properties
are invariant under notification.

Case: New

Assume that the last step creates a new object, and executes the corresponding
observation. Let α ∈ dom(σ́). Then α either references the newly created object,
or α ∈ dom(σ̀). In the first case α /∈ dom(σ̀), and by the definition of global
configurations (cf. page 19) there is no local configuration (α, τ, stm) ∈ T̀ , and
the wait and notified set of α in T̀ are empty. Since the last step does not
add any local configurations to T̀ , we have α �= β for all (β, τ, stm) ∈ T́ and
thus ¬owns(T́ ↓ prog , α). Since the lock of the new object is initialized to free,
and wait and notified of α get the value ∅, the required property holds for the
new object. In the second case, if α ∈ dom(σ̀), the property follows directly by
induction.

Case: Call

Let α ∈ dom(σ́). Then also α ∈ dom(σ̀). If α is not the callee object, then the
property holds directly by induction. If α is the callee object, the only new local
configuration (α, τ, stm) in T́ represents the execution of the invoked method.

If the invoked method is non-synchronized, then the property follows by in-
duction (invocations of monitor methods are covered by the Callmonitor case
below). In the case of a synchronized method, let ξ ∈ T̀ be the executing thread.
The antecedent ¬owns(T̀\{ξ} ↓ prog, α) implies by induction that, if there is
no local configuration in ξ which executes a synchronized method of α then
σ̀(α)(lock) = free, and σ̀(α)(lock) = (α0, n) otherwise, where (α0, τ0, stm0)
is the deepest configuration in ξ and n is the number of local configurations
in ξ which execute synchronized methods of α. If in the state prior to the
method invocation σ̀(α)(lock) = free, then (α, τ, stm) is the only local config-
uration in T́ representing the execution of a synchronized method of α by a
thread not in the wait or notified sets of α. Furthermore, the callee observation
sets σ́(α)(lock) = (α0, 1), and thus the required property holds. In the second
case, using the fact that the callee configuration is on top of its stack, the callee

A.2. SOUNDNESS 163

observation changes σ̀(α)(lock) = (α0, n) to σ́(α)(lock) = (α0, n + 1), and we
get the property by Lemma 6.1.2 and by induction.

Case: Callmonitor

Similarly to the case Call, for α ∈ dom(σ́) also α ∈ dom(σ̀), and if α is not
the callee object, then the property holds by induction. In the case of the non-
synchronized notify and notifyAll methods, none of the concerned variables or
predicates are touched, and thus the property holds by induction again. So let
ξ ∈ T̀ be the executing thread invoking the non-synchronized wait method of α.

The antecedent owns(ξ ↓ prog , α) implies by induction σ̀(α)(lock) = (α0, n),
where (α0, τ0, stm0) is the deepest configuration in the stack ξ and n is the
number of its synchronized method invocations in α. Furthermore, since ξ does
not yet execute a wait method prior to the call, from ξ /∈ wait(T̀ ↓ prog, α) ∪
notified(T̀ ↓ prog , α) we conclude by induction that α0 is contained neither in
wait nor in notified of α in σ̀.

The execution places the thread into α’s wait set and, since at most one
thread can own a lock at a time, it gives the lock of α free, i.e., we have
¬owns(T́ ↓ prog , α). The corresponding callee observation extends σ̀(α)(wait)
with (α0, n), and sets the lock-value of α to free. Thus the case follows by
induction.

Case: Return

Assume α ∈ dom(σ́) = dom(σ̀). If α is not the callee object, or if the invoked
method is non-synchronized, then the property holds directly by induction. Note
that returning from the wait method is covered by the Returnwait case below.
So let ξ ∈ T̀ be the thread of α0 returning from a synchronized method of α; we
denote the thread after execution by ξ′ ∈ T́ .

Since ξ is neither in the wait nor in the notified set of α, we get by def-
inition owns(ξ ↓ prog , α) prior to execution. If the given method is the only
synchronized method of α executed by ξ, then in the successor configuration
¬owns(ξ′ ↓ prog , α), and from the invariant property that at most one thread
can own a lock at a time we imply ¬owns(T́ ↓ prog , α). Otherwise, if ξ has reen-
trant synchronized method invocations in α, then the thread does not give the
lock free upon return, i.e., in the successor state we still have owns(ξ′ ↓ prog , α).

Using owns(ξ ↓ prog , α), we get by induction σ̀(α)(lock) = (α0, n), where n
is the number of invocations of synchronized methods of α by ξ. The auxiliary
variable lock of α is set by the callee augmentation to free, if n = 1, and to
(α0, n − 1), otherwise. Since the auxiliary variables wait and notified are not
touched, the property follows by induction.

Case: Returnwait

Assume that the thread ξ ∈ T̀ of an object α0 is returning from the wait method
of α ∈ dom(σ́) = dom(σ̀); we denote the thread after execution by ξ′ ∈ T́ .

The semantics assures ¬owns(T̀ ↓ prog , α) and by definition ξ ∈ notified(T̀ ↓
prog, α). We get by induction σ̀(α)(lock) = free and (α0, n) ∈ σ̀(α)(notified),
where n is the number of invocations of synchronized methods of α by ξ. After
returning, the thread gets removed from the notified set of α and gathers the
lock of α, i.e., ξ′ /∈ notified(T́ ↓ prog , α) and owns(ξ′ ↓ prog , α).

164 APPENDIX A. PROOFS

The augmentation of the wait method removes (α0, n) from σ̀(α)(notified);
from the uniqueness of the representation follows α0 �= β for all (β, m) ∈
σ́(α)(notified). Furthermore, the observation sets the lock of α to (α0, n), by
which we get the required property. �

Proof A.2.4 (of Lemma 6.1.4) Straightforward by the definition of augmen-
tation. �

A.2.2 Proof of the soundness theorem

Proof A.2.5 (of the soundness Theorem 6.1.5) We prove the theorem
by induction on the length of the computation, simultaneously for all parts of
Definition 6.0.1.

For the initial case let dom(σ0) = {α}, σ0(α) = σinit
inst [this �→α], τ0 =

τinit [thread �→α], and let {p2}?call 〈�y2 := �e2〉?call {p3} stm be the main statement.
Then the initial configuration 〈T ′

0, σ
′
0〉 of the proof outline satisfies the follow-

ing: σ′
0 = σ0[α.�y2 �→[[�e2]]

σ0(α),τ0
E], and for the stack we have T ′

0 = {(α, τ ′
0, stm)}

with τ ′
0 = τ0[�y2 �→[[�e2]]

σ0(α),τ0
E].

Let ω be a logical environment referring only to values existing in σ0. As in
σ0 there exists exactly one object α being in its initial instance state, we have

ω[z �→α], σ0 |=G InitState(z) ∧ ∀z′. z′=null ∨ z=z′ ,

where z is of the type of the main class, and z′ is a logical variable of type
Object. Using the initial correctness condition we get

ω[z �→α], σ0 |=G (GI ∧ P3(z) ∧ I(z)) ◦ fobs ◦ finit

with I the class invariant of α, �v the local variables of the run method of the
main class, and

finit = [this, (null, 0, null)/thread, caller][Init(�v)/�v] , and

fobs = [�E2(z)/z.�y2] .

Applying Lemma 5.1.2, we get for the global invariant ω′, σ′
0 |=G GI for ω′ =

ω[z �→α][�v �→ τ ′
0(�v)]. Since GI may not contain free logical variables, its value

does not depend on the logical environment, and therefore ω, σ′
0 |=G GI .

Similarly for the local property p3, we get with Lemma 5.1.2 that ω′, σ′
0 |=G

P3(z). With Lemma 2.3.1 we get ω′, σ′
0(α), τ ′

0 |=L pre(stm). Since pre(stm)
does not contain free logical variables, we get finally ω, σ′

0(α), τ ′
0 |=L pre(stm).

Part 3 for the class invariant is analogous.

For the inductive step, assume 〈T0, σ0〉−→∗〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 such that 〈T̀ , σ̀〉
satisfies the conditions of Definition 6.0.1. Let ω be a logical environment refer-
ring only to values existing in σ́. We distinguish on the kind of the computation
step 〈T̀ , σ̀〉 −→ 〈T́ , σ́〉.

A.2. SOUNDNESS 165

If the computation step is executed by a single local configuration, we use the
local correctness conditions for inductivity of the executing local configuration’s
properties, and the interference freedom test for all other local configurations and
the class invariants in 〈T́ , σ́〉. For communication, invariance for the executing
partners and the global invariant is shown using the cooperation test for commu-
nication. Communication itself does not affect the global state; invariance of the
remaining properties under the corresponding observations is shown again with
the help of the interference freedom test. Finally for object creation, invariance
for the global invariant, the creator local configuration, the created object’s class
invariant is assured by the conditions of the cooperation test for object creation;
all other properties are shown to be invariant using the interference freedom test.

Case: Assinst , Assloc

Note that signaling is represented in proof outlines by auxiliary assignments,
thus this case covers also the rules Signal, SignalAll, and Signalskip . Note
furthermore that this case does not cover observations of communication or
object creation.

Let the last computation step be the execution of an assignment in the local
configuration (α, τ̀1, �y := �e; stm1) ∈ T̀ resulting in (α, τ́1, stm1) ∈ T́ . According
to the semantics, τ́1 = τ̀1[�y �→[[�e]]σ̀(α),τ̀1

E] and σ́ = σ̀[α.�y �→[[�e]]σ̀(α),τ̀1
E].

Since assignments, that does not observe object creation or communication,
must not change the values of variables occurring in GI , part (2) is satisfied.

For part (1), assume (β, τ2, stm2) ∈ T́ . If (β, τ2, stm2) = (α, τ́1, stm1) is the
executing local configuration, then by induction ω, σ̀(α), τ̀1 |=L pre(�y := �e) ∧ I,
where I is the class invariant of α. The local correctness condition implies that
ω, σ̀(α), τ̀1 |=L pre(stm1)[�e/�y]. Using the properties of the local substitution
formulated in Lemma 5.1.1 we get ω, σ́(α), τ́1 |=L pre(stm1).

If otherwise (β, τ2, stm2) is not the executing local configuration, then it is
contained in T̀ . If α �= β, i.e., the execution does not take place in β, then
σ̀(β) = σ́(β), and thus ω, σ́(β), τ2 |=L pre(stm2) by induction. Otherwise let
τ be τ̀1[�v′ �→ τ2(�v)], where �v = dom(τ2) and �v′ fresh. Then Lemma 6.1.2, the
induction assumptions, and the definition of interferes imply

ω, σ̀(α), τ |=L pre(�y := �e) ∧ pre ′(stm2) ∧ I ∧ interferes(pre(stm2), �y := �e) ,

and with the interference freedom test we get ω, σ̀(α), τ |=L pre ′(stm2)[�e/�y].
Using the substitution Lemma 5.1.1 and the fact that, due to the renaming
mechanism, no variables in �v′ may occur in �y, yields ω, σ́(α), τ2 |=L pre(stm2).

Part (3) is similar, using the fact that the class invariant may contain in-
stance variables only, and thus its evaluation does not depend on the local state.

Case: Call

Let (α, τ̀1, uret := e0.m(�e); 〈�y1 := �e1〉!call stm1) ∈ T̀ be the caller configuration
prior to method invocation, and let (α, τ́1, stm ′

1) ∈ T́ and (β, τ́2, stm2) ∈ T́ be the
local configurations of the caller and the callee after execution. Let furthermore
〈�y2 := �e2〉?call stm2 be the invoked method’s body and �u its formal parameters. Di-
rectly after communication the callee has the local state τ̂2 = τinit [�u �→[[�e]]σ̀(α),τ̀1

E];

166 APPENDIX A. PROOFS

after the caller observation, the global state is σ̂ = σ̀[α.�y1 �→[[�e1]]
σ̀(α),τ̀1
E] and the

caller’s local state is updated to τ́1 = τ̀1[�y1 �→[[�e1]]
σ̀(α),τ̀1
E]. Finally, the callee

observation updates its local state to τ́2 = τ̂2[�y2 �→[[�e2]]
σ̂(β),τ̂2
E] and the global

state to σ́ = σ̂[β.�y2 �→[[�e2]]
σ̂(β),τ̂2
E]. Let �v1 denote dom(τ̀1) and assume ὼ =

ω[z �→α][z′ �→β][�v1 �→ τ̀1(�v1)].
The semantics assures α �= null and β = [[e0]]

σ̀(α),τ̀1
E �= null, and we get with

Lemma 2.3.1 and the definition of ὼ that ὼ, σ̀ |=G z �= null∧z′ �= null∧E0(z) = z′.
If the method is synchronized and ξ is the stack of the executing thread

in T̀ , then according to the transition rule ¬owns(T̀ \{ξ} ↓ prog , β). Using
Lemma 6.1.3 and Lemma 6.1.2 we get σ̀(β)(lock) = free ∨ thread(σ̀(β)(lock)) =
τ̀1(thread) and thus ὼ, σ̀ |=G z′.lock = free ∨ thread(z′.lock) = thread.

In the following let p1 = pre(uret := e0.m(�e)), p2 = pre(�y1 := �e1), p3 =
post(�y1 := �e1), q1 = Iq, q2 = pre(�y2 := �e2), and q3 = post(�y2 := �e2), where Iq is
the class invariant of the callee. Let Ip be the caller’s class invariant. Then we
have by induction ὼ, σ̀ |=G GI , for the class invariants ὼ, σ̀(α), τ̀1 |=L Ip and
ὼ, σ̀(β), τ̀1 |=L Iq, and for the precondition of the call ὼ, σ̀(α), τ̀1 |=L p1. Using
the lifting lemma, the cooperation test for communication implies

ὼ, σ̀ |=G (GI ∧ P3(z) ∧ Q′
3(z

′))[�E′
2(z

′)/z′.�y′
2][�E1(z)/z.�y1][�E(z), Init(�v)/�u′, �v′] ,

where �v contains the local variables of the callee without the formal parameters
�u. Using the lifting lemma again but in the reverse direction and Lemma 5.1.2
results ω, σ́ |=G GI , and thus part (2). Note that in the annotation no free
logical variables occur, and thus the values of assertions in a proof outline do
not depend on the logical environment. Furthermore, using the same lemmas
we get

ω, σ́(α), τ́1 |=L p3 and ω, σ́(β), τ́2 |=L q3 .

Thus part (1) is satisfied for the local configurations involved in the last
computation step. All other configurations (γ, τ3, stm3) in T́ are also in T̀ . If
γ �= α and γ �= β, then σ̀(γ) = σ́(γ), and thus ω, σ́(γ), τ3 |=L pre(stm3) by
induction.

Assume next γ = α and α �= β, and let τ be τ̀1[�v′ �→ τ3(�v)], where �v =
dom(τ3). Then Lemma 6.1.2, the induction assumptions, and the definition of
the assertion interferes imply with the interference freedom test ω, σ̀(α), τ |=L
pre ′(stm3)[�e1/�y1]. The substitution Lemma 5.1.1 and the fact that, due to the
renaming mechanism, no local variables in �v′ occur in �y1, yield ω, σ̂(α), τ3 |=L
pre(stm3). Now, since β �= α, the callee observation also does not change the
caller’s instance state, and we have σ̂(α) = σ́(α). Thus we get ω, σ́(α), τ3 |=L
pre(stm3).

The case γ = β and α �= β is similar. Communication and caller observation
do not change the instance state of β, i.e., σ̀(β) = σ̂(β). The interference
freedom test results ω, σ̂(β), τ |=L pre ′(stm3)[�e2/�y2] with τ = τ̂2[�v′ �→ τ3(�v)]. Due
to the renaming mechanism, we conclude with the local substitution lemma that
ω, σ́(β), τ́ |=L pre ′(stm3) with τ́(�v′) = τ3(�v), and thus ω, σ́(β), τ3 |=L pre(stm3).

A.2. SOUNDNESS 167

For the last case γ = α = β note that, according to the restrictions on the
augmentation, the caller may not change the instance state. Thus the same
arguments as for γ = β and α �= β apply. I.e., part (1) is satisfied.

Part (3) is analogous: The interference freedom test implies ω, σ́(α), τ́1 |=L
Ip. Since Ip may contain instance variables only, its evaluation does not depend
on the local state. Similarly for the callee, ω, σ́(β), τ́2 |=L Iq. The state of other
objects is not changed in the last computation step, and we get the required
property.

Case: Callstart , Call
skip
start

These cases are analogous to the above one, where we additionally need ὼ, σ̀ |=G
¬z′.started and ὼ, σ̀ |=G z′.started, respectively, to be able to apply the coopera-
tion test. The above properties result from the antecedents ¬started(T̀ , β) and
started(T̀ , β) of the transition, respectively, using Lemma 6.1.4 and ὼ(z′) = β.

Case: Callmonitor

As above, where ὼ, σ̀ |=G thread(z′.lock) = thread is implied by the transition
antecedent owns(ξ ↓ prog , β) for the executing thread ξ, and Lemma 6.1.2.

Case: Return

This case is analogous to the Call case, where we define q1 as the precondition
of the corresponding return statement instead of the callee class invariant. The
requirement ὼ, σ̀ |=G E0(z) = z′ ∧ �u′ = �E(z) of the cooperation test results
from the fact that formal parameters must not be assigned to, and that method
invocation statements must not contain instance variables, so that the values of
the formal parameters and the expressions in the method invocation statement
are untouched during the execution of the invoked method.

For the application of the interference freedom test, to show the validity of
the interferes predicate, we use the fact that the assertion pre(stm3) neither
describes the caller nor the callee, since the corresponding local configuration is
not involved in the execution.

Case: Returnrun

Similar to the return case.

Case: Returnwait

In this case the antecedent ¬owns(T̀ ↓ prog , β) of the transition rule together
with Lemma 6.1.3 imply ὼ, σ̀ |=G z′.lock = free. Furthermore, the executing
thread is in the notified set prior to execution, and the same lemma yields
that the executing thread is registered in σ̀(β)(notified), i.e., ὼ, σ̀ |=G thread′ ∈
z′.notified.

Case: New

Let (α, τ̀1, u := new; 〈�y1 := �e1〉new stm1) ∈ T̀ be the local configuration of the
executing thread prior to object creation, and (α, τ́1, stm1) ∈ T́ after it. Ob-
ject creation updates the global state to σ̂ = σ̀[β �→σinit

inst [this �→β]], where β /∈
dom(σ̀); the executing thread’s local state gets updated to τ̂1 = τ̀1[u �→β]. Af-
ter observation we have τ́1 = τ̂1[�y1 �→[[�e1]]

σ̂(α),τ̂1
E] and for the global state σ́ =

σ̂[α.�y1 �→[[�e1]]
σ̂(α),τ̂1
E].

168 APPENDIX A. PROOFS

In the following let p1 = pre(u := new), p2 = pre(�y1 := �e1), and p3 =
post(�y1 := �e1). By induction ω, σ̀ |=G GI and ω, σ̀(α), τ̀1 |=L p1 ∧ I, where I is
the class invariant of the creator. Using the lifting lemma we get ὼ, σ̀ |=G
GI ∧ P1(z) ∧ I(z) for ὼ = ω[z �→α][�v1 �→ τ̀1(�v1)] and �v1 the variables from
the domain of τ̀1. With Lemma 2.4.18 ὼ[z′ �→ dom(σ̀)][u �→β], σ̂ |=G (GI ∧
(∃u. P1(z)) ∧ I(z)) ↓ z′. Note that GI may not contain free logical variables,
and thus its evaluation does not depend on the logical environment. Since
the newly created object with a fresh identity is in its initial instance state,
ὼ[z′ �→ dom(σ̀)][u �→β], σ̂ |=G Fresh(z′, u). Thus the cooperation test for object
creation implies

ὼ[u �→β], σ̂ |=G Inew(u) ∧ (GI ∧ P3(z))[�E1(z)/z.�y1] ,

where Inew is the class invariant of the new object. Using the lifting lemma
again but in the reverse direction and Lemma 5.1.2 results ω, σ́ |=G GI , and
thus part (2). Note that in the annotation no free logical variables occur, and
thus the values of assertions do not depend on the logical environment.

Furthermore, using the substitution lemmas we get

ω, σ́(α), τ́1 |=L p3 and ω, σ́(β), τ |=L Inew

for all τ . For the class invariant of the executing thread, the interference freedom
test implies ω, σ́(α), τ́1 |=L I, where I is the class invariant of α. Since I may
contain instance variables only, its evaluation does not depend on the local state,
and the required property holds. The states of other objects different from both
α and β are not changed in the last computation step, and part (3) is satisfied.

Furthermore, part (1) is satisfied for the local configuration involved in the
last computation step. All other configurations (γ, τ̀2, stm2) in T́ are also in T̀
and γ �= β. If γ �= α, then σ̀(γ) = σ́(γ), and thus ω, σ́(γ), τ̀2 |=L pre(stm2) by
induction.

Assume now γ = α, and let τ be τ̂1[�v′ �→ τ̀2(�v)], where �v = dom(τ̀2). Since
σ̀(α) = σ̂(α), Lemma 6.1.2, the induction assumptions, and the definition of
interferes imply with the interference freedom test ω, σ̀(α), τ |=L pre ′(stm2)[�e1/�y1].
The substitution Lemma 5.1.1 and the fact that, due to the renaming mecha-
nism, no local variables in �v′ occur in �y1, yields ω, σ́(α), τ̀2 |=L pre(stm2). I.e.,
part (1) is satisfied. �

Proof A.2.6 (of the soundness Corollary 6.1.6) The proof is straightfor-
ward using the soundness Theorem 6.1.5. �

A.3 Completeness

The following lemma states that the variable loc indeed stores the current control
point of a thread:

A.3. COMPLETENESS 169

Lemma A.3.1 Let 〈T, σ〉 be a reachable configuration of prog ′ and assume
(α, τ, stm) ∈ T . Then τ(loc) ≡ stm.

Proof A.3.2 (of Lemma A.3.1) Straightforward by the definition of augmen-
tation. �

Proof A.3.3 (of the local merging Lemma 6.2.3) Assume two computa-
tions 〈T0, σ0〉−→∗〈T́1, σ́1〉 and 〈T0, σ0〉−→∗〈T́2, σ́2〉 of prog ′, and let (α, τ, stm) ∈
T́1 with α ∈ dom(σ́1) ∩ dom(σ́2) and σ́1(α)(hinst) = σ́2(α)(hinst). We prove
(α, τ, stm) ∈ T́2 by induction over the sum of the length of the computations.

In the initial case both T́1 and T́2 contain the same single initial local con-
figuration, and thus the property holds.

For the inductive case, let 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 and 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉
be the last steps of the computations. The augmentation definition implies that
each computation step appends at most one element to the instance history of
α. If σ̀1(α)(hinst) = σ́1(α)(hinst), then, by the definition of the augmentation,
〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 does not execute in α, i.e., (α, τ, stm) ∈ T̀1, and the prop-
erty follows by induction. The case for σ̀2(α)(hinst) = σ́2(α)(hinst) is analo-
gous. Thus assume in the following σ́1(α)(hinst) = σ̀1(α)(hinst) ◦ (σ1

inst , τ1) and
σ́2(α)(hinst) = σ̀2(α)(hinst) ◦ (σ2

inst , τ2). From σ́1(α)(hinst) = σ́2(α)(hinst) we
conclude that σ̀1(α)(hinst) = σ̀2(α)(hinst) and (σ1

inst , τ1) = (σ2
inst , τ2).

Since σ́1(α)(hinst) �= σ̀1(α)(hinst), the computation step 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉
executes some statements in α. If there is only one local configuration in α that
is involved in the step, then the augmentation definition and the local substitution
lemma imply that its resulting local configuration in T́1 is given by (α, τ1, stm1)
with stm1 ≡ τ1(loc). From (σ1

inst , τ1) = (σ2
inst , τ2) we conclude that the same

local configuration executes in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉. Thus, either (α, τ, stm) ∈
T́1 is the executing configuration (α, τ1, stm1) and then it is also in T́2, or not,
and then it is in T̀1, by induction in T̀2, and since it is not involved in the
execution 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉, also in T́2.

If otherwise there are two local configurations in α involved in 〈T̀1, σ̀1〉 −→
〈T́1, σ́1〉, then the step executes a self-communication (call or return), and, due
to the completeness augmentation definition, (σ1

inst , τ1) specifies the callee’s in-
stance local state. However, due to the built-in auxiliary variables, the identity
of the caller local configuration is also stored in τ1, in the formal parameter
caller of the callee. The caller configuration is in T̀1, and by induction in T̀2.
Furthermore, since there are no two local configurations with the same iden-
tity in a reachable configuration, both steps execute a self-call in the same local
configuration and the same instance state.

Thus, either (α, τ, stm) ∈ T́1 is one of the executing configurations and then
it is also in T́2, or not, and then it is in T̀1, by induction in T̀2, and since it is
not involved in the execution, also in T́2. �

170 APPENDIX A. PROOFS

Proof A.3.4 (of the global merging Lemma 6.2.4) Assume two reachable
configurations 〈T́1, σ́1〉 and 〈T́2, σ́2〉 and let α ∈ dom(σ́1) ∩ dom(σ́2) satisfy-
ing σ́1(α)(hcomm) = σ́2(α)(hcomm). We show that there exists a reachable
〈T́ , σ́〉 with dom(σ́) = dom(σ́2), σ́(α) = σ́1(α), and σ́(β) = σ́2(β) for all
β ∈ dom(σ́2)\{α}. We proceed by induction on the sum of the lengths of the
computations leading to 〈T́1, σ́1〉 and 〈T́2, σ́2〉.

In the base case we are given 〈T́1, σ́1〉 = 〈T́2, σ́2〉 and the property trivially
holds.

For the inductive step, let 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 and 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 be
the last steps of the computations.

If α /∈ dom(σ̀1) or α /∈ dom(σ̀2), then α was created in one of the last
steps, and thus σ́1(α)(hcomm) = σ́2(α)(hcomm) = ε. That means, no methods
of α were involved yet, i.e., α is in its initial instance state σ́1(α) = σ́2(α) =
σinit
inst [this �→α]; in this case 〈T́2, σ́2〉 already satisfies the requirements. Assume

in the following α ∈ dom(σ̀1) ∩ dom(σ̀2). We distinguish whether the last com-
putation steps update the communication history of α or not.

Case: σ̀1(α)(hcomm) = σ́1(α)(hcomm)
In this case 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 does not execute any non-self communication
or object creation in α. By induction there is a computation 〈T0, σ0〉−→∗〈T̀ , σ̀〉
leading to a configuration such that σ̀(α) = σ̀1(α) and σ̀(β) = σ́2(β) for all
β ∈ dom(σ́2)\{α}.

In case 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 does not execute in α at all, i.e., σ̀1(α) = σ́1(α),
then 〈T̀ , σ̀〉 already satisfies the requirements.

Otherwise, the local configurations in T̀1 which execute in α and which are
involved in the computation step 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 are by the local merging
Lemma 6.2.3 also in T̀ . Furthermore, from σ̀1(α)(hcomm) = σ́1(α)(hcomm) we
conclude that they do not execute any non-self communication or object creation,
and thus their enabledness and effect depends only on the instance state of α.
That means, the same computation as in 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 can be executed in
〈T̀ , σ̀〉, leading to a reachable global configuration satisfying the requirements.

Case: σ̀2(α)(hcomm) = σ́2(α)(hcomm)
In this case 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 does not execute any non-self communication
or object creation involving α. By induction, there is a reachable 〈T̀ , σ̀〉 with
σ̀(α) = σ́1(α) and σ̀(β) = σ̀2(β) for all β ∈ dom(σ̀2)\{α}.

If 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 performs a step within α, then, according to the case
assumption, it executes exclusively within α. This means, σ̀2(β) = σ́2(β) for all
β ∈ dom(σ́2)\{α}, and 〈T̀ , σ̀〉 already satisfies the required properties.

If otherwise 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 does not execute in α, then all local con-
figurations in T̀2, executing in an object different from α, are also in T̀ ; this
follows from σ̀2(β) = σ̀(β) for all β ∈ dom(σ̀2)\{α}, and with the help of the
local merging Lemma 6.2.3 applied to 〈T̀ , σ̀〉 and 〈T̀2, σ̀2〉. The enabledness of
local configurations, whose execution does not involve α, are independent of the
instance state of α; furthermore, the effect of their execution neither influences
the instance state of α nor depends on it. Thus in 〈T̀ , σ̀〉 we can execute the

A.3. COMPLETENESS 171

same computation steps as in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉, leading to a reachable con-
figuration with the required properties.
Case: σ̀1(α)(hcomm) �= σ́1(α)(hcomm) and σ̀2(α)(hcomm) �= σ́2(α)(hcomm)
In this case finally both 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 and 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 execute
some object creation or non-self communication in α. We show that in this case
σ́1(α)(hcomm) = σ́2(α)(hcomm) implies also σ̀1(α)(hcomm) = σ̀2(α)(hcomm), and
thus by induction there is a computation leading to a configuration 〈T̀ , σ̀〉 such
that dom(σ̀) = dom(σ̀2), σ̀(α) = σ̀1(α), and σ̀(β) = σ̀2(β) for all other objects
β ∈ dom(σ̀2)\{α}.

Furthermore, combining those local configurations involved in 〈T̀1, σ̀1〉 −→
〈T́1, σ́1〉 which execute within α with those in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 which execute
outside α, we can define a computation 〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 such that σ́(α) = σ́1(α)
and σ́(β) = σ́2(β) for all other objects β ∈ dom(σ́2)\{α}.

The case assumptions imply, that the last elements of the communication
histories σ́1(α)(hcomm) and σ́2(α)(hcomm) were appended in the last computation
steps; σ́1(α)(hcomm) = σ́2(α)(hcomm) imply that the last elements are equal.

According to the augmentation, each computation step extends the commu-
nication history of α with at most one element. Thus we get σ̀1(α)(hcomm) =
σ̀2(α)(hcomm), and by induction there is a reachable 〈T̀ , σ̀〉 with dom(σ̀) =
dom(σ̀2), σ̀(α) = σ̀1(α), and σ̀(β) = σ̀2(β) for all β ∈ dom(σ̀2)\{α}.

Note that the last elements of the communication histories σ́1(α)(hcomm)
and σ́2(α)(hcomm) record the kind of execution, and so we know that both steps
execute the same kind of communication in α. Furthermore, the last elements
record also the identity of the local configuration executing in α, the communi-
cation partner of α, and the communicated values, which are consequently also
equal.

We distinguish on the kind of the computation step 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉:
Subcase: New

In this case σ́1(α)(hcomm) = σ̀1(α)(hcomm) ◦ (α,null , (newcγ, threadα)), where
threadα is the identity of the creator thread as specified by its local variable
thread, and γ is the newly created object.

From the preliminary observations we conclude that 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉
creates the same new object γ being in the same initial state; furthermore, it
leaves the states of all objects from dom(σ̀2)\{α} untouched.

As σ̀(α) = σ̀1(α), the local merging Lemma 6.2.3 implies that the local
configuration of the creator in T̀1 is also contained in T̀ . Thus, since γ /∈
dom(σ̀2) = dom(σ̀), the same computation step as in 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉
can be executed also in 〈T̀ , σ̀〉, leading to a reachable configuration 〈T́ , σ́〉 with
dom(σ́) = dom(σ̀) ∪̇ {γ} = dom(σ̀2) ∪̇ {γ} = dom(σ́2), σ́(α) = σ́1(α), and
σ́(β) = σ̀(β) = σ̀2(β) = σ́2(β) for all β ∈ dom(σ̀2)\{α}. Finally, for the newly
created object we have σ́(γ) = σ́2(γ) = σinit

inst [this �→ γ], and thus σ́(β) = σ́2(β)
for all β ∈ dom(σ́2)\{α}.
Subcase: Call

Assume first that α is the caller object and β �= α the callee. According to the
preliminary observations, also 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 executes the invocation of

172 APPENDIX A. PROOFS

the same method of β, where α is the caller and β the callee. Furthermore,
by the local merging lemma, the caller local configuration from T̀1 is also in
T̀ , and its execution is also enabled in 〈T̀ , σ̀〉. The last property holds also for
synchronized and monitor methods, since the invocation of the same method of
β by the same thread is enabled in 〈T̀2, σ̀2〉, and σ̀2(β) = σ̀(β).

Thus the caller local configuration from T̀1 can execute the method invoca-
tion in 〈T̀ , σ̀〉, leading to a reachable configuration 〈T́ , σ́〉 with σ́(α) = σ́1(α).
Furthermore, 〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 and 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 execute the same callee
observation in the same instance state σ̀2(β) = σ̀(β) and the same initial local
state after the communication of the same actual parameter values, and thus
σ́(β) = σ́2(β). The states of other objects are not touched, and thus 〈T́ , σ́〉
satisfies the required properties.

Similarly, if the callee object is α, then the same caller local configuration as
in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 can execute in 〈T̀ , σ̀〉 leading to a reachable configuration
satisfying the requirements.

Subcase: Return

This case is analogous to the above case for Call. The computation 〈T̀ , σ̀〉 −→
〈T́ , σ́〉 is constructed from the execution of the local configuration in α which ex-
ecutes in 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉, together with the execution of the communication
partner of α which executes in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉. �

Lemma A.3.5 (Initial correctness) The proof outline prog ′ satisfies the ini-
tial conditions of Definition 5.2.1.

Proof A.3.6 (of Lemma A.3.5) Let {p2}?call 〈�y2 := �e2〉?call {p3} stm; return be
the main statement with local variables �v, and let I be the class invariant of the
main class. We have to show for arbitrary σ ∈ Σ and ω ∈ Ω referring only to
values existing in σ, that

ω, σ |=G InitState(z) ∧ (∀z′. z′ = null ∨ z = z′) →
P2(z) ◦ finit ∧ (GI ∧ P3(z) ∧ I(z)) ◦ fobs ◦ finit ,

where z is of the type of the main class, z′ of type Object, and where finit =
[z, (null, 0, null)/thread, caller][Init(�v)/�v] and fobs = [�E2(z)/z.�y2]. We observe
that

ω, σ |=G InitState(z) ∧ (∀z′. z′ = null ∨ z′ = z)

implies that σ is the initial global state prior to the execution of the callee obser-
vation at the beginning of the main statement, i.e., defining exactly one existing
object ω(z) = α being in its initial instance state σ(α) = σinit

inst [this �→α]. We
start transforming the right-hand side using the substitution Lemmas 5.1.2 and

A.3. COMPLETENESS 173

2.3.1:

[[P2(z)[z, (null, 0, null)/thread, caller][Init(�v)/�v]]]ω,σ
G

= [[P2(z)[z, (null, 0, null)/thread, caller]]]ω[�v �→ Init(�v)],σ
G

= [[P2(z)]]ω[�v �→ Init(�v)][thread �→α],σ
G

= [[p2]]
ω,σ(α),τ
L

with τ defined by τinit [thread �→α]. Note that the initial value Init(caller) of the
variable caller is (null , 0,null). The above value [[p2]]

ω,σ(α),τ
L is true due to the

completeness annotation definition, since the run method of the main class is
initially invoked in the given context.

For the global invariant we get similarly

[[GI [�E2(z)/z.�y2][z, (null, 0, null)/thread, caller][Init(�v)/�v]]]ω,σ
G

= [[GI [�E2(z)/z.�y2]]]
ω[�v �→ Init(�v)][thread �→α],σ
G

= [[GI]]ω
′,σ′

G

= [[GI]]ω,σ′
G

for some logical environment ω′ and for σ′ given by σ[α.�y2 �→[[�e2]]
σ(α),τ
E]. In the

last step we used the restriction that the global invariant may not contain free
logical variables. The step before made use of the following equation for �E2(z),
which we get using Lemma 2.3.1 and with the fact that �e2 does not contain
logical variables:

[[�E2(z)]]ω[�v �→ Init(�v)][thread �→α],σ
G = [[�e2[z/this]]]ω[�v �→ Init(�v)][thread �→α],σ

G

= [[�e2]]
ω[�v �→ Init(�v)][thread �→α],σ(α),τ
L

= [[�e2]]
σ(α),τ
E .

Since 〈T ′, σ′〉 with T ′ = {(α, τ ′, stm)} and τ ′ = τ [�y2 �→[[�e2]]
σ(α),τ
E] is an initial

global configuration of prog ′ after the observation at the beginning of the main
statement, it is reachable, and the initial condition for the global invariant is sat-
isfied. The cases for p3 and I are similar to that of GI , where we additionally use
the lifting substitution Lemma 2.3.1 to show that [[P3(z)]]ω

′,σ′
G = [[p3]]

ω′,σ′(α),τ ′

L .
�

Lemma A.3.7 (Local correctness) The proof outline prog ′ satisfies the con-
ditions of local correctness from Definition 5.2.2.

Proof A.3.8 (of Lemma A.3.7) Let c be a class of prog ′ with class invariant
I, ω ∈ Ω, σinst ∈ Σinst , and τ ∈ Σloc with σinst (this) = α. Assume a multiple

174 APPENDIX A. PROOFS

assignment {p1}�y := �e{p2} in c which is not the observation of communication
or object creation. We have to show that

ω, σinst , τ |=L p1 ∧ I → p2[�e/�y] .

From ω, σinst , τ |=L p1 it follows by the definition of the annotation that there
is a reachable 〈T̀ , σ̀〉 with σ̀(α) = σinst and (α, τ, �y := �e; stm) ∈ T̀ . Executing in
the local configuration in 〈T̀ , σ̀〉 leads to a reachable global configuration 〈T́ , σ́〉
with σ́(α) = σinst [�y �→[[�e]]σinst ,τ

E] and (α, τ [�y �→[[�e]]σinst ,τ
E], stm) ∈ T́ . Thus by the

definition of the annotation for prog ′ we have

ω, σinst [�y �→[[�e]]σinst ,τ
E], τ [�y �→[[�e]]σinst ,τ

E] |=L p2 ,

and further with the substitution Lemma 5.1.1 ω, σinst , τ |=L p2[�e/�y], as re-
quired. �

Lemma A.3.9 (Interference freedom) The proof outline prog ′ satisfies the
conditions for interference freedom from Definition 5.2.3.

Proof A.3.10 (of Lemma A.3.9) Assume an arbitrary assignment �y := �e
with precondition p in class c with class invariant I, and an arbitrary assertion
q at a control point in the same class. We show the verification condition from
Equation (5.4) on page 77

ω, σinst , τ |=L p ∧ q′ ∧ I ∧ interferes(q, �y := �e) → q′[�e/�y] ,

for some logical environment ω together with some instance and local states σinst

and τ , where q′ denotes q with all local variables u replaced by some fresh local
variables u′.

Let α = σinst (this), and assume first that �y := �e is not the observation
of communication or object creation. The first clause ω, σinst , τ |=L p implies
that there exists a computation reaching 〈T̀p, σ̀p〉 with σ̀p(α) = σinst , and a
configuration (α, τ, �y := �e; stm ′

p) ∈ T̀p.
From ω, σinst , τ |=L q′ we get by renaming back the local variables that

ω, σinst , τ
′ |=L q for τ ′(u) = τ(u′) for all local variables u in q. Let q be the

precondition of the statement stmq. Note that q is an assertion at a control
point. Applying the annotation definition we conclude that there is a reachable
〈T̀q, σ̀q〉 with σ̀q(α) = σinst = σ̀p(α) and (α, τ ′, stmq; stm′

q) ∈ T̀q. The local
merging Lemma 6.2.3 implies that (α, τ ′, stmq; stm′

q) ∈ T̀p.
Let 〈T́p, σ́p〉 result from 〈T̀p, σ̀p〉 by executing in the enabled local configu-

ration (α, τ, �y := �e; stm ′
p). We have σ́p(α) = σinst [�y �→[[�e]]σinst ,τ

E]. From the
assumption ω, σinst , τ |=L interferes(q, �y := �e) we get that (α, τ ′, stmq; stm ′

q) is
not the executing configuration, and thus (α, τ ′, stmq; stm′

q) ∈ T́p.
According to the annotation definition ω, σinst [�y �→[[�e]]σinst ,τ

E], τ ′ |=L q, and
after renaming the local variables of q also ω, σinst [�y �→[[�e]]σinst ,τ

E], τ |=L q′. Due
to renaming, no local variables of q′ occur in �y, implying

ω, σinst [�y �→[[�e]]σinst ,τ
E], τ [�y �→[[�e]]σinst ,τ

E] |=L q′ .

A.3. COMPLETENESS 175

Finally, by the substitution Lemma 5.1.1 we get ω, σinst , τ |=L q′[�e/�y].
If the assignment observes object creation or communication, the proof is

similar. For object creation, ω, σinst , τ |=L p implies that there exists a com-
putation reaching 〈T̀p, σ̀p〉 with σ̀p(α) = σinst , and an enabled configuration
(α, τp, stmp; stm ′

p) ∈ T̀p, where stmp is of the form u := new; 〈�y := �e〉new .
The local state τp is τ [u �→ v] for some value v, such that the local configura-
tion is enabled to create τ(u). Directly after creation, the creator local config-
uration has the local state τ and executes its observation resulting in the lo-
cal state τ [�y �→[[�e]]σinst ,τ

E] and instance state σinst [�y �→[[�e]]σinst ,τ
E]. Note that σinst

is not influenced by the object creation itself. Again, the interferes predicate
assures that (α, τ ′, stmq; stm ′

q) is not the executing configuration, and we get
ω, σinst , τ |=L q′[�e/�y] as above.

The case for caller observation in a non-self communication is analogous.
In the case of caller observation in a self-communication, the restrictions on
the augmentation imply that �y := �e does not change the values of instance
variables, and the requirement follows directly from the assumptions. If p is
the precondition of a callee observation at the beginning of a method body, then
the annotation assures that the invocation of the method is enabled in 〈T̀p, σ̀p〉
such that τ is the local state of the callee directly after communication but before
observation. Note that for self-communication, the caller part does not change
the instance state. Thus the only update of the instance state of α is given by the
effect of �y := �e. Again, the interferes predicate assures that (α, τ ′, stmq; stm ′

q)
is neither the caller nor the callee, and thus (α, τ ′, stmq; stm′

q) ∈ T́p. We get
ω, σinst , τ |=L q′[�e/�y] as above.

Validity of the verification condition 5.3 for the class invariant is similar,
where we additionally use the fact that the class invariant refers to instance
variables only. �

Lemma A.3.11 (Cooperation test: Communication) The proof outline
prog ′ satisfies the verification conditions of the cooperation test for communica-
tion of Definition 5.2.4.

Proof A.3.12 (of Lemma A.3.11) We distinguish on the kind of communi-
cation starting with the verification condition for synchronized method invoca-
tion.

Case: Call

Let {p1}uret := e0.m(�e); {p2}!call 〈�y1 := �e1〉!call {p3}wait be a statement in a class
c of prog ′ with e0 of type c′, where method m /∈ {start, wait, notify, notifyAll} of
c′ is synchronized with body {q2}?call 〈�y2 := �e2〉?call {q3} stm, formal parameters �u,
local variables without the formal parameters given by �v, and let q1 = Ic′ be the
callee class invariant. Assume

ὼ, σ̀ |=G GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm ∧ z �= null ∧ z′ �= null

176 APPENDIX A. PROOFS

for distinct and fresh z ∈ LVarc and z′ ∈ LVarc′
, and where comm is E0(z) =

z′ ∧ (z′.lock = free ∨ thread(z′.lock) = thread). Note that for completeness we
do not need the information stored in the caller class invariant. By definition
of the global invariant, the assumption ὼ, σ̀ |=G GI implies that there exists a
reachable 〈T, σ〉 with

dom(σ̀) = dom(σ) and σ̀(γ)(hcomm) = σ(γ)(hcomm) for all γ ∈ dom(σ) .

Assuming ὼ(z) = α as caller identity, ὼ, σ̀ |=G P1(z) implies ὼ, σ̀(α), τ̀1 |=L p1

by the substitution Lemma 2.3.1, for some local state τ̀1 with τ̀1(u) = ὼ(u) for
all local variables u occurring in p1. By the annotation definition there exists a
reachable configuration 〈T1, σ1〉 such that

σ1(α) = σ̀(α) and (α, τ̀1, uret := e0.m(�e); 〈�y1 := �e1〉!call stm1) ∈ T1 .

Recall that σ(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ), and especially for
the caller σ(α)(hcomm) = σ̀(α)(hcomm) = σ1(α)(hcomm). Using the global merg-
ing Lemma 6.2.4 applied to 〈T1, σ1〉 and 〈T, σ〉 we get that there is a reachable
〈T ′, σ′〉 with dom(σ′) = dom(σ) and

σ′(α) = σ1(α) and σ′(γ) = σ(γ) for all γ ∈ dom(σ)\{α} .

Furthermore, (α, τ̀1, uret := e0.m(�e); 〈�y1 := �e1〉!call stm1) ∈ T1, σ1(α) = σ′(α),
and the local merging Lemma 6.2.3 implies that

(α, τ̀1, uret := e0.m(�e); 〈�y1 := �e1〉!call stm1) ∈ T ′ .

Let β = ὼ(z′) be the callee object. In case of a self-call, i.e., for α = β, we di-
rectly get that 〈T ′′, σ′′〉 = 〈T ′, σ′〉 is a reachable configuration such that σ′′(α) =
σ̀(α), σ′′(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀), and (α, τ̀1, uret :=
e0.m(�e); 〈�y1 := �e1〉!call stm1) ∈ T ′′.

Otherwise, the assumption ὼ, σ̀ |=G Ic′(z′) implies ὼ, σ̀(β), τ2 |=L Ic′ for
some local state τ2. Note that the class invariant contains instance variables,
only. By definition of the class invariant, there is a reachable global configuration
〈T2, σ2〉 such that

σ2(β) = σ̀(β) .

We need to fall back upon the two merging lemmas once more to obtain a com-
mon reachable configuration: Analogously to the caller part, the global merging
Lemma 6.2.4 applied to 〈T2, σ2〉 and 〈T ′, σ′〉 yields that there is a reachable
configuration 〈T ′′, σ′′〉 with dom(σ′′) = dom(σ′) and

σ′′(β) = σ2(β) and σ′′(γ) = σ′(γ) for all γ ∈ dom(σ′)\{β} .

Now, (α, τ̀1, uret := e0.m(�e); 〈�y1 := �e1〉!call stm1) ∈ T ′, σ′′(α) = σ′(α), and the
local merging Lemma 6.2.3 implies that the local configuration (α, τ̀1, uret :=
e0.m(�e); 〈�y1 := �e1〉!call stm1) is in T ′′.

Thus 〈T ′′, σ′′〉 is a reachable configuration with σ′′(α) = σ̀(α), σ′′(β) =
σ̀(β), σ′′(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀), and (α, τ̀1, uret :=
e0.m(�e); 〈�y1 := �e1〉!call stm1) ∈ T ′′.

A.3. COMPLETENESS 177

With the antecedent ὼ, σ̀ |=G z′.lock = free ∨ thread(z′.lock) = thread of
the cooperation test we get σ̀(β)(lock) = free ∨ thread(σ̀(β)(lock)) = τ̀1(thread).
With σ̀(β) = σ′′(β) and Lemma 6.1.3 we get ¬owns(T ′′\{ξ}, β), where ξ is
the stack with (α, τ̀1, uret := e0.m(�e); 〈�y1 := �e1〉!call stm1) on top. Furthermore,
ὼ, σ̀ |=G comm implies ὼ, σ̀ |=G E0(z) = z′, and by the lifting substitution
lemma [[e0]]

σ̀(α),τ̀1
E = [[e0]]

σ′′(α),τ̀1
E = ὼ(z′) = β. This means, the invocation of

method m of β is enabled in the local configuration (α, τ̀1, uret := e0.m(�e); 〈�y1 :=
�e1〉!call stm1) in 〈T ′′, σ′′〉.

The definition of the augmentation, and σ′′(α) = σ̀(α) gives

ὼ, σ̀(α), τ̀1 |=L p2 ,

which by the substitution Lemma 2.3.1 and with the definition of τ̀1 yields
ὼ, σ̀ |=G P2(z). Due to the renaming mechanism we get

ὼ, σ̀ |=G P2(z) ◦ fcomm

for fcomm = [�E(z), Init(�v)/�u′, �v′]. For the precondition of the method body, the
annotation definition implies

ὼ, σ̀(β), τ̂2 |=L q2

with τ̂2 = τinit [�u �→[[�e]]σ̀(α),τ̀1
E]. For the actual parameters we obtain by the sub-

stitution Lemma 2.3.1 [[�E(z)]]ὼ,σ̀
G = [[�e]]ὼ,σ̀(α),τ̀1

L = [[�e]]σ̀(α),τ̀1
E , and further with

the same lemma
ὼ, σ̀ |=G Q′

2(z
′)[�E(z), Init(�v)/�u′, �v′]

as required by the cooperation test.
Directly after communication we have a global configuration with still the

same global state σ′′. The caller observation evolves its own local state to
τ́1 = τ̀1[�y1 �→[[�e1]]

σ′′(α),τ̀1
E], and the global state to σ̂ = σ′′[α.�y1 �→[[�e1]]

σ′′(α),τ̀1
E]. Fi-

nally, the callee observation changes the global state to σ́ = σ̂[β.�y2 �→[[�e2]]
σ̂(β),τ̂2
E],

where its own local state is updated to τ́2 = τ̂2[�y2 �→[[�e2]]
σ̂(β),τ̂2
E]. According to the

annotation definition we get

ὼ, σ́(α), τ́1 |=L p3, ὼ, σ́(β), τ́2 |=L q3, and ὼ, σ́ |=G GI .

Let ώ = ὼ[�v′ �→ Init(�v)][�u′ �→[[�e]]σ̀(α),τ̀1
E][�y1 �→[[�e1]]

σ̀(α),τ̀1
E][�y′

2 �→[[�e ′
2]]

σ̂(β),τ̂2
E]. The

lifting lemma implies ώ, σ́ |=G GI ∧ P3(z) ∧ Q′
3(z′); with the global substitu-

tion lemma finally

ὼ, σ̀ |=G (GI ∧ P3(z) ∧ Q′
3(z

′))[�E′
2(z

′)/z′.�y′
2][�E1(z)/z.�y1][�E(z), Init(�v)/�u′, �v′] ,

and thus the cooperation test is satisfied for the invocation of synchronous meth-
ods.

The case for non-synchronized methods is analogous, where the antecedent
z′.lock = free ∨ thread(z′.lock) = thread is dropped.

178 APPENDIX A. PROOFS

Case: Callmonitor

This case is similar to the above one of Call, where for the invocation of a
method m ∈ {wait, notify, notifyAll}, the assertion comm is given by E0(z) =
z′ ∧ thread(z′.lock) = thread, implying owns(ξ, β) for the caller thread ξ and the
callee object β.

Case: Callstart

Enabledness of starting the thread of an object β requires ¬started(T ′′, β). Due
to the definition of comm, we have additionally ὼ, σ′′ |=G ¬z′.started, which
implies ¬σ′′(β)(started). We get enabledness by Lemma 6.1.4.

Case: Call
skip
start

The enabledness argument is similar for Call
skip
start , where we use ὼ, σ′′ |=G

z′.started to imply the enabledness predicate started(T ′′, β).
Case: Return

For return, the construction of 〈T ′′, σ′′〉 is similar, where we get instead of the
enabledness of the caller that the callee configuration (β, τ̀2, return eret ; 〈�y3 :=
�e3〉!ret) is in 〈T ′′, σ′′〉, and thus enabled to execute.

Case: Returnwait

In this case we additionally have to show ¬owns(T ′′, β), which we get from the
comm assertion implying ὼ, σ̀ |=G z′.lock = free and using Lemma 6.1.3.

Case: Returnrun

Since the run method cannot be invoked directly, we conclude that the execut-
ing local configuration is the only one in its stack, i.e., the transition rule
Returnrun of the semantics can be applied in 〈T ′′, σ′′〉 to terminate the callee
(β, τ̀2, return; 〈�y3 := �e3〉!ret).

�

Lemma A.3.13 (Cooperation test: Instantiation) The proof outline prog ′

satisfies the verification conditions of the cooperation test for object creation of
Definition 5.2.5.

Proof A.3.14 (of Lemma A.3.13) Let {p1}u := newc; {p2}new 〈�y := �e〉new {p3}
be a statement in class c′ of prog ′, and assume

ω̂, σ̂ |=G z �= null ∧ z �= u ∧ ∃z′. Fresh(z′, u) ∧ (GI ∧ ∃u(P1(z))) ↓ z′

with z ∈ LVarc′
and z′ ∈ LVar listObject fresh. Note that we do not need the class

invariant of the creator for completeness. We show that

ω̂, σ̂ |=G P2(z) ∧ Ic(u) ∧ (GI ∧ P3(z))[�E(z)/z.�y] .

Let ω̂(z) = α and ω̂(u) = β. According to the semantics of assertions we have
that

ω, σ̂ |=G Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′

A.3. COMPLETENESS 179

for some logical environment ω that assigns to z′ a sequence of objects from
ValObject

null (σ̂) =
⋃

c Valcnull (σ̂), and agrees on the values of all other variables
with ω̂. The assertion Fresh(z′, u) is defined by

InitState(u) ∧ u �∈ z′ ∧ ∀v. v ∈ z′ ∨ v = u ,

where InitState(u) expands to u �= null ∧ ∧
x∈IVarc

u.x = Init(x). Thus, ω, σ̂ |=G
Fresh(z′, u) implies that β ∈ Valc(σ̂) with σ̂(β) = σinit

inst [this �→β], and addi-
tionally ValObject

null (σ̂) = ω(z′) ∪̇ {β}. Let σ̀ be the global state with domain
ValObject(σ̀) = ValObject(σ̂)\{β} and such that σ̀(γ) = σ̂(γ) for all objects γ ∈
ValObject(σ̀). Then σ̂ = σ̀[β �→σinit

inst [this �→β]], and from

ω, σ̂ |=G (GI ∧ ∃u. P1(z)) ↓ z′

we get with Lemma 2.4.18

ω, σ̀ |=G GI ∧ ∃u. P1(z) .

By definition of the annotation, ω, σ̀ |=G GI implies that there is a reachable
configuration 〈T̀1, σ̀1〉 such that

dom(σ̀1) = dom(σ̀) and σ̀1(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀) .

The precondition of the object creation statement

ω, σ̀ |=G ∃u. P1(z)

implies
ω[u �→ v], σ̀ |=G P1(z)

for some v ∈ ValObject
null (σ̀). Applying the lifting Lemma 2.3.1 we get that

ω, σ̀(α), τ̀ |=L p1

for a local state τ̀ with τ̀ (u) = v and τ̀ (w) = ω(w) for all other local variables w.
By definition of the annotation, there is a reachable global configuration 〈T̀2, σ̀2〉
such that

σ̀2(α) = σ̀(α) and (α, τ̀ , u := newc; 〈�y := �e〉new stm) ∈ T̀2 .

Recall that σ̀1(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀); especially we
have σ̀1(α)(hcomm) = σ̀(α)(hcomm) = σ̀2(α)(hcomm). Using the global merging
Lemma 6.2.4 applied to the reachable global configurations 〈T̀2, σ̀2〉 and 〈T̀1, σ̀1〉
we get that there is a reachable configuration 〈T̀3, σ̀3〉 with

dom(σ̀3)=dom(σ̀1), σ̀3(α)=σ̀2(α), and σ̀3(γ)=σ̀1(γ) for all γ∈dom(σ̀1)\{α}.

Furthermore, (α, τ̀ , u := newc; 〈�y := �e〉new stm) ∈ T̀2, σ̀2(α) = σ̀3(α), and the
local merging Lemma 6.2.3 implies that (α, τ̀ , u := newc; 〈�y := �e〉new stm) ∈ T̀3.

180 APPENDIX A. PROOFS

So we know that 〈T̀3, σ̀3〉 is a reachable configuration containing the lo-
cal configuration (α, τ̀ , u := newc; 〈�y := �e〉new stm) ∈ T̀3. With ValObject(σ̀) =
ValObject(σ̂)\{β}, dom(σ̀1) = dom(σ̀), and dom(σ̀3)=dom(σ̀1) we get that β /∈
dom(σ̀3), i.e., the local configuration is enabled to create the fresh object β =
ω(u). With σ̀3(α) = σ̀2(α) = σ̂(α) we get

ω, σ̂(α), τ̂ |=L p2 ,

where τ̂ = τ̀ [u �→β]; with the lifting Lemma 2.3.1 together with the definition of
τ̀ this means ω, σ̂ |=G P2(z), as required in the cooperation test.

Executing the instantiation in the local configuration (α, τ̀ , u := newc; 〈�y :=
�e〉new stm) in 〈T̀3, σ̀3〉, creating a new object β /∈ dom(σ̀3), results in 〈T̂3, σ̂3〉
with σ̂3 = σ̀3[β �→σinit

inst [this �→β]]; executing the creator observation leads to a
reachable 〈T́3, σ́3〉 with σ́3 = σ̂3[α.�y �→[[�e]]σ̂3(α),τ̂

E] and (α, τ́ , stm) in T́3 with τ́ =
τ̂ [�y �→[[�e]]σ̂3(α),τ̂

E].
As 〈T́3, σ́3〉 is reachable with σ́3(β) = σinit

inst [this �→β] = σ̂(β) we know

ω̂, σ̂(β), τ́ |=L Ic .

As Ic may not contain local variables, applying the lifting Lemma 2.3.1 again
with ω(u) = β yields the required condition ω̂, σ̂ |=G Ic(u) for the class invariant.
It remains to show that

ω̂, σ̂ |=G (GI ∧ P3(z))[�E(z)/z.�y] .

Applying the substitution Lemma 5.1.2 and the fact that GI does not contain
free logical variables yields

[[GI [�E(z)/z.�y]]]ω̂,σ̂
G = [[GI]]ω̂,σ́

G

with σ́ = σ̂[α.�y �→[[�E(z)]]ω̂,σ̂
G]. Thus we have to show the existence of a reach-

able configuration with a global state defining the same object domain and com-
munication history values as σ́. The configuration 〈T́3, σ́3〉 satisfies the above
requirements, since, first, it is reachable with

dom(σ́3) = dom(σ̀3) ∪̇ {β} = dom(σ̀1) ∪̇ {β}
= dom(σ̀) ∪̇ {β} = dom(σ̂) = dom(σ́) .

Furthermore, σ́3(α) = σ̂3(α)[�y �→[[�e]]σ̂3(α),τ̂
E], and with σ̂3(α) = σ̀3(α) = σ̀2(α) =

σ̂(α) and
[[�E(z)]]ω̂,σ̂

G = [[�e[z/this]]]ω̂,σ̂
G = [[�e]]σ̂(α),τ̂

E = [[�e]]σ̂3(α),τ̂
E ,

we get σ́3(α) = σ́(α). For the new object, σ́3(β) = σ̂3(β) = σinit
inst [this �→β] =

σ̂(β) = σ́(β). Finally, for all other objects γ different from both α and β from
the domain of σ́ we have σ́3(γ)(hcomm) = σ̀3(γ)(hcomm) = σ̀1(γ)(hcomm) =
σ́(γ)(hcomm).

A.3. COMPLETENESS 181

Similarly for the postcondition p3 of the observation,

[[P3(z)[�E(z)/z.�y]]]ω̂,σ̂
G = [[P3(z)]]ώ,σ́

G

= [[p3[z/this]]]ώ,σ́
G = [[p3]]

ώ,σ́(α),τ́
L = [[p3]]

ώ,σ́3(α),τ́
L .

Thus we have to show the existence of a reachable configuration with a global
state defining the same instance state for α as σ́3 and containing the local config-
uration (α, τ́ , stm). The configuration 〈T́3, σ́3〉 satisfies the above requirements.
�

Proof A.3.15 (of Theorem 6.2.5) Straightforward using the Lemmas A.3.5,
A.3.7, A.3.9, A.3.11, and A.3.13. �

182 APPENDIX A. PROOFS

Appendix B

Deadlock freedom examples

B.1 Reentrant monitors

GI
def
=

(∀(z : Synch).z �= null →
(z.lock = (null , 0)∨
(∃(t : Main).owns(t, z.lock) ∧ t.started ∧ t.created = z)∨
(owns(z, z.lock) ∧ z.started)))∧

(∀(t : Main).(t �= null ∧ ¬t.in Synch) → (t.created = null ∨ not owns(t, t.created .lock)))∧
(∀(t : Main).t �= null → (∀(z : Synch).(z �= null ∧ owns(t, z.lock)) → t.created = z))

IMain
def
= started

class Main{

〈 Bool in_Synch ; 〉
〈 Synch created ; 〉
nsync Void wait (){ {false}?call {false} returngetlock {false}!ret }

nsync Void run (){
Synch obj;
{thread = this ∧ ¬in Synch ∧ created = null ∧ conf = 0}
obj := newSynch; {thread = this ∧ conf = 0}new 〈created := obj 〉new
{obj �= null ∧ obj �= this ∧ thread = this ∧ ¬in Synch ∧ created = obj ∧ conf = 0}
obj.start ();
{obj �= null ∧ obj �= this ∧ thread = this ∧ ¬in Synch ∧ created = obj ∧ conf = 0}
obj.m1()
{thread = this ∧ conf = 0}!call

〈in Synch := (if obj = this then in Synch else true fi)〉!call
{thread = this ∧ created = obj ∧ conf = 0}wait
{thread = this ∧ conf = 0}?ret

〈in Synch := (if obj = this then in Synch else false fi)〉?ret
{thread = this ∧ ¬in Synch ∧ created = obj ∧ conf = 0}

}
}

class Synch{

nsync Void wait (){ {false}?call {false} returngetlock {false}!ret }

sync Void m1(){

{owns(thread , lock) ∧ depth(lock) = 1}

183

184 APPENDIX B. DEADLOCK FREEDOM EXAMPLES

m2()

{owns(thread , lock) ∧ depth(lock) = 1}
}

sync Void m2(){

{owns(thread , lock) ∧ depth(lock) = 2}
}

nsync Void run (){

{thread = this ∧ started ∧ not owns(thread , lock)}
m1()

{not owns(thread , lock)}
}

}

B.2 A simple wait-notify example

GI
def
=

(∀(z1, z2 : Main).(z1 �= null ∧ z2 �= null) → z1 = z2)∧
(∀(z1, z2 : Monitor).(z1 �= null ∧ z2 �= null) → z1 = z2)∧
(∀(z : Main).z �= null →

(z.started ∧ z.x ≥ 0 ∧ z.x ≤ 3∧
(z.x = 0 → z.created = null ∧ (∀(z2 : Monitor).z2 = null))∧
(z.x = 1 → (z.created �= null ∧ z.created �= z ∧ z.created.lock = (null , 0)∧

z.created .x = 0 ∧ length(z.created .wait) = 0 ∧ length(z.created .notified) = 0∧
z.created .counter = 0 ∧ ¬z.created .started))∧

(z.x = 3 → z.created �= null ∧ not owns(z, z.created .lock) ∧ z.created .x = 8)∧
(z.x = 2 → z.created �= null)))∧

(∀(z1 : Main).z1 �= null → (∀(z2 : Monitor).(z2 �= null ∧ owns(z1, z2.lock)) →
z2 = z1.created))∧

(∀(z1, z2 : Monitor).(z1 �= null ∧ z2 �= null ∧ owns(z1, z2.lock)) → (z1.started ∧ z2 = z1))

IMonitor
def
=

(∀(e ∈ wait ∪ notified).e = (creator , 1))∧
(x = 0 → (lock = (null , 0) ∧ length(wait) = 0 ∧ length(notified) = 0 ∧ ¬started))∧
(x = 1 → (lock = (creator , 1) ∧ length(wait) = 0 ∧ length(notified) = 0 ∧ ¬started))∧
((x = 2 ∨ x = 7) →

(lock = (creator , 1) ∧ length(wait) = 0 ∧ length(notified) = 0 ∧ started))∧
(x = 3 → (lock = (null , 0) ∧ length(wait) = 1 ∧ length(notified) = 0 ∧ started))∧
(x = 4 → (lock = (this, 1) ∧ ((length(wait) = 1 ∧ length(notified) = 0)∨

(length(wait) = 0 ∧ length(notified) = 1)) ∧ started))∧
(x = 5 → (lock = (this, 1) ∧ length(wait) = 0 ∧ length(notified) = 1 ∧ started))∧
(x = 6 → (lock = (null , 0) ∧ length(wait) = 0 ∧ length(notified) = 1 ∧ started))∧
(x = 8 → (lock = (null , 0) ∧ length(wait) = 0 ∧ length(notified) = 0 ∧ started))

class Main{

〈 Int x; 〉
〈 Monitor created ; 〉
nsync Void wait(){ {false}?call {false} returngetlock {false}!ret }

nsync Void run (){
Monitor obj;
{x = 0 ∧ thread = this ∧ conf = 0 ∧ started}
obj := newMonitor; {thread = this ∧ conf = 0}new 〈created , x := obj , 1〉new

B.2. A SIMPLE WAIT-NOTIFY EXAMPLE 185

{x = 1 ∧ thread = this ∧ conf = 0 ∧ started ∧ created = obj ∧ obj �= null}
obj.m1()
{x = 1 ∧ thread = this ∧ conf = 0 ∧ created = obj }!call

〈x := (if obj = this then x else 2 fi)〉!call
{x = 2 ∧ thread = this ∧ conf = 0 ∧ created = obj }wait
{x = 2 ∧ thread = this ∧ conf = 0 ∧ created = obj }?ret

〈x := (if obj = this then x else 3 fi)〉?ret
{x = 3 ∧ thread = this ∧ conf = 0 ∧ created = obj }

}
}

class Monitor {

〈 Main creator ; 〉
〈 Int x; 〉
nsync Void wait (){

{x = 2 ∧ thread = creator}?call 〈x := 3〉?call
{3 ≤ x ∧ x ≤ 6 ∧ thread = creator}
returngetlock

{x = 6 ∧ thread = creator}!ret 〈x := 7〉!ret
}

nsync Void notify (){

{x = 4 ∧ thread = this ∧ length(wait) = 1}
〈〉
{x = 4 ∧ thread = this ∧ length(wait) = 0}
return

{x = 4 ∧ thread = this ∧ length(wait) = 0}!ret 〈x := 5〉!ret
}

nsync Void notifyAll (){
{false} 〈〉 {false}

}

sync Void m1(){
{x = 0}?call 〈creator := thread ; x := 1〉?call
{x = 1 ∧ thread = creator ∧ conf = 0}
start ();
{x = 2 ∧ thread = creator}
wait();
{x = 7 ∧ thread = creator}
return
{x = 7 ∧ thread = creator}!ret 〈x := 8〉!ret

}

nsync Void run (){

{x = 1 ∧ thread = this ∧ caller = (this, 0, creator)}?call 〈x := 2〉?call
{(x = 2 ∨ x = 3) ∧ thread = this ∧ started}
m2()

{(x = 6 ∨ x = 7 ∨ x = 8) ∧ thread = this}
}

sync Void m2(){
{x = 3 ∧ thread = this}?call 〈x := 4〉?call
{x = 4 ∧ thread = this ∧ length(wait) = 1 ∧ started}
notify ();
{x = 5 ∧ thread = this}
return
{x = 5 ∧ thread = this}!ret 〈x := 6〉!ret

}
}

186 APPENDIX B. DEADLOCK FREEDOM EXAMPLES

B.3 A producer-consumer example

GI
def
=

(∀(p : Producer).(p �= null ∧ ¬p.outside ∧ p.consumer �= null) →
(p.consumer .lock = (null , 0) ∧ length(p.consumer .wait) = 0∧
p.consumer .producer = null ∧ ¬p.consumer .started ∧ p.consumer .counter = 0))∧

(∀(p : Producer).(p �= null ∧ p.consumer �= null ∧ p.consumer .producer �= null) →
p.outside)∧

(∀(c : Consumer).(c �= null ∧ c.started) → (c.producer �= null ∧ c.producer .started))∧
(∀(c1, c2 : Consumer).(c1 �= null ∧ c2 �= null) → c1 = c2))∧
(∃(p : Producer).p �= null ∧ (∀(p2 : Producer).p2 �= null → p2 = p)∧

(p.consumer = null → (∀(c : Consumer).c = null)))∧
(∀(c : Consumer).(c �= null ∧ c.producer �= null) → c.producer .started)

IConsumer
def
=

(lock = (null , 0) ∨ (owns(this, lock) ∧ started) ∨ owns(producer , lock)) ∧ length(wait) ≤ 1

class Producer {

〈 Consumer consumer ; 〉
〈 Bool outside ; 〉
nsync Void wait(){ {false}?call {false} returngetlock {false}!ret }

nsync Void run (){
Consumer c;
{¬outside ∧ thread = this ∧ consumer = null ∧ started}
c := newConsumer ; {thread = this}new 〈consumer := c〉new
{c = consumer ∧ ¬outside ∧ consumer �= null ∧ consumer �= this∧

thread = this ∧ started}
c.produce () {thread = this}!call

〈outside := (if c = this then outside else true)〉!call
{false}

}
}

class Consumer {
Int buffer ;

〈 Producer producer ; 〉
nsync Void wait(){

{owns(thread , lock) ∧ started ∧ length(wait) = 0}?call
{started ∧ not owns(thread , lock) ∧ (thread = this ∨ thread = producer)∧

(thread ∈ wait ∨ thread ∈ notified)}
returngetlock

{started ∧ lock = (null , 0) ∧ thread �= null ∧ (thread = this ∨ thread = producer)∧
thread ∈ notified}!ret

}

nsync Void notify (){

{owns(thread , lock) ∧ started}
〈〉
{owns(thread , lock) ∧ length(wait) = 0}

}

nsync Void notifyAll (){ {false} 〈〉 }

sync Void produce (){
Int i;

{thread �= null ∧ producer = null ∧ thread = proj(caller , 1)∧
length(wait) = 0 ∧ ¬started}?call

〈producer := proj(caller , 1)〉?call

B.3. A PRODUCER-CONSUMER EXAMPLE 187

{owns(thread , lock) ∧ thread = producer ∧ ¬started ∧ conf = 0 ∧ producer �= this}

i:=0;

{owns(thread , lock) ∧ thread = producer ∧ ¬started ∧ conf = 0 ∧ producer �= this}

start ();

{owns(thread , lock) ∧ started ∧ thread = producer}
while (true) do

{owns(thread , lock) ∧ started ∧ thread = producer }
//produce i here
buffer := i;

{owns(thread , lock) ∧ started ∧ thread = producer }
notify ();
{started ∧ thread = producer }wait
{owns(thread , lock) ∧ started ∧ thread = producer ∧ length(wait) = 0}
wait ()
{started ∧ thread = producer }wait
{owns(thread , lock) ∧ started ∧ thread = producer }

od;
{false}
return
{false}!ret

}

nsync Void run (){

{¬started ∧ caller = (this, 0, producer)}?call
{not owns(thread , lock) ∧ thread = this ∧ thread �= null ∧ started}
consume ()
{false}

}

sync Void consume (){
Int i;

{thread = this ∧ free for(thread , lock) ∧ started}?call
{owns(thread , lock) ∧ started ∧ thread = this}
while (true) do

{owns(thread , lock) ∧ started ∧ thread = this}
i := buffer ;
//consume i here

{owns(thread , lock) ∧ started ∧ thread = this}
notify ();
{started ∧ thread = this}wait
{owns(thread , lock) ∧ started ∧ thread = this ∧ length(wait) = 0}
wait ()
{thread = this}wait
{owns(thread , lock) ∧ started ∧ thread = this}

od;
{false}
return
{false}!ret

}
}

188 APPENDIX B. DEADLOCK FREEDOM EXAMPLES

Summary

The aim of program verification is to prove that a program running on a com-
puter does exactly what one expects. In this thesis we focus on programs written
in (a subset of) the programming language Java, but the results can be adapted
also to other languages with similar features.

The development of a verification technique goes through several stages:
First, for a programming language with a given syntax we have to formalize its
semantics, i.e., its meaning. That means, we give a precise meaning to the Java
programs considered in this dissertation, without allowing ambiguities.

Next we have to define a logic which allows to formalize properties of pro-
grams written in that language. That is, we introduce another (formalized)
language, with an equally precise semantics, in which we express properties
which should be satisfied by the Java programs. In our case, the underlying
logic is a superset of first-order predicate logic.

Then we define a proof system, which describes general conditions which
assure that some given properties are satisfied by a given program. In this
thesis we restrict these properties to invariants, i.e., properties which should
hold during the entire execution of a program. So, we do not focus on properties
which, e.g., express that a computation reaches certain locations (repeatedly),
the so-called lifeness properties.

To prove that a program property is an invariant, first we have to specify
the required property in the logic. Then we have to apply the proof system to
the program, which results in a set of verification conditions, i.e., logical impli-
cations which should hold for that property to be an invariant of the program
considered. The characterizing feature of those properties is that they should
hold in the underlying logic. More precisely, although these verification condi-
tions are formulated depending on the particular program considered and the
particular specification of which one wants to prove that the program satisfies
it, they should hold in the underlying predicate logic, only. Thus, program ver-
ification is reduced to proving a finite number of properties in the underlying
logic.

We have implemented the tool Verger which automatically generates the
verification conditions for an input program with its specification. Validity of
these conditions assures that the program property is invariant. We use the
theorem prover PVS to prove these verification conditions.

189

190 Summary

The Java language is a very large programming language, i.e., it has a lot
of different programming constructs and interesting features. In this thesis
we consider a small subset of Java only, focusing on its concurrency features.
And even for that subset, it is hard to exactly describe the behavior of the
corresponding Java programs, because there are so many semantic trouble spots
left in Java that their full semantics would amount only to a precise description
of the meaning of programs using a particular compiler in a particular context
and the like. Clearly, that is undoable for a language as large as Java, and
also undesirable. Our intention is to focus on those aspects of Java concurrency
which are deemed to be generally understood, that is, depending on the source
code of concurrent Java programs, only, and not on any implementation feature
or environment property. To do so, we give an abstract semantics for the Java
programs considered, although, as remarked above, this does not necessarily
imply a full correspondence with their implementation behavior.

To transparently describe the proof system, we present it incrementally in
three stages, starting with a minimal language and later adding new language
features. We start in Chapter 2 with a proof method for a sequential sublan-
guage of Java, where each program is executed by a single process, a so-called
thread. In the second stage in Chapter 3 we additionally allow dynamic thread
creation, leading to multithreaded execution. Finally, we integrate Java’s mon-
itor synchronization mechanism in Chapter 4. Monitor synchronization allows
special coordination between threads. This construct is usually used to assure
mutual exclusion, i.e., to exclude the possibility that different threads have si-
multaneous access to some resource like, for example, shared memory.

This incremental development shows how the proof system can be extended
stepwise to deal with additional features of the programming language. Further
extensions by, for example, the concepts of inheritance and subtyping are topics
for future work (see Section 8).

This dissertation offers soundness and (semantic) completeness proofs for
our proof system. Soundness of a proof system means, that if a program with
its specification satisfies the requirements imposed by the proof system, i.e., the
verification conditions generated, then the specification is, indeed, always an
invariant property of the program, i.e., it holds during program execution. In
practice this means that using our proof system we can only derive properties
which, indeed, are true during the execution of the program considered. In
short: we cannot prove nonsense.

Completeness on the other hand means, that if a program satisfies an invari-
ant property, then this fact is always provable with the help of the proof system.
Soundness and completeness of the proof method for the third language is dis-
cussed in Chapter 6; the proofs can be found in the appendix. Further possible
extensions of the proof system to cover additional programming language fea-
tures are discussed in Chapter 8.

Finally, as mentioned earlier, to prove correctness of program properties
one has to apply the proof system to the given Java program together with its
specification. This process results in a set of verification conditions, which must

Summary 191

be proven. We have developed the Verger tool as computer support for this
task. The tool takes a program with its specification as input and generates
the verification conditions, which assure invariance of the specification, in the
syntax of the theorem prover PVS. This theorem prover is finally used to verify
the conditions. Computer support is described and illustrated by some examples
in Chapter 9.

192 Summary

Samenvatting

In dit proefschrift wordt voor de eerste keer beschreven hoe men eigenschap-
pen van parallelle Java programma’s met wiskundige precisie kan afleiden. In
feite is het verbazingwekkend dat dit niet veel eerder is gebeurd. Want Java
is sinds 1996 in zwang als populaire programmeertaal, en Java is bij uitstek de
taal waarin heden ten dage betrouwbare ‘server farms’ geprogrammeerd wor-
den. D.w.z., parallelle Java programma’s zijn gemeengoed in onze program-
meercultuur en worden gebruikt om systemen te programmeren. De näıeve
leek denkt wellicht dat het ‘vanzelfsprekend’ is dat zulke programma’s fout-
loos functioneren. Wel, dat is niet het geval. Alleen werkelijk topklasse Java
programmeurs foutloos te programmeren.

Het onderliggende probleem is dat Java zeer complex en zeker geen be-
trouwbare programmeertaal is. Er is veel deskundigheid voor nodig om in die
deelverzameling van Java te programmeren welke tot enigermate voorspelbaar
gedrag van de desbetreffende programma’s leidt.

Aangezien het moeilijk is onvoorspelbaar gedrag wiskundig vast te leggen
zonder ‘het kind met het badwater weg te gooien’, leidt deze problematiek
tot de eerste opgave die in dit proefschrift opgelost wordt: hoe een zinvolle
deelverzameling van Java programma’s te definiëren, waarvan het gedrag zowel
voorspelbaar is als algemeen geaccepteerd wordt. Dit leidt tot de definitie van
Javasynch .

Onze tweede opgave is de betekenis van die deelverzameling, d.w.z., van
Javasynch , wiskundig vast te leggen. Want alleen met behulp van wiskunde zijn
onomstootbare uitspraken af te leiden.

De derde opgave is het vastleggen van de taal waarin wij eigenschappen
van Javasynch programma’s kunnen formuleren, en waarmee wij deze kunnen
afleiden. D.w.z., het handelt zich hier niet alleen om een passende formele taal
maar ook om de bijbehorende logica.

Hieruit volgt dan meteen onze vierde opgave: hoe leiden we af dat Javasynch

programma’s aan in die (specificatie-)taal geformuleerde eigenschappen vol-
doen?

De vijfde opgave heeft een meer academisch karakter: enerzijds te bewijzen
dat het door ons geformuleerde afleidingssysteem alleen zodanige eigenschappen
laat afleiden die ook inderdaad gelden voor de desbetreffende Javasynch pro-
gramma’s en, anderzijds, dat alle in onze specificatietaal te formuleren geldige
eigenschappen van Javasynch programma’s in ons systeem afleidbaar zijn.

193

194 SAMENVATTING

Deze vijf opgaven worden in dit proefschrift opgelost, en met behulp van
uitgewerkte voorbeelden gëıllustreerd. Omdat aan dit proces zeer vele details
kleven, ligt het voor de hand hier de rekenmachine zelf bij in te schakelen. In
ons geval heeft dit geleid tot het programmeren van een softwarepakket dat ons
bij het afleiden van eigenschappen van Javasynch programma’s ten dienste staat,
het zogenaamde Verger pakket.

Curriculum Vitae

Contact Information
Name Erika Ábrahám
Address Albert-Ludwigs-Universität Freiburg

Institut für Informatik
Georges-Köhler-Allee 52
D-79110 Freiburg i.Br.
Germany

Phone +49-761-203 8251
Fax +49-761-203 8242
Email eab@informatik.uni-freiburg.de
Home page http://www.informatik.uni-kiel.de/∼ eab/

Personal Details
Date of Birth 11/09/1970
Nationality Hungarian
Sex female
Marital status divorced
Children Judith (7) and András (5)

Education
1984-1989 Radnóti Miklós Gimnázium, Szeged, Hungary
1990 Different German language courses
1991 Acquisition of the German matriculation standard
1992-1999 Christian-Albrechts-University Kiel, Germany

Degree Master of Computer Science
Major Computer Science
Minor Theoretical Physics
Average mark 1.0 (award)
Master’s thesis Head-pose estimation from facial images with Sub-

space Neural Networks

195

196 CURRICULUM VITAE

Estimating the pose of human heads from camera im-
ages is an important task in, e.g., driver surveillance
and the design of advanced human-machine interfaces.
We used subspace neural networks to solve this task
[22, 21, 20].
Generally speaking, neural networks are systems which
are able to “learn” to react to certain inputs with cer-
tain outputs, i.e., to learn a function mapping values
from an input space to values from an output space.
Learning is based on a learning algorithm and a train-
ing set consisting of input-output value pairs. The
neural network gets trained to learn a function approx-
imating the mapping of the input values of the training
set to the corresponding output values. After training,
the neural network accepts inputs from the whole in-
put space and computes its output using the learned
approximation.
To train neural networks to estimate head-poses from
camera images, a roboter arm has turned a doll in dif-
ferent poses, and we recorded camera images from each
pose. We extracted characteristic information from the
images; the extracted information, paired with the vec-
tors specifying the corresponding pose, served as the
training set for neural networks. Most of the networks
could compute the pose of the doll face with an average
error under 1◦ per dimension.

Since 1999 Research assistant and Ph.D. student at the Christian-
Albrechts-University Kiel, Germany

Since 2002 Guest research fellow at the Albert-Ludwigs-University
Freiburg, Germany

My first research topic during my Ph.D. period was
the formalization and implementation of an assertional
proof method for hybrid systems [16, 17, 18]. Hybrid
systems are a mathematical model to describe discrete
systems acting in a continuous environment. Since
such systems are increasingly used in safety-critical ap-
plications, the development of verification techniques
is crucial.
While most work in this area is done in the field of
model checking, less attention has been paid to deduc-
tive techniques. We have developed a deductive asser-
tional proof method for the analysis of hybrid systems
and their parallel composition.

PUBLICATIONS 197

The syntax and the semantics of hybrid systems and
their parallel composition, as well as the proof system
and a number of examples, are implemented using the
theorem prover PVS. Soundness of the proof system
has been proven using the theorem prover.

Later, I started to deal with Java and its proof theory,
which constitutes the topic of this thesis.

Experience
1989-1990 Employed in Hungary (Computer center of PICK).
1993-1996 Scientific collaborator at the University Library of

Kiel:
Development and maintenance of a CD-ROM database
and a campus network for scientific literature investi-
gation.

1993-1994 Scientific collaborator in the project “Computer at the
school” (University Kiel, Institute for Science Educa-
tion).

1995-1996 Scientific collaborator in a project dealing with the de-
velopment of a modern teaching technique for natural
sciences in the school (University Kiel, Institute for
Science Education).

1997-1999 Tutor at the Department of Computer Science and Ap-
plied Mathematics, University of Kiel, Germany:
Supervision of students, presentation of tutorials.

Since 1999 Research in the context of national and European
projects; teaching. Focus on the deductive computer-
supported verification of discrete and continuous sys-
tems (object-oriented concurrent languages, hybrid
systems).

Further Achievements

• University Kiel: Award for the achievements in master thesis
and examination.

• Best presentation award at ICECCS’01.

• Invited talk at FMCO’02.

Skills
Languages Hungarian (native), German (fluent), English (fluent).
Other skills Playing the piano.

198 PUBLICATIONS

Publications

[1] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Martin
Steffen. An assertion-based proof system for multithreaded Java. Theoret-
ical Computer Science, 2004. to appear.

[2] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Martin
Steffen. Inductive proof outlines for exceptions in multithreaded Java. 2004.
Submitted for publication, June 2004.

[3] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Martin
Steffen. Inductive proof outlines for multithreaded Java with exceptions.
Technical Report 0313, Institut für Informatik und Praktische Mathe-
matik, Christian-Albrechts-Universität zu Kiel, December 2003. Available
at http://www.informatik.uni-kiel.de/reports/2003/0313.html.

[4] Erika Ábrahám, Marcello M. Bonsangue, Frank S. de Boer, and Martin
Steffen. Object connectivity for a concurrent class calculus (extended ab-
stract). 2004. Submitted for publication. A preliminary and longer ver-
sion appeared under the title “A Structural Operational Semantics for a
Concurrent Class Calculus” as Technical Report 0307, CAU, Institute of
Computer Science August 2003.

[5] Erika Ábrahám, Marcello M. Bonsangue, Frank S. de Boer, and Martin
Steffen. A structural operational semantics for a concurrent class calculus.
Technical Report 0307, Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität zu Kiel, August 2003.

[6] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Martin
Steffen. Inductive proof-outlines for monitors in Java. In Najm et al.
[23], pages 155–169. A longer version appeared as technical report TR-ST-
03-1, April 2003 (http://www.informatik.uni-kiel.de/inf/deRoever/
techreports/03/tr-st-03%-1.pdf).

[7] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Martin
Steffen. A Hoare logic for monitors in Java. Techical report TR-ST-03-1,
Lehrstuhl für Software-Technologie, Institut für Informatik und Praktische
Mathematik, Christian-Albrechts-Universität zu Kiel, April 2003. Available

199

200 PUBLICATIONS

at http://www.informatik.uni-kiel.de/inf/deRoever/techreports/
03/tr-st-03-%1.pdf.

[8] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Martin
Steffen. A tool-supported assertional proof system for multithreaded Java.
In Susan Eisenbach, Gary T. Leavens, Peter Müller, Arnd Poetzsch-Heffter,
and Erik Poll, editors, Proc. of the Workshop on Formal Techniques for
Java-like Programs - FTfJP’2003, 2003.

[9] Erika Ábrahám-Mumm, Frank S. de Boer, Willem-Paul de Roever, and
Martin Steffen. A tool-supported proof system for monitors in Java. In
Bonsangue et al. [24], pages 1–32.

[10] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Martin
Steffen. A compositional operational semantics for JavaMT . In Derschowitz
[25], pages 290–303. A preliminary version appeared as Technical Report
TR-ST-02-2, May 2002.

[11] Erika Ábrahám-Mumm, Frank S. de Boer, Willem-Paul de Roever, and
Martin Steffen. A compositional operational semantics for JavaMT . Tech-
nical Report TR-ST-02-2, Lehrstuhl für Software-Technologie, Institut für
Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu
Kiel, May 2002.

[12] Erika Ábrahám-Mumm, Frank S. de Boer, Willem-Paul de Roever, and
Martin Steffen. Verification for Java’s reentrant multithreading concept.
In Nielsen and Engberg [26], pages 4–20. A longer version, including the
proofs for soundness and completeness, appeared as Technical Report TR-
ST-02-1, March 2002.

[13] Erika Ábrahám-Mumm, Frank S. de Boer, Willem-Paul de Roever, and
Martin Steffen. Verification for Java’s reentrant multithreading concept:
Soundness and completeness. Technical Report TR-ST-02-1, Lehrstuhl für
Software-Technologie, Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität zu Kiel, 2002.

[14] Erika Ábrahám-Mumm, Frank S. de Boer, Willem-Paul de Roever, and
Martin Steffen. Deductive verification for multithreaded Java (extended
abstract). In Proceedings of the “11. Kolloquium Programmiersprachen und
Grundlagen der Programmierung”, 2001, Rurberg, pages 121–126, 2001.

[15] Erika Ábrahám-Mumm and Frank S. de Boer. Proof-outlines for threads
in Java. In Palamidessi [27], pages 229–242.

[16] Erika Ábrahám-Mumm, Ulrich Hannemann, and Martin Steffen. Assertion-
based analysis of hybrid systems with PVS. In Moreno-Dı́az and Buch-
berger [28].

PUBLICATIONS 201

[17] Erika Ábrahám-Mumm, Ulrich Hannemann, and Martin Steffen. Verifi-
cation of hybrid systems: Formalization and proof rules in PVS. In Pro-
ceedings of the Seventh IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS 2001), 2001. A preliminary and
longer version appeared as technical report TR-ST-01-1.

[18] Erika Ábrahám-Mumm, Ulrich Hannemann, and Martin Steffen. Verifica-
tion of hybrid systems: Formalization and proof rules in PVS. Technical
Report TR-ST-01-1, Lehrstuhl für Software-Technologie, Institut für In-
formatik und Praktische Mathematik, Christian-Albrechts-Universität zu
Kiel, January 2001.

[19] Jan B. de Meer and Erika Ábrahám-Mumm. Formal methods for reflective
system specification. In Grabowski and Heymer [29], pages 51–57.

[20] Erika Ábrahám-Mumm. Bestimmung der Gesichtspose mit künstlichen
neuronalen Netzen. Master’s thesis, Institut für Informatik und Praktische
Mathematik, Christian-Albrechts-Universität zu Kiel, April 1998.

[21] Jörg Bruske, Erika Ábrahám-Mumm, Joseph Pauli, and Gerald Sommer.
Head-pose estimation from facial images with subspace neural networks. In
1998 Int. Conf. on Neural Network and Brain Proc. (ICNN&B’98), pages
528–530. Publishing House of Electronics Industry, 1998.

[22] Jörg Bruske, Erika Ábrahám-Mumm, and Gerald Sommer. Visuomo-
torische Koordination eines Roboterarmes mit Kohonen-Karten, Neu-
ronalem Gas und Dynamischen Zellstrukturen - Ein Vergleich. In
Proc. Selbstorganisation von Adaptivem Verhalten 1997 (SOAVE’97),
Vortschrittsberichte VDI, Reihe 8, Nr. 663, pages 203–211. VDI Verlag,
1997.

[23] Elie Najm, Uwe Nestmann, and Perdita Stevens, editors. Proceedings of
the 6th IFIP International Conference on Formal Methods for Open Object-
Based Distributed Systems (FMOODS ’03), Paris, volume 2884 of Lecture
Notes in Computer Science. Springer-Verlag, November 2003.

[24] Marcello M. Bonsangue, Frank S. de Boer, Willem-Paul de Roever, and
Susanne Graf, editors. Proceedings of the First International Symposium
on Formal Methods for Components and Objects (FMCO 2002), Leiden,
volume 2852 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[25] Nachum Derschowitz, editor. Proceedings of the International Symposium
on Verification (Theory and Practice), Celebrating Zohar Manna’s 64th
Birthday, Taormina, Sicily, June 29–July 4, 2003, volume 2772 of Lecture
Notes in Computer Science. Springer-Verlag, 2004.

[26] Mogens Nielsen and Uffe H. Engberg, editors. Proceedings of the 5th In-
ternational Conference on Foundations of Software Science and Compu-
tation Structures (FoSSaCS 2002), Held as Part of the Joint European

202 PUBLICATIONS

Conferences on Theory and Practice of Software (ETAPS 2002), (Greno-
ble, France, April 8-12, 2002), volume 2303 of Lecture Notes in Computer
Science. Springer-Verlag, April 2002.

[27] Catuscia Palamidessi, editor. CONCUR 2000: Concurrency Theory (11th
International Conference, University Park, PA, USA), volume 1877 of Lec-
ture Notes in Computer Science. Springer-Verlag, August 2000.

[28] Roberto Moreno-Dı́az and Bruno Buchberger, editors. Computer Aided
Systems Theory (EUROCAST 2001), A Selection of Papers from the 8th
International Workshop on Computer Aided Systems Theory, Las Palmas
de Gran Canaria, Spain, February 19–23, 2001., volume 2178 of Lecture
Notes in Computer Science. Springer-Verlag, 2001.

[29] Jens Grabowski and Stefan Heymer, editors. Formale Beschreibungstech-
niken für verteilte Systeme. Universität Lübeck/Shaker Verlag, Aachen,
Juni 2000.

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Pro-
cess Algebra. Faculty of Mathematics and
Computing Science, TUE. 1996-01

A.M. Geerling. Transformational Devel-
opment of Data-Parallel Algorithms. Fac-
ulty of Mathematics and Computer Science,
KUN. 1996-02

P.M. Achten. Interactive Functional Pro-
grams: Models, Methods, and Implementa-
tion. Faculty of Mathematics and Computer
Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local
Search. Faculty of Mathematics and Com-
puting Science, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation
of Functional Languages on Parallel Ma-
chines with Distrib. Memory. Faculty of
Mathematics and Computer Science, KUN.
1996-05

D. Alstein. Distributed Algorithms for
Hard Real-Time Systems. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
06

J.H. Hoepman. Communication, Syn-
chronization, and Fault-Tolerance. Fac-
ulty of Mathematics and Computer Science,
UvA. 1996-07

H. Doornbos. Reductivity Arguments and
Program Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
08

D. Turi. Functorial Operational Semantics
and its Denotational Dual. Faculty of Math-
ematics and Computer Science, VUA. 1996-
09

A.M.G. Peeters. Single-Rail Handshake
Circuits. Faculty of Mathematics and Com-
puting Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering
Specification Formalism. Faculty of Mechan-
ical Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type
Inference. Faculty of Mathematics and Com-
puting Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and
Partition Refinement for Model Checking.

Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-13

M.M. Bonsangue. Topological Dualities
in Semantics. Faculty of Mathematics and
Computer Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs
of Small Treewidth. Faculty of Mathematics
and Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transfor-
mations in Context. Faculty of Computer
Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of
Data Types. Faculty of Mathematics and
Computing Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type The-
ory in Logic and Mathematics. Faculty of
Mathematics and Computing Science, TUE.
1997-04

C.J. Bloo. Preservation of Termination for
Explicit Substitution. Faculty of Mathemat-
ics and Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Al-
gebra. Faculty of Mathematics and Comput-
ing Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional
Approach to Syntax and Typing. Faculty of
Mathematics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal
Testing. Faculty of Computer Science, UT.
1998-01

G. Naumoski and W. Alberts. A
Discrete-Event Simulator for Systems Engi-
neering. Faculty of Mechanical Engineering,
TUE. 1998-02

J. Verriet. Scheduling with Communica-
tion for Multiprocessor Computation. Fac-
ulty of Mathematics and Computer Science,
UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous
Low-Power 80C51 Microcontroller. Fac-
ulty of Mathematics and Computing Science,
TUE. 1998-04

A.A. Basten. In Terms of Nets: System
Design with Petri Nets and Process Algebra.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1998-05

E. Voermans. Inductive Datatypes with
Laws and Subtyping – A Relational Model.

Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-01

H. ter Doest. Towards Probabilistic
Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simula-
tion of Surface Processes. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
03

C.H.M. van Kemenade. Recombinative
Evolutionary Search. Faculty of Mathemat-
ics and Natural Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a
Study on Indecisiveness in Sample Selec-
tion. Faculty of Mathematics and Natural
Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimization
in Real-Time Distributed Databases. Fac-
ulty of Mathematics and Computing Science,
TUE. 1999-06

M.A. Reniers. Message Sequence Chart:
Syntax and Semantics. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
07

J.P. Warners. Nonlinear approaches to
satisfiability problems. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
08

J.M.T. Romijn. Analysing Industrial Pro-
tocols with Formal Methods. Faculty of
Computer Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata
for Timed and Stochastic Systems. Faculty
of Computer Science, UT. 1999-10

G. Fábián. A Language and Simulator for
Hybrid Systems. Faculty of Mechanical En-
gineering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts
and Proof Rules. Faculty of Mathematics
and Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated
Neural Prediction System. Faculty of Math-
ematics and Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Imple-
mentation of Attribute Grammars. Faculty
of Mathematics and Computer Science, UU.
1999-14

R. Schiefer. Viper, A Visualisation Tool
for Parallel Program Construction. Fac-
ulty of Mathematics and Computing Science,
TUE. 1999-15

K.M.M. de Leeuw. Cryptology and State-
craft in the Dutch Republic. Faculty of
Mathematics and Computer Science, UvA.
2000-01

T.E.J. Vos. UNITY in Diversity. A
stratified approach to the verification of dis-
tributed algorithms. Faculty of Mathematics
and Computer Science, UU. 2000-02

W. Mallon. Theories and Tools for the
Design of Delay-Insensitive Communicating
Processes. Faculty of Mathematics and Nat-
ural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer
Aided Verification of Protocols. Faculty of
Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the
MathSpad Editor. Faculty of Mathematics
and Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending
and Packaging Plant. Faculty of Mechanical
Engineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriv-
ing Correct Programs. Faculty of Mathemat-
ics and Computing Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging
Heterogeneous Applications. Faculty of Nat-
ural Sciences, Mathematics and Computer
Science, UvA. 2000-08

E. Saaman. Another Formal Specification
Language. Faculty of Mathematics and Nat-
ural Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary
Search Discovering and Representing Search
Space Structure. Faculty of Mathematics
and Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a com-
putational approach to knowledge, observa-
tion and communication. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-
02

M. Huisman. Reasoning about Java pro-
grams in higher order logic using PVS and
Isabelle. Faculty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design
Processes through Structured Reflection.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syn-
tax and semantics. Faculty of Sciences, Divi-
sion of Mathematics and Computer Science,
VUA. 2001-05

R. van Liere. Studies in Interactive Visu-
alization. Faculty of Natural Sciences, Math-
ematics and Computer Science, UvA. 2001-
06

A.G. Engels. Languages for Analysis and
Testing of Event Sequences. Faculty of
Mathematics and Computing Science, TU/e.
2001-07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Natu-
ral Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analy-
sis of Data in Environmental Epidemiology:
A Case-study into Acute Effects of Air Pol-
lution Episodes. Faculty of Mathematics and
Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model
Checking. Faculty of Computer Science, UT.
2001-10

D. Chkliaev. Mechanical verification of
concurrency control and recovery protocols.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-11

M.D. Oostdijk. Generation and presen-
tation of formal mathematical documents.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control:
A simulation approach using χ. Faculty of
Mechanical Engineering, TU/e. 2001-13

D. Bošnački. Enhancing state space re-
duction techniques for model checking. Fac-
ulty of Mathematics and Computing Science,
TU/e. 2001-14

M.C. van Wezel. Neural Networks for In-
telligent Data Analysis: theoretical and ex-
perimental aspects. Faculty of Mathematics
and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Speci-
fication and Analysis of Industrial Systems.
Faculty of Mathematics and Computer Sci-
ence and Faculty of Mechanical Engineering,
TU/e. 2002-02

T. Kuipers. Techniques for Understanding
Legacy Software Systems. Faculty of Nat-
ural Sciences, Mathematics and Computer
Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Pro-
cess Algebra. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2002-04

R.J. Willemen. School Timetable Con-
struction: Algorithms and Complexity. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verifi-
cation of Probabilistic, Real-time and Para-
metric Systems. Faculty of Science, Mathe-
matics and Computer Science, KUN. 2002-
06

N. van Vugt. Models of Molecular Com-
puting. Faculty of Mathematics and Natural
Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guid-
ing and Cost-Optimality in Model Check-
ing of Timed and Hybrid Systems. Faculty
of Science, Mathematics and Computer Sci-
ence, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin
Packing. Faculty of Mathematics and Natu-
ral Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Fil-
tering: Concepts and Algorithms. Faculty
of Mathematics and Natural Sciences, UL.
2002-10

M.B. van der Zwaag. Models and Logics
for Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Science,
UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions
of Semantical Models. Faculty of Sciences,
Division of Mathematics and Computer Sci-
ence, VUA. 2002-12

L. Moonen. Exploring Software Systems.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary
Computation to Constraint Satisfaction and
Data Mining. Faculty of Mathematics and
Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-15

Y.S. Usenko. Linearization in μCRL. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage
for Video on Demand. Faculty of Mathe-
matics and Computer Science, TU/e. 2003-
01

M. de Jonge. To Reuse or To Be Reused:
Techniques for component composition and
construction. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2003-02

J.M.W. Visser. Generic Traversal over
Typed Source Code Representations. Faculty
of Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Veri-
fication in Process Algebras with Data and
Timing. Faculty of Mathematics and Com-
puter Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of
Catalytic Reactions. Faculty of Mathematics
and Computer Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of
Tertiary Storage. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2003-07

H.P. Benz. Casual Multimedia Process An-
notation – CoMPAs. Faculty of Electrical
Engineering, Mathematics & Computer Sci-
ence, UT. 2003-08

D. Distefano. On Modelchecking the Dy-
namics of Object-based Software: a Founda-
tional Approach. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2003-09

M.H. ter Beek. Team Automata – A For-
mal Approach to the Modeling of Collabora-
tion Between System Components. Faculty
of Mathematics and Natural Sciences, UL.
2003-10

D.J.P. Leijen. The λ Abroad – A Func-
tional Approach to Software Components.
Faculty of Mathematics and Computer Sci-
ence, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios
for the Differencing Method. Faculty of
Mathematics and Computer Science, TU/e.
2004-01

G.I. Jojgov. Incomplete Proofs and Terms
and Their Use in Interactive Theorem Prov-
ing. Faculty of Mathematics and Computer
Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Computing
– Splicing and Membrane systems. Faculty
of Mathematics and Natural Sciences, UL.
2004-03

S. Maneth. Models of Tree Translation.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-04

Y. Qian. Data Synchronization and Brows-
ing for Home Environments. Faculty of
Mathematics and Computer Science and
Faculty of Industrial Design, TU/e. 2004-05

F. Bartels. On Generalised Coinduc-
tion and Probabilistic Specification Formats.
Faculty of Sciences, Division of Mathematics
and Computer Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Anal-
ysis: a Type-Theoretical Formalization and
Applications. Faculty of Science, Mathemat-
ics and Computer Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents in
Bargaining Games: An Evolutionary Inves-
tigation of Fundamentals, Strategies, and
Business Applications. Faculty of Technol-
ogy Management, TU/e. 2004-08

N. Goga. Control and Selection Techniques
for the Automated Testing of Reactive Sys-
tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic:
Representations, Algorithms and Proofs.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2004-10

A. Löh. Exploring Generic Haskell. Fac-
ulty of Mathematics and Computer Science,
UU. 2004-11

I.C.M. Flinsenberg. Route Planning Al-
gorithms for Car Navigation. Faculty of
Mathematics and Computer Science, TU/e.
2004-12

R.J. Bril. Real-time Scheduling for Media
Processing Using Conditionally Guaranteed
Budgets. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed
Systems. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA.
2004-14

F. Alkemade. Evolutionary Agent-Based
Economics. Faculty of Technology Manage-
ment, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Es-
timation Using a Single Base Station. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2004-16

S.M. Orzan. On Distributed Verification
and Verified Distribution. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2004-17

M.M. Schrage. Proxima - A Presentation-
oriented Editor for Structured Documents.
Faculty of Mathematics and Computer Sci-
ence, UU. 2004-18

E. Eskenazi and A. Fyukov. Quanti-
tative Prediction of Quality Attributes for
Component-Based Software Architectures.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Supervi-
sory Machine Control by Predictive-Reactive
Scheduling. Faculty of Mechanical Engineer-
ing, TU/e. 2004-21

E. Ábrahám. An Assertional Proof System
for Multithreaded Java -Theory and Tool
Support- . Faculty of Mathematics and Nat-
ural Sciences, UL. 2005-01

