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Chapter 1

Introduction

Mesoscopic systems are intermediate between the macroscopic world of classical
mechanics and the microscopic world of quantum mechanics. These two worlds
come together in the study of quantum chaos, which is the search for quantum me-
chanical signatures of classically chaotic dynamics. In this thesis we investigate
the quantum-to-classical crossover in a class of chaotic systems called “quantum
dots”, using a numerical method called “stroboscopic”. In the introduction we
will explain what these words mean and give some background information.

1.1 Classical chaos in billiards

Chaos in classical mechanics refers to the sensitivity on initial conditions of the
time dependence of a dynamical system. No matter how precisely you measure
the initial conditions, your prediction of its subsequent motion goes radically
wrong after a short time. Characteristically, the predictability horizon grows only
logarithmically with the precision of measurement.

A dynamical system need not be complicated to exhibit chaotic dynamics.
One of the simplest examples is the ballistic motion of a particle in a box. The
two-dimensional version can be thought of as game of snooker (see Fig. 1.1). On a
rectangular, pocketless table, the ball follows a trajectory that depends on its initial
location and how it gets hit. If there is no friction, it continues bouncing around
the table forever. After a slight change in the ball’s starting position, a similar hit
produces a similar trajectory. The square billiard exhibits linear divergence, which
means that the distance that separates the two trajectories increases proportionally
to the amount of time that passes. No shot on this table behaves chaotically.
Now imagine adding another rail, a circular one placed right in the center of

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Two trajectories of a billiard ball launched with similar initial con-
ditions. In the square billiard (left), these two trajectories do not diverge signifi-
cantly. In contrast, the two trajectories rapidly diverge in the Sinai billiard (right).

the table. You now have what is called a Sinai billiard [1]. A first shot hits
the round rail and then bounces back and forth between the side and center rails
a few times. Again, displace the ball slightly from its original position. This
time the second trajectory is entirely different from the first. The Sinai billiard
exhibits exponential divergence; the two trajectories separate from one another
exponentially fast.

The dynamics in a square billiard (with linear, or more generally, power law
divergence) is called regular or integrable, while the dynamics in the Sinai billiard
(with exponential divergence) is called chaotic [2–6]. In Fig. 1.2 we contrast three
shapes of billiards that give rise to regular dynamics with three shapes in which
the dynamics is chaotic. A regular billiard has a spatial symmetry that provides
a second constant of the motion (in addition to the energy). Since there are two
degrees of freedom as well, the dynamics is integrable. A chaotic billiard has no
constant of the motion other than the energy.

In the chaotic case, the exponential divergence of initially nearby trajectories,
�(t) = �(0) eλt , is measured by the Lyapunov exponent λ (see Fig. 1.3). Since
the volume of a region in phase space (x , p) is conserved (Liouville’s theorem), an
exponential divergence ∝ eλt in one direction is compensated by an exponential
convergence ∝ e−λt in the orthogonal direction. There is only a single exponent λ
in a two-dimensional billiard, while in three dimensions there are two Lyapunov
exponents λ1,λ2. (The number of independent positive Lyapunov exponents is
one less than the number of dimensions, because the conserved energy fixes one
exponent at zero.)
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Regular billiards

circle square ellipse

Chaotic billiards

Sinai stadium cardioid

Figure 1.2: A single trajectory in regular and chaotic billiards. Adapted from
Ref. [6]

Because it is difficult to visualize the four-dimensional phase space (x , y, px ,
py) of a billiard, it is convenient keep track only of the collisions with the bound-
aries. The trajectory can now be described by just two coordinates, the position
s ∈ (0,1) along the boundary of the billiard (normalized by the total circumfer-
ence) and the angle of incidence φ ∈ (−π/2,π/2). The section of phase space
(s, sinφ) is called the Poincaré surface of section. The map

F : (s, sinφ) → (s′, sinφ′) (1.1)

that relates subsequent collisions is called the Poincaré map. It is area preserving
because of Liouville’s theorem.
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If the Poincaré map follows a smooth curve in the surface of section, then the
system is integrable. If, on the other hand, the Poincaré map reveals an apparently
random series of points, then the system is chaotic. Fig. 1.4 shows the Poincaré
map of a billiard in which some initial conditions give rise to a regular dynamics
and some to a chaotic dynamics. The surface of section shows islands of stability
in a chaotic sea.

Maps have been studied independently of billiards as simple examples of non-
linear systems [3–5, 8, 9]. The iteration of a nonlinear map amounts to a strobo-
scopic description of the linear equations of motion. In the billiard the strobo-
scopic time interval varies from one collision to the next, but there still is a typical
period τ0 set by the typical linear dimension of the billiard. Ease of visualization is
one advantage of the stroboscopic description. Also, the numerical computations
can be much faster, since part of the dynamics is effectively done analytically in
obtaining the map itself. What we lose is information on the dynamics in between
collisions with the boundary, which is in general irrelevant on time scales � τ0.

Every area preserving map F can be associated with a time-dependent Hamil-
tonian H (t). The stroboscopic period is determined by the periodicity H (t) =
H (t + τ0) of the Hamiltonian. The phase space of H is two-dimensional, but the
dynamics is not integrable because energy is not a constant of the motion. For
example, the so-called standard (Chirikov) map [8], transforms the canonically
conjugate variables (θ , J ) on a cylinder to (θ ′, J ′), where

θ ′ = [
θ+ (τ0/I0)J ′] modulo 2π , (1.2a)

J ′ = J + (K I0/τ0) sinθ . (1.2b)

This area preserving map, describing a free angular rotation and a kick in momen-

∆
∆

(t)
(0)

Figure 1.3: Exponential divergence of chaotic trajectories, �(t) =�(0)eλt , with
a rate set by the Lyapunov exponent λ.
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tum, is associated with the time-dependent Hamiltonian

H (t) = J 2

2I0
+ K I0

τ0
cosθ

∞∑
n=−∞

δ(t −nτ0) , (1.3)

known as the kicked rotator. It describes a particle moving freely along a circle,
with moment of inertia I0, being subjected periodically (with period τ0) to a kick
whose strength depends on the angular coordinate θ and a fixed parameter K . By
introducing the rescaled variables x = θ/2π and p = Jτ0/2π I0, we can write the
dimensionless Hamiltonian

H = p2

2
+ K

(2π )2
cos(2πx)

∞∑
n=−∞

δ(t −n) , (1.4)

and its associated map

xn+1 = [
xn + pn+1

]
modulo 1 , (1.5a)

pn+1 = pn + K

2π
sin(2πxn) . (1.5b)

We denote by xn the coordinate at the kick t = n (measured in units of τ0), and
we denote the momentum just before and after the kick by pn and pn+1.

s = 0

p = sin φ

φ
s

Figure 1.4: The clover geometry (left), an example of a billiard with a mixed
regular and chaotic dynamics, as is clearly visible in the Poincaré map (right).
After Brodier et al. [7]
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Figure 1.5: Poincaré surface of section of the standard (Chirikov) map (1.5). The
dynamics crosses over from regular to mixed to fully chaotic with increasing kick-
ing strength K .
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The dynamics of this map takes place on the cylinder 0< x < 1, −∞< p <
∞. For K = 0 the system is integrable and all trajectories lie on one-dimensional
tori in phase space. For K > 0 the system undergoes a transition to chaos, in
the way described by Kolmogorov, Arnold, and Moser (KAM) [8, 10–13]. For
sufficiently small K , the Poincaré map follows simple smooth curves. As K
increases, more and more of these curves disappear. At the golden number Kg =
(1 +√

5)/2 = 0.9716 the last KAM curve becomes unstable and breaks up. The
phase space for K > Kg is not yet fully chaotic, some islands of stability remain.
These disappear for K > 5, when the whole of phase space is characterized by
the Lyapunov exponent λ ≈ ln(K/2) [8]. In this regime, the momentum of a
typical trajectory grows diffusively, with diffusion constant D = 〈[pn − p0]2〉/n ≈
K 2/8π2. Here n is measured in units of τ0 and the average is over a distribution
of initial conditions [3,8,14,15]. Fig. 1.5 shows the iteration of the Chirikov map
(1.5) for a small number of initial points. The map is periodic in x and p (with
unit period), so only the torus {x , p ∈ [0,1)} is shown. One clearly sees how the
system crosses over from the fully integrable regime to the fully chaotic regime
as the kicking strength K increases.

1.2 Quantum chaos in quantum dots

Structures with a geometry similar to those shown in Figs. 1.1 and 1.2 can be fab-
ricated in the two-dimensional electron gas (2DEG) which forms at the interface
of a GaAs/AlGaAs heterostructure (see Fig. 1.6) [16, 17]. Such electron bil-
liards have dimensions L of the order of 1−10 µm, while the Fermi wave length
λF ≈ 60 nm is much smaller than L . These are mesoscopic systems intermediate
between the macroscopic world of classical mechanics and the microscopic world
of quantum mechanics [18, 19].

An electron moving in a quantum dot obeys the Schrödinger wave equation,
which approaches Newton’s equation of particle motion in the limit that λF/L →
0. This limit has been studied since the early days of quantum mechanics, mostly
in integrable systems. The field of quantum chaos studies this limit in chaotic
systems [20, 21].

An early result of the quantum-to-classical crossover, due to Ehrenfest [23],
is that quantum mechanical expectation values of position and momentum fol-
low Newton’s equation of motion in the limit h → 0 at fixed time interval. In
the billiard the ratio λF/L ≡ heff is the effective Planck constant, which is ex-
perimentally tunable. If both the observation time t and h−1

eff are sent to infinity,
then Ehrenfest’s correspondence principle breaks down unless t < τE (heff). The
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Ehrenfest time τE goes itself to infinity when heff → 0, but it does so very slowly
in a chaotic system [24],

τE = 1

λ
ln

(
h−1

eff

)
. (1.6)

The argument leading to the Ehrenfest time (1.6) goes as follows (see Fig. 1.7).
A wave packet with minimal uncertainty in both position and momentum has a
width of order λF in real space. This initial width increases exponentially in time,
�(t) = λF eλt . The time τE is the time at which �(t) = L . Thus, before the
Ehrenfest time the wave packet can be well described by a particle trajectory,

I+

G1

I-

G2 G3

G4

G5
V-

V+

Figure 1.6: Perspective view of a quantum dot, fabricated in the 2DEG of a
GaAs/AlGaAs heterostructure, with a blowup of the central region. The 2D elec-
tron gas lies 90 nm under the surface. The dot area is about 2 µm2, and the
Fermi wave length is about 60 nm. Electrons can enter and exit the quantum dot
through point contacts. The elements labeled G1, G2 · · · , G5 are gate electrodes
that can vary the shape of the billiard. A four-terminal resistance measurement at
the contacts V±, I± gives information on the transmission probability through the
quantum dot. After Huibers [22].
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λ

λ
λτ

L = e 

F

E
F

p

x

t = 0 t = τE

Figure 1.7: Schematic diagram of how a minimal uncertainty wave packet spreads
over the whole phase space, while conserving its area.

whereas for times longer than τE the concept of a trajectory loses its meaning.
The phenomenology of electrical conduction through a quantum dot will thus

be different in the two regimes τD � τE and τD � τE , where τD is the mean
dwell time of an electron inside the quantum dot. The time τD is independent of
heff, given by τD  L2/wvF (with vF the Fermi velocity and w the width of the
openings through which an electron enters or leaves the quantum dot).

For τD � τE quantum interference effects can be observed in the conductance
of the quantum dot, such as weak localization and universal conductance fluctu-
ations [18, 19]. These all require the splitting of wave packets into partial waves
that then interfere constructively or destructively. The same splitting of wave
packets leads to time-dependent current fluctuations (shot noise) [25]. Random-
matrix theory (RMT) provides a universal theoretical description of these phe-
nomena [26]. All of this will be modified in some way in the opposite regime
τE � τD, when the wave packet no longer splits but stays together on a single
trajectory.

To investigate the quantum-to-classical crossover when L/λF → ∞, one can
perform computer simulations. For such simulations one can choose two alterna-
tive approaches:

• One can solve numerically the Schrödinger equation in the particular ge-
ometry of a quantum billiard. This approach is appropriate for studying
both the specific and generic properties of a quantum dot. Because it is
restricted to small system sizes (L/λF � 100 −1000), it is difficult to vary
the Ehrenfest time τE ∝ ln(L/λF ) by a substantial amount.
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• One can quantize the stroboscopic map. Using this approach one loses in-
formation about specific characteristics of the quantum dot (pertaining to
time scales below the time between subsequent collisions with the bound-
ary). The computational efficiency of the map allows to study very big
system sizes (L/λF ∼ 106) and makes it possible to vary the logarithmic
Ehrenfest time scale by an order of magnitude.

1.3 Stroboscopic model of a closed quantum dot

Quantization of the Chirikov standard map can be done by imposing the quanti-
zation rule

[ x̂ , p̂ ] = i h̄eff (1.7)

on the Hamiltonian (1.4) of the kicked rotator. The effective Planck constant of
the problem is heff = hτ0/(2π )2 I0 ≡ 2π h̄eff. The resulting quantum kicked rotator
has Hamiltonian [20, 21, 27, 28]

H = − h̄2
eff

2

∂2

∂x2
+ K

(2π )2
cos(2πx)

∞∑
n=−∞

δ(t −n) , (1.8)

where t is measured in units of the stroboscopic time τ0.
The wave function ψ(t) at multiples of the stroboscopic time is given by

ψ(n) = F nψ(0) in terms of the Floquet operator

F =
{

exp

[
− i

h̄eff

∫ 1

0
dt ′ H (t ′)

]}
+

. (1.9)

Here + denotes the positive time ordering. In the Heisenberg picture, the corre-
sponding quantum map is defined as

x̂(t +1) = F † x̂(t) F , (1.10a)

p̂(t +1) = F † p̂(t) F , (1.10b)

where F † = F −1 is the inverse of the unitary Floquet operator. The Floquet op-
erator has orthonormal eigenvectors |µ〉 and unimodular eigenvalues exp(−iεµ),

F |µ〉 = e−iεµ |µ〉 . (1.11)

The real numbers εµ are called the quasienergies. In the Schrödinger picture, a
wave function evolves as

ψ(x , t +n) =
∑
µ

e−inεµ〈µ|ψ(t)〉 〈x |µ〉 . (1.12)
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Because the interaction with the external force is instantaneous, one can fac-
torize the total Floquet operator into the product of evolution operators corre-
sponding to the free rotation and the interaction,

F = B(x̂) G( p̂) , (1.13a)

B(x̂) = exp

(
− i

h̄eff

K

(2π )2
cos2π x̂

)
, (1.13b)

G( p̂) = exp

(
− i

h̄eff

p̂2

2

)
. (1.13c)

The periodicity of the angle variable gives rise to a discrete set of momentum
eigenvalues defined by

p̂ |m〉 = 2π h̄eff m |m〉 m = ±1,±2, · · · , (1.14a)

〈x |m〉 = exp( i2πmx ) . (1.14b)

In the momentum representation, the free rotation operator G has a diagonal form
with matrix elements

Gmm′ = exp
(−i2π2h̄effm

2)δmm′ . (1.15)

In the same basis the matrix elements of the kick operator B are given in terms of
a Bessel function,

Bmm′ = im−m′
Jm−m′

(
K

(2π )2h̄eff

)
. (1.16)

The Bessel function decreases rapidly with increasing difference between indices
and argument

(
(2π )2h̄eff |m −m ′|> K

)
. It means that the unitary matrix F has

the form of a band matrix [29,30] with negligible matrix elements outside a band
of width ≈ K/2π2h̄eff.

For a special choice of parameters 1/2π h̄eff ≡ M an even integer, the Floquet
operator reduces to an M × M unitary matrix. This choice is known as a resonance
condition [27]. In this finite-dimensional space the basis states of position and
momentum are the vectors |xn〉, |pn〉,n = 0,1, · · · , M −1. They obey

x̂ |xn〉 = (n/M) |xn〉 , (1.17a)

p̂ |pn〉 = (n/M) |pn〉 , (1.17b)

and are related by the discrete Fourier transform

〈xn|pm〉 = 1√
M

exp

[
i
2π

M
mn

]
. (1.18)
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eff

0 1

1

h

x

p

w w

Figure 1.8: The phase space of unit area contains M Planck cells of area heff. The
connection to electron reservoirs is modeled by imposing absorbing boundary
conditions inside two rectangular areas of width w, each containing N Planck
cells.

The classical phase space consists of the torus {x ∈ (0,1), p ∈ (0,1)}, with periodic
boundary conditions in the x and p directions. The number M is the number of
Planck cells (of area 2π h̄eff) that are contained within the torus.

1.4 Stroboscopic model of an open quantum dot

So far we have discussed the stroboscopic description of a closed quantum dot.
To study electrical conduction one needs to open it up and connect it to a pair of
electron reservoirs.

The open kicked rotator was introduced in Refs. [31–33]. We impose ab-
sorbing boundary conditions inside a pair of rectangular areas in the phase space,
which are assumed to be connected to electron reservoirs (see Fig. 1.8). If the
particle enters one of these areas it is taken out of the system. We assume that the
two absorbing regions contain a total of 2N Planck cells. The 2N ×2N scattering
matrix S of the open quantum dot is related to the M × M Floquet matrix of the
closed dot by [31–33]

S = P
[
1−F

(
1− PT P

)]−1
F PT . (1.19)
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The 2N × M matrix P is the projection matrix which obeys

(
PT P

)
nm = δnm ×

⎧⎨
⎩

1 if L1 ≤ n ≤ L1 + N −1,
1 if L2 ≤ n ≤ L2 + N −1,
0 otherwise,

(1.20)

where L1, L2 denotes the left edge of the absorbing areas. The expression (1.19)
can be easily understood if it is written out as a geometric series,

S = PF PT + PF QF PT + P(F Q)2F PT +·· · , (1.21)

where Q = 1 − PT P is the M × M matrix that projects onto the non-absorbing
part of phase space. Each subsequent term in this series describes evolution over
one more period τ0. The evolution continues if the particle is not absorbed (Q)
and stops if it is absorbed (P). One can verify that unitarity of F implies unitarity
of S, as it should.

The scattering matrix (1.19) does not yet depend on the quasienergy. Such
a dependence can be introduced by accounting for the phase shift eiετ0 incurred
during one stroboscopic period τ0 ≡ 1. Hence the energy dependent scattering
matrix becomes

S(ε) = PeiεF PT + PeiεF QeiεF PT + P(eiεF Q)2eiεF PT +·· ·
= P

1

1− eiεF
(
1− PT P

)eiεF PT . (1.22)

1.5 This thesis

Chapter 2: Quantum-to-classical crossover of shot noise

The current I (t) flowing through a device exhibits fluctuations �I = I (t) − Ī in
time around the mean current Ī . At zero temperature these fluctuations, known
as shot noise, are caused by the discreteness of the electrical charge. If the cur-
rent can be described by uncorrelated current pulses containing a single charge
e, then the spectral density PI of the current fluctuations has the Poissonian
form PPoisson = 2eĪ . Correlations imposed by fermionic statistics as well as by
Coulomb interaction cause deviations of the shot noise from the Poisson value.
These deviations are quantified by the Fano factor F ≡ PI /PPoisson. In diffusive
wires with non-interacting electrons F = 1/3, while in quantum dots F = 1/4
[34, 35]. These Fano factors are universal in the sense that they are independent
of the details of the system.
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Beenakker and van Houten predicted that shot noise in ballistic conductors
should vanish when L/λF → ∞, due to the crossover from stochastic quantum
dynamics to deterministic classical dynamics [36]. The analytical calculation of
Agam, Aleiner, and Larkin [37] led to the exponential suppression

F = 1

4
exp

(
− τE

τD

)
. (1.23)

This result was consistent with a recent experiment where the dwell time τD of
an electron billiard created in a 2D electron gas was varied by changing the num-
ber of modes N transmitted through each of the two openings [38]. Since the
Ehrenfest time τE depends only logarithmically on N , it remains approximately
constant in the experiment.

A deficiency of the experiment, which is difficult to avoid, is that changing
the width of the openings also changes the classical transport properties of the
billiard. The contribution of relatively short, nonchaotic trajectories is reduced
upon reducing N , and this modifies the Fano factor in a way that has nothing to
do with the classical-to-quantum crossover. For a reliable test of the theory one
would need to change all dimensions of the billiard relative to the wave length,
not just the width of the openings. This is very problematic in an experiment, but
is something that we can do easily in a computer simulation.

In this chapter we use the stroboscopic model to test the theoretical predic-
tion (1.23), by increasing τE at constant τD. In this way all classical properties of
the billiard remain unaffected and any variation in F must be of a quantum me-
chanical origin. We find that the simple exponential decay (1.23) is qualitatively
correct but does not contain sufficient microscopic information to quantitatively
describe our numerical data. A much better agreement is provided by the effective
random-matrix theory of Ref. [39].

Chapter 3: Quantum-to-classical crossover of mesoscopic conductance fluc-
tuations

We now turn from time dependent fluctuations to mesoscopic fluctuations, mean-
ing fluctuations in the time-averaged current Ī from one sample to another sam-
ple of an ensemble of chaotic billiards. The quantity of interest is the variance
Var G of the sample-to-sample conductance fluctuations. Random-matrix theory
(RMT) [35, 40] predicts the universal values

Var G = 1

8β

(
2e2

h

)
, (1.24)
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Figure 1.9: Variance of the conductance of a quantum dot as a function of mag-
netic field. The inset shows an electron micrograph of the device, fabricated in
the two-dimensional electron gas of a GaAs/AlGaAs heterostructure. After Chan
et al. [43].

where β = 1(2) in the absence (presence) of a time-reversal symmetry-breaking
magnetic field. This is the ballistic analogue of universal conductance fluctuations
in disordered metals [41, 42].

Eq. (1.24) was observed in experiments by Chan et al. [43] (see Fig. 1.9) in
which the shape-dependent fluctuations were measured as a function of magnetic
field B. These experiments were in the regime τE � τD in which no deviations
from RMT are observed.

In our computer simulation we can access the regime of comparable τE and
τD, to search for deviations from the RMT prediction (1.24). We find that such de-
viations are present if the ensemble is generated by varing the shape of the billiard
or the positions of the leads, but we find no deviations if the ensemble is gener-
ated by varying the quasienergy. Jacquod and Sukhorukov [44] have explained
this unexpected finding in terms of the effective random-matrix theory [39].

Chapter 4: Search for the τE dependence of weak localization

The argument of Jacquod and Sukhorukov implies not only that the conductance
fluctuations as a function of energy or magnetic field should be τE -independent,
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Figure 1.10: The reduced conductance in zero magnetic field is a result of the
constructive interference of the closed trajectory shown with its time reversed
partner. The picture of the device has been adapted from Ref. [22].

but also that other quantum interference effects should be τE -independent. This
contradicts previous theories by Aleiner and Larkin [45] and Adagideli [46],
which predicted a exp(−τE/τD) suppression of weak localization. In this chap-
ter we will use the open kicked rotator to search numerically for the effect of
increasing τE on weak localization.

Weak localization is the constructive interference of a pair of time-reversed
trajectories. The resulting enhancement of the probability to return to the point
of departure reduces the conductance, see Fig. 1.10. The reduced conductance
disappears if a magnetic field breaks the time reversal symmetry. The prediction
of RMT for the reduction δG of the conductance is [35, 40]

δG = −1

4
δβ,1

(
2e2

h

)
. (1.25)

We have introduced a magnetic field into our model for the open kicked rota-
tor, to search for the predicted exp(−τE/τD) suppression of the weak localization
correction. No effect is found, in support of the effective random-matrix theory.

Chapter 5: Search for the τE dependence of dephasing

Our search for the Ehrenfest time dependence of quantum interference effects has
so far been quite unsuccessful. No effect was found on the conductance fluctua-
tions nor on the weak localization effect. In these studies we assumed full phase
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Figure 1.11: Series of doubly-clamped AlN beams, with lengths ranging from
3.9 to 5.6 µm and with widths ranging from 0.2 to 2.4 µm (left, adapted from
Ref. [50]). Nanoscale InAs cantilevers (right, adapted from Ref. [51]).

coherence, as if the system was at zero temperature. In any realistic system there
will be a finite dephasing time τφ .

According to random-matrix theory, interference effects in the conductance
of a ballistic chaotic quantum dot should vanish ∝ (τφ/τD)p when the dephasing
time τφ becomes small compared to the mean dwell time τD. Aleiner and Larkin
have predicted that the power law crosses over to an exponential suppression ∝
exp(−τE/τφ) when τφ drops below the Ehrenfest time τE [45].

This chapter addresses the first observation of this crossover in a computer
simulation of universal conductance fluctuations. As discussed in chapter 3 their
theory also predicts an exponential suppression ∝ exp(−τE/τD) in the absence of
dephasing — which is not observed. We show that the effective random-matrix
theory proposed previously for quantum dots without dephasing [39] can be ex-
tended to explain both observations.

Chapter 6: Momentum noise in a quantum point contact

This chapter falls outside of the main theme of this thesis. It addresses a topic
in nanoelectromechanics, which is the study of the interplay of electrical and
mechanical properties of mesoscopic systems [47, 48].

Mechanically suspended beams incorporating a two-dimensional electron gas,
either in the form of a cantilever or a doubly-clamped beam (see Fig. 1.11), form
a basic element in nanomechanical structures. The vibration is excited by the
current because electrons transfer momentum to the lattice via elastic collisions
with impurities and boundaries and thereby exert a fluctuating force on the lattice.
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This fluctuating electromechanical force can be distinguished from thermal noise
because of the linear dependence of the mean squared fluctuation on the applied
voltage [49].

This chapter is devoted to an investigating of the electromechanical force in
ballistic transport, where electrons collide with boundaries but not with impuri-
ties. We study the excitation of the transverse and longitudinal oscillator modes
in a quantum point contact, which is a narrow constriction between two wide
electron reservoirs. The conductance of the constriction is quantized in units of
2e2/h [52]. While the electrical noise vanishes on the plateaus of quantized con-
ductance, the force noise does not. We identify a regime in which the force noise
has a stepwise increase as a function of the width of the constriction, similar to
the conductance.
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Chapter 2

Dynamical model for the quantum-
to-classical crossover of shot noise

2.1 Introduction

The problem of a quantum-to-classical crossover has been hotly debated since
the early days of quantum mechanics. The recent progress in mesoscopic struc-
tures allows to address those issues in experimental context for actually available
devices. The quantity of central interest is the shot noise.

Noise plays a uniquely informative role in connection with the particle-wave
duality [1]. This has been appreciated for light since Einstein’s theory of photon
noise. Recent theoretical [2–6] and experimental [7] work has used electronic
shot noise in quantum dots to explore the crossover from particle to wave dy-
namics. Particle dynamics is deterministic and noiseless, while wave dynamics is
stochastic and noisy [8].

The crossover is governed by the ratio of two time scales, one classical and
one quantum. The classical time is the mean dwell time τD of the electron in the
quantum dot. In an open chaotic dot with two openings of widthw, different scat-
tering trajectories have in general different dwell times which are exponentially
distributed P(t) = exp(−t/τD)/τD, with the mean dwell time τD = 1/(2w). The
quantum time is the Ehrenfest time τE , which is the time it takes a wave packet of
minimal size to spread over the entire system. While τD is independent of h̄, the
time τE increases ∝ ln(1/h̄) for chaotic dynamics. An exponential suppression
∝ exp(−τE/τD) of the shot noise power in the classical limit h̄ → 0 (or equiv-
alently, in the limit system-size-over-wave-length to infinity) was predicted by
Agam, Aleiner, and Larkin [2]. A recent experiment by Oberholzer, Sukhorukov,

23
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and Schönenberger [7] fits this exponential function. However, the accuracy and
range of the experimental data is not sufficient to distinguish this prediction from
competing theories (notably the rational function predicted by Sukhorukov [9] for
short-range impurity scattering).

Computer simulations would be an obvious way to test the theory in a con-
trolled model (where one can be certain that there is no weak impurity scattering
to complicate the interpretation). However, the exceedingly slow (logarithmic)
growth of τE with the ratio of system size over wave length has so far prevented
a numerical test. Motivated by a recent successful computer simulation of the
Ehrenfest-time dependent excitation gap in the superconducting proximity ef-
fect [10], we use the same model of the open kicked rotator to search for the
Ehrenfest-time dependence of the shot noise.

2.2 Description of the stroboscopic model

The reasoning behind this model is as follows. The physical system we seek
to describe is a ballistic (clean) quantum dot in a two-dimensional electron gas,
connected by two ballistic leads to electron reservoirs. While the phase space
of this system is four-dimensional, it can be reduced to two dimensions on a
Poincaré surface of section [11, 12]. The open kicked rotator [10, 13–15] is a
stroboscopic model with a two-dimensional phase space that is computationally
more tractable, yet has the same phenomenology as open ballistic quantum dots.
We give a description of the open kicked rotator, both in quantum mechanical and
in classical terms.

2.2.1 Closed system

We begin with the closed system (without the leads). It was shown in chapter 1
that the kicked rotator is described by the following Hamiltonian [17, 18]

H = − h̄2

2I0

∂2

∂θ2
+ K I0

τ0
cosθ

∞∑
n=−∞

δs(t −nτ0) , (2.1)

where the variable θ ∈ (0,2π ) is the angular coordinate of a particle moving along
a circle (with moment of inertia I0), kicked periodically at time intervals τ0 (with
a strength ∝ K cosθ). To avoid a spurious breaking of time-reversal symme-
try later on, when we open up the system, we represent the kicking by a sym-
metrized delta function: δs(t) = 1

2δ(t − ε) + 1
2δ(t + ε), with infinitesimal ε. The

ratio h̄τ0/2π I0 ≡ heff represents the effective Planck constant, which governs the
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quantum-to-classical crossover. For convenience, we will use the rescaled vari-
ables x and p introduced in chapter 1.

Classically, the stroboscopic time evolution of the kicked rotator is described
by the following map, relating xn+1, pn+1 at time n +1 to xn, pn at time n:

xn+1 = xn + pn + K

4π
sin2πxn modulo 1 , (2.2a)

pn+1 = pn + K

4π

(
sin2πxn + sin2πxn+1

)
. (2.2b)

The classical mechanics becomes fully chaotic for K � 7, with Lyapunov ex-
ponent λ ≈ ln(K/2). For smaller K the phase space is mixed, containing both
regions of chaotic and of regular motion. The reduction of the shot noise in a
mixed phase space system was numerically studied in billiards [3], but here we
will restrict ourselves to the fully chaotic regime.

The stroboscopic time evolution of a wave function is given by the Floquet
operator F . Since we would like to compare the quantum kicked rotator to a
chaotic quantum dot, without dynamical localization, we follow the usual pro-
cedure of quantizing phase space on the unit torus {x , p | modulo1}, rather than
on a cylinder. This amounts to a discretization of, say, the real space coordi-
nate x . Thus the real space coordinate and momentum eigenvalues are given by
xm = m/M and pn = n/M , with m,n = 1,2, . . .M . For 1/heff ≡ M an even inte-
ger, F can be represented by an M × M unitary symmetric matrix. In coordinate
representation the matrix elements of F are given by (see Appendix 2.A)

Fmm′ = (XU †U X )mm′ , (2.3a)

Umm′ = 1√
M

exp
(−i2πmm ′/M

)
, (2.3b)

Xmm′ = δmm′ exp

[
−i

M K

4π
cos(2πm/M)

]
, (2.3c)

mm′ = δmm′ exp
(−iπm2/M

)
. (2.3d)

The matrix product U †U can be evaluated in closed form, resulting in the man-
ifestly symmetric expression

(U †U )mm′ = M−1/2e−iπ/4 exp[i (π/M)(m −m ′)2]. (2.4)

The eigenvalues e−iεµ of F define the quasi-energies εµ ∈ (0,2π ). The mean
spacing 2π/M of the quasi-energies plays the role of the mean level spacing δ in
the quantum dot.
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2.2.2 Open system

We now turn to a description of the open kicked rotator, following Refs. [10, 15,
16]. To model a pair of N -mode ballistic leads, we impose open boundary condi-
tions in a subspace of Hilbert space represented by the indices m(α)

n in coordinate
representation. The subscript n = 1,2, . . .N labels the modes and the superscript
α = 1,2 labels the leads. A 2N × M projection matrix P describes the coupling
to the ballistic leads. Its elements are

Pnm =
{

1 if m = n ∈ {m(α)
n },

0 otherwise.
(2.5)

Therefore the M × M matrix Q = 1 − PT P denotes all modes which are not
lying on the leads. Particles are injected into the system by the leads, and at each
iteration some of them leave the system while the remaining ones stay inside.
Eventually all particles leave at the lead after a sufficient number of iterations.
With this picture in mind, the 2N × 2N scattering matrix is formed via a formal
scattering series

S(ε) = PFPT + PFQFPT + P(FQ)2
FPT +·· ·

= P
1

1−FQ
FPT , (2.6)

where F = F eiε is the quasienergy-dependent Floquet matrix of the closed sys-
tem. Using P PT = 1, Eq. (2.6) can be cast in the form (derived in Appendix
2.B)

S = PAPT −1

PAPT +1
, A = 1+F

1−F
= −A†, (2.7)

which is manifestly unitary. The symmetry of F ensures that S is also symmet-
ric, as it should be in the presence of time-reversal symmetry. By grouping to-
gether the N indices belonging to the same lead, the 2N × 2N matrix S can be
decomposed into 4 sub-blocks containing the N × N transmission and reflection
matrices,

S =
(

r t ′
t r ′

)
. (2.8)

The Fano factor F follows from [19]

F = Tr t t†
(
1− t t†

)
Tr t t†

. (2.9)
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This concludes the description of the stroboscopic model studied in this thesis.
For completeness, we briefly mention how to extend the model to include a tunnel
barrier in the leads. To this end we replace Eq. (2.6) by

S(ε) = − (1−PP T)1/2 +P
1

1−F(1−P TP )
FP T . (2.10)

The 2N × M coupling matrix P has elements

Pnm =
{ √

�n if m = n ∈ {m(α)
n },

0 otherwise,
(2.11)

with �n ∈ (0,1) the tunnel probability in mode n. Ballistic leads correspond to
�n = 1 for all n. The scattering matrix (2.10) can equivalently be written in the
form used conventionally in quantum chaotic scattering [20, 21]:

S(ε) = −1+2W (A−1 + W TW )−1W T, (2.12)

with W = P (1+√
1−P TP )−1 and A defined in Eq. (2.7).

2.3 Quantum-to-classical crossover of shot noise

Here we use the stroboscopic model to study the quantum-to-classical crossover
of the shot noise in a ballistic chaotic quantum dot. Our goal is to prove that the
suppression of the Fano factor F , predicted theoretically [2] and observed exper-
imentally [7], is essentially due to the absence of noise on classical trajectories.
We study the model in two complementary ways. First we present a fully numer-
ical, quantum mechanical solution. Then we compare with a partially analytical,
semiclassical solution, which is an implementation for this particular model of a
general scheme presented recently by Silvestrov, Goorden, and Beenakker [5].

2.3.1 Quantum mechanical calculation

To calculate the transmission matrix from Eq. (2.6) we need to determine an N ×
N submatrix of the inverse of an M × M matrix. The ratio M/2N = τD is the
mean dwell time in the system in units of the kicking time τ0. This should be a
large number, to avoid spurious effects from the stroboscopic description.

For large M/N we have found it efficient to do the partial inversion by itera-
tion. Let B−1 ≡ (1 −FQ)−1 be the inverse M × M matrix in Eq. (2.6), then the
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scattering matrix can be expressed as S = PX with X = B−1
FPT. Therefore, a

particular element Sm1m2 of the scattering matrix is given by

Sm1m2 = (
Pm11 Pm12 · · · Pm1 M

)
⎛
⎜⎜⎜⎝

X1m2

X2m2
...

XMm2

⎞
⎟⎟⎟⎠ . (2.13)

The associated linear equations

(1−FQ)

⎛
⎜⎜⎜⎝

X1m2

X2m2
...

XMm2

⎞
⎟⎟⎟⎠ = F

⎛
⎜⎜⎜⎝

Pm21

Pm22
...

Pm2 M

⎞
⎟⎟⎟⎠ (2.14)

can be solved iteratively. The iterative procedure we found most stable was the
bi-conjugate-stabilized-gradient routine F11BSF from the NAG (Numerical Al-
gorithms Group) library. Each step of the iteration requires a multiplication by
F, which can be done efficiently with the help of the fast-Fourier-transform algo-
rithm [22]. We made sure that the iteration was fully converged (error estimate
0.1%). In comparison with a direct matrix inversion, the iterative calculation is
much quicker: the time required scales ∝ M2 ln M rather than ∝ M3.

To study the quantum-to-classical crossover we reduce the quantum param-
eter heff = 1/M by two orders of magnitude at fixed classical parameters τD =
M/2N = 5,10,30 and K = 7,14,21. (These three values of K correspond, re-
spectively, to Lyapunov exponents λ= 1.3,1.9,2.4.) The left edge of the leads is
at m/M = 0.1 and m/M = 0.8. Ensemble averages are taken by sampling 10 ran-
dom values of the quasi-energy ε ∈ (0,2π ). We are interested in the semiclassical,
large-N regime (typically N > 10). The average transmission N−1〈Tr t t†〉 ≈ 1/2
is then insensitive to the value of heff, since quantum corrections are of order 1/N
and therefore relatively small [21]. The Fano factor (2.9), however, is seen to
depend strongly on heff, as shown in Fig. 2.1. The line through the data points
follows from the semiclassical theory of Ref. [5], as explained in the next section.

In Fig. 2.2 we have plotted the numerical data on a double-logarithmic scale,
to demonstrate that the suppression of shot noise observed in the simulation is
indeed governed by the Ehrenfest time τE . The functional dependence predicted
for N >

√
M is [5]

F = 1
4 e−τE/τD , τE = λ−1 ln(N2/M)+ c, (2.15)
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Figure 2.1: Dependence of the Fano factor F on the dimensionality of the Hilbert
space M = 1/heff, at fixed dwell time τD = M/2N and kicking strength K . The
data points follow from the quantum mechanical simulation in the open kicked
rotator. The solid line at F = 1

4 is the M-independent result of random-matrix
theory. The dashed lines are the semiclassical calculation using the theory of Ref.
[5]. There are no fit parameters in the comparison between theory and simulation.
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Figure 2.2: Demonstration of the logarithmic scaling of the Fano factor F with
the parameter N2/M = M/(2τD)2. The data points follow from the quantum
mechanical simulation and the lines are the analytical prediction (2.15), with c a
fit parameter. The slope λ−1 = 1/ ln(K/2) of each line is not a fit parameter.

with c a K -dependent coefficient of order unity. As shown in Fig. 2.2, the data
follows quite nicely the logarithmic scaling with N2/M = M/(2τD)2 predicted by
Eq. (2.15) and understood as a next to leading order correction for the dominant
ln(M)-scaling of τE in the closed systems. This corresponds to a scaling with
w2/LλF in a two-dimensional quantum dot (with λF the Fermi wave length and
w and L the width of the point contacts and of the dot, respectively.) We note
that the same parametric scaling governs the quantum-to-classical crossover in
the superconducting proximity effect [10, 23].

2.3.2 Semiclassical calculation

To describe the data from our quantum mechanical simulation we use the semi-
classical approach of Ref. [5]. To that end we first identify which points in the
x , p phase space of lead 1 are transmitted to lead 2 and which are reflected back
to lead 1. By iteration of the classical map (2.2) we arrive at phase space portraits
as shown in Fig. 2.3 (top panels). Points of different color (or gray scale) identify
the initial conditions that are transmitted or reflected.
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Figure 2.3: Upper panels: phase space portrait of lead 1, for τD = 10 and different
values of K . Each point represents an initial condition for the classical map (2.2),
that is either transmitted through lead 2 (black/red) or reflected back through lead
1 (gray/green). Only initial conditions with dwell times ≤ 3 are shown for clarity.
Lower panels: histogram of the area distribution of the transmission and reflection
bands, calculated from the corresponding phase space portrait in the upper panel.
Areas greater than heff = 1/M correspond to noiseless scattering channels.

The transmitted and reflected points group together in nearly parallel, narrow
bands. Each transmission or reflection band (labeled by an index j ) supports
noiseless scattering channels provided its area Aj in phase space is greater than
heff = 1/M . The total number N0 of noiseless scattering channels is estimated by

N0 = M
∑

j

Aj θ(Aj −1/M), (2.16)
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with θ(x) = 0 if x < 0 and θ(x) = 1 if x > 0. In the classical limit M → ∞ one
has N0 = N , so all channels are noiseless and the Fano factor vanishes [8].

As argued in Ref. [5], the contribution to the Fano factor from the N − N0

noisy channels can be estimated as 1/4N per channel. In the quantum limit N0 = 0
one then has the result F = 1/4 of random-matrix theory [24]. The prediction for
the quantum-to-classical crossover of the Fano factor is

F = M

4N

∑
j

Aj θ(1/M − Aj )

= M

4N

∫ 1/M

0
Aρ(A)d A, (2.17)

with band density ρ(A) = ∑
j δ(A − Aj ). The solid curves in Fig. 2.1 give the

resulting Fano factor, according to Eq. (2.17). The quantum limit F = 1/4 follows
from the total area

∫ 1
0 Aρ(A)d A = N/M . The lower panels of Fig. 2.3 show the

band density in the form of a histogram. We have approximated the areas of
the bands from the monodromy matrix of the classical map, as detailed in the
Appendix 2.C.

2.3.3 Scattering states in the lead

To investigate further the correspondence between the quantum mechanical and
semiclassical descriptions we compare the quantum mechanical eigenstates |Ui〉
of t ′†t ′ with the classical transmission bands. Phase space portraits of eigenstates
are given by the Husimi function

Hi (mx ,mp) = |〈Ui |mx ,mp〉|2. (2.18)

The state |mx ,mp〉 is a Gaussian wave packet centered at x = mx/M , p = mp/M .
In position representation it reads

〈m|mx ,mp〉 ∝
∞∑

k=−∞
e−π(m−mx +kN)2/N e2π impm/N . (2.19)

The summation over k ensures periodicity in m. The transmission bands typically
support several modes, thus the eigenvalues Ti are nearly degenerate at unity. We
choose the group of eigenstates with Ti > 0.9995 and plot the Husimi function for
the projection onto the subspace spanned by these eigenstates:

H (mx ,mp) =
∑

Ti>0.9995

Hi (mx ,mp). (2.20)
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Figure 2.4: Contour plots of the Husimi function (2.20) in lead 1 for M = 2400,
τD = 10, and K = 7,14,21. The outer contour is at the value 0.15, inner contours
increase with increments of 0.1. Yellow/Gray regions are the classical transmis-
sion bands with area > 1/M , extracted from Fig. 2.3.

As shown in Fig. 2.4, this quantum mechanical function indeed corresponds to a
phase-space portrait of the classical transmission bands with area > 1/M .

2.4 Conclusion

We have presented compelling numerical evidence for the validity of the theory
of the Ehrenfest-time dependent suppression of shot noise in a ballistic chaotic
system [2, 5]. The key prediction [2] of an exponential suppression of the noise
power with the ratio τE/τD of Ehrenfest time and dwell time is observed over
two orders of magnitude in the simulation. We have also tested the semiclassical
theory proposed recently [5], and find that it describes the fully quantum mechan-
ical data quite well. It would be of interest to extend the simulations to mixed
chaotic/regular dynamics and to systems which exhibit localization.

2.A Floquet matrix in coordinate representation

The Floquet operator F relates the wave function from time t to t +1,

ψ(x , t +1) = 〈x |F |ψ(t)〉 . (2.21)

For the symmetrized kicked rotator, F can be factorized into the product of the
evolution operators corresponding to the half-interaction, free propagation and
half-interaction,

F = X (x̂) G( p̂) X (x̂) , (2.22)



34 CHAPTER 2. DYNAMICAL MODEL FOR . . .

with

X (x̂) = exp

(
− i

h̄eff

K

8π2
cos2π x̂

)
, (2.23a)

G( p̂) = exp

(
− i

h̄eff

p̂2

2

)
. (2.23b)

Substituting F in Eq. (2.21), one arrives at

ψ(x , t +1) =
∞∑

m=−∞

∫ 1

0
dx ′〈x |X (x̂)|m〉 G(pm) 〈m|X (x̂)|x ′〉 〈x ′|ψ(t)〉

=
∞∑

m=−∞

∫ 1

0
dx ′ X (x)X (x ′)e−iπheffm2

ei2πm(x−x ′)ψ(x ′, t). (2.24)

The corresponding classical map, given by Eq. (2.2), is invariant under the trans-
formation p → p + r with r being an integer. If such a symmetry also exists in
the associated quantum system then it would correspond to a transformation in
the momentum eigenvalue given by

m → m + r

2π h̄eff
≡ m + r

heff
. (2.25)

Since m has to be an integer, Eq. (2.25) can be valid only if

r

heff
≡ M (2.26)

is an integer, or equivalently, only if

heff = r

M
(2.27)

is a rational number. The condition that heff is a rational number is a resonance
condition for the quantum system, which makes it possible to describe the quan-
tum dynamics in a finite M-dimensional Hilbert space. For the generic irrational
case, p is no longer periodic and the quantum dynamics occurs in an infinite
Hilbert space. Thus one has to deal with an infinite Floquet matrix, for which
there are different methods depending on the type of irrationality [25].

Let us now show that the rationality of the effective Planck constant gives rise
to a finite dimensional Hilbert space. By introducing

m = n + l M , (2.28a)

n = 0,1, · · · , M −1 , (2.28b)

l = ·· · ,−1,0,1, · · · , (2.28c)
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Eq. (2.24) can be written as

ψ(x , t +1) = X (x)
M−1∑
n=0

e−iπrn2/M
∫ 1

0
dx ′ei2πn(x−x ′) X (x ′) ψ(x ′, t)

×
∞∑

l=−∞
ei2πl(Mx−Mx ′) , (2.29)

where we have assumed that at least one of r and M is even. It is straightforward
to check that this choice leads to the translation symmetry of the matrix elements
of the Floquet matrix, namely Fm+M ,m′+M = Fmm′ . Using the Poisson summation
formula ∞∑

l=−∞
ei2πl(Mx−Mx ′) =

∞∑
l=−∞

δ(Mx − Mx ′ + l) , (2.30)

we obtain

ψ(x , t +1) = 1

M
X (x)

M−1∑
n=0

L2∑
l=−L1

exp
(−iπrn2/M

)
exp(−i2πnl/M)

×X (x + l/M) ψ (x + l/M , t) , (2.31)

where the range [−L1, L2] is determined such that x , x ′ ∈ [0,1). Because of the
periodicity of system with respect to the position, Eq. (2.31) is invariant under
transformation l → l + M , hence the summation over l can be restricted to the
range [0, M). This indicates that the position has a finite discrete spectrum xl =
l/M with l = 0, · · · , M − 1, resulting from the fact that the system is periodic in
momentum with period 1. Since the variable x in Eq. (2.31) is arbitrary, we set it
at xm = m/M with m = 0, · · · , M −1. Therefore Eq. (2.31) can be expressed as

〈xm|ψ(t +1)〉 =
M−1∑
m′=0

Fmm′ 〈xm′ |ψ(t)〉 , (2.32)

where Fmm′ represents the elements of the finite M × M Floquet matrix in the
position representation

Fmm′ = X (xm)

[
1

M

M−1∑
n=0

e−iπrn2/M ei2πn(m−m′ )/M

]
X (xm′) . (2.33)

For a system which is restricted to be on the unit torus (r = 1), the summation can
be evaluated with the help of the relation

M−1∑
n=0

exp
[
−iπ (n −m +m

′
)2/M

]
=

N−1∑
n=0

exp
[−iπn2/M

] =
√

M

i
(2.34)
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for integer numbers m,m ′ ∈ [0, M). This results in the simple symmetric form

Fmm′ = 1√
i M

X (xm) exp
[
i (π/M)(m −m ′)2] X (xm′) . (2.35)

2.B Derivation of Eq. (2.7)

We use a series expansion for the inverse operator in Eq. (2.6),

[1−FQ]−1 = [
1−F+FPT P

]−1

=
[

(1−F)

(
1+ 1

1−F
FPT P

)]−1

=
[

1+ 1

1−F
FPT P

]−1 1

1−F

=
∑
k≥0

(
− 1

1−F
FPT P

)k 1

1−F
. (2.36)

Substituting this expansion in Eq. (2.6) and using P PT = 1, we obtain

S =
∑
k≥0

P

(
− 1

1−F
FPT P

)k 1

1−F
FPT

=
∑
k≥0

(−1)k

(
P

1

1−F
FPT

)k+1

= P (F/1−F) PT

1+ P (F/1−F) PT

= P (2F/1−F) PT

P (2/1−F) PT

= P
[
(1+F/1−F) −1

]
PT

P
[
(1+F/1−F) +1

]
PT

= PAPT −1

PAPT +1
. (2.37)

2.C Calculation of the band area distribution

We approximate the bands in Fig. 2.3 by straight and narrow strips in the shape
of a parallelogram, disregarding any curvature. This is a good approximation in
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Figure 2.5: Phase space of a lead (width w) showing two areas (in the shape of a
parallelogram) that are mapped onto each other after n iterations. They have the
same base B, so the same area, but their tilt angle α is different.

particular for the narrowest bands, which are the ones that determine the shot
noise. Each band is characterized by a mean dwell time n (in units of τ0). We
disregard any variations in the dwell time within a given band, assuming that the
entire band exits through one of the two leads after n iterations. (We have found
numerically that this is true with rare exceptions.)

The case of a reflection band is shown in Fig. 2.5. The initial and final par-
allelograms have the same height, set by the width w = N/M of the lead. Since
the map is area preserving, the base B of the two parallelograms should be the
same as well. We have approximated the areas of the bands from the monodromy
matrix M(xk , pk ), which describes the stretching by the map of an infinitesimal
displacement δxk , δpk:

(
δxk+1

δpk+1

)
= M(xk , pk )

(
δxk

δpk

)
. (2.38)
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From Eq. (2.2) one finds

M(xk , pk ) =
(

�(xk) 1
�(xk)�(xk+1)−1 �(xk+1)

)
, (2.39a)

�(x) = 1+ K

2
cos2πx . (2.39b)

To calculate the band area A = Bw, we assume that the monodromy matrix
M(xk , pk) does not vary appreciably within the band at each iteration k = 1,2, . . .n.
An initial vector �ei within the parallelogram is then mapped after n iterations onto
a final vector �ef given by

�ef = M�ei , M = M(xn , pn) · · · M(x2, p2)M(x1, p1), (2.40)

with x1, p1 inside the initial parallelogram. We apply Eq. (2.40) to the vectors that
form the sides of the initial and final parallelograms. The base vector �ei = B p̂ is
mapped onto the vector �ef = ±w(x̂ + p̂ tanα), with α the tilt angle of the final
parallelogram. It follows that B|Mxp| = w, hence

A = w2/|Mxp|. (2.41)

We obtain the Fano factor F by a Monte Carlo procedure. An initial point
x1, p1 is chosen randomly in lead 1 and iterated until it exits through one of the
two leads. The product M of monodromy matrices starting from that point gives
the area A of the band to which it belongs, according to Eq. (2.41). The fraction
of points with A < 1/M then equals w−1

∫ 1/M
0 Aρ(A)d A = 4F , according to Eq.

(2.17).
To assess the accuracy of this procedure, we repeat the calculation of the

Fano factor with initial points chosen randomly in lead 2 (instead of lead 1). The
difference is about 5%. The dashed lines in Fig. 2.1 are the average of these two
results.
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Chapter 3

Quantum-to-classical crossover of
mesoscopic conductance fluctuations

3.1 Introduction

Sample-to-sample fluctuations of the conductance of disordered systems have a
universal regime, in which they are independent of the mean conductance. The
requirement for these universal conductance fluctuations [1, 2] is that the sample
size should be small compared to the localization length. The mean conductance
is then much larger than the conductance quantum e2/h.

The same condition applies to the universality of conductance fluctuations in
ballistic chaotic quantum dots [3, 4], although there is no localization in these
systems. Random-matrix-theory (RMT) has the universal limit

lim
N→∞ varG = 1

8
(3.1)

for the variance of the conductance G in units of e2/h. Here N is the number
of modes transmitted through each of the two ballistic point contacts that connect
the quantum dot to electron reservoirs. Since the mean conductance 〈G〉 = N/2,
the condition for universality remains that the mean conductance should be large
compared to the conductance quantum.

In the present chapter we will show that there is actually an upper limit on
N , beyond which RMT breaks down in a quantum dot and the universality of
the conductance fluctuations is lost. Since the width w of a point contact should
be small compared to the size L of the quantum dot, in order to have chaotic
scattering, a trivial requirement is N � M , where M is the number of transverse

41
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modes in a cross-section of the quantum dot. (In two dimensions, N  w/λF

and M  L/λF, with λF the Fermi wavelength.) By considering the quantum-to-
classical crossover, we arrive at the more stringent requirement

1 � N � √
Meλτerg/2, (3.2)

with λ the Lyapunov exponent and τerg the ergodic time of the classical chaotic
dynamics. The requirement is more stringent than N � M because, typically, λ−1

and τerg are both equal to the time of flight τ0 across the system, so the exponential
factor in Eq. (3.2) is not far from unity.

Expressed in terms of time scales, the upper limit in Eq. (3.2) says that τerg

should be larger than the Ehrenfest time [5, 6]

τE = max

[
0,λ−1 ln

N2

M

]
. (3.3)

The condition τerg > τE which we find for the universality of conductance fluctu-
ations is much more stringent than the condition τD > τE for the validity of RMT
found in other contexts [5–13]. Here τD ≈ (M/N )τ0 is the mean dwell time in the
quantum dot, which is � τerg in any chaotic system.

The outline of this chapter is as follows. In Sec. 3.2 we describe the quantum
mechanical model that we use to calculate var G numerically, which is the same
stroboscopic model used in previous investigations of the Ehrenfest time [9, 11,
14]. The data is interpreted semiclassically in Sec. 3.4, leading to the crossover
criterion (3.2). We conclude in Sec. 3.5.

3.2 Stroboscopic model

The physical system we have in mind is a ballistic (clean) quantum dot in a two-
dimensional electron gas, connected by two ballistic leads to electron reservoirs.
While the phase space of this system is four-dimensional, it can be reduced to
two dimensions on a Poincaré surface of section [15,16]. The open kicked rotator
[9, 11, 14, 17–20] is a stroboscopic model with a two-dimensional phase space.
We summarize how this model is constructed, following Ref. [11].

One starts from the closed system (without the leads). The kicked rotator
describes a particle moving along a circle, kicked periodically at time intervals
τ0. We set to unity the stroboscopic time τ0 and the Plank constant h̄. The stro-
boscopic time evolution of a wave function is given by the Floquet operator F ,
which can be represented by an M × M unitary symmetric matrix. The even
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integer M defines the effective Planck constant heff = 1/M . In the discrete coor-
dinate representation (xm = m/M , m = 0,1, . . . , M −1) the matrix elements of F
are given by

Fm′m = M−1/2e−iπ/4ei2πM S(xm′ ,xm), (3.4)

where S is the map generating function,

S(x ′, x) = 1
2 (x ′ − x)2 − (K/8π2)(cos2πx ′ + cos2πx), (3.5)

and K is the kicking strength. The eigenvalues exp(−iεm) of F define the quasi-
energies εm ∈ (0,2π ). The mean spacing 2π/M of the quasi-energies plays the
role of the mean level spacing δ in the quantum dot.

To model a pair of N -mode ballistic leads, we impose open boundary condi-
tions in a subspace of Hilbert space represented by the indices m(α)

n . The subscript
n = 1,2, . . .N labels the modes and the superscript α = 1,2 labels the leads. A
2N × M projection matrix P describes the coupling to the ballistic leads. Its
elements are

Pnm =
{

1 if m = n ∈ {m(α)
n },

0 otherwise.
(3.6)

The mean dwell time is τD = M/2N (in units of τ0).
The matrices P and F together determine the quasi-energy dependent scat-

tering matrix
S(ε) = P[e−iε −F (1− PT P)]−1F PT. (3.7)

The symmetry of F ensures that S is also symmetric, as it should be in the pres-
ence of time-reversal symmetry. By grouping together the N indices belonging
to the same lead, the 2N × 2N matrix S can be decomposed into 4 sub-blocks
containing the N × N transmission and reflection matrices,

S =
(

r t ′
t r ′

)
. (3.8)

The conductance G (in units of e2/h) follows from the Landauer formula

G = Tr t t†. (3.9)

The open quantum kicked rotator has a classical limit, described by a map
on the torus {x , p | modulo1}. The classical phase space, including the leads, is
shown in Fig. 3.1. The map relates x , p at time k to x ′, p′ at time k +1:

p′ = ∂

∂x ′ S(x ′, x), p = − ∂

∂x
S(x ′, x). (3.10)



44 CHAPTER 3. QUANTUM-TO-CLASSICAL CROSSOVER OF . . .

Figure 3.1: Classical phase space of the open kicked rotator. The dashed lines
indicate the two leads (shown for the case τD = 5). Inside each lead we plot the
initial and final coordinates of trajectories which are transmitted from the left to
the right lead after at most 3 iterations (with K = 7.5). The points cluster along
narrow “transmission bands”.

The classical mechanics becomes fully chaotic for K � 7, with Lyapunov ex-
ponent λ ≈ ln(K/2). For smaller K the phase space is mixed, containing both
regions of chaotic and of regular motion. We will restrict ourselves to the fully
chaotic regime in this chapter.

3.3 Numerical results

To calculate the conductance (3.9) we need to invert the M × M matrix between
square brackets in Eq. (3.7). We do this numerically using an iterative proce-
dure [11]. The iteration can be done efficiently using the fast-Fourier-transform
algorithm to calculate the application of F to a vector. The time required to cal-
culate S scales as M2 ln M , which for large M is quicker than the M3 scaling of
a direct inversion. The memory requirements scale as M , because we need not
store the full scattering matrix to obtain the conductance.
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We distinguish two types of mesoscopic fluctuations in the conductance. The
first type appears upon varying the quasi-energy ε for a given scattering matrix
S(ε). Since these fluctuations have no classical analogue (the classical map (3.10)
being ε-independent), we refer to them as quantum fluctuations. The second type
appears upon varying the position of the leads, so these involve variation of the
scattering matrix at fixed ε. We refer to them as sample-to-sample fluctuations.
They have both a quantum mechanical component and a classical analogue. One
could introduce a third type of fluctuations, involving both variation of ε and of
the lead positions. We have found (as expected) that these are statistically equiv-
alent to the sample-to-sample fluctuations at fixed ε, so we need not distinguish
between fluctuations of type two and three.

We have calculated the variance varG = 〈
G2

〉−〈G〉2 of the conductance, ei-
ther by varying ε at fixed lead positions (quantum fluctuations) or by varying both
ε and lead positions (sample-to-sample fluctuations). Since the quantum inter-
ference pattern is completely different only for energy variations of order of the
Thouless energy 1/τD, we choose a number τD of equally spaced values of ε in
the interval (0,2π ). We take 10 different lead positions, randomly located at the
x-axis in Fig. 3.1. To investigate the quantum-to-classical crossover, we change
heff = 1/M while keeping the dwell time τD = M/2N constant. The results are
plotted in Figs. 3.2 and 3.3.

3.4 Interpretation

We interpret the numerical data by assuming that the variance of the conductance
is the sum of two contributions: a universal quantum mechanical contribution
VRMT given by random-matrix theory and a nonuniversal quasiclassical contribu-
tion Vcl determined by sample-to-sample fluctuations in the classical transmission
probabilities.

The RMT contribution equals [3, 4]

VRMT = 1
8 , (3.11)

in the presence of time-reversal symmetry. The classical contribution is calculated
from the classical map (3.10), by determining the probability P1→2 of a particle
injected randomly through lead 1 to escape via lead 2. Since the conductance is
given semiclassically by Gcl = N P1→2, we obtain

Vcl = N2 var P1→2. (3.12)
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Figure 3.2: Variance of the conductance fluctuations obtained numerically by
varying ε with fixed lead positions. Error bars indicate the scatter of values ob-
tained for different lead positions. Results are shown as a function of 1/heff = M ,
for two values of the dwell time τD = M/2N . The dashed line is the RMT pre-
diction varG = 1

8 .

We plot var G = VRMT +Vcl in Fig. 3.3 (dashed curves), for comparison with
the results of our full quantum mechanical calculation. The agreement is excel-
lent.

We now would like to investigate what ratio of time scales governs the crossover
from quantum to classical fluctuations.

To estimate the magnitude of the sample-to-sample fluctuations in the clas-
sical transmission probability, we use results from Ref. [6]. There it was found
that the starting points (and end points) of transmitted trajectories are not ho-
mogeneously distributed in phase space. Instead, they cluster together in nearly
parallel, narrow bands. These transmission bands are clearly visible in Fig. 3.1.
The largest band has an area Amax = A0e−λτerg determined by the ergodic time
τerg. This is the time required for a trajectory to explore the whole accessible
phase space. The values of τerg and A0 depend on the degree of collimation of
the beam of trajectories injected into the system [6]. For our model, without col-
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Figure 3.3: Same as Fig. 3.2, but now for an ensemble in which the lead positions
and the quasi-energy are both varied. The dashed lines are the sum of the RMT
value (3.11) and the classical result (3.12). Results are shown for three values of
the kicking strength K . Open symbols are for the dwell time τD = 10 and closed
ones for τD = 20.

limation, one has τerg of order unity (one stroboscopic period) and A0  (N/M)2.
The typical transmission band has an area A0e−λτD which is exponentially smaller
than Amax (since τD = M/2N � τerg).

As the position of the lead is moved around, transmission bands move into and
out of the lead. The resulting fluctuations in the transmission probability P1→2 are
dominated by the largest band. Since there is an exponentially large number eλτD

of typical bands, their fluctuations average out. The total area in phase space of
the lead is Alead = N/M , so we estimate the mean squared fluctuations in P1→2 at

var P1→2  (Amax/Alead)2 = c (N/M)2e−2λτerg , (3.13)

with c and τerg of order unity. We have tested this functional dependence numeri-
cally for the map (3.10), and find a reasonable agreement (see Fig. 3.4). Both the
exponential dependence on λ and the quadratic dependence on τD = M/2N are
consistent with the data. We find τerg = 0.68 of order unity, as expected.
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Figure 3.4: Variance of the classical fluctuations of the transmission probabil-
ity P1→2 upon changes of lead positions, calculated numerically from the map
(3.10). The data is shown for four values of the dwell time τD, as a function of the
Lyapunov exponent λ = ln(K/2). The dotted lines are the analytical prediction
(3.13), with fit parameters c = 1.6 and τerg = 0.68 (the same for all data sets).

Eqs. (3.12) and (3.13) imply

varG = 1
8 + c (N4/M2) e−2λτerg . (3.14)

In Fig. 3.5 we plot the same data as in Fig. 3.3, but now as a function of (N4/M2)
e−2λτerg . We see that the functional dependence (3.14) is approached for large
dwell times.

The quantum fluctuations of RMT dominate over the classical fluctuations if
N2 var P1→2 � 1. Using the estimate (3.13), this amounts to the condition

τerg >max
[
0,λ−1 ln(N2/M)

] ≡ τE (3.15)

that the ergodic time exceeds the Ehrenfest time. Notice that condition (3.15) is
always satisfied if N2 < M ≡ 1/heff. This agrees with the findings of Ref. [6],
that the breakdown of RMT starts when N �

√
M .
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Figure 3.5: Same data as in Fig. 3.3 rescaled to show the approach to a single
limiting curve in the large dwell time limit. The solid line is calculated from Eq.
(3.14), with the same parameters c = 1.6, τerg = 0.68 as in Fig. 3.4.

3.5 Conclusions

In summary, we have presented both a fully quantum mechanical and a semi-
classical calculation of the quantum-to-classical crossover from universal to non-
universal conductance fluctuations. The two calculations are in very good agree-
ment, without any adjustable parameter (compare data points with curves in Fig.
3.3). We have also given an analytical approximation to the numerical data, which
allows us to determine the parametric dependence of the crossover.

We have found that universality of the conductance fluctuations requires the
ergodic time τerg to be larger than the Ehrenfest time τE . This condition is much
more stringent than the condition that the dwell time τD should be larger than τE ,
found previously for universality of the shot noise in a quantum dot [6, 10, 11].
The universality of the excitation gap in a quantum dot connected to a supercon-
ductor is also governed by the ratio τD/τE rather than τerg/τE [5, 7–9], as is the
universality of the weak localization effect [12, 13]. These two properties have
in common that they represent ensemble averages, rather than sample-to-sample
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fluctuations.
We propose that what we have found here for the conductance is generic for

other transport properties: That the breakdown of RMT with increasing τE occurs
when τE > τD for ensemble averages and when τE >τerg for the fluctuations. This
has immediate experimental consequences, because it is much easier to violate the
condition τE > τerg than the condition τE > τD.

To test this proposal, an obvious next step would be to determine the ratio of
time scales that govern the breakdown of universality of the fluctuations in the
superconducting excitation gap. The numerical data in Refs. [14] and [21] was
interpreted in terms of the ratio τE/τD, but an alternative description in terms of
the ratio τE/τerg was not considered.

One final remark about the distinction between classical and quantum fluctu-
ations, explained in Sec. 3.3. It is possible to suppress the classical fluctuations
entirely, by varying only the quasi-energy at fixed lead positions. In that case we
would expect the breakdown of universality to be governed by τD/τE instead of
τerg/τE . Our numerical data (Fig. 3.2) does not show any systematic deviation
from RMT, probably because we could not reach sufficiently large systems in our
simulation.

Our final remark above has been criticized by Jacquod and Sukhorukov [22].
They argue that the numerical data of Fig. 3.2 (and similar data of their own)
does not show any systematic deviation from RMT because quantum fluctuations
remain universal if τE > τD. Their argument relies on the assumption that the
effective RMT of Ref. [6] holds not only for the classical fluctuations (as we
assume here), but also for the quantum fluctuations. The effective RMT says
that quantum fluctuations are due to a number Neff ≈ Ne−τE /τD of transmission
channels with an RMT distribution. Universality of the quantum fluctuations is
then guaranteed even if Neff � N , as long as Neff is still large compared to unity.

This line of reasoning, if pursued further, contradicts the established theory
[12, 13] of the τE dependence of weak localization. RMT says that the weak
localization correction δG = − 1

4 is independent of the number of channels [3, 4].
Validity of the effective RMT at the quantum level would therefore imply that
weak localization remains universal if τE > τD, as long as Ne−τE /τD � 1. This
contradicts the result δG = 1

4 e−τE/τD of Refs. [12] and [13].
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Chapter 4

Weak localization of the open kicked
rotator

4.1 Introduction

Random-matrix theory (RMT) makes system-independent (“universal”) predic-
tions about quantum mechanical systems with a chaotic classical dynamics [1–4].
The presence or absence of time-reversal symmetry (TRS) identifies two univer-
sality classes. RMT is also capable of describing the crossover between the uni-
versality classes, e.g. when TRS is broken by the application of a magnetic field
B. The crossover is predicted to depend on a single system-specific parameter,
being the mean absolute curvature of the energy levels Ei around B = 0. More
precisely, a universal magnetic-field dependence of spectral correlations is pre-
dicted when B is rescaled by the characteristic field

Bc =
(

1

�

〈∣∣∣∣d2 Ei

d B2

∣∣∣∣
B=0

〉)−1/2

, (4.1)

with � the mean level spacing. This prediction has been tested in a variety of
computer simulations [5–7].

In open systems there exists a similar prediction of universality for transport
properties, but now the characteristic field depends also on the conductance g of
the point contacts that couple the chaotic quantum dot to electron reservoirs [8–
11]. A universal magnetic field dependence is predicted if B is rescaled by Bc

√
g,

provided g is large compared to the conductance quantum e2/h. To provide a
numerical test of this prediction is the purpose of this chapter.

53
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We present a computer simulation of the open quantum kicked rotator [12–
15], which is a stroboscopic model of a quantum dot coupled to electron reservoirs
by ballistic point contacts. The ensemble averaged conductance increases upon
breaking of TRS, as a manifestation of weak localization. The height, width,
and lineshape of the weak localization peak are compared with the predictions of
RMT.

The simulation itself is straightforward, but the formulation of the model is
not. There exist several ways to break TRS in the closed kicked rotator [16–19]
and related models [20–23]. When opening up the system one needs to ensure
that the scattering matrix satisfies the reciprocity relation

S(−B) = ST (B). (4.2)

(The superscript T indicates the transpose of the scattering matrix S.) We also
require that TRS is broken already at the level of the classical dynamics (as it
is in a quantum dot in a uniform magnetic field). Finally, we need to relate the
TRS-breaking parameter in the stroboscopic formulation to the flux enclosed by
the quantum dot. All these issues are addressed in Secs. 4.2 and 4.3 before we
proceed to the actual simulation in Sec. 4.4. We conclude in Sec. 4.5.

4.2 Time-reversal-symmetry breaking in the open kicked ro-
tator

4.2.1 Formulation of the model

The kicked rotator is a particle moving along a circle, kicked periodically at time
intervals τ0 [1,17]. The stroboscopic time evolution of a wave function is given by
the Floquet operator F . In addition to the stroboscopic time τ0 and the moment
of inertia I0, which we set to unity, F depends on the kicking strength K and the
TRS-breaking parameter γ . We require

F (−γ ) = F T (γ ), (4.3)

which guarantees the reciprocity relation (4.2) for the scattering matrix when we
open up the model.

We will consider two different representations of F , both of which can be
written as an M × M unitary matrix. The classical limit corresponds to a map de-
fined on a toroidal phase space. The difference between the two representations is
whether TRS breaking persists in the classical limit or not. The simplest represen-
tation of F has one kick per period. It breaks TRS quantum mechanically, but not
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classically. This would correspond to a quantum dot that encloses a flux tube, but
in which the magnetic field vanishes. A more realistic model has TRS breaking
both at the quantum mechanical and at the classical level. We have found that we
then need a minimum of three kicks per period.

4.2.2 Three-kick representation

We will mainly consider the three-kick model, so we describe it first. In this model
TRS is broken both quantum mechanically and classically. Stroboscopic models
with multiple kicks per period of different magnitude were studied previously in
the context of quantum ratchets [21]. Inspired by that work, we study the time-
dependent Hamiltonian

H (t) = p2

2
+ 1

2
V (θ)

∑
n

[δε(t −n + ε)+ δε (t −n − ε)]

+γ cos(θ)
∑

n

δ(t −n +1/3)

−γ cos(θ)
∑

n

δ(t −n −1/3), (4.4)

with ε an infinitesimal. The angular momentum operator p = −i h̄eff∂θ is canon-
ically conjugate to the angle θ ∈ [0,2π ). The effective Planck constant is h̄eff =
h̄τ0/I0. The potential [18, 19, 24, 25]

V (θ) = K cos(πq/2)cos(θ)+ 1

2
K sin(πq/2)sin(2θ) (4.5)

with q �= 0 breaks the parity symmetry of the model. The form of the potential
is such that in the large K -limit the diffusion constant does not depend on q. For
γ = 0 there are two kicks per period in Eq. (4.4), but since they are displaced by
an infinitesimal amount we still call this a “single-kick” model. For γ �= 0 two
more kicks appear with opposite sign at finite displacement. We will see that this
choice guarantees the reciprocity criterion (4.3) for the Floquet operator.

The reduction of the Floquet operator

F = T exp

[
− i

h̄eff

∫ 1

0
H (t)dt

]
(4.6)

(with T the time ordering operator) to a discrete, finite form is obtained only for
special values of h̄eff, known as resonances [17]. We have to reconsider the usual
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condition for resonances in the presence of additional, TRS-breaking kicks. Here
our analysis departs from the quantum ratchet analogy [21].

The initial wave function ψ(x) evolves in one period to a final wave function
ψ̄(x), given by

ψ̄(θ) = exp(−i V (θ)/2h̄eff) exp(i h̄eff∂
2
θ /6)

×exp(−iγ cos(θ)/h̄eff) exp(i h̄eff∂
2
θ /6)

×exp(iγ cos(θ)/h̄eff) exp(i h̄eff∂
2
θ /6)

×exp(−i V (θ)/2h̄eff)ψ(θ). (4.7)

One recognizes three factors describing free propagation for 1/3 of a period,
each followed by a kick. The resonance condition for free propagation is h̄eff =
2πr/M , with r an odd integer and M an even integer [17]. The free propagation

ψ1(θ) = exp(i h̄eff∂
2
θ /6)ψ(θ) (4.8)

is then given by (derived in Appendix 4.A)

ψ1

(
θ + 2π

3M
n

)
= 1

3M

3M−1∑
m,n′=0

exp
(
−i

πr

3M
m2

)

×exp

(
−im

2π

3M
(n′ −n)

)
ψ

(
θ + 2π

3M
n′

)
. (4.9)

Resonance means that the initial and final wave functions can be treated as dis-
crete vectors on a 3M-point lattice, labeled by the indices n, n′. The angle θ is
an arbitrary offset parameter. Different values of θ are not coupled by the free
propagation. Putting together three iterations of Eq. (4.9) we get three indepen-
dent components of ψ(θ+2πn/3M) for n = 0,1,2 (mod 3), each on an M-point
lattice.

We find that the resonance property is preserved in the presence of intervening
TRS-breaking kicks, provided that r = 3 and M even, but not a multiple of 3. 1

The free propagation (4.9) then is conveniently expressed in matrix notation. The
matrix acts on an M-component vector ψm = ψ(θ+2πm/M), m = 0, . . . , M −1.
We choose the arbitrary phase θ = 0, so that (see Appendix 4.A)

(ψ1)m =
M−1∑
m′=0

(U †�U )mm′ψm′ . (4.10)

1The associated classical map is periodic in momentum with period 6π . This constrains us
to quantize the map on the torus {θ ∈ [0,2π ) , p ∈ [0,6π )}, resulting in the finite Hilbert space
of dimension M = 12π2/heff.
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The matrices are defined by

�mm′ = δmm′e−iπm2/M , (4.11)

Umm′ = M−1/2e−2π imm′/M . (4.12)

The matrix product U †�U can be evaluated in closed form, with the result

mm′ = (U †�U )mm′

= M−1/2e−iπ/4 exp[i (π/M)(m ′ −m)2]. (4.13)

Collecting results, we find that for h̄e f f = 6π/M the Floquet operator (4.7) is
represented by an M × M unitary matrix, of the form

Fmm′ = (XY ∗YX )mm′ , (4.14a)

Ymm′ = δmm′ei(Mγ /6π)cos(2πm/M), (4.14b)

Xmm′ = δmm′e−i(M/12π)V (2πm/M). (4.14c)

One readily verifies the reciprocity relation (4.3).
The classical map corresponding to this quantum mechanical model is derived

in Appendix 4.B. We show there that TRS-breaking of the classical map is broken
for γ �= 0 in the three-kick model.

4.2.3 One-kick representation

TRS breaking in the one-kick model is constructed as a formal analogy to the
magnetic vector potential, by adding an offset δ to the momentum of the kicked
rotator [16–19, 24–26].

To obey reciprocity
F (−δ) = F T (δ) (4.15)

for odd M it is enough to symmetrize the expression of Ref. [16] by infinitesimally
splitting the kick (as it was done in Ref. [15] for δ = 0). For even M , which is
more convenient for application of the fast Fourier transform, one also needs to
redefine the lattice points in order to preserve reciprocity [27].

The model takes the form

Fmm′ = (X̃Ũ †̃Ũ X̃ )mm′ , (4.16a)

Ũmm′ = M−1/2e−2π i(m− M−1
2 )m′/M , (4.16b)

X̃mm′ = δmm′e−i(M K/4π)cos(2πm/M+φ), (4.16c)

̃mm′ = δmm′e−iπ(m− M−1
2 −δ M

2π )2/M . (4.16d)
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In addition to the TRS-breaking phase δ there is a phase φ to break the parity
symmetry. The reciprocity property (4.15) can easily be checked.

The classical map corresponding to this model is also discussed in Appendix
4.B. It does not break TRS.

4.2.4 Scattering matrix

To model a pair of N -mode ballistic point contacts that couple the quantum dot to
electron reservoirs, we impose open boundary conditions in a subspace of Hilbert
space represented by the indices m(α)

n . The subscript n = 1,2, . . .N labels the
modes and the superscript α = 1,2 labels the leads. A 2N × M projection matrix
P describes the coupling to the ballistic leads. Its elements are

Pnm =
{

1 if m = n ∈ {m(α)
n },

0 otherwise.
(4.17)

The mean dwell time is τD = M/2N (in units of τ0).
The matrices P and F together determine the scattering matrix [13–15]

S(ε) = P[e−iε −F (1− PT P)]−1F PT, (4.18)

where ε is the quasi-energy. The reciprocity condition (4.3) of F implies that also
S satisfies the reciprocity condition (4.2).

By grouping together the N indices belonging to the same point contact, the
2N × 2N matrix S can be decomposed into 4 sub-blocks containing the N × N
transmission and reflection matrices,

S =
(

r t ′
t r ′

)
. (4.19)

The conductance G (in units of e2/h, disregarding spin degeneracy) follows from
the Landauer formula

G = Tr t t†. (4.20)

4.3 Relation with random-matrix theory

In RMT time-reversal symmetry is broken by means of the Pandey-Mehta Hamil-
tonian [28]

H = H0 + iαA, (4.21)
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which consists of the sum of a real symmetric matrix H0 and a real antisymmetric
matrix A with imaginary weight iα. We denote by MH the dimensionality of the
Hamiltonian matrix. The two matrices H0 and A are independently distributed

with the same Gaussian distribution. The variance ν2 =
〈
(H0)2

i j

〉
=

〈
A2

i j

〉
(i �= j )

determines the mean level spacing � = πν/
√

MH at the center of the spectrum
for MH � 1 and α � 1.

To lowest order in perturbation theory the energy levels Ei(α) depend on the
TRS-breaking parameter α according to

δEi = α2
∑
j �=i

A2
i j

Ei − Ej
, (4.22)

with δEi = Ei (α) − Ei(0) and Ei ≡ Ei (0). The characteristic value αc is deter-
mined by the mean absolute curvature,

αc ≡
(

1

�

〈∣∣∣∣d2Ei

dα2

∣∣∣∣
α=0

〉)−1/2

. (4.23)

From Eq. (4.22) we deduce that αc  �/ν  1/
√

MH , up to a numerical coeffi-
cient of order unity. A numerical calculation gives

αc

√
MH ≡ κRMT = 1.27. (4.24)

A real magnetic field B is related to the parameter α of RMT by

B/Bc = α/αc, (4.25)

where Bc is determined by the level curvature according to Eq. (4.1). For a bal-
listic two-dimensional billiard (area A, Fermi velocity vF) with a chaotic classical
dynamics, one has [2, 5]

Bc = c
h

eA
(�

√
A/h̄vF )1/2, (4.26)

with c a numerical coefficient that depends only on the shape of the billiard. The
field Bc corresponds to a flux through the quantum dot of order (h/e)

√
τerg�/h̄ �

h/e, with the ergodic time τerg being the time it takes an electron to explore the
available phase space in the quantum dot.

The analogue of Eqs. (4.1) and (4.25) for the quantum kicked rotator consid-
ered here is

γ/γc = α/αc, γc ≡
(

M

2π

〈∣∣∣∣d2φi

dγ 2

∣∣∣∣
γ=0

〉)−1/2

. (4.27)
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Figure 4.1: The critical value γc of the TRS-breaking parameter in the closed
three-kick model is presented for different system sizes at fixed K . The parity-
breaking parameter is q = 0.2. The solid line shows the large-K limit (4.28). The
dashed lines are averages over M of the numerical data.
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Figure 4.2: Same as Fig. 4.1, but now for the closed one-kick model. The parity-
breaking parameter is φ = 0.2π . The solid line shows the large-K limit (4.29).
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Here γ is the TRS-breaking parameter in the three-kick model. The same
relation applies to the one-kick model, with γ , γc replaced by δ, δc.

To complete the correspondence between the kicked rotator, RMT, and the
real quantum dot, we need to determine the two characteristic values γc and δc.
In Appendix 4.C we present an analytical calculation deep in the chaotic regime
(K → ∞), according to which

lim
K→∞γc = 12πM−3/2κRMT = 47.9 M−3/2, (4.28)

lim
K→∞δc = 4

√
3M−3/2κRMT = 8.80 M−3/2. (4.29)

In Figs. 4.1 and 4.2 we show a numerical calculation for finite K , which confirms
these analytical large-K limits.

In the open system the characteristic field scale for TRS-breaking is increased
by a factor

√
g, with g the conductance of the point contacts. We consider ballistic

N -mode point contacts, so that g = N , measured in units of e2/h. The conduc-
tance G(B) of the quantum dot is also measured in units of e2/h. According to
RMT, the weak localization magnetoconductance is given by [9, 11]

G(B) = N

2
− 1

4

[
1+ (2κRMT N−1/2 B/Bc)2]−1

. (4.30)

For the quantum kicked rotator we would therefore expect a weak localization
peak in the conductance given by

G(γ ) = G∞ − 1

4

[
1+ (2κRMT N−1/2γ/γc)2]−1

, (4.31)

in the three-kick model. We define the weak localization correction δG(γ ) =
G(γ ) − G∞, with G∞ the conductance at fully broken TRS. The expression in
the one-kick model is similar, with γ/γc replaced by δ/δc.

In the large-K limit we can use the analytical expressions (4.28) and (4.29)
for γc and δc to obtain

lim
K→∞

δG(γ ) = − 1
4 [1+ (M3/2 N−1/2γ/6π )2]−1, (4.32)

lim
K→∞

δG(δ) = − 1
4 [1+ (M3/2N−1/2δ/2

√
3)2]−1. (4.33)

In Appendix 4.D we show how these two results are consistent with a semiclassi-
cal calculation.
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4.4 Numerical results

The numerical technique we use to calculate the conductance was described in
Refs. [15] and [29]. The calculation of the scattering matrix (4.18) is performed
efficiently by use of an iterative procedure and the fast-Fourier-transform algo-
rithm. We need to average over many system realizations (varying lead positions
and quasi-energies) to suppress statistical fluctuations. In addition, we need sev-
eral points to plot the γ -dependence. This makes the calculation for large M more
time consuming than earlier studies of universal conductance fluctuations in the
same model at zero magnetic field [29, 30].

First we present in Figs. 4.3 and 4.4 results for the weak localization correc-
tion δG in the three-kick model as a function of the TRS-breaking parameter γ .
The data are obtained by averaging over 40 lead positions and 80 quasi-energies.
The parameter γc was calculated for the closed model using Eq. (4.27), and the
resulting RMT prediction (4.31) is also shown (dotted curve).

To compare the simulation with RMT in more detail we have fitted a Lorentzian

δG = − 1
4 [1+ (Mγ/γ ∗)2]−1 (4.34)

to each data set. This is the RMT result (4.31) if γ ∗ = γ ∗
RMT ≡ γc M3/2/(2

√
2τD

κRMT). The large K -limit is

lim
K→∞γ

∗
RMT = 6π/

√
2τD. (4.35)

In Fig. 4.5 we plot the fitted crossover parameter γ ∗ as a function of M for
fixed dwell time. The plot confirms the scaling with τ−1/2

D ∝ g−1/2, and also shows
good agreement with the values of γ ∗

RMT calculated from the mean level curvature
(dotted lines).

We also performed numerical calculations for the one-kick model. The cross-
over scale δ∗ extracted from a Lorentzian fit to the weak-localization peak was
compared with the value δ∗

RMT = δc M3/2/(2
√

2τDκRMT) predicted by the mean
level curvature. The large K -limit of this value is

lim
K→∞δ

∗
RMT = √

6/
√
τD. (4.36)

We show in Fig. 4.6 the ratio δ∗/δ∗
RMT for the one-kick model, as well as the ratio

γ ∗/γ ∗
RMT for the three-kick model. The ratio is close to unity for both models if

the dwell time is sufficiently large. At the smallest τD there is some deviation
from unity in the one-kick model.
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Figure 4.3: Dependence of the average conductance on the TRS-breaking pa-
rameter γ . The three-kick model is characterized by K = 7.5, q = 0.2, and
τD = M/2N = 25. The dotted line shows the RMT prediction (4.31), with γc

calculated from the mean level curvatures (Fig. 4.1).
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Figure 4.4: Same as Fig. 4.3, but for K = 41.
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Figure 4.5: Dependence of the crossover parameter γ ∗ on the system size. The
data are obtained by fitting the Lorentzian (4.34) to the numerical data of Figs. 4.3
and 4.4. The solid line shows the large K -limit (4.35). The dotted lines are the
RMT prediction for K = 7.5 and K = 41, using γc found from the level curvatures
in the closed model (Fig. 4.1).
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Figure 4.6: Dependence of the ratio γ ∗/γ ∗
RMT for the three-kick model and the

ratio δ∗/δ∗
RMT for the one-kick model on the dwell time τD. Data points for a

given dwell time are obtained by averaging over system sizes in the range from
200 to 1000.
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The magnitude of the weak localization peak in Figs. 4.3 and 4.4 shows a
small (about 10%) discrepancy with the RMT prediction. We attribute this to
non-ergodic, short-time trajectories. We show in Fig. 4.8 the dependence of the
magnitude of the weak localization peak δG(0) on the dwell time. The results
suggest that δG(0) + 1

4 ∝ 1/τD, a deviation from RMT to be expected from the
Thouless energy scale (which is ∝ 1/τD). The deviation from unity in Fig. 4.6
has presumably the same origin.

We could determine the M-dependence of γ ∗ and δG(0) up to M = 104 (for
K = 7.5 and τD = 5). The motivation for extending the calculation to large system
sizes is to search for effects of the Ehrenfest time [32,33]. Although the Ehrenfest
time τE ≈ 3.8 (estimating as in Ref. [15]) was comparable to τD = 5, we did not
find any systematic M-dependence in γ ∗ or δG(0), cf. Figs. 4.5 and 4.7.

4.5 Conclusions

In conclusion, we have studied time-reversal symmetry breaking in quantum chaos
through its effect on weak localization. We have found an overall good agreement
between the universal predictions of random-matrix theory and the results for a
specific quantum mechanical model of a chaotic quantum dot. In particular, the
scaling ∝ g−1/2 of the crossover magnetic field with the point contact conductance
g is confirmed over a broad parameter range.

Deviations from RMT that we have observed scale inversely proportional with
the mean dwell time τD, consistent with an explanation in terms of non-ergodic
short-time trajectories. These deviations therefore have a classical origin.

More interesting deviations of a quantum mechanical origin have been pre-
dicted [32, 33] in relation with the finite Ehrenfest time τE . This is the time scale
on which a wave packet of minimal initial dimension spreads to cover the en-
tire available phase space. The theoretical prediction is that the weak localization
peak δG(0) ∝ e−τE /τD should decay exponentially once τE exceeds τD. Our sim-
ulation extends up to τE  τD, but shows no sign of this predicted decay. This
is consistent with the explanation advanced by Jacquod and Sukhorukov [30] for
the insensitivity of universal conductance fluctuations to a finite Ehrenfest time,
based on the effective RMT of Ref. [31]. As pointed out in Ref. [29] the same
explanation also implies that weak localization should not depend on the relative
magnitude of τE and τD.

Because our simulation could not be extended to the regime τE > τD, this
final conclusion remains tentative. It might be that the exponential suppression of
δG(0) does exist, but that our system was simply too small to see it.
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Figure 4.7: Dependence of δG(0) on the system size M for several dwell times.
Dashed lines show averages over system size.
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4.A Derivation of the free propagator

Since without kicks the Hamiltonian (4.4) is time independent, the solution of the
Schrödinger equation is conveniently represented in the form of an expansion in
eigenfunctions of the angular momentum,

ψ(θ , t) = 1√
2π

∞∑
n=−∞

An(t) einθ , (4.37)

where the coefficients

An(t) = 1√
2π

∫ 2π

0
dθ ′e−inθ ′

ψ(θ ′, t) (4.38)

are essentially the Fourier coefficients of the time-dependent wave functionψ(θ , t).
Therefore, the 1/3-free propagation is given by

ψ(θ , t +1/3) = eih̄eff∂
2
θ /6 ψ(θ , t)

= 1√
2π

∞∑
n=−∞

An(t) e−ih̄effn2/6 einθ . (4.39)

At resonance condition h̄eff = 2πr/M , by introducing

n = m +3l M , (4.40a)

m = 0,1, · · · ,3M −1 , (4.40b)

l = ·· · ,−1,0,1, · · · , (4.40c)

we arrive at

ψ(θ , t +1/3) = 1√
2π

3M−1∑
m=0

∞∑
l=−∞

Am+3lM (t) e−iπrm2/3M ei(m+3lM)θ , (4.41)

provided M to be an even integer. The choice of r being an odd integer guarantees
that h̄eff/2π is an irreducible rational number. Substituting the Fourier coefficients
from Eq. (4.38) in Eq. (4.41), we obtain

ψ(θ , t +1/3) = 1

2π

3M−1∑
m=0

e−iπrm2/3M
∫ 2π

0
dθ ′ψ(θ ′, t) eim(θ−θ ′)

×
[ ∞∑

l=−∞
ei3lM(θ−θ ′)

]
. (4.42)
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Using the Poisson summation formula

∞∑
l=−∞

ei3lM(θ−θ ′ ) = 2π

3M

∞∑
l=−∞

δ

(
θ − θ ′ + 2πl

3M

)
, (4.43)

and taking into account that system is periodic in the angular direction, we can
write

ψ(θ , t +1/3) = 1

3M

3M−1∑
m=0

3M−1∑
l=0

e−iπrm2/3M e−i2πml/3M ψ

(
θ + 2π

3M
l, t

)
. (4.44)

To derive Eq. (4.9), we make use of the change θ → θ + (2π/3M) n, thus

ψ

(
θ + 2π

3M
n, t +1/3

)
= 1

3M

3M−1∑
m,n′=0

exp
(
−i

πr

3M
m2

)

×exp

(
−i

2π

3M
m(n′ −n)

)
ψ

(
θ + 2π

3M
n′, t

)
. (4.45)

For r = 3, the summation over m can be implemented as follows

3M−1∑
m=0

e−iπm2/M e−i2πml/3M =
[

M−1∑
m=1

+
2M−1∑
m=M

+
3M−1∑
m=2M

]
e−iπm2/M e−i2πml/3M

=
M−1∑
m=1

e−iπm2/M e−i2πml/3M

× [
1+ e−i2πl/3 + e−i4πl/3] , (4.46)

with n′ −n = l being fixed. Geometrically, one can show that

1+ e−i2πl/3 + e−i4πl/3 =
{

3 if mod(l,3) = 0
0 otherwise

. (4.47)

This completes the derivation of Eq. (4.10).

4.B Classical map

Here we derive the classical map that is associated with the quantum mechanical
Floquet operator of the kicked rotator with broken TRS. We consider separately
the three-kick and one-kick representation.
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4.B.1 Three-kick representation

We seek the classical limit of the Floquet operator (4.14). We consider the classi-
cal motion from θ0 at t = 0 to θT at t = T (in units of τ0). Intermediate values of
the coordinate are denoted by θt , t = 0,1, ..., T . The classical action S is the sum

S =
T −1∑
t=0

S(θt+1,θt ). (4.48)

Following the general method of Ref. [7] we derive

S(θ ′,θ) = Sc(θ ′,θ2)+ Sb(θ2,θ1)+ Sa(θ1,θ), (4.49)

Sa(θ1,θ) = 3
2 (θ1 − θ +2πσθ1)2 −6πσp1θ1

+γ cos(θ1)− 1
2 V (θ), (4.50)

Sb(θ2,θ1) = 3
2 (θ2 − θ1 +2πσθ2)2 −6πσp2θ2, (4.51)

Sc(θ ′,θ2) = 3
2 (θ ′ − θ2 +2πσθ ′)2 −6πσp′θ ′

−γ cos(θ2)− 1
2 V (θ). (4.52)

The integers σθ ,σp are the winding numbers of a classical trajectory on a torus
with θ ∈ [0,2π ) and p ∈ [0,6π ). The map equations are derived from

p1 = ∂

∂θ1
Sa(θ1,θ), p = − ∂

∂θ
Sa(θ1,θ), (4.53)

p2 = ∂

∂θ2
Sb(θ2,θ1), p1 = − ∂

∂θ1
Sb(θ2,θ1), (4.54)

p′ = ∂

∂θ ′ Sc(θ ′,θ2), p2 = − ∂

∂θ2
Sc(θ ′,θ2). (4.55)

Eqs. (4.53-4.55) are equivalent to the following set of 6 equations that map initial
coordinates (θ , p) onto final coordinates (θ ′, p′) after one period:

{
θ1 = θ+ p/3− V ′(θ)/6−2πσθ1 ,
p1 = p −γ sinθ1 − V ′(θ)/2−6πσp1 ,

(4.56){
θ2 = θ1 + p1/3−2πσθ2 ,
p2 = p1 −6πσp2 ,

(4.57){
θ ′ = θ2 + p2/3+γ sinθ2/3−2πσθ ′ ,
p′ = p2 +γ sinθ2 − V ′(θ ′)/2−6πσp′ .

(4.58)
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We denote V ′ = dV/dθ . Winding numbers of a trajectory on the torus in phase
space (θ , p) are denoted by σθ , σp. These integers are determined by the require-
ment that θ ,θ1,θ2,θ ′ ∈ [0,2π ) and p, p1, p2, p′ ∈ [0,6π ). TRS for a classical map
means that the point (θ ′,−p′) maps to (θ ,−p). This property is satisfied for γ = 0,
but not for γ �= 0. TRS is broken at the classical level in the three-kick model.

4.B.2 One-kick representation

We now seek the classical limit of the Floquet operator (4.16). The classical action
S after one kick is

S(θ ′,θ) = 1
2 (θ ′ − θ +2πσθ )2 −2πσpθ

′

+ δ(θ ′ − θ +2πσθ )

− 1
2 K [cos(θ+φ)+ cos(θ ′ +φ)]. (4.59)

The map equations are derived from

p′ = ∂

∂θ ′ S(θ ′,θ), p = − ∂

∂θ
S(θ ′,θ). (4.60)

The mapping of initial coordinates (θ , p) onto final ones (θ ′, p′) after one kick is
then {

θ ′ = θ + p + 1
2 K sin(θ+φ)− δ−2πσθ ,

p′ = p + 1
2 K [sin(θ +φ)+ sin(θ ′ +φ)]−2πσp .

(4.61)

The canonical transformation p − δ → p̃, θ +φ → θ̃ brings the map to an
equivalent form {

θ̃ ′ = θ̃ + p̃ + 1
2 K sin θ̃ −2πσθ ,

p̃′ = p̃ + 1
2 K (sin θ̃ + sin θ̃ ′)−2πσp.

(4.62)

This form is manifestly invariant under the transformation that maps (θ̃ ′,− p̃′)
onto (θ̃ ,− p̃) for any value of φ and δ. Hence TRS is not broken at the classical
level in the one-kick model.

4.C Derivation of Eqs. (4.28) and (4.29)

In the large-K limit the level curvature in the kicked rotator can be related to
the level curvature in the Pandey-Mehta Hamiltonian. This leads to the relations
(4.28) and (4.29) between the TRS breaking parameters γ (three-kick model) and
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δ (one-kick model), on the one hand, and the Pandey-Mehta parameter α, on the
other hand.

Perturbation theory for eigenphases φi (δγ ) of a unitary matrix F (δγ ) gives
the series expansion

φi (δγ ) = φi + Wii δγ + 1
2

∑
j �=i |Wij |2(δγ )2cotanφi −φj

2

+ 1
2 Vii (δγ )2. (4.63)

Here φi denotes an eigenphase of F (0) = Udiag(eiφ1 , . . . ,eiφM )U †. The Hermitian
matrices W and V are defined by W = U (−iF †∂γF |γ=0)U †, V = ∂γW |γ=0. Due
to reciprocity of F we find Wii = 0. For the three-kick model (4.14) the operators
W , V are

W = M

6π
U X††Y ††(−C+C)YXU †, (4.64)

V = i (
M

6π
)2U X††Y †(C†C−†CC)YXU †, (4.65)

where Cmm′ = δmm′ cos(2πm/M). We assume that for strongly chaotic systems
(K � 1) the matrix elements Wij and Vii are random Gaussian numbers indepen-
dent of the eigenphases. Average diagonal elements calculated in the three kick
model at γ = 0 are 〈Vii 〉 = TrV/M = 0 and 〈Wii 〉 = TrW/M = 0. The variance
of the off-diagonal elements is

〈|Wij |2
〉 = TrW W †/M2 = M/(6π )2.

For the one-kick model (4.16) the operators W , V are

W = U X†Ũ † DŨ XU †, V = − 1

2π
M , (4.66)

with Dmm′ = δmm′(m +1/2− M/2−δM/2π ). Average diagonal elements at δ= 0
are 〈Vii 〉 = TrV/M = −M/2π and 〈Wii 〉 = TrW/M = 0. The variance of the off-
diagonal elements is

〈|Wij |2
〉 = TrW W †/M2 = M/12.

For K � 1 the eigenphases φi are distributed randomly in the circular ensem-
ble, which is locally equivalent to the Gaussian ensemble [1]. We expand Eq.
(4.63) for small eigenphases difference, compare with Eq. (4.22) and substitute
the variances of matrix elements calculated above. For the one-kick model we
drop terms with Vii as they are of order 1/M . We finally arrive at Eqs. (4.28) and
(4.29).

The explicit formula for the Pandey-Mehta parameter α describing the kicked
rotator at large K is

α
√

MH = γM3/2

12π
(4.67)
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for the three-kick model. The corresponding formula for the one-kick model is

α
√

MH = δM3/2

4
√

3
. (4.68)

4.D Semiclassical derivation of the weak localization peak

We present a semiclassical derivation of the weak localization peak, adopting the
method of Ref. [8] to the case of the kicked rotator. The method can not be used to
determine the amplitude δG(0), but we use it for the crossover scale. This serves
as an independent check for the scaling predicted by RMT.

The action difference in the three-kick model for a pair of trajectories related
by TRS is calculated as follows. The action S0 for a trajectory with initial co-
ordinate θ0 and final coordinate θT at γ = 0 is compared with the action S for a
trajectory with the same initial and final coordinates, but at small γ . The result of
linear expansion in γ is

�S = S −S0 = γ
∑

t

[cosθ1(t)− cosθ2(t)], (4.69)

where periods are numbered by t = 0,1, . . . , T − 1 and θ1(t),θ2(t) denote the co-
ordinate of the particle when TRS-breaking kicks are applied.

The weak localization correction is

δG ∝ 〈exp(2i�S/h̄eff)〉 , (4.70)

where the average is taken with respect to all trajectories connecting initial to
final coordinates. Approximating the distribution of the phase difference �S for
a single step by a Gaussian, and taking the continuum limit of exponential dwell-
time probability P(t) ∝ e−t/τD , we derive

δG ∝ [1+ (Mγ/γ ∗)2]−1, (γ ∗)2 = 2h̄2
eff/(τDν), (4.71)

with ν being the variance of �S/γ for a single step. The result ν = 1 for large
K (and large τD) is obtained by averaging over random initial points in the whole
phase space. We thus find Eq. (4.35), the same result as the one obtained in RMT.

The action difference for a pair of symmetry related trajectories in the one-
kick model is

�S = S −S0 = δ
∑

t

[θ ′(t)− θ(t)+2πσθ (t)], (4.72)
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to linear order in δ. This leads to

δG ∝ [1+ (Mδ/δ∗)2]−1, (δ∗)2 = 2h̄2
eff/(τDν). (4.73)

By averaging over random initial points in the whole phase space for large K and
τD we find ν = 4π2/3. Hence we obtain Eq. (4.36), the result of RMT.
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Chapter 5

Exponential sensitivity to dephasing
of electrical conduction through a
quantum dot

An instructive way to classify quantum interference effects in mesoscopic con-
ductors is to ask whether they depend exponentially or algebraically on the de-
phasing time τφ . The Aharonov-Bohm effect is of the former class, while weak
localization (WL) and universal conductance fluctuations (UCF) are of the latter
class [1, 2]. It is easy enough to understand the difference: On the one hand,
Aharonov-Bohm oscillations in the magnetoconductance of a ring require phase
coherence for a certain minimal time tmin (the time it takes to circulate once along
the ring), which becomes exponentially improbable if τφ < tmin. On the other
hand, WL and UCF in a disordered quantum dot originate from multiple scatter-
ing on a broad range of time scales, not limited from below, and the superposition
of exponents with a range of decay rates amounts to a power law decay.

In a seminal paper [3], Aleiner and Larkin have argued that ballistic chaotic
quantum dots are in a class of their own. In these systems the Ehrenfest time
τE introduces a lower limiting time scale for the interference effects, which are
exponentially suppressed if τφ < τE . The physical picture is that electron wave
packets in a chaotic system can be described by a single classical trajectory for a
time up to τE [4]. Both WL and UCF, however, require that a wave packet splits
into partial waves which follow different trajectories before interfering. Only the
fraction exp(−τE/τφ) of electrons which have not yet dephased at time τE can
therefore contribute to WL and UCF.
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The WL correction δG = 〈G〉−Gcl is the deviation of the ensemble averaged
conductance 〈G〉 (in zero magnetic field) from the classical value Gcl = N/2. (We
measure conductances in units of 2e2/h and assume an equal number of modes
N � 1 in the two leads that connect the quantum dot to electron reservoirs.) The
WL correction according to random-matrix theory (RMT),

δGRMT = − 1
4 (1+ τD/τφ)−1, (5.1)

has a power law suppression ∝ τφ/τD when τφ becomes smaller than the mean
dwell time τD in the quantum dot [5]. Similarly, RMT predicts for the UCF a
power law suppression ∝ (τφ/τD)2 of the mean-squared sample-to-sample con-
ductance fluctuations [5, 6],

Var GRMT = 1

8β
(1+ τD/τφ)−2, (5.2)

with β = 2 (1) in the presence (absence) of a time-reversal-symmetry-breaking
magnetic field.

Aleiner and Larkin have calculated the τE -dependence of the WL correction,
with the result [3]

δG = e−τE /τφe−2τE /τD δGRMT. (5.3)

The two exponential suppression factors in Eq. (5.3) result from the absence of
interfering trajectories for times below τE . The first factor exp(−τE/τφ) accounts
for the loss by dephasing and the second factor exp(−2τE/τD) accounts for the
loss by escape into one of the two leads. The UCF are expected to be suppressed
similarly.

The physical picture presented by Aleiner and Larkin is simple and supported
by two independent calculations [3, 7]. And yet, it has been questioned as a re-
sult of some very recent computer simulations of UCF [8, 9] and WL [10] in the
absence of dephasing. The expected exponential reduction of quantum interfer-
ence effects due to escape into the leads was not observed. In fact, both WL and
UCF were found to be completely independent of τE , even though the simulations
extended to system sizes for which τE was well above τD. To explain these nega-
tive results, Jacquod and Sukhorukov [8] invoked the effective RMT of Silvestrov
et al. [11]. In that approach the electrons with dwell times > τE are described
by RMT with an effective number Neff = N exp(−τE/τD) of modes. Then no
τE -dependence is expected as long as Neff � 1 — even if τE � τD.

Since the predicted exponential reduction factor due to escape into the leads
has not appeared in the simulations, it is natural to ask about the factor ∝ exp(−τE/

τφ) due to dephasing. Does it exist? An experimental study of two-dimensional
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(2D) weak localization has concluded that it does [12], but since leads play no
role in 2D these experiments can not really resolve the issue. In the absence of
experiments on the zero-dimensional geometry of a quantum dot, we have used
computer simulations to provide an answer. We find that a relatively small amount
of dephasing is sufficient to introduce a marked τE -dependence of the UCF. Our
observation can be explained by incorporating dephasing into the effective RMT.
We find that

δG = e−τE/τφ δGRMT, (5.4)

VarG = e−2τE/τφ Var GRMT, (5.5)

and show that Eq. (5.5) provides a fitting-parameter-free description of the nu-
merical data.

We have introduced a dephasing lead [13] in the kicked rotator, which is the
same dynamical system studied in Refs. [8–10, 14] in the absence of dephasing.
The kicked rotator provides a stroboscopic description of chaotic scattering in
a quantum dot [15], in the sense that the wave function is determined only at
times which are multiples of a time τ0 (which we set to unity). The mean dwell
time τD = M/2N = π/Nδ is the ratio of the dimension M of the Floquet matrix
(corresponding to a mean level spacing δ = 2π/M) and the dimension 2N of the
scattering matrix (without the dephasing lead). The kicking strength K = 7.5
determines the Lyapunov exponent λ = ln(K/2) = 1.32. The Ehrenfest time is
given by [16, 17]

τE =
{
λ−1 ln(N2/M) if N >

√
M ,

0 if N <
√

M .
(5.6)

The dephasing lead increases the dimension of the scattering matrix S to M ×
M . It has the block form

S =
⎛
⎝ s00 s01 s02

s10 s11 s12

s20 s21 s22

⎞
⎠ , (5.7)

where the subscripts 1,2 label the two real leads and 0 labels the dephasing lead.
The two real N -mode leads are coupled ballistically to the system, while the re-
maining M − 2N modes are coupled via a tunnel barrier. The dephasing rate
1/τφ = �(1 − 2N/M) is proportional to the tunnel probability � per mode. The
dephasing lead is connected to an electron reservoir at a voltage which is adjusted
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so that no current is drawn. The conductance G is then determined by the coeffi-
cients Gij = Trsi j s

†
i j through Büttiker’s formula [13],

G = G12 + G10G02

G10 + G20

= G12 + (N − G11 − G12)(N − G22 − G12)

2N − G11 − G12 − G22 − G21
. (5.8)

.
For � � 1 the dephasing lead model is equivalent to the imaginary energy

model of dephasing [5], which is the model used by Aleiner and Larkin [3]. (We
will also make use of this equivalent representation later on.) There exist other
models of dephasing in quantum transport [18, 19], but for a comparison with
Ref. [3] our choice seems most appropriate.

Since we need a relatively small Lyapunov exponent in order to reach a large
enough Ehrenfest time, our simulations are sensitive to short non-ergodic trajec-
tories. These introduce an undesired dependence of the data on the position of the
leads. Preliminary investigations indicated that UCF in a magnetic field was least
sensitive to the lead positions, so we concentrate on that quantum interference
effect in the numerics. The variance VarG of the conductance was calculated in
an ensemble created by sampling 40 values of the quasi-energy. To determine
the dependence on the lead positions we repeated the calculation for 40 different
configurations of the leads. Error bars in the plots give the spread of the data.

There are four time scales in the problem: λ−1, τD, τφ , and τE . To isolate
the τE dependence we increase both M and N at constant ratio M/N and fixed
K ,�. Then only τE varies. Results are shown in Fig. 5.1. The variance of the
conductance is divided by the RMT prediction (5.2), with β = 2 because of bro-
ken time-reversal symmetry. 1 We see that for τφ � τE there is no systematic
dependence of UCF on the Ehrenfest time, consistent with Refs. [8, 9]. However,
an unambiguous τE -dependence appears for τφ � τE , regardless of whether τφ is
smaller or larger than τD.

To explain the data in Fig. 5.2 we introduce dephasing into the effective RMT.
For that purpose it is more convenient to use an imaginary energy than a dephas-
ing lead, so we first make the connection between these two equivalent represen-
tations. There exists an exact correspondence for any N [5], which requires a
re-injection step to ensure current conservation. For the case N � 1 of interest
here there is a simpler way.

1Time-reversal symmetry was broken by means of the one-kick Floquet operator of Ref.
[10].
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Figure 5.1: Variance of the conductance fluctuations, normalized by the RMT
value (5.2), as a function of the dimension M of the scattering matrix of the kicked
rotator with a dephasing lead. Each data set is for a fixed value of the dwell
time τD = M/2N and dephasing time τφ = �−1(1 − 2N/M)−1. The Lyapunov
exponent λ= 1.32 is kept the same for all data sets. The curves show the Ehrenfest
time dependence (5.5) predicted by the effective RMT, without any fit parameter.
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chaotic cavity
lead with
time delay effδ

τ
E/2 N

eff
τ
E/2N

eff

lead with
time delay

mean dwell time τ
D

Figure 5.2: Pictorial representation of the effective RMT of a ballistic chaotic
quantum dot. The part of phase space with dwell times > τE is represented
by a fictitious chaotic cavity (mean level spacing δeff), connected to electron
reservoirs by two long leads (Neff propagating modes, one-way delay time τE/2
for each mode). The effective parameters are determined by Neff/N = δ/δeff =
exp(−τE/τD). The scattering matrix of lead plus cavity is exp(i EτE/h̄)SRMT(E),
with SRMT(E) distributed according to RMT. A finite dephasing time τφ is intro-
duced by the substitution E → E + i h̄/2τφ . The part of phase space with dwell
times< τE has a classical scattering matrix, which does not contribute to quantum
interference effects.

The coefficients Gij = Gcl
i j +Gq

i j in Eq. (5.8) consist of a classical contribution
Gcl

i j of order N plus a (sample specific) quantum correction Gq
i j of order unity. The

classical contribution is

Gcl
i j = 1

2 N (1+ τD/τφ)−1, for i , j ∈ {1,2}. (5.9)

Substitution into Eq. (5.8) gives a classical conductance Gcl = N/2 independent
of dephasing — as it should be. To leading order in N we obtain the quantum
correction to the conductance,

Gq = 1
4 (G12 + G21 − G11 − G22). (5.10)

(Notice that the classical contribution drops out of the right-hand-side.) For �� 1
the effect of the dephasing lead on the coefficients Gij is equivalent to the addition
of an imaginary part i h̄/2τφ to the energy. With the help of Eq. (5.10) we can
compute the effect of dephasing on WL and UCF,

δG = 〈Gq(E + i h̄/2τφ)〉, (5.11)

VarG = 〈[Gq(E + i h̄/2τφ)
]2〉− (δG)2, (5.12)
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by averaging the scattering matrix at a complex energy without having to enforce
current conservation.

Effective RMT [11] is a phenomenological decomposition of the scattering
matrix S(t) in the time domain into a classical deterministic part Scl for t < τE

and a quantum part Sq with RMT statistics for t > τE ,

S(t) =
{

Scl(t) if t < τE ,
Sq(t) = SRMT(t − τE ) if t > τE .

(5.13)

The RMT part Sq couples to a reduced number Neff = N exp(−τE/τD) of channels
in each lead. The mean dwell time in the quantum dot of these channels is τE +τD.
The classical part Scl couples to the remaining 2(N − Neff) channels. (See Ref.
[17] for an explicit construction of Scl.)

Only Sq contributes to Gq. Fourier transformation to the energy domain gives

Sq(E) = ei EτE /h̄ SRMT(E), (5.14)

where we have used that SRMT(t) = 0 if t < 0. The matrix SRMT has the RMT
statistics of a fictitious chaotic cavity with zero Ehrenfest time, Neff modes in
each lead, and the same mean dwell time τD as the real cavity (see Fig. 5.2). For
real energy the phase factor exp(i EτE/h̄) is irrelevant, hence all τE -dependence is
hidden in Neff and δeff. Since δG and Var G are independent of these two param-
eters, they are also independent of τE . The imaginary part i h̄/2τφ of the energy
that represents the dephasing introduces a τE -dependence of Gq ∝ exp(−τE/τφ).
Insertion of this factor into Eqs. (5.11) and (5.12) yields the results (5.4) and (5.5)
given in the introduction.

The curves in Fig. 5.1 follow from Eq. (5.5). They describe the simulation
quite well — without any fit parameter. To test the agreement between simulation
and effective RMT in a different way, we have collected all our data in Fig. 5.3 in
a plot of −(τφ/2) ln(Var G/VarGRMT) versus ln(N2/M). According to Eq. (5.5)
this should be a plot of τE versus ln(N2/M), which in view of Eq. (5.6) is a
straight line with slope 1/λ = 0.76. There is considerable scatter of the data in
Fig. 5.3, but the systematic parameter dependence is consistently described by the
theory as N and M vary over two orders of magnitude.

In conclusion, our findings explain the puzzling difference in the outcome of
previous experimental [12] and numerical [8–10] searches for the Ehrenfest time
dependence of quantum interference effects in chaotic systems: The experiments
found a dependence while the computer simulations found none. We have identi-
fied the absence of dephasing in the simulations as the origin of the difference. By
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Figure 5.3: Four data sets of fixed τφ , τD, each consisting of a range of M between
102 and 2 · 104, plotted on a double-logarithmic scale. The solid line with slope
1/λ= 0.76 is the scaling predicted by Eqs. (5.6) and (5.5).

introducing dephasing into the simulation we recover the exponential τE/τφ sup-
pression factor predicted by Aleiner and Larkin [3]. The effective RMT explains
why this suppression factor is observed while the exponential τE/τD suppression
factor of Eq. (5.3) is not.

It remains an outstanding theoretical challenge to provide a microscopic foun-
dation for the effective RMT, or alternatively, to derive Eqs. (5.4) and (5.5) from
the quasiclassical theory of Refs. [3,7]. One might think that diffraction of a wave
packet at the point contacts is the key ingredient which is presently missing from
quasiclassics and which would eliminate the exponential τE/τD suppression fac-
tor from Eq. (5.3). However, our observation of an exponential τE/τφ suppression
factor suggests otherwise: If diffraction at the edge of the point contacts were the
dominant mechanism by which wave packets are split into partial waves, then the
characteristic time scale for the suppression of quantum interference by dephasing
would not be different from the mean dwell time τD.
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Chapter 6

Momentum noise in a quantum point
contact

Not long after the discovery of conductance quantization in a ballistic constric-
tion [1] it was predicted that the quantization is noiseless [2]: The time depen-
dent current fluctuations should vanish at low temperatures on the plateaus of
quantized conductance and they should peak in the transition from one plateau
to the next. The conclusive experimental verification of this prediction followed
many years later [3], delayed by the difficulty of eliminating extraneous sources
of noise. The notion of noiseless quantum ballistic transport is now well estab-
lished [4].

The origin of noiseless transport lies in the fact that the eigenvalues Tn of
the transmission matrix product t t† take only the values 0 or 1 on a conductance
plateau. The current noise power at zero temperature PI ∝ ∑

n Tn(1 − Tn) then
vanishes [5]. In other words, current fluctuations require partially filled scattering
channels, which are incompatible with a quantized conductance.

In this chapter we point out that the notion of noiseless quantum ballistic
transport does not apply if one considers momentum transfer instead of charge
transfer. Momentum noise created by an electrical current (socalled electrome-
chanical noise) has been studied in the tunneling regime [6] and in a diffusive
conductor [7], but not yet in connection with ballistic transport. Our analysis is
based on a recent scattering matrix representation of the momentum noise power
P [8], according to which P depends not only on the transmission eigenvalues
but also on the eigenvectors. This makes it possible for the electrons to generate
noise even in the absence of partially filled scattering channels.
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The geometry is shown schematically in Fig. 6.1. We consider a two-dimensi-
onal electron gas channel in the x-y plane. The width of the channel in the y-
direction is W and the length in the x-direction is L . The channel contains a
narrow constriction of length δL � L and width δW � W located at a distance
L ′ from the left end. (We choose x = 0 at the middle of the constriction, so that the
channel extends from −L ′ < x < L − L ′.) A voltage V drives a current through
the constriction, exciting a vibration of the channel. We seek the low-frequency
noise power

P = 2
∫ ∞

−∞
dt δF (0)δF (t) = lim

t→∞
2

t
�P (t)2 (6.1)

of the fluctuating force δF (t) ≡ F (t) − F that drives the vibration. The noise
power is proportional to the variance of the momentum�P (t) transferred by the
electrons to the channel in a long time t .

We assume that the electron gas is deposited on top of a doubly clamped beam
extended along the x axis and free to vibrate in the y direction. The solution of
the wave equation is u(r, t) = ŷu(x) coswt , with w the mode frequency and u(x)
the mode profile. Both u and du/dx vanish at the ends of the beam and u(x)
is normalized such that it equals to 1 at the point x0 at which the amplitude is
measured [7]. We choose x0 = 0 so that F corresponds to a point force at the
location of the constriction.

Figure 6.1: Schematic diagram of a two-dimensional channel containing a con-
striction. The current flows in the x-direction, the channel is free to vibrate either
in the x-direction (longitudinal vibration) or in the y-direction (transverse vibra-
tion).
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The wave functions are represented by scattering states. The incident wave
has the form φn(r) = |h̄kn/m∗|−1/2 exp(iknx)�n(y), where m∗ is the effective
mass, n = 1,2, . . .N is the mode index, �n the transverse wave function, and
kn = ±(2m∗/h̄2)1/2(EF − En)1/2 the longitudinal wave vector (at Fermi energy
EF larger than the cutoff energy En). We take kn positive to the left and negative
to the right of the constriction. Incident and outgoing waves are related by the
2N ×2N unitary scattering matrix

S =
(

r t ′
t r ′

)
, (6.2)

containing the N × N transmission and reflection matrices t , t ′,r ,r ′. We assume
time reversal symmetry, so that �n is real and S is symmetric.

As derived in Ref. [8], the noise power P and the mean force F for a local-
ized scatterer can be expressed in terms of the matrix S and a Hermitian matrix
Mnn′ = m∗−1 ∑

αβ〈n|pαuαβ pβ |n′〉 of expectation values in the basis of incident
modes. The expectation value is taken of the electron momentum flux m∗−1 pα pβ ,
weighted by the strain tensor uαβ = 1

2 (∂uα/∂xβ + ∂uβ/∂xα). The matrix M is
block-diagonal,

M =
(

ML 0
0 MR

)
. (6.3)

At zero temperature and to first order in the voltage one has, for a two-fold spin
degeneracy,

P = 4eV

h
Tr

(
rr† M∗

Lt ′t ′† M∗
L +r ′r ′† M∗

Rt t†M∗
R

−2tr† M∗
Lr t† M∗

R

)
, (6.4)

F = 2eV

h
Tr

(
ML +rr† M∗

L + t t† M∗
R

)
. (6.5)

In Eq. (6.5) we have not included the equilibrium contribution to the mean force
(at V = 0). Electron-electron interactions (screening) are not accounted for, since
we do not expect any appreciable charge accumulation in a ballistic system.

For a transverse vibration the blocks ML, MR have elements

(ML,R)nm = h̄(kn + km)

2i |knkm|1/2
∫

dy�n(y)�′
m(y)

×
∫

L,R
dx u ′(x)exp[i x(km − kn)]. (6.6)
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The integral over x extends over the region (−L ′,−δL/2) to the left of the con-
striction for ML and over the region (δL/2, L − L ′) to the right of the constriction
for MR. We abbreviate qnm = km −kn. For |n−m| of order unity one has qnm of or-
der 1/W , so that the range of x that contributes to the integral is of order W . (Con-
tributions from inside the constriction are smaller by a factor min(δW ,δL)/W .)
Since W is much greater than the Fermi wave length λF , we are justified in using
the asymptotic plane wave form of the scattering states to calculate M.

We take hard-wall boundary conditions at y = 0, W , hence�n(y) = (2/W )1/2

sin(nπy/W ), En = (h̄2/2m∗)(nπ/W )2, N = [2W/λF ], and (kn + km)qnm = (π/
W )2(n2 − m2). The overlap

∫ W
0 dy�n�

′
m is evaluated straightforwardly, but the

integration over x requires more care. The derivative u ′(x) of the mode profile
vanishes at the two clamped ends of the beam, as well as at its center. We assume
that the constriction is off-center, therefore u ′(±δL/2) ≈ u ′(0) �= 0. We write
u ′(0) = u0/L , with u0 a number of order unity. Upon partial integration we find,
to first order in W/L ,∫

L,R
dx u ′(x)exp(i xqnm) = ± u0

iqnm L
exp(∓iqnmδL/2)

+ O(W/L)2. (6.7)

(The upper sign is for region L, the lower sign for region R.) We thus arrive for
the transverse vibration at the result ML = −MR ≡ M , with

Mnm = 2h̄W u0

π2L
(σnm −1)

nm(kn + km)2

(n2 −m2)2|knkm|1/2
×exp

[
i
( |kn|− |km|)δL/2

]
. (6.8)

The symbol σnm = 1
2 [1 + (−1)n+m] selects indices of the same parity, so that

Mnm = 0 if n and m are both even or both odd.
Our constriction has left-right symmetry, so r = r ′ and t = t ′. We contrast the

case W ′ = 1
2 W of axial symmetry with the case W ′ � 1

2 W of a constriction placed
highly off-axis. We also contrast the short-constriction case δL � W (point con-
tact geometry) with the long-constriction case δL � W (microbridge geometry).
The reflection and transmission matrices are calculated by matching wavefunction
modes at x = ±δL/2, cf. Ref. [9].

In Fig. 6.2 we show the dependence of the transverse noise power P [in units
of P0 = (4eV/h)(Nu0h̄/L)2] on the width δW of the constriction, at fixed width
W of the wide channel. (We choose W = 49.9λF , so N = 99.) The average trans-
verse force F is shown in Fig. 6.3, normalized by F0 = (2eV/h)(Nu0h̄/L). (Note
that F = 0 for the axially symmetric case.) The conductance G = (2e2/h)Tr t t†
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Figure 6.2: Solid lines: noise power P for transverse vibration versus width of
constriction δW , at fixed width W = 49.9λF of the wide channel. The left panels
are for a short constriction with and without axial symmetry. The right panels are
the corresponding results for a long constriction. The dotted line is the current
noise PI in units of e3V/h (which is nearly the same with and without axial
symmetry).

and the current noise PI = (4e3V/h)Tr t t†(1− t t†) are included in these plots for
comparison.

The plots show a remarkably varied behavior: For the short constriction with-
out axial symmetry the noise power P of the transverse force oscillates as a func-
tion of the constriction width δW , in much the same way as the current noise
power PI oscillates [2, 5]. However, the minima in P do not go to zero like
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Figure 6.3: Solid lines: average transverse force as a function of constriction
width, in the absence of axial symmetry (positive values point in the positive
y-direction in the geometry of Fig. 6.1, for a current flowing in the positive x-
direction). The left and right panels are for a short and long constriction, re-
spectively. The conductance of the constriction is shown as a dotted line. The
average transverse force is identically zero for the axially symmetric geometry
(W ′ = W/2).

the minima in PI , demonstrating non-zero momentum noise on the plateaus of
quantized conductance. If the short constriction is precisely at the center of the
channel, P increases nearly monotonically with δW . For a long constriction P
increases nearly monotonically regardless of whether there is axial symmetry or
not. The increase of the noise power is stepwise, reminiscent of the conductance.
(The current noise in the long constriction remains oscillatory.) The mean trans-
verse force behaves similarly to the conductance for the short constriction, but
fluctuates around zero for the long constriction.

In order to explain the approximate quantization of momentum noise in ana-
lytical terms it is convenient to decompose the (symmetric) transmission matrix
as tnm = ∑

n′ Unn′Umn′
√

Tn′ , where U is an N × N unitary matrix and Tn ∈ [0,1]
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is the transmission eigenvalue (eigenvalue of t t†). Similarly, the reflection matrix
is decomposed as rnm = i

∑
n′ Unn′Umn′

√
1− Tn′ . In this representation Eq. (6.4)

takes the form

P = 8eV

h

∑
n,m

|Xnm |2[(1− Tn)Tm

+ [Tn(1− Tn)Tm(1− Tm)]1/2], X = U †M∗U . (6.9)

The matrix M couples only mode indices of different parity, cf. Eq. (6.8). The
presence or absence of axial symmetry manifests itself in the matrix U , which
couples only indices of the same parity if W ′ = W/2. In this axially symmetric
case Xnm = 0 if n,m have the same parity.

In a simple model [10] of a long and narrow ballistic microbridge, U is a
random matrix while the transmission eigenvalues take on only two values: Tn = 1
for 1 ≤ n ≤ δN and Tn = 0 for δN < n ≤ N . The number δN = [2δW/λF ] is the
quantized conductance of the constriction (in units of 2e2/h). Averages of U over
the unitary group introduce Kronecker delta’s (cf. App. B in Ref. [10]). We need
the average �pp′qq ′nm ≡ 〈U ∗

pnU ∗
qmUp′mUq ′n〉, given by

�pp′qq ′nm = 1

N2 −1

(
δpq ′δqp′ − 1

N
δpp′δqq ′

)
if n �= m, (6.10)

in the case of broken axial symmetry and

�pp′qq ′nm = 4

N2 −σN1
δpq ′δqp′σpnσqm if σnm = 0, (6.11)

in the axially symmetric case.
Substituting these values of Tn into Eq. (6.9) and averaging over U with the

help of Eqs. (6.10) and (6.11), we find

P = 8eV

h

N∑
n=δN+1

δN∑
m=1

N∑
p,p′,q,q ′=1

�pp′qq ′nm M∗
pp′ Mq ′q

= 8eV

h

δN

N

(
1− δN

N

)
Tr M2

= π2

9
δN P0, N � δN , (6.12)

regardless of whether axial symmetry is present or not. We thus obtain a stepwise
increase of P as a function of δW with step height �P = (π2/9)P0. The nu-
merically obtained step height in Fig. 6.2 agrees within 10% with the analytical
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Figure 6.4: Noise power for longitudinal vibration of a short constriction (left
panel) and a long constriction (right panel). These plots are for W ′ = W/2, but
there is no noticeable dependence on the ratio W ′/W . The mean longitudinal
force (not shown) decreases stepwise as a function of δW in both the short and
long constriction.

estimate for the first step. For subsequent steps the agreement becomes worse,
presumably because the approximation of a uniform distribution of U breaks
down as δW increases. We can also calculate the mean transverse force in the
same way, starting from Eq. (6.5), and find F ∝ Tr M = 0, in accordance with the
numerical result that F � F0 for a long constriction.

In the short-constriction case δL � W we may not treat U as uniformly dis-
tributed in the unitary group, and this has prevented us from finding a simple
analytical representation of the numerical data.

This rich geometry dependence of the noise power is characteristic for a trans-
verse vibration. For comparison we discuss the case of a longitudinal vibration,
corresponding to a mode profile x̂ u(x) oriented along the direction of the cur-
rent through the constriction (instead of perpendicular to it). Such a longitudinal
vibration corresponds to a compression mode of the beam, which is at a higher
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frequency than the bending mode excited by a transverse vibration. For a lon-
gitudinal vibration the matrices ML , MR are diagonal: (ML)nm = −(MR)nm =
δnmh̄|kn|u(0). We take u(0) = 1.

The noise power is plotted in Fig. 6.4 for both a long and a short constric-
tion. It does not depend on the presence or absence of axial symmetry and is
also rather insensitive to the length of the constriction. The order of magnitude of
the longitudinal noise power is (4eV/h)p2

F , with pF = h̄kF the Fermi momen-
tum. This is larger than the typical transverse noise power P0 by a factor of order
(kF L/N )2  (L/W )2. Inserting parameters V = 1 mV, kF = 108m−1, typical for
a two-dimensional electron gas, one estimates (4eV/h)p2

F  10−40 N2/Hz. This
is below the force sensitivity of present day nanomechanical oscillators, but is
hoped to be reached in future generations of these devices [11].

In summary, we have demonstrated that the momentum noise of ballistic elec-
trons does not vanish on the plateaus of quantized conductance. Conductance
quantization requires absence of backscattering in the constriction, but it does not
preclude inter-mode scattering. Momentum noise makes this inter-mode scatter-
ing visible in a way that current noise can not. The dependence of the momentum
noise on the constriction width was found to be remarkably varied, ranging from
oscillatory to stepwise, depending on the direction of the vibration (longitudinal
or transverse to the constriction), the presence or absence of axial symmetry, and
the length of the constriction. The stepwise increase amounts to a quantum of
momentum noise that might be observable with an ultrasensitive oscillator.



96 CHAPTER 6. MOMENTUM NOISE IN A QUANTUM POINT CONTACT



Bibliography

[1] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P.
Kouwenhoven, D. van der Marel, and C. T. Foxton, Phys. Rev. Lett. 60, 848
(1988); D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed,
J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones,
J. Phys. C 21, L209 (1988).

[2] G. B. Lesovik, JETP Lett. 49, 592 (1989).

[3] M. I. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu, Phys. Rev. Lett.
75, 3340 (1995); A. Kumar, L. Saminadayar, D. C. Glattli, Y. Jin, and B.
Etienne, Phys. Rev. Lett. 76, 2778 (1996).

[4] Ya. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).

[5] M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990).

[6] M. F. Bocko, K. A. Stephenson, and R. H. Koch, Phys. Rev. Lett. 61, 726
(1988); B. Yurke and G. P. Kochan- ski, Phys. Rev. B 41, 8184 (1990).

[7] A. V. Shytov, L. S. Levitov, and C. W. J. Beenakker, Phys. Rev. Lett. 88,
228303 (2002).

[8] M. Kindermann and C. W. J. Beenakker, Phys. Rev. B 66, 224106 (2002).

[9] A. Szafer and A. D. Stone, Phys. Rev. Lett. 62, 300 (1989).

[10] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).

[11] M. Roukes, private communication.

97



98 BIBLIOGRAPHY



Samenvatting

Volgens de klassieke mechanica bewegen deeltjes langs een welbepaalde baan,
met een welbepaalde snelheid. Volgens de quantummechanica heeft deze baan
een zekere onscherpte, die toeneemt naarmate de beweging langer voortduurt. Na
een zekere tijd is de hele beweging dermate onscherp geworden dat we niet meer
weten waar het deeltje zich in het systeem bevindt. Deze tijd heet de Ehren-
festtijd, genoemd naar de Leidse theoretisch natuurkundige Paul Ehrenfest. De
Ehrenfesttijd τE wordt groter naarmate de quantummechanische golflengte λ van
het deeltje kleiner wordt, maar de toename is heel langzaam, namelijk evenre-
dig met de logaritme van de verhouding L/λ (waarbij L de afmeting is van het
systeem). Dit maakt het bijzonder moeilijk om de overgang van de quantumme-
chanica naar de klassieke mechanica te bestuderen in een computersimulatie. Om
τE te verdubbelen is het nodig om het systeem tien keer zo groot te maken en nog
een verdubbeling is dan nauwelijks haalbaar.

In dit proefschrift onderzoeken we een bijzonder efficiënte rekenmethode, die
het mogelijk maakt om uitzonderlijk grote systemen te bestuderen. Het is een
stroboscopische methode, hetgeen wil zeggen dat de beweging van het deeltje
niet continu gevolgd wordt, maar slechts met tussenpozen van een bepaalde peri-
ode, zoals in een stroboscoop. We passen deze methode toe op elektronen in een
“quantum dot”. Dit systeem valt nog het best te vergelijken met een biljart. Het
wordt gemaakt in een tweedimensionaal elektronengas, geheel zonder verontrei-
nigingen, zodat de elektronen rechtlijnig bewegen en alleen botsen met de wanden
van het biljart. De typische afmeting van zo’n quantum dot is 1 micrometer. De
vorm van het biljart is onregelmatig, zodat de beweging chaotisch is. Dat wil
zeggen, dat je na een aantal botsingen met de wand niet meer goed kunt voorspel-
len waar een elektron terecht zal komen. Daarom is het niet goed mogelijk om
de beweging met pen en papier door te rekenen en biedt een computersimulatie
uitkomst.

In het laboratorium wordt aan een quantum dot gemeten door er twee ope-
ningen in te maken en daar vervolgens een elektrische stroom doorheen te sturen.
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Wij bootsen zulk een meting na op de computer door elektronen via de ene ope-
ning naar binnen te schieten en bij te houden welke fractie via de andere opening
weer naar buiten komt. Deze fractie heet de transmissiekans. Zij is direkt gere-
lateerd aan het geleidingsvermogen G van de quantum dot (zijnde de verhouding
van stroom en spanningsverschil). Volgens de klassieke mechanica zou die kans
in een chaotisch biljart gelijk moeten zijn aan 1/2. Volgens de quantummechani-
ca, echter, is de transmissiekans iets kleiner dan 1/2. Dit verschijnsel heet zwakke
localisatie en de afwijking van 1/2 heet de zwakke localisatie correctie, aange-
duid door δG. In de literatuur was voorspelt dat de zwakke localisatie correctie
zou verdwijnen als de Ehrenfesttijd τE langer zou worden dan de gemiddelde ver-
blijftijd τD van een elektron in de quantum dot, en wel op exponentiële wijze:
δG ∝ exp(−τE/τD). Onze computersimulaties hebben aangetoond dat deze voor-
spelling onjuist is: de zwakke localisatiecorrectie is zo goed als onafhankelijk
van de verhouding τE/τD . Om dit te verklaren hebben we gebruik gemaakt van
de toevalsmatrixtheorie die in de Leidse onderzoeksgroep is ontwikkeld.

De computersimulatie in zijn eenvoudigste vorm bootst een systeem na op
het absolute nulpunt van temperatuur. Omdat experimenten natuurlijk nooit pre-
cies bij temperatuur nul worden uitgevoerd, is het belangrijk om dit in rekening
te brengen. Het belangrijkste gevolg van de temperatuur is dat er een nieuwe
tijdschaal een rol gaat spelen, de decoherentietijd τφ. De quantummechanische
interferentie die verantwoordelijk is voor het zwakke localisatie-effect kan alleen
optreden tussen paden die korter duren dan τφ. Door dit in rekening te brengen in
onze computersimulatie, vinden we dat er nu wel degelijk een exponentiële afhan-
kelijkheid van de Ehrenfesttijd optreedt, namelijk δG ∝ exp(−τE/τφ). Dezelfde
toevalsmatrixtheorie kan beide resultaten van de simulaties verklaren: de onaf-
hankelijkheid van τE/τD en de afhankelijkheid van τE/τφ. Daarom vormt zij een
overtuigende theoretische beschrijving van de overgang van quantummechanica
naar klassieke mechanica in een chaotisch systeem.
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