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Chapter 1

Introduction

1.1 Perspective

Superconductors are materials characterized not only by a perfect conduc-

tance below a critical temperature, as was first discovered by Kamerlingh

Onnes in 1911 in Leiden, but also by the diamagnetic property of expelling an

external magnetic field, the so called Meissner-Ochsenfeld effect [1]. In type II

superconductors for external fields between the two temperature-dependent

values Hc1 and Hc2, flux penetration occurs in the form of quantized flux

lines or vortices, with a quantum flux φ0 = hc/2e [2]. These are elastic and

interacting objects, whose fascinating physics has attracted many scientists

in the last decades. After the discovery of the high-Tc superconductors, the

richness of the phenomenology of vortices, both in their static and dynam-

ical properties, has led to the introduction of the new concept of “vortex

matter” as a new state of matter [3]. From the technological point of view,

the intense research activity on type II superconductors was also stimulated

and motivated by the fact that, when vortices move they induce dissipation,

due to the normal nature of the cores, and therefore the superconducting

property of perfect conductivity is lost.

The properties of type II superconductors have been studied extensively

in the past decades. The interplay of pinning and fluctuation effects gives
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1. Introduction

a) b)

Figure 1.1: Examples of vortex patterns in type II superconductors. a) On

the left dendritic patterns of vortices with branchlike structures in a Nb film

of 0.5 μm. The sample is at a temperature of 5.97 K and the external field is

135 Oe. After [10]. b) On the right droplet-like patterns observed with the

decoration technique in a NbSe2 single crystal at 5 mT. Inside the droplet

the density of vortices is higher, whereas in the outer region, where vortices

are more visible, the density is lower. After [17, 18].

rise to a rich variety of phases whose main features are by now rather well

understood [3–6]. In comparison with the equilibrium state, however, our un-

derstanding of the dynamics of vortices, and, in particular, of their collective

behavior is less well developed.

Recently, experiments with magneto-optical techniques on flux penetra-

tion in thin films have revealed the formation of a wide variety of instabilities.

When vortices penetrate from the edge of a superconductor, the pinning, due

to material imperfections, leads, in a idealised situation, to a flux gradient

and thus to a linear profile for the magnetic induction inside the sample.

This state (corresponding to the conventional picture of a so-called Bean

state [7]), is only marginally stable. In reality, flux penetration can occur

in the form of a more complex distribution. Beyond phenomena such as

avalanches and flux jumps [8, 9], recent experiments have revealed interest-

2



1.1. Perspective

Figure 1.2: Images of flux penetration (bright areas) into a superconducting

state (dark areas) at 5 K in a MgB2 film of 0.4 μm. From a) to d): images

taken at an applied field of 3.4 mT, 8.5 mT, 17 mT, and 60 mT, respectively.

From e) to f) Images taken at 21 mT and 0 mT during the field reduction.

The one-dimensional structures of vortices at the initial stage develop into

dendritic patterns with a more complex morphology. After [11].

ing out-of-equilibrium patterns involving the formation of ramified dendritic

or finger-shaped domains of vortices, both in low-Tc materials, like in Nb and

MgB2 thin films [10–15], and high-Tc materials, like YBa2Cu3O7−δ [16]. Ex-

amples of patterns presenting the morphology of dendrites, are represented in

Fig. 1.1(a) and Fig. 1.2 [10,17,18]. Figure 1.1(a), which refers to experiments

performed with magneto-optical techniques in a Nb thin film, represents the

magnetic flux distribution of the sample at a temperature of 5.97 K; the

brightness corresponds to the different density of magnetic flux. The same

type of patterns could be reproduced in MgB2, as one can see in Fig. 1.2,

for different magnetic fields. At lower temperatures the magnetic flux pene-

trates instead through the nucleation of one-dimensional structures (fingers

of vortices) that propagate with a very well defined shape as we will show

later in this Chapter, in Sec. 1.8.

Generally, it is accepted now that these patterns, which propagate ex-

3



1. Introduction

tremely fast and are found only in a certain temperature window, are in-

stabilities of thermo-magnetic origin, due to the local overheating induced

by the vortex dynamics, but properties like their characteristic shape or the

velocity of propagation are still poorly understood [8, 9, 19–21].

Likewise, flux penetration in the form of droplets have been observed in

NbSe2 single crystals [17,18]. Figure 1.1(b) illustrates a droplet-like pattern

with a higher density of vortices inside and a lower density in the region

outside, where individual vortices are more visible. One can notice the high

degree of order of the vortex lattice inside the droplet and the sharp transition

zone between the two regions of vortices.

Furthermore, an other type of instability was observed at the boundaries

between flux and anti-flux in YBa2Cu3O7−δ samples. By applying an external

field of opposite sign to a remanent state, for a certain temperature interval,

the front between vortices and antivortices exhibits a “turbulent” behavior

[22–25], as we will see at the end of this Chapter. The mechanism that

underlies this phenomenon has been object of dicussions in the literature;

from this debate, the question about the relevance of the coupling of the

vortex mobility with the temperature for the instability has emerged [26–28].

Several attempts to describe the phenomenon have been made, but there are

still open issues to investigate in order to give a clear picture of such a

behavior.

A first question on all these out-of-equilibrium patterns in type II su-

perconductors is which is the mechanism that generates the instability and

leads to the final distribution of nonuniform magnetic flux. Moreover, a

second issue is understanding the features of these structures, like their char-

acteristic shape and size. In this thesis we will focus on these topics, by

addressing two examples of propagating fronts between phases of different

densities of vortices. As we will discuss, these types of phenomena present

analogies with interfacial instabilities in other physical systems like, for ex-

ample, dendrites in crystal growth or fingering at the interface between two

liquids of different viscosity [29–31]. These similarities have been well known

4



1.1. Perspective

for the case of superconductor-normal interfaces in type I superconductors,

but the connection between these patterns and the ones observed in type

II superconductors has not been explored in depth. This is partly because

dealing with this analogy turns out to be a quite delicate issue. Firstly, the

systems with which we deal are strongly out-of-equilibrium, due to the repul-

sive long-range interactions between the flux lines, expecially in thin films;

thus equilibrium properties, like the surface tension at the interface between

two states, are not properly defined. Secondly, systems of vortices are char-

acterised by properties which are not standard: their dynamics is strongly

nonlinear, and temperature dependent, and, moreover, inhomogeneities due

to pinning defects and temperature fluctuations play an important role.

On the other hand, some techniques that are usually employed in the

analysis of front propagation are useful tools to investigate these instabilities,

like, for example, the description of the interface between two phases as a

sharp transition zone. In our work, we will study some patterns in type II

superconductors, by combining the ideas derived from the general perspective

of a pattern formation background with the theory of vortex dynamics. This

analysis requires also accommodating the description of the contour dynamics

of a domain of vortices, into a macroscopic picture, where the density of

vortices is a continuum coarse-grained field.

This thesis has the following structure. The remaining part of this chap-

ter introduces basic concepts on superconductivity and vortex patterns to

give the reader the necessary background for the comprehension of this work

and to offer a general view on the types of dynamical instabilities that we will

analyse. We will first start from a brief description of the phenomenological

Ginzburg-Landau and London theories; then we will define type II super-

conductors and the quantised fluxoid. The properties of Abrikosov vortices,

like the energy of interaction for a slab and a film will then be discussed.

Since in this thesis we are interested mainly in the dynamics of vortices and

their collective behavior, we will focus thereafter on the dynamical regimes of

these interacting strings. Finally, in the last two sections we will concentrate

5



1. Introduction

on the thermo-magnetic instabilities that are observed in the intermediate

state by presenting some examples of patterns in type II superconductors

regarding some recent experiments.

In Chapter 2 we will deal with finger-like patterns in Nb [13,14]. We will

analyse these instabilities by building a model that takes into account the

coupling with the local temperature of the sample and formulate a novel type

of approach based on a sharp interface description. The main purpose of this

study is to derive features like the well defined finger shape, the width and

their dependence with the substrate temperature. This theoretical model is

the first example that clearly exhibits this type of fingered-shape patterns.

In Chapter 3, instead, we will examine the dynamics of a front between

flux and anti-flux in the presence of an in-plane anisotropy. In this work

we aim to understand the origin of the turbulence that was observed at the

boundaries between regions with vortices and antivortices in YBa2Cu3O7−δ,

that we have mentioned above [24].

Finally, in Chapter 4 we will summarize the main ideas and add some

remarks on the dynamics of vortex fronts which are discussed in the previous

chapters.

1.2 Ginzburg-Landau and London theories

The Ginzburg-Landau theory provides a very effective tool for a phenomeno-

logical description of the properties of vortices [4, 5, 32]. Also within the

general perspective of the theory of front propagation, the Ginzburg-Landau

equations are often used to analyse the formation of patterns. In particular,

in the study of pattern-forming systems, like e.g. in the Rayleigh-Bénard con-

vection, the Ginzburg-Landau equations are studied in the form of amplitude

equations for traveling waves [33,34]. Within the framework of the more spe-

cific problem of front propagation in superconductors, the Ginzburg-Landau

equations provide a phenomenological method to analyse the dynamics and

the stability of interfaces between the normal and superconducting states.

6



1.2. Ginzburg-Landau and London theories

This approach has generally restricted to type I superconductors [35–38],

whereas for type II superconductors only few cases in the literature are en-

countered [39].

While the surface energy at the interface between the normal and su-

perconducting states in a type I superconductor is positive, for a type II

superconductor this is negative; therefore normal domains are unstable and

subdivide until this process is limited by a microscopic length ξ, determined

by the balance of the tendency to break up and the penalty of having too

rapid variations in the superconducting properties.

Therefore, the reason why the Ginzburg-Landau method is not so directly

used for a description of patterns in type II superconductors is that one needs

to go beyond the microscopic scale ξ and adopt a more macroscopic approach,

where the density of vortices is a continuum coarse-grained field.

In order to present the basic concepts to understand this thesis, we will

here summarise briefly the main points of this formalism.

The Ginzburg-Landau theory is based on the postulate that the free en-

ergy functional F for the superconducting state can be expressed through

an expansion of the complex order parameter ψ(r) = |ψ(r)| exp(iϕ(r)), that

is assumed to be small near the critical temperature Tc and vary slowly in

space. This functional is derived by imposing that it must be analytical and

real, as

F =

∫
dr

[
α|ψ|2 +

β

2
|ψ|4 +

1

2m∗

∣∣∣∣
(

�

i
∇− e∗

c
A

)
ψ

∣∣∣∣
2

+
(∇× A)2

8π

]
, (1.1)

where A is the vector potential of the microscopic magnetic field h = ∇×A.

Here the fields are measured in Gaussian units. The effective charge is given

by e∗ = 2e, according to the BCS [40] microscopic theory of Cooper pairs,

while for the effective mass m∗ we assume the value m∗ = 2m, where m is the

mass of the electron. From equation (1.1) in the absence of magnetic fields,

one can easily see that the constant coefficient β must be positive, otherwise

the free energy would not be bounded from below. Moreover, depending on

the sign of α, the minimum of the free energy functional occurs at |ψ| = 0
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1. Introduction

(α > 0) or at

|ψ|2 = |ψ∞|2 = −α

β
, (α < 0).

The difference of the minimum in the free-energy density between the su-

perconducting (ψ = ψ∞) and normal states (ψ = 0), by definition, is equal

to the opposite of the condensation energy, which is expressed through the

critical thermodynamic magnetic field as [5]

fs − fn = −α2

2β
= −H2

c

8π
. (1.2)

A material becomes superconductor below the critical temperature Tc, where

|ψ|2 �= 0, thus α changes sign at Tc; expanding the coefficient α near Tc yields

α(T ) = α′ (T/Tc − 1) . (1.3)

With the use of standard variational techniques, by minimizing the free en-

ergy with respect to the order parameter ψ∗(r) and applying also the Maxwell

equation js = c/4π (∇× h), the Ginzburg-Landau equations are obtained

αψ + β|ψ|2ψ +
1

2m∗

(
�

i
∇− e∗

c
A

)2

ψ = 0, (1.4)

js =
e∗

m∗

(
�∇ϕ − e∗

c
A

)
|ψ|2, (1.5)

where the second equation gives the supercurrent density js as a diamagnetic

response of the superconductor. The Ginzburg-Landau approach provides a

phenomenological description for temperatures sufficiently near Tc and spa-

tial variations of ψ and A which are not too rapid. The equations are gov-

erned by the two characteristic lengths for a superconductor: the coherence

length ξ and the penetration depth λ. The meaning of these fundamentals

parameters can be understood easily from the equations (1.4). In a situation

with no current or fields, we can restrict the analysis to the real function

f(r) = ψ(r)/ψ∞, so the equation becomes

�
2

2m∗|α(T )|∇
2f + f − f 3 = 0. (1.6)

8



1.2. Ginzburg-Landau and London theories

The linearisation of (1.6) around the superconducting state f(r) = 1, leads

to the following equation in terms of g(r) = 1 − f(r),

ξ2∇2g − 2g = 0, ξ2 =
�

2

2m∗|α(T )| =
ξ2(0)

1 − T/Tc
. (1.7)

The relation above shows that the order parameter decays with a length of

the order of the coherence length ξ which diverges at Tc, as expected for a

critical phase transition. Similarly, the penetration depth λ, is derived from

the second equation for the current density, when a weak field is considered.

By approximating the order parameter for a homogeneous superconductor,

ψ = ψ∞ and using Maxwell’s equation, ∇× h = 4πjs/c, we derive

∇× (∇× h) = −16πe2

m∗c2
|ψ∞|2h. (1.8)

Equation (1.8) shows, by using the relation ∇ · h = 0, that the magnetic

field is screened by the diamagnetic currents and decays exponentially in

the superconducting material (the so called Meissner effect). The decaying

length λ is defined by

λ2(T ) =
m∗c2

16πe2|ψ∞(T )|2 =
λ2(0)

1 − T/Tc
, (1.9)

where the relation (1.3) for the temperature variation is considered. Equation

(1.8), together with (1.9), is written as,

λ2∇× (∇× h) + h = 0, (1.10)

which can be derived also in the framework of the London theory [42] by

considering the energy functional

E = E0 +
1

8π

∫
d3r

[
h2 + λ2

L(∇× h)2
]
. (1.11)

Here E0 is the condensation energy, h is the microscopic magnetic field, and

λL is the London penetration depth, which is defined by

λ2
L =

mc2

4πnse2
, (1.12)

9



1. Introduction

where ns is the density of superconducting electrons. The first term in the

integral is the magnetic field energy, while the second term is the kinetic

energy due to the supercurrents, where the relations js = nsevs and the

Maxwell’s equation ∇× h = 4πjs/c have been used.

The London theory is based on the fact that the wavefunction of the

superconducting electrons is constant, with density given by ns = |ψ∞|2. As

a consequence, the equation above for the supercurrent js yields the relation

js = nsevs = −nse
2

mc
A, (1.13)

and, taking the time derivative and using Ampere’s equation, the first London

equation is derived
djs
dt

=
nse

2

m
E. (1.14)

If we vary E with respect to h, we obtain the second London equation,

which has the same form of (1.10), with λL instead of λ. Near the regime for

temperatures closed to Tc, the two theories must give the same description,

and thus these two lengths coincide, λL = λ.

1.3 Type II superconductors

The ratio of the two characteristic lengths that have been introduced in the

previous sections,

κ =
λ

ξ
, (1.15)

called the Ginzburg Landau parameter, defines the distinction between type

I and type II superconductors. One feature for which these two types of

superconducting materials differ, as we have anticipated, is given by the

surface energy of a domain wall between the normal and superconducting

phases; this can be calculated from equations (1.4) and (1.5). The surface

energy is determined in particular by the excess of the Gibbs energy due to

the presence of the superconducting-normal interface over what it would be

if its density was the one corresponding to an homogeneous superconducting

10



1.3. Type II superconductors

H

H

0
TTc

H

Normal

state

state

Mixed

state
Meissner

C1

C2

Figure 1.3: Mean-field phase diagram for a type II superconductor. Below

the critical field Hc1(T ), the material in the Meissner-Ochsenfeld phase an

external magnetic field is totally expelled. Between Hc1(T ) and Hc2(T ) in

the intermediate state, the magnetic field penetrates by forming a regular

array of vortices. At Hc2(T ) the material undergoes a second order phase

transition from the mixed to the normal phase.

state. Numerical evaluations have shown that this energy is negative for

values κ > 1/
√

2, corresponding to type II superconductors [5, 32].

The existence of vortices in type II superconductors was predicted by

Abrikosov [2] in 1957, who solved the Ginzburg-Landau equations for the

case κ > 1/
√

2 and showed that an equilibrium situation, between two critical

fields Hc1(T ) and Hc2(T ), is characterised by a regular array of flux tubes. At

each site of the lattice, a vortex of supercurrent encircles a quantised amount

of magnetic flux φ0 = hc/2e.

Flux quantisation can be derived in the framework of the Ginzburg-

11



1. Introduction

Landau formalism using the fact that the complex superconducting order

parameter ψ must be a single-valued function. As a consequence, the phase

ϕ must change by integral multiples of 2π for a closed integral path∮
∇ϕ ds = 2πn. (1.16)

By considering a loop that encloses a vortex, and integrating for example

through a circular path γ(R) of radius R, it is easy to see that the fluxoid

φ′, defined by London [42, 43] as

φ′ = φ(R) +
4π

c

∮
γ(R)

λ2js ds =

∮
γ(R)

(
A +

4πλ2

c
js

)
· ds, (1.17)

is quantised. Using indeed equations (1.5) and (1.9) for the supercurrent

density js and the penetration depth λ, one can verify that

φ′ = n
hc

e∗
= nφ0, (1.18)

with φ0 = hc/2e ∼ 2.07×10−7 G/cm2. If the radius R of the contour is large

enough, R � λ, the supercurrent density js through the loop of integration

decays to zero and the second term on the right of (1.17) can be neglected.

Thus, the total flux trapped by a vortex is also quantised and for n = 1,

φ = φ0. (1.19)

At a finite magnetic field H > Hc1, the vortices penetrate the system.

The array of vortices was later proven to be hexagonal, with the inter-vortex

distance given by [44]

a =

(
4

3

)1/4
√

φ0

B
. (1.20)

As the mean-field phase diagram of Fig. 1.3 shows, at the critical field Hc2(T ),

there is a second order phase transition from the mixed state with vortices,

called also intermediate state or Schubnikov state, to the normal phase. Be-

low the critical field Hc1(T ) the material becomes superconducting and, be-

cause of the Meissner-Ochsenfeld effect, an external magnetic field H is ex-

pelled. In the intermediate state, the magnetic field is partly expelled due to

12



1.4. Magnetic properties of vortices

the demagnetisation currents, thus the field penetrates in the form of quanta

of flux, but the local internal magnetic field B is less than the applied one.

The density of vortices increases with the magnetic field, also according to

(1.20), till the cores of vortices overlap and a ∼ ξ at H ∼ Hc2(T ).

It is important to stress that the diagram of phase represented in Fig. 1.3

is valid only in a mean field approximation, outside of the critical region

in which the fields fluctuations are important. A measure to estimate the

temperature window in which thermal fluctuations are relevant is given by

the Ginzburg criterion [4]

|Tc − T | < Tc Gi, Gi =
1

2

(
Tc

H2
c (0)ξ3(0)

)
, (1.21)

where the Ginzburg number Gi defined above provides a measure of the

relative size of the minimal condensation energy H2
c (0)ξ3(0) within a volume

set by the coherence length ξ(0) at T = 0. In this thesis we will consider

temperature effects for the phenomena of pattern formation by referring only

to experiments in low-Tc superconductors, like Nb, for which the Ginzburg

number is very low, Gi ∼ 10−8 and thus, according to (1.21), fluctuations can

been neglected [4]. For high-Tc materials, instead, the fundamental Ginzburg

parameter is much larger, e.g. Gi ∼ 10−2 for YBa2Cu3O7−δ, and thermal

fluctuations give rise to a richer phase diagram, characterised also by new

phase transitions, e.g. the melting transition of the vortex lattice. [4] .

1.4 Magnetic properties of vortices

Since in this thesis we focus on the non-equilibrium patterns of vortices, at

the purpose of understanding their collective behavior and the mutual forces

that act on these interacting strings, we will introduce here the microscopic

magnetic field related to a vortex and the interaction energy between two

magnetic flux lines. This is important to understand some issues for this

thesis, for example, why vortices of the same sign tend to repel each other,

leading to the expansion of a finite size domain. As a consequence, also
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1. Introduction

the surface tension that plays an important role at the interface with two

different phases, e.g. between a normal solid and a liquid [49], cannot be

defined for a domain of vortices, because of the absence of attractive forces.

The form of the magnetic field associated with a vortex is needed also to

derive how the currents decay with respect to the distance from the cores.

Moreover, as we will see, while the interaction between vortices is screened

for a slab, in a thin film these are long-range. The strength of the currents is

crucial for the formation of the type of dendritic and finger-like patterns that

we want to analyse, since they have been observed only in thin films [11].

1.4.1 Magnetic field of a flux line

In Sec. 1.2 we have introduced the London theory. This approach is based on

the approximation that neglects the variation of the order parameter and thus

is not capable to describe the vortex core. It is only valid therefore on scales

larger than the coherence length ξ. However, for type II superconductors

with a Ginzburg-Landau parameter κ � 1, defined by (1.15), the London

theory provides a good phenomenological description for the spatial variation

of the internal magnetic field.

In the presence of vortices Eq. (1.10) is modified and a source term on

the right hand side must be included, so that we have

λ2∇× (∇× h(r)) + h(r) = φ0

N∑
i=1

t̂i(s)δ(r− ri(s)), (1.22)

where φ0 is the flux quantum and t̂i(s) is the tangent vector along the i-th

vortex. Here we assume that the vortices are straight and point along the

field direction, which we will take as the z-axis. Let us determine first the

solution for the microscopic magnetic field h(r) for one isolated vortex. Using

∇ · h = 0, we find that Eq. (1.22) becomes(−λ2∇2 + 1
)
h(r) = ẑφ0δ(r). (1.23)

The solution of this equation is given by the zero order Bessel function

h(r) =
φ0

2πλ2
K0(r/λ), (1.24)

14



1.4. Magnetic properties of vortices

which has the asymptotic form of a logarithmic behavior at short distances

from the core, and decaying as
√

1/r exp(−r/λ) for r → ∞

h(r) ∼ φ0

2πλ2
ln(λ/r), ξ < r 	 λ, (1.25)

h(r) ∼ φ0

2πλ2

√
πλ

2r
e−r/λ, r � λ. (1.26)

As we have pointed out, the spatial variation of the magnetic field inside the

core can not be considered within the framework of the London theory. The

inferior limit of the relation (1.25) therefore comes from the limitations of

this approach. One should use the Ginzburg Landau formalism to go beyond

the limit r < ξ.

1.4.2 Vortex-line Energy

From the form of the microscopic magnetic field h, the energy of an isolated

vortex line can be calculated straightforwardly. By considering indeed the

total energy

E1 =

∫
1

8π

(
h2 + λ2|∇ × h|2) , (1.27)

using the vectorial relation ∇· (h× (∇× h)) = |∇×h|2 −h · |∇× (∇× h) |,
and neglecting the core this relation can be written as [5, 6]

λ2

8π

∮
h× (∇× h) · ds. (1.28)

Integrating in a loop around the core, the asymptotic logarithmic form that

we have found for the magnetic field of a vortex (1.25) yields for ξ < r 	 λ

|∇ × h| ∼ φ0

2πλ2

1

r
. (1.29)

Using espression and the relation h(0) ∼ h(ξ), since the magnetic field for

r < ξ is approximately constant, the energy of a vortex line is determined as

E1 =
φ2

0

4πλ2
ln

(
λ

ξ

)
=

φ2
0

4πλ2
ln κ, (1.30)

where κ is the Ginzburg-Landau parameter.
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1.4.3 Interaction between vortices

Let us consider two interacting vortices. Since the total local magnetic field at

a point r can be written, in view of the linearity of (1.22), as a superposition

of the two magnetic fields corresponding to the two vortex cores at a position

r1 and r2 respectively, h(r) = h1(r) + h2(r) and substituting into the (1.28),

the total magnetic energy can be written as

E = 2E1 + 2E12. (1.31)

The first term in the expression above is the energy of one vortex lines calcu-

lated in the previous section and derives from the self-interaction due to the

coupling between the magnetic field of each vortex and the supercurrent en-

circling the core. The second term expresses instead the energy of interaction

between the two vortices and is given by

E12 =

∮
h1 × (∇× h2) · ds2, (1.32)

where the integration is meant for a loop encircling the vortex at position r2.

Therefore, by following the same type of calculation of the previous section,

this is written as

E12 =
φ0

4π
h(|r1 − r2|) =

φ2
0

8π2λ2
K0

( |r1 − r2|
λ

)
, (1.33)

which shows that the interaction energy between the vortices is proportional

to the magnetic field h(|r1−r2|) = h(r12), so it has a logarithmic dependence

for ξ 	 r12 < λ and behaves as as 1/
√

r12 exp(−r12/λ) for r12 > λ. The

interaction between vortices is repulsive.

The fact that vortices of the same sign repel each other has an important

consequence also for their collective dynamics, on which we want to focus

in this thesis. Unless these interacting strings are in the stable configura-

tion of an hexagonal array that minimises the free energy of the system or

inhomogeneities prevent their motion, a domain of vortices tends therefore

to expand. On the other hand vortices of opposite charge do attract each

other, since the two magnetic fields of a vortex and an anti-vortex have also

16



1.5. The Lorentz force

opposite sign and the interaction is negative as a consequence of (1.32) and

(1.33), as we will see also in the Chapter 3.

1.4.4 Interactions in a thin film

As we have seen, at large distances the interaction between vortices is screened

by the supercurrents. This screening effect is reduced in a thin film, for

which the thickness d < λ, and interactions are thus long-range. The out-

of-equilibrium patterns that we want to describe in this thesis have been

observed mainly in thin films, for which the strong interactions play an im-

portant role for the formation of these instabilities. The details of the deriva-

tion of these interactions which was done by Pearl, can be found in [47] and

also in [48]. As a result of the analysis the vortex interaction between two

vortices at distance r12 given by

E12(r12) =
φ0

8πΛ
[H0(r12/Λ) − Y0(r12/Λ)], (1.34)

where H0 and Y0 are Hankel functions and the Λ = 2λ2/d is an effective

penetration depth for a thin film. The asymptotic behavior of this energy is

logarithmic at short distances, like in the case of a slab, for ξ < r12 	 Λ

E12(r12) ∼ φ2
0

4πΛ
ln

(
Λ

r12

)
, (1.35)

and at large distances, r12 � Λ, decays as

E12(r12) ∼ φ2
0

4π2r12

. (1.36)

1.5 The Lorentz force

From the interaction energy between vortices that we have introduced in the

previous sections one can compute the force that acts on each magnetic flux

line due to the coupling with the supercurrent density j of the other vortices.

Deriving for example the interaction energy F12 in (1.33) in the direction x

17
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f

h

J

Figure 1.4: Schematic representation of the origin of the Lorentz force acting

on a vortex, due to the coupling between the local magnetic field h and a

macroscopic current J due to a gradient in the density of vortices.

of the x-y plane of a slab one gets

f2x(r2) =
∂F12

∂x2

= −φ0

4π

∂h1(r2)

∂x2

=
φ0

c
j1y(r2), (1.37)

where the Maxwell equation ∇ × h = 4πj/c has been used. Extending the

result to the vectorial form, we derive

f2 = j1 × φ0

c
, (1.38)

which is the force acting on a vortex at position r2, due to the vortex at r1.

Generalizing the problem for an array of vortices, the total force is given by

f = J × φ0

c
, (1.39)

where J is the total macroscopic current density acting on a flux line, due

to the presence of the other vortices. Unless the total current vanishes,

a vortex moves thus under the effect of this force, called Lorentz force, or,

Magnus force. The reason why it is often referred as Magnus force, in analogy

18



1.6. The dynamics of vortices

with the hydrodynamical force in a fluid, is represented in Fig. 1.4: in a

non-equilibrium situation, the non-homogeneous vortex density leads to a

gradient in the phase of the superconducting parameter ∇ϕ at a point in the

space, and, consequentely, for (1.5), to a macroscopic current density js that

is responsible for the motion of the vortices. The Lorentz force in (1.39) is

generated also for any externally imposed transport current.

1.6 The dynamics of vortices

In this section we will discuss the different regimes that characterise the

dynamics of vortices. When vortices move with a velocity v, they induce an

electromagnetic field [3–6]

E = B × v

c
, (1.40)

parallel to j, that acts as a resistive voltage, due to the fact that the magnetic

flux trapped in a superconductor decreases. The motion of vortices is thus

accompanied by dissipation, leading to a resistance that destroys the persis-

tent currents. The motion of vortices can be prevented, however, by pinning

forces due to inhomogeneities. Depending on the relative strength of these

forces with respect to the driving Lorenz force, we can distinguish different

regimes. For low currents the dynamics is dominated by the so called creep

regime, in which vortices hop from one pinning center to an other. This

motion is thermally activated, as we will see in more detail. If the pinning

instead is weak in comparison to the Lorentz force, vortices move with a

steady viscous motion, in which the driving force is balanced by a friction

force. This regime is referred as flux flow. The response of the supercon-

ducting material to a macroscopic transport current density j, is represented

by the electric field-current characteristic, as shown in Fig. 1.5. While for a

current density j � jc, where jc is the critical pinning current density, this

relation is linear, in the regime for j ≤ jc, the response in nonlinear and

strongly temperature dependent. In an idealised E-j characteristic, one can

assume a sharp behavior with a linear function E(j) for j ≥ jc and E(j) = 0,
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E

jj

creep
flow

E−j
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slope

f

   c

ρ

Figure 1.5: This figure represents the form of the electric-field current char-

acteristic for the intermediate state of a type II superconductor. For currents

j � jc, the dependence is linear, and the E-j relation is dominated by the

flux flow regime, whereas for j < jc the E-j relation is strongly nonlinear

and dominated by the creep regime. The idealised E-j characteristic, which

is linear above jc and equal to zero below jc, is also represented.

for j ≤ jc.

An important consideration to underline for our study in the collective

dynamics of vortices is that, except for the regime of very high fields and

currents, as a consequence of the strong mutual repulsive interactions be-

tween flux lines, vortices do not move individually, but tend to form bundles

corresponding to several units of flux quantum. This behavior is enhanced

expecially in the creep regime, in which a pinning barrier has to be overcome.

While discussing the dynamics of vortices, we will thus not refer to the mi-

croscopic field of a single vortex line, but we will focus on the macroscopic

average internal magnetic field B.
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1.6. The dynamics of vortices

1.6.1 The flux flow regime

If pinning is weak, for a vortex that moves with a velocity v, the phenomeno-

logical equation that governs the dynamics of vortices is

FL = ηv = j× φ0

c
ẑ, (1.41)

where η is a viscosity coefficient that we will define later in this section. The

power which is dissipated in this motion can be expressed in terms of the

viscosity as

W = FL · v = ηv2. (1.42)

The simplest approximation for this regime was derived by Bardeen and

Stephen [50], which is based essentially on the two fluid model, according to

which the total electron density can be divided in two parts: the supercon-

ducting component with density ns and the normal component with density

nn. While for the normal electrons, we can apply Ohm’s law and the relation

jn = (nne
2τn/m)E, where τn is the relaxation time due to the scattering with

the impurities, for the superconducting component, the approximation based

on the perfect conductivity τs = ∞ is made, like in the London theory [42].

The Bardeen-Stephen model is derived thus by assuming that inside the core

of a vortex, for r < ξ there is only the normal component, while outside

the London equation applies. By imposing the continuity of the field and

the relation (1.42) for the rate of energy which is dissipated, the viscosity

coefficient η is derived

η =
φ0Hc2

ρnc2
. (1.43)

The resistivity for the flux flux regime, which relates the supercurrent density

j to the electric field E, is defined as

ρf =
E

j
=

Bφ0

ηc2
, (1.44)

where the expression (1.40) and (1.41) have been used. Combining this last

relation with the result for the Bardeen-Stephen viscosity (1.43), leads to the

rate between the flux flow resistivity ρf and the normal resistivity ρn

ρf

ρn

∼ B

Hc2

∼ πξ2

a2
, (1.45)
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that equals the ratio between the area occupied by the normal core and the

area per vortex. For B → Hc2 the flux flow resistivity tends continuously

to the one of a normal metal, as expected, since there is a second order

transition. In reality, as well as this longitudinal viscosity, one can define a

transversal viscosity given by a Hall effect and the equation for the balance

of the forces is generalised to [3, 4]

φ0

c
j× ẑ = ηv + α0v × ẑ, (1.46)

where α0 	 η for a dirty superconductor with a rather short electronic mean

free path. Usually, the second term due to the transverse Hall effect is thus

neglected in most of type II materials.

In a material characterised by an in-plane anisotropy, as we will see in

Chapter 3, the effective viscous drag coefficient depends on the direction of

propagation of the vortices. More precisely, the mobility defined in (1.41)

becomes a non-diagonal tensor. As a consequence, there is a non-zero com-

ponent of the velocity v perpendicular to the driving Lorentz force. In Chap-

ter 3 we will examine the problem of the dynamics of a boundary between

flux and anti-flux and the possible role that the non-collinearity between the

velocity and the force could have on the instability of the front.

1.6.2 The creep regime

For low current densities, j ≤ jc, the pinning forces due to inhomogeneities

and defects in the lattice play a relevant role in the dynamics of vortices.

In this regime the current-voltage characteristic is highly nonlinear and tem-

perature dependent. For a driving Lorentz force weaker than the pinning

barrier, the vortex lines move because of thermal activation; their motion is

small but finite and a weak dissipation is present.

When the magnetic flux penetrates into a superconducting material, the

macroscopic field B inside the material drops from a finite value to zero. Ac-

cording to Maxwell’s law, the macroscopic current density is, for an external
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1.6. The dynamics of vortices

field in the ẑ direction and that propagates in the x̂ direction,

j =
c

4π

dH

dx
≈ c

4π

dB

dx
. (1.47)

where in the last relation the approximation B ≈ H that neglects the mag-

netisation of the sample has been made; this is quite appropriate for a type II

superconducting material with a Ginzburg-Landau parameter κ � 1/
√

2 [5].

Since a Lorentz force given by

FL = j × φ0

c
ẑ (1.48)

acts on the vortices, the magnetic flux tends to penetrate further, reducing

the gradient of the magnetic field and therefore the current, for (1.47), till

the Lorentz force per unit volume is less than a critical value, determined by

the pinning barrier

FL ≤ Fc. (1.49)

This situation suggests that flux penetration can be described in terms of a

critical state, in which the magnetic field enters the superconducting material

with a linear profile with slope 4πjc/c, according to the Bean model [7].

This picture, in which the current density jc is assumed to be constant and

independent on the external magnetic field, represents a metastable state,

which could develop into instabilities like flux jumps and avalanches. From

the general perspective of critical phenomena, this state has been the object

of studies that have focused on the kinetic roughening of the front and the

determination of the scaling behavior of the front fluctuations [46].

As was shown by Kim et al. [51], the critical state decays logarithmically

with time at finite temperatures. This phenomenon was explained with the

creep theory, formulated by Anderson and Kim [52], which is based on the

assumption that vortices jump from one pinning center to an other with a

rate in terms of a thermal activated barrier given by [52]

R = ω0e
−U0/T , (1.50)

where U0 is is the activation barrier due to the pinning, and ω0 is the fre-

quency of vibration for flux jumps, and T is the temperature (the Boltzmann

23



1. Introduction

a)

b)

Figure 1.6: Schematic representation of the creep state. a) In the absence

of a net force, vortex bundles jump with unbiased probability to the next

valleys of the pinning potential. b) The presence of a driving force favors

jumps in a “downhill” direction.

coefficient has been omitted here). In the absence of a net force acting on the

vortex bundle, the probability for a jump to a pinning site is independent on

the direction. The situation clearly change when a finite transport current

makes favorable jumps which are in the “downhill” direction of the driving

force. This situation is represented schematically in Fig. 1.6. The net jump

rate is thus determined by

R = ω0e
−U0/T

(
eΔU/T − e−ΔU/T

)
(1.51)

where ΔU is the work done to move a flux bundle and is therefore propor-

tional to the Lorentz driving force. This leads to a net creep velocity of

ν = 2ν0e
−U0/T sinh

ΔU

T
. (1.52)

For a large driving force, sinh (ΔU/T ) ∼ exp (ΔU/T ), the velocity of the

bundle is given by

ν = ν0e
−U(j)/T , (1.53)

where the energy U(j) is the total activation barrier that the vortices have

to overcome and depends on the current density j through the Lorentz force.
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1.7. Thermomagnetic instabilities

Since the barrier U(j) vanishes at the critical current jc, for currents suffi-

ciently close to jc, U(j) can be simplified as

U(j → jc) ≈ Uc

(
1 − j

jc

)α

, (1.54)

where Uc is the pinning activation barrier [4]. In this thesis we will consider

the Anderson’s original proposal of equation (1.54) with the coefficient α = 1.

For conventional low-Tc materials, to which we will restrict in our study while

considering the creep regime, the typical values for the activation energy Uc

are very large, T/Uc ≈ 10−3 [4, 53].

As we will in the next Chapter, the steepness of the velocity-current

relation, plays a crucial role in the conflict between the heat generation and

loss in the material. It is thus very important for the formation of thermo-

magnetic instabilities.

1.7 Thermomagnetic instabilities

As a consequence of the Joule heating effect induced by the electromagnetic

field (1.40), a thermal instability can develop if the amount of heat that

is generated can not be transfered fast enough to the substrate. We will

discuss and underline here the main ideas of the theory of bistability in

superconductors that constitute the starting point to carry our analysis on

fingers patterns in Chapter 2. In this section we will refer in particular to the

reviews of [8, 9]. The Joule self-heating effect in type II superconductors, is

given by the coupling of the electromagnetic field E in (1.40) and the current

density j. By indicating with Q(T, j) the power density which is dissipated,

we have

Q(T, j) = E(T, j)j. (1.55)

For a thin film of thickness d, in contact with a substrate that is kept at the

bottom at a fixed temperature T0, in the heat balance we take into account

also the amount of energy that is transfered to the substrate; this is given by

W (T ) =
h

d
(T − T0), (T − T0) 	 T0, (1.56)
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where h is the heat transfer coefficient of the substrate. Equation (1.56) holds

if the temperature change along the thickness of the film can be ignored, [8]

d 	 dc ∼ K

h
, (1.57)

where K is the thermal conductivity of the film. By considering the different

contributions in the equation for the temperature and neglecting the heat

diffusion, we derive

C
∂T

∂t
= Q(T, j) − W (T ), (1.58)

where C is the heat capacitance of the film. The condition of steady-state

balance for a fixed current density j is satisfied for a temperature T such that

Q(T, j) = W (T ). (1.59)

Linearising (1.58) around the stable point, with respect to small perturba-

tions of the temperature field, leads to the stability criterion

∂W

∂T
>

∂Q

∂T
. (1.60)

As the grafic solution of Fig. 1.7 shows, for a steep enough current-voltage

characteristic, the curve that represents the heat generated Q(T, j) intersects

the curve corresponding to the heat loss W (T ) in three points, for current

density j in a certain range j∗ < j < j∗. The states corresponding to T1 and

T3 are stable, whereas the one at T2 is unstable, according to the relation

(1.60). In order to understand better the conditions in which a thermal

instability can develop, let us consider the idealised E-j characteristic, that

we have explained in Sec. 1.6, so that

E = ρf(j − jc(T )), (j > jc(T )), (1.61)

where ρf is the flux flow resistivity. Therefore, by indicating with T ∗ the

temperature at which j = j0(T
∗), Q(T, j) has the form of a stepped function,

given by the following set of equations

Q(T, j) = 0, T < T ∗ (1.62)

Q(T, j) = ρfj(j − jc(T )), T ∗ < T < Tc (1.63)

Q(T, j) = ρnj
2 = Q(Tc, j), T > Tc, (1.64)
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Figure 1.7: Grafic solution of the heat balance. For a current density in

a certain interval j∗ < j < j∗, the curves that represent the heat generated

Q(T, j) and the heat loss to the substrate intersect in three points. The states

corresponding to T1 and T3 are stable, whereas the one at T2 is unstable.

where the last relation follows from the E-j relation for a normal metal. By

using the condition of steady state (1.59) and expressing it in the dimension-

less form, with θ = (T − T0)/(Tc − T0) and i = j/j0, j0 = jc(T0), we find two

intersection points for W (θ) and Q(θ)

θ2(i) =
αi(i − 1)

1 − αi
, θ3(i) = αi2, (1.65)

where we have considered a linear temperature dependence of the critical

current with respect to the dimensionless variables as jc(θ) = j0(1− θ). The

dimensionless parameter α, defined also as Stekly parameter, is equal to the

ratio between the heat generated for j = j0, ρfj
2
0 and the heat transfered to

the substrate, (Tc − T0)h/d

α =
ρfj

2
0d

h(Tc − T0)
. (1.66)

The critical current j0 and the flux flow resistivity do depend on the mag-
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Figure 1.8: Graphic solution of the heat balance for an idealised current-

voltage characteristic in two cases a) for j > j0 and α < 1 b) for j < j0 and

α > 1.

netic field B and thus on its spatial variations in the sample. However, here

and in the model that we will develop in Chapter 2 we will consider a con-

stant magnetisation and neglect therefore spatial dependences of the critical

current. Therefore we consider α as a constant. Our approximation is jus-

tified by the fact that an almost constant induction was measured inside

finger-like and dendritic patterns in the experiments of [11, 12]. Depending

on the relative strength between j and j0, we have two different cases for the

existence of θ2: for j > j0 and α < 1, or j < j0 and α > 1. This situation is

represented schematically in Fig. 1.8, which shows that a thermal instability

due to self-heating can develop only in the second case. The intersection θ2,

for the superconducting state, corresponding to (1.65) is a stable point for

the first case, and unstable point for the second case.

By substituting (1.65) in (1.61), one finds

j =
j0 + ρ−1

f E

1 + αE/ρfj0

, (1.67)

which shows that the conductivity is decreased due to self-heating. Moreover,

in the limit for superconductors with high critical current density j0 � Eρ−1
f ,
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1.8. Out-of-equilibrium vortex patterns

the conductivity

σ(E) =
∂j

∂E
= (1 − α)ρ−1

f (1.68)

is obtained. Therefore, from (1.68), one can easily see that σ(E) becomes

negative for α > 1. This clearly points out a thermal instability. For j < j0,

and α > 1 therefore, self-heating is relevant.

Moreover, a thermal bistability develops for a certain range of current

densities jm < j < j0, for which the heat balance is satisfied in three points,

like represented in Fig. 1.7. This is derived by imposing the heat balance

ρfj
2
m = (Tc − T0)h(Tc)/d, jm as jm = α−1/2j0. As it follows from (1.66), the

parameter α decreases with the temperature; as a consequence the thermal

instability is observed in a certain window Tc − ΔT < T0 < Tc, outside

of which α < 1 and self-heating is negligibly small [8]. By considering for

example a temperature dependence of the critical pinning current density of

the type jc(T ) = j0(1− T/Tc), and substituting it in (1.66), the interval ΔT

is estimated as
ΔT

Tc

=
hTc

ρfdj
2
0

. (1.69)

The facts that the dendritic and finger-shape patterns that we will analyse are

observed in a certain temperature window and that the magnetic distribution

does not extrinsically depend on the inhomogeneities of the sample, support

the interpretation of this phenomenon in terms of this bistable character due

to the Joule self-heating effect.

1.8 Out-of-equilibrium vortex patterns

In the study of fronts in type II superconductors, in this thesis, we will con-

centrate in particular on two different examples of dynamical instabilities:

finger-like patterns and turbulence at the boundary between flux and anti-

flux. By using a high-resolution magneto-optical technique, the development

of an initially flat front into finger-like or dendritic patterns was first ob-

served by Duran et al. [10] for a Nb thin film. This technique works by
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Figure 1.9: On the left: magnetic flux distribution of a Nb thin film of

thickness 0.5 μm after zero-field cooling and for a magnetic field of 40 mT

and different temperatures. The critical temperature is Tc ∼ 9.2K. On the

right: finger-like patterns in a 0.5 μm film of Nb at T = 4.2 K and a field of

6.8 mT. After [14].

placing a magneto-optical thin film near a superconducting material and us-

ing polarised light to measure the local magnetic field. The nucleation of

these patterns ranges from one-dimensional structures at 3-4 K, that we will

indicate with “fingers”, to a more complex magnetic flux distribution with

“sea-weed-like” branches, which are referred as “dendrites”, at 6-7 K. These

instabilities were found only in a temperature window, outside which the

magnetic flux penetrates uniformly; in these experiments, in particular, they

were observed between T/Tc ∼ 0.35 and T/Tc ∼ 0.65, for a critical tempera-

ture Tc = 9.2 K. Dendrites nucleate and propagate very fast, independently

of the rate at which the external magnetic field is increased, and the velocity

of propagation is sometimes not even measurable with the resolution of a

standard magneto-optical technique. Finger-like patterns were studied also

in detail by Welling et al. [13, 14]. In Fig. 1.9, taken from the experiments,

the image on the left represents the magnetic flux distribution for a Nb thin
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1.8. Out-of-equilibrium vortex patterns

Figure 1.10: a) Overlapping images related to different experiments in the

same sample at 4.2 K and 20 mT, which show that the instability does

not depend trivially on defects and inhomogeneities (see for a color version

Physica C 411, 11 (2004)). b) At 6.7 K the magnetic flux distribution

presents a more complex structure with dendrites. After [14].

film of 0.5 μm on a sapphire substrate after zero-field cooling and for a mag-

netic field of 40 mT and different temperatures. The white areas represent

the Shubnikov mixed state with vortices, while the dark area stand for the

superconducting Meissner state.

As one can observe, with increasing the temperature, the structure of the

domains of vortices becomes more irregular, presenting the morphology of

dendritic patterns. The image on the right reproduces instead instantaneous

bursts of magnetic flux with the well defined finger-like shapes at 4.2 K.

Fig. 1.10 represents overlapping images related to different experiments

in the same sample at 4.2 K and 20 mT. The image clearly shows that the

instability is intrinsic and does not depend trivially on defects and inhomo-

geneities. At 6.7 K the magnetic flux distribution presents a more complex

structure with dendrites.

As we will show with our analysis in Chapter 2, the features of these
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Figure 1.11: “Turbulent” behavior observed at the boundaries between vor-

tices and antivortices in a YBa2Cu3O7−δ single crystal at a temperature of

65 K. The sequence shows the time development after a) 10 s, b) 20 s, c) 30

s, d) 40 s, e) 60 s, f) 90 s and g) 150 s. After [24].

patterns can be studied in terms of an intrinsic instability due to the over-

heating of the sample. The thermo-magnetic nature of these instabilities due

to the competition between the Joule heat released and the the relaxation

to the substrate, that we have described in the previous section, has been

proposed in [19–21]. We will show the importance of this mechanism in

the selection of the patterns characteristics like the shape and the width of

the fingers. In our analysis we will consider the approximation in which the

density of vortices inside the domain is constant and we will therefore assume

a non-zero current density only at the edge of the domain of vortices.

As we will also discuss in Chapter 2 these pattern have been shown to

reproduce the temperature distribution of the sample. The interpretation

that has been suggested for these phenomena [19, 20] is that the dissipation

induced by the motion of vortices leads to an increase of the film temper-

ature and thus to a lower pinning barrier and an enhanced mobility. As a

consequence, a large scale flux invasion penetrates the material, giving rise
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1.8. Out-of-equilibrium vortex patterns

to avalanches. The condition of thermo-magnetic bistability that we have

discussed in the previous section is crucial for the development of this mech-

anism. In this thesis we will support and confirm this argument by proposing

a model in which the shape of the vortex fingers is strictly dependent on the

temperature of the pattern.

While it is now generally accepted that the formation of finger-like and

dendritic patterns is of thermo-magnetic origin, in the case which has been

referred to as turbulent behavior of a front between vortices and antivortices,

the origin of the instability is not well understood. Fig. 1.11 represents the

“turbulent” state observed in a sample of YBa2Cu3O7−δ crystal. After apply-

ing a reversed field to a previously remanent state, a new domain of antivor-

tices entering the sample from the edges annihilates with the already existing

state with vortices. The boundary between the flux and anti-flux exhibits an

irregular “meandering” behavior, in a temperature window between 47 and

80 K. The image represents the time development of this instability [24]. We

will discuss in Chapter 3 this type of behavior and examine if the in-plane

anisotropy could play a role in this phenomenon.
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Chapter 2

Finger-like patterns

In this chapter we will focus on the finger-like patterns that characterise the

magnetic flux distribution in a Nb thin film [13] and that are represented in

Fig. 1.9 and Fig. 1.10. These fingers of vortices, that we have described in

Chapter 1, have a well defined shape and a characteristic width that varies

between 20-50 μm. The physical mechanism that underlies the development

of an instability of a flat front between the vortex and the superconducting

states into these narrow structures has been studied in recent theoretical

models [19–21]. However, while in these earlier work the thermo-magnetic

origin of the instability has been pointed out, the remarkably well defined

shape of the fingers could not be obtained explicitly. In this chapter we will

concentrate particularly on this growth form.

2.1 The sharp interface limit

A detailed analysis for the shape of the fingers requires a more tractable

mathematical model than the ones proposed previously. In particular, since

we are interested in the dynamics of the front between two phases, we need

to reduce the problem to an interfacial description, in order to determine an

explicit equation for the pattern curvature. The formulation of a local growth

model for the vortex front is an effective method to analyse the dynamics
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Figure 2.1: Schematic representation of a local growth model for an interface

between a vortex and a superconducting phase (which are denoted by V and

S respectively). Each point at the interface, that corresponds to the local

arclength s, is defined by the angle θ between the normal vector n and a

fixed direction z in the plane and the distance r from a fixed origin (O).

and the characteristics of the pattern in its essential features, without loosing

the required accuracy for a realistic physical description.

Let us consider the general problem of a front propagation between two

phases, in which we can define a continuous order parameter that vanishes

in a relatively thin transition zone. In an interfacial formulation, or moving

boundary approximation, the dynamics of the front is described by some

boundary conditions for the physics at the interface, without taking into

account explicitly the way in which the order parameter changes from one

state to an other. This method is appropriate if the thickness of the interfacial

region can be neglected in comparison to the typical length scale of the

patterns. If this requirement is satisfied, the domain wall between the two

phases is viewed as a sharp interface from the “outer” pattern forming length
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2.1. The sharp interface limit

scale, while the dynamics in the “inner” scale of the front is mapped into

moving boundary conditions for the fields [54,55]. Local growth models have

proven to be a useful tool to analyse front propagation in several physical

systems, such as dendrites in crystal growth, viscous fingering, streamers, and

also magnetic flux penetration in type I superconductors [31, 35–38, 56–58].

For example, in the case of dendrites at a solid-liquid interface, a boundary

layer model is appropriate, since the width of the interface is of a few atomic

distances, while the typical length scale at which the patterns form are of

the order of microns. Therefore, the dynamics can be translated into some

boundary conditions for the growth velocity of the front in terms of the local

temperature [56].

In the case of a superconductor, we have already seen in the introduction

that, according to the Ginzburg-Landau approach, the order parameter ψ

vanishes at a normal-superconducting interface over a distance defined by

the microscopic coherence length ξ. For a typical classical pure type I su-

perconductor this is of the order of 0.1 μm. Therefore, there is a strong

separation of scales between the domain size (typically of the order of 0.1

mm) and the width of the interface. This justifies the study of the front

propagation through a moving boundary model in a type I superconductor,

as was worked out by [35–38].

In the case of a type II superconductor, the transition zone between the

vortex and superconducting state is of the order of the distance between

vortices. For fields at which the experiments were performed, between 20

and 40 mT [13, 14], this is of the order of 0.3 μm, so it is much less than

the typical scale of the patterns (0.1-1 mm). Moreover, for the fast-moving

vortex fingers of [13], the thermal decay length can become quite significantly

smaller than the width of the domain. We will give an explicit formula for this

length in Section 2.2.3 (see 2.13). The vortex density and the temperature

change rapidly in comparison with the radius of curvature of the front. As a

consequence, the formulation of an interfacial description to describe finger-

like patterns turns out to be an appropriate and accurate approach.
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Figure 2.2: Scheme of the model that we propose: a finger-shaped domain of

vortices (V) penetrating in a superconducting state (S) is characterised by

a relatively high speed and mobility at the tip and low speed and mobility

on the side. A higher speed gives rise to an enhanced mobility and therefore

more heat is generated.

The physical picture that we propose for these finger-type patterns is that

they are self-organised propagation shapes with a relatively higher speed and

temperature at the tip and a lower speed and temperature on the sides, as

schematised in Fig. 2.2. A higher speed leads to an enhanced mobility and

therefore more heat is generated.
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2.2 The model

2.2.1 The physical background and the geometry

We consider a thin film of thickness d ≈ λ, which is in contact to a substrate

at temperature T0. The magnetic induction B is perpendicular to the plane

of the film.

In our analysis we want to focus on vortex fronts that propagate with

a shape-preserving form (as represented in Fig. 2.2) and, in particular, we

aim to prove that there are solutions with finger-like shapes. Therefore, we

concentrate on a situation in which a flat front has already developed into a

non-uniform flux distribution. By assuming a domain of vortices with a con-

stant density of magnetisation in the bulk (like in the droplet of Fig. 1.1(b)),

the supercurrents that correspond to neighboring vortices cancel each other.

We refer thus to a situation in which there is a macroscopic current j only

along the edge of the domain, at the interface with the superconducting state,

where the magnetic induction vanishes.

For a more realistic description one should account for a spatial dependent

current that can be derived from the long range interaction between vortices,

like in [11]. Since in successive experiments vortex fingers shoot into the

sample at different positions, sample inhomogeneities do not appear to play

an important role, so we ignore these here.

Figure 2.1 represents a scheme for a local growth model of a domain

of vortices. In a sharp interface limit the front between the vortex and

superconducting state is mapped into a one-dimensional curve. A point at

the interface is defined by its arclength s, a position r(s) with respect to a

fixed origin, the local Frenet-Serret frame of the tangent and normal vectors

(t,n), and an angle θ(s) between the normal to the curve and the direction

of propagation [31, 56]. The curvature of the interface is then defined by

κ(s) = ∂sθ. We will adopt this geometrical construction as the starting point

to develop our analysis of finger-like patterns in type II superconductors.
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2.2.2 Basic equations for the front dynamics

For the dynamics of the vortices we consider a local dissipative motion with

a viscosity η defined by the Bardeen-Stephen model that we have defined in

(1.43) [50]. Vortices move in the direction normal to the interface with a

normal velocity vn(s) = ∂r(s)/∂t · n given by

ηvn(s) = f(j, Ti(s))
φ0j

c
, η =

Bφ0

ρfc2
, (2.1)

where Ti is the temperature at the interface, ρf = ρnB/Bc2 is the flux flow

resistivity and the function f(j, Ti) gives the E-j characteristic through the

the following dependence

E = ρff(j, Ti)j. (2.2)

We have generalised here the electric field-current density characteristic by

considering a general function f(j, Ti) that depends on the dynamical regime

that one considers. The steepness of the electric field-current characteristic

is an important feature in order to observe thermo-magnetic instabilities [9],

as we have underlined in Sec. 1.7. Fingers and dendrites have indeed been

observed as spontaneous phenomena only in a few materials such as Nb and

MgB2, contrary to YBa2Cu3O7, where the application of a laser pulse is

necessary to trigger the instability [16]. For the dynamics of vortices we

take into account the two relevant regimes of flux flow and creep that we

have described in Sec. 1.6. For j � jc, in which the E-j characteristic

becomes linear, E ≈ ρf(j− jc(Ti)). In the creep regime for j < jc, the vortex

motion is thermally activated, i.e. E ≈ ρf exp(U0/Ti(j/jc(Ti) − 1)), with U0

an activation barrier, as it is found by combining the relations (1.40) and

(1.53) in the introductory chapter. We consider here the approximation used

by [19] for the E-j relation: E ≈ ρf exp((j − jc(Ti))/j1), with j1 	 jc. In

this expression the flux creep rate is independent on Ti; as indicated in [53],

the temperature independent j1 is characteristic of low-Tc superconductors

and depends mostly on pinning inhomogeneities.

The simplest approximation for the function f(j, Ti) is thus to consider

that vortices are pinned when jc exceeds j. Thus f(j, Ti) has a sharp break
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at jc as

f(j, Ti) = 1 − jc(Ti)

j
, for j ≥ jc(Ti) (2.3)

f(j, Ti) = 0, for j < jc(Ti). (2.4)

We will refer to this as the discontinuous case. We consider a dependence of

the pinning current on Ti as jc = j0(1 − Ti/Tc) where j0 = jc(T0). In reality

the current-electric field characteristic is never so sharp, but instead continu-

ous, thus a reasonable expression for the function f(j, Ti), which interpolates

between the two dynamical behaviors described above, is given by [19]

f(j, Ti) =
j1

j
ln

(
1 + exp

(
j − jc(Ti)

j1

))
. (2.5)

In order to study the front dynamics, we have to take into account the cou-

pling to the local temperature at the interface Ti(s), as given by (2.1). As

we have already seen in the Section 1.7 related to thermomagnetic instabil-

ities, the temperature T (r) at a point r of the film is enhanced by the heat

released due to joule effect; this is expressed by the product E · j, as seen in

(1.55). Moreover the system is coupled to a substrate kept at a temperature

T0, thus we also consider the relaxation of the temperature to T0, as well

as the diffusion process. Therefore, the temperature field T (r) obeys the

equation [19]

C∂tT (r) = ∇K∇T (r) − (T (r) − T0)
h

d
+ E(j, T (r)) · j, (2.6)

where C and K are the specific heat and thermal conductivity of the super-

conducting film, and h is an effective heat transfer coefficient for the heat

loss to the substrate. The equation above considers the heat balance be-

tween the heat generation and loss like in (1.58) and, moreover, it takes into

account the diffusion term. We consider a thin superconducting film, such

that the temperature T varies slowly across the thickness, as we have already

discussed in Chapter 1, in Sec. 1.7.
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Figure 2.3: Scheme of the temperature T (s, r̃) versus the distance r̃ from the

interface.

2.2.3 Interfacial formulation

The crux of our sharp interface approximation is the idea that we can charac-

terise the temperature field in the system of local coordinates (t,n), T (s, r̃)

with r̃ coordinate along the normal component, through an effective bound-

ary layer thickness l(s) with the following Ansatz [56]

T (s, r̃) = Ti(s) exp(−r̃/l(s)). (2.7)

The integration Eq. (2.7) with respect to r̃ in the interval [0,∞] yields the

heat content across the interface at a position s,

H(s) =

∫ ∞

0

T (s, r̃)dr̃ = Ti(s)l(s). (2.8)

By expressing the diffusion term in the local coordinate system (t,n) and

considering a co-moving frame, in the limit for a weakly curved interface

κ(s) 	 1/l(s), Eq. (2.6) transforms into

C∂tT − vn∂r̃T = K(∂2
r̃T + κ∂r̃T + ∂2

sT ) − (T − T0)
h

d
+ E(j, T ) · j. (2.9)
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The term E(j, T (s, r̃)) · j is non-zero only at the interface, for r̃ = 0, where

T (s, r̃) = Ti(s). The derivation of a moving boundary condition for the

temperature at the interface Ti follows from the insertion of (2.7) into (2.9).

Integrating (2.9) with respect to r̃ in the interval [0,∞[, through the bound-

ary layer leads to

τvn(s) =f(j, T (s))j (2.10)

∂t(T (s)l(s)) = − (vn(s) + κ(s))T (s) − T (s)l(s) (2.11)

+αf(j, T )j2l(s) + ∂2
s (l(s)T (s)) .

The first term on the right in the temperature equation derives from the

co-moving frame and from the diffusion in the normal direction to the front,

where the other terms represent respectively the relaxation to the substrate

temperature, the heat due to dissipation, and the lateral diffusion. In the

derivation of (2.11) we assumed that the partial derivative ∂r̃T (s, r̃) vanishes

both behind and ahead of the interface, as schematised in Fig. 2.3.

In this system of equations we have rescaled the variables by measur-

ing the temperature Ti at the interface in units of T = (Ti − T0)/(Tc − T0),

lengths in units of Lh =
√

Kd/h, time in unit of th = Cd/h, currents in

units of of jc(0) and fields as b ≈ B/B1, B1 = (4πjc(0)Lh)/c. The only

parameters that are left in the equations are thus the dimensionless number

τ = 4πK/(ρnc
2C)bc2, which is essentially the ratio of the temperature diffu-

sion constant and the vortex diffusion constant, and α = ρfj
2
0d/(h(Tc − T0)),

which plays the role of a coupling constant for the heat source term. Let us

estimate the units of our dimensionless variables and the constants that enter

in the equations. Typical parameters for Nb thin films of [10], are d ≈ 0.5

μm, while the resistance for the normal metal is ρn ≈ 1.7 ×10−6Ω. Moreover,

the electronic specific heat coefficient is γ ≈ 104 ergs/cm3 K 2, thus the heat

capacitance C is C = γT ≈ 10−2 J/(cm3K) at a temperature T0 ≈ 4K.

For the heat transfer coefficient h and conductivity K we can assume h ≈ 1

W/(cm2 K) and K ≈ 1 W/(cm K). [9]. We thus estimate the characteristic

length of our system as Lh ≈ 70 μm, and the time th ≈ 10−6-10−7 s.
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The dimensionless constant α quantifies the ratio between the energy

produced by joule dissipation and the heat loss to the substrate. In order

to observe the instability, α ≥ 1 [9]. For a magnetic field B ≈ 20 mT and

Bc2 ≈ 2 T, a critical pinning current jc ≈ 106 A/cm2 [10, 13], one finds

α ≈ 10-102. As mentioned above, the parameter τ compares time scales for

the magnetic field diffusion and the thermal diffusion. Using parameters es-

timated for a Nb thin film, we find τ ≈ 10−1-10−2, implying that the vortex

flux density responds much faster to the inhomogeneities than the tempera-

ture. This justifies the picture of a sharp-edged domain of almost constant

vortex density, whose motion is coupled to a temperature that decays within

a boundary layer of thickness l(s).

The boundary layer thickness is derived by solving the equation for the

temperature in the direction normal to the front, in the approximation

κ(s) 	 l(s)−1. Since the temperature diffuses slowly in space with respect

to the inner scale of the interface, we assume that the interfacial region

l′(s) where a sheet of current j is present is negligible with respect to the

total boundary layer thickness related to the heat content. Therefore, in

order to determine l(s), we can use the equation for the temperature in the

absence of the heat source E · j. This idea is represented schematically in

Fig. 2.3. By assuming a co-moving frame in which a point of the interface

moves with a velocity vn(s), the time derivative for T (s, r̃) transforms into

∂tT (s, r̃) = ∂tT (s, r̃)|r̃ − vn(s)∂r̃T (s, r̃). For a straight front, the equation for

the T (s, r̃) field is

−vn(s)∂r̃T (s, r̃) = ∂2
r̃T (s, r̃) − T (s, r̃). (2.12)

The substitution of the Ansatz (2.7) leads finally to

l(s) =
2

vn(s) +
√

vn(s)2 + 4
. (2.13)

2.2.4 Equation for the shape-preserving front

Since we are interested in determining nontrivial finger-like front solutions,

we concentrate on the problem of finding shape-preserving growth forms,
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so that in time the whole shape simply translates with a velocity v0 in the

growth direction. This means that for any point on the interface we have

(see Fig. 2.2)

vn(s) = v0 cos θ(s). (2.14)

For a finger-like domain of vortices, the velocity is largest at the tip, for

θ = 0 , vn = v0, where we assume that the normal Lorentz force has the same

direction of the front propagation at the tip, whereas it vanishes on the side

of the pattern for θ = π/2. In the frame with a fixed angle θ we impose that

the explicit time derivative vanishes, so that the fields are stationary,

∂t(T (s)l(s))|θ = 0. (2.15)

The boundary layer approximation enables us to determine the shape of the

uniformly translating finger shapes by reducing the problem into a single

equation for the curvature of the front. Examining the relation between the

time derivative in the coordinates system with respect to the normal front

direction and the one with fixed angle θ and by inserting the expression

above, we get

∂t(T l)|n =∂t(T l)|θ − κ∂θvn∂θ(T l)

= − κ∂θvn∂θ(T l). (2.16)

For the first equality in (2.16) we have used the fact that

∂t|n = ∂t|θ + ∂tθ∂θ, ∂tθ = −∂θvn∂sθ. (2.17)

In the last equality for the time derivative of the angle θ in the equation

we have used a relation from the theory of local growth models [59]. The

combination of (2.16) together with (2.11, 2.13, and 2.14), leads to a non-

linear second-order differential equation for the angle θ(s). We determine

the solution both for the simplified form (2.4) for the function f(j, T ) and

for the expression given by (2.5). In both cases the problem is reduced to

solving a nonlinear equation of second order for θ(s). In analogy with the

case of needle-crystal solutions in a solidification problem [56], we look for
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a trajectory in the θ, κ, ζ = ∂sκ space, that starts at θ = 0 with ζ = 0, for

symmetry, and moves to the fixed point θ = π/2, κ = 0, ζ = 0. Among

all the trajectories, which correspond to different velocities v0, and that flow

to the fixed point, a steady-state solution with finger-shape is selected by

imposing the proper boundary conditions based on physical considerations.

2.3 Solution for the sharp E-j characteristic

2.3.1 Derivation of the equation

In this section, we derive the solution for the simplified case with a discon-

tinuous electric field-current characteristic. Let us consider the equation for

the velocity of the front in (2.11) and f(j, T ) defined by (2.4)

τv0 cos(θ(s)) = (j − (1 − T (s)), j ≥ (1 − T (s)), (2.18)

τv0 cos(θ(s)) = 0, j < (1 − T (s)). (2.19)

From the last equation it follows that, for j ≤ (1 − T (s)), θ(s) = π/2. The

form of f(j, T ) implies a discontinuity for the curvature κ(s) of the interface,

at a point s∗ and a value T (s∗) = 1− j, in the dimensionless variable for the

temperature, such that f(j, (T (s∗)) = 0. This means that there is a sharp

transition in the front dynamics at this point, since for s > s∗, vortices are

pinned, and the curvature vanishes with θ = π/2, whereas for s ≤ s∗ the

dynamical behavior is dominated by a flux flow regime. Therefore, we allow

the curvature of the front to be discontinuous, but we have to impose the

continuity of the physical temperature field together with its derivatives at

s∗. From (2.18) we can derive T (s) for s ≤ s∗

T (s) = 1 − j + τv0 cos θ(s), (2.20)

and its derivatives

∂sT (s) = −v0 sin θ(s)κ(s)τ, (2.21)

∂2
sT (s) = −v0 cos θ(s)κ(s)2τ − v0 sin θ(s)∂sκ(s)τ. (2.22)
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In the region in which the velocity of vortices vanishes (j < (1 − T (s)) , in

the absence of the heat source, from (2.11) we find that the temperature field

decays exponentially to T0. For s > s∗ thus the following relation holds

T (s) = T (s∗) exp(s∗ − s), (2.23)

∂2
sT (s) = ∂sT (s) = T (s). (2.24)

By combining the boundary conditions (2.24) with (2.21) and (2.22) at the

matching point s = s∗, we derive two relations for the curvature κ and its

derivative ζ = ∂sκ.

κ = ∂sκ =
1

v0τ
(1 − j). (2.25)

Let us consider the different terms that enter in the equation (2.11). It is

convenient to divide all terms by l(s). The first contribution is therefore

given by (see Eq. (2.16))

κ

l
∂θvn∂θ(T l) = v0 sin θ

(
τv0κ sin θ − v0(1 − j + v0τ cos θ)κ sin θ√

4 + v2
0 cos2 θ

)
. (2.26)

The second term, which derives from the first term on the right in (2.11)

(divided by l) is transformed into

(v0 cos θ +κ)
T

l
=

1

2
(1− j + τv0 cos θ)

(
v0 cos θ +

√
4 + v2

0 cos2 θ
)
(v cos θ +κ).

(2.27)

A third term is given by the difference of the source heat term and the one

related to the relaxation to the substrate temperature,

E · j − T = αv0τ cos θj − 1 + j − v0τ cos θ. (2.28)
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Finally, the term related to the lateral diffusion gives

∂2
s (T l)

l
=

τv0

(4 + v2
0 cos2 θ)3/2

{[
v3

0 cos4 θ − v2
0 cos3 θ

+
(
τ−1(j − 1) +

√
4 + v2

0 cos2 θ
)
− v0

(
8 + (τ

√
2)−1(j − 1)

√
(8 + v2

0 + v2
0 cos(2θ))

)
sin2 θ − v0 cos2 θ(−4 + v2

0 sin2 θ)

− cos θ

(
4
(
τ−1(j − 1) +

√
4 + v2

0 cos2 θ
)

− v2
0

(
τ−1(1 − j) +

√
4 + v2

0 cos2 θ

)
sin2 θ

)]
(∂sθ)

2

− 1

4
(8 + v2

0 + v2
0 cos(2θ))

(
2τ−1(j − 1)

− 2v0 cos θ +
√

2(8 + v2
0 + v2

0 cos(2θ))
)

sin θ∂2
sθ

}
. (2.29)

By substituting all the terms (2.26), (2.27), (2.28) and (2.29) into Eq. (2.11),

one gets a nonlinear differential equation for the angle θ(s). The substitution

of (2.25) into the equation for the angle θ yields also a relation for the current

j as a function of v0 and τ

1

4v0
(j−1)

(
(j − 1)2v0 + 4τ 2v0(v0 − 2) + 2τ(j − 1)(2 + v0 + v2

0)
)

= 0. (2.30)

This equation is satisfied for values of the current density j

j0 = 1, j± = τv−1
0

(
−2 − v0 + τ−1v0 − v2

0 ±
√

4 + 4v0 + 13v2
0 − 2v3

0 + v4
0

)
.

(2.31)

The front solutions that we search are all the trajectories in the phase space

defined by the angle θ, the curvature κ = ∂sθ, and its derivative ζ = ∂2
sθ and

that satisfy the following system with the boundary conditions described
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2.3. Solution for the sharp E-j characteristic

above

κ =
∂θ

∂s
,

ζ =
∂κ

∂s
,

ζ = F (θ, κ, ζ). (2.32)

The function F (θ, κ, ζ) is reported in Appendix. Note that this equation

indeed amounts to a highly nonlinear second order differential equation for

θ, as it involves θ, ∂sθ, and ∂2
sθ. By restricting to the interval [0, π/2], and

shooting from θ = 0, the relations (2.25) and (2.31) have to be satisfied. At

θ = 0 the prefactor of the highest derivative vanishes, and a second order

equation for the curvature κ is determined

κ2v0τ(4 + v2
0)

−3/2

(
−4v0 − v3

0 + 4

(
τ−1(j − 1) +

√
4 + v2

0

)

+v2
0

(
τ−1(j − 1) +

√
4 + v2

0

))
+

1

2

(
1 − j + v0τ

)(
v0 +

√
4 + v2

0

)
κ

+
1

2

(
1 − j + v0τ

)(
v0 +

√
4 + v2

0

)
v0 + 1 − j − αjv0τ + vτ = 0. (2.33)

The solution of (2.33) gives two different values for κ; there are therefore

two possible trajectories for θ(s), but only one corresponds to a positive

curvature. Moreover, only one of the three relations found for the current

density gives a possible solution that matches with (2.25).

2.3.2 Results

By numerically solving the differential equations with a “shooting method”

[61], in the interval [0, π/2], through the imposition of the boundary condi-

tions set above, a unique front velocity is selected.

Fig. 2.4, on the left, represents the profile of the angle θ(s) and of the

interface temperature T (s) as a function of the arclength s for the fixed

parameters τ = 0.1 and α = 3.7. The value for the tip velocity, which is

found with the shooting routine, is given by v = 1.07 in our dimensionless
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Figure 2.4: Plot of the profile of the angle θ and the temperature T (s) as a

function of the arclength s (on the left) and finger shape (on the right) for

fixed parameters τ = 0.1, α = 3.7 and the value found for the tip velocity

v0 = 1.07.

units. As the figure shows, the temperature is larger at the tip of the front

(for θ = 0), where the mobility is maximal, whereas it decays to the substrate

value on the side of the finger. We have found front solutions for a range

between 2.8 and 4.2 for the dimensionless parameter α, and a fixed parameter

τ = 0.1. Fig. 2.4, on the right, represents the contour of the finger-like domain

that corresponds to the profile θ(s).

In Fig. 2.5 we have plotted the values for the tip velocity v0, as a function

of α, which were derived from the shooting routine. The dependence of v0

with respect to α is almost linear. The velocities that we have found are

of the order of unity in our dimensionless coordinates, so of the order of

Lh/th. By inserting our estimate for the units of length and time, Lh and

th respectively, Lh/th ≈ 104 cm/s. The experimental studies reveal that the

dendritic and finger-shaped domains of vortices develop extremely fast, on a

time scale that is even sometimes not accessible with the temporal resolution
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Figure 2.5: Plot of the values found for the tip velocity v0 as a function of

the coefficient α. The data refer to the result of the shooting routine.

of the technique. The velocity with which these patterns propagate, instead,

is lower and could be measured in [16] for a sample of YBCO and in [12] for

MgB2. This was estimated as 104-105 cm/s. Our analytical estimate is thus

of the same order of magnitude. Fig. 2.6 represents the shape of the fingers

for different values of the coefficient α. In our geometrical model, each point

at the interface is mapped into a one-dimensional curve in the x-y plane that

represents the film, and is parametrised by the arclength s. The coordinates

depend on the angle θ(s) through the formulas [60]

x(s) =

∫ s

0

cos θ(s′)ds′, (2.34)

and

y(s) = y0 −
∫ s

0

sin θ(s′)ds′, (2.35)

where y0 is chosen to ensure the origin of the center of the pattern.

As a conclusion of this section, we remark that, although the model with

a sharp f(j, T ) that we have considered is based on a crude approximation
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Figure 2.6: Finger shapes for different values of the coefficient α for the sharp

E-j characteristics.

for the mobility of the vortices, it captures the characteristic shape of the

fingers. Moreover, the front velocity in this case is uniquely selected, and

was found in the typical range of the experiments. We could determine the

solution only for a certain range of the parameter α. For this range we can

give a first estimate of the width of the fingers; this, as one can see also from

Fig. 2.4, in which the length scale is Lh, is larger than 4 Lh ∼ 200 μm. In the

following section we will improve the model by considering the more realistic

case with a smooth current-voltage characteristic.
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2.4. Solution for the smooth E-j characteristic

2.4 Solution for the smooth E-j characteristic

2.4.1 Derivation of the equation

For the continuous function f(j, T ), which is defined in (2.5), the equation

for the velocity in (2.11) transforms into

τv0 cos θ = j1 ln

[
1 + exp

(
j − (1 − T )

j1

)]
. (2.36)

From this equation, the following relation for T is derived

T = 1 − j + j1 ln
[
exp

(τv0 cos θ

j1

)
− 1
]
. (2.37)

It is easy to observe that, in the limit for θ → π/2, T → −∞. This diver-

gence is a consequence of the description of the creep regime in terms of an

activation barrier with a finite flux creep rate. This implies indeed that the

velocity of the vortices at the boundary for θ ≈ π/2 vanishes exponentially as

v0(cos θ) ≈ τ exp((j− (1−T ))/j1). As a consequence, for a finite value of the

flux creep rate, the vortex velocity becomes extremely small, but nonzero, so

we integrate from θ = 0 to θ = θ0 ≈ π/2.

In analogy with the case for the sharp mobility, an equation for θ is

derived by computing all the terms in (2.11). The first contribution, that

derives from the term on the left, is given by

κ∂θvn
∂θ(T l)

l
=

τ exp (τv0 cos θ/j1) v2
0κ sin2 θ

exp (τv0 cos θ/j1) − 1

−
v2

0κ
(
1 − j + j1 ln (exp (τv0 cos θ/j1) − 1)

)
sin2 θ√

4 + v2
0 cos2 θ

. (2.38)

The other terms of Eq. (2.11) transform into the following expressions

(vn + κ)
T

l
=

1

2

(
v0 cos θ +

√
4 + v2

0 cos2 θ
)
(v0 cos θ + κ)[

1 − j + j1 ln

(
exp

(
τv0 cos θ

j1

)
− 1

)]
. (2.39)
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Ej − T = αjτv0 cos θ − 1 + j − j1 ln

(
exp

(
τv0 cos θ

j1

)
− 1

)
. (2.40)

Finally, the last term which is related to the lateral diffusion is given by

∂2
s (T l)

l
= v0

{
− τ exp (τv0 cos θ/j1)

exp (τv0 cos θ/j1) − 1

[
(∂sθ)

2

[
cos θ + v0 sin2 θ

(
τ

j1 (exp (τv0 cos θ/j1) − 1)
+

2√
4 + v2

0 cos2 θ

)]

+ sin θ∂2
sθ

]
+ 2v0

( sin2 θ

4 + v2
0 cos2 θ

)
(∂sθ)

2 +

[
1 − j

+j1 ln

(
exp

(
τv0 cos θ

j1

)
− 1

)]
− (4 + v2

0 cos2 θ)−3/2

[
j − 1 − j1 ln

(
exp

(
τv0 cos θ

j1

)
− 1

)](
v2

0 cos3 θ

−v0

√
4 + v2

0 cos2 θ sin2 θ + cos θ(4 + v2
0 sin2 θ)

)
(∂sθ)

2

− (4 + v2
0 cos2 θ

)
sin θ∂2

sθ

}
. (2.41)

By substituting (2.38), (2.39), (2.40) and (2.41), in (2.11), a second-order

nonlinear differential equation for θ is derived. The problem is now reduced

to solving the system of equations

κ =
∂θ

∂s
,

ζ =
∂κ

∂s
,

ζ = F1(θ, κ, ζ). (2.42)

The function F1(θ, κ, ζ) is reported in Appendix. By following the same

procedure for the case with a sharp f(j, T ), we integrate the equation from

θ = 0, where we impose for symmetry ∂2
sθ = 0. This boundary condition

leads to a unique value for the curvature κ, that obeys the second order
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differential equation

v0

(−j + 1 + j1 ln
(− 1 + exp

(
τv0

j1

))
√

4 + v2
0

− τ exp
(

τv0

j1

)
exp

(
τv0

j1

)− 1

)
κ2

+
1

2

[
1 − j + j1 ln

(
− 1 + exp

(τv0

j1

))](
v0 +

√
4 + v2

0

)
(κ + v0)

+1 − j − αjv0τ + j1 ln
(
− 1 + exp

(τv0

j1

))
= 0. (2.43)

From the two solutions for κ in the equation above, the positive value must

be considered. By shooting in the space defined by the variables (θ, κ, ζ),

from the point (0, κ(0), 0), the trajectory flows to the fixed point (π/2, 0, 0).

The fact that this is a fixed point for the system of equations (2.42) can be

understood by expanding the last equation with respect to κ and ω = cos θ.

By retaining only linear terms in κ and ω, the last equation of (2.42) is

expanded indeed as

ζ = −κ2

w
− κv. (2.44)

If the first term on the right, κ2/w converges to zero, in the limit for which

ω and κ tend to zero, then (π/2, 0, 0) is a fixed point for the original system

(2.42). From our numerical analysis, the curvature κ vanishes linearly with

ω, confirming that the results are consistent. Even if mathematically the

trajectory flows to the fixed point, from the form of the equation, as we have

already anticipated, we have to limit the range of integration up to angle

θ0 for which the temperature T is at the equilibrium value of the balance

between the heat produced by joule effect and the one which is transferred

to the substrate. Therefore, we impose the boundary condition that sets the

angle θ0

αjτv0 cos θ0 − 1 + j − j1 ln

(
exp

(
τv0 cos θ0

j1

)
− 1

)
= 0. (2.45)

Fig. 2.7 shows the dependence of the tip velocity v0 as a function of the

current density j, for a fixed value j1 = 10−2, θ0 = 10−10, τ = 10−1, as

defined by the boundary condition above, in (2.45). The tip velocity v0

depends strictly on the mobility of the front and thus to the temperature
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Figure 2.7: Plot of the tip velocity v0 as a function of the density current j

for a fixed value θ0 = 10−10, τ = 10−1 and j1 = 10−2.

distribution. In particular, the temperature field is larger at the tip, for

a lower pinning barrier. The tip velocity therefore has a much larger value

than it would have at the substrate temperature (T∼ 0). This can be derived

easily from Eq. (2.36).

2.4.2 Results

Fig. 2.8 represents the comparison of the θ profile and the temperature dis-

tribution as a function of the arclength s, for the cases of discontinuous and

continuous current-voltage characteristic respectively, with the same value of

the tip velocity v0 and current density j. As the plot shows, the curve related

to the case with the smooth current-electric field relation f(j, Ti) overlaps in

the limit j1 → 0, with the one with a sharp function f(j, Ti). The tempera-

ture field is larger at the tip, where vortices move faster and thus more heat

is generated, whereas it vanishes as θ that approaches π/2.
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Figure 2.8: Comparison of the θ(s) and T (s) fields profiles in the cases with

discontinuous and continuous functions f(j, T ). The data correspond to the

values v0 = 1.02, flux creep rate j1 = 0.004, α = 3.9, τ = 0.1, j = 0.96.

In Fig. 2.9 we represent instead the shape of the fingers for different param-

eters of the coefficient α and a fixed value of the velocity (v0 = 1.43 in our

units Lh/th) that corresponds to the typical order found in the experiments

(v0 ≈ 104 − 105 cm/s). The width of the flux filaments for a correspondent

current density j ≈ 0.92 j0 varies in the range between 35 − 150 μm for

α = 9 − 20, as it is shown in Fig. 2.10, in good agreement with the experi-

mental studies for enough high values of α. According to the experiments, as

the substrate temperature decreases, fingers get narrower. The dependence

of the width on the coefficient α is consistent with this behavior. Indeed

jc(T0) = j0(1 − T0/Tc), implies that α is proportional to (Tc − T0). Thus,

the fingers width decreases as α gets larger, in agreement with our results.

Taking into account the physical mechanism that triggers the instability, we

can interpret this behavior in these terms: for an enhanced heat dissipation,
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Figure 2.9: Fingers shapes in the case with smooth f(j, T ) for different values

of the coefficient α for a velocity v0 = 1.43 in our dimensionless variables,

j = 0.92, τ = 10−1 and j1 = 0.004.

vortices are driven faster due to the local thermo-magnetic instability in the

direction in which the Lorentz force is maximal, thus, for the same amount

of flux, the fingers are narrower. Too narrow fingers are however suppressed

by thermal diffusion. This picture is also consistent with the linear stability

calculations of [21].

Fig. 2.11 represents the data collapse of the profiles θ(s). Using the data

of the width of the fingers with respect to the coefficient α, we have rescaled

the arclength s. The curves almost overlap and this shows that the shape

of the finger-like pattern is well defined. As α increases, the contour of the

domain of vortices does not change significantely, but it maintains the same
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Figure 2.10: Plot of the width w of the fingers versus the coefficient α for

parameter values of Fig. 2.9. The width is expressed in units of Lh ∼ 70 μm.

form.

2.5 Conclusions

In this work we have studied the finger-like shapes that were found in the re-

cent experiments of [13]. The model that we have constructed is a novel type

of approach to analyse these patterns and is based on the approximation of

a sharp interface limit for the domain of vortices. A full analysis of the prob-

lem would require the treatment of the system of coupled equations (2.6) in a

two-dimensional space, to show then that they admit a sharp-front behavior.

In reality, this is impeded by the fact that the equations are too complicated

to be studied analytically. In the previous work of [20, 21], the development

and the dynamics of these patterns in the two-dimensional system of a thin

film was examined numerically. The computations of [20] included also non-
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Figure 2.11: Data collapse of the θ(s) profiles in the case with smooth f(j, T )

for different values of the coefficient α for a velocity v0 = 1.43 in our dimen-

sionless variables, j = 0.92, τ = 10−1 and j1 = 0.004.

local interactions, which we have instead neglected. Long-range forces are an

important ingredient to study the interaction between the flux filaments. As

observed in the experiments, fingers of vortices repel each other, as a conse-

quence of the forces between the currents at the edge of the domains. We

believe that, in analogy with the case of a type I superconductor [58], one

could build up a model that takes into account the long-range forces between

the current ribbons at the edge of each filament to analyse the dynamics of

the magnetic flux distribution. Moreover, although it was observed experi-

mentally that the patterns do not depend trivially on inhomogeneities, the

presence of defects could play a role for the formation of dendrites. As it

has been shown through the numerical simulations of [20], flux filaments can

split and develop into branched-like structures in proximity of a defect.

We finally remark that for the smooth model we find a continuous family

60



2.5. Conclusions

of finger solutions, parametrised e.g. by v0, the discontinuous model has only

solutions for a particular velocity. This discrepancy can be interpreted as a

consequence of the fact that a discontinuous function f(j, T ) implies a “fic-

titious” constraint for the velocity of the T field. From a more mathematical

perspective, we expect that the introduction of a surface-tension type term

in Eq. (2.1) could lead to the “selection” of a unique shape and velocity from

the family of solutions in the smooth model, in analogy with the dendrites

in crystal growth or viscous fingering. However, we believe it is a delicate

open issue whether such surface tension type term would make sense for the

vortex problem. First of all, the finger propagation is an extreme “out of

equilibrium” problem. Secondly, even if could define a positive surface ten-

sion at the interface in analogy with the case between the solid and liquid

phases [62], the long range repulsive interaction between vortices would in-

deed play the major role in the front dynamics. We will leave this issue for

the future.

In conclusion, even if our approximate model could be improved by adding

long-range forces or pinning defects, as we have discussed above, it captures

the essence of the formation and characteristics of the thermo-magnetic in-

stabilities with finger-like shape. By considering a sharp-interface limit for

the vortex-front, we have proved that the shape of the fingers is well defined

and we could estimate the scale of the width and show the qualitative de-

pendence with respect to the substrate temperature. In addition, this is the

first example of a boundary-layer model for a study of patterns of vortices

in type II superconductors, and can be considered as a original contribution

towards the understanding of these types of instabilities.
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Chapter 3

Vortex-antivortex front

3.1 Introduction

3.1.1 Motivation

While the nucleation of finger-like patterns, as studied in Chapter 2, is clearly

of thermo-magnetic nature, the origin of the “turbulent” behavior at the

boundary between domains of magnetic flux and antiflux in a crystal of

YBa2Cu3O7−δ, as represented in Fig. 1.11 in the introductory Chapter, is

poorly understood. As we have introduced in Chapter 1, when the external

magnetic field is reversed in a remanent state, vortices with flux of opposite

sign, with respect to the already existing ones, penetrate in the supercon-

ducting material. In a certain temperature window, the boundaries between

magnetic flux and antiflux corrugate and exhibit an irregular “meandering”

behavior similar to the “turbulence” in a fluid.

An attempt to explain this phenomenon was made by Bass and co-

workers [26] with a model based on a hydrodynamical approach for the fields

related to the density of vortices and antivortices. In this work the dynamics

was described essentially by a system of continuity equations, that involved

also an annihilation term between vortices of opposite sign. Moreover, the

coupling to the temperature field was included in the model and the instabil-
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ity was attributed to the heat generated from the process of annihilation. The

corrugation of an initially planar front was found to develop above a critical

velocity, as a consequence of the core energy dissipated with the annihilation

of a vortex-antivortex pair.

On the other hand, as was pointed out by Fisher et al. [27,28], in addition

to the heat released in the process of annihilation, one should take into

account also the heat due to the magnetic energy dissipated while vortices

move. As we have seen in the previous chapters, this could play a relevant role

in the front dynamics and induce an instability of thermo-magnetic origin.

Furthermore, while annihilation takes place only at the boundary of flux

with opposite sign, the heat released by the dissipation of the magnetic energy

is present in all the region where the magnetic flux has penetrated.

Fisher et al. [27, 28] propose an alternative interpretation, according to

which the instability was not induced by a thermal effect but by the in-plane

anisotropy of the sample [27, 28]. In this analysis, the hypothesis of a tur-

bulent behavior induced by a Kelvin-Helmholtz type of effect was proposed.

The Kelvin-Helmholtz instability is observed generally between two adjacent

layers of fluids that are experiencing a different shear rate. Due to the shear

at the boundaries, the flow can become unstable to small perturbations and

convective patterns are formed [66].

The development of electromagnetic instabilities in the critical and resis-

tive states due to the anisotropy of the material was already studied in [67,68].

In this analysis, it was shown that the non-collinearity between the electro-

magnetic field and the current could induce an unstable behavior of a front

of vortices and lead to the formation of macrovortices. This study, however,

does not apply specifically to the problem that we want to analyse, since we

are considering the coexistence of vortices and anti-vortices and thus referring

to a different system.

For a material with an a-b anisotropy, the lattice properties like the co-

herence length ξ and the penetration depth λ depend on the direction with

respect to the principal axes of the crystal. Therefore also the mobility of
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the vortices depends strictly on the direction of propagation. In a flux flow

regime, this is indeed inversely proportional to the viscosity in the Bardeen-

Stephen formula (1.43), which depends on ξ through the upper critical field

Hc2. According to the experiments of [25], the crystal of YBa2Cu3O7−δ in

which the macroturbulence between flux of opposite sign was observed ex-

hibits a small in-plane anisotropy and this was therefore suggested as the

cause for the instability. In this Chapter we will concentrate on the issue

whether this unstable behavior could arise in an anisotropic medium even in

the absence of the coupling with the temperature of the sample.

There are several reasons to carefully reinvestigate the idea of an anisotro-

py-induced instability of propagating vortex-antivortex fronts. First of all,

even though this mechanism was claimed to be relevant for the “turbulent”

behavior at the boundaries of opposite flux regions, the critical anisotropy

coefficients found on the basis of an approximation [27,28] correspond to an

anisotropy too high to describe a realistic situation, even when a nonlinear

relation between the current and the electric field was considered [63–65].

Secondly, the calculation was effectively done for a symmetric stationary

interface, rather than a moving one. Thirdly, even if the physical picture

that has been advanced [27] for the anisotropy-induced instability is that

of a shear-induced Kelvin-Helmholtz instability, it is not clear how far the

analogy with the Kelvin-Helmholtz instability actually extends.

In order to try to settle the mechanism that underlines such phenomena,

we will here investigate the linear stability of the interface between vortices

and antivortices in the case where the front of vortices propagates with a fi-

nite velocity. We will perform an explicit linear stability analysis which shows

that, in the presence of an in-plane anisotropy, vortex fronts with sufficiently

large speed are stable in the absence of the coupling to the temperature.

We shall see that the issue of the stability of fronts between vortices and

antivortices is surprisingly subtle and rich: while we confirm the finding of

Fisher et al. [27,28] that stationary fronts have an instability to a modulated

state, our moving fronts are found to be stable for all anisotropies. More-
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3. Vortex-antivortex front

over, our calculations indicate that the stability of such fronts depends very

sensitively on the distribution of antivortices in the domain into which the

front propagates, so it is difficult to draw general conclusions.

Besides the intrinsic motivation to understand this anisotropy issue, there

is a second important motivation for this work. Our coarse-grained dynamics

of the vortex densities is reminiscent of reaction-diffusion equations with non-

linear diffusion. More fundamentally, the dynamically relevant fronts in such

equations with nonlinear diffusion are usually associated with nonanalytic

(singular) behavior of the vortex densities; such singular behavior has been

studied in depth for the so-called porous medium equation [69–71], which

has a similar nonlinear diffusion. In the case we will study, the front corre-

sponds to a line on one side of which one of the vortex densities is nonzero,

while on the other side it vanishes identically. In the regime on which we will

concentrate, this vortex density vanishes linearly near the singular line. But

for other cases encountered in the literature [28, 72], even more complicated

nonlinear dynamical equations arise that are reminiscent of reaction-diffusion

type models in other physical systems. The case of bacterial growth mod-

els [73, 74] illustrates that the nonlinearity of the diffusion process can have

a dramatic effect on the front stability, so a careful analysis is called for. In

particular, in these cases, the proportionality of the diffusion coefficient to the

gradient of the fields that propagate leads to an instability. A protrusion at

the interface is indeed enhanced and grows larger and larger as a consequence

of the increased diffusion, in analogy with the Mullins-Sekerka instability for

crystal growth [29]. Nevertheless, in our case nonlinear diffusion by itself

does not lead to an instability of the front, unlike in the bacterial growth

case [74] or viscous fingering [31].

From a broader perspective, we see this work as a first step towards

a systematic analysis of moving vortex fronts. The linear stability analysis

which we will develop can equally well be applied to dynamical models which

include the coupling to the temperature or in which the current-voltage char-

acteristic is nonlinear, i.e. to continuum equations for the vortex density and
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temperature which in the sharp interface limit should reduce to models like

the one of Chapter 2. For this reason, we present the analysis in some detail

for the relatively simple case where the vortex velocity is linear with respect

to the magnetic field gradient and the current. Even then, as we shall see, the

basic uniformly translating front solutions can still have surprisingly compli-

cated behavior. We find that the density of vortices which penetrate the

sample vanishes linearly for large enough front velocities, but with a frac-

tional exponent for front velocities below some threshold value [75]. Since

the latter regime appears to be physically less relevant, and since we do not

want to overburden the study with mathematical technicalities, we will focus

our analysis on the first regime. As stated before, in this regime we find that

an anisotropy in the mobility without coupling to the temperature does not

give rise to an instability of the flux fronts.

Our analysis will be aimed at performing the full stability analysis of

the fronts in the coupled continuum equations for the vortex densities. Our

procedure thus differs from the one of [27,28] in which a sharp interface limit

was used.

As we have already seen in the previous chapters for the case of finger-like

patterns, it is sometimes advantageous to map the equations onto a moving

boundary effective interface problem, in which the width of the transition

zone for the fields is neglected. One can in principle derive the proper mov-

ing boundary approximation from the continuum equations with the aid of

singular perturbation theory. The analogous case of the bacterial growth

fronts [74] indicates, however, that such a derivation can be quite subtle for

nonlinear diffusion problems. Indeed it is not entirely clear whether the as-

sumptions used in the sharp interface limit of [27,28] are fully justified. Also

for this reason, we develop here an alternative and more rigorous stability

analysis which allows for a systematic study on fronts in vortex dynamics.
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3.1.2 The model

The physical situation that we have in mind refers to a semi-infinite slab in

which there is an initial uniform distribution of vortices due to an external

field H applied along the ẑ direction. By reversing and increasing the field,

a front of vortices of opposite sign penetrates from the edge of the slab.

We will refer to the original vortices as antivortices with density n−, and to

the ones penetrating in after the field reversal as vortices with density n+.

In the region of coexistence of vortices and antivortices, annihilation takes

place. Vortices are driven into the interior of the superconducting sample

by a macroscopic supercurrent density J along the ŷ direction due to the

gradient in the density of the internal magnetic field. Flux lines then tend to

move along the direction x̂ transverse to the current under the influence of

the Lorentz force on each vortex (1.39). We consider the regime of pure flux

flow in which pinning can be neglected, while the viscous damping then gives

rise to a finite vortex mobility. The inclusion of pinning in this model would

lead to additional nonlinearities in the equations, e.g. through a nonlinear

current-voltage characteristic of the form used in Chapter 2. Nevertheless,

if the temperature changes are not taken into account, at the coarse-grained

continuum level, these would still translate into equations with nonlinear

diffusion of the same type as considered here. However, since we are mainly

interested in capturing the essence of the instability, and verifying if a planar

front is stable in the presence of an in-plane anisotropy, we limit our analysis

to a regime, where the relation between the velocity and the current is linear.

We believe, however, that most of our results do carry over to the more

general case.

We follow a coarse-grained hydrodynamic approach in which the fields

vary on a scale much larger than the distance between vortices. Since the

magnetic flux penetrates in the form of quantized vortices, the total magnetic

field in the interior of the slab can be expressed in a coarse graining procedure

through the difference in the density of vortices and antivortices,

B = (n+ − n−) φ0 ez. (3.1)
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The dynamical equations for the fields of vortices and antivortices are simply

the continuity equations

∂n+

∂t
= −∇ · (n+ v+) − n+n−

γ
,

∂n−

∂t
= −∇ · (n− v−) − n+n−

γ
, (3.2)

where the second term on the right represents the annihilation between vor-

tices of opposite sign. Since vortices annihilate in pairs, the total magnetic

field B is conserved in the annihilation process. The velocity v is deter-

mined with the phenomenological formula for the flux flow regime according

to (1.41)

ηv± = ±J × φ0

c
ez, (3.3)

where the Hall term has been neglected with good approximation for a case

of a dirty superconductor [3]. The drag coefficient η is given by the Bardeen-

Stephen model [50] that we have presented in the introduction and generally

depends on the temperature of the sample. In this work we neglect the

coupling to the temperature, but we will allow the mobility (the inverse of the

drag) to be anisotropic. In passing, we also note that the above linear relation

between the current density J and the flow velocity v± is often generalized

to a nonlinear dependence [28]. For simplicity, we do not consider this case

here, but our method can be extended to such situations.

We can estimate the recombination rate γ−1 in (3.2) between vortices

and antivortices as follows. Let us consider that we have a density n− of

antivortices in a background of vortices with density n+. Near the interface

where vortices and antivortices coexist, n+ ∼ n− ∼ a−2, where a is the

distance between vortices. Vortices and antivortices attract each other with a

force given by F = −∂rE12, where E12 is the opposite of the energy calculated

in (1.33), for vortices of the same sign. As we have seen in Chapter 1, in

a slab, the interaction between vortices is screened at large distance r, and

behaves as as 1/
√

r exp(−r/λ) for r > λ, whereas, for ξ 	 r < λ, it has a

logarithmic dependence. For large enough densities, a < λ. At a distance
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r � λ, we can write the following equation,

η
dr

dt
=

2φ2
0

8π2λ2r
, r � λ. (3.4)

By considering that an antivortex has then a vortex at a distance a ∼ (n+)1/2

away, upon integrating the equation above for r(t), between r(0) = a and

r(τann) = ξ, we then get for the annihilation time

τ−1
ann =

φ2
0

2π2λ2η(a2 − ξ2)
∼ φ2

0n
+

2π2λ2η
. (3.5)

In the last equality above we have considered a � ξ. Since the last term in

(3.2), represents the loss of vortices and antivortices due to the annihilation,

this equivalence holds
n−

τann
=

n+n−

γ
. (3.6)

Therefore, we can estimate the coefficient γ from (3.5) as

γ =
2π2λ2η

φ2
0

. (3.7)

We stress that the above estimate is only correct for sufficiently large vor-

tex densities, n±λ2 � 1. For much lower densities, typically vortices and

antivortices will annihilate much slower because of the exponential cutoff in

the interaction. For low densities, the effective vortex annihilation rate τ−1
ann

is therefore strongly suppressed. Secondly, one should keep in mind that vor-

tices and antivortices move in opposite directions and the vortex annihilation

time can become dominated by collision effects. However, for a continuum

description, the densities of vortices can not be very low, so we can assume

a < λ.

For a type II superconducting material with a Ginzburg-Landau param-

eter κ � 1/
√

2, the magnetization of the sample can be neglected, so that

B ≈ H. Then, by using the Maxwell equation (in which the term related to

the displacement currents has been neglected with good approximation)

J =
c

4π
∇ × B, (3.8)
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together with (3.1) and (3.3), and substituting into (3.2), we get

∂n+

∂t
=D∇ · (n+ ∇(n+ − n−)) − n+n−

γ
, (3.9)

∂n−

∂t
=D∇ · (n− ∇(n− − n+)) − n+n−

γ
. (3.10)

where the coefficient D is given by D = φ2
0/(4πη). The situation that we will

study in our analysis is the following. We consider a front of vortices which

propagates into the superconducting slab from the left edge at x = −Lx in

the positive x direction. At x = −Lx, we impose the boundary condition that

the density of vortices n+ is ramped up linearly in time, n+(−Lx, t) = Rt.

This corresponds to the field going up linearly, just as in the Bean critical

state [7]. We impose also that far right at x → ∞, n+ vanishes while n−

approaches a constant value n∞. Through a rescaling of time and length

variables, the coefficients of the equations (3.9) and (3.10) can be set to

unity. In particular, it is convenient to rescale the time and length variables

according to the following transformation

x → x

l0
, t → t

t0
n → n

n∞
, (3.11)

where the length scale l0 and the time scale t0 are given by

l0 =

√
φ2

0γ

4πη
=

√
π

2
λ, (3.12)

t0 =
γ

n∞
=

2π2λ2η

φ2
0n∞

=

(
λ

ξ

)2

π
a2
∞

ρnc2
. (3.13)

In the second equation above, we have substituted the viscosity coefficient

which we have defined in (1.43) and we have expressed the upper critical

field as Hc2 = φ0/2πξ2. As one can see from (3.12), we measure variations in

the densities at a scale of the order of the penetration depth λ. The unit of

time t0 is of the same order of the annihilation time in (3.5). By considering,

for a sample of YBa2Cu3O7−δ, a resistivity of 10−16 s−1, in Gaussian units,

a penetration depth λ ∼ 20 nm, a coherence length ξ ∼ 2 nm and a initial

uniform density for antivortices n∞ ∼ a−2
∞ ∼ 10 λ−2 for low fields, the unit
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of time t0 is estimated as t0 ∼ τann ∼ 10−9-10−10 s. As noted before, at very

low vortex densities the effective annihilation time is strongly enhanced and

thus the time scale becomes much larger than the value estimated above.

We will henceforth analyse the equations (3.9) and (3.10) with D= 1

and γ = 1. As we already mentioned before, and as we shall see in detail

below, the above continuum equations have a mathematical singularity at

the point where n+ vanishes. Of course, in reality there can not be such

a true singularity and our continuum coarse-grained model breaks down at

scales of the order of the penetration depth. In particular, the derivative

of the magnetic field and thus the current density J are not discontinuous

with respect to the space variable, but they decrease continuosly at a scale

given by the coherence length ξ. Effects which are neglected in the London

approximation all play a role there, and the Ginzburg-Landau equation would

provide a more appropriate starting point. Clearly, if the dynamical behavior

of our continuum model would be very sensitively dependent on the nature

of the singularity, then this would be a sign that the physics at this cutoff

scale would really strongly affect the dynamically relevant long-wavelength

dynamics. In practice, however, this is not the case. First of all, our method

to do the linear stability analysis is precisely aimed at making sure that the

singularities at the level of the continuum equations does not mix with the

behavior or perturbations of the front region. Secondly, as we shall see, there

are no instabilities on scales of the order of the microscopic cutoff provided

by the coherence length ξ.

3.1.3 Outline

In our analysis, we first study a planar front which propagates with a steady

velocity v along the x direction. By considering the propagation of the

front in the co-moving frame, we get a system of ODE’s for the vortex and

antivortex density fields. The derivation of the uniformly translating solution

is discussed in Section 3.2.1. As we will see, the profile that corresponds to the

planar front for the density of vortices is singular. In particular, in the regime
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on which we will focus, the derivative of the vortex density is discontinuous

at the point where the field vanishes, while in the low-velocity regime there

are higher order singularities. As a consequence of this nonanalytic behavior,

the numerical integration of the equations has to be done with care near the

singular point.

In Section 3.3, we perform a linear stability analysis of the planar solu-

tion. A proper Ansatz consists here of two contributions: a perturbation in

the line of the singular front and a perturbation of the density field. As we

will see, the presence of an in-plane anisotropy means that the (anti)vortex

flow velocity is no longer in the same direction as the driving force acting on

the (anti)vortices. Hence, contrary to the isotropic case, we have to consider

a component of the velocity perpendicular to the driving force. The viscos-

ity is thus represented by a non-diagonal tensor and depends on the angle

between the direction of propagation of the front and the fast growth direc-

tion given by the anisotropy. By applying a linear stability analysis we get a

system of equations for the fields representing the perturbation. Through a

shooting method, and by matching the proper boundary conditions, we are

then able to determine a unique dispersion relation for the growth rate of

the perturbation. In Section 3.4 we treat the case of a stationary front, with

a velocity v = 0. Contrary to the case of a moving front, no singularity in

the profiles of the fields is present and the analysis can be carried out in the

standard way.

3.2 The planar front

3.2.1 The equations and boundary conditions

In this section we analyse the planar uniformly translating front solutions

n+ = n+
0 (x− vt), n− = n−

0 (x− vt) which are the starting point for the linear

stability analysis in the next section. We refer to the system in a co-moving

frame in which the new coordinate is traveling with the velocity v of the front,

x̃ = x − vt. The temporal derivative then transforms into ∂t|x = ∂t|x̃ − v∂x̃.
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Figure 3.1: Profile of the planar front for the density of the vortices (n+) and

antivortices (n−) for the case v = 1. Vortices and antivortices coexist in a

thin transition region of the order of 4 l0 ∼ 4λ.

Since the front is uniformly translating with velocity v, the explicit time

derivative vanishes. In the co-moving frame system, we consider x̃ to vary in

the spatial interval [−L, +∞]. The equations (3.9) and (3.10) become

−v
dn+

0

dx̃
=

d

dx̃
n+

0

d

dx̃
(n+

0 − n−
0 ) − n+

0 n−
0 , (3.14)

−v
dn−

0

dx̃
=

d

dx̃
n−

0

d

dx̃
(n−

0 − n+
0 ) − n+

0 n−
0 . (3.15)

This is a system of two ODE’s of second order. Motivated by the physical

problem we wish to analyse, the relevant uniformly translating front solutions

obey the following boundary conditions at infinity

lim
x̃→+∞

n−
0 = 1, lim

x̃→+∞
dn−

0

dx̃
= 0,

lim
x̃→+∞

n+
0 = 0, lim

x̃→+∞
dn+

0

dx̃
= 0.

(3.16)
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On the left, the density of vortices n+ increases linearly with time with

sweeping rate R. After a transient time, because of the annihilation process,

the field n−
0 and its derivative vanish. The dynamical equation (3.14) for the

n+ field then yields

dn+
0

dx̃
= −v + O

(
1

n+
0

)
, x̃ → −∞ (3.17)

i.e., we recover the well known critical state result [7] that in the absence of

antivortices the penetrating n+ field varies linearly with slope −v. Requiring

that this matches the boundary condition n+(−Lx, t) = Rt for large times at

x̃ = −L then immediately yields that R = v2. One can easily derive that the

density of antivortices decays with a Gaussian behavior on the left. By using

indeed the relation (3.17) for large distances and substituting it in (3.15), we

get

−2v
dn−

0

dx̃
=

(
dn−

0

dx̃

)2

+ n−
0

dn−
0

dx̃
+ n−

0 (vx̃) . (3.18)

Assuming that n−
0 and its derivatives are small, the first two terms on the

right can be neglected and therefore this equation yields

n−
0 ≈ Ae−x̃2/4. (3.19)

Since the analysis of the planar front profiles and of their stability is naturally

done in the co-moving x̃ frame, we will in practice use a semi-infinite system

in the x̃ frame, and impose as boundary conditions at x̃ = −L

lim
x̃→−L

n−
0 = 0, lim

x̃→−L

dn−
0

dx̃
= 0,

lim
x̃→−L

n+
0 = const � 1, lim

x̃→−L

dn+
0

dx̃
= −v.

(3.20)

Of course, in any calculation we have to make sure that L is taken large

enough that the profiles n±
0 have converged to their asymptotic shapes.

3.2.2 Singular behavior of the fronts

Effectively, Eqs. (3.9-3.10) and (3.14-3.15) have the form of diffusion equa-

tions whose diffusion coefficient vanishes linearly in the densities n+ and n−.
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As already mentioned before, it is well known, from e.g. the porous medium

equation [69–71], that such behavior induces singular behavior at the point

where a density field vanishes (see e.g. Ref. [54]). Because we are looking

at fronts moving into the region where n+ = 0, in our case the singularity is

at the point where the n+ density vanishes. Let us choose this point as the

origin x̃ = 0. Then the relevant front solutions have n+(x̃) = 0 for all x̃ > 0,

see Fig. 3.1, so the fields n+ has compact support.

Because n−
0 (0) �= 0, the prefactor of the highest derivative in the n− equa-

tion does not vanish at x̃ = 0, and hence one might naively think that n−

is nonsingular at this point. However, because of the coupling through the

diffusion terms, this is not so. By integrating Eq. (3.15) over an interval cen-

tered around x̃ = 0 and using that the field values n+
0 and n−

0 are continuous,

one immediately obtains that

lim
Δx̃→0

(
dn+

0

dx̃
− dn−

0

dx̃

)∣∣∣∣
Δx̃

−Δx̃

= 0. (3.21)

Physically, this constraint expresses the continuity of the derivative of the

coarse-grained magnetic field (3.1). Mathematically, it shows that any sin-

gularity in n+
0 induces precisely the same singularity in n−

0 : to lowest order

the two singularities cancel. Fig. 3.1 illustrates this: one can clearly discern

a jump in the derivative of n−
0 at the point where n+

0 vanishes with finite

slope.

Before we analyse the nature of the singularity in more detail, we note that

because of the nonanalytic behavior at x̃ = 0, it is necessary to analyse the

region x̃ < 0 where n+
0 �= 0 separately from the one at x̃ > 0 where n+

0 = 0. In

the latter regions, the equations simplify enormously, as the remaining terms

in Eq. (3.15) can be integrated immediately. Upon imposing the boundary

conditions (3.16) at infinity, this yields

dn−
0

dx̃
= −v

(n−
0 − 1)

n−
0

, x̃ > 0. (3.22)

Let us now analyse the nature of the singularity at x̃ = 0. As the effective

diffusion coefficient of the n+-equation is linear in n+, analogous situations
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in the porous medium equation suggest that the field n+ vanishes linearly.

This motivates us to write for −1 	 x̃ < 0

n+
0 (x̃) =A+

1 x̃ + A+
2 x̃2 + · · · ,

n−
0 (x̃) =A−

1 x̃ + A−
2 x̃2 + · · ·+ n−

an(x̃), (3.23)

where n−
an(x̃) is the analytic function which obeys Eq. (3.22) for all x̃. Clearly,

the continuity condition (3.21) immediately implies

A+
1 = A−

1 . (3.24)

If we now substitute the expansion (3.23) with (3.24) into Eq. (3.14) for n+
0

we get by comparing terms of the same order

O(1) : A+
1 (v − n−′

an) = 0,

O(x̃) : 4(A+
2 − A−

2 ) − 2n−′′
an − n−

an = 0.
(3.25)

Here n−′
an = dn−

an/dx̃|x̃=0, etc. Likewise, if we substitute the expansion into

Eq. (3.15) for n−
0 , we get

O(1) : 2vA−
1 − 2n−

an(A
+
2 − A−

2 ) = 0, (3.26)

since the term of order unity involving n−
an cancels in view of (3.22). Higher

order terms in the expansion determine the coefficients A+
2 and A−

2 , and other

terms like A±
3 separately, but are not needed here. Together with (3.22), the

above equations (3.25-3.26) immediately yield

n−′
an =v,

n−
an(0) =1/2,

A+
1 = A−

1 =−v +
1

16v
. (3.27)

There are two curious features to note about the above result. First of

all, n+
0 always vanishes at the point where n−

0 is half of the asymptotic value

n∞ at infinity. Secondly, note that A+
1 is negative for v ≥ 1/4 and positive

for v < 1/4. Since the vortex density n+ has to be positive, we see that
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these uniformly translating front solutions can only be physically relevant

for v ≥ 1/4.

Since the front velocity in this problem is not dynamically selected but

imposed by the ramping rate R = v2 at the boundary, we do expect physically

realistic solutions with v < 1/4 to exist. In fact, it does turn out that in this

regime the nature of the singularity changes: instead of vanishing linearly, n+
0

vanishes with a v-dependent exponent. Indeed, if we write for −1 	 x̃ < 0

n+
0 (x̃) =|x̃|α(A+

1 + A+
2 x̃ + · · · ), (3.28)

n−
0 (x̃) =|x̃|α(A−

1 + A−
2 x̃ + · · · ) + n−

an(x̃), (3.29)

and substitute this into the equations, then, in analogy with the result above,

we find

n−′
an =v,

n−
an(0) =1/2,

A+
1 =A−

1 ,

α =
1

8v2
− 1 > 1, (v < 1/4), (3.30)

while again for x̃ > 0 n+
0 vanishes. A singular behavior with exponent de-

pending on the front velocity v is actually quite surprising for such an equa-

tion [75]. However, one should keep in mind that this behavior is intimately

connected with the initial condition for the n− vortices. If one starts with

a case where n− does not approach a constant asymptotic limit on the far

right, but instead increases indefinitely, one will obtain solutions where n+

vanishes linearly. For this reason, and in order not to overburden the anal-

ysis with mathematical technicalities, we will from here on concentrate the

analysis on the regime v ≥ 1/4.

Since our study will limit the stability analysis to fronts with velocity

v ≥ 1/4 in our dimensionless variables, let us check how the scale that we

consider relates with the realistic values of flux flow velocities. By considering
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relations (3.11) the velocities are measured in units of

v0 =
l0
t0

=

√
1

2π
λ

(
ξ

λ

)2
ρnc

2

a2∞
. (3.31)

where we have expressed the viscosity η in terms of the upper critical field

Hc2 = φ0/2πξ2, and the normal state resistivity ρn using [50]. Inserting

the estimated values that we have calculated for l0 and t0 in Sec. 3.1.2, we

measure velocities in units of 104 cm/s. Therefore our model is valid at high

flux flow velocities, for a scale of the order or larger than 104 cm/s. This is

consistent with the fact that we have used a linear current-voltage relation,

for large currents and large velocities in the regime of flux flow.

3.2.3 Planar front profile

At first glance, the equations look like two coupled second order equations.

However, there is more underlying structure due to the fact that the annihi-

lation term does not affect the difference n+ − n−. In order to integrate the

set of equations (3.14-3.15), it is convenient to consider the following trans-

formations in the variables related to the sum and difference of the density

fields

D =n+ − n−,

S =n+ + n−. (3.32)

In these variables, the equations for the planar front become

−v
dD0

dx̃
=

d

dx̃
S0

dD0

dx̃
, (3.33)

−v
dS0

dx̃
=

d

dx̃
D0

dD0

dx̃
− S2

0 − D2
0

2
. (3.34)

By numerically integrating (3.33-3.34) and looking for the solutions which

satisfy the boundary conditions above, we obtained the uniformly translating

front solutions. Fig. 3.1 illustrates the planar profile for v = 1. As one can

observe, the region where vortices and antivortices coexist is a thin transition
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3. Vortex-antivortex front

zone of the order of Δx ∼ 4 λ, thus of the order the penetration depth. The

fact that vortices and antivortices coexist is due to the finite annihilation

time, as we have seen in Sec. 3.1.2. As one can observe, the profile is singular

at the point where the density of the n+ field vanishes linearly, in agreement

with the earlier analysis.

Because of this singularity, the numerical integration of the set (3.33-3.34)

is quite nontrivial. In particular, because of the discontinuity in the derivative

of the n+ field, the system (3.33-3.34) effectively needs to be solved only in

the interval [−L, 0[, as the matching to the behavior for x̃ > 0 has already

been translated into the boundary conditions (3.27). The first equation can

be straightforwardly integrated and by combining it with the second, the set

reduces to

dD0

dx̃
=
−v(D0 + 1)

S0
,

dS0

dx̃
=

S0(v(2D0 + 1))
dD0

dx̃
+ (S4

0 − S2
0D

2
0)/2

vS2
0 + (v(D2

0 + D0))
. (3.35)

One can easily verify that in this formulation, the expression on the right

hand side is indefinite at the singular point x̃ = 0, as both the terms in the

numerator and denominator vanish. In order to evaluate the expression, it is

then necessary to perform an expansion of the numerator and denominator

around the critical point values S0 = −D0 = n∞/2. From such an analysis

one can then recover the relations (3.27) which we previously obtained from

a straightforward expansion of the original equations. Numerically, we inte-

grate the equations by starting slightly away from the singular point with

the help of the results from the analytic expansion.
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3.3. Dynamics in the presence of anisotropy

3.3 Dynamics in the presence of anisotropy

3.3.1 Dynamical equations

As mentioned before, we are interested in the effect that an anisotropy in the

vortex mobility could have on the stability of the front.

In a material characterised by an in-plane anisotropy, the effective viscous

drag coefficient depends on the direction of propagation of the front. More

precisely, the mobility defined in (3.3) then becomes a non-diagonal tensor.

This leads to a non-zero component of the velocity v perpendicular to the

driving Lorentz force. We want to investigate whether the non-collinearity

between the velocity and the force is responsible for an instability of the

flux-antiflux interface. In the presence of anisotropy, the phenomenological

formula (3.3) then has to be replaced by

v = η̂−1F = Γ R−1

(
1 0

0 α

)
R F, (3.36)

where Γ is a constant, α represents the anisotropy coefficient and R is the

rotation matrix corresponding to an angle θ between the direction of propa-

gation of the front x and the principal axes x′ of the sample. The coefficient

α varies in the range [0,1] with the limiting case of infinite anisotropy corre-

sponding to α → 0. For α = 1 the isotropic case is recovered. The matrix

η̂−1 is given in particular by

η̂−1 = Γ

(
cos2 θ + α sin2 θ cos θ sin θ(1 − α)

cos θ sin θ(1 − α) α cos2 θ + sin2 θ

)
, (3.37)

The dynamical equations for the fields n+ and n− in the presence of anisotropy

generalize to

∂n±

∂t
=

∂

∂x

(
n± ∂

∂x

(
n± − n∓))+ p

∂

∂y

(
n± ∂

∂y

(
n± − n∓)) (3.38)

+k
∂

∂x

(
n± ∂

∂y

(
n± − n∓))+ k

∂

∂y

(
n± ∂

∂x

(
n± − n∓))− n+n−,
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3. Vortex-antivortex front

where the length and time variables have been rescaled and the elements k

and p depend on the angle θ through the formulas

k =
cos θ sin θ(1 − α)

cos2 θ + α sin2 θ
, p =

α cos2 θ + sin2 θ

cos2 θ + α sin2 θ
. (3.39)

Starting from an initially planar profile derived in Section 3.2.1, we want to

study the dynamics of the front of vortices and antivortices by performing

an explicit linear stability analysis on equation (3.38).

3.3.2 The linear stability analysis

As we have already mentioned in earlier sections, our linear stability analysis

differs from the standard one, due to the presence of a singularity. The

type of perturbation that we want to consider should not only involve the

profile in the region where n+ vanishes, but should also in particular involve

the geometry of the front. In other words, as Fig. 3.2 illustrates, we want to

perturb also the location of the singular line at which the density n+ vanishes.

As discussed in more detail in [74], the proper way to implement this idea is

to introduce a modulated variable

ζ(x̃, y, t) = x̃ + εeiqy+ωt+iΩt, (3.40)

and then to write the densities in terms of this “co-moving” modulated vari-

able. Of course, the proper coordinate is the real variable Re ζ . However,

when we expand the functions in Fourier modes and linearize the dynamical

equations in the amplitude ε, each Fourier mode can be treated separately.

Thus, we can focus on the single mode with wavenumber q and amplitude ε

and then take the real part at the end of the calculation. The profiles of the

fields n+ and n− are now perturbed by writing

n+(ζ, y, t) =n+
0 (ζ) + ε(n+

1 + in+
2 )(ζ)eiqy+ωt+iΩt, (3.41)

n−(ζ, y, t) =n−
0 (ζ) + ε(n−

1 + in−
2 )(ζ)eiqy+ωt+iΩt, (3.42)

where n+
0 and n−

0 are simply the planar front profiles determined before. Note

that since we write these solutions as a function of the modulated variable ζ ,
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Figure 3.2: Perturbed front profile for the vortex and antivortex density field.

The fronts propagate in the x direction and has a sinusoidal modulation in

the y direction.
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3. Vortex-antivortex front

even the first term already implies a modulation of the singular line. Indeed,

the standard perturbation Ansatz would fail for our problem because of the

singular behavior of the front. The usual Ansatz of a stability calculation

n+(x̃, y, t) = n+
0 (x̃) + ε(n+

1 + in+
2 )(x̃)eiqy+ωt+iΩt, (3.43)

only works if the unperturbed profiles are smooth enough and not vanishing in

a semi-infinite region. If we impose on our corrected linear stability analysis

the conditions

n+
1 + in+

2

n+
0

bounded and
n−

1 + in−
2

n−
0

bounded, (3.44)

then as ε → 0 the perturbations can be considered small everywhere, while

we allow for a modulation of the singular line [74].

We next linearize the equations (3.38) around the uniformly translating

solution according to (3.41-3.42). We obtain a set of four linearized ODE’s

for the variables D1, D2, S1, S2, which correspond, respectively, to the real

and imaginary parts of the difference and sum variables introduced in (3.32).

These equations, which are reported in the Appendix, depend also on the

unperturbed profiles D0, S0, which are known from the derivation in Sec-

tion 3.2.1. Moreover, there is an explicit dependence on the parameters

q, ω, Ω.

In order to analyse the stability of the front of vortices and antivortices,

the dispersion relation ω(q), Ω(q) must be derived. This can be determined

with a shooting method: for every wavenumber q there is a unique value

of the growth rate ω and frequency Ω which satisfies the boundary condi-

tions related to the perturbed front. If the growth rate is positive, a small

perturbation will grow in time, thus leading to an instability.

3.3.3 The shooting method

The singularity of the front makes the numerical integration difficult to han-

dle, as in the case of the planar front. In view of the relations (3.44), the
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3.3. Dynamics in the presence of anisotropy

boundary conditions

n+
1 = 0, n+

2 = 0,

have to be imposed for ζ = 0. These yield the boundary conditions for the

variables D1, S1, D2, S2

S1 = −D1, S2 = −D2. (3.45)

Moreover, by substituting these boundary conditions and the relations (3.27)

for the unperturbed fields in the linearized equations for D1, D2, S1, S2, the

following relations can be derived for ζ vanishing from the left

dD1

dζ

∣∣∣∣
0−

= ω + qkD2(0), (3.46)

dD2

dζ

∣∣∣∣
0−

= Ω − qkD1(0) − 2qk
dD0

dζ

∣∣∣∣
0−

. (3.47)

Since the jump in the derivative of the n+ field is equal to the jump in the

derivative of the n− field, the relations above for the derivatives of D1 and D2

are continuous at ζ = 0. The derivatives related to S1 and S2 have a jump,

however. An explicit expression for the derivative of the sum of the real

and imaginary part of the perturbations S1, S2 can also be derived from the

equations reported in the Appendix. In particular, these have the following

generic form
dS1(ζ)

dζ
=

N1(ζ)

D1(ζ)
,

dS2

dζ
=

N2(ζ)

D2(ζ)
, (3.48)

which is similar in structure to Eqs. (3.35): N1,D1,N2,D2 depend on ζ

through the set of functions(
D0, S0,

dD0

dζ
,
dS0

dζ
, D1, S1,

dD1

dζ
, D2, S2,

dD2

dζ

)
,

and on the parameters q, ω, Ω.

The equations (3.48) are not defined at the singular point. By substi-

tuting the boundary conditions given by (3.45-3.47), both the numerators

N1,N2 and the denominators D1,D2 vanish. Again, as with (3.35), we en-

counter the problem of dealing with the singularity at ζ = 0. This difficulty
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Figure 3.3: Dispersion relation ω(q) for different values of anisotropy coeffi-

cient α and a velocity v = 1.0.

can be overcome in the same way as in Section 3.2.2 for the derivation of the

planar front profile. In particular, we can not start the integration at the

singular point, but we have to start the backwards integration at some small

distance on the left of ζ = 0. We do so by first obtaining the derivatives

of the fields S1 and S2 analytically through the expansion of the equations

(3.48) around the critical point. In the limit ζ → 0, this yields the following

self-consistency condition for the derivatives,

dS1

dζ

∣∣∣∣
0−

=
N ′

1|0−
D′

1|0−
,

dS2

dζ

∣∣∣∣
0−

=
N ′

2|0−
D′

2|0−
, (3.49)

where N ′
1,N ′

2,D′
1,D′

2 denote the derivatives of the corresponding functions

evaluated at the singular point. Once these are solved and used in the numer-

ics, the integration can be carried out smoothly. Because of the singularity

at the point ζ = 0, the derivative of the perturbed fields are not continuous

there and a relationship for the discontinuity in the derivatives can be de-
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3.3. Dynamics in the presence of anisotropy

rived as was the case for the unperturbed fields. In particular the expression

(3.21) is generalized for the perturbed field. This implies that the derivative

of the total magnetic field is again continuous even at the singularity.

From the equations for the perturbed fields given in the Appendix, the

boundary conditions at ζ = −L can be derived. Just like the unperturbed

field for the antivortex density vanishes on the left with a Gaussian behavior

according to (3.19), also the perturbations n−
1 and n−

2 vanish as a Gaussian,

i.e. faster then an exponential.

Moreover, since the density of vortices increases linearly asymptotically,

we can retain in the equations only terms which are proportional to the

density of vortices n+
0 . From this we get the following equation for the density

of the perturbation δn+ = n+
1 + in+

2 for ζ 	 −1

d2δn+

d2ζ
+ 2iqk

dδn+

dζ
− pq2δn+ = pq2dn+

0

dζ
. (3.50)

The solutions of this equation which do not diverge are of the form

δn+ = −dn+
0

dζ
+ Ceλζ , λ = iqk +

√
(q2(p − k2)), (3.51)

where C is an arbitrary constant and k and p represent the coefficients of

anisotropy defined in (3.39). Thus, the perturbations decay on the left of the

sample with a decay length ζ , such that

1

ζ
= q
√

p − k2. (3.52)

Note that the decay length becomes very large for small q; this type of

behavior is of course found generically in diffusion limited growth models.

Technically it means that we need to be careful to take large enough systems

to study the small-q behavior. From the numerical integration it was verified

that Eqs. (3.51) and (3.52) describe correctly the behavior of δn+ at large

distance.

Furthermore, since vortices are absent in the positive region, we have to

impose that the density of the perturbation related to the n+ field, and its

derivative in space, have to vanish there. Similarly we get a second ODE
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Figure 3.4: Imaginary part of the growth rate Ω(q) for different values of the

anisotropy coefficient α, with velocity v = 1.0.

with constant coefficients by considering that the density of antivortices is

constant at large positive distances. For ζ � 1

d2δn−

d2ζ
+ (v + 2iqk)

dδn−

dζ
− (pq2 + ω + iΩ)δn− = 0. (3.53)

In order to satisfy the boundary condition, we must consider the solution

which vanishes exponentially. The solution of this equation which does not

diverge is of the form

δn− = C1e
λ̄ζ , Re(λ̄) < 0. (3.54)

We applied the shooting method in a 4-dimensional space defined by the free

parameters D1(0), D2(0), ω and Ω, by integrating backward in the interval

[−L, 0] and then in [0, +∞[, looking for solutions of the type (3.51,3.54).
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3.3. Dynamics in the presence of anisotropy

By matching the solutions to the boundary conditions

lim
ζ→−L

n+
1 = −dn+

0

dζ
. lim

ζ→−L
n+

2 = 0,

lim
ζ→+∞

n−
1 = 0, lim

ζ→+∞
n−

2 = 0,
(3.55)

we then obtain a unique dispersion relation for the real part of the growth

rate ω(q).

3.3.4 Results

Fig. 3.3 represents the dispersion relation for an angle θ = π/4 and different

coefficients of anisotropy α. The front is always stable, even in the presence

of very strong anisotropy, for very low values of α. As the anisotropic coeffi-

cient α is lowered from above, for fixed wavenumber q, the growth rate ω(q)

increases, but it is always negative. For small q a quadratic behavior of ω(q)

is found

ω ≈ cq2, q 	 1, (3.56)

where the (negative) coefficient c depends on the anisotropy of the sample. In

Fig. 3.4 we have plotted the frequency Ω as a function of the wavenumber q.

One observes from (3.40) that Ω/q is the velocity with which the perturbation

of the front shifts along the direction transverse to the propagation direction.

The behavior of Ω(q) is linear for low wavenumber q and is proportional to

the non-diagonal element of the mobility tensor k,

Ω(q) ∝ kq, q 	 1. (3.57)

For an anisotropy coefficient equal to one the isotropic case is recovered and

then Ω(q) vanishes identically for all wavenumbers.

As we have already mentioned, the equations that we have used are valid at

scales larger than the cutoff represented by the penetration depth. Anyway,

since our results clearly show a stability in the large q behavior, our model

provides a good description for the dynamics of the front.

In Fig. 3.5 we plot the growth rate ω as a function of q2 for different values

89



3. Vortex-antivortex front

0 2×10
-4

4×10
-4

6×10
-4

8×10
-4

1×10
-3-2×10

-2

-2×10
-2

-1×10
-2

-5×10
-3

0

θ= 0.0
θ= π/8
θ= π/6
θ= π/4
θ= π/3
θ= 3π/8
θ= π/2

ω

q

0 π/12 π/6 π/4 π/3 5π/12-20

-18

-16

-14

-12

-10

=  cq2ω

c

θ

Figure 3.5: (a) Plot of ω(q2) as a function of the angle θ. (b) For a coefficient

of anisotropy α = 0.8 and a velocity v = 1.0, the results from linear regression

for the slope evaluated at q = 0, c = dω/d(q2), are plotted as a function of θ.
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of the angle θ. Linear regression then gives a slope corresponding to the

constant c in (3.56), which is half the second derivative of the growth rate ω

with respect the wavenumber at q = 0. The dependence of c as a function

of the angle θ is shown in the lower plot. As the angle θ increases, the front

becomes more and more stable. This behavior can be understood directly

from the form of the equations. By applying the transformation

θ → π

2
− θ, 0 < θ < π/4, (3.58)

the elements of the mobility tensor transform into

p → 1

p
, k → k

p
. (3.59)

By considering the quadratic relation of ω(q) for small q and the fact that

the equations are invariant under the transformations q̃ = pq and (3.59), it

is easy to derive

ω(q)|θ = p2ω(q)|π/2−θ, 0 < p < 1, (3.60)

which proves that the dispersion relation becomes more negative as θ in-

creases. When the direction of propagation is that of the fast growth direc-

tion the isotropic case is recovered. In Fig. 3.6 we show the dependence of

the coefficient c as a function of the velocity of the front. The front is stable

for velocities for which n+
0 vanishes linearly (v ≥ 1/4). Furthermore the front

becomes more stable with increasing v. As one can easily understand from

the form of the unperturbed front, the vortex density profile becomes steeper

with increasing the velocity. The limit of infinitely large v corresponds to

the case of a front of vortices propagating in the absence of antivortices.

Thus, the results confirm the stability of the front without an opposing flux

of antivortices.

3.4 Stationary front

We will analyse here also the case of a stationary front, with v = 0. In

this case it is easy to derive the unperturbed profiles for the densities of
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Figure 3.6: Velocity dependence of half the second derivative of ω(q) with

respect to q evaluated at q = 0. As the velocity increases the front becomes

more and more stable.

vortices and antivortices, since they are continuous and do not present any

singularities. This case was previously studied in ( [27]) and treated in terms

of a sharp interface limit. Equations (3.14,3.15) in this case simplify to

d

dx̃
n+

0

d

dx̃
(n+

0 − n−
0 ) − n+

0 n−
0 =0, (3.61)

d

dx̃
n−

0

d

dx̃
(n−

0 − n+
0 ) − n+

0 n−
0 =0. (3.62)

The profiles of vortices and antivortices are symmetric in this case, and out-

side the interfacial zone the density fields can be easily derived analytically.

By neglecting the annihilation term, the profiles of vortices and antivortices

have a dependence on the coordinate x̃ of the type

n±
0 =

√
N2 ∓ 2C(x̃ ± x̃1), (3.63)

where ] − x̃1, x̃1[ denotes the region where vortices and antivortices overlap,

N is the density at (±x̃1) and C a constant. The density of vortices and
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Figure 3.7: Density profiles for vortices and antivortices in the stationary case

(v = 0). The profiles are smooth and are not characterised by singularities,

as was the case for fronts propagating with finite velocity.

antivortices decays with a Gaussian tail, as can easily be calculated from

equations (3.61 and 3.62). For Eq. (3.61), by considering that n+
0 assumes a

Gaussian-like dependence, and from the form of (3.63), we get the following

equation

−dn+
0

dx̃

dn−
0

dx̃
= n+

0 n−
0 . (3.64)

This yields in a self-consistent way a Gaussian behavior for n+

n+
0 ≈ Ae−x̃2−x̃(N2/C−2x̃1), (3.65)

where A is a constant. The stability of the front was studied by following

a similar procedure as for the moving front. Because of the regular profiles,

the Ansatz (3.40) that we have applied for the case of a finite velocity is

not required. Thus the linear stability analysis can be carried out in the

standard way and the linearised equations for the perturbation can easily

be integrated. We do not explain here the procedure in detail, since it is a
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Figure 3.8: Dispersion relation ω(q) in the case of a stationary front. An

instability is found for a critical anisotropy coefficient αc ≈ 0.02.

simplified version of the one discussed in the previous section. As Fig. 3.8

shows, an instability is found below a critical coefficient of anisotropy αc ≈
0.02. These results confirm previous approximate calculations [27], but, as

we have already underlined, this coefficient would correspond to an extremely

high in-plane anisotropy which is not found in any type of superconducting

material [63–65]. Typical values for the in-plane anisotropy of YBCO are

for example 1/αc ≈ 1.15, while the inverse of the critical coefficient that we

have found is one order of magnitude higher. We conclude that this model of

a stationary front in the presence of anisotropy is insufficient to explain the

turbulent behavior that has been found experimentally at the flux-antiflux

boundary.
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3.5 Conclusions

From our analysis it follows that the planar front of vortices moving with a

sufficiently large velocity v in a superconducting sample is stable even in the

presence of strong in-plane anisotropy. For stationary fronts, on the other

hand, our stability analysis is in agreement with the earlier approximate anal-

ysis of [27], confirming that such fronts show an instability to a modulated

state in the limit of very strong anisotropy. From an experimental point of

view, the critical anisotropy of this instability is extremely high when com-

pared with real values that can be found for materials with both tetragonal

and orthorhombic structure [63–65], even when a nonlinear current-electric

field characteristic is considered [28]. From a theoretical point of view, the

behavior in the limit of small but finite v is still open as we have not investi-

gated the range 0 < v < 1/4 where the profiles have a noninteger power law

singularity. It could be that the instability gradually becomes suppressed as

v increases from zero, or it could be that the limit v → 0 is singular, and that

moving fronts are stable for any nonzero v. Only further study can answer

this question.

Our calculations differ markedly from previous work in that we focus on

moving fronts from the start, where our results follow from a straightforward

application of linear stability analysis to our model. Taken together, these

results lead to the conclusion that a model which includes a realistic in-plane

anisotropy, but which neglects the coupling with the temperature, cannot

explain the formation of an instability at a vortex-antivortex boundary for

sufficiently large front velocities. At the same time, our calculations show

that the issue of the stability of vortex fronts is surprisingly subtle and rich.

For example, we note the fact that for any front velocity, the value n−
0 at

the singular line is exactly n∞/2 for any v. One question is whether this

is simply a mathematical curiosity or if the absence of instabilities is re-

lated to this unexpected feature through the boundary conditions at infinity.

Moreover, we have not investigated if the presence of a gradient in the an-

tivortex distribution far ahead of the front could generate a long-wavelength
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front instability. These are all still open issues, so clearly it is difficult to

make general statements about the (transient) stability of such fronts in less

idealized situations.

One possible interpretation of the results is that when one has a finite slab

into which vortices penetrate from one side, and antivortices from the other

side, a stationary modulated front (annihilation zone) forms in the middle

for extremely large anisotropies. However, a moving front never has a true

Mullins-Sekerka type instability, since a protrusion of the front into the region

of antivortices is always damped as a result of the increased annihilation.

The fact that the “turbulent” behavior at the interface between vortices

of opposite sign was found in a temperature window [24], suggests that the

coupling with the local temperature in the sample could be important. It

appears that it is necessary to include both the heat transport and dissipation

in the model. In analogy with the finger-like patterns that we have analysed

in the Chapter 2 of this thesis, the local over-heating of the sample could

play a role. The question is why the instability is observed only at the

boundaries between vortices and antivortices and does not affect the vortices

behind the front. On the other hand, to our knowledge, this type of turbulent

behavior has been observed specifically for a sample of YBa2Cu3O7−x with

an in-plane anisotropy and not for other type of materials. This suggests

a possible explanation of the unstable behavior at the interface in terms

of the combined effect of the in-plane anisotropy together with the local

temperature variations in the sample. Applying an appropriate stability

analysis to an extended model that takes into account this coupling is clearly

an important issue for the future.
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Chapter 4

Concluding remarks

In this thesis we have described and analysed some out-of-equilibrium pat-

terns in type II superconductors. The main issue on which this work focused

was the propagation of fronts separating two different coexisting phases. We

explored in particular the dynamics of an interface between the intermediate

and the superconducting state as a first example (Chapter 2), and the dy-

namics of an interface between flux of opposite sign as a second case (Chapter

3).

The central theme of this thesis is the collective behavior of vortices and

their final distribution into domains whose shape is not trivially dependent

on the material inhomogeneities, but determined extrinsically by an instabil-

ity. We have seen that flux penetration can occur through the development of

vortex domains, which have a well defined shape and propagate very rapidly.

A first question that arises towards the understanding of this pattern for-

mation is which physical factors play a fundamental role in the development

of these phenomena. Moreover, a second issue is the study of the pattern

features, like the shape and the characteristic size.

An important characteristic of systems of vortices is that they are dissi-

pative: as we have described in Chapter 1, vortex motion is always accompa-

nied by dissipation, due to the normal nature of the cores. The heat released

because of the coupling between the induced electro-magnetic field and the
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currents certainly has dramatic effect on the stability of the material. A tem-

perature increment continues to grow if the amount of heat that is generated

in this process can not be transfered to the substrate with a fast enough rate.

Since, expecially in the creep regime, the dynamics of vortices is driven by

a thermal activation over the pinning barriers, as a consequence of the over-

heating, a large amount of flux penetrates, leading to avalanches. In this

thesis we have underlined the importance of this interplay on the selection of

the pattern shape and of the dynamics of the front. While in the Chapter 2

we have strengthened these ideas by proposing a model with a self-organized

finger-like domains dependent on the temperature distribution, in Chapter

3 we have pointed out the limitation of a model that does not include this

dependence.

Beside the relevance of the temperature for the dynamics of vortices,

a fundamental characteristic for their collective behavior is that, contrary

to the particles of other pattern-forming systems, they do not attract but

repel each other. This has an immediate consequence for the properties of

a finite-size domain of vortices, since the absence of a stabilizing factor like

the surface tension e.g. at the interface between a solid and a liquid makes

the study of the final pattern selection non-conventional.

On the other hand, in Chapter 3 we have considered a system of vortices

of opposite sign that attract each other and annihilate by dissipating the core

energy.

In both examples of vortex front dynamics that we have investigated,

we have adopted a coarse-grained picture for the magnetic flux distribution,

in which we have neglected the finite core size and the non-local relations

ignored by the London approximation. A more accurate analysis beyond

this cutoff scale, would be provided by the Ginzburg-Landau equations. For

the first case of propagating front (Chapter 2), this macroscopic continuum

description implies a picture with a domain of constant density of magnetic

flux and a sharp transition zone at the interface with the superconducting

state. In the second case (Chapter 3), instead, the continuity involves a
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singularly vanishing front at the boundaries with vortices and antivortices.

This approach, however, is justified in both cases since it does not affect the

relevant dynamics of the front. In the first case we are interested indeed in

the contour dynamics of the domain of vortices, for which a one-dimensional

description is quite appropriate, as we have seen, whereas in the second one

we concentrate on the long-wavelength behavior of the front and the interface

dynamics is not affected by the singularity.

4.1 Finger-like patterns.

In Chapter 2 we have studied finger-like domains of vortices in Nb thin films

and investigated their characteristic shape and width. We have proposed

and built a novel-type of model for the front dynamics based on a boundary-

layer approximation. This approach, which has extensively been used for

other pattern-forming systems to describe phenomena like dendrites at the

solid-liquid interface or viscous fingering, had never been used for systems of

vortices. Even if our formulation has some limitations, like e.g. the neglected

non-locality of the current response or long-ranges forces, it captures, how-

ever, the essence of the phenomenon and provides a proof for the well-defined

shape of finger-like patterns. In our model, by supporting the theory of a

thermo-magnetic instability, we suggested the picture of propagating fingers

with a self-organized shape, with a relatively higher mobility and velocity

at the tip and a lower mobility and velocity on the side. A higher speed

leads to an enhanced mobility and therefore more heat is generated. From

our analysis we could estimate the fingers width and its dependence on the

substrate temperature. In order to understand more complex structures than

the flux filaments with finger-like shape, the long-range interactions between

current ribbons at the edge of the domain should be included. Moreover, to

study dendritic patterns one should take into account also inhomogeneities.

As supported by previous numerical simulations, indeed, flux filaments can

split and evolve into patterns with a branched-like morphology when they
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encounter a defect.

In Chapter 2 we could determine the finger-like contour of shape-preserving

vortex domains. However, as we have already pointed out, the solutions that

we have found belong to a continuous family. An open question is whether

and how a unique solution, that corresponds to a determined value of the

velocity, is selected. In some pattern-forming system, like in the case of den-

drites in crystal growth, the velocity is uniquely selected and determined by

solving the problem of stability in the presence of a surface tension type term,

but in other pattern forming systems (like front propagation), a unique solu-

tion is dynamically selected [34]. Because of the absence of a surface tension

at the interface, the problem of the stability of vortex fronts is quite subtle.

However, one useful way of examining the stability of the finger-like pat-

terns is studying the contour dynamics of the domain of vortices by using

the system of partial differential equations, defined in (2.10) and (2.11). In

the frame of our local growth model, as we have seen, the dynamics of the

front can be described in terms of the arclength s, the curvature κ(s) and the

angle θ(s) between the normal direction n̂ and a fixed direction ẑ. Although

an exhaustive study of the vortex finger dynamics is beyond the scope of

this thesis, we would like to present here the first preliminary results of such

studies.

4.1.1 Contour dynamics

The contour dynamics of a domain of vortices can be studied by starting from

an initial shape for the domain of vortices, and using the following system of

equations (4.1),

∂θ

∂t
= − 1

sT

∂vn(θ)

∂σ
− sT κ(σ)

(∫ σ

0

κvn(θ) dσ′ − σ

∫ 1

0

κvn(θ) dσ′
)

,

∂sT

∂t
= sT

∫ 1

0

κvn(θ) dσ, (4.1)

where sT is the total arclength of the curve and σ the parametrisation. The

equations above describe the interface evolution in a geometrical model like
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x

y

x

y

Figure 4.1: In the image above: countour dynamics of the finger-shape do-

main of vortices for a time t = 0.2 in our units, for v0 = 1.04 and α = 7.0.

In the plot below the finger shapes of the domain at different time have been

superposed.
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x

y

Figure 4.2: Contour dynamics of the domain for α = 50.0 and v0 = 1.4 after

a time t = 0.08.

the one that we have considered in Chapter 2; the derivation of such equations

can be found in [59, 60]. In addition, one has to couple the equations above

with the ones introduced in Chapter 2 for the normal velocity of the interface

and the time derivative of the heat content, (2.10) and (2.11).

4.1.2 Preliminary results of the simulations

We have performed some numerical simulations and directly solved the sys-

tem of (4.1) together with (2.10) and (2.11), to study the evolution of the

solutions found in Chapter 2. We discretised the arclength of the curve with

a finite numbers of points parametrised by σi = 1/n, i = 1, n and we inte-

grated the equations by employing a Runge-Kutta routine with an stepsize

control [61]. Figure 4.1 illustrates the dynamics of the domain contour for a

Stekly parameter defined in (1.66) α = 7.0 and for a velocity v = 1.04 in the
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x

y

Figure 4.3: Contour dynamics of the domain for the same parameters as in

Fig 4.1, after a time t = 2.6.

dimensionless coordinates of Chapter 2, for the smooth f(j, T ) characteris-

tic. As one can observe from the superposed curves related to the contour

at different time (although there is a slight evolution halfway between the

tip and the sides), the domain maintains the same shape for a time interval

t � 0.2. This confirms that the finger-like patterns which we have determined

in Chapter 2 are indeed shape-preserving.

As we have already stressed previously, besides the problem of deter-

mining the shape-preserving growth forms, an other issue for the complete

understanding of these patterns is the stability of the solutions. The solu-

tions that we have found are shape-preserving, but we have not investigated

which ones are stable among the continuous family, parametrised e.g. by the

velocity v0 of the tip. While Fig. 4.1 illustrates that some solutions are stable

for short times, Fig. 4.2 shows that the domain contour for an initial different

configuration can become unstable and evolve into other shapes. This im-

age represents the contour dynamics of the fingers for a parameter α = 50.0

and a tip velocity v0 = 1.4. The different curves reproduce the shape of the

pattern at different time and consecutive configurations differ for a time step

Δt = 0.01. As one can observe from e.g. the space interval Δy at the tip

between two consecutive configurations, the velocity with which the pattern
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propagate increases rapidly. Fig. 4.3 also shows that the initial finger-like

shape of Fig. 4.1 can evolve into a different structure.

In analogy with the case of dendrites in crystal growth, we encounter in

our analysis the problem of the velocity selection. However, as we have un-

derlined, this issue turns to be quite subtle for the case of vortex patterns.

The examples that we have just described from the first results of our nu-

merical simulations, show that the scenario of the vortex domain dynamics

can be quite rich and that it requires a deeper study for a complete under-

standing of the front stability. The use of numerical simulations is only the

first step towards such an analysis.

As we have discussed while describing the experiments on vortex-patterns

in Chapter 1, the domain shapes can change, depending on the temperature

of the sample, and the structure becomes more complex. Therefore an other

issue for a future study is whether the finger shape could indeed converge to

such forms, like dendrites with branch-like structures. The analysis of the

time evolution of the contour in the sharp interface approximation could be

also useful for possible future investigations about these different morpholo-

gies.

4.2 Stability of a vortex-antivortex front

In Chapter 3 we have analyzed the stability of an interface between vortices of

opposite sign. The aim of our investigation was to understand the mechanism

that leads to the unstable “turbulent” behavior observed at the boundaries

of a YBa2Cu3O7−δ crystal. In particular we examined whether such an insta-

bility originates from the in-plane anisotropy of the sample, in analogy with

the Kelvin-Helmholtz effect between to adjacent layers of fluids. An in-plane

anisotropy, indeed, generates in fact a shear between the two regions of flux

of opposite sign, due to a velocity component along the interface. From our

analysis it has emerged that an instability is never observed for a moving

vortex-front, if the coupling with the temperature in not taken into account.

104



4.2. Stability of a vortex-antivortex front

Even though our analysis is based on the limit for a linear current-voltage

characteristic, it could be extended to the case with a highly nonlinear re-

lation. In the case with a symmetric stationary interface, instead, we have

found an instability for extremely high coefficients of in-plane anisotropy,

confirming previous analysis. However, the critical anisotropy coefficient,

has a value much too high when compared with experimental measurements

for an YBa2Cu3O7−δ sample. We conclude therefore that only a model that

takes in account the coupling of the temperature, including a dissipative term

and a temperature-dependent viscosity in the flux flow regime, could capture

the essence of the instability.
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Appendix

We introduce here the function F (θ, κ, ζ) that follows from the calculations

of 2.3.1 and enters in the system of equations for the sharp current-electric

field relation,

F (θ, κ, ζ) = −4(4 + v2
0 cos2 θ)3/2

v0τ sin θ
(8 + v2

0 + v2
0 cos(2θ))−1

(
2τ−1(1 − j) + 2v0 cos θ −

√
2(8 + v2

0 + v2
0 cos(2θ))

)−1

{
τ

(4 + v2
0 cos2 θ)3/2

[
v0

(
v3

0 cos4 θ − v2
0 cos3 θ

(
τ−1(j − 1) +

√
4 + v2

0 cos2 θ
)
− v0

(
8 + (

√
2τ)−1(j − 1)

√
(8 + v2

0 + v2
0 cos(2θ))

)
sin2 θ − v0 cos2 θ(−4 + v2

0 sin2 θ)

− cos θ

(
4
(
τ−1(j − 1) +

√
4 + v2

0 cos2 θ
)

+ v2
0

(
τ−1(1 − j) +

√
4 + v2

0 cos2 θ
)

sin2 θ

))
κ2

]

+ αv0τ cos θj + j − 1 − v0τ cos θ − 1

2
(1 − j + τv0 cos θ)(

v0 cos θ +
√

4 + v2
0 cos2 θ

)
(v cos θ + κ)

+ v0 sin θ

(
τv0κ sin θ − v0(1 − j + v0τ cos θ)κ(s) sin θ√

4 + v2
0 cos2 θ

)}
.
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For the function F1(θ, κ, ζ) in (2.42), for the smooth current-electric field

relation we get,

F1(θ, κ, ζ) =

{
v0

[
τ exp

(
τv0 cos θ

j1

)
exp

(
τv0 cos θ

j1

)
− 1

[
κ2

(
− cos θ − v0 sin2 θ

+

(
τ

j1

(
exp

(
τv0 cos θ

j1

)
− 1
) +

2√
4 + v2

0 cos2 θ

))]

+ 2v0

( sin2 θ

4 + v2
0 cos2 θ

)
κ2

[
1 − j + j1 ln

(
exp

(
τv0 cos θ

j1

)
− 1

)]

− (4 + v2
0 cos θ2)−3/2

[
j − 1 − j1 ln

(
exp

(
τv0 cos θ

j1

)
− 1

)]
(
v2

0 cos3 θ − v0

√
4 + v2

0 cos2 θ sin2 θ + cos θ(4 + v2
0 sin2 θ)

)
κ2

]

+ αjτv0 cos θ − 1 + j − j1 ln

(
exp

(
τv0 cos θ

j1

)
− 1

)

− 1

2

(
v0 cos θ +

√
4 + v2

0 cos2 θ
)
(v0 cos θ + κ) +

[
1 − j

+ j1 ln

(
exp

(
τv0 cos θ

j1

)
− 1

)]
+

τ exp
(

τv0 cos θ
j1

)
v2

0κ sin2 θ

1 − exp
(

τv0 cos θ
j1

)

−
v2

0κ
(
1 − j + j1 ln

(
exp

(
τv0 cos θ

j1

)
− 1
))

sin2 θ√
4 + v2

0 cos2 θ

}{
v0 sin θ

(
τ exp

(
τv0 cos θ

j1

)
(
exp

(
τv0 cos θ

j1

)
− 1
) +

(
j − 1 − j1 ln

(
exp

(
τv0 cos θ

j1

)
− 1
))

√
4 + v2

0 cos2 θ

)}−1

.
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From the linear stability analysis of the vortex-antivortex front in Chapter 3,

we get the linearized equations for the variables D and S,

ω

(
D1 +

dD0

dζ

)
− ΩD2 + pq2S0

(
D1 +

dD0

dζ

)
=

+ v
dD1

dζ
+

(
dS0

dζ

)(
dD1

dζ

)
+

(
dD0

dζ

)(
dS1

dζ

)

+ S0
d2D1

dζ2
+ S1

d2D0

dζ2
− qk

[
2S0

dD2

dζ
+

dS0

dζ
D2 +

dD0

dζ
S2

]
,

ωD2 + Ω

(
D1 +

dD0

dζ

)
+ pq2S0D2 =

+ v
dD2

dζ
+

(
dS0

dζ

)(
dD2

dζ

)
+

(
dD0

dζ

)(
dS2

dζ

)

+ S0
d2D2

dζ2
+ S2

d2D0

dζ2
+ qk

[
2S0

(
dD1

dζ
+

d2D0

dζ2

)

+
dS0

dζ

(
D1 +

dD0

dζ

)
+

dD0

dζ

(
S1 +

dS0

dζ

)]
,

ω

(
S1 +

dS0

dζ

)
− ΩS2 + pq2D0

(
D1 +

dD0

dζ

)
=

+ v
dS1

dζ
+ 2

(
dD0

dζ

)(
dD1

dζ

)
+ D0

d2D1

dζ2

+ D1
d2D0

dζ2
− qk

[
2D0

dD2

dζ
+ 2

dD0

dζ
D2

]
− S0S1 + D0D1,

ωS2 + Ω

(
S1 +

dS0

dζ

)
+ pq2D0D2 =

+ v
dS2

dζ
+ 2

(
dD0

dζ

)(
dD2

dζ

)
+ D0

d2D2

dζ2
+ D2

d2D0

dζ2

+ qk

[
2D0

(
dD1

dζ
+

d2D0

d2ζ

)
+ 2

dD0

dζ

(
D1 +

dD0

dζ

)]
− S0S2 + D0D2.
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Samenvatting

In dit proefschrift beschrijven en analyseren we enige niet-evenwichtspatronen

in type-II supergeleiders. Dit werk richt zich in hoofdzaak op de voortplant-

ing van fronten die de scheiding vormen tussen twee verschillende, coëxisteren-

de fasen. We onderzoeken in het bijzonder de dynamica van een grensvlak

tussen de gemengde en de supergeleidende toestand als eerste voorbeeld

(hoofdstuk 2) en de dynamica van een grensvlak tussen supergeleidende flux

van tegengesteld teken als tweede geval (hoofdstuk 3).

Het hoofdthema van dit proefschrift is het collectieve gedrag van vortices

en hun uiteindelijke verdeling over domeinen. De vorm van deze domeinen

hangt niet op een simpele manier af van oneffenheden in het materiaal, maar

wordt van buitenaf bepaald door een instabiliteit. We zien dat het indringen

van flux kan plaatsvinden door het ontstaan van domeinen met vortices, die

een duidelijk bepaalde vorm hebben en zich zeer snel voortplanten. Een eerste

vraag die opkomt met betrekking tot deze patroonvorming is welke fysische

factoren een fundamentele rol spelen in het optreden van deze verschijnselen.

Een tweede onderwerp is bovendien het bestuderen van de eigenschappen van

deze patronen, zoals de vorm en de karakteristieke grootte.

Een belangrijke eigenschap van systemen van vortices is dat ze dissi-

patief zijn. Zoals beschreven in hoofdstuk 1, gaat beweging van vortices

altijd gepaard met dissipatie, doordat het binnenste van de vortices niet

supergeleidend is. De warmte die vrijkomt door de koppeling tussen het

gëınduceerde elektromagnetische veld en de stromen heeft dramatische gevol-

gen voor de stabiliteit van het materiaal. Een verhoging van de temperatuur
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blijft doorgroeien als de door dit proces opgewekte warmte niet snel genoeg

kan worden afgevoerd naar het substraat. Met name als er sprake is van

creep wordt de dynamica van de vortices bepaald door thermische activering

over de pinning-barrière heen. Zodoende kan door oververhitting een grote

hoeveelheid flux in het materiaal doordringen, wat tot “flux-lawines” leidt.

In dit proefschrift onderstrepen we de invloed van deze wisselwerking op de

selectie van de vorm van de patronen en op de dynamica van het front. In

hoofdstuk 2 onderbouwen we dit idee door een model voor te stellen met

zelfgeorganiseerde vingervormige domeinen, die afhangen van de temperatu-

urverdeling. In hoofdstuk 3 benadrukken we juist de beperkingen van een

model dat deze afhankelijkheid niet bevat.

Naast het belang van de temperatuur voor de dynamica van de vortices

is een belangrijke eigenschap voor hun collectieve gedrag dat ze — in tegen-

stelling tot de deeltjes van andere patroonvormende systemen — elkaar niet

aantrekken maar afstoten. Dit heeft direct gevolgen voor de eigenschappen

van een vortexdomein van eindige grootte, omdat de afwezigheid van een

stabiliserende factor (zoals bijvoorbeeld de oppervlaktespanning tussen een

vloeistof en een vaste stof) een onconventionele beschouwing van de selec-

tie van het uiteindelijke patroon noodzakelijk maakt. Aan de andere kant

beschouwen we in hoofdstuk 3 een systeem van vortices met tegengesteld

teken die elkaar aantrekken en annihileren door de energie van de kernen van

de vortices te doen dissiperen.

In beide voorbeelden van de dynamica van vortexfronten die we hebben

onderzocht, nemen we een grofkorrelige beschrijving voor de verdeling van de

magnetische flux aan, waarin we de eindige afmetingen van de kern van de

vortices verwaarlozen, alsmede de niet-lokale afhankelijkheden die in de be-

nadering van London worden verwaarloosd. Een nauwkeuriger beschrijving

voorbij deze “cut-off”-schaal zou door de Ginzburg-Landauvergelijkingen

worden gegeven. Voor het eerste geval van een bewegend front (hoofd-

stuk 2) impliceert deze macroscopische continuümbeschrijving het beeld van

een domein met constante magnetische fluxdichtheid en een scherpe overgang
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aan het grensvlak met de supergeleidende fase. In het tweede geval (hoofd-

stuk 3) daarentegen, behelst de continüıteit een singulier naar nul afvallend

front aan de randen tussen vortices en antivortices. Deze aanpak is echter in

beide gevallen gerechtvaardigd omdat deze de relevante dynamica van het

front niet bëınvloedt. In het eerste geval zijn we namelijk gëınteresserd

in de contourdynamica van het vortexdomein, waar een ééndimensionale

beschrijving goed voldoet, terwijl we ons in het tweede geval concentreren

op het gedrag van het front voor grote golflengte, en de dynamica niet wordt

bëınvloed door de singulariteit.

In hoofdstuk 2 beschouwen we vingervormige domeinen van vortices in

dunne niobiumlagen en hun karakteristieke vorm en breedte. We construeren

een nieuw soort model, gebaseerd op een grenslaag-benadering. Deze aan-

pak, die uitgebreid toegepast is om andere patroonvormende systemen te

beschrijven, zoals dendrieten aan een grensvlak tussen vloeistof en vaste stof

of viscous fingering, is nog nooit gebruikt voor systemen van vortices. Hoewel

onze formulering enige beprekingen heeft, bijvoorbeeld door het verwaarlozen

van de niet-lokaliteit van de stroomrespons en van krachten met lange dracht,

bevat het wel de essentiële eigenschappen van het verschijnsel en biedt het

een bewijs voor de duidelijk bepaalde vorm van de vingerachtige patronen.

Door de theorie van een thermo-magnetische instabiliteit te ondersteunen,

suggereren we in ons model het beeld van zich voortplantende vingers, met

een verhoudingsgewijs hogere snelheid en mobiliteit aan de punt, en lagere

snelheid en mobiliteit aan de zijkanten. Een hogere snelheid leidt tot een

grotere mobiliteit, zodat meer warmte wordt opgewekt. Uit onze analyse

kunnen we de breedte van de vingers schatten, alsmede hoe deze afhangt

van de temperatuur van het substraat. Om complexere structuren te begrij-

pen dan de vingervormige fluxdraden zouden ook de interacties met lange

dracht tussen de stroomlinten aan de randen van het domein moeten worden

meegenomen. Bovendien zou men om dendritische patronen te bestuderen

ook rekening moeten houden met oneffenheden in het materiaal. Zoals door

eerdere numerieke simulaties wordt ondersteund, kunnen fluxdraden inder-
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daad opsplitsen en zich ontwikkelen tot patronen met vertakte structuren,

wanneer zij een defect tegenkomen.

In hoofdstuk 3 analyseren we de stabiliteit van een grensvlak tussen vor-

tices met tegengesteld teken. Het doel van ons onderzoek was om het mecha-

nisme te begrijpen dat leidt tot het instabiele “turbulente” gedrag dat wordt

waargenomen aan de randen van een YBa2Cu3O7−δ-kristal. In het bijzonder

onderzoeken we of zo’n instabiliteit haar oorsprong vindt in de anisotropie

in het vlak van het materiaal, analoog aan het Kelvin-Helmholtzeffect tussen

twee vloeistoflagen. Een anisotropie in de richting van het vlak genereert in-

derdaad een afschuifspanning tussen de twee gebieden met tegengestelde flux,

vanwege een snelheidscomponent die langs het grensvlak gericht is. Uit onze

analyse komt naar voren dat er nooit een instabiliteit wordt waargenomen

voor een bewegend vortexfront, wanneer de wisselwerking met de tempe-

ratuur niet wordt meegenomen. In het geval van een symmetrisch, stationair

grensvlak daarentegen, vinden we een instabiliteit voor extreem hoge waar-

den van de anisotropie in de richting van het vlak, wat een bevestiging is

van eerdere analyses. Echter, de kritische anisotropiecoëfficiënt heeft een

veel te hoge waarde in vergelijking met experimentele waarnemingen aan

een YBa2Cu3O7−δ-laag. We concluderen daarom dat alleen een model dat

rekening houdt met de wisselwerking met de temperatuur en een dissipatieve

term bevat, alsmede een temperatuurafhankelijke viscositeit in het regime

van fluxstroming, de essentie van de instabiliteit kan beschrijven.
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ITHAKA

As you set out for Ithaka
hope the voyage is a long one,
full of adventure, full of discovery.
Laistrygonians and Cyclops,
angry Poseidon–and don’t be afraid of them:
you’ll never find things like that on your way
as long as you keep your thoughts raised high,
as long as a rare excitement
stirs your spirit and your body.
Laistrygonians and Cyclops,
wild Poseidon–you won’t encounter them
unless you bring them along inside your soul,
unless your soul sets them up in front of you.

Hope the voyage is a long one.
May there be many a summer morning when,
with what pleasure, what joy,
you come into harbors seen for the first time;
may you stop at Phoenician trading stations
to buy fine things
mother of pearl and coral, amber and ebony,
sensual perfume of every kind–
as many sensual perfumes as you can;
and may you visit many Egyptian cities
to gather stores of knowledge from their scholars.

Keep Ithaka always in your mind.
Arriving there is what you are destined for.
But do not hurry the journey at all.
Better if it lasts for years
so you are old by the time you reach the island,
wealthy with all you have gained on the way,
not expecting Ithaka to make you rich.

Ithaka gave you the marvelous journey.
Without her you would not have set out.
She has nothing left to give you now.

And if you find her poor, Ithaka won’t have fooled you.
wise as you will have become, so full of experience,
you will have understood by then what these Ithakas mean.

C. P. Cavafy 1911
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