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Using a retarded-motion expansion to describe the polymer stress, we derive a low-dimensional model
to understand the effects of polymer elasticity on the self-sustaining process that maintains the coherent
wavy streamwise vortical structures underlying wall-bounded turbulence. Our analysis shows that at small
Weissenberg numbers, Wi, elasticity enhances the coherent structures. At higher Wi, however, polymer
stresses suppress the streamwise vortices (rolls) by calming down the instability of the streaks that
regenerates the rolls. We show that this behavior can be attributed to the nonmonotonic dependence of the
biaxial extensional viscosity on Wi, and identify it as the key rheological property controlling drag
reduction.
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It has been known since the 1940’s that the addition of
parts per million amounts of polymer molecules substan-
tially reduces turbulent drag in wall-bounded parallel shear
flows, such as turbulent pipe flows, boundary layer flows,
and jets. Recent experiments, direct numerical simulations,
and Brownian dynamics simulations have revealed that the
stretching of polymer molecules by turbulent flows is the
dominant effect lying at the heart of this extraordinary
phenomenon [1–6]. Yet an understanding of the mecha-
nism of drag reduction remains obscure due to the com-
plexity of turbulence compounded by the complexity of the
constitutive equations describing polymer fluids. Although
the ultimate aim is to understand polymer drag reduction in
well-developed large Reynolds number wall-bounded tur-
bulence [7,8], we focus here on how polymers affect
turbulence near its onset. In this Letter, we show that the
polymer contribution to the biaxial extensional viscosity of
the fluid affects the turbulent structures resulting in drag
reduction.

In the last decade, new light has been shed on the
understanding of polymer drag reduction after the discov-
ery of exact nonlinear solutions of the Navier-Stokes equa-
tions in parallel shear flows [9,10]. These solutions, either
stationary or in the form of traveling waves, appear as a
pair of counterrotating streamwise vortices that give rise to
a spanwise stratification of the velocity field, called streaks.
A Kelvin-Helmholtz instability of the streaks nonlinearly
feeds energy back to the streamwise vortices, making the
cycle self-sustaining [11]. Though these solutions come
into existence at Reynolds numbers below the onset of
turbulence, they are believed to play an important role at
the onset, and it has been suggested that wall-bounded
turbulence is organized around these exact coherent struc-
tures [12]. This suggestion has sparked interest in under-
standing how the presence of polymers influences the exact
nonlinear solutions, with the aim of revealing the under-
lying physics of turbulent drag reduction.

Even though detailed numerical studies on the effect
of viscoelasticity on exact coherent structures by Graham
and co-workers [13,14] have revealed that polymer mole-
cules destroy the streamwise vortices and, thereby reduce
drag, important questions remain unanswered. First, it is
unclear which part of the self-sustaining process is affected
by the presence of polymers. Moreover, the numerical
studies [14] have also demonstrated that the elasticity
conferred on the fluid by the polymers changes the critical
Reynolds number, Recr, at which the exact nonlinear
solutions first appear. For a very weakly elastic fluid,
these solutions appear at Recr smaller than the Newtonian
value, while for a strongly elastic fluid, the corresponding
critical Reynolds number is larger than the Newtonian one.
This nonmonotonic behavior is as puzzling as is the drag
reduction phenomenon itself.

In this Letter we address these questions by developing
and analyzing a low-dimensional model that describes the
influence of viscoelasticity on the self-sustaining process
that maintains the exact coherent structures. Low-
dimensional models have served as instructive tools for
understanding the transition to Newtonian turbulence in
parallel shear flows [15]. The first low-dimensional model
for the self-sustaining process was developed by Waleffe
[11] and later refined by Moehlis et al. [16]. The latter
model, which is dubbed the MFE model, reproduces the
main phenomenology of the transition to turbulence in
plane Couette flow, gives realistic predictions for the tran-
sitional Reynolds number, and qualitatively describes the
statistical character of weak turbulence close to the tran-
sition [16]. Hence, we incorporate viscoelasticity into the
MFE model to study qualitatively the changes in the self-
sustaining process caused by polymers. As we will show
below, our viscoelastic model clearly identifies the streak
instability as the part of the self-sustaining process which is
affected most by elasticity, and also relates the shift in the
critical Reynolds number to the flow kinematics, thereby
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complementing the numerical work of Graham et al. and
recent direct numerical simulations of wall-bounded tur-
bulence of viscoelastic fluids [3–6].

To derive our model, we follow Moehlis et al. [16] and
consider the flow of an incompressible viscoelastic fluid
between two parallel plates moving in opposite directions,
separated by a distance 2d, with free-slip boundary con-
ditions at the walls, and a coordinate system in which x is
the streamwise direction, y is the wall-normal direction,
and z is the spanwise direction. A body force acting along x
and varying sinusoidally along y drives the flow. We write
all velocities in units of Uo (laminar velocity at y � d=2
from the top plate), lengths in units of d, time in units of
d=Uo, stress in units of �Uo=d, and pressure in units of
�U2

o, where � is the density and � is the viscosity of the
fluid. With this scaling, the conservation of mass and
momentum give,

 r � u � 0; (1)

 

@u
@t
� u � ru � �rp�

1

Re
�u�

1� �
Re

r � T � F;

(2)

where Re � Uoh=� is the Reynolds number, � � �s � �p
is the total kinematic viscosity of the fluid (sum of solvent
and polymer contributions), � � �s=� is the viscosity
ratio, F is the body force that drives the flow, and T is
the polymeric contribution to the stress tensor. In the
absence of polymers (� � 1), the MFE model is derived
by approximating the velocity field by

 u �x; t� �
X9

i�1

ai�t�ui�x�; (3)

where the ai�t� are unknown time-dependent amplitudes,
and ui are known orthonormal divergence-free Galerkin
spatial modes. Each ui represents a particular element of
the self-sustaining process: u1 and u9 are the mean-shear
modes, u2 and u3 are streaks and streamwise vortices,
respectively, and u4-u8 represent the instability of streaks
(see [16] for details). The modes ui depend on two wave
numbers � and � that set the size of the coherent structures
in the streamwise and spanwise directions, respectively.
Substituting (3) into (2) and projecting the resulting equa-
tions on the individual modes in (3), we obtain a system of
9 nonlinear ordinary differential equations for the ampli-
tudes of the modes

 

dai�t�
dt

� ��iai�t� �
X9

j;k�1

cijkaj�t�ak�t� � �i�i1; (4)

where the last term represents the body force, and the exact
form of cijk is given in Ref. [16].

With polymers present (�< 1), in addition one needs to
specify a relation between the polymeric stress T and the
velocity field u. In this Letter, we focus on the so-called
retarded-motion expansion of an Oldroyd-B fluid [17,18],
while the results for other rheological models will be
reported elsewhere. We approximate the polymeric contri-

bution to the stress tensor by a power series in the
Weissenberg number Wi � 	Uo=h (	 being the relaxation
time of polymers) which measures the ability of the flow to
stretch the polymers,

 T � �WiD�2� �Wi2D�3� �Wi3D�4� � � � � ; (5)

where D�1� � 1
2 �ru� ruT� is the rate of deformation

tensor, and D�j�1� � @D�j�=@t� u. rD�j� �D�j� � ru�
ruT �D�j� are its upper-convected Maxwell derivatives.
In rheological literature, the fluids described by (5) are
called the second-order fluid, the third-order fluid, etc.,
depending on the highest power of the strain rate tensor
included. A distinct advantage of our approach is that (5)
obviates the need for separately specifying the spatial
modes for T similar to (3). While this maintains the
dimensionality of the model at the same level as
Newtonian, it is noteworthy that the stress tensor effec-
tively contains higher order spatial modes than the velocity
field u.

We proceed by assuming that at the level of our low-
dimensional model, the presence of polymers does not
affect the spatial structure of the velocity field (3), but
rather changes the balance between different elements of
the self-sustaining process. The Galerkin projection of (2)
and (5) on the modes ui from (3) gives the viscoelastic
extension of the MFE model up to the third-order fluid,

 

dai�t�
dt

� ��iai�t� �
X9

j;k�1

�cijk � dijk�aj�t�ak�t�

�
X9

j;k;l�1

eijklaj�t�ak�t�al�t� � �i�i1; (6)

where dijk, and eijkl depend on �, �, �, Re, and Wi. The
coefficients in (6) can be found in [19]. This model reduces
to the MFE model in the limit of Wi! 0.

In the Newtonian case, the model (4) has steady-state
solutions that are low-dimensional approximations to the
nonlinear traveling-wave solutions found in plane Couette
flow [10]. For � � 1=2 and � � 1, steady solutions have
been shown to first appear at the critical Reynolds number
Re � 308:2 [16]. Using the same values for the wave
numbers, we track steady solutions of the viscoelastic
model (6) and, in particular, study how the critical
Reynolds number at which the nonlinear solutions first
appear changes with increase in the Weissenberg number.

In Fig. 1, we plot the critical Reynolds number Recr as a
function of Wi, and observe that for a second-order fluid
Recr monotonically decreases with Wi, whereas for a third-
order fluid, Recr first decreases and then increases with Wi
beyond Wi� 1. The fourth-order fluid shows trends simi-
lar to the third-order fluid, demonstrating that (5) is con-
verging for the range of Wi of our interest. Figure 1 also
clarifies that to understand the dominant effects of the
decrease and then increase in Recr with Wi, as found
from direct numerical simulations of traveling-wave solu-
tions of a FENE-P fluid and reported in Fig. 4 of [14], it
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suffices to study the second- and third-order fluids only. We
now proceed to explain the reasons behind this remarkable
behavior.

The first clue for the nonmonotonic behavior in Fig. 1
comes from the rheology of Oldroyd-B fluid in extensional
flows. In biaxial extensional flow, v � � _
x; _
y;�2 _
z�, the
biaxial extensional viscosity �b initially decreases and
then increases as a function of 	 _
 as is clear from Fig. 2.
This is because the polymer molecules in biaxial exten-
sional flow are stretched in the xy plane at a rate _
, and
compressed along the z direction at double the rate, 2 _
. For
small 	 _
, compression in the z direction is the largest
deformation that the molecules undergo, with much
weaker extension in the xy plane. As a result, viscous
dissipation is reduced compared to the limit _
! 0, and
�b decreases with 	 _
, a trend followed by the second-order
fluid. At larger 	 _
, the molecules are extended in the xy
plane far more than they are compressed in the z direction,
resulting in larger drag from the surrounding flow and �b
increases with 	 _
—a behavior captured by the third-order
fluid. On the other hand, the uniaxial extensional viscosity
only monotonically increases because in uniaxial exten-

sional flow, the polymers are extended more than they are
compressed at any 	 _
, resulting in higher viscous dissipa-
tion. We observe that the trend of �b closely follows the
trend of decrease and increase of Recr, suggesting that the
biaxial extensional viscosity is a key rheological property
governing the behavior shown in Fig. 1, in tune with the
conclusions of Terrapon et al. [6], who recognized the
relevance of polymers stretching in regions of biaxial ex-
tension to turbulent drag reduction.

Our observations motivate a search for regions of biaxial
and uniaxial extension in the flow field of our model. To
characterize biaxial extension, we consider the sign of one
of the invariants of the rate of deformation tensor R �
� det�D� which determines the type of flow: for uniaxial
extension R< 0, for biaxial extension R> 0, and for
simple shear flow R � 0. In Fig. 3(a), the region of stron-
gest biaxial extension is present in the streaks between the
streamwise vortices. Polymer molecules have been shown
to extend in the streaks in [20], and hence it is no surprise to
find a region of relatively strong extension in the region of
the streaks. What is surprising, however, is that most of the
extension in the streaks arises from biaxial extension, in
particular, as can be seen in Fig. 3(a). Moreover, these
regions of significant biaxial extension are produced by the
coupling of the modes corresponding to the linear insta-
bility of the streaks (a6, a7, and a8), also called wall-
normal vortex modes, and, most counterintuitively, the
modes corresponding to mean shear (a1 and a9). The rest
of the modes contribute to uniaxial extension in the flow,
which is much weaker than the biaxial extension flow
produced by the instability modes.

Another clue for understanding the effects of elasticity
on the self-sustaining process comes from analyzing the
dynamical system, (6). We find that of the 182 elastic terms
present in (6), only 11 terms are responsible for the change
in Recr presented in Fig. 1. These dominant elastic terms of
the second- and third-order fluids appear only in the equa-
tions for the instability modes a6 and a7:
 

_a6 � N:t:� . . .a1a7 � . . . a8a9;

_a7 � N:t:� . . .a6�a1 � a9� � . . . a8�a
2
1 � a

2
9 � a1a9�

� . . . a7a9�a1 � a9� � . . . a2
7�a6 � a8�; (7)

where ‘‘N.t.’’ denotes Newtonian terms and where we have
omitted numerical coefficients. Equation (4) with (7) re-
placing the equations for _a6 and _a7 is the ‘‘most minimal
model’’ needed to explain the changes in Recr shown in
Fig. 1. We also observe that nearly every dominant term in
(7) consists of interactions between the mean shear, a1 or
a9, and one of the instability modes, a6, a7, and a8. Hence,
not only do the instability modes produce regions of strong
biaxial extension in the flow, but elasticity acts on the self-
sustaining process through the interactions between them.

Finally, to understand how the trend in biaxial exten-
sional viscosity in Fig. 2 can explain Fig. 1, we examine the
elastic polymer force arising in (2) due to (5), given by f �
2�1���

Re r � T . In Figs. 3(b) and 3(c), we show the vectors of
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FIG. 2 (color online). Rheology of ordered fluids in biaxial
extensional flow, schematically depicted at bottom left. �b is
made dimensionless with �0, the zero-shear viscosity.
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FIG. 1. Steady-state solutions of the viscoelastic 9 dimensional
model appear at a critical Recr above or below the Newtonian
value (shown by a solid line) depending on the Wi and the fluid
‘‘order’’.
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elastic forces that are meant to be viewed along with
Fig. 3(a). We find that the elastic forces of the second-
order fluid in Fig. 3(b) assist flow in regions of strong
biaxial extension and resist flow in regions of uniaxial
extension. On the other hand, the third-order fluid elastic
forces in Fig. 3(c) act to resist flow both in regions of
uniaxial and biaxial extension. Both these observations are
consistent with Fig. 2 as well as the trends in uniaxial
extensional viscosity discussed earlier.

Based on our observations, we propose a mechanism by
which polymers affect the existence and nature of the exact
coherent structures shown in Fig. 1. Weak elasticity, as in
the second-order fluid, enhances the linear instability of the
streaks by assisting flow in the dominant biaxial exten-
sional flow region between the streaks, as is evident from
Fig. 3(b). Consequently, the counterrotating streamwise
vortices that are sustained by the instability of the streaks
become stronger, giving rise to even stronger stratification
in the spanwise direction (streaks), and thereby strengthen-
ing the self-sustaining process. Stronger elasticity, as in the
third-order fluid, suppresses the instability of the streaks,
since elasticity now opposes flow in both biaxial and uni-
axial extensional flow regions, as we show in Fig. 3(c).
This results in the rolls and streaks becoming weaker and a
weaker self-sustaining process. Since less mean momen-
tum is now advected away from the walls, the mean shear
increases and drag is reduced.

Our low-dimensional model not only reveals the lowest-
order effects of elasticity on the coherent structures typical
of wall-bounded turbulence, but is also the first step of a
systematic explanation of higher order effects that can be
captured by adding higher order terms either to the ampli-
tude Eq. (6) or the retarded-motion expansion (5), or both.
Since the retarded-motion expansion is general, effects
such as shear-thinning, normal stress differences, or elastic
and viscous effects characteristic of fibers, platelets, sur-
factant solutions, etc., can also be considered within the
same framework.
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FIG. 3 (color online). At Re � 350 for x 2 �0; 4�	, z 2 ��=2; 5�=2	 in the x-z plane at y � 0:62, the arrows representing the x and
z components of velocity in (a) and polymer force in (b) and (c). The background color map shows regions of biaxial (red) extension
seen as bright halos in the center and corners of the figures, and regions of uniaxial extension (blue) interspersed between them.
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