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Summary

A library of genes for zinc finger artificial transcription factors (ZF-ATF) was generated by fusion of DNA

sequences encoding three-finger Cys2His2 ZF domains to the VP16 activation domain under the control of the

promoter of the ribosomal protein gene RPS5A from Arabidopsis thaliana. After introduction of this library into

an Arabidopsis homologous recombination (HR) indicator line, we selected primary transformants exhibiting

multiple somatic recombination events. After PCR-mediated rescue of ZF sequences, reconstituted ZF-ATFs

were re-introduced in the target line. In this manner, a ZF-ATF was identified that led to a 200–1000-fold increase

in somatic HR (replicated in an independent second target line). A mutant plant line expressing the HR-inducing

ZF-ATF exhibited increased resistance to the DNA-damaging agent bleomycin and was more sensitive to methyl

methanesulfonate (MMS), a combination of traits not described previously. Our results demonstrate that the

use of ZF-ATF pools is highly rewarding when screening for novel dominant phenotypes in Arabidopsis.

Keywords: zinc finger transcription factor libraries, Cys2His2 zinc finger, homologous recombination,

mutagenesis, Arabidopsis, VP16.

Introduction

Zinc finger artificial transcription factors (ZF-ATFs), consist-

ing of a polydactyl zinc finger (PZF) DNA-binding domain

linked to a protein domain that either activates or represses

gene expression near the PZF binding site, have recently

received considerable attention (Blancafort et al., 2004,

2005; Eberhardy et al., 2006). ZF-ATFs are generally con-

structed using Cys2His2 ZF domains, the most thoroughly

characterized ZF moieties to date. Apart from being small,

just 30 amino acids, Cys2His2 ZF domains typically bind

three contiguous DNA bases per ZF and are highly modular.

These features allow construction of more complex PZF fu-

sion proteins, which in principle can recognize unique sites

within a complex genome. For GNN, ANN and recently also

CNN target sites, where N represents any of the four bases,

the most optimal zinc finger designs have been character-

ized, making ZF-ATF construction possible for almost any

target site (Dreier et al., 2001, 2005; Segal et al., 1999). In

Arabidopsis, it has been demonstrated that a ZF-ATF con-

taining six ZF domains, designed for the endogenous

APETELA (AP3) promoter, was able to specifically regulate

the expression of a promoter–GUS fusion (AP3::GUS) in

planta (Guan et al., 2002). Recently, PZF domains consisting

of only three ZF domains and thus designed for a 9 bp

binding site were also shown to be useful for gene regula-

tion in Arabidopsis (Holmes-Davis et al., 2005; Van Eenen-

naam et al., 2004).

Apart from being instrumental for interfering with expres-

sion levels of specific genes, ZF-ATFs can in principle also be

used for random mutagenesis in order to reveal novel

phenotypes. To this end, pools consisting of large numbers

of ZF-ATFs were introduced into Escherichia coli and yeast

cells, as well as various mammalian cell lines, to screen for

phenotypes including thermotolerance, osmotolerance, in-

creased protein yield and drug resistance (Blancafort et al.,

2003; Kwon et al., 2006; Lee et al., 2004; Park et al., 2003,

2005a,b). The ZF moieties used for these purposes pos-
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sessed modest complexity, and, as such, unique genomic

target sites are unlikely. This, however, is at the same time

the strength of ZF-mediated mutagenesis: with a relatively

low number of ZF-ATFs, saturating coverage of the genome

is assured due to the large number of potential DNA binding

sites. So far, this application of pools of ZF-ATFs for

mutagenesis has been restricted to the cellular level and

has not been reported in multi-cellular higher eukaryotes

such as whole Arabidopsis plants, for example.

Here we describe the use of pools of three-finger (3F) ZF-

ATFs to obtain homologous recombination (HR) mutants in

Arabidopsis. An understanding of the regulation of HR

events is of great interest, not only from a purely scientific

perspective, but also because HR is required for the intro-

duction of novel traits at a precise locus via genetic

engineering and controls the process of meiosis. Unfortu-

nately, in higher eukaryotic organisms and especially in

plants, almost all incoming DNA molecules that integrate

into the genome do so apparently at random positions via

non-homologous recombination (NHR) (Offringa et al.,

1990; Paszkowski et al., 1988). Efficient procedures for gene

modification in plants thus require either a suppressed NHR

pathway and/or a strongly activated HR pathway. Apart from

these practical aspects, phenotypes related to HR will be

instrumental in the investigation of intriguing aspects of

genome stability and genome evolution. In this study, we

used an in planta recombination assay (Swoboda et al.,

1994) to select for mutants upregulated in HR after transfor-

mation of Arabidopsis plants with pools of ZF-ATFs. In this

manner, we were able to isolate a novel mutant exhibiting a

dramatic increase in the frequency of HR events. Our

findings demonstrated that ZF-ATF technology is readily

applicable for identification of novel types of mutants even

at the level of the multicellular organism.

Results

Construction of 3F pools for plant transformation

A schematic overview of the procedure to obtain 3F ZF-ATF

pools is given in Figure 1. After cloning the first 16 oligomers

encoding GNN-recognizing ZF moieties into pSKN-SgrAI,

we invested in the systematic cloning and sequencing of all

possible two-finger (2F) constructs (for details regarding

cloning procedure and oligomer sequences, see supple-

mentary material in Neuteboom et al., 2006). In this manner,

256 2F-encoding plasmids were obtained, divided into 16

pools of 16 members, and each pool labeled according to the

first ZF domain cloned. As substrate for addition of the third

consecutive ZF, we used restriction enzyme-digested mix-

tures of equimolar amounts of plasmids belonging to a pool.

This protocol, although more elaborate than random multi-

merization and shotgun cloning of ZF moieties, was chosen

for several reasons. Firstly, a better control of successful 3F

pool generation is ensured. Secondly, having the total col-

lection of 3F-containing plasmids in several non-overlap-

ping pools of lower complexity offers the possibility of

screening each of the sixteen 256-member 3F pools to dif-

ferent extents. This is of great advantage when, instead of

screening at the cellular level, mutant phenotypes have to be

selected at the level of the complete organism and handling

of large numbers of transgenic individuals in a single

experiment is generally unfeasible. Sub-dividing the larger

pool of potentially mutagenic transcription factors allows

much easier recovery of interesting mutants in case an initial

molecular analysis fails. For 15 out of the possible 16 dif-

ferent 3F pools, the construction was successful. For un-

known reasons, the 2F clones designed for 5¢-GAA-GNN-3¢
binding sites frequently possessed errors, and as these 2F

clones are needed for preparation of the GAA 3F pool, this

pool was not further developed. All other libraries were

Figure 1. Schematic representation of the construction of 3F ZF-ATF pools.

(a) Annealed oligonucleotide pairs encoding ZF domains were ligated in a

directional manner into the SgrAI site of vector pSKN-SgrAI, resulting in one-

finger (1F) and two-finger (2F) constructs. Three-finger (3F) pools with a

complexity of 256 3Fs per pool were each formed separately by introduction

of a third ZF domain into an equimolar mix of 16 SgrAI-digested 2F constructs.

The resulting 3F pools were named after the identity of the first ZF cloned

(shaded ‘GNN’ arrow). In this manner, 15 of the possible sixteen 3F pools were

constructed.

(b) The combined 3F sequences of each pool were isolated as SfiI fragments

and cloned in a directional manner into T-DNA vector pRF-VP16 for in planta

expression of fusion proteins via the RPS5A promoter (pRPS5A). When

expressed, the N-terminus of the 3F domains will be preceded by a FLAG tag

(directly following the ATG translational start codon), a SV40 nuclear

localization signal (SV40-NLS) and the VP16 transcriptional activator domain

(VP16). A translational stop codon is provided after a 37 amino acid C-terminal

sequence of the VirF protein of Agrobacterium tumefaciens (F), and

transcriptional stop is provided by the nos terminator (tNOS). The NPTII

gene is present as a plant selectable marker. LB, left border; RB, right border.
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finally introduced as SfiI fragments into the wide host range

vector pRF-VP16 (Figure 1b). Once cloned within this vector,

the 3F moieties were fused with an N-terminal VP16 domain,

preceded by a FLAG tag and a SV40 nuclear localization

domain, and linked to the RPS5A promoter, which normally

drives expression of the ribosomal protein S5A in Arabid-

opsis (Weijers et al., 2001). The choice of the RPS5A pro-

moter resides in the extremely early onset of its activity in

the zygotic stage of embryo formation, as well as its con-

tinued expression in meristematic tissues of plants. Such an

expression pattern ensures that all cells present in a trans-

formed seedling have experienced a period during which the

transgene is expressed, even when the transgenic seedling

directly stems from the initial transformation by the floral

dip procedure. In differentiated older cells, RPS5A activity

sharply declines (Weijers et al., 2001), which avoids pro-

longed expression of a transgene that might be detrimental

for seedling survival and would therefore diminish the

chance of successful characterization of the 3F sequence that

led to the phenotype of interest.

Screening for Arabidopsis mutants with increased homol-

ogous recombination frequencies

To monitor HR frequencies in Arabidopsis seedlings, we

have used target line 1406 (Gherbi et al., 2001), containing

an HR substrate in the form of an interrupted GUS reporter

gene that can be restored after an HR event within a direct

repeat of the GUS coding sequence (Swoboda et al., 1994).

Individual recombination events can be visualized as blue

spots or sectors upon histochemical staining of seedlings.

For each separate pool of pRF-VP16-3F plasmids present in

Agrobacterium, a practically realistic compromise for the

number of transgenic seedlings to be generated and

screened had to be defined. With each of the 15 pRF-VP16-3F

pools having a theoretical complexity of 256 different

members, screening almost all (>95%) constituent

VP16:3F-encoding genes for their potential to enhance HR

would require the analysis of more than 750 primary trans-

formants for each of these pools (N ¼ ln (1 ) 0.95)/ln (1 ) 1/

library size). As indicated in Table 1, the average number of

transformants screened per pool was around 400, which

corresponds to a fair chance of about 80% of any member of

the pool being represented in a transgenic seedling.

Although we observed a variety of morphological aberra-

tions within the collection of transformed seedlings (not

shown), we focused on those seedlings that exhibited more

somatic HR events than the parental line and the majority of

transgenics. With a spontaneous HR frequency in line 1406

of about 0.012 events per 10-day-old seedling, those trans-

genic seedlings with three or more HR events were consid-

ered to be candidates for VP16:3F-induced HR mutants.

Within a total of 6400 transgenic seedlings, three met this

requirement; two seedlings with three spots in pools GTC

and GCA, and a seedling with eight spots in pool GTG

(Table 1).

Identification of ZF-ATFs in transgenic seedlings and verifi-

cation of HR-inducing potential

During preliminary experiments, several GUS staining pro-

tocols were tested for accurate determination of somatic HR

events while at the same time being compatible with further

molecular analysis of 3F sequences. The GUS staining

method involving acetone pre-treatment (see Experimental

procedures) provided excellent penetration of substrate

throughout the seedling and led to sharply stained cells.

DNA extracted from these stained seedlings was in most

cases still suitable for PCR analysis of the 3F region of the

transgene. From the seedling with eight somatic HR events,

a PCR product of correct size was readily obtained, but not

from the two plants with three recombination events. Whe-

ther this reflects imperfectness of the DNA recovery protocol

or a true absence of an intact transgene in the other two

putative mutants remains uncertain. A vital staining proce-

dure would have allowed the generation of more biomass

from putative mutants, but such procedures proved to be

too ineffective to reveal single stained cells.

Sequence analysis of the PCR product obtained from the

seedling with eight HR events verified the presence and

identity of a 3F domain, which was subsequently recloned as

Table 1 Homologous recombination events in 10-day-old seedlings
of Arabidopsis line 1406 transformed with the different pRF-VP16-3F
pools

Poola name No. seedlings

No. seedlings

1 spot 2 spots ‡3 spotsb

GGG 402
GGA 405
GGT 382 3
GGC 459
GAG 440 6
GAA ND
GAT 72 2
GAC 359 3
GTG 686 2 1 1 (8)
GTA 553 5
GTT 384
GTC 634 10 1 (3)
GCG 143 6
GCA 415 1 1 (3)
GCT 701 2
GCC 365
Total 6400 40 1 3
Control 167 (1406)c 2

aPools are named after the first cloned ZF domain.
bNumber of spots in parentheses.
cUntransformed seedlings of line 1406.
ND, not done
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a SfiI fragment into pRF-VP16 and introduced into Agrobac-

terium. According to the GNN recognition code (Segal et al.,

1999), the most optimal binding site for this 3F should be 5¢-
GTGGAGGCT-3¢ (for oligomer sequences, see Neuteboom

et al., 2006). Most transgenic seedlings obtained with the

resulting Agrobacterium strain again possessed a high

number of HR events, proving that the particular VP16-3F

factor was the causal agent of the original phenotype. Of the

27 primary transformants that were stained for GUS activity,

one plant exhibited one event, while at least two events were

present in 16 out of the total 27 stained seedlings, ranging

from 2 to 15 HR events per seedling (Figure 2). With an

average number of 3.8 HR events per seedling within the

group of 27 primary transformants, the mean HR frequency

after transformation with this VP16-3F factor was increased

approximately 300-fold compared to the parental line, which

had an HR frequency of 0.012 spots per seedling. For some

individual primary transformants, those with ten or more

GUS positive spots, the HR frequency apparently increased

by a factor of 1000 or more. The HR-inducing ZF-ATF was

designated VP16-HRU, and the resulting up-regulated HR

phenotype in transgenic plants was designated HRU.

The effect of VP16-HRU is independent of the HR reporter

locus

To rule out the possibility that the HRU phenotype observed

in reporter line 1406 after transformation with VP16-HRU is

dependent on the precise genomic location of the reporter

gene and/or on the layout of the reporter locus itself, this

construct was also used to transform an independent sec-

ond target line for intra-chromosomal homologous recom-

bination. In this line 1415 (Gherbi et al., 2001), the substrate

for homologous recombination also comprises an inter-

rupted GUS reporter gene, but arranged as an inverted re-

peat. Although the frequency of spontaneous recombination

in this line is higher than in line 1406 (0.083 events per

seedling for line 1415 versus 0.012 events per seedling for

line 1406 under our conditions), the effect of VP16-HRU was

indisputable. From nine randomly picked primary trans-

formed seedlings, only one did not reveal any GUS-positive

spots, while for the remaining seedlings HR frequencies as

high as 76 events per 10-day-old seedling were observed

(Figure 2). On average, 16.3 recombination events per

seedling were seen in this set of nine, indicating that the

mean HR frequency had risen about 200-fold after transfor-

mation with pRF-VP16-HRU, a value comparable to that

observed in line 1406. Therefore, we can conclude that the

increase in HR frequency is independent of the precise

location of the reporter locus and is seen both with direct

and indirect GUS repeats. Morphological aberrations were

not observed in the seedlings with the HRU phenotype. Later

in development, HRU plants did have relatively long and

somewhat narrower leaves than the parental line and

flowering time was slightly delayed. HRU plants were fertile

and produced a normal amount of seeds.

Several T1 HRU mutants in the backgrounds 1406 and

1415 were allowed to self-pollinate. T2 populations showing

a 3:1 segregation of the kanamycin resistance gene, indica-

ting a single transgenic locus, were maintained to obtain

homozygous T3 lines. In both types of lines, designated

1406-VP16-HRU and 1415-VP16-HRU, the HRU phenotype

remained stable up to the T3 generation (data not shown).

VP16-HRU expression leads to increased tolerance to the

genotoxic agent bleomycin

Although it was clearly demonstrated that VP16-HRU trig-

gers a higher recombination frequency in Arabidopsis

seedlings in a dominant fashion, the molecular mechanism

underlying the HRU phenotype is not immediately evident.

On one hand, HRU seedlings might possess a directly acti-

vated HR pathway and as such be subject to an enhanced

frequency of recombination events. On the other hand, the

presence of VP16-HRU might induce a more general kind of

genotoxic stress that triggers DNA repair and thereby also

HR events, such that HR is activated in an indirect manner.

Experiments in which plants are treated with DNA-dam-

aging agents can in principle discriminate between these

possibilities. Bleomycin is known to cause double-strand

breaks (DSBs) in genomic DNA (Charles and Povirk, 1998;

Favaudon, 1982; Menke et al., 2001; Norskov-Lauritsen et al.,

1990), which are repaired either by HR or NHR. If in HRU

plants the HR pathway is constitutively up-regulated prior to

inflicting extra DSBs, the HRU plants will most likely be more

tolerant to bleomycin treatment than the parental line, at

least in as much as the already up-regulated HR pathway can

repair the sudden increase in DSBs. Alternatively, if HRU

plants are already experiencing genotoxic stress, a further

increase of this stress by bleomycin should more readily

cause severe problems. In the latter case, plants are expec-

ted to be hypersensitive to bleomycin.

As shown in Figure 3(a), a 24 h bleomycin treatment led to

a 16.5-fold induction of HR frequency in the parental line

Figure 2. Distribution of recombination frequency in individual pRF-VP16-

HRU primary transformants in lines 1406 and 1415.

Recombination frequency in 10-day-old primary transformants was deter-

mined as number of GUS-positive spots per seedling.
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1406, which is comparable with published data (Molinier

et al., 2005). The HR frequency in HRU seedlings rose from a

basal 11.3 events per seedling to 17.1 after bleomycin

treatment, an increase of about 1.5-fold (50%). Remarkably,

the basal frequency of HR events in HRU seedlings was

virtually identical to the frequency observed in bleomycin-

treated 1406 seedlings (11.4 HR events per seedling). In

order to assess different levels of bleomycin resistance, the

fresh weight of seedlings was determined after 2 weeks of

continuous treatment. Compared with wild-type Columbia

seedlings and the parental line 1406, seedlings expressing

VP16-HRU gained more fresh weight in the presence of

bleomycin, thus demonstrating increased tolerance to this

genotoxic compound (Figure 3b).

In addition to bleomycin, we also investigated the effect of

long- and short-term treatments with the alkylating com-

pound methyl methanesulfonate (MMS). Genotoxic stress

caused by DNA alkylation is mainly repaired via the nucleo-

tide excision repair (NER) pathway (Lundin et al., 2005).

Short-term MMS treatment increased the frequency of HR

events per seedling of line 1406 11.7-fold, corresponding to

8.1 events per seedling, while for HRU seedlings the

frequency increased only by about 15% to 13.0 events per

seedling. When analyzed in terms of fresh weight develop-

ment after 2 weeks of treatment, HRU plants were slightly

less resistant than controls (Figure 3b).

Discussion

Although a wide variety of mutagenic treatments exists to

manipulate higher eukaryotic organisms, the recently

emerging technique using ZF-ATFs to induce dominant

mutations had so far only been used at the cellular level

(Blancafort et al., 2003; Lee et al., 2004; Park et al., 2003,

2005a,b). In this paper, we investigated the possibility of

employing ZF-ATF-mediated mutagenesis in an efficient

manner for isolation of mutant phenotypes at the level of

individual plants; in this particular case, Arabidopsis mu-

tants altered in intra-chromosomal recombination fre-

quency. Rather than generating huge numbers of transgenic

organisms in order to find a desired mutation, we sought to

exploit the potential robustness of ZF-ATF mutagenesis. The

use of sub-pools of ZF-ATFs with relatively low complexity,

combined with the large number of genomic target sites for

each zinc finger, should allow an unbiased screening at al-

most saturating level. Assuming that all base pairs occur at

equal frequency, a complete pool of 3F DNA binding do-

mains recognizing 9 bp targets with sequence 5¢-
GNNGNNGNN-3¢ (GNN)3, where N represents any of the

four bases will find a target site every 32 bp in a double-

stranded genome. On average, any specific 3F domain will

encounter the optimal cognate 9 bp target site once within

131 000 bp (49/2 bp for dsDNA). Given the size of the Ara-

bidopsis genome, each specific (GNN)3 target site occurs on

Figure 3. Effect of genotoxic chemicals on HR frequency and fresh weight

development in parental control (1406) and VP16-HRU-expressing seedlings.

(a) Distribution of HR frequency per seedling in mock-treated seedlings (top)

and seedlings exposed for 24 h to bleomycin (middle) or MMS (bottom). HR

events were determined 5 days after treatment as the number of GUS-

positive spots per seedling.

(b) Effect of long-term treatment (2 weeks) with bleomycin or MMS on fresh

weight development of wild-type Columbia (Col-0), 1406 and 1406-VP16-HRU

seedlings.

Zinc finger-mediated screening 479

ª 2006 The Authors
Journal compilation ª 2006 Blackwell Publishing Ltd, The Plant Journal, (2006), 48, 475–483



average about 800 times within the genome. Even when

only a minority of the possible DNA target sites will be

available for 3F binding, the possibility that at least one

member of a 3F ZF-ATF pool has access to a binding site at a

position from which the transcriptional activity of a partic-

ular gene can be influenced should be quite large. Conse-

quently, even by generating a relative small number of

transgenic organisms, efficient screening for novel muta-

tions in complete multicellular organisms, such as plants,

should be feasible. In this respect, 3F ZF-ATF-mediated

mutagenesis would be a highly attractive method to

investigate whether or not the generation of a particular

mutant phenotype lies within the scope of possibilities of the

genome of an organism, given that an altered regulatory

network of gene expression signals could be brought about.

Although T-DNA activation tagging (Weigel et al., 2000) in

principle acts in a similar manner, the number of inde-

pendent transgenic organisms required for a saturated

screening via this method depends on the genome size in a

linear fashion. For plant species with small genomes for

which efficient transformation procedures exist and/or tag-

ged collections are available, such as for Arabidopsis, the

benefits of 3F ZF-ATF-mediated mutagenesis over T-DNA

activation tagging might be limited. However, it should be

realized that most plant species possess much larger gen-

omes, often combined with inefficient and impractical

transformation procedures. As larger genomes contain a

correspondingly higher number of 3F target sites, the

chance of finding a potential dominant phenotype via 3F ZF-

ATF-mediated mutagenesis within a limited number of

transgenic plants is the same as in Arabidopsis. In the

majority of plant species, 3F ZF-ATF-mediated mutagenesis

will thus be a highly attractive option.

Our experiments, aimed at identifying mutants with

upregulated HR frequencies, clearly indicate that 3F ZF-

ATF-mediated mutagenesis can be an efficient means to find

a particular phenotype in higher plants. Within just 6400

primary transformants, we positively identified a 3F ZF-ATF

(named VP16-HRU) that strongly up-regulates intra-chromo-

somal HR frequencies in Arabidopsis. Although they vary in

the specific nature of the mutants found, several other

studies describing the isolation of HR mutants have been

reported (Schuermann et al., 2005), thus allowing a tentative

comparison between different methods. The atino80-1

mutant, a semi-dominant mutation leading to reduced HR

frequency, was identified after screening 20 000 T-DNA

insertion mutants (Fritsch et al., 2004). A hyper-recombino-

genic phenotype due to reduced expression of At CEN2 was

found after screening 4200 T1 plants harboring a T-DNA

activation tagging construct (Molinier et al., 2004). Based on

these data, the efficiency of 3F ZF-ATF-mediated mutagen-

esis of Arabidopsis seems to be comparable with that of

activation tagging. As outlined above, this strongly indicates

that, for larger plant genomes, 3F ZF-ATF-mediated muta-

genesis can be a highly rewarding and efficient method to

investigate whether or not particular mutant phenotypes can

be found within the species studied.

In our study, it was clearly demonstrated that the 3F ZF-

ATF gene VP16-HRU acts as a dominant factor, causing 200–

1000-fold increase in HR frequencies in two different HR

reporter lines, 1406 and 1415. These frequencies are much

higher than reported previously using the same or related

types of reporter loci; the most dramatic HR increase

described so far being 36-fold for the AtCEN2 mutant

(Molinier et al., 2004). The optimal 9 bp recognition se-

quence (5¢-GTGGAGGCT-3¢) for the VP16-HRU protein is not

present within the sequences of the HR reporter loci, and it is

very unlikely that the flanking genomic regions of both

randomly integrated reporter loci are related. For this

reason, it can be postulated that VP16-HRU activates essen-

tial regulatory components of an HR pathway rather than

acting directly on the reporter loci. As HRU mutant seedlings

were resistant to the DSB-inducing agent bleomycin, HRU

plants most likely possess an HR system that is already

activated, leading to more efficient HR-based DSB repair. In

contrast, MMS sensitivity seemed to be increased in HRU

mutants (Figure 3b), supporting the view that the genotoxic

damage caused by MMS is repaired via another pathway,

the nucleotide excision repair (NER) pathway (Lundin et al.,

2005). It is tempting to speculate that up-regulation of HR-

mediated DSB repair is accompanied by a reduction in NER

activity. In addition to the observed increase in HR events,

the observed changes in tolerance to genotoxic compounds

further corroborate that the 3F transgene VP16-HRU acts

upon crucial processes in DNA metabolism.

While the VP16-HRU gene acts as an artificial exotic

regulator of HR-related events in Arabidopsis, a variety of

endogenous genes and physiological conditions have been

described that may be involved in the frequency of recom-

bination events. Mutations within the RAD50, RAD17, RAD9,

CENTRIN2, RECQI4A and BRU1 genes result in hyper-

recombinogenic phenotypes (Bagherieh-Najjar et al., 2005;

Gherbi et al., 2001; Heitzeberg et al., 2004; Molinier et al.,

2004; Takeda et al., 2004). Stress in the form of pathogens or

genotoxic treatments have also been correlated with

increased somatic HR events (Gherbi et al., 2001; Lebel

et al., 1993; Molinier et al., 2005). Mutants showing altered

frequencies of somatic HR are generally hypersensitive to

genotoxic stress and/or UV irradiation (Dubest et al., 2002,

2004; Masson and Paszkowski, 1997; Masson et al., 1997;

Mengiste et al., 1999). In this respect, the effect of expres-

sion of VP16-HRU in Arabidopsis is very interesting, as these

plants show a higher degree of resistance to bleomycin. To

our knowledge, such a phenotype, in particular in combina-

tion with the unprecedented up to 1000-fold increase in HR,

is novel to the field. We intend to use gene expression

profiling to check for differentially expressed genes due to

the VP16-HRU artificial transcription factor. As VP16-HRU
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seedlings are refractory to a further induction of recombi-

nation events by bleomycin, it will be of particular interest to

compare the expression pattern of these seedlings with

published data regarding changes in gene expression

patterns due to bleomycin or other genotoxic compounds

(Chen et al. 2003; Molinier et al., 2005).

In conclusion, our findings demonstrate that the use of 3F

ZF-ATF pools for mutagenesis at the organism level is

feasible and highly rewarding. Especially for rapid assess-

ment of potential dominant phenotypes in species with a

large genome size, ZF-ATF-mediated mutagenesis might be

a highly attractive method. The 3F pools in Agrobacterium

are available upon request and will be deposited to the

Nottingham Arabidopsis Stock Center (NASC).

Experimental procedures

Construction of plant expression vector pRF-VP16

Plant expression vector pGPTV-KAN (Becker et al., 1992) was
modified in order to obtain pRF-VP16. Briefly, NotI and SfiI sites
within the vector backbone were removed via sequential digestion
and treatment with Klenow enzyme and T4 DNA polymerase,
respectively. These modifications did not hamper the frequency of
plant transformation. The promoterless GUS coding sequence was
replaced by a 1.7 kb XmaI–SacI fragment containing the RPS5A
promoter (Weijers et al., 2001), after which the plasmid was
digested with SacI followed by insertion of a sequence providing
the vector with an ATG translational start codon, a FLAG tag, a
SV40 nuclear localization signal and NotI and XhoI sites. An XhoI–
SacI fragment encoding the 37 C-terminal amino acids of the VirF
protein of an octopine strain of Agrobacterium tumefaciens was
added to the vector. Although this domain was of no further
specific relevance for this study, the DNA fragment provided a
translational stop codon for the fusion proteins produced in
planta. The unique NotI site was used for introduction of the VP16
transcriptional activation domain (Sadowski et al., 1988), and SfiI
sites were used for directional cloning of zinc finger domains. The
most relevant features of the resulting plant expression plasmid
pRF-VP16 are shown in Figure 1(b). The plasmid sequence is
available upon request.

Construction of 3F ZF-ATF pools

Zinc finger modules designed for 5¢-GNN-3¢ or 5¢-(GNN)2-3¢ binding
sites were constructed in pSKN-SgrAI as described previously
(Neuteboom et al., 2006), using annealed oligonucleotide pairs
each encoding an optimal zinc finger sequence as established by
Segal et al. (1999). Once a sequence-verified series of constructs
encoding two-finger (2F) proteins sharing the C-terminal finger was
established, the third finger was added in a controlled manner
(Figure 1a). For each 2F series, the sixteen 2F constructs were grown
overnight in LC medium containing carbenicillin at 100 mg l)1 for
plasmid selection, and glucose (20 mM) in order to repress any
untimely expression of the ZF proteins via the lac promoter. A larger
volume (100 ml) of the same medium was subsequently inoculated
with equal amounts of each of the 16 bacterial strains belonging to
the series (corresponding to 0.5 ml of bacterial culture with an OD of
1.0 at 600 nm) and grown for an additional 4 h. Plasmid DNA was
isolated, digested with SgrAI, and subdivided for 16 separate liga-

tion reactions with one specific ZF-encoding oligonucleotide pair
present at 1000-fold molar excess relative to vector molecules. After
ligation and heat inactivation of the enzyme, the reactions were
pooled. After gel electrophoresis linear plasmid molecules con-
taining additional ZF oligonucleotides at each end were isolated
from gel. Upon a denaturation–renaturation procedure as described
previously (Neuteboom et al., 2006), circularized annealed plasmid
DNA was transformed into E. coli DH5a to obtain the 3F pool. Each
pool consisted of at least 2000 independent colonies to ensure that
complexity of 256 different 3F modules per pool was maintained.
Colonies belonging to a pool were scraped from solid medium and
grown together for an additional 5–6 h, after which the 3F-contain-
ing plasmids were isolated. The plasmid pool was digested with SfiI
to obtain 325 bp fragments containing 3F sequences, which were
subsequently ligated into the SfiI-digested plant expression vector
pRF-VP16 and transformed into E. coli DH5a. pRF-VP16 3F pools
typically consisted of at least 2000 independent colonies with >90%
recombinant plasmids. The colonies were scraped from plates and
grown briefly in LC under kanamycin selection. The resulting pools
were each mobilized to Agrobacterium tumefaciens strain AGL1
(Lazo et al., 1991) via triparental mating (Ditta et al., 1980). The
resulting masses of Agrobacterium colonies were scraped from
selection plates (kanamycin, rifampicin and carbenicillin at 100, 10
and 75 mg l)1, respectively). After briefly growing pools at 28�C in
selective liquid medium, 1 ml aliquots of Agrobacterium cultures
were frozen in bactopeptone medium with 17% glycerol and stored
at )80�C to start bacterial cultures to be used for plant transforma-
tion.

Plant transformation and homologous recombination assay

Plants of line 1406 (Gherbi et al., 2001) were transformed with each
of the pRF-VP16-3F pools by floral dip (Clough and Bent, 1998; Lazo
et al., 1991), and primary transformants (T1 seedlings) were selected
on MA medium (Masson and Paszkowski, 1992) lacking sucrose and
containing kanamycin, timentin and nystatin (50, 100 and
100 mg l)1, respectively). Ten-day-old primary transformants were
stained for GUS activity in order to reveal HR events as GUS-pos-
itive spots or sectors, essentially as described previously (Swoboda
et al., 1994) but including treatment with 95% acetone for 1 h at
)20�C followed by three rinses with phosphate buffer (pH 7.2),
0.5 mM K3Fe(CN)6, 0.5 mM K4Fe(CN)6, prior to a 14–16 h incubation
in 1 mg ml)1 X-gluc in the same buffer. Recombination events were
determined as the number of spots per seedling.

DNA isolation and PCR analysis for identification of ZF-ATFs

from T1 mutants

DNA was isolated from single GUS-stained T1 seedlings essentially
as described previously (Murray and Thompson, 1980), and dis-
solved in a total volume of 20 ll 1/4-strength TE buffer. For each
PCR-mediated rescue of the ZF sequence, 2 ll of the DNA sample
was used in a PCR analysis with primers pRF-uni-fw (5¢-GA-
AGCGTAAGGTCGAGC-3¢) and pRF-2pol-rev (5¢-CTCGCGAATG-
CATCGAG-3¢), amplifying a 676 bp PCR product containing the
sequence encoding the 3F domains. PCR was performed in a total
volume of 25 ll with 0.4 lM of each primer, 0.4 lM dNTPs and 1.25
units PfuTurbo� DNA polymerase (Stratagene, La Jolla, CA, USA).
Part of the PCR product was analyzed by gel electrophoresis; the
remaining part was digested with SfiI for cloning into SfiI-digested
pSKN-SgrAI. The 3F sequence was determined after sequencing
with primer M13R (5¢-CAGGAAACAGCTATGACCATGA-3¢).
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Treatment with genotoxic chemicals

All treatments were performed in a growth cabinet at 21�C with a
16 h photoperiod and under continuous gentle shaking when
seedlings were incubated in liquid medium. Seeds were sown on
solidified 1/2-strength MS medium. Five days after germination,
groups of three seedlings were transferred to each well of six-
well plates (Greiner bio-one, Alphen a/d Rijn, The Netherlands),
each well containing 4 ml liquid 1/2-strength MS medium with or
without the genotoxic agents bleomycin (0.125 mg l)1) or MMS
(0.007%). For the recombination assay, seedlings were treated for
24 h, and were further incubated for 5 days in liquid medium
without genotoxic agents prior to GUS staining. To monitor
developmental effects, treatment of seedlings was continued for
2 weeks. After this period, fresh weight reduction compared with
controls was determined by weighing the seedlings in batches of
18 seedlings in triplicate.
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