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BACKGROUND. Enchondromas are benign lesions that can occur as solitary

tumors or multiple tumors (Ollier disease) and may be precursors of central

chondrosarcomas. Recurrent chondrosarcomas can be of a higher grade com-

pared with primary tumors, suggesting possible progression.

METHODS. Genome-wide array-comparative genomic hybridization (CGH) was

used to investigate copy number changes in enchondromas and central chondro-

sarcomas to elucidate both primary genetic events and the events related to

tumor progression. Analyses of variance, Student t tests, and hierarchical cluster-

ing were used for the current analyses. Array-CGH data were compared with

complementary DNA (cDNA) and quantitative reverse-transcriptase polymerase

chain reaction expression array data.

RESULTS. Genomic imbalances were rare in enchondromas and in grade I chon-

drosarcomas, whereas they were frequent in high-grade tumors. No genomic

imbalances that were specific for Ollier disease were found. The authors identi-

fied 22 chromosome regions that were imbalanced in �25% of tumors, and 3 of

those regions were located on chromosome 12 (12p13, 12p11.21-p11.23, and

12q13, containing among others the PTPRF-interacting protein-binding protein 1

(PPFIBP1) gene. Loss of chromosome 6 and gain of 12q12 were associated with

higher grade. Comparison of array-CGH with cDNA expression showed correla-

tions for the ribosomal protein S6 (RPS6) and cyclin-dependent kinase 4 (CDK4)

genes.

CONCLUSIONS. In the current study the authors identified genomic regions and

new candidate genes (RPS6, CDK4, and PPFIBP1) that were associated with

tumor progression and prognosis in patients with high-grade chondrosarcomas.
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C hondrosarcoma of bone is a slowly growing, malignant tumor

characterized by the formation of cartilage. These tumors have

an equal gender incidence and principally occur in adults ages 30

to 60 years. The majority of chondrosarcomas (�83%) arise centrally

within the medullary cavity of bone and are called primary conven-

tional central chondrosarcomas or secondary central chondrosarco-

mas if they develop from a preexisting enchondroma.1 The latter

can be solitary or multiple tumors in the context of Ollier disease

(enchondromatosis). A minority of chondrosarcomas (�17%) are

subclassified as secondary peripheral tumors.2 Conventional central
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and secondary peripheral chondrosarcoma share

similar cytonuclear features, and 3 grades of malig-

nancy are discerned3 that are correlated with prog-

nosis.1 However, there is clear evidence for genetic

differences between central and peripheral chondro-

sarcomas.4,5

Only a few publications have made a distinction

between central and secondary peripheral chondro-

sarcomas. Those reports indicated that central chon-

drosarcomas are predominantly near-diploid,5 whereas

peripheral chondrosarcomas are aneuploid.4–6 A

broad range of presumably mostly random genomic

alterations is seen in high-grade central chondrosar-

comas with some indications that chromosome 9 is

affected more often.6,7

Cytogenetic studies in which no distinction was

made between central and peripheral chondrosarco-

mas revealed several recurrent aberrations (for re-

view, see Sandberg and Bridge7), some of which (e.g.,

the loss of 13q) reportedly had prognostic impact.8

Enchondromas show mainly a normal karyotype.7,9

Several genes have been tested for the presence

of mutations in central chondrosarcomas. For in-

stance, it was observed that TP53 on chromosome

17p13 was deleted or mutated in some chondrosar-

comas, mainly in high-grade tumors.10 Cyclin-de-

pendent kinase inhibitor 2A (CDKN2A) at 9p21 has

been studied extensively in central chondrosarco-

mas. Although cytogenetics, comparative genomic

hybridization (CGH), and loss of heterozygosity

(LOH) point to the 9p21 region as an important can-

didate locus for central chondrosarcoma develop-

ment,10 mutations and methylation of the CDKN2A

gene combined with absent p16 protein expression

is found only in a subset of mainly high-grade central

chondrosarcomas.11,12

For enchondromas in the context of Ollier dis-

ease, the overall percentage of malignant transforma-

tion is much higher, from approximately 25% to 30%

per patient with Ollier disease compared with <1%

for patients with solitary enchondromas.1,13 Genetic

data on patients with Ollier disease are sparse. LOH

was identified at 13q14 and 9p21,14 whereas cytoge-

netic studies revealed no6 or only 1 alteration per

tumor (deletion of 1p15; inversion on chromosome

96). A mutation in the parathyroid hormone receptor

1 (PTHR1) gene was reported in 2 of 6 patients with

Ollier disease,16 although another study in 31

patients with Ollier disease could not confirm this

finding.17

To identify genomic alterations further, we per-

formed a genome-wide screen by high-resolution

array-CGH on solitary and Ollier disease-related en-

chondromas and conventional central chondrosar-

comas. We looked for genomic alterations that were

specific for central chondrosarcoma and Ollier dis-

ease and those related to tumor progression and

prognosis. The results were compared with expres-

sion array data and were verified by quantitative re-

verse-transcriptase polymerase chain reaction (qRT-

PCR) analysis. Tumors from patients with Ollier

disease were included to identify putative genetic

changes specific for this syndrome.

MATERIALS AND METHODS
Samples
Fresh-frozen samples were collected from the archives

of the Department of Pathology of Leiden University

Medical Center. In total, 21 tumor samples (3 en-

chondromas, 7 grade I chondrosarcomas, 7 grade II

chondrosarcomas, and 4 grade III chondrosarcomas)

were used for the BAC array (Table 1). Chondrosarco-

mas were either primary conventional or secondary

to a radiologic, longstanding, documented enchon-

droma. No samples that originated from recurrent

tumors were used. One of the patients was diagnosed

previously with a breast carcinoma.18 Patient data

were obtained by review of clinical charts and radio-

graphs. Grading was performed according to Evans

et al.3 Additional samples were used for verification

experiments. All samples were handled in a coded

fashion, and all procedures were performed accord-

ing to the ethical guidelines, ‘‘Code for Proper Sec-

ondary Use of Human Tissue in the Netherlands’’

(Dutch Federation of Medical Scientific Societies).

DNA Isolation
DNA was isolated from samples that contained

�70% tumor cells estimated in hematoxylin and

eosin-stained sections. Four samples were microdis-

sected to enrich the tumor cell percentage.4 DNA

was isolated using a Wizard genomic DNA purifica-

tion kit (Promega), according to the manufacturer’s

instructions. The samples were hybridized against a

gender-matched control DNA pool that was created

from >10 normal blood DNA samples (Promega).

Array-CGH
A BAC/PAC clone set provided by the Welcome Trust

Sanger Institute (United Kingdom) was used to con-

struct 1-Mb resolution arrays. Information regarding

the full set is available at the Sanger Center mapping

data base site, Ensembl (http://www.ensembl.org/).

Array production, hybridization, and image-acquisi-

tion procedures were performed as described pre-
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viously.19 In brief, all samples were labeled with

indocarbocyanine-deoxycytidine triphosphates (dCTPs)

and hybridized on the slides together with indodicar-

bocyanine-dCTP-labeled reference DNA. Hybridized

slides were scanned with an Agilent DNA microarray

scanner.

Data Analysis
Spot intensities were measured by GenePix Pro 4.1

software. Spots with low intensity (<5 times the aver-

age of the background) or with nonsimilar values

among replicates were excluded.19 Further analysis

and averaging of the triplicate spotted clones was per-

formed by using Excel algorithms19 and CGH Analyzer

MeV (University of Pennsylvania, Abramson Cancer

Research Institute20). The determination of significant

copy number changes detected in array-CGH for

tumor samples, in which a substantial part of the

genome is altered, is not straightforward. Identifica-

tion of breakpoints and determination of the true

copy number values are problematic because of

aneuploidy and admixture of nontumor cells. To facil-

itate and standardize the data analysis, aCGH-Smooth

was used.21 Clones that showed imbalances in normal

controls were considered polymorphic and were

excluded from further analysis.

Correlation of Genomic Alterations and Expression Levels
Expression array data were available for 13 of 21

tumors studied.22 RNA from these tumors was hybri-

dized to a complementary DNA (cDNA) array that

contained 8696 cDNA clones, representing common

genes and a selection of genes (�500) with known

expression in cartilage and growth plate or involve-

ment in carcinogenesis in general. Of the smallest

regions of overlap (SROs), array GCH and cDNA-

array data were compared to relate gene expression

effects to DNA copy number alterations.

qRT-PCR
Verification of cDNA expression levels was per-

formed as described previously.22 For ribosomal pro-

tein S6 (RPS6), the primers ATTCAGCGTCTTGTTACT

CCAC (forward) and CCTTAGCCTCCTTCATTCTCTTG

(reverse) were used. In total, 40 samples were used,

consisting of phalangeal enchondromas (n ¼ 7 sam-

ples) and central chondrosarcomas (grade I, n ¼ 11

samples; grade II, n ¼ 7 samples; and grade III,

n ¼ 9 samples). Two normal cartilage samples and 4

growth plate samples were used for comparison.

Normalization was performed by using G-NORM.

TABLE 1
Clinicopathologic Data on the Samples Used in Genomic Array Analysis

Sample no. Gender Diagnosis (Grade) Ollier disease Location Size (cm) Follow-up in months (outcome)

L206* Female EC Yes Phalanx 1 � 0.3 � 0.3 42 (Remission)

L1251* Male EC Yes Phalanx Greatest dimension, 1.3 8 (Recurrence)

L892 Male EC No Phalanx ? 2 (Remission, lost to follow-up)

L185 Female C-CS (I) No Femur Greatest dimension, 1 101 (Remission)

L321 Male C-CS (I) No Femur 7 � 2.6 � 3.2 54 (Remission)

L738* Female C-CS (I) No Humerus 5.9 � 2.5 � 3.4 59 (Remission)

L761* Male C-CS (I) No Femur Greatest dimension, 2.5 16 (Remission)

L803* Female C-CS (I) Noy Femur 4.5 � 2.5 � 2 28 (Remission, DOC)

L853 Female C-CS (I) No Humerus 3 � 3 � 3 31 (Remission)

L1212 Female C-CS (I) No Humerus 6.5 � 5 � 6 16 (Remission)

L172* Male C-CS (II) Yes Scapula Greatest dimension, 4 7 (Remission, lost to follow-up)

L130 Male C-CS (II) No Rib 12 � 83.5 23 (Recurrence)

L646 Female C-CS (II) No Femur 11 � 2.5 72 (Remission)

L654* Male C-CS (II) No Fibula 2.5 � 3.5 � 4.5 17 (Recurrence)

L813* Male C-CS (II) Yes Humerus ? 2 (Remission, lost to follow-up)

L861* Male C-CS (II) No SI joint Greatest dimension, 1 1 (Metastasis, DOD)

L908* Male C-CS (II) No Humerus Greatest dimension, 4.8 30 (Remission)

L171* Male C-CS (III) No Humerus 13 � 10 � 9 6 (Metastasis, DOD)

L795* Male C-CS (III) No Scapula 11 � 9 � 6.5 8 (Recurrence)

L903 Female C-CS (III) No Femur 21 � 5.5 � 4.2{ 32 (Recurrence)

L1066* Male C-CS (III) No Humerus 20.3 � 14 16 (Metastasis)

EC indicates enchondroma; C-CS, conventional central chondrosarcoma; ?, unknown size; DOC, died of other causes; SI, sacroiliac; DOD, died of disease.

* Combinational DNA expression data were available for these samples (see Rozeman et al., 200522).
y This patient also had a breast carcinoma (see Odink et al., 200118).
{ Contaminated margin.
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RESULTS
Array-CGH
After hybridization, from 95% to 99% of the spotted

clones fulfilled the quality criteria19 and were used

in the analysis. In 10 tumors with statistically signifi-

cant copy number alterations, the samples showed

high normal cell contamination despite efforts to

enrich the tumor percentage by microdissection in

some instances. In these samples, extra adjustments

(aCGH-Smooth) were applied to enable data input

with the MeV software package (Samples L761,

L1212, L172, L654, L813, L861, L908, L795, L903, and

L1066).

Genomic alterations were found mainly in high-

grade samples. No DNA copy number alterations

were found in Samples 2 through 6 or Sample 8 (2

enchondromas and 4 grade I chondrosarcomas).

Overall, grade III chondrosarcomas showed the lar-

gest number of DNA imbalances: Enchondromas

had an average of 8 imbalances (range, 4–11 imbal-

ances), grade I chondrosarcomas had an average of

18 imbalances (range, 3–26 imbalances), grade II

chondrosarcomas had an average of 28 imbalances

(range, 9–39 imbalances), and grade III chondrosarco-

mas had an average of 43 imbalances (range, 26–74

imbalances) (Fig. 1). The SROs (comprising �3 adja-

cent clone DNA copy number alterations) present in

�5 different samples are listed in Table 2.

Analysis of Genomic Alterations in Ollier
Disease-Related Tumors
Specific Ollier disease alterations were searched for

in the 4 samples with Ollier disease (2 phalangeal

enchondromas and 2 grade II chondrosarcomas). Of

the 2 phalangeal enchondromas, 1 revealed no al-

terations, whereas the other showed loss of chromo-

some 6. The 2 grade II chondrosarcomas showed

more alterations: gain of almost the entire chromo-

somes 2, 5, 8, 15, 19, 20, 21, and 22 and gain of parts

of chromosomes 1, 5, 7, 9, 16, 17, and 18 in 1 sample

FIGURE 1. Genomic alterations were identified in enchondromas and in conventional central chondrosarcomas. These ideograms show the distribution of
numerical aberrations subdivided into enchondroma and the 3 different grades of chondrosarcoma. Gains are shown on the right, and losses are shown on the

left. Gain of chromosomal region 12q12 is associated with grade III chondrosarcomas. Polymorphisms have been left out of this figure, except if they were

seen as only loss or gain in the tumors (for instance, 17p) Loss of chromosomes 10, 4q13, and 4q34.3 and gain of 9q34 are associated with adverse prog-

nosis. Asterisks mark the locations of 4q13, 4q34.3, 9q34, and 12q12. (Chromosome ideograms were obtained from http://www.pathology.washington.edu/

research/cytopages/)
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and both losses (on chromosomes 1, 3, 4, 6, 9, 10,

13, 15, 16, and 22) and amplifications (on chromo-

somes 6, 7, 12, 14, 15, 16, 17, 18, and 19) in the other

sample. None of the alterations recurred in all 4

samples or even in 3 of 4 samples, nor were any of

the changes specific for Ollier disease (i.e., absent in

solitary tumors).

Correlation with Grade
The number of aberrations between low-grade and

high-grade tumors clearly differed. However, no spe-

cific alterations for the grades were seen when all

grades were taken in account. Comparison of only

grade II with grade III chondrosarcomas identified

gain in grade III chondrosarcomas of 4 clones on

chromosome 12 (P < .001) (Fig. 2), 3 of which were

adjacent on chromosomal region 12q12 (�1.3 Mb).

Previously, it was reported that loss of 6q was

associated with impaired metastasis-free survival.8

Hierarchical clustering solely with clones from chro-

mosome 6 partly separated the grade III chondrosarco-

mas from the other tumor grades (P < .05) (Fig. 3A).

Hierarchical clustering on chromosome 10 showed

separate clusters for 6 tumors from patients with

recurrent disease, metastasis, and/or death from dis-

ease (P < .05; not shown). Other previously reported

chromosomal areas8 revealed no separate cluster for-

mation for grade and/or outcome.

Correlation with Prognosis
To identify possible regions associated with adverse

prognosis, we compared patients who had no evi-

dence of disease with patients who had recurrent

disease (excluding patients who had tumors with

positive surgical margins), metastasis, and/or who

died of disease (minimum follow-up, 1 year, unless

an event occurred within the 1st year). Student t

tests identified 165 BAC clones (P < .001) that

showed differences between the 2 groups, and sub-

sequent hierarchical clustering identified a near per-

fect distinction (Fig. 3B) that was correlated with

histologic grade. These BAC clones formed consecu-

tive regions on chromosome 10 (from 10pter to

10q25.3), chromosome 4 (�4.2 Mb on 4q13 and

�4.4 Mb on 4q34.3), and chromosome 9 (�6.2 Mb on

9q34).

TABLE 2
Smallest Regions of Overlap Amplified or Deleted in at Least 5 Samples*

Chromosome Type Region SRO start clone SRO stop clone SRO size (Mb)

No of

tumors
affected Genes of interest

1 Del p36.22-p36.31 RP3-438L4 RP3-438L4 3.2 5

1 Del p13.2-p22.1 RP5-1033H22 RP4-770C6 21 5 EXTL2 (¼)

5 Amp q23.3 RP1-241C15 RP1-241C15 0.55 5 P4HA2 (�)

6 Del p21.32-p25.3 pter PAC62L11 RP5-1077I5 33 5 Histones

6 Del q22-q25 RP1-94G16 RP11-13P5 43 8 ESR1 (¼), PERP (�)

7 Amp p12.3-p15.3 RP11-99O17 RP11-21H20 24 5 RALA (�)

7 Amp p11.2-q11.23 RP5-905H7 RP11-107L23 17 5 GUSB (¼)

7 Amp q36.1-q36.3 qter RP11-422E4 CTB-3K23 6.4 5 SHH (�), C7orf2 (�)

8 Amp q24.3 qter RP5-1056B24 CTC-489D14 5.5 7 MAFA (�)

9 Del p21.3-p24.1 RP11-527D15 RP11-149I2 15 7 CDKN2A (¼), RPS6 (;)
9 Amp q33.3-q34.3 RP11-373J8 GS1-135I17 14 7 ABL1 (�), VAV2 (�)

10 Del pter-q25.2 RP11-426E5 113 5 RSU1 (�), PTEN (�), NDUFB8 (¼)

12 Amp p13 RP11-277E18 RP11-277E18 2.9 6

12 Amp p11.21-p11.23 RP11-425D17 RP11-50I19 5.9 5 PTHLH (¼), PPFIBP1 (�)

12 Amp q13 RP5-1057I20 RP11-571M6 11 6 ERBB3 (�), SAS (�), CDK4 (:), GLI (¼)

15 Amp q25.3 RP11-133L19 CTB-154P1 21 7 FES (�)

19 Amp p13.11-p13.3 RP11-500M22 CTD-3149D2 17 7 VAV1 (¼), JUNB (¼), JUND (¼)

19 Amp q13.11-q13.31 CTD-2527I21 RP11-569M1 9.2 7 AKT2 (¼)

20 Amp q11.21 RP11-410N8 RP11-410N8 0.66 9

20 Amp q12 RP11-122O1 RP5-892M9 3.2 8 MAFB (�)

20 Amp q13.33 qter RP4-563E14 RP13-152O15 4.0 9 BIRC7 (�)

21 Amp q22.11-q22.3 RP11-410P24 CTB-63H24 19 6 ETS2 (�)

SRO indicates smallest regions of overlap; Del, deletion; Amp, amplification; RP, ribosomal protein; (¼), similar expression levels between tumors with the aberration and tumors with normal content; (:), higher
expression levels in tumors with genomic gain versus tumors with normal content; (;), lower expression levels in tumors with genomic loss versus tumors with normal content; (�) not informative/no data (see

Rozeman et al., 200522).

* The size of SRO presented in the table represents the distance between the first and last BAC clone in a recurrent DNA copy number alteration.
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Correlation of Genomic Alterations and Expression Levels
Subsequent analysis of gene expression profiles

(available for 13 tumors) (see Table 1)22 in the SROs

was performed. Gene expression levels of tumors

with genomic loss/gain of the SRO were compared

with tumors that did not have genomic loss/gain.

Overall, the genomic alterations did not result in

significant alterations of gene expression levels

(Table 1). However, the expression in 2 of �300

genes tested in this experiment, CDK4 (12q13) and

RPS6 (9p21-24), appeared to correlate (Pearson r:

P ¼ .000 and P ¼ .004, respectively) with the genomic

alteration (Fig. 4A,B). These correlations were veri-

fied by qRT-PCR. Tumors with gain of 12q13 (n ¼ 4

tumors) showed higher expression levels than

tumors without deletion (n ¼ 8 tumors; Student t

test; P ¼ .01) (Fig. 4C). Tumors with loss of 9p21-24

(n ¼ 7 tumors) showed lower expression levels than

tumors without deletion (n ¼ 5 tumors), although

the P value did not reach significance (Student t test;

P ¼ .128) (Fig. 4D). In an extended group of 27 chon-

drosarcomas, RPS6 expression was correlated nega-

tively with grade (P ¼ .006) (Fig. 4E), with lower

expression in high-grade tumors.

DISCUSSION
We used array-GCH to examine DNA imbalances in

solitary and Ollier disease-related enchondromas

and conventional central chondrosarcomas. It was

demonstrated previously in osteosarcoma and other

tumor types that array-CGH may uncover previously

undetected DNA copy number changes. The current

study represents the results of genome-wide copy

number screening by array-GCH in chondrosar-

comas.

Our array-GCH results are in agreement with

genomic changes previously reported at the cytoge-

netic level (4–10 Mb resolution) by G-banding and

chromosome CGH7,23 with absent or limited num-

bers of alterations in enchondromas and the presence

of several genomic alterations in chondrosarcomas

(such as deletion of 9p, gain of parts of chromosome

12, and gain of chromosomes 20 and 21) (see Fig. 1).

The number of changes increased in higher grade

tumors. Although we did observe recurrent changes

on chromosome 8 (8q24.3), we did not observe a re-

currence of the previously reported gain at 8q24.12-

q24.13.24

The genetic changes that underlie the origin of

Ollier disease and that distinguish its behavior from

solitary tumors remain unclear.1,13 Comparison of

tumors from patients with Ollier disease with one

another and with solitary tumors revealed no specific

genomic alteration that was present either in all

samples or exclusively in Ollier disease samples. Our

previous cDNA array analysis also did not reveal dif-

ferences between Ollier disease-related and solitary

enchondromas and chondrosarcomas.22 Neverthe-

less, we cannot exclude the possibility that more

subtle changes, which cannot be identified with

array-CGH, may underlie this syndrome, such as

amplifications/deletions <� 1 Mb or balanced rearran-

gements. However, balanced rearrangements have

not been reported in Ollier disease-related tumors or

conventional central chondrosarcomas. Another pos-

sibility is that Ollier disease may be caused by a

genetic point mutation. Previously, we excluded the

suggested role of PTHR1.17

The current study revealed that gains and losses

of large DNA segments (�1 Mb) are not present in

all tumors, and 2 of 3 enchondromas and 4 of 7

grade I chondrosarcomas exhibited no detectable

alterations in DNA copy numbers. High numbers of

alterations, mainly including large DNA segments

(arms/whole chromosomes), were present predomi-

nantly in high-grade tumors. These alterations can

be both recurrent and random, with the latter pre-

sumably representing chromosomal instability. How-

ever, which alterations are primary and secondary

cannot be determined.

By applying a cut-off minimum of SRO presence

in 5 samples, we identified 22 SROs (Table 2), ran-

ging from 0.55 Mb to 113 Mb. One SRO involved a

deletion of 9p21.3-p24.1. It was reported previously

that this region was deleted in chondrosarcomas7

and contained the locus INK4A/INK4A-ARF, coding

for the tumor suppressor genes CDKN2A/CDKN2C.

Previously we12 and others11 investigated this locus

and found that loss of this locus or the protein was

associated with high histologic grade. In the current

study, we have identified another gene involved in

FIGURE 2. Hierarchical clustering of the 4 clones of chromosome 12 is
illustrated with differentiation between grade II and grade III chondrosarco-

mas. Two clusters can be discerned: 1 that contains mainly grade III (ampli-

fied) samples and 1 that contains grade II chondrosarcomas.
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the 9p deletion, RPS6, in which low expression levels

were correlated significantly with the deletion. In

addition, significantly lower expression of RPS6 was

found in high-grade tumors. The RPS6 protein

belongs to the S6E family of ribosomal proteins,

which are regulated by phosphorylation. The protein

contributes to the control of cell growth and prolif-

eration through the selective translation of particular

classes of mRNA2, and, thus, is a candidate tumor

suppressor gene in chondrosarcomas.

Chromosome 12 contained 3 SROs. Gain of chro-

mosomal region 12q13 was found in 6 tumors (2

grade I, 1 grade II, and 3 grade III chondrosarco-

mas). This region has been reported previously in

chondrosarcomas and other sarcomas.7,26 Several

genes in this region have been identified as impor-

tant for tumorigenesis. For instance, sarcoma-ampli-

fied sequence (SAS), CDK4, and glioma-associated

oncogene homologue (GLI) are located in the ampli-

fied zone. Two other often-implicated genes in sarco-

mas, high-mobility group AT-hook 2 (HMGA2) and

MDM2, are located just outside the region we identi-

fied. RNA expression analysis revealed higher expres-

sion levels of CDK4 in tumors in which this region

was amplified (Fig. 4), as also reported for other

tumors.27 Expression profiles of other genes in this

region were not correlated with genomic gain. How-

ever, additional studies are required to confirm these

findings in other tumor samples.

Along with the correlation between the genomic

aberration and expression of RPS6 and CDK4, no

other genes that were present in the cDNA array and

that were located in the identified SROs showed a sig-

nificant correlation. This may be explained in part by

the regulation of expression, which also can be regu-

lated at the RNA or protein level, and not only by

haploinsuficiency. Another reason that may obscure

results from expression analysis is the tumor content.

Although we only used samples with a tumor content

>70% on hematoxylin and eosin-stained sections, the

results from aCGH Smooth revealed that, in some

sections, the actual percentage most likely was lower.

In those samples, we observed significant alteration

of the genomic content; however, prior to smoothing

of the data, the threshold for amplification or deletion

was not reached. Whereas, in the genomic array, the

alterations still could be observed, the expression

array data could be obscured more by the normal

content, resulting in an underestimate of the actual

differences in expression.

Chromosome 1 contained 2 SROs that were de-

leted (1p36.22-p36.31 and 1p13.2-p22.1), as reported

previously.7 The region 1p13.2-p22.1 contains, among

others, EXTL2. In patients with multiple osteochon-

FIGURE 3. Hierarchical clustering of tumors. (A) Hierarchical clustering on clones of chromosome 6. A distinct cluster that contains all grade III chondrosar-
comas, 1 grade I chondrosarcoma, and 1 enchondroma is evident and separates the grade III chondrosarcomas from almost all other grade tumors. (B) Hier-

archical clustering on the 131 BAC clones, as determined with Student t tests for prognosis, shows the distribution of patients who had no evidence of disease

compared with patients who had recurrence, metastasis, or death from disease. III indicates grade III chondrosarcoma; II, grade II chondrosarcoma; I, grade I

chondrosarcoma; E, enchondroma; FU, follow-up; rec., recurrence; ?, lost to follow-up; meta., metastasis; dod, dead of disease.
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dromas, which is a hereditary syndrome with multi-

ple exostoses that may transform into secondary per-

ipheral chondrosarcomas, 2 other members of this

gene family are involved. These patients have muta-

tions in the EXT1 or EXT2 genes that encode for the

proteins involved in the heparan-sulphate side-chain

elongation. EXTL2 is homologous to EXT1 and EXT2,

and it initiates heparan-sulphate synthesis.2 Because

conventional central chondrosarcomas resemble the

secondary peripheral chondrosarcomas histologi-

cally, EXTL2 may be a target for deletion. However,

cDNA microarray analysis revealed no difference in

RNA expression of EXTL2 between the tumors that

contained a deletion of this SRO and those without

this deletion.

Gain of chromosomal region 12p11.21-p11.23

was observed in 5 tumors (2 grade I, 1 grade II, and

2 grade III chondrosarcomas). One of the genes in

this region is parathyroid hormone-like hormone

(PTHLH), which is an important gene for chondro-

cyte growth and differentiation. Previously, we re-

ported that this protein is expressed in almost all

enchondromas and chondrosarcomas.29,30 The re-

gion also contains PTPRF-interacting protein-binding

protein 1 (PPFIBP1), which reportedly interacts with

S100A4, a calcium-binding protein related to tumor

invasiveness and metastasis.31 However, for these

genes, no cDNA microarray data were available.

In general, most genomic alterations were found

only in high-grade tumors. Analysis of the different

grades identified 2 regions that were capable of

partly separating the different grades. Copy number

gain of region 12q12 separated grade I from grade II

chondrosarcomas in hierarchical clustering (Fig. 2).

This region (�1.3 Mb) contains, among others, his-

tone deacetylase 7A (HDAC71) and SUMO1/sentrin

specific protease 1 (SENP1). SENP1 is capable of

reducing the deacetylase activity of HDAC1.32 Chro-

mosome 6 contains several histone genes (deleted

SRO, 6p22-p21.3), and hierarchical clustering of the

clones on this chromosome also partly separated the

grade III chondrosarcomas from the other chondro-

sarcomas (Fig. 3A). Alterations in 6p21 and 12q12,

therefore, may affect genome stability through his-

tones, resulting in damage of DNA. Two other regions

that contained a cluster of histone genes, 1q21 and

1q42, were not affected.

Investigating a potential correlation with prog-

nosis revealed that patients who have tumors with

loss on chromosome 4 (4q13 and 4q34) and chromo-

some 10 and gain on chromosome 9 (9q34) may

have a poor prognosis. These aberrations also corre-

late with increase in histologic grade and tumor size.

However, the results reported here should be tested

further in a separate group of tumors to confirm

their validity. In our cluster analysis, 1 tumor per-

formed somewhat unexpectedly, clustering together

with tumors that carried an adverse prognosis,

whereas no recurrence or metastasis was reported in

that patient. However, follow-up for this patient was

available only for 16 months, which is relatively

short for chondrosarcomas, because recurrences still

may occur within 5 years after surgery, and metas-

tases may occur after 10 years.

In conclusion, recurrent alterations (SROs) were

found in chondrosarcomas along with nonspecific

genomic instability, predominantly in high-grade

chondrosarcomas. These alterations involve chromo-

some 12, multiple regions of which are amplified (3

SROs: 12p13, 12p11.21-p11.23, and 12q13), and chro-

mosome 6. Therefore, we hypothesize that these

parts of the chromosome play an important role in

the tumor progression of chondrosarcoma. The ex-

pression of CDK4 was correlated with the genomic

alteration on 12q13. For the well known loss of chro-

mosomal region 9p21, we propose RPS6 as a possi-

ble other gene of interest in addition to CDKN2A.

FIGURE 4. Correlation RNA expression with amplifications/deletions identi-
fied by array comparative genomic hybridization: cyclin-dependent kinase 4

(CDK4) from a complementary DNA (cDNA) array (A); ribosomal protein S6

(RPS6) from a cDNA array (B); CDK4 from quantitative reverse-transcriptase

polymerase chain reaction (qRT-PCR) analysis (C); RPS6 from qRT-PCR (D); and

correlation of RPS6 expression with histologic grade from qRT-PCR analysis (E).
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