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Chapter 1

General Introduction





Cardiovascular diseases (CVD) have long been the leading cause of mortality 
and disability in developed countries, and it is rapidly becoming the number 
one killer in developing countries.1 Worldwide 16.7 million people die from 

CVD each year. The primary cause of CVD is atherosclerosis, which is a multi-facto-
rial disorder occurring in the large and medium-sized arteries of the body. Athero-
sclerosis is a complex disease that starts in childhood and progresses throughout 
life. Major risk factors for developing atherosclerosis are high blood pressure, high 
blood cholesterol, smoking, diabetes, and inherited genetic disposition. Although 
scientific advances in basic, clinical, and population research have been phenom-
enal, the complications of atherosclerosis such as myocardial infarction, stroke and 
peripheral vascular disease still makes it a prevailing disease in the western society. 
In the beginning 90s promising lipid lowering therapies predicted a strong reduc-
tion in cardiovascular deaths for the upcoming years, however in westernized soci-
eties it still accounts for 40% of the total number of annual deaths, indicating that 
treatment of atherosclerosis goes beyond lipid lowering solely. In addition to lipid 
accumulation, continuous cell proliferation (cell cycle) and cell death (apoptosis) 
processes are thought to play a central role in the development of atherosclerotic 
lesions. This chapter describes the general aspects of the development of athero-
sclerosis, discusses the role of cell cycle and apoptosis genes in atherosclerosis de-
velopment in greater detail, and concludes with the outline of the thesis.

THE PATHOGENESIS OF ATHEROSCLEROSIS

Atherosclerosis comes from the Greek words athero (meaning gruel or paste) and 
sclerosis (hardness). Although the knowledge on atherosclerosis has expanded ex-
tremely the past couple of decades, the exact mechanism of initiating events is still 
unclear. Generally atherosclerosis can be considered as a form of chronic inflamma-
tion resulting from interaction between modified lipoproteins, monocyte-derived 
macrophages, T-cells, and the normal cellular elements of the arterial wall. This in-
flammatory process ultimately leads to the development of complex atherosclerotic 
lesions.2 

Elevated plasma cholesterol levels are unique in being sufficient to drive the 
development of atherosclerosis even in the absence of other known risk factors.3 
Cholesterol together with triglycerides are the most important lipids in the circula-
tion and are indispensable to various cellular processes. Cholesterol is necessary for 
the synthesis of cellular membranes, steroid-hormones and bile, whereas triglycer-
ides function as a major energy source for the body. Cholesterol and triglycerides 
are lipophylic and are therefore transported in water-soluble lipoprotein particles. 
These lipoproteins are divided into different groups according to their density and 
size: chylomicrons, very low density lipoproteins (VLDL), low density lipoproteins 
(LDL) and high density lipoproteins (HDL). Chylomicrons are responsible for trans-
port of dietary lipids, on the other hand, VLDL, LDL and HDL function to transport 
endogenous lipids. Increased LDL and VLDL cholesterol levels are associated with 
increased risk of cardiovascular disease.4,5 These increased levels of plasma LDL and 
VLDL result in retention of the lipoproteins in the vascular wall, where they get 
modified (i.e. oxidation, proteolysis and aggregation).4 Retention of the modified 
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lipoproteins leads to activation of the endothelium and expression of adhesion mol-
ecules. Following, monocytes from the circulation are recruited and adhere to the 
injured vessel wall where they subendothelially differentiate into macrophages due 
to the presence of various growth factors and cytokines (including interleukin-1 
(Il-1), tumor necrosis factor-α (TNFα), and interferon-γ (IFNγ)). Subsequently, the 
macrophages become lipid-laden foam cells due to the continuous uptake of modi-
fied lipoproteins. The presence of foam cells in the vascular wall is called the fatty 
streak, the first occurrence of atherosclerosis.6

Although the recruitment of monocytes to the vascular wall and their differ-
entiation into macrophages may initially serve as a protecting factor, progressive 
accumulation of these macrophages and subsequent production of cytokines, che-
mokines, and metalloproteinases and the continuous presence of modified lipopro-
teins results in the formation of more complicated atherosclerotic lesions.3,7 Transi-
tion of the fatty streak towards the advanced atherosclerotic lesion is characterized 
by migration of smooth muscle cells (SMCs) from the medial layer of the artery into 
the intimal or subendothelial layers. SMCs can proliferate and take up modified li-
poproteins contributing to foam cell formation. More importantly, SMCs synthesize 
extracellular matrix proteins that lead to the formation of a fibrous cap. The lesion 
continues to grow by the entrance of new mononuclear cells from the blood, which 
enter at the shoulders of the lesion. This is accompanied by cell proliferation, extra-
cellular matrix production and the accumulation of extracellular lipid.4 Gradually, 
the lesion develops towards an atheromatous or fibrofatty plaque6 in which the 
fibrous cap overlies a pool of smooth muscle cells, lipid-laden macrophages, T-lym-
phocytes, necrotic debris and cholesterol crystals (Figure 1). Although advanced 
atherosclerotic lesions can grow sufficiently large to block blood flow, the most 
important clinical complication is the formation of a so-called vulnerable athero-
sclerotic lesion with an occluding thrombus, resulting in acute ischemia. The clini-
cal outcome of acute ischemia is dependent on the site of the thrombus in the body 
and can be for example gangrene of the limbs, myocardial infarction or stroke.4  

Early atherosclerosis Advanced atherosclerosis

LDL

modification

activation

uptake 

monocyte

T-cell

macrophage
foam cell 

SMC 

EC

differentiation

Necrotic
core

Figure 1. Atherosclerotic lesion formation from early to advanced atherosclerosis.Indicated 
are adhesion, migration, uptake of modified LDL and differentiation of monocytes to 
macrophage foam cells. Smooth muscle cells migrate and proliferate to form a fibrous cap, 
overlying a pool of lipid-laden macrophages, T-cells, necrosis and cholesterol crystals. SMC, 
smooth muscle cell; EC, endothelial cell; LDL, low density lipoprotein.
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THE VULNERABLE ATHEROSCLEROTIC LESION 

Every year over 19 million people worldwide are diagnosed with acute coronary 
syndromes (including: unstable angina, acute myocardial infarction, or sudden coro-
nary death).1 Most acute coronary syndromes are the consequence of the forma-
tion of an occluding thrombus at the site of the atherosclerotic lesion, which can 
arise from three different atherosclerotic lesion morphologies (rupture, erosion, and 
calcified nodules). Atherosclerotic lesion rupture is the most common type of com-
plication, accounting for 60-75% of all cases. Pathological analysis of these ruptured 
lesions shows lesions with a necrotic core and an overlying thin disrupted fibrous 
cap heavily infiltrated by macrophages and T-lymphocytes. Activation of the clotting 
cascade results from contact of platelets with thrombogenetic agents of the core 
of the lesion leading to the formation of a thrombus. Second, erosions account for 
25-40% of all coronary thrombi. Erosions are characterized by a luminal thrombus 
on top of a proteoglycan-rich lesion containing mostly SMCs with few inflamma-
tory cells. Loss or dysfunction of the luminal endothelial cells is the primary cause 
of the formation of a thrombus. If present at all, there is no contact of the necrotic 
core with the overlying thrombus since the overlying fibrous cap is still intact. Last, 
the calcified nodule accounts only for 2-7% of all coronary thrombi. These lesions 
are characterized by the presence of calcified plates along with bony nodules that 
protrude into the vessel lumen, which contains disrupted endothelium. 8-11

The cellular composition of an atherosclerotic lesion is an important deter-
minant of its stability. In general, lipid-poor lesions with a prominent presence of 
fibroblasts, SMCs and collagen are relatively stable and resistant to rupture. On the 
other hand, lesions rich in cholesterol-loaded macrophages and extracellular lipid 
deposits, covered by a thin SMC-rich cap, are relatively soft and considered to be 
vulnerable to rupture.12 

On cellular level, macrophages play a prominent role in creating a vulnerable 
lesion. They release chemokines (i.e. MCP-1, MCP-4, and RANTES) that attract ad-
ditional macrophages, T-cells and mast cells into the site. Together they produce a 
pool of enzymes, including the family of matrix metalloproteinases (MMPs), which 
contribute to the degradation of the cap matrix and increase plaque vulnerability 
through secretion of collagenases, gelatinases, and stromolysin.13,14 Eventually, foam 
cells contribute to the ongoing growth of the necrotic core, which is considered as 
a lesion destabilizing factor.8 

Vulnerability to lesion rupture is not only characterized by the morphology of 
the lesion. In addition to lesion vulnerability, the vulnerable patient is also character-
ized by vulnerable blood (i.e. increased levels of C-reactive protein (CRP) and inter-
leukin-6 (Il-6) and increased blood thrombogenicity) and a vulnerable myocardium 
(i.e. ECG abnormalities). Therefore, improved identification and treatment of vulner-
able patients is a goal of great importance since it would result in major decreases 
in cardiovascular disease, morbidity and mortality.9



14

C
h

ap
te

r 
1

CELL PROLIFERATION AND CELL DEATH

Many physiological processes, including proper tissue development and homeosta-
sis, require a delicate balance between cell gain (proliferation/cell cycle) and cell 
loss (apoptosis). All somatic cells proliferate via a mitotic process determined by 
progression through the cell cycle. Apoptosis (programmed cell death) occurs in a 
wide variety of physiological settings. Cell proliferation and apoptosis are coupled 
by cell-cycle regulators and apoptotic stimuli that affect both processes.15 Normal 
cellular growth can be divided into five distinct phases (the cell cycle). The cell 
cycle is a conserved mechanism by which eukaryotic cells replicate themselves. 
Quiescent cells are found in the G

0
 phase of the cell cycle and remain in a state in 

which messenger RNA (mRNA) and protein syntheses are minimal. A cell may stay 
in this state for years, but can re-enter the cycle at the first gap (G

1
) phase when 

stimulated by growth factors. During G
1
 the cell synthesizes series of mRNAs and 

proteins that are necessary for the next phase, the DNA synthesis (S) phase. Fol-
lowing the S-phase the cell enters a second gap (G

2
) phase. During this phase the 

cell synthesizes additional mRNAs and proteins in preparation for cell division or 
mitosis (the M-phase), in which the cell divides into two daughter cells.16 A number 
of checkpoints (restriction points) exist within the cell cycle to ensure that DNA 
synthesis and cell division proceed correctly. The two checkpoints occur at the G

1
-S 

and the G
2
-M transition. The checkpoints are also activated by DNA damage result-

ing in growth arrest and subsequent repair of the DNA damage. After damage repair, 
progression through the cell cycle resumes. If the damage cannot be repaired, the 
cell is eliminated through programmed cell death or apoptosis.17 Thus, normal cel-
lular proliferation is under tight regulations that control whether conditions are 
satisfactory for a particular cell to complete a round of division.

Apoptosis is a highly conserved mechanism by which eukaryotic cells commit 
suicide. It enables an organism to eliminate unwanted and defective cells through 
an orderly process of cellular disintegration avoiding undesirable inflammatory re-
sponses.18 Apoptosis can be triggered by a wide variety of stimuli including DNA 
damage, oxidative stress, death receptor ligands, growth factor withdrawal, viral 
or bacterial infection, oncogenes, and irradiation.19  Although the events inducing 
apoptosis may vary from cell to cell, there are basic features of a cell undergoing 
apoptosis: (1) cell shrinkage, (2) chromatin condensation, (3) DNA degradation, (4) 
protein fragmentation, (5) disassembly of organelles, and finally, (6) the collapse of 
cells into small apoptotic bodies that retain membrane integrity, which are removed 
by phagocytes. Apoptotic elimination of cells occurs during normal development 
and turnover, as well as in a variety of pathological conditions. Besides apoptosis, 
which is an active process, cells can also die as a part of a passive, degenerative, 
uncontrolled way of cell death, termed necrosis. 

Necrosis represents a passive consequence of gross injury to the cell. It is mor-
phologically different from apoptosis, and its physiological consequences are also 
very different from those of apoptosis.20 Necrosis is characterised by cell swelling, 
loss of cytoplasmic membrane integrity, and mitochondrial damage. This leads to 
rapid depletion of energy levels, a breakdown of homeostatic control, cell mem-
brane lysis, and release of intracellular contents, eventually resulting in an inflam-
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matory response, with damage to the surrounding cells. Necrosis must clearly be 
distinguished from apoptosis where cell death results from energy dependent, 
metabolically active, endogenous cellular processes and where the dying cells do 
not elicit an inflammatory reaction. The factors contributing to necrosis are mostly 
extrinsic in nature and therefore necrosis is mostly occurring under pathological 
conditions.21 In contrast to apoptosis which occurs both under pathological and 
physiological circumstances.

CELL CYCLE AND APOPTOSIS GENES IN ATHEROSCLEROSIS

Cell proliferation and apoptosis are important processes in regulating macrophage 
and SMC numbers in the atherosclerotic lesion and thereby directly influence le-
sion stability.22 Proliferating cells are present at all stages of atherosclerotic lesion 
development.23-27 Although the ultimate signals that stimulate cell proliferation in 
the atherosclerotic lesions may be quite diverse, it is clear that cell proliferation is a 
crucial component of the atherogenic process.28 Proliferation of SMCs contributes 
to atherosclerotic lesion stability. SMCs synthesize extracellular matrix proteins (i.e. 
collagen) that lead to the formation of a stable lesion covered by a fibrous cap. On 
the other hand, excessive SMC proliferation in restenosis is a direct complication of 
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Figure 2. Coupling of cell cycle and apoptosis. Coupling cell cycle (left panel) and apoptosis 
(right panel) guarantees safe development and maintains homeostasis in organisms. Genes 
involved in both pathways are Rb and p53 (together with its inhibitor Mdm2). R, restriction 
point; P, phosphorylation
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surgical procedures such as balloon angioplasty or stent implantation used for the 
treatment of occluding atherosclerotic lesions.29 Although peripheral macrophages 
are often considered mature (non-proliferating) cells, studies using combinations 
of different proliferation markers and macrophage-specific antibodies showed the 
presence proliferating macrophages in the lesion.28,30,31 Macrophage proliferation 
is often considered detrimental to the atherosclerotic lesion, because an increase 
in the number of macrophages might result in an enhanced production of growth 
factors, cytokines, chemokines and metalloproteinases. This array of proteins stimu-
lates the formation of an advanced atherosclerotic lesion.

Apoptosis (programmed cell death) is increasingly observed as atherosclerotic 
lesions develop, although the exact mechanism and consequences of apoptosis in 
the development and progression of atherosclerosis are still controversial.32 Fac-
tors inducing apoptosis comprise high concentrations of oxidized LDL, oxysterols, 
Tumor Necrosis Factor-α (TNFα), Fas ligand, nitric oxide, growth factor withdrawal, 
hypoxia/ATP depletion and intracellular accumulation of unesterified (free) cho-
lesterol (activating the Unfolded Protein Response (UPR) pathway).33-35 Apoptotic 
cells within lesions are typically SMCs, macrophages and T-cells.36 Increased SMC 
apoptosis has been detected in unstable compared with stable atherosclerotic le-
sions.32 The loss of SMCs via apoptosis can be detrimental for plaque stability since 
most of the interstitial collagen fibers, which are important for the tensile strength 
of the fibrous cap, are produced by SMCs.  In addition, apoptosis of SMCs is the ba-
sis for the generation of microparticels within the circulation, which act as potent 
procoagulant substrates both locally and systemically. The specific effect of macro-
phages apoptosis is even more controversial. Macrophages and macrophage apop-
tosis co-localize with sites of rupture, suggesting a direct causal role in rupture. Any 
reduction in macrophage numbers via apoptosis could improve plaque stability, due 
to less metalloproteinase activity and the decreased breakdown in collagen.37 How-
ever, a decrease in macrophages would also reduce the scavenging of apoptotic 
SMCs and macrophages, allowing the cells to undergo secondary necrosis thereby 
increasing the inflammatory status and thrombogenicity of the lesion.32 Hence, de-
fining the exact role of proliferation and apoptosis in atherosclerosis will extend the 
knowledge on atherosclerotic lesion development and stability in general.

Cell proliferation and apoptosis are coupled by cell-cycle regulators and apoptot-
ic stimuli that affect both processes.15 Among these common cell-cycle regulators are 
Rb and p53 (and its inhibitor Mdm2).17  The importance of these genes in maintaining 
homeostasis in embryonic and adult tissue becomes evident when concerning their 
roles in cancer development. Despite the more than 100 proto-oncogenes that have 
been identified, the pathways dominated by the two tumor suppressor genes Rb and 
p53 are the most frequently disrupted in cancer cells.38 The unique role of these cell 
cycle and apoptosis genes in cancer puts a special interest for a role of these genes in 
atherosclerosis. Not the least because recently a series of shared molecular pathways 
have emerged that have in common a significant role in the pathogenesis and pro-
gression of both cancer and atherosclerosis.39-42 Moreover, the proposed important 
role for both proliferation and apoptosis in determining atherosclerotic lesion com-
position and stability also opened the new era on the research of these processes in 
atherosclerosis via key genes such as p53, Rb, Mdm2, TNFα, and FasL.
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Recent studies in mice demonstrated that genes involved in regulating cell 
cycle and apoptosis play an important role in the progression of atherosclerotic 
lesions coinciding with changes in the cellular composition.43-53 P53, a tumour sup-
pressor protein, plays a pivotal role in the cellular response to a range of environ-
mental and intracellular stress signals (i.e. agents which cause DNA strand breaks, 
ultraviolet radiation, hyper-proliferation and hypoxia).54 Mutations in p53 occur in 
about half of the human cancers, resulting in loss of apoptotic function. P53 belongs 
to a small family of related proteins that includes two other members p63 en p73.55 
P53 is a potent transcription factor, predominantly acting in the G

1
 phase of cell 

cycle progression, regulating multiple downstream genes implicated in cell cycle 
control, apoptosis, differentiation, and senescence. Depending on many different 
factors that are both intrinsic and extrinsic to the cell, p53 activation results in 
activation of one of the abovementioned pathways.56,57 In most cases, induction of 
p53 leads to an irreversible inhibition of cell growth, most decisively by activating 
apoptosis. The extent of DNA damage and p53 protein levels, however, are factors 
that contribute to making a choice between life and death. Mice homozygously 
knock out for p53 appear normal in embryogenesis and shortly after birth but are 
prone to the spontaneous development of a variety of neoplasms by 6 months of 
age. Hence, the p53 gene is dispensable for embryonic development but is required 
for the protection against formation of tumours.58 

Recent studies demonstrated that p53 plays an important role in the progres-
sion of atherosclerotic lesions in mice. P53 is upregulated after various conditions 
of cellular stress found in atherosclerotic lesions, including DNA damage, hypoxia, 
oxidative stress and stress caused by oxidized lipoproteins.59 Deletion of the tumour 
suppressor gene p53 strongly exacerbated atherosclerosis in different atherosclero-
sis-susceptible mouse models. Whole body p53 inactivation in apolipoprotein E-defi-
cient (apoE-/-) mice accelerated atherosclerosis by increased cellular proliferation.47 
In addition, hematopoietic inactivation of p53 via bone marrow transplantation in 
both APOE*3-Leiden51 and LDL receptor deficient (LDLR-/-)48 mice confirmed the 
anti-atherogenic properties of the tumour suppressor gene. In addition to hemato-
poietic-derived p53, SMCs from human atherosclerotic lesions displayed increased 
sensitivity to p53-mediated apoptosis compared with normal SMCs.60 Moreover, ca-
rotid artery lesions in apoE-/- mice treated locally with an adenovirus containing the 
p53 gene, displayed a phenotype that has been associated with increased vulner-
ability to plaque rupture.52 Thus, abovementioned studies indicate an important role 
for p53 in atherosclerosis development.

P53 transcriptionally activates many target genes, one of which is its own in-
hibitor the murine double minute 2 (Mdm2) gene. Mdm2 was originally identified 
as an oncoprotein that binds to p53 and inhibits p53-mediated-transactivation. The 
human homologue of the Mdm2 gene is often found overexpressed in human can-
cers, particularly in breast tumours and carcinomas61-64 and soft tissue sarcomas.65-73 
Mdm2 is an E3 ubiquitin ligase that mediates, together with enzymes E1 and E2, 
the ubiquitylation and proteasome-dependent degradation of p53.74 Because Mdm2 
inhibits p53 activity, it forms a negative feedback loop that tightly regulates p53 
function. In turn, decreased p53 activity results in decreased Mdm2 to constitutive 
levels.75 Mdm2 can also ubiquitinate itself and induce its own degradation.76,77In 
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vivo experiments demonstrated the importance of the Mdm2/p53 interaction.78-81 
Mice lacking Mdm2 are early embryonic lethal and die before implantation. This 
phenotype is completely rescued by concomitant deletion of p53, suggesting that 
p53 overexpression resulted in the embryonic lethal phenotype. 

Early studies showed co-expression of p53 and Mdm2 in human carotid artery 
atherosclerotic lesions.82 It was speculated that the destiny of individual p53 and 
Mdm2-co-expressing cells, either to undergo p53-dependent apoptosis or to re-enter 
the cycle of cell proliferation, may depend on the relative ratios of the two proteins. 
It was only recently that gene expression analysis showed that pro-apoptotic genes 
(p53, amongst others) are significantly more expressed in lesions causing acute 
coronary syndromes, whereas anti-apoptotic genes (Mdm2, amongst others) are 
more transcribed in stable angina atherosclerotic lesions.83 Homozygous deletion of 
Mdm2 is an ideal method to specifically overexpress p53.78-81 However, to date the 
embryonic lethality following homozygous allelic Mdm2 deletion hampered studies 
on the role of Mdm2 (and thereby p53 overexpression) in atherosclerosis.

Another important cell cycle regulatory gene, next to p53 and Mdm2, is Reti-
noblastoma (Rb). It is the first tumour suppressor gene identified molecularly and 
plays an important role in inhibiting cell proliferation. In addition, Rb can also act as 
an anti-apoptotic factor. The gene has been named after its disease Retinoblastoma, 
a rare childhood cancer of the retina which is caused by Rb inactivation. Rb is a 
nuclear phosphoprotein that arrests cells during the G

1
-phase of the cell cycle by 

forming complexes with the members of the E2F transcription factor family. The 
E2F family of transcription factors has binding sites in the promoters of many of 
the genes that are involved in cell cycle progression.84,85 In the cell, Rb is regulated 
via phosphorylation by cell cycle dependent kinases (CDKs) and cyclins, which, in 
turn, are inhibited by the cell cycle-inhibitor, p21. The identification of p21 as a p53 
target gene implicated p53 in the upstream control and regulation of Rb.86,87 Muta-
tion or inactivation of both p53 and Rb have also been found in a variety of human 
tumours.38,88-90 Mice homozygously knock out for Rb die at mid-gestation (E12-15) 
with defects in the haematopoietic system and impaired development of the central 
and peripheral nervous system resulting from massive cell death.91-93 

Excessive proliferation of SMCs plays an important role in the pathobiology of 
different vascular occlusive diseases (i.e. atherosclerosis, (in-stent) restenosis, trans-
plant vasculopathy). Therefore, earlier studies on the role of Rb in vascular diseases 
merely focussed on the role of Rb in SMC proliferation. Human plaque-derived SMCs 
show reduced proliferation and earlier senescence due to an increased ratio of the 
active form of Rb.94 In addition, localized infection of the arterial wall with an ad-
enovirus encoding a constitutively active non-phosphorylatable form of Rb signifi-
cantly reduced medial vascular smooth muscle cell proliferation and restenosis in 
two animal models of balloon angioplasty.43 Moreover, a phosphorylation-compe-
tent full-length and a truncated form of Rb inhibited vascular smooth muscle cell 
proliferation and neointima formation.50 Although Rb is a key regulator of cell cycle 
progression in the G

1
-phase (thereby directly affecting proliferation), more recent 

studies suggest that Rb activation is also seen in other stages of the cell cycle and in 
response to stresses, including hypoxia and DNA damage.95,96

Abovementioned studies indicate that cell cycle and apoptosis are important 
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processes in regulating macrophage and SMC numbers in the atherosclerotic lesion 
and might thereby directly influence lesion composition and stability.

APOPTOSIS AND INFLAMMATORY GENES IN ATHEROSCLEROSIS

The primary choice of cell death in atherosclerotic lesions is apoptosis. However, 
the harsh micro-environment, which is predominantly present in the growing com-
plex atherosclerotic lesion, hampers the normal clearance of apoptotic bodies. Fol-
lowing, cumulative apoptotic bodies are ineffectively phagocytosed as a result of 
the presence of oxidized lipoproteins and lipids in the lesions or by the cholesterol-
loaded state of the macrophage. It is a generally held concept that this situation pre-
cedes necrotic cell death as a result of the increased harmful content of the athero-
sclerotic lesion. Necrosis itself is more detrimental than apoptosis since necrosis by 
definition leads to an increased inflammatory status of the atherosclerotic lesion.97 

Inflammation plays a key role in atherosclerosis. Immune cells dominate the 
early atherosclerotic lesions, their effector molecules accelerate progression of the 
lesions, and activation of inflammation can elicit acute coronary syndromes.98 Be-
sides macrophages also T- and B-lymphocytes have been reported to contribute to 
lesion development.99-103 In addition, activated immune cells in the atherosclerotic 
lesion produce various inflammatory cytokines (interferon-γ (IFN-γ), interleukin-1 
(Il-1), and Tumor Necrosis Factor-α (TNFα)), which induce the production of sub-
stantial amounts of interleukin-6 (Il-6). Il-6, in turn, stimulates the production of 
large amounts of acute-phase reactants, including C-reactive protein (CRP), serum 
amyloid A (SAA) and fibrinogen.98 Thus, the local inflammatory process in the ath-
erosclerotic artery leads to increased systemic blood levels of inflammatory cyto-
kines and other acute-phase reactants. Therefore, measurements of these systemic 
cytokines and acute-phase reactants are particularly useful for clinical diagnosis. 
One of the key regulators of inflammation is the transcription factor nuclear fac-
tor κB (NF-κB). It controls transcription of many atherosclerosis-related genes, such 
as cytokines, chemokines, adhesion molecules, acute phase proteins, regulators of 
apoptosis, and cell proliferation. NF-κB plays an important role in directing both 
pro- and anti-inflammatory genes and also acts as a regulator of cell survival and 
proliferation in the atherosclerotic lesion.104

Different receptor-ligand couples play an important role in modulating both 
apoptotic and inflammatory processes. Tumor Necrosis Factor-α (TNFα) and one 
of its receptors TNFReceptor-1 (TNFR1) belong to the tumour necrosis factor re-
ceptor gene superfamily. This family comprise the so called “death receptors” from 
which the receptor-ligand couples TNFR1-TNFα and Fas-FasL are best character-
ized.105 Death receptors are cell surface receptors that transmit apoptosis signals 
initiated by specific death ligands (i.e. TNFα and FasL). These receptors can activate 
death caspases causing apoptosis of the cell. In addition to its role in apoptosis, 
TNFα is a pro-inflammatory cytokine that mediates key roles in acute and chronic 
inflammation, and infection.106 Whereas binding of TNFα to TNFR1 (p55) activates 
responses associated with induction of adhesion molecule expression,107 apopto-
sis,108 and resistance to bacterial infection,109,110 binding to TNFReceptor-2 (TNFR2, 
p75) activates induction of T cell proliferation,111 induction of TNFα-mediated skin 
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tissue necrosis,112 and modulation of TNFα-mediated pulmonary inflammation.113 
TNFα deficient mice develop normally, suggesting that TNFα does not have an irre-
placeable role in prenatal tissue and organogenesis. However, TNFα deficient mice 
completely lack splenic primary B-follicles and cannot form organized follicular 
dendritic cell (FDC) networks and germinal centers.114,115

Although TNFα and its receptors are thought to be considerably important in 
a number of biological activities relevant to atherosclerosis, its function in athero-
genesis remains unclear. Human association studies on TNFα polymorphisms are 
controversial varying from no,116-118 weak119 or strong120 associations between differ-
ent TNFα polymorphisms and coronary heart disease. Moreover, studies on the role 
of TNFα in atherosclerosis using several transgenic or knock out mouse models also 
yielded controversial results. TNFα ligand deficiency on a wild type C57BL/6 back-
ground showed variable effects varying from either no effect on early lesion devel-
opment121 to a reduction in atherosclerosis.122 In addition, on the same background, 
TNFR1 deficiency did affect atherosclerosis formation, resulting in enhanced (early) 
lesion formation.123 Overall, the abovementioned human and mouse studies demon-
strate strong divergent results on the role of TNFα in atherosclerosis.

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that, 
upon ligand activation, form heterodimers with the nuclear receptor RXR and bind 
to specific DNA sequences thereby transcriptionally regulating gene expression.  
PPARα and γ are the two main categories of these receptors, which are both char-
acterized by their ability to influence cell apoptosis, inflammation, proliferation, dif-
ferentiation, and as well lipid metabolism and glucose homeostasis.124 PPARs are 
activated by ligands of physiological and pharmacological origin. PPARα is activated 
by polyunsaturated fatty acids and oxidized derivatives and by drugs of the fibrate 
family (i.e. fenofibrate and gemfibrozil).125,126 Fibrates are clinically used to treat pa-
tients with lipid disorders and have been shown to reduce cardiovascular mortality. 
Ligands of PPARγ include naturally occurring fatty acid derivatives, prostaglandin 
derivatives and antidiabetic thiazolidinediones (glitazones), such as troglitazone, 
rosiglitazone, and pioglitazone.127-129   PPARα and -γ agonists have shown positive 
effects on lipid metabolism in animal models and in clinical practice,130-135 moreover 
several PPARγ agonists improve insulin resistance in type 2 diabetes.136,137 In athero-
sclerosis PPARα and PPARγ activation results in reduction of atherogenic triglycer-
ides and systemic plasma inflammatory proteins and raise HDL levels.138 At a cellular 
level, PPARα/γ agonists act on most cell types involved in atherosclerosis reducing 
their involvement in the tissue response associated with lesion development.

MOUSE MODELS TO STUDY ATHEROSCLEROSIS

The mouse was generally regarded as a species that was resistant to the develop-
ment of atherosclerosis. Therefore, early development of murine models for study-
ing peripheral arterial disease focused on the identification of strains that were 
susceptible to atherosclerotic like lesion formation on high fat/high cholesterol di-
ets. However, even the most sensitive strains (e.g. C57BL/6) required a diet high in 
cholesterol and the bile salt sodium cholate to develop atherosclerotic lesions. In 
the early 1990’s the development of apolipoprotein E-deficient (apoE-/-) mice revolu-



  General Introduction 21

tionized the use of murine models in the study of cardiovascular disease.139-141 These 
animals show strong elevated plasma cholesterol levels and vascular lesions similar 
in appearance to those observed in humans. The atherosclerotic lesions develop in 
the aortic root, the coronary arteries, and in the entire aorta at branch points of the 
major arteries in a time dependent manner.139,142 ApoE-deficient mice on a chow diet 
spontaneously develop atherosclerosis, but feeding the mice a high fat diet, induces 
a strong acceleration of this process. Currently, the ApoE-deficient mouse is the most 
widely used experimental mouse model for studying atherosclerosis.

The LDL-receptor-deficient (LDLR-/-) mouse, with its elevation in LDL levels, is 
also a useful model for studying atherosclerosis. In humans mutations in the gene 
for the LDL-receptor cause familial hypercholesterolemia, a major risk factor for de-
veloping atherosclerosis.143 Homozygous LDLR-deficient mice show delayed clear-
ance of VLDL and LDL from plasma.144 In contrast to apoE-deficient mice, these 
mice do not manifest severe hypercholesterolemia on a chow diet and hence do 
not develop atherosclerosis. Upon feeding a high fat diet, plasma cholesterol levels 
increase strongly resulting in the formation of atherosclerotic lesions.145,146

In addition to the mouse models mentioned above, the APOE*3-Leiden mouse 
model is also frequently used for atherosclerosis and lipoprotein research. APOE*3-
Leiden is a dominant negative mutant form of apolipoprotein E consisting of a tan-
dem duplication of codons 120-126 in the apoE gene.147-149 The introduction of this 
human mutation in a mouse resulted in a slight increase in cholesterol and triglyc-
eride levels on a chow diet, whereas on a high fat diet cholesterol and triglyceride 
levels rose considerably.150,151 In APOE*3-Leiden mice the degree of hypercholester-
olemia can easily be adjusted to any desired level by varying in dietary contents. 
Moreover, APOE*3-Leiden mice have successfully been used in research on lipid-
lowering and anti-atherosclerotic drugs and dietary supplements.152-156 

Since the introduction of the abovementioned mouse models, the use of mice 
in atherosclerosis research has boomed over the last decade, driven by the develop-
ment of knockout mice and transgenic animals. With these approaches, research-
ers have the tools to study the in vivo function of a specific gene product on an 
atherosclerotic background, while avoiding the difficulties associated with the use 
of antibodies or receptor agonists/antagonists (i.e. non-specificity, immunoreactiv-
ity, dosing and tachyphylaxis). Although, targeting specific genes of interest in ath-
erosclerosis-susceptible mice elucidated the role of many genes in atherosclerosis, 
those genes that induce embryonic lethality associated with germline null alleles 
hampered the research on their role in atherogenesis. Site-specific recombinase 
(SSR) technology gives the opportunity to study the role of genes beyond the first 
required function of a gene, bypassing embryonic lethality associated with germline 
null alleles. SSR technology is a relatively new approach to induce gene deletion in 
a cell type of interest. The SSR Cre (an enzyme that causes recombination of the 
bacteriophage P1 genome) is able to recombine specific sequences of DNA with 
high fidelity without the need for cofactors. Therefore Cre has been used effectively 
to create gene deletions, insertions, inversions and exchanges in exogenous systems 
such as flies,157-159 mammalian cell culture160,161 and mice.162-164 Cre recombines DNA 
at defined target sites, termed loxP sites, in actively dividing and post-mitotic cells, 
as well as in most tissue types. The activity of Cre involves DNA strand cleavage, 
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exchange and ligation.165 The loxP sites consist of a 13 basepair (bp) palindromic 
sequence, or inverted repeats, separated by an 8 bp asymmetric core, or spacer se-
quence. Strand cleavage, exchange, and ligation occur within the spacers. Moreover, 
the development of ligand-regulated forms of Cre has added a temporal control to 
SSR activity to enable the induction of gene changes in late embryogenesis or in 
adult tissue. A successful strategy for inducing temporal SSR activity has involved 
fusing a mutant estrogen receptor (ER) ligand binding domain (LBD) to the C-termi-
nus of Cre.166-170 Currently, different ERs are available which do not bind endogenous 
ß-estradiol but are only responsive to the synthetic estrogen antagonist 4-hydroxy-
tamoxifen (4-OHT). Two mouse lines are required for conditional gene deletion. A 
conventional transgenic mouse line with Cre expression in a specific tissue or cell 
type (“Cre-expressing mouse”), and a mouse strain that embodies a target gene (en-
dogenous gene or transgene) flanked by two loxP sites (“floxed mouse”). Recom-
bination (excision and consequently inactivation of the target gene) occurs only in 
those cells expressing Cre recombinase, leaving the target gene active in all other 
cells and tissues which do not express Cre. Cell proliferation and apoptosis are cen-
tral themes in the cancer research field. As a result many “floxed-mice” are available 
aiming at different genes related to cell proliferation and apoptosis.171-173 However, 
whereas Cre-loxP models are commonly used in cancer research,172-176 the use of 
this system is still relatively new in the atherosclerosis research field.177-180

OUTLINE OF THIS THESIS

The general aim of the research presented in this thesis is to evaluate the role of 
different cell cycle and apoptosis genes in atherosclerosis. The knowledge on the 
role of cell cycle and apoptosis genes in atherosclerosis has become increasingly 
important over the last few years. To analyze these processes in greater detail in 
atherosclerosis development several key genes are studied (p53, Rb and Mdm2). 
To this end, we generated and analysed several mouse models. Because germline 
null alleles of the cell cycle genes of our interest (e.g. p53, Rb and Mdm2) lead to 
either formation of tumours after the age of 6 months (p53) or to embryonic lethal-
ity (Rb and Mdm2) we chose to use site-specific recombinase (SSR) technology, as 
described above. In addition, SSR technology gives the opportunity to study these 
genes in one single cell type of interest. To obtain cell type specificity, aiming at the 
two central cell types in atherosclerotic lesions, we used the lysozyme myeloid-Cre 
(LysMCre)181 and the smooth muscle cell-Cre (SM-CreERT2(ki))182 mouse model for 
targeting macrophages and SMCs, respectively. 

The tumour suppressor gene p53 has been shown to inhibit cell proliferation 
and stimulate apoptosis in many cell types. In chapter 2 we address the role of 
macrophage p53 in atherosclerosis. A macrophage specific knock out for p53 dem-
onstrated that p53 is major regulator of foam cell death in atherosclerotic lesions. 
To further extend the studies on cell cycle genes we targeted macrophage Retino-
blastoma using a similar approach. Rb plays a pivotal role in regulating cell prolifera-
tion and apoptosis. Chapter 3 describes that macrophage Rb plays a crucial role 
in atherosclerotic lesion development. Although SSR technology is a rather novel 
approach to study genes of interest, some genes turn out to be so vitally important 
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in maintaining homeostasis in adult tissues that SSR is not the solution to study the 
gene of interest in atherosclerosis. Chapter 4 describes the mechanisms behind 
lethality induced via conditional deletion of Mdm2 in SMCs. Although lethality in 
this mouse model hampered studies on the role of SMC-Mdm2 in atherosclerosis, 
the mouse model showed that Mdm2 prevents accumulation of active p53 in quies-
cent SMCs and thereby the induction of p53-mediated necrotic cell death in vivo. 
Atherosclerosis, being a disease of the large and medium sized arteries also gives 
the advantage of proper accessibility for treatment. New technologies focusing on 
conditional, temporal and spatial gene deletion in atherosclerosis resulted, in ad-
dition to cell-type and time specificity, also in place specificity, which is described 
in chapter 5. TNFα is a protein often primarily described as a pro-inflammatory 
cytokine. On the contrary in chapter 6 we demonstrate, using conventional whole 
body deletion of TNFα on an APOE*3-Leiden background, that TNFα is also a strong 
regulator of cell death in atherosclerotic lesions. Finally, chapter 7 describes the ef-
fects of pharmacological regulation of PPARα and γ on atherosclerosis development 
in APOE*3-Leiden mice. These receptors influence cell inflammation, proliferation, 
differentiation, apoptosis and lipid and glucose homeostasis. Chapter 8 discusses 
the results of these studies and the use of the SSR technology in the atherosclerosis 
research field, concluding with the implications for future research. 
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ABSTRACT 

The cellular composition of an atherosclerotic lesion is determined by many fac-
tors including cell infiltration, proliferation and cell death, either by apoptosis or 
necrosis. The tumor suppressor gene p53 has been shown to regulate both cell 
proliferation and cell death in many cell types. To study the role of macrophage 
p53 in the development of atherosclerosis, we generated apoE-deficient mice with 
a macrophage-restricted deletion of p53 (LysMCre+ p53loxP/loxP apoE-/- mice) and con-
trol littermates (p53loxP/loxP apoE-/- mice) and analyzed early and advanced atheroscle-
rosis development. Absence of macrophage p53 did not affect lesion area in both 
early and advanced atherosclerosis, neither in the aortic root nor in the aortic arch 
and thoracic aorta. In early atherosclerosis, absence of macrophage p53, resulted 
in reduced apoptosis (-59%), however without changes in lesion composition. In 
contrast, in advanced atherosclerosis, reduced apoptosis (-37%) upon absence of 
macrophage p53, coincided with increased necrotic death (+96%), increased foam 
cell content (+24%), and reduced lipid core formation (-41%). Proliferation was not 
affected by the absence of macrophage p53 in both early and advanced atheroscle-
rosis. Hence, our data point towards an important role for macrophage p53 in induc-
tion of foam cell apoptosis and prevention of lesional necrosis.    
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Atherosclerosis is an inflammatory disease of the large vessels in which mac-
rophages play a central role.1,2 Accumulation of macrophage foam cells in 
the vessel wall results in the formation of fatty streaks. These lesions may 

be reversible and may not cause clinical symptoms. However, macrophage accu-
mulation within the arterial intima sets the stage for progression of the atheroma 
and evolution into more complicated lesions that can cause clinical symptoms by 
eventual rupture or erosion of the plaque.3 Changes in the cellular composition of 
an atherosclerotic lesion are important in modulating the risk of acute coronary 
syndromes. Cell proliferation and cell death are crucial processes in regulating cell 
numbers in the atherosclerotic lesion and may thereby directly influence lesion 
composition and stability.4 

The p53 tumor suppressor protein is an essential gene in cell proliferation and 
cell death and plays a pivotal role in the cellular response to a range of environmental 
and intracellular stress signals.5 Mutations in p53 occur in about half of the human 
cancers, resulting in loss of apoptotic function. P53 is a potent transcription factor, 
predominantly acting in the G1 phase of cell cycle progression, regulating multiple 
downstream genes implicated in cell cycle control, apoptosis, differentiation, and 
senescence.6,7 In atherosclerosis, p53 was immunohistochemically visualized in hu-
man carotid atheromatous lesions in virtually all cell types (macrophages, smooth 
muscle cells, endothelial cells).8 Recent mouse studies demonstrated that p53 plays 
an important role in the progression of atherosclerotic lesions. Whole body p53 
inactivation in apolipoprotein E-deficient (apoE-/-) mice accelerated atherosclerosis 
primarily by increased cellular proliferation.9 In addition, using bone marrow trans-
plantation in both apoE*3-Leiden10 and LDL receptor deficient (LDLR-/-)11 mice it was 
shown that p53 of hematopoietic origin is, at least in part, responsible for the inhibi-
tion of atherogenesis in these models. Hence, these studies show an important role 
for both macrophage- and lymphocyte-derived p53 (or in addition: their interplay) 
in the development of atherosclerosis. 

To distinguish the effects of p53 deficiency specifically in macrophages from 
processes affected by lymphocyte-p53 deficiency, we employed a conditional dele-
tion approach using the Cre-loxP system. Macrophage specific p53 deletion was ac-
complished by combining mice carrying a p53 allele that was flanked by loxP sites12 
with LysMCre mice.13 Expression of Cre in the myeloid lineage in the LysMCre mice 
will result in cell specific deletion of p53 and thereby give macrophages that lack 
p53. Using this approach, we found that absence of macrophage p53 did not affect 
lesion area in both early and advanced atherosclerosis, neither in the aortic root 
nor in the aortic arch and thoracic aorta. In early atherosclerosis, absence of macro-
phage p53 resulted in reduced apoptosis, however without changes in lesion com-
position. In contrast, in advanced atherosclerosis, reduced apoptosis due to absence 
of macrophage p53, coincided with increased necrotic death, increased foam cell 
content and reduced lipid core formation. These studies indicate that macrophage 
p53 is primarily involved in determining atherosclerotic lesion composition by con-
trolling the balance of lesional apoptosis and necrosis. 
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METHODS

Mice and diet
The experimental animals were obtained by combining mice carrying the floxed 
p53 gene12 with LysMCre mice13 (a generous gift from Dr. B.E. Clausen, AMC, The 
Netherlands and Dr. I. Forster, University of Cologne, Germany), and apoE-deficient 
mice14 resulting in mice that are homozygously floxed for p53 and deficient for apoE 
and that either express Cre in their macrophages (LysMCre+ p53loxP/loxP                                      

 apo E-/- further referred to as p53del) or do not express Cre and remain wildtype for p53 
(p53loxP/loxP apoE-/- further referred to as p53fl). Mice were genotyped by polymerase 
chain reaction (PCR) for LysMCre,13 p53loxP/loxP,12 and apoE14 status. For experiments, 
8 week old male p53del and littermate control p53fl mice were used. Mice were fed 
a semi-synthetic cholesterol-rich diet composed essentially according to Nishina 
et al.15 supplemented with cocoa butter (15%, by weight) and cholesterol (0.25%, 
by weight), without cholate (Hope Farms, Woerden, The Netherlands). The animals 
were fed the cholesterol-rich diet for either 7 weeks (early atherosclerosis develop-
ment, n=18 and n=21 for p53del and p53fl mice, respectively) or 11 weeks (advanced 
atherosclerosis development, n=17 and n=15 for p53del and p53fl mice, respectively). 
Mice were given food and water ad libitum. All animal work was approved by insti-
tutional regulatory authority and carried out in compliance with guidelines issued 
by the Dutch government.

Quantification of macrophage p53 by Western blotting
Peritoneal macrophages were obtained from p53del and p53fl mice four days after 
intraperitoneal injection of 1 ml thioglycollate broth (3% wt/vol.) by flushing the 
peritoneum with 10 ml ice-cold PBS. Macrophages were washed with RPMI 1640 
containing 10% foetal calf serum and the cells of each mouse were subsequently 
divided over two 6-cm culture plates. After 2 hours the duplicate dishes were either 
mock-treated or incubated with a combination of etoposide (20 µM, Sigma Aldrich) 
and proteasome inhibitor MG132 (20 µM, Sigma Aldrich) for 2 hours. Subsequently, 
non-adherent cells were removed by washing twice with ice-cold PBS, and cells 
were harvested in Giordano buffer ((50 mM Tris HCl, pH 7.4; 250 mM NaCl; 0.1% 
Triton X-100; 5 mM EDTA), supplemented with protease inhibitors) and analyzed 
by Western blot as described previously.16 Lysates from mouse embryo fibroblast 
derived from wild type mice or homozygous p53/mdm2-deficient double knock out 
(DKO) mice were used as positive and negative controls, respectively. Blots were 
incubated with anti-p53 (Ab-7; Merck Biochemicals) and after stripping with anti-
αTubulin (CloneDM1A; Sigma-Aldrich) as loading control. Protein bands were de-
tected by enhanced chemiluminescence with the use of the SuperSignal West-Dura 
kit (Pierce), visualized by autoradiography or by imaging with the ChemiGenius 
XE3 (Syngene, Cambridge, UK). Quantification of the p53 and tubulin protein levels 
was performed with use of the Syngene GeneTools software.

Blood sampling and analysis 
Blood samples were collected, after 4 hours fasting, in EDTA-coated vials (Sarstedt, 
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Nümbrecht, Germany) by bleeding from the tail vein. Plasma cholesterol and triglyc-
eride levels were measured enzymatically using commercially available kits (Roche 
Diagnostics GmbH, Mannheim, Germany). Total blood leukocyte (CD45+), T-cell 
(CD3+), B-cell (CD19+) and myeloid (CD11b+) numbers were determined by FACS 
analysis (FACSCalibur, BD Biosciences, California, USA) following standard protocol 
(TruCOUNT, BD Biosciences, California, USA), as described before.17 

Atherosclerosis analysis
After either 7 or 11 weeks on a cholesterol-rich diet mice were sacrificed. Hearts 
were overnight fixed in formalin (pH 7.4) and embedded in paraffin. The aorta was 
snap-frozen and stored at -80°C. To quantify cross-sectional lesion area in the aortic 
root formalin-fixed hearts were processed as described before.10,18 Sections of the 
aortic root were routinely stained with hematoxylin-phloxine-saffran (HPS) for mor-
phometric analysis. Areas were determined using Leica Qwin image software (EIS, 
Asbury, NJ). 

For en face analysis of lesion area in the aortic arch and thoracic aorta, the aorta 
was cleaned in situ from periadventitial tissue, dissected from the aortic arch down 
to the iliac bifurcation, opened longitudinally, pinned on a silicone basement and 
stained with Oil-Red-O. The percentage of surface area covered by atherosclerotic 
lesions (Oil-Red-O positive area) was quantified starting from the top of the aortic 
arch 1 cm down towards the thoracic aorta by computer-assisted analysis19 (n=9 
vs. n=10 for early atherosclerosis and n=9 vs. n=9 for advanced atherosclerosis for 
p53del and p53fl mice, respectively). All analyses were performed double blindly with-
out prior knowledge of the genotype. 

Lesion composition analysis
For compositional analysis of the lesions lipid core, necrosis and macrophage con-
tent were determined. Lipid core area was defined by the presence of cholesterol 
clefts, extracellular lipids and the complete absence of nuclei. In addition, necrosis 
was defined by the presence of pyknosis, karyorrhexis, or complete absence of nu-
clei.20 Lipid core area and necrosis area were measured using morphometric analy-
sis, as described above. Serial sections were stained for macrophages using a rabbit 
antibody to mouse macrophages (AIA-312040, 1/1500, Accurate Chemical and Sci-
entific). AIA-312040-positive areas were quantified as described before.17 

To label DNA-synthesizing cells the mice received 5’-Bromo-2’-Deoxyuridine 
(BrdU, Sigma; 60 mg/kg, intraperitoneally) for 3 consecutive days prior to sacrifica-
tion. Sections were stained for proliferation using a monoclonal mouse anti-BrdU 
antibody (DAKO A/S Denmark) and for apoptosis using the TUNEL technique ac-
cording to manufacturer’s protocol (In situ cell detection kit POD, Roche Diagnos-
tics GmbH, Mannheim, Germany). Numbers of BrdU- or TUNEL-positive nuclei were 
expressed per total atherosclerotic lesion area, corrected for lipid core area, as the 
lipid core is an acellular area of the atherosclerotic lesion without nuclei and there-
fore by definition does not contain any (BrdU- or TUNEL- positive) nuclei. 

Statistical analysis
Statistical analyses were performed using Graphpad Prism 4.03. All data groups were 
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first tested for normality. If the data were distributed normally, groups were com-
pared using Welch’s corrected t-test. If data were not distributed normally, groups 
were compared using Mann-Whitney rank sum test. Data are expressed as mean±SD. 
P-value < 0.05 was regarded as significant. 

RESULTS

General characteristics of apoE-deficient p53del mice
Littermate male apoE-/- mice either lacking p53 in their macrophages (p53del) or 
wildtype for p53 (p53fl) were fed a cholesterol-rich diet for 7 weeks (early athero-
sclerosis) or 11 weeks (advanced atherosclerosis). During the study, the mice ap-
peared healthy and displayed no signs of abnormalities. As shown in Table 1, both 
after 7 and 11 weeks of a cholesterol-rich diet challenge, mean body weight was 
not different between p53del and p53fl mice. Plasma cholesterol, triglyceride and 
hematocrite levels (Table 1) and lipoprotein profiles (data not shown) did not differ 
between p53del and p53fl mice. Moreover, absence of macrophage p53 did not affect 
circulating T-cell, B-cell or myeloid cell concentrations (Table 1) as analyzed after 11 
weeks feeding a cholesterol-rich diet. 

Table 1. General characteristics of male p53del and p53fl mice after feeding a cholesterol-rich 
diet for 7 weeks (early atherosclerosis development) or 11 weeks (advanced atherosclerosis 
development)

p53fl p53del p53fl p53del

Atherosclerosis development Early Advanced

Weight (g) 29.5±2.8 29.8±3.0 29.4±3.6 28.3±2.2

Plasma lipid 
levels (mmol/L)

Cholesterol 31.7±8.0 28.4±7.4 47.0±16.3 39.9±16.4

Triglycerides 1.3±0.6 1.2±0.6 1.1±0.4 1.1±0.6

Hematocrite  0.47±0.02 0.47±0.02 0.47±0.02 0.47±0.04

Blood 
leukocytes  
(106 cells/mL)

T-cells (CD3+) n.d. n.d. 1.8±0.4 1.7±0.5

B-cells (CD19+) n.d. n.d. 4.9±1.1 3.7±1.4

Myeloid cells 
(CD11b+)

n.d. n.d. 3.6±0.5 3.7±1.3

n.d. = not determined

To confirm deletion of p53 in macrophages, we analyzed p53 protein levels in thio-
glycollate-elicited macrophages using Western blot analysis. Yields of thioglycollate-
elicited peritoneal macrophages from p53del and p53fl mice were similar (data not 
shown). Western blot analysis showed that p53 was virtually absent in thioglycol-
late-elicited macrophages from p53del animals, while it could easily be detected in 
p53fl macrophages (Figure 1A). To further increase p53 signals in the macrophages, 
we treated the cells with the DNA damaging agent etoposide in the presence of 
the proteasome inhibitor MG132. Such treatments are known to increase the lev-
els of the very unstable p53 protein.21 As can be seen in figure 1A, this treatment 
strongly increased p53 levels in p53fl macrophages and resulted in the presence of 
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a p53 band in the p53del cells, indicating that some remaining p53 was left. Semi-
quantitative PCR confirmed that some wild type allele was left in the p53del macro-
phages (data not shown). The relative difference in p53 levels between p53del and 
p53fl macrophages was quantified using Western blots of etoposide/MG132-treated 
cells and showed a reduction of approximately 90% in p53 protein levels in p53del 
macrophages as compared to p53fl mice (Figure 1B). Moreover, titration on Western 
blot using lysates from p53fl macrophages to obtain p53 protein levels similar to 
that of p53del macrophages also required over 10-fold dilution confirming the >90% 
reduction in p53 protein levels (data not shown). These data show that cell specific 
deletion of p53 results in a strong (>90%) reduction in p53 protein levels in mac-
rophages.

Analysis of atherosclerotic lesion area
Mice fed the cholesterol-rich diet for 7 weeks (early atherosclerosis) or 11 weeks  
(advanced atherosclerosis) were sacrificed for collection of heart, aorta, and other 
organs. Morphometric analysis of the total atherosclerotic lesion area in the aortic 
root showed no difference between p53del and p53fl in early lesion size (P=0.40, 
Figure 2A and B) and in advanced lesion size (P=0.12, Figure 2A and B). In addi-
tion, en face analysis of Oil-Red-O stained aortas did also not reveal a difference in 
relative lesion area between p53del and p53fl mice on early (P=0.84, Figure 3 A and 
B) and advanced atherosclerosis development (P=0.84, Figure 3A and B). Hence, 
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Figure 1. (A.) Protein extracts from p53del and p53fl macrophages, either mock-treated or 
treated with etoposide and proteasome inhibitor MG132, were analyzed for p53 and α-tubulin 
expression. (B.) p53 protein expression levels in lysates from representative p53del and p53fl 
macrophages treated with etoposide and MG132. P53 protein levels in p53del macrophages 
were correlated to the p53 expression levels in p53fl macrophages, corrected for the loading 
control α-tubulin. MEF: lysate from wild type mouse embryo fibroblasts (positive control); 
DKO: lysate from homozygous p53/mdm2 double knock out mouse embryo fibroblasts 
(negative control)
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Figure 2. Aortic root atherosclerosis in p53del and p53fl mice. (A.) Early and advanced 
aortic root atherosclerosis in p53fl (closed circles) and p53del (open circles) mice. Symbols 
indicate individual mice. Line represents mean area for each group. (B.) Representative 
photomicrographs of atherosclerotic lesions in p53fl and p53del mice. Serial sections were 
stained with HPS. L: lipid core, magnification 50x, scale bar 100 µm.
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Figure 3. Aortic arch and thoracic aorta atherosclerosis in p53del and p53fl mice. (A.) Early and 
advanced atherosclerosis in p53fl (closed triangles) and p53del (open triangles) mice. Symbols 
indicate individual mice. Line represents mean area for each group. (B.) Representative Oil-Red-
O stained aortas of p53fl and p53del mice in early and advanced atherosclerosis development.  
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absence of macrophage p53 did not affect total atherosclerotic lesion area, both in 
early and advanced atherosclerotic lesions at two different regions in the aortas of 
apoE-deficient mice.

Cell proliferation and cell death 
To investigate whether macrophage p53 deficiency affects cell turnover in the le-
sions both cell proliferation and cell death were followed during atherosclerosis 
development. For analysis of cell proliferation mice were injected daily with BrdU 
for 3 days before the end of the experiment. In both the early and advanced athero-
sclerosis group the incidence of BrdU+ cells did not differ between p53del and p53fl 

mice (Figure 4A), indicating that macrophage p53 deficiency did not affect lesional 
proliferation in both early and advanced atherosclerosis. 
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Figure 4. Proliferation, apoptosis and necrosis in p53fl and p53del mice. (A.) Proliferation 
was detected by BrdU-staining. Bars represent the number of BrdU+ nuclei per lesion area. 
(B.) Apoptosis was detected by TUNEL staining. Bars represent the number of TUNEL+ nuclei 
per lesion area. (C.) Necrosis, defined by the presence of pyknosis, karyorrhexis, or complete 
absence of nuclei, was analyzed on HPS sections. Bars represent necrotic area per lesion area. 
Black bars, p53fl mice; white bars p53del mice. Error bars indicate SEM. *P<0.05.
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To investigate cell death in the atherosclerotic lesions apoptosis and necrosis 
were quantified. Apoptotic cells in the atherosclerotic lesions were identified as 
TUNEL-positive cells. Strikingly, the incidence of TUNEL-positive nuclei was strongly 
reduced in p53del mice in both early and advanced atherosclerosis development       
(-59% and -37%, respectively, P<0.05, Figure 4B). In addition to apoptosis, necrosis 
in the lesions was quantified. Necrosis in the advanced atherosclerosis group was 2-
fold increased in the p53del group, as compared to the controls (P<0.05, Figure 4C). A 
similar trend was observed in early atherosclerosis although not significant (Figure 
4C). These analyses show that macrophage p53 deletion prevents lesional macro-
phage apoptosis both in early and advanced atherosclerosis. In addition, prevention 
of macrophage apoptosis in advanced atherosclerosis switches the cell death path-
way towards necrotic cell death.

Macrophages and lipid core
To analyze whether the changes in lesional cell death in p53del mice coincided with 
changes in atherosclerotic lesion composition we performed a more detailed phe-
notypic analysis of the lesions. Macrophage area was detected by immunostaining 
and lipid core area was defined by the presence of cholesterol clefts, extracellular 
lipids and complete absence of nuclei. In the early atherosclerosis group both mac-
rophage area and lipid core content were not affected by macrophage restricted-
p53 deletion (Table 2). However, quantification of macrophage area in the advanced 
atherosclerosis group revealed a 24% increase in p53del mice as compared to the 
p53fl control mice (P<0.05, Table 2). Interestingly, these changes coincided with a 
strong 41% reduction in the lipid core content of the lesions in p53del mice as com-
pared to p53fl control mice (P<0.05, Table 2, Figure 2B, right panel). Hence, the de-
crease in lesional apoptosis in p53del mice coincides with a change in cellular lesion 
composition towards atherosclerotic lesions with an increased macrophage area 
and a decreased lipid core.

DISCUSSION

In the present study, we investigated the role of macrophage p53 in the pathogen-
esis of atherosclerosis. Absence of macrophage p53 did not affect lesion area of 
early and advanced atherosclerosis analyzed both at the level of the aortic root and 
at the level of the aortic arch and thoracic aorta in ApoE-deficient mice. However, 
detailed analysis of atherosclerosis in the aortic root revealed that apoptosis of foam 

Table 2. Characteristics of early (7 weeks cholesterol-rich diet) and advanced (11 weeks 
cholesterol-rich diet) atherosclerotic lesions in p53del  and p53fl mice

p53fl p53del p53fl p53del

Atherosclerosis development Early Advanced

Lesion macrophage area                    
(% of total lesion area)

66.4±10.5 63.6±11.5 42.2±8.2 52.5±9.8*

Lipid core (% of total lesion area) 3.1±3.6 2.5±3.3 11.1±4.2 6.5±3.7*

* P<0.05
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cells was strongly reduced in p53del mice at both time points, while proliferation was 
unaffected. Moreover, the reduction in lesional apoptosis in p53del mice coincided 
with increased necrosis in the advanced atherosclerotic lesions. The changes in le-
sional cell death were accompanied by an increase in relative macrophage area and 
a decrease in relative lipid core area in the advanced atherosclerosis group. Hence, 
these studies demonstrate that macrophage p53 is a major mediator of foam cell 
apoptosis and inhibition of this pathway results in a shift of cell death towards ne-
crotic death of lesional macrophages, thereby affecting lesion composition.

Previous bone marrow transplantation (BMT) studies demonstrated that p53 
of hematopoietic origin clearly has atheroprotective properties.10,11 Bone marrow 
harbors not only progenitors for the myeloid lineage including macrophages, but 
also the progenitors from which ultimately T-cells and B-cells originate. In athero-
sclerosis, T-cell derived cytokines as well as B-cell mediated antibody production 
clearly contribute to atherosclerosis progression.1 Moreover, p53 is shown to be 
important in T- and B-cell turnover.22,23 Hence, the atheroprotective effect of bone 
marrow derived p53 could be attributed in part to T and B-cell-specific p53. In this 
light it is of interest that hematopoietic p53 deficiency (i.e. combined lymphocyte 
and macrophage p53 deficiency) results in strong effects on the size of the lesions, 
while this study demonstrates that macrophage-restricted p53 deficiency results to 
more subtle effects confined to lesional macrophage turnover, eventually affecting 
lesion composition. Combining these data it can be suggested that T/B-cell p53 is in-
volved in modulating size i.e. growth of the lesions. Future studies, using conditional 
approaches for lymphocyte-specific deletion of p53 may shine more light onto the 
role of lymphocyte-derived p53 in atherogenesis.

Additionally, the differences in findings on quantitative lesion area may also 
partly be attributed to the differences in choice of atherosclerotic background. 
Whereas the LDL-receptor deficient mouse model11 and the APOE*3-Leiden mouse 
model10 show mild atherosclerosis development, the apoE-/- mouse is a model of ac-
celerated atherosclerosis development leading to complex atherosclerotic lesions.24 
Moreover, absence of ApoE inhibits cholesterol efflux from macrophages and there-
by more progressively stimulates the formation of foam cells, our cells of interest.25 
Although the clearance of apoptotic cell remnants is attenuated in apoE-/- mice26 the 
foam cell rich lesions enabled us to establish the role of macrophage p53 on macro-
phage turnover in the atherosclerotic lesions.

Based on the current study we hypothesize that in early lesions foam cells 
preferentially die quickly via a relatively clean apoptotic death which requires p53. 
However, eventually, the composition of the lesions may prevent complete proper 
phagocytosis of the apoptotic cells, resulting in secondary necrosis27 and the for-
mation of a lipid core. In contrast, upon impaired functioning of the p53 pathway 
in macrophages, lesional foam cells are no longer directed to die via the apoptot-
ic pathway. This is in line with recent in vitro data of Mercer et al. showing that         
p53-/- peritoneal macrophages exhibit reduced apoptosis.28 As a consequence of the 
inability to die via apoptosis, death of foam cells may be delayed, but eventually it re-
sults in increased death via necrosis, due to extensive lipid accumulation. Previously, 
it was also shown that inhibition of p53 in mouse embryonic fibroblasts results in a 
shift of NO-induced cell death towards relatively more necrosis and less apoptosis.29 
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The alternative necrotic death pathway of foam cells may be more slowly and is gen-
erally considered to be more detrimental since necrosis leads to the release of pro-
inflammatory and pro-thrombotic substances. Hence, macrophage necrosis is detri-
mental to atherosclerotic lesion development, whereas macrophage apoptosis can 
be considered more beneficial in lesion development and plaque stability. Therefore, 
our data point towards an important role for macrophage p53 in controlling foam 
cell death by induction of apoptosis and prevention of lesional necrosis. 

In conclusion, we demonstrate that macrophage p53 guarantees safe foam cell 
death via apoptosis and thereby prevents lesional necrosis, which directly affects le-
sion composition. Lesion composition rather than lesion size determines its vulner-
ability and thereby its clinical relevance. This implies that local targeting of process-
es that regulate p53 mediated apoptosis may be a powerful target for therapeutic 
intervention in coronary artery disease. Recently, the use of drug-eluting stents has 
emerged as a highly promising local approach to reduce in-stent restenosis.30 The 
different drugs (i.e. rapamycin, flavopiridol) used in these drug-eluting stents target 
different apoptosis and proliferative genes, including p53.
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ABSTRACT

The cellular composition of an atherosclerotic lesion is determined by cell infiltra-
tion, proliferation and apoptosis. The tumor suppressor gene retinoblastoma (Rb) has 
been shown to regulate both cell proliferation and cell death in many cell types. 

To study the role of macrophage Rb in the development of atherosclerosis, we 
used apoE-deficient mice with a macrophage-restricted deletion of Rb (Rbdel mice) 
and control littermates (Rbfl mice). After 12 weeks feeding a cholesterol-rich diet, 
the Rbdel mice showed a 51% increase in atherosclerotic lesion area with a 39% 
increase in the relative number of advanced lesions. Atherosclerotic lesions showed 
a 13% decrease in relative macrophage area and a 46% increase in relative smooth 
muscle cell area, reflecting the more advanced state of the lesions. The increase in 
atherosclerosis was independent of in vitro macrophage modified lipoprotein up-
take or cytokine production. Whereas macrophage-restricted Rb deletion did not af-
fect lesional macrophage apoptosis, a clear 2.6-fold increase in lesional macrophage 
proliferation was observed. 

These studies demonstrate that macrophage Rb is a suppressing factor in the 
progression of atherosclerosis by reducing macrophage proliferation. 
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Cardiovascular disease (CVD) has long been the leading cause of mortality 
and disability in developed countries, and it is rapidly becoming the number 
one killer in developing countries.1 The primary cause of CVD is athero-

sclerosis, which is a multi-factorial complex disease that starts in childhood and 
progresses throughout life. Atherosclerosis is initiated by subendothelial accumula-
tion of cholesterol-engorged macrophages. Gradually, these lesions develop towards 
more advanced lesions characterized by increased deposition of extracellular lipid 
cores, fibrous material, and necrosis covered by a smooth muscle cell (SMC)-rich 
cap.2,3 The cellular composition of an atherosclerotic lesion is an important deter-
minant of its stability. In general, lesions rich in cholesterol-loaded macrophages 
and extracellular lipid deposits are prone to rupture. On the other hand, lipid-poor 
lesions with a prominent presence of fibroblasts, SMCs and collagen are relatively 
stable and resistant to rupture.4 Cell proliferation and cell death are important pro-
cesses in regulating macrophage and SMC numbers in the atherosclerotic lesion 
and may thereby directly influence lesion stability.5

Indeed, recent mouse studies demonstrated that genes involved in regulating 
cell proliferation and cell death play an important role in progression of the athero-
sclerotic lesion coinciding with changes in the cellular composition. Deletion of 
the tumor suppressor gene p53, an essential molecule in both cell proliferation and 
apoptosis, strongly exacerbated atherosclerosis in apoE-deficient (apoE-/-),6 LDL re-
ceptor deficient (LDLR-/-)7 and APOE*3-Leiden8 mice. Recently Merched et al. showed 
that the p53 downstream target p21, an inhibitor of cell cycle progression via inac-
tivation of cyclin-CDK complexes during the G1 phase of the cell cycle, has strong 
pro-atherogenic functions.9 In addition, mouse studies showed that (hematopoietic) 
inactivation of p27, another cyclin-CDK regulating cell cycle inhibitor, exacerbated 
atherosclerosis on an apoE-/- background.10,11 Taken together, these studies indicate 
an important role for p53, p21, and p27 in controlling atherogenesis. 

Retinoblastoma (Rb), the first tumor suppressor gene identified molecularly, 
also plays a pivotal role in regulating cell proliferation and apoptosis. Rb is a nuclear 
phosphoprotein that arrests cells during the G1-phase of the cell cycle by forming 
complexes with the members of the E2F transcription factor family. The E2F family 
of transcription factors has binding sites in the promoters of many of the genes that 
are involved in cell-cycle progression.12 In addition, loss of Rb function can trigger 
a p53-dependent apoptotic pathway, which may serve as an intrinsic protective 
mechanism to eliminate cells in which the Rb pathway is deregulated.13 This is sup-
ported by the finding that Rb-deficient mice die in mid-gestation with widespread 
apoptosis.14-16

Although Rb is known to be a major factor in cell cycle progression and cell 
death, to date the exact role of Rb in atherosclerosis has not been elucidated. To 
investigate the role of macrophage-Rb in the development of atherosclerosis we 
crossed mice with a macrophage specific Rb deficiency17,18 onto an  apoE-/- back-
ground.  Effects of macrophage Rb deletion on atherosclerosis development were 
evaluated using morphometric analysis of atherosclerotic lesion area and classifica-
tion of lesion severity. In addition, detailed immunohistochemical analyses were per-
formed to analyze lesion composition and the contribution of cell proliferation and 
cell death to atherosclerosis development upon macrophage-restricted Rb deletion.
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METHODS

Mice and diet
The experimental animals were obtained by combining mice carrying the floxed Rb 
gene18 with LysMCre mice,17 and apoE-deficient mice19 resulting in mice homozy-
gously deficient for macrophage-Rb and apoE (LysMCre+ RbloxP/loxPapoE-/- or Rbdel) and 
control (LysMcre-negative) littermates that only lack apoE (RbloxP/loxPapoE-/- or Rbfl). 
Mice were genotyped by polymerase chain reaction (PCR) for LysMCre,17 RbloxP/loxP18 
and apoE19 status. For experiments, 8 weeks old male Rbdel (n=17) and littermate 
control Rbfl (n=13) were used. Mice were fed a semi-synthetic cholesterol-rich diet 
composed essentially according to Nishina et al.20 supplemented with cocoa butter 
(15%, by weight) and cholesterol (0.25%, by weight), without cholate (Hope Farms, 
Woerden, The Netherlands). Mice were given food and water ad libitum. All animal 
work was approved by institutional regulatory authority and carried out in compli-
ance with guidelines issued by the Dutch government.

Quantification of macrophage Rb deletion by Southern blotting
Southern blotting for the quantification of the deletion of Rb was performed as 
described before.21 Mice were intraperitoneally injected with 1 ml thioglycollate 
broth (3% wt/vol.). After 4 days, DNA was isolated from PBS flushed peritoneal mac-
rophages and digested with Pst1. Southern blots were hybridized with a 450-bp 
Pst1-PvuII probe, detecting a 5.0 kb wild type allele and floxed allele and a 4.5 kb 
deleted allele.

Blood sampling and analysis 
Blood samples were collected in EDTA-coated vials (Sarstedt, Nümbrecht, Germany) 
by bleeding from the tail vein. Plasma cholesterol and triglyceride levels were mea-
sured enzymatically using commercially available kits (Roche Diagnostics GmbH, 
Mannheim, Germany). Total blood leukocyte (CD45+), T-cell (CD3+), B-cell (CD19+) 
and monocyte/granulocyte (CD11b+) numbers were determined by FACS analysis 
(FACSCalibur, BD Biosciences, California, USA) following standard protocol (Tru-
COUNT, BD Biosciences, California, USA), as described before.22 Qualitative analysis 
of peripheral blood was performed on May-Grunwald-Giemsa (MGG) stained blood 
smears, according to standard procedures. The acute phase inflammatory markers 
Serum Amyloid A (SAA, BioSource International, Inc, Camarillo, CA) and fibrinogen23 
were analyzed by ELISA on plasma samples according to standard protocols.

Atherosclerosis analysis
After 12 weeks on a cholesterol-rich diet, mice were sacrificed. Heart and aorta were 
perfused with PBS, formalin fixed (pH 7.4) overnight and embedded in paraffin. 
From the entire aortic root area of the heart, four 5 µm cross-sections with an inter-
val of 40 µm were used for quantification of atherosclerotic lesion area.24 Sections of 
the aortic root area were routinely stained with hematoxylin-phloxine-saffran (HPS) 
for morphometric analysis, and characterization of the lesion and with Sirius red for 
collagen. Areas were determined using Leica Qwin image software (EIS, Asbury, NJ). 
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Lipid core area was defined by the presence of cholesterol clefts and extracellular 
lipids. In addition, necrosis was defined by the presence of pyknosis, karyorrhexis, 
or complete absence of nuclei.25 Lipid core area and necrosis area were measured 
using morphometric analysis, as described above.

Atherosclerotic lesions were classified on severity (i.e. early lesions or advanced 
lesions) as described before.22 The number observed in each category is expressed 
as a percentage of the total number of lesions observed within one group of mice 
(Rbdel or control Rbfl group). All analyses were performed double blindly without 
prior knowledge of the genotype. 

Immunohistochemistry
Serial sections were stained for macrophages and SMCs using a rabbit antibody to 
mouse macrophages (AIA-312040, 1/1500, Accurate Chemical and Scientific) and a 
monoclonal alpha-smooth muscle cell actin antibody (1/1600, DAKO A/S, Denmark), 
respectively. AIA-312040-positive and alpha-smooth muscle cell actin-positive areas 
were quantified using threshold values that discriminated between antibody-posi-
tive and antibody negative lesion areas, as described before.8 In addition, nuclear 
counting in AIA-312040-positive and alpha-smooth muscle cell actin-postive areas 
was performed for quantification of macrophage and SMC numbers.  Analysis on 
individual lesions was performed on lesions ranging from 0-50x103 µm2 (n=16 in-
dividual lesions for both Rbdel and Rbfl mice) and 50-150x103 µm2 (n=24 and n=16 
individual lesions for Rbdel and Rbfl mice, respectively). To label proliferating cells, 
sections were stained using a monoclonal rat anti-mouse Ki-67 antibody (DAKO 
A/S Denmark) and for apoptosis using the Terminal Deoxynucleotidyl Transferase 
End-Labeling (TUNEL) technique (In situ cell detection kit POD, Roche Diagnostics 
GmbH, Mannheim, Germany).8,26 Macrophages and SMCs positive for either Ki-67 
or TUNEL were expressed as a percentage of the total number of macrophages and 
SMCs present.22 

To analyze monocyte differentiation, spleen cryo-sections of Rbdel and Rbfl mice 
were stained for macrophage markers using the antibodies: FA-11 (a kind gift from S. 
Gordon, Oxford University, UK), Mac1 (a kind gift from G. Kraal, VUMC, The Nether-
lands), ERTR9 (a kind gift from G. Kraal, VUMC, The Netherlands), and F4/80 (a kind 
gift from W. Buurman, UM, The Netherlands).

Uptake of modified lipoproteins and cytokine measurements in in vitro 
cultured bone marrow derived macrophages
Bone marrow-derived macrophages (BMM) were obtained according to standard 
procedures. Culturing, analyses and modified lipoprotein uptake experiments were 
performed as described by Kanters et al.25 TNFα and interleukin-10 production 
were quantified at 0, 3, 6, and 24 hours after LPS (O111:B4, Sigma-Aldrich) stimula-
tion (100 ng/ml) by ELISA (Biosource, Etten-Leur, The Netherlands).25 

Statistical analysis
Data were analyzed using the non-parametric Mann-Whitney rank sum test (Graph-
pad Software, San Diego California USA). Data are expressed as mean±SD. Frequency 
data for lesion classification were compared by means of the Fisher’s exact test. 
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Correlation analysis was performed using the Spearman’s rank order correlation. 
P-value < 0.05 was regarded as significant. 

RESULTS

General characteristics of apoE-deficient Rbdel mice
Male Rbdel (n = 17) and control Rbfl (n = 13) littermates were fed a cholesterol-rich 
diet from 8 weeks of age on. During the study, the mice appeared healthy and dis-
played no signs of abnormalities. As shown in Table 1, after 12 weeks of a choles-
terol-rich diet challenge, mean body weight was not different between Rbdel and Rbfl 

mice. Plasma cholesterol and triglyceride levels (Table 1) and lipoprotein profiles 
(data not shown) were not different between Rbdel and Rbfl mice. Moreover, absence 
of macrophage Rb did not affect hematocrite, CD3+, CD19+, and CD11b+ leukocyte 
concentrations (Table 1). Subdivision of the CD11b+ population did not reveal an 
effect of LysMCre-induced Rb deletion on either circulating CD11b+ monocyte or 
circulating CD11b+ granulocyte numbers. Additional, detailed pathological analysis 
of May-Grunwald Giemsa (MGG) stained blood smears also did not yield any abnor-
malities in the peripheral blood of Rbdel mice. 

The degree of Rb deletion is dependent on the effectiveness of the Cre-recom-
binase in deleting the loxP-flanked Rb allele. Yields of thioglycollate-elicited perito-
neal macrophages isolated from Rbfl and Rbdel mice, for quantification of Rb deletion 
by Southern blot analysis, were similar (data not shown). Southern blot analysis re-
vealed that in Cre-recombinase expressing mice the deletion of the floxed allele was 
almost complete in the heterozygous state (LysMCre+RbloxP/WT; Figure 1A, lane 2) and 
complete in the homozygous state (LysMCre+RbloxP/loxP; Figure 1A, lane 3) confirming 
effective deletion of Rb in macrophages.

Table 1. General characteristics of male Rbdel and Rbfl mice after 12 weeks of feeding a 
cholesterol-rich diet.

Rbfl Rbdel

Weight (g) 26.0±0.9 26.0±3.0
Plasma lipid levels (mmol/L) Cholesterol 31.7±9.5 28.6±8.3

Triglycerides 1.8±1.0 1.8±1.3
Hematocrite 0.49±0.02 0.49±0.03
Blood leukocytes (106 cells/mL) CD3+ cells 3.5±1.3 3.1±0.9

CD19+ cells 8.1±2.4 7.2±2.8
CD11b+ cells 4.0±0.6 4.4±1.2
  CD11b+ monocytes        1.0±0.3 0.8±0.2
  CD11b+ granulocytes 3.2±0.6 3.6±1.1

Inflammation parameters (µg/ml) SAA 41.7±10.1 140.4±186.7
Fibrinogen 2.5±0.5 2.2±0.2

Analysis of atherosclerotic lesion area
Comparable body weight, blood composition, plasma lipid levels, and complete de-
letion of the Rb-floxed allele in LysMCre+RbloxP/loxP mice, allowed us to selectively 
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dissect the effect of macrophage Rb on atherosclerosis development in these mice. 
Mice fed the cholesterol-rich diet for 12 weeks were sacrificed for collection of heart, 
aorta, and other organs. Morphometric analysis of total atherosclerotic lesion area 
revealed a significant 51% increase in the Rbdel mice, as compared with control Rbfl 
mice (26.8±13.2 vs. 17.7±9.4 x104 µm2, P=0.04, Figure 1B). In addition, lesion classifi-
cation (early vs. advanced) showed that Rbdel mice had a significantly lower incidence 
of early lesions (21.6% vs. 43.5%, P=0.04) and a significantly increased incidence of 
advanced lesions (78.4% vs. 56.4%, P=0.04) as compared to Rbfl control mice, indicat-
ing an enhanced progression of atherosclerosis in Rbdel mice (Figure 1C).

To evaluate whether this enhanced atherosclerosis in Rbdel mice is due to an en-
hanced uptake of modified LDL and/or differences in inducble cytokine production 
in macrophages, we performed in vitro analysis using bone marrow derived macro-
phages (BMM). BMM from Rbdel and Rbfl mice did not differ in endocytosis of either 
oxidized LDL or acetylated LDL in two different doses (Figure 2A). LPS stimulation 
of BMM resulted in an increase in both TNFα and Il-10 production in Rbdel and Rbfl 
BMM (Figure 2B and C). However, Rbdel BMM did not differ from Rbfl control BMM 
in LPS-induced TNFα and Il-10 production. These data show that Rbdel mice have 
normal modified LDL uptake and are not affected in the production of either the 
pro-inflammatory cytokine TNFα or the anti-inflammatory cytokine Il-10.

In addition, plasma levels of the acute phase inflammatory marker Serum 
Amyloid A (SAA) and fibrinogen were not significantly affected (Table 1), although Chapter 3 
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Figure 1. (A.) Southern blot analysis of thioglycollate-elicited peritoneal macrophages. (B.) 
Aortic atherosclerotic lesion area in Rbfl (closed circles, n = 13) and Rbdel (open circles, n = 
17) mice. Line represents mean area for each group. (C.) Lesion classification of Rbfl (black 
bars) and Rbdel (white bars) mice. *P<0.05. 
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SAA showed a tendency towards an increase. To evaluate a possible relationship 
between inflammation and atherosclerotic lesion area a Spearman’s rank order cor-
relation analysis was performed. No correlations were found for either Rbdel or Rbfl 
mice between SAA levels and atherosclerotic lesion areas (Correlation coefficient 
of 0.06 for Rbdel (P = 0.83) and 0.33 for Rbfl (P = 0.35) mice). In line with this, no 
correlations were found either between fibrinogen levels and atherosclerotic le-
sion areas (Correlation coefficient of -0.04 for Rbdel (P = 0.89) and -0.30 for Rbfl (P = 
0.32) mice). These data indicate that inflammation, as measured by plasma SAA and 
fibrinogen levels, does not contribute to the observed difference in atherosclerotic 
area between Rbdel and Rbfl mice.

Moreover, Rb plays a critical role in monocytic differentiation.27 To evaluate 
whether the enhanced atherosclerosis in Rbdel mice is due to a defect in monocyte 
differentiation into macrophages, we immunohistochemically stained spleen sec-
tions of Rbdel and Rbfl mice. No differences were found on the differentiation mark-
ers FA-11, Mac1, ERTR9, and F4/80 between Rbdel and Rbfl mice (data not shown) in-
dicating that macrophage specific deletion of Rb does not affect the differentiation 
of monocytes into macrophages.

Histopathological analysis of atherosclerotic lesions
Histopathological analysis of atherosclerotic lesions in the aortic valve area revealed 
the presence of foam cell rich fatty streaks and fibrous plaques with a lipid core 
and a cap covering necrotic material, cholesterol clefts and extracellular lipids in 
both Rbdel and Rbfl mice. Figure 3 shows representative photomicrographs of ath-
erosclerotic lesions in Rbfl (A-C) and Rbdel (D-F) mice stained with HPS for morpho-
metric analysis (A and D), for macrophages (B and E) and for smooth muscle cells 
(C and F). Quantification of the lesion area positive for the anti-mouse macrophage 
polyclonal antibody AIA-312040 in Rbdel mice showed a significant 13% decrease 
in lesion macrophage area as compared to the Rbfl control mice (P=0.03, Table 2). 
However, analysis of macrophage area on individual lesions within the same size 
range (0-50x103 µm2 and 50-150x103 µm2, Table 2) showed no difference in mac-
rophage area between Rbdel and Rbfl mice. These data indicate that the decrease in 
relative macrophage area in the lesions of Rbdel mice is the result of an enhanced 
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Figure 2. (A.) Uptake of oxidized LDL and acetylated LDL in different doses (µg/mL) by 
BMM from Rbfl (black bars) and Rbdel (white bars) mice. (B, C) Rbfl and Rbdel macrophages were 
stimulated with LPS. TNFα (B.) and Il-10 (C.) production were measured in the supernatant 
by ELISA. 
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Table 2. Characteristics of atherosclerotic lesions in Rbdel  and Rbfl mice.

Rbfl Rbdel

Lesion macrophage area (% of total lesion area) 62.5±13.5 54.2±12.7*
Individual lesion size
     0-50x103 µm2 74.7±20.0 75.2±18.4
     50-150x103 µm2 48.6±18.7 46.3±14.6
Macrophage density (per 103 µm2 macrophage area) 3.6±1.0 3.1±1.2

Lesion SMC area (% of total lesion area) 2.8±1.6 4.1±1.8*
Individual lesion size
     0-50x103 µm2 2.8±1.9 4.6±2.6
     50-150x103 µm2 3.5±2.5 4.7±2.6
SMC density (per 103 µm2 SMC area)    0.9±0.5 1.2±0.9

Collagen area (% of total lesion area) 18.5±10.0 24.9±12.3

Lipid core area (% of total lesion area) 5.3±4.5 6.8±3.2

Necrosis area (% of total lesion area) 2.7±3.2 4.3±4.0

* P<0.05
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Figure 3. Representative lesions of Rbfl (A-C.) and Rbdel (D-F.) mice. Sections were stained 
with HPS (A and D.), macrophage-specific antibody (B and E.) or alpha-smooth muscle cell 
actin antibody (C and F). Arrows indicate the presence of a SMC rich cap (F). Magnification 
100x, scale bar 100 µm.
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progression of atherosclerosis, a primary characteristic of advanced lesion forma-
tion,28 rather than an additional effect of macrophage specific Rb deletion on lesion 
composition. In the sections stained with the AIA-312040 antibody, it was demon-
strated that monocyte adherence to the lesions, as a parameter for endothelial cell 
activation, was not affected (4.4±2.5 vs. 4.4±2.3 monocytes/lesion for Rbdel and Rbfl 
mice, respectively). Analysis of the SMC area showed a significant 46% increase in 
lesions in the Rbdel mice (P=0.05, Table 2). Analysis of SMC area on individual lesions 
within the same size range (0-50x103 µm2 and 50-150x103 µm2, Table 2) showed no 
difference between Rbdel and Rbfl mice indicating that the increase in SMC area was 
also a result of the enhanced progression of atherosclerotic lesions,28 rather than 
an additional macrophage-specific Rb effect on lesion composition. The increase in 
SMC area in the Rbdel mice coincided with a non-significant 35% increase in collagen 
area (P=0.26, Table 2). Both parameters indicate the presence of a thicker fibrous 
cap in Rbdel mice. Nuclear counting revealed no effect of macrophage Rb deficiency 
on macrophage and SMC numbers (macrophage and SMC density, Table 2) in the 
atherosclerotic lesions. The lipid core defined by the presence of cholesterol clefts 
and extracellular lipids was not shown to be affected by macrophage Rb deficiency 
(P=0.23, Table 2). To complete lesion composition analysis the necrotic core was 
analyzed. Rbdel mice showed a (non-significant) doubling of the necrotic core as 
compared to Rbfl mice (P=0.13, Table 2). 

Cell death and cell proliferation
To investigate whether macrophage-specific deletion of Rb affects cell death in 
the atherosclerotic lesions, TUNEL-positivity was determined. Lesions of Rbdel mice 
showed an incidence of 1.3±1.0% TUNEL-positive macrophages which did not differ 
significantly from the incidence of 1.1±1.0% TUNEL-positive macrophages for Rbfl 
mice (Figure 4A). In addition, the incidence of TUNEL-positive SMCs in Rbdel mice 
(0.5±0.5%) did not differ significantly from the Rbfl control group (0.5±0.5%, Figure 
4A), indicating that macrophage Rb deficiency did not affect lesional apoptosis.

To study the effect of macrophage-specific Rb deletion on lesional prolifera-
tion nuclear protein Ki-67-positivity was determined for both lesional macrophages 
and SMCs. As shown in Figure 4B, lesions of Rbdel mice showed a significant 2.6-fold 
increase in the incidence of Ki-67-positive macrophages as compared to lesions of 
Rbfl mice (3.3±2.4% vs. 1.3±1.2% Ki-67-positive macrophages for Rbdel and Rbfl mice, 
respectively, P=0.02, Figure 4B and C). The incidence of Ki-67-positive SMC nuclei 
was not affected by the macrophage Rb genotype (0.7±0.6% vs. 0.5±0.4% Ki-67-
positive SMCs for Rbdel and Rbfl mice, respectively, Figure 4B). Hence, the increased 
atherosclerosis in Rbdel mice coincides with increased proliferation of macrophages 
in the lesions of these mice.
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Figure 4. (A.) Apoptosis and (B.) proliferation in macrophages (left panel) and SMCs (right 
panel) in the atherosclerotic lesions of Rbfl (black bars) and Rbdel (white bars) mice. Error bars 
indicate SEM. *P<0.05. (C.) Representative Ki-67 stained lesions of Rbfl (left panel) and Rbdel 

(right panel) mice. Arrows indicate Ki-67 positive cells. Magnification 150x.

DISCUSSION 

In the present study, we investigated the role of macrophage Rb in the pathogen-
esis of atherosclerosis. ApoE-deficient mice lacking macrophage Rb displayed ac-
celerated atherosclerosis. This was characterized by the presence of more advanced 
lesions that were rich in smooth muscle cells and collagen and poor in macro-
phages (Figure 5). In vitro analysis showed that the enhanced atherosclerosis in 
macrophage Rb deficient mice was independent of modified lipoprotein uptake 
or cytokine production. Whereas macrophage specific Rb deletion did not affect 
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the systemic inflammation markers SAA and fibrinogen, monocyte differentiation or 
macrophage apoptosis, lesional macrophage proliferation was strongly increased. 
These studies demonstrate that macrophage Rb is a suppressing factor in the pro-
gression of atherosclerosis.

Bennett et al. demonstrated that human plaque-derived VSMCs show reduced 
proliferation and earlier senescence due to an increased ratio of the active form of 
Rb.29 In addition, localized infection of the arterial wall with an adenovirus encod-
ing a constitutively active non-phosphorylatable form of Rb significantly reduced 
medial vascular smooth muscle cell proliferation and restenosis in two animal mod-
els of balloon angioplasty.30 Moreover, a phosphorylation-competent full-length and 
a truncated form of Rb inhibited vascular smooth muscle cell proliferation and neo-
intima formation.31 These data, together with our data, indicate that Rb can be a 
strong modulator of vascular disease both at the level of SMCs and macrophages.

To define the molecular pathways underlying Rb function in vascular disease 
our findings may support an initial mechanistic explanation for a role of macrophage 
Rb in atherosclerosis. We showed that increased macrophage proliferation may un-
derlie the formation of more advanced lesions in Rbdel mice. Surprisingly, increased 
macrophage proliferation did not coincide with increasing effects on macrophage 
area or number. Remarkably, macrophage area was even decreased upon Rb dele-
tion. Detailed analysis of individual lesions showed that the decrease in macrophage 
area reflected the more advanced state of the lesions in Rbdel mice, rather than an 
additional effect of Rb deletion on lesion (macrophage) composition.4 In general, 
macrophages produce growth factors, cytokines, chemokines and metallopotein-
ases which play an important role in the development and progression of athero-
sclerotic lesions. This diverse array of bio-active molecules activates the surrounding 
endothelium and SMCs. Following, the lesion becomes increasingly complex with 
the presence of SMCs, lipid-laden macrophages, T-lymphocytes, a necrotic core and 

Rbdel mice 

Monocyte SMC

Macrophage 

T lymphocyte Collagen 

Erythrocyt

Necrotic 
core 

Rbfl  mice 

Figure 5. Schematic drawing illustrating lesion development upon macrophage-restricted Rb 
deletion. Macrophage-restricted Rb deletion leads to enhanced atherosclerosis development 
characterized by increased lesion area and the presence of more advanced lesions rich in 
smooth muscle cells and collagen and poor in macrophages. 
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cholesterol crystals covered by a fibrous cap.2,3,32 During atherosclerosis develop-
ment, the macrophage population in Rbdel mice exhibited an increased proliferative 
state. We hypothesize that this increased proliferative state resulted in enhanced 
lesion pathology via increased production of growth factors, cytokines, chemokines 
and metalloproteinases. This array of proteins stimulated the formation of an ad-
vanced atherosclerotic lesion, characterized by a relative decrease in macrophage 
content and a relative increase in SMC content. Hence our data suggest that Rb 
protects against excessive macrophage proliferation and thereby against enhanced 
atherosclerosis progression. 

Bergh et al. showed that Rb plays a critical role in monocytic and neutrophilic 
lineage commitment of normal human bone marrow progenitor cells.27 In addition, 
macrophages play a central role in red blood cell development. Erythroblast islands, 
required for red blood cell development, are present in the liver of fetuses and in the 
bone marrow of adults. These erythroblast islands consist of a central macrophage 
that supplies nutrients to the surrounding erythroblasts and degrades the nuclei 
from the enucleated circulating red blood cells. Recently, it was shown that Rb-
deficient murine fetuses have a severe defect in macrophage maturation and fail to 
form functional erythroblast islands resulting in lethal anemia characterized by the 
persistence of nucleated erythroid cells in the peripheral blood.33 However, we did 
not observe differences in monocyte differentiation analyzed using different macro-
phage markers (e.g. FA-11, Mac1, ERTR9, and F4/80) or in macrophage maturation 
characterized by an aberrant blood composition (e.g. nucleated red blood cells) 
as analyzed by FACS, hematocrite levels and May-Grunwald Giemsa stained blood 
smears. Thus, differences in either monocyte differentiation or macrophage matura-
tion during embryonic development or in adult life that might affect atherosclerosis 
development in Rbdel mice have not been found.

In addition to defining the molecular pathways underlying Rb function in ath-
erosclerosis our findings may also have direct clinical significance. Unregulated cell 
proliferation has been implicated in the etiology of a variety of vascular proliferative 
diseases including atherosclerosis and (in-stent) restenosis after PTCA or placement 
of a stent.34-37 Recently, the use of drug-eluting stents has emerged as a highly prom-
ising approach to reduce in-stent restenosis.38 In addition to the vascular smooth 
muscle cells (VSMCs), macrophages also play a crucial role in the formation of neo-
intima via the stimulation of VSMC migration and proliferation at the injury site.39 
The different drugs used in drug-eluting stents most often target proliferative state 
of the cells. Therefore, regulation of the Rb gene via drug-eluting stents might prove 
a promising approach since activation of Rb both at the level of VSMCs 30,31 and 
macrophages (present study) is shown to be beneficial for inhibition of vascular 
disease.

Our observation that Rbdel mice after 12 weeks feeding a high-fat diet have a 
tendency towards increased plasma SAA levels, may point towards a role for Rb in 
modulating the inflammatory status in apoE-deficient mice. This might not be a very 
plausible explanation, however, for the following reasons. Firstly, our in vitro ex-
periments showed that Rbdel macrophages do not respond differently from Rbfl mac-
rophages regarding LPS-induced production of TNFα and Il-10. Secondly, SAA and 
fibrinogen levels on a standard chow diet (data not shown) and fibrinogen levels 
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after 12 weeks feeding a high-fat diet (Table 1) did not differ between Rbdel and Rbfl 
mice. Finally, correlation analysis for SAA (and fibrinogen) and the total lesion areas 
in both Rbdel and Rbfl mice negated that inflammation contributes to atherosclerosis 
development in these mice. The absence of a correlation between SAA and total 
area in this mouse model also excludes the possibility that the observed increased 
SAA level is the result of an increase in lesion area as recently described by O’Brien 
et al.40 Thus, changes in inflammatory status due to macrophage specific Rb deletion 
as an explanation for the observed increase in atherosclerosis is highly unlikely.

In contrast to conditional RbloxP/loxP mice, conventional homozygous Rb defi-
cient mice die at mid-gestation, displaying impaired neurogenesis, fetal liver eryth-
ropoiesis and lens development, which was related to a defect in proliferation and 
end-stage differentiation in several lineages.14-16 Pituitary-specific inactivation of 
the Rb gene resulted in pituitary tumors due to hyperproliferation and impairment 
of apoptosis.21 In the present study, LysMCre-mediated deletion of the floxed-Rb 
allele did not result in any abnormality at the level of circulating CD45+/CD11b+ 
blood leukocytes or resident cells in liver, spleen or bone marrow (data not shown). 
Hence, the Rb gene product has a pivotal role in controlling cell division, cell death 
and cell differentiation of neuronal, erythropoetic, lens and pituitary cells, but not in 
controlling these cellular processes in the blood granulocyte and monocyte popula-
tion. Moreover, the application of the site-specific recombinase technology (i.e. the 
LysMcre mouse model in combination with the RbloxP/loxP mouse model) creates a 
first and unique opportunity to study the role of macrophage Rb in pathophysiol-
ogy of disease in general.

In conclusion, we demonstrate that deletion of the tumor suppressor gene Rb 
specifically in macrophages enhances atherosclerosis development. Combined with 
our previous and comparable findings for p53 in macrophages,8 we conclude that 
Rb and p53, in addition to their suppressing function in cancer, have a suppressing 
function for atherosclerosis development. 
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ABSTRACT

p53 is a potent inhibitor of cell growth and an inducer of apoptosis. During embry-
onic development and in adult homeostatic tissues, Mdm2 inhibits the growth sup-
pressive activities of p53. However, whether tight surveillance of p53 activity is re-
quired in quiescent cells is unknown. To test this, conditional inactivation of mdm2 
was carried out in smooth muscle cells (SMCs) in vivo. Upon SMC-specific mdm2 
inactivation, mice rapidly became ill and died. Necropsy showed small intestinal 
dilation, and histological analyses indicated a severe reduction in the number of in-
testinal SMCs. Increased p53 levels and activity was detected in the remaining SMCs, 
and the phenotype was completely rescued on a p53-null background. Surprisingly, 
SMCs did not exhibit signs of apoptotic cell death but had a necrotic morphotype. 
These results show that Mdm2 prevents accumulation of active p53 in quiescent 
SMCs and thereby the induction of p53-mediated necrotic cell death in vivo.
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The p53 tumor suppressor protein plays a critical role in suppressing tumor 
formation by inducing two types of anti-proliferative responses: cell-cycle 
arrest and apoptotic cell death.1 Cell cycle arrest is mediated by transcrip-

tional induction of genes whose products inhibit cell cycle progression, such as         
p21Waf1/Cip12 or Ptprv.3 The apoptotic function of p53 depends on both transcription-
dependent and independent mechanisms.4

The importance of p53 in tumor suppression is highlighted by the observation 
that virtually all human cancers display an impaired p53 response. This is achieved 
either through direct inactivating mutations within the p53 gene, or through ab-
errant expression of proteins acting in the p53 pathway. For instance, Mdm2 is 
overexpressed in human tumors of diverse origin.5,6 The mdm2 gene was originally 
identified as an amplified and overexpressed gene in a spontaneously transformed 
mouse BALB/c cell line.7 Its transformation potential was later demonstrated and 
explained by the ability of Mdm2 to inactivate p53.8,9

Lack of functional mdm2 is lethal in early mouse embryos, which die before 
implantation. This dramatic phenotype is completely rescued by concomitant dele-
tion of p53.10,11 In addition, mice with a hypomorphic mdm2 allele have lower body 
weight and higher rates of p53-dependent apoptosis in various tissues. Notably, this 
phenotype is only observed in a subset of actively dividing cells, such as lympho-
cytes, and in the crypts of the small intestine, which could indicate that, in adult 
mice, Mdm2 restraints p53 activity only in homeostatic tissues.12 Together, clear ge-
netic evidence highlights the importance of the p53/Mdm2 interaction. However, 
limitations of the existing mouse models, such as early embryonic lethality of the 
constitutive null mutation, preclude analysis of the function of Mdm2 in a spatial 
and temporal specific manner.

In addition, these models do not allow firm establishment of the role of Mdm2 
in the regulation of p53 stability. It was indeed shown that, beside the ability of 
Mdm2 to bind p53 in its transactivation domain and to interfere with p53-transcrip-
tional activity, Mdm2 acts as an E3 ubiquitin ligase responsible for the ubiquitination 
of p53 and itself.13-16 It was later proposed that Mdm2 mediates monomeric p53 
ubiquitination on multiple lysine residues, rather than polyubiquitination, as previ-
ously thought.17 Because chains of multiple ubiquitin molecules are necessary for ef-
ficient protein degradation, the data suggested that the enzymatic activity of Mdm2 
might not be sufficient for optimal degradation of p53, and that other proteins must 
aid in polyubiquitination and degradation of p53 in vivo. More recent data indicated 
that Mdm2 differentially catalyzes either monoubiquitination or polyubiquitination 
of p53 in a dosage-dependent manner.18 The authors proposed that Mdm2-mediated 
polyubiquitination and nuclear degradation occurs only in specific contexts, such 
as when Mdm2 is malignantly overexpressed. On the other hand, Mdm2-mediated 
monoubiquitination and subsequent cytoplasmic translocation of p53 may repre-
sent an important means of p53 regulation in unstressed cells, in which Mdm2 is 
maintained at low/physiological levels. In addition, in mice with the hypomorphic 
mdm2 allele, the level of p53 protein was not coordinately increased, suggesting 
that Mdm2 can inhibit p53 function in a manner independent of degradation.12 
Moreover, other cellular ubiquitin ligases, such as Pirh2, Cop-1, yin-yang and ARF-
BP1, were reported to also promote p53 ubiquitination and degradation.19-22 Thus, 
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while Mdm2 is a key regulator of p53 function in vivo, p53 degradation may be me-
diated through both Mdm2-dependent and Mdm2-independent pathways in vivo.

Here, we show that specific inactivation of mdm2 in terminally differentiated 
smooth muscle cells (SMCs) results, concomitantly with severe cell loss, in increased 
p53 protein levels and transcriptional activity. Interestingly, SMCs undergoing cell 
death did not show evidence of caspase-3 activation and DNA fragmentation, but 
displayed hallmarks of necrosis. Together, Mdm2 is critical for the regulation of p53 
steady state levels and activity in quiescent cells in vivo. Moreover, the data in-
dicate that increased p53 activity in vivo can lead to cell death with a necrotic               
morphotype, and consequently can go undetected when using apoptosis-specific 
methodology. 

MATERIALS AND METHODS 

Transgenic Mice 
To achieve SMC-specific mdm2 deletion we combined mice that carry a tamoxi-
fen-inducible Cre-recombinase under control of the SMC specific SM22 promoter 
(SM-CreERT2(ki) mice)23 and mice carrying the mdm2 gene modified by flanking 
exons 5 and 6 with two loxP sites (mdm2FM/FM)24 to create SM-CreERT2(ki);mdm2FM/

FM mice. To determine p53 dependent effects of mdm2 deletion SM-CreERT2(ki); 
mdm2FM/FM mice were crossed with p53 knock out (p53-/-) mice25 resulting in SM-
CreERT2(ki);mdm2FM/FM;p53-/- mice. In addition, to facilitate the monitoring of Cre 
activity in vivo, we combined the SM-CreERT2(ki) mice and the Rosa26 reporter 
mouse line26 to generate SM-CreERT2(ki); Rosa26 mice. The SM-CreERT2(ki); mdm2FM/

FM, SM-CreERT2(ki);mdm2FM/FM;p53-/-, SM-CreERT2(ki);Rosa26 and their control litter-
mates mice were born at the expected Mendelian frequency, developed normally 
and were genotyped by PCR, as described previously.23,24,26

Conditional deletion of mdm2 and quantification of recombination
Mice, aged 8-10 weeks, were injected intra-peritoneally with 100 µl of 20mg/ml 
tamoxifen (TMX, Sigma) or vehicle (peanut oil) for 0, 2, 5, and 7 continuous days. 
Intra-peritoneal TMX injections did not result in liver toxicity as measured by se-
rum alanine aminotransferase (ALAT) levels (40.6±12.7 for mdm2FM/FM mice vs. 
36.3±16.0U/l for SM-CreERT2(ki);mdm2FM/FM mice; P=0.754, ALT, Roche). Recom-
bination of the FM allele (226bp) was assessed by PCR.24 Recombination in SM-
CreERT2(ki);Rosa26 mice was quantified by counting β-galactosidase positive (β-
gal+) cells and  was expressed as a percentage of the total number of cells (Figure 
1C). 

Tissue preparation and histology
Mice were sacrificed and a complete gross necropsy was performed. Organs and 
selected tissues, including oesophagus, stomach, jejunum, proximal and distal ile-
um, colon, aorta, urinary bladder and liver were sampled for further investigation. 
Sampled organs were either directly snap frozen in sterile eppendorf tubes and 
stored at -80°C or fixed in phosphate buffered formalin pH 7.4 and embedded in 
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paraffin. Of the tissues sampled and fixed in formalin microscopical analysis was 
performed of 5 µm routinely stained hematoxylin-phloxin-saphron (HPS), hema-
toxylin-eosin (HE) or 4’-6-Diamidino-2-phenylindole (DAPI) sections. In addition, 
slides were stained with antibodies against SM-α-actin (clone 1A4, dilution 1:1500, 
DAKO), pro-caspase-3 (1:1000, Cell Signaling), cleaved form of caspase-3 (1:1000, 
Cell Signaling), p53 (CM5, 1:1000, Novocastra Lab Ltd.). DNA fragmentation (ISEL 
staining) was assessed with the FragEL kit (Oncogene Research Products) accord-
ing to the manufacturer’s directions and sections were counterstained with methyl 
green (Vector Laboratories).

LCM and Q-PCR
Laser Capture Microdissection (LCM) samples were prepared from frozen sec-
tions of three control and three SM-CreERT2(ki);mdm2FM/FM mice and pooled. Total 
RNA was extracted using the PicoPure RNA isolation kit and amplified using the 
RiboAmp RNA Amplification Kit according to manufacturer’s instructions (Acturus 
Bioscience). 1 µg of total RNA from each pool was reverse-transcribed using a Su-
perScript kit (Invitrogen). These assays were performed following the manufactur-
er’s specifications (PE Applied Biosystems). Primer pairs and TaqMan probes were 
designed by Applied Biosystems (Assays on demand).

Electron Microscopy
Tissue samples were immersed in a fixative solution of 2 % paraformaldehyde and 
2.5 % glutaraldehyde and postfixed in 1% OsO4 with 1.5% K3Fe(CN)6 in 0.1 M 
NaCacodylate buffer, pH 7.2. Samples were dehydrated through a graded ethanol 
series, including a bulk staining with 2% uranyl acetate at the 50% ethanol step 
followed by embedding in Spurr’s resin. Ultra thin sections, made on a Ultracut E 
microtome (Reichert-Jung), were post-stained in an ultrostainer (Leica,Herburgg, 
Switzerland) with uranyl acetate and lead citrate. Sections were viewed with a trans-
mission electron microscope 1010 (JEOL, Tokyo, Japan).

Statistical Analysis
All data are represented as mean±SD. Data were analysed using the non-parametric 
Mann-Whitney rank sum test. P-values less than 0.05 were regarded as statistically 
significant. 

RESULTS

Strategy for conditional bi-allelic inactivation of mdm2 in quiescent smooth 
muscle cells in vivo
To test whether Mdm2 is required for regulating p53 stability and activity in qui-
escent cells in vivo, we specifically inactivated mdm2 in G

0
 smooth muscle cells 

(SMCs). To this end, conditional inactivation of mdm2 was carried out in mice har-
bouring mdm2 floxed alleles and a tamoxifen (TMX)-inducible Cre-recombinase 
under control of the SM22 promoter (SM-CreERT2(ki) mice).23 The mdm2 floxed 
allele (FM) had been previously described.24 It carries a loxP recombination site in 
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intron 4 and another in intron 6 (Figure 1A). Cre-mediated recombination therefore 
yields an mdm2 allele lacking exons 5 and 6, which encode for most of the p53-
binding domain. Mice homozygous for the FM allele (or mdm2FM/FM) appear normal; 
however, ubiquitous deletion of exons 5 and 6 in vivo results in an embryonic le-
thality similar to the mdm2 null allele.24

We first examined by PCR the extent of recombination at the mdm2 locus in 
SM-CreERT2(ki);mdm2FM/FM mice (Figure 1B) and compared it with the Cre activity 
at the Rosa26 locus in SM-CreERT2(ki);Rosa26 mice at various sites containing SMCs 
(Figure 1C). SMCs were identified both morphologically and immunohistochemi-
cally by SM-α-actin staining (Figure 2). In order to induce the latent CreER fusion 
protein, mice were injected daily with TMX for seven days, and then analyzed. Upon 
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Figure 1. (A.) Schematic representation of part of the mdm2 floxed allele (FM) and the 
Cre-mediated recombination event. The a and b arrows designated the position of the 
primers used to detect the Cre-mediated recombination by PCR. (B.) PCR analysis showing 
increased detection of the Cre-mediated recombination event, using primers a and b, in 
the intestine of CreERT2(ki);mdm2FM/FM mice treated for 0, 2, 5 and 7 days with TMX. (C.) 
Percentage of recombination of SMC-rich SM-CreERT2(ki);Rosa26 organs/tissues after 7 days 
of intraperitonal TMX administration. No recombination was observed in TMX or vehicle-
treated control Rosa26 mice. (D.) Detection of lacZ reporter gene expression in the stomach 
of SM-CreERT2(ki);Rosa26 mice and Rosa26;CreER-negative control mice after 7 days of 
TMX administration.



72

C
h

ap
te

r 
4

0

0,2

0,4

0,6

0,8

1

6 7 8 9 10 11
Time (days)

Su
rv

iv
al

 F
ra

ct
io

n

HPS SM-actin �

D
ay

 0
D

ay
 5

D
ay

 7
D

ay
 7

CreER- CreER+A. B.

C.

0

0,2

0,4

0,6

0,8

1

6 7 8 9 10 11
Time (days)

Su
rv

iv
al

 F
ra

ct
io

n

0

0,2

0,4

0,6

0,8

1

6 7 8 9 10 11
Time (days)

Su
rv

iv
al

 F
ra

ct
io

n

HPS SM-actin �

D
ay

 0
D

ay
 5

D
ay

 7
D

ay
 7

HPS SM-actin �

D
ay

 0
D

ay
 5

D
ay

 7
D

ay
 7

CreER- CreER+A. B.

C.

Figure 2. (A.) Kaplan-Meier curves of age-matched CreERT2(ki);mdm2FM/FM mice (open 
circles, n=21) and control CreER-negative mice (filled squares, n=15). Mice were TMX-treated 
for 7 consecutive days and followed thereafter. (B.) Gross appearance of control (left panel) 
and CreERT2(ki);mdm2FM/FM mice (right panel) after 7 days of intra-peritoneal tamoxifen 
administration. (C.) HPS (left panels) and IHC for SM-α-actin (right panels) staining of the 
small intestine of CreERT2(ki);mdm2FM/FM mice 0, 5, 7 days following TMX treatment (magn. 
200x).
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TMX injection, we found that SMCs from the gastroinstestinal (GI) tract, particularly 
the stomach (Figure 1D) and proximal ileum, were stably marked (β-gal+), whereas 
little reporter activity was found in cells of the cardiovascular system such as in the 
aorta. Since efficient recombination of the mdm2 locus was observed in the SMCs 
of the small intestines (proximal ileum), we concentrated our studies at this site.

TMX-treated SM-CreERT2(ki);mdm2FM/FM mice exhibit severe lesions in the 
SMC-containing layers of the intestinal wall and eventually die
Following 7 days of TMX administrations, the body weight of SM-CreERT2(ki); 
mdm2FM/FM mice decreased as compared to TMX-treated control Cre-ER-negative 
mice. Moreover, SM-CreERT2(ki);mdm2FM/FM mice were not responsive to stimuli and 
were hunchbacked with ruffled coat. Strikingly, illness proceeded to death from day 
8 on (Figure 2A). In contrast, TMX-treated mdm2FM/FM CreER-negative mice appeared 
normal and did not differ from vehicle-treated SM-CreERT2(ki);mdm2FM/FM and ve-
hicle treated mdm2FM/FM CreER-negative mice. SM-CreERT2(ki);mdm2FM/FM mice were 
sacrificed for gross necropsy and histopathological analysis. 

The stomach and small intestine of TMX-treated SM-CreERT2(ki);mdm2FM/FM 

mice adhered to spleen and liver, appeared vulnerable and friable, were filled with 
soft materials, and were loose. The consistently abnormal findings included liver and 
spleen atrophy and dilation of the small intestinal, which varied between mice, but 
could be considerable (Figure 2B). This dilation was associated with a decreased 
length of the small intestine (from pylorus to ileo-cecal junction: 44.0±3.5 for con-
trol mice, 32.0±2.0 cm for SM-CreERT2(ki);mdm2FM/FM mice; P=0.007). 

The lesions in the dilated small intestine of SM-CreERT2(ki);mdm2FM/FM mice 
treated with TMX were limited to the lamina interna and externa of the muscularis 
(M.) propria of the intestinal wall, consistent with a specific activity of the Cre in 
the SMCs. The architecture of the lamina M. interna was disturbed due to a decrease 
in cell layers and irregular alignment of the SMCs. The number of SMC layers was 
reduced from 6-8 to 3-5, with multifocal irregular increase of intercellular spaces, 
tapering of SMCs with wavy ends and, irregular, often shortened hyperchromatic 
nuclei (Figure 2C). In some extreme cases, the SMCs were simply either missing or 
unrecognizable.

Alterations of the SMC-containing intestinal wall and lethality upon SMC- 
specific mdm2 inactivation are entirely p53-dependent
A large body of evidence suggests that Mdm2 can function both dependently and 
independently of p53. In agreement, Mdm2 binds several proteins involved in the 
regulation of cell cycle progression and survival other than p53, such as p19/ARF, 
p63 and p73, Rb, and E2F-1/DP-1.27 In order to test whether the phenotype observed 
in the SM-CreERT2(ki);mdm2FM/FM mice is p53-dependent, they were crossed with 
p53-null mice (p53-/-)25 to create SM-CreERT2(ki);mdm2FM/FM;p53-/- mice. Strikingly, as 
observed in control mice, TMX injection in SM-CreERT2(ki);mdm2FM/FM;p53-/-  mice 
did not cause death (Figure 3A). Gross necropsy did not reveal differences in liver 
and spleen weight and small intestinal length as compared to control mice. Histo-
logical examination did not reveal any obvious lesions, disorganization of intestinal 
cell alignment or loss of cell viability in SM-CreERT2(ki);mdm2FM/FM;p53-/- (Figure 3B, 
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Figure 3. (A.) Kaplan-Meier curves of age-matched CreERT2(ki);mdm2FM/FM mice (open 
circles, n=11) and control mdm2FM/FM;CreER-negative mice (filled squares, n=10) and 
CreERT2(ki);mdm2FM/FM;p53-/- mice (open diamonds, n=6) following 7 days of intra-peritoneal 
TMX administration. (B.) H&E staining and p53 immunostaining of the small intestine of 
mice with the indicated genotypes (magn. 60x). (C.) Q-RT-PCR analysis shows induction 
of expression of p53 target genes in laser-capture microdissected SMCs of mice with the 
indicated genotypes. Microdissected samples from three different mice were pooled before 
the analysis. The data represent therefore the mean expression levels in these three mice 
treated independently.
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left panels). We therefore concluded that loss of mdm2 in the SMCs of the GI tract 
causes loss of cell viability and acute lethality in a manner that is completely depen-
dent on the presence of functional p53.

SMC-specific mdm2 inactivation leads to increased p53 stability and 
transcriptional activity
To determine whether specific deletion of mdm2 in the SMCs allows the level 
of p53 protein to increase, we performed immunostaining for p53. In sections 
of the proximal ileum from mdm2FM/FM;CreER-negative mice injected with TMX, 
no p53 staining could be detected (Figure 3B). In contrast, nuclei of the SMCs 
of SM-CreERT2(ki);mdm2FM/FM mice showed marked p53 immunoreactivity (Fig-
ure 3B, right panels). Importantly, no staining was observed in sections from SM-
CreERT2(ki);mdm2FM/FM;p53-/- mice, confirming the specificity of the p53 detection 
method (Figure 3B). These results suggest that p53 is maintained at low levels in 
a strict Mdm2-dependent manner in terminally differentiated SMCs. In addition, 
p53 was not only stabilized but it was also functionally active, as indicated by con-
comitant upregulation of several p53-target genes such as p21Waf1/Cip1 and the pro-
apoptotic gene bax in laser-capture microdissected-SMCs in the proximal ileum of 
SM-CreERT2(ki);mdm2FM/FM mice, as determined by Q-RT-PCR (Figure 3C). Of note, 
mdm2 ∆exons5/6 transcripts, were also found upregulated in the SMCs of SM-
CreERT2(ki);mdm2FM/FM mice.

SMC-specific mdm2 inactivation does not cause apoptotic cell death
Since one of the main p53 antiproliferative activities is induction of caspase-de-
pendent apoptotic cell death, we hypothesized that the hypocellularity observed 
following mdm2 inactivation was a consequence of increased p53-mediated apop-
tosis. To investigate this possibility, we first performed staining using an antibody 
specifically recognizing the activated form of the main effector caspase, caspase-3. 
No significant activation of caspase-3 could be observed both in control and SM-
CreERT2(ki);mdm2FM/FM TMX-treated mice (Figure 4). Interestingly, the non-activated 
form of caspase-3 (pro-caspase-3) was not significantly detected in the SMCs of both 
control (CreER-negative) and SM-CreERT2(ki);mdm2FM/FM TMX-treated mice (Figure 
4). This observation, thus, provides a simple explanation for absence of activated 
caspase-3 in the SMCs of TMX-treated mice. Absence of caspase-3 protein was also 
previously reported in rat and mouse adult skeletal muscles, despite the abundant 
presence of its mRNA.28 Since other effector caspases might compensate for the 
lack of caspase-3 in these cells, we explored the presence of other apoptotic signa-
tures. Apoptosis is morphologically defined by several hallmarks including nuclear 
shrinkage (pyknosis), chromatin condensation, DNA degradation and nuclear frag-
mentation (karyorrhexis) with formation of apoptotic bodies. Examination of H&E 
or DAPI staining did not reveal the presence of apoptotic bodies or pyknotic nuclei. 
Moreover, in situ end labeling (ISEL)29 (Figure 4) and TUNEL assays (data not shown) 
did not detect DNA fragmentation. To verify that our detection methods could de-
tect both pro-caspase-3 and apoptosis, sections of E15.5 embryos expressing p53 
specifically in post-mitotic neurons deficient for mdm2 were analyzed (Francoz et 
al., submitted 2005). Clear and specific staining for pro-caspase-3, the activated form 
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of caspase-3 and DNA fragmentation were detected in these embryos (Figure 4), 
confirming the sensitivity and the specificity of both methods. Together, the ob-
served phenotype and multifocal irregular increase of intercellular spaces with ta-
pering SMCs is not suggested to coincide with an increase in apoptotic cell death.

Evidence for p53-dependent necrotic cell death following SMC-specific 
mdm2 inactivation
Electron microscopy (EM) confirmed absence of pyknosis and karyorrhexis with 
formation of apoptotic bodies. However, EM revealed that many of the remaining 
SMCs had a morphotype identical to that seen in necrosis30,31 including a “mottled” 
nucleus caused by clumped, but not marginalised, and only loosely packed chro-
matin (Figure 5). Most of the nuclei appeared largely intact, however, in some cases 
nuclear membrane detachment and rupture were apparent. The affected cells also 
showed dilated mitochondria and cytoplasmic vacuoles (not shown). External mem-
brane rupture and swelling of cytoplasmic organelles was also evident (Figure 5). In 
agreement, clusters of roughly intact nuclei, which are no longer surrounded by cy-
toplasmic membranes, were also observed (Figure 5). Various intermediate aspects 
could be observed, which ranged from apparently intact cells that had a mottled 
nucleus, to cells that had a mottled nucleus and gross membrane alterations. Finally, 
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Figure 4. Immunostaining for the activated form of caspase-3 and pro-caspase-3 (non-cleaved 
caspase-3) and ISEL staining of the small intestine of mice with the indicated genotypes 
and in the lateral ventricle region of the cerebral cortex of E16.6 embryos expressing p53 
specifically in post-mitotic neurons deficient for mdm2 (control).
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whereas apoptosis includes phagocytosis, even heavily altered cells appeared not to 
be within phagocytes. Surprisingly, absence of phagocytosis did not lead in this case 
to local signs of inflammation, but this absence might be related to local anatomical 
constraints. 

DISCUSSION

It is well documented that the p53 protein is maintained at low levels in embryonic 
and adult tissues; however, it remained to be established whether p53 degradation 
occurs in a strict Mdm2-dependent manner. In addition, while downregulation of 
Mdm2 appears to be sufficient to activate a p53 response in homeostatic tissues,12 its 
relevance in non-proliferating, terminally differentiated cells remained unexplored. 
Here, we provide the first genetic evidence that Mdm2 plays a key role in the regula-
tion of p53 levels and activity in quiescent, terminally differentiated, SMCs.

Notably, we have recently confirmed this finding in other cellular contexts. 
Indeed, conditional inactivation of mdm2 was achieved in mouse embryonic fibro-
blasts (MEFs), in neuronal stem/progenitor cells and in post-mitotic neurons (Fran-
coz et al., submitted 2005), in erythroid progenitor cells (Maetens et al., in prepara-
tion), in thymocytes and cardiac muscle cells (G. Lozano, Personal communication). 
In all these settings, an increase in p53 levels and activity was observed and this 
activation of function resulted in caspase 3-dependent cell death in vivo. Thus, even 
if other E3 protein ligases have been reported to induce p53 ubiquitination and 

Figure 5. Electron microscopy of the small intestine of control (creER-negative; top panels) 
and CreERT2(ki);mdm2FM/FM (low panels) TMX-treated mice. Nuclei in control tissues are 
sparse, equally distributed and surrounded by a plasma membrane. Nuclei in tissues from 
CreERT2(ki);mdm2FM/FM mice are clustered and not surrounded by a plasma membrane. 
Evidence of plasma membrane ruptures is shown in the bottom right panel. Magnifications 
are indicated.

SM-CreER-

SM-CreER+
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degradation,19-22 none of these proteins can fully compensate for loss of Mdm2 func-
tion in vivo. Therefore, even if these data do not exclude the possibility that these 
proteins might aid in p53 degradation, they strongly suggest that p53 degradation 
in vivo occurs through Mdm2-dependent pathways.

Mdm2 ubiquitination activity and the physical interaction between Mdm2 and 
p53 have become the targets of adjuvant chemotherapies designed to sensitize hu-
man tumors to cancer therapies.32-35 Indeed, there is evidence that cancer cells are 
more sensitive to activation of p53 apoptotic function than the resting host cells. 
However, the data presented herein suggest that Mdm2 is critical for maintaining 
p53 activity at low levels also in quiescent, terminally differentiated cells. Therefore, 
this study raises concerns about the benefit of such approaches for the patients. 
Indeed, our data would predict that Mdm2 inhibition of function in vivo would be 
detrimental not only to cancer cells but also to most of the resting host cells.

Interestingly, the data presented herein also provide the first compiling evi-
dence that p53 is able to activate a caspase-3-independent cell death program with 
a necrotic morphotype in vivo. All studies converge to the crucial role of both 
the mitochondrial pathway (cytochrome c release,36 ROS production and/or ∆ψm 
drop)37 and activation of caspase-9 and its downstream caspases38 in p53-induced 
apoptosis. In agreement with this view, Apaf-139 and several genes encoding for the 
BH3-containing proapoptotic proteins such as Bax, Noxa and Puma are among the 
many reported p53-regulated genes and key mediators of p53-induced apoptosis in 
vivo.40,41 Caspase-3, the main effector caspase acting dowstream of caspase-9, is also 
of fundamental importance for many forms of apoptosis42 and required for p53-in-
duced apoptosis. Since we show here that caspase-3 protein is either absent or ex-
pressed at very low levels (below detectable levels) in the SMCs, these data provide 
a simple explanation for our failure to detect apoptosis, despite the fact that p53 
was stabilized and transcriptionally active in these cells. One possibility is that p53 
once activated provokes, through some of its mediators, mitochondrial damages 
that are sufficient to induce cell death in a caspase-independent manner. We could 
indeed detect in mdm2-deficient SMCs high levels of expression of bax, a protein 
particularly important for the triggering of mitochondrial outer membrane permea-
bilization (MOMP) and cytochrome c release. MOMP frequently marks the “point of 
no return” of the lethal process. It is clear today that artificial or genetic inhibition 
of caspases is often not sufficient to avoid physiological cell death, and in this case 
this often leads to a shift in the morphology of cell death, from classical apoptosis to 
“apoptosis-like cell death”, autophagic cell death or necrosis.43 For instance, the loss 
of interdigital cells in the mouse embryo, a prototype of mitochondrial apoptotic 
cell death, still occurs by necrosis in mice deficient for Apaf-1.30 Similarly, because 
they do not express caspase-3, the mdm2-deficient SMCs could undergo necrotic 
cell death following activation of MOMP by p53. In order to test whether necrotic 
cell death observed in these cells occurs through a MOMP-dependent mechanism, 
one could check whether overexpression of Bcl-2, a BH3-containing protein that 
can inhibit mitochondrial channel opening, is able to rescue the phenotype. Alter-
natively, eventhough less likely, p53 might be able to activate directly a genetic pro-
gram leading to necrotic cell death in vivo in a tissue-specific manner. Interestingly, 
p53 was recently shown to be able to activate a MOMP-independent (and Bcl-2 
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insensitive) cell death program in cultured cells.44 The existence of such a pathway 
in vivo remains, however, to be demonstrated. A careful analysis of the transcription 
program activated by p53 in the mdm2-deficient SMCs might help to identify key 
mediator(s) of this putative pathway. 

Regardless the molecular mechanism, this study opens new perspectives for 
cancer therapies. For instance, inactivation of Apaf-1, which is essential for p53-in-
duced caspase-dependent apoptosis, may contribute to the low frequency of p53 
mutations observed in therapy-resistant melanomas.38  The ability of p53 to induce 
a caspase-independent and MOMP-independent type of cell death may be the basis 
for new therapies killing cells in which p53 is wild-type but have acquired defects 
in the signaling pathways that are downstream p53.
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ABSTRACT

Here we describe a means to conditionally modify genes at a predefined and local-
ized region of the vasculature using a perivascular drug delivery device (PDD). A 4-
hydroxytamoxifen (4-OHT)-eluting PDD was applied around the carotid or femoral 
artery of a mouse strain, carrying both the tamoxifen-inducible and smooth muscle 
cell (SMC)-specific Cre-recombinase (SM-Cre-ERT2) transgene and a stop-floxed �-ga-
lactosidase gene in the Rosa26 locus: the SM-CreERT2(ki)/rosa26 mouse. 

A dose and time curve of 0-10% (w/w) 4-OHT and 0-14 days application of 
the PDD in SM-CreERT2(ki)/rosa26 mice showed optimal gene recombination at 1% 
(w/w) 4-OHT loading at 7 days post application (carotid artery 2.4±1.8%; femoral ar-
tery 4.0±3.8% of SMCs). The unique 4-OHT-eluting PDD allowed us to achieve SMC-
specific recombination in the same order of magnitude as compared to systemic 
tamoxifen administration. In addition, recombination was completely confined to 
the PDD-treated vessel wall segment. 

Thus, local application of a 4-OHT-eluting PDD results in vascular SMC-specific 
Cre-mediated recombination in SM-CreERT2(ki)/rosa26 mice without affecting ad-
ditional SMCs.
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Pathological processes, such as atherosclerosis and post-angioplasty restenosis, 
occur in highly localized regions of the vasculature.1 Studying these process-
es using genetic modification may thus require a restriction to the area that 

is conditionally gene targeted. Moreover, some conditional alterations to smooth 
muscle cells (SMCs) of the vasculature as a whole may not be compatible with life, 
but should be addressed in a limited area of a vessel. To temporally and conditionally 
modify genes in a predefined and localized region of a blood vessel, we used a peri-
vascular drug delivery device (PDD). The perivascular drug-eluting cuff has been 
used to study the effect of pharmaceutical compounds on neointima formation or 
restenosis.2 The PDD is very suitable for local drug delivery and can simultaneously 
induce neointima formation.2 

Via the release of 4-hydroxytamoxifen (4-OHT) from the PDD we studied the 
temporal and conditional modification of genes in a predefined and localized re-
gion of a blood vessel. The PPD was applied in a mouse strain that carried both the 
mutant estrogen receptor ligand binding domain, responsive to tamoxifen and SMC-
specific Cre-recombinase (SM-Cre-ERT2) transgene3 and a stop-floxed β-galactosidase 
gene in the Rosa26 locus:4 the SM-CreERT2(ki)/ rosa26 mouse. 

The unique 4-OHT-eluting PDD allowed us to achieve SMC-specific recombina-
tion in the same order of magnitude as compared to systemic tamoxifen administra-
tion. In addition, recombination was completely confined to the SMCs of the PDD-
treated vessel wall segment. These data indicate that the novel 4-OHT-eluting PDD is 
an efficient tool to specifically induce highly localized Cre-mediated recombination 
in the SM-CreERT2(ki)/rosa26 mouse.

METHODS 

Transgenic mice
Mice that carry a tamoxifen-inducible Cre-recombinase under control of the smooth 
muscle cell (SMC)-specific SM22 promoter (SM-CreERT2(ki) mice)3 were crossed 
with the rosa26 reporter mouse line4 to generate SM-CreERT2(ki)/rosa26 mice. SM-
CreERT2(ki)/rosa26 mice were genotyped for the SM-CreERT2(ki) promoter3 and the 
rosa26 transgene.4 Homozygous SM-CreERT2(ki)/rosa26 littermates 8-10 weeks of 
age were compared in experiments. All animal work was approved by the regula-
tory authority of the institutional experimental animal committee.

Perivascular delivery device
The Poly(ε-caprolactone)-based perivascular delivery devices (PDD) were manufac-
tured as previously described.5,6 In brief, 4-hydroxytamoxifen (4-OHT, Sigma-Aldrich 
Chemicals BV, Zwijndrecht, The Netherlands) was first blended with PEG before 
this blend was mixed with molten PCL at 70 °C. The PCL:PEG ratio was 4:1 (w/w). 
Drug-loaded PDD were made from the blended molten 4-OHT–polymer mixture 
and designed to fit around the femoral and carotid arteries of mice (Figure 1). Drug-
eluting PDD had the shape of a longitudinal cut cylinder with an internal diameter 
of 0.5 mm, an external diameter of 1 mm, a length of 2 mm, and a weight of approxi-
mately 5 mg. PDD were loaded with 1%, 2.5%, 5% and 10% (w/w) n=5 and in vitro 
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release profiles were performed as previously described.2,7 PDD of each composi-
tion were placed in 20 ml glass scintillation vials and cooled to 4°C. Five milliliters 
of iced-cold PBS pH 7.4 containing 0.2% bovine serum albumin (fraction V, Roche 
Diagnostics, Mannheim, Germany) were placed on top of the cuffs followed by 5 ml 
of n-octanol. The n-octanol formed an upper immiscible phase on top of the PBS. 
4-OHT is far more soluble in n-octanol than in PBS (log Poctanol/water=3.2), which 
ensured rapid partition into the octanol phase. The vials were capped and incubated 
at 37°C. The concentration of 4-OHT in the octanol phase was analyzed by UV-VIS 
absorbance methods (Pharmacia LKB Ultrospec III, Peak Tek Inc., Glenside, USA) at 
a 4-OHT-specific wavelength (247 nm) using a double beam UV/VIS spectrophotom-
eter (UVIKON 933, Kontron Instruments Ltd, Milan, Italy). This octanol phase was re-
placed back into the vial. A calibration graph of 4-OHT in n-octanol was established 
by measuring the absorbance of a 0-50 µg/ml range of standards in n-octanol. 

Conditional gene targeting, histology and quantification of recombination
To achieve local recombination, SM-CreERT2(ki)/rosa26 and control littermate rosa26 
mice were anaesthetized and a PDD was placed around the carotid or femoral arter-
ies as described,2,8,9 containing vehicle, 0.1, 0.3, 1, 3 or 10% (w/w) 4-OHT for 7 (n=6 
arteries/group) or 14 (n=8 arteries) continuous days. In order to achieve systemic 
recombination of the rosa26 transgene, SM-CreERT2(ki)/rosa26 and control rosa26 
mice (n=5/group) were injected intraperitoneally with 100 µl 20 mg tamoxifen 
(TMX, Sigma) for 7 continuous days. Next to carotid and femoral arteries, several 
SMC-rich organs were harvested from SM-CreERT2(ki)/rosa26 and control rosa26 
mice, including aorta, stomach, intestines and bladder to evaluate the site-specific-
ity of 4-OHT induced recombination. β-Galactosidase activity was demonstrated as 
described10 by staining of 20 µm cryosections. β-Galactosidase positive cells were 
counted and expressed as a percentage of the total number of morphologically 
identified SMCs. Antibodies against PECAM-1 (CD31, 1:200, Sigma, St. Louis, USA) 
were used to stain endothelial cells.
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Figure 1. Local 4-hydroxytamoxifen (4-OHT) application using the perivascular delivery 
device (PDD) at the level of (A.) the carotid and (B.) femoral arteries. 
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Statistical Analysis
All data are represented as mean±SD. Data were analysed using the non-parametric 
Mann-Whitney rank sum test. P-values less than 0.05 were regarded as statistically 
significant. 

RESULTS

In vivo application of the perivascular delivery device 
We developed a perivascular poly-(ε-caprolactone)-based delivery device (PDD) 
loaded with a tamoxifen derivative 4-hydroxytamoxifen (4-OHT) to restrict con-
ditional recombination to a predefined and localized region of the vasculature in a 
susceptible mouse strain. PDDs loaded with a dose range of 4-OHT were generated 
to make a release profile in vitro. 4-OHT release from the PDDs was sustained and 
dose-dependent for at least 3 weeks.

To determine the optimal loading concentration of 4-OHT in the PDDs, leading 
to the highest levels of recombination in vivo, PDDs were placed around carotid 
and femoral arteries with a dose range from 0 to 10% (w/w) 4-OHT for 7 days. Arter-
ies were examined for β-galactosidase-positive SMCs and morphology. At a loading 
of 0.1% 4-OHT recombination was hardly detectable, while at 0.3% 4-OHT 2.2±2.1% 
SMC-recombination for carotid and 1.5±1.5% for femoral arteries was found (Figure 
2). At a loading concentration of 1%, 4-OHT recombination was increased to 4.0±3.8% 
for femoral and 2.4±1.8% for carotid arteries (Figure 2, Figure 3B and F,  Table 1) and 
was not significantly different between both arteries (P=0.361). At a loading of 3 or 
10% 4-OHT recombination was approximately 3-fold decreased as compared to 1% 
loaded PDDs (Figure 2, Figure 3C, G and D, H). Increasing the application time of the 
1% 4-OHT-loaded PDDs around carotid and femoral arteries from 7 to 14 days did 
not affect the percentage of SM-recombination (data not shown). Importantly, no 
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Figure 2. Percentage of medial gene recombination in femoral artery (black bars) and 
carotid artery (white bars) after incubation with PDDs containing 0, 0.1, 0.3, 1, 3, 10% (w/
w) 4-OHT for 7 days. Success of recombination is shown as the number of β-galactosidase-
positive SMCs as a percentage of the total number of SMCs.
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β-galactosidase positive cells were detected in the aorta, stomach, intestines or the 
bladder (both 0.0±0.0%), indicating that recombination was restricted to the site of 
PDD application. No recombination was observed in SM-CreERT2(ki)/rosa26 mice 
treated with empty PDDs, neither in control rosa26 mice receiving a 4-OHT loaded 
or empty PDDs. In conclusion, 1% (w/w) 4-OHT-loading for PDDs and application 
for one week yielded the highest percentage of SM-recombination.

Systemic application of tamoxifen via intraperitoneal (IP) injection for 7 
days resulted in β-galactosidase positive staining in cryosections of several SMC-
rich organs (aorta 6.7±3.1, femoralis 7.3±1.3, carotis 2.1±0.5 (Table 1) vs. stomach 
61.5±5.8, intestines 47.6±9.4 (Figure 3I, J and K), bladder 92.5±4.2). In the femoral 
artery, systemic tamoxifen administration resulted in a 1.8-fold higher level of SMC 
recombination as compared to the 4-OHT-eluting PDD. In the carotid artery, the 
4-OHT-eluting PDD allowed us to achieve similar levels of SMC-specific recombina-
tion as compared to systemic tamoxifen administration. 

H.

D.

G.F.

C.A. B.

E.

K.J.I.

Figure 3. (A-H.) Microscopic images of β-galactosidase (top row, counterstained with 
nuclear fast red, magn. 200x and left insert, magn. 600x) and PECAM-1 staining (right insert, 
magn. 600x) of representative cross-sections of (A-D.) femoral  and (E-H.) carotid arteries  of 
SM-CreERT2(ki)/rosa26 mice treated with a (A, E.) 0, (B, F.) 1, (C, G.) 3 or (D, H.) 10% (w/w) 
4-OHT-loaded PDD for 7 days. (I-K.) Microscopic images of β-galactosidase stained cross-
sections of the intestines (I.) without 4-OHT, (J.) 1% 4-OHT-loaded PDD and (K.) systemic 
4-OHT administration. Arrows indicate β-galactosidase-positive cells. Scale bar= 50µm.
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Morphological analysis  
After application of the 1% 4-OHT PDD to carotid and femoral arteries for 7 days 
no morphological abnormalities were observed. However, using 3% 4-OHT-loaded 
PDDs we observed medial thickening as a result of massive increase of medial SMCs 
and using 10% PDDs this coincided with occasional hemorrhage of the media, as 
derived from presence of red blood cells in the media (Figure 3 C, G and D, H). Fur-
thermore, the CD31-positive endothelial lining was affected (Figure 3, right insets), 
as compared to 1% loaded PDDs. In conclusion, local application of PDDs loaded 
above 1% 4-OHT hampers SM-recombination of both the carotid and femoral vessel 
wall, as a result of toxic side-effects. 

DISCUSSION

In the present study, we describe the means to conditionally modify genes at a 
predefined and localized region of a blood vessel using a perivascular drug delivery 
device (PDD). When applied to SM-CreERT2(ki)/rosa26 mice, a dose and time curve 
of 4-OHT released from the PDD showed optimal gene recombination at 1% (w/w) 
4-OHT loading at 7 days post application (carotid artery 2.4±1.8%; femoral artery 
4.0±3.8% of SMCs). No gene recombination could be detected in vehicle treated 
SM-CreERT2(ki)/rosa26, 4-OHT treated control rosa26 mice, gastrointestinal SMCs 
or other regions of the vasculature (0.0±0.0%). Thus, local application of a 4-OHT-
eluting PDD results in highly localized SMC-specific Cre-mediated recombination 
in SM-CreERT2(ki)/rosa26 mice at levels that are in the same order of magnitude to 
systemic tamoxifen administration, but without affecting additional SMCs.

The efficiency of systemic versus local application of 4-OHT in carotid and 
femoral arteries is similar at 2-7%. This efficiency could neither be increased by 
loading more 4-OHT in the PDD (Figure 2), nor by increasing the exposure time of 
the PDD (data not shown). In contrast, higher 4-OHT dosages in the PDD actually 
resulted in vascular toxicity (Figure 3). The dose-response curve of locally delivered 
4-OHT to the vessel wall and the results of systemic 4-OHT administration seems to 
justify the notion that the efficiency of SMC recombination in carotid and femoral 
arteries of SM-CreERT2(ki)/rosa26 mice is maximal at 2-7%. 

In our experiments, we observed a more than 10-fold difference in recombi-
nation in vascular versus gastrointestinal SMCs. This difference in susceptibility to 
recombination has also been observed by Feil et al.3 One explanation for this phe-

Table 1. Recombination in vascular SMCs of SM-CreERT2(ki)/rosa26 mice after 7 days of 
local 4-OHT or systemic tamoxifen administration. 

Organ Administration

Local
0.05 mg/PDD

Systemic
2 mg/day

         Recombination (%)

Femoralis 4.0±3.8 7.3±1.3
Carotis 2.4±1.8 2.1±0.5
Aorta n.d. 6.7±3.1

n.d. = not determined 
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nomenon may be that the activity of the SM22 promoter fragment used in the SM-
CreERT2(ki) construct is decreased in vascular SMCs versus gastrointestinal SMCs. 
However, indirect analysis of SM22 promoter activity by measuring Cre mRNA lev-
els using quantitative real-time PCR did reveal relatively high expression levels in 
both vascular and gastrointestinal SMCs in our mice (data not shown). Alternatively, 
the difference in recombination efficiency between vascular and gastrointestinal 
SMCs could be caused by differences in accessibility of the loxP sites for the Cre 
enzyme.11 In the present study we did not further address this topic.

The present study indicates that, using the SM-CreERT2 mouse model, vascular 
recombination efficiency does not exceed 8% in femoral and 4% in carotid arteries. 
These levels are not sufficient to study genes that potentially show a mild pheno-
type upon activation or deletion. The SM-CreERT2(ki) mice would be more suitable 
for loss-of-function or gain-of-function experiments of targets, that will have a dra-
matic impact upon subtle presence or absence. Examples of such targets are specif-
ic secretory proteins (cytokines, chemokines, enzymes) and oncogenes. In the case 
of secretory tissue inhibitor of metalloproteinase-3 (TIMP-3) recent data showed 
that a 8-10% adenoviral transduction efficiency resulted in potent effects on gelati-
nolytic activity, apoptosis and vascularization of melanomas.12 Apoptosis and matrix 
breakdown are important processes implicated in local vascular diseases such as 
atherosclerosis and restenosis. In addition, studies aiming at the investigation of 
the vasculature using systemic TMX treatment could result in lethality as a result of 
whole body SMC targeting. The induced lethality can be circumvented by local TMX 
application using the PDD. Thus, the limited recombination levels achieved with 
the PDDs in the SM-CreERT2(ki) model could still be sufficient when the right target 
genes are considered.

The application of a 4-OHT-eluting device to locally induce the ERT2-driven 
Cre-recombinase gene is particularly useful in case the applied tissue-specific pro-
moter does not display a sufficiently narrow expression pattern. In this respect, it 
is noteworthy to mention that the 4-OHT-eluting polymer PDD, when size adapted 
and placed at the gastrointestinal tract, can also be used to induce local gene recom-
bination in SMCs of the stomach and intestine (data not shown). Thus, this technol-
ogy enables physical limitation to the 4-OHT exposed area that can subsequently 
undergo Cre-mediated recombination.
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ABSTRACT

Tumor Necrosis Factor-α (TNFα) is a pleiotropic cytokine exerting both inflamma-
tory and cell death modulatory activity, and is thought to play a role in the pathogen-
esis of atherosclerosis. Studies in mice indicated that TNFα affects atherosclerosis 
minimally or not under conditions that allow fatty streak formation. Here, we exam-
ined the possible role of TNFα in advanced and complex atherosclerotic lesions. 

To induce atherosclerosis, TNFα-deficient (Tnf-/-) APOE*3-Leiden and control 
APOE*3-Leiden only mice were fed a cholesterol-rich diet. Comparable levels of 
plasma cholesterol and triglycerides and the systemic inflammatory parameters, se-
rum amyloid A and soluble intercellular adhesion molecule-1 were found in APOE*3-
LeidenTnf-/- and control mice. Although absence of TNFα did not affect the quantita-
tive area of atherosclerosis, APOE*3-LeidenTnf-/- mice had a higher relative number 
of early lesions (46.1% vs. 21.4%) and a lower relative number of advanced lesions 
(53.9% vs. 78.6%, P=0.04). In addition, the advanced lesions in APOE*3-LeidenTnf-/- 
mice showed less necrosis (9.9±12.1% vs. 23.4±19.3% of total lesion area, P=0.04) 
and an increase in apoptosis (1.5±1.5% vs. 0.4±0.6% of total nuclei, P=0.03). 

Our data indicate that TNFα stimulates the formation of lesions towards an ad-
vanced phenotype, with more lesion necrosis and a lower incidence of apoptosis.
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Inflammatory processes are involved in all stages of atherosclerotic lesion devel-
opment.1,2 Cytokine-mediated pro-inflammatory responses are thought to posi-
tively contribute to the atherogenic process. Tumor Necrosis Factor-α (TNFα) is 

a central mediator of inflammatory reactions.3 TNFα is a member of the TNF ligand 
family and binding to its receptors TNFR1 (p55) and TNFR2 (p75) leads to activation 
of downstream targets.4 Whereas binding of TNFα to TNFR1 activates responses as-
sociated with induction of adhesion molecule expression,5 apoptosis,6 and resis-
tance to bacterial infection,7,8 binding to TNFR2 activates induction of T cell pro-
liferation,9 induction of TNFα-mediated skin tissue necrosis,10 and modulation of 
TNFα-mediated pulmonary inflammation.11

Although TNFα and its receptors are thought to be considerably important in 
a number of biological activities relevant to atherosclerosis, its function in athero-
genesis remains unclear. The TNFα gene has a number of polymorphisms, some of 
which affect transcription and secretion.12 These polymorphisms have been associ-
ated with a number of infectious, inflammatory and immune diseases including ath-
erosclerosis and coronary artery disease (CHD).12 However, human association stud-
ies are controversial varying from no,12-14 a weak15 or a strong16 association between 
TNFα polymorphisms and CHD. Moreover, studies on the role of TNFα in atheroscle-
rosis using several transgenic or knock out mouse models also yielded controversial 
results. TNFα ligand deficiency on a wild type C57BL/6 background did not affect 
early lesion development.17 However, on the same background, TNF receptor 1 defi-
ciency did affect atherosclerosis formation, resulting in enhanced (early) lesion for-
mation. This unexpected result was attributed to increased macrophage scavenger 
receptor activity and consequent increased uptake of atherogenic lipoproteins.18  
Very recently, as a part of mouse studies on a non-cleavable transmembrane form 
of TNFα, TNFα-deficiency on a C57BL/6 background was demonstrated to reduce 
atherosclerosis.19  This effect however coincided with a significant decrease in plas-
ma VLDL and increase in plasma HDL levels. Hence, a direct anti-atherosclerotic 
effect of TNFα deficiency could not be concluded from this experiment. Overall, 
the above recombinant mouse studies suggest that TNFα may have subtle pro-ath-
erogenic properties, possibly related to an unexpected TNFα-mediated effect on 
atherogenic lipoproteins, at least in a setting of a C57BL/6 background. 

Variable results were also obtained upon (pharmacological) modulation of 
TNFα expression. Specific immunization against TNFα was not effective in prevent-
ing the formation of advanced lesions in apoE-deficient mice.20 Capturing TNFα 
using a TNFα receptor homologue had only a modest and gender-dependent inhibi-
tory effect on the formation of early lesions in the apoE-deficient setting.21 On the 
contrary thalidomide, a TNFα production inhibitor, was capable of inhibiting the 
early atherogenesis in apoE-deficient mice.22 

The majority of these mouse studies focuses on the role of TNFα in early le-
sion development in relatively atherosclerosis-resistant C57BL/6 mice17-19 and young 
apoE-deficient mice20,22 that display only minimal advanced lesion formation. Inflam-
mation and cell death are important processes in the development and transition 
towards advanced and complex atherosclerotic lesions and may be modulated by 
TNFα. Therefore, we examined the role TNFα under conditions of advanced lesion 
formation. To this end, we crossbred TNFα deficient (Tnf-/-) mice with APOE*3-
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Leiden transgenic mice.  APOE*3-Leiden is a mutant form of apoE, characterized by a 
7-amino acid tandem repeat of residues 120-126 and yields a mature protein of 306 
amino acid residues. Family studies have demonstrated that this mutation is associ-
ated with a dominantly inherited form of familial dysbetalipoproteinemia (FD).23-25 
APOE*3-Leiden transgenic mice have a lipoprotein profile that is very similar to the 
profile of patients with FD in which the elevated plasma cholesterol and triglyceride 
levels are mainly confined to the VLDL/LDL-sized lipoprotein fractions. Therefore, 
APOE*3-Leiden transgenic mice are an established model for hyperlipidemia and 
atherosclerosis.26 We investigated the effect of TNFα on advanced lesion formation 
and on lesion composition. Our data indicate that TNFα, independent of the athero-
genic lipoprotein profile, stimulates lesional necrosis, decreases the incidence of 
apoptosis and the progression of lesions towards a more advanced phenotype.

METHODS

Mice and diet
The experimental animals were obtained by crossbreeding Tnf-/- mice27 with 
APOE*3-Leiden transgenic mice.28 Offspring was analyzed for their TNFα status us-
ing polymerase chain reaction (PCR) analysis and presence of the human APOE*3-
Leiden transgene by ELISA.29 

For experiments, 8 weeks old female APOE*3-LeidenTnf-/- and littermate con-
trol APOE*3-LeidenTnf+/+ mice were used. Mice (n=31) were fed a semi-synthetic 
cholesterol-rich diet composed essentially according to Nishina et al.30 supplement-
ed with cocoa butter (15%, by weight) and cholesterol (1%, by weight), without di-
etary cholate. The diet was purchased from Hope Farms, Woerden, The Netherlands. 
Mice were bred and housed under specific pathogen-free conditions and given food 
and water ad libitum. All animal work was approved by institutional regulatory au-
thority and carried out in compliance with guidelines issued by the Dutch govern-
ment. The investigation conforms with the Guide for the Care and Use of Labora-
tory Animals published by the US National Institutes of Health (NIH Publication 
No. 85-23, revised 1996).

Blood sampling and analysis 
Blood samples were collected in EDTA-coated vials (Sarstedt, Nümbrecht, Germany) 
by bleeding from the tail vein. Plasma cholesterol and triglyceride levels were mea-
sured enzymatically using commercially available kits (Roche Diagnostics GmbH, 
Mannheim, Germany). 

Total blood leukocyte (CD45+), T-cell (CD3+), B-cell (CD19+) and monocyte/
granulocyte (CD11b+) numbers were determined by FACS analysis (FACSCalibur, 
BD Biosciences, California, USA) of whole blood using a PerCP-CY5.5-conjugated 
rat anti-mouse CD45 monoclonal antibody, a fluorescein isothiocyanate (FITC)-con-
jugated hamster anti-mouse CD3 monoclonal antibody, a R-Phycoerythrin (R-PE) 
conjugated rat anti-mouse CD19 monoclonal antibody, and an allophycocyanin 
(APC)-conjugated rat anti-mouse CD11b monoclonal antibody, respectively follow-
ing standard protocol (TruCOUNT, BD Biosciences, California, USA).  
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Serum Amyloid A (SAA, acute phase protein) ELISA (BioSource International, 
Inc, Camarillo, CA) and Mouse soluble Intercellular Adhesion Molecule-1 (sICAM-1, 
marker for endothelial cell activation) ELISA (Pierce Biotechnology, Inc, Rockford, 
IL) were performed on plasma samples according to standard protocols.31 

Atherosclerosis analysis
After 20 weeks of a cholesterol-rich diet, mice were sacrificed, heart and aorta were 
isolated and embedded in tissue tek (Sakura Finetek Europe BV, Zoeterwoude, The 
Netherlands) and stored at -80˚C. From the entire aortic root area of the heart, 
four 7 µm cross-sections with an interval of 42 µm were used for quantification of 
atherosclerotic lesion area.32 Sections were routinely stained with toluidin blue for 
morphometric analysis, characterization and categorization of the lesions, and with 
Sirius red for quantification of collagen area. Lesion area was determined using Leica 
Qwin image software (EIS, Asbury, NJ). All analyses were performed blindly without 
prior knowledge of the genotype.

Atherosclerotic lesions were categorized on severity. Two types of categories 
were discerned: (1) early lesions were fatty streaks containing only foam cells (type 
I-II lesions) and (2) advanced lesions showed foam cells in the media and presence 
of fibrosis, cholesterol clefts, mineralization and/or necrosis covered by a collag-
enous cap (type III-V lesions).29 The number observed in each category is expressed 
as a percentage of the total number of lesions observed within one group of mice 
(APOE*3-LeidenTnf-/- or APOE*3-LeidenTnf+/+ control group).

Sections were stained for macrophages using rat FA11 antibody to mouse mac-
rophages (a kind gift from S. Gordon, Oxford University, UK), for smooth muscle cells 
using a monoclonal α-smooth muscle cell actin antibody (Sigma-Aldrich, St. Louis, 
USA), for T-cells using KT3 rat antibody (a kind gift from G. Kraal, VUMC, The Nether-
lands), and areas were quantified as described previously.33,34 For the detailed pheno-
typic sub-analysis of the advanced lesions (macrophage area, SMC area, collagen area 
and the number of T-cells) only those mice were included that displayed advanced 
atherosclerotic lesions (APOE*3-LeidenTnf+/+ n=13, APOE*3-Leiden-Tnf-/- n=14) 

Quantification of lesion necrosis and apoptosis
During pathological examination of the lesions, lesional necrosis was defined by the 
presence of pyknosis, karyorrhexis, or complete absence of nuclei, as described be-
fore.33 Necrosis area was measured using the method for total lesion area measure-
ments, as described above. Apoptosis was quantified using the TUNEL technique.35 
Only those TUNEL-positive nuclei were included that displayed morphological fea-
tures of apoptosis including cell shrinkage, aggregation of chromatin into dense 
masses, and nuclear fragmentation. For the detailed phenotypic sub-analysis of the 
advanced lesions, on lesion necrosis and apoptosis, only those mice were includ-
ed that displayed advanced atherosclerotic lesions (APOE*3-LeidenTnf+/+ n=13, 
APOE*3-LeidenTnf-/- n=14).

Statistical analysis
Data were analyzed using GraphPad Prism (GraphPad Software Inc., San Diego, Cali-
fornia, USA). Data were tested for normality using the Kolmogorov-Smirnov test. 



  TNFα and atherosclerosis 99

All data following normality were tested using Welch’s corrected t-test. Data are 
expressed as mean±SD, unless stated otherwise. P-value < 0.05 was regarded as sig-
nificant. Frequency data for lesion categorization were compared by means of the 
Fisher’s exact test.

RESULTS

General
Female APOE*3-LeidenTnf-/- (n=18) mice and APOE*3-LeidenTnf+/+ (n=13) litter-
mate controls were fed a cholesterol-rich diet. The mice appeared healthy and dis-
played no signs of abnormalities. After 20 weeks feeding the cholesterol-rich diet, 
APOE*3-LeidenTnf-/- mice were significantly lower in body weight as compared to 
APOE*3-LeidenTnf+/+ control mice (Table 1).

Following cholesterol-rich diet feeding, both APOE*3-LeidenTnf-/- and control 
mice had comparable levels of plasma cholesterol and plasma triglyceride levels 
(Table 1). As determined by FPLC analysis on pooled plasma, lipoprotein distribu-
tion did not differ between APOE*3-LeidenTnf-/- and APOE*3-LeidenTnf+/+ control 
mice (Figure 1). 

Analysis of CD45+ blood leukocytes showed that absence of TNFα resulted in 
an approximate doubling of circulating CD3+ (P=0.01) and CD19+ (P=0.06) cells 
(T- and B-cells, respectively), leaving the CD11b+ cell population (monocytes/granu-
locytes) unaffected (Table 1).

Plasma levels of serum amyloid A (SAA) and soluble intercellular adhesion mol-
ecule-1 (sICAM-1) were comparable in APOE*3-LeidenTnf-/- and APOE*3-Leiden- 
Tnf+/+ control mice indicating no difference in inflammation (SAA) or endothelial 
cell activation (sICAM) between the two groups (Table 1). 

Table 1. Characteristics of female APOE*3-LeidenTnf+/+ and APOE*3-LeidenTnf-/- mice 
after 20 weeks feeding a cholesterol-rich diet

Parameters E3LTnf+/+ E3LTnf-/-

Weight (g) 25.7±2.6 22.6±1.5*
Plasma cholesterol (mmol/l) 21.7 ± 3.8 19.4 ± 4.2
Plasma triglycerides (mmol/l) 2.0 ± 0.7 2.3 ± 1.5
CD3+ (106 cells/ml) 1.8 ± 0.6 3.2 ± 1.0*
CD19+ (106 cells/ml) 3.8 ± 2.2 6.1 ± 2.0
CD11b+ (106 cells/ml) 2.6 ± 0.9 2.7 ± 1.5
SAA (µg/ml) 16.0±4.5 12.8±28.4
sICAM (µg/ml) 23.8±2.1 23.6±2.0

* P<0.05, as compared to APOE*3-LeidenTnf+/+ control mice

Atherosclerosis analysis
Mice fed the cholesterol-rich diet for 20 weeks were sacrificed for collection of 
heart and aorta. Histopathological analysis of atherosclerotic lesions of the aortic 
valve area in both APOE*3-LeidenTnf-/- and control mice revealed that the majority 
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of the lesions were fibrous plaques with a lipid core and a cap covering necrotic ma-
terial (pyknosis, karyorrhexis, or complete absence of nuclei), cholesterol clefts and 
extra-cellular lipids. As determined by computer-assisted morphometry, mean total 
lesion area did not differ significantly between APOE*3-LeidenTnf+/+ and APOE*3-
LeidenTnf-/- mice (5.8±2.8 and 5.1±4.5x104 µm2, respectively, P=0.64, Figure 2A). 
While a difference in total lesion area was absent, lesion categorization (early vs. ad-
vanced) revealed a difference between APOE*3-LeidenTnf-/- and control mice (Fig-
ure 2B). APOE*3-LeidenTnf-/- mice had a significant higher incidence of early lesions 
(46.1% vs. 21.4%) and a significant decreased incidence of advanced lesions (53.9% 
vs. 78.6%) as compared to APOE*3-LeidenTnf+/+ controls (P=0.04).

A more detailed phenotypic sub-analysis analysis of the advanced lesions only, 
did not yield any effect of TNFα status on lesion macrophage area, lesion smooth 
muscle cell area or collagen area. In addition, the number of lesional T cells did not 
differ between the groups (Table 2). However, pathological analysis revealed that 
advanced lesions in APOE*3-LeidenTnf-/- mice had smaller areas of pyknosis, karyor-

Chapter 6 

0

0.5

1.0

1.5

2.0

C
h

o
le

st
er

o
l (

m
M

)
0 10 20 30

Fraction

E3LTnf-/-
E3LTnf+/+VLDL

IDL/LDL
HDL

0

0.5

1.0

1.5

2.0

C
h

o
le

st
er

o
l (

m
M

)
0 10 20 30

Fraction

E3LTnf-/-
E3LTnf+/+
E3LTnf-/-
E3LTnf+/+VLDL

IDL/LDL
HDL

0

10

20

Le
si

o
n

 a
re

a
(1

04
µm

2 )

E3LTnf+/+ E3LTnf-/-

A.

Early lesions
0

25

50

75

100

Advanced lesions

Le
si

o
n

 t
yp

e
(%

o
f 

to
ta

l l
es

io
n

s)

*

*
E3LTnf+/+
E3LTnf-/-

B.

0

10

20

Le
si

o
n

 a
re

a
(1

04
µm

2 )

E3LTnf+/+ E3LTnf-/-

A.

0

10

20

Le
si

o
n

 a
re

a
(1

04
µm

2 )

E3LTnf+/+ E3LTnf-/-

A.

Early lesions
0

25

50

75

100

Advanced lesions

Le
si

o
n

 t
yp

e
(%

o
f 

to
ta

l l
es

io
n

s)

*

*
E3LTnf+/+
E3LTnf-/-

B.

Early lesions
0

25

50

75

100

Advanced lesions

Le
si

o
n

 t
yp

e
(%

o
f 

to
ta

l l
es

io
n

s)

*

*
E3LTnf+/+
E3LTnf-/-
E3LTnf+/+
E3LTnf-/-

B.

Figure 1. Plasma lipoprotein profile after size fractionation of pooled plasma samples of 
APOE*3-LeidenTnf+/+ (closed symbols) and APOE*3-LeidenTnf-/- (open symbols) after 20 
weeks of feeding the cholesterol-rich diet.
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Figure 2. (A.) After 20 weeks of feeding the cholesterol-rich diet, the extent of atherosclerosis 
in APOE*3-LeidenTnf+/+ (closed symbols, n=13) and APOE*3-LeidenTnf-/- (open symbols, 
n=18) mice was quantified at the level of the aortic valves. Each data point represents the 
lesion area per mouse. Line represents mean area for each group. (B.) Lesion categorization of 
APOE*3-LeidenTnf+/+ (black bars) and APOE*3-LeidenTnf-/- (white bars) mice. Lesions were 
categorized according to severity and are shown as percentage of the total number of lesions 
present. Frequency data were compared by means of the Fisher’s exact test, P=0.04.
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Table 2. Characteristics of advanced atherosclerotic lesions in APOE*3-LeidenTnf+/+ and 
APOE*3-Leiden Tnf-/- mice

Lesion composition E3LTnf+/+ E3LTnf-/-

Lesion macrophage area (% of total lesion area) 39.0±14.0 38.7±18.3
Lesion SMC area (% of total lesion area) 9.0±5.6 10.9±7.1
Collagen area (% of total lesion area) 73.5±21.9 78.9±13.9
T-cells (number of cells/total lesion area) 1.8±1.1 1.3±1.4

0

10

20

30

N
ec

ro
si

s
(%

 o
f 

to
ta

ll
es

io
n

ar
ea

)

E3LTnf+/+ E3LTnf-/-

*
E3LTnf+/+

E3LTnf-/-

P

P

L

M

L

E3LTnf-/-

E3LTnf+/+ M

A.

A
p

o
p

to
si

s
(T

U
N

EL
+

 n
u

cl
ei

/t
o

ta
ln

u
cl

ei
) 

0

1.0

2.0

E3LTnf+/+ E3LTnf-/-

B. *

0

10

20

30

N
ec

ro
si

s
(%

 o
f 

to
ta

ll
es

io
n

ar
ea

)

E3LTnf+/+ E3LTnf-/-

*
E3LTnf+/+

E3LTnf-/-

P

P

L

M

L

E3LTnf-/-

E3LTnf+/+ M

A.

A
p

o
p

to
si

s
(T

U
N

EL
+

 n
u

cl
ei

/t
o

ta
ln

u
cl

ei
) 

0

1.0

2.0

E3LTnf+/+ E3LTnf-/-

B. **

Figure 3. (A.) Necrosis (P=0.04) and (B.) Apoptosis (P=0.03) in advanced lesions of APOE*3-
LeidenTnf+/+ (black bar, n=13) and APOE*3-LeidenTnf-/- (white bar, n=14). Error bars 
indicate SEM. Inserts: representative pictures of advanced lesions in APOE*3-LeidenTnf+/+ 
and APOE*3-LeidenTnf-/- mice. (A.) The black dotted line indicates the necrotic area (magn. 
40x, scale bar 100 µm). (B.) The arrows indicate TUNEL-positive nuclei. L: lumen, P: plaque, M: 
media, (magn 100x, scale bar 100 µm). 
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rhexis, or complete absence of nuclei as compared to advanced lesions in control 
mice, suggesting that the TNFα-status affects lesional necrosis.  The early atheroscle-
rotic lesions did not contain any necrotic area in both groups. Computer-assisted 
morphometric analysis demonstrated that advanced lesions in APOE*3-LeidenTnf-/- 
mice had significant smaller areas covered by necrosis as compared to advanced le-
sions in controls (9.9±12.1% vs. 23.4±19.3% of total lesion area, P=0.04, Figure 3A).

TUNEL-positive nuclei (apoptotic cells) were only found in advanced lesions of 
both APOE*3-LeidenTnf-/- and control mice. The location of the TUNEL-positive nuclei 
(i.e. core or cap) did not differ between APOE*3-LeidenTnf-/- and control mice (data 
not shown). In addition, the majority of the TUNEL-positive nuclei was located in the 
core of the advanced lesions, in both APOE*3-LeidenTnf-/- and control mice. Remark-
ably, the incidence of TUNEL-positive nuclei in advanced lesions of APOE*3-Leiden-
Tnf-/- mice was 3.4-fold higher as observed for lesions in control mice (1.5±1.5% vs. 
0.4±0.6% of total number of cells, P=0.03, Figure 3B). Hence, in APOE*3-LeidenTnf-/- 
mice a decrease in lesional necrosis coincides with increased apoptosis. 

DISCUSSION

In the present study we examined the role of TNFα in the formation of advanced le-
sions. Using atherosclerosis-susceptible APOE*3-Leiden mice crossbred with TNFα-
deficient mice we found that TNFα modulates lesional cell death by increasing ne-
crosis and decreasing the incidence of apoptosis. Moreover, TNFα progresses the 
lesions towards a more advanced phenotype. 

Very recently, Branén et al. also showed that TNFα stimulates atherosclerosis 
development using apoE/Tnf knock out mice.36 ApoE deficiency affects local cho-
lesterol homeostasis in macrophages and inflammatory reactions within the athero-
sclerotic vessel.37 In the current study the role of TNFα was assessed specifically 
in advanced atherosclerotic lesion development on an APOE*3-Leiden background 
(with endogenous apoE still present) preventing the possible local effects due to 
the absence of apoE. Importantly, besides the differences in study-design, both stud-
ies demonstrate that TNFα can be considered a pro-atherogenic cytokine in athero-
sclerosis development.

Inflammation and cell death are important processes in the development and 
transition towards advanced and complex atherosclerotic lesions.38-40 Our observa-
tion that TNFα promotes advanced lesion formation, and on top of that increases 
the extent of necrosis in these lesions, is in line with the role of TNFα function in 
modulating inflammatory processes and cell death.3,4,6-8,10,11

Studies on human endarterectomy specimens showed that unstable atheroscle-
rotic lesions are characterized by a necrotic core consisting of dead macrophages, 
macrophage debris and extracellular lipid covered by a fibrocellular cap.41 There-
fore, necrosis is often considered to be a negative risk factor for plaque stability. The 
observation that TNFα increases the ratio of necrosis versus apoptosis suggests that 
TNFα modulates the lesion towards a more instable phenotype. Moreover, in vitro 
studies have shown that TNFα stimulates both macrophages and smooth muscle 
cells to synthesize matrix proteases42,43 and in such a way can contribute to plaque 
instability by degrading the fibrotic cap. Hence, both through increased necrosis 



  TNFα and atherosclerosis 103

and increased matrix protease activation TNFα may contribute to the formation of 
instable plaques that are prone to rupture.

The reduction in lesional necrosis upon TNFα deletion coincided with an in-
crease in lesional apoptosis. TNFα is known to exert its effector actions, partially, 
through the activation of the pro-inflammatory transcription factor, NF-κB.4 Absence 
of TNFα may promote apoptotic cell death via a reduction in NF-κB activation. Re-
duced NF-κB activation does not only lead to a beneficial reduced transcription of 
pro-inflammatory cytokines and chemokines, but also to a reduction in transcrip-
tion of anti-apoptotic factors (i.e. Bcl-xL, Bcl-2, IAPs).44 Apoptosis is often considered 
to be beneficial for atherosclerosis, since in contrast to necrosis, it may prevent the 
release of matrix-degrading enzymes and pro-inflammatory substances from the dy-
ing foam cells. Our data suggest that apoptosis forms part of a beneficial process 
since it coincides with a less advanced lesion phenotype. 

Uysal et al. demonstrated that the total weight gain in obese Tnf+/+ mice on 
a high fat diet was larger than that of obese Tnf-/- mice, which was related to a de-
crease in fat-pad weight.45  Also our APOE*3-Leiden mice, fed a cholesterol-rich diet, 
that additionally contained 15% fat, displayed reduced body weight upon TNFα dele-
tion (Table 1). Hence, our data support a role for TNFα in body weight development. 
Although body weight is not shown to be a predictive parameter for atherosclerosis 
development in mice,46,47 it remains open to question whether TNFα-mediated re-
duction in body weight contributes to the observed TNFα-mediated reduction in 
advanced lesion formation.

Upon characterization of the TNFα deficient mice Marino et al. reported that 
these mice have no significant abnormalities in the distribution of lymphocytes, 
granulocytes or monocyte population in thymus, spleen or peripheral blood.48 Re-
markably, we found an increase in circulating T-cells in TNFα deficient mice, that 
was independent of the diet and of the APOE*3-Leiden transgene (data not shown).  
This suggests that TNFα might play a role in determining circulating T-cells in mice 
already under basal conditions. In this light it is worthwhile to mention that the 
higher levels of circulating T-cells did not translate to a higher number of T-cells in 
the advanced atherosclerotic plaque.

In conclusion, we have demonstrated that TNFα enhances progression of le-
sions towards a more advanced phenotype. One may speculate that drugs that 
inhibit TNFα expression or capture TNFα biological action may inhibit advanced 
lesion formation. Future studies are required to demonstrate whether, next to a re-
duction in early lesions,21,22 TNFα can be used as a target to prevent the formation 
of advanced lesions. 
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ABSTRACT

We investigated whether the dual PPARα/γ agonist tesaglitazar has anti-atherogenic 
effects in APOE*3-Leiden  mice with normal and reduced insulin sensitivity.

APOE*3-Leiden  transgenic mice were fed either a low-fat (LF) diet or a high-
fat (HF), insulin-resistance-inducing diet. In both LF and HF-fed mice, one group 
received a high-cholesterol supplement (1% wt/wt; HC group). A second group re-
ceived the same HC supplement along with tesaglitazar 0.5 µmol/kg diet (T group). 
A third (control) group received a low cholesterol supplement (0.1% wt/wt; LC 
group), which resulted in plasma cholesterol levels similar to those of the T group. 
In both HF- and LF-fed mice, tesaglitazar decreased plasma cholesterol by 20% com-
pared with the respective HC groups; cholesterol levels were similar in the T and 
LC groups. In LF-fed mice, tesaglitazar reduced atherosclerosis in the aortic root 
up to 65%, whereas the cholesterol-matched LC group had a reduction of 38%. In 
HF-fed mice, tesaglitazar produced a 92% reduction in atherosclerosis, while a 56% 
reduction was seen in the cholesterol-matched LC group. Furthermore, tesaglitazar 
treatment significantly reduced lesion number beyond that expected from choles-
terol lowering, and induced a shift to less severe lesions. Concomitantly, tesaglitazar 
reduced macrophage-rich and collagen areas in both HF- and LF-fed mice. In addi-
tion, tesaglitazar treatment reduced inflammatory markers, including plasma serum 
amyloid A levels, the number of adhering monocytes, and nuclear factor κB activity 
in the vessel wall.

Tesaglitazar has anti-atherosclerotic effects that go beyond plasma cholesterol 
lowering. These effects were more pronounced in HF-fed mice. Tesaglitazar may ex-
ert these actions via anti-inflammatory effects.
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Agonists of the peroxisome proliferator-activated receptor (PPAR) α have 
positive effects on lipid metabolism both in animal models and in clinical 
practice.1-3 Agonists of PPAR γ– the thiazolidinediones rosiglitazone and pio-

glitazone – improve insulin resistance in type 2 diabetes, and pioglitazone improves 
the dyslipidemia associated with insulin resistance.4-6 In addition to these effects, 
both PPARα and γ agonists have anti-inflammatory properties,7,8 and, therefore, have 
the potential to provide additional cardiovascular benefit.9

PPARα and -γ agonists appear to act at two different levels to counteract ath-
erosclerosis. Systemically, they ameliorate the atherogenic lipid profile by reducing 
plasma free fatty acids and triglycerides, and increasing high-density lipoprotein 
(HDL) cholesterol levels.10 At the cellular level, PPAR agonists act on most cell types 
involved in atherosclerosis, including endothelial cells, smooth muscle cells (SMCs), 
macrophages and lymphocytes, reducing their involvement in the tissue response 
associated with plaque development. These agonists dampen the systemic response 
to inflammation by reducing levels of plasma proteins such as C-reactive protein 
(CRP), tumor necrosis factor (TNF) α and interferon (IFN) γ;11 inhibiting interleukin 
(IL) 2 and TNFα secretion by monocytes;12 and reducing IL-1-induced secretion of 
IL-6 via nuclear factor (NF) κB signaling pathways in SMCs.13,14

PPAR agonists have a number of other actions that positively modulate vascular 
effects. In the endothelium, for example, they inhibit production of the vasocon-
strictor endothelin-115,16 and inhibit cytokine-induced expression of the adhesion 
molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-
1.17 In monocyte/macrophages, chemotaxis by monocyte chemotactic peptide-1 
and proteolytic enzyme activity by matrix metalloproteinase-9 are inhibited,18-20 and 
the proliferation and migration of SMCs are inhibited.21 Both PPARα and -γ stimulate 
ATP-binding cassette transporter A1 expression, thereby promoting cholesterol ef-
flux from macrophages22 and possibly cholesterol excretion into the gut.

In the clinical setting, PPARα agonists reduce cardiovascular disease (CVD) risk, 
especially in subjects with insulin resistance.23 PPARγ agonists have been to shown 
reduce the progression of intima-media thickening in patients with coronary artery 
disease,24 and recent evidence suggests that pioglitazone reduces the incidence of 
myocardial infarction and stroke in patients with type 2 diabetes and pre-existing 
CVD.25 Dual PPARα/γ agonists, which are at an earlier stage of clinical development, 
have been shown to improve both glucose and lipid abnormalities in patients with 
insulin resistance and type 2 diabetes.26,27

Tesaglitazar is a dual PPARα/γ agonist that has demonstrated positive effects on 
plasma glucose and lipid abnormalities in animal models of type 2 diabetes and met-
abolic syndrome.28 Based on their effects in animal models, it has been proposed 
that dual PPARα/γ agonists may have additional benefits, beyond their cholesterol-
lowering effect, in reducing components of insulin resistance that contribute to 
atherosclerosis and cardiovascular disease.28,29 In this study, we examined whether 
tesaglitazar can confer additional cardiovascular benefit using APOE*3-Leiden  trans-
genic mice, an established model of human hyperlipidemia and atherosclerosis. 

When fed a high-cholesterol diet, APOE*3-Leiden  transgenic mice develop a 
human-like lipoprotein profile, which includes elevated plasma levels of very-low 
density lipoprotein (VLDL), intermediate density lipoprotein (IDL) and low-densi-
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ty lipoprotein (LDL) and leads to the development of atherosclerosis. In addition, 
when fed a high-calorie, high-fat, high-cholesterol diet, these mice develop insulin 
resistance. Depending on their plasma cholesterol levels, APOE*3-Leiden  mice de-
velop atherosclerotic lesions that have comparable morphological, histological and 
immunohistochemical characteristics to human lesions.30-32 Since plasma cholester-
ol levels in APOE*3-Leiden  transgenic mice can be titrated to any level by adjusting 
dietary cholesterol intake, we were able to study the effects of tesaglitazar on ath-
erogenesis, independent of its total plasma cholesterol lowering effect. In addition, 
we were able to examine these effects under both normal and mild insulin-resistant 
conditions.

METHODS

Animals
Female heterozygous APOE*3-Leiden transgenic mice (3–4 months of age), charac-
terized by an ELISA for human apoE,31 were used. Animal experiments were ap-
proved by the Institutional Animal Care and Use Committee of The Netherlands 
Organization for Applied Scientific Research (TNO). Animals were provided by TNO-
Biomedical Research.

Diets
During a run-in period of 3 weeks, animals received either a high-fat/high-cholester-
ol (HF/HC) diet, containing 23% (wt/wt) bovine lard, or a low-fat/high-cholesterol 
(LF/HC) Western-type diet, containing 15% (wt/wt) cocoa butter.31 

After the run-in period, the HF/HC mice were matched for age and cholesterol 
level into 3 groups of 17 mice each (Table 1). The mice maintained the HF diet in ad-
dition to one of the following three treatments. The high-cholesterol (HF/HC) group 
received a diet containing 1% (wt/wt) cholesterol. The tesaglitazar-treated group 
(HF/T) received the same diet as the HC group, but the diet was supplemented with 
tesaglitazar (0.5 µmol/kg diet), equaling 20 µg/kg body weight per day. Tesaglitazar 
[(S)-2-Ethoxy-3-[4-[2-(4-methylsulphonyloxyphenyl) ethoxy]phenyl propanoic acid] 
was provided by AstraZeneca R&D, Mölndal, Sweden. The low-cholesterol (HF/LC) 
group received a diet containing 0.1% (wt/wt) cholesterol to titrate the plasma 
cholesterol level to that of the T group, as deduced from previous experiments in 
our lab. The LC group served as the cholesterol-matched control. The three groups 
of HF-fed mice were treated for 28 weeks.

Table 1. Diets used during the study

Diet Treatment Duration
High cholesterol 

(1% wt/wt)
High cholesterol 

and tesaglitazar (1% 
wt/wt; 

0.5 µmol/kg)

Matched low 
cholesterol   

(0.1% wt/wt)

High Fat HF/HC HF/T HF/LC 28 weeks
Low Fat LF/HC LF/T LF/LC 16 weeks
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Animals that received the LF/HC diet during the run-in period were similarly 
randomized into three groups containing 17 mice. In addition to their LF diet, the 
three groups received treatment as described above, except that treatment lasted 
16 weeks. Thus, the three treatment groups were LF/HC, LF/T and LF/LC. All animals 
had free access to food and water. Body weight and food intake were monitored 
throughout the study.

Analysis of plasma
After a 4-hour fast, commercially available kits were used to measure total plasma 
cholesterol (No. 1489437; Roche Diagnostics) and triglyceride levels (No. 337-B; Sig-
ma Diagnostics). Cholesterol exposure was calculated as the area under the curve of 
cholesterol levels versus time in weeks. Lipoprotein distribution was determined by 
fast performance liquid chromatographic (FPLC) size fractionation (Pharmacia).31

Glucose and insulin levels were determined following sacrifice at week 28 for 
HF-fed animals and week 16 for LF-fed animals. Plasma glucose was measured using 
commercial reagents (No. 2319 and 2320; Instruchemie) and plasma insulin was 
measured using a mouse specific ELISA (10-1150-01, Alpco). Homeostasis model as-
sessment-insulin resistance (HOMA-IR), a surrogate measure of insulin resistance, 
was calculated as the product of fasting insulin (µU/mL) and glucose (mmol/L) 
concentrations divided by 22.5.33 Plasma fibrinogen (home-made mouse kit)34 and 
serum amyloid A (SAA; Biosource) were measured using specific ELISAs.

Analysis of atherosclerosis
After 28 weeks (for HF-fed mice) and 16 weeks (for LF-fed mice), animals were 
sacrificed and the hearts were harvested, fixed and embedded in paraffin.31 Serial 
5-µm cross-sections of the entire aortic valve area were prepared and stained with 
hematoxylin-phloxin-saffron (HPS) for histological analysis, and with Sirius Red to 
quantify the collagen area. Atherosclerotic lesions were categorized into types I–V, 
as described previously.31 Cross-sectional lesion areas were quantified using Leica 
Qwin morphometric software.35 Four sections of each specimen were analyzed at 
40-µm intervals to determine the average lesion number, type, and area.36 In addi-
tion, descending aortas were isolated and snap frozen until further analysis. During 
later analysis, vessels were cleaned of adherent fat, and then stained for lipids using 
Oil red O for “en face” morphometry of the atherosclerotic lesion area (Leica Qwin 
morphometric software). All analyses were performed blind, without prior knowl-
edge of feeding regime or treatment.

The number of monocytes adhering to atherosclerotic plaques may give an 
indication of endothelial activation, and thereby of the inflammatory status of the 
plaque. Macrophages were detected using AIA31240 antiserum (1:3000, Accurate 
Chemical and Scientific). The inflammatory status of plaques was further examined 
by estimating the local presence of NFκB (a major regulatory component of inflam-
matory reactions) in the plaque. NFκB was detected using mouse anti-human p65-
NFκB (F-6, 1:100, Santa Cruz Biotechnology). The level of NFκB-positive staining was 
scored in the cytoplasm and nucleus for both macrophages and endothelial cells 0-2 
(0=no positivity, 1=1 to 5 positive cells, 2=above 5 positive cells). 
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Statistical analysis
Non-parametric Mann-Whitney U-tests were used to analyze treatment differences, 
unless stated otherwise. Probability values of P<0.05 (two-sided) were considered 
significant. Frequency data for lesion categorization were compared using the Fish-
er’s exact test. All data are presented as mean ± SD.

RESULTS

Plasma lipids and lipoprotein profiles
In both the HF and LF-fed mice, body weight (Figure 1A) and food intake (data not 
shown) did not differ between the three treatment groups during the study periods. 
In the HF-fed mice, plasma cholesterol levels were 22% lower in the tesaglitazar-
treated group than in the HF/HC group (Figure 1B). A similar pattern was seen in 
the LF-fed mice, with plasma cholesterol levels 21% lower in the tesaglitazar-treated 
group than in the LF/HC group (Figure 1B). As required by the experimental design 
(Table 1), the total plasma cholesterol levels were similar in the HF/LC and HF/T 
groups and in the LF/LC and LF/T groups.

Lipoprotein profiles of the mice showed that tesaglitazar decreased VLDL cho-
lesterol levels in both HF- and LF-fed mice (data not shown). Additionally, following 
tesaglitazar treatment, a lipoprotein fraction appeared with a size between LDL and 
HDL lipoproteins (Figure 1C). Western blot analysis revealed that this lipoprotein 
fraction was poor in apoAI and apoB, but rich in apoE (data not shown).

As derived from the area under the curve of Figure 1B, the HF/HC and LF/HC 
groups had significantly increased exposure to cholesterol compared with the re-
spective tesaglitazar-treated and LC groups (Figure 1D). There was no significant dif-
ference in cholesterol exposure between tesaglitazar-treated and LC control groups. 
Triglyceride levels were significantly lower in tesaglitazar-treated groups compared 
with HC groups (Figure 1E) with both HF and LF diets (P<0.05). 

Plasma tesaglitazar levels reached 38.6±11.4 nmol/L for the HF groups and 
41.4±11.7 nmol/L for the LF groups (n.s.).

Insulin sensitivity
Changes in glucose and insulin levels during the study are shown in Table 2. In 
HF-fed mice, the HOMA-IR index indicated insulin resistance in HF/HC mice at 28 
weeks. HOMA-IR was significantly lower in both the HF/T and HF/LC groups com-
pared with the HF/HC group. In LF-fed mice, only tesaglitazar treatment significantly 
reduced HOMA-IR compared with both LF/HC and LF/LC mice (P<0.05).

Atherosclerosis
Tesaglitazar reduced atherosclerosis in treated mice compared with the respective 
HC groups and cholesterol-matched LC groups. In HF-fed mice, “en face” prepara-
tions of the descending aorta showed that lesion area was reduced by 34% in the 
tesaglitazar-treated group compared with the HF/HC group, and by 21% compared 
with the cholesterol-matched HF/LC control group (Figure 2A). These changes did 
not reach statistical significance. In the LF-fed mice, lesion area was significantly 
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reduced by 28% (P<0.05) in the tesaglitazar-treated group compared with the LF/
HC group, and by 16% (n.s.) compared with the cholesterol-matched LF/LC group 
(Figure 2B).

Consistent with the descending aorta data, cross-sections of the aortic valve 
area showed that tesaglitazar reduced atherosclerosis (Figure 2B). In HF-fed mice, 
treatment with tesaglitazar significantly reduced total lesion area by 92% compared 
with the HF/HC group, and by 83% compared to the cholesterol-matched HF/LC 
control group (P<0.05). In the LF-fed mice, tesaglitazar treatment resulted in a sig-
nificant 65% reduction in total lesion area compared with the LF/HC group and a 
non-significant 43% reduction in total lesion area compared with the cholesterol-
matched LF/LC control group.

In the same cross-sections, the average number of lesions per animal did not 
differ significantly between the HC and LC control groups in HF-fed mice (Figure 
2C). However, treatment with tesaglitazar significantly reduced the average number 
of lesions by 73% compared with the HF/HC group and by 67% compared with the 
cholesterol-matched HF/LC group (P<0.05). Treatment with tesaglitazar did not af-
fect the average number of lesions in LF-fed mice (Figure 2C). When lesions were 
categorized as either mild or severe in HF-fed mice, there was a significant shift 
(P<0.05) from severe to mild lesions in tesaglitazar-treated animals (Figure 2D). Al-
though there was a similar trend seen in LF-fed mice (Figure 2D), there was no 
difference in mild and severe lesion categorization between the LF/T and LF/LC 
groups.

To further characterize the atherosclerotic lesions, we measured macrophage 
and collagen areas in cross-sections serial to those used for morphometry (Figure 
3). In HF-fed mice, the macrophage-positive area was larger in the HC group com-
pared with the tesaglitazar and LC groups (Figure 3A,C). Moreover, the macrophage-
positive area was smaller in the tesaglitazar group than in the cholesterol-matched 
LC group. The collagen-positive areas followed a similar trend (Figure 3A,C). Since 
the total cross-sectional lesion area was larger in LF-fed mice than in HF-fed mice, 
macrophage and collagen areas were also larger and the absolute areas followed 
the lesion area trend (data not shown). When expressed as a percentage of the total 

Table 2. HOMA-IR calculations as a measure for insulin resistance in high-fat- and low-fat-fed 
mice.

Diet Treatment Weeks Glucose 
(mmol/L)

Insulin 
(µg/L)

HOMA-IR

High fat
HC

28
6.8±0.8 1.3±0.8 11.1±6.8

T 5.7±0.5* 0.6±0.4* 4.3±3.2*
LC 5.5±0.6* 0.5±0.4* 3.4±2.7*

Low fat
HC

16
5.6±0.6 0.7±0.4 5.0±3.4

T 5.1±0.4* 0.5±0.4 2.9±2.4*
LC 5.5±0.5 0.5±0.5 3.7±3.2

HOMA-IR = Insulin (µU/mL) x (Glucose (mmol/L)/22.5)
* Significantly different from HC, P<0.05
HC: high cholesterol; T: tesaglitazar; LC: low cholesterol
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Figure 1. Effect of tesaglitazar on plasma lipids in APOE3*Leiden mice with (left panels) and 
without (right panels) insulin resistance.  (A.) body weight over time (B.) plasma cholesterol 
over time (C.) lipoprotein profiles (D.) total cholesterol exposure (E.) plasma triglycerides 
over time. To increase plasma cholesterol levels at 20 weeks, the HF/LC dietary cholesterol 
was increased from 0.1% to 0.5% cholesterol (wt/wt). Plasma cholesterol levels in the HF/LC 
group returned to levels comparable to the T-group by 24 weeks. Circles = HF/HC or LF/HC; 
triangles = HF/T or LF/T; squares = HF/LC or LF/LC; *P<0.05 
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Figure 2. Effect of tesaglitazar on atherosclerosis in the aorta of APOE3*Leiden mice with 
(left) and without (right) insulin resistance. Shown are (A.) the aortic “en face” atherosclerotic 
lesion area (B.) the cross-sectional lesion area in the aortic valve area (C.) total number of 
lesions and (D.) lesion severity. *P<0.05
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lesion area, collagen decreased and macrophages increased in accordance with the 
shift to less severe lesions.

Inflammatory markers
SAA levels were significantly reduced (P<0.05) in tesaglitazar-treated groups com-
pared with HC groups in both HF-fed (-50.5%) and LF-fed mice (-20.9%) (Figure 4A). 
In HF-fed mice, tesaglitazar treatment reduced SAA levels further than LC treatment 
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Figure 3. Cross-sectional lesion characteristics. (A.) Representative microscopic images of 
macrophage and collagen staining of HF-fed mice. (B.) macrophage area (C.) collagen area. 
*P<0.05
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(-23%). Fibrinogen levels were unaffected (data not shown). In both HF-fed and 
LF-fed mice there were fewer adhering monocytes in tesaglitazar-treated groups 
compared with HC groups (Figure 4B). There were no differences between the tesa-
glitazar-treated groups and the cholesterol matched LC control groups.

P65-NFκB staining was found in the cytosol and nuclei of both endothelial cells 
and macrophages (Figure 5A). SMCs remained unstained. Positively stained endo-
thelial cells were observed on plaques. When observed on normal vessel walls, the 
positively stained cells were in close proximity to the shoulder regions of plaques. 
In both HF-fed and LF-fed mice, P65-NFκB expression (Figure 5B,C) followed the 
same pattern as total lesion numbers (Figure 2C).

DISCUSSION

This study showed that tesaglitazar has atherosclerosis reducing capacities in 
APOE*3-Leiden  transgenic mice that cannot be attributed solely to its reduction of 
plasma total cholesterol. This anti-atherosclerotic effect was more notable when the 
animals were placed on a diet that generated insulin resistance, obesity and mod-
erate hypertriglyceridemia, conditions that contribute to metabolic syndrome in 
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Figure 4. Effect of tesaglitazar on inflammatory parameters in APOE3*Leiden mice with 
(left) or without (right) insulin resistance. (A.) plasma SAA level (B.) monocyte adherence.
P<0.05
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humans. The mechanism by which tesaglitazar reduced atherogenesis in these mice 
involved direct actions on the pro-inflammatory tissue response of vascular cells.

The hyperlipidemic APOE*3-Leiden  mice used here have a lipoprotein profile 
that is more similar to the human profile than those of either apoE-/- or LDLr-/- mice. 
In agreement with previous studies with APOE*3-Leiden  mice,30,37 we were able 
to titrate plasma cholesterol levels by adjusting dietary cholesterol intake. Previous 
studies have also shown that these mice respond to hypolipidemic drugs; treatment 
with statins reduces plasma cholesterol38,39 and treatment with a PPARα agonist re-
duces both plasma cholesterol and triglyceride levels (unpublished data). In addi-
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Figure 5. Effect of tesaglitazar on the inflammatory marker NFκB in atherosclerotic plaques 
of APOE3*Leiden mice with (left) or without (right) insulin resistance. (A.) Representative 
microscopic pictures of p65-NFκB-positive staining of atherosclerotic plaques (scale bar=100 
µm). (B.) Scoring of endothelial NFκB positivity in the cytosol (black bars) and nucleus (white 
bars). (C.) Scoring of macrophage NFκB-positivity in the cytosol (black bars) and nucleus 
(white bars). *P<0.05
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tion, we showed in an earlier dose-finding study that APOE*3-Leiden  mice respond 
to the dual PPARα/γ agonist tesaglitazar. In the present study, we aimed for mild 
cholesterol lowering with tesaglitazar, in order to investigate direct anti-atheroscle-
rotic effects on the vascular wall. At a dose of tesaglitazar 0.5 µmol/kg diet (or 20 
µg/kg body weight/day), a mild decrease in plasma cholesterol of approximately 
20% was achieved. 

The lipoprotein profiles of the mice suggested that treatment with tesaglitazar 
resulted in the formation of an additional particle, sized between the LDL and HDL 
fractions. Western blotting characterized the particle as poor in apoAI and apoB, 
but rich in apoE (data not shown). Similar lipoprotein profiles have been observed 
following treatment of APOE*3-Leiden  mice with the PPARα agonist fenofibrate 
(unpublished data). Since cholesteryl ester transfer protein is not expressed in mice, 
these particles could represent large apoE-rich HDL.40 Furthermore, the appearance 
of these large apoE-rich particles during tesaglitazar treatment was associated with 
a decrease in atherosclerosis, suggesting that they may have favorable anti-athero-
sclerotic properties. However, it remains unclear whether the accumulation of these 
particles is clinically relevant, or a mouse-specific effect.

To examine the pleiotropic effects of tesaglitazar that might contribute to a 
reduction in atherosclerosis beyond that provided by lipoprotein changes, we ana-
lyzed the levels of anti-inflammatory markers SAA and fibrinogen in plasma, and 
examined adhering monocytes and vascular NFκB expression in atherosclerotic 
plaques. We found a decrease in plasma SAA levels for tesaglitazar-treated mice, but 
no change in plasma fibrinogen levels. In tesaglitazar-treated mice, fewer monocytes 
adhered to the endothelium over plaques, coinciding with decreased NFκB expres-
sion at the same location. Previous studies have shown evidence for anti-inflamma-
tory activities of PPAR α and -γ agonists, due to upregulation of IκB, leading to de-
creased NFκB/C-EBPβ complexes and suppression of C-reactive protein synthesis.41 
Our model provides further evidence of the anti-inflammatory effects of tesaglitazar, 
including reduced total lesion area as a result of decreased relative macrophage and 
collagen areas. Both effects contributed to the observed decrease in plaque severity 
in drug-treated animals. These anti-inflammatory effects were more pronounced in 
the tesaglitazar groups than in the LC groups, and were thus not due to cholesterol 
lowering per se.

Although the anti-inflammatory effect of tesaglitazar was observed in both HF- 
and LF-fed mice, the effect of tesaglitazar was greater under HF-fed conditions. This 
might be ascribed to differences in the level of insulin resistance between the two 
groups. However, we cannot exclude the possibility that the difference might be 
due to the relative length of the treatment periods (28 vs. 16 weeks), or to a differ-
ence in plasma cholesterol levels.

In summary, the dual PPARα/γagonist tesaglitazar showed significant anti-ath-
erogenic effects in this mouse model, especially in animals with moderate insulin 
resistance. These positive results did not solely result from tesaglitazar-induced re-
ductions in total cholesterol levels. In addition to the beneficial effects on lipid and 
glucose abnormalities previously shown in animal models of type-2 diabetes and 
the metabolic syndrome, tesaglitazar also demonstrated anti-inflammatory and anti-
atherosclerotic effects in the vascular wall. The results from this study show that 
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the beneficial effects of tesaglitazar on atherosclerosis involve a number of different 
pathways.
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Cardiovascular diseases (CVD) are the leading cause of mortality and disability 
in the industrialized world, and it is rapidly becoming the number one killer 
in developing countries.1 Atherosclerosis is the primary cause of cardiovas-

cular disease, a multi-factorial disorder occurring in the large and medium-sized ar-
teries of the body. Although in the beginning 90s promising lipid lowering therapies 
predicted a strong reduction in cardiovascular deaths for the upcoming years, in 
westernized societies it still accounts for 40% of the total number of annual deaths, 
indicating that treatment of atherosclerosis goes beyond lipid lowering solely. In 
addition to lipid accumulation, continuous cell proliferation (cell cycle) and cell 
death (apoptosis) processes are thought to play a central role in the development 
of atherosclerotic lesions. Proliferation and apoptosis are important processes in 
regulating macrophage and smooth muscle cell (SMC) numbers in the atheroscle-
rotic lesion and may thereby directly influence lesion composition and stability. The 
research described in this thesis was designed to identify the role of cell cycle and 
apoptosis genes in atherosclerosis. The major conclusions concerning the studies 
on cell cycle and apoptosis genes in atherosclerosis and the importance of site-spe-
cific recombinase (SSR) technology in atherosclerosis research are discussed in this 
chapter, concluding with the potential implications for future research.

CELL CYCLE AND APOPTOSIS GENES IN ATHEROSCLEROSIS

Many physiological processes, including proper tissue development and homeo-
stasis, require a delicate balance between cell proliferation and apoptosis. Cell pro-
liferation and apoptosis are linked by cell-cycle regulators and apoptotic stimuli 
that affect both processes.2 Among these common cell-cycle regulators are Rb, p53, 
and its inhibitor Mdm2. The importance of these genes in maintaining homeostasis 
becomes evident if one considers that despite the identification of more than 100 
proto-oncogenes, the pathways dominated by the two tumor suppressor genes Rb 
and p53 are the most frequently disrupted in cancer.3 The unique role of these cell 
cycle and apoptosis genes in cancer puts a special interest for a role of these genes 
in atherosclerosis. Not the least because recently a series of shared molecular path-
ways have emerged that have in common a significant role in the pathogenesis and 
progression of both cancer and atherosclerosis.4,5

Initial in vitro studies demonstrated a central role for p53 in human plaque 
vascular smooth muscle cells (VSMCs). These plaque-derived VSMCs showed an in-
creased sensitivity to p53-mediated apoptosis.6 Moreover, plaque VSMCs displayed 
slower rates of cell proliferation and earlier senescence due to a higher ratio of 
active Rb.7 Furthermore, p53 was shown to be able to mediate apoptosis of these 
cells through Fas transport from cytoplasmatic stores.8 These studies were initial 
indications that p53 (and downstream targets) play a potentially important role in 
determining atherosclerotic lesion composition and stability, and thereby opened 
a new era of research on these processes in atherosclerosis via key genes such as 
p53, Rb, and Mdm2.

Following, to unravel molecular mechanisms underlying the role of p53 in 
atherosclerosis murine studies were performed. These studies started using con-
ventional knock out mice crossbred to different atherosclerosis-susceptible back-
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grounds (i.e. apoE-/-, LDLR-/- and APOE*3-Leiden mice) and gradually became more 
cell-type specific using bone marrow transplantations. Initial studies started with 
whole body deficiency of p539, followed by hematopoietic inactivation of p53 via 
bone marrow transplantations.10,11 Whole body and hematopoietic p53 deficiency 
indicated strong anti-atherogenic properties of the tumour suppressor gene. In 
chapter 2 we completed the research on the role of p53 in the development of 
atherosclerosis by studying macrophage p53 using LysMCre+ p53loxP/loxP apoE-/- mice. 
Whole body inactivation of p53 can induce severe side-effects interfering with the 
atherosclerotic process.12 In addition, hematopoietic inactivation using bone mar-
row transplantation studies10,11 targets a diverse spectrum of bone marrow derived 
cells. Cells originating from bone marrow are macrophages, T- and B-cells, SMCs,13 
and endothelial cells.14,15 With the use of the LysMCre+ p53loxP/loxP apoE-/- mouse 
model we scaled our research down to one single cell-type (macrophages) and in 
addition prevented development of severe side-effects as a result of whole body 
p53 deletion. This mouse model allowed us to define that macrophage p53 plays a 
minimal role in atherosclerotic lesion size but has a unique role in inducing foam 
cell apoptosis, preventing lesional necrosis and thereby affects lesion composition 
and progression.

Both p53 and Rb are potent inhibitors of cell cycle progression. In contrast to 
the comprehensive studies on the role of p53 in the development of atherosclero-
sis, we were the first group showing a role for (macrophage) Rb in the development 
of atherosclerosis (chapter 3). Under identical experimental conditions macro-
phage Rb deficiency showed to have more pronounced effects on atherosclerotic 
lesion size than macrophage p53 deficiency. This difference might be ascribed to 
the extent of successful gene deletion. However, a more plausible explanation could 
be that each individual gene plays its role in different processes. Rb is important in 
controlling the progression of the cell cycle from G1-phase to S-phase, principally 
by binding to and inactivating the E2F transcription factors, and in addition acts as 
an anti-apoptotic factor.16 Deletion of macrophage Rb showed that this gene has 
strong anti-atherogenic properties. On the other hand, p53, next to regulating pro-
liferation and apoptosis, also is a potent transcription factor inducing the expres-
sion of many downstream target genes. These target genes can be divided in the 
following sub-categories: (1) genes involved in cell cycle control, (2) genes involved 
in apoptosis, (3) genes involved in DNA repair, (4) genes involved in angiogenesis, 
(5) genes involved in cellular stress response. Although currently around 60 target 
genes have been identified, it is predicted that the human genome contains 200-300 
p53 target genes.17  Thus, p53 targets many genes amongst which several might have 
either pro- or anti-atherosclerotic effects, giving a possible explanation for the less 
pronounced effects on atherosclerotic lesion size. Hence, as a result of the multi-
targeted nature of p53, definition of macrophage p53 as an anti-atherosclerotic gene 
is more complex.

How do the different studies on cell cycle and apoptosis genes as described 
in this thesis and by others expand our knowledge on the role of these two pro-
cesses in atherosclerosis? From literature it is know that SMC apoptosis can se-
lectively weaken the fibrous cap, thereby accelerating the process towards plaque 
rupture.18,19 Human plaque-derived smooth muscle cells displayed increased rates of 
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spontaneous apoptosis and high susceptibility to p53-mediated apoptosis.6,20 In ad-
dition, adenovirus-induced p5321 or FasL22 overexpression in murine carotid artery 
lesions resulted in increased apoptosis and in a phenotype that has been associated 
with increased vulnerability to plaque rupture, whereas lesion size was unaffected 
in both studies. In chapter 2 we showed that macrophage p53 deletion induced 
a decrease in macrophage apoptosis resulting in differences in lesion composition 
and again leaving atherosclerotic lesion size unaffected. Concerning earlier studies 
on proliferation in atherosclerosis it was shown that human plaque-derived SMCs 
show reduced proliferation and earlier senescence due to an increased ratio of the 
active form of Rb.7 In addition, localized infection of the arterial wall with an ad-
enovirus encoding a constitutively active non-phosphorylatable form of Rb23 or a 
phosphorylation-competent full-length and a truncated form of Rb significantly24 
inhibited vascular smooth muscle cell proliferation and neointima formation in dif-
ferent animal models of balloon angioplasty. Moreover, mouse studies showed that 
(hematopoietic) inactivation of p27, a cyclin-CDK regulating cell cycle inhibitor, 
resulted in an increase in lesional proliferation, thereby exacerbating atherosclero-
sis in apoE-/- mice.25,26 Finally, in chapter 3 we demonstrated that increased mac-
rophage proliferation (via macrophage Rb deletion) also enhanced atherosclerotic 
lesion size. Summarizing, we can conclude that lesional apoptosis has primarily 
qualitative effects on atherosclerotic lesion development (affecting lesion composi-
tion and stability), whereas lesional proliferation has primarily quantitative effects 
on atherosclerotic lesion development (affecting lesion size).

Analysis of proliferation and cell death (either apoptosis or necrosis) form the 
common denominator in the different chapters of this thesis (chapters 2, 3, 4, 
and 6). Both in chapter 2 and 6 we showed that a reduction in apoptosis, ei-
ther via deletion of macrophage p53 (chapter 2) or via active TNFα (chapter 
6), resulted in enhanced death via necrosis, thereby stimulating the formation of 
advanced atherosclerotic lesions. Moreover, our earlier studies on the role of hemat-
opoietic p53 in the development also showed this similar trend (B.J.M. van Vlijmen 
and L.S.M. Boesten et al.).10 Apoptosis often precedes necrosis in the formation of 
an advanced atherosclerotic lesion and thereby results in the release of cellular 
contents from dying cells. This may lead one to suggest that apoptosis itself strongly 
contributes to lesion pathology, by leading to the release of harmful molecules and 
finally the formation of a necrotic core.27,28 However, our current data challenge this 
traditional point of view that apoptosis is harmful and suggest that apoptosis itself 
is a direct protective factor in the development of atherosclerosis. 

Our studies led to the following hypothesis behind cell death in atherosclerotic 
lesions: 
In early lesions foam cells preferentially die quickly via a relatively clean apoptotic 
death followed by phagocytosis and disposal of apoptotic bodies. This process limits 
the number of cells in early lesions.27 However, it is the harsh microenvironment in 
the growing lesion that hampers the normal clearance of apoptotic bodies. Follow-
ing, these accumulating apoptotic bodies are ineffectively phagocytosed, partly as 
a result of cytoplasmic overload of macrophages and competition among oxidized 
red blood cells, oxidized LDL and apoptotic bodies for the same receptor(s) on the 
macrophages,29 thereby promoting the inflammatory status of the lesion. Eventu-
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ally, it is this increase in inflammatory status that promotes (secondary) necrosis27 
and thereby the formation of an advanced atherosclerotic lesion. Necrosis of foam 
cells may be more slowly but is more detrimental since necrosis itself leads to the 
release of pro-inflammatory and pro-thrombotic substances. The increase in the in-
flammatory status of the lesion goes beyond processes involved in the apoptotic 
machinery. Thus, foam cell apoptosis is in principal a beneficial process, leading to 
a reduction in the production of cytokines, chemokines, and metalloproteinases, 
thereby reducing lesion pathology. However, it is the complicated atherosclerotic 
environment that restricts proper execution of apoptosis.   

In addition to its role in regulating apoptosis and necrosis in atherosclerosis 
(as described above) TNFα is more often described as a strong pro-inflammatory 
cytokine in different diseases.30,31 However, to date, studies on the role of TNFα 
in atherosclerosis yielded controversial results. TNFα deficiency on a wild type 
C57BL/6 background did not affect early lesion development.32 On the contrary, 
another research group demonstrated that TNFα-deficiency, also on a C57BL/6 
background, reduced atherosclerosis.33 A direct anti-atherosclerotic effect of TNFα 
deficiency could not be concluded from these experiments because they also 
showed an unexpected TNFα-mediated effect on atherogenic lipoproteins. In addi-
tion, chapter 6 describes a subtle role for TNFα in the development of advanced 
atherosclerosis. In accordance with the data on early atherosclerosis of Schreyer et 
al.32 we do not demonstrate an effect of TNFα deficiency on the size of atheroscle-
rotic lesions. TNFα deficiency solely results in less advanced lesions as a result of a 
shift in cell death towards apoptosis at the expense of necrosis. None of the three 
abovementioned studies showed an effect of TNFα deficiency on either systemic 
or local inflammatory parameters. This brings to doubt the generally held concept 
that TNFα has strong pro-inflammatory properties in atherosclerosis development. 
Therefore, we conclude that the pro-inflammatory properties of TNFα play a minor 
role in the development of atherosclerosis. Hence, the primary effects of TNFα on 
atherosclerosis development are at the level of cell death regulation.

TNFα and one of its receptors TNFR1 belong to the tumour necrosis factor 
receptor gene superfamily. This family comprises the so called “death receptors” 
from which the receptor-ligand couples Fas-FasL and TNFR1-TNFα are best char-
acterized.34 Death receptors are cell surface receptors that transmit apoptosis sig-
nals initiated by specific death ligands (i.e. TNFα and FasL). These receptors can 
activate death caspases within seconds of ligand binding, causing apoptosis of the 
cell within hours. Different vascular studies aiming at the role of Fas-FasL in athero-
sclerosis demonstrated that this couple inhibited the infiltration of inflammatory 
cells, thereby inhibiting the progression of the disease.35-38 However, our study on 
the role of FasL in pre-existing lesions in apoE-/- deficient mice, showed that FasL 
expression increased apoptosis in the SMC-rich caps of the lesions, thereby remod-
elling the lesions towards a more vulnerable phenotype (A.S.M. Zadelaar and L.S.M. 
Boesten et al.).22 Taken together, these two studies indicate that the actions at the 
level of atherosclerosis development of these two ligands of the death receptor fam-
ily (TNFα and FasL), are merely attributable to their activity at the level of cell death 
(both apoptosis and necrosis), and not at the level of inflammation.  
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MOUSE MODELS TO STUDY CELL CYCLE AND APOPTOSIS GENES IN 
ATHEROSCLEROSIS 

Throughout this thesis we made use of state-of-the-art SSR mouse models to study 
the role of cell cycle and apoptosis genes in atherosclerosis. In this part of the dis-
cussion the advantages and disadvantages of the different mouse model technolo-
gies applied in atherosclerosis research will be discussed. 

Conventional whole body knock out models can be designed to introduce the 
desired genetic changes into the germ line, thereby affecting all tissues during the 
entire lifespan of the resulting mouse. However, several limitations of the conven-
tional germ line gene-targeting approach hamper analysis of target genes. As the 
mutation will be already present in the first developing cell, an embryonic lethal 
phenotype might be provoked (i.e. Rb and Mdm2-germline null alleles), precluding 
any further functional analysis during embryogenesis and/or adulthood. In addition, 
pleiotropic effects as a compensatory reaction to the introduced germ line muta-
tion are often observed. Moreover, when the gene of interest has a wide expression 
pattern, its inactivation might induce a highly complicated accumulative pheno-
type involving multiple tissues. Hypomorphic mutations, which is a mutation that 
reduces, but does not completely eliminate, the function of a gene, could partly be 
a solution to these problems. Mice carrying for example one hypomorphic Mdm2 
allele (mdm2puro) and a known mdm2 null allele showed that Mdm2 is critical for 
regulating p53 under homeostatic conditions.39 However, it still might be impor-
tant to completely delete a gene at a specific developmental time point or during 
a particular stage in disease.40 Thus, although conventional whole body knock out 
mice boomed our knowledge on multiple genes under physiological and pathologi-
cal conditions, the abovementioned limitations activated researchers to search for 
alternative approaches to study genes. Concerning the atherosclerosis research field 
several different approaches have been applied the last couple of years.

Adenovirus vectors can be used to efficiently overexpress a gene of interest 
in vivo.41-43 Replicative deficient adenoviruses, in which the E1 genes have been 
replaced with an appropriate transgene and transcriptional regulatory element(s), 
can be used to efficiently infect most replicating and nonreplicating cell types in 
vivo, lacking the ability to regenerate infectious progeny after an initial injection 
into mice. Compared with the production of knock out/transgenic animals, adeno-
viruses are more convenient and less expensive to prepare. Moreover, they can be 
used alone and in combinations to rapidly produce large numbers of animals ex-
pressing one or more transgenes. Finally, they ultimately may have potential applica-
tions for human gene therapy. Adenovirus vectors injected intravenously home to 
the liver and a single intravenous injection of mice results in the selective transduc-
tion of 10% to 100% of the hepatocytes in these animals. This also directly shows 
the disadvantage of using adenoviruses. In vivo atherosclerosis research using ad-
enoviruses gives the opportunity to study genes associated with the liver (mainly 
lipoprotein-related genes), which has been successfully performed for several genes 
including: apolipoprotein A-I (APOA-I),44 secreted macrophage scavenger receptor-
AI (SR-AI),45 and plasma phospholipids transfer protein (PLTP).46 However, when 
one wants to study a gene in a specific cell type in the vessel wall or at the site of 
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the lesion, intravenously injected adenoviruses can’t be used. Von der Thusen et al.21 
and Zadelaar et al.22 anticipated on this limitation by locally incubating a collar-in-
duced carotid artery lesion using an adenovirus encoding p53 or FasL, respectively. 
Using this approach, solely the endothelial and smooth muscle cells are affected 
(leaving macrophages and other lesional cells unaffected). Again, this can either be 
an advantage or a disadvantage, depending on the type of cell one wants to target. 
Thus adenoviruses are perfect tools to systemically target liver associated genes or 
locally target EC and SMC associated genes in carotid artery lesions.

Bone marrow transplantation (BMT) studies opened the field for cell-type spe-
cific research in atherosclerosis research.47 In combination with the different mouse 
models for atherosclerosis (i.e. apoE-/-, LDLR-/- and APOE*3-Leiden mice) this approach 
enabled researchers to study macrophage-specific genes. Although BMT studies ex-
tended our knowledge on the role of multiple genes in atherosclerosis, years of 
research also revealed the disadvantages of using this technique in atherosclerosis 
research. Graft-versus-host disease is the most common technical problem associ-
ated with BMT. In addition, the radiation used for the recipient mice to remove its 
bone marrow often makes the mice seriously ill requiring a long recovering period, 
with often many premature deaths. However, a careful titration of the applied radia-
tion for each single mouse strain prevents illness in the recipient mice. Although 
often claimed as a cell-type specific approach, BMT targets many cell types. Next to 
macrophages, also smooth muscle cells, endothelial cells, T-cells and B-cells develop 
from bone marrow progenitor cells.13-15,46 Thus, earlier published studies using BMT 
analyzed the role of a gene of interest in all the abovementioned cell types. There-
fore, concerning BMT studies in atherosclerosis, the term “macrophage-derived” is 
currently being replaced by “hematopoietic-derived”.

Alternative mouse models for atherosclerosis research also include conditional 
“gain of function” and knock-in mouse models. Next to inactivation of a gene (“loss 
of function”) also activation of a gene (“gain of function”) can be achieved. Tran-
scriptional transactivation, used to activate transgenes in gain of function experi-
ments, is more widely used than DNA recombination, because the latter is irrevers-
ible.48 Tetracycline-dependent regulatory systems are most often used for transcrip-
tion transactivation systems (“Tet-on” and “Tet-off”). These systems use a chimeric 
transactivator to control transcription of the gene of interest from a silent promoter. 
Depending on the system used target genes are expressed in presence or absence of 
the inducer doxycyclin with impressive induction levels, reaching in some tissues 
five orders of magnitude.40,49 Alternatively, knock-in experiments are used to place 
a transgene (either cDNA or a reporter construct) under the transcriptional control 
of an endogenous gene. The most widely used knock-in strategy is the replacement 
of a gene by a reporter gene (e.g. LacZ or GFP) to monitor its expression patters 
during development, in adult mice or during a disease (atherosclerosis), both in a 
spatial and temporal matter.49 The APOE2 knock-in mouse model is a clear example 
of the use of knock-in techniques in lipid research. In the APOE2 knock-in mouse, 
the endogenous mouse ApoE gene has been replaced by the human Apolipoprotein 
E2 (APOE2) gene, a relatively common recessive allele, which is the main cause of 
type III hyperlipidemia in humans.50  

Mouse models expressing conditionally regulated genes (pioneering work from 
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the laboratory of Klaus Rajewsky51) initiated a new era for all scientific areas. Using 
the site-specific recombinase (SSR) technology, those genes that induce embryonic 
lethality associated with germline null alleles, could now be studied in a wide vari-
ety of diseases. In the following decade, from the introduction of the SSR technique, 
there has been a tremendous expansion in the number of Cre-expressing and floxed 
mice. Currently an excellent list of all Cre-expressing and floxed mice has been 
established and is available on: http://www.mshri.on.ca/nagy. In addition, with the 
introduction of the spatiotemporally controlled genes (deletion of a gene at a time 
point of interest) shifted the research question from: “What is the role of this gene 
in this disease?” towards “At what particular stage does this gene play a role in this 
disease?”. Although SSR techniques were first applied in developmental and cancer 
research, the use of these systems is now more often adapted in research on many 
different diseases (i.e. atherosclerosis52-55, diabetes56, and multiple sclerosis57).

However, any new technique also brings its limitations. When considering the 
first practical limitations, one encounters that Cre recombinase can cause chromo-
somal rearrangements/aberrations and is speculated to be involved in causing cell 
cycle arrest.58-61 Applying the SSR technique in the atherosclerosis research field 
particularly brings extensive breeding work before atherosclerosis experiments can 
be performed. In addition to combining the Cre-expressing mouse with the floxed-
mouse, an atherosclerosis-susceptible background (i.e. apoE-/-, LDLR-/- or APOE*3-Lei-
den mice) also needs to be introduced. At least two years of breeding and genotypic 
analysis are required to achieve a triple homozygous mouse line. Thereafter, athero-
sclerosis experiments can be initiated. Concerning these time-consuming breedings, 
a time reducing approach has been described by Kanters et al., who first combined 
the Cre-expressing and floxed mouse lines and subsequently performed a BMT onto 
an atherosclerotic-susceptible background. 55

Another potential drawback is that the targeting constructs for both Cre-ex-
pression and the floxed-gene might be present on the same chromosome. As a con-
sequence, homozygous floxed-embryos are not formed or die in utero in a very early 
stage (these topics have not been addressed in the current thesis). We experienced 
this unfortunate practical problem while breeding the LysMCre mouse strain62 (lyso-
zyme M gene: chromosome 10, genome coordinates: 116966783-116971716) with 
Mmd2loxP/loxP mouse strain63 (Mdm2 gene: chromosome 10, genome coordinates: 
117379898-117401709). With both targeting constructs present on the same chro-
mosome, only 410 kb apart, homozygous LysMCre+ Mdm2loxP/loxP ApoE-/- mice were 
not formed, resulting in the birth of heterozygous LysMCre+ Mdm2loxP/+ ApoE-/- mice 
only. Although atherosclerosis experiments were performed using these heterozy-
gous LysMCre+ Mdm2loxP/+ ApoE-/- mice, as described in chapter 2 and 3 for p53 
and Rb respectively, heterozygous deletion of macrophage Mdm2 did not affect 
atherosclerosis development. Additional Western blot analysis on macrophages from 
LysMCre+ Mdm2loxP/+ mice did not show a (partial) upregulation of p53, indicating 
that one functional Mdm2 allele is sufficient to keep p53 levels in constraint. These 
coincidental practical shortcomings hampered studies on Mdm2 deletion (and 
thereby p53 overexpression) in lesional macrophages. Hence, in vivo modulation 
of macrophage Mdm2 is not conceivable with the current tools available (LysMCre 
mice and Mdm2loxP/loxP mice).  
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Next to targeting macrophages (chapters 2 and 3) we also aimed at targeting 
the other central cell type in atherosclerotic lesions: SMCs. To this end we crossbred 
p53loxP/loxP,64 RbloxP/loxP,65 Mdm2loxP/loxP,63 mice, and the rosa2666 reporter mouse line 
with the SM-CreERT2(ki)67 mouse line. Although all four mouse lines were viable, we 
were unable to reproduce the data of Kuhbandner et al.67 using the SM-CreERT2(ki)/
rosa26 mouse model. The data described in chapters 4 and 5 define the difficul-
ties which hampered studies on SMC-p53, -Rb and -Mdm2 in atherosclerosis. Op-
posite to the published study of Kuhbandner et al.67 we demonstrated only a 2-8% 
gene deletion efficiency in the vasculature of SM-CreERT2(ki)/rosa26 mice both after 
systemic and local application of tamoxifen and 4-hydroxytamoxifen, respectively 
(chapter 5). This is much less efficient than the reported 60% gene deletion in the 
vasculature by Kuhbandner et al. In addition, the data described in chapter 4 show 
a phenotype after inducible SMC-specific Mdm2 deletion only in the gastro-intesti-
nal (GI) tract, inducing lethality in adult mice, leaving the vasculature unaffected. 
Although not described in this thesis we performed multiple optimization proce-
dures to increase the number of cells displaying gene deletion (β-Gal positive cells) 
in the vasculature of SM-CreERT2(ki)/rosa26 mice, however all attempts proved to be 
unsuccessful.  Combination of these data forced us to decide to no longer use the 
SM-CreERT2(ki) mouse model for research on gene deletion (p53, Rb and Mdm2) in 
the vasculature. 

Various factors might have contributed to the failure of this model in athero-
sclerosis research. Overestimation of the degree of gene deletion in the vasculature, 
as a consequence of the choice of the reporter mouse model by Kuhbandner et al,67 
could be an underlying cause. In addition, SM22 promoter activity might have been 
affected or even reduced at our sampling time points. Although studies using a 
non-inducible SM22-Cre transgenic mouse line argue against this point of view52,68 
showing successful gene deletion from birth on using the SM22 promotor. Finally, 
the mixed background or differences in accessibility of the loxP sites between the 
vasculature and the gastro-intestinal tract (GI-tract) for the Cre enzyme might have 
attributed to the low efficiency of gene deletion in the vasculature using the SM-
CreERT2(ki) mouse model. Which of these options, or a combination of them, is 
the cause of the limitation of the SM-CreERT2(ki) mouse model concerning studies 
in the vasculature, remains subject to speculation. In this light, it is worthwhile to 
mention that 5 years after the publication of Kuhbandner et al. no data have been 
published using the SM-CreERT2(ki) mouse model, although various research groups 
attempted to introduce this mouse model in their research lines. In this thesis we 
show that the SM-CreERT2(ki) mouse model is not suitable for research concerning 
the vasculature but can be efficiently applied for research focussing at gene deletion 
in the GI-tract.    

FUTURE PERSPECTIVES

The findings on cell cycle and apoptosis genes described in this thesis may provide 
a possible starting point for pharmacological intervention or further specialized ap-
plication of Cre-loxP models in atherosclerosis, as discussed below. 

Stimulation of p53 and/or Rb may prove beneficial in inhibition of atheroscle-
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rosis development. However, one should consider that both proteins are of vital 
importance in all cells present in the body. Therefore, systemic pharmacological 
modulation of these genes is not applicable for the treatment of atherosclerosis. In 
contrast, local pharmacological modulation of these genes might prove efficacious 
in the treatment of atherosclerosis. Local pharmacological treatment is currently 
often used in treatment of occluding atherosclerotic lesion and (in-stent) resteno-
sis after PTCA or placement of a stent.69-72 To treat these unregulated proliferative 
diseases, the use of drug-eluting stents has emerged as a highly promising local ap-
proach.73 The different drugs (i.e. rapamycin, paclitaxel) used in these drug-eluting 
stents successfully target cell cycle genes (p53 and Rb, amongst others). This local 
approach gives an unique opportunity to locally target p53 and Rb, since activation 
of these genes both at the level of SMCs23,24,74,75 and macrophages (this thesis) is 
shown to be beneficial for inhibition of vascular disease. In addition, one could envi-
sion that stents coated with a combination of pharmacological compounds target-
ing cell cycle, apoptosis and inflammatory genes may prove increasingly efficacious 
in the treatment of cardiovascular disease.

The Cre-loxP system induced major advancements in many scientific areas. Fu-
ture research will focus on the refinement of these techniques. The need for trans-
genic mouse lines that tissue-specifically and inducibly express Cre-recombinase in 
the appropriate cell type will increase. Designing a truly macrophage-specific Cre-
expressing mouse line will further improve state of the art atherosclerosis research, 
as the currently available LysMcre mouse line targets both macrophages and granu-
locytes.62 In addition, both research on atherosclerosis and restenosis will thrive 
on the development of a well-functioning inducible SMC-specific Cre-expressing 
mouse line. Following, multiple genes involved in lesion stability and rupture may 
be analysed by the combination of this inducible SMC-specific mouse model and lo-
cal application of a 4-hydoxytamoxifen loaded perivascular delivery device.76 With 
the introduction of Cre-loxP models in atherosclerosis the opportunities to deter-
mine the contribution of each single gene in the disease process are within reach. 
Understanding the contribution of each gene/pathway in this disease may yield 
novel (pharmacological) ways to interfere in atherosclerosis development.

Taking the complex pathogenesis of cardiovascular diseases into account, tar-
geting a single gene or process, although it might be an attractive candidate, may 
prove to be inadequate therapeutically. Although current (lipid-lowering) treatments 
for atherosclerosis show considerable progress, combinatorial therapies will prove 
most efficacious. Despite the considerable difficulties involved, the use of combina-
torial therapy aiming at (1) lifestyle interventions (i.e. food and physical habits), (2) 
lipid therapies (i.e. statins, fibrates), (3) inflammation (i.e. regulation by PPARs)   and 
(4) targeting cell cycle and apoptosis genes on lesional or cellular level, might prove 
the most effective way to reduce the burden of atherosclerosis. 
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The work described in this thesis was aimed at identifying the role of cell 
cycle and apoptosis genes in atherosclerosis. Atherosclerosis is the primary 
cause of cardiovascular disease, a multi-factorial disorder occurring in the 

large and medium-sized arteries of the body. Although in the beginning 90s promis-
ing lipid lowering therapies predicted a strong reduction in cardiovascular deaths 
for the upcoming years, in westernized societies it is still the underlying cause of 
about 40% of all deaths, indicating that treatment of atherosclerosis goes beyond 
lipid lowering solely. In addition to lipids, continuous cell growth (cell cycle), cell 
death (i.e. apoptosis and necrosis) and inflammatory processes play a central role in 
the development and maintenance of atherosclerotic lesions. To investigate in detail 
the role of several cell cycle and apoptosis genes in atherosclerosis we generated 
and characterized several mouse models as described in this thesis. 

Based on the findings that germline null alleles of the cell cycle genes of our 
interest (i.e. p53, Rb and Mdm2) lead to either the formation of tumors after the 
age of 6 months (p53) or embryonic lethality (Rb and Mdm2) we chose to use 
site-specific recombinase (SSR) technology. To obtain cell type specificity we used 
either the LysMcre or the SM-CreERT2(ki) mouse model for targeting macrophages 
or SMCs, respectively. 

The tumor suppressor gene p53 has been shown to inhibit cell proliferation 
and stimulate apoptosis in many cell types. To study the role of macrophage p53 in 
the development of atherosclerosis, we generated apoE-deficient mice with a mac-
rophage-restricted deletion of p53 and control littermates and analyzed early and 
advanced atherosclerosis development (chapter 2). Absence of macrophage p53 
did not affect lesion area in both early and advanced atherosclerosis, neither in the 
aortic root nor in the aortic arch and thoracic aorta. In early atherosclerosis, absence 
of macrophage p53 resulted in reduced apoptosis, though without changes in le-
sion composition. In contrast, in advanced atherosclerosis, reduced apoptosis upon 
absence of macrophage p53 coincided with increased necrotic death, increased 
foam cell content, and reduced lipid core formation. Proliferation was not affect-
ed by the absence of macrophage p53 in both early and advanced atherosclerosis. 
Hence, these studies demonstrate that macrophage p53 is a major mediator of foam 
cell apoptosis and inhibition of this pathway results in a shift of cell death towards 
necrotic death of lesional macrophages, thereby affecting lesion composition. 

To expand the knowledge on the role of cell cycle genes in vascular disease in 
vivo we investigated the role of macrophage Retinoblastoma (Rb) in atherosclerosis 
development. The tumor suppressor gene Rb has been shown to regulate both cell 
proliferation and cell death in many cell types. In chapter 3 we describe the role 
of macrophage Rb in atherosclerosis development in apoE-deficient mice. To this 
end, we fed a cholesterol-rich diet for 12 weeks to apoE-deficient mice with a mac-
rophage-restricted deletion of Rb and control littermates.  Macrophage-restricted 
Rb deletion resulted in a strong increase in atherosclerotic lesion area. In addition, 
the increase in atherosclerosis was characterized by the presence of more advanced 
lesions that were rich in smooth muscle cells and poor in macrophages. Additional 
analyses showed that the increase in atherosclerosis was independent of in vitro 
macrophage modified lipoprotein uptake or cytokine production. Immunohisto-
chemical analysis showed that macrophage-restricted Rb deletion did not affect 
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lesional macrophage apoptosis, but lesional macrophage proliferation was strongly 
increased. These studies clearly demonstrate that macrophage Rb is a suppressing 
factor in the progression of atherosclerosis via reduction of macrophage prolifera-
tion.

The Mdm2 oncoprotein inhibits p53 activity during embryonic development 
and in adult homeostatic tissues. Overexpression of p53 can be achieved by spe-
cific inactivation of its inhibitor Mdm2 (chapter 4). To this end, conditional al-
lelic inactivation of Mdm2 was carried out in mice harboring Mdm2 floxed alleles 
and a tamoxifen-inducible Cre-recombinase under control of the SM22 promoter 
(SM-CreERT2(ki) mice), resulting in mice that inducibly lack Mdm2 in their smooth 
muscle cells. This mouse model would allow us to study p53 overexpression in the 
SMC-rich cap of atherosclerotic lesions. However, upon SMC-specific Mdm2 dele-
tion mice became rapidly ill and died, hampering studies on the role of SMC-p53 
in atherosclerosis. Unexpectedly, the mouse model showed that Mdm2 prevents 
accumulation of active p53 in quiescent SMCs and thereby the induction of p53-
mediated necrotic cell death in vivo. 

Chapter 5 describes a means to conditionally and locally modify genes of the 
vasculature using a perivascular drug delivery device (PDD). A 4-hydroxytamoxifen 
(4-OHT)-eluting PDD was applied around the carotid or femoral artery of a mouse 
strain, carrying both the tamoxifen-inducible and smooth muscle cell (SMC)-specific 
Cre-recombinase (SM-Cre-ERT2(ki)) transgene and a stop-floxed β-galactosidase gene 
in the Rosa26 locus. A dose and time curve of 0-10% (w/w) 4-OHT and 0-14 days ap-
plication of the PDD showed optimal gene recombination at 1% (w/w) 4-OHT load-
ing at 7 days post application. Recombination was similar to the level achieved by 
systemic tamoxifen administration and was completely confined to the PDD-treated 
vessel wall segment. Thus, local application of a 4-OHT-eluting PDD results in vascu-
lar SMC-specific Cre-mediated recombination without affecting additional SMCs.

In addition to cell proliferation and cell death, inflammation plays a key role in 
the development of atherosclerosis. Immune cells are of paramount importance in 
early atherosclerosis development and their effector molecules accelerate progres-
sion of atherosclerosis. Tumor necrosis factor-α (TNFα) is a pleiotropic cytokine ex-
erting both cell death and inflammatory activity. Although TNFα and its receptors are 
thought to be considerably important in a number of biological activities relevant 
to atherosclerosis, its complete function in atherogenesis remains unclear. Earlier 
studies in mice indicated that TNFα affects atherosclerosis minimally or not in early 
atherosclerosis development. To study the role of TNFα in advanced and complex 
atherosclerotic lesions we crossbred TNFα-deficient mice onto an APOE*3-Leiden 
background (chapter 6). To induce atherosclerosis development the mice were 
fed a cholesterol-rich diet. Mice deficient for TNFα and their control littermates, 
showed comparable levels of plasma cholesterol and triglycerides and the systemic 
inflammatory parameters, serum amyloid A (SAA) and soluble intercellular adhesion 
molecule-1 (sICAM). Although absence of TNFα did not affect the quantitative area 
of atherosclerosis, mice deficient for TNFα had a higher relative number of early 
lesions and a lower relative number of advanced lesions. In addition, the advanced 
lesions in TNFα deficient mice showed a decrease in necrosis and an increase in 
apoptosis. Hence, TNFα stimulates the formation of lesions towards an advanced 
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phenotype, with more lesion necrosis and a lower incidence of apoptosis.
Peroxisome proliferator-activated receptors (PPAR) are nuclear receptors pres-

ent in several organs and cell types. PPAR alpha and gamma are the two main cat-
egories of these receptors, which are both characterized by their ability to influ-
ence cell proliferation, differentiation, apoptosis, and inflammation as well as lipid 
metabolism and glucose homeostasis via transcriptional activation or repression of 
target genes or via DNA-binding-independent pathways. In atherosclerosis PPAR-α 
and PPAR-γ activation results in reduction of atherogenic triglycerides and systemic 
plasma inflammatory proteins, raise HDL levels and improve insulin resistance. At a 
cellular level, PPARα/γ agonists act on most cell types involved in atherosclerosis 
reducing their involvement in the tissue response associated with lesion develop-
ment. In chapter 7 the combined PPARα/γ agonist tesaglitazar was investigated on 
its anti-atherogenic effects in APOE*3Leiden mice with normal and reduced insulin 
sensitivity. APOE*3-Leiden transgenic mice were fed either a low-fat (LF) or high-
fat (HF) insulin-resistance-inducing diet. In both LF and HF-fed mice, one group 
received a high-cholesterol supplement. A second group received the same HC diet, 
additionally supplemented with tesaglitazar. A third control group received a low 
cholesterol supplement, resulting in plasma cholesterol levels similar to those of the 
tesaglitazar-group. In this study we showed that tesaglitazar has anti-atherosclerotic 
effects, analyzed both by cross-sectioning at the level of the aortic root and by en 
face analysis of the aortic arch. These anti-atherosclerotic effects go beyond plasma 
total cholesterol lowering, and were more pronounced in animals on high-fat diet. 
In addition, tesaglitazar treatment reduced inflammatory parameters as plasma SAA 
levels, the number of adhering monocytes, and NFκB activity in the vessel wall. 
The mechanism by which tesaglitazar exerts its anti-atherosclerotic actions beyond 
plasma cholesterol lowering could therefore be associated with its anti-inflamma-
tory effects.
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In dit proefschrift wordt het onderzoek naar de rol van celcyclus en apoptose 
genen in atherosclerose beschreven. Atherosclerose is de belangrijkste oorzaak 
van cardiovasculaire ziekten, een multi-factoriële aandoening die voornamelijk 

de grote en middelgrote vaten van het lichaam aantast. Alhoewel in het begin van de 
jaren 90 veelbelovende lipide verlagende therapieën een sterke reductie in cardio-
vasculaire mortaliteit voorspelden, is atherosclerose nog steeds de onderliggende 
oorzaak in 40% van alle sterfgevallen in de westerse samenleving. Dit geeft aan dat 
de behandeling van atherosclerose meer vereist dan enkel het verlagen van plasma-
lipiden. Naast plasma lipiden spelen continue celgroei (celcyclus), celdood (apop-
tose en necrose) en ontstekingsprocessen een belangrijke rol in de ontwikkeling 
van atherosclerotische lesies. Om de rol van verschillende celcyclus en apoptose 
genen in de ontwikkeling van atherosclerose te bestuderen, hebben we verschil-
lende muismodellen gemaakt en gekarakteriseerd.

Uitgaande van de bevindingen dat het volledig uitschakelen van de genen van 
onze interesse (nl. p53, Rb en Mdm2) leidt tot òf de vorming van tumoren wan-
neer de muizen 6 maanden en ouder zijn (bij p53) òf embryonale letaliteit (bij 
Rb en Mdm2) hebben we gebruik gemaakt van “site-specific recombinase (SSR)” 
technologie. Met deze techniek bereikten we celspecificiteit door het gebruik van 
het LysMCre muismodel (voor macrofagen) of het SM-CreERT2(ki) muismodel (voor 
gladde spiercellen), twee celtypes die van groot belang zijn in atherosclerotische 
lesies.

Het tumor suppressor gen p53 remt celproliferatie en stimuleert apoptose in 
veel verschillende celtypes. Om de rol van macrofaag p53 in de ontwikkeling van 
atherosclerose te bestuderen, werden apoE-deficiënte muizen met een macrofaag-
specifieke p53 deletie en controle muizen gemaakt (hoofdstuk 2). Macrofaag p53 
werd in milde en ernstige atherosclerose bestudeerd. Macrofaag specifieke p53 de-
letie had geen effect op het oppervlak van de milde en ernstige atherosclerotische 
lesies, niet in het hartkleppengebied en ook niet in de aortaboog en thoracale aorta. 
In de milde atherosclerotische lesies leidde afwezigheid van macrofaag p53 tot een 
afname in apoptose. Dit had geen effect op de atherosclerotische lesie samenstel-
ling. Echter, in de ernstige atherosclerotische lesies, leidde de afname van apoptose 
in p53-deficiënte muizen tot een toename in necrotische celdood, een toename 
van het schuimcel oppervlak, en een afname in de lipide afzettingen. Macrofaag-
specifieke deletie van p53 had geen invloed op celproliferatie in zowel de milde als 
de ernstige atherosclerotische lesies. Deze studie laat zien dat macrofaag p53 een 
sterke regulator is van schuimcelapoptose en remming van deze route leidt tot een 
verschuiving van apoptotische celdood naar necrotische celdood van macrofagen, 
direct resulterend in veranderingen in lesie samenstelling.

Om de kennis van de rol van celcyclus genen in vasculaire ziekten verder te 
verbreden, hebben we de rol van macrofaag Retinoblastoma (Rb) in atherosclerose 
ontwikkeling onderzocht. Het tumor suppressor gen Rb reguleert zowel cel proli-
feratie als celdood in veel verschillende celtypes. In hoofdstuk 3 beschrijven we 
de rol van macrofaag Rb in de ontwikkeling van atherosclerose zoals bestudeerd 
in apoE-defciënte muizen. Gedurende 12 weken werden macrofaag-specifieke Rb 
deficiënte en controle muizen een cholesterol-rijk dieet gevoerd. Macrofaag-speci-
fieke Rb deletie resulteerde in een sterke toename van het atherosclerotisch lesie 
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oppervlak. Bovendien werd de toename in atherosclerose gekarakteriseerd door de 
aanwezigheid van meer ernstige lesies met veel gladde spiercellen en weinig macro-
fagen. In vitro analyses lieten zien dat de toename in atherosclerose onafhankelijk 
was van opname van gemodificeerde lipoproteïnen of productie van cytokines door 
macrofagen. Macrofaag proliferatie was sterk verhoogd in de atherosclerotische le-
sies van macrofaag-specifieke Rb deficiënte muizen. Daartegenover, had macrofaag-
specifieke Rb deletie geen effect op apoptose in de lesies. Deze studie laat duidelijk 
zien dat macrofaag Rb een remmende factor is in de ontwikkeling van atheroscle-
rose via de reductie van macrofaag proliferatie.

Oncoproteine Mdm2 remt p53 activiteit tijdens embryonale ontwikkeling en 
in volwassen homeostatische weefsels. Overexpressie van p53 kan worden geïndu-
ceerd door specifieke inactivatie van zijn remmer Mdm2 (hoofdstuk 4). Om dit 
te bereiken werden muizen waarvan het Mdm2 gen “gefloxed” is, gecombineerd 
met muizen die het tamoxifen-induceerbare Cre-recombinase onder de controle 
van de SM22 promotor hebben (SM-CreERT2(ki) muizen). Dit resulteerde in muizen 
die induceerbaar deficiënt waren voor Mdm2 in gladde spiercellen. Dit model had 
als doel om p53 overexpressie te bestuderen in de gladde spiercel-rijke cap van 
atherosclerotische lesies. Maar, na deletie van Mdm2 specifiek in gladde spiercel-
len, werden de muizen snel ziek en gingen dood, waardoor studies naar de rol van 
gladde spiercel p53 in atherosclerose niet uitgevoerd konden worden. Extra analy-
ses aan het muismodel leverde onverwachts het bewijs dat Mdm2 ophoping van 
actief p53 in rustende gladde spiercellen voorkomt en daarmee de inductie van 
p53-gemedieerde necrotische celdood in vivo.

Hoofdstuk 5 beschrijft een methode om conditioneel en lokaal genen te 
modificeren in de vaatwand met een “perivasculaire drug delivery device (PDD)”. 
Een 4-hydroxytamoxifen (4-OHT) PDD werd rond de carotis en femoralis van een 
muisstam geplaatst, die zowel het tamoxifen-induceerbare en gladde spiercel-speci-
fieke Cre-recombinase (SM-CreERT2(ki)) transgen als het “stop-floxed �-galactosidase” 
gen in de Rosa26 locus heeft. Een dosiscurve van 0-10% (w/w) 4-OHT en tijdscurve 
van 0-14 dagen applicatie van de PDD resulteerde in optimale gen recombinatie bij 
1% (w/w) 4-OHT, 7 dagen post applicatie. De hiermee verkregen recombinatie was 
gelijk aan de niveaus die bereikt werden met systemische toediening van tamoxi-
fen en beperkte zich volledig tot het PDD-behandelde gedeelte van de vaatwand. 
Dus, lokale toediening van een 4-OHT PDD resulteerde in vasculaire gladde spiercel 
specifieke Cre-gemedieerde gen recombinatie zonder andere gladde spiercellen te 
beïnvloeden.

Naast celgroei en celdood speelt ontsteking een belangrijke rol in de ontwik-
keling van atherosclerose. Immuuncellen zijn van groot belang in vroege atheroscle-
rose ontwikkeling en hun “effector” moleculen versnellen de progressie van athe-
rosclerose. Tumor necrosis factor-α (TNFα) is een cytokine met zowel celdood als 
ontstekings modulerende activiteit. Hoewel TNFα en zijn receptoren van belang 
zijn in een aantal biologische activiteiten die zeer relevant zijn voor atherosclerose, 
is de volledige rol van TNFα in de ontwikkeling van atherosclerose nog onduidelijk. 
Eerdere muizen studies lieten zien dat TNFα vroege atherosclerose ontwikkeling 
niet tot nauwelijks beïnvloedt. Om de rol van TNFα in ernstige en complexe athe-
rosclerotische lesies te onderzoeken hebben we TNFα-deficiënte muizen gekruist 
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met APOE*3-Leiden muizen (hoofdstuk 6). Vervolgens werden de muizen gevoerd 
met een cholesterol-rijk dieet om atherosclerose te induceren. TNFα-deficiënte en 
controle muizen vertoonden gelijke niveaus van plasma cholesterol en triglyceriden 
en de systemische ontstekingsparameters ”serum amyloid A” en ”soluble intercel-
lular adhesion molecule-1”. Hoewel TNFα deficiëntie geen invloed had op het athe-
rosclerose lesie oppervlak, hadden TNFα-deficiënte muizen een relatief hoger aantal 
vroege en relatief lager aantal ernstige lesies. Bovendien vertoonden de ernstige le-
sies in TNFα-deficiënte muizen een afname in necrose en een toename in apoptose. 
We concluderen dat TNFα de vorming van ernstigere lesies met meer necrose en 
een lagere incidentie van apoptose stimuleert.

“Peroxisome proliferator activated receptoren” (PPAR) zijn nucleaire recep-
toren die aanwezig zijn in verschillende organen en celtypes. PPAR alpha (α) en 
gamma (γ) zijn de belangrijkste subtypes van deze receptoren en beïnvloeden cel 
proliferatie, differentiatie, apoptose en ontsteking, maar ook lipide metabolisme en 
glucose homeostase via transcriptionele activatie of repressie van genen of via DNA-
bindings-onafhankelijke routes. In atherosclerose leidt PPARα en PPARγ activatie tot 
een reductie van atherogene triglyceriden en systemische ontstekingseiwitten, een 
toename in HDL niveaus en een verbetering van insuline resistentie. Op cellulair 
niveau werken PPARα/γ agonisten op de meeste celtypen die van belang zijn in 
atherosclerose, waardoor de betrokkenheid van deze celtypen in de ontwikkeling 
van de atherosclerotische lesie wordt verminderd. In hoofdstuk 7 onderzochten 
we de anti-atherogene effecten van de gecombineerde PPARα/γ agonist tesaglitazar 
in APOE*3-Leiden muizen, met een normale en gereduceerde insuline gevoeligheid. 
De APOE*3-Leiden muizen werden in twee verschillende dieet groepen ingedeeld. 
De eerste groep kreeg een laag-vet dieet en de tweede groep een hoog-vet insuline-
resistentie-inducerend dieet. In zowel de laag-vet als de hoog-vet muizen kreeg één 
groep een hoog-cholesterol supplement. Een tweede groep kreeg ook dit hoog-cho-
lesterol supplement, maar nu met tesaglitazar als toevoeging. Een derde groep kreeg 
een laag-cholesterol supplement, wat resulteerde in plasma cholesterol niveaus die 
gelijk waren aan de plasma cholesterol niveaus in de tesaglitazar behandelde groep. 
Analyses van atherosclerose, in zowel het hartkleppengebied als in de aortaboog 
(en face analyse), lieten zien dat tesaglitazar anti-atherosclerotische effecten heeft. 
Deze anti-atherosclerotische effecten werden niet enkel geïnduceerd door plasma 
cholesterol verlaging en bleken sterker in muizen op een hoog-vet dieet. Tesaglita-
zar behandeling resulteerde ook in een afname van ontstekings parameters zoals 
“plasma serum amyloid A” (SAA), het aantal aanhechtende monocyten en “Nuclear 
Factor Kappa-B” (NFκB) activiteit in de vaatwand. Het zijn waarschijnlijk deze anti-
inflammatoire eigenschappen van tesaglitazar die zorgen voor een additionele re-
ductie in atherosclerose. 
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