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END-STAGE HEART FAILURE 

 

Chronic heart failure is one of the major healthcare problems in the world both in terms 

of patient numbers, hospitalizations, and economic costs. In the United States, 4 to 5 

million people have chronic heart failure, which leads to more than 2 million 

hospitalizations each year.1,2 Recently, the Rotterdam study showed an overall incidence 

of chronic heart failure of 1.4% in the Netherlands with an overall prevalence of 7.0%.3 

Despite optimal medical therapy (β-blockers, angiotensin-converting enzyme inhibitors, 

spironolactone), many patients develop end-stage heart failure and remain severely 

symptomatic. 

In these patients, cardiac transplantation remains the most effective surgical therapy 

with 1-, 5- and 10-year survival rates of 94, 78, and 46 percent, respectively.4,5 

Although effective, heart transplantation is hindered by donor shortage and its limited 

applicability. The International Society of Heart and Lung Transplantation has reported 

a progressive worldwide decline of cardiac transplantation.6 

Given the limitations of medical therapy and cardiac transplantation, several alternative 

therapies for end-stage heart failure have been adopted in the last decade. Most 

prominent is cardiac resynchronization therapy (CRT), after the first implant in 1995, 

large multi-center trials have been performed indicating improved symptoms, exercise 

tolerance and quality of life.7 A recent study shows an additional survival benefit in 

patients treated by CRT and pharmacological therapy above patients treated with only 

pharmacological therapy.8 In addition, new surgical therapies such as restrictive mitral 

annuloplasty and surgical ventricular restoration have evolved and are currently widely 

performed in patients with end-stage heart failure.9,10 These therapies aim to correct 

frequently observed end-stage complications as mitral regurgitation and left ventricular 

(LV) aneurysm. If not treated, these complications have important adverse effects on 

long-term survival.11-13 

The long-term survival rates of patients with end-stage heart failure treated with several 

therapies are summarized in table 1. Obviously, comparison is hampered by the fact that 

the etiology of heart failure is different in the various subgroups. 

Other alternative therapies in patients with end-stage heart failure involve the use of LV 

devices. Heerdt et al. showed that chronic unloading by LV assist devices reverses 

contractile dysfunction and alters gene expression in patients with end-stage heart 

failure.14 Recently, the cardiac support device (Acorn device) was introduced, which 

seems to reverse LV dilatation and improves functional capacity of heart failure 
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patients.15 However, long-term studies with these devices implanted in more patients 

should be awaited. Finally, preliminary data suggest that cell transplantation or stem 

cell therapy may be applied for repairing damaged myocardium.16-18 These therapies are 

currently under clinical investigation and future data should define their clinical 

efficacy. 

 
Table 1. Survival in patients with NYHA III/IV heart failure after different treatments  

 Follow-up (years) 

Therapy (ref) 1-year 5-year 10-year 

Medical 3,19 63% 35% 9% 

HTX 4,5,20 94% 78% 46% 

CRT 8,21 86% 75% - 

RMA 22-25 84% 50% - 

SVR 26 88% 69% - 

Ref: references; HTX: cardiac transplantation; CRT: cardiac resynchronization therapy; RMA: 

restrictive mitral annuloplasty; SVR: surgical ventricular restoration 
 

 

PHARMACOLOGICAL THERAPIES 

 

Currently, angiotensin-converting-enzym inhibitors and beta-blockers  constitute the 

most important pharmacological therapies for heart failure and large trials have shown 

their capacity to improve survival and to lower morbidity.27-32 Aldosterone antagonists 

and angiotensin receptor blockers may provide additional benefit.33-35,36,37 However, the 

sustained benefit of medical treatment appears relatively short-lived.38 Non-

pharmacological therapies such as heart transplantation and implantable assist devices 

are only considered in the late stage of the disease and access to such therapies is 

limited.39 Alternative non-pharmacological treatments for the failing heart such as CRT, 

mitral valve repair and surgical ventricular restoration are currently widely performed. 

 

 

NON-PHARMACOLOGICAL THERAPIES 

 

Cardiac resynchronization therapy 

LV mechanical dyssynchrony in patients with end-stage heart failure is related to 

electrical, structural, and morphological features.40,41 Mechanical dyssynchrony is 
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present in the normal heart, but becomes more apparent in pathological conditions such 

as heart failure. 42,43 In patients with heart failure, LV electrical dyssynchrony typically 

results from left bundle-branch block. Notably, left bundle-branch block changes LV 

contraction patterns, leading to early and late contraction.44,45 This, in turn, impairs 

systolic function, reduces cardiac output, and increases end-systolic volume and LV 

wall stress.40 

CRT is a novel treatment option in symptomatic patients with end-stage heart failure 

and LV mechanical dyssynchrony. Current indications for CRT in patients with drug-

refractory end-stage heart failure are NYHA class III/IV symptoms, LV ejection 

fraction below 35 percent, QRS duration above 120 ms and left bundle branch block 

configuration. Large randomized placebo controlled studies have demonstrated the 

beneficial effects of CRT on symptoms, exercise capacity, and quality of life.46,47 In 

addition, a recent prospective randomized study showed that CRT substantially reduced 

the risk of complications and death among patients with heart failure and cardiac 

dyssynchrony.8 In this study, a total of 404 patients were assigned to receive medical 

therapy alone and 409 patients to receive medical therapy plus cardiac 

resynchronization therapy and all patients were evaluated in a mean follow-up period of 

29 months. The mortality rate in the medical-therapy group was 13% at one year and 

25% at two years, as compared with 10% and 18%, respectively, in the CRT group. 

This study therefore concluded that implantation of CRT should routinely be considered 

in patients with moderate to severe heart failure and cardiac dyssynchrony. Several 

studies have demonstrated that CRT has beneficial effects on LV hemodynamics 

including reverse LV remodeling.48-50 Recently, Yu et al. demonstrated that LV reverse 

remodeling is a strong predictor of lower long-term mortality and heart failure events.51 

In addition, CRT is associated with reduced sympathetic nervous activity, suggesting 

potentially favourable neurohormonal effects.40 These benefits are pacing dependent, 

because discontinuation of pacing resulted in a rapid loss of cardiac improvement. 

Penicka et al. have recently demonstrated that the degree of baseline LV dyssynchrony 

is the main predictive factor for LV functional recovery and reversed remodeling after 

CRT.52 Therefore, LV dyssynchrony assessed by tissue Doppler imaging may be an 

important additional selection criterium for CRT.53 Bax et al. have recently shown that 

patients with septal to lateral delay above 65 ms will respond to CRT and will have an 

excellent prognosis after CRT. Furthermore, CRT also has beneficial effects on mitral 

regurgitation.54,55 Improved coordinated timing of mechanical activation of papillary 

muscle insertion sites appears to be a mechanistic contributor to immediate reduction of 
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mitral regurgitation by CRT in patients with heart failure. Despite the clear clinical 

benefit, accurate hemodynamic data, i.e. effects on systolic and diastolic LV function, 

remain largely limited to the acute effects of CRT. Long-term effects are reported 

mainly in terms of ejection fraction and reversed remodeling. More detailed 

hemodynamic studies would provide potentially important insight in the working 

mechanisms of long-term CRT. 

 

Restrictive mitral annuloplasty 

Patients with chronic heart failure due to LV systolic dysfunction frequently develop 

mitral regurgitation.56 Several studies have shown that coaptation failure arises in these 

patients as a consequence of geometric alterations, which affects mitral annular size and 

the geometric position of the subvalvular apparatus.57,58 Previously, surgical treatment 

of mitral regurgitation was avoided in patients with heart failure owing to concerns 

about operative risk and peri-operative complications.59 However, patients with mitral 

regurgitation have a significantly decreased survival at 2 years follow-up versus patients 

without mitral regurgitation.11 More recently, with improvements in surgical techniques, 

surgical mitral annuloplasty for mitral regurgitation in the setting of heart failure has 

become a more popular treatment option. Bolling et al. have demonstrated the 

feasibility of mitral valve repair in patients with heart failure by downsizing the annulus 

using a flexible ring.23 Their initial results in 48 patients who underwent restrictive 

mitral annuloplasty showed an early mortality rate of approximately 5% with 1- and 2-

year survival rates of 82% and 71% respectively. Several recent studies have confirmed 

that early mortality is low (between 5 and 7%), heart failure symptoms are ameliorated, 

LV size and ejection fraction improve, and intermediate outcome is favorable.24,25 

However, several studies in patients treated with mitral annuloplasty demonstrated a 

high recurrence rate (30%) of mitral regurgitation after six months follow-up.60,61 In 

contrast to these results, Bax et al. reported no recurrences of mitral regurgitation in 51 

patients with ischemic LV dysfunction at 2-years follow-up.22 Similarly, Szalay et al. 

reported in 121 patients with end-stage heart failure a recurrent rate of 3% with a mean 

mitral regurgitation grade 0.6 at 1-year follow-up.25 The low recurrence rates in these 

latter studies may be associated with a more truly restrictive annuloplasty performed in 

these patients. 

The effects of restrictive mitral annuloplasty on systolic and diastolic LV performance 

are relatively unknown. Bolling and coworkers hypothesized that restrictive mitral 

annuloplasty leads to LV systolic improvement by acute remodeling of the base of the 
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heart and re-establishing the ellipsoid shape.62,63 Recent data from Bax et al. reported 

that 50% of patients showed significant reduction in LV end-systolic diameter over 

time.22 Of note, a substantial percentage (60%) of patients in this study especially those 

with a preoperative LV end-diastolic diameter and LV end-systolic diameter of 65 mm 

and 51 mm, respectively, showed reverse remodeling at late follow-up. These findings 

indicate that the process of reverse remodeling may need substantial time in some 

patients. These issues are clinically relevant, since a reduction of LV dimensions and an 

increase in LV ejection fraction are associated with a favorable prognosis.64,65 However, 

until now there is no randomized clinical trial that demonstrates that surgical correction 

of mitral regurgitation by mitral annuloplasty improves survival or leads to reverse LV 

remodeling. Wu and colleagues have recently demonstrated that there is no clearly 

demonstrable survival benefit conferred by mitral annuloplasty for significant mitral 

regurgitation in patients with chronic heart failure.66 In addition, Enomoto et al. 

demonstrated in an animal model that mitral regurgitation might not contribute 

significantly to adverse remodeling suggesting that it is likely a manifestation rather 

than an important impetus for post-infarction remodeling.67 

In summary, current data demonstrates that restrictive mitral annuloplasty is safe in 

patients with heart failure. Still, data about long-term survival benefits, recurrent mitral 

regurgitation, and LV reverse remodeling is inconclusive. Future prospective 

randomized controlled trials should answer these questions. In addition, hemodynamic 

studies may provide insight in the effects of restrictive mitral annuloplasty on LV 

systolic and diastolic function. 

 

Surgical ventricular restoration 

In patients with ischemic heart failure, structural changes like LV aneurysm, may 

contribute to substantial mechanical LV dyssynchrony. At least 88% of dyskinetic LV 

aneurysms result from anterior-septal infarctions, while the remainder follow after 

inferior infarction.68 The LV nonuniformity of contraction and relaxation reduces 

mechanical efficiency of LV filling and ejection and contributes to diastolic and systolic 

dysfunction.42,69 Furthermore, scarring and LV dilatation associated with aneurysm 

formation may provide a substrate for LV arrhythmias. Surgical ventricular restoration 

is increasingly applied in patients with heart failure and LV aneurysm. Controversy still 

exists regarding the question whether similar techniques may also be useful in treating 

patients with dilated ventricles and scarred regions of the heart when the shape is not 

seriously distorted by an LV aneurysm. Dor et al. described the endoventricular circular 
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patch plasty for LV reconstruction and demonstrated that the results of this technique 

were just as good in patients with akinetic regions as in patients with dyskinetic 

regions.70 Several studies further advocated the use of the endoventricular circular patch 

technique above the simple linear technique in patients with LV aneurysm.71,72 

Although surgical ventricular restoration is increasingly performed, it has not yet found 

general acceptance. Possible reasons include a lack of evidence that demonstrates 

improvement in morbidity and mortality with this technique in patients with ischemic 

heart failure. A recent retrospective analysis has demonstrated that the outcome was 

significantly better in patients who received CABG plus surgical ventricular restoration 

compared to patients who received CABG alone.73 In most studies, operative mortality 

ranges between 0 and 20% and the reported 1- and 5-year survival hovers around 85% 

and 70%, respectively.74-76 Patients in these studies had a subjective clinical benefit, as 

indicated by a significant improvement of their NYHA classification (from III-IV to I-

III) with significant improvement of LV ejection fraction and reduction in end-diastolic 

and end-systolic volumes. However, none of these studies has been conducted in a 

prospective, randomized manner with an acceptable number of patients. 

Initial results with surgical ventricular restoration have recently been published in a 3-

year observational study by the RESTORE group.26 The surgeons in this international 

group performed the surgical ventricular restoration in 662 patients who mainly had 

akinetic defects of the anterior wall. The results have been promising, although any 

conclusions on the incremental efficacy of surgical ventricular restoration relative to 

CABG must be made with caution because of the absence of a control group in the 

RESTORE registry. LV ejection fraction was improved on an average of 10% and all 

patients had significant improvement of NYHA classification. Despite these promising 

data, Elefteriades et al. demonstrated a similar improvement in contractile function in a 

small and selected group of patients who underwent isolated CABG.77 Therefore, 

controversy remains regarding the question whether surgical ventricular restoration or 

CABG alone provide additional benefit above medical therapy. These questions will not 

be answered unless they are investigated in a prospective randomized fashion. The 

STICH (Surgical Treatment for IschemiC Heart failure) trial is the first prospective 

randomized study in the history of coronary artery surgery to specifically assess the 

potential benefit of CABG in patients with ischemic heart failure. This trial is designed 

and powered to answer fundamental clinical questions regarding the ischemic heart 

failure population. The trial tests two hypotheses: (1) CABG combined with intensive 

medical therapy improves long-term survival compared with medical therapy alone and 
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(2) surgical ventricular restoration combined with CABG and medical therapy improves 

survival free of cardiac events compared to CABG and medical therapy without surgical 

ventricular restoration. 

Several studies demonstrated beneficial hemodynamic effects of surgical ventricular 

restoration in patients with ischemic heart failure. These studies reported acute 

improvements in contractile state, energy efficiency, and relaxation, together with a 

decrease in LV mechanical dyssynchrony in patients with heart failure.78,79 Buckberg et 

al. emphasized the importance of considering size, shape and LV fiber orientation in 

patients with heart failure.80-82 It has been proposed that surgical ventricular restoration 

of the dilated LV will restore myofibers in the diseased ventricle to a normal, oblique 

orientation.83 However, this issue remains still controversial and data supporting these 

claims are lacking.84,85 

 

In conclusion, despite the promising results of these alternative therapies in patients 

with end-stage heart failure, the working mechanisms and effects on LV function are 

relatively poorly defined. 

 

 

AIM AND OUTLINE OF THE THESIS 

 

The aim of this thesis was to study the hemodynamic effects of CRT, surgical 

ventricular restoration and restrictive mitral annuloplasty in patients with end-stage 

heart failure by use of pressure-volume loops derived by the conductance catheter. An 

important rational for this approach is that pressure-volume derived indices reflect 

intrinsic systolic and diastolic LV function in a relative load-independent fashion, 

whereas conventional methods are importantly influenced by changes in loading 

conditions. This may be particular relevant during cardiac procedures such as valve 

surgery and surgical ventricular restoration where loading conditions may change 

substantially. Moreover, it is increasingly recognized that mechanical dyssynchrony, 

importantly influence LV function and that benefit of CRT and surgical therapies may 

be partly explained by reduced mechanical dyssynchrony. The ability of the 

conductance catheter to quantify mechanical dyssynchrony in an objective and on-line 

fashion may therefore add to the diagnostic power of this methodology. 

The quantification of effects of these therapies on global and intrinsic LV systolic and 

diastolic function and mechanical dyssynchrony may provide further insight in the 
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working mechanisms of these therapies. This may help to explain improved survival, 

functional status and exercise tolerance in heart failure patients treated with these 

therapies. In this thesis, acute effects of surgical therapies on LV function were assessed 

by peri-operative measurements by the conductance catheter in the operating room, 

whereas chronic effects of CRT and surgical therapies were assessed in the 

catheterization laboratory at baseline and at 6 months follow-up. 
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ABSTRACT 

 

Interpretation of peri-operative measurements of cardiac function during cardiac surgery 

is complicated by changes in loading conditions induced by anesthesia, 

cardiopulmonary bypass (CPB) and the surgical procedure itself. Quantification of left 

ventricular (LV) function by pressure-volume relations as obtained by the conductance 

catheter would be advantageous because load-independent indices can be determined. 

Accordingly, we evaluated methodological aspects of the conductance catheter 

technique and documented LV function pre- and post-CPB in 8 patients undergoing 

CABG. LV pressure-volume loops by TEE-guided trans-aortic application of the 

conductance catheter were obtained at steady state and during preload reduction by 

temporary occlusion of the inferior caval vein. All patients remained hemodynamically 

stable and no complications occurred. Complete data were acquired within 15 minutes 

pre- and post-CPB. Cardiac output (5.2±1.3 to 6.0±1.4 L/min) and LV ejection fraction 

(46±17 to 48±19%) did not change, but end-diastolic pressure increased significantly 

post-CPB (8±2 to 16±7mmHg, p<0.05). Load-independent systolic indices remained 

constant (end-systolic elastance: 1.31±1.20 to 1.13±0.59mmHg/mL). Diastolic function 

changed significantly post-CPB, as Tau decreased from 64±6 to 52±5ms (p<0.05) and 

the chamber stiffness constant increased from 0.016±0.014 to 0.038±0.016/mL 

(p<0.05). We conclude that the conductance catheter method provides detailed data on 

peri-operative myocardial function. Therefore, the conductance catheter method may be 

used to evaluate the effects of new surgical and anesthetic procedures for which the 

present data may serve as reference data. 

 

 

INTRODUCTION 

 

Recently, several new approaches were introduced in cardiac surgery such as restrictive 

mitral annuloplasty, endoventricular circular patch plasty, and off-pump CABG. 

Generally, the efficacy of new techniques is assessed by long-term follow-up of 

patients. However, the acute effects on left ventricular (LV) function of these 

procedures are not well documented and may be predictive for long-term outcome. Peri-

operative assessment of LV function may allow better evaluation of new surgical 

procedures and may help post-operative management by providing insight in the cardiac 

pathophysiology. During cardiac surgery cardiac output, aortic pressure, central venous 
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pressure and the pulmonary arterial wedge pressure usually assess hemodynamic status. 

In addition, transesophageal echocardiography (TEE) is used to assess regional 

contractile function. However, interpretation of all these parameters is complicated by 

their load-dependency. Therefore, given the substantial changes in loading conditions 

that may occur during the operation, these parameters may not reflect intrinsic 

myocardial function. Pressure-volume relations as obtained by the conductance catheter, 

have been shown to provide load-independent indices of systolic and diastolic 

function.1,2 Accordingly, the aim of present study was twofold. Firstly, we described 

and evaluated the application of the conductance technique in the operating room 

including catheter placement, calibration procedures and heart rate-controlled 

measurement of systolic and diastolic pressure-volume relations. Secondly, we 

compared various indices of LV function before and after CPB in patients undergoing 

CABG. These data obtained in patients with relatively normal LV function may provide 

reference data for future studies in which more complex cardiac surgical procedures are 

evaluated. 

 

 

METHODS 

 

The study protocol was approved by the Local Ethics Committee and all patients gave 

informed consent. Eight patients with multivessel coronary artery disease elected for 

CABG were included. Patients with severely depressed LV function (LVEF < 35%), 

unstable angina or atrial fibrillation were excluded. 

 

Anesthesia 

After 2mg lorazepam as sublingual premedication two hours before surgery, all patients 

received total intravenous anesthesia with target-controlled infusion of propofol, 

remifentanil and sufentanil.3-5 Hypnotic state was monitored with a Bispectral Index 

(BIS) monitor (Aspect medical systems, Newton, MA). Induction of anesthesia was 

started with targeted concentration of 1.5μg/ml propofol and 3ng/ml remifentanil. 

Before intubation the remifentanil-targeted concentration was increased to 9ng/ml and 

the targeted propofol concentration to 2μg/ml. A single dose of pancuronium bromide 

(0.1mg/kg) was given to facilitate intubation. During surgery the propofol concentration 

was adjusted between 1.5μg/ml and 2.0μg/ml to maintain a BIS value below 60. 

Remifentanil was titrated between 5 and 10ng/ml in response to the patient's 
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hemodynamic reaction on surgical stimuli. Sufentanil was started at a targeted 

concentration of 0.1ng/ml after start of surgery to allow smooth transition of the patient 

analgesic state from the operating room to the ICU. The patients were ventilated with an 

oxygen/air mixture (FiO2=40%) at a ventilatory rate of 12-15/min and ventilatory 

volume was adjusted to maintain PaCO2 between 4.5 and 5.5kPa (34-41mmHg). A 

thermal filament catheter was placed in the pulmonary artery via the right internal 

jugular vein for semi-continuous cardiac output measurements (Edwards Lifesciences, 

Uden, The Netherlands). To monitor cardiac function and facilitate positioning of the 

conductance catheter peri-operatively a multiplane TEE-probe was inserted. 

 

Conductance catheter technique 

We used a 7F integrated pressure-conductance catheter (CD-Leycom, Zoetermeer, The 

Netherlands) incorporating a solid-state pressure sensor and 12 electrodes with an inter-

electrode spacing of 10mm. A pigtail facilitates placement through the aortic valve and 

positioning within the LV apex (Figure 1). 

 

  
Figure 1. Left: The optimal position of the conductance catheter along the long-axis of the left ventricle. 

Right: the conductance catheter viewed by long-axis view by TEE peri-operatively 

 

The catheter is connected to a Leycom Cardiac Function Lab (CFL) signal-processor. 

Between the two most proximal and two most distal electrodes a dual electric field 

(20kHz, 30μA) is generated.6 The remaining 8 electrodes are used to measure 5 

segmental volume signals. The user may select from three settings the best match with 

the LV long axis: by skipping electrodes one or two 1-cm segments may be converted to 

2-cm segments thereby extending the effective length of the catheter. The optimal 

setting is selected based on inspection of the segmental volume signals. An aortic 
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volume signal is easily distinguished from a ventricular signal because it resembles an 

aortic pressure signal and is out-of-phase with the ventricular volume signals. The 

segmental conductance’s are summed to yield total conductance G(t) and, taking into 

account the specific resistivity of blood and the electrode spacing, converted to a time-

varying volume signal, V(t), which follows through the equation: 

 

V(t) = (1/α)⋅(rho⋅L²)⋅(G(t)-GP) 

 

where α is a slope factor, L is the inter-electrode spacing, rho is the specific resistivity 

of blood measured from a 5ml blood sample using a special 4-electrode cuvette 

connected to the CFL, and GP is the parallel conductance. G(t) is the sum of the 

conductance of the blood in the LV and GP. The latter results from the conductance of 

the ventricular wall, other cardiac chambers and to some extent all electrically 

conductive structures outside the LV cavity. Baan et al. devised a method to determine 

GP by injecting a small bolus (7ml) of hypertonic saline solution (10%) in the distal port 

of the pulmonary artery catheter.1 The highly conductive saline transiently changes 

blood conductivity, which is measured only in the LV. By analyzing the conductance 

signal registered during passage of the bolus through the LV, GP can be determined.1 

The correction volume (Vc) corresponding to GP equals: 

 

Vc = (rho⋅L²)⋅GP 

 

After correction for GP the volume signal is directly proportional to actual ventricular 

volume, but generally underestimates true volume by a fixed factor. There are two main 

causes for this underestimation. First, there may be a mismatch between the measured 

segments and the LV long-axis. Secondly, the conversion of conductance to volume 

assumes that the electric field is homogeneous within the cavity. In reality this is not 

entirely the case resulting in underestimation. The development of dual field excitation 

has substantially improved electric field homogeneity, but some underestimation 

remains especially in large hearts.6 To correct for this underestimation the factor α was 

introduced, which is obtained by comparing conductance-derived stroke volume (SV) 

with an independent measure of SV. In most studies α is calculated by dividing SV of 

the conductance catheter by SV obtained by thermodilution: α = 

SVconductance/SVthermodilution. In the present study we used the 'stat' cardiac output 
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measurements recorded from a Vigilance® Continuous Cardiac Output Monitoring 

System (Edwards Lifesciences, Uden, The Netherlands). 

 

Instrumentation and surgical technique 

After harvesting bypass material, the pericardium was opened and epicardial pacemaker 

leads were placed on the right atrium. A caval tourniquet was applied around the 

inferior caval vein to perform temporary preload reductions by caval vein occlusion. 

After systemic heparinization, a sheath (F8, Cordis, Roden, The Netherlands) was 

introduced in the ascending aorta for placement of the conductance catheter. 

Subsequently the conductance catheter was inserted into the LV and positioned along 

the long axis toward the LV apex. Catheter introduction and positioning was guided and 

verified by TEE and inspection of the segmental conductance signals. Positioning was 

aimed at locating the pigtail in the apex while the most proximal electrodes should be 

located just above the aortic valve. Measurements were started if 5 segmental LV 

volume signals were obtained. 

 

Measurement protocol and data acquisition 

The protocol included measurements at a paced heart rate of 80bpm pre- and post-CPB. 

If intrinsic rate was above 80bpm the pacemaker was set slightly above the intrinsic 

rate. Pressure-volume loops were measured at steady state and during transient caval 

vein occlusion (typical pressure drop of 20mmHg within 5-10s) in order to obtain 

systolic and diastolic pressure-volume relationships. The ventilator was turned off to 

exclude the effects of respiration. Rho was measured just before data acquisition, both 

before and after CPB. Additional acquisitions (before and after CPB) were done for 

determination of GP after injection of 7ml 10% hypertonic saline solution through the 

distal port of the pulmonary artery catheter. Independent cardiac output measurements 

by thermodilution were obtained during steady state. The thermodilution catheter 

provides update measurements approximately every minute indicating average cardiac 

output over the preceding period. An analog signal reflecting the 'stat' signal was 

recorded simultaneously with the pressure-volume signals for off-line calculation of α. 

 

Data analysis 

Baseline hemodynamic data were calculated from steady state pressure-volume loops: 

heart rate (HR), end-systolic volume (ESV), end-diastolic volume (EDV), end-systolic 

pressure (ESP), end-diastolic pressure (EDP), cardiac output (CO), stroke volume (SV), 
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stroke work (SW), maximal and minimal rate of LV pressure change (dP/dtMAX, 

dP/dtMIN), ejection fraction (EF) and the relaxation time constant (Tau). Tau, reflecting 

the early active relaxation process, was calculated as the time constant of mono-

exponential pressure decay during isovolumic relaxation. The isovolumic period was 

defined as the period between the time-point of dP/dtMIN and the time-point at which 

dP/dt reached 10% of the dP/dtMIN value. From pressure-volume loops during caval vein 

occlusion indices of systolic and diastolic function were derived. For systolic function, 

the end-systolic pressure-volume relation (ESPVR), the dP/dtMAX-EDV relation and the 

preload recruitable stroke work relation (PRSW: SW versus EDV) were determined as 

for diastolic function the chamber stiffness constant (CS) was determined. The systolic 

relationships were characterized by their slope and volume intercept. The slope of the 

ESPVR (Ees) as well as its volume intercept, at a fixed systolic pressure of 75mmHg 

(V75) have been shown to be indices of contractility, largely independent of loading 

conditions.7,8 The ESPVR was determined by linear regression of end-systolic pressure-

volume points obtained during caval vein occlusion. Similarly, the PRSW slope (S-

PRSW) was determined by plotting SW against EDV and the same was done for the 

slope of the dP/dtMAX-EDV relation (S-dP/dt). The slopes of these two relationships 

have also been shown to reflect contractility.9,10 The chamber stiffness constant (CS) 

was determined by exponential regression of the end-diastolic pressure-volume relation 

(EDPVR) by means of the following equation: 

EDP = yo+A⋅eCS·EDV 

where yo is the pressure asymptote and A is a constant.  

 

Statistical analysis 

Pre- and post-CPB data were compared with paired t-tests. Statistical significance was 

assumed at p<0.05. All data are presented as the mean±SD. 

 

 

RESULTS 

 

Patients 

Patient characteristics are shown in table 1. All patients underwent normothermic CPB 

and received intermittently antegrade warm oxygenated blood cardioplegia. The 

surgical procedure and postoperative intensive care stay were uncomplicated. Peri-

operative and post-operative ECGs did not show signs of ischemia. Furthermore 
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troponin T levels were measured at least up to 12 hours post-surgery and did not exceed 

0.6 μg/L at any time point indicating that in none of the patients peri-operative 

myocardial infarction occurred.11 

 
Table 1. Patient-characteristics  

Variable Mean ± SD Range 

Age (yr.) 63 ± 11 42-75 

Male sex (%) 88 - 

EF (%) 58 ± 9 40-68 

CPB-time (min) 100 ± 31 60-162 

Aox-time (min) 70 ± 22 49-80 

Duration of surgery (min) 301 ± 72 200-381 

Grafts (number) 4 ± 1 2-5 

EF = Ejection fraction; CPB = Cardiopulmonary bypass; Aox = Aortic cross clamp 

 

Technical considerations 

In all patients complete pressure-volume data were acquired before and after CPB. 

Preparation of the pacemaker wires, application of the caval tourniquet and introduction 

of the sheath were uncomplicated. The introduction of the conductance catheter through 

the aortic valve and catheter placement required careful monitoring by use of TEE 

(figure 1) to reduce the risks of perforation and to obtain an optimal catheter position.  

The optimal transesophageal long-axis view was obtained with the multiplane TEE-

probe from the midesophageal transducer position with the array at 135 º of rotation. 

Occasionally, placement of the catheter within the apex caused ventricular extrasystolic 

beats, but a stable catheter position without arrhythmias could always be obtained. After 

the pre-CPB measurements the conductance catheter was withdrawn, rinsed with 

normal saline, and placed on a sterile table to be re-used post-CPB. During the CPB, the 

introducer sheath on the ascending aorta was used to infuse cardioplegia. Catheter 

placement and measurements before and after CPB were completed within 

approximately 15 minutes. 

 

Calibration of the conductance measurements 

Rho measurements, assessment of Vc and α were performed in each patient before and 

after CPB. Results are summarized in table 2. Rho decreased significantly post-CPB as 
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expected due to hemodilution. On the average, Vc
 and α were not significantly altered 

post-CPB but showed a substantial interindividual variability. 

 
Table 2. Conductance catheter calibration factor, hemoglobin and hematocrit, pre- and post CPB  

Variable Pre-CPB Post-CPB P 

Vc (ml) 129 ± 54 139 ± 50 0.696 

α 0.54 ± 0.24 0.67 ± 0.21 0.267 

Rho (ohm⋅cm) 129 ± 23 105 ± 9 0.015 

Hemoglobin (mmol/L) 7.5 ± 1.1 5.3 ± 0.7 <0.001 

Hematocrit (%) 0.40 ± 0.05 0.26 ± 0.03 <0.001 

VC = Parallel conductance correction volume; α = slope factor; rho = blood resistivity 

 

Hemodynamic data 

Measurements were obtained in each patient before and after CPB. Figure 2 shows 

typical steady state volume, pressure and dP/dt signals and pressure-volume loops.  
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Figure 2. Typical steady state volume, pressure and dP/dt signals, and corresponding pressure-volume 

loops before (PRE: thick lines) and after (POST: thin lines) cardiopulmonary bypass (CPB). As shown by 

the open and closed circles marking the end-systolic pressure-volume points on the pressure-volume 

loops, ESP increased and ESV decreased after CPB indicating increased systolic function. Diastolic 

function, however, appears decreased since diastolic pressure is higher at any given diastolic volume. 

However, while the average values for the whole group showed the same trend, the changes in ESV and 

ESP did not reach statistical significance 

 



Chapter 2 

 32

Systolic and diastolic pressure-volume relations (ESPVR, EDPVR, PRSW and 

dP/dtMAX-EDV) in the same patient derived from pressure-volume loops during caval 

vein occlusion are shown in Figure 3.  
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Figure 3. Example of pressure-volume relations derived by caval vein occlusion before and after CPB. 

The ESPVRs (left panel) show the increased contractile performance after CPB in this patient: although 

Ees is slightly decreased, the position of all end-systolic P-V points to the left and above the pre-CPB 

ESPVR suggests higher contractility. The dotted lines indicate the position of the ESPVR at 75-mmHg 

(V75). The same holds for the PRSW relation (upper-right panel) and the dP/dtMAX-EDV relation (lower-

right panel) although the differences are much less pronounced. The EDPVRs (left panel) provide clear 

evidence for substantial increase in chamber stiffness after CPB, as observed in all patients. As shown in 

table 3, the average position and slope of the ESPVR were not significantly altered after CPB in this 

group of patients 
 

All patients had sinus rhythm and were paced at 80-90bpm during measurements. 

Hemodynamic data are summarized in table 3: Only EDP, Tau and CS changed 

significantly post-CPB 

 

 

DISCUSSION 

 

Assessment of peri-operative ventricular function during cardiac surgery is complicated 

by the fact that substantial changes in loading conditions may occur. Therefore the 

quantification of systolic and diastolic function requires load-independent indices, 

which can be determined from ventricular pressure-volume relations as obtained by the 
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conductance catheter. Accordingly, the purpose of this study was twofold: we evaluated 

methodological aspects of peri-operative application of the conductance catheter and 

documented changes of various indices of LV function pre- and post-CPB in patients 

undergoing CABG. 

 
Table 3. Hemodynamic measurements before and after CPB 

Variable  PRE-CPB POST-CPB t-test 

  Mean ± SD Mean ± SD p 

HR bpm 82 ± 3 85 ± 4 0.024 

CO L/min 5.2 ± 1.3 6.0 ± 1.4 0.293 

EF % 46 ± 17 48 ± 19 0.521 

SV mL 64 ± 14 72 ± 18 0.402 

SW mmHg⋅L 4.5 ± 0.9 5.1 ± 1.4 0.364 

ESV mL 109 ± 93 99 ± 57 0.625 

EDV mL 169 ± 104 164 ± 51 0.845 

ESP mmHg 73 ± 9 83 ± 15 0.198 

EDP mmHg 8 ± 2 16 ± 7 0.004 

dP/dtMAX mmHg/s 926 ± 224 1016 ± 183 0.226 

dP/dtMIN mmHg/s -825 ± 127 -958 ± 147 0.093 

Tau ms 64 ± 6 52 ± 5 0.001 

V75 mL 104 ± 10 87 ± 13 0.216 

Ees mmHg/mL 1.31 ± 1.20 1.13 ± 0.59 0.496 

S-dP/dt mmHg/s/mL 6.9 ± 3.7 6.3 ± 3.7 0.524 

S-PRSW mmHg 62 ± 35 59 ± 24 0.822 

CS 1/mL 0.016 ± 0.014 0.038 ± 0.016 0.017 

CO: cardiac output; EF: ejection fraction; SV: stroke volume; SW: stroke work; ESV: end-systolic 

volume (mL); EDV: end-diastolic volume (mL); ESP: end-systolic pressure; EDP: end-diastolic pressure 

(mmHg); Tau: relaxation time constant, V75: ESPVR volume intercept (at ESP=75 mmHg); Ees: end-

systolic elastance; S-dP/dt: slope of dP/dtMAX – EDV relation; slope of the PRSW relation; CS: chamber 

stiffness constant 

 

Methodological aspects 

Previous studies have extensively shown that the conductance catheter can be applied to 

obtain pressure-volume relationships. Although most patient studies were performed in 
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the catheterization laboratory, several groups have demonstrated feasibility of the 

technique in the operating room under various conditions.12-14 Consistent with these 

previous studies, our study demonstrates that peri-operative pressure-volume 

measurements by the conductance catheter can be used to quantify detailed intrinsic 

systolic and diastolic function within an acceptable time-window. Measurements were 

uncomplicated and no technical difficulties during instrumentation; catheter placement 

and loading interventions were encountered. New technical aspects of our study were 

the use of retrograde insertion of the conductance catheter using TEE guidance 

compared to the trans-mitral approach used in previous studies in the operating room. 

Both approaches may have theoretical advantages and disadvantages: The trans-aortic 

approach provides a better match of the catheter position with the LV long axis. 

Compared with the anterograde placement this gives a better registration especially of 

the volume changes in the basal segments. In contrast anterograde placement through 

the mitral valve may complicate interpretation of segmental volume signals because of 

changes in the mitral valve plane during ejection and filling. On the other hand with 

retrograde placement eccentric (antero-medial) displacement of the catheter at the base 

of the heart may occur but the electric field is such that the measurement electrodes will 

move approximately parallel to the equipotential planes field and thus the eccentric 

movement is unlikely to strongly influence the conductance signal. Another reason for 

using the trans-aortic approach is that we aim to apply this methodology in future 

studies to evaluate the effects of mitral valve surgery, in which case placement through 

the aortic valve is clearly preferable. Furthermore we analyzed the changes in the 

calibration factors. As a disadvantage, substantial between-patient variability was found 

for calibration factors (rho, α and Vc) indicating the need for careful assessment of these 

factors in each individual patient. In addition, after CPB calibration factors rho and, to a 

lesser extent α and Vc, were changed due to reduced hematocrit, fluid shifts and 

possibly altered catheter position with re-insertion. Although the average α and Vc were 

not significantly changed, substantial differences were present in individual patients 

indicating that re-assessment is required at the various stages of surgery. Besides 

influencing between and within-patient variability, the calibration factors importantly 

determine the absolute accuracy of the conductance-derived volumes. Calibration 

factors α and Vc are both obtained by means of indicator-dilution methods: 

thermodilution and, respectively, saline dilution. Thermodilution is widely used in the 

surgical setting and the accuracy is generally found to be acceptable.15 In the present 

study we used 'stat' continuous cardiac output measurements using a thermal filament 
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catheter which has been shown to have accuracy comparable to the bolus injection 

method.16,17 The saline dilution method has been used extensively to obtain parallel 

conductance and was found to be accurate with a slight tendency to underestimate 

parallel conductance obtained by alternative methods.18 An important advantage of 

these indicator-dilution methods compared to imaging modalities such as TEE is that 

they do not require assumptions regarding the geometry of the ventricle. This may be 

relevant especially when comparing conditions in which geometrical changes would be 

anticipated such as after ventricular reconstruction or mitral valve surgery. Furthermore 

the inter- and intra-observer variability of indicator-dilution methods is very limited. 

 

Physiological aspects 

Our main physiological findings were that systolic function was unchanged after CPB 

in these patients undergoing CABG, whereas early relaxation was improved and 

diastolic stiffness was increased. Previous pressure-volume studies comparing pre- and 

post-CPB cardiac function in patients undergoing CABG have shown conflicting data. 

Schreuder et al. reported unchanged systolic function and increased diastolic stiffness, 

while Wallace et al. found a decrease in systolic function, but no changes in relaxation 

or diastolic stiffness.13,14 Both studies used cold cardioplegia whereas our study was 

performed with warm blood cardioplegic arrest, which may explain the preserved 

systolic function in our study as compared to the decrease found by Wallace et al. The 

unchanged systolic function found by Schreuder et al. may be explained by the fact that 

during their pre-CPB measurement the temperature was lowered below 35OC, which 

according to a recent study significantly reduces Ees by approximately 50%. 19 Since 

the post-CPB measurements in Schreuder's study were done at 37OC this may have 

masked an actual reduction in systolic function. With regard to diastolic function all 

studies report an increase in diastolic stiffness although in Wallace's study this effect did 

not reach statistical significance.14 Also in Schreuder's study the increase was less 

pronounced as compared to our study (39% increase vs. 138%).13 However, Schreuder 

et al. described the end-diastolic pressure-volume relation as linear, whereas we derived 

the diastolic stiffness constant from an exponential relation. The increase is most likely 

due to myocardial edema post-CPB as myocardial lymph flow has been shown to 

almost cease during cardioplegic arrest.20 De Hert et al. have shown that a more rapid 

normalization of diastolic stiffness may be obtained by optimizing preload conditions 

prior to weaning from CPB.21 Furthermore, Allen et al. demonstrated that increasing 

contractility by dobutamine infusion enhanced myocardial lymphatic function, thus 
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speeding edema removal post-CPB.22 Thus, for patients who are difficult to wean from 

CPB due to increased diastolic stiffness, inotropic support could be considered. 

However it should be used with caution because it may adversely affect energetics, raise 

heart rate, and induce ischemia.23 In addition several pharmacological substances added 

to the cardioplegia composition have been shown to be associated with reduced edema 

formation.24-26 Remarkably, although diastolic stiffness was increased, early relaxation 

was improved in our study as shown by the significantly reduced Tau. After 

revascularization, enhanced oxygen dependent re-uptake of calcium into the 

sarcoplasmic reticulum would indeed be expected to improve active relaxation.27 Our 

findings are consistent with the results of Humphrey et al. who demonstrated a reduced 

Tau post-CPB in patients undergoing CABG.28 In contrast, De Hert et al. found an 

increased Tau in a similar patient group.21 Differences may be due to the applied 

anesthetic and cardioplegic protocol which influence post-CPB relaxation directly or 

indirectly via changes in contractility or loading, which are tightly coupled with 

relaxation.23,29 Thus unchanged or even increased Tau as found in some studies may be 

related to post-CPB changes in systolic function and/or loading conditions. In our study 

EDV, ESP, dP/dtMAX and Ees were not significantly altered after CPB, whereas De Hert 

et al. report a reduced dP/dtMAX indicating reduced contractile state.21 

 

Comparison with TEE 

As an alternative to invasive volume measurements several groups have used TEE to 

obtain on-line area determination.30-33 This method is less invasive but when used to 

construct pressure-area loops it still requires a LV catheter for pressure measurements, 

and a loading intervention. Schmidlin et al. tested whether pressure-area relations may 

be used as a surrogate for pressure-volume relations to detect changes in contractile 

state and they concluded that pressure-area analysis provides the same changes as 

pressure-volume analysis.33 However the calculations derived from area estimates have 

several limitations. During the cardiac cycle the through-plane motion of the LV 

complicates volume calculations by short axis area estimates. This effect is even more 

prominent during acute loading interventions. On the contrary, the intraventricular 

placement of the conductance catheter provides on-line volume measurements of almost 

the whole ventricle unaffected by translations or rotations of the heart within the thorax. 

In general, on-line area determination by TEE requires optimal image quality and the 

stability and reproducibility of measurements is more successful at higher preload 

conditions by minimizing effects of tracing errors.31 Area estimates derived during caval 
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vein occlusion could become very small thereby decreasing precision of the digital 

echocardiographic quantification method for calculation of pressure-area relations. In 

addition the precision is reduced in the presence of regional wall motion 

abnormalities.30 Conventional assessment of diastolic function by TEE (i.e. without 

simultaneous LV pressure measurement) has two disadvantages compared with the 

conductance catheter method. First, assessment of both active and passive components 

requires two separate TEE views, being the midpapillary esophageal long-axis and 

transgastric short-axis view, respectively.32 Second, the active diastolic relaxation 

measured by mitral Doppler flow analysis is heart-rate and load-dependent. 

 

In conclusion, despite the above limitations, the limitations of TEE are outweighed by 

its proven clinical value to visualize the endoventricular wall and to quantify segmental 

wall motion. On the other hand, the important value of the conductance catheter is that 

it yields accurate, load-independent quantitative data on basic systolic and diastolic 

function. The possibility to measure these fundamental quantities in addition to the data 

provided by TEE may prove to be important in selected patient-groups and is ideal to 

evaluate e.g. new surgical techniques or anesthetic agents or procedures. The 

physiological effects on systolic and diastolic function reported in this study will be 

useful reference data for future studies in patients with depressed LV function 

undergoing cardiac surgery. 
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LETTER TO THE EDITOR 

 

Left ventricular function after cardiopulmonary bypass is related to the length-

dependent regulation of myocardial function 

 

Stefan G. De Hert, MD, PhD 

Philippe J. Van der Linden, MD, PhD 

Anesth Analg 2004; 99: 311-312 

 

 

We read with interest the paper of Tulner and colleagues, in which they reported, in 

eight coronary surgery patients, the use of the conductance catheter method for the peri-

operative assessment of left ventricular (LV) function.1 After cardiopulmonary bypass 

(CPB), the authors observed a preserved systolic function, an acceleration of LV 

pressure fall, and an increase in end-diastolic pressure (EDP). They suggested that these 

data may constitute useful reference values for further studies in patients undergoing 

cardiac surgery. We think that some caution is indicated with respect to this statement.  

Recovery of LV function after CPB is a complex phenomenon and various patterns 

have been described over the years, most of them reporting a transient decrease in 

cardiac function. Different factors may be responsible for this variability. Apart from 

differences in patient population and cardioprotective strategies, specific weaning 

procedures and the choice of the anesthetic regimen may also influence post-CPB 

myocardial recovery. For instance, early restoration of preload conditions can prevent 

the transient depression of both systolic and diastolic dysfunction after weaning from 

CPB (ref. 30 in the article by Tulner et al.).2 Similarly, the use of a volatile anesthetic 

regimen was associated with a better early recovery of myocardial function than a total 

intravenous regimen.3,4  

More important however is the individual variability in cardiac functional reserve. It has 

been shown in coronary surgery patients that an increase in cardiac load resulted in a 

variable hemodynamic response that could not be explained by differences in 

preoperative variables. Some patients showed an improvement, whereas other patients 

showed either no change or even an impairment of LV function. These patients 

developed a decrease in maximal rate of pressure development (dP/dtmax), a delayed 

myocardial relaxation (increase in tau) with enhanced load dependence of LV pressure 

fall, and a major increase in EDP. These patients showed systolic and diastolic 



Letter to the editor 

 41

dysfunction post-CPB, and necessitated inotropic support to be weaned from CPB.5 

This latter response has been attributed to a deficient length-dependent regulation of 

myocardial function.6 On the other hand, patients who developed improvement of 

myocardial function with an increase in cardiac load (manifested by an increase in 

dP/dtmax, an acceleration of LV pressure fall with a decrease in tau, less load 

dependence of LV pressure fall and a minor change in EDP), typically showed no (or 

only minor) decrease in myocardial function post-CPB.5 

In view of these data, it seems that the results reported by Tulner et al. concern a 

subgroup of patients with good cardiac functional reserve and an adequate length-

dependent regulation of myocardial function, resulting in a preserved myocardial 

function post-CPB. Therefore, this particular response, although present in some 

patients, cannot be withheld as the sole reference for the patient population undergoing 

coronary surgery with CPB. 
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IN RESPONSE 

 

We thank De Hert and Van der Linden for their insightful comments on our paper and 

we would like to respond on some of the issues brought forward.1 The aim of our study 

was two-fold: First to describe our approach to quantify peri-operative LV function, and 

second to obtain a reference data set for future studies in patients undergoing cardiac 

surgery. The comments of De Hert and Van der Linden focus on the latter aspect of our 

study. 

We fully agree that the published literature indicates a substantial variability in recovery 

of LV function after cardiopulmonary bypass and we acknowledge the extensive list of 

possible factors influencing this variable outcome. In fact, this is exactly the reason why 

we felt it was necessary to generate a data set that would be applicable to the anesthetic 

and cardioprotective approach followed in our institute. Specifically, we use low-dose 

target-controlled infusion of propofol, remifentanil and sufentanil, and intermittent 

antegrade warm-blood cardioplegic arrest during normothermic cardiopulmonary 

bypass. The metabolic advantages of this approach have already been published, but 

few data are available on the acute hemodynamic effects. Our study was performed in 

patients with relatively preserved LV function undergoing elective CABG, to ensure 

that the possible changes in LV function could be contributed mainly to the effects of 

anesthesia and cardioplegic arrest, rather than to the surgical intervention. This selection 

may partly explain the preserved post-operative systolic function in our patient group. 

However, De Hert et al. studied a similar patient group and reported a more variable 

outcome that could not be explained by pre-operative LV function.2 Therefore 

differences in anesthesia and cardioplegic approaches between our study and the studies 

by De Hert et al. may need to be considered. One such difference is the use of 

normothermic arrest with blood cardioplegia in our study, whereas the studies of de 

Hert et al. included the use of hypothermia and crystalloid cardioplegia. This may be 

important because recent studies indicate less myocardial cell damage after 

normothermic blood cardioplegia.3 Furthermore, the use of propofol in both studies may 

not be comparable because hypothermia has an important influence on propofol 

pharmacokinetics.4 However, we certainly agree that extrapolation of our findings to 

patients with poor baseline LV function and prolonged cardiac arrest should be done 

with caution. But despite this, we would still conclude that the new data provided by our 

study constitute valuable background information when interpreting the acute 
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hemodynamic effects of complex surgical interventions such as LV reconstruction in 

heart failure patients in whom the same anesthesia and cardioplegia approach is used. 

 

Sven A.F. Tulner and Paul Steendijk. 

Leiden University Medical Center, Leiden, The Netherlands 
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ABSTRACT 

 

Mechanical dyssynchrony is an important co-determinant of cardiac dysfunction in 

heart failure. Treatment, either medical, surgical, or by pacing, may improve cardiac 

function to a large extent by improving mechanical synchrony. Consequently the 

quantification of ventricular mechanical dyssynchrony may have important diagnostic 

and prognostic value and may help to determine optimal therapy. Therefore we 

introduced new indices to quantify temporal and spatial aspects of mechanical 

dyssynchrony derived from on-line segmental conductance catheter signals obtained 

during diagnostic cardiac catheterization. 

To test the feasibility and usefulness of our approach we determined cardiac function 

and left ventricular mechanical dyssynchrony by the conductance catheter in heart 

failure patients with intraventricular conduction delay (n=12) and in patients with 

coronary artery disease (n=6) and relatively preserved left ventricular function. 

The heart failure patients showed depressed systolic and diastolic function. However, 

the most marked hemodynamic differences between the groups were found for 

mechanical dyssynchrony indicating a high sensitivity and specificity of the new 

indices. Comparison of conductance catheter derived indices with septal-to-lateral 

dyssynchrony derived by tissue-Doppler velocity imaging showed highly significant 

correlations. 

The proposed indices provide additional, new and quantitative information on temporal 

and spatial aspects of mechanical dyssynchrony. They may refine diagnosis of cardiac 

dysfunction and evaluation of interventions, and ultimately help to select optimal 

therapy. 

 

 

INTRODUCTION 

 

In addition to intrinsic myocardial abnormalities and abnormal loading conditions, 

cardiac dysfunction in heart failure patients is determined by mechanical 

nonuniformities (dyssynchrony), which lead to inefficient pump performance and 

energy expenditure. There is increasing evidence that pharmacological, surgical and 

pacemaker therapies of heart failure partly exert their beneficial effects by reducing left 

ventricular (LV) dyssynchrony. Consequently, quantification of LV dyssynchrony will 

provide diagnostic and prognostic data, which should help to select and guide therapy. 
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Currently, various indices based on magnetic resonance imaging or echocardiographic 

measurements are being used. In the present study we introduce indices, which quantify 

temporal and spatial aspects of dyssynchrony based on measurements obtained during 

cardiac catheterization using conductance catheter methodology. To test the feasibility 

and usefulness of our approach we compared data from congestive heart failure (CHF) 

patients with left bundle branch block (LBBB) with those from patients with coronary 

artery disease (CAD) who had relatively preserved LV function. In addition we 

compared the conductance catheter derived dyssynchrony indices with septal to lateral 

delay in peak systolic velocity as obtained by tissue-Doppler imaging. 

 

 

METHODS 

 

Patients 

All patients gave informed consent and procedures were conducted in accordance with 

institutional guidelines. The investigation conforms with the principles outlined in the 

Declaration of Helsinki.1 Twelve CHF patients (NYHA class III/IV) with LBBB were 

studied during diagnostic catheterization. Six CAD patients were studied in the 

operating room prior to coronary artery bypass grafting. 

 

Protocol 

CHF patients underwent diagnostic catheterization including thermodilution cardiac 

output, left ventriculography and coronary angiography. In addition, a conductance 

catheter was placed in the LV via the femoral artery, and a temporary pacing lead was 

positioned in the right atrium. 

Prior to catheterization the CHF patients were studied by echocardiography. We 

performed tissue-Doppler imaging as described in detail elsewhere2 to determine 

myocardial velocities in basal septal and lateral segments. The time delay between peak 

systolic velocity in the septum and the lateral wall was determined as an index of 

mechanical dyssynchrony. 

CAD patients received total intravenous anesthesia with target-controlled infusion of 

propofol and remifentanyl (1.5-2μg/ml, resp. 5-10ng/ml blood concentration). A 

continuous cardiac output catheter was placed in the pulmonary artery via the jugular 

vein. Following midline sternotomy and before starting cardiopulmonary bypass a 
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conductance catheter was placed in the LV via a purse-string suture on the ascending 

aorta. External pacing leads were placed on the right atrium. 

Measurements: The conductance catheter enables on-line measurement of 5 segmental 

volume (VSEG,i) slices perpendicular to the LV long axis. We used 7F combined 

pressure-conductance catheters with 1-cm interelectrode spacing (CD Leycom, 

Zoetermeer, The Netherlands). The catheter was connected to a Cardiac Function Lab 

(CD Leycom) for on-line display and acquisition (sample frequency 250Hz) of 

segmental and total LV volumes, LV pressure and ECG. Total LV volume (VLV) is 

obtained as the instantaneous sum of the segmental volumes. VLV was calibrated using 

thermodilution and hypertonic saline dilution as previously described.3 Periods of 

approximately 10s at a paced heart rate of 80bpm were selected for off-line analysis 

using custom-made software. 

 

Global cardiac function and nonuniform mechanical performance 

Global LV function was measured by cardiac index (CI), end-diastolic and end-systolic 

volume index (EDVI, ESVI), ejection fraction (EF), end-systolic and end-diastolic 

pressure (ESP, EDP), maximal and minimal rate of pressure change (dP/dtMAX, 

dP/dtMIN), and the time constant of relaxation (Tau). LV systolic elastance was 

estimated by ESP/ESVI, and in addition (dP/dtMAX)/EDVI was calculated as relatively 

load-independent index of systolic function. 

Nonuniform LV performance was determined from the segmental LV conductance 

signals and characterized by the following indices: 

Mechanical dyssynchrony (DYS): At each time-point a segmental signal was defined as 

dyssynchronous if its change (i.e. dVSEG/dt) was opposite to simultaneous change in the 

total LV volume (dVLV/dt). Segmental dyssynchrony is quantified by calculating the 

percentage of time within the cardiac cycle that a segment is dyssynchronous. Overall 

LV dyssynchrony (DYS) was calculated as the mean of the segmental dyssynchronies.4 

DYS may be calculated within each specified time-interval: We determined DYS during 

systole (DYSS) and diastole (DYSD), with systole defined as the period between the 

moments of dP/dtMAX and dP/dtMIN. 

Internal flow (IF): Nonuniform contraction and filling is associated with ineffective 

shifting of blood volume within the LV. This ‘internal flow’ is quantified by calculating 

the sum of the absolute volume changes of all segments and subtracting the absolute 

total volume change: IF(t) = (Σ|dVSEG,i(t)/dt| - |dVLV(t)/dt|)/2. Note that dVLV(t)/dt 

represents the effective flow into or out of the LV. Thus, IF measures segment-to-
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segment blood volume shifts which do not result in effective filling or ejection. Division 

by 2 takes into account that any 'non-effective' segmental volume change is balanced by 

an equal but opposite volume change in the remaining segments. Internal Flow Fraction 

(IFF) is calculated by integrating IF(t) over the full cardiac cycle and dividing by the 

integrated absolute effective flow. 

Mechanical dispersion (DISP): In the CHF patients we expected a substantial 

dispersion in the onset of contraction between the segments. This dispersion was 

assessed by segmental lag-times, tLAG,i, which were determined by calculating the cross-

correlations between VLV(t) and VSEG,i(t+tLAG,i) for all systolic time-points (i.e. between 

dP/dtMAX and dP/dtMIN). For each segment we determined the tLAG,i which produced the 

highest linear correlation. Thus if tLAG,i<0, segment i precedes the global ejection, and 

vice versa. Mechanical dispersion (DISP) was defined as 2⋅SD of the segmental lag-

times. 

 

Statistical analysis 

All data are presented as mean±SD. Comparisons between the CAD and CHF groups 

were performed by unpaired t-tests. We performed receiver-operating characteristic 

(ROC) curve analysis to test the diagnostic performance of the various indices to 

discriminate the patient groups.5 Sensitivities and specificities at the optimal cut-off 

point were determined. Comparison between conductance-derived and tissue-Doppler 

derived dyssynchrony indices was made by linear regression analysis.  

 

 

RESULTS 

 

Typical pressure-volume loops from a CAD and a CHF patient are shown in Figure 1. 

The bottom panel shows the global LV pressure-volume loops clearly illustrating 

enlarged volumes and increased end-diastolic pressure in the CHF patient. Furthermore, 

whereas the CAD patient displays normal isovolumic trajectories during the contraction 

and relaxation phases, the loops from the CHF patient show a continued decrease in 

volume during these phases presumably reflecting mitral insufficiency. The segmental 

pressure-volume loops displayed in the top panels illustrate the inefficient ventricular 

pump behavior of the CHF patient especially in the apical segments. 
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Figure 1. Segmental and global LV pressure-volume loops in typical CAD and CHF patients 
 

The same signals are also displayed as a function of time in Figure 2. The top panels 

show the segmental and total LV volumes, and LV pressure. The bottom panels show 

calculated internal flows. Contraction and filling patterns are substantially more 

dyssynchronous in the CHF patient compared to the CAD patient. In the CAD patient 

internal flow is largely restricted to the isovolumic contraction and relaxation periods, 

which is consistent with normal physiology since, with mitral and aortic valves closed, 

LV shape changes result in internal segment-to-segment flow. In contrast, in the CHF 

patient substantial ineffective internal flow is present throughout the cardiac cycle. 

Hemodynamic data are summarized in Table 1. EF and dP/dtMAX indicate more 

pronounced systolic dysfunction while ESP/ESVI and (dP/dtMAX)/EDVI show 

depressed contractile state, whereas Tau and EDP indicate impaired diastolic function in 

CHF. Differences in EDVI, ESVI and CI were present but did not reach statistical 

significance. Pronounced differences between CAD and CHF were found in DYS, IFF 

and DISP. 
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CAD DYS (%) CHF DYS (%)

apex 33.0 36.6

21.6 34.8

mid 16.3 35.4

10.8 32.9

base 16.1 29.4

mean mean
VLV 19.6 33.8

PLV

IFF (%) IFF (%)

Internal 17.5 105.3
Flow

time (s) time (s)  
 

Figure 2. Typical examples of segmental and total LV volume signals and calculated internal flow in 

CAD and CHF patients. DYS: mechanical dyssynchrony; IFF: internal flow fraction 
 

For both groups dyssynchrony and internal flows were highest in diastole, and the 

apical segments were the most affected (Figure 3). In both groups mechanical 

dispersion in the long-axis direction was present, but it was twice as large in CHF. 

Figure 3 (right panel) shows that contraction started in the basal segment and, on the 

average, subsequent segments (1cm-slices) followed after 5.9ms for CAD and after 

12.4ms in CHF patients. 

The diagnostic value of the various indices to discriminate the two patient groups was 

tested using ROC analysis. Table 1 shows the results with the optimal cut-off values, 

and corresponding sensitivities and specificities. As expected QRS duration accurately 

delineates the groups with a cut-off value of 107ms. The dyssynchrony indices DYS 

and IFF show excellent sensitivity/specificity values, which are higher than the best 

hemodynamic indices EF and dP/dtMAX. The other hemodynamic indices show lower 

sensitivity/specificity reflecting a substantial overlap of the values between the two 

groups. 
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Table 1. Cardiac function, left ventricular mechanical dyssynchrony and receiver-operating 

characteristic (ROC) curve analysis in CAD (n=6) and CHF (n=12) patients 

 
Cardiac function and 

mechanical dyssynchrony 
 ROC curve analysis 

 CAD CHF p  
cut-

off 
sensitivity specificity 

Gender (M/F) 5/1 9/3 .709     

Age (years) 63±7 67±9 .399     

QRS duration (ms) 86±16 186±24 <.001  107 100% 100% 

CI (L/min/m2) 2.6±0.8 2.0±0.5 .099  1.88 58.3% 100% 

EDVI (mL/m2) 73±33 107±37 .077  89 58.3% 83.3% 

ESVI (mL/m2) 45±25 74±32 .068  58 66.7% 66.7% 

EF (%) 48±16 26±9 .001  37.6 91.7% 83.3% 

dP/dtMAX (mmHg/s) 1106±160 764±228 .005  928 83.3% 100% 

-dP/dtMIN (mmHg/s) 1012±229 827±263 .164  797 58.3% 100% 

Tau (ms) 58±9 77±16 .017  66.5 75% 100% 

ESP (mmHg) 86±18 106±32 .167  91 75% 83.3% 

EDP (mmHg) 9±5 18±8 .024  11.4 75% 83.3% 

ESP/ESVI (mmHg/mL/m2) 2.7±1.9 1.8±1.0 .183  1.89 66.7% 66.7% 

dP/dtMAX/EDVI(mmHg/s/mL/m2) 17±7 8±4 .002  11.3 75% 83.3% 

DYS (%) 19±8 32±3 <.001  19.6 100% 83.3% 

DYSS (%) 11±11 30±6 <.001  13.9 100% 83.3% 

DYSD (%) 24±6 34±2 <.001  25.7 100% 83.3% 

IFF (%) 20±14 78±24 <.001  47.0 91.7% 100% 

IFFS (%) 13±19 63±30 .002  11.3 100% 83.3% 

IFFD (%) 25±12 90±29 <.001  33.1 100% 100% 

DISP (%) 33±13 75±37 .026  39.9 83.3% 80% 

Values given as mean±SD, p-values determined by unpaired t-tests. CI: cardiac index; EDVI, ESVI: end-

diastolic and end-systolic volume index; EF: ejection fraction; dP/dtMAX and MIN: maximal and minimal 

rate of LV pressure change; Tau: time constant of relaxation; ESP, EDP: end-systolic and end-diastolic 

pressure; DYS: mechanical dyssynchrony; DYSS, DYSD: systolic and diastolic DYS; IFF: internal flow 

fraction; IFFS, IFFD: systolic and diastolic IFF, DISP: mechanical dispersion 
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Figure 3. Average segmental dyssynchrony and dispersion lag-times in CAD and CHF patients. The inset 

shows the conductance catheter positioned in the LV and the division in 5 segments from apex to base 
 

Tissue-Doppler measurements were performed in the CHF patients and revealed a 

significant difference in the timing of peak systolic velocities of the septum and the 

lateral wall. The average septal-to-lateral delay was 89±43 ms, indicating a 

dyssynchronous intraventricular contraction pattern. We compared the septal-to-lateral 

delay times with the conductance derived dyssynchrony indices using linear regression 

analysis. The results (Figure 4) show highly significant correlations with DYS (r2=0.59, 

p=0.003) and IFF (r2=0.63, p=0.002). The relation with DISP did not reach statistical 

significance (r2=0.26, p=0.089). 
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Figure 4. Linear regression of conductance catheter derived indices of mechanical dyssynchrony (DYS: 

mechanical dyssynchrony; IFF: internal flow fraction; DISP: mechanical dispersion) versus septal-to-

lateral (S-L) delay in the timing of peak systolic myocardial velocity as obtained by tissue-Doppler 

echocardiography 
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DISCUSSION 

 

Dyssynchrony plays a regulating role already in normal physiology, but is especially 

important in pathological conditions such as hypertrophy, ischemia, infarction, or heart 

failure.6,7,8,9,10 Currently, cardiac resynchronization by biventricular pacing is emerging 

as an important therapy for heart failure.11,12 Recently, MRI and echocardiography have 

been used to visualize mechanical dyssynchrony, further emphasizing the important role 

of mechanical dyssynchrony in cardiac dysfunction.10,13,14-18  However, these methods 

are laborious and require substantial operator interaction and expertise. 

We introduce novel indices to quantify dyssynchrony based on volume signals acquired 

with the conductance catheter during cardiac catheterization. The conductance catheter 

was validated previously and the segmental signals reflect instantaneous volume slices 

perpendicular to the LV long-axis as obtained by cine-CT.3,19 Currently, the 

conductance catheter is used mainly to assess global systolic and diastolic function.20-23 

Quantification of nonuniform mechanical function and dyssynchrony may lead to a 

more complete diagnosis of ventricular dysfunction.24,25 Moreover, it may guide 

therapy, since patients with extensive dyssynchrony are likely to benefit from 

resynchronization therapy.26 

We compared CHF versus CAD patients. The groups show pronounced differences for 

DYS, IFF and DISP, which indicates a high sensitivity and specificity of these 

dyssynchrony indices. QRS duration, dP/dtMAX and Tau show a similar discrimination 

between the groups and may also partly reflect dyssynchrony. However, whereas the 

conductance catheter derived indices directly measure regional mechanical events 

throughout the cardiac cycle, QRS duration reflects the underlying electrical activation 

and studies indicate that mechanical and electrical synchrony may diverge.27 Tau and 

dP/dtMAX have also been shown to be markers of dyssynchrony but they more indirectly 

reflect the integrated effects of spatially dispersed mechanical (de)activation during the 

isovolumic relaxation and contraction periods. Dyssynchrony is likely to be most 

pronounced in the isovolumic phases, which explains the sensitivity of parameters that 

reflect these periods. However, the consequences of dyssynchrony on the effectiveness 

of ejection and filling are important for cardiac pump performance, so that indices 

selectively reflecting those cardiac phases may be of high value. 
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In the CHF patients we compared the conductance derived dyssynchrony indices with 

the delay in timing of peak systolic velocity between the septal and lateral wall as 

obtained by tissue-Doppler echocardiography. Septal-to-lateral delay has recently been 

introduced as an index of mechanical dyssynchrony. We found a significant correlation 

for both DYS and IFF, but DISP did not reach a statistically significant correlation. The 

various indices measure different characteristics. Whereas the tissue-Doppler method 

compares the timing of peak velocity between two regions that are likely to show the 

largest phase shift, the conductance-derived indices are based on a comparison of the 

volume changes of short axis slices and global LV volume changes. Apparently patients 

with a larger septal-to-lateral delay also show more segmental dyssynchrony as 

reflected by DISP and IFF. Whether this correspondence is specific for LBBB-CHF 

patients or is more generally valid requires further study. The lack of correlation with 

DISP is unclear. It may be because the index is less sensitive than DISP or IFF as 

shown in the comparison between CAD and CHF patients, or the index may inherently 

be more prone to errors. Interestingly, within the group of CHF patients neither septal-

to-lateral delay nor the conductance derived indices showed a significant correlation 

with QRS duration (Figure 5). This finding is consistent with other reports indicating 

that electrical dyssynchrony does not necessarily predict mechanical dyssynchrony, 

which prompts a need for methods to accurately detect mechanical dyssynchrony.10,28 

 
S-L delay (ms) DYS (%) IFF (%) DISP (ms)

QRS duration (ms)

R2 = 0.044

0

100

200

150 200 250

R2 = 0.020

0

75

150

150 200 250

R2 = 0.021

20

30

40

50

150 200 250

R2 = 0.097

0

75

150

150 200 250

 
 

Figure 5. Linear regression of indices of mechanical dyssynchrony (S-L delay: septal-to-lateral delay of 

peak systolic velocity obtained by tissue-Doppler echocardiography; DYS: mechanical dyssynchrony; 

IFF: internal flow fraction; DISP: mechanical dispersion) vs QRS duration as index of electrical 

dyssynchrony 

 

Our approach may offer several technical advantages. After catheter placement, the 

signals are obtained continuously without operator interaction. In the present study the 

analysis was performed off-line, but real-time display of dyssynchrony indices is 

technically feasible and should enable immediate quantification of the effects of 
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interventions and, e.g., effects of changes in pacemaker settings. The method is 

invasive, but positioning of the catheter in the LV largely eliminates problems with 

through-plane motion inherent in most imaging methods. Heart failure is often 

associated with substantial beat-to-beat hemodynamic variations due to changes in cycle 

length, cardio-pulmonary interaction and conduction disturbances. Thus, techniques -

like MRI- that require hemodynamic steady state and beat-averaging to increase signal-

to-noise may filter out important components of dyssynchrony. Furthermore, the 

temporal resolution of the conductance signals (4ms) is relatively high. 

 

Determination of absolute LV volume from the conductance catheter requires careful 

calibration.3 In the present study calibration factor parallel conductance was obtained by 

the hypertonic saline method and slope factor alpha by thermodilution. Slope factor 

alpha was significantly lower in the CHF patients than in the CAD patients (0.38±0.22 

vs 0.67±0.08, p<0.01) and parallel conductance was significantly higher (214±60 vs 

131±48mL, p<0.01). These findings are consistent with previous studies and reflect 

more electrical field inhomogeneity in the enlarged hearts in the CHF group. However, 

the conductance catheter has been used extensively in enlarged hearts and validation 

studies show that accurate volumes estimates can be obtained provided that appropriate 

calibration is performed.29 As an advantage the dyssynchrony indices can be calculated 

from the raw segmental conductance signals and do not require calibration. Correction 

for parallel conductance (offset factor) is not required because the calculations are based 

on volume changes, and correction for slope factor alpha is not required because 

segmental volume changes are judged relative to the global LV volume changes. The 

latter however implicitly assumes that the segmental slope factors are all the same (and 

thus equal to the slope factor for global volume). This assumption may be a concern 

because theoretical studies indicate that volume in the segments closest to the current 

electrodes may be relatively underestimated due to electric field inhomogeneity 

especially in enlarged hearts.30-32 To test the effects of such underestimations, if present, 

on our dyssynchrony indices we recalculated DYS, IFF and DISP after correcting 

segments 1 and 5 for an assumed underestimation of 20% and segments 2 and 4 for an 

assumed underestimation of 10%. Theoretical studies indicate that underestimation in 

this order of magnitude may be present.30,32 The results were compared with the original 

data using Bland-Altman analysis (Figure 6).33 
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Figure 6. Bland-Altman analysis comparing conductance catheter derived indices of mechanical 

dyssynchrony before and after correction of assumed underestimation of segmental volumes due to 

electric field inhomogeneity. Open circles represent CHF patients, closed circles CAD patients 

 
The analysis shows no significant bias and fairly narrow limits of agreement for each of 

the indices indicating that the influence of a potential underestimation of the outer 

segments on the dyssynchrony indices is relatively small. Although the mean 

dyssynchronies were higher in the CHF patients the differences as detected by the 

Bland-Altman analysis were not systematically different between the two groups. 

The methods for quantifying dyssynchrony presented in this study show similarities 

with an approach previously published by Strum et al.34 They used segmental volume 

signals obtained from conductance catheters to quantify regional wall motion 

abnormalities and referenced amplitudes and phase angles of the segmental signals to 

the global LV volume signal. The phase angle analysis is comparable to our DISP 

index. However, Strum et al measured (in degrees) the relative distances between time-

points of regional minimal volume and global end-systole, whereas we used the entire 

systolic wave forms and used cross-correlation to determine the lag-time between 

segmental and global volume signals. In addition, they compared regional maximal 

stroke volume with effective stroke volume. The latter was measured using maximums 

and minimums of the total LV volume as gated markers of the time when regional 

contraction would contribute to total LV ejection. This effective stroke volume analysis 

is comparable to our internal flow calculation (IFF index), which determines at each 

time point throughout the cardiac cycle whether segmental volume changes are effective 

(i.e. contributing to global volume changes) or lead to ineffective (segment-to-segment) 

internal flow. Strum et al applied these concepts in animal studies where reversible 

regional myocardial dysfunction was induced by intracoronary infusion of esmolol and 

global inotropy was modulated by dobutamine infusions.35,36  
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Limitations 

Optimally the conductance catheter is placed in a straight position from the aortic valve 

to the LV apex. In the operating room we used transesophageal echocardiography and in 

the catheterization laboratory we used angiography to guide positioning.37 However 

occasionally arrhythmias necessitate pulling back the catheter slightly from the apical 

position. In addition the distance from the pigtail to the first measurement electrode is 

approximately 2 cm. Thus volume changes in the most apical part of the LV are not 

measured. If this region is highly dyssynchronous, as might be the case in patients with 

apical infarcts, underestimation of dyssynchrony by our methodology may be expected. 

The patient groups in our study were investigated under different conditions. For 

practical purposes we studied the CAD patients in the operating room during anesthesia 

and after sternotomy, whereas the CHF patients were awake and studied in the 

catheterization laboratory. These differences may have affected the comparisons 

between the two groups. Propofol-remifentanyl anesthesia is known to have myocardial 

depressant and vasodilating properties, whereas sternotomy and pericardiotomy are 

associated with alterations in loading conditions.38,39,40 Given the anesthesia-related 

cardiodepression in the CAD patients, one may expect that the differences in the 

hemodynamic indices would have been more pronounced in case both groups had been 

studied awake. Whether these changes affect the level of dyssynchrony is not well 

known, but studies in dogs with regional stunning show unchanged LV wall asynchrony 

after systemic inotropic stimulation.41 Thus we do not expect that the differences in 

mechanical dyssynchrony between the groups were importantly influenced by the 

different experimental conditions. 

Furthermore, we did not study normal subjects. Thus, future studies are required to 

establish a 'normal' range for the dyssynchrony indices. 

Finally, the segmental conductance catheter signals do not provide an anatomical view 

but represent the total volume of slices perpendicular to the LV long-axis. Thus, e.g. in 

CAD patients, abnormal regional wall motion might be obscured by compensatory wall 

motions within the same circumferential segment. The proposed dyssynchrony indices 

therefore reflect intersegmental differences in contraction and filling and may 

underestimate phase changes obtained by comparing regional lateral and septal wall 

motions, e.g. using tissue Doppler imaging. 
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In conclusion, the proposed indices quantify various aspects of mechanical 

dyssynchrony using conductance catheter methodology which, at the same time, can be 

used for assessment of global systolic and diastolic (dys)function. Diagnostic and 

prognostic value of the dyssynchrony indices requires further investigation. 
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ABSTRACT 

 

Background. Recent studies indicate that normothermic cardiopulmonary bypass 

(CPB) with intermittent antegrade warm blood cardioplegia (IAWBC) may have 

metabolic and clinical advantages, but limited data exist on its effects on myocardial 

function. Therefore, we investigated the acute effects of this approach on systolic and 

diastolic left ventricular function and on chronotropic responses. 

Methods. In 10 patients undergoing isolated CABG we obtained on-line left ventricular 

pressure-volume loops using the conductance catheter before and after normothermic 

CPB with IAWBC. Steady state and load-independent indices of left ventricular 

function derived from pressure-volume relations were obtained during right atrial 

pacing (80-100-120 beats/min) to determine baseline systolic and diastolic function and 

chronotropic responses. 

Results. The mean time of CPB was 105±36 min (median 103, range 60-167 min) with 

a mean aortic cross-clamp time of 75±27 min (median 69, range 43-129 min). Baseline 

(80 beats/min) end-systolic elastance (EES) did not change after CPB (1.22±0.53 to 

1.12±0.28 mmHg/ml, P>0.2), while the diastolic chamber stiffness constant (kED) 

significantly increased (0.014±0.005 to 0.040±0.007 ml-1, p=0.018) and relaxation time 

constant (τ) significantly decreased (61±3 to 49±2 ms, p=0.004). Before CPB, 

incremental atrial pacing had no significant effects on EES and τ but significant negative 

effects on kED (0.014±0.005 to 0.045±0.012 ml-1, p=0.013). After CPB, atrial pacing had 

significant positive effects on EES, τ and kED (EES: 1.12±0.28 to 2.60±1.54 mmHg/ml, 

p=0.021; τ: 49±2 to 45±2 ms, p=0.009; kED: 0.040±0.007 to 0.026±0.005 mmHg, 

p=0.010), indicating improved systolic and diastolic chronotropic responses. 

Conclusion. On-pump normothermic CABG with IAWBC preserved systolic function, 

increased diastolic stiffness, and improved systolic and diastolic chronotropic responses. 

Normalization of the chronotropic responses post-CPB is likely due to effects of 

successful revascularization and subsequent relief of ischemia. 
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INTRODUCTION 

 

Coronary artery bypass grafting (CABG) using cardiopulmonary bypass (CPB) is a 

routine and safe procedure with a mortality rate of approximately 2% in elective cases. 

As traditional cold heart and cold cardioplegic arrest have been shown to reduce post-

operative myocardial function, improvements in cardioplegic approaches are still 

valuable.1 Moreover, the number of patients with heart failure who are eligible for 

surgical intervention is rapidly increasing and preservation of left ventricular function 

by cardioprotection in these patients should be optimal. Warm blood cardioplegia 

represents an accepted alternative method for myocardial protection. Recent studies 

indicate that warm blood cardioplegia results in less myocardial damage than cold 

crystalloid cardioplegia, whereas comparisons against cold blood cardioplegia indicated 

metabolic advantages, a reduced rate of low output syndrome, and improved post-

operative LV function.2,3,4,5 To facilitate construction of distal coronary anastomoses 

intermittent antegrade warm blood cardioplegia (IAWBC) is currently used by many 

surgeons and has shown to be a safe approach  with potentially important metabolic 

advantages.6,7,8,9 However, the acute effects of IAWBC on post-operative myocardial 

function have not been studied extensively. With on-pump CABG, postoperative 

myocardial function may be affected by at least three factors: the extracorporal 

circulation, the revascularization and the cardioplegic cardiac arrest. In addition, the 

interpretation of postoperative hemodynamic measurements is complicated by possible 

alterations in loading conditions and heart rate in comparison to preoperative values. 

The aim of the present study was to quantify the physiological effects of on-pump 

CABG using IAWBC on systolic and diastolic left ventricular function. To this end, we 

measured pressure-volume loops by conductance catheter and quantified systolic and 

diastolic left ventricular function by load-independent parameters derived from 

pressure-volume relations. To assess chronotropic responses the measurements pre- and 

post-CPB were performed during right atrial pacing at 80, 100 and 120 beats/min. 
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METHODS 

 

Patients 

Patients undergoing elective isolated CABG were studied pre- and post-CPB. All 

patients had multi-vessel coronary artery disease and a relatively normal left ventricular 

ejection fraction (> 40%). The ejection fraction was derived from preoperative 

echocardiography. Patients included in the study had regular sinus rhythm and none of 

them had significant valvular disease. The study protocol was reviewed and approved 

by the medical ethics committee of our institute board and all included patients gave 

informed consent. 

 

Anaesthesia 

Patients received premedication (2 mg Lorazepam, sublingual) two hours before 

surgery. All patients received total intravenous anesthesia with target-controlled 

infusion of propofol, remifentanyl and sufentanyl. Pancuronium bromide 0.1 mg/kg was 

given to facilitate intubation. No further muscle relaxation was used. To monitor cardiac 

function and facilitate positioning of the conductance catheter a transesophageal 

multiplane echo (TEE) probe was inserted after induction of anesthesia. Subsequently, a 

thermal filament catheter was placed in the pulmonary artery via the right internal 

jugular vein for semi-continuous cardiac output “stat” measurements (Edwards 

Lifesciences, Uden, The Netherlands). The patients were ventilated with an oxygen/air 

mixture (FiO2 = 40%) at a ventilatory rate of 12-15/min and ventilatory volume was 

adjusted to maintain arterial CO2 tension between 3.5 and 4 kPa. 

 

Cardiopulmonary bypass and cardioplegic arrest 

The cardiopulmonary bypass system consisted of a centrifugal pump (Stockert SIII, 

Stockert instrumente GmbH, Munchen, Germany), a closed venous reservoir, a Trillium 

coated Affinity hollow fiber oxygenator (Medtronic Cardiac Surgery, Kerkrade, The 

Netherlands), a cardiotomy reservoir, and an arterial filter (Dideco, Mirandola Italy). 

The systems were primed with 1300 ml Ringer solution, 200 ml 20% Human albumin 

Cealb®solution (Sanquin, Amsterdam, The Netherlands), 100 ml 20% Mannitol and 

5000 IU of heparin. CPB was performed with a nonpulsatile flow of 2.4 L/min/m2 and 

the core temperature was maintained at 35 0C. Heparin (300 IU/kg) was administered 

before cannulation. Additional heparin was administered if the activating clotting time 

(ACT, Hemochron, Edison, USA) was less than 400 seconds. After cessation of CPB 
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protamine sulfate was administered  (1 mg/ 100 IU heparin). All patients received 

intermittent antegrade warm blood cardioplegia as described by Calafiore et al.6 

Normothermic blood (temperature 35-37°C) was collected from the oxygenator and was 

infused into the aortic root using a roller pump with a mean mean flow of 280 ml/min. 

The tubing was connected to a syringe pump containing potassium in a concentration of 

2 mmol/ml. The first dose (2 min duration, or longer if necessary to obtain a flat ECG) 

was given immediately after aorta cross-clamping and subsequent doses (2 min 

duration) after construction of each distal anastomosis or after 15 minutes. During the 

first dose an initial 2 ml bolus of potassium solution was given and subsequently the 

syringe pump was set to 150 ml/hr. During the second dose the syringe pump speed was 

set to 120 ml/hr, and to 60 ml/hr during all subsequent doses. Consequently, 14 mmol 

potassium was given during the first infusion, 8 mmol during the second, and 4 mmol in 

all subsequent infusions. 

 

Study protocol 

Before and directly after CPB, conductance catheter measurements were performed as 

described previously: Briefly, temporary epicardial pacemaker wires were placed on the 

right atrium to enable measurement at fixed heart rates.10 A tourniquet was placed 

around the inferior vena cava to enable temporary preload reductions. An 8F sheath was 

placed in the ascending aorta for introduction of the conductance catheter. The 

conductance catheter was introduced under TEE guidance and placed along the long 

axis of the left ventricle. Position was optimized by inspection of the segmental volume 

signals. Conductance catheter calibration was performed using calibration factors alpha 

(α) derived from thermodilution and parallel conductance correction volume (Vc) 

determined by hypertonic saline injections.11,12 Continuous left ventricular pressure and 

volume signals derived from the conductance catheter were displayed and acquired at a 

250 Hz sampling rate using a Leycom CFL (CD Leycom, Zoetermeer, The 

Netherlands). Data were acquired during steady state and during temporary caval vein 

occlusion, all with the ventilator turned off at end-expiration. Acquisition was repeated 

at atrial pacing rates (80, 100 and 120 beats/min). From these signals hemodynamic 

indices were derived as described below. 

 

Pressure-volume analysis 

Post-process data analysis was performed by custom-made software. Indices of global, 

systolic and diastolic left ventricular function (heart rate, cardiac output, stroke volume, 
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stroke work, ejection fraction, dP/dtMAX, dP/dtMIN, end-diastolic volume, end-systolic 

volume, end-diastolic pressure, end-systolic pressure, relaxation time constant τ) were 

calculated from steady state pressure-volume loops at 80, 100 and 120 beats/min. 

Systolic and diastolic pressure-volume relations were derived from pressure-volume 

loops acquired during caval vein occlusion at heart rates of 80, 100 and 120 beats/min. 

The slope of the end-systolic pressure-volume relationship (end-systolic elastance, EES) 

was used as relatively load-independent index of systolic left ventricular contractility.13 

Exponential regression of the end-diastolic pressure-volume relationship was used to 

determine the stiffness constant kED as a measure of diastolic chamber stiffness.14 

 

Ischemic markers 

We evaluated post-operative troponin T levels at regular intervals up to 48 hours (1, 3, 

6, 12, 24 and 48 hours). Twelve-lead electrocardiographic recordings before and after 

CPB were routinely performed and assessed by the cardiologist for signs of myocardial 

infarction. Peri- and postoperative myocardial ischemia or infarction was defined as 

serum troponin T levels above 1 μg/l, ECG changes suspective for myocardial 

infarction, and new echocardiographic regional left ventricular wall motion 

abnormalities. 

 

Statistical analysis 

The pre- and post-CPB data were compared with paired t-tests and we used a multiple 

linear regression implementation of repeated measures analysis of variance to analyze 

the effects of chronotropic stimulation pre-CPB and post-CPB, respectively.15 Data are 

presented as mean ± SEM. A p-value less than 0.05 was considered statistically 

significant. 

 

 

RESULTS 

 

Ten patients (9 men; age 62±10 years) were enrolled in this study. All patients had 

multi-vessel disease (mean number of affected vessels 2.7±0.5) and four had previous 

myocardial infarction. The mean pre-operative echocardiographic left ventricular 

ejection fraction was 58±9%. Mean CPB-time was 105±36 min (median 103, range 60-

167 min) with a mean aortic cross-clamp time of 75±27 min (median 69, range 43-129 

min). Note that the actual ischemic time is less because approximately 15% of cross-
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clamp time is used for cardioplegic delivery. The mean number of anastomoses was 

4±1; the left internal thoracic artery was anastomosed to the left anterior descending 

artery in all cases and used as a jump-graft to the diagonal artery in 6 cases. The right 

internal thoracic artery was anastomosed to the obtuse marginal artery in three cases, 

while it was used as a free graft off the left internal thoracic artery and anastomosed to 

both obtuse marginal and right descending posterior arteries in 5 cases. In two patients 

venous bypass grafts were used for revascularization of both these vessels. 

Weaning from CPB was uneventful: four patients received low dosages of dobutamine 

post-CPB (≤ 5 μg/kg/min). There were no peri-operative myocardial infarctions. 

Troponin-T concentrations remained below the diagnostic criteria in all patients 48 

hours postoperatively (Figure 1). The hospital stay was uncomplicated in all patients 

except in one patient who developed mediastinitis and stayed in the hospital for 35 days. 

The mean length of hospital stay was 11 days (range 6-35 days, median 8 days). The 

mean length of stay in the intensive care unit was 1.9 days (range 1-3, median 2 days). 
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Figure 1. Postoperative troponin T plasma levels. The concentration of troponin T (TnT) remained below 

the diagnostic criteria for myocardial infarction in all patients in the post-operative period up to 48 hrs. 

Symbols show median values, error bars indicate ranges 

 

Pressure-volume data  

Hemodynamic data from pre- and post-CPB at paced heart rates of 80 (baseline), 100 

and 120 beats/min are summarized in Table 1. Figure 2 shows pressure and volume 
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signals and corresponding pressure-volume loops during preload reduction at paced 

heart rate of 80 beats/min before and after CPB in a typical patient. The effects of 

pacing pre- and post-CPB on the main systolic and diastolic function indices are 

presented in Figure 3. 

 
Table 1. Hemodynamic data obtained at incremental paced heart rate, pre- and post CPB 

  Pre-CPB   Post-CPB  

 pre-80 pre-100 pre-120 post-80 post-100 post-120 

HR (beats/min) 81.5±1.6 101.1±0.6 * 120.0±1.4 * 86.2±3.9 & 102.5±1.3 # 121.2±0.3 # 

CO (l/min) 6.0±0.6 5.9±0.7 6.0±0.7 5.6±0.3 5.9±0.3 6.2±0.3 # 

SV (ml) 73±7 58±6 * 50±5 * 66±3 58±3 # 51±2 # 

EF (%) 45±7 41±6 * 38±6 * 50±8 & 47±8 47±9 

ESV (ml) 123±38 118±37 * 112±36 * 93±27 93±27 87±27 

EDV (ml) 191±41 171±41 * 159±40 * 152±26 149±28 137±28 # 

ESP (mmHg) 80±5 77±6 72±5 * 78±6 76±3 70±5 # 

EDP (mmHg) 10.1±1.2 7.2±0.7 * 9.0±1.1 16.3±2.8 & 14.9±2.7 11.5±1.9 # 

SW (mmHg.ml) 5,584±729 4,630±645 * 3,567±455 * 4,471±383 4,007±367 # 3,312±260 #

dP/dtMAX(mmHg/s) 981±90 1,004±102 1,014±123 991±84 985±64 997±64 

dP/dtMIN (mmHg/s) -937±94 -956±110 -896±88 -923±67 -936±59 -903±70 

τ (ms) 61±3 58±3 57±3 49±2 & 49±3 45±2 # 

EES (mmHg/ml) 1.22±0.53 1.21±0.43 1.43±0.61 1.12±0.28 1.76±0.92 2.60±1.54 # 

kED (ml-1) 0.014±0.005 0.015±0.008 0.045±0.012* 0.040±0.007& 0.023±0.005# 0.026±0.005#

pre-80, pre-100, pre-120: paced heart rate 80 beats/min (respectively 100, 120 beats/min) pre-CPB; 

post-80, post-100, post-120: paced heart rate 80 beats/min (respectively 100, 120 beats/min) post-CPB. 

HR = heart rate, CO = cardiac output, SV = stroke volume, EF = ejection fraction, ESV = end-systolic 

volume, EDV = end-diastolic volume, ESP = end-systolic pressure, EDP = end-diastolic pressure, SW = 

stroke work, dP/dtMAX maximal rate of pressure change during contraction; dP/dtMIN maximal rate of 

pressure change during relaxation; τ = relaxation time constant, EES = end-systolic elastance, kED = 

diastolic chamber stiffness constant. Significances: * : p<0.05 vs pre-80; # p<0.05 vs post-80; & p<0.05 

post-80 vs pre-80 

 

Baseline data. Hemodynamic data at baseline (i.e. at 80 beats/min) pre- and post-CPB 

are included in Table 1 and Figure 3. Cardiac output and stroke volume remained 

unchanged after CPB, while left ventricular ejection fraction improved significantly. 
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End-diastolic volume (EDV) and end-systolic volume (ESV) had a clear tendency to 

decrease post-CPB (EDV: -39 ml; ESV: -30 ml), but these changes did not reach 

statistical significance. Both end-diastolic pressure and diastolic chamber stiffness 

increased significantly after CPB, while the relaxation time constant τ decreased 

significantly. End-systolic elastance (EES) remained unchanged after CPB. 
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Figure 2. Typical LV pressure and volume signals and pressure-volume loops during preload reduction 

by transient vena cava occlusion, pre- and post-CPB, at paced heart rate of 80 beats/min 

 

Effects of pacing. Hemodynamic data pre- and post-CPB at 80, 100, and 120 beats/min 

are given in Table 1 and Figure 3. Note that post-CPB the mean baseline heart rate was 

86±4 beats/min because in some patients sinus rhythm exceeded the target pacing rate 

of 80 beats/min. Cardiac output increased with incremental pacing post-CPB, while pre-

CPB pacing did not affect cardiac output. Stroke volume decreased both before and 

after CPB with pacing, but this decrease was less pronounced after CPB (-24 ml pre-

CPB vs -14 ml post-CPB). The smaller reduction in stroke volume with pacing post-

CPB was the result of a less pronounced reduction in end-diastolic volume (pre-CPB: -

33 ml; post-CPB: -15 ml), since end-systolic volume decreased by 11 ml pre-CPB and 

by 6 ml post-CPB. Apparently, the capability of the ventricle to fill despite a high heart 

rate is relatively improved post-CPB. This is supported by the results for the diastolic 

indices. Active relaxation, τ, improved during pacing post-CPB, while it remained 

unchanged during pacing pre-CPB. Furthermore, the end-diastolic chamber stiffness 

constant increased significantly during pacing pre-CPB, whereas it decreased during 

pacing post-CPB. It should be mentioned that baseline diastolic stiffness (i.e. at 80 
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beats/min) was higher post-CPB as compared to pre-CPB, but with pacing at 120 

beat/min the post-CPB values dropped below the pre-CPB values. 
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Figure 3. Main systolic and diastolic hemodynamic indices pre-and post-CPB at paced heart rates of 80, 

100 and 120 beats/min. Significances: * : p<0.05 vs pre-80; # : p<0.05 vs post-80; & : p<0.05 post-80 vs 

pre-80 

 

During pacing end-diastolic pressure remained constant pre-CPB, which is the result of 

a reduced end-diastolic volume (which should lower end-diastolic pressure) combined 

with an increased diastolic stiffness (which increases end-diastolic pressure). However, 

post-CPB end-diastolic pressure gradually dropped with incremental pacing, since both 

end-diastolic volume and stiffness decreased. With regard to systolic function, pre-CPB 

EF decreased significantly at 120 beats/min, whereas it was unchanged post-CPB. 

dP/dtMAX was unchanged both before and after CPB. Furthermore, no systematic effects 

were seen on EES during pacing pre-CPB, but post-CPB EES increased significantly at 

120 beats/min indicating an improvement in systolic function (Figure 3). 
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DISCUSSION 

 

CABG is increasingly performed in heart failure patients with concomitant surgical 

valvular repair and/or left ventricular restoration. Optimal preservation of myocardial 

function is important to facilitate these surgical procedures. Traditional cold heart and 

cold cardioplegic arrest may have negative effects on post-operative myocardial 

function and currently normothermic procedures are increasingly used as an 

alternative.1 Previous studies indicate that normothermic arrest with warm blood 

cardioplegia provides metabolic benefits and less cell damage, possibly mediated by a 

better protection from from ischemia-reperfusion injury.2,3,9 However, few data are 

available on the acute effects on ventricular function. The aim of our study was 

therefore to quantify the effects of normothermic on-pump CABG and IAWBC on 

systolic and diastolic left ventricular function. In brief, our results show that this 

approach has no negative effects on baseline systolic function, whereas it tended to 

improve the response of systolic function during incremental pacing. With regard to 

diastolic function we found an improved early relaxation, but the end-diastolic stiffness 

was increased at baseline. However, incremental pacing revealed improved relaxation 

and filling characteristics post-CPB, whereas pre-CPB the diastolic indices remained 

constant or worsened during pacing. 

 

Baseline hemodynamic changes 

The baseline hemodynamic results (i.e. comparing pre- vs. post-CPB at 80 beats/min) 

show a slight but significant increase of ejection fraction after CPB, which is due to a 

marked decrease in end-diastolic volume (-39 ml) with a relatively unchanged stroke 

volume. Stroke volume remained largely unchanged due to a similar decrease of end-

systolic volume (-30 ml) after CPB. Note that, except for EF, none of these volumetric 

changes reached statistical significance. The effect on EDV is the result of impairment 

of late passive diastolic function (kED and EDP increased significantly after CPB), 

despite the fact that active relaxation (τ) significantly improved after CPB. The 

improved ejection fraction and the finding of a reduced end-systolic volume with 

maintained end-systolic pressure both point towards an improved systolic function. 

However, the load-independent contractility index EES did not change significantly. 

Therefore, we would conclude that normothermic CPB with IAWBC at least preserves 

systolic function in this patient group. This is in contrast with studies using cold blood 
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cardioplegia during hypothermia in which a reduced systolic left ventricular function 

after CPB was reported.1 

With respect to diastolic function we found a somewhat prolonged τ at baseline pre-

CPB, which has already been shown to be representative for patients with coronary 

artery disease.16,17 In our study τ decreased significantly after CPB with warm blood 

cardioplegia indicating an improved early, active relaxation. This normalization of τ 

after revascularization is consistent with previous studies regardless of the use of cold or 

warm blood cardioplegia and is most likely related to enhancement of the, highly 

oxygen-dependent, calcium re-uptake process by the sarcoplasmic reticulum after 

revascularization, and not due to effects of CPB.18 After CPB increased circulating 

catecholamines resulting from CPB and ischemia may influence active relaxation. 

However, the unchanged systolic pressure and heart rate after CPB indicate that this 

effect is unlikely to be very prominent in our study. In contrast to the improvement in τ, 

the diastolic chamber stiffness constant, which represents passive late diastolic function 

was significantly increased post-CPB. This increased stiffness (thus reduced diastolic 

compliance) is likely due to temporary myocardial edema and increased water content 

after CPB.19,20 This finding is important when interpreting changes in diastolic function 

after surgical interventions such as ventricular restoration and other procedures.21 

Apparently, part of the changes in diastolic function, at least in the acute phase, are 

related to the cardioplegic arrest and CPB, and should not be attributed to the surgical 

procedure per se. 

 

Chronotropic responses 

We found a significant improvement of cardiac output during incremental atrial pacing 

post-CPB, whereas cardiac output remained constant pre-CPB. This effect reflected a 

more pronounced decrease in stroke volume with pacing pre-CPB, compared to post-

CPB. In normal physiology maintained stroke volume (or a limited reduction) during 

increased heart rate is obtained by a combination of increased systolic function 

(Bowditch effect), which reduces or maintains end-systolic volume, and an improved 

relaxation, which limits the reduction in end-diastolic volume resulting from the 

reduced diastolic filling time. Our results indicate that neither of these mechanisms is 

operative in patients with coronary artery disease (CAD) pre-CPB and consequently 

cardiac output did not increase during incremental pacing. Moreover, diastolic stiffness 

substantially increased during pacing which further limited filling. The finding that 

systolic function does not improve or even decreases with increased heart rate in CAD 
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patients is consistent with previous studies.22 A recent echocardiographic study in 

patients undergoing CABG indicates an increased diastolic stiffness during pacing very 

similar to our findings.23 Numerous studies have documented increased diastolic 

pressure, increased stiffness and upward shifts of the diastolic pressure-volume relation 

with pacing angina, however our study shows that more subtle increases in diastolic 

stiffness are obtained with a relatively small increase in heart rate in CAD patients with 

relatively preserved EF.24 

After CPB, diastolic chamber stiffness, end-diastolic pressure and τ all significantly 

decreased during pacing which may explain the improvement of cardiac output at higher 

heart rates. In addition, EES gradually increased with incremental pacing post-CPB, 

whereas it remained constant pre-CPB, indicating that improvement in systolic function 

contributed to the increase in cardiac output. 

The effects of pacing pre- vs. post-CPB in our study largely mimic the effects of 

exercise before and after revascularization surgery as described in a study by Caroll et 

al.25 After surgery, but not before, both pacing and exercise induced improvements in 

systolic and diastolic function, which enable the required increase in cardiac output. 

However, during exercise end-diastolic pressure and volume increased whereas during 

pacing in our study these indices decreased. These differences are presumably due to 

recruitment of blood volume during exercise leading to increased preload, which does 

not occur during pacing. 

The impaired chronotropic responses pre-CPB as found in our study are presumably due 

to coronary artery disease and the normalization of these responses post-CPB due to 

effects of successful revascularization and subsequent relief of ischemia. 

 

Limitations 

We did not include a control group with a cold cardioplegic approach. However, this 

approach is well documented in the literature and we compared our results against those 

reports. Furthermore, our study was performed in patients with relatively normal LV 

function, whereas the advantages of IAWBC are presumably most important for 

patients with poor LV function. However, in heart failure patients the effects of IAWBC 

would be difficult to assess separately because the surgical interventions (CABG and 

additional procedures like mitral annuloplasty and/or surgical restoration) may 

importantly affect post-operative LV function. 

In conclusion, this study shows that intermittent antegrade warm blood cardioplegia 

during normothermic cardiopulmonary bypass provides excellent myocardial protection 
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of systolic properties, whereas improved diastolic and systolic left ventricular 

chronotropic responses were found acutely after surgery. This cardioprotective stategy 

may be particularly advantageous in patients with heart failure who undergo complex 

surgical procedures with long procedure times. 
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ABSTRACT 

 

Objective. Recent studies show beneficial long-term effects of restrictive mitral 

annuloplasty (RMA) in patients with end-stage heart failure (HF). However, concerns 

are raised about possible adverse effects on early post-operative systolic and diastolic 

function, which may limit application of this approach in HF patients. Therefore, we 

evaluated acute effects of RMA on left ventricular (LV) function by load-independent 

pressure-volume relations. 

Methods. In 23 patients (HF n=10; control n=13) we determined LV systolic and 

diastolic function before and after surgery by pressure-volume analysis using the 

conductance catheter. All HF patients underwent stringent RMA (two sizes under), and 

4 received additional CABG. Transesophageal echocardiography was used for 

evaluation of valve repair. Patients with preserved LV function who underwent isolated 

CABG served as controls. 

Results. RMA (ring size 25±1) restored leaflet coaptation (8.0±0.2mm) with normal 

pressure gradients (2.9±1.8mmHg). RMA did not change cardiac output (5.0±1.8 to 

5.3±0.9L/min, NS), LV ejection fraction (29±5 to 32±8%, NS) or end-systolic elastance 

(0.86±0.50 to 0.99±1.05mmHg/mL, NS). After RMA, end-diastolic volume tended to 

decrease (237±89 to 226±52mL, NS), while end-diastolic pressure remained unchanged 

(14±6 to 15±5mmHg, NS). Diastolic chamber stiffness tended to increase (0.027±0.035 

to 0.041±0.047mL-1, NS), however not significantly. Peak LV wall stress was 

unchanged (356±91 to 346±85 mmHg, NS). Baseline values in the control group were 

different, but changes in most parameters after surgery showed similar non-significant 

trends. 

Conclusion. Mitral valve repair by RMA effectively restores mitral valve competence 

without inducing significant acute changes in LV systolic or diastolic function in 

patients with end-stage heart failure. 

 

 

INTRODUCTION 

 

Chronic mitral regurgitation is a serious complication in patients with end-stage heart 

failure. Patients with mitral regurgitation have a significantly decreased survival at 2 

years follow-up versus patients without mitral regurgitation.1 

The mechanism of mitral regurgitation in end-stage heart failure is multifactorial. 
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Briefly, it is related to changes in left ventricular (LV) geometry with a subsequent 

displacement of the subvalvular apparatus, annular dilatation2 and restrictive leaflet 

motion (class IIIb according to Carpentier's classification3), which results in coaptation 

failure.4,5 From a physiological point of view, mitral regurgitation in these patients will 

lead to LV overload and reduction of forward stroke volume. This occurs initially in 

response to exercise and subsequently at rest, which in turn activates systemic and local 

neurohormonal systems and cytokines that worsen cardiac loading conditions and 

promote LV remodeling and dysfunction.6 This may create a vicious circle wherein 

regurgitation begets more regurgitation. 

Previous studies have shown that interrupting this vicious cycle by mitral valve repair is 

safe, and improves clinical outcome.7 Several groups advocate the use of a stringent 

restrictive ring, two sizes under, to achieve better leaflet coaptation and possibly prevent 

recurrence of mitral regurgitation and promote reverse remodeling.8 Mid-term results 

(18 months follow-up) with this approach indicate reverse remodeling in 58% of 

patients.9 However, the acute effects of restrictive mitral annuloplasty (RMA) on LV 

systolic and diastolic function in patients with end-stage heart failure are unknown. 

There are concerns that correction of mitral regurgitation may decrease LV systolic 

function in the acute phase due to afterload increase caused by closure of a low 

resistance runoff into the left atrium. In addition, it has been suggested that undersizing 

the mitral annulus may affect LV contractility due to increased mechanical tension on 

the base of heart.10 With regard to diastolic function RMA might impair filling. In 

contrast, Bolling hypothesized that undersizing the mitral annulus will lead to acute 

beneficial geometric changes of the base of the left ventricle, which may reduce LV 

volume and wall stress.11 The purpose of this study was therefore to quantify the acute 

effects of RMA on global and intrinsic LV systolic and diastolic function in these 

patients. 

 

 

METHODS 

 

A total of 23 patients were studied in the operating room before and after 

cardiopulmonary bypass (CPB) by pressure-volume analysis using the conductance 

catheter method. We included 10 patients with end-stage heart failure (HF) with co-

existent severe mitral regurgitation who underwent mitral valve repair by stringent 

restrictive annuloplasty and 13 control patients with preserved LV function who 
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underwent elective CABG. The control group was used to distinguish effects of mitral 

annuloplasty from effects of CPB and cardioplegic cardiac arrest, per se. In both groups 

surgery was performed during normothermic CPB with intermittent antegrade warm 

blood cardioplegia. The study protocol was approved by the institutional review board 

and all patients provided informed written consent. 

 

Patient selection and echocardiographic criteria 

The patients in the RMA group fulfilled the following criteria: 

1) NYHA class III or IV 

2) LVEF < 30% 

3) Mitral regurgitation grade ≥ 2 assessed by transesophageal echocardiography 

(TEE) preoperatively (without general anesthesia to avoid underestimation of the 

severity of the mitral regurgitation). The severity of mitral regurgitation was graded 

semi-quantitatively from color-flow Doppler and characterized as: mild, 1+ (jet area/left 

atrial area <10%); moderate, 2+ (jet area/left atrial area 10% to 20%); moderately 

severe, 3+ (jet area/left atrial area 20% to 45%); and severe, 4+ (jet area/left atrial area 

>45%).12 In patients with mitral regurgitation grade 2 an intra-operative dynamic 

loading test was performed as described by Dion et al.5 If this test was positive, that is if 

it resulted in a definite worsening of the severity of mitral regurgitation, restrictive 

mitral annuloplasty was performed. 

4) The mechanism of mitral regurgitation was based on malcoaptation due to 

systolic restrictive motion of the mitral leaflets. 

5) Maximal medical therapy for heart failure including diuretics, afterload 

reduction and beta-blocking agents. 

Patients with primary mitral valve dysfunction (mitral valve prolapse, rheumatic valve 

disease, mitral valve stenosis) were excluded from the study. Also patients with a 

previously implanted biological or mechanical prosthesis in aortic position were not 

included in this study. 

The control group was recruited from patients with preserved LV function (LVEF > 

40%) who underwent elective CABG for multivessel coronary artery disease and who 

needed no additional valvular surgery. The patient characteristics of both groups are 

summarized in Table 1. 
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Table 1. Patient characteristics 

 RMA Control 

No. of patients 10 13 

Male/ Female 5/5 11/2 

Age (years) 56±18 63±8 

NYHA 3.6±0.5 - 

LVEF (%) 25±5 58±9 

Mitral Regurgitation (grade) 3.3±0.5 - 

 

 

Anesthesia 

All patients received total intravenous anesthesia with target-controlled infusion of 

propofol, remifentanil and sufentanil. Hypnotic state was monitored with a Bispectral 

Index (BIS) monitor (Aspect medical systems, Newton, MA). A single dose of 

pancuronium bromide (0.1mg/kg) was given to facilitate intubation. During surgery the 

propofol concentration was adjusted between 1.5μg/ml and 2.0μg/ml to maintain a BIS 

value below 60. Remifentanil was titrated between 5 and 10ng/ml in response to the 

patient's hemodynamic reaction on surgical stimuli. Sufentanil was started at a targeted 

concentration of 0.1ng/ml after start of surgery to allow smooth transition of the patient 

analgesic state from the operating room to the ICU. The patients were ventilated with an 

oxygen/air mixture (FiO2=40%) at a ventilatory rate of 12-15/min and ventilatory 

volume was adjusted to maintain normal PaCO2. A thermal filament catheter was placed 

in the pulmonary artery via the right internal jugular vein for semi-continuous 

thermodilution cardiac output measurements (Edwards Lifesciences, Uden, The 

Netherlands). To facilitate positioning of the conductance catheter and to evaluate the 

effects of mitral valve repair a multiplane TEE probe was inserted. We anticipated that 

the heart failure patient would need inotropic support after surgery. Since this would 

bias our LV function measurements, we started inotropic support directly after 

induction of anesthesia with a low loading dose of 0.25mg/kg enoximone in ten minutes 

and thereafter we gave continuous infusion at a rate of 0.50μg/kg/min, which was 

maintained during the whole operation. 

 

Surgical techniques 

After median sternotomy and, if indicated, harvesting of bypass material, the 

pericardium was opened and normothermic cardiopulmonary bypass was instituted with 

intermittent antegrade warm blood cardioplegic arrest.13 After completion of the 
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anastomosis, a stringent restrictive mitral annuloplasty was performed via a transseptal 

approach using a Carpentier Edwards Physio-ring (Edwards Lifesciences, USA).14 The 

ring size was determined by measuring the size of the anterior mitral leaflet and a ring 

two sizes smaller than the measured size was implanted. After weaning from CPB, TEE 

evaluation was immediately performed in all patients to assess residual mitral 

regurgitation, transmitral diastolic pressure gradient (determined from continuous-wave 

Doppler) and the length of coaptation of the leaflets. 

 

Study protocol  

Before and directly after CPB, conductance catheter measurements were performed as 

described previously.15 Briefly, temporary epicardial pacemaker wires were placed on 

the right atrium to enable pre-CPB and post-CPB measurements at fixed equal heart 

rates. A tourniquet was placed around the inferior vena cava to enable temporary 

preload reductions. An 8F sheath was placed in the ascending aorta for introduction of 

the conductance catheter. The conductance catheter was introduced under TEE guidance 

and placed along the long axis of the LV. Position was optimized by inspection of the 

segmental volume signals. Conductance catheter calibration was performed before and 

after CPB using calibration factors alpha (α) derived from thermodilution and parallel 

conductance correction volume (VC) determined by the hypertonic saline method.16 At 

each stage we performed at least two injections of 7 mL 10% saline into the pulmonary 

artery via the distal port of the thermodilution catheter. Continuous LV pressure and 

volume signals derived from the conductance catheter were displayed and acquired at a 

250 Hz sampling rate using a Leycom CFL-512 (CD Leycom, Zoetermeer, The 

Netherlands). Data were acquired during steady state and during temporary caval vein 

occlusion, all with the ventilator turned off at end-expiration. Acquisition was 

performed at a fixed atrial pacing rate of 80 beats/min. From these signals 

hemodynamic indices were derived as described below. 

 

Pressure-volume analysis 

Global LV function: Parameters of global systolic and diastolic function (heart rate 

(HR), cardiac output (CO), stroke volume (SV), stroke work (SW), pressure-volume 

area (PVA), LV ejection fraction (LVEF), dP/dtMAX, dP/dtMIN, end-diastolic volume 

(EDV), end-systolic volume (ESV), end-diastolic pressure (EDP), end-systolic pressure 

(ESP), relaxation constant (Tau) were calculated from steady state beats using custom-

made software. Mechanical dyssynchrony (DYSS) and internal flow fraction (IFF) was 
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calculated as previously described.17 Effective arterial elastance (Ea), a measure of 

afterload, was calculated as ESP/SV. Time-varying wall stress, WS(t), was calculated 

from the LV pressure and volume signals (P(t), V(t)) as described by Arts et al.: WS(t)= 

P(t)·[1+3·V(t)/VWALL]. LV wall volume (VWALL) was estimated based on the diastolic 

posterior wall thickness derived from M-mode echocardiography.18 The gradient across 

the LV outflow tract was calculated as the difference between peak LV pressure and 

peak aortic pressure. 

 

Systolic and diastolic LV pressure-volume relations: Systolic function was 

characterized by the slope of the end-systolic pressure-volume relationship (End-

systolic elastance, EES), the slope of the relation between the dP/dtMAX and EDV (S-dP), 

and the slope of the preload recruitable stroke work relation (S-PRSW). The position of 

the ESPVR was quantified by calculating the ESV-intercept at a fixed end-systolic 

pressure (ESVIND). The positions of the dP/dtMAX - EDV relation and the PRSW relation 

were determined by calculating the intercepts at a fixed end-diastolic volume, dP/dtMAX, 

IND and SWIND, respectively. As previously described, the fixed end-systolic pressure 

and end-diastolic volume levels were set retrospectively as the mean ESP and EDV in 

each group.17 Diastolic chamber stiffness (Ked) was quantified by exponential regression 

of the end-diastolic pressure-volume relationship.19,20 

 

Statistical analysis 

Pre- and post-CPB data were compared with paired t-tests. Statistical significance was 

assumed at p<0.05. All data are presented as the mean±SD. 

 

 

RESULTS 

 

All HF patients were successfully weaned from CPB after successful mitral valve 

repair. In six patients the origin of HF was ischemic, in four non-ischemic. In four 

ischemic patients additional CABG was performed; the other 2 patients had irreversible 

ischemia and did not receive CABG. In three patients with severe tricuspid 

regurgitation, a concomitant restrictive tricuspid ring annuloplasty (ring size 26) was 

performed. Six (60%) patients needed inotropic support more than 24 hours 

postoperatively. However, none of the patients required intra-aortic balloon pump 

support. The median stay in the intensive care unit in this group was 4 days (range 2 to 
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7 days) with a median total hospital stay of 14 days (range 7 to 18 days). All patients 

could be discharged in good clinical condition from the hospital. The surgical details of 

both groups are summarized in Table 2. 

 
Table 2. Surgical data 

 RMA (n=10) Control (n=13) 

CPB- time (median, minutes) 137 (range 105-287) 104 (range 60-167) 

Aox-time (median, minutes) 96 (range 65-196) 75 (range 43-129) 

Pre-MR 

- AM-size (mm) 

- AML-size (mm) 

- AM/AML ratio 

3.3±0.5 

4.1±0.4 

2.9±0.3 

1.4±0.2 

- 

- 

- 

- 

Ring-size 25±1 - 

CABG No. pts 

Anastomosis 

4 

3.8±1.0 

13 

3.7±0.9 

Length of coaptation 0.8±0.2 - 

Transmitral gradient (mmHg) 2.9±1.8 - 

ICU-duration (median, days) 4 (range 2-7) 2 (range 1-4) 

Hospital stay (median, days) 14 (range 7-18) 9 (range 6-35) 

RMA: restrictive mitral annuloplasty, CPB: cardiopulmonary bypass, Aox: aortic cross clamping time, 

MR: mitral regurgitation, AM: mitral annulus, AML: anterior mitral leaflet 

 

Echocardiography 

Mitral regurgitation quantified before the operation was due to annular dilation and 

systolic restrictive motion of the mitral leaflets, and ≥ grade 3 in all patients. After 

weaning from CPB intra-operative TEE showed a mean length of coaptation of 8±2mm 

without residual mitral regurgitation (Table 2, Figure 1). The mean transmitral diastolic 

pressure gradient was 2.9±1.8mmHg (range 1.2 to 7.5mmHg). None of the patients 

showed systolic anterior movement of the anterior leaflet. 

 

Hemodynamic indices in RMA and control patients (Table 3) 

Cardiac output and LV ejection fraction remained unchanged after RMA. End-systolic 

and end-diastolic volume tended to decrease, but these changes did not reach statistical 

significance. The active relaxation (Tau) was significantly improved, from 73±18 to 

63±15ms (p=0.047). End-diastolic pressure did not increase significantly, and dP/dtMAX, 

dP/dtMIN and stroke work were also unchanged. Effective arterial elastance (Ea, a 

measure of afterload) was unchanged after RMA. After ring insertion the pressure 
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gradient across the LV outflow tract was unchanged (from 2.1±3.3 to 2.8±3.3mmHg; 

p=0.662). Mechanical dyssynchrony showed a clear tendency to decrease after RMA, 

but the changes did not reach statistical significance (p=0.084). 

 

   
 
Figure 1. Transesophageal echocardiographic long-axis view before and after restrictive mitral 

annuloplasty in a 41 year-old patient with ischemic dilated cardiomyopathy (LVEF: 20%) and severe 

mitral regurgitation (grade 4). Mitral annular dilatation was demonstrated as the relative ratio between 

the diastolic mitral annular diameter (5.2mm) and the diastolic length of the anterior mitral leaflet 

(3.6mm) exceeded 1.3 (1.44). Restrictive mitral annuloplasty (Edwards Physio-ring size 26) was 

performed and postoperative mitral leaflet coaptation was 12mm with a normal inflow pressure gradient 

(3.5mmHg) and no residual mitral regurgitation. Additional restrictive tricuspidal ring annuloplasty was 

performed for severe tricuspidal regurgitation (grade 3) 

 

The mechanical efficiency, calculated as SW/PVA, was unchanged after RMA. 

Similarly, peak LV wall stress (PWS: 356±91 to 346±85mmHg, p=0.668) and end-

diastolic wall stress (WSED: 64±30 to 68±17mmHg, p=0.639) were unchanged. 

Although baseline values of most parameters in the control patients were substantially 

different from those in the RMA patients (consistent with the depressed LV function in 

the RMA patients), the changes after surgery were very similar. Like in the RMA 

patients, most parameters were unchanged except Tau, which was significantly 

improved in both groups, but the change in Tau was approximately the same in both 

groups (-10.1±5.0ms in the RMA patients, and -11.1±5.4ms in the control group, 

p=0.829). As a difference, LV ejection fraction was significantly improved in the 

control patients (46±15% to 52±18%, p=0.025), whereas the increase in the RMA 

patients did not reach statistical significance (29±5% to 32±8%, p=0.315). 
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Table 3. Hemodynamic data pre- and post surgery in RMA and control (CABG) patients 

 RMA (n=10) Control (n=13) 

 Pre Post p Pre Post p 

HR (beats/min) 85±7 88±13 0.491 82±3 86±8 0.113 

CO (L/min) 5.0±1.8 5.3±0.9 0.516 4.9±1.2 5.9±1.4 0.193 

SV (mL) 68±25 69±10 0.905 59±15 69±19 0.350 

LVEF (%) 29±5 32±8 0.315 46±15 52±18 0.025 

EDV (mL) 237±89 226±52 0.564 142±52 146±45 0.720 

ESV (mL) 171±67 163±51 0.459 86±49 82±47 0.190 

ESP (mmHg) 78±8 79±14 0.706 74±13 79±14 0.517 

EDP (mmHg) 14±6 15±5 0.356 8±2 14±5 0.001 

dP/dtMAX (mmHg/s) 713±154 775±197 0.444 992±282 970±137 0.701 

dP/dtMIN (mmHg/s) -754±105 -802±161 0.351 -880±208 -954±185 0.474 

SW (mmHg.mL) 4,299±1,335 4,162±1,258 0.703 4,400±1,605 5,004±1,827 0.714 

PVA (mmHg.mL) 9,422±3,460 9,072±2,924 0.808 5,873±2,079 6,376±2,517 0.761 

SW/PVA 0.50±0.17 0.49±0.15 0.826 0.75±0.06 0.80±0.10 0.306 

Tau (ms) 73±18 63±15 0.047 62±6 51±5 <0.001 

EA (mmHg/mL) 1.39±0.60 1.29±0.36 0.546 1.27±0.20 1.22±0.38 0.984 

DYSS (%) 23.6±4.3 18.5±6.7 0.084 17.8±4.1 17.1±2.7 0.217 

IFF (%) 31.7±15.4 24.6±20.2 0.459 19.4±8.6 17.2±6.3 0.127 

EES (mmHg/mL) 0.86±0.50 0.99±1.05 0.688 1.31±0.93 1.26±0.72 0.836 

ESVIND (mL) 169±81 161±68 0.572 82±50 69±37 0.048 

S-dP (mmHg/s/mL) 6.6±5.4 7.2±8.9 0.858 8.5±5.4 7.4±4.2 0.583 

dP/dtMAX,,IND(mmHg/s) 734±633 771±264 0.832 1,160±625 1,129±467 0.313 

S-PRSW (mmHg) 64±54 60±41 0.855 65±30 55±20 0.594 

SWIND (mmHg.mL) 4,693±3,140 5,093±3,702 0.725 5,678±3,532 5,473±2,544 0.985 

PWS (mmHg) 356±91 346±85 0.668 - - - 

WSED (mmHg) 64±30 68±17 0.639 - - - 

KED (mL-1) 0.027±0.035 0.041±0.047 0.542 0.021±0.014 0.038±0.019 0.015 

HR: heart rate, CO: cardiac output, SV: stroke volume, LVEF: left ventricular ejection fraction, EDV: 

end-diastolic volume, ESV: end-systolic volume, ESP: end-systolic pressure, EDP: end-diastolic 

pressure, SW: stroke work, PVA: pressure-volume area, Tau: relaxation time constant, EA: effective 

arterial elastance, DYSS: mechanical dyssynchrony, IFF: internal flow fraction, EES: end-systolic 

elastance, ESVIND: intercept of ESPVR at mean ESP, S-dP: slope of dP/dtMAX–EDV relation, dP/dtMAX, IND 

, intercept of dP/dtMAX–EDV relation at mean EDV, S-PRSW: slope of the PRSW relation, SWIND, 

intercept of PRSW relation at mean EDV, PWS: peak wall stress, WSED: end-diastolic wall stress, KED: 

diastolic chamber stiffness constant 
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Pressure-volume relations (Figure 2) 

Because steady state hemodynamic indices, as reported in the previous section, are load-

dependent we also assessed systolic and diastolic function by pressure-volume relations. 

The slopes of these relations are sensitive and load-independent measures of LV 

function. Pressure-volume relations were determined from data acquired during 

temporary preload reduction obtained by vena cava occlusion. The mean reduction in 

EDV was 33±13mL in the control group and 39±16mL in the RMA group. In both the 

RMA and control groups the slopes of the systolic relations (EES, S-dP, S-PRSW) did 

not show significant changes after surgery. Baseline values confirmed depressed LV 

function in the RMA group. With regard to diastolic function, the diastolic chamber 

stiffness constant (KED) increased in both groups (control: 0.021±0.014 to 

0.038±0.014mL-1, p=0.015; RMA: 0.027±0.035 to 0.041±0.047mL-1, p=0.542), but the 

increase did not reach statistical significance in the RMA group. 
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Figure 2. Pressure-volume relations before and after RMA in a patient with end-stage heart failure. In 

this patient the end-diastolic pressure-volume relation (EDPVR) demonstrates an increased diastolic 

stiffness. This was also found in the group as a whole, but the effect was not statistically significant. The 

slope (EES) of the end-systolic pressure-volume relation (ESPVR) in this patient decreased slightly. On the 

average, there was a small increase in EES in the RMA patients, but this change did not reach was not 

statistical significance 
 

 

DISCUSSION 

 

Mitral valve regurgitation is an important pathology in end-stage heart failure 

characterized by annular dilatation and restrictive leaflet motion.21 Morbidity and 
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mortality is high if mitral regurgitation is treated conservatively.22 Grigioni et al. clearly 

demonstrated that the severity of mitral regurgitation is directly related to mortality 

risk.1 

Therefore, it seems reasonable to correct mitral regurgitation in patients with end-stage 

heart failure to improve prognosis. Currently, mitral annuloplasty is not routinely 

performed in these patients because substantial mortality and high recurrence rates are 

reported, and no evidence from randomized studies is available.7,23 However, several 

recent studies have shown relatively low operative mortality and suggest improved 

long-term survival after stringent restrictive mitral annuloplasty.9,11,24 Unfortunately, 

insights in the acute effects of RMA on systolic and diastolic LV performance are still 

limited and concerns are raised about possible adverse acute effects on systolic and 

diastolic LV function, which would limit application of this approach in patients with 

end-stage heart failure. The aim of our study was therefore to quantify these effects by 

use of load-independent pressure-volume indices. 

We found unchanged systolic function after RMA. This is interesting, because earlier 

studies had predicted adverse effects, which would be the result of an afterload 

mismatch created by closure of a low-resistance run off into the left atrium. However, 

this "pop-off" effect may not exist and the high mortality in earlier studies appears 

mainly related to loss of LV function by disruption of the sub-valvular apparatus, 

because in that time, valve replacement (rather than repair) was mostly performed.25 

Effect on systolic function may also result from acute remodeling of the base of the 

heart due to the undersized ring. Bolling et al. argue that this would improve systolic 

function, however a study by David et al. implies a negative effect on systolic function 

because an undersized ring presumably impairs stretching and shortening of the 

proximal part of the basoconstrictor muscles (similar to a rigid ring).26,27 In our study, 

we did not find any evidence for an altered, either reduced or improved, systolic 

function. In addition, systolic anterior motion of the anterior leaflet leading to LV 

outflow tract obstruction was not found in our series. 

With regard to diastolic function we found an increase in diastolic chamber stiffness. 

This effect was present in both groups, but it was only statistically significant in the 

control patients. This increase in diastolic chamber stiffness is probably mainly an effect 

of cardioplegic arrest, leading to interstitial myocardial edema.28 LV wall stress was 

unchanged after RMA consistent with largely unchanged end-diastolic volume and 

pressure. 
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The number of studies, in which effects of RMA on LV performance are evaluated, is 

limited. Several studies show improved LV ejection fraction and reduced end-diastolic 

volume.8,11,24,29 Bishay et al. reported improved LV function and reversed remodeling at 

two years follow up in patients with severe LV dysfunction.30 However, this group was 

heterogeneous and the patients underwent either mitral annuloplasty with various 

techniques or mitral valve replacement. Bax et al. studied patients who strictly 

underwent restrictive mitral annuloplasty, and showed that reverse remodeling of the 

LV is a gradual and time-dependent process.9 These results are consistent with our 

findings, which show no acute effects on LV performance after RMA. Interestingly, our 

results show a clear tendency for a reduced mechanical dyssynchrony after RMA. This 

index has recently been shown a very sensitive marker of LV dysfunction and 

potentially this improvement may contribute to beneficial long-term effects.17 

 

Limitations 

The sample size in our study was relatively small and potentially positive effects on 

systolic function may be demonstrated in a larger group of patients. However, we 

performed pre- and post-CPB measurements in each patient, which optimizes the 

statistical power to detect possible effects of the surgical intervention. In addition, the 

RMA group was heterogeneous since in four patients additional CABG was performed. 

This subgroup was too small for meaningful statistical analysis, but the effects on 

pressure-volume relations in these patients did not appear to be different compared to 

the effects in the whole group. Furthermore, beneficial effects on LV systolic function 

in these patients would not be expected early after surgery as effects of 

revascularization on hibernating myocardium often occur later after surgery.31 

Measurements of global LV function were performed immediately after surgery with 

open chest and during inotropic support. The confounding effects of inotropic support 

were limited by also performing the measurements before surgery under inotropic 

support, but possible altered β-receptor sensitivity cannot be excluded. Assessment of 

regional function and of long-term effects under physiological conditions requires 

further studies. 

 

In conclusion, mitral valve repair by RMA effectively restores mitral valve leaflet 

coaptation in patients with end-stage heart failure and severe mitral regurgitation, 

without significant acute changes in baseline hemodynamics and LV systolic and 
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diastolic function. Our findings support the use of this approach even in patients with 

severely depressed LV function in view of the expected beneficial long-term results. 
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ABSTRACT 

 

Objectives. Surgical ventricular restoration (SVR) aims at improving cardiac function 

by normalization of left ventricular (LV) shape and size. Recent studies indicate that 

SVR is highly effective with an excellent five-year outcome in patients with ischemic 

dilated cardiomyopathy. We used pressure-volume analysis to investigate acute changes 

in systolic and diastolic LV function, mechanical dyssynchrony and efficiency, and wall 

stress. 

Methods. In three patient groups (total, n=33), pressure-volume loops were measured 

by conductance catheter before and after surgery. The main study group consisted of 10 

patients with ischemic dilated cardiomyopathy (NYHA III/IV, LV ejection fraction 

<30%) who underwent SVR and CABG. In this group, 7 patients underwent additional 

restrictive mitral annuloplasty (RMA). To assess potential confounding effects of RMA 

and cardiopulmonary bypass, we included a group of 10 patients (NYHA III/IV, LV 

ejection fraction <30%) who underwent isolated RMA and a group of 13 patients with 

preserved LV function who underwent isolated CABG. 

Results. After SVR, end-diastolic and end-systolic volumes were reduced: 211±54 to 

169±34 mL (p=0.03), and 147±41 to 110±59 mL (p=0.04), respectively. LV ejection 

fraction (27±7 to 37±13%, p=0.04) and end-systolic elastance (1.12±0.71 to 1.57±0.63 

mmHg/mL, p=0.03) improved. Peak wall stress (358±108 to 244±79 mmHg, p<0.01) 

and mechanical dyssynchrony (26±4 to 19±6%, p<0.01) were reduced, whereas 

mechanical efficiency improved (0.34±13 to 0.49±0.14, p=0.03). End-diastolic pressure 

increased (13±6 to 20±5 mmHg, p<0.01), whereas the diastolic chamber stiffness 

constant tended to be increased (0.021±0.009 to 0.037±0.021 mL-1, NS). 

Conclusions. SVR achieves normalization of LV volumes and improves systolic 

function and mechanical efficiency by reducing LV wall stress and mechanical 

dyssynchrony. 

 

 

INTRODUCTION 

 

Surgical ventricular restoration (SVR) by means of endoventricular circular patch plasty 

(Dor procedure) is beneficial in patients with left ventricular (LV) post-infarction 

aneurysm. Previous studies have shown that this procedure is safe, improves functional 

class, long-term survival, and LV ejection fraction.1,2 The exclusion of akinetic or 
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dyskinetic segments achieves acute volume reduction, changes in LV shape, and 

decreases of LV dyssynchrony.3,4 These acute changes will influence LV global and 

intrinsic systolic and diastolic function. The use of pressure-volume analysis to assess 

these effects is advantageous because pressure-volume relations accurately reflect 

intrinsic LV function, and are relatively independent of loading conditions.5,6 Moreover, 

pressure-volume signals can be used to quantify mechanical dyssynchrony and LV wall 

stress.7 

Theoretical studies predict that volume reduction surgery results in leftward and upward 

shifts of the end-systolic and end-diastolic pressure-volume relations in the pressure-

volume diagram, indicating a positive effect on systolic function but an adverse effect 

on diastolic function.8,9 However, these effects are likely to be modulated by the 

material properties and the size of the resected or excluded region. Artrip et al. 

quantified the differential effects of volume reduction on end-systolic and end-diastolic 

function in a mathematical model.10 Their findings indicate that an overall negative 

effect on LV pump function results if weak but contracting myocardium is resected (like 

in the Batista procedure), beneficial effects if the excised region is dyskinetic, and 

equivocal effects with akinetic scar resection. However, whether these models are 

realistic is unknown since in-vivo data on the effects of SVR and related procedures on 

LV pressure-volume relations in humans are very limited. One important aspect, which 

is not taken into account by these particular models, is (alterations in) mechanical 

dyssynchrony. Recent studies demonstrated that LV mechanical synchrony substantially 

improves after SVR resulting in more efficient myocardial pump function.3,4 

Furthermore, a recent Special Report from the RESTORE group emphasized the 

importance of considering interaction and (re)arrangement of myocardial layers and 

fiber orientation, and stressed the need for additional studies to quantify the effects of 

SVR and to get a better insight in the underlying mechanisms.11 

As SVR reversely remodels ventricular size and shape, this approach may alter systolic 

and diastolic function.11,12 Additionally, SVR may decrease LV wall stress and 

myocardial oxygen consumption by reducing end-diastolic volume, resulting in 

improved functioning of the remote myocardium.13 The aim of this study was to 

determine the acute effects of SVR on systolic and diastolic pressure-volume 

relationships, LV wall stress, and mechanical dyssynchrony and efficiency in patients 

with ischemic dilated cardiomyopathy. 
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METHODS 

 

Patients 

The main study group consisted of 10 patients with ischemic dilated cardiomyopathy 

who underwent SVR. SVR is often combined with restrictive mitral annuloplasty 

(RMA) and therefore we also included a group of patients with left ventricular 

dysfunction in which isolated RMA was performed. To assess confounding effects of 

cardiopulmonary bypass and cardioplegic cardiac arrest we also included a control 

group of patients with normal LV function who underwent elective coronary artery 

bypass grafting (CABG). Thus, the following groups were studied: 

1) SVR-group (n=10): Chronic heart failure, New York Heart Association (NYHA) 

class III/IV, LV ejection fraction < 30%, LV aneurysm with or without mitral 

regurgitation 

2) RMA-group (n=10): Chronic heart failure, NYHA class III/IV, LV ejection 

fraction < 30%, mitral regurgitation grade ≥ 2 

3) CABG-group (n=13): normal LV function (LV ejection fraction > 40%), 

elective CABG 

Note that some patients in the SVR-group underwent additional RMA, whereas in both 

the SVR- and the RMA-group, CABG was performed if indicated. Details are provided 

in the Results section. The study was approved by the institutional review committee 

and all patients gave informed consent. The patient characteristics of the three groups 

are summarized in Table 1. 

 

Anaesthesia and cardioplegic arrest 

All patients received total intravenous anesthesia with target-controlled infusion of 

propofol, remifentanyl and sufentanyl. A single dose of pancuronium bromide 

(0.1mg/kg) was given to facilitate intubation. Subsequently, a thermal filament catheter 

was placed in the pulmonary artery via the right internal jugular vein for semi-

continuous cardiac output measurements (Edwards Lifesciences, Uden, The 

Netherlands). To facilitate positioning of the conductance catheter and to evaluate the 

effects of mitral valve repair, a multiplane transesophageal echo probe was inserted. All 

patients underwent normothermic cardiopulmonary bypass and received intermittent 

antegrade warm blood cardioplegia as described by Calafiore et al.14  
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Table 1. Patient characteristics 

 SVR-group RMA-group CABG-group 

# Patients (n) 10 10 13 

Male/Female  (n) 8/2 5/5 11/2 

Age (years) 63±7 56±18 63±8 

QRS duration (ms) 122±38 105±27 91±13 

LVEF (%) 26±9 25±5 58±9 

Coronary disease 

  2 Vessels 

  3 Vessels 

 

4 

6 

 

4 

2 

 

5 

8 

MR-grade 

  I 

  II 

  III 

  IV 

 

3 

3 

4 

0 

 

0 

0 

7 

3 

 

- 

- 

- 

- 

SVR indicates Surgical ventricular restoration; RMA, Restrictive mitral annuloplasty; LVEF, left 

ventricular ejection fraction; MR-grade, grade of mitral regurgitation assessed by pre-operative 

transesophageal echocardiography 
 

We anticipated that the heart failure patient would need inotropic support after surgery. 

Since this would bias our LV function measurements, we started inotropic support 

directly after induction with a low loading dose of 0.25 mg/kg enoximone in 10 minutes 

and thereafter we gave continuous infusion at a rate of 0.50 μg/kg/min, which was 

maintained during the whole operation. 

 

Surgical techniques  

Dor plasty. SVR was performed by means of endoventricular circular patch plasty as 

previously described by Dor.15,16 Briefly, the LV was opened through the infarcted area. 

An endocardial encircling suture (Fontan stitch) was placed at the transitional zone 

between scarred and normal tissue. A balloon containing 55 mL/m2 saline was 

introduced into the LV and the Fontan stitch was tightened to approximate the 

ventricular wall to the balloon. An oval dacron patch was tailored and used to close the 

residual orifice. The excluded scar tissue was closed over the patch to ensure 

hemostasis. Care was taken to eliminate all the septal scar and to delineate a new LV 

apex with the goal to restore the normal elliptical shape. 

 

Mitral valve repair. A stringent restrictive (2 sizes smaller than measured) mitral 

annuloplasty (RMA) was performed via an atrial transseptal approach using a 
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Carpentier Edwards Physio ring (Edwards Lifesciences, USA). After weaning from 

cardiopulmonary bypass, transesophageal echocardiographic evaluation was performed 

in all patients to confirm disappearance of mitral regurgitation and assess the length of 

leaflet coaptation (aiming at ≥ 8 mm). 

 

Study protocol  

Before and directly after cardiopulmonary bypass, conductance catheter measurements 

were performed as described previously.17 Briefly, temporary epicardial pacemaker 

wires were placed on the right atrium to enable measurements at fixed heart rates. A 

tourniquet was placed around the inferior caval vein to enable temporary preload 

reductions. An 8F sheath was placed in the ascending aorta for introduction of the 

conductance catheter. The conductance catheter was introduced under transesophageal 

echocardiographic guidance and placed along the long axis of the LV. Position was 

optimized by inspection of the segmental volume signals. Conductance catheter 

calibration was performed using calibration factors alpha (α) derived from 

thermodilution and parallel conductance correction volume (Vc) determined by 

hypertonic saline injections.5,18 Continuous LV pressure and volume signals derived 

from the conductance catheter were displayed and acquired at a 250 Hz sampling rate 

using a Leycom CFL-512 (CD Leycom, Zoetermeer, The Netherlands). Data were 

acquired during steady state and during temporary caval vein occlusion, all with the 

ventilator turned off at end-expiration. Acquisition was performed at a fixed atrial 

pacing rate of 80 beats/min. From these signals hemodynamic indexes were derived as 

described below. 

 

Data analysis 

Global LV function. We determined indexes of global, systolic and diastolic LV 

function. Cardiac output was obtained by thermodilution, heart rate, mean arterial 

pressure, stroke volume, LV ejection fraction, minimal and maximal rate of LV pressure 

change (dP/dtMAX, dP/dtMIN), end-diastolic volume, end-systolic volume, end-diastolic 

pressure, end-systolic pressure were obtained from steady state beats using custom-

made software. In addition, we assessed the early, active part of relaxation by the 

relaxation time constant (τ), which was determined by fitting LV pressure decay 

(starting at the moment of minimal dP/dt) with an exponential curve, as described 

previously19: P(t) = A + B·exp(-t/τ). Time-varying wall stress, WS(t), was calculated 

from instantaneous LV pressure and volume signals (P(t), V(t) respectively) as 
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described by Arts et al.20: WS(t) = P(t)·[1 + 3·V(t) / VWALL]. LV wall volume (VWALL) 

was estimated based on the diastolic posterior wall thickness derived from M-mode 

echocardiography. 

 

Mechanical work and efficiency. Stroke work (SW) was determined as the area of the 

pressure-volume loop, which represents the external work performed by the ventricle. 

Pressure-volume area (PVA), a measure of total mechanical work, was calculated as the 

sum of stroke work and potential energy. The latter represents mechanical energy loss 

converted to heat during the cardiac cycle and is quantified by the triangular area 

enclosed by the pressure-volume loop, the end-systolic pressure-volume relation and the 

end-diastolic pressure-volume relation. 21,22 Mechanical efficiency (ME) was calculated 

as the ratio of stroke work and pressure-volume area: ME = SW / PVA.23 

 

Mechanical dyssynchrony. Nonuniform LV performance (dyssynchrony) was 

determined from the segmental LV conductance signals and quantified by calculating 

the percentage of time within the cardiac cycle that a specific segment is 

dyssynchronous (i.e. opposite in phase with the global LV volume signal). Overall LV 

mechanical dyssynchrony was determined as the mean of the segmental dyssynchronies. 

In addition, we calculated the internal flow fraction, which quantifies the ineffective, 

segment-to-segment shifting of blood volume within the LV due to nonuniform 

contraction and filling. This approach was described and validated vs. tissue-Doppler 

imaging in a previous study.7 

 

Systolic and diastolic pressure-volume relations. Ventricular function was assessed by 

systolic and diastolic pressure-volume relations derived from pressure-volume loops 

acquired during gradual preload reduction by vena cava occlusion. The end-systolic 

pressure-volume relation (ESPVR) was obtained as a linear fit to the end-systolic 

pressure-volume points and characterized by its slope, end-systolic elastance (EES), and 

the volume intercept at an end-systolic pressure of 80 mmHg (ESV80). The end-diastolic 

pressure-volume points were fitted with an exponential curve: EDP = A + B·exp 

(KED·EDV). As illustrated in Figure 1, this relation was quantified by the diastolic 

stiffness constant (KED), the pressure intercept at an end-diastolic volume of 0 mL 

(EDP0), and the calculated volume intercept at an end-diastolic pressure of 14 mmHg 

(EDV14).24,25 
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Figure 1. The end-systolic pressure-volume relation (ESPVR) and the end-diastolic pressure-volume 

relation (EDPVR) in the pressure-volume diagram. The linear ESPVR is characterized by its slope, end-

systolic elastance (EES), and its volume intercept at an end-systolic pressure of 80 mmHg (ESV80). The 

exponential EDPVR is characterized by the pressure-intercept at an end-diastolic volume of 0 mmHg 

(EDP0), the volume intercept at an end-diastolic pressure of 14 mmHg (EDV14), and the diastolic stiffness 

constant KED. (See text for further details) 

 

 

Statistical analysis 

Pre- and post-surgery clinical and hemodynamic indexes were compared with paired t-

tests. Changes in systolic and diastolic pressure-volume relations were tested by 

multivariate analysis of covariance, using the Wilks’ lambda statistic to test whether 

there were differences between conditions for the combination of parameters describing 

the relations.26 Statistical significance was assumed at p < 0.05. All data are presented 

as the mean ± SD. 

 

 

RESULTS 

 

Surgical data are summarized in Table 2. In the SVR-group, all patients were treated 

with endoventricular circular patch plasty: 7 patients had a dyskinetic scar on pre-

operative echocardiography, the remaining 3 patients had an akinetic scar. All patients 
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in the SVR-group had coronary disease and received additional CABG (2.8±1.4 distal 

anastomoses per patient). In the SVR-group 7 patients had mitral regurgitation of grade 

2 or more and received additional restrictive mitral annuloplasty. In the RMA-group, 4 

patients received additional CABG (4.0±0.8 distal anastomoses per patient), while the 

other 6 patients in this group underwent isolated restrictive mitral annuloplasty as 2 had 

irreversible ischemia and 4 had non-ischemic dilated cardiomyopathy. All patients were 

successfully weaned from cardiopulmonary bypass. In the SVR-group, 2 patients 

received intra-aortic balloon pump support and 7 patients needed inotropic support for 

more than 24 hours. 

 
Table 2: Surgical data 

 SVR-group 

(n=10) 

RMA-group 

(n=10) 

CABG-group 

(n=13) 

Surgery 

SVR + CABG 

SVR + CABG + RMA 

Isolated RMA 

RMA + CABG 

CABG 

 

3 

7 

- 

- 

- 

 

- 

- 

6 

4 

- 

 

- 

- 

- 

- 

13 

CPB- time (median, minutes) 244 (range 105-287) 137 (range 105-287) 104 (range 60-167) 

Aox-time (median, minutes) 172 (range 65-196) 96 (range 65-196) 75 (range 43-129) 

# pts with IABP support 2 0 0 

# pts with >24 hrs inotropes*  7 5 0 

ICU-duration (median, days) 4 (range 3-16) 4 (range 2-7) 2  (range 1-4) 

Hospital stay (median, days) 14 (range 9-30) 14 (range 7-18) 9 (range 6-35) 

SVR indicates Surgical ventricular restoration; RMA, Restrictive mitral annuloplasty; CPB, 

Cardiopulmonary bypass; Aox-time, aortic cross clamping time; IABP, Intra-aortic balloon pump 

support; ICU, Intensive care unit; * dobutamine > 2 μg/kg/min 
 

In the RMA-group, 5 patients needed inotropic support for more than 24 hours. None of 

the patients had signs of peri-operative myocardial infarction. In patients with mitral 

regurgitation, restrictive mitral annuloplasty suppressed regurgitation in all cases and 

restored leaflet coaptation (8±2 mm) with normal peak pressure gradients (3.0±2.0 

mmHg). All patients were discharged from hospital in good clinical condition. 

 

Figure 2 shows typical pressure-volume relations before and after SVR. After SVR, 

end-diastolic and end-systolic volumes were significantly reduced with unchanged 

stroke volume indicating improved LV ejection fraction. Before surgery, LV volume 
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decreased during the pre-systolic ('isovolumetric') contraction phase, reflecting severe 

mitral regurgitation. This effect disappeared in the post-SVR loops as mitral 

regurgitation was treated by successful RMA. After SVR, a leftward shift of the end-

systolic and end-diastolic pressure-volume relation was present with an increased slope 

of both relations. These effects indicate improved systolic function and increased 

diastolic chamber stiffness after surgery. 
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Figure 2. Typical example of pressure-volume relations in a patient with ischemic dilated 

cardiomyopathy before (PRE) and after (POST) surgical ventricular restoration. The steady state 

pressure-volume loops show a significant reduction in end-diastolic and end-systolic volumes with 

unchanged stroke volume indicating improved LV ejection fraction. Before surgery, LV volume decreased 

during the pre-systolic contraction phase, reflecting severe mitral regurgitation. This effect disappeared 

in the post-surgery loops as mitral regurgitation was treated by restrictive mitral annuloplasty. The load-

independent end-systolic pressure volume relationship (ESPVR) showed a leftward shift with increased 

slope indicating improved systolic function. The end-diastolic pressure-volume relationship (EDPVR) 

also showed a leftward shift with increased slope indicating increased diastolic chamber stiffness post-

surgery 

 

 

Hemodynamic data 

Mean hemodynamic data before and after SVR is summarized in Table 3 and the 

dyssynchrony parameters for all three groups are shown in Figure 3. LV stroke volume 

and cardiac output were unchanged after SVR. LV ejection fraction was significantly 

increased and there was an approximately 25% reduction in end-diastolic and end-

systolic volumes. End-diastolic and end-systolic volumes were decreased towards 

"normal" values comparable to the values in the CABG-control-group. In the CABG-

control-group, end-systolic volume and end-diastolic volume were unchanged after 
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surgery (86±49 to 82±47 mL (P=0.190) and 142±52 to 146±45 mL (P=0.720), 

respectively). After SVR, stroke work was not significantly altered, but potential energy 

was substantially reduced (-52%), resulting in a decreased total mechanical work and, 

consequently, a significantly increased mechanical efficiency. Peak LV wall stress was 

significantly reduced after SVR (from 358±108 to 244±79 mmHg, p<0.01), but 

remained unchanged in the RMA-group (356±91 to 346±85 mmHg, p=0.668). 
 

Table 3: Hemodynamic data before (pre) and after (post) SVR 

 SVR-group (n=10) 

 Pre Post P-value 

HR (beats/min) 81±3 84±7 0.22 

CO (L/min) 4.6±1.1 5.4±1.4 0.15 

MAP 78±9 63±4 <0.01 

ESP 95±18 80±15 0.03 

EDV (mL) 211±54 169±34 0.03 

ESV (mL) 147±41 110±59 0.04 

LVEF (%) 27±7 37±13 0.04 

SW (mmHg.L) 4.8±1.5 4.2±1.2 0.32 

PE (mmHg.L) 10.6±6.1 5.1±3.5 <0.01 

PVA (mmHg.L) 15.4±5.9 9.3±3.5 <0.01 

ME 0.34±0.13 0.49±0.14 0.03 

dP/dtMAX (mmHg/s) 846±232 819±198 0.64 

dP/dtMIN (mmHg/s) -804±191 -750±110 0.25 

PWS (mmHg) 358±108 244±79 < 0.01 

EDP (mmHg) 13±6 20±5 < 0.01 

τ (ms) 85±13 70±12 < 0.01 

DYSS (%) 26±4 19±6 < 0.01 

IFF (%) 35±14 21±15 0.01 

SVR indicates surgical ventricular restoration; HR, heart rate; CO, cardiac output; MAP, mean arterial 

pressure; ESP, end-systolic pressure; EDV, end-diastolic volume; ESV, end-systolic volume; LVEF, left 

ventricular ejection fraction; SW, stroke work; PE, potential energy; PVA, pressure-volume area; ME, 

mechanical efficiency; PWS, peak wall stress; EDP, end-diastolic pressure; τ, relaxation time constant; 

DYSS, mechanical dyssynchrony; IFF: internal flow fraction 
 

Active relaxation (τ) was improved, while end-diastolic pressure was significantly 

increased. Mechanical dyssynchrony and the internal flow fraction were reduced in all 

groups, however these changes were most pronounced and only reached statistical 

significance in the SVR-group (Figure 3). 
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Figure 3. Acute effects of surgery on mechanical dyssynchrony indexes in the SVR-, RMA and CABG-

groups.  DYSS indicates mechanical dyssynchrony; IFF, internal flow fraction. * indicates p<0.05. 

Marginal significances (p<0.10) are tabulated 
 

The effects on the load-independent pressure-volume indexes are summarized in Table 

4. The end-systolic pressure-volume relation did not show significant changes in the 

CABG- and RMA-groups. In contrast, in the SVR-group, ESV80 decreased significantly 

and EES increased significantly, representing a leftward shift and increased slope of the 

end-systolic pressure-volume relation, both indicating improved systolic function. With 

regard to diastolic function, the end-diastolic pressure-volume relation was significantly 

altered only in the SVR-group (P=0.011): particularly, EDV14 decreased significantly 

indicating a leftward shift of the curve, whereas KED tended to increase, suggesting 

decreased diastolic compliance. The changes in the diastolic pressure-volume relations 

for the RMA- and CABG-groups were in the same direction but were not statistically 

significant, although in the CABG-group marginal significance was reached (P=0.097). 

 

Average pressure-volume loops 

To summarize the effects, Figure 4 shows schematic average pressure-volume loops for 

all of the three groups. The pressure-volume loops are based on the average end-systolic 

and end-diastolic pressures and volumes in each group. The most pronounced effects 

were seen after SVR. After SVR, there was a significant acute reverse remodeling, 

demonstrated by the substantial reduction in end-diastolic and end-systolic volumes.  
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Table 4: End-systolic and end-diastolic pressure-volume relations before and after surgery 

   SVR-group RMA-group CABG-group 

ESPVR Wilks’ lambda  0.439 0.942 0.591 

  P-value 0.037 0.810 0.122 

 r-value Pre 0.98±0.01 0.95±0.03 0.95±0.03 

  Post 0.97±0.04 0.96±0.03 0.92±0.13 

 ESV80 (mL) Pre 143±58 171±82 86±51 

  Post 89±40 164±69 72±38 

  P-value 0.015 NS NS 

 EES (mmHg/mL) Pre 1.12±0.63 0.86±0.50 1.31±0.93 

  Post 1.57±0.55 0.99±1.05 1.26±0.72 

  P-value 0.032 NS NS 

EDPVR Wilks’ lambda  0.177 0.785 0.428 

  P-value 0.011 0.842 0.097 

 r-value Pre 0.98±0.02 0.97±0.04 0.95±0.05 

  Post 0.96±0.10 0.98±0.02 0.98±0.01 

 EDP0 (mmHg) Pre 3.6±2.8 3.0±2.3 1.8±2.4 

  Post 5.2±3.0 4.2±3.3 2.2±3.7 

  P-value 0.261 NS NS 

 EDV14 (mL) Pre 235±65 262±130 174±51 

  Post 152±35 240±65 144±43 

  P-value 0.001 NS NS 

 KED (1/mL) Pre 0.021±0.009 0.027±0.035 0.021±0.014 

  Post 0.037±0.021 0.041±0.047 0.038±0.019 

  P-value 0.147 NS NS 

 

SVR indicates surgical ventricular restoration; RMA, restrictive mitral annuloplasty; CABG, coronary 

artery bypass grafting; ESPVR, end-systolic pressure-volume relation; EDPVR, end-diastolic pressure-

volume relation; r-value, correlation coefficient; ESV80, volume intercept of the ESPVR at end-systolic 

pressure 80 mmHg; EES, end-systolic elastance (slope of the ESPVR); EDP0, pressure intercept of the 

EDPVR at end-diastolic volume 0 mL; EDV14, volume intercept of EDPVR at end-diastolic pressure 14 

mmHg; KED, diastolic stiffness constant; NS, not significant (indicated by Wilks’ lambda) 
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Figure 4. Average steady state pressure-volume loops before (PRE) and after (POST) SVR (surgical 

ventricular restoration), isolated RMA (restrictive mitral annuloplasty), and CABG (coronary artery 

bypass grafting). The average loops (based on mean end-systolic and end-diastolic volumes and 

pressure) illustrate the effects on systolic and diastolic LV volumes and pressures.  Please note that the 

apparent stroke work (area of the pressure-volume loop) derived from these schematic loops could be 

misleading: First, pre-surgery the actual loops often show a volume decrease in the 'iso-volumic' 

contraction phase (reflecting pre-systolic mitral insufficiency), which is not shown in the schematic 

(‘square’) loops and causes the pre-surgery schematic loops to overestimate actual SW. Second, if 

afterload impedance is relatively low the end-systolic pressure may be substantially lower than the peak 

systolic pressure, which may cause the schematic post-surgery loops to underestimate the real stroke 

work. Thus, the change in stroke work in the SVR-group, derived from the schematic loops, appears to be 

larger than it, in fact, was (Table 2: non-significant 12% decrease) 
 

 

DISCUSSION 

 

Surgical ventricular restoration by means of endoventricular circular patch plasty (Dor 

procedure) is increasingly performed in patients with severe LV dysfunction after 

anterior myocardial infarction, for either akinesia or dyskinesia.16 We quantified the 

immediate hemodynamic effects of SVR on load-independent systolic and diastolic LV 

pressure-volume relations in combination with effects on LV wall stress and mechanical 

dyssynchrony and efficiency in patients with ischemic dilated cardiomyopathy. Our 

results show that SVR significantly improved LV systolic function (LV ejection 

fraction, end-systolic pressure-volume relation), and reduced LV wall stress and 

mechanical dyssynchrony. In addition, LV mechanical efficiency was significantly 

improved. LV diastolic function, however, appeared to be compromised: the diastolic 

pressure-volume relation was significantly shifted towards smaller volumes and tended 
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to be steeper, evidenced by an increased diastolic stiffness constant, although the latter 

effect did not reach statistical significance. 

The relatively small changes in systolic function in the patients who underwent isolated 

restrictive mitral annuloplasty and in the patients who underwent elective CABG 

indicate that the systolic improvements in the SVR group were mainly related to LV 

restoration. The increase in LV ejection fraction after SVR was attributed to the surgical 

reduction in end-diastolic volume, as LV stroke volume was unchanged. However, LV 

ejection fraction may not be an accurate parameter of systolic improvement after SVR 

because loading conditions may have changed substantially after surgery. Thus, load-

independent pressure-volume relations are needed to quantify alterations in systolic 

function. The slope of the end-systolic pressure-volume relation, end-systolic elastance 

EES, is a load-independent parameter of systolic function and EES increased significantly 

after SVR. Moreover, the end-systolic pressure-volume relation was significantly 

shifted towards smaller volumes, also indicating improved systolic function.26,27 This 

improvement may be the result of increased systolic stiffness induced by exclusion of a 

large compliant area, as predicted by computational models,10 or due to improved 

function of the remote myocardium by reduced LV wall stress, and reduced LV 

mechanical dyssynchrony after exclusion of the aneurysm.3,4 

Regarding diastolic function, relaxation time constant τ was significantly reduced, 

indicating faster relaxation. This time-constant quantifies the speed of LV pressure 

decay during isovolumic relation, i.e. between aortic valve closure and mitral valve 

opening, which represent the very early, and active, part of relaxation, which is 

considered to be importantly co-determined by systolic function.28 This change may 

result from coronary revascularization - which may enhance the oxygen dependent re-

uptake process of calcium by the sarcoplasmic reticulum - or from an afterload 

reduction as active relaxation is afterload dependent.29 Passive diastolic function was 

assessed by the diastolic pressure-volume relationship. Our results show that SVR 

induced a substantial leftward shift of the end-diastolic pressure-volume relation as 

quantified by the significant decrease in EDV14. In addition, the diastolic stiffness 

constant KED tended to increase, indicating by an enhanced steepness of the curve. 

Interestingly, diastolic chamber stiffness had a tendency to increase in all groups with a 

similar magnitude, although the effects did not reach statistical significance. This 

suggests that the increased diastolic stiffness may be contributed largely to the effect of 

the cardiopulmonary bypass and cardioplegic arrest leading to interstitial edema.30 In 

our center, normothermic cardiopulmonary bypass and intermittent antegrade warm 
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blood cardioplegia is routinely used31 because this approach may provide metabolic 

benefits32,33 and less cell damage,34 possibly mediated by a better protection from  

ischemia-reperfusion injury. Our study was not designed to investigate whether 

alternative cardioplegic approaches have less effect on post-operative diastolic function, 

but previous experimental studies do not appear to show important differences 

regarding myocardial edema formation and post-operative diastolic compliance between 

warm and cold blood approaches.35 

The results in our study are in line with predictions of Artrip et al. which were based on 

a composite model of the left ventricle.10 The results of their study emphasize the 

importance of the material properties of the region being removed. It was predicted that 

resection of weak but contracting muscle such as may occur with the partial left 

ventriculectomy (Batista procedure) will lead to a greater leftward shift for the end-

diastolic pressure-volume relation than for the end-systolic pressure-volume relation 

resulting in an overall negative effects on cardiac performance. Schreuder et al. studied 

the acute effects of partial left ventriculectomy in humans with dilated cardiomyopathy 

on LV pressure-volume relations and found significant improvements of systolic 

function and mechanical synchrony after surgery.36 The effects on intrinsic diastolic 

function like that of the end-diastolic pressure-volume relation were not described in 

detail, but the significant increase of end-diastolic pressure two till five days after 

surgery suggests diastolic impairment after surgery. Most centers have abandoned the 

Batista procedure because of high surgical mortality and late return of heart failure, but 

studies by Suma's group indicate that by utilizing intraoperative echocardiography to 

select the optimal excision, partial left ventriculectomy may effectively treat severe 

heart failure in selected patients with nonischemic dilated cardiomyopathy.37 

However, our study focuses on patients with ischemic dilated cardiomyopathy, for 

which case Artrip's model would predict improvement of overall cardiac pump function. 

Recent studies assessed the acute effects of SVR on pressure-volume relations and 

found improved systolic function and reduced mechanical dyssynchrony.4 However, the 

effects on diastolic load-independent indices, which may be important after volume 

reduction and insertion of an akinetic stiff patch, were not studied. To our best 

knowledge, the present study is the first to show the effects of SVR in patients with 

ischemic dilated cardiomyopathy on both systolic and diastolic pressure-volume 

relations in comparison to other surgical procedures. As expected, the results showed a 

leftward shift of both the end-systolic and the end-diastolic pressure-volume relation. 

Indexed by ESV80 and EDV14, respectively, the end-systolic pressure-volume relation 
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shifted by -55±18 mL, whereas the end-diastolic pressure-volume relation shifted by -

84±17 mL. Consequently, when compared at the same end-diastolic pressure (of 14 

mmHg), the hypothetical maximal total work, quantified by the area enclosed by the 

end-systolic pressure-volume relation, the end-diastolic pressure-volume relation, and 

the end-diastolic volume at 14 mmHg was decreased (from 13.4 to 10.1 mmHg·L). This 

finding could be interpreted as a decrease in overall pump function.10 However, in 

practice, the LV worked at a higher end-diastolic pressure after SVR, resulting in a 

maintained stroke work and cardiac output. Moreover, under physiological conditions 

the total work is only partly converted to effective external work (i.e. the area of the 

pressure-volume loop, stroke work), the remainder is dissipated as heat (the potential 

energy component of the pressure-volume area). Interestingly, our results show that, 

whereas stroke work remained fairly constant, the potential energy component was 

importantly reduced, indicating an improved mechanical efficiency of the ventricular 

contraction. This acute improvement presumably is caused by reduced mechanical 

dyssynchrony and reduced wall stress due to the restoration of LV shape. Consistent 

with our findings, Di Donato et al. recently demonstrated reduction of mechanical 

dyssynchrony after the Dor procedure.3 Usually, LV geometry in patients with chronic 

dilated cardiomyopathy is associated with a more transverse orientation of apico-septal 

muscle fibers and this orientation results in less efficient contraction and a decrease in 

LV pump function.12 SVR achieves restoration of the LV geometry towards a more 

elliptical shape,11,38 and the increase in systolic function after SVR, found in our study, 

may be partly the result of improvement of geometric rearrangement with restoration of 

LV apico-septal fiber orientation. 

Our approach involved the use of an intraventricular balloon filled with 55 ml/m2 saline 

to standardize the surgery, to avoid creating a too small cavity, and to achieve an 

elliptical shape of the left ventricle. Previous studies using a shaper device 

recommended a similar residual volume.39 However, at this point it is unknown which 

factors determine the optimal residual volume in individual patients. Also, the material 

properties of the patch may influence the results. A recent mathematical model study 

recommended repair without a patch whenever possible.40 Potentially, the modified 

linear closure described by Mickleborough et al. could be advantageous.41 However, 

this approach limits options for septal exclusion as compared to the Dor procedure. 

Therefore, as pointed out in a recent editorial by Buckberg,42 the linear closure would 

only be applicable to a selected patient population. Future studies are required to 

investigate these issues. 
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Limitations 

Our study is limited by the fact that the interventions were not randomized and thus 

baseline differences between the study groups may have introduced bias. Comparisons 

between groups may also be affected by differences in procedure times (Table 2), which 

were longer in the SVR-group. The ‘recovery time’ (CPB-time minus the cross-clamp 

time) was also longer in the SVR-group than in the RMA-group (72 vs. 41 min). 

Although this difference is partly explained by a more extensive echocardiographic 

evaluation (which is generally performed still on-pump), it may also indicate that post-

operative function is affected by length of the procedure. A direct comparison between 

patients in the SVR group who did or did not receive additional RMA (7 vs. 3 patients) 

is not statistically meaningful because the numbers are too small, and any conclusion 

would be very speculative and could be misleading. 

We anticipated that most of the heart failure patients would need inotropic support after 

surgery. Therefore, to avoid bias, in the SVR- and the RMA-groups inotropic support 

was started before surgery and, thus, pre- and post-measurement were both done during 

inotropic support. In the CABG group none of the patients received inotropic support. 

This may have resulted in slightly less pronounced differences between the CABG 

group on the one hand and the SVR/RMA groups on the other hand.  

A methodological limitation may be present for the calculation of conductance catheter 

slope factor α, which corrects underestimation of volume changes, which is due to 

electric field inhomogeneity and mismatch of the catheter segments with the LV long 

axis. In our study, this factor was calculated by matching the uncalibrated conductance 

stroke volume with stroke volume obtained by thermodilution. Because this comparison 

with right-sided stroke volume determined by thermodilution would be hampered in 

case of mitral insufficiency, we determined uncalibrated conductance catheter stroke 

volume as the volume at the moment of dP/dtMAX minus the volume at the moment of 

dP/dtMIN. With this approach pre- and post-systolic mitral insufficiency is not included 

in the uncalibrated conductance stroke volume. However, some overestimation of actual 

forward stroke volume may remain, which theoretically would result in a slight 

underestimation of absolute volumes in patients with mitral insufficiency. 

 

In conclusion, SVR by endoventricular circular patch plasty leads to acute 

normalization of LV volumes with improved systolic function. At the expense of a 

higher diastolic pressure resulting from altered diastolic properties, cardiac pump 
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function indexed by stroke work and cardiac output was not importantly altered. 

However, mechanical efficiency was significantly improved, presumably resulting from 

reduced wall stress and reduced mechanical dyssynchrony. Interestingly, the diastolic 

chamber stiffness constant was not more altered after SVR than after the surgical 

procedures in the other groups, suggesting that this effect was importantly related to 

procedure-induced myocardial edema and may be partially transient. Additional mitral 

valve repair is feasible and restores leaflet coaptation, while this procedure in itself does 

not importantly affect systolic and diastolic LV function in the acute phase. Future 

studies should be directed toward the long-term effects of SVR on systolic and diastolic 

pressure-volume relationships. 
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INTRODUCTION 

 

The conductance catheter developed by Baan et al. enables continuous on-line 

measurements of left ventricular (LV) volume and pressure.1,2 This method has been 

used extensively to assess global systolic and diastolic ventricular function and more 

recently the ability of this instrument to pick-up multiple segmental volume signals has 

been used to quantify mechanical ventricular dyssynchrony.3-13,14,15 These 

characteristics offer interesting possibilities to apply this technique in patients 

considered for or treated with cardiac resynchronization therapy (CRT). The aim of the 

present review is therefore to give an overview of the (potential) applications of 

pressure-volume measurements by conductance catheter in relation to CRT, and discuss 

the possibilities and limitations of this approach. 

 

 

METHODS 

 

The conductance catheter method 

The method has been described extensively in previous publications.2,16,17 Briefly, the 

conductance methodology is based on the measurement of the electrical conductance of 

the blood contained in the LV cavity. To this end the catheter contains multiple 

electrodes to generate an intra-cavitary electric field and pick-up the resulting voltage 

gradients. In its present form the catheter has 12 electrodes and should be positioned 

along the long axis of the LV as depicted in figure 1. The two most distal and two most 

proximal electrodes are employed to generate an electrical field. This dual pair of 

current electrodes enables the use of a dual excitation mode, which has been shown to 

improve the accuracy of the method especially in dilated hearts.16 The remaining 8 

electrodes are used pair wise to measure up to 7 segmental conductance signals (Gi) 

which represent the instantaneous volumes of corresponding slices (note that the figure 

shows only 5 segments). 
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Figure 1. The combined pressure-conductance catheter positioned in the left ventricle. The electrodes are 

used to setup an intracavitary electric field and measure segmental conductances. Note the pressure 

sensor positioned in segment 3 

 

To convert the measured conductance (i.e. applied current divided by the measured 

voltage gradient) to an absolute volume signal the specific conductivity of blood (σ) and 

the electrode spacing (L) have to be taken into account. In addition, the measured 

conductance contains an offset factor, which is due to the conductance of the structures 

surrounding the cavity. This so-called parallel conductance (Gp) may be determined by 

the hypertonic saline dilution method and subsequently subtracted.2,17 Finally, the 

conductance-derived stroke volume generally underestimates actual stroke volume due 

to electrical field inhomogeneity and because the segments do not fully cover the LV 

long axis. This underestimation is corrected by introducing a slope factor (α), which 

may determined by comparing conductance-derived stroke volume with an independent 

estimate of stroke volume (e.g. determined by thermodilution). Consequently, absolute 

LV volume (VLV) is derived from measured conductance G(t) as: 

 

VLV(t) = (1/α) ⋅ (L2/σ) ⋅ [G(t) – GP] 

 

Note that G(t) is the instantaneous sum of the segmental conductances: 

 

G(t) = Σ Gi(t) 

 

The equation also holds at a segmental level: 

 

Vseg,i(t) = (1/α) ⋅ (L2/σ) ⋅ [Gi(t) – Gi
P] 
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As shown in figure 1 the conductance catheter also contains a solid-state, high-fidelity 

pressure sensor to measure instantaneous LV pressure. 

 

Catheters, equipment and software 

Currently, most pressure-volume studies performed in humans use combined pressure-

conductance catheters. Typically, these catheters are 7F, over-the-wire, pigtail catheters 

and are produced by several companies (e.g. CDLeycom, Zoetermeer, The Netherlands; 

Millar Instruments, Houston, Texas). To generate the electric field, measure the 

resulting voltages, acquire and handle the various signals the catheter must be connected 

to dedicated equipment. For this purpose all studies presented and discussed in this 

review used the Cardiac Function Lab CFL-512 or the Sigma 5 DF (CDLeycom, 

Zoetermeer, The Netherlands). Data analysis is generally performed with software 

installed on the CFL-512 or by using other commercially available physiological data-

analysis software, or software that is custom-made by the various research groups. 

 

Pressure-volume signals, loops and relations 

When positioned in the LV, the combined pressure-conductance catheter yields 

continuous segmental volume signals and LV pressure. Total LV volume is calculated 

as the instantaneous sum of the segmental signals. An example of these signals obtained 

in a patient with coronary artery disease and relatively normal LV function and 

contraction pattern is shown in figure 2. The temporal resolution in this example is 4 

ms. The volume signals show a normal ejection during systole and a biphasic filling 

pattern during diastole reflecting early rapid filling, diastasis and the atrial contribution 

to filling. 
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Figure 2. Typical left ventricular segmental (SEG 1 to SEG 5) and total LV volume (LVV) signals and left 

ventricular pressure (LVP). Corresponding pressure-volume loops are shown in Figure 3 

 

To characterize pump-function of the LV, pressure and volume signals may be 

combined to construct pressure-volume loops as depicted in figure 3. Each loop 

represents one cardiac cycle. The distinct cardiac phases, filling, isovolumic contraction, 

ejection and isovolumic relaxation, are indicated in the figure. The phases are separated 

by opening and closure of mitral and aortic valves, which moments coincide with the 

'corners' of the pressure-volume loop. Important parameters characterizing LV function 

can be directly determined from the pressure-volume loops, or from the pressure and 

volume-time curves and their derivatives. Such parameters include indices of pump 

function (stroke volume, cardiac output, and stroke work), systolic function (end-

systolic pressure, end-systolic volume, ejection fraction, peak ejection rate (dV/dtMAX), 

and dP/dtMAX) and diastolic function (end-diastolic volume, end-diastolic pressure, peak 

filling rate (dV/dtMIN), dP/dtMIN, and relaxation time constant τ). 
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Figure 3. Pressure-volume loops. Cardiac phases and time-points of opening and closure of mitral and 

aortic valves are indicated 
 

An important limitation of all of the above mentioned indices is that they are, more-or-

less, load dependent. A possible approach to amend this is to construct pressure-volume 

relations from which indices can be derived which are less load-dependent and therefore 

better measures of intrinsic systolic or diastolic ventricular function. Construction of 

pressure-volume relations requires pressure-volume loops obtained at different loading 

conditions. Importantly, such alteration in loading should be induced by interventions 

that minimally affect intrinsic myocardial function. An elegant way to achieve this is to 

use a balloon occlusion of the inferior vena cava. This procedure enables a rapid, purely 

mechanical, reduction in preload, which prevents reflex mechanisms and is easily 

reversed by deflation of the balloon. This method has been described in detail in several 

publications.5,6 A typical example of pressure-volume loops acquired during caval 

occlusion is shown in figure 4.  
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Figure 4. Pressure-volume loops during preload reduction by vena cava occlusion. Systolic and diastolic 

function indices are derived from the curves fitted to the end-systolic and end-diastolic pressure-volume 

points, respectively 

 

The relation between the pressure-volume points at end-systole, the end-systolic 

pressure-volume relation (ESPVR) has been shown a sensitive and relatively load-

independent description of LV systolic function.18 Both the slope of the ESPVR, which 

determines end-systolic elastance (EES) and the position of the ESPVR (in recent 

generally papers characterized by the volume-intercept at a fixed pressure, e.g. end-

systolic volume at 100 mmHg, ESV100) are used as indices of systolic function.19-21 The 

relation between the end-diastolic pressure-volume points, the end-diastolic pressure-

volume relation (EDPVR), may be fitted with a linear curve. The slope of this curve 

(dEDP/dEDV) represents diastolic stiffness. More commonly, the term diastolic 

compliance is used, which is the inverse of this slope (dEDV/dEDP). If the EDPVR is 

constructed over a wider range it is generally clear that this relation is non-linear and 

better approximated by an exponential fit, such as EDP = A⋅exp(k⋅EDV) and diastolic 

function characterized by the diastolic stiffness constant (k).7 In addition, several other 

relations, which may be derived from pressure-volume loops during a loading 

interventions have been used to quantify LV function, such as the relation between 

dP/dtMAX and end-diastolic volume and the preload recruitable stroke work relation (i.e. 

SW vs EDV).18,20,22-24 
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Mechanical dyssynchrony 

Several studies have confirmed the hypothesis that baseline dyssynchrony (i.e. pre-

implantation) is an important determinant of the success of CRT in individual 

patients.25-27 Currently the primary variable to identify patients that are most likely to 

benefit is QRS duration. However, electrical and mechanical dyssynchrony may diverge  

and recent studies indicate that direct analysis of mechanical dyssynchrony may have 

higher predictive value.25,28 Mechanical dyssynchrony may be quantified by means of 

MRI, echocardiographic or tissue Doppler techniques.26,29,30,31,32 Recently, we 

introduced indices of mechanical dyssynchrony derived from the segmental volume 

signals obtained with the conductance catheter.33,34 The methods and indices are 

described and validated in detail elsewhere.35 Briefly, a segmental volume signal is 

compared with the simultaneous global volume signal and a segment is marked as 

dyssynchronous at time-point t if the instantaneous change in the segmental volume 

signal is opposite to the change in the global volume signal at that same time-point. An 

index of regional dyssynchrony is obtained by calculation the percentage of time during 

the cardiac cycle that a specific segment is dyssynchronous. A global index of 

mechanical dyssynchrony is subsequently derived by calculating the mean value over 

all segments. Furthermore, nonuniform contraction and filling is associated with 

ineffective movements of blood volume within the LV. This 'internal flow' may be 

quantified by calculating segment-to-segment flow (i.e. segmental volume changes that 

do not result in effective changes in total LV volume). An internal flow fraction (IFF) is 

obtained by dividing the average internal flow by effective global LV flow. A 

comparative study in heart failure patients with LBBB showed good correlation 

between these conductance derived dyssynchrony indices and tissue-Doppler derived 

septal-to-lateral delay in peak systolic velocity.31,36 

 

 

PRESSURE-VOLUME MEASUREMENTS DURING CRT 

 
We may distinguish several fields of application where pressure-volume measurements 

by conductance catheter may play a role in the context of CRT. In principle, the 

methodology can be applied to study the basic physiological mechanisms involved, as a 

tool to select patients that might benefit from CRT, to optimize the therapy, and to 

evaluate the treatment effects of CRT. In the following we will briefly review several 
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applications of pressure-volume measurements, and discuss the possibilities and 

limitations in these four fields. 

 

Mechanisms 

We and several other groups have used pressure-volume analysis to investigate the 

physiological mechanisms of CRT. The two primary targets of CRT are normalization 

of the pattern of LV activation and optimization of the atrial-ventricular delay.37 In 

patients with intraventricular conduction delay mechanical synchrony can be improved 

by pre-excitation of the otherwise late-activated region. As shown in figure 5 

(unpublished data) this may result in dramatic acute systolic improvements evident from 

increased stroke volume and increased stroke work. In this case the improvements are 

obtained largely from a reduced end-systolic volume, whereas end-diastolic volume is 

unaltered. Similar results were presented by Nelson et al. who very elegantly 

demonstrated that the improvement in systolic function is achieved with a minimal 

change or even a reduction in myocardial oxygen consumption. 38 
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Figure 5. Acute effects of biventricular pacing on LV pressure-volume loops. Note the increased stroke 

volume (width of pressure-volume loops) and stroke work (area of pressure volume loop) during CRT 
 

A nice demonstration of the influence of asynchronous activation on LV function was 

presented by Simantirakis et al.39 They determined systolic and diastolic LV function by 

pressure-volume loops in patients with long-term right ventricular apical pacing. 

Restoration of normal activation was achieved by switching from DDD to AAI pacing 

mode. The results indicate an acute improvement in systolic function evident from an 

increased end-systolic elastance, preload recruitable stroke work and dP/dtMAX-EDV 
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slope. Diastolic function was unaltered. Similar to the study by Nelson et al. it was 

found that myocardial oxygen consumption was unchanged and therefore the 

improvement in contractility must be attributed to a more economic functioning of the 

heart.38 Although mechanical dysfunction arising from right ventricular apex pacing is 

not necessarily equivalent to that found in patients with intrinsic conduction delay (such 

as LBBB), this study clearly illustrates the acute improvements that can be obtained 

after restoration of normal activation.40 

Pressure-volume loop analysis has been applied to study the influence of pacing site and 

AV-delay in an experimental animal model of left bundle branch block (LBBB) by 

Verbeek et al.41 They show that experimental LBBB acutely induces inter- and 

intraventricular electrical asynchrony which is reflected in reductions in dP/dtMAX, 

stroke volume and stroke work. LV pacing recovered LV function and maximal 

improvement was obtained with intra-ventricular resynchronization of activation, which 

depended on LV pacing site and required optimalization of the AV-delay. 

An interesting alternative hypothesis regarding the working mechanism of CRT has 

been put forward by the group of Frenneaux.42 They hypothesized that the mechanism 

of response may be an improvement in LV filling as well as ventricular systolic 

resynchronization. This hypothesis is based on the finding that patients with heart 

failure and high end-diastolic pressure (>15mmHg) often exhibit so-called diastolic 

ventricular interaction indicating that filling of the LV is constrained (external 

constraint) by the stretched pericardium and the pressure and volume overloaded the 

right ventricle.43 In this condition LV pacing may advance LV filling relative to right 

ventricular filling and thereby delay the onset of diastolic ventricular interaction and 

improve LV filling. Recently, they have employed conductance catheter derived 

pressure-volume measurements during unloading by vena cava occlusion to assess 

external constraint (example is shown in figure 6) with and without LV pacing.44 The 

results indicate a reduction in external constraint during LV pacing. The resulting 

increase in the effective filling pressure is followed by an increase in LV end-diastolic 

volume and a subsequent increase in stroke volume and stroke work via the Starling 

mechanism. 
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Figure 6. An example of the end-diastolic pressure-volume relation during inferior vena caval occlusion 

of a patient with significant external constraint. The baseline end-diastolic pressure-volume point is 

marked with an asterix. During vena cava occlusion LV end-diastolic pressure decreases but initially LV 

end-diastolic volume increases as represented by the initial right- and downward shift the pressure-

volume points. Then LV end-diastolic volume also starts to decrease as indicated by the left- and 

downward movement of the pressure-volume points. A quadratic regression has been fitted to the 

subsequent points. External constraint was defined as the pressure difference between the baseline point 

and the regression line (distance between the two thin horizontal lines) indicated by the dotted vertical 

arrow 

 

Patient selection 

Currently, selection criteria for CRT are typically NYHA III-IV, poor LV function 

(LVEF < 30-35%) and a wide QRS (> 120-150 ms) with LBBB configuration. However 

a substantial percentage of patients that fulfill the traditional inclusion criteria do not 

benefit from CRT.45 Several approaches to amend this problem have been used or 

suggested. E.g. the MIRACLE trial used two additional selection criteria: LV end-

diastolic dimension of 55 mm or more and a six-minute walking distance of 450 m or 

less.46 Recent studies indicate that acute hemodynamic improvement may be predicted 

by baseline mechanical dyssynchrony, therefore the number of nonresponders may be 

reduced by adding a pre-implantation assessment of mechanical dyssynchrony and 

exclude patients who do not show important dyssynchrony.25-27 An alternative approach 

is followed by the group in Bad Oeynhausen by performing an invasive pre-

implantation test procedure in all CRT candidates to identify responders, and optimize 

lead position and pacing mode: Temporary pacing electrodes are placed in the right 

atrium and the right ventricle, and the LV is paced through a temporary lead in a lateral 

cardiac vein.47 Various pacing modes are tested and acute hemodynamic benefit is 



Chapter 7 

 128

quantified by measuring femoral artery pulse pressure as a surrogate for stroke volume. 

Subsequent permanent implantation of a CRT device is only considered in patients 

showing an increase in pulse pressure greater than 10%. In on-going studies 

measurements of pressure-volume signals have been added to this protocol. Figure 7 

shows a typical example. 
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Figure 7. Pre-implantation hemodynamic testing. LV volume, LV pressure, LV dP/dt and femoral artery 

pressure at baseline and during CRT with LV pacing and biventricular pacing with AV delays set at 140, 

120, 100 and 80 ms. Note that the optimal stroke volume (amplitude of LV volume signal) with a 

reduction in end-diastolic volume is obtained during LV pacing with an AV delay of 120 ms. Similar 

effects, but with a less pronounced reduction in end-diastolic volume are obtained in this example with 

biventricular pacing 
 

Optimization 

Current CRT involves atrial synchronized ventricular pacing to optimize AV timing, 

and biventricular pacing to improve intraventricular and interventricular synchrony. 

Acute hemodynamic studies indicate that optimal contractility and stroke volume 

requires a patient-specific AV interval48,49, whereas an optimal RV-LV timing may 

contribute to a further improvement in synchrony and ejection fraction.32 Comparison 

between LV and biventricular pacing has been the subject of several studies50 but this 

issue remains unresolved.37 With regard to lead position the best hemodynamic 
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response of LV pacing is generally obtained through pacing in the mid-lateral or 

posterior LV51-53, which is achieved with leads placed in the posterior or lateral 

branches of the coronary sinus. Despite advances in percutaneous techniques, special 

guiding sheaths and improved lead design47,54, suboptimal lead positioning may still be 

an important cause of non-response to CRT. Intraoperative epicardial lead placement is 

currently mainly used as rescue in patients with failed endocardial leads, but may 

provide an alternative approach with possibilities for optimal lead placement.55,56 

Finally some studies suggest that multiple LV sites may be required for optimal 

hemodynamic results.57 Despite a large number of studies many questions regarding 

optimization of CRT remain disputed. Conceivably studies with the conductance 

catheter may resolve some of these issues by providing on-line pressure-volume loops 

which may guide optimization of CRT. 

 

Evaluation 

Studies have demonstrated acute hemodynamic improvement after CRT, followed by 

improvement in symptoms, quality of life and exercise capacity.46,48,58 More recent 

studies have provided objective evidence for improved systolic performance and 

reversed remodeling during long-term CRT which may provide the basis for the clinical 

improvements.27,59 The evaluation of long-term hemodynamic effects is complex 

because it involves alterations in both systolic and diastolic function, and in loading 

conditions. Although initially the improved systolic function most likely largely reflects 

improved contraction synchrony, long-term alternation in intrinsic myocardial function 

may be present e.g. due to alterations in wall stress or sympathetic activity.60 

Interpretation of traditional diastolic indices is complicated because alterations in filling 

time and mitral insufficiency are present and may interact with changes in intrinsic 

myocardial function. Analysis in terms of pressure-volume loops and pressure-volume 

relations is attractive because it provides relatively load-independent indices of systolic 

and diastolic function. In on-going studies we investigate patients before pacemaker 

implantation and after 6 months of CRT. The example shown in Figure 8 illustrates 

reversed remodeling with improved systolic and diastolic function and reduction in 

mitral regurgitation. Analysis of the segmental conductance signals yielded improved 

systolic and diastolic mechanical synchrony and reduced internal flow.61 
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Figure 8. Effects of chronic CRT. Pressure-volume loops at baseline (PRE) and after 6 months of chronic 

CRT (POST). Note the left ward shift of the pressure-volume loop indicating substantial reversed 

remodeling. Diastolic pressure decreased and the diastolic part of the pressure-volume loop indicates 

improved diastolic compliance 
 

 

CONCLUSION 

 

We conclude that, in the context of CRT, pressure-volume measurements by 

conductance catheter have been mainly applied to study the basic mechanisms of 

dyssynchronous and resynchronized cardiac contraction. In this field important new 

insights were obtained from pressure-volume measurements. There are certainly 

possibilities and distinct advantages in the field of patient selection but this application 

will remain limited by the invasive character of the conductance method. Currently, 

ongoing studies apply pressure-volume measurements to optimize CRT in individual 

patients and evaluate the long-term hemodynamic effects of CRT. The possibility to 

assess cardiac function and mechanical dyssynchrony during implantation and study the 

immediate effects of changes in lead position, AV and VV-delay, in an on-line and 

quantitative fashion makes this a promising tool to optimize CRT. Load-independent 

quantitative parameters of systolic and diastolic function derived from pressure-volume 

relations should provide more insight in the working mechanisms of chronic CRT. 
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ABSTRACT 

 

Background. Acute hemodynamic effects of cardiac resynchronization therapy (CRT) 

have been reported previously, but detailed invasive studies showing hemodynamic 

consequences of long-term CRT are not available. 

Methods and Results. We studied 22 patients scheduled for implantation of a CRT 

device based on conventional criteria (NYHA class III or IV, left ventricular (LV) 

ejection fraction <35%, left bundle-branch block, QRS duration >120ms). During 

diagnostic catheterization prior to CRT we acquired pressure-volume loops using 

conductance catheters during right atrial pacing at 80, 100, 120 and 140 beats/min. 

These studies were repeated during biventricular pacing at the same heart rates after 6 

months of CRT. Our data show significant clinical benefit of CRT (NYHA class: 

3.1±0.5 to 2.1±0.8; Quality-of-Life score: 44±12 to 31±16; 6-min hall-walk: 260±149 to 

396±129m; all p<0.001), improved LV ejection fraction (29±10 to 40±13%, p<0.01), 

decreased diastolic pressure (18±8 to 13±6mmHg, p<0.05), and reverse remodeling 

(end-diastolic volume: 257±67 to 205±54mL, p<0.01). Previously reported acute 

improvements in LV function remained present at 6 months: dP/dtMAX (+18%, p<0.01), 

dP/dtMIN (+13%, p<0.01), stroke work (+34%, p<0.01). Effects of increased heart rate 

were improved towards more physiological responses for LV ejection fraction, cardiac 

output and dP/dtMAX. Moreover, our study shows improved ventricular-arterial coupling 

(+69%, p<0.01) and improved mechanical efficiency (+44%, p<0.01). 

Conclusions. Hemodynamic improvements with CRT, which were previously shown in 

acute invasive studies, are maintained long-term. In addition, ventricular-arterial 

coupling, mechanical efficiency, and chronotropic responses are improved after 6 

months of CRT. These findings may help to explain the improved functional status and 

exercise tolerance in heart failure patients treated with CRT. 

 

 

INTRODUCTION 

 

Cardiac resynchronization therapy (CRT) improves quality of life, symptoms, and 

exercise capacity in patients with heart failure and intraventricular conduction delay.1 A 

recent study confirmed these favorable effects and also demonstrated that CRT 

significantly reduced the risk of death.2 Whereas previous randomized controlled trials 

have clearly demonstrated beneficial clinical effects over a period of up to 6 months, 
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small-scaled studies suggest that these clinical improvements are maintained long-

term.3-5 The primary working mechanism of CRT is the optimization of the mechanical 

activation pattern of the left ventricle (LV), which is achieved by pre-excitation of the 

region which is otherwise activated late due to delayed intrinsic conduction.6 In addition 

to this intraventricular resynchronization, additional benefit may be obtained by 

optimizing the delay between atrial and ventricular systole, and the timing of LV and 

right ventricle (RV) stimulation. Acute improvements in mechanical dyssynchrony 

resulting in enhanced systolic function have been demonstrated by various studies.7-10 

Invasive studies have shown increased LV ejection fraction and stroke volume, 

accompanied by increased systolic pressure, dP/dtMAX, and stroke work, and reduced 

diastolic pressure.9,11 Interestingly, these improvements in cardiac function are obtained 

at diminished energy cost.12 In the long-term, CRT is associated with LV reversed 

remodeling13 and improved myocardial efficiency.14 However, currently no invasive 

studies are available regarding the effects of long-term CRT on systolic and diastolic 

hemodynamic parameters. In this study we assessed the long-term hemodynamic effects 

of CRT, and investigated the underlying mechanisms. To this end, we acquired 

pressure-volume loops prior to CRT during right atrial pacing at 80, 100, 120 and 140 

beats/min, and these studies were repeated during biventricular pacing at the same heart 

rates after 6 months of CRT. 

 

 

METHODS 

 

Patients 

Twenty-two patients (mean age, 66±11 years; 17 men) with NYHA class III or IV heart 

failure despite optimized medical treatment, echocardiographic LV ejection fraction 

<35% and QRS duration >120ms scheduled for implantation of a CRT device were 

included. The protocol was approved by our institutional review committee and all 

patients gave informed consent. The etiology of heart failure was ischemic in 14 and 

non-ischemic in 8 patients. All patients received stable medical therapy for chronic 

heart failure, including diuretics (n=19), spironolactone (n=8), β-blockers (n=10), ACE 

inhibitors (n=20), and amiodarone (n=6). Medication was unchanged and no new 

therapies were installed during the 6-months follow-up period. In addition to the 

invasive studies described in detail below, we performed echocardiography, 6-minute 
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hall-walk tests, and quality of life assessments by the Minnesota Living with Heart 

Failure Questionnaire at baseline and after 6 months of CRT. 

 

Protocol 

Baseline (i.e. pre-CRT) hemodynamic data were obtained during routine diagnostic 

right and left heart catheterization, including thermodilution cardiac output, left 

ventriculography and coronary angiography. To acquire pressure-volume loops at 

incremental heart rates, a 7F combined pressure-conductance catheter (CD Leycom, 

Zoetermeer, The Netherlands) was placed in the LV via the femoral artery, and a 

temporary pacing lead was placed in the right atrium. Pressure-volume signals were 

displayed on-line and digitized at a sample frequency of 250Hz (Leycom CFL, CD 

Leycom). LV volume was calibrated using thermodilution and hypertonic saline 

dilution as previously described.15,16 Right atrial pacing was performed at 80, 100, 120 

and 140 beats/min. Data were acquired consecutively approximately 60s after changing 

to a higher rate, and periods of at least 20s were selected for off-line analysis. All 

measurements were repeated during recatheterization after at least 6 months of chronic 

CRT. During this session biventricular pacing was performed at 80, 100, 120 and 140 

beats/min by reprogramming the CRT device. The atrioventricular (AV) delay was kept 

fixed at the optimal clinical setting based on Doppler mitral flow velocity recordings 

obtained previously at the outpatient clinic. 

 

Data analysis 

Analysis of the steady state pressure-volume loops was performed using custom 

software as previously described.17 Briefly, for each patient and each pacing rate 

hemodynamic indexes were calculated as the mean of all beats during a steady state 

period of approximately 20s. LV function was quantified by cardiac output and stroke 

volume, end-diastolic and end-systolic volume, LV ejection fraction, end-systolic and 

end-diastolic pressure, maximal and minimal rate of LV pressure change (dP/dtMAX, 

dP/dtMIN). The time constant of relaxation (τ) was determined using phase-plot 

analysis.18 Stroke work was calculated as the area of the pressure-volume loop. LV end-

systolic elastance (EES) was estimated by end-systolic pressure divided by end-systolic 

volume, and end-diastolic stiffness (EED) by end-diastolic pressure divided by end-

diastolic volume. Effective arterial elastance (EA) was calculated as end-systolic 

pressure divided by stroke volume.19 Ventricular-arterial coupling was quantified as 

EES/EA,20 and mechanical efficiency was calculated as the ratio of external stroke work 
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and pressure-volume area (a measure of total mechanical work).21 Nonuniform LV 

performance was determined from the segmental LV conductance signals and quantified 

by calculating the percentage of time within the cardiac cycle that a specific segment is 

dyssynchronous (i.e. opposite in phase with the global LV volume signal). Overall LV 

mechanical dyssynchrony was determined as the mean of the segmental dyssynchronies. 

In addition, we calculated the internal flow fraction, which quantifies the ineffective 

shifting of blood volume within the LV due to nonuniform contraction and filling. This 

approach was described and validated in a previous study.17 Time-varying wall stress, 

WS(t), was calculated from the instantaneous LV pressure and volume signals (P(t) and 

V(t), respectively) as described by Arts et al.22: WS(t) = P(t)·(1+3·V(t) / LVM). LV 

mass (LVM) was calculated from M-mode echocardiography according to the 

conventions proposed by the American Society of Echocardiography.23 Atrioventricular 

delay was determined as the time between the right atrial pacing and the start of left 

ventricular contraction.24 

 

Statistical analysis 

We used a linear mixed-effects model to account for repeated measurements on each 

patient. In this model, patients were included as random effects and conditions 

(baseline, CRT), pacing (80, 100, 120, and 140 beats/min), and their interaction as fixed 

effects.25 To assess statistical significances between pacing levels and conditions, 

appropriate contrasts were selected. Data are presented as mean±SD. A p-value <0.05 

was considered statistically significant. 

 

 

RESULTS 

 

Clinical assessment and atrioventricular delay 

All patients were successfully implanted with a CRT device (Contac Renewal, Guidant 

(n=21), or InSync III, Medtronic (n=1)). All patients received CRT for at least 6 months 

(7.2±1.6 months). Table 1 shows the clinical parameters which all improved 

significantly, consistent with previous reports1. AV delay was optimized based on 

Doppler mitral flow velocity recordings at our outpatient clinic shortly after pacemaker 

implantation: The AV delay was set to achieve the longest left ventricular filling time 

without premature truncation of the A-wave by mitral valve closure.26 Baseline AV 

delay (during right atrial pacing at 80 beats/min) was 184±96 ms and tended to decrease 
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at higher pacing rates. Mean optimized AV delay with biventricular pacing was 97±15 

ms and was unchanged at the higher pacing rates (Table 2). 

 
Table 1. Clinical parameters at baseline (pre-CRT) and after 6 months of CRT 

 Baseline 6-mo CRT 

NYHA class 3.05±0.49 2.05±0.79 **** 

Quality of life score 44±12 31±16 **** 

6-min hall-walk, m 260±149 396±129 **** 

* p<0.05, ** p<0.01, *** p<0.005, **** p<0.001 vs. baseline by paired t-tests 

 

Left ventricular function 

Figure 1 shows typical examples of pressure-volume loops at 80 beats/min at baseline 

and after 6 months of CRT from two patients. Full hemodynamic data including the 

effects of increased pacing rate from all patients are summarized in Table 2. 

Comparison of 6 months of CRT vs. baseline at the lowest pacing rate (80 beats/min, 

p80) shows that cardiac output and LV ejection fraction improved significantly, whereas 

end-diastolic volume and end-systolic volume were significantly reduced. The latter 

indicates substantial reversed remodeling consistent with previous reports.13 Improved 

systolic function was evidenced by a significantly increased dP/dtMAX, EES and stroke 

work. In addition, end-diastolic pressure was significantly reduced. Diastolic stiffness 

EED and τ showed a non-significant tendency to reduce. dP/dtMIN was significantly 

improved indicating improved active relaxation. The increase in EES combined with a 

modest decrease in EA resulted in a significantly improved ventricular-arterial coupling 

ratio (EES/EA). The significant increase in external stroke work with unchanged total 

mechanical work resulted in a significantly improved mechanical efficiency. 

 
Legends of table 2. p80..p140 indicates paced at 80..140 beats/min; BL, baseline (i.e. pre-CRT) ; CRT, 6-

months cardiac resynchronization therapy; Condition effect, BL vs. CRT; Pacing effect, effect of 

incremental paced heart rate; Interaction effect, condition-pacing interaction; HR, heart rate; AVD, 

atrioventricular delay; CO, cardiac output; ESV, end-systolic volume; EDV, end-diastolic volume; EF, 

ejection fraction; SW, stroke work; ESP, end-systolic pressure; EDP, end-diastolic pressure; τ, 

relaxation time constant; PWS, peak wall stress; WSED, end-diastolic wall stress; DYS, mechanical 

dyssynchrony; IFF, internal flow fraction; EA, effective arterial elastance; EES, end-systolic elastance; 

EED, end-diastolic stiffness; PVA, pressure-volume area; ME = SW/PVA, mechanical efficiency; and 

EES/EA, ventricular-arterial coupling. Statistical significances and contrasts (changes vs. p80) were 

determined by using a linear mixed-effects model (see text for details). CRT-p80 vs. BL-p80: # p<0.05, ## 

p<0.01. Changes vs. p80 at same condition (BL or CRT): * p<0.05, ** p<0.01 
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Table 2. Left ventricular function indexes at baseline (pre-CRT) and at 6 months of CRT 

   Changes vs. p80 P-values of Effects 
  p80 p100 p120 p140 Condition Pacing Interaction
HR (beats/min) BL 78.6±4.4 21.6±0.7** 43.8±0.8** 62.7±0.8** 0.308 <0.001 0.093 
 CRT 80.1±2.2 20.6±0.7** 41.1±0.7** 61.8±0.8**    
AVD (ms) BL 184±96 -12±16 -20±16 -28±17 <0.001 0.832 0.472 
 CRT 97±15## 0.4±12 2±12 3±13    
CO (L/min) BL 4.36±0.70 0.09±0.17 -0.25±0.19 -1.14±0.20** <0.001 <0.001 0.026 
 CRT 4.98±0.86## 0.45±0.17** 0.08±0.17 -0.32±0.19    
ESV (ml) BL 195±72 4.1±13.6 -5.3±14.7 -15.0±15.9 <0.001 0.615 0.947 
 CRT 137±52## -2.6±12.4 -5.6±12.4 -9.5±14.1    
EDV (mL) BL 257±67 0.6±15.2 -25.7±16.5* -44.9±17.8** <0.001 0.005 0.814 
 CRT 205±54## -4.3±14.0 -14.2±14.0 -21.9±15.8*    
EF (%) BL 29.1±10.4 -3.5±2.4 -8.9±2.6** -12.6±2.8** <0.001 <0.001 0.235 
 CRT 39.5±12.8## -0.2±2.2 -2.3±2.2 -7.4±2.5**    
SW (mmHg·L) BL 4.37±2.07 -0.82±0.39* -1.91±0.42** -2.62±0.49** <0.001 <0.001 0.468 
 CRT 5.87±2.26## -0.43±0.35 -1.06±0.35** -2.24±0.39**    
ESP (mmHg) BL 105±29 -1.2±3.5 -7.0±3.8 -17.6±4.1** <0.001 <0.001 0.701 
 CRT 108±22 -1.8±3.3 -5.7±3.3 -12.1±3.7**    
EDP (mmHg) BL 17.9±8.2 0.9±1.9 1.7±2.0 3.0±2.2 <0.001 0.013 0.614 
 CRT 13.2±6.4# -0.4±1.8 2.1±1.8 5.7±2.1**    
dP/dtMAX (mmHg/s) BL 807±264 51±42 39±45 -42±48 <0.001 0.045 0.296 
 CRT 953±287## 79±39* 98±39* 77±44    
-dP/dtMIN (mmHg/s) BL 829±237 5±34 -36±37 -84±40 <0.001 0.105 0.650 
 CRT 936±281## 17±32 6±32 -25±37    
τ (ms) BL 83.1±12.6 -7.0±2.9* -7.5±3.1* -13.2±3.3** 0.637 <0.001 0.653 
 CRT 81.4±12.7 -3.2±2.7 -8.0±2.7** -10.7±3.0**    
PWS (mmHg) BL 342±89 -2.5±20 -22±21 -54±23* 0.149 0.012 0.940 
 CRT 331±99 -9.5±18 -19±18 -43±21*    
WSED (mmHg) BL 61±26 1.4±8.0 -3.1±8.6 -3.5±9.3 0.142 0.323 0.105 
 CRT 47±31 -2.5±7.3 8.5±7.3 19.7±8.2*    
DYS (%) BL 31.4±3.2 -0.2±1.1 -0.5±1.2 -1.4±1.3 <0.001 0.960 0.346 
 CRT 27.4±4.5## -0.5±1.0 -0.1±1.0 1.2±1.2    
IFF (%) BL 71±23 -0.7±6.4 -1.0±6.8 -3.2±7.3 <0.001 0.979 0.959 
 CRT 42±23## -0.8±6.0 -2.5±6.0 -0.6±6.7    
EA (mmHg/mL) BL 1.94±0.33 0.43±0.11** 1.03±0.12** 2.06±0.12** <0.001 <0.001 <0.001 
 CRT 1.78±0.41 0.25±0.10** 0.74±0.10** 1.29±0.11**    
EES (mmHg/ml) BL 0.67±0.43 -0.03±0.10 -0.04±0.11 -0.11±0.12 <0.001 0.902 0.936 
 CRT 1.00±0.67## -0.02±0.09 -0.03±0.09 -0.02±0.10    
EED (mmHg/mL) BL 0.074±0.038 0.002±0.011 0.014±0.012 0.035±0.014* 0.777 <0.001 0.810 
 CRT 0.067±0.029 0.001±0.010 0.020±0.010 0.050±0.012**    
PVA (mmHg·L) BL 14.5±4.4 -1.50±0.79 -2.90±0.85** -5.20±1.06** 0.056 <0.001 0.505 
 CRT 13.1±3.2 -0.62±0.71 -1.64±0.71* -3.44±0.78**    
ME BL 0.31±0.14 -0.03±0.03 -0.09±0.03** -0.09±0.04* <0.001 <0.001 0.470 
 CRT 0.45±0.15## -0.02±0.02 -0.03±0.02 -0.08±0.03**    
EES/EA BL 0.34±0.21 -0.08±0.04 -0.14±0.04** -0.22±0.05** <0.001 <0.001 0.841 
 CRT 0.57±0.39## -0.09±0.04* -0.19±0.04** -0.23±0.04**    
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Mechanical dyssynchrony and internal flow fraction were significantly reduced. 

Mechanical dyssynchrony was improved at all segmental levels except for the apical 

segment (Figure 2). Despite the significant reduction in LV volumes, LV wall stress 

was not significantly reduced. This was due to a concomitant significant reduction in 

LV mass from 324±92g at baseline to 290±107g (p<0.001) after 6 months of CRT. 
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Figure 1. Effects of chronic CRT in two patients. Typical pressure-volume loops at baseline (grey) and 

after 6 months of chronic CRT (black) are shown (in all cases at a heart rate of 80 beats/min). Note the 

left ward shift of the pressure-volume loops indicating substantial reversed remodeling 
 

Responses to increased heart rate 

Table 2 shows mean values at baseline and 6-months CRT for all hemodynamic indexes 

at 80 beats/min, and the related changes during pacing at 100, 120 and 140 beats/min. 

The mean values of the main indexes are also graphically displayed in Figure 3. At 

baseline, cardiac output did not increase with incremental pacing, but rather cardiac 

output was significantly reduced at 140 beats/min, indicating an exhausted chronotropic 

reserve in these heart failure patients. In contrast, at 6 months follow-up, cardiac output, 

which was significantly higher at 80 beats/min compared to the same heart rate at 

baseline, increased further at 100 beats/min and remained stable at higher rates (Figure 

3A). Similarly, at follow-up, LV ejection fraction was significantly higher at 80 

beats/min, and the reduction in LV ejection fraction at incremental pacing was 

substantially less pronounced than at baseline (Figure 3B). The negative chronotropic 

responses at baseline mainly resulted from a rapid decrease in end-diastolic volume with 

incremental pacing, with a less pronounced drop in end-systolic volume. After 6 months 

of CRT, the reduction in end-diastolic volume was more limited (only significant at 140 

beats/min) whereas end-systolic volume remained unchanged (Figure 3C). 
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Figure 2. Mechanical dyssynchrony (DYS) and internal flow fraction (IFF) at baseline and after 6 months 

of CRT (at 80 beats/min). DYS is also shown per segment. Significances vs. baseline: # p<0.05, ## p<0.01, 
### p<0.005, #### p<0.001 
 

At the same time systolic pressure dropped significantly at 140 beats/min both at 

baseline and at 6 months of CRT, and diastolic pressure tended to increase with pacing 

rate at both time-points. These effects are clearly shown by the average (i.e. based on 

mean end-systolic and end-diastolic pressures and volumes) pressure-volume loops in 

Figure 4. Note the substantial reverse remodeling evidenced by the leftward shift of all 

pressure-volume loops at 6 months of CRT, and the fact that stroke volume (the width 

of the pressure-volume loops) was better maintained during increased heart rate after 6 

months of CRT. 
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Figure 3. Main hemodynamic indexes at baseline and after 6 months of CRT. CO indicates cardiac 

output; EDP, end-diastolic pressure; EF, LV ejection fraction; EES, end-systolic elastance; EA, arterial 

elastance; EDV, end-diastolic volume; ESV, end-systolic volume; ME, mechanical efficiency. The Figures 

show mean±SD at 80, 100, 120 and 140 beats/min (p80, p100, p120 and p140).  Significances vs. p80 at 

the same condition (baseline or CRT): * p<0.05, ** p<0.01. Significances at p80 for CRT vs. baseline: # 

p<0.05, ## p<0.01 

 

Interestingly, after 6 months of CRT, dP/dtMAX showed a significant increase at higher 

pacing levels as compared to the value at 80 beats/min, whereas at baseline no 

significant increases were found during incremental pacing. This indicates a more 
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physiological response after 6 months of CRT. This is illustrated in Figure 5, which 

shows LV pressure and LV dP/dt for the different heart rates at baseline and after 6 

months of CRT in a typical patient. Note the higher dP/dtMAX after 6 months of CRT 

and the gradual increase in dP/dtMAX with increased pacing rate, which was absent at 

baseline. This change towards normalization of chronotropic response was not found for 

dP/dtMIN. Ventricular-arterial coupling, quantified by the ratio of ventricular and arterial 

elastance, was highly abnormal in the heart failure patients, but improved significantly 

after 6 months of CRT. The drop in EES/EA with increased heart rate was still present 

after CRT (Figure 3E). Likewise, mechanical efficiency was improved at follow-up, but 

dropped significantly at 140 beats/min both at baseline and after 6 months of CRT 

(Figure 3F). 
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Figure 4. Mean pressure-volume loops at baseline and after 6 months of CRT. Mean pressure-volume 

loops are based on mean end-systolic and end-diastolic pressures and volumes and are shown at heart 

rates 80, 100, 120 and 140 beats/min. At baseline we used right atrial pacing via a temporary pacing 

lead; at follow-up biventricular pacing was performed by reprogramming the CRT device 
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Figure 5. Typical examples of LV pressure and LV dP/dt during incremental pacing rate at baseline and 

after 6 months of CRT. Note that dP/dtMAX was unchanged with increasing heart rate at baseline, whereas 

dP/dtMAX substantially increased after CRT (See the bottom panels which extent the first 100ms of the 

dP/dt tracings) 

 

 

DISCUSSION 

 

CRT is a highly effective new therapy in patients with left bundle-branch block and 

severe heart failure. Large-scale studies have reported long-term clinical benefit with 

improved LV function and reverse LV remodeling.1,6,13,27 In these studies, follow-up is 

generally performed with echocardiography, and improvements in LV function are 

reported mainly in terms of increased ejection fraction. Detailed invasive hemodynamic 

studies of the acute effects of CRT, including analyses with pressure-volume loops12,28, 

have been published previously, but to our best knowledge no such data are available 
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for chronic CRT. In the present study we obtained invasive hemodynamics by pressure-

volume loops at baseline and after 6 months of CRT. Our data confirm previous 

findings regarding clinical benefit, improved LV ejection fraction and reverse 

remodeling. In addition, it shows that hemodynamic improvements in terms of 

increased dP/dtMAX, dP/dtMIN and stroke work, and reduced end-diastolic pressure, 

previously found in acute studies6,11,28,29, are still present at 6 months follow-up. 

Moreover, our study shows improved ventricular-arterial coupling and improved 

mechanical efficiency. These hemodynamic findings are consistent with the observed 

improvements in clinical and functional status. The altered responses to increased heart 

rate may partly explain the improved exercise capacity of patients treated with CRT. At 

baseline, cardiac output was unchanged when heart rate was increased illustrating the 

exhausted LV function reserve of these patients. At follow-up this is converted to a 

more physiological response although the capacity to increase cardiac output is still 

limited. The latter presumably is partly due to an abnormal relaxation reflected by a 

relatively long isovolumic relaxation time (τ), which did not improve after CRT. In the 

normal heart, τ substantially shortens at higher heart rate, which enables adequate filling 

despite a shortened diastolic period. This response is largely lost in heart failure, and did 

not normalize after 6 months of CRT in our patients. Consistent with our findings, 

previous studies failed to show improvements in isovolumic relaxation neither with 

acute biventricular pacing29,30 nor at long-term.13 A theoretical model by Hay et al.31 

shows a close correlation between increased τ and increased diastolic pressure, which is 

most evident at high heart rates. Our data are consistent with this prediction and show 

that the phenomenon is still present after 6 months of CRT. The improved mechanical 

efficiency found in our study is in line with previous studies on acute effects of CRT by 

Nelson et al.12 and is consistent with studies by, e.g., Sundell et al.14 in patients treated 

long-term. Most likely, the improved mechanical intraventricular synchrony underlies 

the more efficient conversion of total mechanical energy to external stroke work. This is 

most evident from a highly significant reduction in internal flow fraction from 71 to 

42%, which indicates that segmental volume changes are more efficiently used for 

effective ejection rather than for energy-wasting shifting of blood volumes between 

segments within the ventricle. In addition, ventricular-arterial coupling was significantly 

improved which further optimizes production of external work.32,33 However, whereas 

in the normal heart optimal ventricular-arterial coupling is maintained with increased 

heart rate34, EES/EA significantly dropped in our patients and this abnormal response was 

still present after long-term CRT. The baseline values for mechanical efficiency and 
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ventricular-arterial coupling found in our study (0.31 and 0.34, respectively) were in the 

same range but somewhat lower than values reported by Kim et al.35: 0.38 and 0.42, 

respectively. However, the patients in their study had less severe heart failure evidenced 

by an average NYHA classification of 1.8±0.7 and an LV ejection fraction of 37±13%. 

Asanoi et al.36 reported that in the failing heart homeostatic mechanisms maintain 

arterial blood pressure within the normal range, but that this blood pressure level causes 

a deviation from energetically optimal conditions in hearts with a severely reduced 

contractile state. This discrepancy results from worsening of ventricular-arterial 

coupling and decreased mechanical efficiency. Conversely, the improved ventricular-

arterial coupling and mechanical efficiency after 6 months of CRT, as found in our 

study, constitutes a more optimal energetic condition. Interestingly, despite the 

substantial reverse remodeling in our study, wall stress was not significantly reduced 

after 6 months of CRT. This was due to a concomitant reduction in LV mass. We would 

hypothesize that the regression in LV volumes initially leads to a reduction in wall 

stress, which then in turn may cause a reduction in LV hypertrophy. Note however that, 

although not statistically significant, diastolic wall stress was reduced by 23% at 80 

beats/min and by 30% at 100 beats/min. At higher heart rates, wall stress was virtually 

unchanged or even increased compared to baseline (-5% at 120 beat/min, and +24% at 

140 beats/min). This finding is explained by the fact that at baseline end-diastolic 

volume drops substantially at the high heart rates (which also limits the increase in end-

diastolic pressure), whereas end-diastolic volume is better maintained at 6-months 

follow-up. Furthermore, the global model to calculate wall stress does not take into 

account spatial dyssynchrony, and conversion to a more uniform contraction pattern at 

6-months follow-up may lead to reductions in wall stress at a regional level. 

In our study we used simultaneous biventricular pacing in all patients. Sequential 

biventricular pacing has been proposed to optimize CRT, and either right ventricular or 

left ventricular pre-excitation may optimize hemodynamics in individual patients.8,37 

However, Hay et al.28 demonstrated that sequential biventricular stimulation offered 

minimal benefit and that, on the average, most systolic and diastolic function parameters 

reached a maximum with simultaneous pacing. In addition to improvement of intra- and 

interventricular dyssynchrony, the patients may also have benefited from optimization 

of the AV delay. In our study the AV delay was reduced from a baseline value of 

184±96 ms to a mean value of 97±15 ms during CRT. Studies by Auricchio et al.24 

showed that the maximal increases in pulse pressure and dP/dtMAX were obtained at 
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45% of the intrinsic AV interval. Consistently, most studies report optimal AV delays of 

100-120 ms, but small differences in delay have far less influence than pacing site.29 

Because our baseline studies were performed prior to implantation of the CRT device 

we could not assess the acute hemodynamic effects of CRT. However, these effects 

were documented in previous studies. Acute improvements in CO or SV, in most 

studies assessed by changes in aortic pulse pressure, were reported to be in the range of 

7 to 15% 3,11,24,28,29,38,39, which is comparable to the 14% increase found at 6-months in 

our study. Previous studies show an acute reduction of 10 to 18% in end-systolic 

volume, and a relatively smaller reduction in end-diastolic volume of 5 to 9% 8,30,39 , 

which lead to 15 to 33% relative improvement in EF. The reductions in end-systolic and 

end-diastolic volume at 6 months in our study were 30 and 20%, respectively. 

Apparently, the acute improvement in cardiac output is maintained long-term, but both 

end-systolic and end-diastolic volume show a gradual, more or less parallel, further 

reversed remodeling, as previously documented over a 3-months period by Yu et al.27 

With regard to dP/dtMAX, previous studies fairly consistently showed an acute increase 

of 13 to 21% 3,7,11,24,28,29,38, which is close to the 18% increase found in our study at 6-

months follow-up. Yu's study revealed that more than 60% of the gain in dP/dtMAX 

obtained after 3 months CRT is lost immediately after turning off the pacemaker, 

whereas 4 weeks after cessation of CRT dP/dtMAX had completely returned to pre-CRT 

values. Their study also showed that left ventricular volumes increased and other 

echocardiographic benefits were gradually lost over the 4-week period. We did not 

systematically investigate the effects of turning off the pacemaker, but in a few patients 

we registered pressure-volume loops during temporary cessation of pacing in the 

follow-up study. Figure 6 shows two typical examples: The pressure-volume loops 

show an immediate reduction in stroke volume, whereas dP/dtMAX was decreased by 20 

and 7%, respectively. These immediate on-off responses are very similar to those 

registered previously in acute studies.29 

 

Limitations 

The sample size in our study was too small to justify a meaningful responder/non-

responder analysis. Only 4 patients did not show an improved clinical status: 3 patients 

with NYHA class III remained in class III, one class III patient deteriorated to class IV. 

All other patients improved by 1 or 2 NYHA classes. In the 'non-responder' group the 

baseline end-diastolic volume and end-systolic volume (282±73 and 228±70 mL, 



Chapter 8 

 150

respectively) appeared to be somewhat higher than in the group as a whole, and ejection 

fraction somewhat lower (21±6%). 
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Figure 6. Immediate effects of cessation of biventricular pacing after 6-months CRT in two patients. 

Typical pressure-volume loops during pacing ON (black) and OFF (grey). Note the immediate reduction 

in stroke volume 

 

In conclusion, our study shows that hemodynamic improvements that were previously 

shown in acute studies are maintained with long-term CRT. In addition, ventricular-

arterial coupling, mechanical efficiency, and chronotropic responses are improved after 

6 months of CRT. These findings may help to explain the improved functional status 

and exercise tolerance in heart failure patients treated with cardiac resynchronization. 
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ABSTRACT 

 

Background. Surgical ventricular restoration (SVR) and restrictive mitral annuloplasty 

(RMA) are increasingly performed for end-stage heart failure. We studied their clinical 

efficacy in patients with end-stage heart failure. 

Methods. We included 33 patients with NYHA class III/IV and left ventricular ejection 

fraction ≤ 35%. In this group, patients with moderate to severe mitral regurgitation 

(grade ≥ 2) underwent RMA and patients with anteroseptal aneurysm underwent SVR. 

A combined procedure (SVR and RMA) was performed in 12 patients, isolated SVR in 

5 patients and isolated RMA in 16 patients. Additional coronary artery bypass grafting 

was done in 27 patients. Clinical parameters, including NYHA classification, Minnesota 

Quality of Life (QoL) questionnaire, and 6-minute walking distance, were assessed at 

baseline and 6 months after surgery. 

Results. In the total group, operative mortality was 3% (n=1), in-hospital mortality was 

9% (n=3), and there was no late mortality. Four patients (12%) needed post-operative 

intra-aortic balloon pump support. The median duration at intensive care was 4 days 

(range: 2-28) with a median hospital stay of 13 days (range: 7-49). All clinical 

parameters were significantly improved at 6 months follow-up (p<0.001); NYHA 

classification was improved from 3.4±0.5 to 1.5±0.5, QoL questionnaire score was 

improved from 44±22 to 16±12, and 6-minute walking distance was increased from 

248±134 to 422±113 m. 

Conclusions. Surgical treatment of end-stage heart failure by SVR and/or RMA was 

associated with 12% mortality at 6 months. Surviving patients showed a highly 

significant clinical improvement. 

 

 

INTRODUCTION 

 

Chronic heart failure is one of the major healthcare problems in the world both in terms 

of patient numbers, hospitalizations, and economic costs. In the United States, 4 to 5 

million people have chronic heart failure, which leads to more than 2 million 

hospitalizations each year.1 Despite optimal medical therapy, many patients remain 

severely symptomatic. In these patients, cardiac transplantation remains the most 

effective surgical therapy with 1-, 5- and 10-year survival rates of 94, 78, and 46%, 
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respectively.2,3 Although effective, heart transplantation is importantly hindered by 

donor shortage, chronic rejection, and complications related to medication. 

Given the limitations of medical therapy and cardiac transplantation, alternative surgical 

therapies such as surgical ventricular restoration (SVR) and restrictive mitral 

annuloplasty (RMA) have been introduced and are currently widely performed in 

patients with end-stage heart failure.4,5 These therapies aim to correct frequently 

observed end-stage complications as left ventricular aneurysm  and mitral 

regurgitation.6,7 If not treated, these complications usually have important adverse 

effects on long-term morbidity and survival.8-10 

A long-term study by the RESTORE-group has demonstrated that SVR is safe and 

highly effective in the treatment of ischemic cardiomyopathy with a reduction of end-

systolic volume and a five-year survival of 69%.11 Several studies reported promising 

results in patients with heart failure treated with RMA with one- and two-year survival 

rates of 86% and 84%, respectively.12,13 

In the present study, clinical efficacy was evaluated six months after surgery in a cohort 

of patients with end-stage heart failure who underwent combined SVR and RMA, 

isolated SVR or isolated RMA. 

 

 

METHODS 

 

Patients 

We included 33 patients with end-stage heart failure, NYHA classification III or IV 

with left ventricular ejection fraction ≤ 35%. These patients underwent heart failure 

surgery for anteroseptal aneurysm and/or moderate to severe mitral regurgitation. 

Twelve patients had both anteroseptal aneurysm and moderate to severe mitral 

regurgitation (grade ≥ 2) and they underwent combined SVR and RMA; 5 patients had 

an anteroseptal aneurysm and underwent isolated SVR (SVR group, n=17). Another 16 

patients had severe mitral regurgitation (grade > 2) and no aneurysm and thus 

underwent isolated restrictive mitral annuloplasty (RMA group, n=16). All patients 

received stable medical therapy for chronic heart failure, including diuretics, 

spironolactone, β-blockers, and ACE-inhibitors. The institutional review board 

approved the study protocol and all patients provided informed consent. Patient 

characteristics are summarized in table 1. 
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Table 1. Patient characteristics 

Variable N=33 

Gender (M/F) 20/13 

Age, yrs 64±12 

Etiology (ischemic vs non-ischemic) 29/4 

NYHA class 3.4±0.5 

Duration of symptoms (median, months) 8 (2-62) 

LVEF, % 27±8 

Medication: 

- Diuretics/spironolactone 

- Nitrates 

- ACE-inhibitors/A-II antagonists 

- β-blockers 

- Anticoagulants/aspirin 

 

25 (76%) 

7  (21%) 

26 (79%) 

21 (64%) 

22 (67%) 

NYHA, New York Heart Association. LVEF, left ventricular ejection fraction, ACE, Angiotensin 

Converting Enzyme; A-II, Angiotensin II 

 

Evaluation of mitral regurgitation 

In patients with moderate to severe mitral regurgitation (grade ≥2) on transthoracic 

echocardiography (TTE), additional transesophageal echocardiography (TEE) was 

performed within 5 days before surgery. The TTE and TEE were performed without 

general anesthesia to avoid underestimation of the severity of mitral regurgitation. The 

severity of mitral regurgitation was graded semi-quantitatively from color-flow Doppler 

in the conventional parasternal long-axis and apical 4-chamber images. Mitral 

regurgitation was classified as: mild=1+ (jet area/atrial area <10%), moderate=2+ (jet 

area/atrial area 10-20%), moderately severe =3+ (jet area/atrial area 20-45%), and 

severe=4+ (jet area/atrial area >45%).14,15 The severity and precise mechanism of mitral 

regurgitation was confirmed from the TEE images. 

When the severity of mitral regurgitation was grade 2, an intraoperative loading test (as 

described previously) was performed.16,17 Briefly, a preload test is performed by rapid 

infusion of volume through the aortic cannula until the pulmonary artery capillary 

wedge pressure increases by 15 mmHg. During this provocative test, the severity of 

mitral regurgitation is continuously monitored, and patients who deteriorated to grade 3 

or 4 mitral regurgitation underwent RMA. Immediately after surgery, TEE was repeated 

to assess residual mitral regurgitation, transmitral diastolic gradient (determined from 

continuous-wave Doppler), and length of coaptation of the mitral leaflets. 
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Surgical procedures 

SVR was performed by the endoventricular circular patch plasty as previously described 

by Dor.18,19 Briefly, the left ventricle was opened through the infarcted area. An 

endocardial encircling suture (Fontan Stitch) was placed at the transitional zone 

between scarred and normal tissue. A balloon containing 55mL/m2 body surface area 

saline was introduced into the left ventricle and the Fontan stitch was tightened to 

approximate the ventricular wall to the balloon. An oval dacron patch was tailored and 

used to close the residual orifice. The excluded scar tissue was closed over the patch to 

ensure hemostasis. Care was taken to eliminate all septal scar and to delineate a new 

apex with the goal to restore the normal elliptical shape. 

Stringent restrictive mitral annuloplasty (2 sizes smaller than measured) was performed 

via an atrial transseptal approach using a Carpentier Edwards Physio ring (Edwards 

Lifesciences, USA) as previously described.20 Additional coronary artery bypass 

grafting was performed, if indicated. 

 
Clinical evaluation 

Patients were evaluated at the outpatient clinic at baseline and at 6 months after surgery. 

Heart failure symptoms were classified using the NYHA score. Quality of Life score 

was assessed using the Minnesota Living with Heart Failure questionnaire.21 This 

questionnaire contains 21 questions concerning the patient's perception of the effects of 

heart failure on daily life activities. Questions are scored from 0 to 5, resulting in a total 

score from 0 to 105, with the highest score reflecting the worst quality of life. Exercise 

tolerance was evaluated using 6-minute hall-walk tests at both visits.22 

 

Statistics 

Baseline and follow-up data were compared with paired t-tests. Statistical significance 

was assumed at p < 0.05. All data are presented as the mean value ± SD. 

 

 

RESULTS 

 

Mean cardiopulmonary bypass (CPB)-time was 192±64 minutes with a mean aortic 

cross-clamp time of 132±49 minutes. Weaning from CPB was uneventful in almost all 

patients. However, in one case a patient developed an irreversible vasoplegic shock after 

weaning from CPB and died during surgery (3% operative mortality) and four patients 
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(12%) needed post-operative intra-aortic balloon pump support. There were no peri-

operative myocardial infarctions. Three additional patients died in the hospital (9%); 

one patient who underwent combined SVR/RMA died 30 days postoperatively due to a 

cerebrovascular accident, one patient (isolated SVR) died 5h postoperatively due to left 

ventricular failure, and one patient (isolated RMA) died 7 days postoperatively due to 

left ventricular failure. Early non-fatal complications consisted of postoperative atrial 

fibrillation (3 patients), cerebrovascular accidents (1 patient), and renal failure (1 

patient). One patient developed postoperative sepsis with an empyema in the pleural 

space, which required surgical evacuation and this patient stayed 54 days at ICU with a 

total hospital stay of 66 days. For the remaining patients, the median duration at 

intensive care was 4 days (range: 2-28) with a median hospital stay of 13 days (range: 

7-49). In the total group, we had no late mortality during the 6 months follow-up period. 

Thus, overall mortality in our patient group was 12% at 6 months and complete clinical 

assessment was performed in the 29 surviving patients. 

 

Mitral regurgitation 

The mean grade of mitral regurgitation at baseline in the patients who underwent RMA 

was 3.0±0.6. The length of the anterior mitral leaflet (AML) was 2.88±0.30 cm with a 

mean mitral annular diameter (MAD) of 4.08±0.55 cm (mean ratio MAD/AML 

1.42±0.18). After surgery, no recurrence of mitral regurgitation was observed in these 

patients (0.3±0.4) with restored length of leaflet coaptation of 0.82±0.19 cm and a mean 

gradient of 2.9±1.3 mmHg. 

 

NYHA score 

In the total group, the mean NYHA score improved from 3.4±0.5 at baseline to 1.5±0.5 

at 6 months follow-up (p< 0.001) (Figure 1). In both the RMA and SVR patients the 

improvements in NYHA score was similar; in the RMA patients NYHA score improved 

from 3.4±0.5 at baseline to 1.5±0.5 at 6 months follow-up (p< 0.001) and in the SVR 

patients NYHA score improved from 3.5±0.5 at baseline to 1.5±0.5 at 6 months follow-

up (p< 0.001). 

 

Quality-of-Life Minnesota score 

Quality of Life score in the total group at baseline was 44±22 and decreased by 64% to 

16±12 at 6 months follow-up (p< 0.001) (Figure 1). The change in the total group was 
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similar to changes in the RMA (-63%) and SVR (-65%) subgroups. In the RMA patients 

Quality of Life score was decreased from 48±23 at baseline to 18±11 at 6 months 

follow-up (p< 0.001) and this score was decreased from 40±21 at baseline to 14±12 at 6 

months follow-up (p=0.002) in the SVR patients. 

 

Six-minute hall-walk test 

The mean walking distance in the total group of patients was 248±134 m at baseline and 

improved by 70% to a mean walking distance of 422±113 m at 6 months follow-up (p< 

0.001) (Figure 1). In the RMA patients the mean distance walked was 238±151 m at 

baseline and improved significantly (p <0.001) to 438±110 m at 6 months follow-up. In 

the SVR patients, the mean walking distance increased from 258±120 m at baseline to 

406±117 m at 6 months follow-up (p< 0.001). 
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Figure 1. NYHA classification, quality-of-life (QoL) score, and 6-minute walking distance (6minWD) at 

baseline (BL) and at 6 months follow-up (6MO) for the RMA and the SVR groups. Significant 

improvements were observed in all parameters at 6 months follow-up in both groups. No significant 

differences were found between groups. * p < 0.002 versus baseline 
 

 

DISCUSSION 

 

Heart transplantation is now considered standard treatment for select patients with end-

stage heart disease; but it is only applicable to a small number of patients. In an effort to 

address this problem, alternative surgical therapies are evolving, including SVR and 
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RMA, and other approaches. These operative techniques to alter the shape of the left 

ventricle, in combination with optimal medical management for heart failure, may 

improve survival. In some patients it may even avoid or postpone transplantation. 

The purpose of the present study was to evaluate the clinical efficacy of these treatments 

using NYHA classification, Minnesota Living with Heart failure questionnaire, and 6-

minute hall-walk test in a cohort of patients with end-stage heart failure who underwent 

SVR and/or RMA at our institution. 

We found that the surgical treatment was associated with 12% mortality at 6 months 

and resulted in an improvement in symptoms (NYHA class), accompanied by 

improvement in 6-minute walking distance and Quality of Life score. Our results 

regarding mortality are in line with the results of Dor et al. who reported 12% operative 

mortality in 835 patients with end-stage heart failure.23 Earlier studies by Di Donato et 

al. indicated a 19% in-hospital mortality and 26% mortality at one-year follow-up.24 

However, the mean left ventricular ejection fraction in Di Donato's group was 17±3%, 

while the mean ejection fraction in our series was 27±8% and in Dor's group only about 

10% of the patients had an left ventricular ejection fraction < 20%. More recently, Qin 

et al. reported a lower rate of mortality at six months follow-up of 5% in 60 patients 

who underwent SVR with or without mitral valve repair.25 Similar findings were 

reported by the RESTORE group with a 30-day mortality after SVR of 5.3% (8.7% with 

mitral repair vs. 4.0% without repair).11 However, in this large patient population, also 

patients with NYHA classification I/II were included. In all these previous studies, a 

significant improvement in NYHA classification has been observed at long-term 

follow-up, which was similar to the improvement found in our series. 

The aim of alternative surgical interventions (SVR and RMA) in patients with end-stage 

heart failure is to reduce left ventricular wall stress leading to reduced oxygen demand, 

improved mechanical dyssynchrony and mechanical efficiency. These effects may result 

in improvement of global and intrinsic systolic function. These theoretical assumptions 

were recently confirmed by hemodynamic studies in patients with end-stage heart 

failure.26,27 Operative mortality of both SVR and RMA are acceptable, however long-

term results are limited to survival rates, NYHA classification and hemodynamic 

parameters.11,12,28 Therefore, it is still relatively unknown whether these therapies lead 

to improvement of clinical status of the patient. Although previous studies indicate 

improvement in NYHA classification, to our best knowledge, our study is the first to 

show that these interventions lead to clinical improvement using 6-minute walking 

distance and Quality of Life score at 6-months follow-up. Our study did not include a 
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control group. However, previous epidemiological studies indicate that 1-year mortality 

rate in class III/IV heart failure patients is around 50%. 29 In comparison, the clinical 

efficacy of our surgical approach in terms of Quality of Life and 6-minute walking 

distance appears to be similar to the outcome after biventricular pacing in patients with 

end-stage heart failure.30-32 

 

Limitations 

This study represents a single-center experience in a relatively small cohort of patients 

with a combined surgical approach of SVR and/or RMA. Subgroup analysis did not 

show statistical differences, but the groups were relatively small and treatment 

obviously was not randomized. Moreover, this comparison should be taken with caution 

because, despite similar baseline clinical parameters, the etiology was different between 

groups. 

 

In conclusion, surgical treatment of end-stage heart failure by SVR and RMA seems 

relatively safe and surviving patients have clear clinical benefit at six months follow-up. 

Long-term prospective clinical randomized trials should be performed to assess benefit 

over optimal medical therapy. 
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ABSTRACT 

 

Background. Surgical ventricular restoration (SVR) is increasingly applied in patients 

with ischemic dilated cardiomyopathy. Previous studies show promising results with 

regard to survival and clinical outcome. However, a comprehensive mid-term analysis 

of this approach on left ventricular (LV) and right ventricular (RV) function is not yet 

available. We investigated biventricular function and clinical status at 6-months follow-

up. 

Methods. We investigated the effects of SVR on clinical parameters, LV volume and 

RV reverse remodeling, LV dyssynchrony, tricuspid regurgitation, and pulmonary 

artery pressure in 21 patients with ischemic dilated cardiomyopathy (NYHA class 

III/IV) who underwent SVR and CABG. Additional surgery included mitral 

annuloplasty (n=14) and tricuspid valve annuloplasty (n=8). Clinical parameters 

(NYHA, quality-of-life questionnaire, 6-min hall-walk test) and echocardiographic 

parameters were assessed at baseline and at 6-months. 

Results. At 6-months follow-up, all clinical parameters were significantly improved. 

LV ejection fraction improved from 27±10 to 36±11% (P<0.01), LV end-diastolic 

volume decreased from 248±78 to 152±50mL (P<0.001), and LV end-systolic volume 

from 186±77 to 101±50mL (P<0.001). LV dyssynchrony decreased from 61±41 to 

12±12ms (P<0.001). RV annular diameter decreased from 30±7 to 27±6mm, RV short-

axis from 30±9 to 27±7mm, and RV long-axis from 90±7 to 79±10mm (all P<0.05). 

Finally, significant reductions in severity of tricuspid regurgitation (from 1.3±1.1 to 

0.9±0.6, P=0.001) and pulmonary artery pressure (42±11 to 28±10mmHg, P=0.015) 

were observed. 

Conclusions. SVR resulted in improvement of clinical parameters, significant LV 

volume reduction and reduced LV dyssynchrony at 6-months follow-up. In addition, 

RV reverse remodeling was noted with reductions in tricuspid regurgitation and 

pulmonary artery pressure. 

 

 

INTRODUCTION 

 

Chronic heart failure is one of the major healthcare problems in the world both in terms 

of patient numbers, hospitalizations, and economic costs.1 The prognosis is extremely 

poor with a 5-year survival rate being less than 40%.2 Recently, it has been 
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demonstrated that surgical ventricular restoration (SVR) improves symptoms and long-

term survival in patients with ischemic cardiomyopathy and severe heart failure.3 

Several studies have reported on the beneficial effects of SVR, including left ventricular 

(LV) volume reduction with an improvement in LV ejection fraction (LVEF), 

associated with a reduction in ventricular arrhythmias and reduced mitral  

regurgitation.4-6 In addition, recent studies have shown that SVR results in an acute 

reduction of LV mechanical dyssynchrony.7,8 

In patients with valvular insufficiencies who undergo SVR, additional mitral and or 

tricuspid valve repair may be needed to optimize patient outcome.9 Therefore, our 

current approach in patients undergoing SVR is to always correct mild to moderate 

mitral and tricuspid regurgitation using annuloplasty. Although preliminary data 

indicate acceptable survival, larger studies are required to establish survival rate. In 

addition, comprehensive data on clinical and hemodynamic status of these patients at 

mid-term follow-up are limited. Therefore, we analyzed clinical status and biventricular 

function in patients with ischemic dilated cardiomyopathy treated at our institution 

before and 6 months after surgery. In particular, we report the effects of our approach 

on LV volume, LV dyssynchrony, right ventricular (RV) reverse remodeling and RV 

functional parameters (severity of tricuspid regurgitation and pulmonary artery 

pressure). 

 

 

METHODS 

 

Patients and Study Protocol 

We studied a group of 21 patients with ischemic dilated cardiomyopathy, who 

underwent SVR and who had complete echocardiographic follow-up including tissue 

Doppler imaging at 6 months. All patients had severe heart failure symptoms and 13 

patients (62%) had accompanying angina pectoris. In particular, 13 (62%) patients were 

in New York Heart Association (NYHA) class III and 8 (38%) were in class IV. All 21 

patients had a previous anteroseptal infarction and the interval between infarction and 

SVR procedure averaged 2.5 years (range 0.25-12 years). All patients had coronary 

artery disease (on average 2.4±0.9 stenosed coronary arteries) and were scheduled for 

additional CABG. Patients with severe mitral and/or tricuspid regurgitation underwent 

additional mitral and/or tricuspid valve repair. Patients who underwent valvular repair 
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were evaluated before and immediately after surgery by transesophageal 

echocardiography (TEE). The baseline characteristics are presented in Table 1. 

 
Table 1. Patient characteristics 

Variable N=21 

Age, yrs  63±11 (35-76) 

Gender (M/F)  14/7 

Delay from previous infarction, mo 30±45 (4-144) 

QRS duration, ms 107±28 (80-202) 

NYHA class 

- class III 

- class IV 

 

13 (62%) 

8 (38%) 

Rhythm 

- sinus rhythm 

- atrial fibrillation 

 

20 (95%) 

1 (5%) 

Coronary artery disease 

- 1-vessel 

- 2-vessel 

- 3-vessel 

 

4 (19%) 

8 (38%) 

9 (43%) 

Medication: 

- Diuretics/spironolactone 

- Nitrates 

- ACE-inhibitors/A-II antagonists 

- β-blockers 

- Anticoagulants/aspirin 

 

18 (86%) 

7 (33%) 

17 (81%) 

16 (76%) 

15 (71%) 

ACE, Angiotensin Converting Enzyme; A-II, Angiotensin II; 

NYHA, New York Heart Association 

 

In all patients, before SVR and 6 months after surgery, two-dimensional transthoracic 

echocardiography (TTE) at rest was performed to calculate LV volumes and LVEF, and 

to assess RV chamber size. Next, tissue Doppler imaging was performed to evaluate LV 

dyssynchrony. At the same time points, clinical status was assessed using NYHA 

classification, the Minnesota quality-of-life questionnaire, and the 6-minute hall-walk 

test. The institutional review board approved the study protocol and all patients 

provided informed consent. 

 

Surgical Procedures 

The surgical procedures were performed with the use of normothermic cardiopulmonary 

bypass with intermittent antegrade warm blood cardioplegia for myocardial protection. 
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After median sternotomy, patients underwent conventional CABG, and internal 

mammary arteries were used whenever possible. Next, SVR was performed by means 

of endoventricular circular patch plasty as previously described by Dor.10,11 Briefly, the 

LV was opened through the infarcted area. An endocardial encircling suture (Fontan 

stitch) was placed at the transitional zone between scarred and normal tissue. A balloon 

containing 55 mL/m2 body surface area saline was introduced into the LV and the 

Fontan stitch was tightened to approximate the ventricular wall to the balloon. An oval 

Dacron patch was tailored and used to close the residual orifice. Care was taken to 

provide an elliptical shape to the residual LV cavity. The excluded scar tissue was 

closed over the patch to ensure hemostasis. In patients with concomitant severe mitral 

regurgitation (grade ≥2), additional mitral valve repair was indicated. In these patients, 

restrictive mitral annuloplasty with implantation of an undersized semi-rigid ring 

(aiming at stringent downsizing of the mitral annulus by 2 sizes) was performed via the 

transseptal approach. After weaning from cardiopulmonary bypass, TEE evaluation was 

performed in these patients to exclude residual mitral regurgitation and assess the length 

of mitral leaflet coaptation (aiming at ≥0,8 cm). In patients with severe tricuspid annular 

dilatation (>3.5 cm) and/or regurgitation (grade ≥2), a concomitant tricuspid 

annuloplasty was performed. 

 

Echocardiography 

Resting echocardiography and tissue Doppler imaging was performed at baseline (pre-

operatively), and at 6-months follow-up. Patients were imaged in the left lateral 

decubitus position using a commercially available system (Vingmed system Seven, 

General Electric-Vingmed, Milwaukee, Wisconsin, USA). Images were obtained using 

a 3.5 MHz transducer, at a depth of 16 cm in the parasternal and apical views (standard 

long-axis and two- and four-chamber images). Standard two-dimensional and colour 

Doppler data, triggered to the QRS complex were saved in cine loop format. LV 

volumes (end-systolic, end-diastolic) and LVEF were calculated from the conventional 

apical two- and four-chamber images, using the biplane Simpson's technique.12 

 

Evaluation of mitral and tricuspid regurgitation 

In patients with severe mitral and tricuspid regurgitation (grade ≥2) on TTE, additional 

TEE was performed within 5 days before surgery. The TTE and TEE were performed 

without general anesthesia to avoid underestimation of the severity of mitral and 

tricuspid regurgitation. The severity of mitral and tricuspid regurgitation was graded 
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semi-quantitatively from color-flow Doppler in the conventional parasternal long-axis 

and apical 4-chamber images. Mitral and tricuspid regurgitation were classified as: 

mild=1+ (jet area/atrial area <10%), moderate=2+ (jet area/atrial area 10-20%), 

moderately severe =3+ (jet area/atrial area 20-45%), and severe=4+ (jet area/atrial area 

>45%).13,14 The severity and precise mechanism of mitral regurgitation was confirmed 

from the TEE images. 

Immediately after surgery, TEE was repeated to assess residual mitral or tricuspid 

regurgitation, transmitral diastolic gradient (determined from continuous-wave 

Doppler), and length of coaptation of the mitral leaflets. Six months after surgery, TTE 

was performed to assess possible recurrence of mitral and tricuspid regurgitation. 

Continuous-wave Doppler examination was also performed to estimate pulmonary 

artery systolic pressure from the trans-tricuspid maximal regurgitant flow velocity. All 

TTE measurements were analyzed in random order by two independent observers 

without knowledge of the clinical status of the patient and the timing of the 

echocardiogram. 

 

Assessment of RV chamber size 

RV end-diastolic chamber size was assessed using three parameters, which were 

described previously by Foale et al.15 The first parameter is the diameter of the annulus 

of the tricuspid valve (TV ANN), defined as the point of attachment of the septal and 

posterior leaflets to the atrioventricular junction. The second measurement is the 

maximal dimension of the middle third of the RV, parallel to the tricuspid annulus (RV 

SAX). The last measurement is the major axis of the RV (RV LAX) and is defined as 

the distance between the RV apex to the mid-point of the tricuspid annulus. 

Inter- and intra-observer agreement for assessment of RV chamber size were 98% and 

96% for TV ANN, 90% and 92% for RV SAX, and 94% and 95% for RV LAX 

respectively. 

 

Tissue Doppler Imaging 

In addition to the conventional echocardiographic examination, tissue Doppler imaging 

was performed to assess LV dyssynchrony. For tissue Doppler imaging, color Doppler 

frame rates varied between 80 and 115 frames/s depending on the sector width of the 

range of interest; pulse repetition frequencies were between 500 Hz and 1 KHz, 

resulting in aliasing velocities between 16 and 32 cm/s. Tissue Doppler imaging 

parameters were measured from color images of three consecutive heart beats by offline 
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analysis. Data were analyzed using commercial software (Echopac 6.1, General Electric 

- Vingmed). 

To determine LV dyssynchrony, the sample volume was placed in the basal portions of 

the septum and the LV lateral wall; peak systolic velocities and time-to-peak systolic 

velocities were obtained and the delay in peak velocity between the septum and the LV 

lateral wall was calculated as an indicator of LV dyssynchrony (referred to as the septal-

to-lateral delay). 

Inter- and intra-observer agreement for assessment of the septal-to-lateral delay were 

90% and 96%, respectively.16 

 

Assessment of Functional Status 

Functional status was assessed according to the NYHA classification, quality-of-life 

score (using the Minnesota quality-of-life questionnaire) and 6-minute hall-walk test. In 

all patients, QRS duration was measured from the surface ECG using the widest QRS 

complex from the leads II, V1 and V6. The ECGs were recorded at a speed of 25 

mm/sec and were evaluated by two independent observers without knowledge of the 

patient’s clinical status. All parameters were assessed within 1 week before surgery and 

approximately 6 months post-surgery. 

 

Statistical Analysis 

Data are presented as mean ± SD, and compared using the paired or unpaired Student’s 

t-test when appropriate. For all tests a P-value <0.05 was considered statistically 

significant. 

 

 

RESULTS 

 

Twenty-one patients were evaluated: 12 patients (57%) had dyskinesia and 9 patients 

(43%) had akinesia. (Peri-)operative data and early operative complications (<30 days) 

are summarized in Table 2. Note that we only included a selected group of patients with 

complete echocardiographic follow-up at 6 months. Therefore, data regarding mortality 

are not relevant and clinical findings reflect only patients who survived 6 months 

follow-up. 
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Table 2. Surgical information, complications 

Variable N=21 

Additional valve procedures 

- RMA 

- TVA 

 

14 (67%) 

8 (38%) 

Number of distal anastomoses 3.1±0.9 

CPB, min 223±57 

AoX, min 131±38 

Early complications (<30 days) 

- SVT 

- VT 

- IABP 

- Reoperation for bleeding 

- Inotropy >24 hours 

 

1 (5%) 

1 (5%) 

3 (14%) 

1 (5%) 

12 (57%) 

ICU-duration, days 7±8 

Hospital stay, days 17±10 

AoX, aortic cross clamp time; CPB, cardiopulmonary bypass; IABP, intra-aortic balloon pump; ICU, 

intensive care unit; RMA, restrictive mitral annuloplasty; SVT, supraventricular arrhythmias; TVA, 

tricuspid valve annuloplasty; VT, ventricular tachycardia 
 

Clinical Parameters 

At 6-months follow-up a significant improvement in clinical status was observed. 

NYHA class improved significantly from 3.4±0.5 to 1.4±0.5 (P<0.001), the Minnesota 

quality-of-life score improved from 39±21 to 15±23 (P<0.001) and the 6-minute 

walking distance improved from 234±124 m to 416±106 m (P<0.001). QRS duration at 

baseline was 107±28 ms (range 80-202 ms) and remained unchanged (111±22 ms, 

range 90-172 ms, P=0.3481) at 6-months follow-up. 

 

Echocardiography 

Echocardiographic results at baseline and at 6-months follow-up are summarized in 

Table 3. 

 

Left ventricular dyssynchrony: At 6-months follow-up, tissue Doppler imaging 

demonstrated a significant reduction in septal-to-lateral delay from 61±41 ms to 12±12 

ms (P<0.001), indicating improved LV mechanical synchrony after surgery. 
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Left ventricular volume reduction: Significant LV volume reduction was shown at 6-

months follow-up. LV end-diastolic volume decreased from 248±78 ml to 152±50 ml 

(P<0.001), whereas LV end-systolic volume decreased from 186±77 ml to 101±50 ml 

(P<0.001). This resulted in an increase of the LVEF from 27±10 to 36±11% 

(P=0.0072). 

 

Right ventricular remodeling: At 6-months follow-up, significant reverse remodeling 

of the RV was demonstrated. All three parameters reflecting RV chamber size showed a 

significant decrease 6 months after surgery. The TV ANN showed a significant decrease 

from 30±7 mm to 27±6 mm (P=0.04), RV SAX decreased from 30±9 mm to 27±7 mm 

(P=0.03) and RV LAX showed a reduction from 90±7 mm to 79±10 mm (P<0.001). 

Moreover, after surgery, pulmonary artery pressure significantly decreased from 42±11 

mmHg to 28±10 mmHg (P=0.02). 

 
Table 3. Echocardiographic data 

 Baseline TTE 6- months follow-up TTE P-value 

LVEF, % 27±10 36±11 0.0072 

LVEDV, ml 248±78 152±50 <0.001 

LVESV, ml 186±77 101±50 <0.001 

Septal-to-lateral delay, ms 61±41 12±12 <0.001 

RV chamber size: 

- TV ANN, mm 

- RV SAX, mm 

- RV LAX, mm 

 

30±7 

30±9 

90±7 

 

27±6 

27±7 

79±10 

 

0.0430 

0.0326 

<0.001 

Pulmonary artery pressure, 

mmHg 

42±11 28±10 0.0157 

MR, grade 2.0±1.0 1.0±0.7 0.0013 

TR, grade 1.3±1.1 0.9±0.6 0.0018 

LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left 

ventricular end-systolic volume; RV, right ventricle; TV ANN, tricuspid valve annulus; RV SAX, right 

ventricular short axis; RV LAX, right ventricular long axis; MR, mitral regurgitation; TR, tricuspid 

regurgitation 
 

Mitral and tricuspid regurgitation: In 14 patients additional restrictive mitral 

annuloplasty (median ring size 24; range 24-28) was performed. In 9 (43%) of these 

patients, severe (grade 3 to 4+) mitral regurgitation was confirmed by TTE and TEE 

performed within 5 days before surgery. In the other 5 (24%) patients, grade 2+ mitral 
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regurgitation was observed during the TTE and TEE performed within 5 days before 

surgery. In these patients, provocative testing was performed in the operating room, 

resulting in grade 3 to 4+ mitral regurgitation in all patients. None of the patients had 

primary organic valvular disease. The mechanism underlying mitral regurgitation was 

systolic restrictive leaflet motion with annular dilatation, which resulted in coaptation 

failure (resulting in a central regurgitant jet). The patients who underwent mitral valve 

repair (n=14) had grade 2.8±0.7 mitral regurgitation on pre-operative TEE, which 

improved to grade 0.1±0.3 immediately after restrictive mitral annuloplasty. TTE after 6 

months showed no significant recurrence (grade 0.9±0.7). In these patients, pre-

operative TEE showed a mean length of coaptation of 0.23±0.06 cm, and 0.78±0.12 cm 

after restrictive mitral annuloplasty, with a mean transmitral diastolic gradient of 

3.1±1.5 mmHg. No systolic anterior movement of the anterior leaflet was observed in 

any patient. In the patients who did not receive additional mitral valve repair (n=7), 

mitral regurgitation was unchanged at 6-months follow-up (mitral regurgitation grade 

1.3±0.9 at baseline versus 1.1±0.8 at follow-up, P=0.604). In the group as a whole, 

mitral regurgitation was grade 2.0±1.0 at baseline, and 1.0±0.7 at 6-months follow-up 

(P=0.0013). 

In 8 patients additional tricuspid annuloplasty (median ring size 28; range 28-32) was 

performed for severe tricuspid regurgitation (pre-operative TEE: grade 2.5±0.5). The 

tricuspid regurgitation was successfully treated (post-operative TEE: grade 0.1±0.1). In 

the group as a whole, tricuspid regurgitation was grade 1.3±1.1 at baseline and 0.9±0.6 

at 6-months follow-up (P=0.0018). 

 

 

DISCUSSION 

 

The number of patients presenting with heart failure is increasing exponentially.17 In 

these patients, severe LV dilation and mitral/tricuspid regurgitation are frequently 

observed and conservative treatment of both complications is associated with a poor 

prognosis.18,19 

Therefore, surgical therapies (SVR and if indicated mitral and/or tricuspid annuloplasty) 

to correct these complications have evolved with acceptable survival rates. However, 

limited data is available about the effects on clinical status and LV and RV 

hemodynamics. In the current study, we analyzed clinical status and biventricular 

function in a group of patients with ischemic dilated cardiomyopathy undergoing SVR 
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and revascularization with, if needed, mitral and/or tricuspid valve repair before and 6 

months after surgery. In particular, we report the effects of this approach on LV volume, 

LV dyssynchrony, right ventricular (RV) reverse remodeling and RV functional 

parameters (severity of tricuspid regurgitation and pulmonary artery pressure). 

 

Clinical Status 

In the total group of patients, an improvement in heart failure symptoms was observed, 

illustrated by a significant reduction of NYHA class from 3.4±0.5 to 1.4±0.5, with all 

patients in NYHA class I or II at follow-up. Similar observations were reported by Di 

Donato et al. and Suma et al.20,21 In addition, more objective parameters of symptoms 

were also evaluated in the present study, including quality-of-life score and 6-minute 

walking distance, which improved in parallel to the improvement in NYHA class. 

 

Echocardiographic Evidence of Remodeling 

LV function: Besides the improvement in clinical status, previous studies demonstrated 

improvement in LVEF and LV volume reduction after SVR. Maxey et al. showed an 

acute increase in LVEF from 22±3 to 33±1% in 56 patients who underwent SVR 

combined with CABG.22 Qin et al. reported an increase in LVEF from 27±9 to 36±11% 

at 6-months follow-up in patients who underwent SVR combined with mitral valve 

repair.23 A similar increase in LVEF (from 27±10 to 36±11%, P<0.001) was noted in 

the current study. The improvement in LVEF was associated with the decrease in LV 

volume, with a mean reduction of 39% in LV end-diastolic volume and 46% in LV end-

systolic volume. Qin et al. showed a comparable reduction in patients undergoing SVR 

and mitral valve repair; the LV end-diastolic volume decreased from 235±87 ml at 

baseline to 156±73 ml at discharge, whereas the LV end-systolic volume decreased 

from 175±80 ml at baseline to 104±63 ml at discharge.23 At 6-months follow-up, 

however, LV volume reduction was not fully maintained and re-dilatation occurred with 

a final LV end-diastolic and LV end-systolic volume of 177±94 ml (NS vs. baseline) 

and 114±66 ml (NS vs. baseline) respectively. The re-dilatation was most outspoken in 

patients with recurrent mitral regurgitation, indicating that effective mitral valve repair 

is warranted in these patients to prevent re-dilatation. In our series, successful mitral 

valve repair without significant recurrence of mitral regurgitation was performed 

resulting in significant reduction in LV volumes at 6-months follow-up. Recently, Fujii 

et al. demonstrated that LV volume reduction may even be maintained at 3-years 
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follow-up; in 14 patients undergoing SVR, LV end-systolic volume was significantly 

reduced from 165±74 ml at baseline to 94±70 ml at 3-year follow-up.24 Also, 

Yamaguchi et al. demonstrated a long-term reduction in LV volumes at 5-year follow-

up after successful SVR with mitral valve repair.25 These preliminary results suggest a 

long-term benefit from SVR and mitral annuloplasty, but additional studies with larger 

patient populations are needed to confirm these findings. Previous studies indicate an 

acute volume reduction after SVR in a range between 33% to 40%, which suggests that 

the 39% volume reduction found in our study at 6 moths follow-up is achieved largely 

immediate after surgery.7,8,23,24 

RV function: The results in the current study illustrate that our surgical approach in 

patients with ischemic dilated cardiomyopathy is associated with a significant reduction 

in pulmonary artery pressure, with reduction in severity of tricuspid regurgitation and 

reverse RV remodeling. Currently, no other data are available regarding the effect of 

SVR and mitral and or tricuspid annuloplasty on RV function in patients with heart 

failure. One could hypothesize that successful mitral valve repair may lead to a 

reduction in pulmonary artery pressure with a recovery in RV function.26 Similarly, 

tricuspid annuloplasty would be expected to improve RV function.27 However, in our 

series we could not demonstrate significantly different effects on RV function between 

the patients who did or did not receive mitral and/or tricuspid annuloplasty. However, 

the number of patients in the subgroups is too small for adequate statistical analysis. 

The improvement in RV function is clinically important, since decreased RV function 

and RV dilatation have been shown to negatively affect hemodynamics, resulting in 

deterioration in heart failure symptoms with a worse prognosis.28,29 

 

LV Dyssynchrony  

LV dyssynchrony appears to be an important co-determinant of LV dysfunction in 

patients with heart failure.30,31 Recently, Di Donato et al. showed an acute reduction of 

LV mechanical dyssynchrony after SVR assessed by using centerline analysis of LV 

angiographic data.7 Similarly, Schreuder et al. showed that the reduction in LV 

dyssynchrony after SVR induced acute improvements in contractile status, energy 

efficiency, and LV relaxation.8 In the current study, a significant reduction in LV 

dyssynchrony at 6 months after surgery was shown using tissue Doppler imaging. 

Recent data suggested that LV dyssynchrony was associated with a worse outcome, 

whereas LV resynchronization was associated with a better long-term prognosis.32,33 
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Additional studies on LV dyssynchrony and subsequent resynchronization in patients 

undergoing SVR are needed to determine the clinical value of LV resynchronization. 

 

Limitations of the study 

In this study, we evaluated the hemodynamic and clinical status in a group of patients 

after SVR with, if indicated, mitral and/or tricuspid annuloplasty, who survived 6 

months follow-up. Therefore, this study did not provide data regarding clinical outcome 

in terms of mortality and morbidity. Another limitation of this study is the lack of acute 

data and therefore we cannot compare mid-term effects of SVR with effects 

immediately after surgery. 

The effects of additional valve procedures on biventricular function could not be 

established as the number of patients in this study was too small and treatment was not 

randomized. 

 

In conclusion, SVR with, if indicated, additional mitral and/or tricuspid annuloplasty 

resulted in significant improvement of clinical status and heart failure symptoms at 6 

months follow-up, combined with an improvement in LV function, reduction in LV 

volume, and a reduction in LV dyssynchrony with minimal residual mitral regurgitation. 

In addition, a decrease in pulmonary artery pressure, RV reverse remodeling and 

reduced tricuspid regurgitation was observed. 
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ABSTRACT 

 

Background. Previous studies have demonstrated that surgical ventricular restoration 

(SVR) has acute beneficial effects on mechanical dyssynchrony and left ventricular 

(LV) systolic function. However, chronic effects on systolic and diastolic function are 

largely unknown. 

Methods. We studied 8 patients with ischemic dilated cardiomyopathy who underwent 

SVR, restrictive mitral annuloplasty and coronary artery bypass grafting. In all patients, 

invasive hemodynamic measurements by the conductance catheter were performed 

before and six months after surgery. In addition, NYHA classification, six-minute walk-

test, Minnesota Living with Heart failure questionnaire were assessed at the same time-

points. 

Results. At six months follow-up, all patients were alive and clinically improved 

significantly (NYHA from 3.6±0.5 to 1.5±0.5, Minnesota-score from 45±23 to 16±16, 

and six-minute walking distance from 300±133 to 442±89 m). Hemodynamic data 

showed significantly improved LV ejection fraction (from 31±8 to 40±14%), LV 

reverse remodeling (end-diastolic volume from 214±57 to 173±46 mL, end-systolic 

volume from 146±46 to 100±41 mL), and significantly improved intrinsic systolic 

function (end-systolic elastance from 0.98±0.31 to 1.51±0.82 mmHg/mL). In addition, 

mechanical efficiency significantly improved (0.40±0.12 to 0.55±0.13) with significant 

reduction of mechanical dyssynchrony (30±4 to 26±3%). However, parameters of 

diastolic function were unchanged six months after surgery (end-diastolic pressure: 

20±9 to 18±7 mmHg; dP/dtMIN: -1149±233 to –1189±307 mmHg/s; tau: 80±14 to 81±17 

ms; chamber stiffness constant: 0.097±0.037 to 0.104±0.037 mmHg/mL). 

Conclusion. Surgical ventricular restoration leads to clinical improvement with 

sustained LV reverse remodeling, improved global and intrinsic systolic function and 

unchanged diastolic function. The improved clinical status after six months may be 

related to improved mechanical efficiency, intrinsic systolic function and reduced 

mechanical dyssynchrony. 
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INTRODUCTION 
 

Chronic heart failure is one of the leading causes of morbidity and mortality in the 

Western world.1 In the majority of cases, the etiology in these patients is ischemic heart 

disease. More specific in patients after anteroseptal infarction, left ventricular (LV) 

aneurysm is a frequently observed complication. It leads to ineffective wall motion 

during the cardiac cycle and LV geometric shape changes resulting in inefficient LV 

pump function and adverse effects on remote myocardium.2 These changes will increase 

the systolic workload in the remote myocardium, which may contribute to progressive 

heart failure.3 Despite optimal medical treatment, patients with LV aneurysm often 

remain symptomatic and surgery may be indicated. Surgical ventricular restoration 

(SVR) by endoventricular circular patch plasty is increasingly performed in these 

patients. This technique can exclude akinetic or dyskinetic portions of the anterior wall 

and septum, reshapes the LV by the use of a patch to re-establishes the ventricular wall 

continuity.4 Long-term studies have been demonstrated that SVR is safe and highly 

effective in the treatment of ischemic cardiomyopathy with reduction of end-systolic 

volume and favorable five-year outcome.5 

Currently, little is known about the mechanisms of SVR on long-term LV systolic and 

diastolic function. Recent hemodynamic studies have demonstrated that SVR acutely 

reduces LV mechanical dyssynchrony with acute improvement of intrinsic LV systolic 

function.6,7 In these studies, no data is available about the acute effects on diastolic 

function while some studies suggest that SVR may induce diastolic dysfunction.8,9 

Furthermore, limited data are available regarding chronic hemodynamic effects of SVR 

on LV function. Therefore, the purpose of this study is to evaluate these effects by use 

of invasive hemodynamic measurements derived by the conductance catheter before and 

six months after surgery. 

 

 

METHODS 

 

Patients 

In this study we included 8 patients with ischemic dilated cardiomyopathy (NYHA class 

III/IV, LVEF < 35%) who underwent SVR. All patients underwent restrictive mitral 

annuloplasty for at least moderate to severe mitral regurgitation (grade ≥ 2) and all 

underwent additional CABG. All patients received stable medical therapy for chronic 
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heart failure, including diuretics (n=7), spironolactone (n=5), β-blockers (n=6), and 

ACE inhibitors (n=6). All patients gave informed consent and procedures were 

conducted in accordance with institutional guidelines. Patient characteristics are 

summarized in table 1. 

 
Table 1. Patient characteristics 
  

Number of patients (n) 8 

Male / Female 6/2 

Age (years) 62±7 

NYHA class 3.6± 0.5 

LVEF (%) 27±8 

Angina (n) 5 

Mean stenosed coronary arteries 2.3±0.9 

Duration of symptoms (median, months) 8 (2-14) 

Post-MI time (median, months) 3 (8-144) 

NYHA: New York Heart Association, MI: myocardial infarction 

 

Study protocol 

All patients underwent routine right and left heart catheterization at baseline (i.e. pre-

surgery) and six months after surgery, including thermodilution cardiac output, left 

ventriculography, and coronary angiography. In addition, a conductance catheter was 

placed in the LV via the femoral artery, and a temporary pacing lead was positioned in 

the right atrium.  

Hemodynamic measurements. The conductance catheter enables on-line measurement 

of multiple segmental volume slices perpendicular to the LV long axis. We used 7F 

combined pressure-conductance catheters with 1-cm interelectrode spacing (CD 

Leycom, Zoetermeer, The Netherlands). The catheter was connected to a Cardiac 

Function Lab (CD Leycom) for on-line display and acquisition (sample frequency 

250Hz) of segmental and total LV volumes, LV pressure and ECG. Total LV volume 

(VLV) is obtained as the instantaneous sum of the segmental volumes. VLV was 

calibrated using thermodilution and hypertonic saline dilution as previously described.10 

Right atrial pacing was performed at 80 beats/min. All measurements were repeated 

during re-catheterization at least six months after surgery. 
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Clinical evaluation. Evaluation of clinical status included assessment of NYHA 

functional class, quality-of-life score (using the Minnesota quality-of-life questionnaire) 

and six-minute hall-walk test. 

Echocardiography. In patients with moderate to severe mitral regurgitation (grade ≥2) 

on transthoracic echocardiography (TTE), additional transesophageal echocardiography 

(TEE) was performed within 5 days before surgery. The TTE and TEE were performed 

without general anesthesia to avoid underestimation of the severity of mitral 

regurgitation. The severity of mitral regurgitation was graded semi-quantitatively from 

color-flow Doppler in the conventional parasternal long-axis and apical 4-chamber 

images.11,12 When the severity of mitral regurgitation was less than 3+, a loading test (as 

described previously13,14) was performed during anesthesia just before surgery. During 

these provocative tests, the severity of mitral regurgitation is followed, and patients who 

deteriorate to grade 3 or 4+ mitral regurgitation underwent restrictive mitral 

annuloplasty. Immediately after surgery, TEE was repeated to assess residual mitral 

regurgitation, transmitral diastolic gradient (determined from continuous-wave 

Doppler), and length of coaptation of the mitral leaflets (ideally ≥ 8 mm). Six months 

after surgery, TTE was performed to assess the severity of mitral regurgitation. All TTE 

measurements were analyzed in random order by two independent observers without 

knowledge of the clinical status of the patient and the timing of the echocardiogram. 

 

Surgical procedures 

SVR was performed by the endoventricular circular patch plasty as previously described 

by Dor.4,15 Briefly, the left ventricle was opened through the infarcted area. An 

endocardial encircling suture (Fontan Stitch) was placed at the transitional zone 

between scarred and normal tissue. A balloon containing 55mL/m2 body surface area 

saline was introduced into the LV and the Fontan stitch was tightened to approximate 

the ventricular wall to the balloon. An oval dacron patch was tailored and used to close 

the residual orifice. The excluded scar tissue was closed over the patch to ensure 

hemostasis. Care was taken to eliminate all septal scar and to delineate a new LV apex 

with the goal to restore the normal elliptical shape. After completion of the LV 

restoration, a stringent restrictive mitral annuloplasty (2 sizes smaller than measured) 

was performed in these patients via an atrial transseptal approach using a Carpentier 

Edwards Physio ring (Edwards Lifesciences, USA). 
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Data-analysis 

LV function was quantified by cardiac output (CO), LV ejection fraction (LVEF) and 

stroke volume (SV), end-diastolic and end-systolic volume (EDV, ESV), end-systolic 

and end-diastolic pressure (ESP, EDP), maximal and minimal rate of LV pressure 

change (dP/dtMAX, dP/dtMIN). The time constant of relaxation (τ) was determined using 

phase-plot analysis.16 Stroke work (SW) was calculated as the area of the pressure-

volume loop. Mechanical efficiency (ME) was calculated as the ratio of external stroke 

work and pressure-volume area (PVA) as a measure of total mechanical work: 

ME=SW/PVA17. LV end-systolic elastance (Ees) was estimated by ESP/ESV as 

relatively load-independent indexes of systolic function. LV end-diastolic chamber 

stiffness (CS) was estimated by EDP/EDV to characterize passive late diastolic 

function. Nonuniform LV performance was determined from the segmental LV 

conductance signals and quantified by calculating the percentage of time within the 

cardiac cycle that a specific segment is dyssynchronous (i.e. opposite in phase with the 

global LV volume signal). Overall LV dyssynchrony (DYS) was determined as the 

mean of the segmental dyssynchronies. In addition, we calculated the internal flow 

fraction (IFF), which quantifies the ineffective shifting of blood volume within the LV 

due to nonuniform contraction and filling18. 

 

Statistics 

Pre- and post data were compared with paired t-tests. Statistical significance was 

assumed at p < 0.05. All data are presented as the mean value ± SD. 

 

 

RESULTS 

 

There were no peri-operative or hospital deaths and all patients were alive at six months 

follow-up. After surgery, two patients needed intra-aortic balloon pump to wean from 

cardiopulmonary bypass and six patients needed inotropic support (dobutamine > 2 

μg/kg/min) more than 24 hours postoperatively. Immediate after surgery, 

transesophageal echocardiography was performed and showed restored leaflet 

coaptation with no residual mitral regurgitation. Surgical details are summarized in 

table 2. 
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Table 2. Surgical data 
  

CPB (minutes) 228±46 

Aox (minutes) 155±29 

Number of distal anastomosis 3±1 

Ring size 25± 1 

Pre-operative TEE  

-MR-grade   

-AML (cm) 

-MA   (cm) 

-MA/AML-ratio 

-Coaptation 

 

2.5± 0.9 

2.88± 0.11 

3.81± 0.64 

1.32± 0.22 

0.21±0.07 

Post-operative TEE  

-MR-grade  

-Coaptation (cm) 

-MV-gradient (mmHg) 

 

0.1±0.4 

0.78±0.13 

2.57±1.02 

ICU-stay (days) 5±2 

Hospital stay (days) 16±5 

CPB, Cardiopulmonary bypass; AoX, Aortic cross clamping time; TEE, Transesophageal 

echocardiography; MR, Mitral regurgitation; AML, Anterior mitral leaflet; MA, Mitral annulus MV, 

Mitral valve; ICU: Intensive care unit 
 

Clinical and hemodynamic data. Clinical parameters as NYHA functional class, 

quality-of-life score (using the Minnesota quality-of-life questionnaire) and 6-minute 

hall-walk test significantly improved from baseline to six months follow-up (Table 3). 

QRS duration was unchanged and mitral valve repair was successful in all cases with no 

recurrence of mitral regurgitation at six months follow-up.  

The chronic effects of surgery on LV function are summarized in detail in table 3. 

LVEF improved significantly, whereas EDV and ESV were significantly reduced at six 

months follow-up, indicating substantial reversed remodeling. Stroke volume was 

unchanged at six months follow-up. Improved intrinsic systolic function was evidenced 

by the significant increase in the end-systolic elastance (Ees). End-diastolic pressure, 

active relaxation (τ), dP/dtMIN, and CS, all parameters of diastolic function, were 

unchanged, indicating unchanged LV diastolic function six months after SVR. 

Furthermore, at six month follow-up, mechanical dyssynchrony was reduced as shown 

by significantly reduced DYS, whereas IFF showed a clear tendency to be reduced. 

Mechanical efficiency was significantly improved at six months follow-up, resulting 

from a significant increase of SW in combination with a significant decrease of PVA. 
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Table 3. Clinical and hemodynamic data 

Parameter Baseline 6 months follow-up P-value 

NYHA class 3.6±0.5 1.5±0.5 <0.001 

QoL-test 45±23 16±16 0.028 

6-minute HWT (m) 300±133 442±89 0.003 

QRS-duration (ms) 103± 19 109± 15 0.348 

MR-TTE (grade) 2.1±0.7 0.4±0.5 0.001 

HR (bpm) 80±2 83±2 0.059 

SV (mL) 64±17 65±12 0.619 

CO (L/min) 5±1 5±1 0.270 

ESV (mL) 146±46 100±41 0.014 

EDV (mL) 214±57 173±46 0.034 

EF (%) 31±8 40±14 0.032 

ESP (mmHg) 133±33 124±28 0.319 

EDP (mmHg) 20±9 18±8 0.435 

dPdtMax (mmHg/s) 1270±254 1283±240 0.906 

dPdtMin (mmHg/s) -1149±233 -1189±307 0.577 

SW (mmHg.mL) 5971±1749 6878±1266 0.062 

Tau (ms) 80±15 81±18 0.966 

Ees (mmHg/mL) 0.98±0.31 1.51±0.82 0.049 

CS (1/mmHg) 0.097±0.037 0.104±0.037 0.667 

ME 0.40±0.12 0.55±0.13 0.020 

PVA (mmHg.mL) 16000±5160 13047±3407 0.044 

DYS (%) 30±5 26±3 0.058 

IFF (%) 61±25 41±19 0.169 

NYHA, New York Heart Association; QoL, Quality of life; HWT, Hall walk test; MR-TTE, Mitral 

regurgitation on transthoracic echocardiography; HR, Heart rate; CO, Cardiac output; ESV,End-systolic 

volume; EDV, End-diastolic volume; EF; Ejection fraction; ESP, End systolic pressure; EDP, End-

diastolic pressure; SW, Stroke work; Ees, End-systolic elastance; CS, Chamber stiffness ;ME, 

Mechanical efficiency; DYS, Dyssynchrony; IFF, Internal flow fraction 

 

 

DISCUSSION 

 

SVR by endoventricular circular patch plasty has been applied in patients with ischemic 

dilated cardiomyopathy complicated by an apicoseptal LV aneurysm. The short-term 

effects of this procedure on LV function are beneficial and consists of acute LV volume 

reduction with a decrease of mechanical dyssynchrony and improved LV systolic 
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function.6,19 The purpose of the present study was to quantify chronic hemodynamic 

effects of SVR and in particular the effects on diastolic function. 

The results of this study demonstrate that SVR leads to clinical improvement with 

improved LV hemodynamics. At six months follow-up, sustained LV reverse 

remodeling and improved global and intrinsic systolic function were observed. 

Furthermore, mechanical dyssynchrony was significantly reduced with significantly 

improved mechanical efficiency of the LV. Parameters of early (dP/dtmin, tau) and late 

diastolic function (EDP, CS) were unchanged six months after surgery, indicating that 

volume reduction and patch insertion did not compromise LV diastolic function. 

 

LV reverse remodeling. Our results demonstrated a 20% and 31% reduction of EDV 

and ESV respectively at six months follow-up. The observed decrease in EDV and ESV 

is consistent with the findings of Qin et al. showing similar reductions of EDV (25%) 

and ESV (35%) at six months follow-up in 30 patients who underwent SVR and mitral 

valve repair.20 

Somewhat larger reductions in LV volumes were reported in studies by Schreuder et al. 

and Di Donato et al.6,7 These larger reductions may be due to a more extensive surgical 

volume reduction related to larger pre-operative LV volumes. Alternatively, these 

differences may reflect redilation, because ours and Qin's studies were done at six 

months follow-up, whereas the studies by Schreuder and Di Donato were performed 

acutely after surgery. Findings of a later study by Di Donato et al., showing a reduction 

in EDV and ESV of 31% and 44% respectively at 12 months follow-up, may suggest 

some redilation at late follow-up.21 

A possible explanation for redilation in the study of Di Donato is the high recurrence of 

mitral regurgitation (38%) at 12 months follow-up. Qin et al. emphasized the 

importance of effective mitral valve repair in SVR patients as a pronounced redilation 

was occurred in patients with recurrence of mitral regurgitation.20 However, in our study 

no recurrence of mitral regurgitation occurred after six months follow-up. Therefore, it 

may be suggested that the smaller volume reduction at six months in our study may be 

result from less extensive resection in the acute phase due to smaller pre-operative LV 

volumes. Long-term sustained volume reduction has been confirmed by a recent study 

by Fujii et al. reporting 33% reduction in EDV after isolated SVR at 23 days, which was 

unchanged at 32 months follow-up.22 
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Systolic function. Our data confirm previous findings regarding improved LVEF, 

unchanged SV and reduced LV volumes after SVR.23,24 However, to our best 

knowledge, the present study is the first study with invasive hemodynamic 

measurements before and six months after SVR. At six months follow-up, a significant 

increase in Ees (from 0.98±0.31 mmHg/mL to 1.51±0.82 mmHg/mL) was observed in 

our study, indicating improved long-term intrinsic systolic function. Furthermore, 

mechanical efficiency was significantly improved with a significant reduction in 

mechanical dyssynchrony. These results are in line with previous findings by Schreuder 

et al. reporting a significant acute increase in Ees (from 1.2±0.6 mmHg/mL to 2.2±1.0 

mmHg/mL), reduced mechanical dyssynchrony and improved LV mechanical 

efficiency.7 Similarly, Tanoue et al. reported a similar significant increase in Ees (from 

1.15±0.6 mmHg/mL to 1.86±0.84 mmHg/mL) and improvement of ventricular 

efficiency derived by LV angiography 3 to 4 weeks postoperatively.25 However, these 

previous findings merely reflect acute changes of SVR on LV systolic function. Our 

study demonstrated that the increase in Ees is sustained after six months follow-up. 

Therefore, the improvement of intrinsic systolic function immediate after SVR is 

sustained on the long-term. These chronic effects are possibly due to positive acute 

effects on the remote myocardium by reduction of mechanical dyssynchrony, 

improvement of mechanical efficiency and reduction in LV wall stress. Schreuder et al. 

found that changes in Ees are inversely related to parameters of mechanical 

dyssynchrony and energy efficiency. Presumably, the chronic beneficial effects on Ees 

found in our study are mainly related to acute beneficial effects. 

 

Diastolic function. In this study, both early and late diastolic function were unchanged 

at six months follow-up. This is an important finding as endoventricular circular patch 

plasty may induce diastolic filling abnormalities with a restrictive pattern.9 

Previous acute studies reported altered early diastolic function after SVR with improved 

active relaxation (τ).6,7 These acute effects may be related to direct effects of 

revascularization26,27 and effects of cardiopulmonary bypass.28,29 Schreuder et al.7 found 

an increase in EDP (from 9.4±3 to 13.8±3 mmHg) after SVR, however these changes 

may be due to effects of postoperative edema.30 Di Donato et al. recently demonstrated 

that EDP was unchanged (from 20±12 to 17±8 mmHg) 10 days after SVR. These 

findings are in line with ours as EDP was unchanged (from 20±9 to 18±8 mmHg) after 

SVR at six months follow-up. In addition, diastolic chamber stiffness was unchanged 

after six months follow-up, indicating that volume reduction and insertion of patch 
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plasty does not increase diastolic chamber stiffness. These data imply that SVR does not 

alter diastolic function six months after surgery. 

 

In conclusion, surgical ventricular restoration leads to clinical improvement with 

sustained LV reverse remodeling, improved global and intrinsic systolic function and 

unchanged diastolic function. The improved clinical status after six months may be 

related to improved mechanical efficiency, intrinsic systolic function and reduced 

mechanical dyssynchrony. 
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SHORT INTRODUCTION 

 

The number of patients with chronic heart failure is rapidly increasing as a result of an 

aging population and advanced medical therapy leading to a substantial number of 

patients who survive a myocardial infarction. Despite improvement of pharmacological 

treatment, drug-refractory end-stage heart failure is a challenging problem. Although 

successful, cardiac transplantation is limited and consequently alternative invasive 

therapies have been developed. Currently, most widely applied are cardiac 

resynchronization therapy (CRT), surgical ventricular restoration (SVR) and restrictive 

mitral annuloplasty (RMA). Despite promising clinical results of these therapies, the 

working mechanisms are still partly unknown. In this thesis, we investigated the acute 

and chronic hemodynamic effects of these therapies in patients with end-stage heart 

failure. Quantification of these effects may provide further insight in the working 

mechanisms of these therapies and may help to explain clinical improvement in heart 

failure patients treated with these therapies. 

 

Chapter 2. In this chapter we evaluated the application of the conductance catheter 

technique in the operating room. Peri-operative quantification of systolic and diastolic 

load independent left ventricular (LV) function by pressure-volume relations is 

advantageous since loading conditions are varying during cardiac surgery induced by 

anesthesia, cardiopulmonary bypass (CPB) and the surgical procedure itself. In 8 

patients undergoing elective CABG, complete hemodynamic data was derived within 15 

minutes before and after CPB without any complications. Load-dependent and load-

independent indices of systolic function were unchanged after CPB. However, diastolic 

function changed significantly after CPB with a significant increase of end-diastolic 

pressure and the diastolic chamber stiffness constant. Active relaxation, quantified by 

the active relaxation time constant (tau), decreased significantly. We conclude that the 

conductance catheter method provides detailed data on peri-operative LV function. 

Therefore, this method may be used to evaluate the acute effects of new surgical 

procedures and the data acquired in the group of elective CABG-patients may serve as 

reference data. 

 

Chapter 3. In this chapter new parameters of LV mechanical dyssynchrony in patients 

with chronic heart failure were introduced, which were derived from online segmental 

conductance catheter signals obtained during diagnostic cardiac catheterization. We 
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determined cardiac function and LV mechanical dyssynchrony in heart failure patients 

with intraventricular conduction delay and a group of patients with coronary artery 

disease and relatively preserved LV function. The heart failure patients showed 

depressed systolic and diastolic function. However, the most marked hemodynamic 

differences between the groups were found for mechanical dyssynchrony indicating a 

high sensitivity and specificity of the new indices. Comparison of conductance catheter 

derived indices of mechanical dyssynchrony with septal-to-lateral dyssynchrony derived 

by tissue-Doppler velocity imaging showed highly significant correlations. We 

concluded that the proposed indices provide additional, new and quantitative 

information on temporal and spatial aspects of mechanical dyssynchrony in patients 

with heart failure. They may refine diagnosis of cardiac dysfunction and evaluation of 

interventions. 

 

Chapter 4. In this chapter, the baseline and chronotropic effects of normothermic 

CABG with intermittent antegrade warm blood cardioplegia on LV function were 

quantified. This on-pump approach has been applied in all heart failure patients who 

underwent SVR and/or RMA in this thesis and thus quantification of these effects in a 

control group was warranted. Our findings indicate that on-pump normothermic CABG 

with intermittent antegrade warm blood cardioplegia preserves systolic function, 

increases diastolic stiffness, and improves systolic and diastolic chronotropic responses. 

Normalization of the chronotropic responses after CPB is likely due to the effects of 

successful revascularization and subsequent relief of ischemia. The baseline effects on 

LV function reported in this chapter are used as reference data to interpret baseline 

effects on LV function after SVR and RMA in patients with heart failure. 

 

Chapter 5. In this study we quantified the acute effects of RMA on LV systolic and 

diastolic function by pressure-volume analysis using the conductance catheter. In 10 

patients with end-stage heart failure and concomitant severe mitral regurgitation, 

stringent RMA (two sizes under) effectively restored mitral valve competence (leaflet 

coaptation 8.0±0.2mm) without inducing significant acute changes in LV systolic or 

diastolic function. This study shows that undersizing the mitral annulus has no adverse 

effects on intrinsic systolic and diastolic LV function, and this procedure can be safely 

applied in patients with severe heart failure. 
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Chapter 6. In this chapter, we described the acute effects of SVR on LV systolic and 

diastolic function in patients with ischemic dilated cardiomyopathy. The results show 

that SVR achieves normalization of LV volumes, improves systolic function and 

decreases LV wall stress and mechanical dyssynchrony. At the expense of a higher 

diastolic pressure resulting from altered diastolic properties, cardiac pump function 

indexed by stroke work and cardiac output was not importantly altered while the 

pressure-volume area was significantly reduced after SVR. Therefore, mechanical 

efficiency was significantly improved, presumably resulting from reduced wall stress 

and reduced mechanical dyssynchrony. Interestingly, the diastolic chamber stiffness 

constant was not more altered after SVR than after the surgical procedures in the other 

groups, suggesting that this effect was importantly related to procedure-induced 

myocardial edema and may be partially transient. 

 

Chapter 7. This chapter gives an overview of the potential applications of pressure-

volume measurements by the conductance catheter during cardiac catheterization. This 

review showed that, in the context of CRT, pressure-volume measurements by 

conductance catheter have been mainly applied to study the basic mechanisms of 

dyssynchronous and resynchronized cardiac contraction. In this field important new 

insights were obtained from pressure-volume measurements. There are certainly 

possibilities and distinct advantages in the field of patient selection but this application 

will remain limited by the invasive character of the conductance method. Currently, 

ongoing studies apply pressure-volume measurements to optimize CRT in individual 

patients and evaluate the chronic hemodynamic effects of CRT. The possibility to assess 

cardiac function and mechanical dyssynchrony during implantation and the possibility 

to study the immediate effects of changes in lead position, AV and VV-delay, in an on-

line and quantitative fashion makes this a promising tool to optimize CRT. Load-

independent quantitative parameters of systolic and diastolic function derived from 

pressure-volume relations should provide more insight in the working mechanisms of 

chronic CRT. 

 

Chapter 8. In this chapter the chronic effects of CRT on LV hemodynamics were 

reported. Acute hemodynamic improvements of CRT have been studied previously, but 

detailed invasive studies showing hemodynamic consequences of chronic CRT are not 

available. We demonstrated that hemodynamic improvements previously shown in 

acute studies are maintained mid-term. In addition, ventricular-arterial coupling, 
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mechanical efficiency, and chronotropic responses are improved after 6 months CRT. 

These findings may help to explain the improved functional status and exercise 

tolerance in heart failure patients treated with cardiac resynchronization. 

 

Chapter 9. In this chapter clinical efficacy was evaluated 6 months after surgery in a 

cohort of patients with end-stage heart failure who underwent combined SVR and 

RMA, isolated SVR or isolated RMA. Clinical parameters, including NYHA 

classification, Minnesota Quality of Life questionnaire, and 6-minute walking distance, 

were assessed at baseline and 6 months after surgery. Mortality at 6 months was 12% 

and was associated with highly significant improvements in clinical parameters. We 

concluded that surgical treatment of end-stage heart failure by SVR and RMA seems 

relatively safe with a clear clinical benefit at 6-months follow-up. 

 

Chapter 10. In this chapter, a comprehensive analysis of SVR and if indicated mitral 

and/or tricuspid annuloplasty on mid-term hemodynamic and clinical status was 

performed. In a selected group of 21 patients who had complete echocardiographic 

follow-up including tissue Doppler imaging at 6 months, clinical and echocardiographic 

parameters were assessed. In particular, the effects of this surgical approach on LV 

volumes, LV dyssynchrony, right ventricular (RV) reverse remodeling and RV 

functional parameters (severity of tricuspid regurgitation and pulmonary artery 

pressure) were studied. It was demonstrated that this approach resulted in significant 

improvements of clinical status and heart failure symptoms, combined with a reduction 

in LV volume and LV dyssynchrony with minimal residual mitral regurgitation. In 

addition, a decrease in pulmonary artery pressure, RV reverse remodeling and reduced 

tricuspid regurgitation was observed. Therefore, this approach proved to have beneficial 

mid-term effects in terms of clinical and hemodynamic status. 

 

Chapter 11. In this chapter, chronic effects of SVR on pressure-volume relations were 

evaluated. Hemodynamic data showed significantly improved LVEF, sustained LV 

volume reduction and significantly improved intrinsic systolic function. In addition, 

mechanical efficiency significantly improved with significant reduction of mechanical 

dyssynchrony. Interestingly, parameters of diastolic function remain unchanged 6 

months after surgery. From these results, we conclude that SVR leads to improved LV 

systolic function with unchanged diastolic function at 6 months follow-up. The 
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improved LV systolic function after 6 months may be related to reduced LV mechanical 

dyssynchrony and improved LV efficiency. 

 

 

CONCLUSIONS 

 

This thesis demonstrates the feasibility and value of LV pressure-volume measurements 

by conductance catheter during cardiac surgery. Besides assessment of load-dependent 

and load-independent parameters of systolic and diastolic LV function, the conductance 

catheter can quantify LV mechanical dyssynchrony, which is an important determinant 

of cardiac (dys)function and a new sensitive parameter in patients with chronic heart 

failure. 

Prior to our studies in heart failure patients, we evaluated our methodology in patients 

with relatively normal LV function who underwent elective normothermic CABG. Like 

the heart failure patients, these patients were operated during intermittent antegrade 

warm blood cardioplegia. Our peri-operative measurements showed no significant 

changes in LV systolic function. However, diastolic chamber stiffness significantly 

increased, while active relaxation (tau) improved. These effects are probably related to 

effects of cardiopulmonary bypass, cardioplegic arrest, and the revascularization. In 

general, such effects should be taken into consideration when evaluating peri-operative 

hemodynamic measurements in patients with heart failure who undergo surgery with the 

same on-pump approach. 

With regard to surgical therapies, we focused on SVR and RMA in patients with end-

stage heart failure. Earlier studies have suggested that correction of mitral regurgitation 

may decrease LV systolic function in the acute phase. In addition, with regard to 

diastolic function, mitral valve repair by RMA might potentially impair filling. These 

concerns have caused hesitation to apply these procedures in patients with advanced 

heart failure. However, we have demonstrated by pressure-volume analysis that RMA 

did not affect systolic and diastolic function in the acute phase. Interestingly, our results 

show a clear tendency for a reduced mechanical dyssynchrony after RMA. These 

findings support the use of this approach even in patients with severely depressed LV 

function in view of beneficial long-term results. 

SVR is increasingly applied in patients with ischemic dilated cardiomyopathy and 

anteroseptal dyskinesia or akinesia. However, limited data are currently available about 

the acute and chronic effects of this therapy on LV function. The present thesis provides 
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measurements of LV systolic and diastolic function and dyssynchrony by use of 

pressure-volume relationships. In addition, mid-term (6 months) effects of SVR on 

clinical status and biventricular function were provided by clinical parameters (6-min 

walk test, Minnesota Living with Heart Failure questionnaire, NYHA classification) and 

echocardiography including tissue Doppler imaging. SVR resulted in significant acute 

improvement of systolic function, significant acute reduction of LV mechanical 

dyssynchrony, and significant reduction of LV wall stress. At the expense of a higher 

diastolic pressure resulting from altered diastolic properties, cardiac pump function 

indexed by stroke work and cardiac output was not importantly altered while the 

pressure-volume area was significantly reduced after SVR. Therefore, mechanical 

efficiency was significantly improved, presumably resulting from reduced LV wall 

stress and reduced mechanical dyssynchrony. The changes in diastolic stiffness were 

relatively limited and were comparable with the changes in patients with preserved LV 

function who underwent elective CABG suggesting that this effect was importantly 

related to procedure-induced myocardial edema and may be partially transient. 

These acute beneficial effects on systolic function are largely maintained chronically 

with no significant effects on diastolic function at mid-term follow-up. The pressure-

volume data at 6 months follow-up showed significantly improved LVEF, sustained LV 

volume reduction and significantly improved intrinsic systolic function. In addition, 

mechanical efficiency was improved with a reduction of mechanical dyssynchrony. 

Clinical and echocardiographic data at 6 months follow-up showed improvement of 

clinical status and a significant LV volume reduction and reduced LV dyssynchrony. In 

addition, RV reverse remodeling after SVR and, if indicated, mitral or tricuspid 

annuloplasty was noted with reduction in tricuspid regurgitation and pulmonary artery 

pressure. These data indicate that SVR improves LV global and intrinsic systolic 

function by reducing mechanical dyssynchrony and LV wall stress without inducing 

diastolic dysfunction. In addition, SVR leads to additional beneficial effects at mid-term 

follow-up such as reduced pulmonary artery pressure and RV reverse remodeling. The 

beneficial hemodynamic effects described in this thesis can explain the improved 

clinical status and survival of patients after SVR at long-term follow-up. 

A third important new technique to treat patients with end-stage heart failure is CRT, 

which is highly effective in patients with left bundle-branch block and severe heart 

failure. Previous studies showed long-term clinical benefit, improved LV function and 

reverse LV remodeling. Acute hemodynamic effects, previously described, consist of 

increased LV ejection fraction and stroke volume, accompanied by increased systolic 
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pressure, dP/dtMAX, and stroke work, reduced mechanical dyssynchrony and reduced 

diastolic pressure. In the present thesis, we obtained invasive hemodynamics by 

pressure-volume loops at baseline and after 6 months of CRT and showed that these 

improvements are still present at 6 months follow-up. Moreover, our results show 

improved ventricular-arterial coupling and improved mechanical efficiency, which 

constitute a more optimal energetic condition. In addition, we demonstrated improved 

responses to increased heart rate, which may partly explain the enhanced exercise 

capacity of patients treated with CRT. However, despite conversion to a more 

physiological chronotropic response, the capacity to increase cardiac output remains 

limited. The latter presumably is partly due to an abnormal relaxation reflected by a 

relatively long isovolumic relaxation time (tau), which did not improve after CRT. 

These effects of CRT help to explain the improved functional status and exercise 

tolerance in heart failure patients treated with CRT. 

 

In summary, recently several new therapies were introduced to treat patients with end-

stage heart failure. These therapies, SVR, RMA and CRT have all demonstrated to have 

clinical benefit. In this thesis, we documented the acute and chronic effects of these 

therapies on LV function by pressure-volume analysis. Our findings provide insight in 

the underlying mechanisms and help to explain improved functional status achieved 

with these therapies. 
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Samenvatting en conclusies 

 
KORTE INLEIDING 

 

Het aantal patiënten met chronisch eindstadium hartfalen neemt snel toe als gevolg van 

de vergrijzing en de verbeterde medische behandeling van het acute myocardinfarct. 

Ondanks verbeterde medicamenteuze therapie blijft een substantieel deel van deze 

groep patiënten symptomatisch. Harttransplantatie, hoewel succesvol, blijft beperkt tot 

een kleine groep patiënten. Hierdoor zijn de afgelopen jaren een aantal alternatieve 

behandelingen ontwikkeld en toegepast, waaronder cardiale resynchronisatie therapie 

(CRT), aneurysmectomie volgens Dor (Dor procedure) en chirurgische mitralisklep-

reparatie door middel van een restrictieve mitralisklep annuloplastiek (RMA). Ondanks 

de veelbelovende klinische resultaten van deze behandelingen zijn de 

werkingsmechanismen nog grotendeels onbekend. In dit proefschrift worden de acute 

en chronische hemodynamische en cardiovasculaire effecten van deze behandelingen 

gekwantificeerd o.a. door middel van ventriculaire drukvolume analyse met behulp van 

de conductantiecatheter. Het kwantificeren van deze effecten kan meer inzicht 

verschaffen in de werkingsmechanismen van deze interventies en daarmee de klinische 

verbetering, die doorgaans optreedt na de behandeling in patiënten met chronisch 

eindstadium hartfalen, wellicht verklaren. Bovendien geeft het mogelijk 

aangrijpingspunten voor het verder verbeteren van deze therapieën. 

 

Hoofdstuk 2. In dit hoofdstuk beschrijven we de toepassing van de 

conductantiecatheter in de operatiekamer. Met deze techniek kunnen acute effecten van 

hartchirurgische behandelingen worden gekwantificeerd. Met name het meten van 

parameters van intrinsieke systolische en diastolische linker kamerfunctie tijdens 

hartoperaties is belangrijk, omdat tijdens deze operaties belastingscondities van het hart 

sterk kunnen variëren als gevolg van de anesthesie, cardiopulmonale bypass (CPB) en 

de chirurgische interventie zelf. Om de toepassing van deze meettechniek te testen en 

acute effecten van een controlegroep patiënten met normale hartfunctie te verkrijgen, 

zijn metingen verricht in 8 patiënten die een electieve CABG ondergingen. Complete 

hemodynamische gegevens zijn verkregen binnen 15 minuten voor en na CPB. Hierbij 

traden geen complicaties op. Uit de resultaten blijkt dat zowel de 

belastingsonafhankelijke als de belastingsafhankelijke parameters van systolische 
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functie onveranderd bleven na CPB. De parameters van diastolische functie waren 

echter wel veranderd na CPB, waarbij de einddiastolische druk en de diastolische 

kamerstijfheidsconstante significant waren toegenomen. Actieve relaxatie, 

gekwantificeerd door de relaxatie constante tau, verbeterde significant na CPB. 

De resultaten in dit hoofdstuk laten zien dat de conductantiecatheter waardevolle 

informatie kan verschaffen over peri-operatieve linker kamerfunctie en dat deze 

methode kan worden toegepast om de acute effecten van nieuwe chirurgische 

procedures te kwantificeren. De gegevens in dit hoofdstuk zullen verderop in dit 

proefschrift worden gebruikt ter vergelijking met de acute hemodynamische effecten 

van chirurgische behandelingen in patiënten met ernstig hartfalen. 

 

Hoofdstuk 3. In dit hoofdstuk worden nieuwe parameters van mechanische 

dissynchronie van de linker hartkamer bij patiënten met chronisch hartfalen 

geïntroduceerd, die gemeten kunnen worden met behulp van segmentale 

volumesignalen van de conductantiecatheter. Tijdens diagnostische hartcatheterisaties 

werden conductantiemetingen verricht waarbij de hartfunctie en mechanische 

dissynchronie werd gemeten in een groep patiënten met chronisch hartfalen. Deze 

metingen werden vergeleken met metingen in een groep patiënten met coronairlijden en 

een relatief normale linker kamerfunctie. De patiënten met hartfalen hadden een sterk 

verminderde systolische en diastolische linker kamerfunctie. De duidelijkste verschillen 

tussen de beide groepen werden echter gevonden in de parameters van mechanische 

dissynchronie. Vergelijking van deze nieuwe parameters met echografische parameters 

van mechanische dissynchronie waaronder septal-to-lateral delay liet een sterke 

significante correlatie zien. Hieruit werd geconcludeerd dat deze nieuwe parameters 

verkregen met de conductantiecatheter nieuwe additionele en kwantitatieve informatie 

kunnen geven over temporele en ruimtelijke aspecten van mechanische dissynchronie 

bij patiënten met hartfalen. Deze parameters geven meer inzicht in linker 

kamerdysfunctie bij patiënten met hartfalen. Ook kan het effect van interventies op deze 

parameters inzicht verschaffen in de werkingsmechanismen van nieuwe behandelingen 

voor hartfalen. 

 

Hoofdstuk 4. In dit hoofdstuk worden de acute effecten besproken van normotherme 

CABG met intermitterend antegrade warm bloed cardioplegie op de linker 

kamerfunctie. Naast de effecten op de hartfunctie bij een frequentie van 80 slagen per 

minuut, worden ook de effecten op de hartfunctie tijdens hogere hartfrequenties 
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(chronotrope respons) besproken. Aangezien dezelfde on-pump benadering wordt 

toegepast bij patiënten met hartfalen die een Dor procedure en/of een RMA ondergaan 

in de volgende hoofdstukken van dit proefschrift, is kwantificatie van de effecten van 

deze benadering allereerst zinvol in een controle groep. De bevindingen in deze controle 

groep laten zien dat on-pump normotherme CABG met intermitterend antegrade warm 

bloed cardioplegie geen systematisch effect heeft op de systolische linker kamerfunctie 

maar wel op de diastolische linker kamerfunctie. De diastolische linker kamerstijfheid 

neemt toe en de actieve relaxatie verbeterd. Bovendien verbetert zowel de systolische 

als diastolische chronotrope respons na CPB. De verbetering van actieve relaxatie en de 

normalisatie van de chronotrope respons is waarschijnlijk het gevolg van de succesvolle 

revascularisatie. 

 

Hoofdstuk 5. In dit hoofdstuk beschrijven we de acute effecten van chirurgische 

mitralisklep reparatie door middel van RMA op de systolische en diastolische linker 

kamerfunctie door middel van drukvolume relaties verkregen met de 

conductantiecatheter. De resultaten verkregen bij 10 patiënten met eindstadium 

hartfalen laten zien dat RMA door middel van het inbrengen van een undersized ring, 

d.w.z. twee maten kleinere ring dan de maat die werd gemeten, de coaptatie van de 

mitralisklep kan herstellen (8.0±0.2 mm). Hierbij werd de ernstige mitralis-

insufficiëntie opgeheven en de metingen met de conductantiecatheter lieten geen 

veranderingen zien in de systolische en diastolische linker kamerfunctie na CPB. Dit 

toont aan dat RMA in patiënten met een verminderde linker kamerfunctie geen nadelige 

effecten heeft op de intrinsieke diastolische en systolische linker kamerfunctie en dat 

deze chirurgische techniek veilig kan worden toegepast bij deze groep ernstig zieke 

patiënten 

 

Hoofdstuk 6. In dit hoofdstuk worden de acute effecten op de systolische en 

diastolische linker kamerfunctie beschreven van de Dor procedure, uitgevoerd bij 

patiënten met ischemische, gedilateerde cardiomyopathie met een anteroseptaal 

aneurysma. De gegevens laten zien dat de Dor procedure resulteert in normalisatie van 

de linker kamervolumina met een verbetering in systolische functie, een afname van de 

linker kamerwandspanning en mechanische dissynchronie. Ten koste van een hogere 

einddiastolische druk als gevolg van veranderende diastolische eigenschappen na de 

operatie blijft de cardiale pompfunctie weergegeven door de slagarbeid (oppervlakte 

van de drukvolume lus) en de cardiale output vrijwel onveranderd. Daarnaast neemt de 



Chapter 12 

 202

mechanische efficiëntie significant toe na de Dor procedure, waarschijnlijk als gevolg 

van een vermindering van de wandspanning en mechanische dissynchronie van de 

linker kamer. De diastolische kamerstijfheidsconstante neemt echter toe alhoewel deze 

toename vergelijkbaar is met die in de controlegroep (zie hoofdstuk 4,5). 

 

Hoofdstuk 7. Dit hoofdstuk geeft een overzicht van de mogelijke toepassingen van de 

conductantiecatheter tijdens hartcatheterisaties. Het laat zien dat drukvolume relaties 

kunnen worden toegepast in de context van CRT om de basale mechanismen van 

dissynchrone en geresynchroniseerde cardiale contractie te bestuderen. Op dit gebied 

zijn dan ook belangrijke nieuwe inzichten verkregen met drukvolume metingen. Deze 

meettechniek biedt o.a. voordelen op het gebied van patiëntselectie, al blijft de 

toepassing van de techniek relatief beperkt vanwege het invasieve karakter van de 

conductantiecatheter. Er zijn diverse studies uitgevoerd die drukvolume analyse 

toepassen om CRT te optimaliseren in individuele patiënten en de hemodynamische 

effecten van CRT te evalueren. De mogelijkheid om de hartfunctie en mechanische 

dissynchronie te kwantificeren gedurende implantatie van een biventriculaire pacemaker 

en de mogelijkheid om direct de effecten van de positie van de pacemakerdraad, de AV 

en VV timing  te kunnen meten, maakt deze techniek aantrekkelijk om CRT te 

optimaliseren. Belastingsonafhankelijke kwantitatieve parameters van systolische en 

diastolische functie verkregen door middel van drukvolume relaties kan meer inzicht 

verschaffen in de werkingsmechanismen van CRT op de intrinsieke hartfunctie. 

 

Hoofdstuk 8. In dit hoofdstuk worden de chronische effecten van CRT op de linker 

kamerfunctie beschreven. Acute hemodynamische verbeteringen van CRT zijn reeds 

bekend, maar gedetailleerde invasieve metingen van hemodynamische effecten op lange 

termijn zijn nog niet beschikbaar. De resultaten in dit hoofdstuk laten zien dat de acute 

gunstige effecten van CRT op de linker kamerfunctie ook op lange termijn aanwezig 

blijven. Daarnaast verbetert de ventriculaire-arteriële koppeling, vermindert de 

mechanische dissynchronie en is er sprake van een verbetering in de chronotrope 

respons na 6 maanden CRT. Deze bevindingen verklaren mede de verbetering van 

klinische parameters en de toename van de inspanningstolerantie in patiënten met 

hartfalen die worden behandeld met CRT. 

 

Hoofdstuk 9. In dit hoofdstuk worden klinische parameters gebruikt om het effect van 

de gecombineerde Dor/RMA procedure, de geïsoleerde Dor procedure en de geïsoleerde 
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RMA te evalueren in een cohort patiënten met hartfalen. Klinische parameters, inclusief 

NYHA classificatie, de kwaliteit-van-leven-test en de 6 minuten looptest zijn bepaald 

vóór en 6 maanden na de operatie. De mortaliteit na 6 maanden was in deze selecte 

groep patiënten 12% en de klinische parameters verbeterde significant na 6 maanden. 

Hieruit werd geconcludeerd dat de chirurgische behandeling van eindstadium hartfalen 

door middel van de Dor procedure en/of de RMA relatief veilig is met een duidelijk 

klinische verbetering na 6 maanden. 

 

Hoofdstuk 10. In dit hoofdstuk wordt een uitvoerige analyse verricht van de effecten 

van de Dor procedure en, indien geïndiceerd, RMA en/of tricuspidalisklepplastiek op de 

hemodynamische en klinische status van patiënten met eindstadium hartfalen. In een 

selecte groep patiënten met een complete echocardiografische follow-up, inclusief 

tissue-Doppler imaging, werden vóór en na 6 maanden klinische en echocardiografische 

parameters bepaald. Echocardiografische parameters die werden bepaald waren: het 

linker kamervolume, linker kamerdissynchronie, rechter kamerdimensies, de ernst van 

de tricuspidalis insufficiëntie en de pulmonale arteriële druk. Na 6 maanden werd een 

significante verbetering in klinische conditie van de patiënt gevonden, gecombineerd 

met een reductie in linker kamervolume en dissynchronie met een minimale residuele 

mitralis/tricuspidalis insufficiëntie. Bovendien werd een significante reductie in het 

volume van de rechter kamer gezien met een afname van de pulmonale arteriële druk. 

Deze gegevens tonen aan dat deze chirurgische benadering positieve klinische en 

hemodynamische effecten heeft op de middellange termijn. 

 

Hoofdstuk 11. In dit hoofdstuk worden de chronische hemodynamische effecten van de 

Dor procedure geëvalueerd. De drukvolume relaties, gemeten tijdens hartcatheterisaties, 

tonen een verbetering in linker kamerejectiefractie, een reductie van linker 

kamervolume en een significante verbetering van de intrinsieke systolische linker 

kamerfunctie. Daarnaast neemt de mechanische efficiëntie significant toe na 6 maanden 

met een reductie van de linker kamerdissynchronie. Een belangrijk gegeven uit dit 

hoofdstuk vormen de onveranderende parameters van de diastolische functie na 6 

maanden vergeleken met de parameters voor de operatie. Hieruit kunnen we 

concluderen dat de Dor procedure leidt tot een verbetering in globale en intrinsieke 

systolische linker kamerfunctie waarbij de diastolische functie na 6 maanden 

onveranderd blijft. De verbetering in systolische functie na 6 maanden is mogelijk 
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gerelateerd aan de reductie van linker kamerdissynchronie en de verbetering in linker 

kamerefficiëntie. 

 

 

CONCLUSIES 

 

In dit proefschrift wordt de haalbaarheid en het belang van drukvolume metingen tijdens 

hartchirurgische en cardiologische interventies aangetoond. Naast het verkrijgen van 

belastingsafhankelijke en belastingsonafhankelijke parameters van systolische en 

diastolische linker kamerfunctie, kan de conductantiecatheter parameters van 

mechanische dissynchronie bepalen. Deze parameters zijn sensitief en bepalen mede de 

mate van cardiale dysfunctie bij patiënten met chronisch hartfalen. 

Voorafgaand aan onze studies in hartfalen patiënten, hebben we de conductantiecatheter 

methode geëvalueerd in patiënten met een relatief normale linker kamerfunctie die een 

electieve normotherme CABG ondergingen. Evenals bij de hartfalen patiënten, werden 

deze patiënten geopereerd met intermitterend antegrade warm bloed cardioplegie. Onze 

peri-operatieve metingen toonden geen significante veranderingen in systolische linker 

kamerfunctie. De diastolische linker kamerstijfheid in deze patiënten nam echter 

significant toe, terwijl de actieve relaxatie constante (tau) significant verbeterde. Deze 

effecten zijn hoogst waarschijnlijk het gevolg van de cardiopulmonale bypass, de 

cardioplegie en de revascularisatie. In het algemeen, moeten deze effecten in 

beschouwing worden genomen wanneer peri-operatieve metingen worden 

geïnterpreteerd van patiënten met hartfalen die worden geopereerd onder dezelfde 

omstandigheden. 

In dit proefschrift hebben we onder andere de effecten chirurgische behandelingen zoals 

de Dor procedure en de RMA onderzocht. Op basis van vroegere studies bestaan 

aanwijzingen dat RMA in de acute fase na de operatie de linker kamerfunctie in 

patiënten met hartfalen verder kan verslechteren. Daarnaast zou RMA mogelijk een 

nadelig effect hebben op de diastolische vullingsfase. Deze vermoedens hebben geleid 

tot twijfel of deze operatie wel moet worden toegepast bij patiënten met hartfalen. In dit 

proefschrift wordt met drukvolume relaties echter aangetoond dat chirurgische 

mitralisklep-reparatie door middel van RMA (met een twee maten kleinere ring dan de 

ringmaat die werd gemeten) geen nadelig effect heeft op de intrinsieke systolische en 

diastolische linker kamerfunctie in patiënten met hartfalen. Daarnaast was er een trend 
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tot reductie van de linker kamerdissynchronie. Deze bevindingen ondersteunen het 

gebruik van RMA zelfs in patiënten met een sterk verminderde linker kamerfunctie. 

Naast de RMA wordt ook de Dor procedure in toenemende mate toegepast bij patiënten 

met eindstadium hartfalen. Deze techniek wordt toegepast in patiënten met ischemisch 

gedilateerde cardiomyopathie met anteroseptale dyskinesie of akinesie. Er zijn 

momenteel nog weinig gegevens beschikbaar over de acute en chronische effecten van 

deze techniek op de linker kamerfunctie bij patiënten met hartfalen. In dit proefschrift 

worden met behulp van drukvolume relaties de acute en chronische effecten op de 

systolische en diastolische linker kamerfunctie en op de mechanische dissynchronie 

beschreven. Daarnaast worden de effecten van de Dor procedure na 6 maanden op de 

klinische status van de patiënt (6 minuten looptest, kwaliteit van leven test en NYHA 

classificatie), de biventriculaire functie en linker kamerdissynchronie, met behulp van 

echocardiografie en tissue Doppler imaging bestudeerd. De acute effecten van de Dor 

procedure, zoals beschreven in dit proefschrift, bestaan uit een verbetering in globale en 

intrinsieke systolische functie, een reductie van linker kamerdissynchronie en een 

significante afname van de linker kamerwandspanning. Ondanks veranderende 

diastolische eigenschappen (verhoogde einddiastolische druk en een toegenomen linker 

kamerstijfheidsconstante) na de operatie blijft de pompfunctie (cardiale output en 

slagarbeid) onveranderd. De pressure-volume area was significant verminderd na de 

Dor procedure hetgeen uiteindelijk leidt tot een verbetering in mechanische efficiëntie 

van de linker kamer. Dit effect is waarschijnlijk het gevolg van een reductie van linker 

kamerwandspanning en een reductie van mechanische dissynchronie. De toename in 

diastolische linker kamerstijfheid neemt toe na de Dor procedure, deze toename is 

echter vergelijkbaar met de toename in de controle CABG patiënten en waarschijnlijk 

het gevolg van tijdelijk oedeem dat ontstaat na de operatie. De positieve effecten op de 

systolische linker kamerfunctie, gemeten met drukvolume relaties, zijn na 6 maanden 

nog steeds aanwezig. Opmerkelijk is dat de diastolische functie na 6 maanden 

onveranderd is ten opzichte van voor de operatie. Kennelijk is de toename in linker 

kamerstijfheid, die direct na de operatie aanwezig is, tijdelijk van aard. De drukvolume 

gegevens na 6 maanden laten een significante verbetering zien in linker 

kamerejectiefractie, een significante reductie van het linker kamervolume en een 

significante verbetering in intrinsieke systolische functie. Daarnaast neemt de linker 

kamerefficiëntie toe met een reductie in mechanische dissynchronie. Ook de klinische 

parameters verbeterden 6 maanden na de Dor procedure. Daarnaast treedt reverse 

remodeling op van de rechter kamer en vindt een significante reductie plaats van de 
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pulmonale arteriële druk na de operatie. Deze resultaten tonen aan dat de Dor 

procedure, indien noodzakelijk met een tricuspidalisklepplastiek of een 

mitralisklepplastiek, de globale en intrinsieke systolische linker kamerfunctie verbetert 

door een reductie in mechanische dissynchronie en linker kamerwandspanning, zonder 

verandering in diastolische linker kamerfunctie. Bovendien treedt reverse remodeling 

op van de rechter kamer met een afname van de pulmonale arteriële druk. Al deze 

verbeteringen in functie verklaren mede de gunstige klinische lange termijn resultaten 

na de Dor procedure. 

Een derde belangrijke behandelingstechniek voor patiënten met eindstadium hartfalen is 

CRT dat effectief is gebleken bij patiënten met een ernstig hartfalen en een linker 

bundeltak blok. Eerdere studies laten gunstige lange termijn effecten zien met een 

verbetering in overleving en symptomen en een verbetering in linker kamerfunctie met 

reverse remodeling van de linker kamer. De reeds bekende acute effecten na CRT zoals 

toename in ejectiefractie, slagvolume, systolische druk, dP/dtmax en slagarbeid, en 

reductie in mechanische dissynchronie en diastolische druk zijn volgens de resultaten 

van dit proefschrift nog steeds aanwezig na 6 maanden behandeling met CRT. 

Bovendien laten deze resultaten een verbetering in ventriculaire-arteriële koppeling en 

een verbetering in mechanische efficiëntie zien. Verder laten deze resultaten een 

verbetering in chronotrope response zien, dat mogelijk de verbetering in 

inspanningstolerantie na CRT in deze patiënten mede verklaart. Ondanks conversie naar 

een meer fysiologische chronotrope response werd echter een beperkte toename gezien 

van de cardiale output na toename van de hartfrequentie. Dit is mogelijk het gevolg van 

een abnormale relaxatie door de vertraagde isovolumetrische relaxatie die niet 

verbeterde na CRT. Deze hemodynamische verbeteringen na CRT verklaren voor een 

deel de toename van de inspanningstolerantie in hartfalen patiënten die worden 

behandeld met CRT. 

In dit proefschrift zijn de acute en chronische hemodynamische effecten van de Dor 

procedure, RMA en CRT onderzocht met behulp van ventriculaire drukvolume analyse 

met de conductantiecatheter. De klinische effecten van deze behandelingen bij patiënten 

met hartfalen zijn over het algemeen gunstig. De bevindingen in dit proefschrift geven 

inzicht in de onderliggende werkingsmechanismen en kunnen de klinische 

verbeteringen in deze patiënten mede verklaren. 
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