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1.1. OBESITY AND TYPE 2 DIABETES MELLITUS: DEFINITIONS, 
EPIDEMIOLOGY AND HEALTH PROBLEMS

The enormous increase in overweight and obesity, defi ned as a body mass index (BMI, calcu-

lated as weight in kilograms divided by the length in meters squared) > 25 and > 30 kg/m2 

respectively [Table 1]), has reached epidemic proportions. Worldwide 1 billion people are 

overweight and 300 million people are obese (http://www/who.int/nut/#obs, obesity and 

overweight: fact sheet). Of even greater concern is the increase of overweight and obesity in 

children: worldwide 22 million children under the age of 5 years and 155 million school-age 

children (http://www.worldheart.org/pdf/press.factsheets.children.obesity.pdf.).

The reason for this concern is that overweight and obesity are associated with increased 

morbidity and mortality (Tables 2 and 3)1-4. Relative risks for the development of type 2 diabe-

tes mellitus5,6, hypertension7, coronary heart disease8,9, stroke10,11, gallstones12, osteoarthritis 

and arthrosis13,14, infertility15 and certain types of cancer (breast, colon, endometrium)16-18 are 

substantially increased in this patient group (Table 2). Even after correction for diabetes mel-

litus, high blood pressure and other cardiovascular risk factors, overweight and obesity are 

in themselves independent risk factors for increased mortality19. The association between 

BMI and mortality has been described as a J-shaped curve with the lowest mortality for BMI 

values between 18.5 and 24.9 kg/m2; below 18.5 kg/m2 the risk is increased and above 24.9 

kg/m the risk increases, and rises steeply when the BMI gets over 40 kg/m2 20.

Insulin resistance is probably the common denominator, relating obesity with type 2 dia-

betes mellitus. Obesity somehow (visceral fat deposition?) evokes insulin resistance, a condi-

tion predisposing for type 2 diabetes mellitus21, a chronic disease characterised by impaired 

insulin secretion and insulin resistance of target organs leading to chronic hyperglycaemia22. 

In fact, in obese women who develop type 2 diabetes mellitus, in 53% of the cases the condi-

tion (diabetes) can be ascribed to obesity (Table 2). Therefore, it is not surprising that, along 

with the increased prevalence of overweight and obesity, the prevalence of type 2 diabetes 

mellitus has also steadily increased. It is estimated that nowadays over 190 million people 

worldwide have diabetes mellitus23, more than 90-95% of them having type 2 diabetes melli-

Table 1. Classifi cation of overweight in adults according to WHO1 criteria

Classifi cation BMI (kg/m2) Risk of comorbidities

Normal weight 18.5-24.9 average

Overweight 25.0-29.9 increased

Obesity

Level I 30.0-34.9 moderately increased

Level II 35.0-39.9 severely increased

Level III (morbid) ≥ 40 very severely increased

1 World Health Organisazation. Obesity: preventing and managing the global epidemic.
 Technical Report Series,#894,2000. 
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tus. It has been predicted that in the year 2030 366 million subjects worldwide will suff er from 

diabetes mellitus24. These are crude estimates, however, that have not taken into account the 

increase in overweight and obesity; hence, actual numbers may even be much higher.

Genetic factors are without doubt of major signifi cance in the development of obesity and 

type 2 diabetes mellitus. However, because the human genome does not change over just 

decades, genetic predisposition cannot explain the explosive increase in obesity and type 

2 diabetes mellitus of recent years. Environmental and social factors, like a lack of physical 

exercise and high caloric intake, are more likely explanations for the epidemic. A chronic im-

balance between energy intake and energy expenditure eventually leads to obesity.

In obese and obese type 2 diabetic patients, insulin resistance is of paramount pathoge-

netic signifi cance21,25. Insulin resistance not only impairs glucose homeostasis, but is also 

associated with hypertension26-28, dyslipidaemia29-31 and abnormalities in coagulation and 

fi brinolysis32,33, conditions that are independent cardiovascular risk factors34-38, seen in both 

obesity and type 2 diabetes. In addition, insulin resistance in (severely) obese type 2 diabetic 

patients makes it often diffi  cult to achieve adequate glycaemic regulation. Sooner or later, 

insulin therapy will be instituted because normalisation of plasma glucose levels cannot be 

achieved with oral blood glucose-lowering agents alone. Insulin, however, induces weight 

gain39, which in turn aggravates insulin resistance, thus requiring higher doses of insulin: a 

Table 2. Estimated health risk for obese (BMI ≥ 30 kg/m2) adults

Women Men

Prevalence 9.6%*  Prevalence 8.5%*

RR PAR (%) RR PAR (%)

Type 2 diabetes 12.7 52.9 5.2 26.3

Hypertension 4.2 23.5 2.6 12.0

Myocardial infarction 3.2 17.4 1.5 4.1

Coloncarcinoma 2.7 14.0 3.0 14.5

Ischemic heart disease 1.8 7.1 1.8 6.4

Gallstones 1.8 7.1 1.8 6.4

Ovariumcarcinoma 1.7 6.3 - -

Arthrosis 1.4 3.7 1.9 7.1

Stroke 1.3 2.8 1.3 2.5

Prevalence rates concerning obesity are derived from the MORGEN-project RIVM, Int J Obes Rel Metab Dis 2002:1218. The relative risks (RR), are 
derived from “Tackling Obesity in England. Report by the comptroller and auditor general. London: National Audit Offi  ce 2001”. This table was 
derived from the Executive Summary: obesity and overweight, Health Council of the Netherlands, 2003. PAR = population attributable risk, i.e 
part of the disease that can be attributed to obesity. 

Table 3. Body mass index and relative risk of death. 

BMI Relative risk of death

25.0-26.9 1.3

27.0-28.9 1.6

29.0-31.0 2.1
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vicious circle has arisen. Furthermore, insulin therapy can also induce or aggravate already 

existing hyperinsulinaemia, which could be an independent cardiovascular risk factor37,38,40,41, 

although the relation may be week42.

Weight reduction improves insulin resistance and its associated metabolic features (hy-

pertension, dyslipidaemia, hyperglycaemia)43,44. In obese patients this will lead to a lower risk 

for associated co-morbid conditions (Table 2). It has also been demonstrated that lifestyle 

intervention programmes (often combinations of behaviour therapy, diet therapy and exer-

cise) in overweight and obese patients reduces the number of patients that develop type 2 

diabetes mellitus45,46. In severely obese type 2 diabetic patients weight loss is, in fact, the only 

reasonable therapeutic approach. By reducing insulin resistance, glycaemic regulation can 

be restored often with much less blood glucose-lowering medication.

Calorie restriction remains the hallmark for weight loss. However, only substantial caloric 

restriction or more moderate caloric restriction for a longer period of time, will lead to the 

considerable weight loss (probably > 15 kg47) needed to restore peripheral insulin sensitivity 

in morbidly obese patients and (severely) obese type 2 diabetic patients47,48. This can either 

be achieved through a very low calorie diet (VLCD) or bariatric surgery. The latter is very ef-

fective in improving insulin resistance and associated cardiovascular risk factors43,49-53. In ad-

dition, bariatric surgery can prevent the development of type 2 diabetes mellitus43,54 (review 

bariatric surgery:56,57). However, the procedure is invasive, costly and (also for logistic reasons) 

available for a limited number of subjects only. VLCDs are safe58, commercially available, rela-

tively cheap, and easy accessible. Given the enormous increase in incidence of obesity and 

(obese!) type 2 diabetes mellitus, VLCDs are, therefore, an interesting therapeutic option. 

Thus, the main focus of the studies described in this thesis was to investigate the short-term 

and long-term eff ects of calorie restriction per se versus weight loss per se on glucose and lipid 

metabolism, both at the whole-body and at the molecular level in obese patients with type 

2 diabetes mellitus.

In this introduction, fi rstly the main actions of the “master” hormone in glucoregulation, 

insulin, will be discussed. Secondly, the normal regulation of blood glucose levels will be 

considered, both at the whole-body level as well as at the molecular level. Thirdly, the patho-

physiology of type 2 diabetes mellitus is discussed, with specifi c focus on insulin resistance, 

both at the whole-body and the molecular level, and potential mechanisms of insulin resis-

tance will be stressed. Fourthly, the reason and goals of therapeutic interventions will be 

attended, along with possible therapies. Fifthly, our research aims will be formulated and the 

outline of this thesis will be presented.
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1.2. INSULIN

1.2.1 Hormone production

Insulin is a hormone produced by the β-cells of the Islets of Langerhans in the pancreas. At 

birth about 3x10-5 islets are present, increasing to 1x10-6 islets during the fi rst years of life. The 

islets contain various cell types which each produce diff erent hormones. The β-cell produces 

insulin. Other important hormones are somatostatin, produced in the δ-cell, and glucagon, 

produced in the α-cell. The latter counteracts the eff ect of insulin in many ways. The β-cell is 

situated central in the islet of Langerhans whereas the other cells are located peripherally.

The human insulin gene is located on the short arm of chromosome 11. Via DNA/RNA re-

synthesis, a precursor molecule known as pre-pro-insulin (98 amino acids, molecular weight 

[MW] 11.500) is produced in the endoplasmatic reticulum of the pancreatic β-cells. It is 

cleaved to proinsulin (86 amino acids, MW approximately 9000) directly after the molecule 

has left the ribosome. The proinsulin is transported to the Golgi apparatus, where packaging 

into clathrin-coated secretory granules takes place. Maturation of the secretory granule is 

associated with the loss of the clathrin coating. In addition, the proinsulin is converted into 

insulin and C-peptide (MW 3000) by proteolytic cleavage at two sites. Normal granules shed 

insulin and C-peptide in equimolar amounts, along with some proinsulin and so-called split-

products (only partially cleaved proinsulin). Insulin (MW 5808) itself consists of an A-chain 

of 21 amino acids and a B-chain of 30 amino acids, which are connected by two disulfi de 

bonds. The secreted insulin fi rst passes the liver where a proportion of insulin is cleared via 

a receptor-mediated process after exerting its action59-61 The proportion of insulin cleared 

during fi rst-pass through the liver has been estimated to be about 50% in dogs60 and approxi-

mately 40 to 80% in humans62-65. The plasma half-life time (t
½

) of insulin is only 5-10 minutes. 

C-peptide, the 31 amino acid residue, has no known biological function. Since C-peptide is 

produced in equimolar amounts with insulin it can be used as a marker for insulin secretory 

capacity, because it is not cleared by the liver but by the kidney and has a longer t
½

 than 

insulin66,67.

1.2.2. Hormone secretion

The main trigger for insulin release is an increase in the plasma glucose concentration in the 

portal circulation. Plasma glucose is sensed and taken up by the β-cell via facilitated diff u-

sion by the specifi c glucose transporter (GLUT)-2. Subsequently, glucose is metabolised by 

the cell, which sets free energy in the form of adenosine tri-phosphate (ATP). The increase 

in intracellular ATP induces a closure of the ATP-dependent potassium channel at the cell 

membrane of the β-cell. This causes a depolarisation of the cell membrane, which leads to 

an opening of the voltage-dependent calcium channels and an infl ow of calcium ions into 

the cell. The increase in intracellular calcium concentration eventually leads to the release of 

insulin from the granulae via exocytosis (Fig. 1)66,67
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Several phases of insulin secretion can be identifi ed: (i) basal insulin secretion is the way insulin 

is released in the post-absorptive state; (ii) the cephalic phase of insulin secretion is evoked by 

the sight, smell, and taste of food (before any nutrient is absorbed by the gut), and is mediated 

by pancreatic innervation; (iii) fi rst-phase insulin secretion is defi ned as the initial burst of insulin, 

which is released in the fi rst 5–10 min after the β-cells are exposed to a rapid increase in glucose 

(or other secretagogues); (iv) after the acute response, there is a second-phase insulin secretion, 

which rises more gradually and is directly related to the degree and duration of the stimulus; (v) 

fi nally, a third phase of insulin secretion has been described, albeit only in vitro. During all these 

stages, like many other hormones, insulin is secreted in a pulsatile fashion, resulting in oscilla-

tory concentrations in peripheral blood. Oscillations include rapid pulses (recurring every 8-15 

min) superimposed on slower, ultradian oscillations (recurring every 80-120 min) that are closely 

related to fl uctuations in the glucose concentration68-71. This pulsatile pattern of insulin delivery to 

the liver is regulated mainly by modulation of insulin pulse mass in response to stimuli. The mass 

of insulin pulses through the liver is the predominant determinant of hepatic insulin clearance65.

Figure 1.
See text for explanation (section 1.2.2 insulin secretion, page 18).

Ca2+

↑ Ca2+

glucose

metabolism

↑ ATP
K+

ATP

channel
K+

Depolarisation
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insulin granules

-

+

GLUT-2
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Table 4. Metabolic actions of insulin at the whole-body level.

Stimulation of Inhibition of

Liver glycogen synthesis gluconeogenesis

protein synthesis glycogenolysis

lipogenesis ketogenesis

Muscle glucose transport

glycogen synthesis

protein synthesis proteolysis

Adipose tissue glucose transport

lipogenesis lipolysis
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1.2.3 Hormone action

Insulin is an anabolic hormone, which means that insulin facilitates the storage of energy 

sources, such as fat and glycogen, and stimulates protein synthesis. Because, physiologically, 

insulin is secreted following energy intake, insulin not only directs these energy sources to-

wards storage, but simultaneously prevents endogenous release of energy sources (free fatty 

acids through lipolysis, proteolysis, de novo glucose production by the liver and ketogenesis), 

because these substrates are redundant in times of plenty. The eff ects of insulin on the vari-

ous tissues are depicted in Table 466,67.

1.3 NORMAL GLUCOSE REGULATION

1.3.1. Glucose homeostasis at the whole-body level

Blood glucose levels are usually tightly regulated between 4-8 mmol/L. Low blood glucose 

levels are dangerous because brain function depends on glucose, and lack of glucose in the 

brain can cause seizures, loss off  consciousness and death. On the other hand, elevated blood 

glucose levels can lead to either ketoacidosis or hyperglycaemic hyperosmolar dehydration 

in the acute situation, which can both eventually result in a coma. Furthermore, prolonged 

elevation of blood glucose levels can result in micro- (retinopathy, nefropathy, neuropathy) 

and macrovascular long-term complications.

The tight regulation of plasma glucose levels is achieved by the fi nely tuned hormonal 

regulation of glucose uptake by the tissues (rate of disappearance, R
d
) on the one hand and 

glucose production on the other hand (rate of appearance, R
a
)72.

Glucose uptake by peripheral tissues is either insulin-independent (in the brain) or insulin-

dependent (in muscle and adipose tissue). The brain cannot store glucose and, as mentioned 

before, is critically dependent on glucose for its function. Therefore, in the non-fed (= post-

absorptive) state a certain level of endogenous glucose production is necessary. Glucose ap-

pearing in the post-absorptive state is mainly derived from the liver73, although the kidney is 

also capable of glucose production. The amount of glucose produced by the kidney has been 

reported to be less than 5% after an overnight fast to 20% after a 60-h fast73. However, higher 

estimates of the contribution of the kidney to total post-absorptive gluconeogenesis have 

been reported. These diff erences depend on the techniques used to quantify renal glucose 

production. A signifi cant role for the kidney in carbohydrate metabolism in type 2 diabetes 

has recently been proposed74,75. In healthy individuals the amount of endogenous glucose 

production (EGP, both liver and kidney) in the post-absorptive state averages 1.8-2.3 mg.kg-

1.min-1 73,76-78, which is about 10.0-12.8 µmol.kg-1.min-1.

Endogenous glucose production comprises 2 pathways: glycogenolysis, which is the break-

down of glucose stored as glycogen, and gluconeogenesis, which is the synthesis of new glucose 

molecules from precursor molecules like amino acids (mainly alanine), glycerol and lactate.
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Endogenous glucose production is mainly regulated by fl uctuations in the insulin/glucagon 

ratio in the portal vein79,80. Following a meal, insulin secretion is stimulated and the increase 

in portal vein insulin concentration inhibits endogenous glucose production via inhibition 

of glycogenolysis and gluconeogenesis. When the meal has been absorbed, plasma glucose 

levels decrease, even to a level a little below normal post-absorptive levels. This relative hy-

poglycaemia leads to increased secretion of glucagon. The subsequent elevation in portal 

vein glucagon concentration stimulates glycogenolysis and hepatic glucose production81. 

Endogenous glucose production is also infl uenced by other hormones (cortisol, growth 

hormone), free fatty acids (FFA), gluconeogenic precursors, paracrine substances (cytokines, 

prostaglandins) and the autonomic nervous system. All these factors keep endogenous glu-

cose production relatively constant, a process called hepatic autoregulation82-84.

Insulin-stimulated glucose uptake primarily takes place in skeletal muscle and amounts 

about 0.5 mg.kg-1.min-1 (the remainder of the average basal glucose uptake of 2.0-2.2 mg.kg-

1.min-1 being utilised by the brain [1.0-1.2 mg.kg-1.min-1] and red blood cells)85,86. Glucose taken 

up in the muscle can either be oxidised to pyruvate (aerobic glycolysis) or lactate (anaerobic 

glycolysis) or stored as glycogen (non-oxidative glucose metabolism). Insulin-stimulated glu-

cose oxidation seems to be bound to a maximum, making non-oxidative glucose disposal 

quantitatively the most important87.

Of the three, for diabetes mellitus pathogenetically important, insulin-sensitive tissues, 

adipose tissue is the most sensitive for insulin. The EC
50

 value (i.e., the molar concentration of 

insulin that produces 50% of the maximum possible response that insulin is capable of ) for 

suppression of lipolysis by insulin is between 7 and 16 µU/mL76,88-92, whereas the EC
50 

values 

Figure 2.
The sight, smell and taste of food already stimulate insulin secretion. However, the rise of serum glucose levels following the consumption of 
a meal elicits a much more pronounced response (see text on page 19). Subsequently, insulin suppresses endogenous glucose production and 
lipolysis and stimulates whole-body glucose uptake. The duration of the increased insulin secretion following a meal is related to the degree and 
duration of hyperglycaemia.
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for suppression of EGP of the liver and stimulation of glucose uptake in skeletal muscle, in 

normal subjects, are 26 µU/mL and 58 µU/mL, respectively93.

The diff erences in the insulin dose-response curve between the various tissues are neces-

sary for normal glucose and lipid metabolism. During an overnight fast, serum insulin levels 

are suffi  ciently low as to not to inhibit lipolysis (which provides free fatty acids and hence 

ketone bodies for the brain and glycerol for gluconeogenesis) and endogenous glucose 

production (providing glucose for the brain), but, on the other hand, are not high enough 

for maximum stimulation of (skeletal muscle) glucose uptake. After a meal, serum insulin 

levels rise, which stimulates glucose uptake and inhibits lipolysis and glucose production. 

The latter is achieved directly, by inhibition of gluconeogenesis and glycogenolysis, as well 

as indirectly, via inhibition of lipolysis, which diminishes the supply of glycerol and free fatty 

acids to the liver66,67. Fig. 2 shows what happens when a meal has been consumed.

1.3.2. Insulin signalling, molecular mechanisms regulating glucose uptake

Glucose transport and metabolism, protein synthesis and gene expression are all regulated 

by activation of the insulin-signalling pathway. Insulin signalling aimed at increasing the rate 

of glucose transport will be discussed below.

Glucose cannot pass the lipid bilayers of the cell membrane and needs a transporter to en-

ter the cell. GLUT-4 is the main insulin-responsive glucose transporter and is located primarily 

in skeletal muscle cells and adipocytes. In unstimulated fat or muscle cells, 3-10% of GLUT-4 

is located at the cell surface and more than 90% is located inside the cell in distinct vesicles94. 

In response to insulin, exercise and contraction, GLUT-4- containing vesicles move to and 

fuse with the plasma membrane, thereby increasing the number of GLUT-4 molecules in the 

membrane and, hence, increasing the rate of glucose transport into the cell94. Insulin elevates 

the exocytic rate of GLUT-4 and reduces its endocytotic rate only minimally. A review95 on 

the diff erent intracellular compartments containing GLUT-4 and the proteins that form the 

cytoskeleton along which GLUT-4 travels is beyond the scope of this thesis; it has not been 

investigated here.

Insulin is an important mediator of insulin-stimulated glucose transport that begins with 

binding of insulin at its receptor leading to a signalling cascade that eventually leads to the 

translocation of GLUT-4 to the cell membrane.

The heterotetrameric insulin receptor consists of 2 extracellular, ligand binding α-subunits 

and 2 transmembrane β-subunits containing tyrosine kinase domains96,97. When insulin binds 

to specifi c regions of the α-subunit, a rapid conformational change results in phosphorylation 

of the intracellular tyrosine residues on one half of the receptor dimer by the kinase domain 

of the other half, a process called autophosphorylation98-100. The phosphotyrosines on the 

insulin receptor can now serve as docking sites for phosphotyrosine binding (PTB)-domains 

on other proteins, such as insulin receptor substrates (IRS-1 to 4), Shc and Gab-1101.
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IRS-1 and -2 appear to be the important mediators of insulin signalling in humans. IRS-

1 is specifi cally involved in skeletal muscle and IRS-2 in adipose tissue insulin signalling102. 

Tyrosine phosphorylated IRS recruits and activates signalling molecules with src2-homology 

(SH2) domains, including phosphatidylinositol 3-kinase (PI3K)103.

The IRS-PI3K complex catalyses the formation of 3’-phosphoinositides (phosphatidyl-ino-

sitol-3,4-biphosphate [PIP2] and phosphatidyl-inositol-3,4,5-triphosphate [PI3P]). PI3P serves 

as an allosteric regulator of phosphoinositide-dependent kinase (PDK), attracting PDK-1 to 

the cell membrane. There, PDK-1 activates (by phosphorylation) downstream mediators, such 

as protein kinase B (PKB/Akt) and atypical protein kinase C (aPKC, PKCζ/λ).

PKB/Akt is a serine/threonine kinase with 3 diff erent isoforms, Akt 1, 2 and 3. Akt 2 is es-

sential for normal glucose homeostasis104,105. After co-localisation with PDK-1106, PKB/Akt 

is activated by phosphorylation of its two principal regulatory sites, Thr308 and Ser473107. 

Phosphorylation of both sites is essential for activation of PKB/Akt. Following activation, 

PKB/Akt dissociates from the cell membrane to aff ect metabolic processes108,109. Parts of the 

activated PKB/Akt also translocate to the nucleus to aff ect gene expression (see Fig. 3). The 

metabolic processes aff ected by PKB/Akt are glucose transport (via a stimulatory eff ect on 

GLUT-4 translocation) and glycogen synthesis. By inactivating glycogen synthase kinase-3 

(GSK-3) the inhibitory action of GSK-3 on glycogen synthase110 is abrogated and glycogen 

synthesis is stimulated111.

Figure 3.
Binding of insulin at the insulin receptor leads to phosphorylation of the receptor and insulin receptor substrates (IRS). Activated IRS-1 
and -2 form a complex with phosphatidylinositol 3-kinase (PI3K) and this IRS/PI3K complex subsequently catalyses the formation of 
3’-phosphoinositides (phosphatidyl-inositol-3,4-biphosphate [PIP2] and phosphatidyl-inositol-3,4,5-triphosphate [PI3P]). PIP3 attracts 
phosphoinositide-dependent kinase-1 (PDK-1) to the cell membrane and the complex subsequently activates protein kinase C (PKC) or 
protein kinase B (PKB/Akt), which are both involved in GLUT-4 traffi  cking to the cell membrane. The PKB/Akt substrate AS160 has recently 
been discovered as an intermediate in this process. Insulin-independent pathways involved in GLUT-4 translocation involve adenosine 
monophosphate-activated kinase (AMPK)-dependent (contraction, hypoxia) and -independent pathways.
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With respect to the stimulatory eff ect of activated PKB/Akt on the translocation of GLUT-4 

to the cell membrane, numerous studies have linked PKB/Akt to the regulation of glucose 

metabolism but the endogenous substrates regulating these responses are only beginning 

to be identifi ed. Recent evidence suggests that the protein Akt substrate of 160 kDa (AS160) is 

involved as an intermediary in this process. AS160 is a protein containing a GTPase-activating 

domain (GAP) for Rab proteins, which are small G-proteins required for membrane traffi  ck-

ing112,113. Phosphorylation of AS160 is required for the insulin-induced translocation of GLUT4 

to the plasma membrane in 3T3-L1 adipocytes114. Another recently discovered PKB/Akt sub-

strate, proline-rich Akt-substrate 40 (PRAS40, also known as Akt1 substrate 1(Akt1S1))115,116, 

is ubiquitously expressed and appears to be localised in the nucleus116,117. In response to 

growth factors, PRAS40 is phosphorylated on Thr246 via a PI3K- and PKB/Akt-dependent 

mechanism115,117. Phosphorylation of PRAS40 facilitates the binding of 14-3-3-proteins in 

vitro, and this protein complex has been implicated in nerve growth factor (NGF) mediated 

neuroprotection from ischaemia117. Although, PRAS40 is phosphorylated in response to insu-

lin-treatment of cultured cell lines115,118, it is as yet unknown whether this protein is involved 

in physiological insulin action.

As mentioned earlier, GLUT-4 translocation and, hence, glucose uptake can also be mediat-

ed via insulin-independent pathways, involving AMP-activated protein kinase (AMPK)119 and 

other intermediates120. Interestingly, AS160 contains motifs similar to sequences of proteins 

that are phosphorylated by protein kinase C (PKC)121 and AMPK122. In fact, muscle contraction 

phosphorylated AMPK, Akt and AS160 in isolated rodent muscle and chemical activation of 

AS160 caused AS160 phosphorylation123. Possibly, AS160 may act as a common eff ector of 

insulin and exercise signalling to recruit GLUT-4 to the plasma membrane.

Another PDK-1 substrate (via PI3-kinase) is atypical protein kinase C. In the liver aPKC regu-

lates the expression of sterol regulatory element binding protein-1c (SREBP-1c), a transcrip-

tion factor that activates numerous genes, including fatty acid synthase (FAS) and acetyl-

coenzyme A carboxylase, that control lipid synthesis in the liver124.

The insulin signal also has to be terminated in order to maintain metabolic control; this is 

established via specifi c phosphatases. Protein tyrosine phosphatase-1B (PTP1B) is a physi-

ologic negative inhibitor of insulin signalling. By dephoshorylating the activated insulin 

receptor it terminates the insulin signal transduction125. In addition, SH2-domain-contain-

ing inositol phosphatases SHIP1 and SHIP 2 terminate PI3K signalling via dephosphoryla-

tion of the 5-position of the inositol ring of PIP3, to produce PI(3,4)P
2
. The phosphatase PTEN 

(phosphatase and tensin homologue) dephosphorylates the 3-position on PIP3, producing 

PI(4,5)P
2 

126. All three phosphatases can be regarded as potential therapeutic targets for type 

2 diabetes mellitus.
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1.4. TYPE 2 DIABETES MELLITUS

Type 2 diabetes mellitus is a chronic, multifactorial disease characterised by a combination 

of impaired insulin secretion by the pancreatic β-cells and insulin resistance of target organs, 

leading to hyperglycaemia. A diagnosis of diabetes mellitus is made when at least one of 

these three criteria is met: (i) symptoms of diabetes (polyuria, polydipsia, unexplained weight 

loss) with a casual blood glucose concentration > 11.1 mmol/L, (ii) fasting plasma glucose 

(FPG) level over 7.0 mmol/L, (iii) 2-h plasma glucose level > 11.1 mmol/L during an oral glu-

cose tolerance test (OGTT)127,128. If no symptoms are present, one of these criteria must be 

present on a subsequent day.

Both conditions, i.e., defi cient insulin secretion and insulin resistance, are necessary for 

diabetes mellitus to occur. Insulin resistance and a disturbed fi rst-phase insulin response oc-

cur at an early stage in the development of type 2 diabetes mellitus. There seems to be a 

continuum from normal glucose tolerance to diabetes mellitus. Insulin resistance leads to 

increased insulin secretion by the pancreatic β-cell. This increase in insulin secretion is suf-

fi cient to off set hepatic insulin resistance (thereby maintaining a normal rate of basal hepatic 

glucose production) and to overcome the defect in muscle glucose uptake. At this moment, 

normal glucose levels are achieved at the expense of elevated serum insulin levels. In the 

second phase, the β-cells fail to compensate for the insulin resistance during glucose loads 

(as occurs during meals), leading to a condition known as impaired glucose tolerance (IGT). 

The cause is a disturbed fi rst-phase insulin response, which normally suppresses endogenous 

glucose production. Over the years, the β-cell function deteriorates and when insulin secre-

tion is no longer able to compensate for the insulin resistance hyperglycaemia ensues and a 

diagnosis of type 2 diabetes mellitus is made22,129,130. The relation between insulin secretion 

and insulin sensitivity is shown in Fig. 4 and the time-course of type 2 diabetes mellitus in 

Fig. 5.

Figure 4.
In people with normal glucose tolerance (NGT), the relation between insulin sensitivity and β-cell function is curvilinear. See text for 
explanation (page 25).
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1.4.1. Insulin resistance at the whole-body level

Insulin resistance at target organs leads to decreased glucose uptake, increased glucose pro-

duction and increased whole-body lipolysis. Therefore, in patients with type 2 diabetes mel-

litus, basal glucose production is signifi cantly elevated, leading to fasting hyperglycaemia. 

In addition, following a meal, insulin resistance leads to inadequate stimulation of (skeletal 

muscle) glucose uptake and insuffi  cient suppression of endogenous glucose production and 

lipolysis. The result is postprandial hyperglycaemia.

The incapability to suppress whole-body lipolysis substantially contributes to the increased 

endogenous glucose production and diminished glucose uptake. Firstly, NEFAs increase en-

dogenous glucose production by stimulating key enzymes involved in gluconeogenesis and 

by providing the energy needed for glucose production22. Secondly, the glycerol formed by 

triglyceride hydrolysis serves as a gluconeogenic substrate. Thirdly, free fatty acids impair 

insulin stimulated glucose uptake. Besides substrate competition (Randle eff ect)131, impair-

ment of insulin signalling appears to be responsible for this eff ect132 (see next section).

1.4.2  Molecular mechanisms of insulin resistance

Skeletal muscle

Over 80% of insulin-stimulated glucose disposal takes place in skeletal muscle86. The main 

defect in patients with type 2 diabetes mellitus seems to reside in non-oxidative glucose 

disposal (NOGD), i.e., glycogen synthesis133, the major pathway for overall glucose metabo-

lism. With increasing obesity and insulin resistance, insulin-stimulated NOGD becomes more 

Figure 5.
Time course of type 2 diabetes mellitus. See text (page 25) for explanation.
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impaired134,135. In patients with overt diabetes mellitus, the rate of glycogen formation was 

60% that of normal subjects133.

Possible mechanisms involved in decreased glycogen synthesis could either be decreased 

hexokinase activity, diminished glycogen synthase activity or impaired GLUT-4 translocation. 

Shulman et al. using 31P-and 13-C-nuclear magnetic resonance (NMR) spectroscopy showed 

that the defects were not at the level of hexokinase136 or glycogen synthase137 activity, but 

that impaired glucose transport appears to be the prime defect in insulin-stimulated glyco-

gen synthesis in type 2 diabetic patients. The defects in glucose transport can either be due to 

defects in the glucose transporter itself or in translocation of GLUT-4 to the cell membrane.

Polymorphisms of the gene encoding GLUT-4 are very rare138-140 in patients with type 2 

diabetes and have the same prevalence in non-diabetic subjects. In addition, GLUT-4 protein 

and mRNA expression are equal141,142 or even higher143 as compared with normal subjects. 

However, GLUT-4 does have an abnormal subcellular distribution in insulin-resistant subjects 

with or without diabetes144. This indicates that translocation of GLUT-4 from intracellular 

compartments to the plasma membrane is the prime defect. Hence, defects in the signal-

ling cascade leading to GLUT-4 translocation have been extensively investigated. It appeared 

that exercise (i.e., non-insulin dependent)-induced GLUT-4 translocation is normal in type 2 

diabetic patients145, but that insulin-stimulated GLUT-4 translocation is impaired146. Several 

defects in the insulin-signalling pathway have already been found and will be discussed be-

low.

Insulin binding at the insulin receptor and protein expression of the insulin receptor are 

normal in skeletal muscle of patients with type 2 diabetes147-149. Both impaired147,150,151 and 

normal149,152,153 receptor tyrosine kinase phosphorylation and/or activity have been reported 

in subjects with diabetes. However, it is widely believed that the disturbance in GLUT-4 trans-

location in type 2 diabetes mellitus is due to a post-receptor defect.

IRS-1 is the fi rst molecule downstream in the insulin-signalling cascade and plays a key role 

in skeletal muscle insulin signalling. In humans, IRS-1 polymorphisms are signifi cantly more 

common in type 2 diabetic patients than in controls154,155, but their role in the development 

of insulin resistance and type 2 diabetes is unclear103. Furthermore, in obese insulin- resistant 

subjects156,157 and moderately overweight type 2 diabetic patients149,156,158-160, insulin-stimu-

lated IRS-1 phosphorylation in skeletal muscle is decreased as compared to control subjects, 

whereas protein expression is not altered149,156,159. This defect can already be found in nor-

moglycaemic relatives of type 2 diabetic patients161. The cause seems to be serine/threonine 

phosphorylation of IRS-1, which thereby loses its ability to act as a substrate for the tyro-

sine kinase activity of the insulin receptor and inhibits its capacity to bind to and activate 

downstream eff ector molecules such as PI3K162,163. Here, a link with adipocyte biology (and 

obesity) can be made, since circulating FFAs and TNF-α have been found to increase serine 

phosphorylation of IRS-1132.
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PI3-kinase is central in the insulin-signalling cascade; however, its activation is necessary 

but not suffi  cient for the metabolic actions of insulin. A common polymorphism of the p85-α 

subunit of PI3K (Met326Ile) was found in two percent of a Caucasian study population in 

homozygous form, leading to a 32% reduction in insulin sensitivity during an intravenous 

glucose tolerance test as compared to wild type and heterozygous carriers. The frequency 

of the polymorphism is not increased in diabetes however164, but insulin-stimulated PI3K 

activity is impaired in obese subjects 156, as well as in moderately overweight type 2 diabetic 

patients156,158,159,165.

Little is known about the physiological regulation of PDK-1, but thus far insulin action on 

PDK-1 appears to be normal in insulin-resistant skeletal muscle158. With respect to PKB/Akt, 

unravelling its role in insulin resistance has been complicated by the existence of three iso-

forms. It appears that Akt 2 is essential in glucose homeostasis, Akt 2 knockout mice having 

insulin resistance and a diabetes mellitus-like syndrome104. In humans, recent studies have 

detected a missense mutation in the kinase domain of PKB-β (Akt2) in a family of severely 

insulin-resistant patients that was preserved over three generations166. Not only was the mu-

tant Akt unable to phosphorylate downstream eff ectors in the insulin-signalling pathway, 

but it also inhibited phosphoenolpyruvate carboxykinase (PEPCK), a gluconeogenic enzyme. 

In humans with type 2 diabetes mellitus, basal PKB/Akt activity was similar to controls. Two 

in vivo studies showed normal insulin-stimulated activation of PKB/Akt165,167 in patients with 

type 2 diabetes mellitus, although one study used supraphysiological concentrations of insu-

lin165. In contrast, in vitro experiments showed decreased insulin-stimulated PKB/Akt activity 

at high levels and normal activity at low insulin levels168 in human muscle strips of type 2 dia-

betic patients. The defect seems to be isoform specifi c169 and a defect in one isoform might 

be masked by increased activity of the other.

With respect to the recently discovered Akt substrate AS160, Karlsson et al. showed that 

AS160 phosphorylation is impaired in skeletal muscle from type 2 diabetic patients170.

Liver

Insulin signalling in the liver diff ers from that in skeletal muscle (and adipose tissue). In mus-

cle, IRS-1 (via PI3K) controls both activation of aPKC and PKB/Akt, whereas in the liver aPKC 

is controlled (again via PI3K) by IRS-2 and PKB/Akt by IRS-1. In muscle and adipocytes, aPKC 

and PKB/Akt stimulate the transportation of GLUT-4 to the cell membrane. In the liver, aPKC 

regulates the expression of SREBP-1c, a transcription factor that activates numerous genes, 

including FAS and acetyl-coenzyme A carboxylase, that control lipid synthesis in the liver. 

PKB/Akt in the liver is involved in the control of glucose production124.

When insulin activates PKB/Akt (via IRS-1), this results in the phosphorylation of Foxo-fam-

ily transcription factors (Foxo-1a,-3a and -4). These Foxo-transcription factors can bind to 

so-called insulin response elements (IRE) on the promotor regions of (among others) two key 

gluconeogenic enzymes: PEPCK and the glucose-6-phosphatase catalytic subunit (G6Pase), 
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thereby inhibiting their expression171,172. Defective IRS-1 signalling to PKB/Akt leads to lack of 

inhibition of these two enzymes and increased glucose production124,173.

IRS-2-mediated signalling to aPKC in the liver of diabetic rodents is largely intact or el-

evated. This might explain the increased very-low-density lipoprotein (VLDL)-triglyceride 

synthesis in type 2 diabetes124.

Hepatocyte nuclear factor (HNF) may also play a role in insulin-mediated glucose metabo-

lism in the liver. HNF-1 enhances the eff ect of insulin on the promoter of the gene encoding 

G6Pase via interaction with an IRE174. Knockout mice that are homozygous for a null muta-

tion in the HNF-3 gene have a complex impairment of glucose metabolism with persistent 

hypoglycaemia175. Finally, HNF-4 is involved in the PI3K/PKB/Akt-dependent stimulation of 

glucokinase gene expression by insulin, a mechanism involved in increasing glycolysis176. 

On the molecular level HNF-4 seems to interact with Foxo-1177. However, although genetic 

defects of some of the HNF transcription factors play a role in some forms of maturity-onset 

diabetes of the young (MODY), thus far no evidence exists that HNF-transcription factors are 

involved in type 2 diabetes mellitus.

GSK-3, an enzyme regulating glycogen synthesis, is a substrate of PKB/Akt. Normally, GSK-3 

is constitutively active, phosphorylating glycogen synthase (GS), which becomes inactive and 

thus glycogen synthesis is inhibited. Insulin promotes glycogen synthesis via PKB-mediated 

inhibition of GSK-3. Defective glycogen synthesis is not only evident in skeletal muscle of 

patients with insulin resistance but also in the liver. Polymorphisms in the glycogen synthase 

gene have been described in insulin-resistant patients, the most frequent being the XbaI and 

Met416Val mutations within intron 14 and exon 10, respectively178.

In conclusion, in the liver impaired insulin signalling from IRS-1 to PKB/Akt leads to in-

creased glucose production via inhibition of gluconeogenic enzymes. In addition, glycogen 

synthesis is inhibited and, at least in rodents, impaired IRS-2 signalling to aPKC leads to in-

creased VLDL synthesis. Unfortunately, ethical considerations do not permit liver biopsies in 

humans to study the pathogenetic abnormalities in patients with type 2 diabetes mellitus.

Adipose tissue

About 10% of whole-body glucose uptake occurs in adipose tissue. This might suggest that 

adipose tissue is of minor importance in insulin-stimulated glucose disposal and in insulin re-

sistance. However, in mice, adipose-tissue-specifi c GLUT-4 knockout leads to a similar degree 

of insulin resistance in muscle and liver as muscle-specifi c GLUT-4 ablation179,180. In addition, 

muscle GLUT-4 depletion is associated with a markedly enhanced glucose uptake in adipose 

tissue181. Hence, there seems to be cross-talk between adipose tissue and skeletal muscle, 

and adipose tissue seems to be of major importance in the development of insulin resistance. 

This will be discussed in Chapter 2.

Insulin-stimulated glucose uptake in adipose tissue takes place via the same mechanism 

as in skeletal muscle: insulin signalling leading to GLUT-4 translocation. However, discrepan-
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cies have been found as to the defects in the insulin-signalling cascade in type 2 diabetic 

patients, between adipose tissue and skeletal muscle cells. In adipose tissue defects are re-

lated to decreased protein expression, whereas this is normal in skeletal muscle. Hence, IRS-1 

phosphorylation in adipose tissue of patients with type 2 diabetes is decreased because of 

a decreased IRS-1 protein expression (by 70%) and PI3K activity is decreased to the same 

extent by decreased protein expression182. In addition, in adipose tissue IRS-2 is capable to 

compensate for changes in IRS-1182, a phenomenon that does not seem to occur in skeletal 

muscle149.

PKB/Akt activation is also impaired in adipose tissue of type 2 diabetic subjects, primarily 

via a reduction in insulin-stimulated serine phosphorylation183. GLUT-4 protein and mRNA 

expression are also substantially reduced in adipose tissue of type 2 diabetic patients184, in 

contrast to the normal expression in skeletal muscle141,142,185.

The main interest in the role of adipose tissue in whole-body insulin resistance has been on 

so called adipocytokines (or even better, adipokines, since not all proteins secreted by adipo-

cytes are cytokines), proteins secreted by the adipocyte that might induce insulin resistance. 

This will be discussed shortly below and more extensively in Chapter 2.

1.4.3 How are changes in skeletal muscle insulin resistance induced?

Both FFAs and several adipokines derived from adipose tissue can infl uence insulin sensitiv-

ity.

It has been recognised for some time that insulin sensitivity is inversely related to fasting 

plasma FFA levels186-188. Furthermore, a strong inverse relationship has been demonstrated 

between intramyocellular lipid (IMCL) levels and skeletal muscle insulin sensitivity189-192. En-

durance-trained athletes also have high levels of IMCLs, but they have a high insulin sensitiv-

ity193. It seems that the capacity to oxidise these IMCL is of prime importance in inducing 

insulin resistance. This has also been called metabolic fl exibility194,195. It appears that meta-

bolically-fl exible persons (lean, aerobically fi t, healthy individuals) have a preference for fat 

oxidation in muscle during fasting and that during insulin stimulation this fat oxidation is 

suppressed and glucose oxidation is stimulated196. In metabolically-infl exible people there 

is both a blunted preference for fat oxidation in the fasted state and a blunted suppression 

of fat oxidation upon insulin stimulation197-199. Hence, athletes appear to have a high IMCL 

content because they prefer to oxidise fat, with the intramyocellular triglycerides (present in 

high concentration) serving as an energy reservoir. Whereas in obese and/or type 2 diabetic 

patients, elevated IMCL seem to be secondary to a structural imbalance between plasma FFA 

availability, fatty acid re-esterifi cation and oxidation. The defect in fat oxidation seems to 

reside in the mitochondria200.

Apart from defects in intracellular fatty acid oxidation and or re-esterifi cation, another 

mechanism leading to increased IMCL might be via increased fatty acid uptake. Long-chain 

fatty acids (LCFA) enter cells mainly by protein-mediated membrane transport, along with 
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passive diff usional uptake201. One of these proteins is the fatty acid transporter (FAT)/CD36. 

FAT/CD 36, like GLUT-4, is usually located in the cytoplasm and can be acutely translocated 

to the sarcolemma by stimuli such as contraction and insulin202-206. Both in animal models207 

of insulin resistance, as well as in obese non-diabetic and non-obese diabetic humans202, 

FAT/CD36 membrane expression was increased as compared to lean controls. Moreover, this 

increased sarcolemmal FAT/CD36 expression was associated with an increase in LCFA up-

take202,208. In the human study, the increase in LCFA transport led to a 3-fold increase in fatty 

acid esterifi cation, whereas fatty acid oxidation remained the same, again indicating that the 

core defect is in mitochondrial fatty acid oxidation202. 

Hence, any perturbation that leads to a defect in mitochondrial fatty acid oxidation (aging, 

potential type 2 diabetes genes) and/or increased delivery of fatty acids (increased caloric 

intake, obesity, increase in FAT/CD36) can lead to intramyocellular lipid accumulation.

ICML, in turn, can impair insulin signal transduction. It has been proposed that fatty acid 

metabolites induce a sustained activation of serine/threonine kinases, like protein kinase C 

isoforms209-211, IκB kinase-β212,213 and Jun N-terminal kinase163,214, which phosphorylate IRS-1 

and IRS-2 on serine and threonine sites. Serine-phosphorylated forms of IRS-1 and-2 can-

not associate with and activate PI3K, resulting in a decreased activation of GLUT4-regulated 

glucose transport.

Another adipocyte product, TNF-α, also induces insulin resistance via serine/threonine 

phosphorylation of IRS-1, thereby inhibiting insulin signalling215-217.

An extensive review of adipokines and their potential impact on insulin sensitivity is pre-

sented in Chapter 2.

1.4.4. Visceral obesity and insulin resistance

A chronic imbalance between energy intake and energy expenditure will eventually lead 

to obesity. Epidemiological studies have shown an association between severe obesity and 

increased mortality20,218,219. In more moderate obesity, regional distribution of fat seems to 

play an important role in the risk for (cardiovascular) morbidity and mortality220-224. As early 

as 1947 Vague put forward that “android or male-type obesity”, is more often associated with 

increased mortality and risk for diabetes, hypertension, hyperlipidaemia and atherosclero-

sis than the “gynoid” (lower body or gluteofemoral) female-type of fat distribution225. Later, 

studies using imaging techniques (computer tomography [CT] and magnetic resonance 

imaging [MRI]) showed that the detrimental infl uence of abdominal obesity on metabolic 

processes is related to the intra-abdominal, i.e., visceral, fat depot and not to subcutaneous 

fat deposition226-230. However, other investigators have challenged a primary role for visceral 

adipose tissue in insulin resistance and showed that truncal subcutaneous adipose tissue is 

also strongly and inversely related to insulin-stimulated glucose disposal (reviewed by Garg 

et al.231). Moreover, given the fact that visceral adipose tissue contributes only 10-15% of the 

total systemic free fatty acid fl ux (the majority of FFAs being derived from non-splanchnic 
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adipose tissue from the rest of the body)232,233, they questioned the impact of excess visceral 

adipose tissue on peripheral insulin sensitivity. However, liposuction of subcutaneous ab-

dominal adipose tissue does not improve insulin sensitivity152. Moreover, although only 10-

15% of fatty acids are derived from visceral adipose tissue, their drainage via the portal vein 

directly to the liver could imply another, more deleterious mechanism of action than delivery 

of FFAs (and adipokines) to the liver via the hepatic artery. Hence, it is not clear yet whether 

visceral adipose tissue is the culprit or whether the combination of truncal subcutaneous 

adipose tissue with visceral adipose tissue are involved in insulin resistance. Finally, it is also 

unclear whether abdominal obesity causes insulin resistance or is merely the refl ection of the 

pathologic state.

Notwithstanding these uncertainties, available evidence does support an important role 

for adipose tissue in, possibly, generating and, at least, maintaining whole-body insulin resis-

tance. Several theories have been put forward to explain the link between obesity and insu-

lin resistance. The portal/visceral hypothesis234 states that visceral fat cells are metabolically 

more active (especially lipolytic activity) and are less responsive to the antilipolytic eff ects of 

insulin as compared to other adipose tissue depots. Subsequently, the high fl ux of FFAs and 

glycerol derived from these visceral fat cells, through their unique drainage directly into the 

liver via the vena portae, would induce hepatic insulin resistance, increase hepatic glucose 

production and increase VLDL-triglyceride production. However, as mentioned in the pre-

vious paragraph, the portal/visceral hypothesis cannot link visceral adiposity to peripheral 

insulin resistance given the fact that only 10-15% of the total FFA fl ux is derived from visceral 

adipose tissue, unless some other factor released by visceral adipose tissue induces periph-

eral insulin resistance and/or visceral fat cells have impaired functioning in insulin-resistant 

states leading to decreased triglyceride storage and partitioning of fat storage into other 

organs. This is where 2 new theories emerge: (i) the adipocyte as an endocrine organ and (ii) 

the ectopic fat storage theory235.

To begin with the fi rst theory, adipose tissue not merely stores triglycerides but actively se-

cretes lipid moieties such as FFAs and proteins that are called adipokines236,237. Quantitatively, 

FFAs are the most important. Moreover, elevated FFAs play a major role in inducing whole-

body insulin resistance. Chronically elevated FFA levels stimulate hepatic glucose production 

and VLDL-triglyceride synthesis, leading to hyperglycaemia and dyslipidaemia22. Furthermore, 

chronically elevated FFA concentrations impair insulin signalling via serine/threonine phos-

phorylation of IRS-1, thereby decreasing insulin-stimulated glucose transport132. In addition, 

chronic exposure to high FFA levels to the pancreas can impair insulin secretion238-240. Several 

of the adipokines produced by adipose tissue (adiponectin, leptin, TNF-α) can also induce 

insulin resistance, this will be discussed in Chapter 2.

The theory of ectopic fat storage states that a diminished capacity of fat cells to store fat 

as triglycerides leads to lipid storage in other organs, such as the liver, pancreas and muscle 

(overfl ow hypothesis241/ectopic fat storage235). This causes steatosis hepatis with hepatic in-
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sulin resistance, impaired insulin secretion and skeletal muscle insulin resistance (via IMCL 

and impaired insulin signalling, see previous section)242. The cause of ectopic fat storage is 

unclear but an association with enlarged adipocytes has been found243. This might be the 

result of impaired proliferation or diff erentiation of adipocytes. On the other hand, impaired 

whole-body fat oxidation might account for the ectopic accumulation of fat244.

Hence, adipose tissue plays an important role in generating and maintaining insulin re-

sistance via the excessive production of FFAs and insulin-resistance-provoking adipokines 

(TNF-α, IL-6, resistin, leptin and many others), possibly related to specifi c fat depots (visceral 

fat mass) and/or malfunctioning of adipocytes (in these specifi c depots?). Moreover, a dimin-

ished capacity to store fat leads to ectopic fat storage with lipotoxicity-induced impairments 

in function of insulin-responsive tissues such as the liver, muscle and pancreas.

1.5. OBESITY AND TYPE 2 DIABETES; TREATMENT REASONS, GOALS AND 
OPTIONS

Both obesity associated with insulin resistance (Table 1) and type 2 diabetes mellitus impose 

a major health risk. Patients with type 2 diabetes mellitus have an increased morbidity and 

mortality due to long-term micro- (retinopathy, neuropathy, nefropathy) and macrovascu-

lar complications. Patients with type 2 diabetes have a 2-4 fold increased relative risk (RR) 

for the development of myocardial infarction (MI), peripheral arterial disease and stroke220 

and approximately 65% of patients with type 2 diabetes die as a result of a cardiovascular 

event245. This increased risk is associated with chronic hyperglycaemia and an increase in 

cardiovascular risk factors such as hyperglycaemia, dyslipidaemia and hypertension. Hyper-

tension occurs in up to 60% of patients with diabetes246, and if diabetes and hypertension 

co-exist they exert a multiplicative eff ect on the absolute risk of a cardiovascular event247. 

Small dense LDL-cholesterol, high serum triglycerides and low HDL-cholesterol characterise 

diabetic dyslipidaemia. Hence, treatment of patients with type 2 diabetes should not only 

focus on glucoregulation but also on hypertension and dyslipidaemia.

Mainly based on two large prospective randomised studies investigating the eff ect of in-

tensive blood glucose-lowering therapy on glycaemic control and occurrence of micro-and 

macrovascular complications in type 1 and type 2 diabetic patients248,249, the treatment goals 

for glucoregulation in patients with type 2 diabetes as set by the ADA are: fasting plasma 

glucose level < 7.0 mmol/L, postprandial glucose level < 10 mmol/L and HbA
1c

 < 7%. In ad-

dition, systolic blood pressure should be lower than 130 mmHg and diastolic blood pressure 

under 80 mmHg. LDL-cholesterol should be < 2.6 mmol/L, triglycerides < 1.7 mmol/L and 

HDL-cholesterol > 1.1 mmol/L250.

Theoretically, treatment of hyperglycaemia in patients with type 2 diabetes can consist 

of decreasing the need for insulin and/or increasing available insulin. The need for insulin 
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can be diminished either by decreasing postprandial glucose levels (diet, acarbose251) or 

improving insulin sensitivity. The latter can be achieved via restriction of caloric intake252, 

weight loss252, exercise253, or with drugs: metformin254,255 or thiazolidinediones256,257 (perhaps 

also rimonabant258 and sibutramine259, because of their weight-loss-inducing properties, 

their anorexic eff ects and possibly via a direct benefi cial eff ect on insulin sensitivity). Increas-

ing available insulin can be achieved with insulin secretagogues (sulfonylureaderivatives254, 

meglitinides260) or by giving exogenous insulin.

Weight loss improves multiple aspects of insulin resistance: glucoregulation, dyslipidae-

mia, hypertension and others. In addition, it decreases the risk for arthrosis, low back pain, 

gallstones, cancer, etc. So ideally, weight loss should always be a component of the treatment 

regimen in obese patients.

Weight loss also improves insulin resistance in obese non-diabetic patients. A benefi cial 

eff ect of even 5-10% loss of overweight has been shown on dyslipidaemia, hypertension, hy-

perinsulinaemia and glucose values261-263. To date, no eff ect on incidence rates of myocardial 

infarction, stroke, cancer and mortality has been demonstrated, however.

Weight loss regimens have been proven diffi  cult to adhere to. In addition, weight loss 

achieved through diet is often followed by weight regain. Regimens combining a hypocaloric 

diet (500 to 600 kCal less than needed per day) with behaviour therapy and exercise have 

been proven the most benefi cial with respect to outcomes after 1 year264. However, hypoca-

loric diets often lead to only modest weight loss, whereas morbidly obese patients and obese 

type 2 diabetic patients need larger weight losses to restore peripheral insulin sensitivity47,48. 

VLCDs and bariatric surgery have been advocated for this purpose.

1.5.1 Bariatric surgery

Surgical procedures to treat obesity have been performed since the 1950s265 and include 

truncal vagotomy266, jaw wiring267, intragastric balloons and liposuction. Bariatric (weight 

loss) surgery can be divided into purely restrictive procedures (vertical banded gastroplasty 

[VBG], laparoscopic adjustable silicone gastric banding [LASBG]) and combined restrictive 

and malabsorptive procedures (Roux-en-Y gastric bypass [GBP], biliopancreatic diversion 

[BPD])57,268. The latter induce larger weight losses and, hence, greater improvements in hy-

pertension, dyslipidaemia, glucose metabolism and hyperinsulinaemia as compared to the 

purely restrictive techniques50,56. However, they are irreversible, sometimes leading to greater 

weight losses than necessary and also to nutritional defi ciencies. Patients have to take vitamin 

supplements for the rest of their lives. LASBG is the most popular form of bariatric surgery 

in the Netherlands (and the rest of Europe), because it can be performed laparoscopic and 

therefore has fewer perioperative complications and it is reversible. In addition, some infl u-

ence as to the amount of food intake can be exerted via infl ation/defl ation of the saline-fi lled 

gastric ring57,268. This procedure also has disadvantages however, an estimated 7-17% of the 
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patients has to be re-operated because of band erosion, dislocation or leakage or because of 

esophageal dilatation269,270.

Bariatric surgery can induce large weight losses (20-50% of body weight) with a higher 

likelihood of maintaining weight loss (especially the combined restrictive and malabsorptive 

procedures) as compared to other weight loss interventions55,271.

The Swedish Obese Subjects (SOS) study showed that surgically-treated obese subjects had 

about 25% percent greater weight loss at 10 years follow-up, along with a greater number of 

persons who no longer had diabetes (if present), hypertriglyceridaemia, low HDL-cholesterol 

concentrations, hypertension and hyperurikaemia as compared with conventionally treated 

obese subjects. The surgery group also had lower 2- and 10-year incidence rates of diabetes 

and hypertriglyceridaemia, but not hypercholesterolaemia43. Others have reported similar 

benefi cial metabolic eff ects of bariatric surgery.

Bariatric surgery has also been performed in patients with type 2 diabetes. Although in 

some studies the number of patients with diabetes were small52,55, the impressive results 

found were confi rmed in larger studies51,53. A recent meta-analysis by Buchwald et al. showed 

that 1417 out of 1846 patients (76.8%) completely recovered from their diabetes following 

bariatric surgery (in the studies that mentioned complete resolution). The mean reduction in 

BMI was 14 kg/m2 and a graded response with respect to diabetes resolution was noted with 

the greatest eff ect with BPD, whereas gastric banding was the least eff ective56. A recently 

published, retrospective chart review of 312 obese patients with type 2 diabetes that under-

went biliopancreatic surgery (gastric bypass with biliopancreatic diversion), showed that the 

benefi cial eff ects on glucose metabolism, dyslipidaemia and hypertension were maintained 

in most patients even after 10 years follow-up53.

With respect to the underlying metabolic processes leading to the improvement in glucose 

metabolism following bariatric surgery, studies in morbidly obese patients have shown an 

improvement in insulin-stimulated glucose disposal, as assessed with the hyperinsulinaemic 

euglycaemic clamp technique47,50,272,273. Data on endogenous glucose production and whole-

body lipolysis are not available. Moreover, in obese type 2 diabetic patients no studies using 

either of these sophisticated techniques have been performed to date.

1.5.2 Very low calorie diets

VLCDs typically provide less than 800 kCal/day. This can be achieved via adjustments of “nor-

mal” food intake or via commercially available packages. The advantage of the latter is that 

these products contain all the necessary vitamins, minerals and trace elements, so patients 

need not to fi gure out what to eat and what not.

VLCDs are safe58 and can be used for several weeks to months or even up to one year(274 and 

own observations). VLCDs can also induce large weight losses275. Maintenance of weight loss 

is usually a problem, necessitating the need for regular dietary counselling and preferably 

also behaviour therapy.
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Both in obese patients and in obese patients with type 2 diabetes mellitus, VLCDs lead to 

substantial weight loss and improvements in hyperglycaemia, hyperinsulinaemia, dyslipidae-

mia and hypertension58,275-280.

In obese type 2 diabetic patients hyperglycaemia improves already within 4-10 days after 

the beginning of an energy restricted diet277,278,281,282. This appears to be due primarily via a de-

crease in endogenous glucose production. These studies have been performed when some 

(4-5 kg) weight loss had already occurred, with varying degrees of calorie restriction or in 

mild type 2 diabetic patients. Surprisingly, there are no studies documenting to what extent 

carbohydrate and lipid metabolism improve in obese, insulin-treated type 2 diabetic patients 

after substantial weight loss using a sophisticated method such as the hyperinsulinaemic 

euglycaemic clamp technique with [6,6-2H
2]

-glucose and [2H
5
]-glycerol.

1.6. AIMS OF THE STUDIES AND OUTLINE OF THE THESIS

Most patients with type 2 diabetes mellitus are obese and both obesity and type 2 diabetes 

mellitus are associated with insulin resistance. Therefore our fi rst aim was to evaluate the 

role of adipose tissue (which indeed is present in excess in obese and obese diabetic patients) 

in insulin resistance. For this purpose we reviewed the literature and present a hypothesis 

which links adipose tissue to insulin resistance (Chapter 2).

In Chapter 3, we present an example of a hormone produced by adipose tissue (leptin) 

that is associated with insulin resistance. The relation between serum insulin and leptin is 

well established in obese patients and patients with diabetes, but not in very obese, largely 

insulin-treated patients with diabetes. Our second aim was to evaluate the relation between 

fasting serum leptin and fasting serum insulin levels, as well as between fasting serum leptin 

levels and insulin secretion in a group severely obese type 2 diabetic patients at various mo-

ments of energy restriction and weight loss.

Insulin resistance in very obese type 2 diabetic patients makes it often diffi  cult to achieve 

adequate glycaemic regulation. Energy restriction and weight loss improve insulin resistance 

and its associated metabolic abnormalities. VLCDs can induce large weight losses but most 

type 2 diabetic patients are afraid to use these diets along with their blood glucose-lowering 

medication for fear of hyperglycaemia. Therefore, we wanted to stop all blood glucose-lower-

ing agents at the start of the VLCD. This would also facilitate weight loss and enable us to 

study glucose metabolism without interfering medication. However, we did not want to in-

duce severe hyperglycaemia or other metabolic derangements. Therefore, our third aim was 

to evaluate whether it is safe to treat very obese, insulin-treated type 2 diabetic patients with 

a VLCD (Modifast, 450 kCal/day) and simultaneously discontinue all blood glucose-lowering 

medication, including insulin (Chapter 4).
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Other studies mentioned a decline in blood glucose levels before weight loss occurred, 

even as early as 7 days after the initiation of a VLCD. Our own clinical observations suggested 

that blood glucose levels decrease already within 2 days after starting a VLCD. Because we 

wanted to diff erentiate later on between the eff ects of energy restriction per se and weight 

loss per se on glucose metabolism, our fourth aim was to establish whether blood glucose 

levels indeed decline as early as 2 days after the initiation of a VLCD and the discontinuation 

of all blood glucose-lowering agents, including insulin (Chapter 4).

Because we wanted to study the eff ect of calorie restriction and weight loss on lowering 

blood glucose levels, the patients entering our later studies should preferentially react to the 

VLCD with a decline in blood glucose levels. Therefore, our fi fth aim was to fi nd out whether 

there are discriminating factors that will tell in advance which patients will show a decline 

in blood glucose levels during weight loss with a VLCD and which patients will not (Chap-

ter 4).

Subsequently, our sixth aim was to investigate, using the hyperinsulinaemic euglycaemic 

clamp technique with stable isotopes, at the whole-body level, the mechanisms by which 

calorie restriction per se (2-day VLCD) decreases blood glucose levels in obese insulin-treated 

type 2 diabetic patients in whom all blood glucose-lowering medication was discontinued 

at the start of the VLCD (Chapter 5). In this same study, our seventh aim was to unravel the 

blood glucose-lowering eff ect of a 2-day VLCD at the molecular level. To this end, we studied 

components of the insulin-signalling cascade, GLUT-4 and FAT-CD36 translocation and in-

tramyocellular triglycerides in skeletal muscle biopsies taken on day 0 and day 2 of the diet, 

both in the basal as well as in the insulin-stimulated situation (Chapter 6).

In addition, our eighth aim was to diff erentiate between the eff ects of calorie restriction 

per se (day 2 of a VLCD) and those of weight loss per se (until 50% of overweight was lost), on 

whole-body glucose and lipid metabolism in obese insulin-treated type 2 diabetic patients 

in whom again all blood glucose-lowering medication was discontinued at the start of the 

VLCD (day 0) (Chapter 7). Our ninth aim, carried out in the same study, was to investigate 

whether calorie restriction per se and weight loss have diff erential eff ects on insulin signal-

ling, GLUT-4 and FAT/CD36 translocation and the amount of intramyocellular triglycerides in 

skeletal muscle biopsies obtained on day 2 of a VLCD and again when 50% of overweight was 

lost, in the basal situation and during hyperinsulinaemia (Chapter 8).

Our tenth aim was to investigate whether the weight loss and benefi cial metabolic ef-

fects of a once-only 30-day VLCD in obese type 2 diabetic patients, who were taken off  all 

blood glucose-lowering therapy during that diet and who received standard outpatient care 

thereafter (blood glucose-lowering therapy was restarted if deemed necessary by their own 

doctor), were sustained at 18 months regular outpatient follow-up (Chapter 9).

In chapter 10 the results of our studies are discussed and integrated.
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ABSTRACT

It is well known that obesity is associated with insulin resistance and an increased risk for 

type 2 diabetes mellitus. Formerly it was postulated that increased lipolysis and consequent-

ly free fatty acid (FFA) production, from with triglycerides overloaded fat cells would disrupt 

glucose homeostasis via Randle’s hypothesis. Lipodystrophy, however, also leads to insulin 

resistance. Recently it has become clear that adipose tissue functions as an endocrine organ 

and secretes numerous proteins in response to a variety of stimuli. These secreted proteins 

exert a pleiotropic eff ect. The proteins that are involved in glucose and fat metabolism and, 

hence, can infl uence insulin resistance are discussed in this paper. They include leptin, resistin, 

adiponectin, acylation-stimulating protein, tumour necrosis factor-α and interleukin-6. The 

stimuli for production and the site and mechanism of action in relation to insulin resistance 

will be discussed. None of these proteins are, however, without controversy with regard to 

their mechanism of action. Furthermore, some of these proteins may infl uence each other 

via common signalling pathways. A theory is presented to link the interrelationship between 

these adipocyte secretory products and their eff ect on insulin resistance.
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INTRODUCTION

Type 2 diabetes mellitus is a chronic disease characterised by insulin resistance of the muscle, 

liver and adipose tissue and an impaired function of the β-cell of the pancreas1.

The incidence of type 2 diabetes mellitus (type 2 DM) has increased dramatically over the 

last decades. Nowadays it is the most frequently occurring metabolic disease, aff ecting over 

140 million people worldwide with an expected rise to about 300 million patients in 20252. 

Epidemiological studies assessing the explanation for this explosion point to an excess ca-

loric intake over metabolic demand and decreased physiological activity as plausible causes. 

A chronic imbalance between energy intake and energy expenditure eventually leads to 

obesity, a condition predisposing to insulin resistance and type 2 DM. Of type 2 diabetic 

patients, 80% are overweight or obese, as defi ned by a body mass index > 25 and 30 kg/m2, 

respectively3.

In the past, adipose tissue was merely viewed as a passive organ for storing excess energy 

in the form of triglycerides. Recently, however, it has become clear that the adipocyte actively 

regulates the pathways responsible for energy balance and that this function is controlled by 

a complex network of hormonal and neuronal signals.

To discuss all the adipocyte secretory products (Table 1) and all their eff ects is beyond the 

scope of this paper. In this review we will focus on the function of the adipocyte in relation to 

Table 1. Proteins secreted by adipocytes.

Molecule Eff ect
Leptin* Feedback eff ect on hypothalamic energy regulation; maturation of reproductive function
Resistin* Appears to impair insulin sensitivity
Adiponectin* Improves insulin sensitivity if administered to rodent models of insulin resistance; improves fatty 

acid transport and utilization
Adipsin* Required for the synthesis of ASP, possible link between activation of the complement pathway 

and adipose tissue metabolism.
ASP* Activates diacylglycerol acyltransferase, inhibits hormone sensitive lipase, stimulates GLUT-4 

translocation to the cell surface.
TNF-α* Mediator of the acute phase response. Inhibits lipogenesis, stimulates lipolysis and impairs 

insulin-induced glucose uptake, thus leading to insulin resistance and weight loss.
IL-6* Increases hepatic glucose production and triglyceride synthesis, role in insulin resistance unclear
PAI-1 Potent inhibitor of the fi brinolytic system
Tissue factor Initiator of the coagulation cascade
Angiotensinogen Regulator of blood pressure and electrolyte homeostasis.
PGI

2
 and PGF

2
α Implicated in infl ammation and blood clotting, ovulation and menstruation, acid secretion

TGF-β Regulates growth and diff erentiation of numerous cell types
IGF-1 Stimulates cell proliferation and mediates many of the eff ects of growth hormone
MIF Involved in proinfl ammatory processes and immunoregulation
aP

2
Involved in intracellular traffi  cking and targeting of fatty acids

agouti Might be involved in inducing insulin resistance through increasing intracellular free calcium 
concentrations

Proteins discussed in this chapter.
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insulin resistance and obesity. Firstly, the diff erentiation process of the adipocyte will be dis-

cussed. Then, some of the adipocyte secretory products that are involved in energy balance 

regulation and their function will be considered. Finally, some interactions between adipo-

cyte-derived factors that could be involved in inducing insulin resistance will be described.

ADIPOCYTE DIFFERENTIATION

There are two forms of adipose tissue: white adipose tissue (WAT) and brown adipose tissue 

(BAT). BAT serves primarily to dissipate energy, which is done via uncoupling protein 1 (UCP-

1) in the mitochondria of BAT. Adult humans have only a small amount of BAT. WAT stores en-

ergy in the form of triglycerides. It has recently become evident that WAT also secretes a vast 

amount of so-called adipocytokines, which are involved in maintaining energy homeostasis. 

This will be discussed in this article.

In humans, the formation of WAT begins during late embryonic development, with a rapid 

expansion shortly after birth as a result of increased fat cell size as well as fat cell number. 

Even in adults the potential to generate new fat cells persists. The origin of the adipose cell 

and adipose tissue are still poorly understood. Our current understanding indicates that a 

pluripotent stem cell precursor gives rise to a mesenchymal precursor cell, which has the 

potential to diff erentiate along mesodermal lineages of myoblast, chondroblast, osteoblast 

and adipocyte (Fig. 1)4. Given appropriate stimuli the preadipocyte undergoes clonal expan-

sion and subsequent terminal diff erentiation into a mature adipocyte. 

In vitro, adipogenesis follows an orderly and well-characterised temporal sequence4,5. Ini-

tially there is growth arrest of proliferating preadipocytes induced by the addition of a pro-

diff erentiative hormonal mixture (including insulin, a glucocorticoid, an agent that elevates 

cAMP levels and fetal bovine serum). Growth arrest is followed by one or two rounds of cell 

division, known as clonal expansion. At about the second day after diff erentiation induction 

there is a second, permanent period of growth arrest. Growth-arrested cells are committed to 

becoming adipocytes and begin to express late markers of adipocyte diff erentiation at day 3. 

Cells eventually become spherical, accumulate fat droplets and become terminally diff erenti-

ated adipocytes by day 5 to 7.

Most of the changes that occur during adipocyte diff erentiation take place at the gene 

expression level. Several reports4,5 have attempted to schematise the stages of adipocyte dif-

ferentiation as we have here in Fig. 1.

Three major classes of transcription factors that directly infl uence fat cell development 

have been identifi ed: the peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/en-

hancer binding proteins (C/EBPs) and the basic helix-loop-helix family (ADD1/SREBP1c).

The C/EBPs belong to the basic-leucine zipper class of transcription factors which func-

tion through homodimeric and heterodimeric complexes with C/EBP family members. Six 
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isoforms have been identifi ed with varying tissue distribution. C/EBP α, β and δ are expressed 

in both white and brown adipose tissue and are involved in the regulation of adipogenesis5.

The peroxisome proliferator-activated receptor (PPAR) belongs to the nuclear hormone 

receptor family. Three isotypes have been identifi ed thus far, PPPAR α, β and γ, each with a 

diff erent tissue distribution, ligand and metabolic action. All PPARs form a heterodimer with 

the retinoid X receptor (RXR) and bind to a PPAR-RXR response element on the DNA. Their ac-

tions upon ligand binding, however, are completely diff erent. PPAR-γ exists as three isoforms, 

γ1, γ2 and γ3. PPAR-γ2 is highly expressed in adipose tissue. The thiazolidinediones (TZDs, a 

new class of oral blood glucose-lowering drugs), which are high affi  nity synthetic ligands for 

PPAR-γ, strongly induce adipogenesis and activate the expression of multiple genes encod-

ing for proteins involved in lipid and glucose metabolism6,7.

Adipocyte determination and diff erentiation factor 1(ADD1) and sterol regulatory element 

binding protein 1c (SREBP-1c), which are rodent and human homologues respectively, be-

long to the basic helix-loop-helix (bHLH) family of transcription factors. ADD1/SREBP1c is 

expressed in brown adipose tissue, the liver, WAT and the kidney5. The expression of ADD1-

SREBP-1c is increased early during adipocyte diff erentiation4,5. The protein seems to exert 

its adipogenic eff ect through upregulation of PPAR-γ. Furthermore the protein might be 

involved in the production of an endogenous ligand for PPAR-γ8. In addition to its eff ect on 

adipogenesis, ADD1/SREBP-1c clearly stimulates many genes involved in fatty acid and cho-

lesterol metabolism9.

Cell type                    
   

Characteristics       Pluripotent       Multipotential: Determined:         Terminal differentiation
          chondroblast  growth arrest 
          osteoblast  post-confluent mitoses
         myoblast  clonal expansansion

Gene expression      LPL
         C/EBPδ 
         C/EBPβ
           PPAR-γ
           C/EBP-α
            ADD-1/SREBP-1   

Adipocyte specific gene-expression 

                                   Fat droplet formation 

Timetable      

Very early

Stem cell Mesenchymal 
precursor cell

Preadipocyte
Mature adipocyte

confluence prodifferentiative 
stimuli 

= 1 day 

DNA replication 

cell division 
growth arrest 

Early Intermediate Late 

Figure 1. 

Figure 1.
Addition of mitogens and hormonal stimuli to 3T3-L1 cells leads to a cascade of transcriptional events that account for the expression of most 
proteins mediating adipocyte function. See text on page 58 to 60 for further explanation.
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A summary of the molecular events of adipocyte diff erentiation, based on our current 

knowledge, is depicted in Fig. 1 and 2.

ADIPOCYTE SECRETORY PRODUCTS

Leptin

Discovery, structure, genetic locus and sites of expression of leptin

The discovery of leptin (from the Greek leptos which means thin) in 199410 has led to a re-

newed and intensifi ed interest in the adipocyte and its role in energy homeostasis. Leptin 

acts on hypothalamic neuropeptide-containing regions and increased leptin signalling leads 

to decreased food intake, increased energy expenditure and increased thermogenesis, all 

promoting weight loss. Apart from these eff ects, leptin is also involved in glucose metabo-

lism, normal sexual maturation and reproduction, and has interactions with the hypotha-

lamic-pituitary-adrenal, thyroid and growth hormone axes.

Leptin is a protein consisting of 167 amino acids and has a helical structure similar to cy-

tokines. Leptin is the product of the ob gene, which is located on chromosome 7q31. Leptin 

Adipocyte specicific gene expression
Adipogenesis

Insulin sensitivity

?

ligand

Prodifferentiative agents

PPAR-γ RXR C/EBP-α

C/EBP δ and β

ADD1/SREBP1c
Inhibiting factors ?

Figure 2.

Figure 24,5.
Solid lines indicate direct or indirect transcriptional events. Broken lines indicate less clear interactions. The addition of prodiff erentiative agents 
to 3T3-L1 cells leads to a signifi cant and transient increase of the transcription factors C/EBP β and δ, which in turn mediate the expression of 
another transcription factor: PPAR-γ. PPAR-γ is also activated by ADD1/SREBP

1c
8 although the events leading to the activation of ADD1/SREBP

1c
 

are not fully understood. PPAR-γ on turn activates C/EBP-α, these two proteins seem to cross regulate each other, thus maintaining their gene 
expression despite a decline in C/EBP β and δ. Activation of PPAR-γ and C/EBP α leads to the expression of many adipocyte specifi c proteins 
involved in glucose and lipid metabolism (LPL, aP2, fatty acid synthase, etc.), adipocyte diff erentiation and an increase in insulin sensitivity, 
either via a decrease in triglycerides and fatty acids or via a direct eff ect on proteins involved in glucose metabolism (PEPCK, GLUT-4).
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is expressed mainly in white adipose tissue. The protein circulates as both free and bound 

hormone and is cleared among others by the kidneys11-13.

Modulators of leptin production12,13

Leptin levels are positively correlated with the amount of energy stored as fat, so leptin levels 

are higher in obese people14,15. Leptin levels rapidly decrease during fasting16 and remain low 

until four to six hours after eating when they begin to rise again17. Plasma leptin levels show 

a diurnal pattern with a nocturnal peak shortly after midnight and a midmorning through 

between 10 AM and 12 noon18. Insulin also plays a role in the regulation of leptin secretion: 

prolonged insulin infusions markedly increase leptin levels19,20. Finally, even after adjustment 

for body fat mass, women have higher leptin levels than men15. At the gene promotor level, 

it is known that stimulation of PPAR-γ downregulates leptin production21 whereas C/EBP-α 

stimulates leptin production22.

Site of action of leptin and its role as part of an adipostat

Leptin acts through binding at and activation of specifi c leptin receptor isoforms, which 

belong to the class I cytokine receptor family23. Only the long isoform (ob-rb) is able to ac-

tivate the JAK-(Janus kinase)-STAT (signal transducers and activators of transcription) signal 

transduction pathway upon leptin binding (Fig. 3). The long form of the leptin receptor is 

found in several peripheral tissues and in many areas of the brain, including the arcuate, ven-

tromedial and dorsomedial hypothalamic nuclei24. These hypothalamic regions are known 

to be involved in the regulation of appetite, food intake, temperature regulation and body 

weight. Intracerebral administration of leptin alters the expression of many hypothalamic 

neuropeptides25. By modulating these neurotransmitter systems, leptin has a major role in 

maintaining energy balance and thus serves as part of an adipostat. During fasting, serum in-

sulin levels fall and the uptake of glucose and lipids by the adipocyte diminishes. This leads to 

a decreased expression of the ob-gene, which is responsible for leptin formation and, hence, 

the plasma leptin concentration falls. Reduced leptin signalling leads to an increased expres-

sion of neuropeptide Y (NPY) and agouti-related protein (AgRP) in the arcuate nucleus of the 

hypothalamus. NPY and AgRP promote body weight gain by stimulating food intake and de-

creasing energy expenditure. Another neuronal cell type co-produces cocaine-amphetamine 

related transcript (CART) and pro-opiomelanocortin (POMC), from which α-melanocyte 

stimulating hormone (α-MSH) is cleaved. CART and α-MSH are both anorexigens and reduced 

leptin signalling inhibits the synthesis of CART and POMC (Fig. 4)26,27. Finally, corticotropin-

releasing hormone (CRH), which is also produced in the hypothalamus, might be important 

in mediating the eff ects of leptin, presumably via activation of sympathetic outfl ow to BAT, 

WAT, liver and muscle. Intracerebral injection of CRH stimulates thermogenesis and oxygen 

consumption and reduces food intake and body weight. CRH mRNA levels are increased by 

the intraventricular administration of leptin28.

Ingrid BW.indd   61Ingrid BW.indd   61 03-03-2006   11:12:3203-03-2006   11:12:32



62

Chapter 2

Role of leptin in obesity

The initial conception of leptin as an anti-obesity hormone, whose primary role was to 

increase the metabolic rate and decrease food intake and appetite through action in the 

brain, was based on the following observations: (i) leptin defi cient ob/ob mice and leptin 

receptor defi cient db/db mice exert marked hyperphagia, decreased energy expenditure, 

morbid obesity and insulin resistance29,30; (ii) administration of intravenous or intracerebro-

ventricular leptin decreases body weight and fat mass through inhibition of food intake and 

increased energy expenditure in ob/ob but not in db/db mice31; (iii) there is a threshold level 

of serum leptin (25-30 ng/mL) above which increases in serum levels are not translated into 

proportional increases in cerebrospinal or brain leptin levels, i.e., the transport system must 

be saturable32; (iv) the discovery of leptin receptors in the hypothalamus, the region involved 

in regulation of food intake and energy balance27.

However, in most obese humans the gene encoding leptin is normal: up till now only two 

families with a mutation in the leptin gene have been identifi ed33,34. In contrast, most obese 

humans have increased serum leptin levels14,15, indicating that obesity is a leptin-resistant 

Cell membrane

JAK JAK JAKJAK

P P
STAT

Y

STAT Y

PSTAT Y

P STATY

nucleus

PSTAT Y

P STATYDNA with 
STAT-binding
region

Cytoplasm

leptin

leptin

Figure 3.

Figure 3.
The leptin receptor is a transmembrane receptor belonging to the class I cytokine receptors. The receptor consists of two parts. The intracellular 
domain is associated with the Janus kinase, a tyrosine kinase. Binding of leptin to the receptor results in the fusion of the two receptor parts, 
which results in trans-phosphorylation of the JAK-molecules, which subsequently phosphorylate the terminus of the leptin receptor. The 
phosphorylated receptor then forms a docking site for a variety of Src homology 2 (SH2) domain containing proteins, including a novel family of 
cytoplasmatic transcription factors termed STATs (signal transducers and activators of transcription). STATs are then phosphorylated on a single 
tyrosine residue by JAKs, after which STATs dimerise, migrate to the nucleus and regulate gene transcription.
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state. Such a resistance could theoretically occur at several levels of the leptin signal trans-

duction pathway, but this has not been resolved yet.

Leptin and insulin resistance

Since obesity is associated with insulin resistance, it is interesting to look at the role of leptin 

in the development of insulin resistance and diabetes. A strong correlation between serum 

leptin and insulin levels, independent of body fatness, has been demonstrated in human 

studies35,36. Hyperinsulinaemia induced by clamp techniques increases serum leptin levels, 

though not acutely19. Serum leptin levels are increased by insulin therapy as well, both in 

type 1 and type 2 diabetic patients36,37. Vice versa, a fair amount of evidence points to the fact 

that leptin has insulin- and glucose-lowering properties, although some studies fi nd just the 

opposite. An extensive review on the association between leptin and insulin resistance has 

recently been published38.

In both normal rodents39 and rodents with obesity and insulin resistance40-42, leptin therapy 

improves hyperinsulinaemia and hyperglycaemia. These eff ects are already apparent before 

weight loss occurs and are not due to energy restriction as was shown in pair-fed control 

studies41,43.

Starvation

Fat Pancreas

↑ NPY
↑ AgRP

↓ POMC (α-MSH)
↓ CART

Arcuate nucleus

-

Insulin

-

Paraventricular nucleus

↑↓ CRH
↑ MCH

Hypophysis

+

ACTH
↓ T4/T3

LH/FSH

Adrenal ↑ Cortisol
TSH Thyroid

Gonads ↓ Sex steroids
GH Target

organs
↓ Growth

↓ Sympathetic nervous system

↑ Food intake

-

Leptin

Figure 4.
Starvation leads to a decrease in serum insulin levels and a decreased expression of the ob-gene leading to a decrease in serum leptin levels. This 
subsequently leads to an increased expression of neuropeptide-Y (NPY) and agouti-related protein (AgRP) in the hypothalamus and a decrease 
in pro-opiomelanocortin (POMC) and cocaine-amphetamine related transcript (CART) in the hypothalamus. These hormones are involved in 
food intake and energy expenditure, leading to an increase in food intake and a decrease in energy expenditure. Furthermore, the hypothalamic 
hormones have either a direct or an indirect (via corticotropin-releasing hormone [CRH] and α-melanocyte-stimulating hormone [α-MSH]) 
eff ect on various hormones secreted by the pituitary. Thus, leptin has multiple eff ects, not only on food intake and energy metabolism but also 
on the hypothalamic-pituitary-adrenal axis, thyroid function and sex steroids.
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Most obese humans have increased serum leptin levels14,15 and thus far the overall eff ect of 

leptin therapy on weight loss and metabolic parameters has been modest44. It is likely that 

very high plasma levels of the hormone are needed to overcome the leptin-resistant state. 

A fi nal point directing to an antidiabetogenic eff ect of leptin is that both in lipodystrophic 

rodents45 and humans (who have an extreme defi cit of subcutaneous adipose tissue)46, a 

condition associated with severe insulin resistance with hyperglycaemia, hyperinsulinaemia 

and hypertriglyceridaemia, leptin therapy corrects all these metabolic abnormalities, inde-

pendent of the accompanying reduction in food intake.

Hypotheses with regard to the glucose and insulin lowering eff ect of leptin

As mentioned before, leptin seems to have an insulin-sensitising eff ect on the whole-body 

level but confl icting results were reported when individual tissues were examined. Most in 

vitro experiments suggest a diabetogenic eff ect of leptin38. Beside the diff erences between 

animals and humans, sources of leptin and time of exposure to this hormone might also play 

a causative role in the diff erences found. Furthermore, the fact that leptin exerts a glucose- 

and insulin-lowering eff ect and improves insulin sensitivity in vivo, suggests involvement of 

centrally acting mechanisms. This concept is further supported by the observation that leptin 

fails to reverse insulin resistance and lipid accumulation in mice with ventromedial hypotha-

lamic lesions47. The peripheral mechanism by which leptin exerts its glucose- and insulin-low-

ering eff ect might be via promoting fatty acid oxidation and triglyceride synthesis. Indeed, 

leptin administration activates 5’-AMP-activated protein kinase (AMPK) in skeletal muscle, 

leading to the inhibition of acetyl coenzyme A carboxylase and subsequently stimulation 

of fatty acid oxidation. The resulting intramyocellular lipid depletion will enhance insulin 

sensitivity48.

Apart from insulin-sensitising eff ects, leptin diminishes hyperinsulinaemia probably via in-

hibition of insulin secretion. Functional leptin receptors have been demonstrated on insulin 

secreting β-cells of the pancreas49. Leptin inhibits glucose-stimulated insulin secretion both 

in vitro50 and in vivo51. The mechanism involved is activation of the ATP-sensitive potassium 

channels in the β-cell. Finally, leptin shares intracellular pathways with insulin, both in pe-

ripheral tissues and in the CNS52. Many eff ects of both insulin and leptin are mediated via 

activation of PI-3 (phosphatidylinositol-3-phosphate) kinase, so degree of cross talk between 

insulin and leptin may exist at the level of PI-3 kinase. Eff ects of leptin on insulin signalling 

have been studied and support an inhibitory eff ect of leptin on insulin signalling at the level 

of tyrosine phosphorylation of IRS-1 and PI3-kinase binding to IRS-138. The eff ect of hyperin-

sulinaemia on intracellular leptin signalling has rarely been addressed but in one study sup-

raphysiogical concentrations of insulin completely cancelled out the leptin-induced insulin 

response53.
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Conclusion

Thus, leptin is an adipocyte secretory product that is not only involved in food intake and en-

ergy metabolism but clearly also has a role in glucose metabolism. Since plasma leptin levels 

are positively correlated with BMI, obesity seems to refl ect a leptin-resistant state. Resistance 

for the action of leptin could promote obesity via decreased energy expenditure and a failure 

to diminish food intake. Furthermore, since leptin has a glucose- and insulin-lowering eff ect 

on the whole-body level in vivo, resistance for this eff ect could induce insulin resistance. One 

explanation for the insulin resistance seen in obesity might be that the high leptin levels 

interfere with insulin signalling. Another possibility is that there is a diminished activation 

of AMPK due to impaired leptin signalling. The resultant decrease in fatty acid oxidation will 

lead to an increase in intramyocellular lipids and thus to insulin resistance. Finally, both pe-

ripheral and central leptin resistance must be involved in insulin-resistant states since leptin 

treatment fails to correct insulin resistance in mice with ventromedial hypothalamic lesions.

Resistin

Discovery, structure, genetic locus, sites and modulators of expression of resistin

Resistin is a unique protein with cysteine-rich residues54, which belongs to a class of tissue-

specifi c secreted proteins termed the RELM (resistin-like molecule)/FIZZ (found in infl amma-

tory zone) family. Resistin/FIZZ 3 is specifi cally expressed and secreted by adipocytes. The 

gene encoding resistin in mice has been named Retn. The regulation of resistin gene expres-

sion is controversial, see Table 2.

Resistin in obesity and insulin resistance

The initial report by Steppan et al.54 suggested that resistin might constitute the link between 

obesity and insulin resistance. Resistin serum levels were increased in obese mice and resistin 

gene expression was induced during adipocyte diff erentiation. In addition, administration of 

resistin impaired glucose tolerance and insulin action in wild-type mice and in vitro in 3T3-L1 

adipocytes whereas resistin antibody improved insulin sensitivity. The fact that thiazolidine-

Table 2. Regulators of resistin expression.

Factor Decreasing resistin Increasing resistin No eff ect

Thiazolidinediones [54-56,58] [59] [60]

Insulin [56,58] [59,61]

Glucose [58]

Dexamethasone [56,58]

β-adrenergic agonists [62] [56]

TNF-α [58,63]

Epinephrine [58]

Factors that have been reported to increase or decrease resistin expression with their references.
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diones suppressed resistin secretion led to the hypothesis that these insulin-sensitisers exert 

their eff ect via downregulation of resistin gene expression. An increase in adipocyte gene 

expression during 3T3-L1 adipocyte diff erentiation61 and after the induction of high-fat-diet 

induced obesity57 was found in two other studies. Several other investigators, however, found 

a decreased resistin gene expression in WAT in diff erent models of rodent obesity and insulin 

resistance59,64,65, and resistin did not seem to be involved in the aetiology of insulin resistance 

in Fischer 344 rats, a good model for the metabolic syndrome in humans66. 

Studies in humans are even more controversial. One study could not detect any resistin 

mRNA in human fat cells at all in subjects with varying degrees of insulin resistance and obe-

sity67. Another investigator found increased resistin mRNA in adipose tissue of obese humans, 

compared with lean controls, but decreased mRNA in freshly isolated human adipocytes60. 

In addition, resistin mRNA was undetectable in a severely insulin resistant subject. Janke et 

al. found an increased resistin gene expression in cultured human preadipocytes compared 

with mature adipocytes but again no relationship between resistin gene expression and 

either insulin resistance or body weight could be detected68. Although the higher resistin 

mRNA levels found in abdominal fat tissue compared with thigh, could explain the increased 

metabolic abnormalities in abdominal obesity, the fact that resistin mRNA expression is very 

similar in subcutaneous and omental adipose tissue suggests that it is unlikely that resistin is 

the link between (visceral) adiposity and insulin resistance69.

Conclusion

The conclusion must be that many questions have to be resolved. Confl icting results have 

been reported with regard to the factors regulating resistin gene expression (Table 2). This 

is probably due to the diff erence between 3T3-L1 cell lines and in vivo models. Furthermore, 

the observed relation between resistin mRNA, serum resistin levels and insulin resistance in 

rodents cannot readily be extrapolated to humans. Murine resistin is only about 56% identi-

cal to human resistin at the amino acid level. Even in mouse models it is still unclear whether 

resistin plays a causal role in insulin resistance. Experiments in resistin knockout mice and in 

transgenic mice (which overexpress resistin) will be needed to solve this problem, but even 

then the relevance of resistin to human diabetes remains unclear, especially because some 

groups have found only minimal expression of the hormone in human fat69. Furthermore it 

would be interesting to know how resistin exerts its presumed insulin-antagonising eff ects 

and what its target organs are. For that purpose the resistin receptor would have to be found 

and downstream signalling pathways have to be unravelled.
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Adiponectin

Discovery, sites of expression and stimuli leading to adiponectin production

Adiponectin is a recently identifi ed70,71 adipocyte-specifi c secretory protein of about 30 kDa 

that appears to be involved in the regulation of energy balance and insulin action and also 

seems to have anti-infl ammatory and anti-atherogenic properties.

Adiponectin is the product of the adipose tissue most abundant gene transcript-1 (apM1), 

which is exclusively expressed in WAT and is located on chromosome 3q27. Adiponectin is 

specifi cally expressed during adipocyte diff erentiation and is not detectable in fi broblasts. 

The expression of adiponectin is stimulated by insulin70,72, IGF-172 and the TZDs73. Corticoste-

roids72, TNF-α74 and β-adrenerg stimulation75 inhibit adiponectin gene expression in 3T3-L1 

adipocytes.

Serum and mRNA levels of adiponectin in obesity and insulin resistance 

Serum adiponectin levels are decreased in humans with obesity76,77 and type 2 diabetes76,78 

as well as in obese and insulin-resistant rodents79. In addition, adiponectin gene transcrip-

tion is decreased in adipocytes from obese71 and diabetic80 humans and rodents71,79. Plasma 

adiponectin concentrations increase after weight reduction in obese diabetic and non-dia-

betic patients78. The degree of plasma hypoadiponectinemia was more closely related to the 

degree of hyperinsulinaemia and insulin resistance than to the degree of adiposity76. Low 

plasma adiponectin concentrations predicted a decrease in insulin sensitivity81 and an in-

crease of type 2 diabetes82 in Pima Indians as well as in a German population83. In non-diabet-

ics, plasma adiponectin levels are also positively correlated with insulin sensitivity84. A recent 

study confi rmed that the relation between low adiponectin levels and insulin resistance is 

not determined by obesity since low plasma adiponectin levels at baseline did not predict 

future obesity85. Finally, the fact that the insulin-sensitising TZDs strongly increase plasma 

adiponectin73,86 further supports a role of adiponectin in insulin sensitivity.

Theory with regard to the possible mechanism of action of adiponectin

Administration of recombinant adiponectin to normal, obese and diabetic rodents led to 

acute normalisation of serum glucose levels79,87,88. Both decreased gluconeogenesis of the 

liver87 and an increased fatty acid oxidation in muscle79,88 have been proposed as underly-

ing mechanisms. Recently, Yamauchi underscored his previous hypothesis89. Administration 

of adiponectin led to an increase of glucose utilisation and fatty acid oxidation in cultured 

myocytes and in soleus muscle of mice in vivo. In hepatocytes AMPK was activated as well, 

leading to a reduction in gluconeogenesis. 

In addition, it has been shown that administering only the globular domain of adiponectin 

instead of full-length adiponectin is much more eff ective in improving insulin sensitivity be-

cause this fragment augments insulin-induced phosphorylation of insulin receptor substrate 
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1 (IRS-1) and protein kinase B in skeletal muscle79. Thus, adiponectin might exert its insulin-

sensitising eff ect via the following mechanisms: (i) increased fatty acid oxidation, leading 

to a lower muscle triglyceride content and lower plasma concentrations of free fatty acids 

which will both improve insulin signalling; (ii) direct improvement of insulin signalling; (iii) 

inhibition of gluconeogenesis, partly via reduced substrate delivery and partly via reduction 

of molecules involved in gluconeogenesis by activation of AMPK.

Disappointingly, no positive correlation between plasma adiponectin levels and 24-hour 

respiratory quotient (RQ) measurement (pointing to an increase in carbohydrate metabo-

lism) could be demonstrated in healthy nondiabetic Pima Indians90. This does not rule out, 

however, that administration of adiponectin to subjects with low levels of this hormone will 

increase RQ and energy expenditure.

The acylation-stimulating protein (ASP)- pathway

ASP production and site of action

Acylation-stimulating protein (ASP) is a 76 amino acid protein identical to C3adesArg, a 

cleavage product of complement factor 3 (C3) formed via interaction of C3 with factor B and 

adipsin. C3, factor B and adipsin are all components of the alternative complement pathway 

and are produced by the adipocyte in a diff erentiation-dependent manner91.

The major site of action of ASP appears to be on the adipocytes themselves, which have a 

specifi c saturable receptor for ASP92. In human adipocytes there are diff erentiation and site-

specifi c diff erences in ASP binding which are proportional to the ASP response: diff erentiated 

adipocytes bind more ASP and have a greater response to ASP than undiff erentiated adipo-

cytes93. Furthermore, subcutaneous adipose tissue has greater affi  nity and greater specifi c 

binding to ASP than undiff erentiated adipocytes94.

ASP promotes triglyceride storage

ASP promotes triglyceride storage in adipocytes via three mechanisms. Firstly, ASP increases 

fatty acid esterifi cation in adipocytes by increasing the activity of diacylglycerol acyltransfer-

ase, which is the fi nal enzyme involved in triglyceride synthesis91. Secondly, ASP stimulates 

glucose transport in human and murine adipocytes and preadipocytes93. This eff ect on glu-

cose transport is accomplished via translocation of cell-specifi c glucose transporters to the 

cell membrane. Thirdly, ASP decreases lipolysis via inhibition of hormone-sensitive lipase95. 

The eff ects of ASP are independently of and additional to the action of insulin95.

Stimuli leading to ASP production

In vitro studies in cultured adipocytes indicate that insulin96 and even more so chylomi-

crons96,97 increase ASP production. In vivo, plasma ASP concentrations seem to show little 

change after an oral fat load98. There is, however, postprandially an increased venoarterial 
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gradient of ASP across a subcutaneous abdominal tissue bed with a maximum after 3 to 5 

hours, indicating increased adipose tissue ASP production98. This increase in ASP postprandi-

ally is substantially later than the increase in insulin but shows a close temporal relationship 

with maximal plasma triacylglycerol clearance98.

Plasma ASP levels in obesity

An excellent review on the physiology of ASP in humans and rodents has recently been pub-

lished99. Plasma levels of ASP are 225-fold lower (weighted average 28.3 nM) than its precursor 

C3. Studies measuring plasma ASP levels should therefore be interpreted with caution while 

it might very well be that ASP acts as a paracrine hormone99. Plasma ASP levels are increased 

in obese humans100-103 and are reduced after fasting or weight loss101;103. ASP has also been 

shown to be signifi cantly increased in type 2 diabetes102,104 but since type 2 diabetes is often 

associated with obesity this might be a confounding factor. On the other hand, plasma ASP 

levels were inversely correlated to glucose disposal during a euglycaemic clamp in humans102. 

Adipocytes from obese humans are as responsive to ASP as adipocytes from lean people105. 

Thus the increased levels of ASP in human obesity in the face of a similar responsiveness to 

ASP compared with lean subjects, may promote energy storage, leading to adiposity.

Relation between ASP-enhanced triglyceride clearance and insulin resistance

ASP production is increased in obese mice. Intraperitoneal (i.p.) administration of ASP to nor-

mal mice resulted in accelerated postprandial triglyceride (TG) and non-esterifi ed fatty acid 

(NEFA) clearance after an oral fat load106. In addition, plasma glucose levels returned faster 

to basal levels. C3 knockout mice (KO), which are unable to produce ASP, showed delayed 

plasma triglyceride clearance after an oral fat load in the absence of any change in fasting 

plasma TG levels. Administration of exogenous ASP enhanced plasma TG clearance107. Re-

markably, these C3 KO mice were more insulin sensitive, had a reduced fat mass and yet an 

increased food intake. It was later shown that the hyperphagia/leanness was balanced by an 

increase in energy expenditure108.

Conclusion

In summary, ASP promotes storage of energy as fat. Decreased ASP production decreases 

lipid storage and induces an obesity-resistant state and improved insulin sensitivity. Plasma 

ASP levels are increased in obese humans; whether this is the eff ect or cause of the increased 

adipose tissue mass remains to be elucidated. Post or propter, increased ASP levels together 

with a continuing responsiveness of the ASP receptor will lead to further triglyceride storage. 

Although enhanced fatty acid trapping will decrease free fatty acid levels and hence dimin-

ish hepatic gluconeogenesis, increased ASP functioning in skeletal muscle will lead to an 

increase in skeletal muscle triglyceride storage leading to insulin resistance.
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Tumour necrosis factor-α (TNF-α)

Structure of TNF-α, sites of production and receptor interaction

TNF-α is a cytokine produced mainly by activated macrophages in response to invasive 

stimuli, but also by non-immune cells such as muscle and adipose tissue. Furthermore, TNF-α 

has a variety of biological eff ects in various tissues and cell-types, and can thus be considered 

a multifunctional cytokine109.

TNF-α is produced as a 26-kDa membrane-bound precursor that is proteolytically cleaved 

to a 17-kDa soluble form109. The cytokine interacts with two membrane-bound receptors, a 

60-kD and an 80-kD subtype also called type I and type II receptor (TNFR1 and TNFR2). These 

receptors have diff erent cellular and tissue distribution patterns and can bind other cytokines 

as well. TNF-α has a higher affi  nity for TNFR-1 than for TNFR-2109. Due to the high affi  nity for its 

receptor TNF-α can act either as an autocrine or paracrine cytokine at low concentrations or 

as an endocrine cytokine at high concentrations.

In addition to the membrane-bound receptors, soluble forms of the two receptors exist 

for which TNF-α has an even higher affi  nity. When TNF-α is bound to these soluble recep-

tors no interaction can take place with the membrane-bound forms and thus TNF-α action is 

inhibited. Therefore, the physiological role of the soluble receptors may be to regulate TNF-α 

action.

Modulators of TNF-α production

In macrophages and monocytes, the expression and production of TNF-α is stimulated by 

endotoxins such as lipopolysacharide (LPS). LPS resulted in a fi vefold stimulation of TNF-α in 

human adipose tissue and isolated adipocytes in vitro, the latter indicating that it is unlikely 

that the response is entirely due to macrophages and monocytes in the stromal vascular frac-

tion of adipose tissue. Insulin and glucocorticoids did not have a signifi cant eff ect on TNF-α 

release from human adipose tissue or isolated adipocytes in vitro110. Thiazolidinediones re-

duced adipocyte TNF-α release in obese rodents111 but no eff ect was seen in human adipose 

tissue in vitro110. Since high-fat diets resulted in a signifi cant increase in TNF-α mRNA and 

protein in epididymal and retroperitoneal fat pads in rats, free fatty acids and/or triglycerides 

may play an important role as inducers of TNF-α expression112.

Eff ect of TNF-α on glucose and lipid metabolism

Firstly, TNF-α inhibits preadipocyte diff erentiation by downregulating the expression of two 

important adipocyte transcription factors: PPAR-γ and CEBP/α113. Secondly, TNF-α reduces 

the expression of GLUT-4, glycogen synthase and fatty acid synthase, which are essential for 

insulin-mediated glucose uptake and the subsequent conversion of glucose to glycogen or 

fatty acids. Furthermore, genes involved in the uptake of free fatty acids and the subsequent 

conversion to triglycerides, such as lipoprotein lipase, long-chain fatty acyl-CoA synthethase 
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and diacylglycerol acyltransferase, were also downregulated by TNF-α113. The above-men-

tioned changes in gene expression lead to a diminished insulin-stimulated glucose uptake 

and an altered lipid metabolism which can, via accumulation of triglycerides in various organ 

systems, eventually lead to insulin resistance of the muscle and liver.

In addition, insulin resistance can be induced via a direct toxic eff ect of TNF-α on intracel-

lular insulin signalling114. TNF-α reduces the insulin-stimulated autophosphorylation of the 

insulin receptor in a variety of cell types. It does so by phosphorylation of serine residues at 

the insulin receptor substrate-1 (IRS-1); this modifi ed IRS-1 subsequently interferes with the 

insulin signalling capacity of the insulin receptor114.

Relation between TNF-α, obesity and insulin resistance

A positive relationship between obesity, insulin resistance and adipose tissue mRNA levels 

of TNF-α has clearly been established in rodent models115. Furthermore, mice with no func-

tional copy of the TNF-α gene (TNF-α -/-) although developing marked obesity on a high-fat, 

high-energy diet, remained highly insulin sensitive as compared to their control litter mates 

(TNF-α +/+)116.

In contrast to rodents, the role of TNF-α in the induction of insulin resistance in humans 

is less clear. Although there seems to be a positive relationship between obesity and TNF-

α mRNA and protein levels in adipose tissue in humans in vitro117-119, TNF-α is expressed at 

much lower levels in humans as compared to rodents117-119. In addition, no diff erence in TNF-α 

concentration was found in a vein draining subcutaneous adipose tissue as compared to a 

peripheral vein, suggesting no or very low TNF-α production in vivo120. Furthermore, circulat-

ing TNF-α concentrations in obese diabetic and non-diabetic patients are not substantially 

elevated118,120. With regard to a direct relationship between TNF-α and insulin sensitivity in 

vivo, two studies found a strong and positive correlation between adipose tissue mRNA levels 

and hyperinsulinaemia117,118. When the relation between adipose tissue TNF-α secretion and 

insulin-stimulated glucose transport was examined, a strong inverse relationship was found 

that was independent of fat cell volume, age and BMI122.

However, other studies121,123 showed no signifi cant relationship between adipose tissue 

mRNA for TNF-α and insulin sensitivity. Furthermore, treatment of insulin-resistant subjects 

with anti-TNF-α antibodies did not improve insulin sensitivity124. All these results implicate 

that TNF-α might have an eff ect on insulin resistance but that it must be a local factor. Inter-

estingly, TNF-α is also produced by muscle, and muscle TNF-α production is increased in obe-

sity125. Since adipose tissue dispersed within muscle is correlated with insulin resistance, the 

eff ect of fat cell secretory products on insulin signalling in skeletal muscle cells was recently 

studied in a model in which muscle cells were co-cultured with adipocytes. A disturbance of 

insulin signalling was found, but TNF-α did not seem to be involved126.
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Conclusion

In conclusion, TNF-α is a multifunctional cytokine produced by adipocytes in proportion to 

the percentage body fat. TNF-α has a variety of metabolic eff ects, including increased lipoly-

sis, decreased lipogenesis and decreased insulin-stimulated glucose transport, contributing 

to insulin resistance. These eff ects are induced by modulation of genes involved in glucose 

and lipid metabolism. Furthermore, TNF-α directly interferes with early steps of insulin sig-

nalling. However, the role of TNF-α in obesity-induced insulin resistance in humans is not 

quite clear yet, as might be obvious from the contradicting results mentioned in the previous 

paragraph. The low plasma levels of TNF-α in humans indicate that the hormone most likely 

acts in a paracrine and/or autocrine manner. This might be the reason why treatment with 

anti-TNF-α did not improve insulin sensitivity in humans in vivo.

Interleukin-6 (IL-6)

Structure, genetic locus and site of production of IL-6

IL-6 is a circulating, multifunctional cytokine that is produced by a variety of cell types includ-

ing fi broblasts, endothelial cells, monocytes/macrophages, T-cell lines, various tumour cell 

lines and adipocytes. The protein has a molecular mass of 21 to 28 kDa, depending on the 

cellular source and preparation. The gene encoding IL-6 is localised on chromosome 7p21 in 

humans127. 

Although human adipocytes do produce IL-6, adipocytes accounted for only 10% of total 

adipose tissue when IL-6 production by isolated adipocytes prepared from omental and sub-

cutaneous fat depots was examined128. This means that cells in the stromal vascular fraction 

of adipose tissue have a major contribution in adipose tissue IL-6 release. The concentrations 

of IL-6 in adipose tissue are up to 75 ng/mL, which is well within the range to elicit biological 

eff ects129. Furthermore, plasma levels of IL-6 are markedly elevated in obesity and up to 30% 

of plasma levels could be derived from adipocytes130.

Modulators of IL-6 production

The stimuli leading to IL-6 production diff er with the cell type; here only IL-6 production 

by adipocytes will be discussed. Both in rodent and human adipocytes, IL-6 production is 

stimulated by catecholamines and inhibited by glucocorticoids, whereas insulin has no eff ect 

whatsoever128,131,132. Finally, another stimulator of IL-6 release is TNF-α, which has been re-

ported to produce a 30-fold 113 increase in IL-6 production in 3T3-L1 adipocytes. Interestingly, 

IL-6 in turn inhibits the release of TNF-α!

IL-6 acts via receptor interaction

IL-6 acts through binding at and activation of a specifi c receptor, belonging to the class I 

cytokine receptors, which act through JAK-STAT signalling (see Fig. 3 where leptin signalling 
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is explained)133. The IL-6 receptor consists of two membrane glycoproteins, a 80-kDa ligand 

binding component and a 130-kDa signal-transducing component (gp130). The 80-kDa com-

ponent binds IL-6 with low affi  nity; this complex subsequently binds with high affi  nity to 

gp130 after which signal transduction can take place127.

Soluble forms of the IL-6 receptor have been found but neither their functional signifi cance 

nor the regulation of their production is understood.

Metabolic eff ects of IL-6

IL-6 has pleiotropic eff ects on various cell types. Here, we will only focus on its role in glucose 

and lipid metabolism. Infusion of rhIL-6 to humans increased whole-body glucose disposal 

and glucose oxidation but increased hepatic glucose production134 and the fasting blood 

glucose concentration in a dose-dependent manner135. With regard to lipid metabolism, IL-6 

decreases adipose tissue lipoprotein lipase (LPL) activity129 and has been implicated in the fat 

depletion taking place during wasting disorders, such as cancer, perhaps via an increase in 

plasma norepinephrine, cortisol, resting energy expenditure and fatty acid oxidation as was 

assessed in eight renal cancer patients134. In rats, IL-6 increased hepatic triglyceride secretion 

partly because the increase of adipose tissue lipolysis resulted in an increased delivery of free 

fatty acids to the liver136. This increased release of free fatty acids following rhIL-6 infusion was 

observed in humans as well134.

IL-6 in obesity and insulin resistance

In both mice 132and humans, IL-6 mRNA in adipose tissue137,138 but even more so plasma levels 

of IL-6 are positively correlated with BMI132,137,138. Weight loss is associated with a reduction 

in serum and IL-6 mRNA levels. After one year of a multidisciplinary programme of weight 

reduction, obese women lost at least 10% of their original weight and this was associated 

with a reduction of basal serum IL-6 levels from 3.18 to 1.7 pg/mL (p<0.01)138. In another 

study, both IL-6 mRNA in adipose tissue and IL-6 serum levels were reduced with weight loss 

after three weeks of a very low calorie diet in obese women138. In this study, insulin sensitivity 

as assessed by the fasting insulin resistance index (FIRI= fasting glucose x fasting insulin/25) 

improved as well. The reduction in IL-6 levels could play a role in this improvement, since 

several studies found a signifi cant correlation between circulating IL-6 levels and insulin 

sensitivity measured by either an intravenous glucose tolerance test137 or the fasting insulin 

resistance index138. Recently this correlation between circulating IL-6 and insulin sensitivity 

was confi rmed using the “gold standard for insulin sensitivity”: the hyperinsulinaemic eug-

lycaemic clamp140. In addition, a high correlation between adipose tissue IL-6 content and 

insulin sensitivity was found, both in vivo and in vitro. Furthermore, for the fi rst time IL-6 re-

ceptors were demonstrated in 60% of the subcutaneous adipocytes suggesting that IL-6 can 

alter adipocyte metabolism via autocrine or paracrine mechanisms and have a local infl uence 

on insulin sensitivity140. Further support for a relationship between IL-6 and insulin sensitivity 
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comes from a genetic study. It appeared that subjects with an IL-6 gene polymorphism had 

lower IL-6 levels, a lower area under the glucose curve after an oral glucose tolerance test, 

lower glycosylated haemoglobin (HbA
1c

) and fasting serum insulin levels and an increased 

insulin sensitivity index as compared with carriers of the normal IL-6 allele, despite similar 

age and BMI141. Finally, basal serum IL-6 levels are higher in type-2-diabetic patients142.

In contradiction with the abovementioned positive correlation of IL-6 with BMI and inverse 

relation with insulin sensitivity is the observation that the lack of IL-6 also leads to obesity 

and a disturbed glucose tolerance, at least in mice.

Conclusion

Various studies show a clear relationship between increased IL-6 levels and obesity132,137,138, 

and between IL-6 levels and insulin resistance137,138,140 even when corrected for BMI137. Fur-

thermore, basal plasma IL-6 levels are higher in patients with type 2 diabetes142 and subjects 

with an IL-6 gene polymorphism clearly have lower serum IL-6 levels and this is correlated 

with improved insulin sensitivity and postload glucose levels141. IL-6 does have diff erent ef-

fects on the various end-organ tissues, however, with on the one hand improved glucose 

uptake in adipocytes and whole-body glucose disposal, and on the other hand an increased 

hepatic glucose output, decreased LPL activity (leading to decreased triglyceride clearance) 

and increased hepatic triglyceride synthesis. How then does IL-6 fi t in the insulin resistance 

syndrome? Is there a causal eff ect or are the increased IL-6 levels found in obesity and insu-

lin resistance merely a refl ection of the pathogenetic state or the increased adipose tissue 

mass? Is IL-6 detrimental to health or does it have a positive role in health. If we start from 

the principle that IL-6 production is increased in obesity and that it is involved in inducing 

insulin resistance, what would be the mechanisms by which IL-6 causes insulin resistance? 

Firstly, it has to be noted that omental fat produces threefold more IL-6 than subcutaneous 

adipose tissue128. Because venous drainage of omental tissue fl ows directly to the liver and 

IL-6 is known to increase hepatic triglyceride secretion134,136 this might explain the hypertri-

glyceridaemia associated with visceral obesity. As mentioned before, increased triglyceride 

content of muscle and liver leads to insulin resistance. Secondly, IL-6 signal transduction is 

mediated via JAK-STAT signalling; it is possible that feedback mechanisms interfering with 

insulin signalling exist. Thirdly, IL-6 has opposing eff ects to those of insulin on hepatic glyco-

gen metabolism143 and increases hepatic glucose production135. On the contrary, despite an 

increase of IL-6 in obesity, insulin resistance and type 2 diabetes, there is evidence that IL-6 

improves insulin sensitivity; (i) IL-6 increases glucose uptake in 3T3-L1 adipocytes144; (ii) infu-

sion of rhIL-6 to humans increased whole-body glucose disposal and glucose oxidation134; (iii) 

IL-6 inhibits TNF-α production, a cytokine with deleterious eff ects on insulin sensitivity; and 

(iv) physical exercise, which is related to an improvement in insulin sensitivity, is coupled with 

an increased IL-6 secretion145. It might be that muscle-derived IL-6 downregulates TNF-α145.
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So, in conclusion, it is still not clear whether IL-6 has a positive or a negative metabolic role 

in health. One of the reasons of the contradicting results might be that there is a diff erence 

in the acute and chronic exposure to IL-6 with regard to health implications. Furthermore, 

local and CNS-acting eff ects of IL-6 might be diff erent. More transgenic mice studies can help 

shed light on the role of IL-6 in insulin resistance. Up until now, it is quite possible that the 

increased IL-6 levels observed in adiposity and type 2 diabetes are the cause of an increased 

production by the enlarged adipose tissue mass and/or an attempt to overcome either insu-

lin resistance or another metabolic eff ect, for example IL-6 resistance.

DISCUSSION

Obesity, defi ned as a BMI > 30 kg/m2, is the consequence of a chronic imbalance between en-

ergy intake and energy expenditure. This is partly due to modern society with excess (‘fast’) 

food intake and a sedentary life style. The role that should be ascribed to primary defects in 

energy storage caused by adipocyte secretory products or impaired hypothalamic function-

ing remains to be elucidated. At the moment a combination of the two seems the most likely. 

It is well known that obesity is associated with insulin resistance and type 2 diabetes mellitus. 

An overwhelming amount of evidence indicates that visceral fat is associated with glucose 

intolerance and insulin resistance146-151, along with other facets of the metabolic syndrome 

such as dyslipidaemia. Therefore, in the past, the predominant theory used to explain the link 

between obesity and insulin resistance was the portal/visceral hypothesis152, which states 

that increased visceral adiposity leads to an increased free fatty acid fl ux into the portal sys-

tem and inhibition of insulin action via Randle’s eff ect153. However, several investigators have 

challenged the singular importance of visceral adiposity in inducing insulin resistance. They 

found an independent association between total fat mass and subcutaneous truncal fat mass 

and insulin resistance154-156. Furthermore, the observations that (i) triglyceride content within 

skeletal muscle cells is increased in obesity157 and type 2 diabetes mellitus157,158 and is a strong 

predictor of insulin resistance159; and (ii) lipodystrophy is associated with insulin resistance as 

well160,161, necessitated the need to develop new theories to explain the link between adipose 

tissue and insulin resistance162. A well-accepted theory is that of ectopic fat storage162,163. A 

limitation in the capacity of adipose tissue to store triglycerides would divert triglycerides to 

be deposited in liver cells and skeletal muscle cells162,163. The cause of the ectopic fat storage 

is unclear. It might be due to impaired fat oxidation162, since inhibition of fat oxidation in 

rodents increased intracellular lipid content and decreased insulin action164. Furthermore, a 

mutation in the AGPAT2 gene encoding 1-acylglycerol-3-phosphate O-acyltransferase inhib-

its triacylglycerol synthesis and storage in adipocytes but not in hepatocytes, thus leading 

to hepatosteatosis, because the latter can accumulate triacylglycerol via AGPAT-1165. Another 

possibility is the central and/or peripheral action of leptin, since leptin therapy has been as-
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sociated with the reversal of insulin resistance and hepatic steatosis in patients with lipodys-

trophy46 and also with improvement of intramyocellular lipid content163. Finally, a defect in 

the proliferation and/or diff erentiation of adipocytes, whether or not due to alterations in the 

expression of transcription factors166 can lead either to impaired adipocyte triglyceride stor-

age and/or adipocyte hypertrophy. This is where the third hypothesis emerges: the adipocyte 

as an endocrine organ162. Adipocytes secrete a large number of cytokines and hormones that 

act in a paracrine, autocrine and endocrine manner on adipocyte- and whole-body metabo-

lism. It is plausible that these enlarged adipocytes are deregulated in their transcriptional 

setting and secrete a diff erent pattern of hormones or diff erent amounts of them compared 

with small adipocytes. On the other hand, enlarged adipocytes might merely be a manifesta-

tion of other, yet to be defi ned, pathogenetic factors162.

In obese humans and rodents there is, besides numerous other proteins and cytokines 

that have not been discussed here, overproduction of leptin14,15, IL-6132,137,138, TNF-α115,117-119, 

ASP100,101 and resistin54,60, and a decreased production of adiponectin71,77,78,80 (see Fig. 5). Of 

leptin23, TNF74 and IL-6127 it is known that they act via receptors on the cell surface and sub-

sequent intracellular signalling cascades. As can be seen in Fig. 5, all three adipocytokines 

decrease food intake and increase energy expenditure and lipolysis together with a decrease 

in lipogenesis. These are well-adaptive mechanisms to prevent further weight gain. Since all 

these adipocytokines are increased in adiposity it is unlikely that they are the cause of adipos-

ity unless there is an impairment in (adipo)cytokine signalling. Interestingly, leptin and TNF-α 

have opposing eff ects with regard to insulin sensitivity. TNF-α interferes with insulin signal-

ling and downregulates many genes encoding for proteins involved in glucose and free fatty 

Leptin
↓ Food intake
↑ Energy expenditure
↑ Lipolysis ↓ lipogenesis
↑ Insulin sensitivity

TNF-α
↓ Food intake
↑ Energy expenditure
↑ Lipolysis ↓ lipogenesis
↓ Insulin sensitivity
↓ GLUT-4   ↓ LPL

IL-6
↓ Food intake
↑ Energy expenditure
↑ Lipolysis ↓ lipogenesis

Resistin
Contradicting reports, possibly
improvement of insulin sensitivity

Adiponectin
Adiponectin decreases plasma glucose ->
Mechanism ? -> ↓ gluconeogenesis

↓ FFA oxidation
Thus decreased adiponectin leads to 
hyperglycaemia and hyperinsulinaemia

+

+

+

+

-

ASP
↑ triglyceride synthesis via  ↑ DAG

↑ GLUT-4
↓ lipolysis via ↓ HSL

Many others

+

+

Figure 5.
Hyperplasia and hypertrophy of adipocytes, as seen in adiposity, leads to an increased production of leptin, TNF-α, IL-6, resistin, ASP and many 
other proteins, and a decreased production of adiponectin. The results of these increases, respectively decrease, are mentioned below each 
protein.
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acid uptake113. Leptin can act through some components of the insulin-signalling cascade 

as well52. The relation between TNF-α and leptin in humans is not clear. Infusion of TNF-α to 

patients has been reported to acutely raise serum leptin levels167, whereas chronic exposure 

of cultured human adipocytes to TNF-α resulted in a decrease in leptin production168. If TNF-α 

increases leptin production this might be an adaptive mechanism to compensate for the 

TNF-α induced impaired insulin signalling.

When we take a further look at the mutual coherence of the adipocyte secretory factors 

it is striking that both insulin and TNF-α are, somehow, involved in the regulation of all of 

the adipocyte secretory products. Insulin increases the production of leptin19,20,36,37, adipo-

nectin70,72 and ASP96, whereas no eff ect has been recorded with regard to TNF-α110 and a po-

tentially positive eff ect on resistin levels61. TNF-α downregulates resistin58 and stimulates the 

production of leptin169, adiponectin74 and IL-6113. The problem is that some of these factors 

lead to an improvement of insulin sensitivity, whereas others have just the opposite eff ect. 

This makes it extremely diffi  cult to elucidate which factors are most important in regulating 

insulin sensitivity. Furthermore, the time of exposure to a stimulus seems to be important. 

Thus it seems that leptin and insulin are long-term regulators with regard to food intake and 

energy expenditure, whereas insulin has a direct eff ect on glucose uptake and lipolysis.

How do these adipocyte-derived factors mediate their eff ects? What they all seem to have 

in common is a change in the expression of genes encoding for proteins involved in glucose 

and lipid metabolism. Transcription of genes can only take place if they are activated, which 

always occurs via some kind of ligand-receptor interaction followed by an intracellular signal 

transduction. Cytokine signalling proceeds in part via the JAK-STAT pathway170. The actions 

of leptin, TNF-α and IL-6 may infl uence each other via common signalling steps. Furthermore, 

it is known that leptin can signal through some components of the insulin-signalling cascade 

such as IRS-1 and -2, PI3K and MAPK and can modify insulin-induced changes in gene expres-

sion in vitro and in vivo171. TNF-α can interfere with the early steps of insulin signalling as 

well114. So, more and more evidence exists that the adipocyte secretory products leptin, IL-6 

and TNF-α not only interact with each other but also with insulin on the level of intracellular 

signal transduction.

In the case of obesity and hyperinsulinaemia there is an increase in hormones and cyto-

kines produced by the adipose tissue. These hormones subsequently mediate a change in 

the expression of genes encoding for proteins involved in glucose and lipid metabolism. In 

case of ASP these changes promote triglyceride uptake. However, in case of leptin, IL-6, TNF-

α and adiponectin there is a deleterious eff ect on glucose uptake and fatty acid oxidation 

leading to insulin resistance. The eff ect of increased serum resistin levels remains to be eluci-

dated. Everything seems to come down to interference with intracellular signal transduction, 

not only of insulin but also of the various adipocyte secretory products, with a subsequent 

change in the expression of genes involved in glucose and lipid metabolism leading to a 

diminished glucose uptake and fatty acid oxidation. The latter will, via accumulation of tri-
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glycerides in liver cells and muscle cells, enhance insulin resistance, thus further impairing 

glucose uptake.

CONCLUDING REMARKS

It is now well established that adipose tissue not only has an important function in the stor-

age and release of triglycerides but also has an important eff ect on whole-body metabolism 

and energy homeostasis via the production of various hormones and cytokines.

Adipose tissue not only responds to insulin, glucagon, cortisol and catecholamines but 

also to cytokines and products that it produces itself, thereby regulating its own metabolism 

and cell size. Some of the products produced by the adipocytes, such as TNF-α and leptin, are 

clearly involved in the induction of insulin resistance. The role of others (resistin, IL-6) has yet 

to be defi ned. Their increase in obesity is at least a manifestation of the increased adipose 

tissue mass itself. Further research is needed to come to a better understanding of the mo-

lecular pathways regulating the production of these hormones, their individual actions and 

target organs, and fi nally their mutual interaction and role in insulin resistance. These new 

insights provide the basis for the development of improved therapies for obesity and insulin 

resistance-related diseases as type 2 diabetes and cardiovascular complications.
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ABSTRACT

Serum insulin and leptin levels correlate positively. It is unknown whether this relation re-

mains the same in cases of severely disturbed insulin secretion and after rapid weight loss. 

We therefore studied the relation between insulin and leptin in obese type 2 dia betic patients 

before and after considerable weight loss.

In 17 obese (BMI 37.6 ± 1.4 kg/m2, mean ± SEM) type 2 diabetic patients (duration 8.0 ± 

1.4 years, fasting plasma glucose [FPG 12.9 ± 0.8 mmol/L, HbA
1c

 8.6 ± 0.4%), blood glucose-

lowering medication was discontinued (day -1) and a 30-day very low calorie diet (VLCD, 450 

kCal/day) was started. On days 0, 2 and 30, body weight, body fat mass (with bioelectrical 

impedance analysis [BIA]), fasting serum glucose, insulin and leptin were determined. Ho-

meostatic model assessment was used to estimate insulin resistance (HOMA-IR) and β-cell 

function (HOMA-β). On days 2 and 30, an intravenous glucose tolerance test (IVGTT) was 

performed.

Fasting serum leptin levels correlated positively with fasting serum insulin levels (r = 0.72, 

p = 0.001 on day 2; r = 0.78, p = 0.001 on day 30) and area under the curve (AUC) of insulin (r 

= 0.74, p = 0.001 on day 2; r = 0.84, p = 0.0001 on day 30), as well as HOMA-β, as a measure 

of insulin secretion, even after correction for body mass index (BMI) and body fat mass, with 

which serum leptin levels were also positively correlated.

In conclusion, in a group of obese type 2 diabetic patients with a wide range of residual 

endogenous insulin secretion, we found a positive relation between fasting serum leptin and 

insulin levels (fasting as well as AUC), even after correction for BMI and body fat mass. This 

was true both before weight loss and during energy restriction with weight loss.
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INTRODUCTION

Leptin, the product of the ob-gene1, is a 16 kDa protein that is mainly synthesised by white 

adipose tissue1,2. Leptin acts on hypothalamic neuropeptide-containing regions3 and regu-

lates body weight by controlling energy expenditure and food intake1,4,5. Serum leptin levels 

are positively correlated with body mass index (BMI) and body fat mass in both rodents and 

humans6-8. For any given body weight, serum leptin levels are higher in women than in men. 

However, after correction for fat mass, these diff erences seem to disappear6,7, although not all 

authors agree9. Serum leptin levels show a diurnal pattern with a nocturnal peak shortly after 

midnight, and a midmorning low between 10:00 AM and 12:00 noon10,11. Serum leptin levels 

fl uctuate with changes in body weight. Remarkably, with weight reduction, serum leptin 

levels fall before signifi cant weight loss has occurred12,13, suggesting that factors other than 

body fat mass regulate serum leptin levels in the short term. Possible regulators of the early 

decrease in serum leptin levels are energy restriction itself and/or serum insulin levels. The 

latter are also positively correlated with BMI and body fat mass.

A positive relation between serum leptin and serum insulin levels has been described in 

normal weight and obese subjects with or without impaired glucose tolerance9,14-18 and in 

type 2 diabetic patients16,19-21. This positive relation has also been found before and after 

weight loss in obese men and women14,22-24. However, data on the eff ect of weight loss in type 

2 diabetic patients, especially obese type 2 diabetic patients, are scarce15,25. It has been pos-

tulated26 that during progressive β-cell failure, the relation between serum insulin and serum 

leptin levels is lost, either because of lower serum insulin levels or because of the developing 

hyperglycaemia, which might have a deleterious eff ect on both insulin production by β-cells 

and leptin production by adipose tissue.

In this study, we investigated both the eff ect of energy restriction (2 days of 450 kCal/day, 

minimal weight loss) and the eff ect of energy restriction plus weight loss (30 days of 450 

kCal/day) on the relationship between serum leptin levels and serum insulin levels. Our study 

group was unique in the sense that we studied a group severely obese type 2 diabetic pa-

tients with varying degrees of endogenous insulin secretion, as assessed by an intravenous 

glucose tolerance test (IVGTT). We were, therefore, also able to address the relation between 

serum leptin levels and residual endogenous insulin secretory capacity.

PATIENTS AND METHODS

In 17 obese (BMI 37.6 ± 1.4 kg/m2, mean ± SEM) type 2 diabetic patients (duration 8.0 ± 1.4 

years) who had persistent high blood glucose levels (12.9 ± 0.8 mmol/L) and HbA
1c 

percent-

ages (8.6 ± 0.4%) despite maximal doses of oral blood glucose lowering medication and/or 
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insulin (66 to 400 units/day), all blood glucose-lowering medication was stopped (day -1) and 

a very low calorie diet (VLCD, Modifast, 450 kCal/day) was started for 30 days. 

On days 0, 2, 10 and 30, weight and length were measured, and fasting serum glucose, 

insulin, C-peptide and leptin levels were determined. Body fat mass was measured using bio-

electrical impedance analysis (BIA, Bodystat, Bodystat, Bodystat Ltd. Douglas, Isle of Man). 

An IVGTT (25 g of i.v. in 4 min with blood sampling at 0, 2, 4, 6, 8, 10, 12, 20, 30, 40, 50 and 60 

min) was performed after an overnight fast on days 2 and 30 of the VLCD27,28. 

We chose day 2 instead of day 0 for the fi rst IVGTT because most patients had used NPH 

insulin on the evening before the start of the study. For the same reason, we used labora-

tory measures taken on day 2 for baseline values of fasting plasma insulin and C-peptide. In 

addition, we used the data for body fat mass achieved via a BIA on day 0 also on day 2. The 

reason we did so was that the BIA was not reliable on day 2 due to fl uid shifts (the natriuresis 

of “fasting” induces a new fl uid and salt balance in the fi rst few days of a diet). Furthermore, 

body fat mass would not have changed yet during 2 days of a VLCD; thus, data obtained on 

day 0 would be applicable on day 2 as well.

Blood Chemistry

All blood chemistry was measured at the Laboratory for Clinical Chemistry of Leiden Universi-

ty Medical Centre. Serum glucose was measured using a fully automated Hitachi 747 (Hitachi, 

Tokyo, Japan) system. Serum insulin was measured by immunoradiometric assay (Medgenix, 

Fleurus, Belgium) with a detection limit of 3.0 mU/L. The interassay coeffi  cient of variation 

(CV) was below 6%. Serum leptin concentrations were determined by a standardised radio 

immunoassay (Linco Research, St. Charles, MO, USA), with a detection limit of 0.5 µg/L and a 

coeffi  cient of variation of 3-5% at diff erent levels.

Statistical analysis and mathematical calculations

Values are presented as mean ± standard error of the mean (SEM).

The glucose disappearance rate (k-value) was determined by (natural) log-linear regression 

of the glucose concentrations against time over the period from 10 to 60 minutes post-glu-

cose loading27. The areas under the curve (AUC) of glucose and of insulin were determined 

over the periods from 0 to 60 and 10 to 60 min, respectively, post-glucose loading from zero 

level using the linear trapezoidal rule.

Estimates of insulin resistance and β-cell function by HOMA score were calculated with the 

formulas as described by Matthews et al.29. 

For comparisons between study days a Student’s t-test for paired samples was used. The 

relation between serum leptin and serum insulin levels, as well as with the AUC of insulin 

were evaluated with a two-tailed Pearson’s correlation. In addition, two-tailed partial cor-

relations were carried out for adjustment of BMI, fat mass, age and gender. All analyses were 
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performed using SPSS for Windows version 11.0 (SPSS, Chicago, IL, USA). A p value of < 0.05 

was considered statistically signifi cant. 

RESULTS

Patient characteristics are presented in Table 1. Fourteen of the 17 patients completed the 

30-day VLCD; the other 3 patients were not able to adhere to the diet and stopped within 

just a few days. We did not have any follow-up data from these three patients; so they were 

left out of the analysis comparing diff erences in various parameters between day 2 and day 

30. Therefore, data on day 2 (fasting insulin, AUC insulin) in Table 2 (n=14) may diff er from 

data on day 2 in Table 1 (n=17). For the correlation analysis between fasting serum leptin and 

insulin (fasting and AUC) all available data were used, resulting in 17 patients being analysed 

for this relation on day 2 and 14 patients on day 30 (Table 3).

The 14 patients who completed the study showed a gradual weight loss, amounting -2.5 ± 

0.2 kg on day 2 (refl ecting mainly salt and fl uid loss) and -12.2 ± 0.8 kg on day 30 of the diet. 

This is equal to a reduction in BMI from 38.3 ± 1.5 kg/m2 on day 0 to 37.5 ± 1.5 kg/m2 on day 

2 and 34.1 ± 1.5 kg/m2 on day 30 of the diet (p = 0.0001 from day 0 to day 2, and day 0 to day 

30, as well as from day 2 to day 30, see also Table 2). The decline in fasting serum leptin levels 

from day 0 to day 2 was highly signifi cant, with a mean of 6.8 ± 1.6 ng/mL (p = 0.001, n=14). 

On day 30, the drop in fasting serum leptin levels in the 14 patients who completed the diet 

was also signifi cant (Table 2).

Table 1. Patient characteristics (n=17).

Sex (male/female) 9 : 8

Age (years) 59.0 ± 1.9

Weight (kg) 110.7 ± 4.2

BMI (kg/m2) 37.6 ± 1.4

Fat mass (kg) 42.6 ± 3.2

Fasting plasma glucose day 0 (mmol/L) 12.9 ± 0.8

HbA
1c

 (%) 8.6 ± 0.4

Duration type 2 diabetes (years) 8.0 ± 1.4

Fasting C-peptide day 0 (ng/mL) 1.3 ± 0.16

Fasting insulin day 2 (mU/L) 21.2 ± 3.5

Fasting leptin day 0 (ng/mL) 27.3 ± 5.3

AUC of insulin day 2 (mU*50 min) 1357 ± 224

Blood glucose lowering therapy

 only insulin n = 4 (mean 167 units/day)

 oral glucose-lowering therapy n = 6

 combination therapy n = 7 (mean 168 units of insulin/day)

Data are presented as mean ± SEM.
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Figure 1.
Scatterplots of the correlation analysis between fasting serum leptin and BMI (top row), fasting serum insulin (middle row) and AUC of insulin 
(bottom row) on day 2 (left side, n=17) and day 30 (right side,n=14) of the VLCD.
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Table 2. Changes in anthropometric values, fasting serum insulin and leptin concentrations and estimates of insulin secretion and insulin 
sensitivity.

Day 2 (n=14) Day 30 (n=14) P

Weight (kg) 109.3 ± 5.0 99.7 ± 4.8 0.0001

BMI (kg/m2) 37.5 ± 1.5 34.1 ± 1.5 0.0001

Fat mass (kg) 44.5 ± 3.8 38.6 ± 3.9 0.0001

Fasting serum glucose (mmol/L) 14.9 ± 1.1 12.0 ± 1.5 0.007

Fasting serum insulin (mU/L) 23.0 ± 4.1 14.3 ± 2.4 0.010

Fasting serum leptin (ng/mL) 20.3 ± 3.9 10.9 ± 1.8 0.008

AUC of insulin (mU*50 min) 1537.5 ± 242.4 1068.5 ± 247.6 0.005

AUC of glucose (mmol*60 min) 1194.4 ± 63.6 1721.0 ± 690.8 NS

k-Value (%/min) 0.46 ± 0.03 0.48 ± 0.04 NS

HOMA-IR 13.9 ± 2.2 6.6 ± 0.9 0.002

HOMA-β 49.4 ± 10.9 55.2 ± 13.4 NS

This table shows the changes in various parameters from day 2 to day 30 of the diet. A paired Student’s t-test was used since all patients served 
as their own controls. Because only 14 patients have completed the study these data represent only those 14 patients. Hence, values might 
diff er from Table 1, because on day 0 data from 17 patients were available.
Values are presented as mean ± SEM. NS = not signifi cant.

The decline in fasting serum leptin levels was paralleled by a decline in fasting serum in-

sulin levels. On both day 2 and day 30 fasting serum leptin levels correlated positively with 

fasting serum insulin levels and AUC of insulin (Table 3 and Fig. 1). The change in fasting 

serum leptin levels from day 2 to day 30 (delta leptin 2-30) also correlated positively with 

the change in fasting serum insulin levels from day 2 to day 30 (delta insulin 2-30) (r = 0.71, 

p = 0.005) and the change in AUC of insulin from day 2 to day 30 (delta AUC insulin 2-30) (r = 

0.81, p = 0.001).

Fasting serum leptin levels were positively correlated with body weight (r = 0.52, p = 0.033 

on day 2; r = 0.60, p = 0.024 on day 30) and BMI (r = 0.84, p = 0.0001 on day 2; r = 0.64, p = 

0.014 on day 30). Fasting serum insulin levels correlated positively with body weight and 

BMI on day 2, whereas the correlation with BMI was lost on day 30. After adjustment for BMI, 

gender and age, the positive correlation between fasting serum leptin and fasting serum in-

sulin levels and AUC of insulin remained (Table 3). The decrease in fasting serum leptin levels 

from day 2 to day 30 was also positively correlated with the decrease in fasting serum insulin 

levels and the decrease in AUC of insulin from day 2 to day 30 after adjusting for BMI, gender 

and age. After correction for fat mass, the positive relation between fasting serum leptin and 

serum insulin (fasting and AUC) remained (Table 3).

No correlation was found between fasting serum leptin levels and either fasting plasma 

glucose (FPG) or k-values (as a measure of the glucose disposal rate). Fasting serum leptin 

levels also showed no correlation with the AUC of glucose during an IVGTT, HbA
1c

 levels, 

duration of type 2 diabetes, or fasting C-peptide levels. Fasting serum leptin levels were posi-

tively correlated with HOMA-IR (r = 0.57, p = 0.017 on day 2; r = 0.64, p = 0.013 on day 30) 

and HOMA-β (r = 0.83, p = 0.0001 and r = 0.76, p = 0.001 on day 2 and day 30, respectively), 
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however. After correcting for BMI in a partial correlation analysis, these relations remained 

signifi cant with the exception of HOMA-IR on day 2.

Table 3. Partial correlation analysis of fasting serum leptin with the fasting serum insulin and AUC of insulin.

Day 2 (n=17) Day 30 (n=17)

Fasting serum insulin (mU/L) Unadjusted r = 0.72, p = 0.001 r = 0.78, p = 0.001

Adjusted for BMI r = 0.51, p = 0.042 r = 0.81, p = 0.001

Adjusted for BMI and gender r = 0.58, p = 0.024 r = 0.80, p = 0.002

Adjusted for BMI, gender and age r = 0.60, p = 0.023 r = 0.90, p = 0.0001

Adjusted for fat mass, gender and age r = 0.58, p = 0.030 r = 0.86, p = 0.003

AUC of insulin (mU*50min) Unadjusted r = 0.74, p = 0.001 r = 0.84, p = 0.0001

Adjusted for BMI r = 0.54, p = 0.030 r = 0.83, p = 0.001

Adjusted for BMI and gender r = 0.61, p = 0.016 r = 0.84, p = 0.001

Adjusted for BMI, gender and age r = 0.64, p = 0.015 r = 0.93, p = 0.0001

Adjusted for fat mass, gender and age r = 0.60, p = 0.023 r = 0.94, p = 0.001

DISCUSSION

This study shows that, even in patients with a severely disturbed endogenous insulin secre-

tion, a positive relation between fasting serum insulin and fasting serum leptin levels exists, 

even after correcting for BMI and body fat mass. This was true both during energy restriction 

(day 2) and during weight loss plus energy restriction (day 30). Furthermore, fasting serum 

leptin levels also correlated with HOMA-β and the AUC of insulin as measures of insulin secre-

tory capacity.

We found a sharp decline in both fasting serum leptin and fasting serum insulin levels after 

only 2 days of the VLCD. Other investigators have also seen a rapid decrease in serum leptin 

levels with energy restriction12,13,30-32. Since fat mass can hardly have decreased signifi cantly 

in such a short period of time, this decline in fasting serum leptin and insulin levels more 

likely refl ects a signal to the brain that the body is in negative energy balance. Support for 

this concept can be found in the study of Chin-chance et al.33. Six healthy normal weight 

subjects were included in a 12-day study with four consecutive dietary treatment periods 

of 3 days each. A baseline period (feeding at 100% of total energy expenditure [TEE]) was 

followed by random crossover periods of overfeeding (130% TEE) or underfeeding (70% TEE), 

separated by a eucaloric period (100% TEE). Serum leptin levels responded acutely to modest 

changes in energy intake (declining during 70% TEE and increasing during 130% TEE) and, 

remarkably, returned to baseline values only after completion of the complementary feeding 

periods, indicating that leptin levels were a marker of short-term cumulative energy balance. 

In contrast, in the long-term, when weight loss occurs, serum leptin levels once again refl ect 

body fat stores. Wadden et al.34 showed that, in the fi rst 6 weeks of a diet, serum leptin levels 

were primarily determined by the degree of caloric restriction, whereas at 40 weeks weight 
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loss accounted for 47% of the variance in serum leptin levels. In addition, Cella et al.13 found 

a gradual rise in serum leptin levels with further weight loss.

We also studied the relation between fasting serum leptin and fasting serum insulin levels 

after a period of energy restriction plus weight loss. To our knowledge, with regard to the re-

lation between serum leptin and serum insulin levels after weight loss, few studies have been 

performed in obese type 2 diabetic patients. Moreover, these studies had either included 

very few patients15,25 or patients with only mild diabetes and obesity15,25.

Our study is, therefore, unique with regard to the extreme patient population (severely 

obese type 2 diabetic patients, inadequately regulated on maximal oral blood glucose-lower-

ing medication and/or insulin therapy) and the fact that we performed a dynamic test in the 

form of an IVGTT. We were, therefore, able to demonstrate that the relation between fasting 

serum leptin and insulin levels, even after correction for BMI and fat mass, holds true over 

a wide range of residual endogenous insulin secretory capacity (as defi ned by the AUC of 

insulin).

What we were not able to demonstrate was whether this positive relationship between se-

rum insulin and serum leptin levels is due to leptin regulating insulin levels or vice versa. Sev-

eral facts point to the latter. Firstly, when octreotide is given to patients with an insulinoma, 

serum leptin levels fall within half an hour of the decline in serum insulin levels35. Secondly, 

during a prolonged hyperinsulinaemic euglycaemic clamp, serum leptin levels show a dose-

dependent36 increase37. Thirdly, serum leptin levels are increased by insulin therapy, both in 

patients with type 1 and type 2 diabetes19,38. Fourthly, when patients were stratifi ed to high 

and low serum insulin groups, serum leptin levels were higher in the high insulin group than 

in the low insulin group, while BMI was the same14. Fifthly, conversely argued, leptin therapy 

does not increase serum insulin levels39; in fact, leptin probably diminishes insulin levels by 

directly inhibiting insulin secretion. To that end, functional leptin receptors are present on 

the cell membranes of pancreatic β-cells40.

In conclusion, even in patients with a highly disturbed endogenous insulin secretion, a 

positive relation between fasting serum leptin and serum insulin levels (fasting and AUC) can 

be found. This relation was found during both energy restriction and weight loss. Whether 

insulin regulates leptin levels or vice versa, or, whether both are regulated in concert to refl ect 

changes in energy balance cannot be deduced from this study. However, the evidence at 

hand makes it seem most likely that insulin regulates leptin.
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ABSTRACT

Calorie restriction and weight loss improve hyperglycaemia in some but not all obese pa-

tients with type 2 diabetes mellitus. To identify specifi c endocrine and metabolic markers 

that predict a favourable response to a very low calorie diet (VLCD), 17 obese (BMI 37.6 ± 5.6 

kg/m2 [mean ± SD]) type 2 diabetic (FPG 12.9 ± 3.1 mmol/L, HbA
1c

 8.6 ± 1.6%) patients were 

studied on day 0, 2, 10 and 30, of a VLCD (Modifast, 450 kCal/day). A responder was a priori 

defi ned as a patient with a fasting plasma glucose concentration (FPG) < 10 mmol/L on day 

30. All blood glucose-lowering medication (including insulin) was discontinued on day -1. On 

day 2 and 30 of the VLCD an intravenous glucose tolerance test (IVGTT) was performed.

Of the 14 patients who completed the 30-day VLCD, eight qualifi ed as responder. Respond-

ers and non-responders could be distinguished by day 2. Responders had a shorter dura-

tion of type 2 diabetes and higher fasting serum insulin, C-peptide and HOMA-β-values. In 

addition, responders displayed a more prominent second-phase insulin response following 

i.v. glucose loading and higher k-values. In a stepwise discriminant analysis, the change in 

FPG from day 0 to day 2 (responders + 0.64 ± 2.3, non-responders + 4.15 ± 3.3 mmol/L, p = 

0.035) in combination with the area under the curve of insulin (AUC) above baseline during 

an IVGTT on day 2 (responders 571 ± 236, non-responders 88 ± 65 mU*50min, p < 0.001), 

distinguished responders completely from non-responders.

In conclusion, preservation of the capacity of β-cells to secrete insulin predicts a favourable 

metabolic response to a VLCD in obese type 2 diabetic patients. Already on day 2 a decline in 

FPG levels can be found in those patients that react favourably to the diet. Nevertheless, even 

in patients who qualifi ed as non-responders, no gross hyperglycaemia ( > 20 mmol/L) or any 

other side eff ects were observed.
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INTRODUCTION

Over 80% of type 2 diabetic patients are obese1. Numerous studies have shown that calorie restric-

tion and weight loss can reverse their metabolic abnormalities2-10. After initiation of a very low 

calorie diet (VLCD), hyperglycaemia decreases within 4-10 days, even before signifi cant weight loss 

has occurred4,5,8. In one study, a decrease in fasting plasma glucose (FPG) was detected within 2 

days11. Another4 study reported patients who failed to respond but an explanation was not given.

Neither the mechanism nor the factors that predict the blood glucose-lowering eff ect of 

energy restriction and weight loss have been established. The current study was undertaken 

to determine (i) if a decrease in FPG would occur within 2 days after the initiation of a VLCD 

and (ii) which factors predict a favourable metabolic response (defi ned as a FPG< 10 mmol/L 

on day 30) during a prolonged VLCD in obese type 2 diabetic patients when all blood glu-

cose-lowering medication is discontinued.

PATIENTS AND METHODS

In 17 obese (BMI 37.6 ± 5.6 kg/m2, mean ± SD) type 2 diabetic patients (duration 8.0 ± 5.8 

years) who had persistent high blood glucose levels (12.9 ± 3.1 mmol/L) and HbA
1c 

percent-

ages (8.6 ± 1.6%) despite maximal doses of oral blood glucose-lowering medication and/or 

insulin (66-340 units/day), all blood glucose-lowering medication was stopped (day –1) and 

a very low calorie diet (Modifast, Novartis Consumer Health, Breda, the Netherlands, 450 

kCal/day) was started for 30 days.

On days 0, 2, 10 and 30, body weight was measured, and fasting glucose, insulin, C-peptide 

and leptin were determined. In addition, an intravenous glucose tolerance test (IVGTT, 25 g of 

glucose i.v. in 4 min with blood sampling at 0, 2, 4, 6, 8, 10, 12, 20, 30, 40, 50 and 60 min) was 

performed after an overnight fast at days 2 and 30 of the VLCD12,13. We chose day 2 instead 

of day 0 for the fi rst IVGTT because most patients had used NPH insulin the evening before 

the start of the study. For the same reason we used laboratory measures taken on day 2 for 

baseline values of fasting plasma insulin and C-peptide.

Statistical analysis and mathematical calculations

Values are presented as mean ± standard deviation (SD).

The glucose disappearance rate (k-value) was determined by (natural) log-linear regression 

of the glucose concentrations against time over the period from 10 to 60 min post-glucose 

loading12. The area under the curve (AUC) of glucose and of insulin were determined over the 

period from 0 to 60, respectively 10 to 60 min post-glucose loading from zero level using the 

linear trapezoidal rule. The AUC of glucose and insulin above baseline were also calculated. 

Baseline was defi ned as plasma glucose and insulin levels at time 0 min.
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Estimates of insulin resistance and β-cell function by HOMA score were calculated with the 

formulas as described by Matthews et al.14.

Comparisons between groups (i.e., responders versus non-responders) were made with the 

Student’s t-test for independent samples. Within groups comparisons were made with the 

Student’s t-test for paired samples. Stepwise discriminant analysis was performed to deter-

mine prognostic factors for distinction between responders and non-responders. A priori, a 

responder was defi ned as a patient with a FPG < 10 mmol/L on day 30.

A p-value of < 0.05 was considered statistically signifi cant.

RESULTS

Fourteen out of the 17 patients completed the 30-day VLCD. 

By 2 days of a VLCD, when weight loss was still minimal (responders -2.8 ± 0.7 kg, non-

responders -2.4 ± 0.7 kg, NS), a distinction between responders and non-responders could 

be made. Responders showed only a minimal rise or even a decrease in FPG at day 2 (+0.64 ± 

2.3 mmol/L), whereas non-responders had an increase in FPG (+4.15 ± 3.3 mmol/L), p = 0.035. 

On day 10, FPG had improved in responders (-2.7 ± 2.9 mmol/L) and remained more or less 

Table 1. Metabolic response to a VLCD in responders and non-responders.

Responders (n=8)   Non-responders (n=6)

 Day 0 Day 30 P Day 0 Day 30 P

FPG (mmol/L) 12.3 ± 2.3 7.9 ± 1.2* 0.001 13.4 ± 3.8 17.3 ± 4.4* NS

Leptin (mg/mL) 31.7 ± 24.7 12.4 ± 8.9 NS 22.2 ± 8.3 8.2 ± 3.1 0.003

Body weight (kg) 119.4 ± 21.2 107.2 ± 20.3 0.0001 101.9 ± 6.9 89.7 ± 6.8 0.0001

BMI (kg/m2) 39.3 ± 7.1 35.3 ± 6.7 0.0001 37.1 ± 3.6 32.7 ± 3.4 0.0001

Day 2 Day 30 P Day 2 Day 30 P

FI (mU/L) 30.6 ± 16.0† 18.8 ± 9.9† 0.034 12.8 ± 5.0† 8.3 ± 2.0† NS

FCP (nmol/L) 1.8 ± 0.7† 1.1 ± 0.4 0.003 0.8 ± 0.1† 0.6 ± 0.2 0.042

AUC of insulin 
(mU*50 min)

2014 ± 978† 1494 ± 906† 0.042 775 ± 201† 388 ± 115† 0.040

AUC of insulin 
above baseline  
(mU*50 min)

571 ± 236‡ 552 ± 425† NS 88 ± 65‡ 66 ± 73† NS

AUC of glucose 
(mmol*60 min)

1094 ± 132† 860 ± 81‡ 0.0001 1355 ± 274† 1305 ± 240‡ NS

AUC of glucose 
above baseline 
(mmol*60 min)

344 ± 107 372 ± 40† NS 372 ± 32 280 ± 78† NS

k-Value (%/min) 0.51 ± 0.08† 0.55 ± 0.08† NS 0.37 ± 0.13† 0.36 ± 0.12† NS

HOMA-IR 17.4 ± 9.2 6.7 ± 3.9 0.004 9.3 ± 2.7 6.5 ± 2.6 NS

HOMA-β 69.9 ± 42.4† 86.8 ± 44.8† NS 22.2 ± 15.6† 13.1 ± 5.4† NS

Data are presented as mean ± standard deviation. FI: fasting serum insulin; FCP: fasting serum C-peptide.
* P < 0.0001; † P < 0.05; ‡ P < 0.001, all responders versus non-responders
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the same in non-responders (+4.2 ± 5.5), p = 0.011. After 30 days, FPG improved further in 

responders (-4.3 ± 2.4 mmol/L) whereas FPG remained elevated in non-responders (+3.9 ± 5.2 

mmol/L), p = 0.002. All values given are compared with day 0 (Table 1).

Responders had a signifi cantly higher fasting serum insulin and C-peptide concentration 

and HOMA-β on day 2 compared with non-responders (Table 1). During an IVGTT, respond-

ers had a signifi cantly higher AUC and AUC above baseline of insulin (second-phase insulin 

response) on day 2 than non-responders. A fi rst-phase insulin response was lacking in both 

groups on day 2 and day 30 (Fig. 1).

Neither the initial weight and fat mass nor the extent of weight loss (-12.2 ± 3.6 kg in re-

sponders, -12.2 ± 2.5 kg in non-responders, NS), or the decline in serum leptin were diff erent 

between responders and non-responders. Previous blood glucose-lowering therapy and 

initial FPG were also similar in responders and non-responders.
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Figure 1. 
Glucose excursions (top, A, B) and insulin secretion (bottom, C,D) of responders (left, A, C) and non-responders (right, B, D) after an intravenous 
glucose load on day 2 (closed circles) and day 30 (open circles) of a VLCD. Responders have a lower area under the curve (AUC) of glucose, 
a higher AUC of insulin and a higher k-value. After a 30-day VLCD, fasting plasma glucose (FPG) and fasting serum insulin decrease but 
incremental AUC of glucose and insulin do not change and neither do the k-values. Note that both responders and non-responders lack a fi rst-
phase insulin response. Data are presented as mean ± SEM.
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Stepwise discriminant analysis was performed to determine prognostic factors for distinc-

tion between responders and non-responders. The change in FPG from day 0 to day 2 com-

bined with the AUC of insulin above baseline during an IVGTT on day 2 completely separated 

responders from non-responders. When IVGTT data were left out of the analysis, fasting C-

peptide on day 2 and duration of diabetes were identifi ed as discriminating factors although 

in this analysis two responders were misclassifi ed as non-responders.

DISCUSSION

We examined the eff ect of a 30-day VLCD on FPG levels and glucose handling after an intra-

venous glucose load in obese type 2 diabetic patients in whom all blood glucose-lowering 

medication was discontinued. A priori, responders were defi ned as those patients who would 

have a FPG level less than 10 mmol/L on day 30.

It was found that within 2 days of a VLCD, when weight loss was still minimal (refl ecting 

salt and fl uid loss), a distinction between responders and non-responders could be made. 

Responders exhibited only a minimal increase or even a decrease in FPG at day 2 whereas 

non-responders showed a considerable increase in FPG.

Preservation of β-cell function appeared to predict a favourable response to a VLCD. Thus, 

responders had higher fasting serum insulin and C-peptide levels and a higher HOMA-β 

than non-responders on day 2. In addition, responders had a higher second-phase insulin 

response during an IVGTT. Other factors associated with a favourable response were a shorter 

duration of type 2 diabetes mellitus and higher k-values. Weight loss and the fall of serum 

leptin concentrations were not discriminating. A stepwise discriminant analysis showed that 

change in FPG from day 0 to day 2 combined with the AUC of insulin above baseline during 

an IVGTT on day 2 could fully discriminate responders from non-responders.

The fact that FPG improved by 2 days of a VLCD confi rms earlier observations2,4-6,8 that re-

duced caloric intake and not weight loss is of prime importance to the early blood glucose 

reduction. The mechanism of this early benefi cial eff ect on glucose metabolism is unclear 

although several studies have reported a close association of FPG with hepatic glucose out-

put (HGO)3-5,7,8,15.

After 30 days of a VLCD, both responders and non-responders had lost about 12 kg of body 

weight. Both groups had a decrease in fasting serum insulin but it remained signifi cantly 

higher in responders than in non-responders. HOMA-β was also higher in responders com-

pared with non-responders and did not change signifi cantly in either group after a 30-day 

VLCD. HOMA-IR was similar in both groups after 30 days of a VLCD.

In a dynamic test (IVGTT), AUC of glucose above baseline, k-values and the amount of insu-

lin secreted remained the same after 30 days of a VLCD in both responders and non-respond-

ers. Thus, the only factors that changed favourably after 30 days of a VLCD were a lower FPG in 
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responders and lower fasting serum insulin concentrations in both groups. This lower FPG in 

responders, in the presence of a lower serum insulin concentration, might have been caused 

by an increased sensitivity of the liver for insulin suppression of HGO. Because the k-values 

did not improve, we have no arguments for an increased peripheral glucose disposal.

This study again stresses the potential of diet therapy in obese type 2 diabetic patients. 

Eight out of the 14 (57%) patients had a decrease in FPG levels and none of those eight had 

to be restarted on insulin during a weight-maintaining diet (data not shown). We are aware, 

however, that our study included small numbers and follow-up was limited.

In conclusion, this study shows that by 2 days of a VLCD a distinction can be made between 

those who will react favourably to the diet and those who will not. Responders can be identi-

fi ed on the basis of a preserved capacity of the β-cell to secrete insulin. In this study, the 

change of the fasting plasma glucose concentration during the fi rst 2 days of the VLCD in 

combination with the AUC of insulin above baseline during an IVGTT on day 2 could separate 

responders completely from non-responders.
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ABSTRACT

The mechanism of the blood glucose-lowering eff ect of a 2-day very low calorie diet (VLCD; 

1890 kJ/d [450 kCal/day]) in combination with the cessation of all blood glucose-lowering 

agents was studied in 12 (7 women, 5 men) obese (body mass index 36.3 ± 1.0 kg/m2 [mean ± 

SEM]) type 2 diabetic patients (age 55 ± 4 years; HbA
1c

,
 
7.3 ± 0.4%) undergoing insulin therapy. 

Endogenous glucose production (EGP) and whole-body glucose disposal ([6,6 2H
2
]-glucose), 

lipolysis ([2H
5
]-glycerol), and substrate oxidation (indirect calorimetry) rates were measured 

before and after the intervention in basal and hyperinsulinaemic euglycaemic conditions.

After 2 days of a VLCD and discontinuation of all blood glucose-lowering therapies, fasting 

plasma glucose levels did not increase (11.3 ± 1.3 versus 10.3 ± 1.0 mmol/L). Basal EGP signifi -

cantly declined (14.2 ± 1.0 to 11.9 ± 0.7 µmol.kg-1.min-1, p = 0.009). Basal metabolic clearance 

rate of glucose and rate of basal lipolysis did not change. During hyperinsulinaemia, EGP (5.5 

± 0.8 to 5.2 ± 0.5 µmol.kg-1.min-1), whole-body glucose disposal (12.1 ± 0.7 to 11.3 ± 1.0 µmol.

kg-1.min-1), the metabolic clearance rate of glucose, and the rate of lipolysis did not change 

after the 2-day intervention.

In conclusion, cessation of blood glucose-lowering therapy in combination with a 2-day 

VLCD does not lead to hyperglycaemia and is associated with a reduction in basal EGP. Insu-

lin-stimulated whole-body glucose disposal did not improve, nor did insulin suppressibility 

of EGP and lipolysis.
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INTRODUCTION

There is a strong relationship between type 2 diabetes and obesity1, more than 70% of type 

2 diabetic patients are overweight and obese2. In obese patients, insulin resistance is the 

most important underlying defect leading to glucose intolerance and, subsequently, when 

hyperinsulinaemia is insuffi  cient to overcome insulin resistance, type 2 diabetes develops3. 

Numerous studies have shown that weight loss diminishes the metabolic abnormalities of 

obese type 2 diabetic patients4-10. Because patients usually fi nd it diffi  cult to adhere to a diet, 

very low calorie diets (VLCDs) have been advocated. The rapid weight loss achieved with 

these diets is an important stimulus for patients to continue. The simultaneous discontinu-

ation of a blood glucose-lowering therapy facilitates weight loss and minimises the risk of 

hypoglycaemia but raises concern about possible hyperglycaemia. We recently showed in 

a group of obese type 2 diabetic patients, in whom we discontinued all blood glucose-low-

ering therapies including insulin, that a VLCD (Modifast; 450 kCal/day) does not lead to a 

deterioration of fasting plasma glucose (FPG) levels11. In fact, in most patients, a decrease in 

FPG occurred already after 2 days of the VLCD, when weight loss was minimal.

A decline in FPG levels before signifi cant weight loss occurred has been described be-

fore5,6,9,12. Several studies have shown that FPG declined in parallel with hepatic glucose out-

put5,6,8,12. However, to our knowledge, no one has studied this eff ect in detail after only 2 days 

of a VLCD. In addition, few studies address the patient group we are interested in: severely 

obese type 2 diabetic patients inadequately regulated on insulin therapy. We therefore stud-

ied obese type 2 diabetic patients undergoing insulin therapy with or without oral blood 

glucose-lowering agents before and after 2 days of a VLCD in combination with the cessation 

of these medications.

We used the isotope dilution technique to measure endogenous glucose production (EGP) 

in combination with the hyperinsulinaemic euglycaemic clamp technique to study insu-

lin-mediated peripheral glucose disposal and insulin suppressibility of EGP. In addition, we 

measured total-body lipolysis via the infusion of deuterium-labelled glycerol and substrate 

oxidation rates via indirect calorimetry.

RESEARCH DESIGN AND METHODS

Subjects

A total of 12 obese type 2 diabetic patients, 5 men and 7 women with a mean age of 55 ± 

4 years (mean ± SEM) and a body mass index (BMI) of 36.3 ± 1.0 kg/m2 (range 31.3 – 43.9 

kg/m2), participated in this study, which was approved by the Medical Ethical Committee of 

the Leiden University Medical Centre. Written informed consent was obtained from all pa-

tients. Patients underwent a medical screening including a physical examination and resting 
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electrocardiogram. Patients used at least 30 units of exogenous insulin with or without oral 

blood glucose-lowering medication and had a BMI > 30 kg/m2. In addition, they had to have 

remaining endogenous insulin secretion defi ned as a fasting plasma C-peptide level greater 

than 0.8 ng/mL or a 2-times increase of the basal C-peptide level after 1 mg glucagon i.v.13.

Patients had to have a stable weight for at least 3 months and were instructed not to alter 

life style habits (eating, drinking, exercise) from screening until the start of the study. None of 

the patients were smokers and the use of any other medication (than that used specifi cally 

for its glucose-lowering eff ect) known to alter glucose or lipid metabolism was prohibited.

Protocol

Three weeks before the start of the study, all oral blood glucose-lowering medication was 

discontinued. On day -1, only short-acting insulin was given, evening doses of intermedi-

ate and long-acting insulin were omitted. On day 0, patients were admitted to the research 

centre for baseline investigations (day 0) as outlined below. Insulin therapy was restarted 

after this study day until the start of the VLCD (again, only short-acting insulin was given 

on the day before the start of the diet) and remained stopped during the 2-day VLCD. To 

ensure complete washout of the stable isotopes, the second study had to be undertaken 1 

week later. This meant that patients started the 2-day VLCD (1890 kJ/d) on day 5 and had the 

second study on day 7 (day 2). (See Fig. 1)

check

1st study day

outpatient
clinic

day 0

Only short acting insulin was given,
last dose at evening meal 

(16 hours before
start study day)

day 5

start VLCD (1890 kJ/d
[450 kCal/day]

2nd study day

Only short acting insulin on day 4,
last dose at evening meal, 

from then on until the end of 
the intervention, insulin was 

discontinued
stop oral
blood glucose
lowering agents

- 3 weeks day 7
(Day 2)(Day 0)

day –1

Figure 1.
Protocol outline. See text (methods) for explanation.
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STUDY DAYS

All studies started at 7:00 AM after an overnight fast. Length (meters [m]), weight (kilograms 

[kg]), BMI (weight [kg] / length2 [m]) and waist-hip circumference were measured according 

to WHO recommendations14.

Patients were subsequently requested to lie down on a bed in a semirecumbent position. 

A polyethylene catheter was inserted into an antecubital vein for infusion of test substances. 

Another catheter was inserted into a contralateral dorsal hand vein for blood sampling. This 

hand was kept in a heated box (60°C) throughout the test to obtain arterialised venous blood 

samples15. Basal blood samples for glucose, insulin, C-peptide, non-esterifi ed fatty acids (NE-

FAs), glycerol, and background enrichment of [6,6-2H
2
]-glucose and [2H

5
]-glycerol were taken. 

At 7:30 AM (t = 0 minutes), an adjusted primed (17.6 µmol/kg x actual plasma glucose con-

centration (mmol/L)/5(normal plasma glucose)16 continuous (0.33 µmol/kg per minute) infu-

sion of [6,6-2H
2
]-glucose (enrichment 99.9%; Cambridge Isotopes, Cambridge, Mass, USA) was 

started and continued throughout the study. At 9:00 AM (t= 90 minutes) a primed (1.6 µmol/

kg) continuous (0.11 µmol/kg per minute) infusion of [2H
5
]-glycerol (Cambridge Isotopes) was 

started and continued throughout the study. During this period, indirect calorimetry with a 

ventilated hood (Oxycon Beta, Mijnhardt Jaegher, Breda, The Netherlands) was performed 

for 30 minutes for basal glucose and lipid oxidation rates17. At the end of the basal period, 

3 blood samples were taken at 7-minute intervals for the determination of plasma glucose, 

glycerol, insulin, and [6,6-2H
2
]-glucose- and [2H

5
]-glycerol-specifi c activitities. In addition, 

blood samples for the determination of NEFAs, triglycerides, lactate, the counterregulatory 

hormones (growth hormone [GH], cortisol, and glucagon), as well as some of the adipokines 

involved in glucose metabolism (leptin, resistin and adiponectin) were taken. Subsequently, 

a primed continuous infusion of insulin (Actrapid, Novo Nordisk Pharma, The Netherlands, 

40 mU/m2 per minute)18 was started (t = 180 minutes). Exogenous glucose 20% enriched with 

3% [6,6-2H
2
]-glucose was infused at a variable rate to maintain the plasma glucose level at 5.0 

mmol/L. A second indirect calorimetry was performed at the end of the hyperinsulinaemic 

clamp (t = 390 minutes). From t = 420 to 450 minutes, blood was drawn every 10 minutes for 

the determination of [6,6-2H
2
]-glucose- and [2H

5
]-glycerol-specifi c activity, glucose, insulin, 

glycerol, C-peptide, NEFAs, triglycerides, lactate, GH, cortisol, glucagon, leptin, resistin and 

adiponectin.

All blood samples, except serum samples, were immediately put on ice and centrifuged 

promptly (2000×g at 4°C for 20 minutes). Serum samples fi rst had to coagulate before un-

dergoing the same procedure. Samples were subsequently put in plastic tubes and frozen 

(–20°C) until assay.
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Serum insulin, C-peptide, glucagon, GH, cortisol, leptin, resistin, adiponectin, triglycerides, 

and lactate were measured in one batch. Serum insulin was measured with an ultrasensitive 

Human Insulin assay (Linco Research, St Charles, MO) with a detection limit of 0.1 mU/L. The 

interassay coeffi  cient of variation (CV) was below 6%.

C-peptide, glucagon, leptin, resistin and adiponectin were measured with radioimmunoas-

says from Linco Research. For C-peptide the interassay coeffi  cient of variation (CV) varied 

between 4.2% and 6.0% at diff erent levels with a sensitivity of 0.03 nmol/L. The CV for gluca-

gon ranged between 4.0% and 6.8% with a sensitivity of 20 ng/L. For leptin, the CV was 3.0% 

to 5.1% and the sensitivity was 0.5 µg/L. For resistin, the interassay CV was 3.2% to 5.4% at 

diff erent levels, with the lowest detection level of 0.15 µg/L. Adiponectin had an interassay 

CV of 6.3% to 8.1% with the lowest detection level of 1 µg/L.

Growth hormone was measured with a time-resolved immunofl uorescent assay (Wallace 

Inc, Turku, Finland) specifi c for the 22-kDa GH. The CV varied from 5.3% to 8.4%, sensitiv-

ity was 0.03 mU/L. Cortisol was also measured with a radioimmunoassay (Sorin Biomedica, 

Milan, Italy) with a CV between 2.3% and 4.2% and a detection limit of 25 nmol/L. Serum 

triglycerides and lactate were determined with a fully automated Hitachi 747 system (Hitachi, 

Tokyo, Japan).

Serum glucose and [6,6-2H
2
]-glucose as well as serum glycerol and [2H

5
]-glycerol were de-

termined in a single analytical run, using gas chromatography coupled to mass spectrometry 

as described previously19,20.

Serum non-esterifi ed fatty acids were measured using the enzymatic colorimetric acyl-CoA 

synthase/ acyl-CoA oxidase assay (Wako Chemicals, Neuss, Germany) with a detection limit of 

0.03 mmol/L. The interassay coeffi  cient of variation was below 3%.

Very low calorie diet

The diet consisted of 3 sachets of Modifast (Novartis Consumer Health, Breda, The Nether-

lands) per day. Modifast is a commercially available VLCD packaged in powder form. One 

sachet is mingled with 250 mL of water and is used to replace each of the 3 conventional 

meals. We provided patients with shakes, muesli, pudding and potage in various tastes. One 

hundred grams of Modifast contains 1402.8 kJ [334] kcal and about 35 g protein, 6 g fat and 

38 g carbohydrates. Since sachets vary from 42 to 50 gram, energy intake could range from 

1764 to 2062.2 kJ/d depending on the products used. Patients were allowed to drink calorie-

free substances ad libitum and were encouraged to drink at least 2 L of these liquids per day.

Calculations

In all subjects, both plasma glucose concentrations and tracer/tracee ratios of [6,6-2H
2
]-glu-

cose and [2H
5
]-glycerol were stable during the last half hour before the clamp (t = 150-180 
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minutes) and during the last hour of the clamp (t = 390-450 minutes). In addition, the plasma 

glucose concentration did not decline during the last hour before the clamp and the last hour 

of the euglycaemic clamp. Therefore, the rate of appearance (R
a
) for glucose and glycerol 

were calculated using Steele’s steady-state equation as adapted for stable isotopes using a 

single-compartment kinetic model21.

Endogenous glucose production during the basal steady state is equal to the Ra of [6,6-
2H

2
]-glucose, whereas endogenous glucose production during the clamp was calculated as 

the diff erence between R
a
 and the glucose infusion rate.

The metabolic clearance rate (MCR) of glucose was calculated as the rate of disappearance 

of glucose (R
d
; identical to R

a
 under steady-state conditions) divided by the serum glucose 

concentration (average of steady-state measurements at t = 150-180 and t =420-450 minutes, 

respectively). 

Total lipid and carbohydrate oxidation rates were calculated as described by Simonson 

and DeFronzo17. For the conversion of fat oxidation from milligram per kilogram per minute 

to micromole per kilogram per minute, an average molecular weight of 270 was assumed for 

serum NEFAs12. Non-oxidative glucose metabolism was calculated by subtracting the glucose 

oxidation rate (determined by indirect calorimetry) from R
d
.

Statistical analysis

Data are presented as mean ± SEM unless stated otherwise. Diff erences before (day 0) and 

after (day 2) the VLCD were analysed by the Student t- test for paired samples. Correlation 

analysis was carried out using Pearson’s correlation. All analyses were performed using SPSS 

for Windows version 11.0 (SPSS Inc, Chicago, IL, USA). Signifi cance was accepted at p < 0.05.

RESULTS

Of the 12 patients participating in this study, clamp data from one female patient had to 

be excluded from the analysis because of errors in the infusion rate in the afternoon of the 

second study day. Basal data from this patient and substrate oxidation rates could be and 

were used, however. Patient characteristics can be found in Table 1.

Weight

After 2 days of a VLCD, patients had lost -2.9 ± 0.4 kg. Presumably, this weight loss refl ects 

mostly salt and fl uid loss.
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Fasting plasma glucose and insulin concentration

After 2 days of a VLCD, despite minimal weight loss (see above) and the cessation of all blood 

glucose-lowering agents, FPG did not increase. Basal serum insulin levels declined from 20.7 

± 2.3 to 15.9 ± 1.8 mU/L (p = 0.033) (Table 2).

Endogenous glucose production, whole-body glucose disposal, and MCR of glucose 

Basal EGP declined from 14.2 ± 1.0 to 11.9 ± 0.7 mmol/L (p = 0.008). On both study days, se-

rum glucose was clamped at identical levels (5.0 ± 0.4 mmol/L on day 0 and 4.9 ± 0.4 mmol/L 

on day 2, p = NS) and the same degree of hyperinsulinaemia was obtained (88.1 ± 5.9 mU/L 

on day 0 and 83.7 ± 4.8 mU/L on day 2, p = NS) (see also Table 2). Insulin decreased EGP (from 

14.2 ± 1.0 to 5.5 ± 0.8 µmol.kg-1.min-1 on day 0) but could not completely suppress it. A 2-day 

Table 1. Patient characteristics.

Sex (male/female) 5 : 7

Age (years) 55 ± 4

BMI (kg/m2) 36.3 ± 1.0

Waist circumference (cm) 120 ± 3

Waist-hip ratio 1.02 ± 0.03

Fasting plasma glucose (mmol/L) 11.3 ± 1.3

HbA
1c

 (%) 7.3 ± 0.4

Fasting serum insulin (mU/L) 20.7 ± 2.1

Fasting serum C-peptide (ng/mL) 1.0 ± 0.1

Duration of type 2 diabetes (years) 7.9 ± 1.3

Units of insulin injected per day 78 ± 9

Additional use of oral glucose-lowering medication 6 metformin 
1 rosiglitazone

Data are presented as mean ± SEM.

Table 2. Metabolic parameters at baseline (day 0) and after 2 days of a VLCD (day 2) in obese  type 2 diabetic patients.

Day 0 Day 2 P

Fasting serum glucose (mmol/L) 11.3 ± 1.3 10.3 ± 1.0 NS

Fasting serum insulin (mU/L) 20.7 ± 2.3 15.9 ± 1.8 0.033

Fasting serum cortisol (nmol/L) 570 ± 69 612 ± 58 NS

Fasting serum GH (mU/L) 1.9 ± 0.9 1.2 ± 0.4 NS

Fasting serum glucagon (ng/L) 57.3 ± 7.7 64.2 ± 8.6 NS

Fasting serum glycerol (µmol/L) 137 ± 19 186 ± 32 NS

Fasting serum NEFA (mmol/L) 1.1 ± 0.1 1.5 ± 0.1 NS

Fasting serum triglycerides (mmol/L) 1.8 ± 0.2 2.0 ± 0.2 NS

Fasting serum lactate (mmol/L) 0.9 ± 0.1 0.8 ± 0.04 NS

Clamp serum glucose (mmol/L) 5.0 ± 0.4 4.9 ± 0.4 NS

Clamp serum insulin (mU/L) 88.1 ± 5.9 83.7 ± 4.8 NS

Clamp serum glycerol (µmol/L) 60.0 ± 6.2 56.3 ± 7.0 NS

Clamp serum NEFA (mmol/L) 0.39 ± 0.07 0.35 ± 0.04 NS

Values are presented as mean ± SEM. 
NS indicates not signifi cant.
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VLCD showed no improvement of insulin suppressibility of EGP (see also Table 3). Glucose Rd 

did not increase during hyperinsulinaemia on both day 0 and day 2, indicating that patients 

remained severely insulin resistant. Serum glucose MCR, both basal as well as during hyperin-

sulinaemia, also did not reveal any signifi cant change between study days (Table 3, Fig. 2).

Non-esterifi ed fatty acids, lactate, glycerol, triglycerides, and hormones

Basal plasma NEFA levels increased from 1.1 ± 0.1 to 1.5 ± 0.1 mmol/L after 2 days of a VLCD 

(p = NS). Plasma NEFAs were suppressed during the hyperinsulinaemic euglycaemic clamp 

to 0.4 ± 0.06 and 0.4 ± 0.04 on day 0 and day 2, respectively (change between study days, 

NS). Basal and hyperinsulinaemic glycerol, triglyceride, and lactate levels did not signifi cantly 

change after a 2-day VLCD as well (Table 2).

We also measured the serum concentrations of the counterregulatory hormones: gluca-

gon, cortisol and GH. None of these hormones showed signifi cant changes between day 0 

and day 2 in either the basal or insulin-stimulated state.

Basal serum leptin levels showed a signifi cant decline after a 2-day VLCD. Only serum leptin 

levels showed a signifi cant correlation with BMI (r = 0.73, p = 0.007 on day 0; r = 0.81, p= 0.001 

on day 2). None of the 3 adipokines (leptin, resistin, and adiponectin) showed (before and 

after the intervention) a correlation with measures of insulin resistance such as fasting serum 

insulin, MCR and R
d
 of glucose (data not shown).

Table 3. Metabolic parameters at baseline (day 0) and after 2 days of a VLCD (day 2) in obese type 2 diabetic patients.

Day 0 Day 2 P

Basal EGPa 14.2 ± 1.0 11.9 ± 0.7 0.008

Clamp glucose R
a
 = R

d
12.1 ± 0.7 11.3 ± 1.0 NS

Clamp EGP 5.5 ± 0.8* 5.2 ± 0.5* NS

Basal MCR 1.5 ± 0.1 1.4 ± 0.1 NS

Clamp MCR 2.6 ± 0.2* 2.4 ± 0.3* NS

Basal whole-body glucose oxidation 6.1 ± 0.8 3.0 ± 0.4 0.0001

Clamp whole-body glucose oxidation 8.8 ± 1.0† 6.4 ± 0.6* 0.015

Basal non-oxidative glucose metabolism 8.6 ± 1.0 8.9 ± 0.7 NS

Clamp non-oxidative glucose metabolism 3.0 ± 1.3‡ 5.2 ± 1.0‡ NS

Basal glycerol R
a

5.2 ± 1.0 4.0 ± 0.6 NS

Clamp glycerol R
a

1.9 ± 0.2‡ 1.8 ± 0.2‡ NS

Basal whole-body lipid oxidation 3.8 ± 0.2 4.5 ± 0.1 0.002

Clamp whole-body lipid oxidation 2.9 ± 0.2* 3.4 ± 0.2* 0.022

All values are presented as mean ± SEM. a Units are in umol.kg-1.min-1. 
Clamp compared to basal values: * p = 0.0001; † p = 0.001; ‡ p < 0.008
R

a
 = glucose rate of appearance, R

d
 = glucose rate of disappearance, MCR = metabolic clearance rate of glucose
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Glycerol R
a
 

Basal glycerol R
a
 did not change signifi cantly after a 2-day VLCD. Insulin signifi cantly sup-

pressed glycerol R
a
 (5.2 ± 1.0 to 1.9 ± 0.2 µmol.kg-1.min-1 on day 0 [p= 0.004] and from 4.0 ± 

0.6 to 1.8 ± 0.2 µmol.kg-1.min-1 on day 2 [p=0.002]). Glycerol R
a
 during hyperinsulinaemia was 

not diff erent between study days (Table 3).

Glucose and lipid oxidation rates 

Both basal and insulin-stimulated glucose oxidation rates signifi cantly decreased after a 2-

day VLCD, whereas lipid oxidation rates (both basal and insulin stimulated) increased. Basal 

as well as clamp non-oxidative glucose disposal remained the same before and after the 2-

day VLCD (Table 3).
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Figure 2.
Plasma glucose levels (A), endogenous glucose production (C) and oxidative (B) and non-oxidative (D) glucose disposal in 12 obese type 2 
diabetic patients before and after a 2-day VLCD. Black bars represent basal values, grey bars represent values during the hyperinsulinaemic 
clamp. Values are presented as mean ± SEM. Note the decrease in FPG (A, black bars) due to a decrease in basal EGP (C, black bars), and the 
switch from glucose (B) to lipid oxidation (D).
Clamp compared with basal : * p= 0.0001; # p < 0.008; § p = 0.015
Day 0 compared wiht day 2: † p = 0.001; ‡ p = 0.0001; ¶ p = 0.008
n.s. indicates not signifi cant. 
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DISCUSSION

In this study, we assessed the determinants of the blood-glucose lowering eff ect of 2 days of 

energy restriction (VLCD; 1890 kJ/d [450 kCal/day]) in severely obese type 2 diabetic patients 

in whom all blood glucose-lowering agents including insulin were discontinued.

In the absence of a deterioration of blood glucose levels, we demonstrated a decrease of 

basal EGP. Insulin-stimulated whole-body glucose disposal did not improve, nor did insulin 

suppressibility of EGP and lipolysis.

Several studies have proven that energy restriction leads to a reduction in FPG levels4-10 

and even that FPG is closely and positively correlated to basal EGP5,6,8. However, these studies 

were either incapable of distinguishing between the eff ects of energy restriction and those 

of weight loss on glucose metabolism or were performed in a patient group with mild type 2 

diabetes. Only one study12 closely matches our study with regard to patient population (i.e., 

severely obese type 2 diabetic patients undergoing insulin therapy) and timing of the fi rst 

study day (although still on day 5, in comparison with day 2 in our study). However, their pa-

tients were probably provided with more calories compared with our patients, who received 

on average 1890 kJ/d [450 kCal/d]. In addition, it is not clear how much insulin the patients in 

the Christiansen et al. study used. Given that oral glucose-lowering medication and/or insulin 

were discontinued 2 weeks before the start of the study with no major dysregulation of their 

blood sugar levels despite the fact that they still ate their usual amount of calories suggests 

that these patients used little medication and had milder diabetes than did our patients. 

Nonetheless, in the study of Christiansen et al., the short period of energy restriction also led 

to a decrease in FPG levels caused by a reduction in basal EGP. Remarkably, the reduction in 

EGP was entirely caused by a decrease in glycogenolysis.

We only measured total EGP and could not discriminate between gluconeogenesis and gly-

cogenolysis. The fi nding of Christiansen et al.12 that a decreased glycogenolysis accounts for 

the decline in EGP after energy restriction is further supported by Clore et al.22 and Clore and 

Blackard23. They repeatedly show that liver glycogen stores are preserved in type 2 diabetic 

patients after a 3-day fast, suggesting that glycogenolysis is suppressed. However, another 

study investigated type 2 diabetic patients and control subjects between 14 and 22 hours of 

fasting24. In that study, both gluconeogenesis and glycogenolysis declined during the fast, 

with a greater reduction of gluconeogenesis in diabetic subjects compared with control sub-

jects. We believe that a decrease in glycogenolysis would be more obvious because higher 

doses of insulin are needed to suppress gluconeogenesis as compared to glycogenolysis25,26. 

So, we postulate that, in our study, the decreased basal EGP can be ascribed to a decrease in 

glycogenolysis, particularly because the decrease in basal EGP occurred despite lower basal 

serum insulin levels on day 2. This would suggest that the liver, in the postabsorptive state, 

has become more sensitive to insulin, at least with respect to glycogenolysis. However, 2 

days of energy restriction had no eff ect whatsoever on insulin’s capacity to suppress EGP dur-
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ing the hyperinsulinaemic clamp. This inability to demonstrate an eff ect of 2 days of energy 

restriction on insulin action in the liver (and in adipose tissue) may have been caused by the 

relatively high insulin levels (88 mU/L [528 pmol/L] and 84 mU/L [504 pmol/L] on day 0 and 

day 2, respectively) achieved during the clamp. These concentrations might have been high 

enough for a near-maximal suppression of the glucose and glycerol R
a
. Perhaps a diff erentiat-

ing eff ect between the 2 study days would be found if glucose and glycerol R
a
 were studied 

at lower insulin concentrations.

Basal EGP showed a signifi cant decrease of 16% after 2 days of a VLCD whereas basal FPG 

levels decreased only by 8%. Normally, a close correlation is found between FPG and basal 

EGP5,27. Our patient group, however, had higher FPG levels than that in the study of Fery27 

and the number of patients we studied was much smaller than that of Henry et al.5, who also 

pooled the data of 4 time point measurements from each patient (giving 58 measurements). 

Hence, one possible explanation for the discrepancy between the results from our study and 

those from other studies5,27 regarding the relation between EGP and FPG could be the small 

sample size in our study. On the other hand, although the change was not signifi cant, FPG 

levels did decrease and, hence, the substrate-driven glucose uptake could have decreased 

after 2 days of a VLCD (clamp glucose disposal tended to decrease on day 2; see Table 3), 

which might have partly counteracted the decrease in EGP levels.

Another fi nding of this study was a lack of improvement in whole-body glucose disposal 

and glucose MCR. This is also in accordance with the study of Christiansen et al.12. They found 

an increase in MCR not before day 20 of energy restriction. In patients with mild diabetes (un-

dergoing a diet or oral blood glucose-lowering medication only) a 4-day energy-restricted 

diet (but still providing 4620 +/- 1050 kJ/d [1100 ± 250 kCal/day]) even resulted in a dete-

rioration of basal MCR of glucose and of insulin-stimulated glucose disposal9. The latter is in 

accordance with fasting28,29 and low caloric feeding30 studies in lean normal glucose-tolerant 

subjects who show a decreased peripheral glucose disposal as well. From an evolutionary 

perspective, this is understandable since more glucose will now be available for the brain. 

The fact that this response is not apparent in obese type 2 diabetic patients is probably the 

result of the already severely insulin-resistant state.

The fact that NOGD decreased during the hyperinsulinaemic euglycaemic clamp was 

unexpected. In healthy subjects, NOGD increases, along with total glucose disposal during 

hyperinsulinaemia, whereas the rate of increase in glucose oxidation seems to be bound 

to a limit31, indicating that NOGD is quantitatively the most important. In obese and type 2 

diabetic patients, NOGD is disturbed. With increasing obesity and insulin resistance, total glu-

cose disposal and NOGD during hyperinsulinaemia are much lower compared with control 

subjects32,33. Our patients had severe insulin resistance. Despite clamp insulin levels of 88 and 

83 mU/L on day 0 and day 2 respectively, glucose disposal did not change signifi cantly and 

NOGD decreased. There was apparently some room for a slight increase in glucose oxidation 
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during hyperinsulinaemia. These fi ndings refl ect the severely insulin-resistant state of our 

subjects with a core defect in glucose storage as glycogen (NOGD).

We showed, in accordance with Markovic et al.9 and Christiansen et al.12, a switch from 

carbohydrate to lipid oxidation. What we had not expected beforehand was that the rate of 

basal lipolysis did not increase. This is in contrast to data found in lean nondiabetic subjects 

who show an increase in whole-body glycerol turnover and whole-body lipid oxidation after 

5 days of energy restriction34. However, 2 other studies in obese35 and obese diabetic12 pa-

tients (albeit performed after a longer period of energy restriction [5-20 days]), also found no 

increase in basal lipolysis. This might be indicative of a disturbed lipid metabolism in obese 

and obese diabetic subjects. On the other hand, the R
a
 of glycerol might have been already 

maximally elevated in these insulin resistant subjects, leaving no room for further increment 

of lipolysis during fasting. The increased lipid oxidation might therefore be counterbalanced 

by a decrease in lipogenesis.

We found no arguments for a role of the counterregulatory hormones we measured in the 

blood glucose-lowering eff ect of the VLCD because the concentrations of these hormones 

remained unchanged. This is also true for the adipokines adiponectin and resistin. Whereas 

the role of resistin in insulin resistance in human beings is controversial36, it is well estab-

lished that adiponectin concentrations are negatively correlated with insulin resistance, even 

independently of BMI37,38. Adiponectin levels increase with weight loss in parallel with insulin 

sensitivity39. We found no change in serum adiponectin levels after 2 days of a VLCD, which is 

consistent with the fact that we also found no change in insulin sensitivity and only a small 

amount of weight loss, mainly refl ecting salt and fl uid loss. Leptin, another adipocyte-derived 

hormone has a major role in maintaining energy homeostasis but is also thought to have glu-

cose- and insulin-lowering properties40,41. The decrease in serum leptin levels we found most 

likely refl ects the negative energy balance and is consistent with fi ndings in other studies.

We were particularly interested in obese type 2 diabetic patients undergoing insulin 

therapy because adequately regulated blood glucose levels are usually not achieved in these 

patients, instead, insulin usually aggravates the insulin-resistant state by inducing weight 

gain. The fact that plasma glucose levels do not deteriorate despite the cessation of all blood 

glucose-lowering agents off ers therapeutic options. The current study was designed to study 

the mechanism underlying the early reduction in blood glucose levels after energy restric-

tion and not its long-term eff ect. We observed, however, that 2 patients had increasing blood 

glucose levels during the fi rst few days of the VLCD but ended up normoglycaemic (without 

any form of medication) after continuation of this diet and substantial weight loss. We are 

currently investigating the eff ect on glucose metabolism of short-term energy restriction ver-

sus longer-term energy restriction with substantial weight loss, again in obese type 2 diabetic 

patients undergoing insulin therapy. Further studies are warranted to determine if any factor 

can predict a priori which patients will benefi t from the diet on the long term. This might 

withhold doctors to treat potentially nonresponsive patients with a demanding VLCD.
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In conclusion, despite the cessation of large doses of insulin and oral blood glucose-lower-

ing medication in obese type 2 diabetic patients, FPG levels do not increase and even tend 

to decline already after 2 days of a VLCD, when weight loss is minimal. The mechanism un-

derlying this early eff ect of a VLCD is a reduction in basal EGP and not an improvement in 

whole-body glucose disposal.
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ABSTRACT

This study investigates the molecular mechanisms underlying the blood glucose-lowering 

eff ect of a 2-day very low-energy diet (VLED, 1890 kJ/d = very low calorie diet [VLCD, 450 

kCal/day]) in 12 obese (body mass index 36.3 ± 1.0 kg/m2 [mean ± SEM]) type 2 diabetic 

(HbA
1c

 7.3 ± 0.4%) patients simultaneously taken off  all glucose-lowering therapy, including 

insulin.

Endogenous glucose production (EGP) and glucose disposal ([6,6 2H
2
]-glucose) were 

measured before and after the VLED in basal and hyperinsulinaemic (insulin infusion rate 40 

mU/m2/min) euglycaemic conditions. Insulin signalling and expression of GLUT4, FAT/CD36 

and triglycerides were assessed in muscle biopsies, obtained before the clamp and after 30 

minutes of hyperinsulinaemia. 

Fasting plasma glucose decreased from 11.3 ± 1.3 to 10.3 ± 1.0 mmol/L because of a 

decreased basal EGP (14.2 ± 1.0 to 11.9 ± 0.7 µmol.kg-1.min-1, p = 0.009). Insulin-stimulated 

glucose disposal did not change. No diet eff ect was found on the expression of the insulin 

receptor and insulin receptor substrate-1 or on phosphatidylinositol 3’-kinase activity, or on 

FAT/CD36 expression pattern, GLUT4-translocation or triglyceride distribution in either the 

basal or insulin-stimulated situation. Unexpectedly, basal PKB/Akt-phosphorylation on T308 

and S473 increased after the diet, at equal protein expression.

In conclusion, a 2-day VLED lowers fasting plasma glucose via a decreased basal EGP with-

out an eff ect on glucose disposal. Accordingly, no changes in activation of phosphatidylino-

sitol 3’-kinase, triglyceride distribution, FAT/CD36 expression and GLUT-4 translocation were 

found in skeletal muscle biopsies.
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INTRODUCTION

Energy restriction (ER) and weight loss1,2 improve the insulin resistance (IR) seen in obese 

type 2 diabetic patients3. Because skeletal muscle is the primary site of insulin-stimulated 

glucose disposal4 with glucose transport over the membrane as rate limiting step5, skeletal 

muscle IR might play an important role in obese type 2 diabetic patients.

Intramyocellular lipid (IMCL) accumulation is strongly associated with IR6. The cause for 

IMCL accumulation might include an increased sarcolemmal expression of the fatty acid 

transporter FAT/CD36 in obese and non-obese type 2 diabetic patients7, leading to an in-

creased rate of fatty acid transport7,8.

Intramyocellular lipids, in turn, can impair insulin signal transduction5. It has been proposed 

that fatty acid metabolites induce a sustained activation of serine/threonine kinases, such as 

protein kinase C isoforms, IκB kinase-β and Jun N-terminal kinase, which phosphorylate the 

insulin receptor substrates (IRS) IRS-1 and IRS-2 on serine and threonine sites5. Serine-phos-

phorylated forms of IRS1/2 cannot associate with and activate phosphatidylinositol 3’-kinase 

(PI3K), resulting in a decreased activation of GLUT-4-regulated glucose transport.

Energy restriction improves blood glucose values and insulin-stimulated glucose disposal 

in humans with type 2 diabetes as early as 7 days after the initiation of a 3347 kJ/d [800 

kCal/day] diet1. The molecular mechanism underlying this improvement in insulin sensitivity 

is largely unknown. In rat skeletal muscle, 20 days of ER enhanced insulin-stimulated GLUT-4 

translocation9. However, this eff ect occurred independent of activation of PI3K, indicating 

that ER ameliorates insulin-stimulated GLUT-4 translocation via other mechanisms, possibly 

down-stream of PI3K. In this regard, PKB/Akt is an attractive candidate given its putative role 

in insulin-stimulated glucose transport10,11 and the observation that 20 days of ER led to an 

increased activation of this protein in rat skeletal muscle12.

We found that a very low energy (calorie) diet (VLED = very low calorie diet [VLCD], Modi-

fast, Novartis Consumer Health, Breda, The Netherlands, 1883 kJ/d [450 kCal/day]) improves 

fasting plasma glucose (FPG) levels as early as 2 days after the initiation of the diet in obese 

type 2 diabetic patients simultaneously taken off  all blood glucose-lowering medication, in-

cluding insulin13. The present study was conducted to elucidate the mechanism underlying 

this eff ect. At the whole-body level, the blood glucose-lowering eff ect of a 2-day VLED ap-

peared to be due to a decrease in basal endogenous glucose production (EGP) with no eff ect 

on whole-body insulin-stimulated glucose disposal, as assessed with the hyperinsulinaemic 

euglycaemic clamp technique with stable isotopes14. However, because no eff ect on whole-

body insulin-stimulated glucose disposal does not preclude any eff ect (or a beginning eff ect) 

on skeletal muscle at the molecular level, we also took muscle biopsies. In fact, beforehand 

we assumed a beginning eff ect of ER on insulin signal transduction that might become ap-

parent at the whole-body level after 7 to 10 days.
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We therefore examined IRS-1-associated PI3K-activity and PKB/Akt phosphorylation in 

skeletal muscle biopsies taken before and after 2 days of a VLED, both in the basal and in the 

insulin-stimulated situation. In addition, we determined the expression and translocation of 

the fuel transporters GLUT-4 and FAT/CD36. Finally, we examined intramyocellular triglycer-

ide content with an oil red O staining.

RESEARCH DESIGNS AND METHODS

Subjects

Twelve obese type 2 diabetic patients, 5 male and 7 female (age 55 ± 4 years [mean ± SEM], 

body mass index [BMI] 36.3 ± 1.0 kg/m2) participated in this study, which was approved by 

the Medical Ethical Committee of Leiden University Medical Centre. Written informed con-

sent was obtained from all patients after the study was explained.

Patients used at least 30 units of exogenous insulin with or without oral blood glucose-low-

ering medication. Only subjects with remaining insulin secretion, defi ned as a fasting plasma 

C-peptide level of more than 0.8 ng/mL or a 2 times increase of the basal C-peptide level after 

1 mg glucagon iv15, were included.

Patients had to have stable body weight for at least 3 months and were instructed not to 

alter life style habits (eating, drinking, exercise) from screening until the start of the study. 

None of the patients were smokers, and the use of medication known to alter glucose or lipid 

metabolism was prohibited.

Diet and protocol outline

Three weeks before the start of the study, all oral blood glucose-lowering medication was 

discontinued. At day -1 and day 4, only short-acting insulin was given. On day 0, baseline 

investigations (day 0) were performed as outlined below. Insulin therapy was restarted after 

this study day until the start of the 2-day VLED on day 5 (to ensure complete washout of 

stable isotopes) and remained stopped during the 2-day VLED. On day 7 the second study 

day (day 2) took place. The VLED consisted of 3 sachets of Modifast per day, amounting 

approximately 1883 kJ/d [450 kcal/day]. Patients were provided with muesli, shakes, and po-

tage, from which they could chose freely. The exact amount of carbohydrates, protein, and fat 

in the Modifast sachets varies a little between the diff erent substances; but with 3 sachets 

of Modifast per day, patients receive about 50 g protein, 50 to 60 g carbohydrates, 7 to 9 g 

lipids, and 10 g of dietary fi bres. Patients followed the VLED at home and were only admitted 

to the research ward for study days.
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Study days

All studies started at 7:00 AM after an overnight fast. Length (m), weight (kg) and BMI (BMI = 

length [kg] / length2 [m]) were measured according to WHO recommendations16.

Metabolic studies were performed as described previously14. In short, basal rates of glu-

cose and glycerol turnover were assessed after 3 hours of an adjusted primed (17.6 µmol/kg × 

actual plasma glucose concentration [mmol/L]/5 (normal plasma glucose)17 continuous (0.33 

µmol/kg per min) infusion of [6,6-2H
2
]-glucose (Enrichment 99.9%, Cambridge Isotopes, MA, 

USA) and 1.5 hours of a primed (1.6 µmol/kg) continuous (0.11µmol/kg per min) infusion of 

[2H
5
]-glycerol (Cambridge Isotopes). Insulin-stimulated rates of glucose and glycerol turnover 

were assessed after 4.5 hours of a hyperinsulinaemic-euglycaemic clamp (Actrapid, Novo 

Nordisk Pharma, Alphen aan de Rijn, The Netherlands, rate 40 mU/m2/min18). Glucose values 

were clamped at 5 mmol/L by the infusion of a variable rate of 20% glucose enriched with 

3% [6,6-2H
2
]-glucose.

Blood chemistry

Serum insulin was measured by an ultrasensitive Human Insulin assay (Linco Research, St 

Charles, MO, USA) with a detection limit of 0.1 mU/L. The interassay coeffi  cient of varia-

tion was below 6%. Serum C-peptide was measured with a radioimmunoassay from Linco 

Research. Serum triglycerides were determined with a fully automated Hitachi 747 system 

(Hitachi, Tokyo, Japan).

Serum glucose and [6,6-2H
2
]-glucose were determined in a single analytical run, using gas 

chromatography coupled to mass spectrometry as described previously19,20.

Serum non-esterifi ed fatty acids (NEFA) were measured using the enzymatic colorimetric 

acyl-CoA synthase, acyl-CoA oxidase assay (Wako Chemicals, Neuss, Germany) with a detec-

tion limit of 0.03 mmol/L. The interassay coeffi  cient of variation was below 3%.

Muscle biopsies

Muscle biopsies were taken from the vastus lateralis muscle, after localised anaesthesia with 

1% lidocaine, with a modifi ed Bergström needle (Maastricht Instruments, Maastricht, The 

Netherlands) using applied suction21. The muscle biopsies were taken in the basal situation 

(8:00 AM, i.e., 1 hour after patients came in and were in a semirecumbent position) and 30 

minutes after the start of the insulin infusion (10 minute prime followed by a constant rate of 

40 mU/m2/min18), while blood glucose levels were kept at initial values during these fi rst 30 

minutes via the infusion of 20% glucose at a variable rate. Muscle samples were snap-frozen 

in isopentane chilled on dry ice and stored at -80°C until further analysis.

Insulin Signalling 

Muscle biopsies were homogenised in PI3K lysis buff er using an ultraturrax mixer and centri-

fuged (15 minutes, 14.000 rpm, 4oC), then protein content was determined using a BCA-kit 
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(Pierce, Rockford, IL)22. Insulin receptor substrate-1 (IRS-1) was immunoprecipitated over-

night (4oC) from 1.5 mg protein using IRS-1 antibody K6, and PI3K-activity was determined as 

described previously22.

To determine expression and phosphorylation of other components of the insulin signal-

ling system, proteins (25 µg/lane) were separated by sodium dodecyl sulfate (SDS)-polyacryl-

amide gel electrophoresis and blotted on polyvinylidene difl uoride membranes (Millipore, 

Bedford, MA). Filters were incubated overnight (4oC) with phospho-specifi c PKB/Akt-Thr308, 

PKB/Akt-Ser473 (Cell Signalling Technology, Beverly, MA), IRS1 K6 and Akt-1 antibody (Up-

state, Lake Placid, USA). Bound antibodies were detected using appropriate horseradish 

peroxidase-conjugated secondary antibodies (Promega, Madison, WI) in a 1:10.000 dilution, 

followed by visualization by enhanced chemiluminescence. Blots were quantitated by densi-

tometric analysis of the fi lms using Scion Image beta 4.02 software.

Immunofl uorescence assay for FAT/CD36 and GLUT-4 and Oil Red O staining

Routine indirect (double) immunofl uorescence assays were performed as described previ-

ously23. Serial cryosections were fi xed and incubated overnight at 4oC with the following 

primary antibodies: MO25, a monoclonal antibody directed against human FAT/CD3623; 

sc-7309 (Santa Cruz, TeBu-Bio, Heerhugowaard, the Netherlands), a mouse IgM monoclonal 

antibody reactive to FAT/CD36 of human origin; GLUT-4-BW, a polyclonal rabbit antibody 

directed against the fi nal 12 amino acids of the C-terminus of the human GLUT-4 protein24; a 

polyclonal laminin antibody (L-9393, Sigma-Aldrich Chemie, Zwijndrecht, The Netherlands); 

a monoclonal caveolin-3 antibody (clone 26; BD Biosciences Pharmingen, Alphen aan de Rijn, 

The Netherlands); and a mouse monoclonal antibody directed against adult human slow 

myosin heavy chain (A4.840; developed by Dr. Blau25).

After washing the slides with phosphate-buff ered saline (PBS), sections were incubated 

with the appropriate secondary fl uorescent-labelled antibodies and thereafter mounted with 

Mowiol.

According to Koopman et al.26, tissue sections were stained with oil red O combined with an 

immunofl uorescence assay. Oil red O epifl uorescence signal was quantifi ed for each muscle 

cell of each cross section as described before27. Lipid droplet density was calculated by divid-

ing the total numbers of droplets by the total (IMCL) area measured. Statistical signifi cance of 

diff erences between trials was assessed by paired t-tests.

Images were examined in a Nikon E800 microscope (Uvikon, Bunnik, the Netherlands) and 

were digitally captured using a 1.3 Megapixel Basler A101C progressive scan colour CCD co-

lour camera, driven by LUCIA laboratory image processing and analysis software (Laboratory 

Imaging, Prague, Czech Republic).
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Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting for FAT/CD36 and GLUT-4

Western blotting analyses were performed as described before for GLUT-424 and FAT/CD3623. 

Briefl y, forty 20-µm-thick cryosections of muscle biopsies were sampled and homogenised. 

After centrifugation, the membrane fraction (pellet) and cytosol fraction (supernatant) were 

separated and both suspended in PBS. 

For SDS-polyacrylamide gel electrophoresis and Western blotting, 1 part of the samples 

was boiled for 4 min in 2 parts of SDS-sample buff er (Bio-Rad Laboratories, Veenendaal, The 

Netherlands). Equal amounts of proteins were loaded on 10% polyacrylamide SDS-gels (Bio-

Rad Laboratories). After electrophoretic separation, the proteins were transferred to nitrocel-

lulose in Western blotting, then the blots were preincubated for 20 min with 5% non-fat dry 

milk in 0.05% Tween 20 (Sigma-Aldrich Chemicals) in PBS and incubated overnight at room 

temperature with the polyclonal GLUT-4-BW antibody24 or the MO25 monoclonal antibody 

specifi c for FAT/CD3623. Chemiluminescence detection was performed after incubation with 

the appropriate horseradish-conjugated secondary antibodies. Proteins bands were analysed 

by densitometry using Image Master (Amersham Pharmacia Biotech, Piscataway, NJ, USA).

Calculations

The rate of appearance (R
a
) and rate of disappearance (R

d
) for glucose were calculated using 

the steady state equation by Steele as adapted for stable isotopes using a single-compart-

ment kinetic model28.

Endogenous glucose production during the basal steady state is equal to the R
a
 of [6,6-

2H
2
]-glucose, whereas EGP during the clamp was calculated as the diff erence between R

a
 and 

the glucose infusion rate.

Statistical analysis

Data are presented as mean ± SEM. Diff erences before (day 0) and after (day 2) the VLED were 

analysed by the Student’s t-test for paired samples. Correlation analysis was carried out using 

Pearson’s correlation. All analyses were performed using SPSS for Windows version 11.0 (SPSS 

Inc., Chicago, IL, USA). Signifi cance was accepted at p < 0.05.

RESULTS

Clinical and metabolic characteristics

Patient characteristics can be found in Table 1.

After 2 days of a VLED, FPG levels decreased (11.3 ± 1.3 to 10.3 ± 1.0 mmol/L), despite the 

cessation of all blood glucose-lowering medication. At that moment, weight loss amounted 

2.9 ± 0.4 kg (p = 0.001). The decrease in FPG was accompanied by a signifi cant decrease in 

basal EGP (Table 2) although basal insulin levels had also signifi cantly decreased.
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On both study days, we achieved comparable clamp serum glucose and insulin values 

(Table 2, these data have already been published14). Neither insulin suppressibility of EGP 

nor insulin stimulation of whole-body glucose disposal diff ered signifi cantly after 2 days of 

a VLED (Table 2). Serum NEFA levels were more, but not signifi cantly (p = 0.057), suppressed 

during hyperinsulinaemia on day 2. In line with this fi nding, the capacity of insulin to sup-

press whole-body lipolysis as measured by R
a
 of glycerol, also did not change after 2 days of 

a VLED (data not shown).

Eff ect of a 2-day VLCD on insulin signalling in skeletal muscle

To study the eff ect of 2 days of a VLED on insulin signalling, we examined IRS-1 associated 

PI3K activity in skeletal muscle biopsies obtained before and 30 minutes after the initiation 

Table 1. Patient characteristics.

Sex (male/female) 5 : 7

Age (years) 55 ± 4

BMI (kg/m2) 36.3 ± 1.0

Waist circumference (cm) 120 ± 3

Waist-hip ratio 1.02 ± 0.03

Fasting plasma glucose (mmol/L) 11.3 ± 1.3

HbA
1c

 (%) 7.3 ± 0.4

Fasting serum insulin (mU/L) 20.7 ± 2.1

Fasting serum C-peptide (ng/mL) 1.0 ± 0.1

Duration of type 2 diabetes (years) 7.9 ± 1.3

Units of insulin injected per day 78 ± 9

Additional use of oral glucose-  6 metformin

lowering medication  1 rosiglitazone

Data are presented as mean ± SEM.

Table 2. Metabolic parameters on day 0 and after 2 days of a VLED in obese type 2 diabetic patients.

Day 0 Day 2

Basal Clamp P Basal Clamp P

Glucose (mmol/L) 11.3 ± 1.3 5.0 ± 0.4 0.0001 10.3 ± 1.0 4.9 ± 0.4 0.0001

Insulin (mU/L) 20.7 ± 2.3* 88.1 ± 5.9 0.0001 15.9 ± 1.8* 83.7 ± 4.8 0.0001

NEFA (mmol/L) 1.1 ± 0.1 0.39 ± 0.07 0.001 1.5 ± 0.1 0.35 ± 0.04 0.0001

Triglycerides (mmol/L) 1.8 ± 0.2 2.1 ± 0.2 0.028 2.0 ± 0.2 2.0 ± 0.2 NS

Glucose R
d
 ∆ 14.2 ± 1.0† 12.1 ± 0.7 NS 11.9 ± 0.7† 11.3 ± 1.0 NS

EGP∆ 14.2 ± 1.0† 5.5 ± 0.8 0.0001 11.9 ± 0.7† 5.2 ± 0.5 0.0001

Glycerol R
a
 ∆ 5.2 ± 1.0 1.9 ± 0.2 0.008 4.0 ± 0.6 1.8 ± 0.2 0.008

Basal R
d
 = R

a
= EGP. During insulin stimulation, the amount of 20% glucose has to be subtracted from the R

d
 to get EGP. 

The data in this table have already been published 14.
∆ data in μmol.kg-1.min-1

Basal day 0 versus day 2: * p = 0.033, † p = 0.008
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of a hyperinsulinaemic euglycaemic clamp. Of the 12 patients, 4 showed a higher basal PI3K 

activity after 2 days of a VLED, which was not associated with an increase in insulin-stimu-

lated PI3K activity nor with an increase in insulin-stimulated glucose disposal both before 

and after the VLED. Only in 5 out of 12 subjects, insulin increased IRS-1-associated PI3K activ-

ity, and a 2-day VLED did not improve the magnitude of this insulin response. Collectively, 

IRS-1-associated PI3K activity did not change after 2 days of a VLED, neither in the basal nor 

in the insulin-stimulated situation (Fig. 1). In addition, there was no eff ect of the VLED on the 

protein expression of the insulin receptor and IRS-1 (data not shown).

Basal PKB/Akt phosphorylation (both on T308 and S473) was signifi cantly higher after 2 

days of a VLED (Fig. 2), whereas the capacity of insulin to stimulate PKB/Akt activation was 

not signifi cantly diff erent between study days. When we looked at the individual data, none 

of the patients showed an increase in PKB/Akt phosphorylation during hyperinsulinaemia 

before the diet, whereas after the 2-day VLED, 3 of the 12 patients showed a 2-fold increase 

with hyperinsulinaemia. Protein expression of PKB/Akt (Fig. 2E) did not diff er between study 

days, neither in the basal nor in the insulin-stimulated situation.

In line with the fi nding that insulin-stimulated whole-body glucose disposal did not 

change, we also found no change in the total amount of GLUT-4 expression (Fig. 3A) nor 

in translocation of GLUT-4 from the cytoplasm to the sarcolemma (Fig. 3B-E) as assessed by 

immunofl uorescence staining (Fig. 3B-E) and Western blotting (Fig. 3A) in the skeletal muscle 

biopsies. Insulin-stimulated GLUT-4 translocation was monitored by a previously published 
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Figure 1.
Autoradiograph (A) and quantifi cation (B) of IRS-1-associated PI3K activity in vastus lateralis muscle biopsies obtained before (a and b) and 
after a 2-day VLED (c and d) in basal (a and c) and hyperinsulinaemic euglycaemic conditions (b and d), changes are not signifi cant. Data are 
expressed as mean±SEM .
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Figure 2.
Immunoblot and quantifi cation of Akt/PKB phosphorylation at Ser 473 (A and C) and Thr 308 (B and D) in vastus lateralis muscle biopsies 
obtained before (a and b) and after a 2-day VLED (c and d) in basal (a and c) and hyperinsulinaemic (b and d) conditions. An immunoblot of PKB 
protein expression is given in E. Data are expressed as mean ± SEM . Note the increase in basal PKB/Akt phosphorylation, at SER 473 as well as 
Thr 308, after 2 days of a VLED. * p < 0.001, † P < 0.005, day 2 compared to day 0.

Figure 3.
Immunoblotting (A) of total muscle fractions of two subjects (S5 and S11) before (0) and after a 2-day (2) VLED. Double-immunofl uorescence 
staining (B-E) of GLUT-4 (red) and caveolin-3 (green) in insulin-stimulated cryosections of human vastus lateralis muscle before (B, D) and after 
a 2-day VLED (C, E). 
B and C, GLUT4. D and E, GLUT4 and caveolin-3. Note the GLUT-4 accumulations near the plasmalemma both before and after the 2-day VLED 
(arrows).
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immunofl uorescence method, albeit in a diff erent model (increased GLUT-4 translocation 

upon 36 hours of pharmacologic blocking of fat oxidation using CPT129). Using this meth-

odology, we also were able to detect, in a semi-quantitative manner, insulin-induced GLUT-4 

translocation after 2 hours of a hyperinsulinaemic euglycaemic clamp in healthy human sub-

jects. Given these data (refl ecting a positive control) we are also confi dent that the method 

used is of suffi  cient sensitivity to detect insulin-mediated changes in GLUT-4 localization.

Immunofl uorescence staining showed that FAT/CD 36 was expressed at the sarcolemma 

as well in the cytoplasm of muscle cells (Fig. 4B-E) and that FAT/CD 36 staining was more in-

tense in type 1 muscle fi bres. Neither the VLED nor hyperinsulinaemia aff ected the FAT/CD 36 

staining pattern. A Western blot analysis confi rmed the fi ndings of the immunofl uorescence 

staining (Fig. 4A).

Figure 4.
Immunoblotting (A) of the muscle cell membrane fraction. Shown are two subjects (S5 and S11) before (0) and after a 2-day (2) VLED. Double-
immunofl uorescence staining of FAT/CD36 (green) and myosin heavy chain type 1 (MHC-1) (red) in insulin-stimulated cryosections of vastus 
lateralis muscle before (A, C) and after 2-days of diet intervention (B, D). A and B, FAT/CD36. C and D, FAT/CD36 and MHC-1.
I , indicates type-1 muscle fi bers. No changes were observed between study days.
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Triglyceride content in skeletal muscle cells, as assessed with oil red O staining, did not 

change between study days, neither in the basal nor in the insulin-stimulated situation 

(Fig. 5).

DISCUSSION

This study was performed to elucidate the molecular mechanism underlying the blood glu-

cose-lowering eff ect of a 2-day VLED in insulin-treated obese type 2 diabetic patients. In line 

with our previous observations13, this study again shows that 2 days of a VLED, in combina-

tion with the cessation of all blood glucose-lowering medication in obese type 2 diabetic 

patients lowers FPG levels. At the whole-body level this decrease in FPG could be explained 

by a decrease in basal EGP without an improvement in insulin-stimulated glucose disposal. 

These results are described elsewhere14.

Although we did not fi nd any improvement in insulin-stimulated glucose disposal at the 

whole-body level, we did analyse the muscle biopsies we took during this study because 

we still expected a beginning eff ect of the VLED at the molecular level in skeletal muscle 

Figure 5.
Oil red O staining (A, B) in combination with myosin heavy chain type 1 (MHC-1) immunofl uorescence assay (C, D) in cryosections of vastus 
lateralis muscle before (A, C) and after 2-days of diet intervention (B, D). No changes were observed between study days.
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biopsies. However, we did not fi nd a signifi cant diet eff ect either in GLUT-4 content or in 

GLUT-4 translocation from the cytoplasm to the plasma membrane (Fig. 3) in skeletal muscle 

biopsies. In addition, no diet eff ect was found on the protein expression of IRS-1 and on 

IRS-1-associated PI3K activation. Of the 12 patients, 4 showed a higher basal PI3K activity 

after 2 days of a VLED, which was not associated with an increase in insulin-stimulated PI3K 

activity nor with an increase in insulin-stimulated glucose disposal both before and after the 

VLED. Remarkably, 7 of 12 patients lacked an increase in insulin-stimulated PI3K activity. This 

is in accordance with several other studies in which a decreased insulin-stimulated tyrosine 

phosphorylation of IRS-1 and PI3K activity was found in skeletal muscle of type 2 diabetic pa-

tients compared to control subjects30-32. The fact that we did not fi nd any stimulation of PI3K 

activation during hyperinsulinaemia in most of our patients probably refl ects their severely 

insulin-resistant state with a grossly disturbed insulin signal transduction. A 2-day VLED does 

not (yet) improve this.

With regard to PKB/Akt we, unexpectedly, found a markedly enhanced phosphorylation 

on T308 and S473 after 2 days of a VLED in the basal situation, whereas we failed to observe 

insulin-stimulated PKB/Akt phosphorylation under our experimental conditions. Other stud-

ies found both decreased33 and normal34 insulin-stimulated PKB/Akt activity in patients with 

type 2 diabetes as compared with controls. In the latter study, supraphysiological doses of 

insulin have been used however (infusion rate of 120-300 mU/m2/min). Another problem 

with the comparison of our results with those of others is that some studies, like we did, used 

biopsies taken during in vivo physiological hyperinsulinaemia, whereas others take muscle 

biopsies and incubate the muscle strips in vitro33 with varying insulin concentrations. With 

regard to the increase in basal PKB/Akt phosphorylation, another study35 showed that obese 

patients presenting with atypical diabetes had impaired Akt-2 expression and activation 

that increased after normalisation of glycaemia with intensive insulin therapy. There are 3 

Akt isoforms (insulin action in muscle predominantly involves Akt-1 and Akt-2 stimulation) 

with Akt-2 knockout mice having impaired glucose homeostasis11. We did not measure Akt 

isoforms, and the interventions (VLED versus insulin therapy) are diff erent but both are aimed 

at lowering blood glucose levels, and it might have been interesting to see whether 2 days of 

caloric deprivation would have the same results on PKB/Akt phosphorylation in these newly 

diagnosed type 2 diabetic patients.

Despite the fact that we found no changes in IRS-1 tyrosine phosphorylation and PI3K ac-

tivity, basal PKB/Akt phosphorylation was increased after 2 days of a VLED, at equal PKB/Akt 

protein expression. This observation suggests that factors other than the IR-IRS-PI3K pathway 

also modulate the activity of PKB/Akt. In the liver, PKB/Akt has been shown to be involved in 

gluconeogenesis36. If the increased basal PKB/Akt activation we found in skeletal muscle also 

holds for the liver, this might explain the lower basal glucose production after 2 days of ER.

Studies regarding the expression pattern of FAT/CD 36 in humans are scarce37,38. Recently, 

2 morphologic studies23,39 using immunofl uorescence microscopy showed that FAT/CD 36 is 
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indeed expressed at both the sarcolemma and in the cytoplasm in human skeletal muscle. In 

both studies it became apparent that FAT/CD 36 is more abundant in type 1 muscle fi bres. In 

line with the study of Keizer et al.23 we show, for the fi rst time in obese, very insulin-resistant 

patients, a similar dual expression pattern of FAT/CD 36, which was also more prominent in 

type 1 muscle fi bres. Unlike other studies, we did not fi nd an eff ect of hyperinsulinaemia. 

This might be because many studies used the so-called giant vesicles method40,41 or it might 

refl ect the severely insulin-resistant state of our subjects. Recently, Bonen et al.7, found a 

4-fold increase in long-chain fatty acid (LCFA) transport along with an increased intramus-

cular triacylglycerol content in giant sarcolemmal vesicles prepared from skeletal muscle of 

relatively lean (BMI 25 ± 1.1 kg/m2) type 2 diabetic subjects (on diet or oral blood glucose-

lowering agents only) compared with control subjects. This increased LCFA transport was as-

sociated with an increased expression of FAT/CD 36 at the sarcolemma at equal total FAT/CD 

36 expression. This study supports the concept that augmented LCFA transport along with an 

imbalance between fatty acid reesterifi cation and oxidation leads to an excess accumulation 

of triacylglycerols in the skeletal muscle cell, a marker for insulin resistance. It also shows that 

impaired traffi  cking of FAT/CD 36 between the sarcolemma and the cytosol (with an increased 

expression at the sarcolemma) might be the underlying pathogenetic mechanism. Because 

FAT/CD 36 can, at least partly, be stimulated via the insulin signal transduction pathway42, a 

possible link with the altered GLUT-4 traffi  cking (which in contrast has a decreased expres-

sion at the sarcolemma as a pathogenic state) might be the cause of the impairment seen in 

both FAT/CD 36 and GLUT-4 traffi  cking in type 2 diabetic patients. We did not include control 

subjects and hence cannot confi rm that our patients also had relatively more FAT/CD36 at the 

sarcolemma compared with control subjects.

One might argue that we studied patients while they were not normoglycaemic. Indeed, 

hyperglycaemia may have deleterious eff ects on insulin signalling43,44, but each patient was 

his/her own control, and we were only looking for changes in signal transduction after 2 

days of a VLED. Moreover, although we discontinued all blood glucose-lowering agents, FPG 

tended to decline and certainly did not increase after 2 days of a VLED. Another criticism 

may be that the timing of the muscle biopsies might have been to soon after initiating hy-

perinsulinaemia. Serum samples showed that maximal insulin concentrations had already 

been achieved at the time of the biopsy (data not shown) although this does not mean that 

steady state insulin concentrations in the interstitium had been achieved. In addition, several 

studies have shown that the eff ect of hyperinsulinaemia on activation of insulin-signal trans-

duction molecules such as IRS-1, PI3K and PKB/Akt occur as early as 15 minutes45-47 and that 

over 50% of the maximal eff ect already occurred at this time although maximal activity was 

reached at 60 minutes47.

Kelley et al.1 showed that peripheral glucose uptake increases and contributes to the blood 

glucose-lowering eff ect of a VLED already after 7 days. Because we had seen a decrease in 

FPG levels after only 2 days of a VLED13, we presumed a change in muscle glucose uptake or 
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at least already some changes at the molecular level in skeletal muscle biopsies. Our study 

shows that the very early (2 days) glucose-lowering, insulin-sparing eff ect of a VLED is pre-

dominantly due to a decreased EGP. Studies with a longer duration of the VLED have to be 

performed to detect the moment that an increased muscular glucose uptake contributes 

to the blood glucose-lowering eff ect, what the underlying molecular mechanisms are, and 

when these underlying molecular mechanisms become apparent.

In conclusion, this is one of the very few human studies investigating the short-term eff ect 

of ER on insulin-stimulated glucose disposal both at the whole-body and at the molecular 

level in obese type 2 diabetic patients in whom all blood glucose-lowering medication was 

discontinued. The participants in our study exhibit marked clinical insulin resistance. The 

clamp data indicate that two days of reduced food intake does not signifi cantly aff ect basal 

and insulin-stimulated peripheral glucose disposal. This observation is in line with the inabili-

ty of hyperinsulinaemia to activate PKB/Akt and the lack of an eff ect of the diet on other com-

ponents of the insulin-signalling pathway such as PI3K activation and GLUT-4 expression and 

degree of GLUT-4 translocation. Remarkably, basal PKB/Akt phosphorylation is signifi cantly 

increased after 2 days of reduced food intake indicating a link between the energy status 

and basal PKB/Akt activity. In the liver, PKB/Akt has been shown to be involved in regulating 

gluconeogenesis36. If this elevated basal PKB/Akt activation also holds for the liver, a situation 

diffi  cult to test in the human situation, this could explain the observed signifi cant decrease in 

EGP in the basal state after two days of reduced food intake.
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ABSTRACT

Calorie restriction per se improves hyperglycaemia primarily via a reduction in basal endog-

enous glucose production (EGP) in obese patients with type 2 diabetes mellitus. To evalu-

ate the eff ect of weight reduction as opposed to calorie restriction, on insulin sensitivity, 10 

obese (body mass index [BMI] 40.2 ± 1.6, mean ± SEM) insulin-treated type 2 diabetic patients 

(HbA
1c

 7.7 ± 0.4%, FPG 11.1 ± 0.8 mmol/L) were studied during a very low calorie diet (VLCD, 

450 kCal/day) on day 2 and again after losing 50% of their overweight (50% OWR). Oral blood 

glucose-lowering agents and insulin were discontinued 3 weeks prior to the VLCD and at 

the start of the VLCD, respectively. EGP and whole-body glucose disposal ([6,6-2H
2
]-glucose), 

lipolysis ([2H
5
]-glycerol) and substrate oxidation rates were measured on both study days in 

basal and hyperinsulinaemic (insulin infusion rate 40mU/m2/min) euglycaemic conditions.

From day 2 to day 50% OWR, weight loss amounted 20.3 ± 2.2 kg. FPG decreased from 12.5 

± 0.5 to 7.8 ± 0.5 mmol/L (p = 0.0001), while basal EGP was restored to normal levels (20.0 

± 0.9 to 16.4 ± 1.2 µmol.kg fat free mass [FFM]-1.min-1, p = 0.001). Insulin-stimulated glucose 

disposal increased from 18.8 ± 2.0 to 39.1 ± 2.8 µmol.kgFFM-1.min-1 (p = 0.001), due to an im-

provement in both oxidative and non-oxidative glucose metabolism. The ability of insulin to 

suppress EGP also improved: EGP during hyperinsulinaemia decreased from 8.5 ± 0.9 µmol.

kgFFM-1.min-1 on day 2 to 4.6 ± 1.2 µmol.kgFFM-1.min-1 on day 50% OWR. Finally, insulin sup-

pressibility of whole lipolysis also improved as indicated by a lower R
a
 of glycerol and lower 

serum glycerol and non-esterifi ed fatty acid concentrations during hyperinsulinaemia on day 

50% OWR.

In conclusion, as opposed to caloric restriction per se, which only decreases basal EGP, 

weight loss also considerably improves insulin sensitivity, especially insulin-stimulated glu-

cose uptake, in severely obese insulin-treated type 2 diabetic patients. This occurred despite 

the fact that all blood glucose-lowering agents were discontinued and patients were still 

obese (BMI 32.3 kg/m2). This observation stresses the fundamental importance of dietary 

intervention in this patient group.
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INTRODUCTION

Most type 2 diabetic patients are obese1. Insulin resistance plays a pivotal pathogenetic role 

in inducing and maintaining hyperglycaemia in this patient group and often leads to diffi  cul-

ties in achieving adequate glycaemic regulation.

It is well known that weight reduction improves hyperglycaemia2-5 in obese patients with 

type 2 diabetes mellitus. In fact, blood glucose levels decline in response to caloric restric-

tion even before signifi cant weight loss has occurred2,3,6,7, and improve further with ongoing 

weight loss2,8. In a previous study, we showed that blood glucose levels decline already after 2 

days of a very low calorie diet in obese insulin-treated type 2 diabetic patients. The mechanism 

underlying this blood glucose-lowering eff ect of a VLCD was a decrease in basal endogenous 

glucose production (EGP), while hepatic and peripheral insulin sensitivity were unaff ected9.

The present study was conducted to evaluate, again in obese insulin-treated type 2 dia-

betic patients, whether a prolonged VLCD (Modifast, 450 kCal/day) leading to substantial 

weight loss (50% of overweight [50% OWR]) has a diff erent blood glucose-lowering mecha-

nism as compared to caloric restriction only (2-day VLCD). By establishing baseline metabolic 

status at day 2 of a VLCD, we aimed to largely negate the eff ects of caloric restriction per se so 

as to specifi cally determine the impact of body weight reduction. During the study all blood 

glucose-lowering agents, including insulin, were discontinued. We used [6,6-2H
2
]-glucose to 

measure EGP, and the hyperinsulinaemic euglycaemic clamp technique to assess insulin-me-

diated peripheral glucose disposal and the capacity of insulin to suppress EGP. In addition, 

we measured whole-body lipolysis via infusion of [2H
5
]-glycerol, and substrate oxidation rates 

via indirect calorimetry.

RESEARCH DESIGN AND METHODS

Subjects

We studied 10 obese (BMI 40.2 ± 1.6 kg/m2, mean ± SEM) patients with type 2 diabetes mel-

litus (FPG 11.1 ± 0.8 mmol/L, HbA
1c

 7.7 ± 0.4%, duration of type 2 diabetes mellitus 8 ± 3 

years), 8 women and 2 men, with a mean age of 54 ± 3 years. Subjects were recruited via 

local advertisements. All patients underwent a medical screening including a physical ex-

amination, resting electrocardiogram and blood chemistry tests to make sure that they were 

otherwise healthy and did not have liver-or renal function abnormalities. Patients had to use 

at least 30 units of insulin per day (mean 94 ± 14 units/day; 8 patients also used metformin 

and 2 patients used rosiglitazone with the insulin therapy) and had to have a BMI > 30 kg/m2. 

In addition, patients had to have remaining endogenous insulin secretion defi ned as a fasting 

plasma C-peptide level of more than 0.8 ng/mL and/or a 2-fold increase of the basal C-pep-

tide level after administration of 1 mg glucagon i.v.
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Patients had to have a stable body weight for at least 3 months and were instructed not 

to alter life style habits (eating, drinking, exercise) from screening until the start of the study. 

None of the patients were smokers and the use of other medication (than that used specifi -

cally for the treatment of hyperglycaemia) known to alter glucose or lipid metabolism was 

prohibited.

Written informed consent was obtained from each subject after oral and written explana-

tion of the study had been given. The study was approved of by the Medical Ethical Commit-

tee of Leiden University Medical Centre.

Diet and protocol outline

3 weeks prior to the start of the study all oral blood glucose-lowering medication was discon-

tinued. At day -1 only short acting insulin was given, evening doses of intermediate and long 

acting insulin were omitted. On day 0, patients started a VLCD (450 kCal/day) consisting of 3 

sachets of Modifast (Nutrition & Santé, Antwerpen, Belgium) per day, providing about 50 g 

protein, 50 to 60 g carbohydrates, 7 to 9 g lipids and 10 g dietary fi bres daily.

Insulin therapy remained stopped from the start of the VLCD on. After 48 h of the VLCD, 

patients were admitted to the research centre for the metabolic studies (day 2) as outlined 

below. After this study day patients continued the VLCD until they had lost 50% of their 

overweight (see Calculations). Then the second study day took place (day 50% overweight-

reduced [OWR]) (See Fig. 1)

During the VLCD patients visited the research centre on a weekly basis for measurement of 

body weight, waist-hip ratio, blood pressure and blood glucose regulation.

check

outpatient
clinic

Only short acting insulin was given,
last dose at evening meal 

(16 hours before
start study day)

day 0

start VLCD (450 kCal/day)
stop insulin therapy

2nd study day 0

stop oral
blood glucose
lowering agents

- 3 weeks 50 % overweight lost 
(Day 50 % OWR)

1st study day

day 2
(Day 2)

day –1

continue VLCD until 50 % of overweight is lost

No blood glucose lowering medication

Figure 1
Protocol outline. See text for explanation.
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Assessments of body composition

On both study days (day 2 and day 50% OWR), body fat mass (FM) and fat free mass mass 

(FFM) were measured by Bioelectrical Impedance Analysis (BIA, Bodystat 1500, Bodystat 

Ltd., Douglas, Isle of Man,UK). The impedance measurements were performed fi rst thing 

in the morning after subjects had voided; while they were fasting and resting in bed. On a 

separate day, close to (1 or 2 days before) day 2 and day 50% OWR, total body fat mass and 

FFM were also assessed using dual-energy X-ray absorptiometry (Hologic QDR 4500, Hologic, 

Waltham, MA, USA). The scanner had a coeffi  cient of variation for FM of 2.1% and of 1.0% for 

LBM. Data obtained for FM and FFM with either technique correlated greatly on both study 

days (r = 98, p = 0.0001). Because we did not obtain the correct data in 2 patients on day 50% 

OWR for the DEXA-scan (only bone mineral density was measured accidentally), we used the 

data obtained from the BIA for further calculations.

Length (meters [m]) and weight (kilograms [kg]), body mass index (BMI= weight (kg) 

/ length2 (m)) and waist circumference were measured according to WHO recommenda-

tions10.

Hyperinsulinaemic euglycaemic clamp studies

Metabolic studies were performed as described previously9. In short, basal rates of glucose 

and glycerol turnover were assessed after 3 hours of an adjusted primed (17.6 µmol/kg x actual 

plasma glucose concentration (mmol/L)/5 (normal plasma glucose)11 continuous (0.33 µmol/

kg per min) infusion of [6,6-2H
2
]-glucose (Cambridge Isotopes, enrichment 99.9% Cambridge, 

USA) and 1.5 hours of a primed (1.6 µmol/kg) continuous (0.11 µmol/kg per min) infusion of 

[2H
5
]-glycerol (Cambridge Isotopes, Cambridge, USA). Subsequently, insulin-stimulated rates 

of glucose and glycerol turnover were measured after 4.5 hours of a hyperinsulinaemic eug-

lycaemic clamp ((Actrapid, Novo Nordisk Pharma, Alphen aan de Rijn, The Netherlands; rate 

40 mU/m2/min)12. Glucose values were clamped at 5 mmol/L via the infusion of a variable rate 

of 20% glucose enriched with 3% [6,6-2H
2
]-glucose.

Arterialised venous blood samples13 were collected before the beginning of the tracer 

infusion, during the last 30 minutes of the basal period (3 times, with 7-minute intervals, t 

= 150-180 minutes after the start of the [6,6-2H
2
]-glucose infusion) and during the last 30 

minutes of the euglycaemic hyperinsulinaemic clamp (4 times, with 10 minute intervals, t 

= 420-450 minutes). At these time points, blood samples were taken for the determination 

of [6,6-2H
2
]-glucose- and [2H

5
]-glycerol-specifi c activity, glucose, insulin, glycerol, C-peptide, 

non-esterifi ed fatty acids (NEFAs), triglycerides, lactate, growth hormone (GH), cortisol, glu-

cagon, leptin, resistin and adiponectin.

All blood samples, except serum samples, were immediately put on ice and centrifuged 

promptly (2000×g at 4°C for 20 minutes). Serum samples fi rst had to coagulate before un-

dergoing the same procedure. Samples were subsequently put in plastic tubes and frozen 

(-20°C) until assay.
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At the end of both the basal and the clamp period indirect calorimetry with a ventilated 

hood (Oxycon Beta, Mijnhardt Jaegher, Breda, The Netherlands) was performed for 30 min-

utes for the determination of glucose and lipid oxidation rates14.

Blood chemistry

Serum insulin was measured with an immunoradiometric assay (IRMA, Biosource, Nivelles, 

Belgium). The detection limit was 3 mU/L and the interassay coeffi  cient of variation was be-

low 6%.

C-peptide, glucagon, leptin, resistin and adiponectin were measured with radioimmuno 

assays from Linco Research (St. Charles MO, USA). For C-peptide the interassay coeffi  cient of 

variation (CV) varied between 4.2 and 6.0% at diff erent levels with a sensitivity of 0.03 nmol/L. 

The CV for glucagon ranged between 4.0 and 6.8% with a sensitivity of 20 ng/L. For leptin the 

CV was 3.0-5.1% and the sensitivity 0.5 µg/L. For resistin the interassay CV was 3.2- 5.4% at 

diff erent levels, the lowest detection level was 0.15 µg/L. Adiponectin had an interassay CV of 

6.3-8.1% with a lowest detection level of 1 µg/L.

GH was measured with a time-resolved immunofl uorescent assay (Wallac, Turku, Finland) 

specifi c for the 22 kDa GH. The CV varied from 5.3 to 8.4%, sensitivity 0.03 mU/L. Cortisol 

was measured with a radioimmunoassay (Sorin Biomedica, Milan, Italy) with CV between 2.3 

and 4.2% and a detection limit of 25 nmol/L. Serum triglycerides were measured with a fully 

automated Modular P 800, serum lactate and fructosamine with a Modular I 800 system, both 

from Hitachi (Hitachi, Tokyo, Japan) with interassay CVs below 3%.

Serum glucose and [6,6-2H
2
]-glucose as well as serum glycerol and [2H

5
]-glycerol were de-

termined in a single analytical run, using gas chromatography coupled to mass spectrometry 

as described previously15,16.

 Serum non-esterifi ed fatty acids (NEFA) were measured using the enzymatic colorimetric 

acyl-CoA synthase/acyl-CoA oxidase assay (Wako Chemicals, Neuss, Germany) with a detec-

tion limit of 0.03 mmol/L. The interassay coeffi  cient of variation was below 3%.

Calculations

In all subjects, a physiologic and isotopic steady state was achieved during the last half hour 

before the clamp (t = 150-180 minutes) and during the last hour of the clamp (t = 390-450 

minutes). Therefore, the rate of appearance (R
a
) for glucose and glycerol were calculated us-

ing Steele’s steady-state equation as adapted for stable isotopes using a single-compartment 

kinetic model17.

Endogenous glucose production (EGP) during the basal steady state is equal to the R
a
 of 

glucose, whereas EGP during the clamp was calculated as the diff erence between R
a
 of glu-

cose and the glucose infusion rate.

The hepatic insulin resistance index was calculated as the product of the EGP (µmol.kgFFM-

1.min-1) and the plasma insulin concentration (mU/L)18.
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The metabolic clearance rate (MCR) of insulin was calculated as the constant infusion rate 

of insulin divided by the steady-state serum insulin concentration (SSI). The steady-state 

insulin concentration was corrected for endogenous insulin secretion using the following 

formula: SSI = steady-state insulin concentration (basal insulin concentration x [steady state 

C-peptide/basal C-peptide concentration])19,20.

Total lipid and carbohydrate oxidation rates were calculated as described by Simonson 

and DeFronzo14. For the conversion of fat oxidation from milligram per kilogram per minute 

to micromole per kilogram per minute, an average molecular weight of 270 was assumed for 

serum NEFAs7. Non-oxidative glucose metabolism was calculated by subtracting the glucose 

oxidation rate (determined by indirect calorimetry) from R
d
.

Percentage overweight was calculated as 100x(weight/ideal body weight) – 100. Ideal 

body weight for height was determined according to the Metropolitan Life Insurance tables 

(1983).

Homeostatic Model Assessment (HOMA) of insulin resistance (IR, normal values approach 

1) and β-cell function (% β, 100% is normal) were calculated with the updated computer 

version (HOMA2) of the formulae of Matthews et al21.

Statistical analysis

Data are presented as mean ± SEM. Diff erences between day 2 and day 50% OWR were an-

alysed by the Student’s t-test for paired samples. Non-parametric (Wilcoxon signed-rank test) 

tests for paired samples were performed when appropriate. All analyses were performed us-

ing SPSS for Windows version 12.0 (SPSS Inc., Chicago, IL, USA). Signifi cance was accepted at 

p < 0.05.

RESULTS

Weight and body composition 

Weight loss during the fi rst 2 days (day 0 to day 2) amounted –2.1 ± 0.3 kg, refl ecting mainly 

salt and fl uid loss. From day 2 until the second study day, patients lost an additional 20.3 ± 

2.2 kg (p = 0.0001). BMI decreased from 39.7 ± 1.7 on day 2 to 32.3 ± 1.2 kg/m2 on day 50% 

OWR (p = 0.0001). Mean time to weight loss of 50% of overweight was 17 weeks (range 4-35 

weeks).

Body fat mass decreased from 51.0 ± 3.9 kg on day 2 to 32.7 ± 3.0 kg on day 50% OWR (p 

= 0.0001). This indicates that 85% of weight loss was loss of FM, and that LBM was relatively 

spared. Waist circumference was also reduced signifi cantly (Table 1).
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Fasting plasma glucose and insulin concentration

FPG levels declined signifi cantly from day 2 of the VLCD until 50% of the overweight was 

reduced (12.5 ± 0.5 to 7.8 ± 0.5 mmol/L, p = 0.0001). In addition, serum insulin concentra-

tions declined signifi cantly between the two study days from 24.2 ± 2.2 to 15.2 ± 1.3U/L (p 

= 0.001).

Serum fructosamine levels, a measure for prolonged (2-4 weeks) glucose regulation, de-

clined from 329 ± 11 to 283 ± 12 nmol/L (p = 0.035). HOMA-IR declined signifi cantly whereas 

HOMA-β increased signifi cantly (Table 1).

Endogenous glucose production and whole-body glucose disposal.

On both study days, serum glucose was clamped at identical levels (5.1 ± 0.3 and 5.4 ± 0.3 

mmol/L on day 2 and day 50% OWR respectively, NS). The degree of hyperinsulinaemia was 

lower on day 50% OWR (80.8 ± 4.0 mU/L) as compared to day 2 (90.2 ± 3.3 mU/L, p = 0.023). 

This is probably the result of the increased metabolic clearance rate of insulin (see Table 2). 

The lower clamp serum insulin concentration on day 50% OWR does not negatively aff ect the 

results of our study. In fact, at equal and, thus, higher serum insulin levels on day 50% OWR 

the diff erences between study days on measures of insulin sensitivity would become even 

greater.

Basal EGP decreased signifi cantly from day 2 to day 50% OWR (20.0 ± 0.9 and 16.4 ± 1.2 

µmol.kgFFM-1.min-1 on day 2 and day 50% OWR, respectively, p = 0.001, Fig. 2). During the hy-

perinsulinaemic euglycaemic clamp EGP was signifi cantly lower on day 50% OWR, although 

the amount of suppression (from basal to clamp) was not signifi cantly diff erent between 

study days. However, basal and clamp hepatic insulin resistance indexes were signifi cantly 

lower on day 50% OWR (Table 2).

Table 1. Eff ect of a VLCD on body composition and glycaemic regulation in obese type 2 diabetic patients.

Before VLCD Day 2 VLCD 50% reduction 
of overweight

BMI (kg/m2) 40.2 ± 1.6 39.7 ± 1.7* 32.3 ± 1.2†

Weight (kg) 113.0 ± 7.1 110.9 ± 6.9‡ 90.6 ± 5.0†

Fat mass (kg) 51.0 ± 3.9 50.1 ± 3.7 32.7 ± 3.0†

Waist circumference (cm) 126.8 ± 3.3 126.2 ± 3.5 107.7 ± 3.3†

FPG (mmol/L) 11.1 ± 0.8 12.5 ± 0.5 7.8 ± 0.5†

Fructosamine (nmol/L) (HbA
1c 

7.7 ± 0.4%) 329 ± 11 283 ± 12§

Fasting serum insulin (mU/L) a 24.2 ± 2.2 15.2 ± 1.3||

HOMA-IR a 4.1 ± 0.3 2.1 ± 0.2¶

HOMA-β a 42.9 ± 4.0 70.9 ± 9.4#

Data are presented as mean ± SEM.
a values likely to be unreliable because patients had used short-acting insulin therapy until the evening before the start of the VLCD (day 0)
† p = 0.0001 compared to both before VLCD and Day 2 VLCD 
§ p = 0.035; || p = 0.001; ¶ p = 0.0001, # p = 0.009 day 50% OWR compared to day 2 VLCD.
‡ p = 0.0001, * p = 0.049 day 2 compared to day 0
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Table 2. Metabolic parameters during a VLCD on day 2 and after 50% of overweight (50% OWR) was lost, in obese type 2 diabetic patients.

Day 2 Day 50% OWR P

Basal EGP∆ 20.0 ± 0.9 16.4 ± 1.2 0.001

Clamp EGP∆ 8.5 ± 0.9* 4.6 ± 1.2* 0.005

Basal HIR 485 ± 39 249 ± 28 0.0001

Clamp HIR 756 ± 72 362 ± 91 0.001

Glucose R
d

∆ 18.8 ± 2.0 39.1 ± 2.8 0.001

MCR insulin (ml/m2/min) 0.47 ± 0.02 0.53 ± 0.03 0.028

Basal whole-body glucose oxidation∆ 6.7 ± 1.4 4.2 ± 0.4 NS

Clamp whole-body glucose oxidation∆ 6.1 ± 0.9 12.7 ± 1.5† 0.002

Basal non-oxidative glucose metabolism∆ 14.8 ± 1.1 12.4 ± 1.1 0.036

Clamp non-oxidative glucose metabolism∆ 12.2 ± 1.6 27.7 ± 2.8‡ 0.002

Basal glycerol R
a

º 16.4 ± 2.3 14.6 ± 1.4 NS

Clamp glycerol R
a

º 11.5 ± 2.3 7.5 ± 1.6§ NS

Basal whole-body lipid oxidation∆ 8.0 ± 0.5 7.1 ± 0.5 NS

Clamp whole-body lipid oxidation∆ 8.3 ± 0.3 5.5 ± 0.8|| 0.008

Data are presented as mean ± SEM. NS indicates not signifi cant.
∆ values are in µmol.kgFFM-1.min-1 ; º values are in µmol.kgFM-1.min-1

 EGP in µmol.kgFFM-1.min-1 was multiplied with plasma insulin in mU/L
* p = 0.0001, † p = 0.001, ‡ p = 0.005, § p = 0.012, || p = 0.011 clamp versus basal values
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Figure 2.
Endogenous glucose production (EGP) [A], glucose disposal rates (Rd glucose) [B], oxidative [C] and non-oxidative [D] glucose disposal rates 
in 10 obese type 2 diabetic patients on day 2 of a VLCD and after a weight loss of 50% of the overweight (day 50% OWR). Black bars represent 
basal values; grey bars represent values during the hyperinsulinaemic euglycaemic clamp. Values are presented as mean ± SEM. Note the 
decrease in FPG levels and a decrease in basal EGP as well as a better suppression of EGP during insulin stimulation.
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Of the hormones involved in the regulation of hepatic glucose production, fasting serum 

cortisol and glucagon concentrations did not change with weight loss, whereas fasting 

growth hormone levels (as expected) increased (Table 3).

Insulin stimulated glucose disposal increased from 18.8 ± 2.0 µmol.kgFFM-1 on day 2 to 39.1 

± 2.8 µmol.kgFFM-1.min-1on day 50% OWR, p = 0.001 (Fig. 2). This is an increase of 107%.

The MCR of insulin was signifi cantly greater on day 50% OWR, which could explain the 

lower steady state serum insulin values at the end of the clamp procedure on day 50% OWR 

(while the insulin infusion rate of 40 mU/m2/min was the same on both study days).

Glycerol R
a
 and non-esterifi ed fatty acids, glycerol and triglycerides

Basal glycerol R
a
 decreased from 16.4 ± 2.3 to 14.6 ± 1.4 µmol.kgFM-1.min-1 (p = NS) between 

study occasions. The R
a
 of glycerol during the clamp was lower on day 50% OWR as compared 

to day 2, but this diff erence also did not reach signifi cance. The Glycerol R
a
 was suppressed 

to a lower level by insulin on day 50% but if the change in glycerol R
a
 from basal to hyperin-

sulinaemia was calculated, statistical signifi cance was not reached (–4.8 ± 2.7 on day 2 versus 

-7.1 ± 2.2 µmol.kgFM-1.min-1 after 50% of overweight was lost) (Table 2 and Fig. 3).

However, fasting levels of NEFAs, triglycerides and glycerol declined signifi cantly, and clamp 

values of serum NEFA and glycerol were also signifi cantly lower at day 50% OWR, refl ecting a 

better suppressibility of lipolysis by insulin (Table 3).

Glucose and lipid oxidation rates

On day 50% OWR, insulin infusion increased the rate of glucose oxidation signifi cantly as 

compared to day 2. Basal, as well as insulin-stimulated non-oxidative glucose disposal 

(NOGD) also increased signifi cantly after the weight loss. The capacity of insulin to suppress 

lipid oxidation was improved with weight loss (Table 2 and Fig. 3).

Table 3. Eff ects of weight loss on hormones, substrate levels and adipokines in obese type 2 diabetic patients.

Day 2 Day 50% OWR P

Fasting serum cortisol (nmol/L) 451 ± 30 419 ± 34 NS

Fasting serum GH (mU/L) 1.2 ± 0.4 3.7 ± 1.5 0.012

Fasting serum glucagon (ng/L) 63.2 ± 8.3 70.7 ± 5.1 NS

Fasting serum glycerol (µmol/L) 150 ± 15 108 ± 12 0.008

Fasting serum NEFA (mmol/L) 1.6 ± 0.2 1.2 ± 0.1 0.018

Fasting serum triglycerides (mmol/L) 2.7 ± 0.5 1.2 ± 0.1 0.005

Fasting serum leptin (µg/L) 26.9 ± 4.4 11.4 ± 2.8 0.005

Fasting serum resistin (µg/L) 13.3 ± 1.1 11.5 ± 1.0 NS

Fasting serum adiponectin (µg/L) 5.2 ± 0.4 6.6 ± 0.6 0.012

Clamp serum glucose (mmol/L) 5.1 ± 0.3 5.4 ± 0.3 NS

Clamp serum insulin (mU/L) 90.2 ± 3.3 80.8 ± 4.0 0.023

Clamp serum glycerol (µmol/L) 114 ± 18 65 ± 12 0.011

Clamp serum NEFA (mmol/L) 1.1 ± 0.3 0.3 ± 0.1 0.017

Data are presented as mean ± SEM. NS indicates not signifi cant.  
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Adipokines

As expected with weight loss, serum leptin levels were signifi cantly lower at day 50% OWR. 

Serum resistin levels were not signifi cantly diff erent between study days but serum adipo-

nectin was signifi cantly higher on day 50% OWR.

DISCUSSION

The aim of the present study was to evaluate the underlying mechanisms by which weight 

reduction per se improves hyperglycaemia in obese insulin-treated type 2 diabetic patients. 

As compared to caloric restriction per se (2-day VLCD9), a prolonged VLCD leading to a loss of 

50% of overweight led to a substantial improvement in insulin-stimulated glucose disposal, 

despite the cessation of all blood glucose-lowering medication (including insulin) and the 

fact that patients were still obese. This improvement in insulin-stimulated glucose uptake 

was due an improvement in both oxidative and non-oxidative glucose disposal. In addition, 

insulin sensitivity of the liver and adipose tissue, refl ected in the rate of insulin-suppressibility 

of EGP and lipolysis (R
a
 glycerol, and hyperinsulinaemic serum FFA and glycerol concentra-

tions), respectively, also improved. This study indicates that prolonged use of a VLCD, result-

ing in major weight loss, induces additional adaptations in fundamental aspects of glucose 

metabolism in obese patients with type 2 diabetes mellitus compared to those induced by 

short-term use of a VLCD.

The increase in insulin-stimulated glucose uptake was due to an increase in both insulin-

stimulated glucose oxidation as well as non-oxidative glucose disposal (NOGD). A 2-day VLCD 

not only had no eff ect on insulin-stimulated glucose uptake but even decreased NOGD9. In 
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Figure 3.
Glycerol Ra [A] and lipid oxidation [B] rates in 10 obese type 2 diabetic patients on day 2 of a VLCD and after a weight loss of 50% of the 
overweight (day 50% OWR). Black bars represent basal values, grey bars represent values during the hyperinsulinaemic euglycaemic clamp. 
Values are presented as mean ± SEM. Note that values for R

a
 of glycerol are presented in µmol.kgFM-1.min-1, while those for lipid oxidation are 

in µmol.kgFFM-1.min-1. Weight loss resulted in a decrease in basal whole-body lipolysis and lipid oxidation, with a better suppression during 
hyperinsulinaemia of both parameters.
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obese and type 2 diabetic patients, total glucose disposal and NOGD during hyperinsulinae-

mia are much lower compared to controls22-24. Since the increase in insulin-stimulated glucose 

oxidation seems to be bound to a maximum25, NOGD is quantitatively the most important. 

Hence the improvement in NOGD is an important fi nding, indicating that patients were bet-

ter able to store glucose as glycogen after weight loss. Others found either an increase5,6,26,27 

or no eff ect28,29 on NOGD with weight loss following low calorie diets in obese type 2 dia-

betic6,27,28,30 patients. The mechanisms underlying an improvement in NOGD are unclear, since 

several studies failed to demonstrate an eff ect of weight loss on glycogen synthase activity 

in skeletal muscle biopsies26,28,30.

As compared to a 2-day VLCD, basal EGP was reduced further to normal levels. Because we 

did not measure between day 2 and day 50% OWR we do not know at what time-point nor-

mal values for basal EGP were obtained. Given the fact that basal EGP decreased substantially 

within 2 days of a VLCD9, and the fact that others found that the greatest reduction in EGP 

takes place in the fi rst 7-10 days of caloric restriction2,3 the normalisation of basal EGP prob-

ably took place early during the course of the VLCD. The improvement in insulin suppress-

ibility of EGP has been found before3,6 and occurs already with modest (approximately 8 kg) 

weight loss31. However, Laakso et al.27 did not fi nd an eff ect of weight loss on insulin sensitivity 

of the liver. With respect to the causes of the improvement in basal EGP and insulin-suppress-

ibility of EGP, of the hormones we measured, the concentration of glucagon and cortisol did 

not change while the GH concentration (a hormone known to stimulate EGP) was decreased 

with weight loss. In addition, the decrease in serum NEFAs and glycerol, and probably also a 

decrease in intrahepatic fat, might contribute. Furthermore, in rodents and in in vitro studies, 

adiponectin (levels of which were increased with weight loss in our study) can inhibit gluco-

neogenesis32,33. In humans, serum adiponectin levels are negatively correlated with EGP34.

We found a lower basal and hyperinsulinaemic R
a
 of glycerol, as well as lower basal and 

hyperinsulinaemic serum NEFA and glycerol concentrations after weight loss, altogether 

indicative of a lower basal rate of lipolysis and an improved capacity of insulin to suppress 

whole-body lipolysis. In healthy and obese humans, short-term fasting increases the basal 

rate of lipolysis, whereas it remains the same or even decreases following short-term severe 

caloric restriction in obese type 2 diabetic patients7,9. Caloric restriction for a longer period 

of time in obese patients (VLCD 615 kcal/day during 28 days)35 and obese patients with type 

2 diabetes (10 days 25% of energy requirements and 10 days 75%)7 has no eff ect on the 

basal rate of glycerol R
a
. The fact that we found a decline in the basal rate of lipolysis cannot 

be explained by the lower total body fat mass because we expressed the R
a 

of glycerol per 

kilogram fat mass. We presume that the rate of lipolysis has been higher at the beginning of 

the VLCD, but that with ongoing caloric restriction, because of a lower metabolic rate, utility 

(lipid oxidation) has decreased, and, because there is a balance between lipolysis (produc-

tion) and lipid oxidation (utility), lipolysis has also decreased. The cause of the decrease in 

basal metabolic rate during calorie restriction is unknown but intracellular enzymatic pro-
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cesses must be involved. These processes are in themselves regulated by several hormones 

and the autonomic nervous system. The novelty of our study is that we also documented 

the eff ect of a prolonged VLCD leading to substantial weight loss on insulin suppressibility 

of whole-body lipolysis, measured with [2H
5
]-glycerol, in obese insulin-treated obese type 2 

diabetic patients, and showed that insulin suppressibility of lipolysis improves with weight 

loss. We could not compare these results with those of others because data are lacking for 

this intervention and patient group.

We also documented, with a hyperinsulinaemic euglycaemic clamp technique combined 

with [6,6-2H
2
]-glucose, the magnitude of the improvement in insulin-stimulated glucose dis-

posal (107%) following substantial weight loss in very obese insulin-treated patients with 

type 2 diabetes. Several studies using the hyperinsulinaemic euglycaemic clamp technique 

(but without stable isotopes) have been performed in morbidly obese non-diabetic patients 

before and after substantial weight loss following bariatric surgery. M-values in the lean con-

trol groups in these studies were around 50 µmol.kg LBM-1.min-1 (LBM = lean body mass)36-38. 

After signifi cant weight loss (50-60 kg) M-values in obese patients increased from 7-19 µmol.

kg LBM-1.min-1 to around 35 µmol.kg LBM-1.min-1 in 2 studies36,39 and even above 50 µmol.kg 

LBM-1.min-1 in 2 other studies37,38, while their BMI remained in the obese range after weight 

loss (30-39.9 kg/m2), like in our patients. When we calculated M-values in our study, patients 

increased from 9.9 ± 2.3 to 37.2 ± 4.6 µmol.kg LBM-1.min-1. Although the eff ectiveness of bar-

iatric surgery in improving type 2 diabetes has been established in several studies40-42 (review 

in43), unfortunately again no data on glucose disposal rates are available in obese type 2 

diabetic patients.

Hence, short-term energy, or, more likely, carbohydrate restriction, improves hyperglycae-

mia primarily via a reduction in basal EGP9,44. Modest weight loss (approximately 8 kg) also im-

proves hepatic insulin sensitivity31, and substantial weight loss improves all aspects of glucose 

metabolism (this study). Given the fact that weight loss induced by subcutaneous liposuction 

does not lead to an improvement in insulin sensitivity (and adipokines such as leptin and adi-

ponectin)45, whereas weight loss with a decrease in waist circumference (like we found) does, 

indicates a role for energy restriction and/or upper body obesity (i.e., visceral adipose tissue 

and/or the deep layers of abdominal subcutaneous tissue). Unfortunately, we did not measure 

visceral fat mass and hence could not investigate whether the improvement in glucose and 

lipid metabolism we found, is correlated with a decrease in visceral fat mass. The decline in 

fasting as well as clamp levels of NEFA and triglycerides suggests a decrease in lipotoxicity.

In conclusion, prolonged caloric restriction leading to 50% reduction of overweight in 

obese type 2 diabetic patients simultaneously taken off  all blood glucose-lowering medi-

cation (including insulin), considerably improves insulin sensitivity of endogenous glucose 

production, peripheral glucose uptake and lipolysis, even though patients were still obese 

(BMI 32.3 ± 1.2 kg/m2). These observations stress that weight-reducing strategies, especially 

diets, should be a cornerstone of therapy in obese type 2 diabetic patients.
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ABSTRACT

To investigate the eff ect of considerable weight loss on skeletal muscle glucose disposal, 

both at the whole body and at the molecular level, 10 obese (BMI 40.2 ± 1.6 kg/m2 [mean 

± SEM]) insulin-treated type 2 diabetic patients (HbA
1c

 7.7 ± 0.4%, FPG 11.1 ± 0.8 mmol/L) 

were studied during a very low calorie diet (VLCD, 450 kCal/day) on day 2 and again after 

losing 50% of their overweight (50% OWR). Oral blood glucose-lowering agents and insu-

lin were discontinued 3 weeks prior to the VLCD and at the start of the VLCD, respectively. 

Endogenous glucose production (EGP) and whole-body glucose disposal (6,6-2H
2
-glucose), 

lipolysis (2H
5
-glycerol) and substrate oxidation rates were measured on both study days in 

basal and hyperinsulinaemic (insulin infusion rate 40mU/m2 per minute) euglycaemic condi-

tions. In addition, skeletal muscle biopsies were obtained from the vastus lateralis muscle, 

in the basal situation and 30 min after the start of the insulin infusion for determination of 

insulin signalling, insulin-mediated expression of GLUT-4 and FAT/CD36 at the cell membrane 

and intramyocellular triglyceride content.

Weight reduction (20.3 ± 2.2 kg from day 2 to day 50% OWR) not only normalised basal 

EGP, but also improved insulin sensitivity, especially insulin-stimulated glucose disposal (18.8 

± 2.0 to 39.1 ± 2.8 µmol.kgFFM-1.min-1, p = 0.001). At the myocellular level, insulin-stimulated 

phosphatidylinositol 3’-kinase (PI3K)-activity over basal was signifi cantly higher after weight 

loss. In addition, 2 down-stream eff ectors, AS160 and PRAS40, showed an absolute increase 

after weight loss. The improvement in insulin signalling was accompanied by a tendency 

for increased GLUT-4 content at the sarcolemma during hyperinsulinaemia. Intramyocellular 

triglyceride content decreased, with no signifi cant change in insulin-stimulated sarcolemmal 

FAT/CD36 content. Time to weight loss of 50% overweight was negatively correlated with the 

number of type I muscle fi bres at baseline.

In conclusion, the increase in insulin-stimulated glucose disposal after considerable weight 

loss in obese type 2 diabetic patients is associated with a tendency to improved insulin sig-

nalling at the level of PI3K, and a signifi cant improvement in signalling towards the more 

downstream components, AS160 and PRAS40. The observed decrease in intramyocellular 

triglyceride content might have contributed to this eff ect. The fact that GLUT-4 content at 

the sarcolemma did not change signifi cantly indicates that it is not GLUT-4 content that is 

important in insulin-stimulated glucose disposal, but rather its insulin-stimulated transloca-

tion or the intrinsic activity of GLUT-4. Alternatively, another glucose transporter or increased 

glucose uptake in adipose tissue might be responsible for the observed increase in insulin-

stimulated glucose uptake.
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INTRODUCTION

About 80% of insulin-stimulated glucose disposal takes place in skeletal muscle1, with glu-

cose transport over the membrane as the rate limiting step2. In type 2 diabetic patients, insu-

lin-stimulated glucose disposal is disturbed due to defects in the insulin-signalling pathway 

regulating the translocation of the glucose transporter GLUT-4 to the cell membrane. Nota-

bly, defects in insulin-induced phosphorylation of insulin receptor substrate-1 (IRS-1) and 

phosphatidylinositol 3-kinase (PI3K)3-6 and in translocation of GLUT-4 to the cell membrane7,8 

have been found in skeletal muscle of patients with type 2 diabetes, whereas total GLUT-4 

protein and mRNA levels in type 2 diabetic patients have repeatedly shown to be normal9,10. 

The involvement of the PI3K substrate protein kinase B (PKB/Akt) in skeletal muscle insulin 

resistance is less clear, as is illustrated by studies reporting either normal4,11 or impaired ac-

tivation12,13 by insulin. However, the recently characterised Akt substrate 160 (AS160)14,15 has 

been implicated in linking PKB/Akt activation to GLUT-416 traffi  cking and insulin-mediated 

AS160 phosphorylation is impaired in skeletal muscle of type 2 diabetic patients17. Collec-

tively these studies highlight the importance of the PI3K-PKB/AKT-AS160-signalling pathway 

regulating GLUT-4 traffi  cking.

Caloric restriction and weight loss both improve hyperglycaemia in type 2 diabetic patients. 

We previously reported that a 2-day very low calorie diet (VLCD, Modifast, 450 kCal/day) de-

creased basal endogenous glucose production (EGP) in obese insulin-treated type 2 diabetic 

patients in whom all blood glucose-lowering medication was discontinued17. These changes 

were neither accompanied by an improvement in whole-body peripheral insulin sensitivity, 

nor by changes in insulin signalling, fuel transporter (GLUT-4, FAT/CD 36) localisation and 

triglyceride content in skeletal muscle biopsies19.

In the present study, we assessed whether a prolonged VLCD in obese insulin-treated type 

2 diabetic patients leading to substantial weight loss (50% of overweight) has a diff erent 

blood glucose-lowering mechanism as compared to caloric restriction only (2-day VLCD). 

During the study all blood glucose-lowering agents, including insulin, were discontinued. 

Insulin sensitivity was determined by hyperinsulinaemic euglycaemic clamp (insulin infusion: 

10 minute prime followed by a constant rate of 40 mU/m2/min) on day 2 of the VLCD and after 

loss of 50% of the overweight. Insulin signalling, insulin-mediated expression of GLUT-4 and 

FAT/CD36 at the cell membrane and intramyocellular triglyceride content were determined 

in skeletal muscle biopsies obtained on both study days in the basal situation and 30 minutes 

after the start of the insulin infusion.
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RESEARCH DESIGN AND METHODS

Subjects

10 obese (BMI 40.2 ± 1.6 kg/m2, [mean ± SEM]) patients with type 2 diabetes mellitus (FPG 

11.1 ± 0.8 mmol/L, HbA
1c

 7.7 ± 0.4%, duration of type 2 diabetes mellitus 8 ± 3 years), 8 

women and 2 men (age 54 ± 3 years) participated in this study, which was approved by the 

Medical Ethical Committee of Leiden University Medical Centre. Written informed consent 

was obtained from all patients after the study was explained.

Patients had to use at least 30 units of insulin per day (mean 94 ± 14 units/day, 8 patients 

also used metformin and 2 patients used rosiglitazone with the insulin therapy) and had to 

have a BMI > 30 kg/m2. In addition, patients had to have remaining endogenous insulin secre-

tion defi ned as a fasting plasma C-peptide level of more than 0.8 ng/mL or a 2-fold increase 

of the basal C-peptide level after administration of 1 mg glucagon i.v.

Patients had to have a stable body weight for at least 3 months and were instructed not 

to alter life style habits (eating, drinking, exercise) from screening until the start of the study. 

None of the patients were smokers and the use of other medication (than that used specifi c 

for the treatment of hyperglycaemia) known to alter glucose or lipid metabolism was pro-

hibited.

Diet and protocol outline

Three weeks before the start of the study, all oral blood glucose-lowering medication was dis-

continued. At day -1 only short acting insulin was given, evening doses of intermediate- and 

long-acting insulin were omitted. On day 0, patients started a VLCD (450 kCal/day) consisting 

of 3 sachets of Modifast (Nutrition & Santé, Antwerpen, Belgium) per day, providing about 

50 gram protein, 50 to 60 g carbohydrates, 7 to 9 g lipids, and 10 g of dietary fi bres. Insulin 

therapy remained stopped from the start of the VLCD on. After 48 hours of the VLCD patients 

were admitted to the research centre for the metabolic studies (day 2) as outlined below. After 

this study day patients continued the VLCD until they had lost 50% of their overweight (see 

Calculations). Then the second study day took place (day 50% overweight-reduced [OWR]).

During the VLCD patients visited the research centre on a weekly basis for measurement of 

body weight, waist-hip ratio, blood pressure and blood glucose regulation.

Study days

All studies started at 7:00 AM after an overnight fast. Length (meters [m]), weight (kilograms 

[kg]) and body mass index (BMI= weight (kg) / length2 (m)) were measured according to WHO 

recommendations20. Body fat mass (FM) and fat free mass (FFM) were measured by Bioelectri-

cal Impedance Analysis (BIA, Bodystat 1500, Bodystat Ltd., Douglas, Isle of Man, UK). The im-

pedance measurements were performed fi rst thing in the morning after subjects had voided 

and while they were fasting and resting in bed.
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Metabolic studies were performed as described previously18. In short, basal rates of glu-

cose and glycerol turnover were assessed after 3 hours of an adjusted primed (17.6 µmol/kg 

x actual plasma glucose concentration (mmol/L)/5(normal plasma glucose)21 continuous 

(0.33 µmol/kg per min) infusion of [6,6-2H
2
]-glucose (Cambridge Isotopes, enrichment 99.9% 

Cambridge, USA) and 1.5 hours of a primed (1.6 µmol/kg) continuous (0.11µmol/kg per min) 

infusion of [2H
5
]-glycerol (Cambridge Isotopes, Cambridge, USA). Insulin-stimulated rates of 

glucose and glycerol turnover were assessed after 4.5 hours of a hyperinsulinaemic eugly-

caemic clamp (Actrapid, Novo Nordisk Pharma, Alphen aan de Rijn, The Netherlands, rate 40 

mU/m2/min 22). Glucose values were clamped at 5 mmol/L via the infusion of a variable rate 

of 20% glucose enriched with 3% [6,6-2H
2
]-glucose.

Blood chemistry

Serum insulin was measured with an immunoradiometric assay (IRMA, Biosource, Nivelles, 

Belgium). The detection limit was 3 mU/L en the interassay coeffi  cient of variation was below 

6%.

Serum C-peptide was measured with a radioimmuno assay from Linco Research, St. Charles 

MO, USA. The interassay coeffi  cient of variation (CV) varied between 4.2 and 6.0% at diff er-

ent levels with a sensitivity of 0.03 nmol/L. Serum triglycerides were determined with a fully 

automated Hitachi 747 system (Hitachi, Tokyo, Japan).

Serum glucose and [6,6-2H
2
]-glucose as well as serum glycerol and [2H

5
]-glycerol were de-

termined in a single analytical run, using gas chromatography coupled to mass spectrometry 

as described previously23,24.

Serum non-esterifi ed fatty acids (NEFAs) were measured using the enzymatic colorimetric 

acyl CoA synthase/acyl-CoA oxidase assay (Wako Chemicals, Neuss, Germany) with a detec-

tion limit of 0.03 mmol/L. The interassay coeffi  cient of variation was below 3%.

Muscle biopsies

Muscle biopsies were taken from the vastus lateralis muscle after localised anaesthesia with 

1% lidocaine, with a modifi ed Bergström needle (Maastricht Instruments, Maastricht, The 

Netherlands) using applied suction25. The muscle biopsies were taken in the basal situation 

(8:00 AM, i.e., 1 hour after patients came in and were in a semirecumbent position) and 30 

minutes26 after the start of the insulin infusion (10 minute prime followed by a constant rate 

of 40 mU/m2/min), while blood glucose levels were kept at initial values during these fi rst 30 

minutes via the infusion of 20% glucose at a variable rate. Muscle samples were snap-frozen 

in isopentane chilled on dry ice and stored at -80°C until further analysis.

Insulin Signalling

Muscle biopsies were homogenised in PI3K lysis buff er using an ultraturrax mixer and centri-

fuged (15 minutes; 14.000 rpm; 4oC), then protein content was determined using a BCA-kit 
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(Pierce, Rockford, IL)27. Insulin receptor substrate-1 (IRS-1) was immunoprecipitated over-

night (4oC) from 1.5 mg protein using IRS-1 antibody K6, and PI3K-activity was determined as 

described previously27.

To determine expression and phosphorylation of other components of the insulin signal-

ling system, proteins (25 µg/lane) were separated by sodium dodecyl sulfate (SDS)-polyacryl-

amide gel electrophoresis and blotted on polyvinylidene difl uoride-membranes (Millipore, 

Bedford, MA). Filters were incubated overnight (4oC) with IRS-1 K6 and Akt-1 antibody (Up-

state, Lake Placid, USA), anti-phospho-Proline rich Akt substrate 40 (PRAS40)-Thr246 (#44-

100G), anti-phospho-AS160 (#44-1071G) (Biosource International, Camarillo, CA, USA) and 

anti-AS160/TBC1D4-antibody (Abcam, Ltd, Cambridge, UK). Bound antibodies were detected 

using appropriate horseradish peroxidase-conjugated secondary antibodies (Promega, 

Madison, WI, USA) in a 1:10.000 dilution, followed by visualization by enhanced chemilumi-

nescence. Blots were quantitated by densitometric analysis of the fi lms using Scion Image 

beta 4.02 software.

Oil Red O staining

According to Koopman et al.28 tissue sections of basal biopsies were stained with Oil Red 

O (ORO) combined with a double-immunofl uorescence assay. Briefl y, after fi xation with 

4% formaldehyde in mQ-water, sections were incubated for 45 minutes at room tempera-

ture with a mixture of the polyclonal rabbit antiserum directed to laminin (L-9393, Sigma, 

Sigma-Aldrich Chemie, Zwijndrecht, The Netherlands) and a mouse monoclonal antibody 

directed against adult human slow myosin heavy chain (Developmental Studies Hybridoma 

Bank, Iowa City, IO, USA). After three washing steps with phosphate-buff ered saline (PBS), 

sections were incubated for 30 minutes at room temperature with the appropriate second-

ary antibodies, i.e., Goat anti-Rabbit AlexaFluor350 and Goat anti-Mouse IgM AlexaFluor488 

(Molecular Probes, Invitrogen, Breda, The Netherlands). After three fi nal washing steps with 

PBS, sections were stained with Oil Red Oil according to Koopman et al. 28. Finally, the sections 

were mounted in Mowiol. 

Images were examined in a Nikon E800 microscope (Uvikon, Bunnik, the Netherlands) and 

were digitally captured using a 1.3 Megapixel Basler A101C progressive scan colour CCD co-

lour camera, driven by LUCIA laboratory image processing and analysis software (Laboratory 

Imaging, Prague, Czech Republic).

Oil Red O epifl uorescence signal was quantifi ed for each muscle cell of each cross section 

as described before29. Lipid droplet density was calculated by dividing the total number of 

droplets by the total (IMCL) area measured.
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Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting for FAT/CD36 and GLUT-4

For Western blotting analyses, muscle membrane fractions and total muscle protein fractions 

were prepared as described before for GLUT-430 and FAT/CD36 19,31 in biopsies taken during 

the insulin-stimulated situation.

Equal amounts of proteins were loaded on 10% polyacrylamide SDS-gels and after elec-

trophoretic separation, the proteins were transferred to nitrocellulose in Western blotting. 

Then the blots were preincubated for 60 min with Odyssey Blocking Buff er (Licor, Westburg, 

Leusden, The Netherlands) 1:1 diluted in PBS and incubated overnight at room temperature 

with the polyclonal GLUT-4-BW antibody30 or the MO25 monoclonal antibody specifi c for FAT/

CD3631. Then, after incubation with the appropriate secondary antibodies Donkey anti-Rab-

bit IRDye800 and Donkey anti-Mouse IRDye800 (Rockland, TeBu-bio, Heerhugowaard, The 

Netherlands), protein bands were detected and quantifi ed with an Odyssey Infrared Imager 

(Licor). Primary and secondary antibodies were diluted in Odyssey Blocking Buff er. Finally, 

protein bands were detected and quantifi ed with an Odyssey Infrared.

Calculations

The rate of appearance (R
a
) and rate of disappearance (R

d
) for glucose and glycerol were cal-

culated using the steady state equation by Steele32 as adapted for stable isotopes using a 

single compartment kinetic model.

Endogenous glucose production (EGP) during the basal steady state is equal to the R
a
 of 

glucose, whereas EGP during the clamp was calculated as the diff erence between R
a
 and the 

glucose infusion rate.

Total lipid and carbohydrate oxidation rates were calculated as described by Simonson 

and DeFronzo33. For the conversion of fat oxidation from milligram per kilogram per minute 

to micromole per kilogram per minute an average molecular weight of 270 was assumed for 

serum NEFAs. Non-oxidative glucose metabolism was calculated by subtracting the glucose 

oxidation rate (determined by indirect calorimetry) from R
d
.

Percentage overweight was calculated as: 100 x (weight/ideal body weight) – 100. Ideal 

body weight for height was determined according to the Metropolitan Life Insurance tables 

(1983).

Statistical analysis

Data are presented as mean ± SEM. Diff erences between day 2 and day 50% OWR, as well as 

diff erences between basal and insulin-stimulated biopsies were analysed by the Student’s t-

test for paired samples. Non-parametric (Wilcoxon signed-rank test) tests for paired samples 

were performed when appropriate. Correlation analysis was carried out using Pearson’s cor-

relation. All analyses were performed using SPSS for Windows version 12.0 (SPSS Inc., Chi-

cago, IL, USA). Signifi cance was accepted at p < 0.05.
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RESULTS

Clinical and metabolic characteristics

Patient characteristics can be found in Table 1. Mean weight loss from day 2 to day 50% OWR 

amounted 20.3 ± 2.2 kg, average time to weight loss of 50% of overweight was 17 weeks 

(range 4 to 35 weeks). FPG levels declined signifi cantly from day 2 to day 50% OWR (12.5 ± 

0.5 to 7.8 ± 0.5 mmol/L, p = 0.0001). Basal EGP decreased from 20.0 ± 0.9 to 16.4 ± 1.2 µmol.

kgFFM-1.min-1, p = 0.001. Weight loss to 50% OWR also improved insulin sensitivity (Table 2), 

Table 1. Patient characteristics.

Sex (male/female) 2 : 8

Age (years) 54 ± 3

Weight (kg) 113.0 ± 7.1

BMI (kg/m2) 40.2 ± 1.6

Waist circumference (cm) 126.8 ± 3.3

Fat mass (kg) 51.0 ± 3.9

Fasting plasma glucose (mmol/L) 11.1 ± 0.8

HbA
1c

 (%) 7.7 ± 0.4

Duration type 2 diabetes (years) 8 ± 3

Units of insulin injected per day 94 ± 14

Additional use of oral glucose-lowering medication 8 metformin 
2 rosiglitazone

Data are presented as mean ± SEM.

Table 2. Metabolic parameters during a VLCD on day 2 and after 50% reduction of overweight in obese type 2 diabetic patients.

Day 2 Day 50% OWR

Basal Clamp P Basal Clamp P

Glucose (mmol/L) 12.5 ± 0.5 5.1 ± 0.3 0.0001 7.8 ± 0.5* 5.4 ± 0.3 0.003

Insulin (mU/L) 24.2 ± 2.2 90.2 ± 3.3 0.0001 15.2 ± 1.3† 80.8 ± 4.0‡ 0.0001

NEFA (mmol/L) 1.6 ± 0.2 1.1 ± 0.3 NS 1.2 ± 0.1§ 0.3 ± 0.1|| 0.012

Triglycerides 
(mmol/L)

2.7 ± 0.5 2.5 ± 0.5 NS 1.2 ± 0.1¶ 0.9 ± 0.1# 0.0001

Glycerol (µmol/L) 150 ± 15 114 ± 18 NS 108 ± 12** 65 ± 12†† 0.011

Glucose R
d
 ∆ 20.0 ± 0.9 18.8 ± 2.0 NS 16.4 ± 1.2† 39.1 ± 2.8† 0.001

EGP∆ 20.0 ± 0.9 8.5 ± 0.9 0.0001 16.4 ± 1.2† 4.6 ± 1.2¶ 0.0001

Glycerol R
a

16.4 ± 2.3 11.5 ± 2.3 NS 14.6 ± 1.4 7.5 ± 1.6 0.012

Glucose oxidation∆ 6.7 ± 1.4 6.1 ± 0.9 NS 4.2 ± 0.4 12.7 ± 1.5‡‡ 0.001

NOGD∆ 14.8 ± 1.1 12.2 ± 1.6 NS 12.4 ± 1.1§§ 27.7 ± 2.8‡‡ 0.005

Lipid oxidation∆ 8.0 ± 0.5 8.3 ± 0.3 NS 7.1 ± 0.5 5.5 ± 0.8** 0.011

∆ values in value in µmol.kgFFM-1.min-1 ; value in µmol.kgFM-1.min-1

NEFA = non-esterifi ed fatty acids, R
d
 = rate of disappearance (= peripheral glucose disposal); EGP = endogenous glucose production, 

NOGD = non-oxidative glucose disposal rate, FFM = fat free mass, FM = fat mass
Day 2 versus day 50% OWR: 
* p = 0.0001; † p = 0.001; ‡ p = 0.023; § p = 0.018; || p = 0.017; ¶ p = 0.005; # p = 0.019; ** p = 0.008, †† p = 0.011; ‡‡ p = 0.002; §§ p = 0.036
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especially insulin-stimulated glucose disposal increased by 107% (18.8 ± 2.0 to 39.1 ± 2.8 

µmol.kgFFM-1.min-1 (p=0.001)).

Eff ect of weight loss on insulin signalling in skeletal muscle

Absolute levels of insulin-stimulated IRS-1-associated PI3K were equal on both study days 

but the magnitude of the insulin-eff ect compared to basal was greater and only signifi cantly 

enhanced after weight loss (p = 0.01, Fig. 1). To corroborate this fi nding, we also assessed the 

phosphorylation of two more distal components of the insulin signalling system, i.e., the re-

cently identifi ed PKB/Akt substrates AS160 and proline-rich Akt substrate 40 (PRAS40). Basal 

as well as insulin-stimulated AS160 phosphorylation, corrected for AS160 protein expression, 

was signifi cantly higher after weight loss as compared to day 2 of the VLCD (Fig. 2). In addi-

tion, basal and hyperinsulinaemic levels of PRAS40 phosphorylation, were also signifi cantly 

increased on day 50% OWR as compared to day 2 (Fig. 3).

Eff ect of weight loss on the fuel transporters GLUT-4 and FAT-36

Weight reduction had no signifi cant eff ect on the abundance of the fuel transporters GLUT-4 

(Fig. 4) and FAT/CD36 (Fig. 5) at the plasma membrane following hyperinsulinaemia. How-

ever, it should be noted that 7 out of the 10 patients showed a higher GLUT-4 density at the 
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Figure 1
Immunoblot (A) and quantifi cation (B) of IRS-1-associated PI3K activity in vastus lateralis muscle biopsies obtained on day 2 of a VLCD (a and b) 
and after 50% of overweight was lost (c and d) in basal (a and c) and hyperinsulinaemic euglycaemic conditions (b and d). Data are expressed as 
mean±SEM. Note that only insulin-stimulated increase over basal is signifi cant on day 50% OWR.
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Day 2                            Day 50% OWR
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Figure 2
Immunoblot (A) and quantifi cation (B) of AS160 phosphorylation in vastus lateralis muscle biopsies obtained on day 2 of a VLCD (a and b) and 
after 50% of overweight was lost with the VLCD (c and d) in basal (a and c) and hyperinsulinaemic (b and d) conditions. Data are expressed as 
mean ± SEM .
Note the absolute increase in AS160 phosphorylation following weight loss, both in the basal as well as in the insulin-stimulated situation. * P = 
0.026, day 50% OWR compared to day 2 , basal as well as insulin-stimulated.
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Figure 3
Immunoblot (A) and quantifi cation (B) of PRAS40 phosphorylation in vastus lateralis muscle biopsies obtained on day 2 of a VLCD (a and b) and 
after 50% of overweight was lost with the VLCD (c and d) in basal (a and c) and hyperinsulinaemic (b and d) conditions. Data are expressed as 
mean ± SEM.
Note that PRAS 40 phosphorylation is increased in the basal and insulin-stimulated situation after weight loss. * P = 0.046, † p = 0.018, day 50% 
OWR compared to day 2.
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cell membrane after weight loss. As to FAT/CD 36 the results were much less coherent: 4 

patients showed an increase, 4 a decrease and 2 had equal FAT/CD36 expression at the cell 

membrane after weight loss.

In a correlation analysis, insulin-stimulated GLUT-4 content at the cell membrane did not 

correlate with the rate of glucose disposal on either study day. Neither did the change in insu-

lin-stimulated sarcolemmal GLUT-4 content between study days correlate with the change in 

insulin-stimulated glucose disposal. Also no correlation between insulin-stimulated plasma-

lemmal GLUT-4 content and body weight, age or duration of type 2 diabetes was found.

FAT/CD36 at the cell membrane during insulin infusion did not correlate with whole-body li-

polysis, lipid oxidation or insulin-stimulated glucose disposal. However, a negative correlation 

was found between insulin stimulated sarcolemmal FAT/CD36 and the serum concentration 

of NEFAs during insulin stimulation (r = -0.88, p = 0.004 on day 2 and r = -0.72, p = 0.045).
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Figure 4
Quantifi cation of GLUT-4 at the cell membrane during insulin-stimulated conditions on day 2 of a VLCD and after 50% of the overweight was lost 
with the VLCD (50% OWR). Data are expressed as mean ± SEM. Changes between study days were not signifi cant.
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Figure 5
Quantifi cation of FAT/CD36 at the cell membrane during insulin-stimulated conditions on day 2 of a VLCD and after 50% of the overweight was 
lost with the VLCD (50% OWR). Data are expressed as mean ± SEM. Changes between study days were not signifi cant.
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Intramyocellular triglyceride content as assessed with an Oil red O Staining 

Oil-red-O staining, as a measure of intramyocellular lipids, showed a reduction in intramyocel-

lular lipids after weight loss (Fig. 6, Fig. 7). Type I and type II muscle fi bres were also examined 

separately. Type I muscle fi bres contained signifi cantly more intramyocellular triglycerides 

on either study day as compared with type II muscle fi bres. In both fi bre types however, the 

amount of intramyocellular triglycerides decreased with weight loss. The percentage type 

I fi bres did not change with weight loss although a slight, non-signifi cant increase was ob-

served (46.8 ± 4.9% to 51.5 ± 4.1%, p = NS, Fig. 7B), and accordingly, a decrease in type II 

muscle fi bres. Interestingly, time to weight loss of 50% overweight correlated negatively with 

the number of type I fi bres at the start of the diet (day 2), r = -0.64, p = 0.046. The amount 

of intramyocellular triglycerides correlated signifi cantly with lipid oxidation (r = 0.74, p = 

0.024) and whole-body insulin-stimulated glucose disposal (negative correlation, r = -0.63, p 

= 0.049) on day 50% OWR. In addition, the change in intramyocellular triglyceride concentra-

tion did not correlate with change in body weight, glucose and lipid metabolism (variables 

as shown in Table 2), insulin signalling or FAT/CD36 content.

DISCUSSION

This study shows that, as opposed to a 2-day VLCD, which only decreased basal EGP, pro-

longed caloric restriction leading to a loss of 50% of overweight also improves insulin sen-

sitivity, especially insulin-stimulated glucose disposal (see Chapter 8 for the discussion of 

the clamp studies). Over 80% of insulin-stimulated glucose disposal takes place in skeletal 

muscle1, with glucose transport over the membrane being the rate-limiting step2. We found 

improved insulin signalling, refl ected by a small insulin-stimulated increase over basal with 

respect to IRS-1-associated PI3K activity and a clear absolute increase in two of its down-

stream components, AS160 and PRAS40. The amount of GLUT-4 at the cell membrane dur-

ing insulin stimulation showed a tendency to increase after weight loss, however, this small 

increase in sarcolemmal GLUT-4 seems not in accordance with the clear improvement (107% 

increase as compared to day 2) in insulin-stimulated glucose disposal.

The reason why the increase in insulin-stimulated glucose disposal at the whole-body level 

was not refl ected by a signifi cant improvement in GLUT-4 translocation to the cell membrane 

is unclear and may refl ect changes in intrinsic activity of GLUT-4. Others have also reported a 

dissociation between insulin-stimulated glucose disposal and either insulin signalling and/or 

GLUT-4 content at the cell membrane. Ryder et al.7 found that although insulin-stimulated 

glucose disposal was 50% lower in patients with type 2 diabetes compared with lean con-

trols, insulin-stimulated cell surface GLUT-4 content over basal amounted only 10% that of 

healthy controls in type 2 diabetic patients. In another study, Karlsson et al. found a signifi -

cant, 36% improvement in insulin-stimulated whole-body glucose uptake after 26 weeks of 
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treatment with 8 mg rosiglitazone daily in newly diagnosed type 2 diabetic patients, that 

was not accompanied by improved signalling of IRS-1 associated PI3K, PKB/AKT or AS16034. 

Finally, Friedman et al.35 showed that weight loss of 36% of initial body weight by gastric 

A B

Figure 6
Oil red O staining (red) in combination with myosin heavy chain type 1 (MHC-1) immunofl uorescence- (green) and lamin staining (blue) in 
cryosections of vastus lateralis muscle on day 2 of a VLCD (A) and after 50% of overweight was lost with the VLCD (B). Note the decrease in 
intramyocellular triglyceride content on day 50% OWR (Fig. 6B).
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Figure 7
Quantifi cation of the percentage intramyocellular triglycerides (IMTG, Fig. 7A) in type I muscle fi bres (black bars), type II muscle fi bres (light 
grey bars) and mean % IMTG (i.e., type I and II fi bres combined, dark grey bars) on day 2 (a,b,c) of a VLCD and after 50% of overweight was lost 
(d,e,f). Note the signifi cant decrease in IMTG after weight loss in both fi bre types. Figure 7B shows the number of type I (black bars) and type II 
(grey bars) fi bres on either study day. Note the signifi cant increase in type I muscle fi bres after weight loss.
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bypass surgery improved whole-body glucose disposal by 3-fold and maximal glucose trans-

port activity in vitro by 50% in 3 non-diabetic and 4 type 2 diabetic morbidly obese individu-

als, without an eff ect on total GLUT-4 protein content in skeletal muscle biopsies. Collectively, 

this indicates that not the amount of GLUT-4 at the cell membrane but its function and, con-

sequently, the velocity of glucose transport over the membrane are the main determinants of 

insulin-stimulated glucose disposal. Alternatively, another glucose transporter, either GLUT-

17, or a yet unidentifi ed one, may have contributed to the increase in glucose uptake seen 

after weight loss. Another possible explanation is that insulin-stimulated glucose disposal 

in adipose tissue is greatly enhanced with weight loss. In 4 out of 8 patients from whom we 

obtained abdominal subcutaneous adipose tissue biopsies, an increase in insulin-stimulated 

PI3K-activity was observed after weight loss (data not shown).

Insulin-stimulated phosphorylation of AS160, a recently discovered substrate of PKB/Akt, 

has previously been reported to be disturbed in skeletal muscle of moderately obese (BMI 

27 kg/m2) type 2 diabetic patients with relatively mild diabetes (9 out of 10 used oral agents, 

only 1 patient on insulin therapy, HbA
1c

 6.0 ± 0.5%)17. We did not use control subjects and can 

therefore not compare insulin-stimulated AS160 phosphorylation in our patients with that of 

healthy lean subjects. However, our patients were much more obese (BMI 40.2 ± 1.6 kg/m2) 

and severely insulin-resistant (glucose disposal rate 18.8 ± 2.0 µmol.kgFFM-1.min-1; M-value 

9.9 ± 2.3 µmol.kgFFM-1.min-1) as the patients in the study mentioned above17 and, notwith-

standing, we found a signifi cant eff ect of insulin on AS160 phosphorylation on both study 

days. This study also shows that signifi cant weight reduction (50% of overweight) enhances 

insulin-stimulated AS160 phosphorylation.

Notably, we observed that weight reduction signifi cantly increases insulin-stimulated 

PRAS 40 phosphorylation, another substrate for PKB/Akt. PRAS40 is a nuclear protein, 36,37 

and phosphorylation of PRAS40 facilitates the binding of 14-3-3-proteins in vitro. Studies in 

animal models and cultured cell lines suggest that PRAS40 regulates cell survival and protec-

tion from ischaemia. Although the physiological function of PRAS40 in insulin action is still 

unclear, we recently observed that phosphorylation of this protein is induced by physiologi-

cal hyperinsulinaemia in insulin target tissues, and blunted under conditions of high-fat-

diet-induced insulin resistance (E.B.M. Nascimento et al., submitted). Together, these fi ndings 

suggest an important role for PRAS40 in physiological insulin action.

It has been hypothesised, that accumulation of intramyocellular lipids (IMCLs) are involved 

in the cause of impaired insulin signalling via phosphorylation of IRS-1 and IRS-2 on serine 

residues by fatty acid metabolites, thereby rendering these serine-phosphorylated IRSs un-

able to associate with and activate PI3K41. In our study substantial weight loss was associated 

with a signifi cant decrease in IMCL. Only intramyocellular lipid content on day 50% OWR 

correlated negatively with the glucose disposal rate, but not with any other metabolic pa-

rameter we measured, nor with insulin signalling. Indeed, several other studies have also 

reported a decrease in IMCL following substantial weight reduction after bariatric surgery in 
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morbidly obese, non-diabetic subjects39-41, which was also associated with improved insulin-

stimulated glucose disposal. On the other hand, more moderate weight loss (approximately 

8 to 10 kg) in obese patients did not aff ect total IMCL content in 2 other studies42,43. In obese 

type 2 diabetic patients, Goodpaster et al. found a 41% reduction in IMCL following weight 

loss of approximately 14 kg44. 

Several studies have shown that patients with type 2 diabetes have a decreased percent-

age type I (oxidative) muscle fi bres and an increased percentage type IIb (glycolytic) muscle 

fi bres45,46, like in our patients. A low capacity to oxidise fat due to a low percentage of type 

I muscle fi bres might lead to obesity. However, whether the altered fi bre type composition 

is the cause of obesity and type 2 diabetes or an eff ect of these pathologic states is unclear. 

Weight loss resulted in a slight, albeit non-signifi cant, increase in the percentage of type I 

(and hence decrease in type II) muscle fi bres. Only one other study47 reported a tendency to 

increased type I fi bres following weight loss, whereas the remainder of studies showed no 

changes in type I muscle fi bres with weight loss48-50. None of these studies were performed 

in type 2 diabetic patients however. Interestingly, like one other study51, we also found a 

positive relation between the amount of type I (oxidative) muscle fi bres on day 2 and time 

to loss of 50% of overweight. The fact that type I muscle fi bres contain more IMCL than type 

II muscle fi bres and that IMCL in both muscle type fi bres decrease with weight loss has been 

observed before47.

IMCL might accumulate via increased fatty acid uptake and/or decreased fatty acid oxida-

tion and/or –re-esterifi cation. Weight loss did not change the amount of the fatty acid trans-

porter FAT/CD36 at the cell membrane in our study (if any it was a tendency to increase). This 

is in contradiction with the hypothesis of Bonen et al., who observed an increased sarcolem-

mal expression of FAT/CD36 in skeletal muscle of obese and type 2 diabetic patients along 

with an increased long-chain fatty acid uptake and proposed that this could contribute to 

increased IMCL and hence impaired insulin signalling52. With this hypothesis in mind, before-

hand we expected to fi nd a decreased sarcolemmal expression of FAT/CD36 after substantial 

weight loss. However, like GLUT-4, FAT/CD36 traffi  cs between the sarcolemma and the cy-

toplasm and has even been demonstrated in mitochondria53. The traffi  cking can be regu-

lated by insulin and exercise, involving PI3K/Akt54 and adenosine monophosphate activated 

protein kinase (AMPK)54 signalling pathways, respectively. Therefore, a weight-loss-induced 

improvement in insulin signalling could also enhance insulin-induced FAT/CD36 transloca-

tion to the sarcolemma. However, in our study, insulin-stimulated sarcolemmal FAT/CD36 

did not change. Plasma NEFA levels and IMCL decreased, in combination with a decrease in 

whole-body lipolysis and lipid oxidation. Although highly speculative, one could assume that 

as a consequence of the considerable loss of adipose tissue whereby a new steady state has 

developed in our patients, the total release of NEFAs by fat cells is diminished and, therefore, 

the uptake by myocytes, leading to decreased IMCL and lipid oxidation.
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In conclusion, substantial weight loss in obese, insulin-treated type 2 diabetic patients, 

improves insulin sensitivity of skeletal muscle, adipose tissue and the liver. Especially insulin-

stimulated glucose disposal improved considerably. At the cellular level, this was accompa-

nied by improved insulin signalling. The observed decrease in IMCL might have contributed 

to the improved insulin signalling.
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ABSTRACT

Very low calorie diets (VLCDs) induce rapid weight loss and improve glycaemia, dyslipidae-

mia and blood pressure in obese patients with type 2 diabetes mellitus. It is unclear how long 

the benefi cial eff ects of a once-only VLCD will last in these patients.

We therefore looked at the long-term eff ect (18 months) of a once-only 30-day VLCD (450 

kCal/day) on body weight, glycaemic regulation, hypertension and dyslipidaemia in 22 obese 

(BMI 37.7 ± 1.1 kg/m2, mean ± SEM) type 2 diabetic patients (mean duration of diabetes 7.4 ± 

1.0 years, fasting plasma glucose [FPG] 12.4 ± 0.8 mmol/L, HbA
1c

 8.3 ± 0.3%), who participated 

in 2 other studies in which a 30-day VLCD was the intervention. During the 30-day VLCD, all 

blood glucose-lowering medication (including insulin) was stopped. After the 30-day VLCD, 

caloric intake was slowly increased to eucaloric and patients were encouraged to maintain 

weight loss. Medication for their diabetes, blood pressure or dyslipidaemia was reinstituted if 

deemed necessary by their own physician. On day 0 and 30 of the VLCD and after 18 months 

follow-up, anthropometric measures, blood pressure, glucose, HbA
1c

, insulin, C-peptide and 

lipid levels were measured.

The 30-day VLCD signifi cantly reduced body weight (-11.4 ± 0.6 kg) with an improvement 

in dyslipidaemia, hypertension and glycaemia (although all blood glucose-lowering medica-

tion was discontinued). As a group, patients had sustained loss of body weight and improve-

ment in blood pressure and lipids, at 18 months follow-up. HbA
1c

 levels were also signifi cantly 

lower (-0.7% compared to day 0), although patients used less blood glucose-lowering medi-

cation, especially insulin (18 patients on day 0 [112 ± 21 units/day]; 6 patients at 18 months 

[23 ± 9 units/day]). The 6 patients on insulin therapy at 18 months all had regained weight 

to prediet levels, but still had a better cardiovascular risk profi le as compared to before the 

dietary intervention.

In conclusion, a once-only 30-day VLCD leads to a sustained improvement in glycaemia, 

dyslipidaemia and blood pressure up to 18 months follow-up in obese type 2 diabetic pa-

tients, even, although to a lesser extent, in patients who regained body weight.
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INTRODUCTION

Type 2 diabetes mellitus is a major health problem, both qualitatively and quantitatively. The 

number of patients with type 2 diabetes is increasing steadily worldwide with an estimated 

366 million patients in 20301. Especially worrisome is the increasing number of children and 

adolescents with type 2 diabetes mellitus2,3. It is estimated that over 80% of adult patients 

with type 2 diabetes are overweight (defi ned as a body mass index [BMI] between 25 and 30 

kg/m2) or obese (BMI > 30 kg/m2)4 and almost all children and adolescents who develop type 

2 diabetes are overweight or obese2,5. Genetic factors are without doubt of major signifi cance 

in the development of type 2 diabetes but environmental and social factors, like a lack of 

physical exercise and high caloric intake, are equally important and are pivotal targets for 

therapy.

Both impaired insulin secretion and insulin resistance of target organs are involved in the 

cause of type 2 diabetes mellitus. Insulin resistance is thought to be of major pathogenetic 

importance in obese type 2 diabetic patients6, making it often diffi  cult to achieve adequate 

glycaemic regulation. Insulin therapy in this patient group induces further weight gain, hence 

aggravating insulin resistance. Weight loss reduces insulin resistance and its associated meta-

bolic abnormalities (hyperglycaemia, hyperinsulinaemia, dyslipidaemia and hypertension)7-9 

and, therefore, the only reasonable approach in (very) obese patients with type 2 mellitus is 

weight reduction.

Caloric restriction remains the hallmark for weight loss. However, only substantial caloric 

restriction or less severe caloric restriction of longer duration, will lead to the considerable 

weight loss (≥ 5-10 kg) needed to improve peripheral insulin sensitivity in morbidly obese10 

and obese type 2 diabetic patients11. Substantial caloric restriction has the advantage of rapid 

weight loss, which stimulates patients to adhere to their diet. Very low calorie diets (VLCD, < 

800 kCal/day) can be used for this purpose. Nowadays, these diets are commercially available 

and safe12. Several strategies can be followed: continuously for several weeks to months or in-

termittently13,14. Both these regimens will lead to weight loss and improvement of blood glu-

cose levels. However, the question is: how long will these eff ects of a VLCD on body weight, 

glycaemic control and other metabolic derangements last in obese type 2 diabetic patients?

The purpose of this study was to evaluate the long-term (18 months) eff ect of a once-only 

30-day VLCD (Modifast®, 450 kCal/day) on body weight and glycaemic control in obese type 

2 diabetic patients with inadequate glycaemic regulation, despite the fact that most patients 

used large doses of insulin before the dietary intervention, in addition to oral blood glucose-

lowering agents. The eff ects on dyslipidaemia and blood pressure were also evaluated.
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PATIENTS AND METHODS

Patients

Twenty-two obese (BMI 37.7 ± 1.1 kg/m2, mean ± SEM) patients (12 female and 10 male) 

with type 2 diabetes mellitus (mean duration 7.4 ± 1.0 years, fasting plasma glucose (FPG) 

level 12.4 ± 0.8 mmol/L, HbA
1c

 8.3 ± 0.3%), age 56 ± 2 years, who participated in 2 diff erent 

studies15,16, in which a 30-day VLCD was either used as the intervention or off ered as a therapy 

after fi nishing the initial study, were followed (as an observational study) for 18 months after 

they completed these 2 studies. The 2 studies were approved by the Medical Ethical Commit-

tee of Leiden University Medical Centre. Inclusion criteria for these 2 studies were a diagnosis 

of type 2 diabetes mellitus and obesity (BMI > 30 kg/m2). In addition, glycaemic regulation 

had to be poorly controlled, defi ned as an HbA
1c

 level > 7% and FPG levels > 10 mmol/L. 

Eighteen of the twenty-two patients used insulin (mean dosage 112 ± 21 units/day) with or 

without oral blood glucose-lowering agents.

All patients underwent a medical screening, including a physical examination, blood chem-

istry testing and an electrocardiogram. None of the patients had a history of cardiovascular 

disease, nor did they have liver or kidney function abnormalities. The use of antihypertensive 

or lipid-lowering medication was allowed. None of the patients used other drugs, were smok-

ers or suff ered from any other disease that might interfere with the study.

Protocol

Study measurements, as outlined in the methods, were performed on day 0 and 30 of a 30-day 

VLCD and 18 months after the completion of the VLCD. All measurements were performed in 

the morning after an overnight fast while patients were still in the fasting state. Three weeks 

before the start of the study, all oral blood glucose-lowering agents were discontinued. If 

patients also used insulin, the insulin dosage was adjusted if necessary after the discontinu-

ation of the oral blood glucose-lowering agents. On day 0, a VLCD (Modifast, 450 kCal/day) 

was started and from that moment on insulin therapy was discontinued as well, at least for 

Time in months

Stop oral blood 
glucose-lowering 
agents

- 3 weeks Day 0

Study day, 
Start VLCD 

Day 30 18 months

Study day, 
end VLCD ,
1-time dietary advise

Study day, 
end VLCD 

Day 2 Day 10

No insulin or other 
glucose-lowering therapy

1x/3 months follow-up by own internist,
reinstitution of glucose-lowering or other medication
if deemed necessary by own internist 

Figure 1
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the duration of the 30-day VLCD. Patients followed the VLCD for 30 days. During the 30-day 

VLCD, patients visited the outpatient clinic every week for support to keep up with their diet 

and control of body weight, blood pressure and blood glucose levels. After the 30-day VLCD, 

a normal diet was slowly reintroduced (reinstitution of 1 normal meal per 2-4 weeks, with an 

increase of 200 kCal/ 2-4 weeks until a caloric intake aimed at weight maintenance (energy 

requirements measured by bioelectrical impedance measurement) was achieved (around 

1500 kCal/day) and patients were advised to maintain their weight loss. Thereafter patients 

were seen every 3 months at the outpatient clinic (Fig. 1).

The VLCD consisted of three sachets of Modifast (Nutrition & Santé, Antwerpen, Belgium) 

per day (450 kCal/day), providing about 50 g protein, 50-60 g carbohydrates and 7 g lipids 

daily. During the diet patients were allowed to drink calorie-free substances ad libitum.

METHODS

Length (meters [m]), weight (kilograms [kg]), body mass index (BMI= weight (kg) / length2 

(m)) and waist/hip circumference were measured according to WHO recommendations17.

Blood pressure was measured with an Omron 705IT blood pressure device (Omron Matsu-

saka, Mie, Japan) and recorded with 1 mmHg accuracy.

Serum insulin was measured with a radioimmunoassay (RIA) (Medgenix, Fleurus, Belgium), 

with an interassay coeffi  cient of variation (CV) below 5%.

Serum glucose, total cholesterol, HDL-cholesterol, and triglyceride concentrations were 

measured with a fully automated Modulari system consisting of a P800, an I800 and an E170 

(Roche, Almere, The Netherlands). HbA
1c

 levels were measured with an HPLC system (Vari-

ant, Biomed, Hercules, CA, USA). C-peptide levels were measured with a radioimmunoassay 

(Linco Research, St. Charles, MO, USA). The interassay CV was 4.2 to 6.0% with a sensitivity of 

0.03 ng/mL.

Calculations

Data are presented as mean ± SEM. 

Homeostatic Model Assessment (HOMA) of insulin resistance (IR, normal values approach 

1) and β-cell function (% β, 100% is normal) were calculated with the updated computer 

version (HOMA2) of the formulae of Matthews et al.18.

10 year coronary heart disease (CHD) risk was calculated according to both the Framing-

ham risk score19 and the United Kingdom Prospective Diabetes Study (UKPDS) risk engine20.

Diff erences between study days were calculated with the Student’s t-test for paired samples. 

Diff erences between groups were calculated with the Student’s t-test for independent sam-

ples. A non-parametric test (Wilcoxon signed-rank test) was performed when appropriate. All 

analyses were performed using SPSS for Windows version 12.0 (SPSS Inc.,Chicago, IL, USA).
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RESULTS

Intervention period (day 0 to day 30 of the VLCD)

Baseline characteristics of the patients, as well as changes after 30 days VLCD and 18 months 

follow-up are given in Table 1. All 22 patients completed the 30-day VLCD without problems, 

no deterioration of glycaemic control occurred and no side eff ects were noted. Neither oral 

blood glucose-lowering agents nor insulin therapy had to be restarted during the VLCD.

Patients lost 11.4 ± 0.6 kg (p = 0.0001) and waist circumference decreased 8.6 ± 1.0 cm (p = 

0.0001). Despite the fact that all blood glucose-lowering medication was discontinued, both 

FPG levels as well as HbA
1c

 levels decreased, although not signifi cant. Fasting serum insulin 

concentrations declined from 19.7 ± 3.0 mU/L on day 2 to 15.0 ± 2.0 mU/L on day 30 (p = 

0.013). HOMA-IR decreased from 3.4 ± 0.4 to 2.4 ± 0.3 (p = 0.001), whereas HOMA-β increased 

from 39.4 ± 6.0 to 53.4 ± 10.0 (p = 0.031). We used day 2 for the measurement of the serum 

insulin concentration to avoid interference with long-acting insulin, which had been used 

until one day before the start of the VLCD.

Systolic and diastolic blood pressure decreased signifi cantly. Total cholesterol and triglyc-

eride concentrations also decreased signifi cantly. HDL-cholesterol, as is often seen at the 

initiation of weight loss, decreased a little.

Post-intervention period (day 30 to 18 months following the VLCD)

As the patients were free to choose their diet, we were not informed about their caloric intake 

during this period. No patient was lost to follow-up. As a group, patients did not gain weight 

Table 1.  Anthropometric measures, glycaemic regulation, lipid levels and blood pressure before, at the end and 18 months after a 30-day VLCD 
in obese type 2 diabetic patients.

Day 0 Day 30 18 months

Weight (kg) 111.4 ± 3.5 99.3 ± 3.3* 99.1 ± 3.4†

BMI (kg/m2) 37.7 ± 1.1 33.8 ± 1.0* 33.4 ± 1.1†

Waist circumference (cm) 122 ± 2 113 ± 2* 114 ± 2†

FPG (mmol/L) 12.4 ± 0.8 10.7 ± 0.9 10.9 ± 1.0

HbA
1c

 (%) 8.3 ± 0.4 7.9 ± 0.4 7.6 ± 0.4‡

Systolic blood pressure (mmHg) 168 ± 7 143 ± 7§ 145 ± 4||

Diastolic blood pressure (mmHg) 95 ± 4 83 ± 3§ 81 ± 2||

Total cholesterol (mmol/L) 5.9 ± 0.4 4.7 ± 0.2# 5.4 ± 0.2**

HDL-cholesterol (mmol/L) 1.1 ± 0.05 1.0 ± 0.05# 1.3 ± 0.07||,††

Cholesterol/HDL-cholesterol ratio 5.6 ± 0.4 5.1 ± 0.4 4.6 ± 0.3‡‡

Triglycerides (mmol/L) 4.9 ± 1.5 1.9 ± 0.3§§ 2.5 ± 0.4|| || , ##

Units of insulin (no. of patients treated 
with insulin)

112 ± 21 (n=18) 0 23 ± 9 (n=6)

* p = 0.0001, § p = 0.004, # p = 0.007, §§ p = 0.001 :  day 30 as compared to day 0.
† p = 0.0001, ‡ p = 0.027, || p = 0.0001, || || p = 0.009 :  18 months versus day 0. 
** p = 0.007, †† p = 0.0001, ‡‡ p = 0.004, ## p = 0.014 :  18 months versus day 30
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from the end of the VLCD up to 18 months follow-up. In addition, waist circumference, as a 

measure of visceral fat mass, also remained the same. During the follow-up period, 1 patient 

experienced an acute coronary syndrome, and 1 patient developed prostate cancer. Some 

patients intermittently used a hypocaloric (1 sachet of Modifast for breakfast in combination 

with 2 normal meals a day) but not a very low calorie diet. Furthermore, no weight-control 

drugs were used.

FPG levels and HbA
1c

 levels did not increase during the follow-up period and although 

most patients were restarted on oral blood glucose-lowering therapy, the dose was less than 

before the diet. Since 6 patients were on insulin therapy again at 18 months follow-up and, 

hence, their fasting serum insulin level would no be accurate, we did not use their data for 

comparison with the fasting serum insulin concentration on day 30 (and day 2, next section). 

In addition, serum insulin levels at 18 months were lacking in 2 patients. We can therefore 

only compare data on endogenous insulin levels of 14 patients and, hence, HOMA-IR and 

HOMA-β could also only be calculated for 14 patients. Nevertheless, in these 14 patients se-

rum insulin (15.3 ± 2.3 mU/L on day 30 to 14.4 ± 2.1 mU/L at 18 months), HOMA-IR (2.4 ± 0.3 

on day 30 to 2.2 ± 0.3 at 18 months) and HOMA-β (53.4 ± 10.0 on day 30 to 55.7 ± 9.0 at 18 

months) did not change signifi cantly between day 30 and 18 months follow-up.

Systolic and diastolic blood pressure did not diff er between day 30 and 18 months follow-

up. Total cholesterol and triglyceride levels increased to some extent whereas HDL-cholesterol 

levels were signifi cantly higher at 18 months as compared to day 30 (p = 0.007).(Table 1)

When looking more closely at the data, 8 patients had stable body weight (plus or minus 5 

kilogram [kg]), 6 patients lost more than 5 kg of body weight and 8 patients regained more 

Table 2. Cardiovascular risk factors at 18 months, according to post-intervention (day 30 to 18 months follow-up) weight changes.

From day 30-18months :
Stable weight Weight loss Weight gain 

> 5 kg > 5 kg
(n=8) (n=6) (n=8)

FPG (mmol/L) 10.1 ± 1.2 10.2 ± 2.6 12.5 ± 1.6
HbA

1c
 (%) 7.8 ± 0.4 7.1 ± 0.9 8.1 ± 0.6

Systolic blood pressure (mmHg) 148 ± 4 132 ± 6* 153 ± 7†

Diastolic blood pressure (mmHg) 84 ± 2 75 ± 3‡ 82 ± 4
Total cholesterol (mmol/L) 5.3 ± 0.5 5.2 ± 0.4 5.6 ± 0.3
HDL-cholesterol (mmol/L) 1.3 ± 0.1 1.4 ± 0.2 1.2 ± 0.1
Triglycerides (mmol/L) 2.5 ± 0.8 1.7 ± 0.1 3.1 ± 0.4§

C-peptide (ng/mL) 1.2 ± 0.2 0.9 ± 0.1 0.8 ± 0.2
Insulin (mU/L) 16.0 ± 4.1 12.5 ± 1.9 13.0 ± 0.6
HOMA-IR 2.4 ± 0.6 1.7 ± 0.2 2.4 ± 0.4
HOMA-β 53.5 ± 9.6|| 85.4 ± 17.9 21.4 ± 4.1¶

Data are presented as mean ± SEM
* p = 0.033, ‡ p = 0.017  weight stable versus weight loss
† p = 0.022, § p = 0.011, ¶ p = 0.031 weight gain versus weight loss
|| p = 0.016   weight stable versus weight gain
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than 5 kg of body weight from day 30 to 18 months follow-up (see Table 2). When these 

3 groups were compared, the patients that had gained body weight had worse glycaemic 

control and dyslipidaemia and a higher (systolic) blood pressure as compared to the other 2 

groups. Because the groups were small, signifi cance was not always reached.

Day 0 versus 18 months follow-up

As a group, body weight and waist circumference were signifi cantly lower at 18 months fol-

low-up as compared to day 0.

FPG and HbA
1c

 levels for the whole group were also signifi cantly lower at 18 months, de-

spite the fact that patients used less blood glucose-lowering medication (see Table 3). Four 

patients used no blood glucose-lowering therapy at all at 18 months. Most of the patients 

on oral blood glucose-lowering therapy were on metformin only. In addition, only 6 patients 

were on insulin therapy at 18 months (5 patients had already been on insulin therapy before 

the VLCD, 1 patients used insulin for the fi rst time) with a mean dose of 23 ± 9 units per day, 

whereas before the VLCD 18 patients were on insulin therapy with a mean dose of 112 ± 21 

units/day.

Fasting serum insulin concentrations and HOMA-IR and HOMA-β could be compared in 

14 patients (see section above). Fasting serum insulin levels were signifi cantly lower at 18 

months (14.4 ± 2.1 mU/L) as compared to day 2 (20.2 ± 3.5 mU/L), p = 0.045. HOMA-IR was sig-

Table 3.  Use of blood glucose-lowering, lipid-lowering and antihypertensive agents before and 18 months after a 30-day VLCD in obese type 2 
diabetic patients.

Day 0 18 months

number of patients number of patients

Insulin only 6 1

Insulin + oral blood glucose lowering agent 12 5

Metformin only 1 7

Metformin + SU-derivative 3 5

No blood glucose lowering therapy 0 4

Statin 6 4

Fibrate 3 (1 also statin) 1

Beta-blocker 9 7

ACE-inhibitor of ATII-antagonist 11 11

Diuretic 10 3

Number of antihypertensive agents Day 0 18 months

number of patients number of patients

0 antihypertensive agents 6 9

1 antihypertensive agent 7 7

2 antihypertensive agents 5 5

3 antihypertensive agents 4 2

4 antihypertensive agents 1 0
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nifi cantly lower at 18 months (2.2 ± 0.3) as compared to day 2 (3.4 ± 0.4), p = 0.019, whereas 

HOMA-β did not signifi cantly change between day 2 and 18 months. Serum C-peptide levels, 

another indirect measure for β-cell function, also did not change signifi cantly between day 0 

and 18 months (1.1 ± 0.1 ng/mL on day 0 to 1.0 ± 0.1 ng/mL at 18 months).

At 18 months follow-up both systolic and diastolic blood pressure were signifi cantly lower 

than before the start of the diet. Although total cholesterol and triglyceride concentrations 

had increased between day 30 and 18 months, they were still signifi cantly lower at 18 months 

as compared to day 0. HDL-cholesterol and the total cholesterol/HDL ratio were also signifi -

cantly improved at 18 months follow-up (Table 1).

Surprisingly, the 8 patients who had gained more than 5 kg body weight still had a signifi -

cantly lower systolic (183 ± 10 mmHg on day 0 to 152 ± 8 mmHg at 18 months, p = 0.004) and 

diastolic blood pressure (99 ± 5 mmHg on day 0 to 80 ± 4 mmHg at 18 months, p = 0.013), 

lower triglycerides (4.4 ± 0.8 mmol/L on day 0 and 3.1 ± 0.3 mmol/L at 18 months, p = 0.025) 

and a higher HDL-cholesterol (0.9 ± 0.08 mmol/L on day 0 to 1.2 ± 0.1 mmol/L at 18 months, 

p = 0.005) as compared to the start of the study. In addition, although not signifi cant, FPG 

levels (14.1 ± 1.6 mmol/L on day 0 to 12.5 ± 1.6 mmol/L at 18 months) and HbA
1c

 levels (9.1 ± 

0.6% on day 0 to 8.1 ± 0.6%) were also lower at 18 months follow up, as compared to before 

the dietary intervention.

Factors discriminating the patients on insulin therapy from those not on insulin therapy, at 18 months 

follow-up.

The 6 patients on insulin therapy at 18 months all had regained body-weight to prediet lev-

els. They also had a longer duration of type 2 diabetes (10.7 ± 1.9 versus 6.2 ± 1.0 years, p = 

0.04) with lower serum insulin (12.2 ± 3.7 versus 22.0 ± 2.7 mU/L, NS) and C-peptide levels (0.8 

± 0.1 versus 1.19 ± 0.16 ng/mL, NS) at the start of the study as compared to patients who were 

not restarted on insulin therapy.

The long-term infl uence of a once-only 30-day VLCD on the Framingham and UKPDS risk score for coronary 

heart disease

10 year coronary heart disease risk (CHD) risk estimates according to the Framingham Risk 

Tables declined from 11.3 ± 2.2 to 8.0 ± 1.5%, p = 0.007. CHD risk estimates according to the 

UKPDS risk engine were higher than Framingham risk estimates but were also lower at 18 

months follow-up (23.8 ± 4.0 to 17.8 ± 3.0%, p = 0.002).

DISCUSSION

This study demonstrates that a 30-day VLCD in severely obese, mostly insulin-treated, type 

2 diabetic patients is well tolerated and that the simultaneous discontinuation of all blood 
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glucose-lowering agents is safe. The diet resulted in a considerable loss of weight and waist 

circumference. Glycaemic control improved, as did cardiovascular risk factors such as blood 

pressure and plasma lipid levels.

During the 18 months regular follow-up in an outpatient setting, weight loss and the 

decrease in waist circumference were maintained for the whole group. Glycaemic control 

deteriorated to some extent but remained considerably better than before the VLCD whereas 

patients used less blood glucose-lowering medication, especially insulin (see Table 3 and 

below). Blood pressure and serum lipid levels also remained lower than before the dietary 

intervention while patients used fewer antihypertensive and lipid-lowering agents at 18 

months follow-up.

Six of the 22 patients were started on insulin therapy (5 already had insulin therapy before 

the VLCD was instituted, 1 patient used insulin for the fi rst time) during the 18 months follow-

up. All these patients had regained body weight to pre-intervention levels. In addition, they 

had a longer duration of type 2 diabetes and lower serum insulin and C-peptide levels at the 

start of the study, underscoring our previous observation that remaining endogenous insulin 

secretion is important as well15. Nevertheless, even the patients who gained more than 5 kg 

body weight (n=8) still had better glycaemic control and improved lipid levels and blood 

pressure as compared to before the dietary intervention. We do not have a good explanation 

for this, other than that at least for some period of time between day 0 and 18 months follow-

up, their body-weight has been lower.

Few studies have addressed the long-term eff ect of a VLCD in obese type 2 diabetic patients 

and most used the VLCD for a much longer period of time than we did (8-20 weeks)21-23 or also 

included a behaviour therapy programme24. The results of these other studies are also less 

favourable, resulting from an increase in weight to no increase in weight but deterioration 

of glycaemic control 1 year after the VLCD. One study22 also extended follow-up to 1.5 years, 

but found a deterioration in glycaemic control in most of the patients. One of the reasons 

that our results are so impressive might be that most patients did not want to be restarted on 

insulin therapy and, hence, were very motivated to maintain their weight loss. In addition, a 

normal diet was reintroduced very slowly once the 30-day VLCD had been completed. Finally, 

regular counselling (every week during the diet, once every 3 months thereafter) seems to 

be an important factor.

Whether the lower HbA
1c

 levels, blood pressure, triglyceride and total cholesterol levels, 

along with the increased HDL-cholesterol level, at 18 months follow-up will lead to a lower 

risk for cardiovascular disease in our patients, remains to be elucidated. Most studies inves-

tigating the eff ects of lowering cardiovascular risk factors on morbidity and mortality from 

cardiovascular disease have follow-up periods of at least 3 years, whereas our group showed 

sustained improvement in cardiovascular risk factors for 18 months. Nevertheless, if our pa-

tients are able to sustain their weight loss and/or their improved cardiovascular risk profi le, a 

reduction in risk for cardiovascular disease might be expected given the evidence of several 
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large trials, also in patients with diabetes, that lower(ing) blood pressure25,26, total27 and LDL-

cholesterol28-30 and decreasing triglycide levels while increasing HDL-cholesterol31-33 signifi -

cantly reduces the risk for cardiovascular disease. Although not designed for this purpose, 

one might also estimate cardiovascular risk according to the Framingham risk score19 or the 

UKPDS risk engine20. 10-year CHD risk estimates in our patients were lower at 18 months fol-

low-up as compared to day 0, both according to the Framingham and the UKPDS risk score. 

Risk percentages calculated with the Framingham risk score were relatively low, probably 

because the original Framingham cohort contained only 237 patients with diabetes. Values 

obtained with the UKPDS risk engine are more likely to refl ect the true cardiovascular risk in 

our group of middle-aged patients with type 2 diabetes, hypertension and dyslipidaemia (at 

least at the start of the study) and a duration of type 2 diabetes of 7.4 years.

Treatment goals for glycaemic regulation, blood pressure and serum lipids as set by the 

American Diabetes Association (ADA)34 were not reached for all parameters but came very 

close (HbA
1c

 7.6 ± 0.4%, total cholesterol 5.4 ± 0.2 mmol/L, triglycerides 2.5 ± 0.4 mmol/L, 

HDL cholesterol 1.3 ± 0.07 mmol/L, blood pressure 145 ± 4 mmHg / 81 ± 2 mmHg) and were 

substantially improved as compared to before the intervention (Table 1).

We are aware that the group of patients is relatively small, follow-up of limited duration 

and that a control group is lacking. Nevertheless, the observation in these 22 patients, that 

a once-only 30-day VLCD (with at the end a weight-maintaining advise, followed by regular 

outpatient clinic visits) has sustained benefi cial metabolic eff ects that might extend over 

and beyond the weight loss/weight maintenance observed, is interesting and needs further 

investigation in a (randomised) controlled prospective study. We used a VLCD, to be able to 

discontinue all blood glucose-lowering medication at the start of the diet to avoid hypo-

glycaemia. Perhaps the same results can be obtained with a formula diet of greater energy 

content. In addition, varying the degree of calories with time (i.e. start with 450 kCal/day 

for 4 weeks, continue with 600 kCal/day and so on) or an intermittent VLCD might be as 

successful.

In conclusion, we show that a once-only 30-day VLCD in very obese, largely insulin-treated 

type 2 diabetic patients, leads to a sustained improvement in HbA
1c

, total cholesterol, HDL-

cholesterol, triglyceride levels and blood pressure at 18 months follow-up, even in patients 

who regained more than 5 kg body-weight. Although bariatric surgery is more eff ective in 

establishing sustained weight loss35-37, this is an invasive and costly procedure available for 

only a limited number of patients. VLCDs are cheap, safe, easy to use and can also lead to 

large weight losses38. Given the enormous increase in obesity and type 2 diabetes, VLCDs can 

be an important therapeutic strategy.
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INTRODUCTION

The increased worldwide incidence and prevalence of type 2 diabetes mellitus has reached 

epidemic proportions. Nowadays over 190 million people worldwide have diabetes mellitus1, 

the majority having type 2 diabetes mellitus. Of type 2 diabetic patients, more than 80% are 

obese2.

In obese type 2 diabetic patients, insulin resistance contributes substantially to the patho-

genesis of hyperglycaemia3. Moreover, in very obese type 2 diabetic patients, insulin resis-

tance makes it often extremely diffi  cult to achieve adequate glycaemic regulation. Most oral 

blood glucose-lowering agents and exogenous insulin therapy induce weight gain, hence 

aggravating insulin resistance.

Caloric restriction and weight loss improve insulin resistance and its associated metabolic 

abnormalities4-8 and are in fact the only reasonable therapeutic options in very obese type 2 

diabetic patients.

Given the enormous increase in obese type 2 diabetic patients it is of utmost importance 

to fi nd the optimal therapeutic strategy for this patient group. The aim of this thesis was to 

gain more insight in the pathofysiology of insulin resistance induced by adipose tissue, the 

safety and feasibility of very low calorie diets (VLCDs), and in the short-term and long-term 

eff ects of a VLCD on insulin resistance of the liver, adipose tissue and skeletal muscle. The 

fi ndings of our studies will be discussed in view of the aims we put forward in Chapter 1.

FIRST AIM

Because of the association of obesity with insulin resistance and the fact that most type 2 

diabetic patients are obese, our fi rst aim was to evaluate the role of adipose tissue in 

insulin resistance.

When adipose tissue is discussed here, we refer to white adipose tissue (WAT), since adult hu-

mans hardly have any brown adipose tissue. WAT contains mature adipocytes, pre-adipocytes 

and fi broblasts, connective tissue, nerve tissue, stromal vascular cells and immune cells. The 

functions of these components are highly integrated, making adipose tissue a true endocrine 

organ. Adipose tissue responds to aff erent signals of several well-known hormones (insulin, 

glucagon, cortisol) and the autonomous nervous system (catecholamines), but also to several 

of the proteins that it secretes itself, thereby regulating its own metabolism and cell size.

It is unknown whether obesity causes insulin resistance or is merely a refl ection of a pri-

mary pathogenetic (insulin-resistant) state. However, given the fact that lipodystrophy also 

causes whole-body insulin resistance9 and that transplantation of adipose tissue back into 

lipodystrophic animals reverses glucose intolerance and diabetes10 suggests an important 

role for adipose tissue.
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Adipose tissue can modulate glucose homeostasis via the production of free fatty acids 

(FFA) and so-called adipocytokines (or rather adipokines, since many of the secreted prod-

ucts are not cytokines). Quantatively, FFA secretion is the most important. Elevated serum 

FFA concentrations can induce skeletal muscle insulin resistance via an impairment in insulin 

signalling11. In addition, chronically elevated FFAs lead to a decrease in insulin secretion by 

the pancreatic β-cells12-14. Finally, increased delivery of FFAs to the liver increases gluconeo-

genesis and might induce hepatic insulin resistance15. These FFA-induced metabolic distur-

bances are also referred to as lipotoxicity.

In Chapter 2, several of the so-called adipokines have been discussed. In obesity, increased 

production of leptin, restin, IL-6, TNF-α and ASP are found that correlate positively with insu-

lin resistance, whereas adiponectin levels are decreased and correlate negatively with insulin 

resistance. New adipokines are being identifi ed continuously, among them apelin16, visfatin17 

and zinc-α2-glycoprotein (ZAG)18,19, the fi rst two of these being increased in obesity. The 

mechanism by which these adipokines induce insulin resistance is unclear but might involve 

impaired insulin signalling since several of the adipokines (leptin, TNF-α, possibly IL-6) can in-

terfere with the insulin-signalling pathway. The elucidation of the exact role of adipokines in 

insulin resistance is further complicated by the heterogeneity between the various adipose 

tissue depots. Although a primary role for visceral adipose tissue as opposed to subcutane-

ous abdominal adipose tissue has recently been challenged20, it is a fact that adipocytes in 

these various fat depots have a diff erent secretion pattern21,22 (see Table 1). Moreover, these 

secretion patterns might be diff erent in obesity and diabetes mellitus. For example, adipo-

nectin production in healthy humans is higher in subcutaneous adipose tissue in comparison 

to visceral adipose tissue. However, in both insulin-resistant rodents42, as well as in humans it 

seems that omental adiponectin secretion is impaired, whereas it is preserved in subcutane-

ous adipose tissue31,45,46.

Table 1. Characteristics of adipocytes derived from visceral adipose tissue (VAT) in comparison to those of subcutaneous adipose tissue (SAT).

Biochemical factors Regional diff erences Physiological eff ect
Lipolytic response to catecholamines VAT > SAT23,24

Antilipolytic eff ect of insulin SAT > VAT22,25 ↑ NEFA and TG turnover

Leptin secretion SAT > VAT26-28 less CNS regulation of VAT, ↓ insulin sensitivity

Adiponectin secretion SAT > VAT29-31 ↑ insulin sensitivity

Acylation stimulating protein (ASP) VAT > SAT26

IL-6 VAT > SAT32,33 infl ammation, cardiovascular risk

TNF-α VAT = SAT26,34-36

Resistin Abdominal > tigh37,38

PAI-1 VAT > SAT32,39,40 cardiovascular risk

Innate characteristics of preadipocytes
Preadipocyte diff erentiation and fat cell-
function gene expression

SAT > VAT41,42

Apoptosis VAT > SAT43
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It has been noted that the size of adipocytes correlates better with insulin resistance than 

any other measure of adiposity. Weyer et al. reported that enlarged abdominal adipocytes 

predicted the development of type 2 diabetes mellitus, independent of emerging insulin 

resistance and (impaired) insulin secretion, in 108 previously normal glucose tolerant Pima 

Indians followed for 9.3 ± 4.1 years, of whom 33 developed type 2 diabetes47. It has been 

proposed that a diminished capacity for proliferation and diff erentiation of mesenchymal 

precursor cells leads to hypertrophy of mature adipocytes under conditions of energy ex-

cess48. These enlarged adipocytes are thought to secrete a diff erent, insulin-resistance and 

atherogenesis provoking, pattern of adipokines and lead to ectopic fat storage because of 

a diminished capacity to store triglycerides. This ectopic storage of fat in liver, muscle and 

pancreas then leads to decreased insulin-mediated suppression of hepatic glucose produc-

tion, decreased insulin-stimulated glucose uptake and decreased insulin secretion in these 

organs, respectively49.

In conclusion, given the fact that both obesity50 and lipodystrophy9 are associated with 

insulin resistance and that transplantation of fat in lipodystrophic mice restores the meta-

bolic abnormalities10, supports an important role for adipose tissue in insulin resistance. As 

to the mechanism by which obesity induces insulin resistance, several theories have been 

proposed. The portal/visceral hypothesis51, which proposes a primary role for visceral adi-

pose tissue that would be deleterious because produced FFAs drain directly to the liver via 

the vena portae, has recently been challenged but, given this unique drainage of visceral 

FFAs and adipokines (that show a fat depot specifi c secretion pattern) directly to the liver, 

cannot be completely rejected. Notwithstanding, whether derived from visceral or truncal 

adipose tissue, elevated serum FFA levels, are involved in the pathogenesis of insulin resis-

tance via the concept of lipotoxicity49. Two new paradigms involve the “theory of ectopic fat 

storage”48,49,52 and that of “the adipocyte as an endocrine organ”53. These paradigms can also 

be explained using the concept of dysfunctioning adipose tissue. In this model, a defect in 

proliferation and diff erentiation of preadipocytes leads to enlarged mature adipocytes that 

secrete a diff erent, insulin-resistance inducing, pattern of adipokines and have a diminished 

capacity to store triglycerides, leading to an ectopic storage of fat. If fat oxidation does not 

increase in these organs, then intracellular accumulation of lipids, with insulin resistance will 

occur. Further research is needed to investigate the interactions between the environment 

and adipose tissue leading to this impaired functioning of adipose tissue.

SECOND AIM

Leptin is secreted by adipocytes in direct proportion to adipose tissue mass54-56 and nutri-

tional status57,58. The primary role of leptin is to serve as a metabolic signal of energy defi -

ciency rather than excess59. Serum leptin levels rapidly decrease during caloric restriction 
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and weight loss57,60, which leads to increased appetite and decreased energy expenditure. In 

obesity, serum leptin levels are increased54,56, indicating a state of leptin resistance. Unfortu-

nately, the leptin response to caloric restriction is preserved in obesity. 

Serum insulin levels are also positively related to BMI and fat mass61. Moreover, several 

studies have shown a close correlation between serum leptin and serum insulin62-65. It is un-

known, however, whether this relation also holds in patients with a severely disturbed insulin 

secretion. Moreover, most studies have evaluated the relation between fasting serum levels 

of leptin and insulin and did not study the relation between leptin and insulin secretion. 

Finally, data about the eff ect of weight loss on the relation between serum leptin and insulin 

in obese type 2 diabetic patients are scarce64,66.

Therefore, we have studied the relation between fasting serum leptin and fasting serum 

insulin, as well as the area under the curve of insulin following an intravenous (i.v.) glucose 

load in obese (BMI 37.6 ± 1.4 kg/m2, mean ± SEM) type 2 diabetic patients (duration 8.0 ± 1.4 

years, fasting plasma glucose [FPG 12.9 ± 0.8 mmol/L, HbA
1c

 8.6 ± 0.4%) on day 2 and day 

30 of a very low calorie diet (VLCD, Modifast, 450 kCal/day). During the VLCD, all blood glu-

cose-lowering medication, including insulin, was discontinued. It was found that, even when 

insulin secretion was severely disturbed, the relation between serum leptin and serum insulin 

and insulin secretion remained. This was also true during energy restriction with weight loss. 

Whether insulin regulates leptin levels or vice versa, or alternatively, whether both are regu-

lated in concert to refl ect changes in energy balance, cannot be deduced from this study. 

From circumstantial evidence, however, it seems most likely that insulin regulates leptin.

AIMS 3 TO 5

These aims were investigated in a single study, presented in Chapter 3. In short, seventeen 

obese (BMI 37.6 ± 5.6 kg/m2, mean ± SEM) patients with type 2 diabetes (duration 8 ± 5.8 

years) with persistent high blood glucose levels (FPG 12.9 ± 3.1 mmol/L, HbA
1c

 8.6 ± 1.6%) 

despite maximal doses of oral blood glucose-lowering medication and/or insulin (66 to 340 

units per day) started a VLCD (Modifast, 450 kCal/day) for 30 days during which all blood 

glucose-lowering medication was discontinued. On days 0, 2, 10 and 30, of the diet, body 

weight was measured and fasting serum samples of glucose, insulin, C-peptide and leptin 

were taken. An intravenous glucose tolerance test was performed on day 2 and day 30. A 

priori, a responder was defi ned as a patient with a FPG level < 10 mmol/L on day 30.

The third aim of this thesis was to test whether it is safe to start a VLCD in obese type 2 

diabetic patients undergoing insulin therapy and simultaneously discontinue all blood glu-

cose-lowering medication, including insulin. The latter was an important issue, since discon-

tinuation of all blood glucose-lowering agents would minimise the risk for hypoglycaemia 

and facilitate weight loss67.
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During the study presented in Chapter 3 and outlined in short above, no side eff ects were 

noted during the VLCD. Especially, no overt hyperglycaemia (glucose levels > 20 mmol/L) 

was noted, despite the fact that all blood glucose-lowering medication was discontinued. In 

addition, no hypoglycaemia, hypotension, vasovagal collaps, gall-bladder disease or cardiac 

events were observed. The 3 patients that did not complete the VLCD, all quit the study in the 

fi rst few days because they did not like the Modifast.

Meanwhile, over the years, more than 40 very obese insulin-treated type 2 diabetic patients 

have been treated with a VLCD and the simultaneous discontinuation of all blood glucose-

lowering agents in a study setting, and also several patients in a non-study setting. In none of 

these patients adverse events were noted. Patients with known coronary artery disease were 

excluded, but diet therapy might be safe in these patients as well. Patients tolerated the diet 

very well, even for up to 8 months. Notably, women found it easier to adhere to the VLCD than 

men, probably because most of the women were not in the working process and because 

they found it more important to lose weight for esthetical reasons.

Our fourth aim was to establish whether blood glucose levels do indeed decline al-

ready after 2 days of a VLCD and the fi fth aim to fi nd factors that would discriminate 

responders from non-responders.

The study described in Chapter 3 showed a dichotomy in the blood glucose-lowering re-

sponse to the VLCD: of the 14 patients that completed the 30-day VLCD, 8 patients could 

be defi ned as responders and 6 patients were classifi ed as non-responders. The diff erence 

in blood glucose-lowering response to a VLCD was already apparent on day 2 of the VLCD: 

responders had only a small increase or a decline in fasting plasma glucose (FPG, +0.64 ± 

mmol/L [mean ± SEM]) whereas non-responders had an increase in FPG levels (4.15
 
± 3.3 

mmol/L), p = 0.035. It appeared that non-responders had a longer duration of type 2 diabetes 

mellitus (12.3 ± 2.6 versus 5.0 ± 1.4 years), lower fasting serum insulin, C-peptide and HOMA-β 

values and a lower second-phase insulin response following an i.v. glucose load on both day 

0 and day 30. In a step-wise discriminant analysis, the change in FPG from day 0 to day 2 in 

combination with the area under the curve (AUC) of insulin above baseline during an intra-

venous glucose tolerance test (IVGTT) on day 2, completely distinguished responders from 

non-responders. We also found that the disappearance rate of glucose (k-value), as a measure 

of peripheral insulin sensitivity, neither diff ered between responders and non-responders, 

nor did it change with weight loss.

Therefore, the following conclusions can be drawn from this study with respect to the aims 

we put forward. With respect to the fourth aim, one can conclude that blood glucose levels 

can indeed decline already within the fi rst few days of a VLCD. However, it seems that remain-

ing endogenous insulin secretory capacity (rather than insulin sensitivity, since no diff erence 

in k-values was observed) determines the magnitude of this improvement. Later studies 

(Chapter 5 and 7) have confi rmed that blood glucose levels decrease within 2 days of a VLCD 

in patients with remaining endogenous insulin secretion. With respect to the fi fth aim, we 

Ingrid BW.indd   201Ingrid BW.indd   201 03-03-2006   11:13:5003-03-2006   11:13:50



202

Chapter 10

found that non-responders had a lower capacity to secrete insulin. Given the fact that they 

also had a longer duration of type 2 diabetes mellitus, this is probably due to ongoing failure 

of the pancreatic β-cell. Furthermore, non-responders can already be discriminated from re-

sponders on day 2 of a VLCD on the basis of an increase in FPG levels from day 0 to day 2 and 

a low area under the curve of insulin following an i.v. glucose load on day 2 of the VLCD. For 

practical purposes, however, the fasting C-peptide level is an easier indicator of whether or 

not a patient will show a glucose-lowering response to weight loss: patients with a fasting 

C-peptide level < 0.8 ng/mL are less likely to have a decrease in FPG levels during the VLCD as 

compared to patients with a fasting C-peptide level > 0.8 ng/mL. In patients with a C-peptide 

level < 0.8 ng/mL, one can choose to either continue (or start, if not yet part of the therapy) 

metformin during the VLCD or stop all blood glucose-lowering agents at the start of the VLCD 

and if blood glucose levels do not decline within a few days, start metformin therapy (or 

another oral blood glucose-lowering agent).

Given the observations of this study, we decided to include only patients with remaining 

endogenous insulin secretion (defi ned as a fasting C-peptide level greater than 0.8 ng/mL 

and/or a 2 times increase of the basal C-peptide level [cut-off  value 0.5 ng/mL] after 1 mg 

glucagon i.v.) in our subsequent studies. The reason was that we did not want to expose 

the patients to high blood glucose levels for a longer period of time, and obviously, if re-

maining endogenous insulin secretion is low, blood glucose levels rise even at low caloric 

intake (patients have become insulin-dependent). However, as already described above, a 

low C-peptide level does not exclude the use of a VLCD, but, if C-peptide levels are low, oral 

blood glucose-lowering agents should either be continued during the VLCD or stopped, but 

restarted when blood glucose levels do not decline within 7-10 days of the VLCD. We did not 

want to risk the chance of having to start oral blood glucose-lowering agents because they 

could disturb the results of our metabolic studies. Therefore, only subjects with remaining 

insulin secretory capacity, as defi ned above, were included in later studies.

AIM 6 AND 7

To study the short-term blood glucose-lowering eff ect of a VLCD, both on the whole-

body level and at the molecular level, 12 obese (BMI 36.3 ± 1.0 kg/m2, [mean ± SEM]) type 

2 diabetic (age 55 ± 4 years; HbA
1c

 7.3 ± 0.4%) patients undergoing insulin therapy were 

studied on day 0 and day 2 of a VLCD (Modifast, 450 kCal/day). Three weeks before the 

study all oral blood glucose-lowering medication was discontinued and from day -1 on, in-

sulin therapy was stopped as well. Endogenous glucose production (EGP) and whole-body 

glucose disposal (6,6 2H
2
-glucose), lipolysis (2H

5
-glycerol), and substrate oxidation (indirect 

calorimetry) rates were measured before and after the VLCD in basal and hyperinsulinaemic 

(insulin infusion: 10 min prime followed by a constant rate of 40 mU/ m2 per minute68) eug-
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lycaemic conditions. Insulin signalling and expression of GLUT4, FAT/CD36 and triglycerides 

were assessed in skeletal muscle biopsies, obtained before the clamp and 30 min after the 

start of the insulin infusion.

With respect to the sixth aim, we found that short-term energy restriction without weight 

loss, lowers blood glucose levels due to a decrease in EGP with no eff ect on peripheral insulin 

sensitivity. As to the mechanism by which basal EGP was reduced; fasting serum glucagon, 

cortisol and growth hormone levels, as well as fasting serum non-esterifi ed fatty acids, glyc-

erol, triglycerides and lactate, were similar between study days. Although the lower fasting 

serum insulin levels we found suggested a better insulin sensitivity of the liver, this was not 

supported by the clamp studies. The reason that we did not fi nd a better suppressibility of 

EGP by insulin during the hyperinsulinaemic euglycaemic clamp might have been due to the 

relatively high serum insulin levels achieved during the clamp (88 mU/L and 84 mU/L on day 

0 and day 2, respectively). These concentrations might have been high enough for a near-

maximal suppression of the glucose (and glycerol) R
a
, making it diffi  cult to observe changes 

between study days. Table 2 summarises some other studies of short-term, and longer-term 

energy restriction in obese type 2 diabetic patients. Only studies using a hyper-insulinaemic 

euglycaemic clamp, in combination with the isotope dilution technique as a measure of pe-

ripheral glucose disposal and endogenous glucose production, were included.

As described in Chapter 1 (section 1.4.2), insulin-stimulated glucose uptake is disturbed in 

patients with type 2 diabetes mellitus. This seems to be due to disturbances in the insulin-

signalling cascade leading to GLUT-4 translocation. Table 3 summarises defects, known to 

date, in insulin signalling in obese, non-obese diabetic and obese diabetic patients. Few, if 

any, studies have been performed in humans evaluating the eff ect of short-term (Chapter 6) 

and long-term (Chapter 8) eff ects of energy restriction on the insulin-signalling pathway and 

GLUT-4 translocation. Although we did not observe an eff ect of calorie restriction per se on 

whole-body glucose disposal, we still analysed the muscle biopsies because we expected to 

fi nd changes at the molecular level that were not yet translated to an eff ect on the whole-

body level. However, no diet eff ect was found on the expression of the insulin receptor and 

insulin receptor-1 (IRS-1) or on IRS-1 associated phosphatidylinositol 3’-kinase (PI3K) activity; 

on FAT/CD36 expression pattern, GLUT4-translocation or triglyceride distribution, in either 

the basal or insulin-stimulated situation in skeletal muscle biopsies. Unexpectedly, basal PKB/

Akt-phosphorylation on T308 and S473 increased after the diet. The meaning of this fi nding 

is unclear. However, as outlined in Chapter 1, PKB/Akt is also involved in the regulation of 

hepatic gluconeogenesis88. Hence, if our fi ndings also apply to the liver, higher basal PKB/Akt 

concentrations in the liver might explain the observed decrease in basal EGP. Unfortunately, 

ethical considerations prohibit us to take liver biopsies in humans for study purposes. 

In conclusion, with respect to the seventh aim we show that a 2-day VLCD has no eff ect 

on insulin stimulation of key signalling molecules or on translocation of the fuel transporters 
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Table 2. Eff ect of energy restriction on glucose and lipid metabolism in obese patients with type 2 diabetes.

Henry [4],a Laakso [5], b Kelley[7],,b Markovic[6],b

Year 1985 1988 1993 1998

Number of 
patients

30 8 7 10

Age (yrs) 53 ± 11 52.6 ± 2.0 58.7 ± 3.3 48.3 ± 4.4

Duration DM2 
(yrs)

 9 ± 5 10.8 ± 1.7 < 5 ?

Diabetes 
medication
  Diet
  Oral
  Insulin

3
11
16

1
7
-

2
5
-

7
2
-

FPG (mmol/L) 16.5 ± 3.9 11.4 ± 0.5 12.3 ± 1.4 7.3 ± 0.7

HbA1c (%) 12.3 ± 2.2 10.8 ± 0.5  8.8 ± 0.5 -

Weight (kg) 99.1 ± 14.2 92.8 ± 3.1 92.7 ± 4.7 -

BMI (kg/m2) 37.1 ± 4.9 33.7 ± 0.8 32.8 ± 1.9 32.3 ± 0.8

Intervention (I) 40-day VLCD (330 kCal/d, 
liquid formula)

12 days 500 kCal/d (formula 
diet) 
followed by 3 days 800 kCal/d

7 days eucaloric, 7days 
800kCal/day, 8 weeks VLCD 
(400kCal/d) + 3 weeks 
increasing intake, 7 days 
balance†

28 days (- 1000 kCal/d§; 1100 ± 
250/day)

Diabetic 
medication 
during the 
intervention

Oral blood glucose-lowering 
medication and insulin were 
stopped 3 weeks and 1-3 
days before the start of the 
study, resp.

Unclear, only mention is 
made that patients were in 
secondary drug failure

Oral blood glucose lowering 
agents were discontinued 
3 weeks before the start of 
the study

Oral blood glucose lowering 
medication stopped 2 weeks 
before the start of the study

FPG (mmol/L) 
after I

7.6 ± 0.5 on day 10 (weight 
loss 4.6±0.2 kg)

9.6 ± 0.5 (weight loss ~ 5.1 kg) 9.5 ± 0.9, 7 days 800kCal/d 
(weight -2.2kg)

7.0 ± 0.7 at 13 weeks (weight 
-14.8 kg)

 6.2 ± 0.5 on day 4 (weight loss 
1.7 ± 2.2kg)

 5.3 ± 0.4 on day 28 (weight loss 
6.3 ± 0.4kg)

Basal EGP 
before I

149 ± 13 mg.m-2.min-1 2.49 ± 0.15 mg.kg-1.min-1* 158 ± 13 mg.m-2.min-1 14.0 ± 1.1 µmol.kgFFM-1.m-1

Basal EGP after I 81 ± 5 mg.m-2.min-1 on 
day 10

2.04 ± 0.1 mg.kg-1.min-1 125 ± 9 mg.m-2.min-1 after 7 
days 800kCal/d

100 ± 6 mg.m-2.min-1 at 13 
weeks 

11.3 ± 1.3 µmol.kgFFM-1.m-1 
on d 4

12.7 ± 1.3 µmol.kgFFM-1.m-1 
on d 28

Clamp EGP 
before I

- - -  3.8 ± 2.1 µmol.kgFFM-1.m-1||

Clamp EGP 
after I

- - -  0.6 ± 1.8 µmol.kgFFM-1.m-1 
on d 4||

 0.7 ± 1.6 µmol.kgFFM-1.m-1 
on d 28||

Glucose Rd 
before I

- 2.34 ± 0 0.15 mg.kg-1.min-1* 142 mg.m-2.min-1‡ 18.9 ± 2.0 µmol.kgFFM-1.m-1||

Glucose Rd 
after I

- 4.01 ± 0 0.4 mg.kg-1.min-1* 188 ± 17 mg.m-2.min-1 , 7 
days 800kCal/d‡

244 ± 21 mg.m-2.min-1, at 13 
weeks‡

15.8 ± 1.8 µmol.kgFFM-1.m-1, d 4||

19.6 ± 1.9 µmol.kgFFM-1.m-1 , 
d 28||

Basal glycerol Ra 
before I

- - - -

Basal glycerol Ra 
after I

- - -

Remarks No data on EGP are given on 
day 40. Greatest reduction in 
FPG within 10 days. A meal 
tolerance test suggested 
improved peripheral insulin 
sensitivity and insulin 
secretion

After 2 weeks of a 500 kCal 
diet, peripheral insulin 
sensitivity improved, relatively 
week improvement in basal 
EGP as compared to other 
studies 

7 days of CR led to half of the 
improvement in FPG, HPG, 
insulin sensitivity and insulin 
secretion

4 days CR improved HGO, 
prolonged CR also improved 
insulin sensitivity
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Table 2, continued.

Christiansen[69],b Jazet[70],b Jazetb

Year 2000 2005 In preparation for submission

Number of 
patients

8 12 10

Age (yrs) 51 ± 4  55 ± 4 54 ± 3

Duration DM2 
(yrs)

 5 ± 3 7.9 ± 1.3  8 ± 3

Diabetes 
medication
  Diet
  Oral
  Insulin

Oral and/or insulin
All patients used insulin 
(mean 78 ± 9 U/day), 
6 also used metformin and 1 also used 
rosiglitazone

All patients used insulin
(mean 94 ± 14 U/day), 
8 also used metformin and 2 also used 
rosiglitazone

FPG (mmol/L) 11.9 ± 1.4  11.3 ± 1.3  11.1 ± 0.8

HbA1c (%)  8.1 ± 0.5   7.3 ± 0.4   7.7 ± 0.4

Weight (kg)  107 ± 14 107.9 ± 2.9 113.0 ± 7.1

BMI (kg/m2)   36 ± 3  36.3 ± 1.0  40.2 ± 1.6

Intervention (I) 5 days eucaloric, 10 days 25% of ECN, 10 
days 75% of ECN 

2 days of a VLCD (formula, 450 kCal/day) VLCD (formula, 450 kCal/day) until 50% 
of overweight was lost (50% OWR). Study 
days on day 2 and day 50% OWR

Diabetic 
medication 
during the 
intervention

All blood glucose-lowering medication 
(including insulin) was discontinued 2 
weeks before the start of the study

Oral blood glucose-lowering agents were 
stopped 3 weeks before the start of the 
study, only short-acting insulin on day –1, 
insulin stopped at the start of the study

Oral blood glucose-lowering agents were 
stopped 3 weeks before the start of the 
study, only short-acting insulin on day –1, 
insulin stopped at the start of the study

FPG (mmol/L) 
after I

8.9 ± 1.6 , day 5 (of 25% ECN) (weight 
loss 2 kg)

7.4 ± 1.4, day 10 (of 25% ECN) (weight 
loss 3 kg)

8.8 ± 1.3, day 20 (d 10 of 75% ECN) 
(weight loss 3 kg)

10.3 ± 1.0 on day 2 (weight loss 2.9 ± 
0.4 kg)

7.8 ± 0.5 on day 50% OWR (weight loss 
20.3 ± 2.2 kg day 2 compared to day 
50% OWR)

Basal EGP 
before I

22 ± 2 µmol.kgFFM-1.m-1 14.2 ± 1.0 µmol.kg-1.min-1 20.0 ± 0.9 µmol.kgLBM-1.min-1

Basal EGP after I 18 ± 2 µmol.kgFFM-1.m-1 on d 5
17 ± 2 µmol.kgFFM-1.m-1 on d 10 
22 ± 2 µmol.kgFFM-1.m-1 on d 20 

11.9 ± 0.7 µmol.kg-1.min-1¶ 16.4 ± 1.2 µmol.kgLBM-1.min-1

Clamp EGP 
before I

-  5.5 ± 0.8 µmol.kg-1.min-1¶  8.5 ± 0.9 µmol.kgLBM-1.min-1#

Clamp EGP 
after I

-  5.2 ± 0.5 µmol.kg-1.min-1¶  4.6 ± 1.2 µmol.kgLBM-1.min-1#

Glucose Rd 
before I

c 12.1 ± 0.7 µmol.kg-1.min-1¶ 18.8 ± 2.0 µmol.kgLBM-1.min-1#

Glucose Rd 
after I

c 11.3 ± 1.0 µmol.kg-1.min-1¶ 39.1 ± 2.8 µmol.kgLBM-1.min-1#

Basal glycerol 
Ra before I

9 ± 1 µmol.kgFFM-1.m-1  5.2 ± 1.0 µmol.kg-1.min-1 16.4 ± 2.3 µmol.kg fat mass-1.min-1

Basal glycerol 
Ra after I

9 ± 2 µmol.kgFFM-1.m-1on d 5 
7 ± 1 µmol.kgFFM-1.m-1on d 10
7 ± 1 µmol.kgFFM-1.m-1 on d 20 

 4.0 ± 0.6 µmol.kg-1.min-1 14.6 ± 1.4 µmol.kg fat mass-1.min-1

Remarks Short-term CR reduces EGP. Longer term 
CR also improves glucose disposal. EGP 
rapidly rises with increase in caloric 
intake 

2-day VLCD improved FPG due to a 
decrease in basal EGP with no eff ect on 
insulin sensitivity. 

Considerable weight loss not only 
restores basal EGP to normal levels but 
also greatly enhances peripheral insulin 
sensitivity, especially insulin-stimulated 
glucose disposal, despite the fact that 
patients were still obese and used no 
blood glucose-lowering medication
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FAT/CD36 and GLUT-4. We did observe a decrease in basal PKB/Akt phosphorylation, how-

ever, that might be linked to the decrease in basal EGP.

AIM 8 AND 9

To investigate the eff ect of weight reduction induced by caloric restriction as opposed 

to caloric restriction only, on insulin sensitivity, 10 obese (BMI 40.2 ± 1.6 kg/m2 [mean 

± SEM]) insulin-treated type 2 diabetic patients (HbA
1c

 7.7 ± 0.4%, FPG 11.1 ± 0.8 mmol/L) 

were studied on day 2 of a very low calorie diet (VLCD, Modifast, 450 kCal/day) and again 

after losing 50% of their overweight (50% OWR). Oral blood glucose-lowering agents and 

insulin were discontinued 3 weeks prior to the VLCD and at the start of the VLCD, respectively. 

Endogenous glucose production (EGP) and whole-body glucose disposal (6,6-2H
2
-glucose), 

lipolysis (2H
5
-glycerol) and substrate oxidation rates were measured on both study days in 

basal and hyperinsulinaemic (insulin infusion: 10 min prime followed by a constant infusion 

rate of 40mU/m2 per minute68) euglycaemic conditions. In addition, skeletal muscle biopsies 

were obtained from the vastus lateralis muscle, in the basal situation and 30 min after the 

initiation of the insulin infusion.

With respect to the eighth aim we showed that considerable weight reduction (20.3 ± 2.2 

kg from day 2 to day 50% OWR), as opposed to caloric restriction per se, not only normalised 

basal EGP, but also improved insulin sensitivity, especially insulin-stimulated glucose disposal 

(increase 107% as compared to day 2, p = 0.001). The magnitude of the improvement in insu-

lin-stimulated glucose disposal was comparable to that observed in some studies in morbidly 

obese patients undergoing bariatric surgery89,90.

Although it is common knowledge that weight loss improves insulin sensitivity, the mag-

nitude of this response has not been investigated before with state-of-the-art techniques 

(hyperinsulinaemic euglycaemic clamp technique with [6,6-2H
2
]-glucose and [2H

5
]-glycerol) 

Legend to Table 2
Weight losses given are compared to day 0.
a Values are presented as mean ± SD; b Values are presented as mean ± SEM 
* insulin infusion rate 40 mU/m2/minute (clamp serum insulin concentration 89 ± 5 mU/L before and after the intervention)
† basal (before) data are after 7 days eucaloric, then data after 7 days 800 kcal/day and data following a 12 week weight reducing programme 
(8 weeks 400kCal/day liquid formula diet, 3 weeks increase with 200 kCal/day, followed by 1 week eucaloric :third study day) are presented 
‡ insulin infusion rate 100 mU/m2/minute (clamp serum insulin concentrations varied from 200-210 mU/L during the various clamps) 
§ 1000 kCal/d less than patients used to consume as assessed by a 4-day dietary record
|| relatively low insulin levels were obtained during the clamp (250 pmol/L ≅ 35 mU/L)
c Rd glucose measured by Christiansen et al . were non-insulin stimulated values, also presented divided by plasma glucose levels (metabolic 
clearance rate of glucose), values were 2.0 ± 0.2, 2.1 ± 0.2, 2.1 ± 0.3 and 2.7 ± 0.3 ml.kgLBM-1.min-1 at baseline, day 5, 10 and 20, respectively.
ECN= eucaloric needs, LBM = lean body mass, CR = calorie restriction, EGP = endogenous glucose production, FPG = fasting plasma glucose
¶ glucose infusion rate 40 mU/m2/min (clamp serum insulin values 88.1 ± 5.9 and 83.7 ± 4.8 mU/L on day 0 and day 2, respectively, p= NS)
# glucose infusion rate 40 mU/m2/min (clamp serum insulin values 90.2 ± 3.3 and 80.8 ± 4.0 mU/L on day 2 and day 50% OWR, respectively, p 
= 0.023. Diff erence probably due to increased clearance of insulin)
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in this patient group: severely obese, insulin treated type 2 diabetic patients. In Table 2 an 

overview is presented of studies investigating the eff ect of varying degrees of energy restric-

tion, during a variable period of time (4 days up till 8 weeks) on glucose and lipid metabo-

lism in obese patients with type 2 diabetes. As can be deduced from Table 2, our patients 

were more severely obese, used more medication and were more severely insulin resistant 

as compared to the type 2 diabetic patients in most other studies, with the exception of the 

studies of Henry et al.4 and Christiansen et al. 69. Moreover, studies investigating the eff ect of 

considerable weight loss on peripheral insulin sensitivity, using state-of-the-art techniques 

are lacking.

The fact that the impressive improvement in insulin sensitivity in our patients occurred 

despite the fact that patients did not use any blood glucose- (or lipid-) lowering medication 

and were still obese (BMI 32.3 kg/m2), underscores the importance of a dietary intervention 

in this patient group.

Our ninth aim was to investigate, in skeletal muscle biopsies, the eff ect of considerable 

weight loss on insulin signalling, the expression of the fuel transporters GLUT-4 and FAT/

CD36 at the cell membrane, as well as the concentration of intramycocellular triglycerides.

In this study, we found equal insulin-stimulated PI3K activation on both study days, but 

the magnitude of the insulin-induced increase over basal was greater after weight loss (p = 

0.010). Two down-stream eff ectors of PI3K, the PKB/AKT substrates AS160 and PRAS 40, also 

Table 3.  Insulin signal transduction in skeletal muscle of obese, non-obese diabetic and obese diabetic subjects as compared to lean insulin 
sensitive subjects.

Non-obese diabetic Obese diabetic Obese

IR Binding or protein level = [71], [72], [73] = [71] = [71]

Phosphorylation = [73], [74] = [75], [76], [77] = [78]

↓ [71], [79] ↓ [71], [78] ↓ [71], [76]

IRS-1 Binding or protein level = [73], [80], [81] = [82] = [82]

Tyrosine phosphorylation ↓ [73], [80] ↓ [75], [81], [83] = [81]

Serine phosphorylation ↑ [83]

PI3K p85 protein level = [84] = [81], [82], [85] = [81], [82], [85]

Activity ↓ [73],[80], [83], [84] ↓ [77], [81], [82], [85] = [77], [85]

↓ [81]

Akt Protein level = [86] = [83], [87]

Phosphorylation ↓ [86] = [83], [85]

↓ [87]

AS160 Protein level = [87]

Phosphorylation ↓ [87]
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showed an improved insulin-stimulated response with weight loss. Weight reduction had 

no signifi cant eff ect on the abundance of the fuel-transporters GLUT-4 and FAT/CD 36 at the 

plasma membrane following hyperinsulinaemia. However, 7 out of the 10 patients showed a 

higher GLUT-4 density at the cell membrane after weight loss. An oil red O staining showed a 

signifi cant decrease in intramyocellular triglycerides after weight loss in both type I and type 

II muscle fi bres. Interestingly, time to weight loss of 50% overweight correlated negatively 

with the number of type I fi bres at the start of the diet. We also fi nd a trend towards an in-

crease in the percentage of type I (and hence decrease in type II) muscle fi bres with weight 

loss, a fi nding that has not been described before in patients with diabetes.

The reason why the increase in insulin-stimulated glucose disposal at the whole-body level 

was not refl ected by a signifi cant improvement in GLUT-4 translocation to the cell membrane 

is unclear and may refl ect changes in intrinsic activity of GLUT-4. Others have also reported a 

dissociation between insulin-stimulated glucose disposal and either insulin signalling and/or 

GLUT-4 content at the cell membrane90-93. Several hypotheses can be put forward with respect 

to the relatively low concentration of GLUT-4 at the cell membrane. Firstly, it is possible that 

not the amount of GLUT-4 at the cell membrane but rather its function and, subsequently, 

the velocity of glucose transport over the membrane are the main determinants of insulin-

stimulated glucose disposal. Secondly, another glucose transporter, either GLUT-193 or a yet 

unidentifi ed one, may have contributed to the increase in glucose uptake seen after weight 

loss. Thirdly, it is possible that the increase in insulin-stimulated glucose disposal does not 

only take place in skeletal muscle but also in adipose tissue. The weight loss in our patients 

mainly refl ected a decrease in body fat mass. This is most likely due to a depletion of intracel-

lular triglyceride stores and not to a decrease in adipocyte number. The smaller adipocytes 

following weight loss might be better able to take up glucose as compared with the greater, 

lipid-laden adipocytes before weight loss. In our study, 4 out of the 8 patients from whom we 

obtained adipose tissue biopsies showed increased insulin-stimulated PI3K phosphorylation 

after weight loss.

AIM 10

Our tenth aim was to investigate the long-term eff ect of a once-only 30-day VLCD on 

body weight, hyperglycaemia, dyslipidaemia and blood pressure in obese type 2 dia-

betic patients.

To that end, we looked at the long-term eff ect of a once-only 30-day VLCD in 22 obese (BMI 

37.7 ± 1.1 kg/m2, mean ± SEM) type 2 diabetic patients (mean duration of diabetes 7.4 ± 1.0 

years, fasting plasma glucose [FPG] 12.4 ± 0.8 mmol/L, HbA
1c

 8.3 ± 0.3%) who participated 

in 2 other studies in which a 30-day VLCD was either used as the intervention or off ered 

as a therapy after fi nishing the initial study. During the VLCD all oral blood glucose-lower-
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ing medication and insulin therapy were discontinued. After the 30-day VLCD, caloric intake 

was slowly increased to eucaloric and patients were encouraged to maintain weight loss, but 

no specifi c diet was prescribed. Patients were followed at the outpatient clinic at 3-monthly 

intervals and medication for their diabetes (and blood pressure and/or dyslipidaemia) was 

reinstituted as deemed necessary by their own physician. Anthropometric parameters, blood 

pressure, glucose, HbA
1c

, insulin, C-peptide and lipid levels were measured on day 0 and day 

30 of the VLCD and after 18 months follow-up.

Surprisingly, after 18 months regular follow-up, as a group, patients had managed to main-

tain the loss of body weight achieved during the 30-day VLCD (-11.4 ± 0.6 kg). In addition, the 

improvement in systolic and diastolic blood pressure and serum lipids obtained during the 

30-day VLCD was also largely sustained at 18 months follow-up. With respect to glycaemic 

regulation, HbA
1c

 levels were 0.7% lower as compared to the situation before the start of the 

diet, despite the fact that patients used less blood glucose-lowering medication, especially 

insulin (18 patients on day 0 [112 ± 21 units/day]; 6 patients at 18 months [23 ± 9 units/day]). 

The 6 patients using insulin therapy at 18 months follow-up had all regained weight to pre-

diet levels.

In a subanalysis, it appeared that 8 patients had stable body weight (plus or minus 5 kilo-

gram [kg]), 8 patients regained more than 5 kg of body weight and 6 patients lost more than 

5 kg of body weight from day 30 to 18 months follow-up. The patients who had regained 

body weight to prediet levels had worse glycaemic control and dyslipidaemia and a higher 

(systolic) blood pressure as compared to the other two groups, but these parameters were 

still better than the values these patients had at the start of the study.

Treatment goals for glycaemic regulation (HbA
1c

 < 7%), blood pressure (< 130/80 mmHg) 

and serum lipids (LDL-cholesterol < 2.6 mmol/L, triglycerides < 1.7 mmol/L, HDL-cholesterol 

> 1.1 mmol/L) as set by the American Diabetes Association (ADA)94 were not reached for all 

parameters but came very close (HbA
1c

 7.6 ± 0.4%, total cholesterol 5.4 ± 0.2 mmol/L, triglyc-

erides 2.5 ± 0.4 mmol/L, HDL cholesterol 1.3 ± 0.07 mmol/L, blood pressure 145 ± 4 mmHg / 

81 ± 2 mmHg) and were very much improved as compared to before the intervention.

Thus, with regard to the tenth aim we conclude that a once-only 30-day VLCD in combina-

tion with the cessation of all blood glucose-lowering agents leads to a sustained improve-

ment in glycaemic control, blood pressure and serum lipids at least up to 18 months follow-

up even, albeit to a lesser extent, in patients who regained body weight.

OVERALL CONCLUSIONS WITH RESPECT TO THE USE OF VLCDs

The following conclusions with respect to the use of VLCDs, as a means to induce weight 

loss and improve glycaemic control, can be drawn from our fi ndings. Firstly, VLCD therapy 

in obese, insulin-treated type 2 diabetic patients is safe, even when continued for up to 8 
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months. Secondly, the simultaneous discontinuation of all blood glucose-lowering agents 

does not lead to a deterioration of blood glucose levels, provided that patients do have re-

sidual endogenous insulin secretion. For practical purposes, this was defi ned as a fasting 

C-peptide level > 0.8 ng/mL and/or a two times increase of the fasting C-peptide level after 1 

mg glucagon i.v.. Thirdly, in patients with remaining endogenous insulin secretion, FPG levels 

declined already within 2 days of a VLCD, when weight loss was minimal and despite the fact 

that all blood glucose-lowering agents were discontinued. Fourthly, this early (day 2) decline 

in FPG levels appeared to be due to a decrease in basal EGP without an eff ect on peripheral 

insulin sensitivity. Hence, in skeletal muscle biopsies no improvement in insulin signalling at 

the level of IRS-1-associated PI3K and PKB/Akt was seen and no increase in insulin-stimulated 

GLUT-4 translocation was observed. Fifthly, as opposed to short-term energy restriction, pro-

longed energy restriction leading to a loss of 50% of overweight, also improved peripheral 

insulin sensitivity, especially insulin-stimulated glucose disposal. Sixthly, at the molecular 

level this was accompanied by increased PI3K phosphorylation over basal after weight loss 

as compared to day 2 and a signifi cant total AS 160 and PRAS40 phosphorylation after weight 

reduction. The amount of GLUT-4 at the cell membrane was higher in 7 out of 10 patients, 

although the group eff ect was not signifi cant. An oil red O staining showed a signifi cant re-

duction in intramyocellular triglycerides. Interestingly, the amount of type I muscle fi bres 

before weight loss correlated negatively with time to weight loss of 50% overweight. In addi-

tion, a slight, non-signifi cant increase in type I muscle fi bres was observed after weight loss. 

Seventhly, in an observational analysis we found that the eff ect of a once-only 30-day VLCD 

on body weight, glycaemic control, blood pressure and dyslipidaemia was sustained after 18 

months regular follow-up, even in patients who regained body weight to prediet levels.

Our fi ndings stress the importance of diet therapy in obese (insulin-treated) type 2 diabetic 

patients. The fact that insulin-stimulated glucose disposal improved by 107%, despite the 

fact that patients were still obese, raises the question whether it can be fully restored with 

weight loss up to ideal body weight. On the other hand, thiazolidinediones (TZDs) and exer-

cise can also improve insulin sensitivity, albeit via a diff erent mechanism84,95-97. Perhaps the 

combination of a VLCD, exercise and a TZD can fully restore insulin sensitivity. In a new study 

we will investigate this, again in obese type 2 diabetic patients, during a 16-week interven-

tion in which all patients will follow a VLCD and subgroups will receive either exercise and/or 

rosiglitazone. Again, hyperinsulinaemic euglycaemic clamp studies with stable isotopes and 

skeletal muscle biopsies will be performed before and after the intervention to accurately 

measure changes at the whole-body and molecular level.

Type 2 diabetes mellitus is associated with micro-and macrovascular long-term complica-

tions that are related to the increased morbidity and mortality seen in these patients98. Ap-

proximately 65% of patients with type 2 diabetes die as a result of a cardiovascular event99. 

Patients with type 2 diabetes have a 2-4 fold increased relative risk (RR) for the development 

of myocardial infarction, peripheral arterial disease and stroke100. This increased risk is as-
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sociated with an increase in various metabolic and other cardiovascular risk factors such as 

hyperglycaemia, dyslipidaemia and hypertension. We observed a sustained benefi cial eff ect 

of a once-only 30-day VLCD on these risk factors up to 18 months follow-up, even in patients 

that regained body weight. It remains to be evaluated how long these benefi cial eff ects will 

persist and if the intermittent use of a VLCD (on demand, i.e., when body weight increases over 

a predefi ned weight [studied in obese non-diabetic patients101], or 5 days every 5 weeks102), 

or other stategies (addition of exercise and or an insulin-sensitising drug) will even be more 

benefi cial or leads to a longer duration of the benefi cial eff ects. Given the results of several 

large trials, also in patients with diabetes, that lower(ing) blood pressure103,104, total105 and 

LDL-cholesterol106-108 and decreasing triglycide levels while increasing HDL-cholesterol109-111 

signifi cantly reduces the risk for cardiovascular disease, a sustained improvement in these 

parameters could also reduce the risk for cardiovascular disease and, hence, reduce health 

care costs and usage in obese type 2 diabetic patients following a VLCD.

When the benefi cial eff ects of a VLCD and the abovementioned considerations with re-

spect to cardiovascular risk are taken into account, a VLCD can be an attractive, cost-eff ective 

therapy. VLCDs are in themselves relatively cheap (30 days of Modifast costs approximately 

160 Euro) and all blood glucose-lowering medication can be discontinued. Moreover, the 

improvement in cardiovascular risk factors are likely to lead to a decreased incidence of car-

diovascular disease with less hospital admissions and interventions (and, hence, less days 

staying away from the economic process) which will lead to a much greater saving in health 

care costs. On the cost-side are the expenses of regular counselling. These can be minimised 

however, when a diabetic nurse performs most of the controls. It would be interesting to 

do a study at the outpatient clinic, which also takes into account the cost-eff ectiveness of a 

VLCD. It will be our job to convince insurance companies of the benefi ts of the VLCD and to 

persuade them to compensate for the costs of a VLCD.

Finally, although we only studied the VLCD in obese, mostly insulin-treated (in the study 

of Chapter 4 also patients on oral blood glucose-lowering agents only participated) type 

2 diabetic patients, it is likely that the same treatment will be successful in obese patients 

with type 2 diabetes treated with diet and/or oral blood glucose-lowering agents. Because 

these patients are in an earlier phase of the disease process, results with respect to the im-

provement in insulin sensitivity will probably be even more impressive. We hypothesise that 

considerable weight loss in obese, non-diabetic but insulin-resistant patients will normalise 

insulin sensitivity.

In conclusion, a VLCD in combination with the simultaneous discontinuation of all blood 

glucose-lowering agents in obese, insulin-treated patients with remaining endogenous in-

sulin secretion is safe, can increase insulin sensitivity to a great extent and the improvement 

in metabolic parameters is sustained up to 18 months follow-up. Our observations stress the 

importance of weight-reducing therapies, especially diet, because of its safety, low costs and 

availability, in this patient group.
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GLUCOSESUIKERSTOFWISSELING EN DIABETES MELLITUS SUIKERZIEKTE

Normaal gesproken worden de bloedsuikerwaarden binnen nauwe grenzen (4-8 mmol/L) 

gehandhaafd. De reden hiervoor is dat de hersenen afhankelijk zijn van glucose (suiker) voor 

hun functioneren. Bij een te lage bloedsuikerspiegel (hypoglycaemia) zullen dan ook trek-

kingen, bewustzijnsverlies en uiteindelijk een coma optreden. Aan de andere kant zijn te 

hoge bloedsuikerspiegels (hyperglycaemie) ook schadelijk voor het lichaam. Een acute forse 

verhoging van de bloedsuikerspiegel (vaak concentraties van meer dan 20-30 mmol/L) kan 

leiden tot uitdroging, bewustzijns-veranderingen en ook coma. Langdurige blootstelling aan 

te hoge bloedsuikerwaarden kan, in genetisch gepredisposeerde patiënten, leiden tot micro- 

en macrovasculaire complicaties. Met microvasculaire complicaties bedoelen we schade in 

de kleine bloedvaatjes van de ogen, nieren en benen. Dit leidt tot schade aan het netvlies 

van de ogen, verminderde nierfunctie, verminderd gevoel in de voeten en handen en,mede 

door het verminderde gevoel, wondjes met vaak slechte wondgenezing. Met macrovascu-

laire schade bedoelen we de grote vaten. Dit leidt tot een verhoogde kans op een hartinfarct, 

herseninfarct en verminderde doorbloeding van de benen (leidend tot wat in de volksmond 

“etalagebenen” wordt genoemd).

De bloedsuikerspiegel is een balans tussen glucose dat het bloed inkomt en glucose dat 

het bloed uitgaat. Glucose kan in het bloed komen via een maaltijd of door aanmaak door 

het lichaam. De lever, en in mindere mate ook de nier, zijn in staat glucose aan te maken (en-

dogene glucose productie [EGP]). Deze eigen glucose-productie speelt een rol gedurende de 

nacht en tijdens vasten, het is een adequate reactie van het lichaam om een te lage bloedsui-

kerspiegel (hypoglycaemie) te voorkomen. Glucose verdwijnt weer uit het bloed doordat het 

wordt opgenomen door de verschillende lichaamsweefsels. De grootste opname vind plaats 

in skeletspierweefsel.

Bij het in balans houden van glucose dat in het bloed komt en dat er weer uit gaat, en 

derhalve het binnen de normale grenzen houden van de bloedsuikerspiegel, is het hormoon 

insuline van groot belang. Dit hormoon wordt gemaakt en uitgescheiden door de alvleesklier 

(pancreas). Na de maaltijd stijgt de bloedsuikerspiegel en geeft de alvleesklier insuline af. 

Dit insuline zorgt er aan de ene kant voor dat glucose in de weefsels kan worden opgeno-

men. Aan de andere kant zorgt het ervoor dat de lever minder glucose gaat aanmaken (dat 

is immers niet nodig als je net hebt gegeten). Tenslotte remt insuline ook de afbraak van 

vet (lipolyse), vet als brandstof is immers ook niet nodig als je net gegeten hebt. Andere 

hormonen, onder anderen glucagon en cortisol, zijn als tegenregulerende hormonen ook bij 

de bloedsuikerregulatie betrokken.

Bij mensen met suikerziekte (diabetes mellitus) is er een tekort aan insuline. Er zijn 2 soorten 

suikerziekte. Bij type 1 diabetes mellitus is er een absoluut tekort aan insuline, deze patiënten 

moeten insuline gaan spuiten. Bij mensen met type 2 diabetes mellitus (DM2), voorheen ook 

wel ouderdomssuikerziekte genoemd, is er een relatief tekort aan insuline. Het blijkt dat die 
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mensen minder gevoelig zijn voor de werking van insuline, dit noemen we insulineresisten-

tie. Deze insulineresistentie hangt samen met overgewicht. Overgewicht wordt uitgedrukt 

in de zogenaamde body mass index (BMI) die wordt berekend uit het gewicht (in kilogram) 

gedeeld door de lengte (in meters) in het kwadraat. We spreken van overgewicht bij een BMI 

> 25 kg/m2 en van obesitas bij een BMI > 30 kg/m2. Meer dan 80% van de mensen met DM2 

hebben overgewicht of obesitas.

De laatste decennia is er wereldwijd een enorme toename van het aantal mensen met 

overgewicht en obesitas. Wereldwijd zijn er nu 1 miljard mensen met overgewicht en 300 

miljoen met obesitas. Ook het aantal kinderen met overgewicht en obesitas is sterk geste-

gen: wereldwijd 22 miljoen kinderen onder de leeftijd van 5 jaar en 155 miljoen kinderen op 

schoolgaande leeftijd. Een dieet met een hoge energiedichtheid en een zittend bestaan zijn 

de belangrijkste oorzaken van deze enorme stijging.

Doordat overgewicht, waarschijnlijk via insulineresistentie, kan leiden tot DM2 is het aantal 

mensen met DM2 ook sterk gestegen. Op dit moment zijn er ongeveer 191 miljoen mensen 

met diabetes wereldwijd, 90-95% hiervan heeft DM2. Geschat is dat dit aantal zal stijgen 

tot 366 miljoen in 2030, bij deze schatting is de toename van het aantal mensen met over-

gewicht en obesitas niet doorberekend dus waarschijnlijk zal het werkelijke aantal mensen 

met diabetes in 2030 veel hoger zijn. Door de sterke toename van overgewicht en obesitas 

op kinderleeftijd en het feit dat overgewicht, via insulineresistentie, predisponeert voor het 

krijgen van DM2, komt ook op steeds jongere leeftijd DM2 voor. Vandaar dat we liever niet 

meer spreken van ouderdomssuikersziekte.

Zowel overgewicht/obesitas alswel diabetes mellitus (door de eerder genoemde korte- en 

lange termijn complicaties) zijn geassocieerd met een verhoogde morbiditeit (ziekte) en 

mortaliteit (sterfte). Het is daarom van het grootste belang deze ziekten adequaat te behan-

delen. Bij obese patiënten met DM2 speelt, zoals reeds gezegd, resistentie voor de werking 

van insuline een belangrijke rol in het ontstaan en onderhouden van hyperglycaemie. Deze 

insulineresistentie maakt het moeilijk om een goede regulatie van de bloedsuikerwaarden te 

krijgen (uitgedrukt in het geglycosileerd hemoglobinegehalte: HbA
1c

 dat onder de 7% , liefst 

onder de 6.5% moet zijn om de kans op micro-en macrovasculaire lange-termijn complica-

ties te voorkomen). Indien wordt geprobeerd met insulinetherapie een goede instelling te 

krijgen, leidt dit vaak tot verdere gewichtstoename en dus verergering van de insulineresis-

tentie: er ontstaat een vicieuze cirkel.

Caloriebeperking en gewichtsvermindering verbeteren de insulineresistentie. In obese 

DM2 is gewichtsreductie dan ook de aangewezen therapie. Omdat het volhouden van een 

dieet vaak moeilijk is zijn er zeer laagcalorische diëeten (very low calorie diet, VLCD) op de 

markt gekomen. De snelle daling in lichaamsgewicht die hiermee bereikt kan worden is een 

goede stimulans voor patiënten om door te gaan. In dit proefschrift worden enkele studies 

beschreven die gaan over de veiligheid en de korte- en lange- termijn eff ecten en eff ecti-

viteit van een VLCD bij obese patiënten met DM2. De eerste 2 hoofdstukken gaan over de 
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relatie tussen vetweefsel en het ontstaan van insulineresistentie. Korte samenvattingen van 

de hoofdstukken beschreven in dit proefschrift worden hieronder gegeven.

HOOFDSTUK 2

Overgewicht en obesitas zijn geassocieerd met insulineresistentie en een verhoogd risico op 

het ontwikkelen van DM2. Omdat teveel vetweefsel een kenmerk is van overgewicht en obe-

sitas is er de laatste jaren veel onderzoek gedaan naar de rol van vetweefsel in het ontstaan 

van insulineresistentie. Het is namelijk gebleken dat vetweefsel niet zomaar een opslagdepot 

voor energie in de vorm van triglyceriden(vetten) is maar dat het een groot aantal eiwit-

ten produceert. Deze eiwitten hebben verschillende functies. In hoofdstuk 2 worden enkele 

eiwitten besproken die betrokken zijn bij het glucose- en vetmetabolisme en op die manier 

insulineresistentie kunnen induceren. Deze eiwitten zijn leptine, adiponectine, resistine, acy-

lation-stimulating protein (ASP), tumour necrosis factor-α (TNF-α) en interleukine-6 (IL-6). Bij 

mensen met overgewicht is de productie van leptine, resistine, TNF-α, IL-6 en ASP verhoogd 

en die van adiponectine verlaagd. Deze verhoogde, respectievelijk verlaagde plasmaconcen-

traties zijn gecorreleerd met insulineresistentie. Het bestuderen en interpreteren van de rol 

van deze hormonen in insulineresistentie wordt bemoeilijkt door het feit dat de productie 

van deze eiwitten verschilt per vetdepot. Hierbij onderscheiden we 2 grote groepen van 

vetopslagplaatsen: in de buik (visceraal vet, ook wel mannelijk vetopslagpatroon genoemd) 

en onder de huid (subcutaan, met name op de heupen: vrouwelijk vetopslagpatroon). Daar-

naast is het zo dat de productie van sommige van deze eiwitten zich niet vertaalt in een hoge 

concentratie in het bloed: met andere woorden deze eiwitten lijken met name een lokaal 

eff ect uit te oefenen.

Concluderend kan op dit moment gezegd worden dat vet in het bovenste lichaamsge-

deelte gerelateerd is aan insulineresistentie. Het lijkt erop dat vetcellen in de buik en in de 

diepe lagen van het vet onder de buikhuid zich anders gedragen. Of dit de oorzaak is van 

insulineresistentie en DM2 of juist een uiting van deze ziekten is momenteel onduidelijk.

HOOFDSTUK 3

Leptine is een van de eiwitten die door vetweefsel worden geproduceerd. De productie van 

leptine is positief gecorreleerd met het lichaamsgewicht. De belangrijkst rol van leptine lijkt 

het aangeven van energietekort te zijn. De concentratie leptine in het bloed daalt snel in 

reactie op energiebeperking en gewichtsverlies. Dit leidt tot daling van het energieverbruik 

en toename van het hongergevoel. Bij mensen met overgewicht is de concentratie leptine 

in het bloed verhoogd, waarschijnlijk omdat er resistentie is voor de werking van leptine. 
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Helaas daalt ook in deze groep mensen de leptineconcentratie gedurende gewichtsverlies. 

Mogelijk is dit een oorzaak waarom afvallen in deze groep vaak moeilijk is.

De insulineconcentratie is ook positief gecorreleerd met overgewicht en vetmassa. Ver-

schillende studies hebben een positieve relatie aangetoond tussen leptine en insuline. Echter 

over de relatie tussen deze 2 hormonen in zeer dikke DM2 met een sterk gestoorde insuline-

secretie is niet veel bekend. Evenmin is in deze groep patiënten gekeken naar het eff ect van 

gewichtsreductie middels een VLCD op de relatie tussen insuline(secretie) en serum leptine.

In deze studie tonen wij in 14 obese (BMI 37.6 ± 1.4 kg/m2 , gemiddelde ± SEM) type 2 DM 

(duur diabetes 8.0 ± 1.4 years, nuchtere bloedsuiker [fasting plasma glucose, FPG, 12.9 ± 0.8 

mmol/L, HbA
1c

 8.6 ± 0.4%) die 30 dagen een VLCD (Modifast, 450 kCal/dag) volgden aan, dat 

zelfs in patiënten met een gestoorde insulinesecretie de relatie tussen nuchter serum leptine 

en insuline blijft bestaan, ook na gewichtsverlies. Daarnaast hebben wij ook de insulinese-

cretie gemeten middels een intraveneuze glucose belastingstest en ook de hierbij gemeten 

insulinesecretie was positief gecorreleerd aan het nuchtere serum leptine. De opzet van deze 

studie maakte het niet mogelijk om uit te maken of leptine insuline aanstuurt of andersom, 

hoewel het meest waarschijnlijk is dat insuline leptine beinvloedt.

HOOFDSTUK 4

In hoofdstuk 4 hebben we gekeken naar factoren waarmee we, liefst vantevoren, konden 

zien welke patiënten gunstig reageren op een VLCD (Modifast, 450 kCal/dag) en welke niet. 

Een gunstige reactie werd a priori gedefi nieerd als een nuchtere bloedsuiker (fasting plasma 

glucose [FPG]) kleiner dan 10 mmol/L op dag 30 van het dieet. Daarnaast was deze studie 

opgezet om de veiligheid van een VLCD in combinatie met het stoppen van alle bloedsuiker-

verlagende medicatie te bestuderen en om te kijken hoe snel na het starten van het dieet een 

daling optrad in de nuchtere bloedsuikerspiegels.

Hiertoe kregen 17 obese (BMI 37.6 ± 5.6 kg/m2) patienten met DM2 (duur diabetes 8 ± 5.8 

jaar, FPG 12.9 ± 3.1 mmol/L, HbA
1c

 8.6 ± 1.6%) gedurende 30 dagen een VLCD. Gedurende het 

VLCD werden alle bloedsuikerverlagende medicijnen gestopt. Op dag 2 en dag 30 vond een 

intraveneuze glucose tolerantietest plaats.

Deze studie toonde aan dat al op dag 2 van het VLCD een onderscheid kon worden ge-

maakt tussen patiënten die gunstig reageren (responders) en die niet gunstig reageren 

(non-responders). Non-responders bleken zelf niet voldoende insuline meer aan te maken 

(nuchtere C-peptide < 0.8 ng/mL; lagere insuline secretie na een glucosebelasting) en ook 

een langere diabetesduur te hebben, in vergelijking tot responders (12.3 ± 2.6 vs. 5.0 ± 1.4 

jaar). De verandering in FPG van dag 0 naar dag 2 (+4.15 ± 3.3 mmol/L in non-responders 

versus +0.64 ± 2.3 mmol/L responders, p = 0.035) in combinatie met de insulinesecretie na 

een glucosebelasting (non-responders 88 ± 65 mU*50 minutes, responders 571 ± 236 mU*50 
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minutes, p < 0.001) onderscheidde volledig de responders van de non-responders. Op basis 

van deze studie zijn in de daaropvolgende studies alleen patiënten geïncludeerd met een 

nuchter C-peptide > 0.8 ng/mL en/of een tweevoudige stijging van de nuchtere C-peptide 

(ondergrens basale waarde 0.5 ng/mL) na een glucagonstimulatietest.

HOOFDSTUK 5

Het doel van de studie beschreven in dit hoofdstuk was om het mechanisme dat ten grond-

slag ligt aan de snelle daling van de bloedsuikers na het starten van een VLCD te onder-

zoeken. Twaalf obese (BMI 36.3 ± 1.0 kg/m2) DM2 (leeftijd 55 ± 4 jaar; HbA
1c

 7.3 ± 0.4%) die 

insuline gebruikten (gemiddelde dosering 78 ± 9 eenheden/dag) werden onderzocht op 

dag 0 en dag 2 van een VLCD (Modifast, 450 kCal/dag). Drie weken vantevoren werden 

alle orale bloedsuikerverlagende middelen gestopt, op dag –1 werd alleen kortwerkende 

insuline gegeven en vanaf dag 0 werd de insuline gestopt. De endogene glucoseproductie 

(EGP) en glucose-opname ([6,6-2H
2
]-glucose), lipolyse ([2H

5
]-glycerol) (dit zijn stabiele isoto-

pen) en glucose-en vetverbranding (indirecte calorimetrie) werden gemeten voor en na het 

2-daagse VLCD zowel in basale als hyperinsulinaemische euglycaemische omstandigheden 

(insuline infusiesnelheid 40 mU/m2/min, serum clamp concentratie van insuline 88.1 ± 5.9 en 

83.7 ± 4.8 mU/L op respectievelijk dag 0 en dag 2, p = ns, clamp concentratie glucose 5.0 ± 

0.4 en 4.9 ± 0.4 mmol/L op respectievelijk dag 0 en dag 2, p = ns).

Ook in deze studie bleek de nuchtere bloedsuiker al na 2 dagen te dalen (van 11.3 ± 1.3 

mmol/L op dag 0 naar 10.3 ± 1.0 mmol/L op dag 2), ondanks het feit dat er op dag 2 nog 

nauwelijks gewichtsverlies was (-2.9 ± 0.4 kg) en alle bloedsuikerverlagende medicatie was 

gestopt. De oorzaak was een daling van de EGP van 14.2 ± 1.0 naar 11.9 ± 0.7 µmol.kg-1.min-1, 

p = 0.009. Na 2 dagen VLCD bleek de insulinegevoeligheid van de perifere weefsels nog niet 

verbeterd te zijn: de insuline-gestimuleerde glucose opname en de mate van onderdrukking 

van de EGP en de vetafbraak (lipolysis) door insuline waren onveranderd.

HOOFDSTUK 6

Het grootste deel van de insuline-gestimuleerde glucose-opname vindt plaats in skeletspier-

weefsel. Glucose wordt hierbij in de cel opgenomen via de speciale glucose transporteur, 

GLUT-4. Dit GLUT-4 bevindt zich voor 90% in de cellen. Binding van insuline aan zijn receptor 

op de celmembraan leidt, via een reeks eiwitphosphoryleringen (proces van signaaltrans-

ductie), tot translocatie van het GLUT-4 naar de celmembraan en vervolgens tot opname van 

glucose in de cel. Bij patiënten met DM2 is het signaaltransductie proces en de translocatie 

van GLUT-4 naar de celmembraan gestoord.
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Omdat we het bloedsuikerverlagende mechanisme van een 2-daags VLCD wilden bestu-

deren in obese DM2 werden bij de patiënten uit Hoofdstuk 5, ook spierbiopten genomen 

op dag 0 en dag 2 van het VLCD, zowel in de rustsituatie (basaal) als na 30 minuten van 

een insuline infuus (10 minuten bolus gevolgd door een constante infusiesnelheid van 40 

mU/m2/minuut).

Hoewel op totaal lichaamsniveau geen eff ect van het 2-daagse VLCD op de insuline-ge-

stimuleerde glucoseopname werd geobserveerd zou het kunnen dat er al een beginnend 

eff ect zichtbaar zou zijn op cellulair niveau. Echter de spierbiopten lieten geen dieet-eff ect 

zien op de expressie van de insuline-receptor, IRS-1, IRS-1-geassocieerde PI3K activiteit en 

GLUT-4 translocatie. Ook werd geen eff ect gezien op de expressie van het vettransporte-

rend eiwit FAT/CD36 noch op de hoeveelheid vet in de spiercel (ook gecorreleerd met insu-

lineresistentie). Een onverwachte bevinding was de stijging van de basale activiteit van het 

signaaltransductie-eiwit PKB/Akt. Aangezien dit eiwit ook betrokken is bij de EGP zou het zo 

kunnen zijn dat als deze activiteit ook hoger is in de lever na 2 dagen VLCD, dit de daling van 

de EGP die werd gevonden kan verklaren. Om ethische redenen is het echter niet mogelijk 

om leverbiopten bij mensen te verrichten in studieverband.

HOOFDSTUK 7

Om het bloedsuikerverlagende eff ect van aanzienlijke gewichtsreductie te bestuderen wer-

den 10 obese (BMI 40.2 ± 1.6 kg/m2) DM2 (HbA
1c

 7.7 ± 0.4%, FPG 11.1 ± 0.8 mmol/L) die met 

insuline behandeld werden (gemiddelde dosering 90 ± 14 eenheden per dag) onderzocht 

gedurende een VLCD (Modifast, 450 kCal/dag) op dag 2 en opnieuw nadat ze 50% van hun 

overgewicht kwijt waren (50% OWR = overgewicht reductie). Alle orale bloedsuikerverla-

gende middelen en insuline werden 3 weken, respectievelijk, 1 dag, voor de start van de 

studie gestopt. De endogene glucoseproductie (EGP) en glucose-opname ([6,6-2H
2
]-glucose), 

lipolyse [2H
5
]-glycerol en glucose-en vetverbranding (indirecte calorimetrie) werden geme-

ten op beide studiedagen (dag 2 en dag 50% OWR) zowel in basale als hyperinsulinaemische 

euglycaemische omstandigheden (insuline infusiesnelheid 40 mU/m2/min, serum clamp 

concentratie van insuline 90.2 ± 3.3 en 80.8 ± 4.0 mU/L op respectievelijk dag 0 en dag 2, p = 

0.023, clamp glucosewaarden 5.1 ± 0.3 en 5.4 ± 0.3 op resp. dag 2 en dag 50% OWR, p = ns ).

Het bleek dat aanzienlijk gewichtsverlies (20.3 ± 2.2 kg van dag 2 tot dag 50% OWR), in 

tegenstelling tot alleen caloriebeperking (2-daags VLCD, Hoofdstuk 5 en 6) dat uitsluitend 

de basale EGP verlaagde, ook leidt tot een sterke verbetering van de perifere insulinege-

voeligheid. Met name de insuline-gestimuleerde glucoseopname nam sterk toe (toename 

van 107% ten opzichte van dag 2; 18.8 ± 2.0 naar 39.1 ± 2.8 µmol.kg vetvrijemassa (fat free 

mass=FFM)-1.min-1,p = 0.001). Hoewel de insulineconcentratie gedurende de hyperinsulinae-

mische euglycaemische clamp signifi cant lager was op dag 50% OWR (waarschijnlijk door 
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een betere klaring van insuline door de lever) beïnvloedt dit onze resultaten niet in negatieve 

zin. Immers, een gelijke, en dus hogere, insulineconcentratie tijdens de clamp op dag 50% 

OWR zou alleen maar een nog hogere insuline-gestimuleerde glucoseopname geven. Deze 

studie onderstreept opnieuw het belang van gewichtsreductie en dieet in de behandeling 

van obese patiënten met DM2.

HOOFDSTUK 8

In de studie beschreven in Hoofdstuk 7, werden ook spierbiopten genomen op dag 2 van 

het VLCD en na reductie van 50% van het overgewicht, zowel in basale omstandigheden 

als tijdens hyperinsulinaemie (30 minuten na de start van het insuline infuus, bolus van 10 

minuten, gevolgd door een constante infusiesnelheid van 40 mU/m2/min).

De sterke toename van de insulinegestimuleerde glucoseopname op totaal lichaamsniveau 

ging gepaard met een tendens tot stijging van de hoeveelheid GLUT-4 aan de celmembraan: 

7 van de 10 patiënten lieten een toename zien van de hoeveelheid GLUT-4 aan de celmem-

braan gedurende insuline-stimulatie. Wat betreft de insuline signaaltransductie vonden we 

een grotere insuline-gestimuleerde stijging van IRS-1-geassocieerde PI3K activatie (phospho-

rylering) ten op zichte van de basaalwaarde na gewichtsreductie. De insuline-gestimuleerde 

AS160 en PRAS40 activatie was zowel in absolute zin als qua stijging ten opzichte van de de 

basaalwaarde, signifi cant hoger na gewichtsreductie. Na gewichtsreductie was de concen-

tratie FAT/CD36 aan de celmembraan gelijk doch de hoeveelheid triglyceriden in de spiercel 

was signifi cant lager na gewichtsreductie, zowel in type I (langzame, insuline-gevoelige, oxy-

datieve ) als in type II (snelle, glycolytische) spiervezels. Een interessante bevinding was dat 

het aantal type I vezels bij het begin van het dieet negatief correleerde met de tijd die het 

duurde voor een gewichtsverlies van 50% van het overgewicht werd bereikt. Ook was er een 

lichte, niet signifi cante stijging van het percentage type I spiervezels na gewichtsreductie.

Concluderend is er op cellulair niveau een verbetering in insuline signaaltransductie en 

een trend tot stijging van de hoeveelheid GLUT-4 aan de celmembraan. De lagere triglyce-

ridenconcentratie in de cel speelt mogelijk een rol bij de verbeterde insuline signaaltrans-

ductie. Het lijkt erop dat niet de hoeveelheid GLUT-4 aan de celmembraan, maar de functie, 

en derhalve de snelheid van transport over de celmembraan, de belangrijkste factor is voor 

de insulinegestimuleerde glucoseopname. Anderzijds, is er misschien een andere, tot nu toe 

nog onbekende glucosetransporteur, die verantwoordelijk is voor de toegenomen glucose-

opname. Een derde verklaring zou kunnen zijn dat er meer glucoseopname in vetweefsel 

plaatsvindt. In vetcellen van onze patiënten (data niet getoond) vond in 4 van de 8 patiënten 

waarin een vetbiopt werd genomen, een verbetering van de insulinegestimuleerde PI3K-ac-

tivatie op na gewichtsverlies.
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HOOFDSTUK 9 

Het lange-termijn eff ect van een eenmalig, 30-dagen durend VLCD (Modifast, 450 kCal/dag) 

op gewichtsreductie, hyperglycaemia, dyslipidaemie en bloeddruk werd geobserveerd in 22 

obese (BMI 37.7 ± 1.1 kg/m2) DM2 (duur diabetes 7.4 ± 1.0 jaar, FPG 12.4 ± 0.8 mmol/L, HbA
1C

 

8.3 ± 0.3%) die in 2 andere studies hadden geparticipeerd waarin een 30-daags VLCD de inter-

ventie was (studie uit Hoofdstuk 3 en 4), respectievelijk vrijwillig kon worden gevolgd na een 

2-daags interventie (studie uit Hoofdstuk 5 en 6). Gedurende het 30-dagen-durende VLCD 

werd alle bloedsuikerverlagende medicatie gestopt. Na het 30-dagen VLCD werd langzaam 

een normaal dieet geintroduceerd (1 Modifast-maaltijd vervangen door 1 normale maaltijd 

per 2-4 weken, met toename van het aantal kCal met 200 per 2-4 weken tot eucalorisch). Pa-

tiënten waren verder vrij in hun keuze van het dieet, hoewel advies werd gegeven tenminste 

het gewichtsverlies vast te houden en liefst nog verder af te vallen. De patiënten werden 

vervolgens iedere 3 maanden gecontroleerd door hun eigen internist. Indien nodig werd, 

naar inzicht van de eigen internist, de bloedsuikerverlagende medicatie hervat. Op dag 0 

(voor start dieet), dag 30 (dag 30 van het VLCD) en 18 maanden (18 maanden na de start van 

het 30-dagen VLCD) werden gewicht, middelomtrek, bloeddruk en nuchtere serum-waarden 

van glucose, insuline, C-peptide en lipiden gemeten.

Het 30-dagen VLCD gaf een gewichtsreductie van -11.4 ± 0.6 kg wat gepaard ging met een 

verbetering van de bloedsuikers, lipiden en bloeddruk. Na 18 maanden bleek de groep als 

geheel dit gewichtsverlies vastgehouden te hebben. Ook de bloeddruk en het lipidengehalte 

waren, hoewel ze iets verslechterd waren ten opzichte van dag 30 van het VLCD, nog steeds 

beter dan voor de start van het dieet. Daarnaast bleek het HbA
1c

-gehalte 0.7% lager te liggen 

dan voor de start van het VLCD, ondanks het feit dat de patiënten veel minder bloedsui-

kerverlagende medicatie gebruikten (18 patienten op insulinetherapie op dag 0 [112 ± 21 

eenheden/dag]; 6 patienten na 18 maanden [23 ± 9 eenheden/dag].

Binnen de groep waren er patiënten die vanaf dag 30 van het VLCD tot aan de 18 maanden, 

weer aankwamen in gewicht terwijl anderen gelijk bleven of juist nog verder afvielen. Echter, 

zelfs de patiënten die weer in gewicht aankwamen tot hun uitgangsgewicht hadden nog 

steeds een betere HbA
1c

-waarde, bloeddruk en lipidengehalte ten opzichte van de waarden 

die ze voor de start van het 30-dagen VLCD hadden.

Concluderend is dus zelfs het eenmalig volgen van een 30-dagen VLCD door obese DM2 

gunstig voor de bloedsuikerinstelling, bloeddruk en de dyslipidaemie op lange termijn (18 

maanden), zelfs als patiënten na 18 maanden weer terug zijn op hun uitgangsgewicht. Het 

mechanisme hiervan is onduidelijk. In ieder geval hebben deze patiënten onderricht gehad 

in het volgen van een dieet en zijn zij op het belang van gewichtsreductie gewezen en heb-

ben zij daarvan ook de positieve eff ecten zelf ondervonden. In hoeverre op cellulair nivo 

opgetreden veranderingen als gevolg van het éénmaal gebruikte VLCD een rol spelen bij dit 

gunstige eff ect na 18 maanden is onbekend.
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CONCLUSIES

De volgende conclusies met betrekking tot het laagcalorisch dieet in obese DM2 kunnen 

worden getrokken: 1) het is veilig om een VLCD aan deze groep patiënten te geven; 2) het 

bloedsuikerverlagende eff ect is beperkt tot die patiënten die zelf nog voldoende insuline 

aanmaken; 3) bij patiënten met resterende endogene insulineproductie daalt de nuchtere 

bloedsuiker binnen 2 dagen na het starten van het dieet, op een moment dat het gewichts-

verlies nog minimaal is en ondanks het feit dat alle bloedsuikerverlagende medicatie werd 

gestaakt; 4) het onderliggende mechanisme van de snelle daling van de bloedsuikers is een 

daling van de endogene glucoseproductie zonder verbetering van de insulinegevoeligheid; 

5) een gewichtsreductie van 50% van het overgewicht verbetert ook de insulinegevoeligheid, 

met name de insuline-gestimuleerde glucoseopname; 6) op cellulair niveau is er een verbe-

tering te zien in de insuline signaaltransductie en GLUT-4 translocatie na gewichtsverlies. 

De verbetering in insuline signaaltransductie hangt mogelijk samen met de geobserveerde 

afname in de intramyocellulaire triglyceridenconcentratie.

Al met al is het VLCD een waardevolle, veilige therapie in obese DM2. Indien nog resterende 

insulinesecretie aanwezig is (nuchter C-peptide > 0.8 ng/mL en/of 2-voudige stijging vanaf 

een basaalwaarde ≥ 0.5 ng/mL na 1 mg glucagon iv.[hebben wij in onze studies aangehou-

den]) kan de bloedsuikerverlagende medicatie tegelijkertijd worden gestopt. Dit vergemak-

kelijkt het gewichtsverlies en vermijdt het risico op hypoglycaemieën. Indien er nauwelijks 

resterende endogene insulinesecretie is, is het verstandig een oraal middel te continueren. 

Liefst metformine omdat dit niet leidt tot gewichtstoename en een laag risico op hypogly-

caemieën geeft.

Ingrid BW.indd   229Ingrid BW.indd   229 03-03-2006   11:14:0103-03-2006   11:14:01



Ingrid BW.indd   230Ingrid BW.indd   230 03-03-2006   11:14:0103-03-2006   11:14:01



Curriculum Vitae

231

CURRICULUM VITAE

Ingrid M. Jazet werd geboren op 6 juli 1968 te Schiedam. Na het behalen van haar eindexa-

men Atheneum β aan het Petrus Canisius College te Alkmaar in 1987, studeerde zij eerst 2 

jaar Engels en Europese studies aan de Universiteit van Amsterdam wegens uitloting voor de 

studie Geneeskunde. In 1989 kon alsnog worden aangevangen met de studie Geneeskunde 

aan dezelfde universiteit. In 1996 behaalde zij Cum Laude het Artsexamen waarna zij startte 

met de opleiding tot internist in het Rijnland Ziekenhuis te Leiderdorp (opleiders dr. W.J. Mo-

lendijk en dr. F.H.M Cluitmans). De opleiding werd in 1998 voortgezet in het Leids Universitair 

Medisch Centrum (Opleider Prof. dr. A.E. Meinders). Tijdens de opleiding werd gestart met 

het in dit proefschrift beschreven onderzoek onder leiding van Prof.dr. A.E. Meinders. De regi-

stratie als internist vond plaats in 2002. Sinds 2004 heeft zij een vaste aanstelling als stafl id bij 

de afdeling Algemene Interne Geneeskunde van het Leids Universitair Medisch Centrum.

Ingrid BW.indd   231Ingrid BW.indd   231 03-03-2006   11:14:0103-03-2006   11:14:01



Ingrid BW.indd   232Ingrid BW.indd   232 03-03-2006   11:14:0203-03-2006   11:14:02



Publications

233

PUBLICATIONS

Full papers

Jazet IM, Fogteloo AJ, Meinders AE. The relation between leptin and insulin remains when 

insulin secretion is disturbed. European Journal of Internal Medicine 2006;17(2):109-114

Jazet IM, Ouwens DM, Schaart G, Pijl H, Keizer H , Maassen JA, Meinders AE. Eff ect of a 2-day 

very low energy diet on skeletal muscle insulin sensitivity in obese type 2 diabetic patients 

on insulin therapy. Metabolism 2005;54(12):1669-78

Tamsma JT, Jazet IM, Beishuizen ED, Fogteloo AJ, Meinders AE, Huisman MV. The metabolic 

syndrome: a vascular perspective. European Journal of Internal Medicine 2005;16(5):314-20

Jazet IM, Pijl H, Frölich M, Romijn JA, Meinders AE. Two days of a very low calorie diet reduces 

endogenous glucose production in obese type 2 diabetic patients despite the withdrawal 

of blood glucose lowering therapies including insulin. Metabolism 2005; 54:705-12.

Jazet IM, Pijl H, Frölich M, Schoemaker RC, Meinders AE. Factors predicting the blood glucose 

lowering eff ect of a 30-day very low calorie diet in obese type 2 diabetic patients. Diabetic 

Medicine 2005; 22(1):52-5.

Jazet IM, Perk L, de Roos A, Bolk JH, Arend SM. Obstructive jaundice and hematemesis: two 

cases with unusual presentations of intraabdominal tuberculosis. European Journal of Inter-

nal Medicine 2004;15:259-261.

Jazet IM, Pijl H, Meinders AE. Adipose tissue as an endocrine organ : impact on insulin resis-

tance. The Netherlands Journal of Medicine 2003; 61:194-212.

Jazet IM, Meinders AE. De thiazolidinedion derivaten : een nieuwe klasse orale bloedsui-

kerverlagende middelen. Nederlands Tijdschrift voor Geneeskunde. 2001;145(32):1541-7.

Ingrid BW.indd   233Ingrid BW.indd   233 03-03-2006   11:14:0203-03-2006   11:14:02



234

Publications

Submissions

Jazet IM, de Craen AJ, van Schie EM, Meinders AE. Sustained benefi cial metabolic eff ects 18 

months after a 30-day very low calorie diet in severely obese patients with type 2 diabetes

Jazet IM, de Groot GH, Tuijnebeyer WH, Fogteloo AJ, Vandenbroucke JP, Meinders AE. Cardio-

vascular risk factors after bariatric surgery: do patients gain more than expected from their 

substantial weight loss?

Jazet IM, Schaart G, Ouwens DM, Gastaldelli A, Ferrannini E, Hesselink MK, Schrauwen P, 

Romijn JA, Maassen JA, Pijl H, Meinders AE. Loss of 50% overweight signifi cantly improves 

insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese type 2 

diabetic patients using a very low calorie diet.

Nascimento EBM, Fodor M, van der Zon GCM, Jazet IM, Meinders AE, Vlasblom R, Baan B, Eckel 

J, Maassen JA, Diamant M, Ouwens DM. Insulin-stimulated phosphorylation of the proline-

rich Akt-substrate PRAS40 is impaired in insulin target tissues of high-fat diet fed rats.

Popular publications

Jazet IM, Fogteloo AJ, Meinders AE. Overgewicht en obesitas, variatie van het normale of een 

ziekte? Modern Medicine 2005;12:601-5

Jazet IM, Meinders AE. Behandeling type 2 diabetes mellitus: plaatsbepaling nieuwe (orale) 

bloedglucoseverlagende middelen, aandacht voor NHG standaard en NDF richtlijn. Boer-

haave cursus “Farmacotherapie”, mei 2005:7-35. ISBN 90-6767-5741

Meinders AE, Jazet IM. Plaatsbepaling van PPAR-γ agonisten bij de behandeling van type 2 

diabetes mellitus. Boerhaavecursus “Medicamenteuze therapie”, maart 2005: 7-14. ISBN 90-

6767-570-9.

Meinders AE, Jazet IM. Diabetes mellitus en sport, Hoofdstuk 30 van het “Handboek Diabetes 

Mellitus” onder redactie van E. van Ballegooie en R.J. Heine, 3e druk,2004.

Jazet IM, Meinders AE. Strategie bij de behandeling met bloedsuikerverlagende middelen 

bij diabetes mellitus type 2. Boerhaavecursus “Medicamenteuze therapie”, maart 2003:1-39. 

ISBN 90-6767-518-0.

Ingrid BW.indd   234Ingrid BW.indd   234 03-03-2006   11:14:0203-03-2006   11:14:02



Publications

235

Jazet IM, Meinders AE. Nieuwe orale bloedsuikerverlagende middelen. Modern Medicine 

2002;10:597-605.

Jazet IM, Meinders AE. Nieuwe orale bloedglucoseverlagende middelen. Boerhaave cursus 

“Vorderingen en praktijk, december 2001:143-173. ISBN 90-6767-492-3.

Jazet IM, Meinders AE. Een nieuwe klasse orale bloedsuikerverlagende middelen : de thia-

zolidinedionen. Boerhaave cursus “Medicamenteuze therapie”, februari 2001:37-58. ISBN 90-

6767-468-0. 

Ingrid BW.indd   235Ingrid BW.indd   235 03-03-2006   11:14:0203-03-2006   11:14:02



Ingrid BW.indd   236Ingrid BW.indd   236 03-03-2006   11:14:0203-03-2006   11:14:02




