
Deterministic equation solving

over finite fields

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus Dr. D. D. Breimer,

hoogleraar in de faculteit der Wiskunde en

Natuurwetenschappen en die der Geneeskunde,

volgens besluit van het College voor Promoties

te verdedigen op dinsdag 16 mei 2006

klokke 14.15 uur

door

Christiaan Evert van de Woestijne

geboren te Rotterdam

in 1975

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leiden University Scholary Publications

https://core.ac.uk/display/388693522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Samenstelling van de promotiecommissie:

promotor: prof. dr. H. W. Lenstra, Jr.

referent: prof. dr. E. Bayer Fluckiger (École Polytechnique Fédérale de Lausanne)
overige leden: dr. W. Bosma (Radboud Universiteit Nijmegen)

prof. dr. R. J. F. Cramer (Universiteit Leiden/CWI, Amsterdam)
prof. dr. P. Stevenhagen
prof. dr. R. Tijdeman
prof. dr. S. M. Verduyn Lunel

THOMAS STIELTJES INSTITUTE

FOR MATHEMATICS

Deterministic equation solving

over finite fields

Copyright 2006 Christiaan van de Woestijne

Mathematisch Instituut, Universiteit Leiden, The Netherlands
www.math.LeidenUniv.nl

ISBN-10: 90-9020668-X
ISBN-13: 978-90-9020668-4

Abstract

The present thesis is devoted to the solution of two closely related algorithmic repre-
sentation problems. They read as follows.

Problem A1 Given a finite field F, given a positive integer n and given nonzero
elements a0, a1, . . . , an of F, compute x0, x1, . . . , xn ∈ F, not all zero, such that

n∑

i=0

aix
n
i = 0.

Problem A2 Given a finite field F, given a positive integer n, and given nonzero
elements b, a1, . . . , an of F, compute x1, . . . , xn ∈ F such that

n∑

i=1

aix
n
i = b,

or show that no such exist.

These, respectively, are the problems of representing zero or nonzero elements by
diagonal forms in many variables over finite fields. By the classical Chevalley-Warning
theorem we know that the equation in Problem A1 is always solvable — see Chapter
2 for more details. In Problem A2, the restriction that all elements of F be sums of
nth powers of elements of F ensures solvability of the equation in all cases. Chapter 2
presents the first proof, to my knowledge, of the fact that this condition is sufficient.

Now solvability results like the ones just mentioned are usually proved in ways
that do not lead to efficient methods for actually finding solutions. The main result
obtained here is the construction of two efficient algorithms, one for each problem,
that really compute such solutions. The proof of this result will take up the entire
thesis and will provide a detailed description and analysis of the two closely related
algorithms.

Theorem A3 There are deterministic algorithms for solving Problems A1 and A2
that take polynomial time in terms of n and log q, where q is the cardinality of F.

i

ii Abstract

Up to now, many efficient algorithms for solving nonlinear equations over finite fields
have made essential use of probabilistic components. These randomised steps mostly
serve to find a field element that lies outside a certain multiplicative subgroup of the
field; for example, a non-square element. The novelty of the result presented here is
to dispense with these randomised techniques: the methods of this thesis are purely
deterministic.

The formulation of my algorithms is completely elementary, but involves several levels
of subroutines. As auxiliary results of independent interest, it is shown, for a given n,
how to generate a finite field over its prime field by an nth power, and how to write
any given finite field element as a sum of nth powers, using at most n terms — or,
in both cases, correctly to decide that these tasks are impossible (Chapters 4 and 5,
respectively). Another cornerstone is a deterministic adaptation of the Tonelli-Shanks
root taking algorithm, which is presented in detail in Chapter 3.

The description of my algorithms will show that they are practical in the stated
version. The analysis of their running time, which is straightforward, shows that they
perform only slightly worse than probabilistic methods for solving Problems A1 and
A2.

Applications are given to several areas of computation over finite fields, which include
computing a rational point on a quadric hypersurface, computing isomorphisms of
quadratic spaces, computing elements or field generators of prescribed norm, trivial-
ising central simple algebras of degree 2, and, surprisingly, computing rational points
on elliptic curves.

An implementation in the computer algebra language Magma of all algorithms devel-
oped in this thesis is available from the author.

Contents

Abstract i

1 Introduction 1

1.1 Finite fields . 1

1.2 Central questions . 3

1.2.1 Deciding solvability . 3
1.2.2 Number of solutions . 5

1.3 Algorithms for finding solutions . 6

1.3.1 Efficiency . 6
1.3.2 Currently known methods . 7

1.4 Overview of the thesis . 9

1.5 Conventions and definitions . 11

2 Finite field theory 15

2.1 Introduction . 15
2.2 The subgroup of nth powers . 15

2.3 The subfield of sums of nth powers . 16

2.4 The existence of solutions . 17
2.5 The Weil bound . 19

2.6 The probabilistic approach . 21

3 Selective root extraction 23

3.1 Introduction and results . 23

3.2 The Tonelli-Shanks algorithm . 24
3.3 A deterministic variant . 27

3.4 The Selective Root Algorithm . 29

4 Field generators in multiplicative subgroups 33

4.1 Introduction and results . 33

4.2 Computing degrees . 34
4.3 The compositum algorithm . 35

4.4 Finding nth power generators . 38

iii

iv Contents

5 Sums of like powers 43
5.1 Introduction and results . 43
5.2 The main algorithm; basic version . 45
5.3 Improving the complexity . 48

5.3.1 Equal and distinct terms . 48
5.3.2 Sums of powers in the integers 49
5.3.3 Expanding on a rational base 50

5.4 The main algorithm; final version . 52
5.5 The use of roots of unity . 55

6 Diagonal forms 59
6.1 Introduction and results . 59
6.2 The homogeneous trapezium algorithm 60
6.3 The inhomogeneous trapezium algorithm 62

7 Conclusions, generalisations, and applications 67
7.1 Introduction . 67
7.2 A performance comparison . 67
7.3 Field generators of prescribed norm . 68
7.4 Diagonal forms in characteristic 2 . 73
7.5 Quadratic forms . 74
7.6 Rational points on elliptic curves . 77

References 79

Samenvatting 83

Dankwoord 85

Curriculum vitae 87

Chapter 1

Introduction

The theory of finite fields has played an important role in 20th century mathematics,
in areas such as number theory, algebraic geometry, and combinatorics. The present
thesis is a contribution to this theory that focuses on polynomial equations in many
variables over finite fields, and how to achieve both efficiency and determinism in
algorithms that compute solutions to such equations.

In this chapter, after a brief introduction to finite fields and their applications, we
discuss three important guiding problems in the theory of equations over finite fields,
which give a context to our results. We then give an overview of the thesis, and close
with a paragraph of conventions and definitions.

1.1 Finite fields

The basic properties of finite fields may be found in textbooks on abstract algebra,
such as [33, Section V.5]. An encyclopedic volume devoted entirely to finite fields is
[36].

A finite field is simply a finite set F, equipped with addition, subtraction, mul-
tiplication and division operations that satisfy the usual axioms of associativity and
distributivity for such operations, such that addition is commutative, and such that
every element except 0 has a multiplicative inverse. It can be proved that the multi-
plication on such a set must be commutative. The cardinality of F is always a power
of some prime number, and up to isomorphism, there exists only one finite field with
a given prime power cardinality.

For every prime number p, the set of residue classes of the integers modulo p is a
field of p elements, which may be represented as {0, 1, . . . , p−1}, or indeed as any set
of p integers that are pairwise distinct modulo p. The fact that every nonzero residue
class modulo a prime has a multiplicative inverse follows from the extended version
of Euclid’s algorithm for computing greatest common divisors, and is treated, for
example, by Gauss in his Disquisitiones arithmeticae [24]. A field of prime cardinality
p is called a prime field and is denoted by Fp.

1

2 Chapter 1. Introduction

Galois fields. The prime fields are the easiest examples of finite fields, but they are
not the only ones. For every power q = pe of p, there exists a finite field Fq having
q elements, the structure of which is unique up to isomorphism, and that arises by
adjoining a formal zero of an irreducible polynomial f to the prime field: if f is a
polynomial with coefficients in Fp and is irreducible of degree e, then we have

Fq
∼= Fp[X]/(f).

The notation GF(q) for a finite field of q elements (where GF stands for Galois
Field) is used to honour the work of Galois, who introduced finite fields of prime
power cardinality in an 1830 memoir [21]. His purpose here was quite different from
ours: he found that several finite groups are conveniently described using both affine
transformations on a finite field, considered as a vector space over its prime field, and
automorphisms of such fields.

Another way to obtain non-prime fields is to reduce rings of algebraic integers
modulo a prime ideal ; this point of view was advanced by Dedekind in the 1870s. For
example, if ζ denotes a primitive 5th root of unity, then

Z[ζ]/(3) ∼= F81.

The ring Z[ζ] can be described as the set of all elements of the form a+bζ +cζ2 +dζ3,
for integers a, b, c, d; taking these modulo 3, we find that the elements of F81 have the
same form, but with a, b, c, d running over the integers modulo 3. From the fact that
the quotient ring is a field, we deduce that the ideal (3) is maximal in Z[ζ], hence
prime, and in particular, the element 3 is prime.

In this thesis, most of the time we will not have to distinguish between the cases
where the base field is a prime field and where it is not. The exception is Chapter 5,
but also the main results of that Chapter are formulated for arbitrary finite fields.

Applications of finite fields. As already indicated, finite fields are used in the
classification of finite groups (see [26] for a recent treatment), and the development
of algebraic number theory (see, for example, [16] or [18]).

Finite fields are of obvious significance when studying Diophantine equations,
i.e., polynomial equations over the integers: we can often decide solvability of such
equations by reducing the coefficients modulo some prime number p, and finding the
possible residues of the solutions modulo p. For example, a prime number p cannot
be represented by the binary quadratic form X2 + nY 2, with n a positive integer, if
the equation

x2 + ny2 ≡ 0 (mod p)

over the finite field Fp has only the trivial solution (0, 0). The converse question,
whether the existence of a solution over Fp is sufficient, is much more subtle; it was
one of the main problems treated by Gauss in [24]. An introductory treatment is given
in [19].

Taking a more geometric perspective, we consider the algebraic variety specified
by some system of polynomial equations, and study the properties of the variety

1.2. Central questions 3

obtained by the reduction of the equations modulo a prime. The wish to extend the
usual concepts of algebraic geometry to work also over fields of non-zero characteristic,
such as finite fields, has led to important developments in this area. See also Sections
1.2.2 and 2.5.

Finite fields are finite sets with a special structure, and as such they are of much
use in combinatorics. For example, their addition and multiplication tables are Latin
squares — every row and every column contains every element exactly once. This has
been used in the design of experiments, for example in biology, where such structures
are desirable. Finite fields are also important in the classification of other combi-
natorial objects, such as Hadamard matrices, difference sets, and finite affine and
projective geometries. The combinatorial applications are given briefly in [36] and in
detail in [10].

Finally, practically important applications of finite fields have arisen in the field
of communications technology: the problem of reliable transfer of data over a noisy
channel was addressed by the theory of error-correcting codes, while the development
of public key cryptography satisfies the need for secret communication using public
information channels. For this, we refer to [31, 37].

1.2 Central questions

There are three central questions in the theory of equations over finite fields that are
relevant for this thesis.

1. Decide if a given equation or system of equations over a given finite field is
solvable, i.e., whether it has any solutions.

2. Compute the number of solutions to the equation, or provide upper and lower
bounds for this number.

3. Actually compute one, several, or all solutions.

For a survey of what has been done on these central questions, and of the many
different types of equations that have been considered, we refer the reader to Chapter
6 in [36], especially the end notes, and to Joly’s survey article [30]. In the remainder
of this section, we illustrate the first two basic questions by showing their relation to
our own results. The third question takes up a section on its own, as this is where our
main contribution lies.

1.2.1 Deciding solvability

By the example of binary quadratic forms given above, we already illustrated the
first question, which deals with solvability of equations. Following the founding con-
tributions of Fermat, Lagrange, and Gauss, many kinds of “higher congruences” were
attacked in a more or less systematic way, for example, equations of the form

axk + byk + czk = 0,

4 Chapter 1. Introduction

which arose in connection with Fermat’s last theorem [36, p. 326]. In the 20th cen-
tury however, quite general results were obtained regarding the solvability of certain
polynomial equations over finite fields.

For example, we have the theorem of Chevalley and Warning of 1935 [15, 55],
already mentioned above, from which the solvability of Problem A1 can be derived.

Theorem 1.1 Let F be a finite field, and let f be a polynomial of degree n in v
variables over F. Let N be the number of solutions in Fv of the equation f = 0. If
v > n, then N is divisible by the characteristic of F.

Corollary 1.2 If, under the same assumptions as in the Theorem, we assume in
addition that f is homogeneous, then the equation f = 0 has at least one nontrivial
solution over F.

Here a nontrivial solution is a solution where not all variables are zero. The Corol-
lary follows because we have p > 1 and because homogeneous polynomials always have
the trivial zero (0, 0, . . . , 0). It is noteworthy that the solvability criterion given in this
theorem depends only on the degree and the number of variables, and not on the co-
efficients. It also illustrates the general notion that equations become “easier” to solve
if the number of variables increases.

This thesis is concerned with nontrivial zeros of diagonal forms over finite fields, as
well as with the nonzero values represented by such forms (cf. the Abstract). Here a
form of degree n means a homogeneous polynomial of total degree n (as in “quadratic
form”); hence a diagonal form of degree n can be written as

v∑

i=1

aiX
n
i

for some nonnegative integer v, where we take the coefficients ai to be nonzero.
It is seen that by the Corollary, a diagonal form f over a finite field F has a

nontrivial zero whenever v > n; therefore our Problem A1 is always solvable, as it
concerns a form of degree n in n + 1 variables. A proof of Corollary 1.2 for the case
of diagonal forms is given in Section 2.4. In Chapter 6, we will transform this proof
into an efficient algorithm for finding a solution to the equation

∑n
i=0 aix

n
i = 0 over

a given finite field. Several other proofs of Corollary 1.2 exist (see for example [25,
Theorem 2.3], [30, Chapitre 3], [33, Exer. IV.7]), but these do not lead to efficient
methods for actually finding solutions to the equation. On the other hand, the proof
we give works only for diagonal forms.

Problem A2 is a little more difficult to solve. Here we want a given form of degree
n in n variables to represent a given nonzero element b, where both the coefficients
and the element b are in a given finite field F. By the Corollary, there certainly exist
x1, . . . , xn, y ∈ F such that

a1x
n
1 + . . . + anxn

n + (−b)yn = 0;

1.2. Central questions 5

but the problem is that we cannot guarantee that y 6= 0 for at least one solution
(x1, . . . , xn, y), and therefore this is not enough to solve Problem A2. An example
where such an equation cannot be solved at all is

x3 + y3 + z3 = α

over the field F4 of 4 elements, where α ∈ F4 is a generator for F4 over its subfield
F2. Because the third power of every element in F4 is contained in F2, whereas α is
not, the equation has no solutions.

In Theorem 2.3(ii) below we prove a sufficient condition for solvability: if every
element of F can be written as a sum of nth powers of elements of F, then the equation
in Problem A2 is always solvable for this particular n and F. This result is new; up
to now, the weakest sufficient condition known, given by Schwarz in 1950 [44], was
the requirement that gcd(n, q − 1) be less than the characteristic p of F. Moreover, in
contrast to Schwarz’s nonconstructive proof, the proof given below already has some
structural similarities with our eventual algorithm 6.7 solving the diagonal equation,
even if it does not quite lead to an algorithm itself.

We note that, by the efforts of many authors, the condition n > v on the number of
variables v (respectively n ≥ v for the inhomogeneous problem) has been considerably
relaxed, in the case of diagonal forms. It is now known, for example, that every element
of a finite field F of q elements can be written as a sum of nth powers with no more
than ⌈32 log n⌉ + 1 terms, provided we have q > n2 (see [59]). The proofs giving rise
to these results, however, are generally nonconstructive.

1.2.2 Number of solutions

The second central question deals with the problem of determining the number of so-
lutions of a given equation over a finite field. Specifically applied to equations defining
algebraic curves, this problem has recently gained great importance in cryptography
(“elliptic curve cryptography”, see [31]) and the theory of error-correcting codes (the
so-called Goppa codes, see [37]).

For example, whether a given elliptic curve is safe to use for encryption is de-
termined for a large part by the number of points on the curve with coordinates in
the (finite) base field. In 1985, Schoof published the first polynomial-time algorithm
to determine this number (see [42]). As a by-product, he gave the first determinis-
tic algorithm that can take at least some square roots in finite fields in polynomial
time; we will come back to this in the next section. Made practical by additions of
Elkies and Atkin and several others, the point-counting algorithm is now widely used.
In the meantime, the same problem is being attacked at the moment for ever more
complicated (systems of) equations, among others in the number theory group in
Leiden (Edixhoven, Bröker, and previously Carls). Already for this subproblem many
techniques of algebraic geometry are brought to action.

We note that the results of this thesis can be applied, not to point counting, but
to the construction of points on elliptic curves over finite fields (see Section 7.6).

6 Chapter 1. Introduction

A number of very general results, known as the Weil conjectures, deal with the
growth of the number of solutions of an equation as we extend the equation’s base field
(cf. the notes to this subject in [36] and the final chapters of [30]). As the name says,
these were surmised by Weil, in [56], and proved after the Second World War by Weil,
Dwork, and Deligne. The techniques needed for this proof gave rise to a spectacular
development in the field of algebraic geometry, in the course of which the foundations
of this field were newly laid; for this, mainly ideas of Serre and Grothendieck were
important.

One part of the Weil conjectures, already proved in [56], is the following theorem,
which gives upper and lower bounds for the number of solutions of diagonal forms
over finite fields.

Theorem 1.3 [56, p. 502] Let F be a finite field of cardinality q, and let n and v be
positive integers. Let f be a diagonal form of degree n in v variables over F. Then the
number N of nontrivial zeros of f satisfies

∣
∣N − qv−1

∣
∣ ≤ (n − 1)v−1qv/2; (1.4)

furthermore, for any nonzero b ∈ F, the number Nb of solutions to the equation
f(x1, . . . , xv) = b satisfies

∣
∣Nb − qv−1

∣
∣ ≤ (n − 1)vq(v−1)/2. (1.5)

We use this result to analyse the complexity of a simple probabilistic algorithm for
solving Problems A1 and A2; see Section 2.5.

1.3 Algorithms for finding solutions

The third basic question given above asks for the actual computation of solutions to
a system of equations over a finite field. This question will take most of our attention
in this thesis.

1.3.1 Efficiency

The mere existence of a solution algorithm is obvious, as we can simply enumerate
all possible values of the variables in the finite base field and see if they satisfy the
equation.

However, except for very small cases, this brute force method takes too much time.
Namely, for a field of q elements and an equation in v variables we must examine at
worst qv different possible zeros. As we can represent elements of such a field using
about O (log q) bits, this means that the number of points to try grows exponentially
in the number of bits needed to specify the equation (provided the equation does not
have too many nonzero coefficients).

An algorithm is generally considered efficient if the number of operations it per-
forms is bounded by a polynomial in the bit length of the input to the algorithm, and

1.3. Algorithms for finding solutions 7

inefficient if the number of operations grows faster than any polynomial function of
this bit length. Efficient algorithms in this definition are also commonly known as
“polynomial-time” algorithms.

We therefore sharpen the basic question and ask for efficient algorithms that solve
equations over finite fields. Specifically, we require the number of operations to grow
at most polynomially with log q and also at most polynomially with the degree and
the number of terms of the equation or system of equations.

As may be imagined, the activity of research into this topic grew enormously with
the advent of fast computers in the 1960s. But also long before this time, authors
like Legendre, Galois, and Gauss exhibited a vivid interest in methods that could
reduce the time spent on tedious and error-prone pencil-and-paper computations. For
example, these classical authors already knew the main ingredients of the Cantor-
Zassenhaus algorithm for polynomial factorisation over finite fields: distinct degree
factorisation, and equal degree factorisation by dividing up the roots into squares and
nonsquares, translating the variable by a random element if necessary. See [22], Notes
to Chapter 14, for several interesting references and quotations.

1.3.2 Currently known methods

Besides the obvious brute force method, we currently know the following methods for
computing solutions to nonlinear equations over finite fields.

1. The algorithm of Tonelli-Shanks for taking square and higher roots.

2. Methods for univariate polynomial factorisation.

3. Schoof’s algorithm for computing
√

a (mod p) for a fixed a ∈ Z and varying
primes p.

4. Probabilistic methods for equations in many variables based on the preceding
univariate methods.

To this we might add elimination methods, such as Gaussian elimination, the use
of resultants, and Gröbner bases, by which the solution of a system of equations
is reduced to the solution of a single equation. All these methods, except Schoof’s
method, are standard techniques and are discussed in textbooks like [7], [16], or [22].

It is a remarkable fact that, for many problems in the theory of equations over
finite fields, the only efficient algorithms known are probabilistic. All methods given
above, again excepting Schoof’s, are of Monte Carlo type: they always give correct
answers, but are only expected to finish in polynomial time. (This is opposed to Las
Vegas type algorithms, like Rabin’s compositeness test for integers, which finish in
polynomial time but where the results can be right or wrong subject to a certain
probability distribution.)

8 Chapter 1. Introduction

Root taking. Root taking in finite fields is not always difficult; for example, if the
field F has q elements and n is coprime to q − 1, we compute an nth root of a for
a ∈ F∗ as av, where v ∈ Z is such that vn ≡ 1 (mod q − 1). The algebraic reason is
that raising to the power n is an automorphism of the multiplicative group F∗. The
interesting case is therefore where n divides q − 1.

The method of Tonelli-Shanks was found by Tonelli in 1891 [52]. It is group-
theoretic in nature, and has been well known since Shanks’s rediscovery of it (see [46],
where it is only used to compute square roots). To compute the nth root of an element
a in the finite field F, it solves a discrete logarithm problem in the ℓ-Sylow subgroups
of the multiplicative group F∗, for all primes ℓ dividing n. For this purpose it uses
generators of these subgroups; in other words, for each ℓ it needs an element of F∗ that
is not an ℓth power in F. This makes the algorithm probabilistic, because the only
efficient method known to find such elements is by guessing. (However, the Generalised
Riemann Hypothesis implies that such elements can be found in polynomial time by
just trying 1, 2, 3, . . ., if F is a prime field.)

We will use a deterministic adaptation of the Tonelli-Shanks method in our own
algorithm; see Chapter 3.

The deterministic square root algorithm of Schoof is a remarkable application of his
algorithm for computing the number of rational points on elliptic curves over finite
fields, which was mentioned earlier. It is efficient (in the sense defined above) only if
it is used to take a root of a fixed element a ∈ Z, viewed as an element of various finite
prime fields in which it is a square; the running time is polynomial in the size of these
prime fields, but exponential in log |a|. The algorithm could be used, for example, to
compute

√
−1 efficiently in all prime fields where it exists (viz., in Fp where p ≡ 1

(mod 4)). See [42] for more details.

Multivariate methods. The relevance of root taking methods is for solving simple
univariate and bivariate equations, such as

axn + b = 0 or axn + byn = 0,

where it is enough to take an nth root of −b/a. Furthermore, we can solve diagonal
equations like

a1x
n
1 + . . . + avxn

v = 0

probabilistically by guessing values for x2 up to xv, and taking an nth root of

−(a2x
n
2 + . . . + avxn

v)/a1,

if possible. This is an example of the methods mentioned in the last item of the list
given above; we analyse this method in more detail in Section 2.5, because if we
assume v = n + 1, it is a probabilistic efficient algorithm to solve our Problem A1.

1.4. Overview of the thesis 9

Polynomial factorisation. Many algorithms have been proposed for the factori-
sation of univariate polynomials over finite fields, beginning with the Berlekamp and
the Cantor-Zassenhaus algorithms in the late 1960s. In 2000, it became at last feasible
to factorise polynomials of degree over a million over the field of 2 elements [11]; such
extreme applications require the use of highly nontrivial algorithms, the development
of which still continues. In [22, Chapter 14], the reader will find a survey of current
techniques.

As an illustration of the application of finite fields to Diophantine equations, cur-
rent algorithms for polynomial factorisation over the integers (like the algorithm of
Lenstra-Lenstra-Lovász [34], better known as LLL or L3, and Van Hoeij’s algorithm
[29]) all depend on polynomial factorisation over finite fields.

Although in practice the factorisation problem for polynomials over finite fields
can be considered as solved, several theoretical problems remain. The most important
one is the question whether an efficient deterministic factorisation method exists. Not
even the assumption of the Generalised Riemann Hypothesis is enough to guarantee
this (cf. [22, p. 411]).

To end this section, we note that another well known square root algorithm, the
Cipolla-Lehmer algorithm, is in fact a special case of the Cantor-Zassenhaus factori-
sation algorithm (see [4] for more details).

1.4 Overview of the thesis

After describing the field of study to which our work belongs, we now give an overview
of the following chapters of this thesis.

In Chapter 2, we give the necessary background from finite field theory. Further-
more, we prove the solvability of Problems A1 and A2 by a constructive method due
to Dem′yanov and Kneser, and show how these Problems can be solved by proba-
bilistic algorithms. The relative performance of the probabilistic and deterministic
algorithms given in this thesis is discussed in Section 7.2.

Chapters 3 to 6 describe the building blocks of the deterministic algorithms pro-
viding the proof of Theorem A3. It may be useful to remark that all existence claims
about algoritms in this thesis, and Theorem A3 in particular, are proved construc-
tively : explicit algorithms are presented that show the truth of these claims.

Chapter 3 describes the Tonelli-Shanks algorithm for root extraction in finite fields,
and gives a deterministic variant of this algorithm that we use extensively. Its main
result is the following.

Theorem 1.6 There exists a deterministic algorithm that, given a finite field F with q
elements, a positive integer n, and n+1 nonzero elements a0, . . . , an of F, determines
integers i and j and an element β ∈ F such that 0 ≤ i < j ≤ n and

ai/aj = βn,

in time polynomial in n and log q.

10 Chapter 1. Introduction

The Theorem says actually that, given n + 1 elements in F, we can compute an
nth root of the quotient of two among them; however, without close analysis of the
elements ai one cannot predict which two. Because of this selection feature, we call
the method Selective Root Extraction.

Chapter 4 describes how to find an nth power generator for a given extension of
finite fields. It also proves the following auxiliary result, which may be considered as a
multiplicative version of the primitive element theorem for separable field extensions.

Theorem 1.7 There exists a deterministic algorithm that, given finite fields E and
F, with E ⊆ F, and nonzero elements α1, . . . , αt of F, computes integers x1, . . . , xt

such that
t∏

i=1

αxi
i generates the field E(α1, . . . , αt) over E,

and uses time polynomial in t and log |F|.

The main result of Chapter 4 is as follows.

Theorem 1.8 There exists a deterministic algorithm which, given a finite field K
of q elements and a positive integer n dividing q − 1, computes β ∈ K such that βn

generates K over its prime field, or decides that no such β exists, in time polynomial
in n and log q.

In Chapter 5 we complete the proof of Theorem A3 for the case that all ai equal 1
— in other words, we show how to write finite field elements as sums of nth powers for
given n, where the sums have at most n terms. More specifically, we prove Theorem
1.9, showing that in this case the running time of our algorithms is almost equal to
that of probabilistic methods (cf. Section 2.6).

Theorem 1.9 There exists a deterministic algorithm that, given a finite field F with
q elements and a positive integer n, finds x0, . . . , xn ∈ F, with x0 6= 0, such that
xn

0 + . . . + xn
n = 0 in F, and takes time Õ(n2(log q)2) to finish.

(See below for a definition of the Õ-notation.) The proof makes use of the algo-
rithms of Chapters 3 and 4; notably, let F be a finite field of characteristic p and
extension degree e over Fp. For a nonzero element a ∈ F, and a positive integer n, we
first compute β such that F = Fp(βn); it follows that

a =

e−1∑

i=0

ai(β
i−1)n,

where the ai, which are in the prime field Fp, are considered as integers between 0
and p − 1. This gives a as a sum of nth powers with at most (p − 1) · e terms; the
second stage of the algorithm reduces this to n via a logarithmic decay of the number
of terms.

1.5. Conventions and definitions 11

The case of arbitrary coefficients ai is treated in Chapter 6, in which the proof
of Theorem A3 is completed. The resulting algorithm uses the algorithms of Chap-
ters 3, 4, and 5 as subroutines, and has similarities to the constructive method of
Dem′yanov and Kneser referred to above. Because it maintains a system of equa-
tions whose shape is trapezoidal, we called it the trapezium method. It comes in two
“flavours”, homogeneous and inhomogeneous, corresponding to Problems A1 and A2,
respectively.

Finally, Chapter 7 gives several applications and generalisations of the results in
this thesis, as well as a performance comparison between our deterministic methods
and the probabilistic method discussed in Section 2.6.

The most important application is the following. Here a quadratic hypersurface is
the affine or projective algebraic set defined by one polynomial of total degree 2.

Theorem 1.10 There exists an efficient deterministic algorithm that, given a finite
field F of odd characteristic and a quadratic hypersurface V over F with dim V > 0,
computes a rational point on V .

This Theorem is also a crucial step in the proof of the next result, which will be
given in detail in a forthcoming publication.

Theorem 1.11 There exists an efficient deterministic algorithm that, given a finite
field F and a Weierstrass equation for an elliptic curve E over F, computes a rational
point on E, other than the point at infinity, or shows that no such point exists.

Also, all algorithms given in the thesis can serve as stepping-stones for algorithms
to solve the corresponding problems over p-adic rings and fields.

1.5 Conventions and definitions

Finite fields. We will use the notation F, and sometimes also E, for finite fields, and
q for the cardinality of either E or F. As finite fields are determined up to isomorphism
by their cardinality, we may also write Fq, for some prime power q > 1, to denote a
finite field of q elements, or Fp for a prime p to denote a prime field.

One of the basic algorithmic questions to be answered is how to represent finite
fields and their elements in a computer. There are several reasonable possibilities:

(i) we could view a finite field as a vector space over the prime field equipped with
a multiplication table with respect to some basis of the space;

(ii) we could view it as a quotient ring of the ring of polynomials in one variable
over the prime field by the ideal generated by an irreducible polynomial;

(iii) as the multiplicative group of a finite field is cyclic, we could even just give
a generator of the multiplicative group and represent elements by powers of
the generator. This is only practical if the field is small, and addition in this
representation usually requires a stored table of some sort.

12 Chapter 1. Introduction

In [35], Lenstra discusses several of these representations and shows how to go from
one to the other efficiently, if possible. In computational practice, usually the second
possibility is chosen, in combination with the third if the field is small.

In this thesis, we use the second representation of the list just given. The elements
of F are hence represented as polynomials over the prime field whose degree is less
than that of the defining polynomial. It follows that the field operations in F can be
performed by means of efficient deterministic algorithms.

More specifically, addition and multiplication in a finite field of q elements can be
done using Õ(log q) bit operations, by Theorems 8.23 and 8.24 in [22].

Forms. We will need the following definitions on forms. Here, and in the sequel, we
denote polynomial variables by capital letters, and values taken on by those variables
by letters in lower case.

A form of degree n in v variables over a field F is a homogeneous polynomial
f ∈ F [X1, . . . ,Xv] whose total degree equals n.

Any form f of degree other than zero, being homogeneous, possesses the trivial
zero (0, 0, . . . , 0). A form f in v variables is said to represent a given element b ∈ F
if there exist x1, . . . , xv ∈ F , not all zero, such that f(x1, . . . , xv) = b. Thus, a form
must possess a nontrivial zero in order to represent 0. A form that represents zero
is also called isotropic, and a form that does not anisotropic; a form over F that
represents all nonzero elements in F is called universal.

Note that if a form f of degree n represents a nonzero element b, then it also
represents all elements of the form bxn with x ∈ F∗. In this case also the coset of b
modulo F∗n is said to be represented by the form f .

A diagonal form can be written as
v∑

i=1

aiX
n
i , where ai ∈ F ∗ for i = 1, . . . , v and

v ∈ Z≥0. In this thesis, diagonal forms are assumed not to have zero coefficients.

Complexity. We will present many asymptotic complexity estimates for algorithms.
For these, we assume that our algorithms are executed by a processor that performs bit
operations and is equipped with an unlimited random access memory. The estimates
will be presented using either “big-Oh” or “soft-Oh” notation, which are defined as
follows. We take the definition of Õ from [22, Section 25.7]; the symbol N denotes the
set of nonnegative integers.

Definition 1.12 Let f, g : N → R be functions such that there exists N ∈ N such
that f(n) > 0 and g(n) > 0 for all n ≥ N . Then f is O (g) if there exist N ′ ∈ N and
a positive C ∈ R, such that, for all n ≥ N ′,

f(n) ≤ Cg(n). (1.13)

Furthermore, f is Õ(g) if there exist N ′, c ∈ N such that, for all n ≥ N ′,

f(n) ≤ g(n) (log(3 + g(n)))
c
. (1.14)

1.5. Conventions and definitions 13

Here the constant 3 is added to g(n) to make sure that the logarithmic factor is
eventually bounded away from 1. This entails that Cg(n) is Õ(g(n)) for all positive
C ∈ R and all eventually positive functions g : N → R; in other words, that f is
Õ(g) whenever f is O (g). We note that we also use the “big-Oh” and “soft-Oh”
notations for functions of two or more variables; here the properties (1.13) and (1.14)
are required to apply for all values of the variables outside some bounded domain.

We will assume the use of asymptotically fast algorithms for integer and polynomial
arithmetic throughout this text. As shown in detail in, for example, [22], the adoption
of the Schönhage-Strassen algorithm for fast multiplication [22, Section 8.1] leads to
essentially linear time bounds on many basic arithmetic algorithms, such as division
with remainder and the extended Euclidean algorithm — see also Sections 9.1 and
11.1 of [22].

Many complexity estimates in this thesis are given in terms of field operations, i.e.,
the elementary operations of addition, multiplication, division, and equality testing
within some given computable field. Raising an element to a power is not considered
to be an elementary field operation.

Chapter 2

Finite field theory

2.1 Introduction

This chapter relates some elements of finite field theory which will be used in the
sequel, such as the fact that in dealing with nth powers in a finite field of q elements,
we can always replace n by d = gcd(n, q − 1) (while, of course, the monomials Xn

and Xd over such a field remain quite distinct), and the properties of the subfield of
a finite field generated by the nth powers.

Furthermore, we give a new sufficient condition for the solvability of Problem A2;
the sufficiency of this condition, and the fact that Problem A1 is always solvable,
are proved in a constructive way, which bears close resemblance to our algorithmic
solution of these problems in Chapter 6.

Finally, we use Weil’s bound to give upper and lower bounds on the number of
solutions of Problems A1 and A2. We use these bounds for the analysis of a simple
probabilistic algorithm that finds solutions to these problems.

For a fuller account of the results treated in this chapter, see [30], [36].

2.2 The subgroup of nth powers

Let F be a finite field, and let q be its number of elements. Recall that the multi-
plicative group F∗ is cyclic. Hence for a positive integer n the quotient of F∗ by its
subgroup of nth powers has d elements, where d equals the greatest common divisor
of n and the group size q − 1. It follows that the set of dth powers and the set of nth
powers in F∗ coincide, and therefore in computations involving powers in F we might
just as well replace n with the often smaller exponent d.

The algorithms presented in the next Chapters are robust with respect to n, in
that they remain valid if n does not divide q − 1. However, as in practice one would
first replace n with d before doing any actual computation, we have required in most
places that n divide q − 1. This also facilitates the analysis of the running time.

15

16 Chapter 2. Finite field theory

At the end of execution of an algorithm that is used to compute some nth power in
F, one must convert the dth powers in the output back to nth powers. This is done by
the following algorithm, which is clearly correct and deterministic, and spends time
polynomial in log q and n.

Algorithm 2.1 (Convert powers.)
Input: a finite field F of q elements, a positive integer n and an element a of F.
Output: an element b of F such that bn = ad, where d = gcd(n, q − 1).

1: Compute integers x and y, with 0 < x ≤ q − 1, such that xn + y(q − 1) = d,
where d = gcd(n, q − 1).

2: Compute ax and output the result.

2.3 The subfield of sums of nth powers

Next, we observe that the set K of elements of F which can be written as a sum of nth
powers in F is a subfield of F, and derive some interesting properties of this subfield.
Here, and henceforth, we abuse language to call an nth power in F what should really
be called the nth power of some element in F. A subfield E of F is called a proper
subfield if we have E 6= F.

Proposition 2.2 Let F be a finite field of q elements and characteristic p, let n be a
positive integer and let K be the subset of all sums of nth powers in F. Then:

(i) K is a subfield of F.
(ii) If q = pf and |K| = pe, then (pf − 1)/gcd(n, pf − 1) divides pe − 1 and e is the

smallest divisor of f with this property.
(iii) If K is a proper subfield of F, then we have n2 > q.
(iv) The field K can be generated by adjoining an nth power in F (that need not be

an nth power in K) to its prime field Fp.
(v) K is equal to F if, and only if, F can be generated as a field by adjunction of an

nth power in F to Fp.
(vi) Every nonzero element of K is a sum of nth powers with at most gcd(n, q − 1)

terms.

Proof. It is clear that K contains 0 and 1 and is closed with respect to addition. As
F has positive characteristic, this also implies closure under subtraction. Furthermore,
if we multiply two sums of nth powers into each other term by term, the product will
again be such a sum. As to quotients, if b is a nonzero sum of nth powers we can write
its multiplicative inverse in the same form by computing bn−1 and dividing through
by bn. This proves the first statement.

Write d for the greatest common divisor of n and pf −1. Clearly, K is the smallest
subfield of F whose multiplicative group contains the set of all nonzero nth powers in
F as a subgroup; this set has (pf − 1)/d elements. This implies the second statement.

2.4. The existence of solutions 17

Suppose that K is a proper subfield of F. We just saw that K has at least
(q − 1)/d nonzero elements; on the other hand, in this case we find |K| ≤ √

q. We
find the inequalities

q − 1

n
≤ q − 1

d
≤ |K| − 1 ≤ √

q − 1,

so that n ≥ √
q + 1, which shows the truth of the third statement.

The fourth statement is easy. Let b be a generator of the multiplicative group of
F; then Fp(bn) contains all nth powers in F, and it is clearly the smallest subfield of
F with this property; therefore, it is equal to K.

As to the fifth statement, if bn generates F over its prime field Fp for some b ∈ F,
then we have K = F, because K contains Fp(bn) for all b ∈ F. The converse follows
trivially from the fourth statement.

Finally, write Ss for the set of nonzero elements of F that are sums of nth powers
in F of at most s terms (for s = 1, 2, . . .). We have

F∗n = S1 ⊆ S2 ⊆ · · · ⊆ K∗.

There are at most d−1 strict inclusions in this chain, because with every new element
represented as a sum of s powers, also its whole coset modulo F∗n is so represented,
and the number of such cosets contained in K∗ is at most d. Furthermore, if Ss equals
Ss+1 for some s, it also equals all later terms in the chain; hence this can happen only
if Ss is equal to K∗. It follows that Sd = K∗. �

The results above are due in essence to Tornheim [53]; see [30, Section 4.2] for
further results and references. Note that the fact that K is closed under quotients
could also be proved more directly, by observing that bq−2 is the multiplicative inverse
of a nonzero b in K; however, the proof given above works for any field of nonzero
characteristic.

Below we will give efficient deterministic algorithms for computing a field generator
which is an nth power (as in (iv); Algorithm 4.14) and representing nonzero elements
as sums of nth powers with at most gcd(n, q − 1) terms (as in (v); Algorithm 5.22).

2.4 The existence of solutions

Among the multivariate forms over a finite field, diagonal forms occupy a special
place, and among these a special place is taken by the ‘sum-of-powers’ form

∑
Xn

i .
We will put this in evidence by proving Theorem 2.3 below by a constructive method,
which is only suited to diagonal forms, and in which the ‘sum-of-powers’ form plays
a special role.

Theorem 2.3 asserts that Problem A1 is always solvable, and gives a sufficient
condition for the solvability of Problem A2. We refer to Section 1.5 for definitions.

Theorem 2.3 Let F be a finite field of q elements, and let n be a positive integer.
(i) Every diagonal form of degree n over F in n + 1 variables is isotropic.

18 Chapter 2. Finite field theory

(ii) Assume every element in F is a sum of nth powers in F. Then every diagonal
form of degree n over F in n variables is universal.

The first statement is part of the Chevalley-Warning theorem; the proof given
below is due to Dem′yanov (see [20] and [30, Théorème 4.1]), and independently to
Kneser for the case n = 2 (see [32, Theorem XI.4.4]).

It turns out that Dem′yanov’s method can be extended to yield a proof of the
second statement. This statement was first proved by Schwarz [44] on the stronger
assumption that d = gcd(n, q − 1) < p, where p is the characteristic of F; however,
his (nonconstructive) proof is still valid if we know that the field F can be generated
over its prime field by an nth power. By Proposition 2.2(v), this is equivalent to our
assumption.

One may ask whether Theorem 2.3(ii) gives a necessary criterion for all diagonal
forms of degree n in n variables to be universal. The answer depends on the exact
formulation. On the one hand, if the criterion fails, then eo ipso the sum-of-powers
form

∑n
i=1 Xn

i is not universal. On the other hand, if for given n and F the elements
a1, . . . , an ∈ F∗ cover the residue classes modulo F∗n, then

∑n
i=1 aiX

n
i is universal by

construction; it follows that universal forms exist even if the criterion fails.

Proposition 2.4 Let F be a finite field of q elements, let d be a nonnegative integer
and let a0, . . . , ad be a sequence of nonzero elements of F. For k = −1, 0, . . . , d,
write fk =

∑k
i=0 aiX

n
i , and let Sk be the set of all nonzero elements of F that are

represented by fk (thus, f−1 is the zero form, and S−1 is empty).
(i) For k = 0, . . . , d, if fk is not isotropic, then Sk−1 $ Sk.

(ii) Suppose every element of F is a sum of nth powers in F. Then for k = 0, . . . , d,
if Sk−1 6= F∗, then Sk−1 $ Sk.

Example. An example where we have Sk = Sk−1 because the form fk becomes
isotropic, is given by the form X3 + Y 3 over F4, with k = 2; every sum of two third
powers in F4 is itself a third power, hence X3 and X3 +Y 3 represent the same number
of nonzero elements, while a nontrivial zero of X3 + Y 3 is given by X = Y = 1. In
fact, all third powers in F4 are contained in the prime field F2; it follows that the
elements of F4\F2 are not sums of third powers in F4.

Proof. In all cases, we obviously have ∅ = S−1 ⊆ S0 ⊆ S1 ⊆ . . . ⊆ Sd ⊆ F∗; we
must show that some of these inequalities are strict.

Let 0 ≤ k ≤ d; we prove (i). If fk−1 is isotropic, then so is fk; therefore assume
that fk−1 does not represent zero. Let Y1, Y2, . . . be new variables, and let h be the
smallest positive integer for which ak(Y n

1 + . . . + Y n
h) represents at least one element

b that is not represented by fk−1. Such an h exists, and we have h ≤ p = char F,
because we can represent b = 0 nontrivially as ak times a sum of p terms 1n. By the
minimality of h, it follows that, for some y1, . . . , yh, x0, . . . , xk−1 ∈ F, we have

b − akyn
h = ak(yn

1 + . . . + yn
h−1) = fk−1(x0, . . . , xk−1),

2.5. The Weil bound 19

and hence b is represented by fk−1 + akXn
k , which is fk. If b = 0, this shows that fk

is isotropic, and if not, we find that Sk % Sk−1, as desired.
Suppose now that every element of F is a sum of nth powers. Let 1 ≤ k ≤ d; we

prove (ii), in analogy to the proof of (i). This time, let h be the smallest positive
integer for which ak(Y n

1 + . . . + Y n
h) represents at least one nonzero element b that

is not represented by fk−1. Such an h exists, because Sk−1 6= F∗, and because all
elements of F∗ are sums of nth powers. Now the same argument as above shows that
Sk is strictly larger than Sk−1. �

Proof of Theorem 2.3. Proposition 2.4(i) implies that a diagonal form of degree
n in n+1 variables is isotropic, since otherwise it would have to represent n+1 classes
modulo F∗n, of which at most n exist. This proves the first part.

Suppose every element of F is a sum of nth powers. In this case, 2.4(ii) entails
that every diagonal form of degree n in n variables represents, if not all of F∗, then
at least n classes of F∗ modulo nth powers. But of such classes there are at most n.
This proves the second part. �

Generalisations. It should be noted that the proof just given does not use the
finiteness of F at all. In fact, for any field F where −1 is a sum of nth powers, the
same proof shows that a diagonal form of degree n over F with more than |F ∗/F ∗n|
variables has a nontrivial zero. This is the statement originally proved by Dem′yanov
[20].

A field K is said to have the property Cd or to be a Cd-field if any form over K
of degree n in more than nd variables has a nontrivial zero over K. Now for any odd
prime p and any positive integer n, the subgroup of nth powers has index at most n2

in Q∗
p (even if p divides n), where Qp denotes the field of p-adic numbers. Therefore,

by Dem′yanov’s result, the field Qp has the property C2 when restricted to diagonal
forms, whenever p is odd; by a more subtle argument, Dem′yanov proves the same for
Q2 (in [20]). However, Artin’s conjecture that the C2-property holds in general for
these fields has proved false. For a discussion of these interesting properties of the p-
adic fields, including the first counter-examples to Artin’s conjecture, see [25, Chapter
7]; more recently, counter-examples to Artin’s conjecture have been constructed for
infinitely many degrees (see [60] for a discussion).

2.5 The Weil bound

In 1949, André Weil published bounds on the number of solutions of equations of the
form

a0x
n0

0 + a1x
n1

1 + . . . + avxnv
v = 0

over a finite field (see [56]). The following theorem gives his results, applied to the
case of homogeneous equations, where we have n0 = n1 = . . . = nv = n. We use these
bounds in the analysis of the probabilistic solution method for such equations that is
given the next Section.

20 Chapter 2. Finite field theory

Theorem 2.5 [56, p. 502]
Let F be a finite field of q elements, and n and v positive integers. For any elements
a0, . . . , av ∈ F∗, the number N of (x0, . . . , xv) ∈ Fv+1 such that

∑v
i=0 aix

n
i = 0

satisfies

|N − qv| ≤ (n − 1)vq(v+1)/2; (2.6)

for any b ∈ F∗, the number Nb of (x0, . . . , xv) ∈ Fv+1 such that
∑v

i=0 aix
n
i = b

satisfies

|Nb − qv| ≤ (n − 1)v+1qv/2. (2.7)

This result, also found as Theorems 6.36 and 6.37 in [36], is part of the so-called
Weil conjectures on varieties over finite fields, which Weil formulated in the cited
paper [56] and proved for the case of diagonal varieties.

From this result we will derive some interesting conditions on q, n, and v which
ensure solvability or the presence of “many” solutions. In this context, Theorem 2.5
gives us nothing if q < (n − 1)2: all lower bounds become negative in that case.

Corollary 2.8 Let F be a finite field of q elements and n an integer with n ≥ 2.
(i) If q > (n − 1)4, then every diagonal form of degree n in 2 variables over F is

universal.
(ii) If q > (n− 1)2+

2

n−1 , then every diagonal form of degree n in n variables over F
is universal.

(iii) Let δ be real with 0 < δ < 1. If q > (n − 1)2 and v is an integer satisfying

v ≥ 2 log(n−1)−log(1−δ)
log q−2 log(n−1) , then every diagonal form of degree n in v + 1 variables

over F represents every nonzero element of F in at least δqv different ways.
(iv) If q ≥ 4(n − 1)2, then every diagonal form of degree n in n variables over F

represents every nonzero element of F in at least 1
2qn−1 different ways.

Of course, if for some v every diagonal form in v variables is universal, then every
diagonal form in v + 1 variables is isotropic. The converse is false, as shown, for
example, by the case of forms over F7: all ternary cubic diagonal forms over F7 are
isotropic, whereas the binary form X3 + Y 3 is not universal, as it does not represent
±3.

Proof. Let f be an arbitrary diagonal form of degree n in v + 1 variables. If we
have

q > (n − 1)2+
2

v , (2.9)

then by (2.7) the number of representations of any b ∈ F∗ by the form f is positive,
hence the form is universal. We obtain the first two statements by substituting v = 1
and v = n − 1.

Next, we want a good lower bound on how many representations of a given b ∈ F
by f exist. Let δ satisfy 0 < δ < 1. If we have

(1 − δ)qv ≥ (n − 1)v+1qv/2, (2.10)

2.6. The probabilistic approach 21

then by (2.7), we find that there exist at least δqv distinct representations of any
nonzero b ∈ F by f .

To obtain the third statement, we solve (2.10) for v, by taking logarithms: we find

v

(
log q

2
− log(n − 1)

)

≥ log(n − 1) − log(1 − δ).

Now we divide out the coefficient of v, which is positive by assumption.
For the fourth statement, take δ = 1

2 and v = n − 1. Then (2.10) is equivalent to

q ≥ 4
1

n−1 (n − 1)2+
2

n−1 = g(n − 1) · (n − 1)2,

where g : R → R is defined by g(x) = (4x2)
1

x . We have g(1) = g(2) = 4. Furthermore,
g is decreasing on [2,∞) as its derivative is negative for x > e/2 ≈ 1.4, so we find
g(n − 1) ≤ 4 for all integers n ≥ 2. Therefore, the assumption q ≥ 4(n − 1)2

implies (2.10) if n ≥ 2, and it follows that every nonzero b ∈ F has at least 1
2qn−1

representations by f under this assumption. �

This Corollary shows that with diagonal forms, the Chevalley-Warning theorem
(Theorem 2.3(i)) is far from being sharp with respect to the number of variables,
when q is large compared to the degree n. Part (i) even shows that if q > (n − 1)4,
every equation of the form aXn + bY n = c, with abc 6= 0, is solvable. More results for
the case where all coefficients of the form are equal are given in [36] s.v. “Waring’s
problem for finite fields”, and in [59].

As regards general forms, the Chevalley-Warning theorem is sharp: the norm form
of any basis of Fqn over Fq is an anisotropic form of degree n in n variables over Fq.

2.6 The probabilistic approach

Before we lay out our deterministic method for solving our Problems A1 and A2, we
give a straightforward probabilistic method for finding a solution to

n∑

i=1

aix
n
i = b (2.11)

over a finite field F of q elements, where the ai and b are nonzero elements of F, and
where n divides q − 1.

The idea is the following (see also [23]): let x1, . . . , xn−1 be random elements of
F, test whether

(

b −
n−1∑

i=1

aix
n
i

)

/an

is an nth power in F, and if it is, take its nth root by means of a probabilistic root
taking method.

22 Chapter 2. Finite field theory

For this to work, however, we must be sure that there are enough solutions, other-
wise we are not likely to find one by guessing. Now to every (n−1)-tuple (x1, . . . , xn−1)
correspond either zero, one, or n solutions to (2.11). A lower bound for the number
of “lucky” elements of Fn−1 is thus obtained by dividing the number of solutions to
(2.11) by n.

By Corollary 2.8, (iv), we find that if q ≥ 4(n − 1)2, there are at least qn−1/2
representations of b of the form (2.11). Thus if q ≥ 4(n − 1)2, we may expect that
at least one in every 2n elements of Fn−1 will give rise to one or more solutions of
(2.11).

An estimate for the expected running time of this algorithm can be given as fol-
lows: every execution needs n exponentiations with exponent n (which take O (log n)
multiplications each), a test whether the result is an nth power (which takes O (log q)
multiplications), and finally, if it is indeed an nth power, a call to a root-taking al-
gorithm. For this one could use the Tonelli-Shanks algorithm, suitably generalised
to account for general exponents n, which uses Õ(n + (log q)2) multiplications (see
Section 3.2 for details); however, other methods are faster. More precisely, by [22,
Corollary 14.16] root taking can be done using an expected number of Õ(n log q) field
operations. The expected number of iterations of the first two steps is at most 2n;
this yields an expected total of

O (n2 log n + n log q)

multiplications in F for the whole algorithm. We assume here that the generation
of a random element of F is about as complex as a multiplication in F, which takes
Õ(log q) bit operations by Theorems 8.23 and 8.24 in [22].

In short, we have proved the following statement.

Proposition 2.12 There exists a probabilistic algorithm that, given a finite field
F with q elements, a positive integer n satisfying 4(n − 1)2 ≤ q, and nonzero ele-
ments a1, . . . , an and b ∈ F, returns a solution to (2.11), using an expected number of
Õ(n2(log q) + n(log q)2) bit operations.

Remark. The running time bound of Proposition 2.12 is given in terms of bit
operations to facilitate comparison with the results of Chapters 5 and 6.

The probabilistic approach just sketched does not work if q is too small; in partic-
ular, if q < (n− 1)2, there may exist just one solution to (2.11), and any probabilistic
method is very unlikely to find it.

A comparison between the performance of the probabilistic algorithm given above
and the deterministic solver developed in the subsequent chapters will be given in
Section 7.2.

Chapter 3

Selective root extraction

3.1 Introduction and results

In this chapter we prove the following statement.

Theorem 3.1 There exists a deterministic algorithm that, given a finite field F with
q elements, a positive integer n, and n + 1 elements a0, . . . , an of F∗, determines
integers i and j and an element b ∈ F∗ such that 0 ≤ i < j ≤ n and

ai/aj = bn,

in time polynomial in n and log q.

We will present an explicit algorithm satisfying the conditions of the Theorem in
Section 4 below (Algorithm 3.12); it is an essential subroutine in many of the other
algorithms presented in this thesis.

The Theorem says that, given n + 1 elements in F∗, we can compute an nth root
of the quotient of two among them. The choice of which two to take is up to the
algorithm. Of course, the quotient of the selected elements must be an nth power in
F∗, but the criteria used by the algorithm are more subtle than this.

Although it uses parts of the well-known Tonelli-Shanks root taking algorithm,
Algorithm 3.12 is deterministic. The property that makes this determinism possible
is the fact that the computed root b is contained in the group generated by a0, . . . , an,
whereas an nth root of one given element a is not in general contained in the group
generated by a. Therefore, while the Tonelli-Shanks algorithm needs to construct
elements that are outside some given subgroup, Algorithm 3.12 circumvents this need.
Note that, if F is a given finite field, we cannot consider the entire multiplicative
group F∗ as given, because it is hard to find a generator for this group, or even a set
of generators (see, for example, [5]).

23

24 Chapter 3. Selective root extraction

In Section 2, we discuss the Tonelli-Shanks algorithm and bound its complexity,
in the case of roots of prime power exponent in an arbitrary finite field. (In the
literature, usually only the case of square roots in finite prime fields is considered —
see e.g. [16, Section 1.5.1].)

Section 3 gives the deterministic adaptation of the Tonelli-Shanks algorithm that
will be used in Algorithm 3.12.

In Section 4, we give the proof of Theorem 3.1, consisting of Algorithm 3.12 and
its analysis. We end with some remarks on the performance of Algorithm 3.12, and
on generalisations of it to more general abelian groups.

Notation. If a is an element of some group G, we write ord(a) for its order in G.
For a prime ℓ and integers a and b 6= 0, we write vℓ(a/b) for the ℓ-adic valuation of
a/b, i.e., the number of factors ℓ in a minus the number of factors ℓ in b.

3.2 The Tonelli-Shanks algorithm

The substance of the Tonelli-Shanks algorithm was already given by Tonelli in 1891
[52] for the purpose of extracting square roots modulo primes of the form 4k + 1. It
has subsequently been rediscovered by Shanks [46] and by Adleman, Manders, and
Miller [1] in the 1970’s, all of whom generalise the method to finding roots of arbitrary
exponent, while Shanks also notes that the method can be applied to arbitrary cyclic
groups.

The Tonelli-Shanks algorithm has two key ideas, which we present before giving
the actual algorithm. The first will be reused in our deterministic methods, while the
second gives rise to the probabilistic part of the algorithm and will be replaced.

Computations in the Sylow group. The first key idea is embodied in the fol-
lowing Proposition, which is usually applied with ℓ = 2 and f = 1. It shows how
to compute an ℓf th root of a from an ℓf th root of b, where b is constructed from a
in such a way that its order has fewer factors ℓ than the order of a. Applying this
construction inductively, we will end up with an element the order of which is prime
to ℓ, and taking a root of such an element is easy.

Recall that for a finite abelian group G and a prime ℓ, the ℓ-Sylow subgroup of G
is the subgroup of all elements of G whose order is a power of ℓ.

Proposition 3.2 Let F be a finite field having q elements, ℓ a prime and f a positive
integer such that ℓf divides q − 1, and g a generator of the ℓ-Sylow subgroup of F∗.
Then for all a ∈ F∗, either:

(i) ord(a) is not divisible by ℓ, or:

(ii) there exist unique integers z and v, with v ≥ 0 and z ∈ {1, . . . , ℓ− 1}, such that
ord(ag−zℓv

) has fewer factors ℓ than ord(a).

3.2. The Tonelli-Shanks algorithm 25

If (i) holds, then a is an ℓf th power in F∗. If (ii) holds, then a is an ℓf th power in F∗

if and only if v ≥ f .

Proof. Write q − 1 = ℓr · u, where u is in Z and ℓ does not divide u, and let a be in
F∗. Then ord(au) is a power of ℓ.

We have au = 1 if and only if the order of a has no factors ℓ; this gives the first
case. Here a is an element of a cyclic group of order u, on which raising to the ℓf th
power is a group isomorphism, so evidently a has an ℓf th root in this group.

Assume we have au 6= 1. We choose v such that au and gℓv

have the same order.
Let χ : F∗ → F∗ be the map that raises its argument to the power (q − 1)/ℓv+1. The
image of χ has order ℓv+1 and is generated by χ(g). It follows that for any integer z
prime to ℓ, both χ(a) and χ(gzℓv

) are primitive ℓth roots of unity. Therefore, if we
choose z such that these roots of unity are equal, we see that

χ(ag−zℓv

) = 1,

hence the quotient of a and gzℓv

has fewer factors ℓ in its order than a.
Let us prove the final statement; recall that F∗ is cyclic and that ℓ divides ord(a).

Therefore, a is an ℓf th power in F∗ if and only if vℓ(ord a) does not exceed vℓ(q − 1)−f ,
which is vℓ(ord g) − f , because g generates the ℓ-Sylow subgroup. But by our choice
of v, we know that vℓ(ord a) = vℓ(ord g) − v; this gives the inequality v ≥ f . �

Remarks. Note that if we have ℓ = 2, the choice z = 1 always works.
Besides being used here, Proposition 3.2 is also at the heart of the well known

index calculus method for computing discrete logarithms in cyclic groups; cf. [31, p.
102ff.] or [7, Section 7.3] for a discussion.

By applying the Proposition inductively, we construct an algorithm that computes
ℓf th roots, but needs a generator of the ℓ-Sylow subgroup of F∗ to proceed.

Finding a Sylow group generator. Here we come across the second key idea: if
b ∈ F∗ is not an ℓth power in F∗, then bu is a generator of the Sylow group, where u is
defined as in the proof of the Proposition. Furthermore, we easily exhibit a non-ℓth
power in F∗ by picking a random element b and testing whether b(q−1)/ℓ = 1; if b fails
the test, then b is not an ℓth power. As a fraction of (ℓ − 1)/ℓ of elements of F∗ are
not ℓth powers, we need only test a few elements before we succeed.

The guessing, of course, makes the algorithm probabilistic. However, it is not
known how to construct Sylow group generators, or even how to find a non-ℓth power,
in a deterministic way. In practice (assuming F is a prime field Fp), if one just
enumerates 1, 2, 3, . . ., one quickly encounters a non-power; if one assumes the truth
of the Generalised Riemann Hypothesis, this is proven to happen before we reach
2(log p)2; but the best unconditional results only guarantee a non-ℓth power below
a bound of O ε(p1/(4

√
e)+ε), which is much too large to obtain an efficient algorithm.

For non-prime fields, analogous results hold; proofs of the bounds just mentioned can
be found in [4] (assuming GRH) and [38] (unconditional).

26 Chapter 3. Selective root extraction

Algorithm. When we turn the two key ideas into an algorithm, it becomes clear
that it is more efficient to apply Proposition 3.2 to au, where u is defined as in the
proof of the Proposition. That way, the orders of all occurring elements are powers
of ℓ, and instead of using the map χ, we already find ℓth roots of unity after raising
to the power ℓw−1, where w = vℓ(ord a) (Step 4c). Applying this to the element gℓv

,

we always obtain the same root of unity ζ = gℓr−1

, where r = vℓ(q − 1). This root is
therefore precomputed in Step 3.

In Step 4d, by using ℓw − z in the exponent rather than −z, we avoid taking
quotients, which is more expensive than multiplying.

We remark that, as said, the “classical” Tonelli-Shanks algorithm is recovered by
taking ℓ = 2 and f = 1.

Algorithm 3.3 (Tonelli-Shanks.)
Input: a finite field F, having q elements, a prime number ℓ and a positive integer f
with ℓf dividing q − 1, and an element a of F∗.

Output: an element b ∈ F∗ such that bℓf

= a, or, if no such b exists, “no solution”.

1: [Pre-processing] Write q − 1 = ℓr · u, where ℓ does not divide u. Put A = au

and B = 1. Compute integers x and y such that xu + yℓf = 1.

2: [Find generator] Try random elements of F∗ until h ∈ F∗ is found such that
h(q−1)/ℓ 6= 1. Put g = hu, raise g to the power ℓ, ℓ2, . . . , ℓr−1, and store these
values in a table.

3: [Roots of unity] Put ζ = gℓr−1

. Compute ζ, ζ2, . . . , ζℓ−1 and store them in a
sorted table.

4: [Loop] While A 6= 1 do:

a: [Compute order] Compute w such that ord(A) = ℓw.

b: [Order too large?] If w + f > r, terminate saying there is no solution.

c: [Compute z] Using the table computed in Step 3, find the unique integer

z, with 1 ≤ z ≤ ℓ − 1, such that Aℓw−1

= ζz.

d: [Induction] Replace A by Ag(ℓw−z)ℓr−w

and B by Bgzℓr−w−f

, using the
table computed in Step 2.

5: [Result] Output Bxay.

Lemma 3.4 Algorithm 3.3, except the search in Step 2, can be run using O (ℓ +
log q + W 2 log ℓ) operations in F, where W = vℓ(ord a).

Proof. The powerings and order computations in Steps 1, 2, and 5 each take
O (log q) multiplications. The computation of the powers of ζ in Step 3 takes ℓ − 1
multiplications.

Define W as vℓ(ord a). The number of loop executions in Step 4 is at most equal
to W . Steps 4b, 4c, and 4d each take O (log ℓ) operations, using the stored values of
g to the power ℓ, ℓ2, . . . , ℓr−1. Step 4a takes O (W log ℓ) operations to complete. �

3.3. A deterministic variant 27

Proposition 3.5 Algorithm 3.3 is correct. It is probabilistic, with expected running
time the cost of O (ℓ + (log q)2) operations in F.

Proof. The correctness of Algorithm 3.3 follows from Proposition 3.2. The value v
used in the Proposition is equal to r −w; therefore the algorithm rightly returns “no

solution” if, and only if, we have w + f > r. Note that we always have ABℓf

= au,
so that in the end B will be an ℓf th root of au.

To justify Step 5, note that if Bℓf

= au, then

(Bxay)
ℓf

= axu+yℓf

= a.

The running time of the deterministic parts of Algorithm 3.3 is bounded by the
cost of O (ℓ + (log q)2/ log ℓ) operations in F, by the Lemma and because W =
O (log q/ log ℓ). The cost of trying an element for being a non-power also amounts
to O (log q) multiplications; we expect to try at most 2 elements, as the fraction of
non-ℓth powers in F∗ is (ℓ − 1)/ℓ. �

Remarks. It is easy to extend Algorithm 3.3 to a version that can take nth roots
for an arbitrary integer n. First we reduce to the case where n divides q−1 by means
of Algorithm 2.1; then we factorise n and apply Algorithm 3.3 one prime factor after
the other.

If Algorithm 3.3 is called often with the same F and ℓ, then the table of ℓth roots of
unity should be precomputed. In another direction, we could reduce the term ℓ in the
running time to

√
ℓ by using a baby-step-giant-step technique instead of computing

a table.

3.3 A deterministic variant

On examining the role of the Sylow group generator g in Algorithm 3.3, one sees
that the property of being a generator is not essential for g to work; all we need is
that g generates a large enough subgroup of the Sylow group. Therefore I propose the
following deterministic variant of Algorithm 3.3, where the element g is specified as
part of the input, instead of the algorithm having to find g by itself. It will be used
as a subroutine by the Selective Root Algorithm in the next Section. Of course, if the
order of g is too low, the algorithm will fail to compute a root.

The following generalisation of Proposition 3.2 gives more details.

Proposition 3.6 Let F be a finite field having q elements, ℓ a prime and f a positive
integer such that ℓf divides q − 1, and g ∈ F∗. Let G be the subgroup of all elements
b ∈ F∗ with vℓ(ord b) ≤ vℓ(ord g). Then for all a ∈ F∗, either:

(i) ord(a) is not divisible by ℓ, or:

(ii) there exist unique integers z and v, with v ≥ 0 and z ∈ {1, . . . , ℓ− 1}, such that
ord(ag−zℓv

) has fewer factors ℓ than ord(a), or:

28 Chapter 3. Selective root extraction

(iii) ord(a) has more factors ℓ than ord(g).

If (i) holds, then a is an ℓf th power in G. If (ii) holds, then a is an ℓf th power in G
if and only if we have v ≥ f . If (iii) holds, then a is not an ℓf th power in G.

Proof. We copy the proof of Proposition 3.2, replacing everywhere F∗ by G and
q − 1 by |G|, and g by gu except when g occurs inside the argument of the character
χ. The proof goes through, except that the given element a might not be in G; but
this is exactly the third case. �

Algorithm 3.7 (Deterministic Tonelli-Shanks.)
Input: a finite field F, having q elements, a prime number ℓ and a positive integer f
with ℓf dividing q − 1, and elements g and a of F∗.

Output: either an element b ∈ F∗ such that bℓf

= a and vℓ(ord b) ≤ vℓ(ord g), or, if
no such b exists, “no solution”.

1: [Pre-processing] Write q − 1 = ℓr · u, where ℓ does not divide u. Put A = au

and B = 1. Compute integers x and y such that xu + yℓf = 1.

2: [Roots of unity] Replace g by gu. Compute s such that ord(g) = ℓs. Put

ζ = gℓs−1

. Compute ζ, ζ2, . . . , ζℓ−1 and store them in a sorted table.

3: [Loop] While A 6= 1 do:

a: [Compute order] Compute w such that ord(A) = ℓw.

b: [Order too large?] If w + f > s, return “no solution”.

c: [Compute z] Using table lookup, find the unique integer z, with 1 ≤ z ≤
ℓ − 1, such that Aℓw−1

= ζz.

d: [Induction] Replace A by Ag(ℓw−z)ℓs−w

and B by Bgzℓs−w−f

.

4: [Result] Output Bxay.

Proposition 3.8 Algorithm 3.7 returns a correct solution whenever one exists, and
“no solution” otherwise. It is deterministic and uses O (ℓ + (log q)2) operations in F.

Lemma 3.9 Algorithm 3.7 can be run using O (ℓ + log q + W 2 log ℓ) operations in F,
where W = vℓ(ord a).

Proof. Same as for Lemma 3.4. �

Proof of Proposition 3.8. As we removed the probabilistic Step 2 from Algorithm
3.3, the result is evidently deterministic. The correctness is clear from Proposition
3.6, where this time we have v = s − w. Note that “no solution” here means that
either no ℓf th root exists in F∗, or the orders of all existing roots have too many
factors ℓ (i.e., more than vℓ(ord g)).

The claimed bound on the running time follows from the Lemma. �

3.4. The Selective Root Algorithm 29

Remarks. If Algorithm 3.7 can assume that either one, or both, of ord(a) and ord(g)
are already powers of ℓ, then it can dispense with raising the element in question to
the power u, and also Step 4 becomes trivial if a is not raised to the power u.

3.4 The Selective Root Algorithm

In this section we formulate and analyse the algorithm that proves Theorem 3.1. Thus
we are given an exponent n and nonzero elements a0, . . . , an of some finite field F,
and we are to compute an nth root of ai/aj for some distinct i and j. We will use
the deterministic Tonelli-Shanks variant Algorithm 3.7 to take the required roots; to
do this, we must find elements whose order contains enough factors ℓ, for all primes
ℓ dividing n.

Example. We first explain the situation by an example: let a, b, and c be nonzero
elements of a finite field F. By considering the quadratic characters of a, b, and c,
we see that at least one of a/b, a/c, and b/c is a square, let us say a/b; however, this
does not enable us to take its square root in a deterministic way, because for this we
need an element g with v2(ord g) > v2(ord(a/b)), and it is not known how to generate
such an element deterministically.

Therefore, let us consider the orders of the elements themselves. If, for example,
v2(ord a) = v2(ord b), then it follows that v2(ord(a/b)) will be strictly smaller than
v2(ord a); and we can use a in Algorithm 3.7 to take a square root of a/b. If there
are no equalities, we may assume v2(ord a) < v2(ord b) < v2(ord c); it follows that
v2(ord c) > v2(ord(a/b)), and we can use c to take a square root of a/b.

General situation. The following Proposition shows that elements of large enough
order always exist within the subgroup generated by the ai; this follows because
the wanted nth roots are themselves such elements, and the Proposition claims the
existence of nth roots. In fact, it shows that the possibilities for finding suitable
elements increase if the number of ai exceeds some multiple mn of the exponent n.

Proposition 3.10 Let F be a finite field having q elements, n a positive integer di-
viding q − 1, and a0, . . . , ak ∈ F∗, with k ≥ mn for some positive integer m. Let G be
the subgroup of F∗ generated by the ai. Then the ai can be reordered such that ai/aj

is an nth power in G for all i, j ∈ {0, . . . ,m}.

Proof. The group G is cyclic and is thus partitioned into at most n cosets modulo
the subgroup of nth powers. We are given at least mn + 1 elements of G. Hence by
the pigeon hole principle, there exists at least one coset to which at least m+ 1 of the
ai belong. �

30 Chapter 3. Selective root extraction

The Proposition does not show how to find such elements. Now let ℓ be a prime
divisor of n, and write f = vℓ(n); note that it is possible to compute a generator of
the ℓ-Sylow subgroup of G (though not of F∗, in general) simply by considering which
of the ai has the most factors ℓ in its order. Given such a generator g, the next task
is to identify those i and j such that

vℓ(ord(ai/aj)) ≤ min{0, vℓ(ord g) − f}, (3.11)

because that is the exact criterion for an ℓf th root of ai/aj to exist in G (cf. Proposi-
tion 3.6). If vℓ(ord g) is less than f , then the ℓ-Sylow subgroup of G does not contain
ℓf th powers other than 1, and hence the order of ai/aj must be prime to ℓ for ai/aj

to be an ℓf th power in G.
By the Proposition, there is a subset S of {0, . . . , n} with at least (n/ℓf) + 1

elements such that the criterion (3.11) is satisfied for all i and j in S. The method
is now applied recursively to those ai with i in the subset S, to identify two among
them whose quotient is an mth power, with m = n/ℓf , and compute an mth root of
this quotient.

These considerations yield the following algorithm.

Algorithm 3.12 (Selective root taking.)
Input: a finite field F having q elements, a positive integer n dividing q − 1, and
nonzero elements a0, . . . , an of F.
Output: integers i and j, with 0 ≤ i < j ≤ n, and an element b ∈ F such that
ai/aj = bn.

1: [Base case] If n = 1, output i = 0, j = 1, and b = a0/a1, and terminate.

2: [Factor n] Find a prime divisor ℓ of n. Let u be the largest divisor of q−1 which
is prime to ℓ; put f = vℓ(n).

3: [Compute orders] For i = 0, . . . , n, compute Ai = au
i , and compute wi such that

ℓwi is the order of Ai.

4: [Find generator] Select j such that wj is maximal among the wi, then put
w = wj and g = Aj . [The ℓ-Sylow subgroup of 〈a0, . . . , an〉 is generated by g
and has order ℓw.]

5: [Small group?] If w ≤ f , then for i = 0, . . . , n, put Bi = Ai; otherwise, for

i = 0, . . . , n, put Bi = Aℓw−f

i .

6: [Find equals] Put m = n/ℓf . Among the elements a0, . . . , an, find m + 1 such
that the corresponding Bi are all equal.

7: [Recur] Apply Algorithm 3.12 recursively to F, m, and the m + 1 elements
selected in Step 6; we find integers i and j, with 0 ≤ i < j ≤ n, and an element
c ∈ F∗ such that cm = ai/aj .

8: [Take root] Using Algorithm 3.7 with arguments F, ℓ, f , g, and c, compute b

such that bℓf

= c.

3.4. The Selective Root Algorithm 31

9: [Result] Output i, j, and b.

Proposition 3.13 Algorithm 3.12 is correct and deterministic, and can be done in
O (n(log q) + (log q)2) operations in Fq.

Lemma 3.14 Algorithm 3.12 takes O (n(log q) +
∑

ℓ|n(V 2
ℓ log ℓ)) operations in Fq to

complete, where Vℓ = max0≤i,j≤n vℓ(ord(ai/aj)), and where ℓ runs over the prime
divisors of n.

Proof. The running time of the algorithm is taken up by O (n log q) multiplications
in Steps 1–6, the cost of the recursive call in Step 7, and O (ℓ + log q + V 2

ℓ log ℓ)
operations in Step 8; here we apply Lemma 3.9, and write Vℓ for maxi,j vℓ(ord(ai/aj)).
The recursive call is for m = n/ℓf ≤ n/2 variables. Summing the cost over all
recursion levels, and writing ω(n) for the number of distinct prime divisors of n, we
find

O

ω(n)
∑

i=1

n

2i−1
(log q) +

∑

ℓ|n

(
ℓ + log q + V 2

ℓ log ℓ
)

 = O

n(log q) +
∑

ℓ|n
V 2

ℓ log ℓ

operations in Fq. �

Proof of Proposition 3.13. We first prove correctness. If n = 1, the Proposition
is trivial. Thus, let ℓ be a prime dividing n and put f = vℓ(n). Let u be as computed
in Step 2. Consider the subgroup G of F∗

q generated by the ai; let H be the ℓ-Sylow
subgroup of G.

With these notations, the elements Ai computed in Step 3 are in H, and any one
with maximal order among them generates H.

We claim that the test in Steps 5 and 6 is equivalent to the criterion (3.11). Namely,
let i and j be such that ai/aj has an ℓf th root in G. If w < f , the only ℓf th power in H
is 1, and ord(ai/aj) is prime to ℓ; equivalently, we have Ai = Aj . But in this case, we
also have Bi = Ai for all i. If w ≥ f , then we have vℓ(ord(ai/aj)) ≤ vℓ(g)−f = w−f ;
equivalently, the ℓw−f th powers of Ai and Aj agree. But Bi and Bj are exactly these
powers.

By Proposition 3.10, it follows that the selection procedure in Step 6 will be
successful. In particular, the indices i and j selected in Step 7 are such that cmu =
(ai/aj)u is an ℓf th power in H. Therefore, cu is an ℓf th power in H, as m and ℓ are
coprime. This is sufficient for Step 8 to succeed. The correctness of Step 7 is clear.

The given bound for the running time follows from the Lemma because we have
Vℓ = O (log q / log ℓ) for all ℓ | n; recall that n is assumed to divide q − 1. �

Proof of Theorem 3.1. Algorithm 3.12 claims to perform the task described in
the Theorem. By Proposition 3.13, it is correct and deterministic, and finishes in
time polynomial in n and log |F|. �

32 Chapter 3. Selective root extraction

Remarks. It is easy to give an iterative formulation for Algorithm 3.12, which
probably also results in better performance; a feature that should be kept is the way
in which the number of ai that need to be examined is at least halved in each recursive
level.

The number of field operations performed by Algorithm 3.12 is O ((log q)2) for a
field of cardinality q, and thus the algorithm has essentially cubic bit complexity. We
have been unable to obtain an essentially quadratic bound, except in situations where
the orders of the arguments ai are bounded independently from q (see Section 5.5 for
an example), or in fields where we have vℓ(q − 1) = O (

√

log q / log ℓ) for all primes ℓ
dividing both n and q − 1 (cf. [9]).

The complexity would improve if we could replace Algorithm 3.7 by a faster root
taking algorithm. Now there do exist essentially quadratic probabilistic algorithms
for root taking, which are mostly guises of Berlekamp’s polynomial factorisation al-
gorithm (see [4] or [22, Section 14.5], for example); but these do not seem to suit the
deterministic application in Algorithm 3.12.

Generalisations. The algorithms presented in this Chapter are valid in principle
for arbitrary finite cyclic groups, as was already noted by Shanks [46]. However, to
obtain efficient algorithms, one has to assume that the group order is known (though
not necessarily in factorised form).

In not necessarily cyclic abelian groups, such as the groups (Z/mZ)∗ for positive
integers m, one runs into the problem that the order of an element does not determine
the subgroups of which it is a member. However, one can still use Algorithm 3.7 to
decide, given a positive integer n and group elements a and b, whether the group
generated by a contains an nth root of b, and, if so, to compute such a root.

Furthermore, if we can compute the cardinality of the quotient G/Gn for an ar-
bitrary finite abelian group G, then we can adapt Algorithm 3.12 to work also for
G. Namely, if this cardinality is m, then it is clear that among every m + 1 elements
g0, . . . , gm of G there must be two whose quotient is an nth power in G. It is then
also true that the quotient H/Hn, where H is the subgroup of G generated by the
gi, cannot have more than m elements, so that an nth root of such a quotient gi/gj

will be contained in the group H.

Chapter 4

Field generators in

multiplicative subgroups

4.1 Introduction and results

Let F be a finite field and n a positive integer. Proposition 2.2 tells us that if every
element of F is a sum of nth powers in F, then there exists some α in F such that
αn generates F over its prime field. This leads us to the question whether such an
element α can be computed efficiently (and deterministically).

In this chapter we show that this is indeed possible. We use the following auxiliary
result, which may be considered as a multiplicative version of the primitive element
theorem for separable field extensions (e.g., Theorem V.4.6 in [33]).

Theorem 4.1 There exists a deterministic algorithm that, given finite fields E and
F, with E ⊆ F, and nonzero elements α1, . . . , αt of F, computes integers x1, . . . , xt

such that
αx1

1 · · ·αxt
t generates the field E(α1, . . . , αt) over E,

and uses time polynomial in t and log |F|.

Section 3 is devoted to the presentation and analysis of an algorithm satisfying
the conditions of this Theorem.

In Section 4, we prove the main result of this chapter.

Theorem 4.2 There exists a deterministic algorithm that, given a finite field F of
q elements and characteristic p, and a positive integer n, computes α ∈ F such that
Fp(αn) = K, in time polynomial in n and log q, where K is the subfield of sums of
nth powers in F.

The proof is by an inductive application of Theorem 4.1. Note that we have K = F
whenever n2 < q; see Proposition 2.2. We end the chapter with some generalisations.

33

34 Chapter 4. Field generators in multiplicative subgroups

Conventions. In this Chapter, F/E will denote an extension of finite fields of degree
e, and we will use q to denote the cardinality of E. If F/E is part of the input of an
algorithm, we assume that F is given as E[X]/(f), where f ∈ E[X] is an irreducible
polynomial, and we write β for the formal field generator X (mod f).

4.2 Computing degrees

We will have many occasions to compute the degree of an element α of a given finite
field F over a subfield E. The fastest way that I know for doing this is by using
the iterated Frobenius algorithm, a technique based on fast multipoint evaluation of
polynomials, that computes the value of repeated application of the Frobenius map in
a fast way comparable to repeated squaring. For details, I refer to [22, Section 14.8].

Algorithm 4.3 (Iterated Frobenius; Algorithm 14.26 in [22].)
Input: a finite field F of q elements, a squarefree polynomial f over F of degree n, a
positive integer d with d ≤ n, the element ξq where ξ ∈ F[X]/(f) is the class of X,
and an element α ∈ F[X]/(f).

Output: the elements α, αq, . . . , αqd ∈ F[X]/(f).

Lemma 4.4 Algorithm 4.3 is correct and deterministic. It finishes using Õ(n2) op-
erations in F.

Proof. Theorem 14.27 in [22]. �

Algorithm 4.5 (Compute the degree of a finite field element.)
Input: finite fields E ⊆ F, where |E| = q and [F : E] = e, the element βq where β is
the given generator for F over E, and an element α in F.
Output: the degree of α over E.

1: Let f be the minimal polynomial of β over E. Call Algorithm 4.3, with argu-

ments E, f , e − 1, βq, and α, to find the elements α, αq, . . . , αqe−1

.

2: Let d be the smallest positive integer such that α = αqd

. Output d and termi-
nate.

Proposition 4.6 Algorithm 4.5 is correct and deterministic. Its running time is
bounded by the cost of Õ(e2) operations in E.

Proof. An element α has degree d over F if and only if d is the smallest positive

integer for which αqd

= α. The Proposition follows by the Lemma (with a different
notation!). �

4.3. The compositum algorithm 35

4.3 The compositum algorithm

Our compositum algorithm is based on the following key observation (cf. [6, Lemma
6.2]), in which φ denotes Euler’s totient function, and which we give for arbitrary
fields.

Lemma 4.7 Let L/K be a finite cyclic extension of fields. Then in every basis for
L as a K-vector space there are at least φ([L : K]) elements b with the property that
L = K(b), and this inequality is best possible.

Proof. In this proof, an intermediate field means any field M with K ⊆ M ⊆ L.
We start by constructing a basis for L over K with the property that this basis

contains, as subsets, bases for all intermediate fields — for brevity, we will call such
a basis complete.

Assume first that the degree [L : K] is a prime power ℓe, and apply induction on
e. If M is the unique intermediate field with [L : M] = ℓ, then by induction there
is a complete basis b1, . . . , bℓe−1 for M over K; but now, if c1, . . . , cℓ is a basis for L
over M that has c1 ∈ K, then the set of all products bicj (with 1 ≤ i ≤ ℓe−1 and
1 ≤ j ≤ ℓ) is a complete basis for L.

Second, if the degree [L : K] factors as
∏t

i=1 ℓei
i with t > 1 and the ℓi distinct

primes, we write L as a tensor product

M1 ⊗K · · · ⊗K Mt

where Mi denotes the unique intermediate field of degree ℓei
i over K. By the first

step, we can find complete bases for the Mi; but then the tensor product of these
bases is a complete basis for L.

Next, we prove that a complete basis for L/K contains exactly φ([L : K]) field
generators, using the same two steps.

In the case where L is of prime power degree and M such that [L : M] = ℓ, every
element that is not in M generates L, and hence a complete basis for L contains
exactly ℓe − ℓe−1 = φ([L : K]) field generators.

In the general case, notice that elements of the constructed complete basis for L
are tensors of t components, where the ith component belongs to a complete basis for
Mi. Such a tensor generates L over K if and only if for i = 1, . . . , t, the ith component
generates Mi over K. Now we just proved that for each i, a complete basis for Mi

contains φ([Mi : K]) field generators; therefore by multiplicativity, exactly φ([L : K])
elements in the complete basis for L each individually generate L over K.

Thus, in a complete basis, the [L : K] − φ([L : K]) basis elements that are not
field generators contain among themselves bases for all intermediate fields, excepting
L itself; this proves that the space V that is additively generated by all these fields
has dimension [L : K] − φ([L : K]) over K.

Hence in an arbitrary basis for L over K, at most [L : K]−φ([L : K]) elements can
lie in proper subfields of L, and hence in V ; all the others must be field generators. �

36 Chapter 4. Field generators in multiplicative subgroups

Remark. Actually, as lim inf
n→∞

φ(n) log log n

n
exists and is positive (by Theorem 328

in [28]), it is to be expected that at least one in every c log log ([L : K]) elements of a
basis for L over K is a field generator, where c is a positive absolute constant.

Algorithm. Using the Lemma, it is easy to formulate an algorithm that satisfies
the conditions of Theorem 4.1 above.

Let E be a finite field with q elements, let t be a positive integer, and for i = 1, . . . , t,
let αi be algebraic over E of degree ei. We assume that all αi are contained in some
finite overfield F of E, and hence the composite field M = E(α1, . . . , αt) is well defined.
Its degree is equal to lcm(e1, . . . , et); we denote this degree by d. The notation M
for the composite field, and d for its degree, is kept throughout this Section and the
next.

Now given α1, . . . , αt, compute a basis for M = E(α1, . . . , αt) over E; then test all
the basis elements for being a field generator. We must find at least one generator by
virtue of Lemma 4.7.

The form of a basis for M , and the test for being a field generator that we apply
follow from the next two Lemmata.

Lemma 4.8 Write Mi = E(α1, . . . , αi) for 1 ≤ i ≤ t, and M0 = E. The degree fi of
Mi over Mi−1 satisfies, for i ≥ 1,

fi =
[E(αi) : E]

gcd([Mi−1 : E], [E(αi) : E])
.

A basis for M = Mt over E is given by
{
∏t

i=1 αxi
i | 0 ≤ xi ≤ fi − 1

}

.

Proof. We have Mi = Mi−1(αi), so the powers of αi give a basis for Mi over Mi−1.
The claim for the relative extension degree fi follows by the fact that finite extensions
of finite fields are cyclic, and therefore subextensions are uniquely determined by their
degrees.

A basis for Mi over E is thus given by {βαx
i | β ∈ B, 0 ≤ x ≤ fi − 1}, if B is a

basis for Mi−1 over E. The statement now follows by induction. �

Lemma 4.9 Let α ∈ M . Then we have M = E(α) if and only if

αqd/ℓ 6= α

for all prime divisors ℓ of d, where d = [M : E].

Proof. An element of M is a field generator over E if and only if it lies outside all
maximal subfields of M that contain E. These maximal subfields are in one-to-one
correspondence to the prime divisors of [M : E]. Let ℓ be a prime divisor; then α is
contained in the subextension of M of degree d/ℓ over E if and only if the Frobenius
automorphism of this subextension leaves α invariant. �

4.3. The compositum algorithm 37

Algorithm 4.10 (Finding a generator for a compositum of t finite fields in a given
multiplicative subgroup.)
Input: finite fields E ⊆ F, with |E| = q, and nonzero elements α1, . . . , αt in F.
Output: integers x1, . . . , xt such that

∏t
i=1 αxi

i generates the composite field E(α1, . . . , αt) over E.

1: [Precomputation] Compute βq, where β is the given generator for F over E.

2: Put d = 1. Then, for i = 1, . . . , t do:

a: [Degree of αi] Using Algorithm 4.5, compute the degree ei of αi over E.

b: [Relative degree] Put fi = ei/ gcd(d, ei), and replace d by dfi.

3: Factor d [now the degree of the composite field over E] into primes; let P be the
set of prime divisors of d.

4: [Iterate over basis elements] For x1 = 0, . . . , f1 − 1, . . . , xt = 0, . . . , ft − 1 do:

a: [Compute basis element] Put γ =
∏t

i=1 αxi
i .

b: [Apply Frobenius maps of maximal subfields] For all ℓ ∈ P , put

γℓ =

t∏

i=1

αxiq
d/ℓ

i .

Use the Galois conjugates of the αi computed in Step 2a.

c: [Not in subfield?] If for all ℓ ∈ P we have γ 6= γℓ, output (x1, . . . , xt) and
terminate the algorithm.

Proposition 4.11 Algorithm 4.10 is correct and deterministic. Its running time is
bounded by the cost of Õ(e(log q)+te2) operations in E, where e = [F : E] and q = |E|,
and O (e) other bit operations. The resulting integers xi are nonnegative and less than
e.

Proof. The correctness of the given method follows from Lemmata 4.7, 4.8, and
4.9. The loop in Step 4 is abandoned as soon as one basis element is found to satisfy
the requirements for being a field generator.

The bounds on the resulting integers xi follow also from Lemma 4.8.
Write e = [F : E]; we have d ≤ e. Step 1 spends O (log q) operations in F, hence

Õ(e log q) operations in E, Step 2 spends Õ(te2) operations in E by Proposition 4.6.
Step 3 spends O (e) bit operations for factoring d. Steps 4a to 4c are executed at most e
times, and in each iteration spend O

(
t(log e) + (log e)2

)
multiplications in F. Namely,

we have |P | = O (log e), and raising all αi, as well as their chosen conjugates, to powers
xi hence takes O ((log e)

∑

i O (log fi)) = O ((log e)2) multiplications; an additional
O (t(log e)) are used for multiplying these powers together. It follows that the whole
of Step 4 can be done using Õ(te) multiplications in F, hence Õ(te2) multiplications
in E. �

38 Chapter 4. Field generators in multiplicative subgroups

Remarks. Put in a certain order, each of the basis elements computed in Step 4a
is derived from one of its precedessors by multiplying with just one of the αi. Mutatis
mutandis, the same holds for the Frobenius images of these elements in Step 4b.
Therefore, at the cost of some administration, we could complete Step 4 as a whole
using just O (e log e) multiplications.

It could also be useful to discard αi if fi turns out to be 1; in other words, to
discard αi if it is already contained in Mi−1. This ensures that the degree of Mi is
at least twice that of Mi−1, for each i, and hence the number t of generators will be
O (log e).

Proof of Theorem 4.1. Algorithm 4.10 claims to compute the desired generator of
the composite field. By Proposition 4.11, it is correct and deterministic, and finishes
in time polynomial in t and log |F|. �

4.4 Finding nth power generators

This Section will prove Theorem 4.2, using the results from the previous Section. In
fact, we will give a more general algorithm than needed for Theorem 4.2 (Algorithm
4.14 below). Namely, Algorithm 4.14 will work with a given subfield E as base field,
so not only over the prime field.

Thus, let E ⊆ F be an extension of finite fields, where |E| = q, and let n be a
positive integer. Then Algorithm 4.14 computes an element α such that E(αn) is
equal to the field obtained by adjoining all nth powers in F to E; this also provides a
proof that such an element exists.

By Proposition 2.2, the set K of sums of nth powers in F is a subfield of F; it is, of
course, equal to the field obtained by adjoining all nth powers in F to its prime field.
It is easy to see that we have E(αn) = E · K, where α is as above. By Proposition
2.2(iii), the field K can be different from F only if we have q ≤ n2. A fortiori, the
same holds for the field E · K containing K.

Outline. In the situation where qe ≤ n2, we are in a position to enumerate all nth
powers in F∗. We could then use Algorithm 4.10 to determine an nth power generator
for the subfield of F generated over E by these nth powers, but as F∗n is a cyclic group,
we see that the output of Algorithm 4.10 is already among the enumerated elements.
Thus, a simpler method is to find an element of F∗n of maximal degree over E.

In all other situations, the subfield generated over E by the nth powers is equal
to F. Now to proceed, we want the base field E to have at least n + 1 elements, for
reasons that will be explained presently.

Thus, first assume that E is “small”, that is, E has at most n elements. A simple
but effective method to enlarge E is to find n distinct nth powers in F∗ and to adjoin
these to E; that will ensure that afterwards we have |E| > n. To obtain enough
distinct elements we enumerate at most (n−1)2 +1 elements of F∗ and examine their
nth powers.

4.4. Finding nth power generators 39

We can “compose” the n distinct nth powers into just one by calling the composi-
tum algorithm 4.10. This will give us an element α ∈ F such that E(αn) has more
than n elements. In case E already has enough elements, we simply take α = 1.

We may now assume that E is “large”; and for such fields E we can easily find
some nth powers that together generate F over E, as the following Lemma and its
Corollary show.

Lemma 4.12 Let β generate F over E, and suppose c0, . . . , cn are distinct elements
of E. Then if β 6∈ E, we also have (β + ci)

n 6∈ E for at least one i with 0 ≤ i ≤ n.

Proof. Assume the contrary; put q = |E|. Then for all i, we have (β + ci)
nq =

(β + ci)
n, so (β + ci)

q−1 is an nth root of unity in F, of which there are at most
n. By the pigeonhole principle, there exist i and j with 0 ≤ i < j ≤ n such that
(β+ci)

q−1 = (β+cj)q−1, which implies β+ci

β+cj
∈ E. But this is a contradiction, because

β is not in E, and we have ci 6= cj . �

Corollary 4.13 With the same assumptions as in the Lemma, the elements (β +ci)
n

(for i = 0, . . . , n) together generate F over E.

Proof. Retaining the same elements ci, apply the Lemma successively to all maxi-
mal subfields of F containing E (in the role of E). It follows that no such field contains
all the elements (β + ci)

n. Therefore these elements generate the whole field F. �

We apply this construction to F/E(αn), where α is defined as above. Once we have
obtained the ci, then with a second call to Algorithm 4.10, we “compose” the elements
β + ci, for i = 0, . . . , n, together with α, to find a single element α whose nth power
generates F over E. This solves our problem.

Algorithm 4.14 (Finding an nth power generator for a finite field.)
Input: finite fields E ⊆ F, with |E| = q and [F : E] = e, and a positive integer n
dividing qe − 1.
Output: an element α ∈ F such that E(αn) is equal to the field K generated over E
by all nth powers in F. [We have K = F whenever qe > n2.]

1: [F small?] If qe ≤ n2 then:

a: [Find powers] Put t = qe−1
n and let γ1, . . . , γt be elements of F∗ whose nth

powers are all distinct.

b: [Find degree] Compute βq, where β is the given generator of F over E.
Using Algorithm 4.5, find i with 1 ≤ i ≤ t such that [E(γn

i) : E] is
maximal.

c: [Result] Output γi and terminate.

40 Chapter 4. Field generators in multiplicative subgroups

2: [E small?] Put α = 1. If q ≤ n then:

a: [Find powers] Enumerate elements of F until we have found n nonzero
elements γ1, . . . , γn whose nth powers are all distinct.

b: [Compose] Apply Algorithm 4.10 to E, F, and γn
1 , . . . , γn

n ; let x1, . . . , xn

be the result. Replace α by γx1

1 · · · γxn
n . [Now E(αn) has more than n

elements.]

3: [Not done yet?] If [E(αn) : E] < [F : E] then:

a: [Enumerate] Compute n+1 arbitrary distinct elements c0, . . . , cn of E(αn).

b: [Compose] Apply Algorithm 4.10 to E, F, and αn, (β + c0)n, . . . , (β + cn)n,
where β is the given generator for F over E; let z, y0, . . . , yn be the result.
Replace α by

αz(β + c0)y0 · · · (β + cn)yn .

4: [Result] Output α and terminate.

Remarks. The degree in Step 3 is computed already by Algorithm 4.10, although
formally it is not given as output.

If we compute the γi in Step 2, we can reuse them in Step 3a by putting ci = γn
i

for i ≥ 1, and c0 = 0.

Proposition 4.15 Algorithm 4.14 is correct and deterministic. It can be run using
Õ(n2e + ne2 + e log q) operations in E, where e = [F : E] and q = |E|.

Proof. The correctness of Algorithm 4.14 follows from the discussion above.

Step 1a and Step 2a each take at most O (n2 log n) operations in F, because every
equation xn = a has at most n solutions, and we have t < n in Step 1a. Each of the
two calls to Algorithm 4.10, and also Step 1b, which is a subset of Algorithm 4.10,
takes Õ(e(log q) + ne2) operations in E by Proposition 4.11, while the computations
of the new values for β in Steps 2b and 3b take O (ne) operations in F, due to the xi,
yi, and z being bounded by e = [F : E]. The bound in the Proposition follows by the
assumption that one operation in F takes Õ(e) operations in E. �

Proof of Theorem 4.2. Write q = |F|. If n does not divide q − 1, we replace n by
gcd(n, q−1) as described in Section 2.2. Now Algorithm 4.14, applied to the extension
Fp ⊆ F, generates the subfield K of sums of nth powers in F by means of adjunction
of βn to Fp. By Proposition 4.15, this algorithm is correct and deterministic, and
finishes in time polynomial in n and log q. �

Generalisations. The multiplicative compositum algorithm 4.10 is valid for a finite
cyclic extension L/K of arbitrary fields, provided:

(i) we can compute the degree of an element of L over K (efficiently);

4.4. Finding nth power generators 41

(ii) we can determine (efficiently) whether a field element is contained in one or
more intermediate fields (i.e., fields M with K ⊆ M ⊆ L). This condition is
satisfied, for example, if we know a generator of the Galois group of L over K.

It follows that Algorithm 4.10 should work for cyclic extensions of number fields, for
example, as well as for finite fields.

We note that Lemma 4.12 and its Corollary are valid for arbitrary finite cyclic
Galois extensions. (The same proof works, except that one should replace the map
x 7→ xq by a generator of the Galois group.) It follows that nth power generators can
be computed for such extensions by Algorithm 4.14.

As regards Lemma 4.7, it is an interesting question from representation theory
under which conditions every basis contains a ring generator, if we consider noncyclic
extensions of fields or more general rings. For example, if L/K is a Galois extension
with Galois group V4, then one can easily write down a basis for L over K such that
no basis element generates L; this follows because the vector space sum of the three
quadratic intermediate fields is equal to L. Also, if K and L are number fields, it is
natural to restrict attention to integral bases. See [51] for some results in this area.

Chapter 5

Sums of like powers

5.1 Introduction and results

We consider a finite field F. Given a positive integer n, can we write any given element
of F as a sum of nth powers of elements of F? And if so, how many such powers are
needed?

This problem, known as Waring’s problem for finite fields by analogy to its classical
formulation with respect to the integers, has known active research in the 20th century.
Some elementary results are recalled in Proposition 2.2 (especially (vi)), but in the
meantime better bounds have been obtained in the cases where n is small with respect
to |F|; see Section 2.5 for more details.

What concerns us here is the question of actually computing representations of
given elements as sums of nth powers. The main result is the following.

Theorem 5.1 There exists a deterministic algorithm that, given a finite field F with
q elements, a positive integer n and a nonzero element a of F, determines elements
x1, . . . , xn of F such that

a =
n∑

i=1

xn
i , (5.2)

or correctly asserts that a is not a sum of nth powers in F, in time polynomial in n
and in log q.

I will propose such an algorithm below (Algorithm 5.22). As far as I know, this
is the first efficient deterministic algorithm to write finite field elements as sums of
powers.

After the results of Chapter 4, representing a nonzero element a of F as a sum of
nth powers is easy; we must, however, reduce the number of terms in the sum to at
most n, as claimed in Theorem 5.1. Section 2 shows how to do this; the basic method
obtained there (Algorithm 5.9) does not yet admit a polynomial running time bound.

43

44 Chapter 5. Sums of like powers

Section 3 presents three auxiliary techniques to improve the asymptotic complexity
of Algorithm 5.9. The first of these techniques is concerned with the right choice of
data structures, while the other two provide good representations of elements of the
prime field Fp as sums of nth powers.

We comment briefly on the two latter methods, which are of independent interest.
The second technique consists of a greedy algorithm that subtracts repeatedly

from a positive integer a the greatest possible integer nth power; this is useful as long
as a ≫ nn. This is obviously applicable to elements of a prime field Fp, considered as
integers between 0 and p − 1, if p is very large compared to n.

The third technique expands a as a =
∑d

i=0 ai(t/s)i, where s and t are integers
with 1 ≤ s < t ≤ n + 1, so effectively the element a is “expanded on the base t/s”.
The “digits” ai satisfy 0 ≤ ai ≤ n. This extension of the usual representation of
integers on an integer base seems to be new. The application to our problem is as
follows: by Selective Root Extraction we can determine s and t such that an nth
root of t/s in Fp can be computed efficiently and deterministically. This technique is
useful whenever a > n.

Section 4 then gives an algorithm that proves Theorem 5.1; it is an improved
version of Algorithm 5.9, incorporating the techniques from Section 3.

Finally, in Section 5, we consider representations of zero as a sum of nth powers.
These may be obtained by applying Algorithm 5.22 to the element −1, which is
obviously a sum of nth powers for all n in every finite field. However, making use of
some properties of roots of unity, we can construct for this problem a faster version of
Algorithm 5.22. The resulting running time bound, given in the following Theorem,
bridges the gap in complexity between probabilistic and deterministic algorithms in
this case.

Theorem 5.3 There exists a deterministic algorithm which, given a finite field F
with q elements and a positive integer n, determines elements x0, . . . , xn of F, with
x0 6= 0, such that

n∑

i=0

xn
i = 0, (5.4)

using Õ(n2(log q)2) bit operations to finish.

Conventions. In this Section, we suppose that elements of Fp are represented by
integers between 0 and p − 1 inclusive, and we will move back and forth between
integers and field elements without notice.

Because the algorithms given in this Chapter use both operations in the ring of
integers and in various finite fields, we give the complexity bounds in terms of bit
operations. We use the result that elements of a finite field of q elements can be
added and multiplied using Õ(log q) bit operations (cf. Section 1.5).

A logarithmic lemma. All logarithms occurring in this Chapter are natural log-
arithms. The following lemma will be used several times.

5.2. The main algorithm; basic version 45

Lemma 5.5 For all x ∈ R, x > 1, we have
1

x
< log

x

x − 1
<

1

x − 1
.

Proof. We have log
x

x − 1
= − log

(

1 − 1

x

)

=
∑

i≥1

1

i · x i
, where the Taylor series

converges for all x ∈ R with x > 1. The Lemma now follows by the obvious in-
equalities

1

x
≤
∑

i≥1

1

i · x i
≤
∑

i≥1

1

x i
=

1

x − 1
.

�

5.2 The main algorithm; basic version

This section explains the main algorithm whose existence will prove Theorem 5.1. The
basic version described here, however, does not yet admit a polynomial running time
bound. Therefore we postpone the investigation into the complexity of the method
to Section 5.4.

Let F be a finite field with q elements, characteristic p, and extension degree e
over its prime field. We are given a positive integer n and a nonzero element a ∈ F,
and we want to write a as a sum of nth powers, using at most n terms. The case
where a = 0 will be treated in Section 5.5.

Initialisation. The first step is to generate the subfield K of all sums of nth powers
in F by an element that is itself an nth power. By Proposition 2.2, such a generator
always exists; furthermore, we have K = F whenever n2 ≤ q. Now if we have such an
element αn, we can write every a ∈ K∗ as

a =

f−1
∑

i=0

ai(α
i)n, (5.6)

where f = [K : Fp], and the ai, elements of the prime field, are interpreted as integer
coefficients between 0 and p − 1, and are not all zero.

Now if we try to write a given element a ∈ F in the form (5.6), we will succeed if
and only if a is in K — that is, if and only if a is a sum of nth powers in F.

The multisection stage. The representation (5.6), properly viewed, writes a as a

sum of M nth powers, where M =
∑f−1

i=0 ai. We want to reduce this to at most n
powers; this is done as follows.

Divide the sequence of M terms into n + 1 subsequences, all having roughly the
same number of components. Next, form the n + 1 sums S1 up to Sn+1, where Sj is
the sum of the nth powers of all terms contained in the first j subsequences.

If any of the Sj is zero, we immediately discard all the corresponding terms from
our representation; note that after this operation, we still have a representation of

46 Chapter 5. Sums of like powers

our a as a sum of nth powers, but with fewer terms. If not, we apply Selective Root
Extraction (Algorithm 3.12) to the sequence (S1, . . . , Sn+1) and obtain

Sl = βnSk

for some β ∈ F and some integers k and l with 1 ≤ k < l ≤ n + 1. Therefore, if
we multiply all terms in the first k subsequences by β and discard all terms in the
(k + 1)th up to lth sequences, the sum of the nth powers of all terms is unchanged.

In both cases, the number of terms M will drop by a factor of about n+1
n at worst.

The trick is applicable as long as we have M ≥ n + 1; hence we will end up having
M ≤ n, as desired.

The reduction step is embodied in the following algorithm. Note that if M ≤ n,
the algorithm is still valid, although the output might be the same as the input; and
also that the empty sequence is returned in case

∑M
i=1 yn

i = 0.

Algorithm 5.7 (Power sum reduction.)
Input: a finite field F with q elements, a positive integer n dividing q − 1, and a
sequence (y1, . . . , yM), with M ≥ 0, of nonzero elements of F.
Output: a sequence (z1, . . . , zN), with N ≥ 0, of nonzero elements of F such that

(i)
∑M

i=1 yn
i =

∑N
i=1 zn

i ;
(ii) N ≤ n

n+1 (M + 1).

1: [Form subsequences] Find integers Q and R, with 0 ≤ R < n + 1, such that
M = Q·(n+1)+R. For j = 1, . . . , R, put mj = j(Q+1); for j = R+1, . . . , n+1,
put mj = R(Q + 1) + (j − R)Q.
[The jth subsequence, for j ≥ 2, contains the terms yi for i = mj−1 +1, . . . ,mj ;
and we have mn+1 = M .]

2: [Partial sums] Compute S1, . . . , Sn+1 by Sj =
∑mj

i=1 yn
i (1 ≤ j ≤ n + 1).

3: [Zero sum?] If Sk = 0 for some k, take the largest such k, output (yi)
M
i=mk+1

and terminate.

4: [Force equal sums] Using Algorithm 3.12 with arguments (Sj)n+1
j=1 , find integers

k and l with 1 ≤ k < l ≤ n + 1 and an element β ∈ F∗ such that Sl = βnSk.

5: [Result] Output the concatenation of (βyi)
mk
i=1 and (yi)

M
i=ml+1.

Lemma 5.8 Algorithm 5.7 is correct and deterministic. It finishes using Õ(M log n+
n log q + (log q)2) operations in F.

Proof. We divide the sequence (yi) of M terms into subsequences whose lenghts
are as follows:

Q + 1, Q + 1, . . . , Q + 1
︸ ︷︷ ︸

R times

, Q, . . . , Q
︸ ︷︷ ︸

n+1−R times

.

As we have no control over which subsequence will be discarded, this ensures that we
profit equally from all arising situations.

5.2. The main algorithm; basic version 47

Now either in Step 3 or in Step 5, we discard at least Q terms. As Q is not less
than M−n

n+1 , it follows that

N ≤ M − Q ≤ M − M−n
n+1 = n

n+1 (M + 1) .

The running time of Algorithm 5.7 is bounded by O (M log n) operations in F for
computing the partial sums Sj , and a further Õ(n log q + (log q)2) operations in Step
4, by Proposition 3.13. �

Main algorithm. The following algorithm puts together the pieces we discussed
above.

Algorithm 5.9 (Power sum representation; basic version.)
Input: a finite field F with q elements and characteristic p, a positive integer n dividing
q − 1, and a nonzero element a of F.
Output: “no solution”, or a sequence (xi)

n
i=1 in F such that a =

∑n
i=1 xn

i .

1: [Find field generator] Apply Algorithm 4.14 with arguments Fp, F, and n to
find α such that Fp(αn) is equal to the set of all sums of nth powers in F. Let
f denote the degree of αn over Fp.

2: [Represent a on basis] Let (a0, . . . , af−1) be the coefficient vector of a when
represented on the basis 1, αn, α2n, . . . , α(f−1)n. If a is not a linear combination
of these elements, output “no solution” and terminate.

3: [Form initial sequence] Let (yi)
M
i=1 be the sequence consisting of ai components

αi, for i = 0, . . . , f − 1.

4: [Ready?] While M > n do:

a: [Reduce sequence] Replace (yi)
M
i=1 by the output of Algorithm 5.7 applied

to it.

5: [Result] Output (yi)
M
i=1, followed by (0)n

i=M+1.

Proposition 5.10 Algorithm 5.9 is deterministic. It returns a correct solution when-
ever one exists, and “no solution” otherwise.

Proof. If we apply Algorithm 4.14 with base field Fp, the resulting field Fp(αn) is
equal to the set of all sums of nth powers in F. Therefore, the given element a is
such a sum if and only if it is an element of Fp(αn). This can be checked by trying
to represent a on the basis 1, αn, α2n, . . . over Fp, as is done in Step 2. If Step 2 fails,
then a is not a sum of nth powers in F and the algorithm stops saying “no solution”.
If it is, we obtain a representation of the form (5.6), and the algorithm can proceed.

We prove termination of the loop in Step 4. By Lemma 5.8, the number of terms
N of the sequence returned by Algorithm 5.7 satisfies

N ≤ n
n+1 (M + 1) . (5.11)

Now if we have M ≥ n + 1, it follows that N < M , and thus eventually we will have
M ≤ n. �

48 Chapter 5. Sums of like powers

5.3 Improving the complexity

If we consider Algorithm 5.9 as it stands, it is easy to see that the running time cannot
be polynomial. Namely, at the beginning of Step 4, the length M of the sequence
of powers that we consider can be as large as e(p − 1), because the coefficients ai

computed in Step 2 are integers between 0 and p − 1. Therefore Lemma 5.8 proves
nothing better than that every iteration in Step 4 takes at most exponential time in
log p.

In this section, we give three techniques for improving the complexity of Algorithm
5.9.

Firstly, we can make use of the fact that the number of distinct terms in the
sequence (yi)

M
i=1 is very small: initially, it is at most e. Now summing up a large

number of equal terms is better done by means of multiplication by an integer than
by repeated addition.

Secondly and thirdly, we can try to reduce the size of the integers ai, thus reducing
the number of terms M at the cost of a slightly higher number of distinct terms.

The two auxiliary algorithms (Algorithms 5.14 and 5.19) that we present below are
concerned with the representation of elements of prime fields as sums of nth powers.
Obviously, for any a ∈ Fp and any positive integer n, we have

a =

a∑

i=1

1n. (5.12)

This sum has a terms; we want to decrease this number. Algorithm 5.14 is useful
when a ≫ nn; Algorithm 5.19 works whenever a > n.

After applying these two algorithms, the number of terms M will even be poly-
nomial in log log q; however, there will appear a polynomial dependence of M on the
degree n.

5.3.1 Equal and distinct terms

We begin by showing how Algorithm 5.7 can make use of the fact that many terms
in the input sequence are equal.

Lemma 5.13 Consider the sequence (yi)
M
i=1 in the input of Algorithm 5.7. If the yi

are arranged in M̃ blocks of equal terms, Algorithm 5.7 can be run using Õ((log n)M̃ +
n log q+(log q)2) operations in F, and the resulting sequence (zi)

N
i=1 will have the same

form, with at most M̃ + 1 blocks.

Proof. By forming the n + 1 subsequences in Step 1, we may divide some of the
blocks of equal terms into two or more; but at the cost of increasing M̃ by n, we may
assume that every block is contained in one subsequence.

It follows that the partial sums Sj may be calculated using O ((M̃ + n) log n)

operations in F. A further Õ(n log q + (log q)2) operations are used in Step 4, by
Proposition 3.13. This gives the bound on the running time.

5.3. Improving the complexity 49

To form the new sequence (zi)
N
i=1, some blocks are multiplied by β, some are

discarded and some are kept. In terms of the blocks originally supplied, we see that
some blocks lose some or all of their members, some are kept, some are multiplied by
β, and at most one initial block has only some of its members multiplied by β, while
the others remain the same. It follows that we can arrange the sequence (zi) in the
same form as the input sequence, at no additional cost, except that we may need one
more block. �

5.3.2 Sums of powers in the integers

Next we consider trying to write a given a ∈ Fp as a sum of nth powers in Z, where
only positive powers are allowed. Now it is known that for any n, there exists a
constant g(n) such that every integer can be written as a sum of at most g(n) such
powers; this constant g(n), however, grows exponentially with n (see [58] and [28,
Chapter XXI] for a discussion). As an example, to represent 2n − 1 as a sum of nth
powers we obviously need 2n − 1 terms.

Therefore, the following greedy algorithm repeatedly subtracts from a the largest
nth power that is smaller than a, until a drops below nn, from where the number of
terms would become too large.

Algorithm 5.14 (Sum of integer powers, approximately.)
Input: positive integers a and n.
Output: a nonnegative integer ã and a nonincreasing, possibly empty sequence (ri)

m
i=1

of positive integers such that

ã ≤ nn, a =
∑m

i=1 rn
i + ã.

1: [Initialise] Put m = 0.

2: [Small enough?] While a > nn do:

a: [Compute root] Replace m by m + 1 and compute rm as ⌊n
√

a⌋.
b: [Decrease a] Replace a by a − rn

m.

3: [Result] Output a and (ri)
m
i=1.

Remark. The sequence (ri) can be made strictly decreasing if we halt the algorithm
as soon as a < 2(n/ log 2)n. This is easily proved by considering for which integers a
we have rn > a/2 (where r = ⌊n

√
a⌋).

Lemma 5.15 Algorithm 5.14 is correct and deterministic. The number m of terms
satisfies m ≤ n log log a + 2. The algorithm uses Õ(n log a) bit operations.

Proof. It is clear that the algorithm will produce a sequence with the required
properties. We now prove the desired inequality on m.

50 Chapter 5. Sums of like powers

Let a be an integer, and let r = ⌊n
√

a⌋. We have

(x + 1)n − xn =

∫ x+1

x

ntn−1 dt < n(x + 1)n−1

for any real x ≥ 0; we apply this to x = n
√

a − 1, which is less than r, and find

a − rn < (x + 1)n − xn ≤ n(x + 1)n−1 = na
n−1

n .

Now writing a0 = a, ri = ⌊n
√

ai−1⌋, and ai = ai−1 − rn
i for i ≥ 1, we find

ai ≤ na
n−1

n
i−1 ≤ . . . ≤ n1+ n−1

n +...+(n−1

n)
i−1

a
(n−1

n)
i

0 ,

hence

ai ≤ nna
(n−1

n)
i

0 (5.16)

by summing the geometric series.
Suppose now that i ≥ n log log a0. Then log log a0 + i log n−1

n < 0 by Lemma 5.5,
and we obtain

a
(n−1

n)
i

0 < e,

so ai < e · nn after i iterations (here e = exp(1)). Now continuing for two more
iterations, we will have ai+2 < (e−2)nn < nn, and hence the algorithm will terminate.

We must comment on the complexity of Step 2a. The running time of an algorithm
for computing integer roots is estimated in detail by Bernstein in [8, Section 8], but
only time spent in multiplication of integers in included in the estimates. However,
the cost of Bernstein’s algorithm, which consists of some bisection steps followed
by a Newton iteration, is obviously dominated by the multiplication time. From
a sequence of simple verifications that is too long to include here, we derive from
Bernstein’s estimates a cost of Õ((log n)3 + log a) bit operations for Step 2a.

For the whole Algorithm 5.14, we obtain a bound of Õ(n(log log a)((log n)3+log a))
bit operations, which is Õ(n log a). �

5.3.3 Expanding on a rational base

The final auxiliary algorithm can write any a ∈ F∗
p as a sum of nth powers with

at most n2 log ‖a‖ + 1 terms, where ‖a‖ denotes the unique integer representative
of a in the set {1, 2, . . . , p − 1}. We use the following Lemma, which extends the
usual representation of integers to a given base (say, 10, or 2) to an arbitrary rational
base, while avoiding the use of infinite expansions. The reason for doing this is that
among the elements {1, 2, . . . , n + 1}, considered as elements of Fp for some prime
p > n + 1, there exist two whose quotient we can express as an nth power in Fp by
means of Selective Root Extraction (Algorithm 3.12). Therefore, in (5.18) below, we
may assume that an nth root of t/s is known.

5.3. Improving the complexity 51

Lemma 5.17 Given integers s and t with 0 < s < t and (s, t) = 1, every positive
integer a can be represented as

a =
d∑

i=0

ci

(
t

s

)i

, (5.18)

where the “digits” ci are integers and satisfy 0 ≤ ci ≤ t − 1, and where we have

d ∈ Z, 0 ≤ d ≤ log a

log(t/s)
, cd 6= 0.

Proof. Write a = qt + r for integers q and r with 0 ≤ r < t. Then we have

a = qt + r = qs
t

s
+ r,

and we can do the same procedure with qs instead of a. Proceeding until a = 0, we
express a in the desired form.

Furthermore, from (5.18) it follows that a ≥ (t/s)d, which proves the bound on d.
�

Remark. One can prove that representations of the form (5.18) are unique, even if
the sum is not an integer. The present “(t/s)-adic” number system is new and should
not be confused with expansions that simply subtract the greatest possible power of
t/s from a; this usually results in an infinite expansion (see [40] for an overview of
results). I found this system around the same time as the authors of [3]; the latter
paper discusses in depth the properties of this representation as a dynamical system
and as a formal language.

Algorithm 5.19 (Writing an integer on the base t/s.)
Input: positive integers a, t, and s such that t > s.
Output: a sequence (ci)

d
i=0 such that (5.18) holds.

1: [Initialise] Let i = 0.

2: [Ready?] While a > 0 do:

a: [Compute next digit] Write a = q t + r, with 0 ≤ r ≤ t − 1.

b: [Decrease a] Put ci = r and i = i + 1, and replace a by qs.

3: [Result] Put d = i − 1; output c0, c1, . . . , cd.

Lemma 5.20 Algorithm 5.19 is correct and deterministic. It takes Õ(s(log a)2) bit
operations to finish. The resulting sequence has length d + 1, where d is bounded by
(s + 1) log a; the coefficients ci satisfy 0 ≤ ci ≤ t − 1.

Proof. The bound for d follows from combining Lemma 5.17 with Lemma 5.5, while
we note that t/s ≥ s+1

s ; this also bounds the number of iterations of the algorithm.
�

52 Chapter 5. Sums of like powers

Remark. Comparably to the situation with radix conversion and the Euclidean
algorithm, a more careful analysis will probably give a softly linear complexity bound
for this algorithm.

5.4 The main algorithm; final version

We now give the final version of the algorithm for writing a nonzero element as a sum
of nth powers, incorporating the techniques from the previous Section into Algorithm
5.9.

Let F be a given finite field with prime field Fp. We now apply (only once) the
Selective Root Algorithm 3.12 to the set {1, . . . , n + 1}, and obtain integers s and t,
with 1 ≤ s < t ≤ n + 1, such that t/s is written explicitly as an nth power in Fp.

Then if we have some a ∈ Fp, we apply first Algorithm 5.14 and then Algorithm
5.19 to find

a =

m∑

i=1

rn
i +

d∑

i=0

ci

(
t

s

)i

, (5.21)

for integers m and d, and with ri ∈ Fp and ci ∈ {0, . . . , n}.
Finally, to obtain the timings of Lemma 5.13, we need only choose the right data

structures, upon which we will not comment any further. The following algorithm
differs from Algorithm 5.9 only in that Step 3 was replaced by Steps 3 and 4 below.

Algorithm 5.22 (Representing a ∈ F∗ as a sum of nth powers in F.)
Input: a finite field F with q elements and characteristic p, a positive integer n dividing
q − 1, and a nonzero element a of F.
Output: “no solution”, or a sequence (xi)

n
i=1 in F such that a =

∑n
i=1 xn

i .

1: [Find field generator] Apply Algorithm 4.14 with arguments Fp, F, and n to
find α such that Fp(αn) is equal to the set of all sums of nth powers in F. Let
f denote the degree of αn over Fp.

2: [Represent a on basis] Let (a0, . . . , af−1) be the coefficient vector of a when
represented on the basis 1, αn, α2n, . . . , α(f−1)n. If a is not a linear combination
of these elements, output “no solution” and terminate.

3: [Precomputations] Using Algorithm 3.12 with arguments (1, 2, . . . , n + 1), find
integers s and t with 1 ≤ s < t ≤ n + 1 and an element b ∈ Fp such that
t/s = bn.

4: [Decrease coefficients] Apply Algorithm 5.14 and Algorithm 5.19 to all the ai

in turn, using the integers t and s computed in Step 3, writing ai in the form
(5.21).
Multiply each instance of the form (5.21) with the appropriate power of α, write
out all the “digits” ci as sums of 1’s, and concatenate all the results, to find a
nonnegative integer M and a sequence (yi)

M
i=1 in F∗ such that a =

∑M
i=1 yn

i .

5.4. The main algorithm; final version 53

5: [Ready?] While M > n do:

a: [Reduce sequence] Replace (yi)
M
i=1 by the output of Algorithm 5.7 applied

to it.

6: [Result] Output (yi)
M
i=1, followed by (0)n

i=M+1.

Proposition 5.23 Algorithm 5.22 returns a correct solution whenever one exists,
and “no solution” otherwise. It is deterministic and its running time is Õ(n2(log q)2+
n(log q)3) bit operations.

Remark. As Algorithm 5.22 uses operations in both F and Fp, as well as integer
arithmetic, we use bit operations to measure the total running time.

Proof. The correctness of Steps 3 and 4 follows from Lemmata 5.15 and 5.20. The
remaining parts are correct by Proposition 5.10.

We bound the running time of Algorithm 5.22 as follows, bounding everywhere f
by e = [F : Fp]. Step 1 takes Õ(n2e + ne + e log p) operations in Fp by Proposition
4.15. Step 2 solves a linear system of e equations and f unknowns, which takes O (e3)
operations in Fp. Step 3 takes Õ(n(log p) + (log p)2) operations in Fp by Proposition
3.13.

By Lemma 5.20, Step 4 takes Õ(en(log p)2) bit operations for f invocations of
Algorithm 5.19 on integers below p. To this, by Lemma 5.15, we must add a cost
of Õ(en log p) bit operations for f calls to Algorithm 5.14; this does not change the
bound of Õ(en(log p)2) operations.

For the resulting length M of the sequence (yi) before Step 5, we use two different
bounds, according as p is greater or less than nn. If p ≤ nn, we find O (fn2 log p) =
O (n2 log q) terms from Lemma 5.20. If p > nn, we first have O (fn log log p) terms,
by Lemma 5.15; after that, Algoritm 5.19 is, in fact, applied to integers below nn, so
that Lemma 5.20 gives an additional O (fn2 log nn) = O (en3 log n) terms. Together,
this makes O (en(log log p+n2 log n)). As we have the better bound e = log q

log p < log q
n log n

in this case, we again find a “soft” bound of Õ(n2 log q) in the case where p > nn.
We bound the number of iterations in Step 5 using (5.11) in the equivalent for-

mulation
N − n ≤ n

n+1 (M − n).

If we denote by M0,M1, . . . the subsequent values taken on by the sequence length
M , we find by induction, for i ≥ 0,

Mi ≤ (n
n+1)i(M0 − n) + n < (n

n+1)iM0 + n.

By Lemma 5.5, the right hand side decays to less than n+1 in O (n log M0) iterations.
Substituting the initial bound for M , we find

O (n(log n + log log q))

iterations, which is Õ(n log log q).

54 Chapter 5. Sums of like powers

Although no term of the sequence (yi) is known to occur more than n times after
Step 4, we can still benefit from the techniques given in Lemma 5.13, because we
know that the number of distinct terms after Step 4 is O (en log p) = O (n log q). (It
is the number of “digits” given by Algorithm 5.19 plus the number of terms produced
by Algorithm 5.14, if applicable.) By Lemma 5.13, this number may increase by at
most the number of iterations; asymptotically speaking, this is no growth at all.

Therefore, each call to Algorithm 5.7 in Step 5 uses Õ(n log n log q + n log q +
(log q)2) operations in F, by Lemma 5.13, and Step 5 in total takes Õ(n2(log q) +
n(log q)2) operations in F.

We add everything up, where we use the fact that e log p = log q, and the as-
sumption that operations in Fp take Õ(log p), and operations in F take Õ(log q) bit
operations. Thus, we obtain a bound of

Õ(n2(log q)2 + n(log q)3)

bit operations, as claimed. �

Remarks. In Algorithm 5.7, which is called in Step 5a, many partial sums of
∑

yn
i

are formed, which are each tested for being zero. One might wonder if this event
will ever occur. Now every subsum of the initial representation (5.6) is the unique
representation of some nonzero element of F on some basis over Fp (namely, the
power basis generated by αn), and therefore cannot be zero. However, the use of
Algorithm 5.19 for reducing the number of repeated terms in the sequence introduces
the possibility of zero partial sums. An example is given by (3

2)2 + 3
2 + 2 = 23

4 , which
is zero in F23. This is a subsum of 2 · (3

2)2 + 3
2 + 2 = 8, an example of a representation

computed by Algorithm 5.19 applied with t = 3 and s = 2.

It is not necessary to apply all three techniques discussed above to obtain a poly-
nomial time algorithm. In fact, the use of either Lemma 5.13 or Algorithm 5.19
by itself will suffice. On the other hand, using only Algorithm 5.14 will result in a
running time that is polynomial in log q, but at worst exponential in n.

As appears from the above proof, the use of Algorithm 5.14 in Step 4 does not
improve the “soft” asymptotic complexity of the algorithm as a whole. The reason
for this is that the calls to the Selective Root Algorithm 3.12 become the bottle neck
in Algorithm 5.7. However, if we could assume that the degree e is bounded, for
example, then we find a bound of Õ(n log log q + n3) for the initial number of terms
M , which is obviously better than the bound of Õ(n2 log q) used in the proof, whereas
the cost of Algorithm 5.14 is negligible.

Proof of Theorem 5.1. Algorithm 5.22 claims to solve the problem posed in the
Theorem, with the remark that if n does not divide q−1, we replace n by gcd(n, q−1)
as described in Section 2.2. By Proposition 5.23, its output satisfies the bounds
required by the Theorem and its running time is polynomial in n and log q. �

5.5. The use of roots of unity 55

5.5 The use of roots of unity

Next, we prove Theorem 5.3, hence we consider the case where we want a sequence
of nth powers in a given finite field F whose sum is 0. Here we must allow for the use
of n + 1 terms, instead of n, in order to have solvability in all cases. On the other
hand, this equation is already solvable over prime fields, and consequently there are
no fields F over which a solution does not exist (cf. Theorem 2.3(i)).

A simple solution is calling Algorithm 5.22 with argument −1; viz., if
∑n

i=1 xn
i =

−1, then
∑n

i=1 xn
i + 1n = 0. However, we will obtain a better complexity for this

situation than that of Algorithm 5.22. For this, we make use of the properties of roots
of unity in F.

Roots of unity. It is well known that, if ζℓ is a primitive ℓth root of unity for some
integer ℓ ≥ 2, we have

ℓ−1∑

i=0

ζi = 0. (5.24)

Thus, if we contrive to take an nth root of ζℓ, for some ℓ not exceeding n + 1, we will
find a sum of nth powers that is zero and has at most n + 1 terms, and we are done.

A simple but important example of this technique is the situation where n is odd:
here we take ℓ = 2, so we have ζℓ = −1, and of course an nth root of −1 is −1 itself.
This leads to an obvious solution of (5.4), namely

1n + (−1)n = 0.

If n is even, then, to apply the same technique for ℓ = 2, we must obtain a 2eth root
of −1 for some positive integer e, and it is not known how to do this efficiently and
deterministically.

For general n, the following Lemma shows when we can make use of (5.24).

Lemma 5.25 Let ℓ be a prime, let n be a positive integer, and let a ∈ F∗ be such
that

vℓ(ord a) > vℓ(n).

Then there exists an integer x such that (ax)n is a primitive ℓth root of unity.

Proof. Write n = m · ℓf , where ℓ ∤ m and f ≥ 0. The order of a is divisible by ℓf+1,
so some power ax of a has order exactly ℓf+1. It follows that (ax)n has order ℓ, as
desired. �

The complexity of Selective Root Extraction. As Proposition 3.13 says, the
complexity of the Selective Root Algorithm 3.12 in terms of log q is essentially cubic,
when applied to general arguments. However, in the current situation, we need to
apply this algorithm only to arguments ai such that, for all primes ℓ dividing n, we
have

vℓ(ord ai) ≤ vℓ(n) (i = 0, . . . , n). (5.26)

56 Chapter 5. Sums of like powers

Namely, if for some index i and prime ℓ this inequality fails, then we can take the
‘side exit’: Lemma 5.25 shows that the group generated by ai contains some b such
that bn is an ℓth root of unity, and we find

1n + bn + b2n + . . . + b(ℓ−1)n = 0,

which solves the main equation (5.4). But if we can assume the bound (5.26), then
the running time of Algorithm 3.12 drops to O (n log q) operations in F, as shown by
Lemma 3.14.

Main algorithm. To obtain the algorithm proving Theorem 5.3, we simply apply
Algorithm 5.22 to the element −1, and then append a 1 to the resulting sequence. But
first, we modify Algorithm 5.7 by inserting the following step between Steps 3 and
4, incorporating the ‘side exit’ discussed above. The input and output specifications
of Algorithm 5.7 are not changed; the use of the side exit is limited to the case of
writing −1 as a sum of nth powers.

Algorithm 5.27 (Extra step added to Algorithm 5.7.)

3bis: [Side exit] If Sn+1 = −1, then for all primes ℓ dividing n, and for i = 1, . . . , n+1:

a: [Compute order] Write q − 1 = u · ℓr, where ℓ ∤ u, and n = m · ℓf , where
ℓ ∤ m. Put T = Su

i , and let ℓw be the order of T .

b: [Order large enough?] If w > f , then let b = T ℓw−f−1

, output b, b2, . . . , bℓ−1

and terminate.

Lemma 5.28 Algorithm 5.27 is correct and deterministic. The amount of operations
in F needed for its execution is

{

Õ(M log n + n log q) if its input satisfies
∑M

i=1 yn
i = −1;

Õ(M log n + n log q + (log q)2) otherwise.

Proof. Algorithm 5.27 is equal to Algorithm 5.7, unless its input satisfies

M∑

i=1

yn
i = −1;

this is equivalent to having Sn+1 = −1. We will consider this situation.
The output of the modified algorithm 5.7 differs from the original version if, and

only if, we find a prime ℓ dividing n and an index i between 1 and n + 1 such that
the partial sum Si has more factors in its order than n has. If these conditions are
satisfied, then by Lemma 5.25 we know that bn is an ℓth root of unity, where b is some
integer power of Si. To show that Step (3bis)b indeed computes the right element b,
we compute

bn =
(

T ℓw−f−1
)n

=
(

T ℓw−1
)m

.

5.5. The use of roots of unity 57

As T has order ℓw, and as m is prime to ℓ, we find that ord(bn) is exactly ℓ, as
desired. The output of the modified algorithm is now the sequence of powers of b,
which satisfies

bn + b2n + . . . + b(ℓ−1)n = −1.

It follows that the nth powers of both the input and the output sequences sum to −1,
and the correctness is proved.

As to the running time of the modified algorithm 5.7, we first note that the
computations done in Step (3bis)a are also done in Algorithm 3.12, so that we do not
need to count them. In Step (3bis)b, we perform O (n + log q) operations in F.

Also, as said above, the call to Algorithm 3.12 in Step 4 takes now only O (n log q)
operations in F, by Lemma 3.14 and the bound (5.26). This completes the proof. �

One will notice that the precomputations in Step 3 of Algorithm 5.22 also contain
a call to the Selective Root Algorithm 3.12. In order to obtain the desired complexity
bound, we must take the “side exit” using roots of unity also in this step; this is the
task of Step 1 of the main algorithm, which is now given.

Algorithm 5.29 (Representing 0 ∈ F as a nontrivial sum of nth powers.)
Input: a finite field F with q elements and characteristic p, a positive integer n dividing
q − 1.
Output: a sequence (xi)

n
i=0 in F, with x0 6= 0, such that

∑n
i=0 xn

i = 0.

1: [Side exit for Algorithm 5.22, Step 3]
For all primes ℓ dividing n, and for i = 1, . . . , n + 1, do:

a: [Compute order] Write q − 1 = u · ℓr, where ℓ ∤ u, and n = m · ℓf , where
ℓ ∤ m. Put I = iu (considering the index i as an element of Fp), and let ℓw

be the order of I.

b: [Order large enough?] If w > f , then let b = Iℓw−f−1

, output 1, b, b2, . . . , bℓ−1

followed by (0)n
j=ℓ+1, and terminate.

2: Using Algorithm 5.22 with the modified version 5.27 of Algorithm 5.7, compute
x1, . . . , xn ∈ F such that

∑n
i=1 xn

i = −1.

3: Output (1) followed by (xi)
n
i=1.

Proposition 5.30 Algorithm 5.29 is correct and deterministic. Its running time is
Õ(n2(log q)2) bit operations.

Remark. As with Algorithm 5.22, the running time bound is given in terms of bit
operations so that the cost of operations in various finite fields and also of integer
arithmetic can be compared.

58 Chapter 5. Sums of like powers

Proof. The correctness of Step 1 is proved in the same way as the correctness of
Algorithm 5.27. By Theorem 2.3(i), a solution always exists, so the call to Algorithm
5.22 in Step 2 is always successful. This shows the correctness of Algorithm 5.29.

We provide a new estimate of the running time of Algorithm 5.22, this time using
the modified version 5.27 of Algorithm 5.7. In the present case, the nth powers of the
input to Algorithm 5.27 indeed sum to −1, so that the better estimate of Õ(n log q)
operations of Lemma 5.28 applies. Also, Step 3 of Algorithm 5.22 takes Õ(n log q)
operations, since all situations where it could take longer are detected in Step 1 of
Algorithm 5.29.

All other operations in Algorithm 5.22, as well as Step 1 of Algorithm 5.29, take
a linear number of finite field operations (linear in the logarithm of the field size).
Hence the total is indeed bounded by Õ(n2(log q)2) bit operations, because we assume
that one operation in F (and also Fp) takes Õ(log q) bit operations. �

Remark. It is easy to see that the output of Algorithm 5.22 in Step 2 will actually
have all xi in the prime field Fp. In fact, all operations of this execution of Algorithm
5.22 are performed within Fp. Therefore, before Step 1, we could replace F by Fp, and
n by gcd(n, p− 1), as described in Section 2.2, to get a better running time bound of
Õ(n2(log p)2) bit operations.

Proof of Theorem 5.3. Algorithm 5.29 claims to solve the problem posed in the
Theorem, with the remark that if n does not divide q−1, we replace n by gcd(n, q−1)
as described in Section 2.2. By Proposition 5.30, its output satisfies the bounds
required by the Theorem and its running time is Õ(n2(log q)2) bit operations. �

Chapter 6

Diagonal forms

6.1 Introduction and results

We can now complete our deterministic solution of Problems A1 and A2. We have
the following results.

Theorem 6.1 There exists a deterministic algorithm which, given a finite field F
with q elements, a positive integer n, and nonzero elements a0, . . . , an of F, computes
elements x0, . . . , xn of F, not all zero, such that

n∑

i=0

aix
n
i = 0, (6.2)

in time polynomial in n and log q.

An explicit solution method for this homogeneous equation is given below (Section
2, Algorithm 6.7). It assumes the ability to find a sum of nth powers in F that
evaluates to zero, as discussed in Section 5.5. The method maintains a system of
equations of trapezoid form, hence the name of Trapezium algorithm.

Theorem 6.3 There exists a deterministic algorithm which, given a finite field F
with q elements, a positive integer n, and nonzero elements a1, . . . , an and b of F,
computes elements x1, . . . , xn of F such that

n∑

i=1

aix
n
i = b, (6.4)

or correctly asserts that no such elements exist, in time polynomial in n and log q.

The algorithm for this inhomogeneous problem (Algorithm 6.11 in Section 3) con-
sists in a modification of the homogeneous method, this time assuming the ability to
write a given element of F as a sum of nth powers (Section 5.2).

Note that there are no assumptions whatsoever on the field F or its characteristic.

59

60 Chapter 6. Diagonal forms

6.2 The homogeneous trapezium algorithm

We prove Theorem 6.1; let F be a finite field of q elements, and let n be a positive
integer dividing q − 1. The assumption that n divide the size of the multiplicative
group is not a restriction (cf. Section 2.2), but serves only to simplify the complexity
estimates. We are given a diagonal form

f = a0X
n
0 + a1X

n
1 + . . . + anXn

n ,

and we exhibit an algorithm for finding a nontrivial zero of this form.

Initialisation. The algorithm starts by computing elements y0, . . . , ym ∈ F, with
y0 6= 0 and m ≤ n, whose nth powers sum to zero. This task is completed efficiently
and deterministically by Algorithm 5.29, given in Section 5.5. We remove redundancy
in the yi by checking that yn

1 + . . .+yn
k 6= 0 for k = 1, . . . ,m, and discarding y1, . . . , yk

for k as large as possible if the test fails.
Once computed, the yi obviously satisfy the following equations:

a0y
n
0 = −a0(yn

1 + . . . + yn
m)

a1y
n
0 = −a1(yn

1 + . . . + yn
m)

...
...

anyn
0 = −an(yn

1 + . . . + yn
m)

(6.5)

Data. The algorithm maintains at all times a system of equations of the form

a0x
n
0,0 = −a0(yn

1 + . . . + yn
m0

)

a0x
n
1,0 + a1x

n
1,1 = −a1(yn

1 + . . . + yn
m1

)

. .
.

. .
. ...

...

a0x
n
n,0 + a1x

n
n,1 + . . . + anxn

n,n = −an(yn
1 + . . . + yn

mn
),

(6.6)

where the mi are integers satisfying 0 ≤ mi ≤ m, the yi are the same as in (6.5), and
the xi,j are in F, and for each i, at least one xi,j is nonzero. Because system (6.6) has
a trapezoid form, the current algorithm is called the “trapezium algorithm”.

The initial values for (6.6) are given by the system (6.5), with xi,i = y0 for all
i, and xi,j = 0 when 0 ≤ j < i; every round of the algorithm, in a way to be
described shortly, decreases one of the mi. As soon as one of the mi becomes zero,
the corresponding equation describes a nontrivial representation of zero by the form
f , and we are done.

Reduction step. The reduction of the mi is done as follows. Write Si for the left
hand sides of (6.6), so

Si = a0x
n
i,0 + a1x

n
i,1 + . . . + aix

n
i,i (i = 0, . . . , n).

6.2. The homogeneous trapezium algorithm 61

If any of these happens to be zero, then this also means that yn
1 + . . . + yn

mi
is zero,

and we already removed this kind of redundancy before.
As therefore all Si are nonzero, we apply Selective Root Extraction (Algorithm

3.12) to them, and find integers k and l, with k < l, and β ∈ F∗, such that

Sl = βnSk.

This means that we may replace the left hand side of equation l in (6.6) by the left
hand side of equation k multiplied by βn. Equation l thus becomes

a0(βxk,0)n + . . . + ak(βxk,k)n + ak+10n + . . . + al0
n = −al(y

n
1 + . . . + yn

ml
),

and we see that the last term on the right may be moved to the left without destroying
the form of the equation. In other words, ml is decreased by 1. Note also that the
new xl,j are not all zero.

It follows that after at most n2 steps one of the mi will become zero, and the
algorithm is finished. Here we use the fact that initially we have mi ≤ n for all i, and
also that m0 remains unchanged throughout the algorithm.

Algorithm 6.7 (Trapezium; homogeneous case.)
Input: a finite field F having q elements, a positive integer n dividing q − 1, and
elements a0, . . . , an ∈ F∗.
Output: elements (xi)

n
i=0 of F, not all zero, such that

∑n
i=0 aix

n
i = 0.

1: [Compute zero sequence] Using Algorithm 5.29, compute a sequence (yi)
m
i=0 of

elements of F∗, with y0 6= 0, such that
∑m

i=0 yn
i = 0.

2: [Remove redundancy] Let k be maximal with 0 ≤ k ≤ m−1 such that
∑k

i=1 yn
i =

0; discard y1, . . . , yk, renumber the remaining yi, and replace m by m−k. [When
k = 0, nothing happens.]

3: [Initialise trapezium] For i = 0, . . . , n:

a: Put mi = m, xi,i = y0, and Si = aiy
n
0 . For j = 0, . . . , i − 1, put xi,j = 0.

4: [Finished?] While mi > 0 for all i = 0, . . . , n:

a: [Compare left hand sides] Using Algorithm 3.12, find integers k and l and
an element β ∈ F∗ such that 0 ≤ k < l ≤ n and Sl = βnSk.

b: [Replace big by small] For j = 0, . . . , k, replace xl,j by βxk,j . For j =
k + 1, . . . , l − 1, replace xl,j by 0.

c: [Move term to left] Replace xl,l by yml
, replace Sl by Sl+aly

n
ml

, and replace
ml by ml − 1.

5: [Result] Let i be such that mi = 0. Output (xi,j)i
j=0, followed by (0)n+1

j=i+1.

Proposition 6.8 Algorithm 6.7 is correct and deterministic, and finishes using
Õ(n3(log q)2 + n2(log q)3) bit operations, where q = |F|.

62 Chapter 6. Diagonal forms

Proof. After Step 2, the sequence (yi)
m
i=0 satisfies

∑m
i=0 yn

i = 0, and
∑k

i=1 yn
i 6= 0

for k = 1, . . . ,m.
Step 3 computes the initial values of the variables of the system (6.6) and also the

left hand sides Sj (for 0 ≤ j ≤ n). Initially, we have Sj 6= 0 for all j because y0 and
the coefficients ai are nonzero.

From the discussion above, it follows easily that the system (6.6) holds whenever
the algorithm enters the loop in Step 4, and also after Step 4 is finished. This includes
the condition that for each i (with 0 ≤ i ≤ n) not all the xi,j are zero.

Only one of the equations in (6.6) is changed in every execution of Step 4, and it
is equation l. Step 4c makes these changes.

The loop in Step 4 will terminate because one of the mi is decreased during every
execution of it. If we have mi = 0 for some i, then we are finished.

Let us bound the running time of this algorithm; write q = |F|. Step 1 takes
Õ(n2(log q)2) bit operations by Proposition 5.30. As we have m ≤ n by the same
Proposition, and since m0 is never changed, it follows that Step 4 is executed at
most n2 times. Hence by Proposition 3.13, Step 4 takes Õ

(
n2 · (n(log q) + (log q)2)

)

operations in F, which is Õ(n3(log q)2 + n2(log q)3) bit operations. �

Remark. If the prime factors of the exponent n occur only to a low order in the
multiplicative group order q−1 of F∗, then we have a better bound for the running time
(see also the remarks after Proposition 3.13). Namely, if vℓ(q−1) = O (

√

log q / log ℓ)

for all primes ℓ | n, then by Lemma 3.14 we find a bound of Õ(n3(log q)2) for Step 4,
and thus for the entire Algorithm 6.7.

Proof of Theorem 6.1. If n does not divide q−1, we first replace n by gcd(n, q−1)
as described in Section 2.2. Now Algorithm 6.7 claims to solve the homogeneous
diagonal equation (6.2). By Proposition 6.8, it is correct and deterministic, and its
running time is polynomial in n and log q. This proves Theorem 6.1. �

6.3 The inhomogeneous trapezium algorithm

We now turn to the problem of solving (6.4), which is the corresponding inhomoge-
neous representation problem. This problem is soluble whenever q > n2, and some-
times insoluble otherwise. As regards the first of these two cases, we show that with
some small adaptations, we can use the trapezium method for the inhomogeneous
problem as well. In the second case, where n is large in comparison with q, we show
that an exhaustive search for representations of b is possible in polynomial time.

The adaptations. The first observation is that to solve (6.4), it is enough to solve

a0x
n
0 + a1x

n
1 + . . . + anxn

n = 0, (6.9)

with a0 = −b and x0 a new variable, provided the computed solution satisfies x0 6= 0.

6.3. The inhomogeneous trapezium algorithm 63

The second is that, if we have xi,0 6= 0 for all i in (6.6) before entering Step 4
of Algorithm 6.7, then this property still holds after Step 4, and thus also when the
algorithm finishes; this indeed yields a solution of (6.9) with x0 6= 0.

Initialisation. We see that it is enough to find an initialisation of the system (6.6)
which has xi,0 6= 0 for i = 0, . . . , n. If every element of F can be written as a sum of
nth powers in F, this is accomplished as follows.

Using Algorithm 5.22 repeatedly, compute elements yi,j ∈ F such that

b/ai =

mi∑

j=1

yn
i,j (i = 0, . . . , n),

where we write a0 = −b as before. Then the following equations are satisfied:

a0 = −a0(yn
0,1 + . . . + yn

0,m0−1)

a0 + a1y
n
1,m1

= −a1(yn
1,1 + . . . + yn

1,m1−1)

...
...

a0 + anyn
n,mn

= −an(yn
n,1 + . . . + yn

n,mn−1)

, (6.10)

where we have 1 ≤ mi ≤ n for i = 0, . . . , n. However, the y0,j are never used, so in
the final algorithm we do not compute them at all, and the topmost equation is just

a0 = a0.

We cannot leave this equation out, as we need n + 1 equations in all. It follows that
initially in (6.6) we have xi,0 = 1 for all i, and the same reduction procedure as in
the homogeneous case will produce a solution to (6.9) having x0 6= 0, as desired.

The case where n2 > q. Now Algorithm 5.22 could return “no solution” for some
i, which implies that b/ai is not a sum of nth powers in F. This entails that we
are unable to find a solution to (6.4) by the methods just discussed, while still it is
possible for one to exist.

By Proposition 2.2, this situation can only occur if q < n2. Now if n is that large,
we can use a dynamic programming approach to enumerate all values represented by
the form

∑n
i=1 aiX

n
i , until all are exhausted or we encounter a solution to (6.4) —

see the proof of Proposition 6.12 below for more details. Therefore, in this case we
skip Algorithm 5.22 altogether.

It follows that all calls to Algorithm 5.22 done in our algorithm will succeed, and
that we can trust our algorithm to find a solution to (6.4) whenever one exists.

Algorithm 6.11 (Trapezium; inhomogeneous case.)
Input: a finite field F having q elements, a positive integer n dividing q − 1, and
elements a1, . . . , an, and b ∈ F∗.
Output: elements (xi)

n
i=1 of F such that

∑n
i=1 aix

n
i = b, or, if no such elements exist,

“no solution”.

64 Chapter 6. Diagonal forms

1: [Large n?] If q < n2, enumerate the values taken on by the form
∑n

i=1 aiX
n
i on

all possible vectors (x1, . . . , xn) by means of dynamic programming, until they
are exhausted or the value b is found. Output “no solution”, c.q. the found
representation of b, and terminate. [See the proof of Proposition 6.12 below for
more details.]

2: [Equation 0 is easy] Put a0 = −b. Put x0,0 = 1, m0 = 1, and S0 = a0.

3: [Initialisation of rest] For i = 1, . . . , n:

a: [Sum of powers for b/ai] Using Algorithm 5.22, compute a sequence (yi,j)mi
j=1

of elements of F∗ with 1 ≤ mi ≤ n, such that
∑mi

j=1 yn
i,j = b/ai.

b: [Remove redundancy] Let k be maximal such that
∑k

j=1 yn
i,j = 0; discard

yi,1 up to yi,k, renumber the remaining yi,j , and replace mi by mi − k.

c: Put xi,0 = 1, xi,i = yi,mi−1 and Si = a0 + aix
n
i,i and replace mi by mi − 1.

For j = 1, . . . , i − 1, put xi,j = 0.

4: [Finished?] While mi > 0 for all i = 0, . . . , n:

a: [Compare left hand sides] Using Algorithm 3.12, find integers k and l and
an element β ∈ F∗ such that 0 ≤ k < l ≤ n and Sl = βnSk.

b: [Replace big by small] For j = 0, . . . , k, replace xl,j by βxk,j . For j =
k + 1, . . . , l − 1, replace xl,j by 0.

c: [Move term to left] Replace xl,l by yl,ml
, replace Sl by Sl + aly

n
l,ml

, and
replace ml by ml − 1.

5: [Result] Let i be such that mi = 0. Output (xi,j/xi,0)i
j=1, followed by (0)n

j=i+1.

Proposition 6.12 Algorithm 6.11 is correct and deterministic. It uses

Õ(n3(log q)2 + n2(log q)3)

operations in Fq to finish if q > n2, and O (n4 log q) bit operations if q < n2.

Proof. Write f =
∑n

i=0 aiX
n
i . The correctness of Algorithm 6.11 follows from the

discussion above. We only note that in Step 3b, we make sure that the sequences
(yi,j), for i = 0, . . . , n, do not have initial subsequences whose nth powers sum to
zero. Therefore, the elements Si are always nonzero.

The loop in Step 4 will terminate because one of the mi is decreased during every
execution of it, and again m0 is unchanged. In fact, at most

∑

i≥1(mi − 1) iterations
are performed, which is at most n(n − 1) by Proposition 5.22.

It remains to bound the complexity of the algorithm. In Step 1, we keep a table
of all elements of F that we can represent by subforms of the form f =

∑n
i=1 aiX

n
i .

Initially, the table is empty. In the kth round, we compute all sums of an element
in the table and an element of the form akxn, with x ∈ F, and store them in the
table, unless they are already there. This is continued until all representations by f
are exhausted, or until b is found.

6.3. The inhomogeneous trapezium algorithm 65

Step 1 takes O (n2 log n + n4) operations in F for raising n2 elements to the power
n and performing n dynamic programming rounds, where every round considers at
most n × n2 pairs of elements. In total, this gives O (n4 log q) bit operations.

By Proposition 5.23, Step 3 takes Õ(n3(log q)2 + n2(log q)3) bit operations for n
calls to Algorithm 5.22. Finally, as in the case of the homogeneous algorithm, Step 4
takes Õ(n3(log q)2 + n2(log q)3) bit operations. �

Proof of Theorem 6.3. If n does not divide q−1, we first replace n by gcd(n, q−1)
as described in Section 2.2. Now Algorithm 6.11 claims to solve the inhomogeneous
equation (6.4). By Proposition 6.12, it is correct and deterministic, and its running
time is polynomial in n and log q. This proves Theorem 6.3. �

Remark. Our algorithms for solving Problems A1 and A2 are closely related to the
proof of Theorem 2.3 and, in particular, to that of Proposition 2.4. In fact, the left
hand sides of the trapezium system (6.6) correspond to the subforms fk of f used in
Proposition 2.4, while the equations in the system show certain elements being both
written as a sum of nth powers (times ak) and represented by one of these subforms.

One is led to think that the proof and the algorithm are in a way isomorphic, and
it could be interesting to give the precise connection between them.

Chapter 7

Conclusions, generalisations,

and applications

7.1 Introduction

In the previous chapters, we have shown that it is easy to compute a nontrivial zero of
a diagonal form in sufficiently many variables over a finite field, and also to compute
a representation of a given nonzero element by such a form. This gives a complete
algorithmic solution of Problems A1 and A2 as given in the Abstract.

We now broaden the perspective and describe the consequences of this result. We
begin by considering the performance of our methods when compared to probabilistic
methods.

After that, we list several applications to deterministic and efficient computation
over finite fields. We show how to compute a generator of prescribed norm for a
given extension of finite fields, and we give a complementary approach to the results
of Chapter 6 for finite fields of characteristic 2; these applications only use results
from Chapters 3 and 4. The others use the main theorem of Chapter 6; they are
restricted to case of quadratic forms, as here every form can be brought into diagonal
shape. This leaves some interesting questions, such as whether it is easy to compute
deterministically a divisor of zero in a central simple algebra of degree at least 3.
Finally, it is shown how a solution method for quadratic forms can be used in the
deterministic computation of rational points on elliptic curves.

7.2 A performance comparison

Previously, only probabilistic algorithms were available for the task of solving Prob-
lems A1 and A2 efficiently. We have given such an algorithm in Section 2.6. It
is interesting to ask if the deterministic methods of this thesis can outperform this
probabilistic method, at least in some cases.

67

68 Chapter 7. Conclusions, generalisations, and applications

For this, we compare Proposition 2.12 with, respectively, Propositions 5.30, 5.23,
6.8, and 6.12. I have strived to minimise the asymptotic complexity of all algorithms,
and to provide optimal running time bounds for them; and for a fair comparison, I
did the same for the probabilistic algorithm analysed in Proposition 2.12.

Proposition 2.12 claims that a probabilistic problem can solve the problems given
above in expected time Õ(n2 + n log q) operations in Fq, where n is the degree of the
equation, provided we have q ≫ n2. If q ≪ n2, there may be too few solutions to
enable a probabilistic method to work.

One should note that the following complexity bounds are proved assuming the
use of fast integer and polynomial arithmetic (see [22] for exact bounds and proofs).

(i) For the problem of computing a sequence of nth powers that sum to zero, the
deterministic algorithm 5.29 runs equally fast as the probabilistic method for
fixed n, as its execution takes Õ(n2(log q)2) bit operations.

(ii) For the problem of representing a given nonzero element as a sum of nth powers,
the deterministic algorithm 5.22 takes more time than the probabilistic method,
except in the cases where q ≪ n2, where the probabilistic method does not work.
Its execution takes Õ(n2(log q)2 + n(log q)3) bit operations.

(iii) For finding a nontrivial zero of a diagonal form with arbitrary coefficients, the
deterministic algorithm 6.7 takes Õ(n3(log q)2 +n2(log q)3) bit operations. This
is more than the probabilistic method, but the method works also if q ≪ n2, in
which case the latter breaks down.

(iv) For finding a representation of a nonzero element by a diagonal form with ar-
bitrary coefficients, the deterministic algorithm 6.11 takes also Õ(n3(log q)2 +
n2(log q)3) bit operations, except in the case where q < n2, where it may not
work at all. In this case, where the probabilistic method breaks down as well,
I know no other method but enumerating all possibilities; if this is done sen-
sibly, by means of a dynamic programming approach, it takes O (n4 log q) bit
operations.

One sees that the running time of all these deterministic algorithms, except for the
first, is cubic in terms of log q. As I described in detail in Sections 3.4 and 5.5,
this could improve to quadratic if a faster root taking method could be used in our
algorithms.

7.3 Field generators of prescribed norm

The next application deals with finding generators for extensions of finite fields with
special properties. Let E ⊆ F, of degree e, be such an extension; it is easy to construct
a generator b of F over E such that, for example, the trace of b in the extension F/E
is equal to some given element a ∈ E (except that when the characteristic and the
extension degree are both 2, a generator cannot have trace 0). This says, in fact,

7.3. Field generators of prescribed norm 69

that we can usually prescribe the coefficient of Xe−1 in the minimal polynomial of
a generator b. Also, as will be shown in the present section, it is possible to require
the norm of a generating element to take any nonzero value; this corresponds to
prescribing the constant term of the minimal polynomial.

The question of whether it is possible to prescribe an arbitrary coefficient is known
as the Hansen-Mullen conjecture [27, 54]. Another version of this conjecture restricts
attention to primitive elements, i.e., field generators for F/E that also generate the
multiplicative group F∗. For a recent overview of this problem, we refer to [17].

The Hansen-Mullen conjecture has been settled, except possibly for finitely many
combinations of E and e, and even some extensions have been proved, like cases where
it is possible to prescribe more than one coefficients in the minimal polynomial of a
primitive element. The methods of proof, however, are mostly non-constructive, and
it is hence still interesting to construct algorithms that determine field generators
with desirable properties.

Unfortunately, up to now no efficient method is known for computing primitive
elements, let alone to prescribe coefficients of their minimal polynomials. In fact, it
is not known if we can test an element for being primitive efficiently, as all known
algorithms for this require the factorisation of the order of the multiplicative group
F∗.

However, it is possible to give algorithms that construct field generators with
prescribed norm, for example. This is easily done probabilistically, if the field is
not too small; but the following theorem gives a deterministic algorithm for this
problem, which works over finite fields of any size. For the proof, we use several of
the algorithms that have been developed in this thesis.

Theorem 7.1 There exists an efficient deterministic algorithm that, given an exten-
sion of finite fields E ⊆ F and an element a ∈ E∗, computes b ∈ F such that

(i) b generates F over E;
(ii) NormF/E(b) = a.

Another way to put this result is the following.

Corollary 7.2 There exists an efficient deterministic algorithm that, given a finite
field E, an irreducible polynomial f of degree e with coefficients in E, and an element
a ∈ E∗, computes a monic irreducible polynomial of degree e with coefficients in E
whose constant coefficient is equal to a.

Proof. Applying the algorithm from the Theorem to F = E[X]/(f), compute b ∈ F
such that Norm b = (−1)e−1a. Then the minimal polynomial of b over E has the
required properties. �

The proof of Theorem 7.1 is done in three steps, given by the following three
Propositions. The first shows how to compute a field generator of norm 1.

70 Chapter 7. Conclusions, generalisations, and applications

Proposition 7.3 There exists an efficient deterministic algorithm that, given an ex-
tension of finite fields E ⊆ F of degree e, computes a generator c for F over E such
that NormF/E(c) = 1.

Proof. We consider the subfield K consisting of all sums of eth powers in F. By
Proposition 2.2, we have K = F whenever e2 < |F|. But if e2 ≥ |F|, then it follows
that E = F2 and e = 2, 3, 4, and in these cases e is relatively prime to |F| − 1, so that
every element of F is an eth power, and again K = F.

Use Algorithm 4.14 to compute a generator αe for K = F over E. Then the
element

c =
αe

Norm α

still generates F over E, whereas clearly its norm is 1. �

Next, we compute an element b in F (not necessarily a generator) of norm a, with
the additional property that ord b contains only primes that already divide ord a.

Proposition 7.4 There exists an efficient deterministic algorithm that, given an ex-
tension of finite fields E ⊆ F of degree e, and an element a ∈ E, computes b ∈ F such
that NormF/E b = a and such that ord b has the same prime factors as ord a.

The proof of this Proposition will use four Lemmata.

Lemma 7.5 Let E ⊆ F be an extension of finite fields of prime degree ℓ. Let a be an
element of E. If b ∈ F is such that b ℓ = a, then

NormF/E(b) =

{

a if b ∈ E, and

(−1)ℓ−1 a otherwise.

Proof. If b ∈ E, then Norm b = b ℓ = a. Otherwise, b generates F over E, so its
minimal polynomial is Xℓ − a, and its norm is (−1)ℓ−1 a. �

Lemma 7.6 There exists an efficient deterministic algorithm that, given an exten-
sion of finite fields E ⊆ F of prime degree ℓ, and an element a ∈ E∗, computes b ∈ F∗

such that b ℓ = a, and such that ord b has the same prime factors as ord a.

Proof. There are three cases. Note that we do not assume that ℓ is odd.
If ℓ does not divide |E| − 1, we simply write a as the ℓth power of some element b

using Algorithm 2.1. The orders of b and a are equal.
If ℓ divides |E|−1 but not ord(a), then the first case of Proposition 3.6 shows that

an ℓth root b of a exists such that vℓ(ord b) = 0. It follows that calling Algorithm 3.7
with finite field E, prime ℓ, exponent f = 1, and generator g = 1 will return such an
ℓth root b, and that the orders of b and a will be equal.

7.3. Field generators of prescribed norm 71

Finally, if ℓ divides ord(a), we have to do some work. Note that by our assump-
tions, we know that ℓ divides |E|−1 and is different from char E. First, using Lemma
5.25 with n = 1, we know that there exists an ℓth root of unity in E, and we construct
such an element. Then, we use Lagrange resolvents to write F as a radical extension
of E, following the proofs of Theorems VI.6.1 and VI.6.2(ii) of [33]. The Lagrange
resolvent is a nonzero E-linear map φ on F, such that whenever φ(x) 6= 0 for x ∈ F,
then φ(x) is such that φ(x)ℓ ∈ E while φ(x) /∈ E. Thus, we must find an element x
outside the kernel of φ; but φ, being linear, must take a nonzero value on at least one
element of any basis for F over E, and this shows that we can construct such an x
efficiently and deterministically.

Assume now, as we may, that F is given as a radical extension of E; that is, we
are given an element c ∈ F such that c ℓ ∈ E while c /∈ E. Because c ℓ is not an ℓth
power in E, we see that ord(c) has more factors ℓ than the order of any element in
E. Thus, we can use c as a generator in Algorithm 3.7 to compute an ℓth root in
F of any element in E, and in particular an ℓth root b of a. Finally, it is clear that
ord(b)/ord(a) = ℓ, so that ord(b) and ord(a) have the same prime factors. �

Lemma 7.7 The task of taking square roots in finite fields is efficiently and deter-
ministically reducible to the task of taking square roots in finite prime fields.

Proof. Let F be a finite field of characteristic p, and let a ∈ F be a square. Clearly
NormF/Fp

(a) is a square in Fp; therefore,

Norm(a(p−1)/2) = (Norm a)
(p−1)/2

= 1.

Define A = a(p−1)/2; by Hilbert’s Theorem 90 [33, Theorem VI.6.1], there exists c ∈ F
such that c p−1 = A. To find such a c, we solve the equation c p = Ac; the operators
c 7→ c p and c 7→ Ac are both Fp-linear, so c can be found by taking any nonzero
solution of a linear system of equations over Fp. Alternatively, we can again use the
linear operator given in the proof of Theorem VI.6.1 in [33], taking care to select an
element of F where the operator takes a nonzero value.

Now the element c2/a of F satisfies

(
c2/a

)(p−1)/2
= 1;

therefore, it is in the prime field, and it is even a square there. Now let d be a square
root of c2/a, given to us by an oracle that computes square roots in Fp. Then clearly
c/d is a square root of a, and we are done. �

Remark. The same proof shows that, for any prime ℓ and any finite field F, taking
ℓth roots in F is reducible to taking ℓth roots in the smallest subfield of F that contains
an ℓth root of unity.

Lemma 7.8 There exists an efficient deterministic algorithm that, given an exten-
sion of finite fields E ⊆ F of prime degree ℓ, computes b ∈ F such that NormF/E b = −1
and such that ord(b) is a power of 2.

72 Chapter 7. Conclusions, generalisations, and applications

Proof. If char E = 2, we take b = 1; if ℓ 6= 2, we take b = −1. Consider the
remaining case, viz., F is quadratic over E and char E is odd.

This being so, we compute c ∈ F such that c2 ∈ E, but c /∈ E, as in the proof of
Lemma 7.6, using the primitive 2nd root of unity −1. Alternatively, we can take for
c the discriminant of the minimal polynomial of any generator for F over E. Then,
again, we can use c as a generator in Algorithm 3.7 to compute a square root in F of
any element in E, and, by Lemma 7.7, even of any square element in F.

Now the norm map projects the 2-Sylow subgroup of F∗ onto that of E∗. Therefore,
if we start with −1 ∈ E and repeatedly take a square root, we will find an element b
of norm −1, such that ord(b) is a power of 2, as desired. �

Proof of Proposition 7.4. We use induction on the prime divisors of e, taken with
multiplicities. If e = 1, we take b = a.

Assume e > 1, and let ℓ be a prime divisor of e. Let M be the unique degree ℓ
extension of E contained in F; a generator for M over E can be computed efficiently
and deterministically. We first prove the Proposition for the extension M/E.

Using Lemmata 7.5 and 7.6, compute b′ ∈ M such that NormM/E b′ = ±a and
such that ord(b′) and ord(a) have the same prime factors. If Norm b′ = a, we take
b = b′, and we are done. If not, we have ℓ = 2 and char E 6= 2. Furthermore, we have
b /∈ E, so a is a nonsquare in E, and hence the order of a is even. Now using Lemma
7.8, compute c ∈ M such that Norm c = −1 and ord(c) is a power of 2. It follows that
Norm(c b′) = a, and ord(c b′) has the same prime factors as ord(a). We take b = c b′,
and we are done.

Now by induction, we can compute some d ∈ F such that NormF/M (d) = b, and
ord(d) has the same prime factors as ord(b). Because NormF/E = NormM/E ◦NormF/M ,
we see that d satisfies the requirements of the Proposition. �

Remark. The approach given above, proceeding by extensions of prime degree only,
has been chosen for making the proofs simple. It is also possible to give a more direct
approach, which will eliminate the need for computing a complete chain of subfields
of F, and will therefore be preferable in case of implementation. This remark pertains
especially to Lemmata 7.5 and 7.6.

The third step of the computation is very simple.

Proposition 7.9 Let E ⊆ F be an extension of finite fields, and let a ∈ E∗. Fur-
thermore, let b ∈ F be such that NormF/E b = a and such that ord(b) and ord(a) have
the same prime factors. Finally, let c ∈ F be a generator for F over E such that
NormF/E c = 1.

Then the element bc has norm a and generates F over E.

Proof. We obviously have Norm(bc) = a. We claim that, for any prime ℓ dividing
ord(c), we have vℓ(ord(bc)) ≥ vℓ(ord c). Thus, c is contained in the subgroup of F∗

generated by bc, and hence bc is also a field generator for F over E.

7.4. Diagonal forms in characteristic 2 73

We prove the claim. Let the prime ℓ divide ord(c). If ℓ does not divide ord(b),
the claim is evident. Now suppose ℓ divides ord(b). Then ℓ also divides ord(a) =
ord(Norm b), but not ord(Norm c) = 1. We see that ord(b) has more factors ℓ than
ord(c), and the claim is proved. �

We are now able to give the proof of the main theorem of this section.

Proof of Theorem 7.1. Using the algorithm from Proposition 7.3, compute c ∈ F
such that NormF/E c = 1. Then, using the algorithm from Proposition 7.4, compute
b ∈ F such that Norm b = a and ord(b) has the same prime factors as ord(a). Then
the element bc has the desired properties, by Proposition 7.9.

The resulting algorithm is clearly efficient and deterministic. �

7.4 Diagonal forms in characteristic 2

This section proves the following statements. Let F be an extension of F2 of degree e,
and let n be a positive integer. Then every diagonal form of degree n in e+1 variables
over F has a nontrivial zero, which can be computed efficiently and deterministically.
Furthermore, if the nth powers in F are not contained in a proper subfield of F, then
every diagonal form of degree n in e variables over F is universal, and representations of
nonzero elements of F by such forms can be computed efficiently and deterministically.

These statements are obvious improvements of Theorems 6.1 and 6.3 in the cases
where n > e. The first one is very easily proved, while the proof of the second uses
the main theorem of Chapter 4.

Theorem 7.10 There exists an efficient deterministic algorithm that, given an ex-
tension F/F2 of degree e, a positive integer n, and elements a0, . . . , ae ∈ F∗, computes
x0, . . . , xe ∈ F, not all zero, such that

a0x
n
0 + a1x

n
1 + . . . + aex

n
e = 0,

in time polynomial in e and n.

Proof. As F has degree e, the ai are linearly dependent over F2. Therefore, we can
take the xi to be the coefficients of an arbitrary nontrivial F2-linear combination of
the ai; we will have xi = xn

i for all i, and we obtain the desired solution. �

Theorem 7.11 There exists an efficient deterministic algorithm that, given an ex-
tension F/F2 of degree e, a positive integer n, and elements a1, . . . , ae and b of F∗,
computes x1, . . . , xe ∈ F such that

a1x
n
1 + . . . + aex

n
e = b,

or shows that no such xi exist, in time polynomial in e and n.

74 Chapter 7. Conclusions, generalisations, and applications

The proof is based on the following corollary of Theorem 4.2, which is actually
valid in any positive characteristic. I thank Arne Winterhof for suggesting this method
of proof.

Lemma 7.12 There exists a deterministic algorithm that, given a finite field F of
extension degree e over its prime field Fp, a positive integer n such that all elements
of F are sums of nth powers in F, and elements a1, . . . , ae in F∗, computes a basis for
F over Fp of the form

{a1x
n
1 , a2x

n
2 , . . . , aex

n
e }

with x1, . . . , xe ∈ F∗, in time polynomial in log p, e, and n.

Proof. By our assumption on sums of nth powers in F, we can use Algorithm 4.14
to compute a generator αn for F over Fp. It follows that, for i = 1, . . . , e, the set

{ai(α
0)n, ai(α

1)n, . . . , ai(α
e−1)n}

is linearly independent over Fp.
We construct the desired basis by induction. Take a1(α0)n = a1 6= 0 as a first

element. Next, take i with 2 ≤ i ≤ e, and suppose we have a linearly independent
set {a1x

n
1 , . . . , ai−1x

n
i−1}. By the above reasoning, there is at least one k such that

ai(α
k)n is linearly independent from this set, and we can therefore expand our set to

have i elements. This completes the construction.
The resulting algorithm is clearly deterministic and takes polynomial time. �

Proof of Theorem 7.11. We may replace n by gcd(n, 2e − 1) using Algorithm
2.1. After this, if we have n2 > 2e, we simply check all possibilities, using the same
dynamic programming approach as in the proof of Proposition 6.12.

Now assume we have n2 < 2e, so that F is equal to its subfield of sums of nth
powers. Use the algorithm from the Lemma to compute a basis for F over F2 of the
form

(a1y
n
1 , . . . , aey

n
e).

The element b is an F2-linear combination of these basis elements. Let bi ∈ F2, for
i = 1, . . . , e, be the coefficients of this linear combination; then (biyi)

e
i=1 is the desired

solution. �

Remark. It is at present unclear if this approach can be extended to the case of
odd characteristic.

7.5 Quadratic forms

We will now list several applications of the algorithms in this thesis. In the present
section, we restrict our attention to applications in the special case n = 2 — the
quadratic case. The reason for this is evident: over a field of odd characteristic, every

7.5. Quadratic forms 75

quadratic form can be diagonalised by an efficient deterministic algorithm, so that
our methods can in fact be applied to every multivariate polynomial of total degree
2 over a finite field.

In fields of characteristic 2, the operation of squaring is an F2-linear map, and
diagonalisation is no longer possible. This leads to essentially different methods for
finding zeros of quadratic polynomials, mainly involving linear algebra, for which the
algorithms of this thesis are unnecessary. One result obtained using such methods
is that every homogeneous quadratic equation in at least 3 variables can be solved
efficiently and deterministically over finite extensions of F2.

Basic equation. In the special case n = 2, we see that solving Problem A2 is the
same as solving

ax2 + by2 = c, (7.13)

whenever abc 6= 0. It is well known that this is possible; in fact, this follows already
from the fact that the cardinalities of the sets {ax2 | x ∈ F} and {c − by2 | y ∈ F}
add up to more than |F|, for an arbitrary finite field F, and therefore these sets must
meet.

As far as I know this thesis gives the first efficient deterministic algorithm for
solving (7.13). It may be useful to remark that even for n = 2, the complete machinery
of Chapters 3 to 6 is required, although it is possible to give a simpler formulation
as follows. Upon critical inspection, this formulation will show to be algorithmically
equivalent to the trapezium algorithm 6.11.

Thus, let a, b, c be given; we may of course assume that c = 1. Now if v2(ord a) >
v2(ord b), we can use Algorithm 3.7 to take a square root of b, and the problem is
solved; and analogously if b has the larger order. If v2(ord a) = v2(ord b) =def w, we
distinguish three cases: w = 0, w = 1, and w > 1.

If w = 0, then we can still compute square roots of both a and b by means of
Algorithm 3.7, and we are done. If w > 1, then v2(ord(−ab)) < w, so that, after
computing

√
−ab, we may assume b = −a. The equation ax2 − ay2 = 1 is easily

solved by putting x + y = 1 and x − y = 1/a and solving the linear system.
The case w = 1 is the hardest. Both −a and −b have odd order, so we may

take their square roots and obtain the equation −x2 − y2 = 1. One sees that this is
equivalent to

x2 + y2 + z2 = 0.

For this, we developed a fast algorithm in Section 5.5. A slower, but also deterministic,
algorithm for this problem can be found in [14].

Rational points on quadrics. If we can solve equation (7.13) in 2 variables, then
obviously we can solve diagonal quadratic equations in more than 2 variables as well.
Therefore, we have found an efficient deterministic algorithm that computes a rational
point on any projective quadratic hypersurface, of dimension greater than 0, over a
finite field of odd characteristic.

76 Chapter 7. Conclusions, generalisations, and applications

Isomorphism of quadratic spaces. The solution of (7.13) is important for several
algorithms in the theory of quadratic forms over finite fields of odd characteristic.
Notably, we can use the solution method for equation (7.13) repeatedly to establish
a deterministic algorithm for computing an embedding of a given quadratic space in
another, provided the dimensions are unequal. If the spaces have equal dimension and
are isomorphic, then an isomorphism can be computed deterministically, provided we
are given a square root of the quotient of the discriminants. These results will be
given in detail in a forthcoming publication.

Trivialising central simple algebras. By the Wedderburn theorem [57, Theorem
1], every central simple algebra over a finite field is isomorphic to a matrix algebra
over this field. Furthermore, we can actually compute an isomorphism, by means of
an efficient deterministic algorithm, once we know a divisor of zero in the algebra (see
[41]). Such a zero divisor in turn is derived from a nontrivial zero of the reduced norm
form of the algebra.

The vector space dimension of a central simple algebra over a field is always a
square; if this dimension is n2, the integer n is called the degree of the algebra. For
further definitions and results about central simple algebras, one could consult [32]
or [39].

For algebras of degree 2, the reduced norm form is a quadratic form in four vari-
ables. Thus, it follows from the results in this thesis that there exists a deterministic
polynomial time algorithm for trivialising central simple algebras of degree 2 over
finite fields of odd characteristic.

For degrees higher than 2, the norm form is not diagonalisable. In fact, Corollary
2.8 shows that for a given degree n and over sufficiently large finite fields with respect
to n, all diagonal forms in 3 or more variables are isotropic; but a central simple
algebra of degree n contains a subfield of extension degree n over the base field, and
the norm form of this subalgebra has n variables but no nontrivial zero.

Thus, the question remains open whether an efficient deterministic algorithm exists
for constructing a zero divisor in a central simple algebra of degree at least 3 over a
finite field.

Solving quadratic equations over the integers (1). One can use Cornacchia’s
algorithm ([16, Algorithm 1.5.2], [43]) to find a representation of an odd prime p by
the principal binary quadratic form X2 + nY 2, given a solution of the local equation
x2 + ny2 ≡ 0 (mod p) (here n is a positive integer). This algorithm comes down to a
g.c.d. computation over the ring of rational integers.

One notes that no efficient deterministic algorithm is known for solving the con-
gruence x2 +ny2 ≡ 0, even for a prime modulus: this is equivalent to computing

√−n
in Fp, for which one has to resort to probabilistic methods.

Using the methods of this thesis, we can in some cases obtain a generalisation
of Cornacchia’s algorithm for quaternary quadratic forms over Z that is completely
deterministic. We only give the example of the classical problem of writing integers
as sums of four squares. The form f = X2 + Y 2 + Z2 + W 2 is the norm form of the

7.6. Rational points on elliptic curves 77

ring of integral quaternions A = Z + Zi + Zj + Zk, with the multiplication given by
the relations i2 = j2 = k2 = −1 and ij = −ji = k.

Let p be a prime in Z, and let (x, y, z) be a nontrivial solution of the congruence

x2 + y2 + z2 ≡ 0 (mod p). (7.14)

Then, although A is not a principal ideal ring, the right ideal pA+ (xi+ yj + zk)A of
norm p is generated by a single element a + bi + cj + dk, whose norm is hence equal
to p (see Theorems 376–378 of [28]). We can find such a generator by writing A as
Z[i] + Z[i]j and applying Cornacchia’s algorithm over the base ring Z[i] instead of Z.

Incidentally, if p > 2, then the ring A/p is a central simple algebra of degree 2
over Fp, and asking for an element of A/p that has both trace and norm equal to zero
gives rise to equation (7.14).

Now this thesis gives an efficient deterministic algorithm to produce a nontrivial
solution to (7.14), and it follows that one can write primes as sums of four squares
by means of an efficient deterministic algorithm. This application was already given
in [14]. If p is allowed to be any positive integer, then we can use a probabilistic
algorithm given in [2] to solve (7.14).

It is to be expected that this generalised version of Cornacchia’s algorithm will
work in all definite quaternion orders whose right ideal class number is 1. Unfortu-
nately, there are only finitely many of these; a complete list is given in [13].

Solving quadratic equations over the integers (2). When using Cornacchia’s
method to solve x2+ny2 = p, there is no need to factor the discriminant 4n. However,
if one allows oneself to factor the discriminant of a quadratic form over the integers,
then it turns out that a similar combination of global and local methods gives rise
to an efficient solution method for forms of rank at least 3. In recent papers, D.
Simon has given efficient algorithms for computing zeros of indefinite forms of rank 3
or higher, using a generalisation of the LLL-algorithm to the indefinite case [49, 48].
As the author indicates, the algorithms in these papers can be made deterministic
by incorporating the methods of this thesis for finding zeros of quadratic forms over
finite fields.

7.6 Rational points on elliptic curves

As a final and surprising application, we mention the task of constructing rational
points on an elliptic curve over a finite field. The problem of finding an efficient
deterministic algorithm for this task has been open at least since 1985, when Schoof
posed it in [42].

Let F be field of q elements; we first assume that gcd(6, q) = 1. Under these
assumptions, an elliptic curve over F is given by a Weierstrass equation

y2 = f(x) = x3 + ax + b,

78 Chapter 7. Conclusions, generalisations, and applications

where a, b ∈ F are such that f(x) has no double roots. The number N of points on
E with coordinates in F (including the point “at infinity”) satisfies the Hasse bound
|q + 1−N | ≤ 2

√
q. (For these and more results on elliptic curves, I refer to [47].) The

question is for an algorithm that computes such a rational point, different from the
one at infinity.

From the Hasse bound, one can see that whenever q > 4, the curve possesses at
least 2 rational points, and already for moderate q, there are sufficiently many rational
points on E to make a probabilistic approach feasible. No efficient deterministic
approach has been known to date.

However, in a recent paper [50], M. Ska lba showed how to compute x1, x2, x3 ∈ F
such that

f(x1)f(x2)f(x3) ∈ F∗2.

From this, it follows that f(xi) ∈ F∗2 for at least one i, and furthermore, one can
apply Algorithm 3.7 to compute the square root, which completes the task.

Ska lba’s algorithm does not cover the case j = 0 (which is equivalent to b = 0,
using a Weierstrass equation as above). Pursuing his approach, I have found a simpler
method that does incorporate this case, and additionally the case of characteristic 3.
Interestingly, the ensuing algorithm involves solving an equation of the form ax2 +
by2 = c over F, which can be done efficiently and deterministically using Algorithm
6.11 of this thesis. We have hence reduced the task of finding a point on a curve of
genus 1 to that of finding a point on a curve of genus 0.

The case of characteristic 2 is completely different on the face of it; for example,
one has to use a more general form of Weierstrass equation (cf. Appendix A of [47]).
However, the same geometric ideas as in the case of odd characteristic suffice to
produce an efficient point finding algorithm for this case as well; a salient feature is
again a reduction to point finding on a curve of genus 0.

The exact result is as follows; details and proofs will be given in a forthcoming
publication [45]. This is a shared publication, as I recently learned that a proof of
the case of characteristic 2 was given by A. Shallue a few months before mine.

Theorem 7.15 There exists a deterministic algorithm that, given a finite field F and
a Weierstrass equation for an elliptic curve E over F, computes a point on E with
coordinates in F other than the point at infinity, in time polynomial in |F|, or proves
that no such point exists.

References

[1] Leonard Adleman, Kenneth Manders, and Gary Miller. On taking roots in finite fields.
In 18th Annual Symposium on Foundations of Computer Science (Providence, R.I.,
1977), pages 175–178. IEEE Comput. Sci., Long Beach, Calif., 1977.

[2] Leonard M. Adleman, Dennis R. Estes, and Kevin S. McCurley. Solving bivariate
quadratic congruences in random polynomial time. Math. Comp., 48(177):17–28, 1987.

[3] Shigeki Akiyama, Christiane Frougny, and Jacques Sakarovitch. On the representation
of numbers in a rational base. In 5th International Conference on Words. Publications
du LaCIM, Université du Québec à Montréal, September 2005.

[4] Eric Bach. A note on square roots in finite fields. IEEE Trans. Inform. Theory,
36(6):1494–1498, 1990.

[5] Eric Bach. Comments on search procedures for primitive roots. Math. Comp.,
66(220):1719–1727, 1997.

[6] Eric Bach, Joachim von zur Gathen, and Hendrik W. Lenstra, Jr. Factoring polynomials
over special finite fields. Finite Fields Appl., 7(1):5–28, 2001. Dedicated to Professor
Chao Ko on the occasion of his 90th birthday.

[7] Eric Bach and Jeffrey Shallit. Algorithmic number theory. Vol. 1: Efficient algorithms.
Foundations of Computing Series. MIT Press, Cambridge, MA, 1996.

[8] Daniel J. Bernstein. Detecting perfect powers in essentially linear time. Math. Comp.,
67(223):1253–1283, 1998.

[9] Daniel J. Bernstein. Faster square roots in annoying finite fields. Draft. URL: http:
//cr.yp.to/papers.html#sqroot, 2005.

[10] Thomas Beth, Dieter Jungnickel, and Hanfried Lenz. Design theory. Vols. I and II,
volume 69 and 78 of Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge, second edition, 1999.

[11] Olaf Bonorden, Joachim von zur Gathen, Jürgen Gerhard, Olaf Müller, and M. Nöcker.
Factoring a binary polynomial of degree over one million. SIGSAM Bull., 35(1):16–18,
2001.

[12] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I.
The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra
and number theory (London, 1993).

[13] Juliusz Brzezinski. Definite quaternion orders of class number one. J. Théor. Nom-
bres Bordeaux, 7(1):93–96, 1995. Les Dix-huitièmes Journées Arithmétiques (Bordeaux,
1993).

79

80 References

[14] Richard T. Bumby. Sums of four squares. In Number theory (New York, 1991–1995),
pages 1–8. Springer, New York, 1996.

[15] Claude Chevalley. Démonstration d’une hypothèse de M. Artin. Abh. Math. Sem.
Hamburg, 11:73–75, 1936.

[16] Henri Cohen. A course in computational algebraic number theory, volume 138 of Grad-
uate Texts in Mathematics. Springer-Verlag, Berlin, 1993.

[17] Stephen D. Cohen. Explicit theorems on generator polynomials. Finite Fields Appl.,
11(3):337–357, 2005.

[18] Harvey Cohn. A classical invitation to algebraic numbers and class fields. Springer-
Verlag, New York, 1978. With two appendices by Olga Taussky: “Artin’s 1932 Göttin-
gen lectures on class field theory” and “Connections between algebraic number theory
and integral matrices”, Universitext.

[19] David A. Cox. Primes of the form x2 + ny2. A Wiley-Interscience Publication. John
Wiley & Sons Inc., New York, 1989. Fermat, class field theory and complex multiplica-
tion.

[20] V. B. Dem′yanov. On representation of a zero of forms of the form
P

m

i=1
aix

n

i . Dokl.
Akad. Nauk SSSR (N.S.), 105:203–205, 1955.

[21] É. Galois. Sur la théorie des nombres. Bulletin des sciences mathématiques de Ferussac,
XIII, §218, Juin 1830. Pp. 113–127 in: Écrits et mémoires mathéma-tiques d’Évariste
Galois, Robert Bourgne et J.-P. Azra (eds), Gauthier-Villars & Cie, Paris, 1962.

[22] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge
University Press, Cambridge, second edition, 2003.

[23] Joachim von zur Gathen, Igor Shparlinski, and Alistair Sinclair. Finding points on
curves over finite fields. SIAM J. Comput., 32(6):1436–1448 (electronic), 2003.

[24] Carl Friedrich Gauss. Disquisitiones arithmeticae. Gerh. Fleischer Iun., Leipzig, 1801.
English translation by Arthur A. Clarke, Springer-Verlag, New York, 1986.

[25] Marvin J. Greenberg. Lectures on forms in many variables. W. A. Benjamin, Inc., New
York-Amsterdam, 1969.

[26] Larry C. Grove. Classical groups and geometric algebra, volume 39 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2002.

[27] Tom Hansen and Gary L. Mullen. Primitive polynomials over finite fields. Math. Comp.,
59(200):639–643, S47–S50, 1992.

[28] G.H. Hardy and E.M. Wright. An introduction to the theory of numbers. Oxford, at
the Clarendon Press, 1965. Fourth edition, 3rd corrected printing.

[29] Mark van Hoeij. Factoring polynomials and the knapsack problem. J. Number Theory,
95(2):167–189, 2002.

[30] Jean-René Joly. Équations et variétés algébriques sur un corps fini. Enseignement Math.
(2), 19:1–117, 1973.

[31] Neal Koblitz. A course in number theory and cryptography, volume 114 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1994.

[32] T. Y. Lam. The algebraic theory of quadratic forms. W. A. Benjamin, Inc., Reading,
Mass., 1973. Mathematics Lecture Note Series.

References 81

[33] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag,
New York, third edition, 2002.

[34] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261(4):515–534, 1982.

[35] H. W. Lenstra, Jr. Finding isomorphisms between finite fields. Math. Comp.,
56(193):329–347, 1991.

[36] Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20 of Encyclopedia of Math-
ematics and its Applications. Addison-Wesley Publishing Company Advanced Book
Program, Reading, MA, 1983. With a foreword by P. M. Cohn.

[37] J.H. van Lint. Introduction to coding theory, volume 86 of Graduate Texts in Mathe-
matics. Springer-Verlag, Berlin, third edition, 1999.

[38] Karl K. Norton. Numbers with small prime factors, and the least kth power non-residue.
Memoirs of the American Mathematical Society, No. 106. American Mathematical So-
ciety, Providence, R.I., 1971.

[39] Richard S. Pierce. Associative algebras, volume 88 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1982. Studies in the History of Modern Science, 9.

[40] A. Rényi. Representations for real numbers and their ergodic properties. Acta Math.
Acad. Sci. Hungar., 8:477–493, 1957.

[41] Lajos Rónyai. Computing the structure of finite algebras. J. Symbolic Comput.,
9(3):355–373, 1990.

[42] René Schoof. Elliptic curves over finite fields and the computation of square roots mod
p. Math. Comp., 44(170):483–494, 1985.

[43] René Schoof. Counting points on elliptic curves over finite fields. J. Théor. Nombres
Bordeaux, 7(1):219–254, 1995. Les Dix-huitièmes Journées Arithmétiques (Bordeaux,
1993).

[44] Štefan Schwarz. On universal forms in finite fields. Časopis Pěst. Mat. Fys., 75:45–50,
1950.

[45] Andrew Shallue and Christiaan E. van de Woestijne. Construction of rational points
on elliptic curves over finite fields. In Algoritmic Number Theory (ANTS VII), Lecture
Notes in Comput. Sci., Berlin, 2006. Springer-Verlag. To appear.

[46] Daniel Shanks. Five number-theoretic algorithms. In Proceedings of the Second Manitoba
Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1972), pages
51–70. Congressus Numerantium, No. VII, Winnipeg, Man., 1973. Utilitas Math.

[47] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1992. Corrected reprint of the 1986 original.

[48] Denis Simon. Quadratic equations in dimensions 4, 5 and more. Preprint. URL: http:
//www.math.unicaen.fr/~simon/maths/dim4.html, 2005.

[49] Denis Simon. Solving quadratic equations using reduced unimodular quadratic forms.
Math. Comp., 74(251):1531–1543 (electronic), 2005.

[50] M. Ska lba. Points on elliptic curves over finite fields. Acta Arith., 117(3):293–301, 2005.

[51] Bart de Smit. Primitive elements in integral bases. Acta Arith., 71(2):159–170, 1995.

82 References

[52] Alberto Tonelli. Bemerkung über die Auflösung quadratischer Congruenzen. Nachr.
Göttingen, (10):344–346, 1891. Reported in Dickson’s History, Vol. 1, Ch. VII, item
193, p. 215.

[53] Leonard Tornheim. Sums of n-th powers in fields of prime characteristic. Duke Math.
J., 4:359–362, 1938.

[54] Daqing Wan. Generators and irreducible polynomials over finite fields. Math. Comp.,
66(219):1195–1212, 1997.

[55] E. Warning. Bemerkung zur vorstehenden Arbeit von Herrn Chevalley. Abh. Math.
Sem. Hamburg, 11:76–83, 1936.

[56] André Weil. Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc.,
55:497–508, 1949.

[57] André Weil. Basic number theory. Classics in Mathematics. Springer-Verlag, Berlin,
1995. Reprint of the second (1973) edition.

[58] Eric W. Weisstein. Waring’s problem. From MathWorld–A Wolfram Web Resource.
URL: http://mathworld.wolfram.com/WaringsProblem.html.

[59] Arne Winterhof. On Waring’s problem in finite fields. Acta Arith., 87(2):171–177, 1998.

[60] Trevor D. Wooley. Diophantine problems in many variables: the role of additive number
theory. In Topics in number theory (University Park, PA, 1997), volume 467 of Math.
Appl., pages 49–83. Kluwer Acad. Publ., Dordrecht, 1999.

Samenvatting

Het deterministisch oplossen van vergelijkingen over

eindige lichamen

De onderstaande twee algoritmische representatieproblemen, die onderling sterk ver-
want zijn, worden in dit proefschrift opgelost.

Probleem S1 Gegeven een eindig lichaam F, gegeven een positief geheel getal n en
gegeven elementen a0, a1, . . . , an van F die alle ongelijk nul zijn, bereken elementen
x0, x1, . . . , xn van F, niet alle nul, zodanig dat

n∑

i=0

aix
n
i = 0.

Probleem S2 Gegeven een eindig lichaam F, gegeven een positief geheel getal n, en
gegeven elementen b, a1, . . . , an van F, alle ongelijk nul, bereken elementen x1, . . . , xn

van F zodanig dat
n∑

i=1

aix
n
i = b,

of toon aan dat zulke elementen niet bestaan.

Het gaat bij deze problemen respectievelijk om het representeren van nul, danwel
van elementen ongelijk nul, door diagonale vormen in vele variabelen over eindige
lichamen. De klassieke stelling van Chevalley-Warning vertelt ons dat de vergelijking
in Probleem S1 altijd een oplossing heeft — Hoofdstuk 2 geeft hierover meer details.
In Probleem S2 kan oplosbaarheid van de vergelijking gegarandeerd worden door te
eisen dat alle elementen van F te schrijven zijn als sommen van nde machten van
elementen van F. In Hoofdstuk 2 wordt, voor zover ik weet voor de eerste maal,
aangetoond dat deze voorwaarde voldoende is.

De meeste bewijzen die gegeven worden voor oplosbaarheidsresultaten zoals de zo-
juist genoemde, leiden niet tot efficiënte methoden om ook daadwerkelijk oplossingen
te vinden. Mijn hoofdresultaat is de constructie van twee efficiënte algoritmen, voor
beide problemen één, die zulke oplossingen inderdaad berekenen. Het bewijs van dit

83

84 Samenvatting

resultaat beslaat het gehele proefschrift en bevat een gedetailleerde beschrijving en
analyse van deze twee sterk verwante algoritmen.

Stelling S3 Er zijn deterministische algoritmen voor het oplossen van Problemen S1
en S2 waarvan de looptijd polynomiaal is in termen van n en log q, waarbij q gelijk
is aan het aantal elementen van F.

Tot nu toe hebben diverse efficiënte algoritmen voor het oplossen van niet-lineaire
vergelijkingen over eindige lichamen essentieel gebruik gemaakt van probabilistische
elementen. Deze gerandomiseerde deelstappen dienen meestal om een element van de
multiplicatieve groep van het beschouwde lichaam te vinden dat buiten een gegeven
ondergroep valt, zoals een element dat geen kwadraat is. Het vernieuwende van het
hier gepresenteerde resultaat is dat deze gerandomiseerde technieken geëlimineerd
zijn: de methoden van dit proefschrift zijn zuiver deterministisch.

De algoritmen van dit proefschrift gebruiken alleen elementaire technieken, maar hun
formulering kent vele stappen en maakt gebruik van subroutines op diverse niveaus.
Als hulpresultaten die op zichzelf van belang zijn, geef ik methoden om, voor een
gegeven n, een voortbrenger voor een eindig lichaam over zijn priemlichaam te geven
die een nde macht is, en om een gegeven element van een eindig lichaam te schrijven
als som van nde machten met ten hoogste n termen — of, in beide gevallen, om vast
te stellen dat deze taken onmogelijk zijn (resp. Hoofdstukken 4 en 5). Een andere
hoeksteen is een deterministische aanpassing van het worteltrekalgoritme van Tonelli-
Shanks, waarover meer te vinden is in Hoofdstuk 3.

Uit de beschrijving van mijn algoritmen zal duidelijk worden dat de door mij gegeven
versies alreeds praktisch bruikbaar zijn. De analyse van hun rekentijd, die niet moeilijk
is, laat zien dat hun prestaties nauwelijks minder zijn dan die van probabilistische
oplossingsmethoden voor Problemen S1 en S2.

Ik geef toepassingen op verschillende algoritmische problemen op het gebied van ein-
dige lichamen, waaronder het berekenen van een rationaal punt op een kwadratisch
hyperoppervlak, het berekenen van isomorfismen tussen kwadratische ruimten, het
berekenen van lichaamsvoortbrengers met voorgeschreven norm, het trivialiseren van
centrale simpele algebra’s van graad 2. Wellicht onverwacht, tenslotte, is het feit
dat mijn algoritmen de ‘missing link’ blijken te zijn in de constructie van een effici-
ent deterministisch algoritme voor het berekenen van rationale punten op elliptische
krommen over eindige lichamen.

Een implementatie van alle in dit proefschrift ontwikkelde algoritmen in de compute-
ralgebrataal Magma is bij de auteur verkrijgbaar.

Dankwoord

Om te beginnen dank ik de directie van het Mathematisch Instituut van de Univer-
siteit Leiden voor mijn aanstelling als Assistent in Opleiding, waardoor ik van een
van mijn favoriete activiteiten, het oplossen van wiskundige problemen, mijn werk
kon maken. Ook dank ik hen voor de mogelijkheid deze aanstelling in deeltijd te
vervullen, waardoor er ruimte bleef voor een andere hobby, de muziek.

Ik heb op het Instituut een inspirerende en leerzame tijd gehad, die begonnen is
met de studies wiskunde en informatica, en die nu na vele jaren tot een einde komt.
Het was een plezier op te trekken met de vele collega’s, in het bijzonder in de groepen
Meetkunde en topologie en Algebra en getaltheorie, die elkaar dagelijks troffen aan
de lunchtafel, maar ook daarbuiten. Op de tweewekelijkse Intercity-seminars zagen
we ook de collega’s van andere Nederlandse (en ook enkele Belgische) universiteiten;
deze intensieve uitwisseling is me altijd uitstekend bevallen.

Dank dus aan mijn oud-afstudeerdocent Rob Tijdeman, bij wie ik altijd voor ad-
vies terecht kon; aan Nils, voor de kennismaking met computeralgebrapakketten die
ook echte algebra kunnen; aan Richard en Willem-Jan, voor hun deskundigheid op
Linuxgebied waarvan ik telkens weer kon profiteren; aan Reinier voor vele interessante
discussies en een cruciale verwijzing; aan Frans, voor zijn betrokkenheid en de mu-
zikale uitwisselingen; aan alle andere collega’s in Leiden; en daarbuiten, aan Mascha
Honsbeek, Chris Zaal, Jaap Top, Gert-Jan van der Heiden, Ronald van Luijk, Jasper
Scholten en Benne de Weger.

I’ve met people too numerous to mention in many international conferences and
other meetings around the world, but especially in Berkeley and Lausanne, each of
whom contributed to the pleasure of being a mathematician. I hope I will meet several
of you again!

Das letzte Halbjahr, das ich am Radon-Institut der ÖAW in Linz verbracht habe,
habe ich sehr genossen.

Ein besonderes Dankeschön gilt Arne Winterhof, für die Einladung nach Linz, und
für deine Freundschaft. Ich wünsche dir jetzt alles Gute im Laufbahn, und hoffentlich
sehen wir uns noch oft.

Ich danke nebendem Josef Schicho und Bruno Buchberger, die mir die Teilnahme
am Sondersemester über Gröbnerbasen ermöglicht haben.

Ich danke Tanja Löhr (Mainz) für die Gestaltung des Umschlags dieser Doktorar-
beit, und hoffe, Oliver und dich bald wieder zu sehen.

85

86 Dankwoord

Een van de effecten van het lidmaatschap van een studentenvereniging en van een
kerkelijke gemeente is dat het je vele vrienden oplevert die geen wiskundigen zijn.
Het voordeel en het nadeel daarvan is dat je gedwongen wordt je niet alleen met je
favoriete activiteiten en hobby’s, maar ook met het echte leven bezig te houden. Ga
zo door, zou ik zeggen, en bedankt voor alle goede momenten die we kunnen delen!
Ik hoop dat we, ook nu ik in Oostenrijk ben gaan wonen, gelegenheid zullen vinden
om elkaar te zien.

Dank in het bijzonder aan Gertjan en Annemieke, voor jullie vriendschap en gast-
vrijheid, het uitzoeken van stapels post tijdens mijn afwezigheid, en aan Gertjan voor
het bekleden van de functie van paranimf.

Tenslotte is daar mijn familie: mijn ouders, zus, broers, schoonzus, en de verdere
familieleden. Veel dank voor jullie morele en materiële steun gedurende mijn hele
leven, en niet minder in de afgelopen tijd, waarin ik wel wat steun kon gebruiken;
ik kan altijd op jullie rekenen! We kunnen elkaar tegenwoordig allemaal per e-mail
bereiken, maar gelukkig komen we elkaar ook nog wel eens in het echt tegen, zelfs in
Oostenrijk. Mijn broer Pieter was ook paranimf; bedankt daarvoor!

Ik dank God voor het feit dat ik een bevoorrecht leven kan leiden, zeker in verge-
lijking met vele anderen op de wereld. Ik geniet er elke dag van in Zijn wereld rond
te lopen en zoveel mooie dingen tegen te komen, of het nu vogels, cartoons, klanken,
mensen, wiskundige stellingen of bergen zijn. Ik dank Hem voor zijn leiding en vraag
Hem om een plaats in de wereld waar ik voor mijn medemensen zinvol kan zijn.

Curriculum vitae

Christiaan van de Woestijne werd op 18 september 1975 geboren te Rotterdam. Hij
bezocht van 1986 tot 1992 de Reformatorische Scholengemeenschap “Guido de Brès”
te Rotterdam, waar hij het gymnasiumdiploma behaalde.

In de zomer van 1992 werd hij winnaar van de Nationale Biologie-Olympiade.
Vervolgens nam hij deel aan de 3e Internationale Biologie-Olympiade in Poprad, Slo-
wakije, waar hij een bronzen medaille behaalde.

In het jaar 1992-1993 studeerde hij aan de Evangelische Hogeschool te Amersfoort
(het Basisjaar-programma), waar onder meer de filosofiecolleges van prof. dr. dr. dr.
W. J. Ouweneel zijn denken gevormd hebben.

Vanaf 1993 studeerde hij wiskunde en informatica aan de Universiteit Leiden. In
1998 behaalde hij hier met lof het doctoraaldiploma wiskunde met de scriptie “On
the diameter of tuples of weighted powers”. Begeleiders waren dr. B. M. M. de Weger
en prof. dr. R. Tijdeman.

In 1999 behaalde hij het doctoraaldiploma informatica, eveneens met lof, met de
scriptie “A formal characterisation of the Delilah system”, onder begeleiding van dr.
H. J. Hoogeboom en dr. C. L. J. M. Cremers.

Van 1999 tot 2003 was hij aangesteld als Assistent in Opleiding aan het Mathe-
matisch Instituut van de Universiteit Leiden, waar hij promotie-onderzoek verrichtte
onder begeleiding van prof. dr. H. W. Lenstra, Jr., en tevens vele werkcolleges en en-
kele hoorcolleges gaf. Financiële bijdragen uit de Spinozaprijs die in 1999 aan prof.
Lenstra werd toegekend, en van de Europese Unie, stelden hem in staat enkele maan-
den te verblijven aan het MSRI te Berkeley, California, Verenigde Staten, en aan de
EPFL te Lausanne, Zwitserland.

Tevens was hij in deze tijd werkzaam als deeltijd-docent aan de lerarenopleiding
wiskunde 1e graads aan de Christelijke Hogeschool De Driestar te Gouda en aan de
Hogeschool Rotterdam.

Van 1998 tot 2005 fungeerde Christiaan als organist van de Scots International
Church te Rotterdam en vervangend organist van de Marekerk te Leiden. Om zijn
vaardigheden te verbeteren, studeerde hij van 2000 tot 2005 orgel aan het Rotterdams
Conservatorium bij Aart Bergwerff, welke studie hij op 14 juni 2005 afsloot met het
behalen van het diploma Klassieke muziek Eerste fase.

87

88 Curriculum vitae

In het najaar van 2004 stelde het Mathematisch Instituut in Leiden hem voor vier
maanden aan als onderzoeksassistent. In deze periode werd zijn promotie-onderzoek,
waaruit dit proefschrift is voortgekomen, afgerond, de redactie van het proefschrift
echter nog niet.

Van oktober 2005 tot mei 2006 werkte hij als wiskundig onderzoeker aan het Radon
Instituut van de Oostenrijkse Academie van Wetenschappen te Linz en het Research
Institute for Symbolic Computation (RISC) van de Johannes Kepler Universität Linz.
Vanaf 1 juni 2006 is hij werkzaam als Postdoc aan de Technische Universität Graz,
Oostenrijk.

