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geboren te Geldermalsen

in 1979

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leiden University Scholary Publications

https://core.ac.uk/display/388693456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Samenstelling van de promotiecommissie:

promotor: Prof. dr. P. Stevenhagen

referent: Prof. dr. R. Schoof (Università di Roma Tor Vergata)
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1
Introduction

1.1 Background

This thesis deals with elliptic curves, and more specifically with some of their al-

gorithmic aspects. In algorithmic practice, an elliptic curve E over a field K is

often described by a Weierstraß equation, i.e., a specific model for the curve in the

projective plane P2
K over K. For char(K) 6= 2, 3 this model takes the simple form

Y 2Z = X3 + aXZ2 + bZ3

with coefficients a, b ∈ K. The set E(K) ofK-rational points consists of the solutions

(x : y : z) ∈ P2(K) to this equation. It contains the point at infinity O = (0 : 1 : 0).

All other points lie in the affine plane Z 6= 0 and we usually give the affine equation

Y 2 = X3 + aX + b for the curve, the point O at infinity being understood.

One of the key ingredients of most algorithms employing elliptic curves, is that

for an elliptic curve E defined over a field K, the set E(K) of K-rational points has

a natural group operation for which O is the neutral element. If K = R is the field

of real numbers, we can easily visualise the group law.

Y 2 = X3 −X

P

Q
P +Q

The picture shows the definition of the sum P + Q for two points P,Q ∈ E(R).

Proving that this definition indeed turns E(R) into an abelian group is not so easy
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in fact; the hard part is to show that the addition is associative. The usual proof

proceeds via algebraic geometric lines, and does not use the Weierstraß equation.

In the 1980’s, elliptic curves gained importance in algorithmic number theory.

Given an elliptic curve E over a finite field Fq, Hasse’s theorem from 1933 states that

the number #E(Fq) of Fq-rational points of E is an element of the Hasse interval

Hq = [q + 1− 2
√
q, q + 1 + 2

√
q] (1.1)

around q + 1. In 1985, Schoof [51] gave a deterministic polynomial time algorithm

to compute #E(Fq) from a standard representation of E by a Weierstraß model

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

over Fq . This algorithm has subsequently been improved by Elkies and Atkin [50,

19, 44], and point counting is nowadays considered ‘easy’.

In the same paper, Schoof gives a deterministic polynomial time algorithm

to compute a square root of the reduction x ∈ Fp of a fixed integer x ∈ Z. This

algorithm, which is an application of his point counting algorithm, is currently the

only known deterministic polynomial time algorithm to compute modular square

roots of a fixed integer x ∈ Z. As this algorithm is quite impractical, its importance

is mostly theoretical.

In 1987, Lenstra published a factoring algorithm based on elliptic curves [39].

Here one works with elliptic curves over the ring Z/NZ, where N is the integer

we want to factor. This probabilistic algorithm is an extension of Pollard’s (p− 1)-

method. Pollard’s algorithm is efficient if p−1 is smooth, i.e., not divisible by ‘large’

primes. The elliptic curve factoring algorithm is efficient for a curve E over Z/NZ if

the group order #E(Z/NZ) is smooth. We have many elliptic curves E over Z/NZ

to choose from, and it is this flexibility that is crucial to the performance of the

algorithm. In practice, it is the fastest known algorithm to find prime factors up to

say 50 decimal digits of N .

The improved flexibility also plays a vital role in the elliptic curve primality

test, proposed by Goldwasser and Killian in 1986. See [13, Section 14D] for a

description of this algorithm. After the practical improvements made by Atkin

in 1988, this algorithm is currently one of the fastest known algorithms to rigorously

prove primality. A rigorous run time analysis is out of reach. The deterministic

primality test by Agrawal, Kayal and Saxena [2] runs in time that is polynomially

bounded in the input size logN . This test is not fast in practice however.
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1.2 Elliptic curves of prescribed order

The problem we consider in this thesis arises as a natural ‘inverse problem’ to the

point counting problem considered by Schoof.

PROBLEM 1. Given a finite field Fq and an integer N ∈ Hq , find an elliptic curve

E/Fq for which E(Fq) has order N .

If q = p is a prime number, every integer N ∈ Hp arises as group order of an elliptic

curve E/Fp. We prove this in theorem 2.5. For arbitrary prime powers q = pf this

is not generally true: there are often not enough supersingular curves to cover the

cases N ≡ 1 mod p.

There is no algorithm known that solves problem 1 (in the cases that a solution

exists) in a time that is polynomially bounded in the input size log q ≈ logN . The

fastest algorithm known has an expected run time Õ(N1/2), where the Õ-notation

indicates that we disregard logarithmic factors. This näıve algorithm, which simply

tries random curves over Fq until we hit a curve withN points, is stated and analysed

in chapter 2.

We can relax the conditions in problem 1 by considering the prime power q as

part of the output instead of the input .

PROBLEM 2. Given an integer N ∈ Z≥1, find a finite field Fq and an elliptic curve

E/Fq for which E(Fq) has order N .

This problem forms the core of the first half of this thesis. It is not only inspired by

simply relaxing the conditions of problem 1, but also by cryptographic applications.

If the order of E(Fq) is a large prime, the discrete log problem in E(Fq) is

considered to be hard. That is, if we are given P,Q ∈ E(Fq) it is hard to find an

integer k ∈ Z with kP = Q. There are a few technical conditions to exclude ‘weak

curves’ such as supersingular curves; we do not go into this here.

Curves for which the discrete log problem is hard can be used for a crypto-

graphic system. A simple algorithm to find a ‘strong curve’ is to select a prime p

of 60 digits and try random elliptic curves over Fp until we hit a curve of prime

order N . Hasse’s theorem ensures that N is of the same size as p. This resembles

the näıve algorithm to construct a curve with N points. Using this algorithm to

construct a curve of prime order is heuristically polynomial time however. Indeed,

by the prime number theorem we expect that one out of every log p integers of size
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p is prime. If we treat the group orders of the curves we try as random integers of

size log p, we expect that we have to try about log p curves until we hit a curve of

prime order. Since point counting is polynomial time, this yields a polynomial time

algorithm.

For the hardness of the discrete log problem in E(F), it is not so relevant over

which finite field the curve E is defined. All we require is that E(F) has prime

order. It therefore suffices to prescribe the prime order N and ask for a curve with

N points. Hence, for cryptographic purposes we are mostly interested in a solution

to problem 2.

One of the main results of this thesis is that there does exist an efficient solution

to problem 2 if N is provided to the algorithm in factored form. For practical

applications, such as those in elliptic curve cryptography, it is unlikely that one

will need or want to use elliptic curves for which the factorization of the group

order is unknown, so requiring the factorization of N to be part of our input is

not a severe restriction. Our solution to problem 2 for factored orders N is almost

polynomial time, provided that one is willing to make a number of ‘standard heuristic

assumptions’.

THEOREM 1.3. There exists an algorithm that, on input of an integer N ≥ 1

together with its factorization, returns a prime number p and an elliptic curve E/Fp

with #E(Fp) = N whenever such a pair (E, p) exists. Under standard heuristic

assumptions, a pair (E, p) exists for allN , and the expected run time of the algorithm

is polynomial in 2ω(N) logN . Here ω(N) denotes the number of distinct prime factors

of N .

The explicit description of this algorithm and the run time analysis are given in

chapter 4. Although the run time in theorem 1.3 is not polynomial in the usual

sense, it is polynomial in logN outside a zero density subset of Z≥1 consisting

of very smooth input values N . Note that such N are not used in cryptographic

applications, as the discrete logarithm problem in groups of smooth order is easy.

If the input N is prime, an expected run time O((logN)4+ε) can be achieved. An

example of a cryptographic curve is given in chapter 7. The computation time for

such a curve is less than one second.

It should not come as a surprise that our solutions to problem 2 are elliptic

curves over prime fields. By Hasse’s theorem, we require that N is contained in the

Hasse intervalHq of some prime power q. It is easy to see that the union of the Hasse

intervals Hq over the prime powers q that are not primes is a zero density subset
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of Z≥1. Solvability of problem 2 for all values of N is therefore in an informal sense

‘equivalent’ to the fact that the union of the Hasse intervals Hp over the primes p

contains Z≥1.

Defining the Hasse intervalHN around arbitrary integersN as in formula (1.1),

we have the equivalence

N ∈ Hp ⇐⇒ p ∈ HN , (1.2)

and we see that we want every Hasse interval HN around an integer N to contain a

prime number p. This amounts to the statement that the size of the ‘gaps’ between

consecutive primes around N does not exceed 4
√
N . Although prime gaps of this

size are not believed to exist, the best proven upper bound on their size is currently

O(Nα), with α = 0.525 > 1
2 . A more extensive treatment of prime gaps is given in

chapter 2.

1.3 Complex multiplication constructions

Our construction method of a curve with prescribed order relies on complex multipli-

cation (CM) techniques. CM-theory describes the abelian extensions of an imaginary

quadratic number field K, i.e., extensions L/K with abelian Galois group Gal(L/K).

It was initiated by Kronecker in the second half of the 19-th century. In 1880, Kro-

necker gave a conjectural description of the abelian extensions of K. He stated that

the abelian extensions of K are generated by values of suitable elliptic and modular

functions. It was his liebster Jugendtraum (dearest dream of his youth) to prove

this. Weber came close to proving this conjecture [65, §169], but overlooked a sub-

tle sign condition. The first solution was given by Takagi in 1920 in his article on

general class field theory [61].

The first main theorem of complex multiplication is concerned with the Hilbert

class field H – the maximal totally unramified abelian extension – of an imaginary

quadratic number field K. It states that H is generated over K by the j-invariant

j(E) of an elliptic curve E with endomorphism ring OK . Furthermore, we have

an explicit description of the action of the Galois group Gal(H/K) on j(E), see

chapter 3.

The name complex multiplication can be explained as follows. For an elliptic

curve E defined over a number field, the endomorphism ring End(E) is either iso-

morphic to Z or to an imaginary quadratic order O. In the latter case, the curve is

said to have complex multiplication. Over the field C of complex numbers we can

also represent an elliptic curve as a compact Riemann surface C/Λ, with Λ ⊂ C a
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lattice of rank 2. The j-invariant of the curve E = C/Λ is then given by j(Λ), where

j : H→ C denotes the modular j-function from the upper half plane H to the field

of complex numbers. The first main theorem of CM-theory now states that we have

K(j(E)) = H,

with E = C/OK an elliptic curve with endomorphism ring OK . The explicit Galois

action enables us to compute the minimal polynomial PK of j(E) over Q. The

polynomial PK , which has integer coefficients, is called the class polynomial for OK .

CM-theory provides a link between the theory of elliptic curves and algebraic

number theory. In chapter 3 we explain how we can use CM-theory to construct a

curve of prescribed order N . To every choice of a prime p ∈ HN , we associate an

imaginary quadratic field K = Kp,N . We can then construct a curve of order N

over Fp as reduction of a curve E in characteristic zero with endomorphism ring OK .

CM-theory tells us that we may take E to be defined over the Hilbert class field H

of K. The prime p splits completely in H . Consider the class polynomial PK for K.

The reduction PK ∈ Fp[X ] splits completely, and any of its roots is the j-invariant

of a curve with N points over Fp.

Every choice p ∈ HN yields a quadratic field K = Kp,N and once we have

computed the class polynomial PK for K, it is easy to construct a curve with N

points over Fp. Computing PK takes time O(|D|1+ε), where D = disc(Kp,N) is the

field discriminant of K. For an arbitrary choice p ∈ HN , we expect that D is of the

same size as N . This leads to an exponential time algorithm to construct a curve of

order N that is even inferior to the näıve algorithm from chapter 2. In problem 1

we have no control over the prime p, but the situation is different in problem 2. In

chapter 4 we explain how to pick a prime p ∈ HN for which the field discriminant

of Kp,N is of almost polynomial size in logN , rather than of exponential size. This

is the key to the proof of theorem 1.3.

In chapter 5 we do not focus on the problem of constructing an elliptic curve of

prescribed order any more, but concentrate on the problem of computing the class

polynomial PK for a given imaginary quadratic field K. This problem fits into the

broader scope of class field theory. Only for K = Q and for imaginary quadratic

fields K it is known how to explicitly compute the class fields of K. For general K,

it is one of the unsolved Hilbert problems to find generators for the class fields.
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1.4 Class invariants

Let K = Q(
√
D) be imaginary quadratic of discriminant D < 0 and let E be an

elliptic curve with endomorphism ring OK . CM-theory tells us that the minimal

polynomial over Q of j(E) has integer coefficients. Denoting this polynomial by

PD , we have

H ∼= K[X ]/(PD),

with H the Hilbert class field of K. There is a classical algorithm to compute PD.

Let j : H → C be the modular j-function from the upper half plane H to the field

of complex numbers. We explicitly know – see section 3.3 – in which points τI ∈ H

we should evaluate j to compute a root of PD ∈ C[X ]. We compute all the roots

j(τI ) of PD ∈ C[X ] with high accuracy and expand the product

PD =
∏

I

(X − j(τI )) ∈ C[X ].

If we have computed all roots with high enough accuracy – we have an explicit upper

bound for the required precision – we round the coefficients of PD ∈ C[X ] to the

nearest integer.

In 2002, Couveignes and Henocq published a method [12] to compute PD by

working over Qp for a suitable prime p rather than over C. Working over Qp has

the advantage that we need not worry about rounding errors. Their paper mostly

gives the mathematical framework of the p-adic algorithm, and focuses not so much

on an actual implementation. An actual implementation is far from straightforward,

and all of chapter 5 is devoted to this. We present the algorithm in more detail and

explain how one can implement it.

A serious drawback of computing PD is that the coefficients of this polynomial are

huge. Not only do they grow exponentially in size for |D| → ∞, but – perhaps

even worse – even for moderately small values of D the coefficients are tremendous.

Consider the polynomial for D = −23:

P−23 = X3 + 3491750X2− 5151296875X + 12771880859375∈ Z[X ].

History tells us that we should be able to do better. In his Lehrbuch der

Algebra (1908) Weber explains that function values of ‘smaller’ functions than the

j-function sometimes also generate the Hilbert class field [65]. Weber gives a modular

function f : H → C of level 48 with the property that f(ω) generates the Hilbert
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class field H of Q(
√
−23) for an appropriate choice of generator ω for the Z-algebra

OK = Z[ω]. We find that f(ω) is a root of

P f
−23 = X3 −X − 1 ∈ Z[X ].

For a modular function f : H→ C and a point τ ∈ H, the function value f(τ)

is called a class invariant if we have

K(f(τ)) = K(j(τ)).

The function f is an example of a function yielding class invariants. The logarithm

of the coefficients of its Fourier expansion is 72 times smaller than the logarithm of

the coefficients of the j-function. Moreover, the minimal polynomial P f
D of a class

invariant f(τ) often has integer coefficients. We expect that the logarithmic height

of the coefficients of P f
D is 72 times smaller than that of PD. This is a constant

factor, but it enables us to treat much larger discriminants.

Weber focuses on a few specific functions, such as f and a cube root γ2 of the

j-function. He uses ad hoc methods to decide whether f(τ) is a class invariant, and

if so, to compute the Galois conjugates of f(τ) under Gal(H/K). For a general

approach, we need to understand the Galois action of Gal(Kab/K) on values of

modular functions. For the j-function this is rather simple, but for modular functions

of higher level the situation becomes more complicated. Shimura reciprocity (1971)

describes this Galois action, and this is the modern tool for working with class

invariants.

Using Shimura reciprocity, it is now a rather mechanical process [26, 59, 49]

to decide whether f(τ) is a class invariant, and if so compute its conjugates under

Gal(H/K). A precise description of Shimura reciprocity, including examples, is

given in chapter 6.

The theory of class invariants is firmly rooted in a complex analytic setting.

For the j-function we were able to work over the non-archimedean field Qp rather

than over C. A natural question to consider is the following.

Question. Can we also work with class invariants in a p-adic setting?

In chapter 6 we develop a p-adic theory of class invariants, showing that the answer

to the question above is yes. This combines both improvements to the classical

algorithm of computing PD by evaluating the j-function in suitable points τ ∈ H,

i.e., we can use smaller functions and we do not have to worry about rounding errors.

Partial results in this direction can already be found in [7, Section 5].
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The technique we use consists of both Shimura reciprocity and a systematic

use of modular curves. The main algorithmic tools are modular polynomials . For

the j-function these polynomials are well-known, but they also exist for modular

functions of higher level. See section 6.8 for a definition of modular polynomials

that is inspired by geometry.

The last section of chapter 6, section 6.9, gives the algorithm to work with

class invariants over Qp. This algorithm is illustrated by the examples in chapter 7.





2
Elliptic curves of given order

2.1 Elliptic curves over finite fields

A classical theorem of Hasse from 1933 states that for an elliptic curve E/Fq , the

order of the group E(Fq) is an integer in the Hasse interval

Hq = [q + 1− 2
√
q, q + 1 + 2

√
q] (2.1)

around q + 1. The key in understanding this result lies in the endomorphism ring

EndFq
(E) of E, and we give the main ingredients of the proof of Hasse’s result.

For an elliptic curve E defined over Fq , the Frobenius map x 7→ xq on Fq

induces an endomorphism of the curve E/Fq :

Fq : E → E (x, y) 7→ (xq , yq),

which is called the Frobenius morphism. Since the action of the Frobenius morphism

on E(Fq) is raising the coordinates of a point to the q-th power, we have

#E(Fq) = #ker(1− Fq).

The Frobenius morphism is purely inseparable of degree q. As the inseparable en-

domorphisms form an ideal of EndFq
(E), we see that 1 − Fq is separable. For

non-constant separable morphisms, the number of points in the kernel equals the

degree, i.e., we have

#ker(1− Fq) = deg(1− Fq).

The ring EndFq
(E) has an involution that sends α ∈ EndFq

(E) to its dual α̂. We

compute deg(1 − Fq) = FqF̂q + 1 − (Fq + F̂q) = q + 1 − (Fq + F̂q). The integer

t = (Fq + F̂q) ∈ Z is called the trace of Frobenius . The inequality

|t| ≤ 2
√
q
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now follows from a variant of the Cauchy-Schwarz inequality [58, Lemma 5.1.2].

The proof of Hasse’s result shows that the Frobenius morphism Fq : E → E, which

is defined over Fq, satisfies the relation

F 2
q − tFq + q = 0 ∈ EndFq

(E).

For Fq 6∈ Z, we have disc(Z[Fq ]) = t2−4q < 0. Hence, for t 6= ±2
√
q, the order Z[Fq ]

is isomorphic to the imaginary quadratic order O of discriminant t2 − 4q < 0. Let

πq ∈ O be the image of Fq under an isomorphism Z[Fq ]
∼−→ O. Then πq has norm

N(πq) = deg(Fq) = q and trace Tr(πq) = t. For a curve with N points over Fq ,

we have (1− πq)(1− πq) = N and πqπq = q. This observation gives the symmetric

relation

N ∈ Hq ⇐⇒ q ∈ HN ,

where HN is defined by the same formula as in (2.1).

The ring Z[Fq ] is a subring of the endomorphism ring EndFq
(E). If EndFq

(E)

is imaginary quadratic, then the curve E is called ordinary , otherwise E is said to

be supersingular .

REMARK. For an ordinary elliptic curve E/Fq , we have EndFq
(E) = EndFq

(E).

Indeed, a necessary and sufficient condition for an endomorphism α ∈ EndFq
(E) to

be defined over Fq is α ◦ Fq = Fq ◦ α. For an ordinary curve E, all endomorphisms

α ∈ EndFq
(E) commute with Fq since the ring EndFq

(E) is commutative. In this

case, we will often write End(E) for the endomorphism ring of E.

THEOREM 2.1. Let q be a prime power and let E/Fq be an elliptic curve. If E

is supersingular, then EndFq
(E) is isomorphic to a maximal order in a quaternion

algebra. Furthermore, E is supersingular if and only if char(Fq) divides the trace of

the Frobenius morphism Fq : E → E.

PROOF. [58, Theorem 3.1] �

For the rest of this section we assume char(Fq) 6= 2, 3. An elliptic curve over Fq

is determined up to Fq-isomorphism by its j-invariant j(E) ∈ Fq . We can put any

elliptic curve E/Fq into a Weierstraß form given by Y 2 = X3 + aX + b, and j(E) is

defined as

j(E) = 1728
4a3

4a3 + 27b2
∈ Fq .
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The j-invariant j(E) determines the endomorphism ring EndFq
(E), so we have su-

persingular and ordinary j-invariants.

Let E : Y 2 = X3 + aX + b and E′ : Y 2 = X3 + a′X + b′ be two elliptic curves

over Fq . The curves E and E′ are isomorphic over an extension L/Fq if and only if

there exists c ∈ L∗ with

a′ = c4a and b′ = c6b.

We see that if E and E′ are isomorphic over an extension L/Fq, they are isomorphic

over an extension of degree at most 6 of Fq , and isomorphic over a quadratic exten-

sion of Fq if ab is non-zero. The curves having a = 0 in their Weierstraß equation

have j-invariant 0, whereas the curves with b = 0 have j-invariant 1728.

THEOREM 2.2. Let char(Fq) > 3 and let j ∈ Fq . The number of elliptic curves (up

to Fq-isomorphism) with j-invariant j is:

(a) 4 if j = 1728 and q ≡ 1 mod 4;

(b) 6 if j = 0 and q ≡ 1 mod 3;

(c) 2 otherwise.

PROOF. From the discussion above, we have to compute #(F∗q/F
∗n
q ) with n = 4, 6, 2

depending on the j-invariant. The result follows. �

THEOREM 2.3. Let E,E′ be elliptic curves over Fq. If E is ordinary, then E and E ′

are isomorphic over Fq if and only if we have j(E) = j(E ′) and #E(Fq) = #E′(Fq).

PROOF. If E and E′ are isomorphic over Fq , they obviously have the same number

of points over Fq . Our proof of the other implication relies on a classical theorem

of Tate [62, Theorem 1]. It states that if E and E ′ have the same number of points

over Fq , then they are Fq-isogenous. Let α : E → E ′ be an isogeny that is defined

over Fq . Furthermore, let ϕ : E′ → E be an isomorphism that is defined over Fq .

We have

ϕ ◦ α ∈ EndFq
(E) = EndFq

(E),

where the equality sign follows from the assumption that E is ordinary. For an

element σ ∈ Gal(Fq/Fq), we have

ϕσ ◦ α = ϕσ ◦ ασ = (ϕ ◦ α)σ = ϕ ◦ α,

and hence (ϕσ − ϕ) ◦ α = 0. Since α is surjective, we have ϕσ = ϕ. �
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REMARK. Theorem 2.3 does not hold in general for supersingular curves. The

supersingular curves E : Y 2 = X3 + 4 and E′ : Y 2 = X3 + 3 over F5 have j-

invariant 0 ∈ F5. Both E and E′ have trace of Frobenius 0, but they are not

isomorphic over F5, as 4/3 = 3 ∈ F∗5 is not a 6-th power.

The curves isomorphic over Fq, but not over Fq, to a curve E/Fq are called the twists

of E. The j-invariants 0 and 1728 are special. For j = 0, 1728 the endomorphism ring

of an ordinary elliptic curve over Fq with j-invariant j equals Z[ζ3], Z[i] respectively.

There are no other ordinary j-invariants with this property.

Let E be an ordinary elliptic curve over Fq with j-invariant j(E) 6= 0, 1728.

The unique twist of E is called the quadratic twist . If E has q+1−t points, then the

quadratic twist of E has q+1+ t points. In order to prove this last statement, we let

E′/Fq be an ordinary curve with endomorphism ring O of discriminant t2−4q < −4.

By theorem 2.3, it suffices to show that we have t′ = ±t in the diagram below.

Z[Fq ]
�

� // O Tr // Z

Fq
� // πq

� // t′

We know that πq ∈ O has norm q = pf . Since E′ is ordinary, we have p - t′ =

(πq + πq) ∈ Z. Hence, we may write (πq) = pf , where p is an O-ideal lying over p.

By assumption, O has unit group O∗ = {±1}, and a generator of pf is therefore

determined up to sign. This shows that we have t′ = ±t.

Schoof’s algorithm [51] gives an efficient way of computing the order #E(Fq) of

a Weierstraß curve E : Y 2 = X3 + aX + b over Fq . The main idea behind the

algorithm is to compute the trace of Frobenius t modulo many small primes l. Since

we have an upper bound |t| ≤ 2
√
q from Hasse’s theorem, we can use the Chinese

remainder theorem to reconstruct t ∈ Z from the values t mod l. The run time of

Schoof’s algorithm is polynomially bounded in the input size log q.

2.2 Does there exist a curve with exactly N points?

This section gives necessary conditions for solvability of the leading problem in

this thesis. This problem is the ‘inverse’ problem of the point counting problem

considered by Schoof.

PROBLEM. Given an integer N ∈ Z≥1, find a finite field Fq and an elliptic curve

E/Fq with N rational points over Fq.
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The order of the group E(Fq) is an integer in the Hasse interval

Hq = [q + 1− 2
√
q, q + 1 + 2

√
q] (2.1)

around q + 1. From this we see that a necessary condition for the solvability of the

problem is that every N is contained in some interval Hq . In other words, we want

the union
⋃

qHq over all prime powers q to contain Z≥1. The contribution to
⋃

qHq

coming from true prime powers, i.e., prime powers which are not primes, is a zero

density subset of Z≥1. Therefore, it is not unreasonable to restrict to primes q = p

in our problem.

Define HN by the same formula as in (2.1) for arbitrary integers N . From the

symmetric relation

N ∈ Hp ⇐⇒ p ∈ HN

from the previous section, we see that HN contains a prime if the problem has a

solution with q = p prime. This implies that for solvability for all integers N and

with q prime, we need that the distance between two consecutive primes near N is

at most of size 4
√
N .

If we denote the n-th prime by pn, we want at least

pn+1 − pn = O(
√
pn) (pn →∞). (2.2)

There is a big difference between proven results and practice regarding the truth of

estimate (2.2). The prime number theorem asserts that, on average, the distance

between pn+1 and pn is of size log pn.

PRIME NUMBER THEOREM (2.4). Denote by π(x) the number of primes up to x.

Then:

lim
x→∞

π(x)

x/ logx
= 1.

In practice one does find that the distance between pn+1 and pn is of size log pn.

Indeed, defining the gap between two consecutive primes a and b as (b − a)/ loga,

the largest known gap occurs [48] between two primes a and b of 16 digits and has

size 32.28.

Estimate (2.2) has led to much research in analytic number theory, but it has

remained unproved to date. The classical result that there is a prime in the interval

(z, 2z) for every z ∈ Z≥1 was improved upon by Hoheisel [31] in 1930. Hoheisel

was the first to prove the existence of a constant θ < 1 with pn − pn−1 = O(pθ
n).
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His initial value θ = 32999
33000 has since then been improved by many people. At this

moment, the best result [4] known is θ = 0.525.

Hoheisel’s original proof and all subsequent improvements use properties of the

zeroes of the Riemann zeta function ζ(s). This function is defined by
∑∞

n=1 n
−s for

s ∈ C with Re(s) > 1, and it can be extended analytically to C \ {1}. It is therefore

no surprise that we can do better than θ = 0.525 by assuming the (generalized)

Riemann hypothesis. In 1920 Cramér [14] proved, under GRH,

pn+1 − pn = O(
√
pn log pn).

See [32, Theorem 12.10] for a modern proof. Cramér’s result is close to the expression

in (2.2), but we still have an extra logarithmic factor.

We can do much better if we only insist that nearly all integers lie in some

Hasse intervalHp. Here nearly all is defined as in analytic number theory, i.e., nearly

all integers x have property P precisely when

lim
x→∞

P (x)

x
= 1

holds, where P (x) denotes the number of integers up to x that have property P . The

prime number theorem tells us for instance that nearly all integers are composite.

We define θ0 by

θ0 = inf
θ
{for nearly all n the interval [n, n+ nθ] contains a prime}.

The upper bound θ0 ≤ 19/77 was shown in 1943 by Selberg [54]. We conclude that

nearly all integers N arise as the order of an elliptic curve over a finite field.

If we are also willing to assume GRH, the situation is even better. In the same

paper Selberg proved that, under GRH, nearly all intervals

[n, n+ f(n)(logn)2]

contain a prime, provided f(n) →∞ for n →∞. The exponent 2 in the logarithm

can be lowered to 1 if we moreover assume some vertical distribution of the zeroes

on the critical line [30]. This last result implies that, under an extended version of

GRH, for nearly all N we can find a prime p(N) that is close to N , i.e., |p(N)−N | ≤
(logN)1+ε for every ε > 0. We conclude that it is safe to expect that every Hasse

interval HN around N + 1 contains a prime.
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Fix a prime p ∈ HN , and define t = p+1−N . We are interested in the number

of curves over Fp that have trace of Frobenius t. Hence, for a fixed integer t with

|t| ≤ 2
√
p, we want to count the set

{E : E elliptic curve over Fp with Tr(Fp) = t}/∼=Fp
,

where we count every isomorphism class [E] with weight (#AutFp
(E))−1. Note that

#AutFp
(E) equals 6 or 4 if EndFp

(E) is isomorphic to Z[ζ3], Z[i] respectively, and

#AutFp
(E) = 2 otherwise. We use the notation #′ to indicate that we use this

weighted cardinality.

Formulas for the number of curves with a prescribed trace of Frobenius go back

to Deuring [16]. The answer involves the Kronecker class number of the imaginary

quadratic order O, which we proceed to define. Write h′(O) = h(O)/|O∗| ∈ Q for

the ‘weighted’ class number.

Definition. The Kronecker class number H ′(∆) of the imaginary quadratic order

O∆ of discriminant ∆ is

H ′(∆) =
∑

O∆⊂O′⊂Omax

h′(O′) ∈ Q,

where h′(O′) denotes the weighted class number of O′, and Omax is the maximal

order of Q(
√

∆).

We have the following theorem relating the number of curves with trace of Frobe-

nius t and the Kronecker class number.

THEOREM 2.5. Let Fp be a finite prime field. Then the following equality holds:

#′{E : E elliptic curve over Fp with Tr(Fp) = t}/∼=Fp
= H ′(t2 − 4p) ∈ Q.

PROOF. This is theorem 4.6 in [52]. We will give a proof, for t 6= 0, based on the

Deuring lifting theorem in chapter 3. �

In particular we see from theorem 2.5 that for any integer t with |t| ≤ 2
√
p there

exists an elliptic curve over Fp with trace of Frobenius t. This does not hold in

general [52] if we replace p by a prime power pf . There are often not enough

supersingular curves to cover the cases where t is divisible by p.
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2.3 Näıve algorithm

We now formulate the first algorithm for solving our problem. Given that computing

the trace of Frobenius of an elliptic curve E/Fp takes time polynomial in log p, a

natural idea is to choose a prime p ∈ HN and construct random curves over Fp until

we have found a correct one. This observation forms the basis of the näıve algorithm.

We also implement an ‘early abort strategy’ in checking whether a curve is a curve

with the correct number of points. From a theoretical point of view this is not

very important, since it does not change the asymptotic run time of the algorithm.

From a practical point of view it is very important however. We can handle much

larger inputs, which is of importance since the näıve algorithm will also be used as

a subalgorithm of the main algorithm in chapter 5.

Algorithm (Näıve algorithm). Input: an integer N > 4. Output: a prime p ∈
[N + 1−

√
N,N + 1 +

√
N ] and an elliptic curve E/Fp with |E(Fp)| = N if such a

pair (p,E) exists; failure otherwise.

1. Put a← dN + 1−
√
Ne.

1a. If a > N + 1 +
√
N , return failure and halt.

1b. If a is prime, set p← a, t← p+ 1−N and go to step 2.

1c. Put a← a+ 1 and go to step 1a.

2. Pick a random element b ∈ F∗p \ {−27
4 }.

2a. Define Eb : Y 2 = X3 + bX − b and P = (1, 1) ∈ Eb(Fp).

2b. If (p + 1 − t)P = OEb
, compute the trace of Frobenius u for Eb. If

u = t, return Eb.

2c. If t 6= 0 and (p + 1 + t)P = OEb
, compute the trace of Frobenius u

for Eb. If u = −t, return the quadratic twist of Eb.

2d. Return to step 2.

Before we analyse the run time of the algorithm, we give some remarks on the

individual steps. From theorem 2.5 we see that if we find a prime p in step 1, there

exists an elliptic curve E/Fp with |E(Fp)| = N . We look for primes in a smaller

set than the entire Hasse interval HN . The reason is that if we would take a prime

p close to N + 1 ± 2
√
N , the associated discriminant ∆ = t2 − 4p would be very

small in absolute value. There are H ′(∆) curves (up to isomorphism) with trace

of Frobenius t, cf. theorem 2.5, and if |∆| is very small, then H ′(∆) is also very

small. Hence the probability of ‘hitting’ a correct curve in step 2 would be very

small. (More precise statements are provided in the analysis in section 2.4.)
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In step 2 we may assume that there exists a curve E/Fp with N points and

with j(E) 6= 0, 1728. For b ranging over F∗p \ {−27
4 }, the j-invariant of the curve Eb

attains every value of F∗p \ {1728}. For j 6= 0, 1728, there are two non-isomorphic

curves E,E′ with j-invariant j, cf. theorem 2.2. If E has p+ 1 − t points, then E ′

has p+ 1 + t points. Both possibilities are tested in steps 2b and 2c.

2.4 Analysis

We proceed with the run time analysis of the algorithm. The run time will be

exponential in logN . We use the Õ-notation to indicate that factors that are of

logarithmic size in the main term have been disregarded. More precisely, for two

functions f, g : Z>0 → R>0, we say that f is Õ(g) if there exist N, c ∈ Z>0 such

that for all n ≥ N we have

f(n) ≤ g(n)(log(3 + g(n)))c.

The only case where the algorithm will return ‘failure’ is when the interval

[N + 1−
√
N,N + 1 +

√
N ] contains no primes. It will then have done 1 + b2

√
Nc

primality tests, and since primality testing is polynomial time [2], the total run time

will be Õ(N1/2).

We now assume that [N + 1−
√
N,N + 1 +

√
N ] contains a prime p. Finding

one will take time Õ(N1/2); in practice one expects that the distance between dN +

1−
√
Ne and the next prime is only a power of logN , leading to a heuristic run time

that is polynomial in logN . This difference turns out not to be important for the

total run time of the algorithm.

In step 2 we have to compute the twists of an elliptic curve. As noted in

section 2.1, this boils down to finding a representative for F∗p/F
∗2
p . Doing this

probabilistically, we expect that we have to try 2 random elements of F∗p before we

have a non-square. This can clearly be done in time polynomial in log p. Once we

have the twists, we have to compute their group orders. Using Schoof’s algorithm

[51], this takes time Õ((log p)5).

To analyse step 2, we need good bounds on the number of curves over Fp

with trace of Frobenius t. From theorem 2.5 we see that this amounts to finding

good bounds for the Kronecker class number H ′(t2 − 4p). This is done in [39]; the

result is the following lemma.
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LEMMA 2.6. There exist effectively computable constants c1, c2 ∈ R>0 such that

for every z ∈ Z>1 there exists ∆∗ = ∆∗(z) < −4 with

c1
√
−∆

log z
≤ H ′(∆) ≤ c2 ·

√
−∆ · log |∆| · (log log |∆|)2

for all negative discriminants −z ≤ ∆ < 0, except that the left inequality may be

invalid if ∆∗ is equal to the fundamental discriminant ∆0 associated to ∆. If GRH

holds true, there is no need to exclude an exceptional value ∆∗ for ∆0.

PROOF. See [39, Proposition 1.8] and the discussion preceding it. �

COROLLARY 2.7. There exist effectively computable constants c1, c2 ∈ R>0 such

that the following is true. Let p be a prime, and let t be an integer with |t| ≤ √p.
(i) We have an upper bound

H ′(t2 − 4p) ≤ c1 ·
√
p · log p · (log log p)2.

(ii) If GRH holds true, we have a lower bound

H ′(t2 − 4p) ≥ c2 ·
√
p/ log p.

(iii) Let ∆′ < 0 be a discriminant with |∆′| ≤ 10p. If the fundamental discrimi-

nants associated to ∆ = t2 − 4p and ∆′ are distinct, then at least one of the

estimates

H ′(∆) ≥ c2 ·
√
p/ log p or H ′(∆′) ≥ c2 ·

√
p/ log p

is valid without the assumption of GRH.

PROOF. We apply lemma 2.6 with z = 4p. Part (i) follows immediately. For part

(ii) we simply note that the assumption |t| ≤ √p implies |t2 − 4p| ≥ 3p. For part

(iii) we apply lemma 2.6 with z = 10p. Note that we have −z ≤ ∆,∆′ < 0. By

assumption, at least one of the fundamental discriminants associated to ∆ and ∆′

is not equal to the exceptional value ∆∗. �

Returning to the analysis of step 2 of the algorithm, we see that, under the assump-

tion of GRH, we expect to find a correct curve after Õ(p1/2) tries.

THEOREM 2.8. If GRH holds true, the näıve algorithm has an expected run time

of Õ(N1/2).

The assumption of GRH may sound a bit heavy. The näıve algorithm is supposed

to be practical for relatively small N however, so assuming GRH is not much of a

problem. From a more theoretical point of view it is of course inconvenient, but the

assumption of GRH can be replaced by another assumption.



Elliptic curves of given order 21

From part (iii) of corollary 2.7 we see that it suffices to find two primes

p, q ∈ [N+1−
√
N,N+1+

√
N ] with the property that their associated fundamental

discriminants ∆0,∆
′
0 are distinct. In step 2 of the näıve algorithm we may then work

with both Fp and Fq . We first apply steps 2a–2c with an element b ∈ F∗p, then we

apply 2a–2c with an element b ∈ F∗q , then from F∗p again, etc., until we find a curve

with N points. The expected run time of this algorithm is Õ(N1/2).

We now analyse how many primes the interval [N + 1 −
√
N,N + 1 +

√
N ]

must contain to guarantee the existence of two primes with the property that their

associated fundamental discriminants are distinct. Fix a fundamental discriminant

∆ < −4. We want to have a good upper bound for the number of solutions (p, f) to

(p+ 1−N)2 − 4p = ∆f2 (2.3)

with p ∈ [N + 1−
√
N,N + 1 +

√
N ] prime. Just as the relation p ∈ HN ⇔ N ∈ Hp

is symmetric in p and N , we have (p+ 1−N)2 − 4p = (N + 1− p)2 − 4N . Writing

u = N + 1− p, we have to count the number of solutions (u, f) to

N =
u+ f

√
∆

2
· u− f

√
∆

2
∈ O∆, (2.4)

with N +1−u ∈ [N +1−
√
N,N +1+

√
N ] prime. Since we do not know anything

about the class group of O∆, we cannot say much on the number of elements of

norm N . Instead of looking at equation (2.4), we count the number ρ(N) of solutions

to

N = II,

with I ⊂ O∆ an ideal. For primes N we have ρ(N) = 2 if N splits, ρ(N) = 1 if N

ramifies and ρ(N) = 0 if N remains inert in O∆. Since we want to derive an upper

bound, we now assume that all prime divisors p of N split in O∆. For N = pk we

have ρ(N) = k + 1. The function ρ(N) is multiplicative and consequently we have

ρ(N) = d(N), with d(N) the number of divisors of N .

Since we assumed ∆ < −4, a possible generator of an ideal I ⊂ O∆ is de-

termined up to sign. We see that we have at most 2d(N) solutions (p, f) to equa-

tion (2.3). Hence, if the interval [N + 1 −
√
N,N + 1 +

√
N ] contains more than

2d(N) primes, we can apply the modified näıve algorithm described above.

Unfortunately, the number of divisors d(N) of an integer N grows faster than

any power of logN by [28, Theorem 314]. For every ε > 0, we do have [28, Theorem

315]

d(N) = O(N ε).
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THEOREM 2.9. If the interval [N+1−
√
N,N+1+

√
N ] contains more than 2d(N)

primes, the modified näıve algorithm described above has an expected run time of

Õ(N1/2).

The assumption that an interval of length 2
√
N contains at least 2d(N) primes is

not known to be implied by GRH. As noted in section 2.2, the assumption of GRH

implies

pn+1 − pn = O(
√
pn log pn),

where pn is the n-th prime. GRH is not known to imply the existence of a single

prime in our interval, let alone 2d(N) primes.

The advantage of the modified algorithm is the following. Suppose that we

find two primes p, q ∈ [N+1−
√
N,N+1+

√
N ] with different associated fundamental

discriminants. We now have an unconditional expected run time at our disposal.

This is quite a contrast with the first algorithm.

2.5 Timings and examples

The condition N > 4 in the näıve algorithm ensures that we have p ≥ 5 for the

resulting curve E/Fp with N points. For completeness sake, we give curves with

N = 1, . . . , 4 points. The curve with 1 point is defined over F3, the 3 other curves

are defined over F5.

N curve

1 Y 2 = X(X − 1)(X − 2) + 2
2 Y 2 = X3 + 2X
3 Y 2 = X3 + 4X + 2
4 Y 2 = X3 +X

As an example of the algorithm, we construct a curve with exactly N = 103 points.

By the prime number theorem, we expect to find roughly 4
√
N/ logN ≈ 18 primes

in the Hasse interval HN . The interval HN = [938, 1064] contains 20 primes.

In step 1, the prime p = (N + 1 − b
√
Nc) + 1 = 971 is selected. Define

t = p + 1 −N = −28. In step 2 we select random values b ∈ F∗p and test whether

Eb : Y 2 = X3 + bX − b has trace of Frobenius ±t. For b = 237, the point P =

(1, 1) ∈ Eb(Fp) is annihilated by p + 1 + t. The trace of Frobenius of Eb is 28 and

consequently, the quadratic twist

Y 2 = X3 + 4 · 237X − 8 · 237
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of Eb has exactly N points.

The näıve algorithm is intended to be practical for relatively small values

of N . To test its practical performance, we constructed elliptic curves with exactly

107, 108, . . . , 1013 points. To eliminate most of the probabilistic effects, we did this

50 times. The table below gives the average run time in seconds on our standard,

32-bit 2.8 GHz, PC.
N run time

107 < 1
108 < 1
109 5
1010 104
1011 169
1012 539
1013 1754

The difference in time needed to construct a curve with 1011 and 1012 points re-

spectively is reasonable in accordance with the expected run time (169 ·
√

10 ≈ 534).

Likewise for curves with 1012 and 1013 points. Something strange seems to be hap-

pening for curves for 109 and 1010 points however. This is probably a classical case

where mathematics forgets the laws of computer science: 109 still fits in 32 bits,

whereas 1010 has just crossed this barrier. Computers are far more efficient with

numbers of 32 bits than they are with larger numbers.

It is of course a bit dangerous to draw conclusions from this table. It suggests

however that with better hardware and improved code (written in assembly for

instance), it should be possible to construct a curve with say 1020 points in a few

hours.





3
Complex multiplication

3.1 Deuring lifting

This chapter deals with a classical deterministic algorithm for constructing an elliptic

curve with exactlyN points. We fix a prime p ∈ HN for the remainder of this section.

Let E/Fp be a curve with N points. In chapter 2 we have seen that N satisfies

N = p+ 1− t,

where t denotes the trace of the Frobenius morphism Fp : E → E. The quadratic

ring Z[Fp] has discriminant ∆ = t2− 4p < 0, and the endomorphism ring EndFp
(E)

contains a subring isomorphic to the imaginary quadratic order O∆. Conversely, let

E′/Fp be a curve with Z[F ′p] ∼= O∆, where F ′p is the Frobenius morphism of E ′. As an

element of norm p in O∆ is determined up to complex conjugation and multiplication

by units in O∆, we see that one of the twists of E ′ has trace t and thereforeN points.

This argument shows that finding an elliptic curve E with EndFp
(E) ⊇ O∆ is

equivalent to finding a twist of a curve having N = p+ 1− t points, where we write

∆ = t2 − 4p. As noted in chapter 2, it is very easy to compute the twists of a curve

in a probabilistic way. It therefore suffices to find a curve E with EndFp
(E) ⊇ O∆.

We will not construct such a curve directly in characteristic p, but obtain it

as the reduction of a curve in characteristic 0. The following theorem tells us that

we can lift an elliptic curve in characteristic p together with an endomorphism.

THEOREM 3.1.(Deuring lifting) LetE/Fp be an elliptic curve and let α ∈ EndFp
(E).

Then there exist an elliptic curve A defined over a number field K, an endomorphism

β ∈ EndK(A) and a prime P|p of K such that the following is true. The curve A has

good reduction at P. For the reduction A = A mod P, there exists an isomorphism

ϕ : A
∼−→ E, and for the induced map ϕ∗ : End(A)

∼−→ End(E) we have ϕ∗(β) = α.

PROOF. [37, Theorem 13.14] �
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COROLLARY 3.2. If E/Fp is ordinary, we can choose A in the Deuring lifting

theorem with EndK(A) ∼= EndFp
(E).

PROOF. Choose α ∈ EndFp
(E) with EndFp

(E) = Z[α]. We apply the Deuring

lifting theorem to the pair (E,α), yielding an elliptic curve A defined over a number

field K. Let G be the reduction modulo P of the endomorphism ring EndK(A).

Since endomorphisms reduce injectively, we have an inclusion

G ↪→ EndFp
(A)

∼−→
ϕ∗

EndFp
(E).

The map G→ EndFp
(A) is surjective by our choice of α. �

It is well known [63], that elliptic curves in characteristic 0 have endomorphism

rings of rank at most 2 over Z. If the rank equals 2, the curve is said to be a

CM-curve, where CM is an abbreviation for complex multiplication. Let E/Fp be

a supersingular elliptic curve. Since the endomorphism ring of E is free of rank

4 over Z, we cannot lift the entire endomorphism ring to characteristic zero. Let

α 6∈ Z be an endomorphism of E. Then α is quadratic over Z, so also in this case

we get a CM-‘lift’ of E by applying the Deuring lifting theorem to the pair (E,α).

3.2 Complex multiplication constructions

The theory of complex multiplication provides us with a means of constructing a

curve in characteristic zero with prescribed endomorphism ring. Before we can state

the first main theorem of complex multiplication, we need some definitions.

Let K be a field for which there exists an elliptic curve E/K with EndK(E) ∼=
O = O∆. We write O = Z[α] for some α ∈ O. The minimal polynomial fα

Z of

α splits in K[X ]. We fix a root of fα
Z ∈ K[X ], and view K as an O-algebra.

There are two isomorphisms O ∼−→ EndK(E), and it is important to pin down

one of these isomorphisms. We will always consider the normalized isomorphism,

i.e., the unique isomorphism ϕ with ϕ(α)∗ω = αω for all α ∈ O and all invariant

differentials ω ∈ ΩE . Such a pair (E,ϕ) is called a normalized elliptic curve. Two

normalized elliptic curves (E,ϕ) and (E ′, ϕ′) are said to be isomorphic if there exists

an isomorphism τ : E → E′ of elliptic curves with τ−1ϕ′(α)τ = ϕ(α) for all α ∈ O.

As there will hardly be any risk of confusion, we usually write E instead of (E,ϕ)

and just speak of an elliptic curve instead of a normalized one.

Let I ⊆ EndK(E) be an ideal with N(I) coprime to char(K) and define

E[I ] = {P ∈ E(K) | ∀α ∈ I : α(P ) = 0},
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the group of I-torsion points of E. There exist an elliptic curve EI and a separable

isogeny φ : E → EI with ker(φ) = E[I ] by [58, Proposition 3.4.12]. The curve EI

is unique up to K-isomorphism. We get a quotient map E → EI for every ideal

I ⊂ O coprime to char(K). The definition of EI does depend on the choice of an

isomorphism O ∼−→ EndK(E).

Next we focus on the case that K = C is the field of complex numbers. A

complex elliptic curve with endomorphism ring O ⊂ C is isomorphic to a curve

Ea = C/a for an invertible O-ideal a. For an invertible O-ideal I , the isogeny

C/a→C/(I−1a)

z 7→ z

has kernel Ea[I ]. We have EI
a
∼= EI−1a, and the curve EI

a has endomorphism ring O.

Let Ell∆(C) be the set of j-invariants of complex elliptic curves with endomorphism

ring O = O∆. We have a well-defined map ρI : Ell∆(C) → Ell∆(C) sending j(E)

to j(EI). The inverse of ρI is given by ρI , with I the complex conjugate of I .

Consequently, the map ρI is injective. The map ρI gives an action of the group

I(O) of invertible fractional O-ideals on the set Ell∆(C).

Let a, b ⊂ O be two invertible O-ideals. We view a, b as lattices in C. The

complex elliptic curves Ea = C/a and Eb = C/b are isomorphic if and only if

the lattices a and b are homothetic. In other words: we have j(C/a) = j(C/b) if

and only if the equality [a] = [b] holds in the Picard group Pic(O). The action of

I(O) given by the map ρI : Ell∆(C) → Ell∆(C) factors through the quotient map

I(O) � Pic(O). We get an action of Pic(O) on Ell∆(C). This action is simply

transitive. The transitivity follows from the equality ρb−1a(j(C/a)) = j(C/b). It is

clear that the action is free. We have made Ell∆(C) into a principal homogeneous

Pic(O)-space, or Pic(O)-torsor. In particular, we see that Ell∆(C) is a finite set of

cardinality h(∆).

Let now K be a number field, and let L/K be a finite abelian extension with dis-

criminant ∆L/K . Let p be an OK-ideal that is coprime to ∆L/K and let P|p be a

prime of L. We have an extension of finite fields (OL/P)/(OK/p). This extension is

cyclic, and the Galois group is generated by the Frobenius automorphism x 7→ xN(p).

Since P is unramified, there is a unique element σp ∈ Gal(L/K) mapping to this

Frobenius, i.e., σp is determined by the condition

σp(x) ≡ xN(p) mod pOL.

This σp is called the Artin symbol for p. The map p 7→ σp extends multiplicatively
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to a homomorphism

[ ·, L/K] : I(∆L/K)→ Gal(L/K)

from the group I(∆L/K) of fractional OK-ideals coprime to ∆L/K to Gal(L/K).

Let now K be an imaginary quadratic field and O = Of = Z+fO the unique

order of index f ≥ 1 in the maximal order OK . Class field theory tells us that there

is a unique abelian extension HO/K inside a fixed algebraic closure K, which is

unramified outside (f), such that the Artin map induces an isomorphism

Pic(O)
∼−→ Gal(HO/K).

The field HO is called the ring class field for O. The ring class field for O = OK is

called the Hilbert class field of K. It is the maximal unramified abelian extension

of K.

The isomorphism Pic(O)
∼−→ Gal(HO/K) induced by the Artin map yields

the following lemma.

LEMMA 3.3. Let K be an imaginary quadratic number field and let O ⊂ K be the

order of index f in OK . Let p be a prime of O that is coprime to f . Then:

p is principal in O ⇐⇒ p splits completely in HO.

PROOF. Immediate from the discussion above. �

After these preparations, we can state the first main theorem of complex multipli-

cation.

THEOREM 3.4. Let O be an order in an imaginary quadratic field K and write

E = C/O. Then K(j(E)) = HO and the Galois action of an ideal class [a] ∈ Pic(O)

on j(E) is given by

j(E)[a,HO/K] = j(Ea).

PROOF. [37, Section 10.3]. �

This theorem is the first tool for computing the j-invariant of a curve E with endo-

morphism ring O = O∆. Let E/HO be an elliptic curve with endomorphism ring O.

Consider the polynomial

P∆ =
∏

j(E)∈Ell∆(C)

(X − j(E)) ∈ Q[X ],
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which is the minimal polynomial of j(E) over Q. The polynomial P∆ depends only

on ∆, and not on the choice of E. The polynomial P∆ is called the Hilbert class

polynomial for the order O. The following theorem tells us that P∆ has integer

coefficients.

THEOREM 3.5. Let E/C be an elliptic curve with End(E) ∼= O∆. Then j(E) is an

algebraic integer, i.e.,

P∆ ∈ Z[X ].

PROOF. There are at least three different proofs of this theorem. The complex

analytic proof proceeds via the same ‘modular polynomials’ that we will use in

chapter 5. The ‘good reduction’ proof of Serre and Tate uses local class field theory

and the ‘bad reduction’ proof of Serre is based on the observation that if j(E) would

not be integral at a prime p, the curve E would not have complex multiplication.

The first two proofs can be found in [57, Section 2.6] and the third proof can be

found in [57, Section 5.6]. �

For a prime p ∈ HN , write N = p + 1 − t and ∆ = t2 − 4p. For t 6= 0, the

Hilbert class polynomial P∆ splits into linear factors in Fp[X ]. Indeed, we can write

p = t+
√

∆
2 · t−

√
∆

2 ∈ O. This implies that the ideal (p) splits into two principal ideals

in O and lemma 3.3 gives us that (p) splits completely in the ring class field HO.

The roots of P∆ ∈ Fp[X ] are the j-invariants of the elliptic curves over Fp

with endomorphism ring O. Furthermore, by the Deuring lifting theorem, every

curve E/Fp with endomorphism ring O arises as the reduction of a curve A/HO
with endomorphism ring O. Hence, an elliptic curve E/Fp has endomorphism ring

O if and only if j(E) ∈ Fp is a zero of P∆ ∈ Fp[X ].

The theory developed so far can be used to give a proof of theorem 2.5 for

ordinary curves, i.e., that we have

#′{E : E elliptic curve over Fp with Tr(Fp) = t 6= 0}/∼=Fp
= H ′(t2 − 4p).

PROOF OF THEOREM 2.5. Assume t 6= 0, and write ∆ = t2 − 4p. The prime p splits

completely in HO∆
, and consequently also in HO′ for any overorder O′ ⊇ O∆. The

Hilbert class polynomials P∆′ for HO′ therefore split completely in Fp[X ]. The roots

of P∆′ ∈ Fp[X ] are the j-invariants of curves over Fp with endomorphism ring O′.
We get

#′{E : E elliptic curve over Fp with Tr(Fp) = t}/∼=Fp
≤ H ′(t2 − 4p).
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For the other inequality, let E/Fp be a curve with trace of Frobenius t. By the

Deuring lifting theorem it is the reduction of a curve A/HO′ with EndH
O′

(A) ∼=
EndFp

(E) for some overorder O′. This concludes the proof. �

Section 3 of this chapter gives an algorithm for computing the Hilbert class polyno-

mial P∆ based on complex analytic methods. A non-archimedean approach is given

in chapter 5. Assuming that we can compute P∆, we have the following algorithm

for constructing an elliptic curve of prescribed order N .

Algorithm. (CM algorithm) Input: an integerN > 6 and a prime p ∈ HN . Output:

an elliptic curve E/Fp with |E(Fp)| = N .

1. Compute the Hilbert class polynomial P∆ ∈ Z[X ] for ∆ = (p+ 1−N)2 − 4p.

2. Compute a root j ∈ Fp of P∆ ∈ Fp[X ].

3. Put a ← 27j/(4(1728− j)) and E : Y 2 = X3 + aX − a for j 6= 0, 1728. For

j = 0, put E : Y 2 = X3 + 1 and for j = 1728, put E : Y 2 = X3 +X .

4. Return a twist of E with N points.

THEOREM 3.6. The CM algorithm will return an elliptic curve over Fp with exactly

N points.

PROOF. Immediate from the discussion above. �

The main contribution in the run time comes from step 1, i.e., computing the Hilbert

class polynomial P∆. The run time for both the complex analytic and the non-

archimedean approach is O(|∆|1+o(1)), as we will see in section 3.3 and in chapter 5.

Since we have ∆ = O(N), this leads to the following run time.

Run time. The CM-algorithm has run time O(N 1+ε) for every ε > 0.

This run time is far worse than the run time for the probabilistic version of the

näıve algorithm from chapter 2. We can improve the algorithm by noting that it

suffices to compute the Hilbert class polynomial PD for D = disc(Q(
√

∆)). This

usually has little effect on the run time, since the squarefree part of an integer x is

typically of the same size as x itself. In our problem we have the freedom to choose

the finite field Fp however. In chapter 4 we explain how to pick a prime p such

that D = disc(Q(
√
t2 − 4p)) is of almost polynomial size in logN , rather than of

size O(N).
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3.3 Complex analytic methods

The classical way of computing P∆ for a discriminant ∆ < 0 proceeds via complex

analytic techniques. Let K be the imaginary quadratic field Q(
√

∆) and let HO be

the ring class field corresponding to the order O = O∆. We can compute P∆ as

P∆ =
∏

j(E)∈Ell∆(C)

(X − j(E)) ∈ Z[X ],

and in this section we explain how we can explicitly compute the finite set Ell∆(C).

Every complex elliptic curve is as a Riemann surface isomorphic to a torus

C/Λ for a lattice Λ ⊂ C. More precisely, we can embed C/Λ in P2(C) as a Weier-

straß curve

Y 2 = 4X3 − g2(Λ)X − g3(Λ),

with g2(Λ) = 60G4(Λ), g3(Λ) = 140G6(Λ), and Gi(Λ) is the i-th Eisenstein series

attached to Λ. A short computation yields that the j-invariant of the curve obtained

equals

j(Λ) = 1728
g2(Λ)3

g2(Λ)3 − 27g3(Λ)2
∈ C.

After possibly applying a homothety, we may assume 1 ∈ Λ and write Λ = Z + τZ

for some τ in the upper half plane H. We define j : H→ C by j(τ) = j(Z + τZ).

The group SL2(Z) acts on H via

z 7→ az + b

cz + d
for

(
a b
c d

)
∈ SL2(Z).

The equality of lattices Z + τZ = (aτ + b)Z + (cτ + d)Z yields that j is SL2(Z)-

invariant. In particular, it has a Fourier expansion. It is a classical result that the

Fourier expansion of j has integral coefficients. It starts with q−1 + 744 + 196884q,

where q = exp(2πiτ).

Viewing O as a lattice in C, the elliptic curve C/O has endomorphism ring O.

Furthermore, every ideal I ⊂ O is a lattice in C and the curve C/I has endomor-

phism ring O if I is an invertible O-ideal. This shows that we can compute the

Hilbert class polynomial P∆ as

P∆ =
∏

[a]∈Pic(O)

(X − j(a)) ∈ Z[X ],

where j is now the complex analytic j-function.
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We use the standard representation of ideals by binary quadratic forms. This

representation is carried out in detail in [10, Section 5.2]; we recall the basic state-

ments here. Let F+
∆ be the set of integral positive definite primitive binary quadratic

forms of discriminant ∆ < 0. We write [a, b, c] for the form ax2 + bxy + cy2 ∈ F+
∆ .

A matrix A =
(

p
r

q
s

)
∈ SL2(Z) acts on F+

∆ via f(x, y)A = f(px + qy, rx + sy). As

−1 ∈ SL2(Z) acts trivially, we get an action of PSL2(Z) on F+
∆ . We denote by F+

∆

the set of equivalence classes for F+
∆ under this PSL2(Z)-action. The map

ϕ : F+
∆ → I∆

[a, b, c] 7→ aZ + −b+
√

∆
2 Z

from F+
∆ to the set of fractional ideals I∆ induces a bijection

ϕ :F+
∆→Pic(O∆).

In order to use this isomorphism effectively, we agree on a standard represen-

tative for an equivalence class in F+
∆ . A positive definite quadratic form [a, b, c] is

reduced if |b| ≤ a ≤ c and moreover b ≥ 0 if one of the two inequalities is an equal-

ity. This condition is equivalent to saying that the imaginary quadratic number

τ = −b+
√

∆
2a associated to [a, b, c] lies in the standard fundamental domain

{
τ ∈ H | (Re(τ) ∈ [−1

2
,
1

2
) , |τ | > 1) or (|τ | = 1 and Re(τ) ∈ [−1

2
, 0]
}

for H under the action of PSL2(Z). Every class of positive definite quadratic forms

contains exactly one reduced form. We see that we can compute P∆ as

P∆ =
∏

[a,b,c]∈F+
∆

(
X − j(−b+

√
∆

2a
)
)
∈ Z[X ].

As we know that P∆ has integer coefficients, we only have to approximate

the j-values in the product with high enough accuracy. We give an estimate for

the required precision. For z = (−b +
√

∆)/2a we have |q| = | exp(2πiz)| =

exp(−π
√
|∆|/a). With a close analysis of the size of the Fourier coefficients for

the j-function, one can show [21, 38, 51] that we have |j(z)− 1/q| ≤ 2100 if z lies in

the fundamental domain. Using this estimate, we get the upper bound

k =
π
√
|∆|

log 10

∑

[a,b,c]∈F+
∆

1

a
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for the number of decimal digits of the constant term P∆(0) ∈ Z. The number of

decimal digits of the largest coefficient of P∆ is bounded by

log
(( h

bh/2c
)
· exp(k)

)
≤ 2h+ k,

where h = h(∆) is the degree of P∆. As in [1] or [53], we estimate

∑

[a,b,c]∈F+
∆

1

a
= O((log |∆|)2).

We conclude that we have the estimate O(
√
|∆|(log |∆|)2) for the required precision

in the computation of P∆.

In practice, we can compute P∆ for |∆| of size at most 1012 in a reasonable

amount of time. Often, the constant term of P∆ is the largest in size. Furthermore,

if the constant term is not the largest coefficient, the size of the largest coefficient

differs only by a small amount from the constant term. For discriminants down to

−1012 it is safe to perform the computation with k + 10 digits precision.

There are several ways to compute j(τ). One can for instance use the recursive

formulas given for the Fourier coefficients given in [42] or work with the Dedekind

η-function as in [3]. In [20] it is noted that it is asymptotically faster to use multi-

evaluation to compute all the j-values we want at once. We refer to that paper for

the details and give the more näıve algorithm here. This algorithm is much faster

in practice, i.e., for discriminants down to −1012.

Algorithm. (Complex analytic class polynomial) Input: a negative discriminant ∆.

Output: the Hilbert class polynomial P∆ ∈ Z[X ].

1. Make a list L of reduced quadratic forms of discriminant ∆.

2. Put P ← 1 and k ← bπ
√
|∆|

log 10

∑
[a,b,c]∈L

1
ac+ log

(
h
bh/2c

)
, with h = h(∆).

3. For every [a, b, c] ∈ L do the following:

Set P ← P · (X − j(−b+
√

∆
2a )), where the j-value is computed with k

digits accuracy.

4. Round the coefficients of P to the nearest integer and return P .

One can make a small modification by noting that the complex roots of P∆ come

in conjugate pairs. We can therefore save some evaluations of the j-function. This

is done for instance in [10, Section 7.6]. A rigorous run time analysis of this algo-

rithm is not so easy. This analysis has only been undertaken under the simplifying

assumption that rounding errors do not play a role in expanding the polynomial P

in step 3. The proof of the run time below is given in [20].
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Run time. Assume that the precision used in step 2 of the complex analytic

algorithm is high enough to neutralise possible rounding errors. Then the algorithm

has run time O(|∆|3/2+ε) for every ε > 0. With the multi-evaluation modification

from [20] the run time becomes O(|∆|1+ε) for every ε > 0.

REMARK. The run time for the multi-evaluation approach is in a certain sense best

possible. The polynomial P∆ has degree |Pic(O∆)|, which grows like
√
|∆| for |∆|

tending to infinity. Furthermore, the coefficients of P∆ are of size
√
|∆|. We see

that just writing down the polynomial P∆ already takes time at least O(|∆|).

3.4 Constructing supersingular elliptic curves

Constructing a supersingular elliptic curve over Fp, which will have p+ 1 points, is

much easier than constructing an ordinary curve of prescribed order. As supersin-

gular curves often are exceptions in the theory developed in the next chapters, this

section gives an algorithm to construct a supersingular elliptic curve. The following

theorem is fundamental.

THEOREM 3.7. Let E be a CM curve defined over a number field L with endomor-

phism ring EndL(E) ∼= O, where O is an order in an imaginary quadratic field K.

Let P|p be a prime of L where E has good reduction. Then the reduction E mod

P is supersingular if and only if p does not split in K.

PROOF. [37, Theorem 13.12] �

Let D be a fundamental discriminant such that p is inert in the imaginary quadratic

field K = Q(
√
D). Since (p) is a principal prime ideal of OK , lemma 3.3 tells us that

(p) splits completely in the Hilbert class field of K. We see that the Hilbert class

polynomial PD splits completely over Fp2 . Its roots are j-invariants of supersingular

elliptic curves. In fact [63], any supersingular j-invariant lives in Fp2 .

To ensure that PD also has a root in Fp, we demand that the class number

hK = deg(PD) be odd. We use genus theory [13, Section 6] to determine the parity

of the class number hK . Let p1, . . . , pn be the odd prime factors of D and define

L = K(
√
p∗1, . . . ,

√
p∗n) with p∗i = (−1)(pi−1)/2pi. The field L is called the genus field

of K. It is the largest unramified extension of K that is abelian over Q.

The Galois group of the extension L/K is isomorphic to the 2-Sylow subgroup

of Pic(OD). This means that the class number hK is odd if and only if we have an

equality L = K.
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We conclude:

hK is odd ⇐⇒K = Q(i) or K = Q(
√
−2) or

K = Q(
√−q) with q prime and congruent to 3 mod 4.

This observation leads to the following algorithm.

Algorithm. Input: a prime p > 3. Output: a supersingular curve over Fp.

1. If p ≡ 3 mod 4, return Y 2 = X3 −X .

2. Let q be the smallest prime congruent to 3 mod 4 with
(−q

p

)
= −1.

3. Compute P−q ∈ Z[X ].

4. Compute a root j ∈ Fp of P−q ∈ Fp[X ].

5. If q = 3, return Y 2 = X3 − 1. Else, put a ← 27j/(4(1728− j)) ∈ Fp and

return Y 2 = X3 + aX − a.

The correctness of this algorithm is clear from the discussion preceding it.

The main point in the run time analysis is step 2. We know that p is congruent to

1 mod 4, so we have
(−q

p

)
=
(

p
q

)
. We therefore want q to be inert in Q(

√
p) and

the condition that q should be congruent to 3 mod 4 translates into the condition

that q be inert in Q(i). The field L = Q(
√
p, i) is of degree 4 over Q and has Galois

group V4 = 〈σ〉× 〈τ〉, where σ and τ are the non-trivial elements of Gal(Q(
√
p)/Q),

Gal(Q(i)/Q) respectively. The prime q is inert in both Q(
√
p) and in Q(i) if and

only if the Frobenius of q equals στ ∈ V4.

Just as in chapter 2, there is a big difference between practice and proven

results regarding the smallest prime q with prescribed Frobenius v ∈ V4. The Cheb-

otarev density theorem tells us that the set of primes with prescribed Frobenius v

has density 1/4. The error estimates in the proof [35] are very weak, i.e., we can

only derive that the smallest prime that has Frobenius στ ∈ V4 is O(pα) for some

α > 0. If we assume GRH however, life improves dramatically. Under GRH, there

exists an effectively computable constant c such that there exists a prime q ∈ Z that

is inert in both Q(
√
p) and in Q(i) with

q ≤ c (log dL)2,

where dL = 24p2 is the discriminant of L/Q.

The degree of the class polynomial P−q equals the class number of Q(
√−q)

and grows like q1/2+o(1). Finding a root j ∈ Fp of P−q ∈ Fp[X ] in step 4 takes

time Õ(deg(P−q)(log p)2) = Õ((log p)3), cf. [24, Section 14.5]. We summarize the

analysis in the following theorem.
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THEOREM 3.8. There exists an algorithm which has as input a prime number p and

as output a supersingular elliptic curve over Fp. If GRH holds true, the run time of

the algorithm is Õ((log p)3).

Examples. For p = 1020 + 39, the elliptic curve given by

Y 2 = X3 −X

is supersingular as p is congruent to 3 mod 4. For p = 1020 +129, which is congruent

to 1 mod 12, the prime q = 7 is inert in both Q(
√
p) and Q(i). The Hilbert class

polynomial for q equals X + 3375 ∈ Z[X ], so an elliptic curve with j-invariant

−3375 ∈ Fp is supersingular. The smallest prime p > 10100 with p ≡ 1 mod 12 is

p = 10100 + 1293. In this case, the prime q = 11 is inert in both Q(
√
p) and Q(i).

An elliptic curve with j-invariant −32768 ∈ Fp is supersingular.
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An efficient algorithm

4.1 Finding a small discriminant

The complex multiplication algorithm of chapter 3 to construct an ordinary elliptic

curve E/Fp with N = p + 1 − t points has a run time which is dominated by the

time needed to construct the Hilbert class polynomial P∆, with ∆ = t2 − 4p < 0.

We can save some work by computing the class polynomial PD for the fundamental

discriminant D = disc(Q(
√

∆)) rather than that for ∆ itself. As p = ππ ∈ O∆

splits in the same way in the maximal order OD ⊃ O∆ as it does in O∆, ordinary

elliptic curves E/Fp with endomorphism ring End(E) = OD are just as good for

our purposes, and we may everywhere replace ∆ by D in the algorithm. If ∆ has

a large square factor, this can be a considerable improvement since the polynomial

PD is then much smaller than P∆.

In our problem we usually have many primes p ∈ HN to choose from, and

every prime p leads to a field discriminant D(p) = disc(Q(
√

∆)) with

∆ = ∆(p,N) = t2 − 4p = (p+ 1−N)2 − 4p. (4.1)

This is exactly the difference with the problem of constructing an elliptic curve with

N points over a prescribed prime field Fp that was mentioned in the introduction.

In the latter case we have no control over the discriminant ∆(p,N), which will

typically be of the same order of magnitude as N and without large square factors.

The resulting run time Õ(N) is then inferior to the Õ(N1/2) of the näıve probabilistic

method from chapter 2.

As explained in chapter 2, we cannot prove the existence of a prime p ∈ HN .

This means that we will have to rely on heuristics for the minimal value of D(p) for

p ranging over HN . The first thing that comes to mind is to choose p ∈ HN as close

as possible to one of the end points of HN . The trace t = p+1−N is then very close

to 2
√
p. By the prime number theorem, we expect that we can choose p for which
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|t| − 2
√
p is of size logN . This makes ∆ = (t− 2

√
p)(t+ 2

√
p) of size O(N1/2+o(1))

and reduces the run time to O(N1/2+o(1)), just as for the näıve probabilistic method.

More generally, one can examine which primes p at distance at most Nα from

the end points of HN give rise to values of ∆ with large square factors. Heuristically,

there are about Nα/ logN such primes, giving rise to discriminants of size Nα+1/2.

Among the discriminants of this size, those of the form ∆ = f 2D with |D| < Nβ

constitute a fraction of order of magnitude

P (α, β) = N−(α+1/2)
∑

|D|<Nβ squarefree

√
Nα+1/2

|D| ≈ N 1
2
(β−α)− 1

4 .

The number of discriminants ∆ = f2D with |D| < Nβ we expect to find from p’s

no further than Nα from the end points of HN is therefore

P (α, β) · Nα

logN
=

1

logN
·N 1

2
(α+β)− 1

4 ,

which tends to infinity with N exactly when we have α + β > 1/2. Rough as

this heuristic analysis may be, it ‘explains’ why in the example N = 1030 given

in [7, Section 6] to illustrate the non-archimedean approach to computing class

polynomials, examining the primes p at distance < 106 from the end points of HN

leads to a fundamental discriminant D ≈ −108. As examining the primes in an

interval of length Nα to achieve |D| < Nβ gives rise to a run time Õ(Nmax{α,β}),

we can achieve a heuristic run time O(N
1
4
+ε) by taking α = β = 1

4 + ε. Although

this is still exponential, this method of selecting p already enables us to deal with

values of N the näıve method cannot handle.

The extreme case (α, β) = (ε, 1/2) corresponds to taking p as close as possible

to the end points of HN , a case we already discussed. The other extreme (α, β) =

(1/2, ε) indicates that it should be possible to find D of subexponential size in terms

of our input length logN . This suggests that a fruitful approach to constructing

a curve of prescribed order N by the complex multiplication method consists in

efficiently minimizing the fundamental discriminant D involved.

It turns out that we can actually determine the ‘minimal’ imaginary quadratic

fundamental discriminant D that can be used to construct an elliptic curve of order

N in a relatively straightforward way. It uses the ‘symmetry’ between the orderN of

the point group E(Fp) and the order p of Fp itself, which are norms of the quadratic

integers 1−π = 1−Fp and π = Fp, respectively. This symmetry is already familiar to

us from section 2.1. In the case of the discriminant ∆ = (π−π)2 = ((1−π)−(1−π))2
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in (4.1), it takes the form

∆(p,N) = (p+ 1−N)2 − 4p = (N + 1− p)2 − 4N.

We now fix N and try to write ∆ = ∆(p) as

∆(p) = (N + 1− p)2 − 4N = f2D (4.2)

for ‘small’ D < 0. This comes down to solving the positive definite equation

x2 −Df2 = 4N (4.3)

in integers x and f in such a way that the number p = N + 1 − x is prime. This

leads us to the following problem.

PROBLEM 4.1. Given an integer N ≥ 1, find the smallest squarefree integer d ≥ 1

together with an algebraic integer α ∈ K = Q(
√
−d) such that

(i) NK/Q(α) = N ;

(ii) p = NK/Q(1− α) = N + 1− TrK/Q(α) is prime.

The prime p occurring in condition (ii) has the property that there exists an elliptic

curve E/Fp having N points and endomorphism ring End(E) isomorphic to the ring

of integers OK of K = Q(
√
−d). Once we find the solution (α, d) to problem 4.1, we

can use it to construct a curve with N points: take p = NK/Q(1−α) and construct

an elliptic curve over Fp with endomorphism ring OK for which 1− α ∈ OK is the

Frobenius, using the class polynomial for the order OK . This elliptic curve will have

N = NK/Q(α) points, as desired.

We cannot prove that a solution (α0, d0) to problem 4.1 exists, let alone that it

can be found in time polynomial in logN . In the next section we will give a heuristic

analysis showing that it is reasonable to expect that a solution d0 to problem 4.1 is

of size O((logN)2). Moreover, finding all algebraic integers α ∈ K = Q(
√
−d) of

norm N for all squarefree d up to d0 can be done efficiently using the 1908 algorithm

of Cornacchia in the case that we have the prime factorization of N at our disposal.

Together this will lead to the following theorem.
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THEOREM 4.2. There exists an algorithm that, on input of an integer N ≥ 1

together with its factorization, returns a prime number p and an elliptic curve E/Fp

with #E(Fp) = N whenever such a pair (E, p) exists. Under standard heuristic

assumptions, a pair (E, p) exists for allN , and the expected run time of the algorithm

is polynomial in 2ω(N) logN . Here ω(N) denotes the number of distinct prime factors

of N .

Although the run time in theorem 4.2 is not polynomial in the usual sense, it is

polynomial in logN outside a zero density subset of Z≥1 consisting of very smooth

input values N . Note that such N are not used in cryptographic applications, as

the discrete logarithm problem in groups of smooth order tends to be easy.

COROLLARY 4.3. If the input values N in theorem 4.2 are restricted to be prime

numbers or, more generally, to be in the density 1 subset of Z≥1 consisting of those

N having ω(N) < 2 log logN , then the expected run time is polynomial in logN .

The factorization of N is used by the algorithm in theorem 4.2 to reduce square root

extractions of small integers modulo N to square root extractions modulo the prime

factors of N . It is here that the approximate number 2ω(N) of such roots enters the

run time of the algorithm.

The precise exponents in the run time depend on one’s willingness to accept

fast multiplication techniques and probabilistic subroutines in the algorithm. For

instance, the square root extractions of small integers modulo the prime factors of

N can be done efficiently by probabilistic means or, much less efficiently, but still

in time polynomial in 2ω(N) logN , by a deterministic algorithm [51]. Similarly, one

may require for the prime number p returned by the algorithm that its primality is

proved by a deterministic AKS-type polynomial time algorithm, or employ a faster

probabilistic algorithm to do so. If we insist on guaranteed correct output, i.e.,

a proven prime p as the characteristic of our curve E, but allow fast multiplica-

tion and probabilistic subroutines of the kind mentioned above, the heuristic run

time of our algorithm is O(2ω(N)(logN)4+ε) for every ε > 0 (Corollary 4.7.). In

the cryptographically relevant case where N is prime, this becomes O((logN)4+ε)

(Corollary 4.5). Sections 4.2–4.4 are taken almost verbatim from [6].
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4.2 An algorithm to solve problem 4.1

As indicated in section 2.1, it is currently not possible to prove rigorously that any

pair (α, d) meeting the conditions of problem 4.1 exists at all, let alone that there is

a pair with small d that can be found efficiently. We will however argue in the next

section why it is reasonable to expect that the smallest integer d solving problem 4.1

exists for all N ≥ 1, and why this d is even rather small in terms of N , of size at

most Õ((logN)2 + 2ω(N)). Given this expectation, it makes sense to solve problem

4.1 in a straightforward way using an algorithm that, on input of a factored number

N , tries for increasing squarefree numbers d ∈ Z≥1 to

– find the integral ideals in K = Q(
√
−d) of norm N ;

– determine the generators of those ideals that are principal;

– test for each generator α found whether NK/Q(1− α) is prime.

As soon as a prime value p = NK/Q(1 − α) is encountered for some d, this is the

minimal d we are after, and (α, d) is a solution to problem 4.1.

Before we describe an actual algorithm, we look at the three individual tasks

to be performed, and the run time of the various subroutines involved. These run

times depend on the time O(L1+µ) needed to multiply two L-bit integers. We have

µ = 1 for ordinary multiplication, and µ = ε > 0 for any fast multiplication method.

We will give our run times using µ = ε > 0 for a fast multiplication method.

Task 1: Finding the integral ideals in Q(
√
−d) of norm N .

Write the ring of integers of Q(
√
−d) as Z[ω], with ω = ωd a zero of

f = fω
Q =

{
X2 −X + 1+d

4 if −d ≡ 1 mod 4;
X2 + d otherwise.

(4.4)

Then every ideal of norm N in Z[ω] can be uniquely written as kI , with k a positive

integer for which k2 divides N , and I a primitive ideal of Z[ω] of norm N0 = N/k2.

This last condition means that Z[ω]/I is, as a group, cyclic of orderN0, and it implies

that we have I = (N0, ω − r) for some integer r ∈ Z satisfying f(r) ≡ 0 mod N0.

Finding all ideals of norm N therefore amounts to finding, for each square divisor

k2|N , the roots of f modulo N0 = N/k2. It is here that we require the factorization

of N , not only because this implicitly encodes a list of square divisors k2|N , but also

because it enables us to find the roots of f modulo N0. Indeed, finding these roots

is done by finding the roots of f modulo the prime powers pordp(N0) dividing N0,

and combining these in all possible ways, using the Chinese remainder theorem, to

obtain the roots modulo N0. Note that f has no roots modulo N0 if N0 is divisible
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by a prime p that is inert in Z[ω], or by the square p2 of a prime p that ramifies

in Z[ω].

As finding a root of f modulo an integer essentially amounts to extracting a

square root of −d modulo that integer, we need to extract square roots of −d modulo

the prime powers dividing N0. This easily reduces to extracting square roots of −d
modulo each of the primes dividing N0. This can be done efficiently by employing a

variant of the probabilistic Cantor-Zassenhaus algorithm [24, Section 14.5], and leads

to an expected run time O((log p)2+ε) to extract square roots modulo a prime p. For

any selection of square roots (
√
−d mod pordp(N0)), the Chinese remainder theorem

lifts these to a square root modulo N0 in time O(ω(N)(logN)2).

Task 2: Finding generators for principal ideals of norm N .

For each ideal kI = k ·(N0, ω−r) ⊂ Z[ω] of normN found, we use the 1908 algorithm

of Cornacchia described in [50, pp. 229–232] or [8] to find a generator of I , if it exists.

This algorithm performs a number of steps of the Euclidean algorithm to the basis

elements N0 and ω − r of the Z-lattice I = (N0, ω − r) ⊂ Z[ω] in order to decide

whether I is a principal ideal. If it is, a generator α = kα0 of kI of norm N is found.

For d 6= 1, 3, the unique other generator of I is −α. For the special values d = 1 and

d = 3 there are 4 and 6 generators for each principal ideal I , respectively, obtained by

multiplying α by 4th and 6th roots of unity. The run time of Cornacchia’s algorithm

on input k · (N0, ω − r) is of order O((logN)2+ε).

Task 3: Testing which algebraic integers α of norm N lead to prime elements 1−α.

For each of the elements α of norm N found in the previous step 2, we need to test

whether the norm N + 1 − Tr(α) of 1 − α is a prime number. As most α’s will

have norms that are not prime, a cheap compositeness test such as the Miller-Rabin

test, which takes time Õ((logN)2), can be used to discard most α’s. Once we find

an α for which N + 1 − Tr(α) is a probable prime, we do a true primality test to

prove primality of p = N + 1 − Tr(α). This can be done deterministically in time

polynomial in logN by the 2002 result of Agrawal, Kayal and Saxena [2]. Recent

speed-ups of the test [41] take time O((logN)6+ε), whereas probabilistic versions [5]

have expected run time O((logN)4+ε).

Using the various subroutines specified in the tasks above, we formulate an algorithm

to solve problem 4.1. A slightly more practical algorithm that we use to actually

find elliptic curves with a given number of points does not exactly follow the outline

below; it is discussed in section 4.4. The version in this section is phrased to facilitate

the heuristic run time estimate in section 4.3.
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Algorithm.

Input: a factored integer N =
∏t

i=1 p
ei

i . Output: a solution (d, α) to problem 4.1.

1. Put d← 1.

2. If d is not squarefree, put d← d+ 1 and go to step 2. Otherwise, define ω = ωd

and f = fω
Q as in (4.4).

3. Determine the splitting behavior in Z[ω] of all prime divisors of N .

3a. Put k1 ← 1. For every prime divisor pi of N that is inert in Z[ω], put

k1 ← k1p
bei/2c
i

in case ei is even. In case ei is odd, put d← d+ 1 and go to step 2.

3b. For every prime divisor pi of N that ramifies in Z[ω], put

k1 ← k1p
bei/2c
i .

4. Put N1 ← N/k2
1 . For every root (r mod N1) of f and for every square divisor

k2
2 | N1 do the following.

4a. Put k ← k1k2 and N0 ← N/k2 = N1/k
2
2 . Use Cornacchia to find a generator

of (N0, ω − r) ⊂ Z[ω], in case it exists.

4b. If a generator is found, test for all (2, 4 or 6) generators α0 whether the

norm N + 1−Tr(kα0) of kα0 ∈ Z[ω] is prime. If it is, return d and α = kα0

and halt.

5. Put d← d+ 1 and go to step 2.

The determination of the splitting behavior of the primes pi|N in Z[ω] in step 3

amounts to computing the Kronecker symbol
(

D
pi

)
for D = disc(Q(

√
−d)). For p > 2

this is simply the Legendre symbol, which is easily evaluated by combining quadratic

reciprocity with the Euclidean algorithm. The factor k1 computed in this step is the

minimal ‘imprimitivity factor’ dividing all ideals of norm N in Z[ω]. It reflects the

fact that primitive ideals are not divisible by inert primes, or by squares of ramified

primes.

The computation of the roots of f modulo N1 in step 4 is done by computing

the roots of f modulo the various prime powers dividing N1, and combining these

in all possible ways using the Chinese remainder theorem. For the ramified primes

pi dividing N1, which occur with exponent 1, there is a unique (double) root of f

modulo pi. For splitting primes pi, the polynomial f has exactly 2 different roots

modulo pi, and these lift uniquely to Zpi
. Finding the roots of f modulo these pi is

non-trivial as it involves the extraction of a square root
√
−d modulo pi. Refining

these roots to roots modulo pei

i is much faster, and an easy application of Hensel’s
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lemma. The number of distinct roots modulo N1 is 2s ≤ 2ω(N), with s the number

of pi|N that split in Z[ω].

Step 4 computes the possible generators of the primitive parts of ideals of normN

in Z[ω]. It is not completely optimized as it does not take into account that different

roots of f modulo N1 may coincide modulo N0, and give rise to the same ideal

(N0, ω−r) in step 4a. It also unnecessarily treats the complex conjugate (N0, ω−r′)
of every ideal (N0, ω − r), whose generators (if any) are of course the complex

conjugates of the generators of (N0, ω − r).

4.3 Heuristic run time analysis

In this section, we present a heuristic run time analysis of the algorithm in the

previous section, and numerical data supporting this analysis.

Assumption 1. For the elements α = kα0 ∈ Z[ω] of norm N that we find in step 4a of

our algorithm, the norm of 1− α will be an element of the Hasse interval HN that,

apart from being congruent to 1 mod k, does not appear to have any predictable

primality properties. Based on the prime number theorem, a reasonable assumption

is therefore that for varying d, r and N0, the norms found in step 4b will be prime

with ‘probability’ at least 1/ logN . In other words, the number of times we expect to

execute step 4b of our algorithm before we find a prime value is of order of magnitude

logN .

Assumption 2. The input for step 4b is provided by step 4a, which finds the gen-

erators of those ideals of norm N in Z[ω] that are principal. The likelihood for a

‘random’ ideal in Z[ω] to be principal is 1/hd, with hd the class number of the ring

of integers Z[ω] ⊂ Q(
√
−d). As we have no indication that the primitive ideals of

norm N0 arising in step 4a behave differently from random ideals in Z[ω], it seems

reasonable that they will be principal with ‘probability’ around 1/hd.

The class number hd behaves somewhat irregularly as a function of d, but its growth

rate d
1
2
+o(1) was already found by Siegel. In order to bound the number of times

we execute the steps 4a and 4b, we need to bound the integers d we encounter in

step 2, i.e., to find an upper bound BN for the minimal integer d that occurs in a

solution to problem 4.1. Clearly, such an upper bound will be of heuristical nature,

based on the two ‘randomness assumptions’ above. As our algorithm consists of a

loop over d = 1, 2, 3, . . ., and d has to be factored in step 2 to find if it is squarefree,

the value of BN is of great importance in estimating the run time, and the success

of our method depends on BN being ‘small’ as a function of N .
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Elliptic curves of prime order. In the case our input number N is prime, our

algorithm is similar to the first step of the elliptic curve primality proving algorithm

ECPP. On input N , this algorithm looks for an imaginary quadratic field K of small

discriminant containing an element α of norm N with the property that NK/Q(1−
α) = N + 1−TrK/Q(α) is twice a probable prime number N ′. If α ∈ K is found, N

becomes the order of the finite field F and 2N ′ the number of points of an elliptic

curve over F. As #F and #E(F) occur symmetrically in all considerations, this

problem is almost identical to our problem 4.1. In fact, since finding a prime around

a large number N is heuristically just as difficult as finding twice a prime around N ,

the heuristic run time for our algorithm on prime input N is identical to the heuristic

run time for the first step of ECPP on input N . In accordance with the results in

[45, Section 3], we obtain the following.

THEOREM 4.4. Let N be a prime number. Under the heuristic assumptions 1 and 2,

the integer d solving problem 4.1 is of size Õ((logN)2), and our algorithm can be

expected to find it in time O((logN)4+ε).

COROLLARY 4.5. Under the heuristic assumptions 1 and 2, an elliptic curve with

prime order N can be constructed in time O((logN)4+ε).

PROOF OF 4.5. We first use our algorithm to find d, α and p = N − 1 + Tr(α)

solving problem 4.1 for N ; the time O((logN)4+ε) needed for this dominates the

steps that follow. We then construct the class polynomial PD for D = disc(Q(
√
−d))

in time Õ(d) = Õ((logN)2). As PD has degree hd ≈
√
d, finding a root j of Pd in

Fp takes time Õ(deg(Pd)(log p)2) = Õ((logN)3), cf. [24, Section 14.5]. An elliptic

curve E with j-invariant j and its quadratic twist E ′ will have N = p + 1 − Tr(α)

or p + 1 + Tr(α) points. Matching the group order with the curve can be done

efficiently by determining which of the two quantities annihilates random points on

the curve. We know that only one of them does for either E or E ′ for all p > 229

by [50, Theorem 3.2]. �

PROOF OF 4.4. For prime input N , our algorithm is rather simple. For increasing

values of d, it singles out those d for which N is not inert in Z[ωd] in step 3; in

step 4, it computes the primes over N in Z[ωd] and determines whether these are

principal with a generator α for which 1− α is a prime element.

The ring Z[ωd] contains elements α of norm N if and only if N splits into

principal primes of norm N . For primes N coprime to 2d, this means that N has to

split completely in the Hilbert class field Hd of Q(
√
−d). Our assumption 2, which

states that primitive ideals of norm N should be principal in Z[ω] with ‘probability’
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1/hd, now reminds us of the Chebotarev density theorem, which tells us that one

out of every 2hd = [Hd : Q] primes splits completely in Hd. For d > 3, it leads us

to expect with ‘probability’ 1/(2hd) that there are (up to conjugation) exactly two

integral elements α and−α of normN . With complementary probability 1−(2hd)
−1,

there are no elements of norm N . Thus, a value d can be expected to yield an ‘on

average’ number of 1/hd elements of norm N .

The average statement that the number of algebraic integers α ∈ Q(
√
−d) of

norm N is asymptotically a fraction 1/hd of the pairs (d,N) tried is implied by

Chebotarev’s theorem in case we fix d and let the prime N vary. We are however in

the case where N is fixed and d varies. This is certainly different, but for varying d

up to a bound B that is small with respect to N , it is assumption 2 that we will find

approximately
∑

d<B 1/hd elements of fixed norm N . This is reasonable, provided

that the fields Hd are ‘close’ to being linearly independent over Q.

It is not exactly true that the Hilbert class fields Hd for the squarefree integers

d < B we encounter form a linearly disjoint family of number fields: the genus fields

Gd ⊂ Hd have many non-trivial intersections. However, in this family of fields,

which has about (6/π2)B elements, there is a subfamily of fields Hd coming from

the prime numbers d ≡ 3 mod 4 that is linearly disjoint over Q. This follows from

the fact that for these primes d, the field Hd is ramified only at d, so every field Hd is

linearly disjoint from the compositum of the other fields Hd in the subfamily. As the

given subfamily has asymptotically B/(2 logB) elements, we can treat the family

of fields Hd with d < B as being linearly independent at the cost of allowing for

lower order (logarithmic) factors in our estimates. We can estimate the asymptotic

size of the sum
∑

d<B 1/hd for squarefree d < B to be a positive constant times∑
0<d<B

1√
d
≈
∫ B

0
dt√

t
= 2
√
B.

We find that for B tending to infinity, assumption 2 implies that the number

of elements of prime norm N coming from d < B is bounded from below by some

universal constant times
√
B/ logB. By assumption 1, we expect to need about

logN elements of norm N in step 5b. Thus, for prime values N tending to infinity,

the size BN of the minimal d solving problem 4.1 can be expected to be of size

Õ((logN)2). Note that BN is small with respect to N , as required in our heuristical

argument.

For the run time of the algorithm, we obtain O((logN)4+ε) exactly as in [45].

The main term in the run time comes from computing Õ((logN)2) values of
√
−d

modulo N , which each take time O((logN)2+ε), and from proving (as in [5]) that

the output is correct, i.e., that we have found α of norm N for which N + 1−Tr(α)

is indeed prime. �
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Numerical support. The table below shows the number of solutions x, y ∈ Z≥1 to

the equation x2 + dy2 = 4N for d ranging over the squarefree integers d ∈ [1, B] for

various B. For N we took the 5 primes following 10100 and 10200. Note that the

spacing of primes around 10100 and 10200 is in accordance with assumption 1.

↓ N B → 1000 4000 16000 64000

p1 = 10100 + 267 30 57 125 232
p2 = 10100 + 949 41 87 161 304
p3 = 10100 + 1243 22 51 93 173
p4 = 10100 + 1293 39 72 145 316
p5 = 10100 + 1983 29 57 123 245
q1 = 10200 + 357 46 91 190 354
q2 = 10200 + 627 24 51 98 210
q3 = 10200 + 799 24 47 90 184
q4 = 10200 + 1849 47 81 170 376
q5 = 10200 + 2569 73 140 275 532

We see that the growth rate is indeed roughly proportional to cN

√
B, for some

constant cN : the numbers double if we quadruple B.

The data show that the size of N , when large with respect to B, is irrelevant:

only the class of the primes over N in the class group of Z[ω] is important, not the

size of N .

Figure 1 below shows the number of solutions for p2 and p3. Inspecting the data,

we see that the growth rate is indeed close to
√
B. The fluctuation in the graphs

is caused by the somewhat irregular behaviour of hd. On a logarithmic scale, the

graphs do look like straight lines with slope 1/2, see figure 2.
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Figure 1 Figure 2

There are clear differences in the constants cN for variousN . These can be explained

by looking at the contributions coming from composite d, which we could afford to

neglect in our analysis, but which play an important role in practical situations. For
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solvability of (4.3), it is clear that N has to be a square modulo all primes dividing d.

For even d, we also have the condition
(
N
2

)
= 1. If we have

(
N
p

)
= 1 for many small

primes p, there will most likely be more composite d yielding solutions to (4.3). The

most striking difference in the table occurs for p3 and q5. Looking at the Kronecker

symbols
(
q5

p

)
for the first eight primes p ≤ 20, we only have

(
q5

p

)
= −1 for p = 3, 11.

For p3 this occurs for p = 2, 3, 5, 13, 17. This explains why q5 ‘outperforms’ p3. The

differences in the constants cN disappear if we only consider primes d ≡ 3 mod 4 in

our table. For p3 we get 53 solutions up to B = 64000 in this case and for q5 we get

50 solutions.

Whereas the number of generators of normN found in step 5a for d < B increases

regularly, and is roughly proportional to
√
B, assumption 1 tells us that the number

of times we have to test for primality in step 5b before we hit a prime number is logN

on average. As a consequence, we expect that the minimal d = d(N) solving problem

4.1 is of size O((logN)2+ε), but not that d(N) increases very regularly with N for

prime values N . For instance, the primes p1 and p5 above have rather similar curves

exhibiting the number of solutions found in step 5a, but the corresponding minimal

discriminants 643 and 303267 are quite far apart: they are the smallest and largest

values found for the pi. However, the average value of d for the first 100 primes larger

than 10100 and the first 100 primes larger than 10200 are 82170 ≈ (log(10100))2.08

and 396030 ≈ (log(10200))2.10, respectively. Their quotient 4.8 is not too far from

the factor 4 we expect.

Elliptic curves of arbitrary order. The assumptions 1 and 2 at the beginning

of the section also provide a heuristic run time analysis for arbitrary input N .

Assume first that N is squarefree, say N =
∏ω(N)

i=1 pi with pi prime. In step 3a,

all d are discarded for which one of the primes pi is inert in Z[ωd], so we will only

be working in step 4 with those d for which none of the ω(N) Kronecker symbols(
D
pi

)
equals −1. This can be a set of integers of density as small as 2−ω(N) inside the

set of all squarefree integers, and in case N is in the zero-density subset of integers

satisfying the equivalent inequalities

2ω(N) > (logN)2 ⇐⇒ ω(N) >
2

log 2
log logN

.
= 2.88539 log logN

it is clear that we can no longer expect the integer d solving problem 4.1 to be of

size at most (logN)2+ε.

Despite the scarcity of suitable d for large values of ω(N), it is still the case that

we expect the number of elements of norm N coming from d < B to grow at least

as fast as some universal constant times
√
B/ logB if B tends to infinity. Indeed,
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looking as before at the prime numbers d ≡ 3 mod 4 (not dividing N) up to B, we

see that there are ideals of norm N only for a fraction 2−ω(N) of them. However, for

each d meeting the ω(N) quadratic conditions, the number of ideals I of norm N

equals 2ω(N): we can take I =
∏ω(N)

i=1 pi, with pi one of the two primes dividing pi

in Z[ωd]. This means that the growth with B of the number of ideals of norm N

coming from d < B is independent of the value of ω(N): with increasing ω(N) they

occur for fewer d, but the decrease in contributing d is exactly compensated by the

number of ideals provided by such d. Our expected number of elements of norm N

coming from d < B is therefore unchanged with respect to the case of primes N

discussed before.

The problem with the asymptotic growth
√
B/ logB of elements of norm N

coming from a thin subset of d < B is that B may have to be large to observe

this growth rate: clearly the expected number 2−ω(N)B of contributing d < B

should not be too small. As we want to take B ≈ (logN)2, we can only use our

previous estimate for the expected size of the integer d solving problem 4.1 in the case

2ω(N) � (logN)2. In the ‘opposite’ case 2ω(N) � (logN)2, finding a single quadratic

ring Z[ωd] in which all primes pi|N split completely is what the algorithm needs to

achieve: there will be 2ω(N) ideals of norm N in this ring, of which assumption 2

tells us we can expect 2ω(N)/hd ≈ 2ω(N)/
√
d to be principal. As the smallest d

satisfying the ω(N) quadratic conditions imposed by the pi is expected to be of

order of magnitude 2ω(N), we will find 2ω(N)/2 � logN elements α of norm N in

Z[ωd]. By assumption 1 this will lead to a prime element 1− α.

THEOREM 4.6. Under the heuristic assumptions 1 and 2, the integer d solving

problem 4.1 is of size Õ((logN)2 + 2ω(N)), and our algorithm can be expected to

find it in time O(2ω(N)(logN)4+ε).

COROLLARY 4.7. Under the heuristic assumptions 1 and 2, an elliptic curve of

prescribed order N can be constructed in time O(2ω(N)(logN)4+ε).

PROOF OF 4.7. Analogous to the proof of 4.5. �

PROOF OF 4.6. We saw that for squarefree N , the size of the integer d solving prob-

lem 4.1 is of size Õ((logN)2) in case 2ω(N) is of smaller magnitude. If it is bigger,

the term 2ω(N) becomes dominant and determines the expected size Õ(2ω(N)) of d.

If N is not squarefree, the algorithm has an increased number of possibilities to

find ideals and elements of norm N for each value of d. Primes occurring to even

exponents are no longer an obstruction if they are inert in Z[ωd]: they get absorbed
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in k1 in step 3 and no longer occur in N1 in step 4. Splitting primes occurring

to higher exponents lead to square divisors k2
2 |N1 in step 4, and to various ideals

(N0, ω − r) that can be tested for principality in step 4a. The extra ways to find

elements of norm N is an advantage as it will lead to a smaller bound BN for the

minimal d solving problem 4.1. In particular, BN will be of size Õ((logN)2 +2ω(N))

for all N .

In order to estimate the run time of the algorithm, we observe that by assump-

tion 1, step 4b will be executed about logN times until a probable prime norm is

found, and a true primality proof taking expected time O((logN)4+ε) is needed.

This is the dominant term in the time spent on step 4b. The number of times Cor-

nacchia’s algorithm is executed in step 4a to yield the logN generators going into

step 4b is by assumption 2 no more than O(
√
BN logBN logN), as the class numbers

hd for d < BN are no bigger than
√
BN logBN . As Cornacchia’s algorithm takes

time O((logN)2+ε), we expect to spend time O(
√
BN logBN (logN)3+ε) in step 4a.

In order to find the roots (r mod N1) of f in step 4, we first extract the square

roots
√
−d modulo each of the primes pi that split in Z[ωd]. This takes time at most

O(ω(N)(logN)2+ε). For each choice of square roots, there is a root (r mod N1) of f

that can be found using the Chinese remainder theorem, in time ω(N)(logN)2. Each

time we apply the Chinese remainder theorem, we use the root (r mod N1) obtained

in Cornacchia’s algorithm in step 4a. The number of times we apply the Chinese re-

mainder theorem is therefore bounded by the number of times O(
√
BN logBN logN)

we apply Cornacchia’s algorithm. We find that the total time spent on finding roots

(r mod N1) is no more than O(
√
BN logBN ω(N)(logN)3). Taking all parts of step 4

together, the total time spent in this step becomes O(
√
BN logBN ω(N)(logN)3+ε).

This is O((logN)4+ε) in case 2ω(N) � (logN)2, and O(2ω(N)/2(ω(N))2(logN)4+ε)

in general.

Outside step 4, no substantial computing is done, only some administration for

the relatively small integer d, which takes values up to BN . In cases where BN is

of order of magnitude 2ω(N) � (logN)2, doing this administration is not negligible

because of the large number of values taken on by d. Taking this into account, we

find that the heuristic run time is bounded in all cases by O(2ω(N)(logN)4+ε). �

Numerical support. Figure 3 below shows how the number of solutions x, y ∈ Z≥1

to the equation x2 + dy2 = 4N for d ranging over all squarefree integers d ∈ [1, B]

varies with B for different number ω(N) of prime factors of N . The graphs are

given for N = N1, N2, N3, N10, where Nk is the product of the first k primes

larger than 1010. We see that the graphs for N1, N2 and N3 behave quite simi-
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larly. This is what we expected if the number of solutions is independent of ω(N).

The graph for N10 appears to be quite different from the others, and this is because

2ω(N10) = 210 = 1024 is here of the same order of magnitude as the values of B in

the graph. There are here fewer d for which we have a solution to x2 + dy2 = 4N10,

but if we do have a solution, we immediately get many. For instance, the first

‘jump’ in the graph occurs for the prime value d = 1949 and we get 28 solutions for

this d. This is in nice accordance with the heuristics, which tell us to expect the

first solutions to occur for d ≈ 210 = 1024, and to be about 25 = 32 in number.

N10
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The irregularity of the graph for N10 disappears if we look at values of B that are

large in comparison to 2ω(N10). Figure 4 shows the graph for N10 for B up to 107.

It is now similar in nature to that of N1, and exhibits the familiar
√
B-profile.

The graph in figure 5 below illustrates the dependence on the number of square

divisors of N . It shows the number of solutions for N1, 32 · N1, 32 · 52 · N1 and

32 · 52 · 72 ·N1. If N has square divisors, we potentially test the principality of more

ideals in step 4 of our algorithm, so we expect to obtain more solutions. Replacing

N1 for example by 32 ·N1, we expect to get on average a double amount of solutions

for d ≡ 1 mod 3. The gain is a constant factor > 1 that increases with the number

of square divisors of N .
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4.4 Examples and practical considerations

The description of the algorithm in section 4.2 is intended to facilitate the run time

estimate in section 4.3. It does not address practical issues that are important in

computing large examples. In this section, we explain how we find curves of large

order N , where N is either prime or equal to a power of 10.

Elliptic curves of large prime order. From the description of the algorithm

we gave in the previous section, and more in particular its relation to ECPP, it is

clear that one should be able to construct a curve having a large prime number N of

points in all cases where ECPP, as described in [45], can prove primality of a number

of the same size. To do so, it makes sense to apply an idea attributed to J. Shallit

in [45] to speed up the computation. This idea starts from the observation that for

large prime numbers N , the algorithm spends a lot of time evaluating (
√
−d mod N)

for all squarefree d up to BN ≈ (logN)2 having
(−d

N

)
= 1. We noticed already in

the previous section that if the equation

x2 + dy2 = 4N

admits integral solutions, then N is a square modulo all primes dividing the dis-

criminant D = disc(Q(
√
−d)). It reflects the fact that if N splits completely in the

Hilbert class field Hd of K = Q(
√
−d), then it certainly splits completely in the

genus field Gd ⊂ Hd of K. As Gd is obtained by adjoining to K the square roots

of p∗ = (−1)(p−1)/2p for all odd prime divisors p|d, we have
(
p∗

N

)
=
(
N
p

)
= 1 in this

case.

Once we know that those d providing solutions are essentially products of primes

having the right quadratic character with respect to N , the idea suggests itself to

look at those d only that are constructed as products of such primes. Creating d

from a ‘basis’ of primes p with
(

p∗

N

)
= 1 allows us to compute

√
p∗ mod N for such

p, and store the values in a list. For p = 2, one uses the square roots of −1, 2

and −2 that can be extracted modulo N . For each d constructed from our basis

of primes,
√
−d mod N can be obtained by multiplying the square roots of primes

modulo N we stored. Considering only products of two primes from our basis allows

us to reduce the number of square root extractions modulo N from O((logN)2) to

O(logN), at the expense of extra multiplications modulo N and an increased storage

requirement. In practice, we consider d with at most 3 prime divisors. One thing

we lose in this approach is the guarantee that we really find the smallest solution d

to problem 4.1.
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EXAMPLE. Take N = nextprime(102004) = 102004 + 4863, the exponent 2004 being

the year we found our method. For thisN , we have log(N)
.
= 4614.3 and (log(N))2

.
=

2.13 ·107. There are 324 primes p less than 5000 with
(

p∗

N

)
= 1, and we compute and

store
√

2 mod N and all square roots
√
p∗ mod N . We now have

(
325
3

)
= 5668650

squarefree values of d at our disposal having up to 3 prime divisors from our base,

and we know N to split completely in all genus fields Gd.

The 104415-th value of d we tried was d = 59 · 523 · 2579 = 79580203. For this

value of d, we found a solution

x = 1885782 . . .693127

to x2 + dy2 = 4N for which

p = N + 1− x = 999999 . . .99999811421 . . .8311737

is a 2004-digit prime. In each case, the dots represent 990 digits that we omitted.

The class polynomial P−d has degree 1536 and coefficients up to 41984 digits.

Modulo p, the polynomial P−d splits completely. Taking j to be the smallest positive

integer satisfying P−d(j) ≡ 0 mod p we put a = 27j
4(1728−j) ∈ Fp. Then the curve given

by

Ea : Y 2 = X3 + aX − a

has CM by O−d. As the point (1, 1) ∈ Ea(Fp) does not have order N , the quadratic

twist E′a : Y 2 = X3 +9aX−27a of Ea has N points. This can be verified by picking

a random point P ∈ E′a(Fp) and checking that we have N · P = 0.

The value of d we find here is in fact the smallest d solving problem 4.1 for

our N . Our algorithm did 565 primality tests before we found the solution above.

Finding d and p took about 10 minutes on our standard, 32-bit 2.8 GHz, PC, and

another 3 hours were needed to find and factor P−d. Once we find j, the final result

is almost immediate. If we trust the input value N as being a true prime number,

there is no need to prove that p is prime. As in ECPP, this follows from the fact

that E′a has a non-trivial point that is annihilated by N .

Elliptic curves of 10-power order. We indicated in our analysis in section 4.3

that for input values of N having a large number of square divisors, the integer d

solving problem 4.1 will be much smaller than the upper bound for squarefree N

occurring in theorem 4.6. This can be illustrated by looking at the values N = 10k

for k ≥ 1, which have logN ≈ 2.3k. As none of the prime divisors 2 and 5 of N

is inert in the field Q(i) and the prime 5 is split, there are already many solutions
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to the norm equation x2 + y2 = N for the very first value d = 1. In fact, as we

have hd = 1 there is no need for a Cornacchia algorithm, and the elements of norm

N = 2k5k in Z[i] are the 4k + 4 elements αs,t = is(1 + i)k(2 + i)t(2 − i)k−t with

s ∈ {0, 1, 2, 3} and t ∈ {0, 1, . . . , k}. Up to conjugacy, we have about 2k = .87 logN

elements, so we expect that for a positive fraction of all k-values, d = 1 gives rise

to a prime p and a twist E of the curve Y 2 = X3 + X having exactly 10k points

over Fp. As the graph below indicates, this fraction appears to be close to 0.92.

→ k
8004000

1

0.5

1

Figure 6

EXAMPLE. Take k = 2004. We find that for (s, t) = (2, 499), (0, 527), (0, 671), the

element αs,t = is(1 + i)2004(2 + i)t(2− i)2004−t of norm 102004 has the property that

p = NQ(i)/Q(1− αs,t) is prime. The curve Y 2 = X3 +X having j = 0 and CM by

Z[i] has 4 twists over Fp for each of these p, but in all cases Y 2 = X3 +X is the

curve having 102004 points. This follows from a result in [60] going back to Gauß.

It says that if we choose the prime element π = a+ bi dividing a prime p ≡ 1 mod 4

in Z[i] to satisfy π ≡ 1 mod (1 + i)3, then the curve Y 2 = X3 + X has exactly

p + 1 −
(−1

π

)
4
(π + π) = p + 1 − 2i1−aa points over Fp. In our case, π = 1 − αs,t

and a are congruent to 1 modulo (1 + i)2004 = −21002, so we already know that

Y 2 = X3 +X is the right curve before actually computing p.

For the purpose of constructing curves having N = 10k points, there are small values

of d that conjecturally work for almost all values of k, not just for a positive fraction

of them. These d have the property that 2 and 5 both split completely in Q(
√
−d),

i.e., they satisfy d ≡ 31, 39 mod 40. For such d, the number of ideals of norm N

grows quadratically in k, and hence in logN . If we fix d, and hence hd, the number

of elements of norm N in Q(
√
−d) will also grow quadratically in logN , and our

assumption 2 implies that such d will work for all but finitely many k.
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EXAMPLE. Let ρ be a zero of X3 + X + 1. Then ρ is the value of the Weber

function f(z) = ζ−1
48 ·

η( z+1
2

)

η(z) at −23−1/ω31, and a generator of the Hilbert class field

of Q(
√
−31). An elliptic curve Ej/Q(ρ) having j-invariant j = (ρ24 − 16)3/ρ24 has

endomorphism ring Z[ω31]. We may take

Ej : Y 2 = X3 + 3j(1728− j)X + 2j(1728− j)2

which has good reduction outside 2, 3, 11, 17, 23, 31. For all values 1 ≤ k ≤ 1000

except k = 1, 2, there exist primes of the form

p = x2 + 31y2 = 10k − 1 + 2x. (4.5)

To find them, we write (ω31 + 1) = p2p5 and note that a Z[ω31]-ideal

ps
2 · pk−s

2 · pt
5 · pk−t

5

of norm 10k is principal if and only if we have s ≡ t mod 3. We use Cornacchia’s

algorithm to find the generators α for the principal ideals and test whether N(1−α)

is prime. For primes satisfying (4.5), either the reduction E j/Fp of Ej over a prime

over p in Q(ρ) or its quadratic twist has exactly 10k rational points over Fp. It is

likely that k = 1, 2 are the only values of k for which no prime p of the form (4.5)

exists, but this is probably very hard to prove.





5
A non-archimedean algorithm

5.1 Finding a small splitting prime

The main task of the CM algorithm from chapters 3 and 4 is to compute the Hilbert

class polynomial P∆ for a suitable discriminant ∆ < 0. The classical approach pro-

ceeds by evaluating the modular function j : H→ C in points τ ∈ H corresponding

to the ideal classes of O∆, as explained in section 3.3. This has the disadvantage

that rounding errors may occur in expanding the product

P∆ =
∏

[a,b,c]∈F+

∆

(
X − j(−b+

√
∆

2a
)

)
∈ Z[X ].

We can avoid this problem by working in a p-adic setting, where the prime p that

we will use for this purpose in the present chapter bears no relation to the prime p

occurring in chapters 2–4. The approach presented in this chapter is based on the

work of Couveignes and Henocq [12]. For the problem of constructing a curve with

prescribed order N , we are mainly interested in fundamental discriminants ∆. The

computation of the Hilbert class polynomial P∆ is however interesting in its own

right. Hence, we will present an algorithm that computes P∆ for any discriminant

∆ < −4, fundamental or not. For completeness sake, we note that we have P−3 = X

and P−4 = X − 1728.

We fix a discriminant ∆ < −4, and let O = O∆ be the order of discriminant ∆.

For any prime p, we can embed the ring class field HO corresponding to the order O
in an algebraic closure Qp of the non-archimedean field Qp. All the computations

within the algorithm will be done in the subfield HO of Qp. The first we do is finding

a ‘small’ prime p 6= 2, 3 with the property that HO can be embedded in Qp, i.e., a

small prime that splits completely in HO.

By lemma 3.3, a prime p splits completely in HO if and only if (p) splits into

two principal ideals in O. A prime p splits into two principal ideal ideals in O if and
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only if we can solve the equation

4p = t2 − u2∆ (5.1)

in integers t, u. We see that we have a lower bound p > |∆|/4.

In order to find a prime p that splits completely in HO we can first take u = 1 in

equation 5.1. We let t range over 1, 2, . . . , B(∆) and test whether t2−u2∆
4 is prime.

Here B(∆) is some upper bound, depending on ∆. If we do not find a solution to

equation 5.1 with u = 1, we try u = 2, 3, . . ., etc. However, for ∆ ≡ 0 mod 4, we

take t even to ensure that t2−u2∆
4 is an integer. For ∆ ≡ 1 mod 4, the integers t and

u should have the same parity.

We give a simple heuristic showing that we may expect to find a solution to

equation 5.1 with p of size O(|∆| log |∆|). The integers t2−u2∆
4 are more or less

random integers of size |∆|. By the prime number theorem, we expect that one out

of every log |∆| integers of size |∆| is prime. Hence, if we take B(∆) = log ∆, we

expect to find a prime p for a small value of u.

This is more than what can be rigorously proved. If we assume GRH however,

the following lemma tells us that we can indeed find a prime p of size Õ(|∆|) that

splits completely in HO.

LEMMA 5.1. If GRH holds true, there exists an effectively computable constant

c ∈ R>0 such that for every ∆ < 0 there exists a prime p ∈ Z that splits completely

in HO and that satisfies

p ≤ c · |∆|(log |∆|)4.

PROOF. We want to apply the effective Chebotarev density theorem [35], which

requires the assumption of GRH. It states that there is an effectively computable

constant c ∈ R>0 such that for every ∆ < 0 there exists a prime p that splits

completely in HO and that satisfies

p ≤ c · (log |disc(HO/Q)|)2,

where disc(HO/Q) is the discriminant of HO/Q. The lemma follows if we can bound

this discriminant appropriately.

For fundamental discriminants we have disc(HO/Q) = |∆|h(∆), but for non-

fundamental discriminants the situation is more complicated. We will compute the

discriminant disc(HO/Q) via the relation

disc(HO/Q) = NK/Q(disc(HO/K)) · disc(K/Q)[HO :K],
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where we write K = Q(
√

∆). Write ∆ = f2D with D = disc(Q(
√

∆)). Then HO/K

is an abelian extension of conductor dividing f and degree h(∆). From the conductor

discriminant formula [46, Theorem 11.9] we see that the K-ideal disc(HO/K) is a

divisor of fh(∆). We have NK/Q(fh(∆)) = f2h(∆) and we estimate

disc(HO/Q) ≤ f2h(∆) · |D|h(∆) = |∆|h(∆).

Using the upper bound h(∆) ≤
√
|∆| log |∆| from [40, Section 2], we conclude

disc(HO/Q) ≤ |∆|
√
|∆| log |∆|. �

This lemma tells us that, if GRH is true, there is a solution (t, u, p) to equation

5.1 with t = O(
√
|∆| · (log |∆|)2) and u = O((log |∆|)2). Note that p has size

O(|∆|(log |∆|)4).
Let Ell∆(Qp) be the set of j-invariants of elliptic curves over Qp with endomor-

phism ring O = O∆. From the discussion in section 3.2, we see that this is a finite

set of cardinality h(∆). We can compute P∆ as

P∆ =
∏

j(E)∈Ell∆(Qp)

(X − j(E)) ∈ Z[X ],

and in the remainder of this chapter we explain how to compute the finite set

Ell∆(Qp).

5.2 The canonical lift

Let p ≥ 5 be a prime that splits completely in the ring class field corresponding to

the order O = O∆. Let Ell∆(Fp) be the set of j-invariants of elliptic curves over

Fp with endomorphism ring O. The set Ell∆(Fp) is a finite set of cardinality h(∆).

Since an element j ∈ Ell∆(Qp) is integral, we can consider its image under the

reduction map Zp → Fp, and we obtain a natural bijection

µ : Ell∆(Qp)→ Ell∆(Fp).

For an ordinary elliptic curve E/Fp, the value µ−1(j(E )) ∈ Qp is uniquely deter-

mined by E . The following lemma gives us a stronger result.

LEMMA 5.2. Let p ≥ 5 be prime, and letE be an ordinary elliptic curve over Fp with

endomorphism ring O. Then there exists an elliptic curve Ẽ/Qp with endomorphism

ring O that reduces to E/Fp. The curve Ẽ is unique up to isomorphism over Qp.
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PROOF. The prime p splits completely in the ring class field of the order O. The

existence of Ẽ/Qp follows immediately from the fact that µ : Ell∆(Qp)→ Ell∆(Fp)

is bijective. The j-invariant j(Ẽ) ∈ Qp determines the curve Ẽ up to twisting with

elements of Q∗p/Q
∗2
p . For p > 2, we have Q∗p/Q

∗2
p
∼= Z/2Z × Z/2Z and we take

{1, v, p, pv} as set of representatives. Here, v ∈ Z∗p is any element that reduces to

a non-square modulo p. If we twist Ẽ by p or by pv, the twist has bad reduction

modulo p. If we twist Ẽ by v, the twist Ẽ′/Qp reduces to the quadratic twist of

E/Fp. �

The curve Ẽ/Qp in lemma 5.2 is called the canonical lift of E/Fp. One of the

main steps in the non-archimedean algorithm will be to compute, on input of an

ordinary curve E/Fp with endomorphism ring O, the j-invariant µ−1(j(E )) ∈ Qp

of its canonical lift. The explicit description of the algorithm in theorem 5.3 below

is given in section 5.7.

THEOREM 5.3. There exists an algorithm which has as input

� a prime p ≥ 5

� an ordinary j-invariant j ∈ Fp

� a positive integer k

and as output the canonical lift µ−1(j) ∈ Qp of j ∈ Fp in k digits accuracy. If GRH

holds true, the expected run time of this algorithm is for every ε > 0 bounded by

cε

(
exp((log p)1/2+ε)× log k

)4

× k.

for some effectively computable constant cε > 0.

In the remainder of this section we explain how we can find, on input of a discrimi-

nant ∆ < −4, an ordinary curve E/Fp with endomorphism ring O.

� Fundamental discriminants

Let ∆ < −4 be a fundamental discriminant. We apply the method explained in

section 5.1 to find a solution (t, u, p) to the equation

t2 − u2∆ = 4p

with p prime. In practice, we can find a solution with u = 1 for ∆ 6≡ 1 mod 8. For

∆ ≡ 1 mod 8, this is never possible. The reason is that t needs to have the same
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parity as ∆ and is consequently odd. Hence, t2 −∆ is divisible by 8. This is only

possible for ∆ = −7, where we may take p = 2. We assumed p > 3 however. For

∆ ≡ 1 mod 8 we can in practice always take u = 2.

The run time of any algorithm computing P∆ will be at least O(|∆|). Since we

have p = O(|∆|1+o(1)), we can afford to apply the näıve algorithm from chapter 2

to find an ordinary curve E/Fp whose Frobenius morphism Fp has trace t 6= 0. We

have

u = [O : Z[Fp]],

and we see that for u = 1, the curve E must have endomorphism ring O. For u = 2,

the ring Z[Fp] is properly contained in O with index 2. We either have End(E ) = O
or End(E ) = Z[Fp] ( O. We explain how we can compute the endomorphism ring

End(E ) in this case, by looking at the Fp-rational 2-torsion of E .

Note that we have

E [2] ⊂ E [Fp − 1] = E (Fp)⇐⇒ 2 | (Fp − 1) ∈ End(E )⇐⇒ [End(E ) : Z[Fp]] = 2.

Hence, we have End(E ) = O if and only if the 2-torsion E [2] is Fp-rational. If

this is not the case, then Fp ∈ 1 + 2O has even trace t, so #E (Fp) = p + 1 − t
is even and E has a single Fp-rational 2-torsion point P . The endomorphism ring

of the isogenous curve E/〈P 〉 contains the ‘same’ subring Z[Fp] as End(E ), but as

there are no rational 2-isogenies to curves with endomorphism ring Z[Fp] by lemma

5.11(ii), the curve E/〈P 〉 must have endomorphism ring O.

Algorithmically, we compute the 2-torsion point P = (p1, p2) ∈ E (Fp) for the

curve E : Y 2 = X3 + aX − a that we get from the näıve algorithm. We make a

change of variables (X,Y ) → (X − p1, Y − p2) to move the point P to (0, 0). Let

Y 2 = X(X2 + cX + d) be the new Weierstraß equation. A Weierstraß equation for

E/〈P 〉 is now given by Y 2 = X(X2 − 2cX + (c2 − 4d)), cf. [9, Chapter 14].

� Arbitrary discriminants and analysis

Let ∆ < −4 be an arbitrary discriminant. If GRH holds true, there exists a so-

lution (t, u, p) to equation 5.1 with t = O(|∆|1/2+o(1)), u = O(|∆|o(1)) and p =

O(|∆|1+o(1)). Take any such solution. Applying the näıve algorithm from chapter 2

yields an ordinary curve E/Fp with trace of Frobenius t 6= 0. As u2∆ need not be

fundamental, this does not ensure End(E ) = O. We can apply Kohel’s algorithm

[34] to compute the exact endomorphism ring of E . The run time of Kohel’s algo-

rithm is O(p1/3+o(1)). We see that we can find a curve with trace of Frobenius t and
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test whether it has endomorphism ring O in time O(p1/2+o(1)). This observation

leads to the following algorithm. If GRH holds true, the prime p we find in step 1

is of size O(|∆|1+o(1)).

Algorithm. (Endomorphism ring algorithm)

Input: a negative discriminant ∆ < −4. Output: a prime p and an ordinary elliptic

curve E/Fp with End(E ) = O∆.

1. Find a solution (t, u, p) to equation 5.1, using the method described in section 5.1,

with p prime and with p - t.

2. Apply the näıve algorithm from chapter 2 to find an elliptic curve E/Fp with

trace of Frobenius t.

3. Test End(E ) = O∆ using Kohel’s algorithm. If so, return p and E . Otherwise,

go to step 2.

To analyse the run time, it remains to give an estimate for the number of times we

have to do step 2. The probability that an elliptic curve with trace of Frobenius t

has endomorphism ring O equals

n =
#′{E/Fp |End(E) = O∆}/∼=

#′{E/Fp |End(E) ⊇ Ou2∆}/∼=
.

Recall that the #′-symbol means that we count every isomorphism class [E] with

weight 1/#(AutFp
E) = 1/2.

From chapter 2 we know n = h′(∆)
H′(u2∆) , where h′ and H ′ denote the weighted class

number and the weighted Kronecker class number respectively. From the formulas

given in [39, Section 1.6] for the Kronecker class number we derive

n ≥
(
ϕ(f)

f

)2

· 1
u
,

where ϕ denotes the Euler-ϕ function and f is the index [Omax : Ou2∆]. Theorem 328

in [28] gives that lim inff→∞
ϕ(f) log log f

f is finite. Combining this with the estimate

u = O((log |∆|)2), we conclude

n ≥ cε ·
1

(log |∆|)2+ε

for some effectively computable constanct cε, depending on ε. This lower bound for

the probability n yields the following run time for the endomorphism ring algorithm.

Run time. If GRH holds true, the endomorphism ring algorithm has expected run

time O(|∆|1/2+ε) for every ε > 0.
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5.3 Modular curves

The description of the algorithm to compute the canonical lift makes use of modular

curves. We briefly recall the basic notions here. For more information, see e.g. [56]

or [15].

Define the subgroup

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N

}

of SL2(Z) for integers N ∈ Z>0. A subgroup Γ ⊆ SL2(Z) is called a congruence

subgroup if it contains Γ(N) for some N . The group SL2(Z) acts on the upper half

plane H by linear fractional transformations as in section 3.3.

Let now Γ ⊂ SL2(Z) be a congruence subgroup. The quotient YΓ = Γ\H has

the structure of a Riemann surface. See e.g. [56, Section 1.5] for the definition of

the complex structure. Write H = H ∪ P1(Q) and XΓ = Γ\H. We give XΓ the

structure of a compact Riemann surface by completing YΓ with the finitely many

Γ-orbits of P1(Q) called the cusps of XΓ.

Since XΓ is a compact Riemann surface, the field C(XΓ) of meromorphic func-

tions on XΓ is a finitely generated extension of C of transcendence degree 1. There

is an anti-equivalence between the category of finitely generated field extensions of C

of transcendence degree 1 and the category of smooth complete curves over C with

surjective morphisms. Via this anti-equivalence, we view XΓ as a smooth complete

curve over C.

For Γ = SL2(Z), we write YΓ = Y (1). Then Y (1) is an affine curve with comple-

tionX(1) = XΓ. Points on Y (1) have a natural interpretation as isomorphism classes

of complex elliptic curves, which we make explicit by viewing Y (1) as the quotient

SL2(Z)\H. We map the SL2(Z)-orbit of τ ∈ H to the isomorphism class of the com-

plex elliptic curve Eτ = C/〈1, τ〉. The j-function H→ C gives a map j : Y (1)→ C,

and the extension of this map to X(1) gives an isomorphism X(1)
∼−→ P1

C.

We now focus on the case Γ = Γ0(N), with

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 mod N

}
⊃ Γ(N),

and write YΓ = Y0(N). Then Y0(N) is an affine curve with completion X0(N) = XΓ.

The function jN : H→ C given by jN (τ) = j(Nτ) induces a map jN : X0(N)→ P1
C.

The function field of X0(N) is C(j, jN ).

Points on Y0(N) have a natural moduli interpretation as isomorphism classes of

pairs (E,G), where E is a complex elliptic curve and G ⊂ E[N ] is a cyclic subgroup
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of orderN . The notion of isomorphism is the following: two pairs (E,G), (E ′, G′) are

isomorphic if and only if there exists an isomorphism of elliptic curves ϕ : E → E ′

with ϕ(G) = G′. We make this moduli interpretation explicit by viewing Y0(N) as

the quotient Γ0(N)\H. The Γ0(N)-orbit of τ ∈ H is then mapped to the isomor-

phism class of the pair

(Eτ , 〈1/N〉),

consisting of the complex elliptic curve Eτ = C/〈1, τ〉 and the cyclic subgroup

generated by 1/N ∈ Eτ [N ]. This moduli interpretation plays an important role in

the sequel and we will often denote a point of Y0(N) by a pair (E,G). We have

j(Eτ ) = j(τ) and j(Eτ/〈 1
N 〉) = jN (τ) = j(Nτ).

The identity map H→ H induces a map f : Y0(N) � Y (1):

H //

id

��

Y0(N)

f

��
H // Y (1)

that can be extended to f : X0(N) � X(1). In terms of the moduli interpretation,

we have f(E,G) = E, i.e., f is just the ‘forgetful map’. Via this map f , the curve

X0(N) is a cover of the curve X(1) of degree ψ(N) = N
∏

p|N (1 + 1
p ) = [SL2(Z) :

Γ0(N)]. The j-invariant gives an isomorphism X(1)
∼−→ P1

C, and we may view

X0(N) in a natural way as a cover of P1
C. This cover X0(N)/P1

C is ramified only

above j = 0, 1728,∞.

The functions j and jN are related by a polynomial relation ΦN (j, jN ) = 0, with

ΦN ∈ Z[X,Y ]. There is a smooth complete curve X0(N)Q over Q with function

field Q(j, jN ). For an extension K/Q, the set Y0(N)Q(K) of K-valued points of

Y0(N)Q consists of the K-isomorphism classes of pairs (E,G), where E is an elliptic

curve over K and G ⊂ E[K] is a cyclic subgroup of order N of E[N ] that is defined

over K. We will often write X0(N) instead of X0(N)Q to denote the modular curve

X0(N) over Q.

We also want to consider isogenies between elliptic curves over finite fields. It

would be most natural to properly define what the reduction of X0(N) is modulo a

prime. Unfortunately, this algebraic geometric notion is not so easy. One can prove

that the ‘reduction’ X0(N)Fp
is again smooth for primes p not dividing N . See [17,

Theorem 8.2.1] for a precise statement. We are mostly interested in a consequence

of this result. Namely, let K be an algebraically closed field of characteristic p - N

and let E,E′ be two elliptic curves over K. The modular polynomial ΦN has integer

coefficients and we let ΦN ∈ Fp[X,Y ] be its reduction modulo p. Then there exists
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an isogeny E → E′ of degree N with cyclic kernel if and only if we have

ΦN (j(E), j(E′)) = 0.

In chapter 6 we will also consider the curve Y (N) = YΓ(N). Points on Y (N)

have a natural interpretation as isomorphism classes of pairs (E,P,Q), where E

is a complex elliptic curve and P,Q ∈ E[N ] form a basis for the N -torsion E[N ]

that satisfies eN (P,Q) = exp(2πi/N). Here, we normalise the Weil pairing eN on

the complex curve Eτ such that we have eN (1/N, τ/N) = exp(2πi/N). The notion

of isomorphism is similar to the case of Y0(N): two triples (E,P,Q), (E ′, P ′, Q′)

are isomorphic if there exists an isomorphism of elliptic curves ϕ : E → E ′ with

ϕ(P ) = P ′ and ϕ(Q) = Q′. This moduli interpretation can be made explicit by

viewing Y (N) as the quotient Γ(N)\H. The Γ(N)-orbit of τ ∈ H is then mapped

to the isomorphism class of the triple

(Eτ , 1/N, τ/N),

consisting of the complex elliptic curveEτ = C/〈1, τ〉 and points 1/N, τ/N ∈ Eτ [N ].

For any choice a ∈ (Z/NZ)∗, we have a variant Y (N)a of Y (N). As a complex

curve Y (N)a is the same as Y (N), hence equal to Γ(N)\H, but to τ ∈ H we now

associate the triple

(Eτ , a/N, τ/N).

We have eN(a/N, τ/N) = exp(2aπi/N).

The curves Y (N)a can be defined over Q(ζN ). For an extensionK/Q(ζN ), we fix

a primitive N -th root of unity ζN ∈ K. For N ≥ 3, the K-valued points Y (N)a(K)

of Y (N)a are the K-isomorphism classes of triples (E,P,Q), where E is an elliptic

curve over K and P,Q ∈ E[N ] are N -torsion points of E that are defined over K

and satisfy eN (P,Q) = ζa
N .

5.4 Computing the canonical lift

In this section we explain the mathematical idea underlying the algorithm to com-

pute the canonical lift µ−1(j) of an ordinary j-invariant j ∈ Fp. A more algorithmic

description will be given in sections 5.5–5.7. Throughout this section, we letE/Fp be

an ordinary elliptic curve with endomorphism ring O. We have j(E ) 6= 0, 1728 ∈ Fp.

The canonical lift of E is denoted by Ẽ.

Let I ⊂ O be an invertible O-ideal. As in section 3.2, we have a map

ρI : Ell∆(Qp)→ Ell∆(Qp)
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that maps j(Ẽ) to j(ẼI). Here, the isogeny Ẽ → ẼI has the group Ẽ[I ] of I-torsion

points as kernel. The inverse of ρI is given by ρI , where I is the complex conjugate

of I . The map ρI is bijective.

For the remainder of this section we assume that the ideal I ⊂ O is coprime to p.

We then obtain a bijection ρI : Ell∆(Fp)→ Ell∆(Fp) that sends j(E ) to j(E I), and

we have a commutative diagram

j(Ẽ)
ρI //

��

j(ẼI)

��
j(E )

ρI // j(E I).

We have seen in section 3.2 that the map ρI induces an action of the Picard

group Pic(O) on Ell∆(Qp). This action is transitive and free. Similarly, we have an

action of Pic(O) on Ell∆(Fp). The action of Pic(O) on Ell∆(Qp) and Ell∆(Fp) is

compatible with reducing modulo p.

Let Cp be the completion of an algebraic closure of Qp. It is well known that

Cp is itself algebraically closed. Define

X∆(Cp) = {j ∈ Cp |  ∈ Ell∆(Fp)} ⊂ Cp.

The set X∆(Cp) consists of h(∆) open discs of p-adic radius 1 around the CM-points

Ell∆(Qp). Every disc contains exactly one element of Ell∆(Qp) and it is this subset

Ell∆(Qp) of Cp that we want to compute.

Ell∆(Fp) :

X∆(Cp) : ˜ ˜ ˜

The picture visualises the situation. The elements of the set Ell∆(Fp) are de-

noted by thick points. The set X∆(Cp) is denoted by a series of open discs, one

above each point in Ell∆(Fp). Just as we denoted the canonical lift of a curve E/Fp

by Ẽ, we place a tilde above a thick point to denote the elements of Ell∆(Qp).
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The fundamental idea in [12] is that the map ρI : Ell∆(Qp) → Ell∆(Qp) has a

natural extension to a map ρI : X∆(Cp)→ X∆(Cp), which we proceed to define. We

let N ∈ Z>0 be the norm of I . Recall our assumption p - N . Now take an arbitrary

element j ∈ X∆(Cp), and write  ∈ Fp for its reduction modulo p. Pick a curve

E/Fp with j-invariant j(E ) = , and take any curve E/Cp with j(E) = j ∈ Cp that

reduces to E/Fp. We have a natural isomorphism

ϕ : E[N ]
∼−→ E [N ]

by the assumption that N is coprime to p. The subgroup E [I ] ⊂ E [N ] has a well

defined inverse image under ϕ. We denote ϕ−1(E [I ]) by E[I ]. The group E[I ] is

a subgroup of order N of E[N ]. Using fancy language, this provides a lift of E [I ]

to a group scheme over the p-adic disc in X∆(Cp) lying over  ∈ Ell∆(Fp). We

define ρI(j) = j(EI ). The j-invariant j(EI ) is independent of the choice of E and

therefore, ρI is well-defined.

For j ∈ Ell∆(Qp) we now have two definitions of ρI : one in terms of a Galois

action and one in terms of a group scheme. A moment’s reflection shows however

that these two definitions coincide. In sections 5.5–5.7 we will show how we can

explicitly compute ρI(j) for j ∈ X∆(Cp).

REMARK. For two invertible O-ideals I, J that are coprime to p, we have ρIJ =

ρIρJ . Furthermore, if J is contained in Z, we have ρJ = id.

The map ρI has a geometric interpretation. After possibly multiplying with a prin-

cipal fractional ideal, we assume that O/I is cyclic. Again, let N be the norm of I .

We map Y0(N)Cp
inside A1

Cp
×A1

Cp
:

Y0(N)(Cp) // // C(Cp) // // A1(Cp)×A1(Cp)
p1 //

p2

��

A1(Cp)

∈

(E,G) � // (j(E), j(E/G))

A1(Cp).

The maps p1, p2 are the normal projection maps. The curve C is defined by ΦN = 0,

with ΦN the classical modular polynomial. Take a j-invariant j(E) ∈ X∆(Cp).

The fiber p−1
1 (j(E)) ⊂ C(Cp) above j(E) consists of the points (j(E), j(E/Gi)),

with Gi ranging over the ψ(N) cyclic subgroups of order N of E[N ]. We have

ρI(j(E)) = j(EI ) = p2((j(E), j(EI )).

In other words, we have chosen two functions j1, j2 : Y0(N)Cp
→ A1

Cp
. They

are defined by j1((E,G)) = j(E) and j2((E,G)) = j(E/G). For j(E) ∈ X∆(Cp),
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we have ρI(j(E)) = j2((E,E[I ])). We will often write j1(E) instead of j1((E,G))

if there cannot be any confusion about which subgroup E[G] ⊂ E[N ] we mean.

Likewise for j2.

Let now I ⊂ O be a principal ideal, and let α ∈ O be a generator. We keep

the assumption that p does not divide the norm of I . We write ρα to denote the

map ρ(α).

THEOREM 5.4. Let (α) ⊂ O be a principal ideal such that O/(α) is cyclic as abelian

group. Assume that (α) is coprime to p. Then the map ρα : X∆(Cp)→ X∆(Cp) is

analytic, i.e., it can locally be given by a power series.

PROOF. Take an elliptic curve E/Qp with j(E) ∈ Ell∆(Qp), and assume that E has

good reduction modulo p. We define P = (E,E[(α)]) ∈ Y0(N)(Cp). Note that P

lies on the diagonal if we map Y0(N)Cp
into A1

Cp
×A1

Cp
, i.e., we have

j1(E) = j2(E).

Since j(E) is the j-invariant of an ordinary curve over Fp with endomorphism ring

O of discriminant ∆ < −4, we see that j(E) is not equal to 0, 1728 ∈ Fp. It follows

that j(E) ∈ Cp has positive p-adic distance to 0, 1728 ∈ Cp.

First we show that P = (E,E[(α)]) may be defined over Qp, i.e., that both E

and E[(α)] may be defined over Qp. By assumption, the curve E is defined over Qp.

The prime p splits in O, and we have α ∈ Qp. This shows that E[(α)] is defined

over Qp and we have

P = (E,E[(α)]) ∈ Y0(N)(Qp).

Now consider the local ring OY0(N)Qp ,P and its completion ÔY0(N)Qp ,P at the

point P . Since Y0(N)Qp
is a smooth curve, ÔY0(N)Qp ,P is a complete discrete valu-

ation ring over Qp. Since j1(E) and j2(E) are not equal to one of the ramification

points j = 0, 1728 of the cover Y0(N)Qp
/A1

Qp
, the functions j1−j1(E) and j2−j2(E)

are uniformising parameters for ÔY0(N)Qp ,P .

The isomorphism ÔY0(N)Qp ,P
∼= Qp[[j1 − j1(E)]] shows that we can express

j2 − j2(E) as a formal power series in j1 − j1(E):

j2 − j2(E) =
∑

i≥1

ci(j1 − j1(E))i with ci ∈ Qp.

The theorem follows if we prove that the coefficients ci of the power series lie in Zp.

We prove this in lemma 5.5. �
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LEMMA 5.5. The coefficients ci in the power series above lie in Zp.

PROOF. The proof of this lemma is more difficult, since it requires working with

the modular curve X0(N) over Zp. Working with curves over rings requires more

geometric theory than we have given, and is not easily explained in a few lines.

Hence, we assume more background in this proof.

As in [17, Section 9.3], we consider the modular curve X0(N)Qp
as a scheme

over Spec(Qp). The diagram

X0(N)Qp
// //

��

X0(N)Zp

��

X0(N)Fp

��

oooo

Spec(Qp) // //

P

ZZ

Spec(Zp)

P ′

ZZ

Spec(Fp)oooo

P̄

ZZ

explains the situation. We view the point P as a section Spec(Qp) → X0(N)Qp
.

As X0(N)Zp
is proper over Spec(Zp), there exists a unique section P ′ : Spec(Zp)→

X0(N)Zp
making the left square commutative. The existence of P : Spec(Fp) →

X0(N)Fp
is automatic from the existence of the section P ′.

Since we assumed p - N , the curve X0(N)Fp
is smooth over Spec(Fp). We

have j1(E ) = j2(E ) 6= 0, 1728 ∈ Fp, and the functions j1 − j1(E) and j2 − j2(E)

remain uniformising parameters for the complete discrete valuation ring ÔX0(N)Fp ,P̄

over Fp. We get (p, j1 − j1(E)) and (p, j2 − j2(E)) as parameters for OX0(N)Zp ,P̄ ,

and the ring OX0(N)Zp ,P̄ is a 2-dimensional regular local ring. Exactly as in the

proof of [43, Theorem 29.7], we get an isomorphism

ÔX0(N)Zp ,P̄
∼= Zp[[j1 − j1(E)]]. �

The map ρα fixes the CM-points Ell∆(Qp) and therefore stabilizes every disc. We

have constructed an analytic map that has the CM-points as fixed points . We will

use a kind of Newton iteration to converge to the j-invariant of the canonical lift

Ẽ/Qp of E/Fp starting from a curve E1/Cp that reduces to E modulo p. The

following lemma gives the derivative of ρα in a CM-point, i.e., the first coefficient c1

in the power series on the previous page.

LEMMA 5.6. Let (α) ⊂ O be a principal ideal such that O/(α) is cyclic as abelian

group. Assume that (α) is coprime to p. Then the derivative of ρα in j(Ẽ) ∈
Ell∆(Qp) is given by αα−1, where α is the complex conjugate of α.

PROOF. This is lemma 1 in [12]. The proof there is rooted in a complex analytic

setting. After attending a talk by Couveignes on this topic, Edixhoven observed
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that this lemma can be proven completely geometrically, see proposition 3.3.2 of

his thesis [18]. For convenience, we give the (slightly modified) proof from [12].

The main difference with the proof in [12] is that we have removed the explicit

computation of normal forms of ideals.

Let N be the norm of the principal O-ideal (α). We take a curve EQ defined

over Q with j(EQ) = j(E) ∈ Ell∆(Qp). This gives a point PQ = (EQ, EQ[(α)]) ∈
Y0(N)(Q). After a base change to C, we get a point P ∈ Y0(N)(C). We will work

with the modular curve Y0(N)C over C. The diagram

Y0(N)(C)

j1

++

j2
++VVVVVVVVVVVVVVVVVVVVVV

// // C(C) // // A1(C)×A1(C)

��

// A1(C)

A1(C)

gives the two functions j1, j2 : Y0(N)C → A1
C that we have chosen, i.e., we have

j1((E,G)) = j(E) and j2((E,G)) = j(E/G). For (E,G) = (Eτ , 〈1/N〉) we have

j1(E) = j(τ) and j2((Eτ ), 〈1/N〉) = j(Nτ). Let F = C(j1, j2) be the function field

of Y0(N)C and let ΩF/C be its module of Kähler differentials. The module ΩF/C

has dimension 1 as a vector space over F . Hence, there is an element σ ∈ F with

σdj1 = dj2. We map Y0(N)C to the curve C inside A1
C ×A1

C. The function value

σ((E,E[(α)]) ∈ C is the slope of the tangent line at (j1(E), j2(E)) ∈ C at the branch

of (E,G). We have c1 = σ(P ).

View Y0(N)C as the quotient Γ0(N)\H and choose a representative τ ∈ H of

P ∈ Y0(N)C. Defining jN (z) = j(Nz), we can compute c1 as

c1 =
djN
dj

(τ).

Let j′ = dj
dτ be the derivative of the j-function and let Gi(τ) be the i-th Eisenstein

series attached to the lattice 〈1, τ〉.

Claim. There exists a constant c ∈ C with

j′

j
= c

G6

G4
.

Proof of claim. The j-function has a triple zero at ζ3, and has no other zeroes in the

standard fundamental domain of SL2(Z)\H. The quotient j ′/j is a rational modular

form of weight 2, with a simple pole at ζ3.
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The quotient G6/G4 is a modular form of weight 2 and has a simple pole at ζ3.

There exists a constant c ∈ C such that j ′/j − cG6/G4 has no poles on the upper

half plane H. We see that j ′/j − cG6/G4 is a modular function of weight 2 which

is everywhere holomorphic, including infinity. It is therefore equal to zero, which

proves our claim.

We derive dj
dτ (τ) = cG6(τ)j(τ)/G4(τ) and djN

dτ (τ) = N dj
dτ (Nτ), i.e., we have

c1 =
djN
dτ

dτ

dj
(τ) = N

j(Nτ)

j(τ)
· (G6/G4)(Nτ)

(G6/G4)(τ)
.

The curve Eτ = C/〈1, τ〉 has endomorphism ring O and we have a commutative

diagram

C/〈1, τ〉 ×N //

×α

&&LLLLLLLLLL
C/〈1, Nτ〉

∼
× α

Nxxqqqqqqqqqq

C/〈1, τ〉,
since α is an endomorphism of Eτ . We see that we have α

N 〈1, Nτ〉 = 〈1, τ〉, i.e.,

we get ατ = aτ + b, α/N = cτ + d with
(

a
c

b
d

)
∈ SL2(Z). Using the relation

Nτ = (aτ + b)/(cτ + d), we compute

c1 = N
(G6/G4)(Nτ)

(G6/G4)(τ)
= N(cτ + d)2 =

α2

N
=
α

α
.

�

We return to the problem of computing the j-invariant of the canonical lift Ẽ/Qp

of an ordinary curve E/Fp with endomorphism ring O. We are looking for a fixed

point of ρα, i.e., for a zero of the function ρα− id. We use a Newton iteration process

to converge to a zero of ρα − id. First we pick an elliptic curve E1/Cp that reduces

to E/Fp modulo p. Assume that we have α/α − 1 ∈ Z∗p and consider the following

iteration process

j(Ek+1) = j(Ek)− ρα(j(Ek))− j(Ek)

(α/α)− 1
for k ∈ Z≥1.

This computation is carried out with 2 digits precision for k = 1 and the precision is

doubled in each iteration step. This process is a modified version of Newton iteration.

For classical Newton iteration we would need ρ′α(j(Ek)) − 1 in the denominator

instead of (α/α) − 1 = ρ′α(j(Ẽ)) − 1. We are working with bounded precision in

each step and we have to check that

ρα(j(Ek)) − j(Ek)

ρ′α(j(Ẽ))− 1
=
ρα(j(Ek))− j(Ek)

ρ′α(j(Ek))− 1
∈ Zp/(p

2k

) (∗)
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holds in the k-th iteration step. For k = 1, we have j(E1) = j(Ẽ) mod p, and there-

fore also ρ′α(j(E1)) = ρ′α(j(Ẽ)) mod p. As ρα(j(E1)) − j(E1) is divisible by p, we

see that (∗) holds for k = 1, i.e., modulo p2. Now suppose k > 1. With induction we

see that j(Ek) = j(Ẽ) mod p2k−1

holds and ρα(j(Ek))− j(Ek) is divisible by p2k−1

.

We conclude that equality (∗) holds for all k ∈ Z≥1, and that for α/α− 1 ∈ Z∗p, the

process above converges to the j-invariant j(Ẽ) of the canonical lift.

5.5 Isogenous curves with isomorphic endomorphism rings

In order to compute ρα(j) for j ∈ Ell∆(Cp), we need a more algorithmic description

of the map ρα. Pick any principal O-ideal (α) that is coprime to p. Without loss of

generality we assume that (α) is primitive, i.e., (α) is not divisible by elements of Z.

Fix j ∈ Ell∆(Cp) and write  ∈ Fp for its reduction modulo p. Take an elliptic

curve E/Fp with j-invariant  ∈ Fp. Note that the curve E has endomorphism

ring O, and j-invariant j(E ) 6= 0, 1728 ∈ Fp.

Let (α) =
∏

i lei

i be the prime factorization of (α). If we can compute ρli(j),

we can compute ρα(j) since we have ρlilj = ρliρlj . We fix a prime ideal l|(α) of

degree 1. We let l ∈ Z be the norm of l. Note that l is prime, and we have l 6= p.

We want to compute the group of l-torsion points E [l] ⊂ E [l]. Algorithmically,

we will ‘code’ the x-coordinates of the points in E [l] as roots of a polynomial f l ∈
Fp[X ]. More precisely, the polynomial f l will have the property that x ∈ Fp is a

root of f l if and only if there exists a point P ∈ E [l] with x-coordinate x.

LEMMA 5.7. The polynomial f l ∈ Fp[X ] that vanishes on the x-coordinates of the

points in E [l] has degree (l − 1)/2 for l > 2. For l = 2, the degree equals 1.

PROOF. The group E [l] is a subgroup of E [l] ∼= Z/lZ × Z/lZ. We see that #E[l]

equals 1, l or l2. By the assumption that l has degree 1, we see that we also have a

subgroup E[l] ⊂ E[l], belonging to the conjugate ideal l ⊂ O. We see that E [l] has

order l and hence for l > 2 the polynomial f l will have degree (l − 1)/2. For l = 2,

the degree equals 1. �

The inclusion E [l] ⊂ E [l] yields that f l is a divisor of the l-th division polynomial

Ψl ∈ Fp[X ]. We recall that the l-th division polynomial vanishes exactly on the x-

coordinates on the l-torsion points, cf. [36, Theorem 2.1]. The degree of Ψl therefore

equals (l2 − 1)/2 for odd primes l and 3 for l = 2. As an example, the 3-rd division
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polynomial for the curve defined by Y 2 = X3 + aX + b is

Ψ3(X) = 3X4 + 6aX2 + 12bX − a2.

Before we can compute the polynomial f l ∈ Fp[X ], we need to know the j-

invariant of the l-isogenous curve E l. In this section we explain that we can ‘almost’

compute this j-invariant.

THEOREM 5.8. Let E/Fp and l be as above. Then we have

Φl(j(E ), j(E l)) = 0,

where Φl denotes the classical l-th modular polynomial. Let t be the trace of Frobe-

nius of E . If the order Õ of discriminant t2−4p is maximal at l, then the polynomial

Φl(j(E ), X) ∈ Fp[X ]

has exactly 2 roots in Fp.

The first statement in the theorem follows immediately from the properties of the

modular polynomial. Indeed, for any algebraically closed field k = k̄ of characteristic

char(k) 6= l and for any j ∈ k, the roots of Φl(j,X) ∈ k[X ] are exactly the j-

invariants of curves that are l-isogenous to a curve with j-invariant j. We know that

j(E l) is contained in Fp, and the first result follows.

Proving the second statement requires more work, and we postpone the proof

to the end of this section. First we give some lemma’s that help us determine the

number of roots in Fp of Φl(j(E ), X) ∈ Fp[X ].

LEMMA 5.9. Let E/Fp be an elliptic curve and let ϕ : E → E ′ be a non-zero isogeny.

Then the endomorphism algebras of E and E ′ are isomorphic.

PROOF. The isogeny ϕ : E → E ′ induces an injective ring homomorphism

fϕ : End(E′)→End(E)⊗Z Q

ψ 7→ ϕ̂ψϕ ⊗ m−1,

where m ∈ Z≥1 is the degree of ϕ, and ϕ̂ : E ′ → E is the dual isogeny of ϕ. The

homomorphism corresponding to ϕ̂ is the inverse of fϕ. �

By the Deuring lifting theorem, we can lift E/Fp together with its endomorphism

ring to a curve Ẽ defined over the ring class field HO. We have End(Ẽ) ∼= O ∼=
End(E). We have seen in section 3.2 that Ẽ is isomorphic to C/I , with I an
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invertible O-ideal. The curves C/I can be given by Weierstraß equations over HO,

and as such, they are all Galois conjugate to the curve C/O. There exists a prime

P of HO such that C/O reduces to E/Fp. We may therefore write Ẽ ∼= C/O.

As l-isogenous curve to Ẽ is isomorphic to C/Λ, with Λ a lattice in C that

contains O with index [Λ : O] = l. After replacing Λ by 1
l Λ, we see that an l-

isogenous curve is isomorphic to C/Λ′ with Λ′ a lattice in C with [O : Λ′] = l.

There are l + 1 curves that are l-isogenous curves to Ẽ, corresponding to the l + 1

subgroups of index l of Z/lZ×Z/lZ. The l-isogenous curves are defined over Q, and,

for l 6= p, their reductions modulo p are the curves that are l-isogenous to E/Fp.

LEMMA 5.10. Let E/Fp be an ordinary elliptic curve and let ϕ : E → E ′ be an

isogeny of prime degree l 6= p. Then O = End(E) contains O′ = End(E′) or O′
contains O (inside the endomorphism algebra) and the index of the one in the other

divides l.

PROOF. We lift E/Fp together with its endomorphism ring to a curve Ẽ/HO, and

write Ẽ = C/O. Likewise, we lift E ′ to Ẽ′/HO′ . The curve Ẽ′ is then isomorphic

to C/Λ, with Λ a lattice in C that contains O with index l. The multiplyer ring

O of the lattice O contains lO′ since O′ is the multiplyer ring of the lattice Λ.

Furthermore, the lattice Λ has index l in 1
lO, and O′ contains lO. �

From these two lemmas we derive that the endomorphism ring O′ of an l-isogenous

curve E′ is an order in the imaginary quadratic field K = O ⊗Z Q. Furthermore,

if O and O′ are not equal, then O′ is contained in O with index l (or vice versa).

As we know that E l has endomorphism ring O, we want to know how many roots

in Fp of Φl(j(E ), X) ∈ Fp[X ] are j-invariants of curves with endomorphism ring O.

The following lemma is proposition 23 in [34]. The proof there uses Tate modules.

Our proof is based on the Deuring lifting theorem. We write Ol = O ⊗ Zl.

LEMMA 5.11. Let E/Fp be an ordinary elliptic curve with endomorphism ring O of

discriminant ∆ and with j(E) 6= 0, 1728 ∈ Fp. Let l 6= p be prime.

(i) If Ol is maximal, there are exactly
(

∆
l

)
+1 isogenies of degree l to curves with

endomorphism ring O. These isogenies are defined over Fp.

(ii) If Ol is non-maximal, there are no isogenies of degree l to curves with endo-

morphism ring O.

(iii) Assume that Ol is maximal. If there are more than
(

∆
l

)
+1 isogenies of degree

l over Fp, then all l+1 isogenies of degree l are defined over Fp. This happens

exactly when the index [O : Z[Fp]] is divisible by l.
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PROOF. As before, we lift E/Fp together with its endomorphism ring to a curve

Ẽ/HO with End(Ẽ) = O, and we write Ẽ = C/O.

If an l-isogenous curve E ′ to Ẽ has endomorphism ring O, we can write E ′ =

C/I , with I an invertible O-ideal of norm [O : I ] = l. Part (i) of the lemma follows.

If Ol is not maximal, there are no invertible O-ideals of norm l, and part (ii) also

follows.

For part (iii), assume that Ol is maximal and supose that there are more than(
∆
l

)
+1 isogenies of degree l over Fp. There are

(
∆
l

)
+1 curves with endomorphism

ring O that are l-isogenous to E by part (i). The other l−
(

∆
l

)
curves have endomor-

phism ring O′, where O′ has index l in O by lemma 5.10 and the assumption that

Ol is maximal. As Z[Fp] is contained in O′, all the l-isogenous curves are defined

over Fp. �

COROLLARY 5.12. Let l 6= p be prime. Let E/Fp be an ordinary elliptic curve with

endomorphism ring O and with j(E) 6= 0, 1728. Assume that Ol is maximal. Then:

(i) if [O : Z[Fp]] is divisible by l, the polynomial Φl(j(E), X) ∈ Fp[X ] splits

completely over Fp

(ii) otherwise, Φl(j(E), X) ∈ Fp[X ] has exactly
(

∆
l

)
+ 1 roots in Fp.

PROOF OF THEOREM 5.8. It remains to prove the second statement in the theorem.

This is now easy. Indeed, if l splits in O and if Õ ∼= Z[Fp] is maximal at l, then the

polynomial Φl(j(E ), X) ∈ Fp[X ] has exactly 2 roots in Fp by corollary 5.12. �

REMARK. The polynomial Φl(X,Y ) ∈ Z[X,Y ] can easily be computed for relatively

small values of l. An algorithm is given in [37, Chapter 5]. As an example, for l = 2

we get

Φ2 =X3 + Y 3 −X2Y 2 + 1488(X2Y +XY 2)− 162000(X2 + Y 2)

+40773375XY + 8748000000(X + Y )− 157464000000000 ∈ Z[X,Y ].

5.6 Computing the kernel polynomial

Letting the notation be as in the previous section, we continue with the algorithmic

description of the map ρl : X∆(Cp)→ X∆(Cp). Write Õ for the imaginary quadratic

order of discriminant t2 − 4p. Here, t denotes the trace of Frobenius of the fixed

elliptic curve E/Fp with endomorphism ring O = O∆.

We will have to make some assumptions on l. As we will see in section 5.7,

these assumptions are harmless for our algorithm to compute the j-invariant of the
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canonical lift of E . First we assume that Õ is maximal at l. This assumption implies

that the ring O is also maximal at l.

Theorem 5.8 tells us that the polynomial Φl(j(E ), X) ∈ Fp[X ] then has 2 roots

in Fp. Fix a root h ∈ Fp of Φl(j(E ), X). Let E/C have j-invariant h, corresponding

to a cyclic subgroup C ⊂ E [l] of order l, i.e., C is the kernel of the isogenyE → E/C.

Note that E/C has endomorphism ring O.

There are only two possibilities for C: we either have C = E[l] or we have C =

E[l]. The techniques that Elkies used to improve Schoof’s original point counting

algorithm [50, Sections 7, 8] allow us to compute, given h, a polynomial fC ∈ Fp[X ]

that vanishes exactly on the x-coordinates of the points in C. We will see that this

also enables us to determine whether we have C = E [l] or not. Since our point of

view is rather different from that of Elkies, we summarize sections 7 and 8 of [50].

Let Y 2 = X3 + aX + b be a Weierstraß equation for E/Fp. We want to know

a Weierstraß equation Y 2 = X3 + a′X + b′ for E/C. The idea is to lift the isogeny

ϕ : E → E/C to characteristic 0 using the Deuring lifting theorem and use ana-

lytic functions to derive formulas for a′ and b′. For reasons to become clear, it is

convenient to use Tate curves for the lifted curves.

� Formulas for a′ and b′ using Tate curves

Recall that a complex elliptic curve E/C is isomorphic as Riemann surface to C/L,

with L a lattice of rank 2. For τ ∈ H, define q = exp(2πiτ). We get a complex

analytic isomorphism

C/2πi(Z + τZ)
exp−→∼= C∗/qZ.

The curve C∗/qZ is called a Tate curve. It admits a Weierstraß equation

Y 2 = X3 − E4(q)

48
X +

E6(q)

864
, (5.2)

where E4(q), E6(q) ∈ Z[[q]] are the power series

E4(q)= 1 + 240

∞∑

n=1

n3qn

1− qn

E6(q)= 1− 504
∞∑

n=1

n5qn

1− qn
.

Interpreting q as exp(2πiτ) with τ ∈ H, the power series Ek are the Fourier expan-

sions of the normalized Eisenstein series Gk/(2ζ(k)), cf. [55, Section 7.4].
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Using Deuring’s lifting theorem, we can lift the isogeny

0 −→ C −→ E
ϕ−→ E/C −→ 0

to characteristic 0. We claim that there exists q = exp(2πiτ) ∈ C such that

� the Eisenstein series E4(q) and E6(q) are elements of the ring class field HO
� there exists a prime ideal P of HO lying over p such that the ‘reduction’ mod P

of the isogeny

0 −→ µl −→ C∗/qZ
l−→ C∗/qlZ −→ 0

yields the isogeny ϕ : E → E/C over Fp. Here, by reducing we mean that

we take the Weierstraß equation (5.2) for the curve C∗/qZ and reduce that

modulo P.

To prove our claim, we first lift E/Fp with its endomorphism ring to a curve Ẽ

defined over the ring class field HO. The curve defined by the Weierstraß equation

Y 2 +XY = X3 − 36

j(Ẽ)− 1728
X − 1

j(Ẽ)− 1728

has j-invariant j(Ẽ). For this specific equation, we have c4 = c6 = j(Ẽ)/(j(Ẽ) −
1728). Here, c4, c6 are the usual quantities associated to a Weierstraß equation.

Hence, there exists q ∈ C such that E4(q) and E6(q) are both contained in HO. This

proves our claim.

The isogenous curve C∗/qlZ admits the equation

Y 2 = X3 − E4(q
l)

48
X +

E6(q
l)

864
,

and we have a′ ≡ −E4(q
l)/48 mod P and b′ ≡ −E6(q

l)/864 mod P. Furthermore,

with ∆(q), j(q) ∈ Z[[q]] given by

∆(q)=
E4(q)

3 −E6(q)
2

1728
= q

∞∏

n=1

(1− qn)24

j(q) =
E4(q)

3

∆(q)
=

1

q
+ 744 + 196884q+ . . .

we have j(ql) ≡ h = j(E/C) mod P. We will give ‘formulas’ for E4(q
l) and E6(q

l)

in terms of j and a suitable ‘derivative’ j ′.

For a Laurent series f(q) =
∑

n anq
n ∈ Z[[q]] we denote by f ′(q) the Laurent

series

f ′(q) = q
df

dq
=
∑

n

nanq
n.
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If we interpret q as exp(2πiτ) with τ ∈ H, and view the power series as a Fourier

expansion, the differential operator f 7→ q df
dq is just the usual differentation of f(q)

with respect to the variable 2πiτ .

LEMMA 5.13. The following equalities hold in Z[[q]]:

(i)
j′

j
= −E6

E4

(ii)
j′

j − 1728
= −E

2
4

E6
.

PROOF. In the proof of lemma 5.6 we proved that the logarithmic derivative ( d
dτ j)/j

and G6/G4 differ by a constant. The same is therefore true for the normalisations

j′/j and E6/E4, viewed as complex functions on the upper half plane H.

The constant term of the Fourier expansion of j ′/j is −1, and it is 1 for E6/E4.

This proves part (i) of the lemma. The proof of part (ii) is similar. �

COROLLARY 5.14. We have the following equalities of power series in Z[[q]]:

(i) E4(q) =
j′2

j(j − 1728)

(ii) E6(q) = − j′3

j2(j − 1728)
.

PROOF. Multiply 5.13(ii) once and twice by 5.13(i). �

To find E4(q
l) and E6(q

l), and therefore a′, b′ ∈ Fp, it remains to derive an expression

for ̃′(q), where we write ̃(q) = j(ql). We compute ̃′ ∈ Z[[q]] using the idenity

Φl(j, ̃) = 0 ∈ Z[[q]],

where Φl denotes the classical modular polynomial. Applying the differential oper-

ator f 7→ q df
dq = f ′ to this identity yields the following identity of Laurent series:

j′ΦX(j, ̃) + l̃′ΦY (j, ̃) = 0. (5.3)

Here, ΦX and ΦY denote the partial derivatives ∂Φl/∂X , ∂Φl/∂Y .

Suppose that ΦY (j(q), ̃(q)) mod P is non-zero. Using relation (5.3) and lemma 5.13,

we derive

̃′(q) ≡ sdef
= − 18

l

b

a

ΦX(j(E ), h)

ΦY (j(E ), h)
j(E ) ∈ Fp.
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Together with corollary 5.14, this enables us to compute the coefficients of the Weier-

straß equation for E/C. We obtain the following formulas for a′ and b′:

a′ = − 1

48

s2

h(h− 1728)
∈ Fp

b′ = − 1

864

s3

h2(h− 1728)
∈ Fp.

Note that although we use the complex analytic theory to justify our computations,

all computations take place in Fp.

These formulas clearly require ΦY (j(q), ̃(q)) 6= 0 ∈ Fp. From relation (5.3), we

see that if we have ΦY (j(q), ̃(q)) = 0, then we also have ΦX(j(q), ̃(q)) = 0. For

ΦX (j(q), ̃(q)) = ΦY (j(q), ̃(q)) = 0 ∈ Fp, the point (j, j′) is a singular point for the

curve defined by Φl(X,Y ) = 0 over Fp. Using some algebraic geometry, one can

prove [50, Section 7] that we must necessarily have

|∆| ≤ 4l2,

where ∆ is the discriminant of the endomorphism ring End(E ) = O. The approach

presented in this section will therefore not work for all α ∈ O. However, in the

algorithm for computing the j-invariant of the canonical lift of E/Fp, we have the

freedom to choose the element α, and consequently the prime l, ourselves. If we

pick a smooth α ∈ O, the condition |∆| > 4l2 is automatically fulfilled. For the

remainder of this section, we assume |∆| > 4l2.

� The coefficients of the kernel polynomial

Knowing a Weierstraß equation

Y 2 = X3 + a′X + b′

for E/Fp, we proceed to compute the polynomial fC ∈ Fp[X ] that vanishes exactly

on the x-coordinates of the points in C ⊂ E[l]. We introduce the following power

series in Z[ 16 , ζ,
1

ζ(1−ζ) ][[q]]:

x(ζ; q) =
1

12
− 2

∞∑

n=1

qn

(1− qn)2
+
∑

n∈Z

ζqn

(1− ζqn)2
,

y(ζ; q) =
1

2

∑

n∈Z

ζqn(1 + ζqn)

(1− ζqn)3
.
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If we interpret q as exp(2πiτ) for some τ ∈ H, and write ζ = exp(2πiz), then x(ζ; q)

is just (2πi)2℘(z; τ) and we have y(ζ; q) = (2πi)3℘′(z; τ)/2. The importance of these

power series lies in the following lemma.

LEMMA 5.15. We have the following equalities of power series:

(i)

y(ζ; q)2 = x(ζ; q)3 − E4(q
l)

48
x(ζ; q) +

E6(q
l)

864
.

(ii) ∑

ζ∈µl,ζ 6=1

x(ζ; q) =
1

12
l(E2(q)− lE2(q

l)).

Here, E2(q) is given by E2(q) = 1− 24

∞∑

n=1

nqn

1− qn
∈ Z[[q]].

PROOF. This is proposition 7.2 in [50]. �

The map ζ 7→ (x(ζ; q), y(ζ; q)) gives an isomorphism between C∗/qZ and the C-

valued points of Y 2 = X3 − (E4(q)/48)X +E6(q)/864. The points in C are exactly

the ones that correspond to ζ ∈ µl. The hardest part in computing the coefficients

of fC is to compute the sum p1 of the x-coordinates of the points in C. From lemma

5.15(ii) we see that p1 equals

1

12
l(E2(q)− lE2(q

l))

for the q ∈ C belonging to our lifted curve C∗/qZ.

LEMMA 5.16. The following equalities hold in Z[[q]]:

(i)
j′′

j′
=

1

6
E2 −

1

2

E2
4

E6
− 2

3

E6

E4

(ii)
j′′

j′
− l ̃

′′

̃′
= −j

′2ΦXX(j, ̃) + 2lj′̃′ΦXY (j, ̃) + l2̃′2ΦY Y (j, ̃)

j′ΦX (j, ̃)
.

PROOF. For part (i), see [50, Proposition 7.1(iii)]. Part (ii) follows from differentiat-

ing the identity Φl(j, ̃) = 0 twice. �

Formula manipulation yields p1 =

l

6

[
−3

h2ΦXX(j, h) + 2ljsΦXY (j, h) + l2s2ΦY Y (j, h)

hΦX(j, h)
− 4l

a′2

b′
+ 36l

b′

a′
+ 4

a2

b
− 36

b

a

]
,
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where we temporarily write j = j(E ). To compute the other coefficients of fC , it

is more convenient to change the isogeny a bit. Let Ẽ/HO be complex analytically

isomorphic to C/(ω1Z + ω2Z). We also write Y 2 = X3 + aX + b for the Weierstraß

equation for Ẽ that reduces to the chosen equation Y 2 = X3 + aX + b for E/Fp.

We lifted the isogeny

E → E/C

over Fp to an isogeny

C/(ω1Z + ω2Z)→ C/(ω1Z + lω2Z)

given by z 7→ lz in characteristic 0. Write Y 2 = X3 + a′X + b′ for the isogenous

curve. To compute the coefficients of fC , it is more convenient to work with the

isogeny

C/(ω1Z + ω2Z)→ C/(
1

l
ω1Z + ω2Z)

given by z 7→ z. The kernel of this isogeny is the same as before, but the Weierstraß

equation for the isogenous curve is given by

Y 2 = X3 +
a′

l4
X +

b′

l6
.

We introduce a notation for the coefficients of the Weierstraß ℘-function. Let ℘(z)

be the Weierstraß ℘-function for the lattice ω1Z + ω2Z and let

℘(z) =
1

z2
+

∞∑

k=1

ckz
2k

be the corresponding Laurent series. Explicitly, one has

c1 =
−a
5
, c2 = −b/7

ck =
3

(k − 2)(2k + 3)

k−2∑

j=1

ckck−i−j , (k ≥ 3).

The coefficients c′k, corresponding to the lattice ω1

l Z + ω2Z, are defined similarly.

LEMMA 5.17. Let l be prime and let f be the polynomial that vanishes on the

x-coordinates of the points in the kernel of the isogeny

C/(ω1Z + ω2Z)→ C/(
1

l
ω1Z + ω2Z).
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Then

zl−1f(℘(z)) = exp

(
−1

2
p1z

2 −
∞∑

k=1

c′k − lck
(2k + 1)(2k + 2)

z2k+2

)
.

PROOF. This is theorem 8.3 in [50]. �

By equating powers of z on the left hand side and on the right hand side, we can now

compute the coefficients of f = x(l−1)/2 + a l−3

2

x(l−3)/2 + . . .+ a0. As an example:

a l−3
2

= −p1

2

a l−5
2

=
1

8
p2
1 −

c′1 − lc1
12

− l − 1

2
c1.

These formulas are valid modulo p for l < p. As we have |∆| < 4p, our assumption

l <
√
−∆/4 implies that we have l < p. We can therefore compute the polynomial

fC ∈ Fp[X ].

� Checking the eigenspace

The techniques presented in this section enable us to compute, on input a zero

h ∈ Fp of Φ(j(E ), X) ∈ Fp[X ], the polynomial fC ∈ Fp[X ] corresponding to the

isogeny E → E/C. Here E/C has j-invariant h ∈ Fp. We either have fC = f l or

fC = f l, and we now explain how we can check, for l ⊆ Õ, in which case we are.

Write l = (l, c + dπp), with l - c. Here, πp ∈ O is the image of the Frobenius

Fp ∈ End(E ) under the fixed isomorphism End(E )
∼−→ O.

The Frobenius acts on l ⊂ E [l] as multiplying by −c/d ∈ Fl. We test if

(Xp, Y p) = (−c/d) · (X,Y )

holds for the points in C, i.e., we compute both (Xp, Y p) and (−c/d) · (X,Y ) in the

ring

Fp[X,Y ]/(fC(X), Y 2 −X3 − aX − b).

Note that the · means repeated adding on the curve and (−c/d) · (X,Y ) can be

computed by employing division polynomials.

If we find that fC does not equal f l we know that the unique other zero h2 ∈ Fp

of

gcd(Xp −X,Φl(j(E ), X)) ∈ Fp[X ]

must be the j-invariant of E l and we repeat the computation from the beginning of

this section with h replaced by h2 to find the polynomial fC = f l ∈ Fp[X ].
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5.7 Algorithm for computing the canonical lift

In this section we give the algorithm to compute the j-invariant of a canonical lift of

an ordinary elliptic curve E/Fp with j-invariant j(E ) 6= 0, 1728 and endomorphism

ring End(E ) = O = O∆. We can choose the element α ∈ O that we use for the map

ρα : X∆(Cp)→ X∆(Cp) ourselves. We recall the conditions that α should satisfy.

1. α is contained in Z[Fp] ∼= Õ
2. α is primitive

3. α/α− 1 is a p-adic unit

4. for any prime divisor l of N(α), we have l - [O : Õ]

5. for any prime divisor l of N(α), we have l <
√
−∆/4

The input of the algorithm below consists of an ordinary curveE/Fp with j-invariant

j(E ) 6= 0, 1728 ∈ Fp, an element α ∈ O\Z as above, together with the factorization

(α) =
∏

i li into prime ideals, and a positive integer k. The output is the j-invariant

of the canonical lift j(Ẽ) in k digits accuracy.

Step 1. As in sections 5.5–5.6, compute the polynomial f l1
∈ Fp[X ] corresponding

to the subgroup E [l1] ⊂ E [l1]. In the same way, we compute a cycle of isogenies

E
l1−→ E l1 −→ · · · ln−→ E (α) ∼= E . (∗)

over Fp. The isomorphism E (α) ∼= E follows from the fact that principal ideals act

trivially. This is a good check for our computations so far.

Step 2. Choose an arbitrary lift E1/Qp, in two p-adic digits precision, of E/Fp.

Step 3. Lift the cycle (∗) of isogenies over Fp to a ‘cycle’ of isogenies over Qp in the

following way. For l = l1, we lift j(E l1) ∈ Fp to Zp as a root of Φl(j(E1), X) ∈ Zp[X ]

to h ∈ Zp. We use Hensel’s lemma for this lifting process. Hensel requires that
d

dX Φl(j(E ), X) is non-zero when evaluated in X = j(E l1) ∈ Fp. This requirement

is satisfied by assumption 5.

We have h = ρl(j(E1)). In the same way, we compute the ‘cycle’ of j-invariants

j(E1)
ρl1−→ j(E1)

l1 −→ · · · ρln−→ j(E1)
(α),

over Qp. This computation is carried out with two p-adic digits precision.
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Step 4. Update j(E1) according to the Newton formula

j(Ek+1) = j(Ek)− ρα(j(Ek))− j(Ek)

(α/ᾱ)− 1
for k ∈ Z≥1

to find j(E2) ∈ Zp. The value j(E2) is the two digit approximation of the canonical

lift j(Ẽ).

Step 5. Lift the cycle (∗) to a ‘cycle’ of j-invariants

j(E2)
ρl1−→ j(E2)

l1 −→ · · · ρln−→ j(E2)
(α),

over Qp. This computation is carried out with four p-adic digts precision. Update

j(E2) according to the Newton formula above. The value j(E3) is the four digit

approximation of the canonical lift j(Ẽ).

Step 6. Repeat step 5 with E2 replaced by Ek with k = 3, 4, etc. until we have

computed j(Ẽ) ∈ Zp with the desired precision. The precision is doubled in each

iteration step.

REMARK. There is a different way to lift the cycle (∗) of isogenies in step 3. The

polynomial f l has a unique Hensel lift to a factor fl ∈ Zp[X ] of the l-th division

polynomial Ψl of E1. This lift is the algorithmic version of the group scheme from

section 5.4: every choice of E1 gives us a subgroup E1[l] ⊂ E1[l]. Computing the

isogenous curve El
1 is now easy, since we can apply ‘Vélu’s formulas’ [64]. This

approach has the disadvantage that lifting f l ∈ Fp[X ] to fl ∈ Zp[X ] is rather

‘expensive’. Indeed, the polynomial f l has degree (l − 1)/2 for l > 2. In our

approach in step 3, we only perform a simple Hensel lift of a zero of a polynomial

of degree l+ 1.

The run time of this algorithm depends heavily on the primes li, i.e., on the smooth-

ness properties of (α). In computing the canonical lift of E/Fp, we have the freedom

to choose α ∈ O ourselves. Subject to the 5 conditions from the beginning of this

section, we want (α) to be smooth, i.e., the norm N(α) should be smooth.

Write α = c + dπp, with gcd(c, d) = 1 and with d 6= 0. Here πp ∈ Z[πp] = Õ
is an element of norm p. Condition 3 is satisfied precisely when p does not divide

2dπp. We conclude that α/α− 1 will be a p-adic unit for p > d.

The following lemma guarantees that there are enough smooth elements α sat-

isfying our conditions.
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LEMMA 5.18. Let ε ∈ (0, 1/2) be a real number and let πp be imaginary quadratic

with minimal polynomial π2
p−tπp+p = 0. Put t2−4p = ∆̃ and B = bexp(

√
log |∆̃|)c.

Let Aε be the set of c + dπp ∈ Z[πp] with c ∈ Z and 1 ≤ d ≤ 2 exp((log |∆̃|)1/2+ε)

satisfying the properties

� |c+ 1
2dt| ≤ |∆̃|1/2 exp((log |∆̃|)1/2+ε)

� c and d are coprime

� c+ dπp and p∆̃ are coprime.

If GRH holds true, the fraction of B-smooth elements in Aε is at least

exp(−2(log |∆̃|)1/2 log log |∆̃|)

for |∆̃| large enough, depending on ε.

PROOF. This is lemma 2 in [12]. �

An element α ∈ Z[πp] satisfying the conditions of lemma 5.18 automatically satisfies

the 5 conditions from the beginning of this section.

We find a suitable α by sieving in the set

S = {c+ dπp : c, d ∈ Z, d 6= 0, (c, d) = 1, c+ dπp and p∆̃ are coprime},

where ∆̃ is the discriminant of Õ. This is the main probabilistic step in the algorithm.

Note that α has norm bounded by |∆̃|1/2 exp(log(|∆̃|)1/2+ε).

PROOF OF THEOREM 5.3. Fix a real number ε ∈ (0, 1/2). We sieve for a smooth

element α ∈ Z[πp] \ Z. Next we apply the algorithm from this section, with this

principal ideal (α), to compute the j-invariant of the canonical lift in k digits accu-

racy.

It remains to analyse the run time of the algorithm. Searching in

{c+ dπp : c, d ∈ Z, d 6= 0, (c, d) = 1, c+ dπp and p∆̃ are coprime}

for a suitable B-smooth element α takes probabilistic time O(exp(
√

log p log log p)4)

by lemma 5.18, with B = bexp(
√

log p)c. Here, we used the estimate

|∆̃| ≤ 4p.

In the first step of the algorithm we compute the cycle of isogenies over Fp cor-

responding to the map ρα. We only have to perform ‘simple’ tasks in this step,
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like computing a modular polynomial, Euclidean division, computing a root of

Φl(j(E ), X) ∈ Fp[X ], etc. We compute the cycle in time O((B2(log p)3)1+o(1)).

In steps 3, 5 and 6 we lift the cycle to a ‘cycle’ of isogenies over Zp. Fix an integer

n ∈ Z>0 and assume that we have computed the cycle over Zp/(p
2n

). Lifting the

cycle to Zp/(p
2n+1

) boils down to evaluating the modular polynomial and some

Hensel lifts. We can lift the cycle in time O(B22n+1(log p)2).

Combining the sieving step, the computation of the cycle over Fp and the lifing

process, we see that the expected run time is O(B4+ε(log p)3+εk log k), which proves

the theorem. �

REMARK. Instead of sieving for a smooth element α ∈ S, we can also pick the

smallest prime l that splits in the order Õ of discriminant ∆̃. Write (l) = ll and let n

be the order of l ∈ Pic(Õ). Now let α be a generator of the principal ideal ln. If GRH

holds true, the Bach bound yields that l is of size O((log |∆̃|)2), but unfortunately

we do not have any guarantee that α/α−1 is a p-adic unit. In practice this condition

never poses a problem. Computing the canonical lift Ẽ may take a lot more time

however. Indeed, as class groups are ‘often’ cyclic it might very well be that [l] ∈
Pic(O) generates the Picard group. The length of the cycle of isogenies over Fp then

becomes O(|∆|1/2+o(1)), instead of O((log |∆̃|)1+o(1)) for the sieving method.

5.8 Computing the Hilbert class polynomial

Once we have computed one element j ∈ Ell∆(Qp) with high enough accuracy, it

is an easy matter to compute its conjugates under the action of the Picard group

Pic(O). Namely, let l = ll be a prime that splits in O. The conjugates of j ∈
Ell∆(Qp) under the action of [l], [l] ∈ Pic(O) are the 2 roots of Φl(j,X) ∈ Zp[X ].

If GRH holds true, we can compute a set of primes S generating Pic(O) with the

property that the largest element of S does not exceed the Bach bound O((log |∆|)2).
We get the following algorithm for computing the Hilbert class polynomial P∆.

Algorithm. (Non-archimedean algorithm)

Input: a negative discriminant ∆ < −4. Output: the Hilbert class polynomial P∆.

1. Apply the endomorphism ring algorithm to find a prime p and an ordinary

elliptic curve E/Fp with End(E ) = O∆.

2. Put k ←
(

π
√
|∆|

log p

∑
[a,b,c]∈F+

∆

1
a

)
+ logp

(
h
bh/2c

)
, with h = h(∆).

3. Compute µ−1(j(E )) ∈ Qp up to k p-adic digits accuracy using the algorithm in

section 5.7.
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4. Compute a set C of conjugates of µ−1(j(E )) under the action of Pic(O) in k

digits accuracy.

5. Put P∆ =
∏

j∈C(X − j) ∈ (Zp/(p
k))[X ].

6. Lift the coefficients of P∆ from Zp/(p
k) = Z/(pk) to Z, where we take the

representative between −pk/2 and pk/2. Return P∆ ∈ Z[X ].

THEOREM 5.19. If GRH holds true, then the non-archimedean algorithm has an

expected run time O(|∆|1+ε) for every ε > 0.

PROOF. The run time of step 1 is O(|∆|1/2+o(1)). To estimate the run time of step 3,

we apply theorem 5.3 with the k from step 2. We can compute the j-invariant of the

canonical lift ofE with high enough accuracy in time O(|∆|1/2+o(1)). Computing the

conjugates in step 4 takes time O(|∆|1+o(1)). Finally, we compute the polynomial

in step 5 by employing a ‘divide-and-conquer’ algorithm as in [24, Section 10.2]. �

REMARK. The run time of the non-archimedean approach is the same as the run

time for the complex analytic approach from section 3.3. Both run times are in a

sense best possible, since just writing down the polynomial P∆ ∈ Z[X ] already takes

time Õ(|∆|). Computer experiments have shown that both methods are equally fast

in practice.

� Implementation details

We give some tricks to speed up an implementation of the non-archimedean algo-

rithm. First of all, it is a good idea to precompute a reasonable amount of modular

polynomials. Experience has shown that computing the first 25 polynomials, i.e.,

for primes up to 100, suffices for discriminants down to −1012.

One can save some time in computing the cycles of isogenies over Fp. Let E/Fp

be an elliptic curve with End(E ) = O and let l ⊂ O be of norm l 6= p. After we

have computed a root h ∈ Fp of Φl(j(E ), X) ∈ Fp[X ] we have to check if h is the

j-invariant of E l, and not the j-invariant of E l. In many cases this check can be

performed very easily. Namely, suppose that l2 divides (α), i.e., we have to compute

the map ρl twice. The first time we apply the check proposed at the end of section

5.6 and compute the isogenous curve E l. The j-invariant of E l2 can now easily be

computed. Namely, we compute the 2 roots in Fp of Φl(j(E
l), X) ∈ Fp[X ] and note

that one of these roots has to be the j-invariant of E ll ∼= E (l) = E and hence we

know right away which root is the j-invariant of E l2 .
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Finally, the upper bound

k =
(π
√
|∆|

log p

∑

[a,b,c]∈F+
∆

1

a

)
+ logp

( h

bh/2c
)

for the required precision is somewhat pessimistic. Practical experience has shown

that for discriminants down to −1012 it suffices to work with

k =
π
√
|∆|

log p

∑

[a,b,c]∈F+
∆

1

a
+ 10

p-adic digits. This is a significant speed up in the practical performance of the

algorithm.

5.9 Example

We illustrate the non-archimedean algorithm by computing the Hilbert class poly-

nomial P∆ for ∆ = −639 = −32 · 71. First we find a finite field Fp and an elliptic

curve E/Fp with endomorphism ring O = O∆.

We apply the algorithm from section 5.1. As we have ∆ ≡ 1 mod 8, the equation

4p = t2 − ∆ has no solutions with p prime. The smallest integer t > 0 for which

(t2−4∆)/4 is prime is t = 4, leading to p = 643. We fix p for the rest of this section.

We apply the näıve algorithm and look for a curve with p + 1 ± t points. We find

that the curve E/Fp defined by

Y 2 = X3 + 89X − 89

of j-invariant j(E ) = 295 ∈ Fp has trace of Frobenius 4.

Let OK be the maximal order of K = Q(
√

∆). We have inclusions

Z[Fp]
2⊂ O 3⊂ OK ,

and we have to compute the endomorphism ring of E . The 2-division polynomial

X3 +89X−89 ∈ Fp[X ] splits completely, showing that E has CM by O. The prime

3 splits in OK . If E has CM by OK , the modular polynomial Φ3(j(E ), X) ∈ Fp[X ]

has 4 roots, cf. corollary 5.12. We compute gcd(Φ3(j(E ), X), Xp−X) = X − 429 ∈
Fp[X ]. We conclude that E does not have CM by OK and hence has endomorphism

ring O.
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We need to compute the canonical lift Ẽ/Qp up to k p-adic digits accuracy, with

k =
π
√
|∆|

log p

∑

[a,b,c]∈F+
∆

1

a
.

The Picard group Pic(O) has order 14 and representing the elements as binary

quadratic forms as in section 3.3, we find k ≈ 44. We will compute j(Ẽ) ∈ Qp up

to 45 p-adic digits precision.

As smooth element α ∈ O \ Z for the map ρα : X∆(Cp)→ X∆(Cp) we will use

α = πp − 108 of norm 11875 = 54 · 19. Here, πp = 4+
√

∆
2 is an element of norm p.

We factor

(α) = p4
5 · p19 = (5, πp − 3)4 · (19, πp − 13).

We compute the action of the prime ideal p5 on j(E ) ∈ Fp. If we evaluate the

modular polynomial Φ5(X,Y ) ∈ Fp[X,Y ] in X = j(E ) = 295 we get a polynomial

that has 2 roots in Fp, namely 449 and 532. From this we deduce that p5 sends

j(E ) to one of these roots. We do not know which one yet.

Let E/C have j-invariant 449 ∈ Fp, corresponding to a cyclic subgroup C ⊂
E [5]. We either have C = E [p5] or C = E [p5]. As in section 5.6, we compute the

Weierstraß equation

Y 2 = X3 + 390X + 466

for E/C. We get the x-coordinates of the points in C as zeroes of

fC = X2 + 614X + 471 ∈ Fp[X ].

The eigenvalue for the action of Frobenius on the torsion E [p5] is 3 ∈ F5. We now

check whether

(Xp, Y p) = 3 · (X,Y )

holds for the points in C, i.e., we compute both (Xp, Y p) and 3 · (X,Y ) in the ring

Fp[X,Y ]/(fC , Y
2 −X3 − 89X + 89).

Here, the · means adding on the curve. It turns out that (Xp, Y p) and 3 · (X,Y ) are

the same. We deduce that we have j(E )p5 = 449 ∈ Fp.

The action of p5 on the j-invariant 449 ∈ Fp is now easier to compute. The

polynomial Φ5(449, X) ∈ Fp[X ] has 2 roots in Fp, but one of these roots corresponds

to the action of p5 and is therefore equal to j(E ). We pick the other root 73 ∈ Fp.

If we compute the entire cycle of j-invariants over Fp, we get

295
p5−→ 449

p5−→ 73
p5−→ 55

p5−→ 328
p19−→ 295.
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We knew beforehand that this cycle is closed, since we know that (α) acts trivially

on j(E ).

We now lift E/Fp to E1/Qp by lifting the coefficients of its Weierstraß equation

arbitrarily. The polynomial Φ5(j(E1), X) ∈ Zp[X ] has exactly 2 roots, one of which

reduces to 449 ∈ Fp. Taking the lift E1/Qp defined by Y 2 = X3 + 89X − 89 of

j-invariant 295− 233p+O(p2) ∈ Qp, we compute the ‘cycle’

295−233p
p5−→ 449+296p

p5−→ 73−236p
p5−→ 55+155p

p5−→ 328+131p
p19−→ 295−236p

over Qp. We update j(E1) according to the ‘Newton formula’

j(Ek+1) = j(Ek)− ρα(j(Ek))− j(Ek)

(α/α)− 1
for k ∈ Z≥1

and find that j(E2) = 295− 155p is the two digit approximation of the j-invariant

of the canonical lift Ẽ/Qp.

Starting from j(E2), we now lift the cycle to four p-adic digits precision, compute

j(E3) from this, and so on. We obtain

j(Ẽ) = 295 +O(p)

= 295− 155p+O(p2)

= 295− 155p+ 195p2 + 287p3 +O(p4)

= 295− 155p+ 195p2 + 287p3 − 153p4 + 245p5 + 272p6 + 298p7 +O(p8).

= 295− 155p+ 195p2 + 287p3 − 153p4 + 245p5 + 272p6 + 298p7 − 277p8

+170p9 − 123p10 − 86p11 − 165p12 − 115p13 + 195p14 + 56p15 +O(p16).

We continue this process until we have computed the canonical lift in 45 p-adic digits

accuracy.

Next, we compute the conjugates of j(Ẽ) under Gal(HO/K) ∼= Pic(O). The

Picard group Pic(O) is cyclic of order 14 and is generated by a prime of norm 5.

We compute the conjugates of j(Ẽ) by employing the modular polynomial Φ5: the

roots of Φ5(j(Ẽ), X) ∈ Zp[X ] give us the conjugates j(Ẽ)p5 and j(Ẽ)p5 , etc. In the

end we expand the degree 14 polynomial

P−639 =
∏

[I]∈Pic(O)

(X − j(Ẽ)I ) ∈ Z[X ].

The polynomial P∆ has coefficients up to 126 decimal digits.
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6.1 Introduction

In section 3.3, we briefly discussed the classical algorithm to compute, on input of a

negative discriminant ∆ < 0, the Hilbert class polynomial P∆ for the ring class field

HO corresponding to the order O of discriminant ∆. The run time is O(|∆|1+ε) for

every ε > 0. In chapter 5 we gave a non-archimedean algorithm to compute P∆ that

has the same asymptotic run time.

As noted in chapter 3, any algorithm that computes P∆ will have a run time that

is exponential in log |∆|. Indeed, the final step of any algorithm will be writing down

the answer. The degree of P∆ equals the class number h(∆) and by the Brauer-Siegel

theorem, h(∆) grows asymptotically like |∆|1/2+o(1). Hence any algorithm has to

write down roughly |∆|1/2 coefficients.

A serious drawback of computing the Hilbert class polynomial P∆ is that the

coefficients are huge. Not only do they grow exponentially in size for |∆| → ∞,

but also for moderately small discrimimants, the coefficients are massive. As an

example, consider the polynomial for ∆ = −71:

P−71 =X7 + 313645809715X6− 3091990138604570X5

+98394038810047812049302X4

−823534263439730779968091389X3

+5138800366453976780323726329446X2

−425319473946139603274605151187659X

+737707086760731113357714241006081263 ∈ Z[X ].

With modern computers we can only compute P∆ for |∆| at most 107 in a reasonable

amount of time. This is quite unsatisfactory.

History tells us that we should be able to do better. In his Lehrbuch der Algebra

(1908) [65], Weber explains that function values of ‘smaller’ functions than the j-
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function sometimes also generate the ring class field HO. For example, the j-function

has a holomorphic cube root γ2 : H → C with integral Fourier expansion. In §125

we read:

γ2(ω) ist eine Klasseninvariante, wenn ω die Wurzel einer quadratischen Form ist,

deren Diskriminante und erster Koeffizient durch 3 nicht teilbar sind, während der

mittlere Koeffizient durch 3 teilbar ist.

That γ2(ω) is a class invariant means that γ2(ω) generates the ring class field of the

order Z[ω]. A more general definition of class invariant will be given in section 6.3.

From Weber’s remark we see that for discriminants ∆ with 3 - ∆, we can also

use the function γ2 to generate the ring class field. The minimal polynomial of

γ2(
−3+

√
−71

2 ) is

P γ2

−71 =X7 + 6745X6 − 327467X5 + 51857115X4 + 2319299751X3

+41264582513X2− 307873876442X+ 903568991567 ∈ Z[X ].

The logarithmic height of the coefficients of P γ2

−71 is only one third of the height

of P−71. This should come as no surprise, since we have γ3
2 = j. We can even do

better in this case however. In §127, Weber introduces a function f : H → C with

the property that f(ω) generates the ring class field of Z[ω] for all quadratic orders

Z[ω] in which 3 is unramified and 2 splits completely. For ∆ = −71, a root of the

polynomial

P f
−71 =X7 +X6 −X5 −X4 −X3 +X2 + 2X − 1 ∈ Z[X ]

generates the Hilbert class field of Q(
√
−71). Reading Weber, one finds many the-

orems, properties and questions on class invariants. It is not always clear whether

his statements are actually theorems or just observations.

We need more theory than described in Weber’s Lehrbuch to be able to treat

class invariants in a systematic and algorithmic way. Our main tool will be Shimura’s

reciprocity law from 1971, which we explain in sections 6.4 and 6.5. Just as for the

algorithms to compute the Hilbert class polynomial P∆, we distinguish two cases:

the complex analytic and the non-archimedean setting.

In the complex analytic setting, we follow Gee [26] and Stevenhagen [59]. We

explain how Shimura reciprocity allows us to compute ‘small’ polynomials, like P f
−71,

that generate the ring class field.

If we work over the non-archimedean field Qp, Shimura reciprocity does not

suffice. In sections 6.6–6.9 we explain how one can work with class invariants in this

case.
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6.2 The modular function field

The modular group SL2(Z) acts in a natural way on the complex upper half plane

H and its completion H = H ∪P1(Q). A matrix A =
(

a
c

b
d

)
∈ SL2(Z) acts via

Az =
az + b

cz + d
(z ∈H).

The quotient SL2(Z)\H has the structure of a compact Riemann surface and the

modular j-function gives an isomorphism

j : SL2(Z)\H ∼−→ P1(C).

Thinking geometrically, we interpret SL2(Z)\H as the modular curve X(1) as in

section 5.3. The elements of the function field F1,C of the curve X(1) over C are

called modular functions over C of level 1. It is well known [37, Theorem 6.1] that

we have F1,C = C(j).

In order to define modular functions of higher level, we first define the principal

congruence subgroup

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1 mod N, b ≡ c ≡ 0 mod N

}

of SL2(Z) for integers N ∈ Z>0. Another way of phrasing this, is saying that Γ(N)

is the kernel of the natural reduction map SL2(Z)→ SL2(Z/NZ). Here, SL2(Z/NZ)

is the group of matrices with coefficients in the ring Z/NZ and with determinant

1 ∈ Z/NZ. A standard argument as in [37, Section 6.1] shows that we have an exact

sequence

0 −→ Γ(N) −→ SL2(Z) −→ SL2(Z/NZ) −→ 0.

The quotient Γ(N)\H has the structure of a compact Riemann surface, and as

such, it is isomorphic to the modular curve X(N) over C, cf. section 5.3. We let

FN,C be the function field of the curve X(N). The elements of FN,C are called

modular functions over C of level N . Explicitly, a modular function of level N is a

meromorphic function f : H → P1(C) that is invariant under Γ(N) ⊆ SL2(Z) for

some N ≥ 1. Since we have
(

1
0

N
1

)
∈ Γ(N), the function f is invariant under τ 7→

τ +N . Hence, f is periodic and has a Fourier expansion in q1/N with q = exp(2πiτ).

The natural map X(N)→ X(1) is a Galois cover with group

SL2(Z)/(±1 · Γ(N)) = SL2(Z/NZ)/± 1.
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Equivalently, the extension FN,C/F1,C is Galois with group SL2(Z/NZ)/ ± 1, cf.

[37, Theorem 6.2].

We want modular functions to yield algebraic values, so we make the step from

C to a number field as base field. The modular curve X(N) can be defined over

the cyclotomic field Q(ζN ), where ζN is a primitive N -th root of unity. We define

FN to be the function field of X(N) over Q(ζN ). We have F1 = Q(j). Elements

of FN are called modular functions of level N . Hence, if we use the term ‘modular

function’ without any condition, we always mean a modular function over Q (and

not over C). Modular functions are functions on X(N)Q(ζN ), i.e., functions from

FN,C having Fourier coefficients in Q(ζN ).

We describe the Galois group of the extension FN/F1. For d ∈ (Z/NZ)∗, let

σd ∈ Gal(Q(ζN )/Q) be the field automorphism that raises ζN to the d-th power.

The algebraic closure of Q inside F1 equals Q, and we have a natural isomorphism

Gal(F1(ζN )/F1) ∼= Gal(Q(ζN )/Q) ∼= (Z/NZ)∗,

which we can lift to FN in the following way. For f ∈ FN with Fourier expansion∑
k ck · qk/N ∈ Q(ζN )((q1/N )) we define fσd =

∑
k σd(ck) · qk/N . The function fσd

is again contained in FN . We get a group action of (Z/NZ)∗ on the field FN . We

have Gal(FN/F1(ζN )) ∼= SL2(Z/NZ)/ ± 1, and we can describe Gal(FN/F1) as a

semidirect product

(SL2(Z/NZ)/± 1) o (Z/NZ)∗ ∼= GL2(Z/NZ)/± 1.

Here we embed (Z/NZ)∗ in GL2(Z/NZ) as the subgroup

{(
1 0
0 d

)
| d ∈ (Z/NZ)∗

}
⊂ GL2(Z/NZ).

Define the modular function field F as the union F =
⋃

N≥1 FN . The extension

F/F1 is an infinite Galois extension. The discussion above shows that we have an

exact sequence

1 −→ {±1} −→ GL2(Ẑ) −→ Gal(F/F1) −→ 1.

REMARK. We can also give generators for the fields FN,C and FN . Define the

function f by

f(w, τ) = −2735 · g2(τ)g3(τ)
∆(τ)

℘(w; 〈1, τ〉)
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for w ∈ C and τ ∈ H. Here, ℘(·; 〈1, τ〉) is the Weierstraß ℘-function associated to

the lattice Z+Z ·τ . The function f is called the first Weber function. Fix an integer

N > 1 and for r, s ∈ 1
N Z/Z, not both 0, define the Fricke function fr,s of level N by

fr,s(τ) = f (rN + s, τ) .

The Fourier coefficients of fr,s are contained in Q(ζN ). If we fix τ and let r, s vary

over 1
N Z/Z, not both equal to 0, we get the normalized x-coordinates of the N 2− 1

non-trivial points of order N of the complex elliptic curve C/(Z + Z · τ).

THEOREM 6.1. We have

FN,C = C(j, fr,s | r, s ∈ 1
N Z/Z, not both 0)

and

FN = Q(j, fr,s | r, s ∈ 1
N Z/Z, not both 0)

PROOF. [37, Theorem 6.2] and [37, beginning of section 6.3].

6.3 Class invariants

Let K be an imaginary quadratic number field. We define the ring of finite K-adeles

K̂ = K ⊗Z Ẑ. Let K̂∗ = (K ⊗Z Ẑ)∗ be the unit group of K̂. The group K̂∗ is called

the group of finite K-ideles. We have

K̂∗ =
∏′

p finite

K∗p ,

where the restricted product is taken with respect to the unit groups of the maximal

order of the completion Kp. Explicitly, for an element α = (αp)p ∈ K̂∗, with p

ranging over the finite primes of K, nearly all components αp are units.

Let Kab be the maximal abelian extension of K. Class field theory tells us that

Gal(Kab/K) can be described by an exact sequence

1 −→ K∗ −→ K̂∗
Artin−→ Gal(Kab/K) −→ 1.

Let

Ô = lim
←N

(O/NO) = O ⊗Z Ẑ

be the profinite completion of a not necessarily maximal order O of K. We have

an inclusion Ô∗ ⊂ K̂∗. Let HO be the ring class field corresponding to O. The
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unit group Ô∗ maps onto Gal(Kab/HO) under the Artin map. We therefore have

an exact sequence

1 −→ O∗ −→ Ô∗ −→ Gal(Kab/HO) −→ 1.

We obtain Kab as the union of finite extensions HN,O corresponding to the finite

quotients

Ô∗ � (Ô/NÔ)∗ = (O/NO)∗.

The field HN,O is called the ray class field of conductor N for the order O. The

Artin map gives an isomorphism

(O/NO)∗/im[O∗] ∼−→ Gal(HN,O/HO).

If O is the maximal order of K, the field HN,O is the ray class field of conductor N

of K.

We use the unique infinite prime of K to view C as the archimedean completion

of K. The following theorem, known as the second main theorem of complex mul-

tiplication, gives the link between modular functions and the ray class fields of an

order.

THEOREM 6.2. Let f be a modular function of level N ≥ 1 and let O be an

imaginary quadratic order. Write O = Z[τ ] with τ ∈ H. Then we have

f(τ) ∈ HN,O

and

HN,O = K(g(τ) | g ∈ FN , g(τ) 6=∞).

PROOF. The first statement follows directly from the second. The second statement

can be found for instance in [37, Chapter 10]. �

The first main theorem of complex multiplication, theorem 3.4, is a direct conse-

quence of theorem 6.2. Indeed, the j-function is modular of level 1 and without

poles on H, and we have an equality H1,O = HO.

Theorem 6.2 tells us that if we evaluate a modular function f of level N in a

generator τ for an order O, we end up in the ray class field of conductor N for this

order. It may of course happen that f(τ) already lives in a smaller field than HN,O.

Following Weber, we call f(τ) a class invariant if we have

K(f(τ)) = K(j(τ)).
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The functions γ2 and f mentioned in the introduction are examples of functions

that yield class invariants when evaluated in appropriate points τ ∈ H. The log-

arithmic heights of the Fourier coefficients of these functions are a constant factor

smaller than the height of the Fourier coefficients of j. The minimal polynomial of

e.g. a class invariant f(τ) has smaller coefficients than the Hilbert class polynomial.

We are therefore led to consider the following problem:

PROBLEM. Given an imaginary quadratic order O = Z[τ ], find a modular function

f with the property that f(τ) is a class invariant and with the property that the min-

imal polynomial of f(τ) lives in Z[X ] and has ‘smaller’ coefficients than the Hilbert

class polynomial. Moreover, if f(τ) is a class invariant, compute the conjugates of

f(τ) under the Galois group Gal(HO/K) ∼= Pic(O).

This problem is not completely well-posed, since there is no definition of the word

‘smaller’. In the remainder of this chapter we will show how to use various modular

functions, for which we gain a constant factor in the logarithmic height of the coeffi-

cients. As an example, for γ2 we gain a constant factor 3, and for Weber’s function f

we gain a factor 72.

6.4 Shimura reciprocity over the ring class field

Although Weber had already partially ‘solved’ the problem from section 6.3, his

method consisted mostly of clever tricks and can hardly be considered to be a ‘sys-

tematic way’. For more than 50 years, all theory regarding class invariants relied

on Weber’s Lehrbuch. This situation changed with the appearance of Shimura’s

textbook [56], and more specifically with his reciprocity law.

Shimura reciprocity provides a link between the exact sequences describing the

Galois groups Gal(F/F1) and Gal(Kab/HO). Write O = Z[τ ] with τ an algebraic

integer. We will define a map gτ connecting the two exact rows in the following

diagram.

1 // O∗ // Ô∗ Artin //

gτ

��

Gal(Kab/HO) // 1

1 // {±1} // GL2(Ẑ) // Gal(F/Q(j)) // 1

(6.1)

The map g = gτ : Ô∗ → GL2(Ẑ) sends an idele x ∈ Ô∗ to the transpose of the

matrix representing multiplication by x on the free Ẑ-module Ô = Ẑ · τ + Ẑ with
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respect to the basis [τ, 1]. If τ has minimal polynomial X2 + BX + C ∈ Z[X ], we

have

gτ : x = sτ + t 7−→
(
t−Bs −Cs
s t

)
,

as may be checked easily. We get an action of the group Ô∗ on the modular function

field F .

Let f ∈ F be a modular function of levelN ≥ 1. Shimura’s reciprocity law states

that the Galois conjugate (f(τ))x of f(τ) under the Artin symbol x ∈ Gal(Kab/HO)

can be computed via the reciprocity relation

(f(τ))x = (fgτ (x−1))(τ),

cf. [56, Theorem 6.31]. If the extension F/Q(f) is Galois, we have the fundamental

equivalence

(f(τ))x = f(τ) ⇐⇒ fgτ (x) = f.

The implication⇐ is immediate from the reciprocity relation. The other implication

requires the hypothesis and an additional argument [56, Proposition 6.33].

Suppose that F/Q(f) is Galois. If we want to know whether a given value

f(τ) is a class invariant, we need to check whether all x ∈ Ô∗ act trivially on f(τ).

Shimura reciprocity law tells us that this is equivalent with checking whether all

gτ (x) ∈ GL2(Ẑ) fix the function f . The infinite groups Ô∗ and GL2(Ẑ) are not

directly suited for explicit computations. However, theorem 6.2 tells us that for f

of level N ≥ 1, the function value f(τ) lives in the ray class field HN,O of conductor

N for the order O = Z[τ ]. Hence, the action of Ô∗ on f(τ) can be computed via

the finite quotient (Ô/NÔ)∗ = (O/NO)∗. We obtain a diagram with finite groups

and exact rows.

O∗ −→ (O/NO)∗
Artin−→ Gal(HN,O/HO) −→ 1ygτ

{±1} −→ GL2(Z/NZ) −→ Gal(FN/Q(j)) −→ 1

We compute generators x1, . . . , xk for (O/NO)∗ and map them to GL2(Z/NZ) using

the map gτ . The value f(τ) is contained in the ring class field HO if and only if

gτ (x1), . . . , gτ (xk) act trivially on f . If we for instance also know that there is an

inclusion Q(j) ⊆ Q(f), then f(τ) is also a class invariant if gτ (x1), . . . gτ (xk) act

trivially on f .

All that we need to know is the explicit action of GL2(Z/NZ) on f . It suffices

to know the action of the ‘standard generators’ S, T ∈ SL2(Z/NZ) on f and the

action of (Z/NZ)∗ on the Fourier coefficients of f . Using Shimura reciprocity, it is
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a rather mechanical process to check whether f(τ) is a class invariant or not. In [26]

there is a large number of examples. We give two examples of statements proven

there.

The j-function has a holomorphic cube root γ2 : H → C with integral Fourier

expansion. The function γ2 is modular of level 3 and the matrices S, T ∈ SL2(Z)

act via

γ2 ◦ S = γ2 γ2 ◦ T = ζ−1
3 γ2.

Let O be the maximal order of K = Q(
√
D) and let τ = −B+

√
D

2 be a generator of

O as a Z-algebra. Theorem 1.10 of [26] states:

3 - D =⇒ ζB
3 γ2(τ) is a class invariant and P γ2

D ∈ Z[X ].

This is exactly Weber’s result that we quoted in section 6.1.

For the second example, define the Dedekind η-function by the product expan-

sion

η(z) = q1/24
∞∏

n=1

(1− qn), in q = exp(2πiz).

The η-function is holomorphic and non-zero for z ∈ H. Define the Weber functions

f(z) = ζ−1
48 ·

η( z+1
2 )

η(z)
, f1(z) =

η( z
2 )

η(z)
, f2(z) =

√
2 · η(2z)

η(z)
,

where ζ48 = exp(2πi/48) is a primitive 48-th root of unity. The Weber functions are

modular of level 48. The notation suggests that they are conjugates over Q(j), but

this is not the case. In fact, f satisfies the relation

(X24 − 16)3 − jX24 ∈ Z[j,X ]

and both f1 and f2 satisfy

(X24 + 16)3 − jX24 ∈ Z[j,X ].

The notation f, f1, f2 is inspired by the fact that f, f1, f2 have integral Fourier ex-

pansion. We stick to this perhaps confusing historical notation. The matrices

S, T ∈ SL2(Z) act via

(f, f1, f2) ◦ S = (f, f2, f1), (f, f1, f2) ◦ T = (ζ−1
48 f1, ζ

−1
48 f, ζ2

48f2).
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Let O be the maximal order of K = Q(
√
D) and suppose that D = disc(K) is

congruent to 1 modulo 8. Let τ = −1+
√

D
2 be a generator for O as a Z-algebra.

Theorem 1.15 of [26] states:

3 - D =⇒ ζ48f2(τ) is a class invariant and P ζ48f2
D ∈ Z[X ].

We see that in both examples there is a condition on the discriminant of the

number field. In the second example, the condition 3 - D can be removed by replacing

ζ48f2 by ζ16f
3
2.

To further illustrate Shimura reciprocity, we prove a theorem concerning Weber

functions and a discriminant D with D ≡ 5 mod 8. First we state a lemma that

will help us with the explicit computations. For a matrix A ∈ SL2(Z), we denote by

AN ∈ SL2(Z/NZ) its reduction modulo N .

LEMMA 6.3. Let N be a prime power, and let
(

a
c

b
d

)
N
∈ SL2(Z/NZ) be a matrix.

For (c,N) = 1, define y = (a + 1)c−1 ∈ Z/NZ. Otherwise, for (a,N) = 1, define

z = (c+ 1)a−1 ∈ Z/NZ. Then
(

a
c

b
d

)
N

can be written as

(
a b
c d

)
=

{
(T yST cST dy−b)N for (c,N) = 1
(ST−zST−aST bz−d)N for (a,N) = 1.

PROOF. This is lemma 6 in [26]. �

THEOREM 6.4. Let K be an imaginary quadratic number field with discriminant

D ≡ 5 mod 8. Let O = Z[
√
D] be the order of index 2 in the maximal order of K.

Then the following holds:

3 - D=⇒ f(
√
D) is a class invariant

3 | D=⇒ f(
√
D)3 is a class invariant.

Furthermore: P f
D ∈ Z[X ].

PROOF. The inclusion Q(j) ⊂ Q(f) yields that the extension F/Q(f) is Galois, so

we can apply Shimura reciprocity. We have to compute generators x1, . . . , xk of

(O/48O)∗, map them to GL2(Z/48Z) using the map g√D and prove that the ele-

ments g√D(x1), . . . , g√D(xk) ∈ GL2(Z/48Z) act trivially on f under the conditions

of the theorem.

The Chinese remainder theorem gives us natural isomorphisms (O/48O)∗ ∼=
(O/3O)∗ × (O/16O)∗ and GL2(Z/48Z) ∼= GL2(Z/3Z)×GL2(Z/16Z). We will deal

with (O/3O)∗ and (O/16O)∗ separately. We use the Chinese remainder theorem to
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lift the action of GL2(Z/3Z) to F48, and embed S3, T3 ∈ SL2(Z/3Z) in SL2(Z/48Z)

as

S3 7−→
(

33 32
16 33

)
48

= (T 2S3T−16ST 14)48

T3 7−→
(

1 16
0 1

)
48

= (T 16)48.

This yields an action of S3, T3 on F48. The action of k ∈ (Z/3Z)∗ is given by ζ3 7→ ζk
3

and ζ16 7→ ζ16. We obtain the following action of S3, T3 on f, f1, f2:

(f, f1, f2) ◦ S3 = (f, f1, f2), (f, f1, f2) ◦ T3 = (ζ2
3 f, ζ2

3 f1, ζ
2
3 f2). (6.2)

Similarly, we lift the action of GL2(Z/16Z) to F48. We embed S16, T16 ∈ SL2(Z/16Z)

in SL2(Z/48Z) as

S16 7−→
(

16 15
33 16

)
48

= (T 15ST 15S−1T 15)48

T16 7−→
(

1 33
0 1

)
48

= (T 33)48.

This yields an action of S16, T16 on F48. The action of k ∈ (Z/16Z)∗ is given by

ζ3 7→ ζ3 and ζ16 7→ ζk
16. We obtain the following action of S16, T16 on f, f1, f2:

(f, f1, f2) ◦ S16 = (f, f2, f1), (f, f1, f2) ◦ T16 = (ζ5
16f1, ζ

5
16f, ζ

6
16f2). (6.3)

We compute generators for (O/3O)∗. For D ≡ 1 mod 3, the prime 3 splits in O
and we take −1,

√
D as generators for (O/3O)∗ ∼= Z/2Z×Z/2Z. It is easily checked

that the corresponding matrices
(

2
0

0
2

)
,
(

0
1

1
0

)
∈ GL2(Z/3Z) act trivially on f. ForD ≡

2 mod 3, the prime 3 is inert in O and we take 1 +
√
D as generator for (O/3O)∗ ∼=

(Z/8Z). The corresponding matrix
(

1
1

2
1

)
∈ GL2(Z/3Z) acts trivially on f. Finally,

we see from the transformation rules (6.2) that every matrix in GL2(Z/3Z) acts

trivially on f3.

Computing generators for (O/16O)∗ is slightly more difficult. Let A be the

maximal order of K. First we compute the structure of (A/16A)∗. Since we assumed

D ≡ 5 mod 8, the prime 2 is inert in A. We localize and complete the ring A at the

prime ideal (2). We have A(2) = Z2[
−1+

√
D

2 ], the unramified quadratic extension

of Z2. The unit group A∗(2) is isomorphic to µ3 × (1 + 2A(2)), with µ3 the group

of 3-rd roots of unity, cf. [46, Proposition II.5.3]. Hence, we have to compute (1 +

2A(2))/(1 + 16A(2)). We have a natural isomorphism

(1 + 2kA(2))/(1 + 22kA(2))
∼−→ A(2)/2

kA(2)

1 + 2kx 7−→ x.
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On the right hand side, we take the generators −1 and −1+
√

D
2 for A(2)/2

kA(2) and

get

(1 + 2A(2))/(1 + 16A(2)) ∼= 〈−1〉 × 〈1 + 2−1+
√

D
2 〉 × 〈1 + 4−1+

√
D

2 〉,
a group of type (2)× (8)× (4).

We have A∗(2) = µ3 ×O∗(2). The inclusions

1 + 16A(2)

2⊃ 1 + 16O(2)

2⊃ 1 + 32A(2)

show that (1 +2O(2))/(1 +16O(2)) is an abelian group of type (2)× (8)× (8). Since

−1 + 4−1+
√

D
2 = −1 + 2

√
D has order 8 in (O/16O)∗, we conclude

(O/16O)∗ ∼= 〈−1〉 × 〈
√
D〉 × 〈−1 + 2

√
D〉.

The matrix corresponding to
√
D ∈ (O/16O)∗ is

(
0
1

D
0

)
∈ GL2(Z/16Z). Using

lemma 6.3 we write this matrix as

(
0 5
1 0

)
=
(

1 0
0 11

)
T 11ST 3ST 11 ∈ GL2(Z/16Z)

for D ≡ 5 mod 16. Using the transformation formulas (6.3), it is easily checked that

this matrix fixes f. The computation for D ≡ 13 mod 16 proceeds similarly.

The matrix corresponding to −1+2
√
D ∈ (O/16O)∗ is

(−1
2

10
−1

)
∈ GL2(Z/16Z),

independent of D mod 16. We write

(−1 10
2 −1

)
=
(

1 0
0 13

)
ST 11STST 7 ∈ GL2(Z/16Z),

and it easily checked that this matrix leaves f invariant. We conclude that f(
√
D) is

a class invariant for 3 - D, and that (f(
√
D))3 is a class invariant for 3 | D.

It remains to prove that P f
D has integer coefficients. Let σ ∈ Aut(C) denote

complex conjugation. The Weber function f takes on real values along the imaginary

axis, and hence we have σ(f(
√
D)) = f(

√
D). Since P f

D is the minimal polynomial of

f(
√
D) over K, we have an equality

P f
D = (P f

D)σ .

As f(
√
D) is also integral over O, we have P f

D ∈ Z[X ]. �
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6.5 Shimura reciprocity

Knowing that f(τ) is a class invariant does not enable us yet to compute the minimal

polynomial g of f(τ) overK = Q(τ). If g has integral coefficients, we could compute

f(τ) ∈ C with very high accuracy and use the LLL-algorithm to compute g. This

is a bad idea however, since the accuracy needed for this approach would be much

too high.

In this section we describe a more general version of Shimura reciprocity that

enables us to compute the conjugates of f(τ) ∈ HO under the Galois action of

Gal(HO/K) ∼= Pic(O). For this we need to consider the full automorphism group

Aut(F) of the modular function field F , rather than the subgroup Gal(F/Q(j)) ⊂
Aut(F) that we used in section 6.4.

Besides the action of GL2(Ẑ), there is also an action of the group GL2(Q)+ of

rational 2× 2-matrices with positive determinant on F . Namely, for A ∈ GL2(Q)+

we define fA(τ) = f(Aτ). We get a homomorphism GL2(Q)+ → Aut(F), the kernel

of which is the subgroup of matrices

(
a 0
0 a

)

with a ∈ Q∗. We identify the kernel with Q∗.

Let Q̂ = Q ⊗Z Ẑ be the finite adele ring. We obtain an action of the group

GL2(Q̂) on F in the following way. Write an element x ∈ GL2(Q̂) as

x = u · α,

with u ∈ GL2(Ẑ) and α ∈ GL2(Q)+. The elements u and α are not uniquely

determined by x, since we have

GL2(Ẑ) ∩GL2(Q)+ = SL2(Z).

However, the action

fu·α = (fu)α

is well-defined, cf. [37, Theorem 7.4]. The exact sequence

1 −→ Q∗ −→ GL2(Q̂) −→ Aut(F) −→ 1

describes the full automorphism group Aut(F). The hard part in proving that this

sequence is exact, is the surjectivity. See for instance [37, Theorem 7.6] or [56,

Theorem 6.23].
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The map gτ from section 6.4 has a natural Q-linear extension

gτ : K̂∗ = (Ô ⊗Z Q)∗ → GL2(Q̂),

which we also denote by gτ . We get a diagram with exact rows.

1 // K∗ // K̂∗
Artin //

gτ

��

Gal(Kab/K) // 1

1 // Q∗ // GL2(Q̂) // Aut(F) // 1

(6.4)

Shimura reciprocity law states that also for this map gτ we have the reciprocity

relation

(f(τ))x = (fg(x−1))(τ)

for all x ∈ K̂∗.
Let f(τ) be a class invariant. We want to compute f(τ)a for an ideal class

[a] ∈ Pic(O). It suffices to pick an idele x ∈ K̂∗ that locally generates the Ô-ideal

a⊗Z Ẑ. We then have

f(τ)a = f(τ)x.

Such an x exists since every invertible O-ideal is locally principal. The idele x is

only determined up to multiplication by elements of Ô∗. However, since f(τ) is a

class invariant, we have f(τ)u = f(τ) for u ∈ Ô∗.
Explicitly, we view the elements of Pic(O) as quadratic forms [a, b, c] just like

we did in section 3.3. Recall that the form [a, b, c] corresponds to the invertible

O-ideal with Z-basis [−b+
√

D
2 , a]. We now fix τ to be the unique generator of O with

Tr(τ) ∈ {0, 1}. We may then take the idele x = (xp)p ∈ K̂∗ with components

xp =





a if p - a
−b+

√
D

2 if p | a and p - c
−b+

√
D

2 − a if p | a and p | c,

cf. [26, Lemma 19]. The reciprocity relation yields

f(τ)[a,−b,c] = (fgτ (x))(τ). (6.5)

The right hand side of (6.5) is independent of the choice of x.

Equality (6.5) can be used to compute the conjugates of f(τ) under the action of

Gal(HO/K) ∼= Pic(O). One writes gτ (x) ∈ GL2(Q̂) as gτ (x) = u·α with u ∈ GL2(Ẑ)

and α ∈ GL2(Q)+. In order to compute f gτ (x) = (fu)α, we reduce u modulo N
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and compute the action of ū ∈ GL2(Z/NZ) on f . Computing the action of ū on f

proceeds exactly the same as in section 6.4.

We make this approach explicit. Recall the formula to compute the conjugates

of j(τ)

j(τ)[a,−b,c] = j(
−b+

√
D

2a
),

from section 3.3. Inspired by this formula, we want to find a function f̃ ∈ F with

f(τ)[a,−b,c] = f̃(
−b+

√
D

2a
).

The difference with (6.5) is that the argument of the right hand side is now −b+
√

D
2a

instead of τ .

The element gτ (x) ∈ GL2(Q̂) is by definition the transpose of a Q̂-linear map on

K̂ that maps the Ẑ-lattice Ô = Ẑ · τ + Ẑ · 1 onto â = xÔ. Define M ∈ GL2(Q)+ ⊂
GL2(Q̂) to be the transpose of the Q̂-linear map on K̂∗ = Q̂ · τ + Q̂ · 1 that maps

the basis [τ, 1] to the basis [−b+
√

D
2 , a]. We see that ux = gτ (x) ·M−1 ∈ GL2(Q̂)

is actually already contained in GL2(Ẑ). Indeed, ux is the transpose of a Q̂-linear

map that stabilizes the Ẑ-lattice Ô and is therefore an element of GL2(Ẑ).

The action of M on the upper half plane H satisfies M(τ) = −b+
√

D
2a . Hence, we

can rewrite (6.5) as

f(τ)[a,−b,c] = fgτ (x)·M−1

(
−b+

√
D

2a
) = fux(

−b+
√
D

2a
). (6.6)

Since ux is contained in GL2(Ẑ), the function fux is a conjugate of f over the

field Q(j).

It is straightforward to give the components up ∈ GL2(Zp) of the idele ux =

(up)p ∈ GL2(Ẑ). As in [26, Section 1.10], for D ≡ 0 mod 4 we have

up =





(
a b

2
0 1

)
if p - a

( −b
2 −c
1 0

)
if p | a and p - c

( −b
2 − a −b

2 − c
1 −1

)
if p | a and p | c

and for D ≡ 1 mod 4 we have

up =





(
a b−1

2
0 1

)
if p - a

( −b−1
2 −c
1 0

)
if p | a and p - c

( −b−1
2 − a 1−b

2 − c
1 −1

)
if p | a and p | c.
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Returning to the example from the previous section, we get the following conju-

gates of the class invariant f(τ).

THEOREM 6.5. Let K be an imaginary quadratic number field of discriminant

D ≡ 5 mod 8 with 3 - D. Let ζ = exp(2πi/48) be a primitive 48-th root of unity

and [a, b, c] a primitive quadratic form of discriminant 4D. The Galois conjugate of

f(
√
D) is given by

(f(
√
D))[a,−b,c] =





ζ
b
2
(c−a−a2c) · f(−b+2

√
D

2a ) if 2 - a and 2 - c

−(−1)
a2

−1
8 · ζ b

2
(ac2−a−2c) · f1(−b+2

√
D

2a ) if 2 - a and 2 | c
−(−1)

c2−1
8 · ζ b

2
(c−a−5ac2) · f2(−b+2

√
D

2a ) if 2 | a and 2 - c.

PROOF. Let x ∈ K̂∗ and ux = (up)p ∈ GL2(Ẑ) be as above. We have

(f(
√
D))[a,−b,c] = fux(

−b+ 2
√
D

2a
).

The residue class u3 ∈ GL2(Z/3Z) is

u3 =





(
1
0

0
a

)
ST−aST−aST−a(b+1) if 3 - a

(
1
0

0
c

)
T (1+b)cST cST c if 3 | a, 3 - c

(
1
0

0
b

)
T 1+bST bST b−1 if 3 | a, 3 | c

and the residue class u2 ∈ GL2(Z/16Z) is

u2 =





(
1
0

0
a

)
ST

−1

a ST−aST
1
a
( b
2
−1) if 2 - a

(
1
0

0
c

)
T (1− b

2
)cST

1
cST c if 2 | a, 2 - c

the case 2 | a, 2 | c cannot occur.

The last line deserves some explanation. If both a and c would be even, the deter-

minant of u2 ∈ GL2(Z/16Z) would be a+ b+ c. The condition b2 − 4ac ≡ 4 mod 8

implies however that b is always even. Hence, we would have that a+ b+ c is even,

a contradiction.

We have

f[a,−b,c] = (fu3)u2

and the right hand side is easily computed using the transformation rules (6.2)

and (6.3). A simple – although a bit laborious – check then shows that the resulting

formulas are the same as the ones given in the theorem. �
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6.6 Class invariants in a non-archimedean setting

Shimura reciprocity enables us to work with class invariants in a systematic way.

For a class invariant f(τ) ∈ HO, we know which modular function f̃ we should take

to compute the conjugate

f(τ)[a,−b,c] = f̃(−b+
√

D
2a )

of f(τ) under the action of the quadratic form [a,−b, c]. We can for instance ex-

plicitly compute f(τ) ∈ C by using the Fourier expansion of f . If it is known

that the minimal polynomial of f(τ) has integer coefficients, we can approximate

f(τ)[a,−b,c] ∈ C with high enough accuracy and expand the product

P f
∆ =

∏

[a,b,c]∈F+
∆

(
X − f(τ)[a,b,c]

)
∈ Z[X ],

just like we did for the j-function.

We also want to use class invariants in a non-archimedean setting. The compu-

tation of f(τ) via the Fourier expansion has no p-adic analogue. In chapter 5 we

explained a p-adic algorithm to work with the j-function, where p is a prime that

splits completely in HO. We viewed j as an element of the function field of the

modular curve X(1), and gave an algorithm to compute the finite set Ell∆(Qp) of

j-invariants of elliptic curves over Qp with endomorphism ring O∆. The Hilbert

class polynomial P∆ can then be computed as

P∆ =
∏

j(E)∈Ell∆(Qp)

(
X − j(E)

)
∈ Z[X ].

We extend the algorithm from chapter 5 to cope with class invariants. The

extension we present in this section is not ideally suited for explicit computations

yet, and serves as a stepping stone for the more practical version of the next sections.

The modular functions we will consider are integral over Z[j], so they are given

as the zero of some irreducible polynomial Ψf (X, j) ∈ Z[j,X ]. Let f be such a

modular function, say of level N ≥ 1. In sections 6.4–6.5 we only needed the Fourier

expansion of f , but here we also need to know the polynomial Ψf (X, j).

For a j-value j(Ẽ) ∈ Ell∆(Qp), the roots of the polynomial Ψf (X, j(Ẽ)) ∈
HO[X ] lie in the ray class field of conductor HN,O of conductor N for the order O,

cf. theorem 6.2. If we know that f yields class invariants (for instance by using

Shimura reciprocity), we know that some of these roots actually lie in the ring class
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field HO. We need to decide which ones, and compute the action of the Galois group

Gal(HO/K) ∼= Pic(O) on such roots.

The first step will be to compute an element j(Ẽ) ∈ Ell∆(Qp) with high enough

accuracy. The accuracy needed depends on the function f in the following way.

Define the Mahler measure M(g) of a polynomial g =
∏n

i=1(X − αi) ∈ C[X ] as

M(g) =
∑n

i=1 log max(1, |αi|). Then the following holds:

M(PD)

M(P f
D)

=
degj(Ψ(j,X))

degX(Ψ(j,X))
(1 + o(1)), (6.7)

for |D| tending to infinity, cf. [21, Proposition 3]. Define r(f) =
degj(Ψ(j,X))

degX(Ψ(j,X)) , the

‘reduction factor’ of f , so for γ2 we have r(γ2) = 1/3 and for f we have r(f) = 1/72.

In practice, relation (6.7) means that if d is the accuracy needed for the computation

of PD , and hence for j(Ẽ) ∈ EllD(Qp), we may multiply d by r(f) if we are working

with f instead of with j.

Next we need to decide which roots of Ψf (X, j(Ẽ)) ∈ Qp[X ] lie in the ring class

field HO. Of course we may be lucky, meaning that Ψf (X, j(Ẽ)) has only one root

in Qp. This occurs for instance for the function γ2 and p ≡ 2 mod 3. Indeed, if

Ψγ2
(X, j(Ẽ)) = X3 − j(Ẽ) would have two (and hence three) roots in Qp, then

we would have ζ3 ∈ Qp, contradicting the assumption p ≡ 2 mod 3. Rather than

looking if there is a prime p such that Ψf (X, j(Ẽ)) ∈ Qp[X ] has a single root that

lies in the ring class field HO, we discuss how we can decide in general which roots lie

in HO. We assume that p does not divide the level N . This assumption is harmless,

as N is small and p is large.

The key observation is that f is an element of the function field

FN = Q(j, fr,s | r, s ∈ 1
N Z/Z, not both 0)

of the modular curve X(N) over Q(ζN ), cf. theorem 6.1. The Fricke functions fr,s

are normalized x-coordinates ofN -torsion of points on the elliptic curve C/(Z+Z·τ).
We can write f as a Q-rational function in j and the functions fr,s.

Fix a primitive N -th root of unity ζN ∈ Qp. For a ∈ (Z/NZ)∗, let Y (N)a be

the modular curve from section 5.3. Then f is an element of the function field of

Y (N)a,Qp
for every a ∈ (Z/NZ)∗. Let x ∈ Qp be a root of Ψf (X, j(Ẽ)) ∈ Qp[X ].

There exist a ∈ (Z/NZ)∗ and (Ẽ, P,Q) ∈ Y (N)a(Qp) with f(Ẽ, P,Q) = x ∈ Qp.

From chapter 5 we know that there is an action of the group of invertible O-

ideals on the set Ell∆(Qp). An invertible ideal I sends j(Ẽ) to j(ẼI) and we have

j(Ẽ)[I,HO/K] = j(ẼI ). If N is coprime to the norm l of I , the isogeny
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ϕI : Ẽ −→ ẼI

extends to a natural isomorphism

ϕI : Ẽ[N ] −→ ẼI [N ].

A basis 〈P,Q〉 for Ẽ[N ] gets mapped to a basis 〈P I , QI〉 for ẼI [N ]. We compute

eN(P I , QI) = eN (P, ϕ̂I (Q
I)) = eN (P, lQ) = ζ l

N

and conclude that we have (ẼI , P I , QI) ∈ Y (N)la(Qp). We have the fundamental

equality

f(Ẽ, P,Q)[I,HN,O/K] = f(ẼI , P I , QI).

We can explicitly compute the isogeny ϕI : first we compute the kernel polynomial

gI ∈ Qp[X ] corresponding to I as in chapter 5 and then we compute the isogeny using

Vélu’s formulas [64]. Hence, we have a way of computing f(Ẽ, P,Q)[I,HN,O/HO ].

A root x ∈ Qp of Ψf (X, j(Ẽ)) ∈ Qp[X ] lies in HO if and only if it is invariant

under

Gal(HN,O/HO) ∼= (O/NO)∗/O∗.

We write x = f(Ẽ, P,Q) for some choice of basis P,Q ∈ Ẽ[N ] and test whether

x[(y),HN,O/HO ] = x holds for all generators y of (O/NO)∗/O∗. See below for an

example how to write x = f(Ẽ, P,Q) and section 6.7 for remarks on smoothness

bounds for a set of generators of (O/NO)∗/O∗.
Once we have found that a certain root x ∈ Qp lies in the ring class field HO, we

need to compute its conjugates under Gal(HO/K) ∼= Pic(O). This proceeds exactly

as before, since we have

x[I,HO/K] = f(Ẽ, P,Q)[I,HO/K] = f(ẼI , P I , QI) ∈ Qp.

All we require is that the norm N(I) of I is coprime to the level N of f . If the

minimal polynomial of x has integer coefficients, we may expand the product

∏

[I]∈Pic(O)

(
X − f(Ẽ, P,Q)[I,HO/K]

)
∈ Zp[X ]

and round the coefficients to integers, just as we did in chapter 5.
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EXAMPLE 1. Let γ2 : H → C be the holomorphic cube root of j with integral

Fourier expansion. It is a classical fact that γ2 is modular of level 3. Let O = Z[τ ]

have discriminant D with 3 - D and suppose that we have τ + τ = 0 mod 3. We

have seen in section 6.4 that γ2(τ) is then a class invariant.

Let E : Y 2 = X3 + aX + b be an elliptic curve over Qp, with p > 3. Let

c1, . . . , c4 ∈ Qp be the roots of the 3-division polynomial of degree (32 − 1)/2 = 4.

Then

−48a

2a− 3(c1c2 + c3c4)
(6.8)

is a cube root of j(E), as may be checked by using for instance the Fourier expansion

of the Fricke functions. Expression 6.8 nicely illustrates that γ2 is not a function of

an elliptic curve alone: also some ordering on the 3-torsion is required. We indeed

get three distinct cube roots of j(E). From a geometric point of view, there is no

way to single out a root ‘corresponding’ to γ2.

Next we illustrate how we can use this ‘geometric γ2’ to compute the polynomial

P γ2

−31 ∈ Z[X ] for the order O of discriminant −31 using p-adic methods. The primes

47 = 42 + 31 and 67 = 62 + 31 both split completely in the Hilbert class field H of

K = Q(
√
−31). For primes p with p ≡ 1 mod 3, a j-invariant j(Ẽ) ∈ Ell−31(Qp)

has 3 roots in Qp. Since this is the most difficult case, we take p = 67.

First we compute a curve Ẽ/Qp with End(Ẽ) ∼= O. The accuracy needed is

only one third of the required accuracy for the computation of the Hilbert class

polynomial P−31. Using the algorithm from chapter 5 we find that we may take

j(Ẽ) = 3 + 33p− 16p2 +O(p3) ∈ Qp

as j-invariant. The three cube roots of j(Ẽ) are

η1 = 18 +O(p)

η2 = 53 +O(p)

η3 = 63 +O(p).

Only one of them lies in the Hilbert class field H . Indeed, if 2 roots would lie in H ,

then ζ3 would be contained in H as well. This means that Q(ζ3) would be a subfield

of H and hence 3 would divide −31, which it does not.

We fix a Weierstraß equation

Y 2 = X3 + aX + b
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for Ẽ/Qp. Let c1, . . . , c4 ∈ Qp be the 4 roots of the 3-division polynomial for Ẽ.

We compute 3-torsion points Pi/Qp with x-coordinate ci. The points Pi are defined

over the unramified extension of degree 4 over Qp.

Let I be an O-ideal with 3 - N(I). The isogeny ϕI : Ẽ → ẼI extends to a

natural isomorphism

ϕI : Ẽ[3]
∼−→ ẼI [3].

Hence, we get a natural bijection

ϕI : {η1, η2, η3} ∼−→ {cube roots of j(ẼI)}.

For a cube root

η =
−48a

2a− 3(c1c2 + c3c4)

we have

η[I,H3/H] =
−48a′

2a′ − 3(c′1c
′
2 + c′3c

′
4)
.

Here, c′i is the x-coordinate of ϕI (Pi) ∈ ẼI [3] and ẼI has Weierstraß equation

Y 2 = X3 + a′X + b′.

The group (O/3O)∗/O∗ ∼= Z/4Z is generated by α = −1+
√
−31

2 of norm 8. We

compute η
[I,H3/H]
i for I = (α) = p3

2 and get

η1
ϕI−→ η1

η2
ϕI−→ η3

η3
ϕI−→ η2.

Hence, η1 = 18 + O(p) is a class invariant. Note that ϕp2
is just a 2-isogeny, so we

do not actually need the ‘Atkin-Elkies’ techniques from chapter 5.

Computing the conjugates of η1 ∈ H under Gal(H/K) ∼= Pic(O) proceeds simi-

larly. We have Pic(O) ∼= Z/3Z ∼= 〈[p2]〉 and

η
[p2,H/K]
1 = ϕp2

(η1).

We compute the conjugates of η1 under Pic(O) and expand

P γ2

−31 =
3∏

i=1

(
X − ϕi

p2
(η1)

)
= X3 + 342X2 + 837X + 116127 ∈ Z[X ].
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EXAMPLE 2. The second example concerns ∆-quotients. Let ∆ be the classical

modular form of weight 12 with Fourier expansion ∆(τ) = q
∏∞

n=1(1− qn)24. Define

g1(τ) =
∆((τ + 1)/2)

∆(τ)

g2(τ) =
∆(τ/2)

∆(τ)

g3(τ) = 212 ∆(2τ)

∆(τ)
.

The functions gi are modular of level 2 and have rational Fourier coefficients. They

are the three roots of

(X + 16)3 − jX ∈ Z[j,X ].

Let O = Z[τ ] have discriminant D with D ≡ 1 mod 8. Since 2 splits in O, the ray

class field H2 of K = Q(
√
D) equals the Hilbert class field H . Hence, gi(τ) is a class

invariant for i = 1, 2, 3.

The geometric interpretation is the following. Let E : Y 2 = X3 + aX + b be an

elliptic curve over Qp, with p > 3, and let P1, P2, P3 be the three 2-torsion points. If

E has endomorphism ring O, then the 2-torsion is defined over Qp, cf. section 5.2.

Let Ei = E〈Pi〉 : Y 2 = X3 + aiX + bi be the 2-isogenous curve obtained by applying

the normalized isogeny with kernel 〈Pi〉. Then

∆(X3 + aiX + bi)

∆(X3 + aX + b)
(6.9)

is a root of (X + 16)3 − j(Ei)X . Here, ∆(f) means the discriminant of the poly-

nomial f . In particular, (6.9) is independent of the choice of a Weierstraß equation

for E. We write ∆(f(E)) if we have fixed a Weierstraß equation Y 2 = f(X) for E.

We again focus on the order O = Z[τ ] of discriminant −31. We have a choice of

functions to work with now, since now all gi(τ) are class invariants. However, only

for the function g2 the value at τ = −1+
√
−31

2 is real, i.e., only for g2 the minimal

polynomial has integer coefficients. Also in the p-adic setting, we want to ensure

that the minimal polynomial we compute has integer coefficients.

First we compute a curve Ẽ/Qp with endomorphism ring End(Ẽ) ∼= O. The

required precision is the same as in the previous example, so we again take

j(Ẽ) = 3 + 33p− 16p2 +O(p3) ∈ Qp

as j-invariant. We fix

Y 2 = X3 + (11− 2p+ 20p2)X − 22 + 4p+ 27p2
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as Weierstraß equation for Ẽ. The three 2-torsion points of Ẽ are

P1 = (32 +O(p), 0)

P2 = (46 +O(p), 0)

P3 = (56 +O(p), 0).

We compute the 2-torsion of Ẽ〈Pi〉 for i = 1, 2, 3. It turns out that for Ẽ〈P1〉

and for Ẽ〈P3〉 the complete 2-torsion is defined over Qp, and for Ẽ〈P2〉 it is not.

Consequently, the curves Ẽ〈P1〉 and Ẽ〈P3〉 have endomorphism ring O. The curve

Ẽ〈P2〉 has endomorphism ring O−4·31 ( O. This means that

∆(f(Ẽ〈P1〉))

∆(f(Ẽ))
∈ H and

∆(f(Ẽ〈P3〉))

∆(f(Ẽ))
∈ H

are complex conjugates. If we want integer coefficients, we have to compute the

minimal polynomial of ∆(f(Ẽ〈P2〉))/∆(f(Ẽ)).

We compute ∆(Ẽ〈P2〉)/∆(Ẽ) = 5 + 2p + 32p2 + O(p3) ∈ Qp. The class group

Pic(O) ∼= Z/3Z is generated by a prime p5 of norm 5. We cannot use the generator

p2 any more, since 2 divides the level N = 2. We compute ϕp5
(P2) ∈ Ẽp5 [2] and use

this 2-torsion point to compute

∆(f(Ẽ〈P2〉))

∆(f(Ẽ))

[p5,H/K]

= −22− 32p− 28p2 +O(p3) ∈ Qp.

Finally, we compute the third conjugate and expand

P g2

−31 =

3∏

i=1

(
X − ϕi

p5

(∆(f(Ẽ〈P2〉))

∆(f(Ẽ))

))
= X3 + 165X2 + 9642X + 1 ∈ Z[X ].

6.7 Finding a class invariant

As in the previous section, let f be a modular function of level N ≥ 1 that is

integral over Z[j]. In order to check which roots of Ψf (X, j(Ẽ)) ∈ Qp[X ] are in fact

class invariants, we want generators of (O/NO)∗/O∗ that are smooth. Lemma 5.18

tells us that, if GRH is true, we can find a B-smooth element a + bπp ∈ O with

B = bexp(
√

log |∆|)c. We would like to extend this result, i.e., we would like that

there also exists a BN -smooth element a+ bπp ∈ O that lies in a prescribed residue

class in (O/NO)∗. Here, we put BN = gNB with gN some function depending only

on N .
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Although being B-smooth and lying in a prescribed residue class in (O/NO)∗

are quite unrelated, there seems to be no hope in proving a result as in the previous

paragraph. We do not know enough on the distribution of smooth elements in O.

The situation is similar to that in [39], where a conjecture from analytic number

theory is needed to prove the run time for the elliptic curve factoring method. The

problem lies in a sense in our understanding of analytic number theory, and not so

much in our understanding of elliptic curves.

In practice there is no problem. One just sieves in the set

S = {a+ bπp : a, b ∈ Z, b 6= 0, (a, b) = 1, a+ bπp and p∆ are coprime}

for enough smooth elements that generate (O/NO)∗. We expect that the smooth

elements are equidistributed over (O/NO)∗.

Let E/Fp be a curve with endomorphism ring O. We can use Shimura reciprocity

to compute the number of roots in Fp of Ψf (X, j(E)) ∈ Fp[X ] in advance. Assume

that Ψf (X, j(E)) ∈ Fp[X ] is separable and that p does not divide the level N . These

assumptions are usually fulfilled in practice, as p is not too small, of size |∆|.
Write O = Z[τ ] for some τ ∈ H. Consider the root x = f(τ) of Ψf (X, j(τ)) ∈

C[X ]. We know that x is an element of the ray class field HO,N of conductor N for

the order O, cf. theorem 6.2. There is a prime p of HO,N lying over p such that the

reduction j(τ) mod p equals j(E) ∈ Fp. The reduction x̄ ∈ Fp of x modulo p is a

root of Ψf (X, j(E)) ∈ Fp[X ]. Write x = f(Ẽ, P̃ , Q̃) with (Ẽ, P̃ , Q̃) ∈ Y (N)a(HO,N ).

Let Fp : E → E be the Frobenius of E/Fp and let ϕ ∈ End(Ẽ) have reduction Fp ∈
End(E). The endomorphism ϕ : Ẽ → Ẽ induces an isomorphism Ẽ[N ]

∼−→ Ẽ[N ].

Writing πp ∈ O for the image of ϕ under the normalized isomorphism End(Ẽ)
∼−→O,

we have

x̄ ∈ Fp ⇐⇒ f(Ẽ, P̃ , Q̃)[(πp),HO,N /H] = f(Ẽ, P̃ , Q̃).

Shimura reciprocity tells us:

x̄ ∈ Fp ⇐⇒ fg(πp) = f,

where g = gτ is the connecting homomorphism from section 6.4.

Denote the zeroes of Ψf (j,X) ∈ Z[j,X ] by fi. The functions fi are elements

of Q(ζN )((q1/N )) and our fixed f is one of the fi’s. We have proved the following

equality:

#{x ∈ Fp |Ψf (x, j(E)) = 0} = #{fi : f
g(πp)
i = fi}. (6.10)
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EXAMPLE. We illustrate relation (6.10) by computing the number of roots in Fp of

Ψf(X, j(E)) ∈ Fp[X ], with f the classical Weber function. The minimal polynomial

of f over Z[j] is

Ψf = (X24 − 16)3 − jX24 ∈ Z[j,X ].

The roots of Ψf are

ζk
48f, ζl

48f1, ζl
48f2,

where k is an even integer and l is odd. If we take k odd and l even, we get the

roots of (X24 + 16)3 − jX24 ∈ Z[j,X ].

Take an order O of discriminant ∆, with ∆ ≡ 1 mod 8 and with 3 - ∆. The

equation t2 − 4p = ∆ has no solutions with p an odd prime, hence we look for a

solution to t2 − 4p = 4∆. In practice we always find a solution to this equation and

we take any solution (t, p). We see that for an elliptic curve E/Fp with End(E) ∼= O,

the order Z[Fp] is contained in O with index 2.

We have seen that ζ48f2(
−1+

√
∆

2 ) is a class invariant, hence some of the roots

of Ψf(X, j(E)) ∈ Fp[X ] are reductions of class invariants. Using equality 6.10, we

can compute the number of roots of Ψf(X, j(E)) ∈ Fp[X ]. Write O = Z[τ ] with

τ = −1+
√

∆
2 , and πp = 2τ + 1 + t/2.

The matrix

A = gτ (πp) =

( t−2
2

∆−1
2

2 t+2
2

)
∈ GL2(Ẑ)

corresponding to πp has norm p and trace t. Modulo 3, we have

A =

(
1 0
0 p

)
T tpST 2pST t−1−p ∈ GL2(Z/3Z),

and we compute (ζk
3 f)A, (ζk

3 f1)
A, (ζk

3 f2)
A. Using the transformation rules (6.2) for

the Weber functions, we see that for p ≡ 1 mod 3, all 9 functions ζk
3 fi are invariant

under the action of A. For p ≡ 2 mod 3, only the 3 functions ζ3fi are invariant

under A.

Modulo 16 we get

A =

(
1 0
0 p

)
ST ( 2

p
+1) −2

t−2ST
2−t
2 ST ( 2

p
+1)∆−1

t−2
− t+2

2p ∈ GL2(Z/16Z).

Computing (ζk
16fi)

A is slightly more cumbersome. It is perhaps easiest to just dis-

tinguish cases for p, t and ∆ and to write a small computer program to compute the

action of A on ζk
16fi. For p we have the possibilies 3, 7, 11 and 15 mod 16. Since we
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need to know t/2, we have to know t modulo 32. We have the cases t = 4, 8, . . . , 32.

Finally, ∆ can be congruent to 1 or 9 modulo 16.

For instance, for p ≡ 3 mod 16, t ≡ 8 mod 32 and ∆ ≡ 9 mod 16 we get

(ζk
16f)

A = ζ3k+14
16 f, (ζk

16f1)
A = ζ3k+12

16 f1, (ζk
16f2)

A = ζ3k+6
16 f2.

We find that A leaves ζ16f invariant for k = 1, 9. It leaves ζk
16f1 invariant for k = 2, 10

and it leaves ζk
16f2 invariant for k = 5, 13. The other cases proceed similarly and in

all cases we find 2 odd k for f, 2 even k for f1 and 2 odd k for f2.

We summarize this computation in the following theorem.

THEOREM 6.6. Let p ≥ 5 and E/Fp be as above. Then the following holds:

p ≡ 1 mod 3 =⇒ (X24 − 16)3 − j(E)X24 ∈ Fp[X ] has exactly 6 roots

(X24 + 16)3 − j(E)X24 ∈ Fp[X ] has exactly 12 roots;

p ≡ 2 mod 3 =⇒ (X24 − 16)3 − j(E)X24 ∈ Fp[X ] has exactly 2 roots

(X24 + 16)3 − j(E)X24 ∈ Fp[X ] has exactly 4 roots.

REMARK. For simplicity we only considered the case where Z[Fp] has index 2 in O.

If we look at how the index enters the formulas, we see that we need to know the

index modulo 32. Hence, it is a finite computation to resolve the other cases.

REMARK. This theorem shows that for p ≡ 2 mod 3, both roots of Ψf(X, j(E)) ∈
Fp[X ] are reductions of class invariants. For p ≡ 1 mod 3 we get 6 roots, 2 of which

are reductions of class invariants. In this case, it suffices to check which roots are

invariant under the action of (O/3O)∗/O∗.

EXAMPLE. Let O be the order of discriminant −31. Take p = 47. We take 16 ∈ Fp

as j-invariant of a curve with endomorphism ringO. The roots of (X24−16)3−16X24

are 22, 25 = −22 ∈ Fp. Both roots are reductions of class invariants. The roots of

(X24 + 16)3 − 16X24 are ±10,±13 ∈ Fp.

For p = 67 we take 3 ∈ Fp as j-invariant. The roots of (X24 − 16)3 − 3X24 are

±4,±14,±18 ∈ Fp, and the roots of (X24 +16)3− 3X24 are ±6,±12,±13,±21,±25

and ±27 ∈ Fp.
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6.8 Using modular polynomials

The theory developed in section 6.6 is not ideally suited for explicit computations

yet. If we are given a modular function f of level N ≥ 1 in terms of its Fourier

expansion, we must find the moduli interpretation of this function. Concretely this

means that we have to write f as a rational function in j and the x-coordinates of

N -torsion points of an elliptic curve with j-invariant j. We have done this for γ2

and ∆-quotients in section 6.6, but there is no ‘systematic way’ of approaching this

problem.

Even worse: if we do find the moduli interpretation of f , it might be that we

have to (partially) factor the N -division polynomial of an elliptic curve. The degree

of the N -th division polynomial is O(N 2) for N → ∞, so it might take a lot of

time to factor such a polynomial. This would destroy the advantage of working

with ‘smaller’ functions than j. As an example: we have not given the geometric

interpretation of the Weber functions. This is partially due to the fact that we

just do not know it, but if we were to work with a geometric description, we might

have to factor a 48-division polynomial of degree 1153. This annihilates the speed

improvements gained by working with f instead of with j.

The second problem is that working with explicit isogenies is quite slow in prac-

tice. In the examples in section 6.6, we only needed a 2- and a 5-isogeny and these

are quite easy to write down. For larger discriminants than |∆| = 31 in the example,

we have to work with isogenies of larger degree. For ∆ ≈ −1010 for instance, one

typically needs isogenies of degree ≈ 100. Although the ‘Atkin-Elkies’ techniques

combined with Vélu also work fine in this case, this is not something one wants to

do in practice.

The answer to these problems lies in observation that it suffices to compute

xI ,

where x ∈ Qp is a root of Ψf (X, j(E)) ∈ Qp[X ] and I is an invertibleO-ideal of norm

coprime to N . Indeed, if we want to know which root x of Ψf (X, j(E)) ∈ Qp[X ]

is a class invariant, we need to check which root is invariant under (O/NO)∗/O∗.
This amounts to computing xI , for I the principal ideal generated by one of the

generators of (O/NO)∗. Once we know that x ∈ Qp is a class invariant, we need to

compute xI ∈ Qp, with I one of the generators of Pic(O). In this section we give a

method to compute xI that also works fast in practice. We have to make some mild

assumptions on f . It does not require the moduli interpretation of the function f .
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Write Γ(f) for the stabilizer of f inside SL2(Z). We have

Γ(N) ⊆ Γ(f) ⊆ SL2(Z),

by the assumption that f is modular of level N . Write X(f) for the modular curve

corresponding to the congruence subgroup Γ(f), cf. section 5.3. The complex points

of this curve are Γ(f)\H. The curve X(f) is a quotient of the modular curve X(N)

by a subgroup of SL2(Z/NZ), and hence can be defined over Q(ζN ). We have a

commutative diagram

X(N)

##GG
GG

GG
GG

G

f // P1

X(f)

f
<<zzzzzzzz

and f : X(N)→ P1
C factors through the quotient X(f).

Likewise, there exists a curve X(f)a such that we have a commutative diagram

X(N)a

$$JJJJJJJJJ

f // P1

X(f)a.

f
;;xxxxxxxxx

As a complex curve, we have X(f)a = X(f).

We have fixed a primitive N -th root of unity ζN ∈ Qp. For ease of notation,

we simply denote a point on X(f)a by a triple (E,P,Q) instead of (E,P,Q). Here,

P,Q form a basis for the N -torsion E[N ] of E with eN(P,Q) = ζa
N .

Let l be a prime not dividing the level N . Write Γ(f ; l) = Γ(f)∩Γ0(l). We have

Γ(lN) ⊆ Γ(f ; l) ⊆ Γ(f).

Let X(f ; l) be the modular curve corresponding to Γ(f ; l). It can be defined over

Q(ζlN ). Just as we have curves X(f)a, we also have curves X(f ; l)a. Points on

X(f ; l)a are quadruples (E,P,Q,G), with (E,P,Q) ∈ X(f)a and G ⊂ E[l] a sub-

group of order l.

There is a natural map s : X(f ; l)a → X(f)a and a natural map t : X(f ; l)a →
X(f)la. The map s sends (E,P,Q,G) ∈ X(f ; l)a to (E,P,Q) ∈ X(f)a. The map

t sends (E,P,Q,G) ∈ X(f ; l)a to (E/G,ϕ(P ), ϕ(Q)), where ϕ : G → E/G has

kernel G. The situation is as follows.
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X(f ; l)a

s

yyttttttttt
t

%%KKKKKKKKK

F

zz

F ′

$$

X(f)a

f

��

X(f)la

f

��
P1 P1

Here, F and F ′ are the composed maps.

LEMMA 6.7. The maps s, t in the diagram above both have degree l + 1.

PROOF. We will show that the diagram

X(f)a

f

��

X(f ; l)a
soo

��
X(1) X0(l)oo

is cartesian in the category of smooth projective curves with surjective maps. As the

cover X0(l)/X(1) has degree l+ 1, this implies that s and t have degree l+ 1. Here,

the maps on the ‘lower right part’ of the square are the forgetful maps. Instead of

working over Q(ζN ), we will work over C; the same result then holds over Q(ζN ).

We may then omit the subscript a in the diagram. Moreover, it is easier to work

with X(N)/X(1) and X(l)/X(1) instead of X(f)/X(1) and X0(l)/X(1), since in

this case we explicitly know the Galois groups. The Galois group of X(N)/X(1) is

SL2(Z/NZ)/{±1} and it is SL2(Z/lZ)/{±1} for X(l)/X(1).

The fibred product of X(l) and X(N) is almost equal to X(Nl). Indeed, writing

d(k) = #(SL2(Z/kZ)/{±1}), the degree of X(Nl)/X(1) is

#SL2(Z/NlZ)/{±1} = 2 · d(N)d(l),

and we obtain the following diagram

X(Nl)

vv

}}

2

yyrrrrrrrrrr

X(N)

d(N)

��

X(Nl)/H
d(l)oo

d(N)

��
X(1) X(l),

d(l)
oo
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where H is the subgroup {1} × {±1} ⊆ SL2(Z/NZ) × SL2(Z/lZ). Since we are

working over C, we know that the degrees on parallel sides of the square are equal.

Hence, the square is cartesian.

Since we have
(−1

0
0
−1

)
∈ Γ0(l), the curve X(Nl)/H is a cover of X(f ; l). Hence,

the diagram

X(f)

f

��

X(f ; l)
soo

��
X(1) X0(l)oo

‘fits inside’ the bigger cartesian diagram for X(Nl)/H . In particular, it is cartesian.

Since the degree of X0(l)/X(1) is l + 1, the same must hold for X(f ; l)/X(f), i.e.,

both s and t have degree l + 1. �

Reformulating this result in terms of function fields, we see that the tensor product

of the function fields of X(f)a and X0(l) is again a field, and equals the function

field of X(f ; l)a.

REMARK. The curve X0(l) can be defined over Q. The cartesian diagram shows

that X(f ; l)a can be defined over Q(ζN ).

We map Y (f ; l)a to a curve C inside A1 ×A1 as in the diagram below. The map

b is defined by b(x) = (s(x), t(x)). In practice, b will often have degree 1 and then

Y (f ; l)a is birational to C. The maps p1, p2 are the two projection maps.

Y (f ; l)a
b // //

F ′

))SSSSSSSSSSSSSSSSS

F

))
C // // A1 ×A1

p1

//

p2

��

A1

A1

We are interested in the curve C, since the function field of C is generated by f

and fl. Here, fl may be defined by fl(τ) = fσl(lτ) in complex analytic terms, where

the notation fσl is the same as in section 6.2. If f has rational Fourier coefficients,

we have fl(τ) = f(lτ). There exists a polynomial Φ ∈ Q(ζN )[X,Y ] such that C is

the curve defined by Φ = 0. We will see that knowing Φ basically solves the problem

of computing xI .
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As we have deg(F ) = deg(F ′), the previous diagram immediately tells us that

we have

degX(Φ) = degY (Φ) =
(l + 1)deg(f)

deg(b)
.

Let Φf,fl
be the minimal polynomial of fl over Q(ζN )(f). The coefficients of Φf,fl

need not be polynomials in f yet, but after multiplying the coefficients by the com-

mon denominator, we get a polynomial in Q(ζN )[X,Y ]. Since the function field of

C is Q(ζN )(f, fl), this polynomial is a model for the curve C and hence we may take

Φ = Φf,fl
.

We call Φf,fl
the modular polynomial of level l for f . For f = j this definition

coincides with the ‘classical’ modular equation from chapter 5. The term modular

polynomial or modular equation appears already in Weber [65], see for instance

§73, Die Schlaeflischen Modulargleichungen. Weber works with specific functions,

and hence there is no general definition of a modular polynomial. Our definition

coincides with Weber’s definition for the functions he considers.

LEMMA 6.8. Suppose that f generates the function field of X(f)C over C(j) and

suppose f ∈ Q((q1/N )). Then we have Φ ∈ Q[X,Y ].

PROOF. It suffices to show that X(f) can be defined over Q. Since the algebraic

closure of Q inside Q(f, j) is Q itself, the minimal polynomial Ψf of f over Q(j)

is absolutely irreducible. The curve defined by Ψf = 0 is absolutely irreducible and

has Q(f, j) as function field. Since f generates the function field of X(f)/C, the

curve X(f) can be defined over Q. �

REMARK. Computing Φ is relatively easy if we know the Fourier expansion of f .

We have an upper bound

deg(f)(l + 1)

for the degrees degX(Φ) and degY (Φ). In most cases this upper bound will in fact

be an equality. By comparing the Fourier coefficients of f and fl, we can recursively

find the coefficients of Φ. See section 7.1 for examples.

Let x ∈ Qp be a root of Ψf (X, j(E)) ∈ Qp[X ] and let I be an invertible O-ideal

of norm l - Np. Let Φ = Φf,fl
be the polynomial defined above. From the moduli

interpretation of X(f ; l)a, it is clear that one of the roots of Φ(x,X) ∈ Qp[X ]

equals xI . To see what the other roots are, we look at the diagram
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X(f ; l)a

s

yyttttttttt
t

%%KKKKKKKKK

F

zz

F ′

$$

X(f)a

f

��

X(f)la

f

��
P1 P1

again. Above x ∈ A1(Qp) there are deg(f) distinct points (Ei, Pi, Qi) ∈ Y (f)a(Qp).

Above (Ei, Pi, Qi) ∈ Y (f)a(Qp), there are l+1 points (Ei, Pi, Qi, Gj) ∈ Y (f ; l)a(Qp).

Here, Gj ranges over the l+1 subgroups of order l of Ei[l]. The points (Ei, Pi, Qi, Gj)

all map to x ∈ A1(Qp) under F . The images under F ′ : X(f ; l)a → A1 are exactly

the roots of Φ(x,X).

REMARK. The curveX(f ; l) is a quotient of X(N). Since X(N) has good reduction

outside N , the curve X(f ; l) has good reduction outside lN by [33, Proposition 4.2].

Hence, the description of the roots of Φ(x,X) remains valid over Fp.

We want to decide which root of Φ(x,X) is actually xI . The first observation is

that it suffices to look at the roots in Qp. Indeed, if x is a class invariant then we

automatically have x ∈ Qp. If x is not a class invariant, then xI need not lie in Qp.

But if it does not, we have automatically proven that x is not a class invariant.

Usually, xI is the only root of Φ(x,X) that is also a root of Ψf (X, j(EI)). Hence,

we test for all roots α ∈ Qp of Φ(x,X) whether Ψf (α, j(EI )) = 0 holds. If x is a

class invariant, we find at least one such α. If we find exactly one root with this

property, we have computed xI .

The problem is that in the general context we are working in, we cannot prove

much on the number of roots of Φ(x,X) with specific properties. A moduli in-

terpretation of f would seem the least to require here. In practice there is never

a problem however. We choose our function f to be ‘small’, and we expect that

the degree deg(f) will be small in general. We show that for deg(f) = 1 and a

class invariant x, there is exactly one root α ∈ Qp of both Φ(x,X) ∈ Qp[X ] and

Ψf (X, j(EI)) ∈ Qp[X ].

Let (E,P,Q) ∈ Y (f)a(Qp) be the unique point of Y (f)a with f(E,P,Q) =

x ∈ Qp. Of the l + 1 points (E,P,Q,Gi) ∈ Y (f ; l)a(Qp) lying over (E,P,Q) ∈
Y (f)a(Qp), only for the 2 pointsGi = E[I ] andGi = E[I ], the value j(t(E,P,Q,Gi))

is contained in Qp, cf. lemma 5.11. If both F ′(E,P,Q,E[I ]) and F ′(E,P,Q,E[I ])

are roots of Φ(x,X) ∈ Qp[X ], then we must have [I ] = [I ] ∈ Pic(O). Since x is a

class invariant, we then have F ′(E,P,Q,E[I ]) = F ′(E,P,Q,E[I ]).
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6.9 Further improvements

It is of great help that for many class invariants the coefficients of the modular poly-

nomial Φf
l = Φf,fl

are a lot smaller than those of the classical modular polynomial

for j. As an example, we consider the classical Weber function f. For small primes

l the coefficients of the polynomial are really small, like

Φf
5(X,Y )= (X5 − Y )(X − Y 5) + 5XY

Φf
7(X,Y )= (X7 − Y )(X − Y 7) + 7(XY −X4Y 4).

For l = 13 it takes at least two of these pages to write down the classical polynomial

Φl, but we have

Φf
13(X,Y ) = (X13 − Y )(X − Y 13) + 5 · 13XY

+13(X2Y 12 +X12Y 2 + 4X10Y 4 + 4X10Y 4 + 6X6Y 8 + 6X8Y 6).

This can be used to give a significant practical speed up of the algorithm. We

now give the final algorithm to compute on input ∆ < −4 a generating polynomial

for the ring class field HO corresponding to the order of discriminant ∆. Assume

that we are given a modular function f that yields class invariants when evaluated

at appropriate generators τ ∈ H of the Z-algebra O = Z[τ ]. We need the Fourier

expansion of f and the minimal polynomial Ψf (f,X) ∈ Z[j,X ]. Assume furthermore

that the minimal polynomial P f
∆ of a class invariant f(τ) has integer coefficients.

Step 1. Find a prime p - N and an elliptic curve E/Fp with End(E) ∼= O. This

is done using the endomorphism ring algorithm from section 5.2. We compute the

zeroes x1, . . . , xk ∈ Fp of Ψf (X, j(E)) ∈ Fp[X ].

Step 2. We have to decide which of these zeroes is the reduction of a class invariant.

Compute smooth primitive generators y1, . . . , yt of (O/NO)∗. We will show how to

compute xy1

1 .

Write y1 = α1 · . . . · αs, with N(αi) = li ∈ Z prime. Compute the cycle

j(E)
ρ̄α1−→ j(E(α1))

ρ̄α2−→ . . .
ρ̄αt−→ j(E(y1)) = j(E)

of j-invariants over Fp. This is done exactly as in chapter 5, employing the modular

polynomials for j. Compute all roots ηi ∈ Fp of Φf
l1

(x1, X) ∈ Fp[X ] that also satisfy

Ψf (ηi, j(E
(α1))) = 0. Here, Φf

l1 is the modular polynomial for f . In practice, we

find either zero or one such root ηi, cf. section 6.8. If we find zero roots, we know
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that x1 is not the reduction of a class invariant. We then repeat this computation

with x2, etc.

The only root of both Φf
l1

(x1, X) and Ψf (X, j(E(α1))) has to be x
(α1)
1 . Contin-

uing like this, we compute a series

x1
ρ̄α1−→ x

(α1)
1

ρ̄α2−→ . . .
ρ̄αt−→ x

(y1)
1 .

If we have xy1

1 = x1, we compute xy2

1 , etc. If x1 is invariant under all generators

y1, . . . , yt of (O/NO)∗, it is the reduction of a class invariant. Otherwise, we repeat

this computation with x2, etc., until we find a reduction of a class invariant.

Step 3. Say that x ∈ Fp is the reduction of a class invariant. We choose a smooth

O-ideal (α) = α1 . . . αu for the map ρα from chapter 5. Here, we require that the

norm of α is coprime to the level N .

We compute a cycle

j(E)
ρ̄α1−→ j(E(α1))

ρ̄α2−→ . . .
ρ̄αu−→ j(Eα) = j(E)

and using this cycle the corresponding cycle

x
ρ̄α1−→ x(α1) ρ̄α2−→ . . .

ρ̄αu−→ xα = x

for x, just like we did in step 2.

Step 4. Lift E/Fp to E1/Qp by lifting the coefficients of the Weierstraß equation

for E arbitrarily. We use two p-adic digits accuracy in this step.

Step 5. Lift x1 ∈ Fp to x1 ∈ Zp/(p
2) as a root of Ψ(X, j(E1)) ∈ Zp[X ]. It is

easy to compute xα1

1 . Indeed, we know the reduction xα1

1 = xα1 modulo p, hence

we know which root of Φf
l (x1, X) ∈ (Zp/(p

2))[X ] to pick. In this way we compute

xα
1 ∈ Zp/(p

2).

Next we compute ρα(j(E1)) as the unique root of Ψ(x(α), X) ∈ Zp[X ] that

reduces to j(E) modulo p.

Step 6. Update ρα(j(E1)) according to the same formula as in chapter 5:

j(Ek+1) = j(Ek)− ρα(j(Ek))− j(Ek)

(α/α)− 1
for k ∈ Z≥1.
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Step 7. Repeat step 5 with j(E1) replaced by j(E2). We now work with four p-adic

digits precision. We obtain j(E3). Continue this iteration process until we have

computed the canonical lift j(Ẽ) with high enough accuracy.

Step 8. Compute the ‘canonical lift’ x̃ ∈ Zp of x ∈ Fp as a root of Ψf (X, j(Ẽ)).

Again, since we know x̃ = x ∈ Fp, we know which root to pick.

Step 9. It remains to compute the conjugates of x̃ under Pic(O). This is done

exactly as before. For an invertible O-ideal I of norm l coprime to N , we compute

j(EI ) ∈ Fp using the methods of chapter 5. Knowing j(EI), we compute a root

β ∈ Fp of Φf
l (x,X) ∈ Fp[X ] that also satisfies Ψf (β, j(EI )) = 0. Just as in step 2,

in practice we only find one such β, and we then have xI = β.

We know the reduction x̃I = β of x̃I , and consequently, we know which root of

Φf
l (x̃, X) ∈ Zp[X ] is x̃I .

Step 10. Expand the polynomial

P f
D =

∏

[I]∈Pic(O)

(X − x̃I) ∈ Z[X ],

just like we did in chapter 5.

REMARK. We only need the (large) modular polynomials for j when we are working

over Fp. In the lifting process we only need to know the smaller modular polynomials

for f . In practice this is a significant speed up.

REMARK. The algorithm makes clear that we constantly have to work with two

functions: f and j. Just knowing an f -value x ∈ A1(Qp) is not enough, we also

need to know a j-value. This should come as no surprise, since the function field of

the curve X(f) is generated by two functions: f and j.





7
Examples

7.1 A cryptographic curve

As an example of the techniques described in this thesis, we construct a curve that

can readily be used for elliptic curve cryptography. The discrete log problem in

E(Fq) is considered to be hard if the order N = #E(Fq) is a prime number of

roughly 200 bits. We will construct a curve of prime order

N = 123456789012345678901234567890123456789012345678901234568197≈ 1059.

As in chapter 4, we look for a solution x, y ∈ Z≥1 to x2 −Dy2 = 4N for varying D

with q = N + 1− x prime. The ‘smallest’ D that admits a solution is D = −2419.

We have

x2 + 2419y2 = 4N

and

q =N+1+x= 123456789012345678901234567890654833374525085966737125236501

is prime for

x= 531376585512740287835890668303

y = 9349802208089011828618119329.

The fact that the first 30 digits of N and q are the same is no coincidence: Hasse’s

theorem tells us that the group order N differs at most 2
√
q from the size q of the

finite field.

The class polynomial PD has degree 8 and PD ∈ Fq [X ] splits completely. Any

of its zeroes is a j-invariant of a curve with N points. In the next subsection we

explain the non-archimedean algorithm to compute PD ∈ Z[X ]. With

a = 78876029697996107120563826094864556580999965110862558799913 ∈ Fq ,
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the curve E defined by Y 2 = X3 + aX − a has CM by OD . The point P = (1, 1) ∈
E(Fq) does not satisfy N · P = OE , so the quadratic twist E ′ of E defined by

Y 2 = X3 + 4aX − 8a

has exactly N points over Fq. This can easily be checked by computing NP ′ for a

random point P ′ ∈ E′(Fq).

� Computing the class polynomial

Our goal is to compute the class polynomial PD ∈ Z[X ] for D = −2419. We will do

this p-adically, so we first find an elliptic curve over some finite field Fp that has CM

by OD. As in section 5.1, we look for the smallest integer t > 0 for which (t2−D)/4

is prime. This yields t = 3 and p = 607. We fix p for the rest of section 7.1. Since p

splits completely in the Hilbert class field of Q(
√
D), there exists an elliptic curve

over Fp with endomorphism ring OD, i.e., a curve with trace of Frobenius t = ±3.

We apply the näıve algorithm from chapter 2 and look for a curve with p + 1 ± t
points over Fp. We find that the curve E/Fp defined by

Y 2 = X3 +X + 56

of j-invariant j(E) = 137 ∈ Fp has trace of Frobenius 3 and consequently endomor-

phism ring OD .

We need to compute the canonical lift j(Ẽ) ∈ Qp of j(E) ∈ Fp up to k p-adic

digits precision with

k =
π
√
|D|

log p

∑

[a,b,c]∈F+
D

1

a
. (7.1)

The class group of the orderOD is cyclic of order 8 and representing the elements

as binary quadratic forms as in section 3.3, we find k ≈ 43. We will compute

j(Ẽ) ∈ Qp up to 45 p-adic digits precision.

Next we determine which element α ∈ OD \ Z we will use for the map ρα :

XD(Cp)→ XD(Cp). The ideal (α) = (3 + πp) of norm 625 = 54 factors as

(α) = p4
5 = (5, πp + 3)4.

Here, πp = 3+
√

D
2 is a prime element of norm p. We compute the action of the prime

ideal p5 on j(E). The eigenvalue for the action of Frobenius on the 5-torsion E[5] is
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−3 ∈ F5. If we evaluate the modular polynomial Φ5(X,Y ) in X = j(E) = 137 ∈ Fp,

we get a polynomial which has 2 roots over Fp, namely 214 and 309. From this we

deduce that p5 sends j(E) to one of these 2 roots; we do not know which one yet.

We just guess that the correct j-invariant is 214 ∈ Fp. Using the techniques

from section 5.6, we compute the eigenspace C of the 5-torsion corresponding to this

isogeny. We get the x-coordinates of the points on E in C as zeroes of

fC = X2 + 502X + 90 ∈ Fp[X ].

Since we know that the eigenvalue for the action of p5 is −3 ∈ Fp, we can now just

check whether

(Xp, Y p) = −3 · (X,Y )

holds for points in C, i.e., we compute both (Xp, Y p) and −3 · (X,Y ) in the ring

Fp[X,Y ]/(fC , Y
2 −X3 −X − 56).

Here, the · means adding on the curve. In this example, it turns out that (Xp, Y p)

and −3 · (X,Y ) are not the same. It follows that the j-invariant of the p5-isogenous

curve is the other value 309 ∈ Fp.

The action of p5 on the j-invariant 309 is now easier to compute: the modular

polynomial Φ5(X, 309) ∈ Fp[X ] again has two roots, but one of these roots is j(E).

This root corresponds to the action of p5, so we pick the other root. If we compute

the entire cycle corresponding to p5, we get:

137
p5−→ 309

p5−→ 532
p5−→ 214

p5−→ 137.

It should come as no surprise that we get a cycle of length 4, since we know that

p4
5 = (α) acts trivially.

We now lift E/Fp to E1/Qp by lifting the coefficients of the Weierstraß equation

arbitrarily. The polynomial Φ5(X, j(E1)) ∈ Zp[X ] has exactly 2 roots, one of which

reduces to 309 modulo p. Taking the lift E1/Qp defined by Y 2 = X3 +X + 56, we

find the roots 214 + 91p and 309− 92p. We have j(E1)
p5 = 309− 92p. Continuing

like this, we get the ‘cycle’

137− 41p
p5−→ 309− 92p

p5−→ 532− 133p
p5−→ 214− 251p

p5−→ 137− 28p

over Qp. We update j(E1) according to the ‘Newton formula’

j(Ek+1) = j(Ek)− ρα(j(Ek))− j(Ek)

(α/ᾱ)− 1
for k ∈ Z≥1 (7.2)
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and find that j(E2) = 137− 15p is the two digit approximation of the j-invariant of

the canonical lift.

Starting from j(E2), we now lift the cycle to four p-adic digits precision, compute

j(E3) from this, and so on. We obtain

j(Ẽ) = 137 +O(p)

= 137− 15p+O(p2)

= 137− 15p− 290p2 − 8p3 +O(p4)

= 137− 15p− 290p2 − 8p3 − 107p4 − 108p5 − 192p6 − 35p7 +O(p8)

= 137− 15p− 290p2 − 8p3 − 107p4 − 108p5 − 192p6 − 35p7 − 172p8 + 14p9

−160p10 + 98p11 − 195p12 + 303p13 − 212p14 − 283p15 +O(p16).

We continue this process until we have computed the canonical lift in 45 p-adic digits

accuracy.

To compute the conjugates of j(Ẽ) under Gal(H/K) ∼= Pic(OD), we note that

the class group Pic(OD) is cyclic of order 8 and is generated by a prime p11 of

norm 11. To speed up the computation, we also use that the prime p5 of norm

5 has order 4 in the class group. We compute the conjugates ρp5
(j(Ẽ)), ρp2

5
(j(Ẽ))

and ρp3
5
(j(Ẽ)) using the modular polynomial Φ5(X,Y ) ∈ Zp[X,Y ]. Although we

know which root of Φ5(X, j(Ẽ)) ∈ Zp[X ] is the j-invariant ρp5
(j(Ẽ)) – we know its

reduction modulo p – this is not important at the moment, since we need to know all

conjugates. The remaining four conjugates are computed using the modular poly-

nomial Φ11(X,Y ) ∈ Zp[X,Y ]. Once we have computed all conjugates, we expand

the degree 8 polynomial

P−2419 =
∏

[I]∈Pic(OD)

(X − j(Ẽ)I) ∈ Z[X ].

The polynomial PD has coefficients up to 119 decimal digits.

� Using a cube root of j

A generating polynomial for the Hilbert class field H of K = Q(
√
D) with smaller

coefficients than PD can be achieved by working with a cube root of the j-function

instead of with j itself. The j-function has a holomorphic cube root γ2 : H → C

with integral Fourier expansion, and it is known that γ2 yields class invariants for

3 - D. Since we have 3 - D = −2419, there is cube root of j(Ẽ) that also lies in

the Hilbert class field H . In this subsection we explain how to compute the minimal

polynomial of this class invariant.
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As we have p ≡ 1 mod 3, there are three cube roots β1, β2, β3 of j(E) = 137 ∈ Fp.

We need to decide which one is the reduction of a class invariant. As γ2 is modular

of level 3, we need to decide which root is invariant under the action of the Galois

group Gal(H3/H) ∼= (O/3O)∗/{±1} of the ray class field H3 over H . Since 3 is

inert in O, we have (O/3O)∗/{±1} ∼= Z/4Z.

The group (O/3O)∗/{±1} is generated by α = πp− 1 of norm 605 = 5 · 112. We

compute the action of the principal ideal (α) on β1, β2, β3. Write (α) = p5 ·p2
11, with

p5 = (5, πp − 1) and p11 = (11, πp − 1). In chapter 6 we explained how to compute

βp̄5

1 using an explicit description in terms of 3-torsion points. A faster way is to use

the modular polynomials from sections 6.8 and 6.9, and this is the method that we

will use in this section.

We need to know the modular polynomials of level 5 and 11 for γ2. We noted

already in chapter 6 that, for l 6= 3, the modular polynomial Φγ2

l (X,Y ) of level l

for γ2 has integer coefficients and degree l + 1 in both X and Y . By comparing

the Fourier expansions of γ2(q) and γ2(q
l), we can recursively find the coefficients

of Φγ2

l . The following general lemma simplifies our computations.

LEMMA 7.1. Let f be a modular function, and let l be a prime not dividing the

level of f . Suppose that the modular polynomial Φf
l has integer coefficients. If f is

invariant under the action of either S =
(

0
1
−1
0

)
∈ SL2(Z) or M =

(
0
1
−l
0

)
∈ GL2(Q),

then Φf
l is symmetric, i.e., we have

Φf
l (X,Y ) = Φf

l (Y,X).

PROOF. The proof is similar to the symmetry proof [37, Theorem 5.3] of the classical

modular polynomial for the j-function. Assume first that f is invariant under S. If

we replace z by −1/(lz) in the equation Φf
l (f(z), f(lz)) = 0, we obtain

Φf
l (f(−1/(lz)), f(−1/z)) = 0.

Using the invariance of f under S, we derive

Φf
l (f(lz), f(z)) = 0.

Since Φf
l (X, f) is irreducible in C[X,Y ], we see that Φf

l (f,X) is a multiple of

Φf
l (X, f). There exists a polynomial g(X,Y ) with

Φf
l (f,X) = g(X, f)g(f,X)Φf

l (f,X).
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The Gauß lemma tells us that we have g(X,Y ) ∈ Z[X,Y ] and hence g(X,Y ) = ±1.

For g(X,Y ) = −1, we get Φf
l (X,Y ) = −Φf

l (Y,X) and Φf
l (X,X) = 0. Then X − Y

would be a factor of Φf
l (X,Y ). This contradicts the irreducibility. Hence, we have

g(X,Y ) = 1 and Φf
l is symmetric.

If f is invariant underM , we replace z by −1/z in the equation Φf
l (f(z), f(lz)) =

0 to obtain

Φf
l (f(−1/z), f(−l/z)) = 0.

Using the invariance of f under M , we derive

Φf
l (f(lz), f(z)) = 0,

and the proof proceeds as before. �

Applying the lemma to f = γ2, which is invariant under S, we know that Φγ2

l starts

with X l+1 + Y l+1. For l = 5 we compute

γ2(q
1/3)6 + γ2(q

5/3)6 = q−10 + . . .

and hence we have

Φγ2

5 (X,Y ) = X6 + Y 6 −X5Y 5 + lower order terms.

We compute γ2(q
1/3)6 + γ2(q

5/3)6 − γ2(q
1/3)5γ2(q

5/3)5 and find

Φγ2

5 (X,Y ) = X6 + Y 6 −X5Y 5 + 1240(X5Y 2 + Y 2X5) + lower order terms.

Continuing like this, we find the modular polynomial Φγ2

5 of level 5 for γ2:

Φγ2

5 (X,Y ) =X6 + Y 6 −X5Y 5 + 1240(X5Y 2 +X2Y 5) + 20620X4Y 4

+66211200(X4Y +XY 4)− 125915650X3Y 3

+654403829760(X3 + Y 3) + 229282790400X2Y 2

−82577379557376XY + 5209253090426880 ∈ Z[X,Y ].

The computation of Φγ2

11 proceeds similarly. The time needed for this computation

is negligible.

For the cube root β1 = 208 ∈ Fp of j(E), the polynomial Φγ2

5 (X, β1) ∈ Fp[X ]

has 2 roots, namely 176 and 328. In order to decide which one is β p̄5

1 and which one

is βp5

1 , we compute j(E)p5 as in the previous subsection. We find j(E)p5 = 309 ∈ Fp.

We compute 1763 = 309 ∈ Fp and conclude that we have

βp̄5

1 = 328 and βp5

1 = 176.
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Next we compute the action of p11 and find

b1 = 208
p̄5−→ 328

p11−→ 157
p11−→ 208.

Hence, b1 = 208 ∈ Fp is the reduction of a class invariant. For completeness sake,

we note that we have

b2 = 423
p̄5−→ 289

p11−→ 258
p11−→ 583,

and

b3 = 583
p̄5−→ 597

p11−→ 192
p11−→ 423,

showing that b2 and b3 are not reductions of class invariants. In fact, we knew this

already. If b2 would be the reduction of a class invariant, then ζ3 would be contained

in the Hilbert class field H and the extension H/Q would be ramified at 3.

As smooth ideal (α) that we use for the map ρα : XD(Cp) → XD(Cp) we pick

α = 3 + πp, just like we did for the j-function. We compute the cycle

137
p5−→ 309

p5−→ 532
p5−→ 214

p5−→ 137

of j-invariants over Fp as before. Using this cycle, we compute the corresponding

cycle for b1:

208
p5−→ 176

p5−→ 562
p5−→ 328

p5−→ 208.

Next we lift E/Fp arbitrarily to E1/Qp and compute a cube root of j(E1) ∈ Qp

that reduces to b1 modulo p. We denote this cube root again by b1. Taking the lift

E1 defined by Y 2 = X3 + X + 56, we find b1 = 208 − 43p ∈ Zp. The polynomial

Φγ2

5 (X, b1) ∈ Zp[X ] has 2 roots, one of which reduces to 176 ∈ Fp. We compute the

‘cycle’ corresponding to b1:

208− 43p
p5−→ 176− 74p

p5−→ 562− 118p
p5−→ 328 + 104p

p5−→ 208− 255p.

Note that we don’t use the modular polynomial for the j-function for this computa-

tion over Qp: the modular polynomials for γ2 suffice. We lift j(E) to j1 = ρα(b1)
3 =

137+121p ∈ Zp. We update j1 according to the ‘Newton formula’ (7.2) and find that

j(E2) = 137− 15p is the two digit approximation of the j-invariant of the canonical

lift. Accordingly, we see that b2 = 208 + 140p is the two digit approximation of the

canonical lift b̃.

We continue this process until we have computed b̃ up to 45/3 = 15 p-adic digits.

We find
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b̃1 = 208 + 140p+ 96p2 − 249p3 − 37p4 − 34p5 + 40p6 − 222p7 + 142p8

−139p9 − 159p10 + 118p11 + 225p12 + 103p13 − 234p14 − 140p15 +O(p16).

Computing the conjugates for b̃ under Pic(OD) proceeds just as in the computation

of PD for the j-function, using the modular polynomials Φγ2

5 and Φγ2

11. In the end

we expand the polynomial of degree 8 to find the polynomial

P γ2

−2419 =
∏

[I]∈Pic(OD)

(X − b̃I)

= X8 + 23344847974866451112256X7

+431537460087154644582865920X6

+20716070070453749000805185224704X5

+1917235980323082783654716721070080X4

+300822183549446154017184276258226176X3

+4961110370685787305744112066133753856X2

+583359477884330290298868497942826713088X

−6798285426905262621977757780174169964544∈ Z[X ].

The polynomial P γ2

D ∈ Fq [X ] splits completely. Let x ∈ Fq be a root. A curve E/Fq

with j-invariant j(E) = x3 has endomorphism ring O. Either E or its quadratic

twist has exactly N points over Fq .

� Using the Weber function

Even better results can be obtained by using the Weber function f(z) = ζ−1
48

η( z+1
2

)

η(z)

of level 48. The minimal polynomial

Ψf = (X24 − 16)3 − jX24 ∈ Z[j,X ]

of f over Q(j) has degree 72. As noted in chapter 6, the Weber function f yields

class invariants for discriminants D ≡ 1 mod 8 with 3 - D. In the case D ≡ 5 mod 8

and 3 - D, we get class invariants when we evaluate f in an appropriate generator ω

for the order O4D = Z[ω] of conductor 2, cf. theorem 6.4.

We have D = −2419 ≡ 5 mod 8. In fact, if we want to construct an elliptic

curve with N points with N odd, then we will in practice always have D 6≡ 1 mod 8.

Indeed, writing 4N = x2 − Dy2 with x, y ∈ Z for a fundamental discriminant D

with N + 1 + x prime, we see that D cannot be congruent to 1 modulo 8.

We will compute P f
4D ∈ Z[X ]. The polynomial P f

4D is a generating polynomial

for the ray class field H2 of conductor 2 of K = Q(
√
D). First we find a small
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prime l for which there exists an elliptic curve E/Fl with CM by O4D . The smallest

t > 0 for which (t2 − 4D)/4 is prime is t = 4, leading to the prime value l = 2423.

Applying the näıve algorithm, we find that the elliptic curve E/Fl defined by

Y 2 = X3 +X + 14

of j-invariant 1663 ∈ Fl has trace of Frobenius 4. Since E has only one Fl-rational

2-torsion point, we have End(E) ∼= O4D . In accordance with theorem 6.6, the

polynomial

Φf(X, j(E)) = (X24 − 16)3 − j(E)X24 ∈ Fl[X ]

has 2 roots, namely ±321 ∈ Fl. Both are reductions of class invariants. We will

work with the root b = 321.

The Picard group Pic(O4D) is cyclic of order 3·8 = 24. We represent the elements

as reduced binary quadratic forms and using the same notation as in formula (7.1),

we compute k ≈ 107. Hence, we need to know the canonical lift b̃ ∈ Ql of b in

dk/72e = 2 l-adic digits accuracy. For the map ρα : X4D(Cl) → X4D(Cl) we take

α = πl − 36 of norm 3575 = 52 · 11 · 13. The ideal (α) factors as

(α) = p2
5 · p11 · p13 = (5, πl − 1)2 · (11, πl − 3) · (13, πl − 10).

We start by computing the cycle of j-invariants over Fl for the map ρα : Ell4D(Fl)→
Ell4D(Fl):

j(E) = 1663
p5−→ 2355

p5−→ 347
p11−→ 1500

p13−→ 1663.

To compute the corresponding cycle for the ‘Weber value’ b, we need to know the

modular polynomials Φf
l of level l = 5, 11, 13 for f. The computation of these poly-

nomials proceeds similarly to the computation of the modular polynomials for γ2.

As f is invariant under S =
(

0
1
−1
0

)
, the polynomials Φf

l are symmetric by lemma 7.1.

We compute

Φf
5(X,Y ) = X6 + Y 6 + 4XY −X5Y 5

Φf
11(X,Y ) = X12 + Y 12 + 32XY − 88X3Y 3 + 88X5Y 5 − 44X7Y 7 + 11X9Y 9

−X11Y 11

Φf
13(X,Y ) = X14 + Y 14 + 64XY + 13(Y 2X12 +X2Y 12) + 52(X10Y 4 + Y 10X4)

+78(Y 6X8 + Y 8X6)−X13Y 13.

The polynomial Φf
5(X, b) ∈ Fl[X ] has 2 roots, namely 171 and 1600. For the root

r = 171 we have (r24 − 16)3 − 2355r24 = 0, so we have bp5 = r = 171 ∈ Fl. We

compute the cycle for b:

b = 321
p5−→ 171

p5−→ 1665
p11−→ 150

p13−→ 321.
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Next we choose an arbitrary lift of the curve E/Fl to E1/Ql. We take the lift defined

by E1 : Y 2 = X3 +X + 14 of j-invariant j(E1) = 1663 + 176l ∈ Ql. This leads to

the lift b1 = 321 + 618l of b. Just like we did in the previous subsection for γ2, we

now compute the ‘cycle’ for b1:

321 + 618l
p5−→ 171− 1073l

p5−→ 1665 + 696l
p11−→ 150− 223l

p13−→ 321 + 440l.

The value b
(α)
1 = 321 + 440l leads to ρα(j(E1)) = 1663 + 629l. We update this

according to the Newton formula (7.2) and obtain j(Ẽ) = 1663 − 1025l. This is

the canonical lift in 2 digits accuracy. We lift b to the root b̃ = 321 − 381l of

Ψf(X, j(Ẽ)) ∈ Zl[X ]. The canonical lift b̃ is accurate in 2 l-adic digits.

We compute the conjugates of b̃ under Gal(H2/Q(
√
D)) ∼= Pic(O4D) by employ-

ing the modular polynomials Φf
5 and Φf

11 just like before. In the end we expand the

polynomial

P f
4D =

∏

[I]∈Pic(OD)

(X − b̃I) ∈ Z[X ]

and find

P f
−4·2419 = X24 + 624X23 − 756X22 − 820X21 + 7500X20 + 36424X19

+91904X18 + 183248X17 + 286784X16 + 266736X15 + 111024X14

+67328X13 + 133536X12− 23552X11− 150592X10 + 316736X9

+792896X8 + 292224X7− 596736X6− 643840X5− 56832X4

+206080X3 + 99584X2 + 8192X + 256 ∈ Z[X ].

We return to the problem of constructing an elliptic curve with exactly

N = 123456789012345678901234567890123456789012345678901234568197

points. We have x2 −Dy2 = 4N , with q = N + 1 + x prime. The following lemma

describes the splitting behaviour of P f
4D ∈ Fq [X ].

LEMMA 7.2. Let p ∈ Z be a prime that satisfies t2−4p = ∆ for t ∈ Z and a negative

discriminant ∆ ≡ 5 mod 8. Let D be the field discriminant of Q(
√

∆). Then the

polynomial P f
4D ∈ Fp[X ] splits into irreducible cubic factors.

PROOF. The polynomial P f
4D ∈ Z[X ] is a generating polynomial for the ray class

field H2 of K = Q(
√
D). The extension H2/Q is Galois, and we need to show that

we have fp/p = 3. Here, fp/p denotes the residue class degree of a prime p|p lying

over p.
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By assumption, the prime p splits completely in the Hilbert class field H of K.

Since 2 is inert in K, the extension H2/H has degree 3 and we have to show that p

does not split completely in H2.

By class field theory, the prime πp = (t +
√

∆)/2 ∈ OK of norm p splits com-

pletely in H2/K if and only if we have πp ≡ 1 mod (2). The prime 2 is inert in K

and t is odd, hence we have πp 6≡ 1 mod (2). This shows that P f
4D ∈ Fp[X ] splits

into irreducible cubic factors. �

We see that P f
4D ∈ Fq[X ] splits into irreducible cubic factors. In order to construct

a curve with N points over Fq , we compute a root β ∈ Fq3 of P f
4D ∈ Fq3 [X ]. An

elliptic curve E with j-invariant j = (β24 − 16)3/β24 ∈ Fq3 has endomorphism ring

O4D . One of the three 2-isogenous curves of E has CM by OD and is defined over Fq .

Hence, the classical modular polynomial Φ2(X, j) ∈ Fq3 [X ] has a root j′ in Fq . An

elliptic curve E′/Fq with j-invariant j′ has CM by OD. Either E′ or its quadratic

twist has N points.

We illustrate lemma 7.2 by working over Fp, with p = 607, rather than over Fq .

The polynomial P f
4D ∈ Fp[X ] factors as

P f
4D = (X3 + 55X2 + 343X + 2) · (X3 + 223X2 + 337X + 2)·

(X3 + 319X2 + 405X + 2) · (X3 + 402X2 + 229X + 2)·
(X3 + 406X2 + 168X + 2) · (X3 + 526X2 + 177X + 2)·
(X3 + 544X2 + 429X + 2) · (X3 + 577X2 + 404X + 2) ∈ Fp[X ].

We represent the field Fp3 as Fp(δ) with δ a zero of f = X3 + 55X2 + 343X + 2 ∈
Fp[X ]. An elliptic curve with j-invariant j = (δ24 − 16)3/δ24 ∈ Fp3 has endomor-

phism ring O4D . The polynomial Φ2(j,X) ∈ Fp3 [X ] has one root in Fp, namely 298.

An elliptic curve with j-invariant 298 ∈ Fp has endomorphism ring OD .

7.2 Large group orders

The cryptographic curve from the previous section is a rather small example, and our

algorithm is capable of handling much larger inputs N ∈ Z≥1. Chapter 4 reports on

the construction of a curve with exactly 102004 + 4863 = nextprime(102004) points.

In this section we give more examples of constructing curves of prescribed order N .

The inputs N we choose in this section are ‘random’. To obtain suitable random

integers, we encode all letters of the alphabet via the simple scheme A 7→ 01, B 7→
02, . . . , Z 7→ 26. The space is mapped to 00. For instance, if we take the title of this

thesis
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CONSTRUCTING ELLIPTIC CURVES OF PRESCRIBED ORDER

we get

N =031514192018210320091407000512120916200903000321

182205190015060016180519031809020504001518040518.

We will construct a curve with exactly N points. The algorithm from chapter 4

requires the factorisation of N . As N is only of size 1095, this is doable by the

current factorisation algorithms. We find

N =2 · 7 · 11 · 2435345113 · 15279732667 · 496139791093 · 7356751787309663

·1506673061548025358525712547050019127952141103.

Next we look for a solution x, y ∈ Z≥1 to the equation x2−Dy2 = 4N for varying D

with p = N + 1− x prime. The ‘smallest’ D that admits a solution is D = −52477.

We have

x2 + 52477y2 = 4N

and

p = N + 1− x=31514192018210320091407000512120916200903000321

459768862031516742958137970371530378332687568921

is prime for

x= −277563672016456726777618938562509874331169528402

y = 966453100641073489679726097861861130144188278.

Since D ≡ 3 mod 4 is not a discriminant, we compute the class polynomial P4D ∈
Z[X ]. The computation of P4D proceeds just as in section 7.1. Alternatively, we

can use the function γ2 or one of the double η-quotients as explained in section 7.4.

The polynomial P4D ∈ Fp[X ] splits completely. Any of its zeroes yields a curve

with N points. If we put

a=31852030651423751802739993910297528236006693960

00863090565357151470459503211617791215206527455∈ Fp,

then the curve defined by

Y 2 = X3 + aX − a

has exactly N points over Fp.

Another way of producing suitable large random numbers, is to write a date as an

integer and work with N = nextprime(10date).
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For the date 6 December, we get N = nextprime(10612) = 10612 + 1411. In

this case, we get a solution to x2 − Dy2 = 4N with p = N + 1 − x prime for

D = −23837083. For discriminants of this size, it is a bad idea to compute the class

polynomial PD corresponding to the j-function. Better results are obtained if we

compute the polynomial P f
4D corresponding to f. We do have to replace D by 4D,

but this is a relatively small price to pay.

The polynomial P f
4D splits into irreducible cubic factors in Fp[X ], cf. lemma 7.2.

Using this factorisation, it is an easy matter to construct an elliptic curve over Fp

with N points.

A larger example arises when we select 26 November. This time, we have N =

nextprime(102611) = 102611 + 5641 and we worked with D = −80783323. Although

it is better to work with for instance the Weber function f in this case, it is still

possible to compute the class polynomial PD in a reasonable amount of time. The

polynomial PD has coefficients up to 32122 decimal digits, and we used 4400 digits

in a 20195387-adic algorithm.

7.3 Simple η-quotients

We leave the problem of curve construction, and focus only on the problem of

computing a generating polynomial for the Hilbert class field H of an imaginary

quadratic number field K = Q(
√
D). Displaying pages full of large numbers is not

always pleasing to the human eye. Hence, we will work with relatively small values

of D. Section 7.5 contains an example of the computation for a large discriminant.

For any choice of D, there are many ‘small’ functions that we can choose. We

have seen already how to work with γ2 and f in a p-adic setting. The Weber f-

function can be ‘generalized’ in many ways. For a prime l ∈ Z, define the function

gl : H→ C by

gl(z) =
η(z/l)

η(z)
.

Here, η(z) denotes as usual the classical Dedekind eta function with Fourier expan-

sion

η(z) = q1/24 ·
∞∏

n=1

(1− qn), q = e2πiz.

We have g2(z) = f1(z). Using the transformation rules [47, Theorem 1] for the

η-function under an element M ∈ SL2(Z), one proves [25, Chapter 4] that gl is a

modular function of level 24l over Q(ζ24l). In this section we consider the functions

g3 and g11 and explain how to work with these functions over Qp.
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� The case l = 3

The function g(z) = g3(z) = η(z/3)
η(z) was already studied by Weber [65, §72]. Be-

sides g, Weber considers the functions

g(1)(z) = ζ−1
24

η( z+1
3 )

η(z)

g(2)(z) =
η( z+2

3 )

η(z)

g(3)(z) =
√

3
η(3z)

η(z)
.

The functions g(i) are conjugates of g over Q(j). Just like we have ff1f2 =
√

2 for

the classical Weber functions, we have gg(1)g(2)g(3) =
√

3.

Class invariants arising from g are well studied [25, Theorem 4.1]. The tech-

niques used are exactly the same as those used in the proof of theorem 6.4. We will

illustrate our p-adic techniques by treating the same example D = −479 that Gee

and Stevenhagen used to explain their complex analytic method for computing class

invariants [27]. If we put ω = −1+
√

D
2 , then the value β = ζ2

3g
2
(2)(ω)/

√
−3 generates

the Hilbert class field H of K = Q(
√
D). Furthermore, the minimal polynomial of

β over Q has integer coefficients.

For the p-adic computation, we compute the minimal polynomial

Ψh(j,X) = (X6 + 27)(X6 + 3)3 − jX6 ∈ Z[j,X ]

of h = g2 over Q(j). This polynomial can in fact already be found in Weber [65,

§72]. The functions h and g2
(2) are conjugates over Q(j). Since we know that

β = ζ2
3g

2
(2)(ω)/

√
−3 is a class invariant, we know that there is a root x ∈ C of

Ψh(j(ω), X) ∈ H [X ] with the property that x/
√
−3 is a class invariant.

As in section 6.6, the logarithmic height of the coefficients of the minimal poly-

nomial P h
D ∈ Z[X ] of the class invariant β is a factor

r(h) =
degX(Ψh(j,X))

degj(Ψh(j,X))
=

24

1
= 24

smaller than that of P j .

The first thing we do is find a prime p and an elliptic curve E/Fp that has CM

by O = OD. Since we have D ≡ 1 mod 8, the equation t2 −D = 4p has no solution

with p prime. Hence, we look for the smallest integer t > 0 for which (t2 − 4D)/4
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is four times a prime p. We find t = 8 and p = 487. Applying the näıve algorithm

from chapter 2, we find that the curve E ′/Fp defined by

Y 2 = X3 + 253X − 253

of j-invariant j(E) = 59 ∈ Fp has trace of Frobenius 8. Since the polynomial

X3 + 253X − 253 ∈ Fp[X ] has only one root, the curve E ′ has only one Fp-rational

2-torsion point and does not have CM by O. The 2-isogenous curve E/Fp defined

by

Y 2 = X3 + 219X + 306

has trace of Frobenius 8 and CM by O.

The polynomial Ψh(j(E), X) = X24 + 36X18 + 270X12 + 697X6 + 729 ∈ Fp[X ]

has six roots, namely ±26,±188,±214 ∈ Fp. Since we have ζ3 ∈ H , for all six roots

b the value b/
√
−3 ∈ Fp is the reduction of a class invariant. Unfortunately, the

minimal polynomial of the canonical lift b̃/
√
−3 has integer coefficients for only two

choices of ±b. We can just compute the minimal polynomial for all 3 choices of ±b,
and see whether the polynomial has integer coefficients. For the choice b = 188 ∈ Fp

we get integer coefficients, and this is the root we will work with in this example.

Having fixed the root b = 188 ∈ Fp, we show how to compute the canonical

lift b̃ ∈ Qp. We compute the required precision of k = 47 p-adic digits for the

computation of PD as in formula 7.1. The required precision for the computation of

P h
D is dk/24e = 2 p-adic digits.

As smooth element α ∈ O \ Z for the map ρα : XD(Cp) → XD(Cp) we take

α = πp − 2 of norm 475 = 52 · 19. Writing p = πpπp ∈ O, we factor

(α) = p2
5 · p19 = (5, πp − 2)2 · (19, πp − 2)

and compute the cycle of j-invariants for the map ρα : EllD(Fp)→ EllD(Fp):

j(E) = 59
p5−→ 481

p5−→ 410
p19−→ 59.

In order to compute the corresponding cycle for the ‘h-values’ b1, we need the mod-

ular polynomials Φh
5 and Φh

19. These polynomials are computed by relating the

Fourier expansions of h(z) and h(lz), just as before. As an example, we give the

polynomial Φh
5 of level 5:

Φh
5 (X,Y ) = X6 + Y 6 −X5Y 5 − 10X4Y 4 − 45X3Y 3 − 90X2Y 2 − 81XY.

These polynomials are easily computed ‘on the fly’, but in fact the computation of the

modular polynomials Φh
l must be seen as a precomputation, since this computation

is independent of the discriminant.
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The polynomial Φh
5 (X, b) ∈ Fp[X ] has 2 roots, namely 17, 381 ∈ Fp. We have

Ψh(481, 381) = 0, hence we have bp5 = 381. Continuing like this, we compute the

cycle

b = 188
p5−→ 381

p5−→ 472
p19−→ 188

over Fp corresponding to b.

We lift the curve E/Fp to the curve E1/Qp defined by

Y 2 = X2 + 219X + 306

of j-invariant j1 = j(E1) = 59 − 145p ∈ Qp. We lift b to b1 = 188 + 125 ∈ Qp as

a root of Ψh(j(E1), X) ∈ Zp[X ]. Next we compute the ‘cycle’ belonging to b1. The

polynomial Φh
5 (b1, X) ∈ Zp[X ] has 2 roots, namely 17− 114p and 381+ 197p. Since

we know the reduction of bp5

1 modulo p, we see that we have bp5

1 = 381 + 197p ∈ Qp.

Continuing like this, we compute

b1 = 188 + 125p
p5−→ 381 + 197p

p5−→ 472− 7p
p19−→ 188 + 56p = b

(α)
1 .

Knowing b
(α)
1 , we compute j

(α)
1 = 59 − 235p. We update j(E1) according to the

Newton formula (7.2) and find that j(E2) = 137+31p is the two digit approximation

of the j-invariant of the canonical lift. We compute b̃ = 188 + 195p+ O(p2).

The class group Pic(O) of O is cyclic of order 16 and is generated by a prime of

norm 5. We use the modular polynomial Φh
5 ∈ Zp[X,Y ] to compute the conjugates

of b̃ under Gal(H/K) ∼= Pic(O).

The Artin symbol [p5, H/K] of p5 sends
√
−3 to −

√
−3. Hence, the minimal

polynomial P h
d of b̃ is given by

P h
D = (X−b̃/

√
−3)(X+b̃p5/

√
−3)(X−b̃p2

5/
√
−3)·. . .·(X−b̃p14

5 /
√
−3)(X+b̃p

15
5 /
√
−3),

and we expand

P h
−479 = X16 − 20X15 − 127X14 − 342X13 + 183X12 + 427X11 − 1088X10

−794X9 + 1333X8 − 794X7 − 1088X6 + 427X5 + 183X4 − 342X3

−127X2 − 20X + 1 ∈ Z[X ].

� The case l = 11

The situation becomes slightly more difficult if we consider the function g(z) =

g11(z) = η(z/11)
η(z) . Regarding class invariants, we have the following result [25, Theo-

rem 4.2].
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LEMMA 7.3. Let K be an imaginary quadratic number field of discriminant D with

gcd(D, 6) = 1. Let ω = −1+
√

D
2 be a generator for the maximal order O = Z[ω]

of K. Write f = fω
Q for the minimal polyomial of ω over Q. If k ∈ Z satisfies

f(−k) ≡ 0 mod 11 and k ≡ 0 mod 24,

then ζ2
3

(
η( ω+k

11
)

η(ω)

)2

is a class invariant.

The existence of k ∈ Z with f(−k) ≡ 0 mod 11 means exactly that 11 should not

be inert in O. The function ζ2
3

(η( ω+k
11

)

η(ω)

)2
is conjugate to h = g2 over Q(j). We see

that there is a root of Ψh(j(ω), X) that is a class invariant. Here, Ψh denotes the

minimal polynomial of h over Q(j). Again, it is not guaranteed that the minimal

polynomial of a class invariant h(ω) for h = g2 has integer coefficients.

The function h is invariant under Γ0(11). The minimal polynomial

Ψh(j,X) = X72 − 5940X66 + 14701434X60− (139755j + 19264518900)X54

+(723797800j+ 13849401061815)X48

+(67496j2 − 1327909897380j− 4875351166521000)X42

+(2291468355j2 + 1036871615940600j+ 400050977713074380)X36

−(5346j3 − 4231762569540j2 + 310557763459301490j

−122471154456433615800)X30

+(161201040j3 + 755793774757450j2 + 17309546645642506200j

+6513391734069824031615)X24

+(132j4 − 49836805205j3 + 6941543075967060j2

−64815179429761398660j+ 104264884483130180036700)X 18

+(468754j4 + 51801406800j3 + 214437541826475j2

+77380735840203400j+ 804140494949359194)X12

−(j5 − 3732j4 + 4586706j3− 2059075976j2 + 253478654715j

−2067305393340)X6

+1771561 ∈ Z[j,X ]

of h = g2 over Q(j) can be computed as in [44] by computing the conjugates of h

over Q(j). The polynomial Ψh(j,X) is a polynomial in X6. The highest power in j

is j5. Since X0(11) has genus one, we knew beforehand that Ψh(j,X) cannot be a

linear polynomial in j.

As in section 6.6, the coefficients of the minimal polynomial P h ∈ Z[X ] of a
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class invariant g2(ω) will be a factor

r(g) =
degX(Ψh(j,X))

degj(Ψh(j,X))
=

72

5
≈ 14

smaller than the coefficients of P j .

We also compute some modular polynomials. We have an upper bound

(l + 1)deg(h)

for the modular polynomial of degree l for h. Since the degree of j in the minimal

polynomial Ψh is already 5, the degrees of the modular polynomials become rather

large. To keep the coefficients small, we consider the modular polynomials Φg
l for g

rather than for h = g2. For l = 5, the polynomial Φg
5 has degree 30 = 5 · (5 + 1) in

X and Y , as was to be expected. We compute

Φg
5(X,Y ) = X30 − 5Y 5X29 + 10Y 10X28 + (−895Y 3 − 10Y 15)X27

+(−3220Y 8 + 5Y 20)X26 + (1030Y 13 − 605Y − Y 25)X25

+(−70Y 18 + 76400Y 6)X24 + (−38825Y 11 + 30Y 23)X23

+(875Y 16 − 389620Y 4)X22 + (603680Y 9 − 350Y 21)X21

+(5Y 26 − 26070Y 14 + 146410Y 2)X20

+(−420Y 19 − 4697825Y 7)X19

+(457275Y 12 − 70Y 24)X18 + (55775Y 17 + 15080230Y 5)X17

+(−3154470Y 10 + 875Y 22)X16

+(−17715610Y 3 − 819470Y 15 − 10Y 27)X15

+(−26070Y 20 + 12810875Y 8)X14 + (6748775Y 13 + 1030Y 25)X13

+(−124009270Y 6 + 457275Y 18)X12

+(−6149220Y 11 − 38825Y 23)X11

+(−3154470Y 16 + 1071794405Y 4 + 10Y 28)X10

+(603680Y 21 − 620046350Y 9)X9 + (12810875Y 14 − 3220Y 26)X8

+(−4697825Y 19 + 6430766430Y 7)X7

+(−124009270Y 12 + 76400Y 24)X6

+(−5Y 29 + 15080230Y 17 − 25937424601Y 5)X5

+(1071794405Y 10 − 389620Y 22)X4

+(−895Y 27 − 17715610Y 15)X3 + 146410Y 20X2

−605Y 25X + Y 30 ∈ Z[X,Y ]



Examples 145

by the same linear algebra techniques that we used for e.g. the classical Weber

function f or γ2. Alternatively, we can compute ‘Schläfli modular polynomials’ [29]

and convert those to modular polynomials. Since the Schläfli polynomials have

smaller coefficients, the latter method is faster in this case.

The time needed to compute these modular polynomials is not completely neg-

ligible for this function. This should be considered as a precomputation however.

We will illustrate the use of h in a p-adic setting by putting D = −359 and

compute the generating polynomial P h
D for the Hilbert class field H of K = Q(

√
D).

As in lemma 7.3, we write OD = Z[ω] with ω = −1+
√

D
2 . For k = 192 = 8 · 24 and

k = 216 = 9 ·24, we have fω
Q(−k) ≡ 0 mod 11. From lemma 7.3 we derive that there

are at least two roots of Ψh(j(ω), X) that are class invariants. The corresponding

minimal polynomials are complex conjugates.

First we find a prime p and an elliptic curve E/Fp that has CM by O = OD. We

haveD ≡ 1 mod 8 and the smallest t > 0 for which there is a solution to 4p = t2−4D

with p prime is t = 24, leading to p = 503.

Applying the näıve algorithm, we find that the curve E/Fp defined by

Y 2 = X3 + 117X − 117

of j-invariant j(E) = 15 ∈ Fp has trace of Frobenius 24. Since E has its complete

2-torsion defined over Fp, we have End(E) = O.

We know that the polynomial Ψh(X, j(E)) ∈ Fp[X ] has at least 2 roots. We

will work with the polynomial Ψg(X, j(E)) = Ψh(X2, j(E)) ∈ Fp[X ] instead. The

reason is that we have computed the modular polynomial for g rather than for

h = g2. The polynomial Ψg(X, j(E)) has four roots, namely ±31,±163 ∈ Fp. The

squares 48, 9 ∈ Fp of these roots are reductions of class invariants.

Taking b = 31 ∈ Fp, we will compute the minimal polynomial P g
D ∈ O[X ] of the

square of the ‘canonical lift’ b̃ ∈ Qp. The class group Pic(O) is cyclic of order 19 and

is generated by a prime of norm 5. The required precision for the computation of b̃

is dk/14e = 4 p-adic digits accuracy, where we compute k ≈ 46 as in formula 7.1.

As smooth element α ∈ O \Z we take the generator α = 216038πp− 4114983 of

the principal ideal p19
5 ⊂ O. Here, p5 = (5, πp − 11) is an ideal of norm 5. Using the

techniques from chapter 5 we compute the cycle of j-invariants over Fp belonging

to the map ρα : EllD(Fp)→ EllD(Fp).

j(E) = 15
p5−→ 62

p5−→ 79
p5−→ . . .

p5−→ − 215
p5−→ 15

The polynomial Φg
5(X, b) ∈ Fp[X ] has 2 roots, namely 96,−124 ∈ Fp. The root

96 satisfies Ψg(−215, 96) = 0 and the root −124 satisfies Ψg(62,−124) = 0. We
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conclude that we have bp5 = −124 ∈ Fp. For the next step in the cycle, we

compute the roots of Φg
5(X,−124) ∈ Fp[X ]. This polynomial has as six roots

2, 9, 31,−205,−112,−85 ∈ Fp. Only the root x = −205 satisfies Ψg(79, x) = 0, so

we have −205 = bp
2
5 . Continuing like this, we compute the cycle for b:

31
p5−→ − 124

p5−→ − 205
p5−→ − 205 . . .

p5−→ − 96
p5−→ − 31.

We do not have b(α) = b. This is no surprise, since we know that the square

b2 = 48 ∈ Fp is the reduction of a class invariant.

We lift E/Fp to E1/Qp defined by

Y 2 = X3 + 117X − 117

of j-invariant j1 = j(E1) = 15 + 241p ∈ Qp. We lift b to b1 = 31 − 203p ∈ Qp as

a zero of Ψg(j(E1), X) ∈ Zp[X ]. The polynomial Φg
5(X, b1) ∈ Zp[X ] has one root

that reduces to −124 ∈ Fp. We compute bp5

1 = −124 + 34p ∈ Qp, and compute the

entire ‘cycle’ for b1:

31− 203p
p5−→ − 124 + 34p

p5−→ . . .
p5−→ − 31− 2p.

Using the value b
(α)
1 = −31 − 2p, we compute ρα(j1) = 15 + 14p as a root of

Ψg(X, b1) ∈ Zp[X ]. Next we update j1 according to the Newton formula (7.2) and

obtain j2 = 15 + 403p. Accordingly, we update b1 to b2 = −31 + 17p. This is the

canonical lift b̃ of b in two p-adic digits accuracy.

Similarly, we compute b̃ = 31 + 17p− 195p2 + 3p3 + O(p4) ∈ Qp. To compute

the conjugates of b̃ under Gal(H/K) ∼= Pic(O) ∼= 〈p5〉 we employ the modular

polynomial Φg
5 once more. We compute the 19 conjugates of b̃ and expand the

product

P h
D =

19∏

i=1

(
X − (b̃p5)2

)
∈ Zp[X ].

Note that we square every conjugate. We cannot recognize the polynomial P h
D as

an element of O[X ] yet.

To remedy this, we repeat the entire computation where we take as initial value

the other root b1 = 163 ∈ Fp of Ψg(X, j(E)) ∈ Fp[X ]. This yields another polyno-

mial (P h
D)′ ∈ Zp[X ]. The polynomials P h

D ∈ H [X ] and (P h
D)′ ∈ H [X ] are complex

conjugates, so their sum
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P h
D + (P h

D)′ = 2X19 + 108X18 − 2632X17 − 26939X16 + 41715X15

+774621X14− 1706313X13− 8416511X12 + 14265150X11

+241642630X10− 760800808X9− 638692312X8

+3092914049X7 + 8791773739X6− 37066201629X5

−28472524275X4 + 149884243485X3 + 183678558472X2

−65029061950X− 15584009580

has integer coefficients. We compute a square root
√
D = 12− 21p− 186p2+ 94p3 +

O(p4) ∈ Qp of D. It is now an easy matter to write the coefficients of P g
D ∈ Zp[X ]

in the form a+ bω with ω = −1+
√

D
2 and a, b ∈ Z. We have

P g
−359 = X19 + (59 + 10ω)X18 + (−1248 + 136ω)X17

+(−13882 +−825ω)X16 + (17220 +−7275ω)X15

+(389937 + 5253ω)X14 + (−762853 + 180607ω)X13

+(−4418582 +−420653ω)X12 + (6112297 +−2040556ω)X11

+(124345093 + 7047556ω)X10 + (−366954339 + 26892130ω)X9

+(−355263701 +−71835090ω)X8 + (1454764983 +−183384083ω)X7

+(4776144800 + 760515861ω)X6 + (−18321473928+ 423253773ω)X5

+(−16122069915+−3771615555ω)X4

+(72171452159+−5541339167ω)X3

+(95835878728+ 7993198984ω)X2

+(−28800117323+ 7428827304ω)X

−7756846897+ 70315786ω ∈ O[X ].

7.4 Double η-quotients

Another generalisation of the Weber function is obtained by considering double

η-products, as studied for instance by Enge and Schertz [23] and Cohen [11, Sec-

tion 6.3]. For primes p, q ∈ Z, put s = 24/gcd(24, (p−1)(q−1)) and N = pq. Define

the function gp,q : H→ C by

gp,q =

(
η(z/p)η(z/q)

η(z)η(z/pq)

)s

.

Using the transformation behaviour [47, Theorem 1] of the η-function under an

element M ∈ SL2(Z), we prove that that gp,q is invariant under the congruence
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subgroup Γ0(N) ⊂ SL2(Z). One proves [23, Theorem 7] that gp,q is an element of

the modular function field FN of level N over Q(ζN ). Furthermore, the function gp,q

is invariant under the Atkin-Lehner involution z 7→ −N/z associated to the matrix(
0
1
−N
0

)
∈ GL2(Q).

THEOREM 7.4. Let K = Q(
√
D) be imaginary quadratic of discriminant D =

disc(K) < 0. Take two primes p, q satisfying the condition:

� for p 6= q, the primes p, q are either split or ramified;

� for p = q, the prime p is split.

Then gp,q(ω) lies in the Hilbert class field of K when evaluated at an appropriate

generator ω ∈ H of the Z-algebraOD = Z[ω]. Furthermore, for p, q 6= 2, the minimal

polynomial of gp,q(ω) over Q has integer coefficients.

PROOF. This is part of [22, Theorem 3]. �

For any imaginary quadratic field K there is an infinite number of primes p, q such

that gp,q yields class invariants for K. The minimal polynomial of a class invariant

gp,q(ω) has smaller coefficients than the minimal polynomial of j(ω). The difference

in size depends on p and q, see [21] for a comparison.

Let Ψp,q(j,X) ∈ Q[j,X ] be the minimal polynomial of gp,q over Q(j). As in

section 6.6, the logarithmic height of the coefficients of the minimal polynomial

P gp,q ∈ Z[X ] of a class invariant g(ω) is a factor

r(gp,q) =
degX(Ψp,q(j,X))

degj(Ψp,q(j,X))

smaller than that of P j . The polynomials Ψp,q(j,X) for the function gp,q are stud-

ied in [23]. Enge and Schertz explicitly give the conjugates, i.e., the other zeroes

of Ψp,q(j,X) ∈ C(j)[X ] of gp,q . Using this, they prove that we have Ψp,q(j,X) ∈
Z[j,X ] and that Ψp,q is an affine model for the modular curve X0(pq). The de-

gree degX(Ψp,q(j,X)) therefore equals the index [SL2(Z) : Γ0(pq)]. The degree

degj(Ψp,q(j,X)) is given by s (p−1)(q−1)
12 .

We will illustrate the use of double η-quotients in a non-archimedean setting by

selecting p = 5 and q = 7 and work with the function

g = g5,7 =
η(z/5)η(z/7)

η(z)η(z/35)
.

For this function, we have

r(g) =
(5 + 1) · (7 + 1)

2
= 24,
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and the size of the coefficients of P g is a factor 24 smaller than the size of the

coefficients of P j .

We compute the minimal polynomial Ψg(j,X) ∈ Z[X, j] of g over Q(j). In

accordance with the example in [23], we find

Ψ5,7(j,X) = X48 + (−j + 708)X47 + (35j + 171402)X46

+(−525j + 15185504)X45 + (4340j + 248865015)X44

+(−20825j + 1763984952)X43 + (52507j + 6992359702)X42

+(−22260j + 19325688804)X41 + (−243035j + 42055238451)X40

+(596085j + 70108209360)X39 + (−272090j + 108345969504)X38

+(−671132j + 121198179480)X37 + (969290j + 155029457048)X36

+(−1612065j+ 97918126080)X35 + (2493785j + 141722714700)X34

+(647290j − 1509796288)X33 + (−3217739j + 108236157813)X32

+(3033590j − 93954247716)X31 + (−5781615j + 91135898154)X30

+(1744085j − 108382009680)X29 + (1645840j + 66862445601)X28

+(−2260650j− 66642524048)X27 + (6807810j + 38019611082)X26

+(−2737140j− 28638526644)X25 + (2182740j + 17438539150)X24

+(−125335j − 8820058716)X23 + (−1729889j + 5404139562)X22

+(1024275j − 1967888032)X21 + (−1121960j + 1183191681)X20

+(395675j − 370697040)X19 + (−54915j + 103145994)X18

+(15582j − 42145404)X17 + (34755j − 15703947)X16

+(−6475j − 3186512)X15 + (1120j − 4585140)X14

+(−176j + 1313040)X13 + (j2 − 1486j − 38632)X12

+(−7j + 399000)X11 + (−19j + 211104)X10

+(−9j + 6771)X8 + (8j − 6084)X7 + (7j − 5258)X6

+(j − 792)X5 − 105X4 + 16X3 + 42X2 + 12X + 1 ∈ Z[j,X ].

The degree in X of Ψg(j,X) is indeed 48 = (5 + 1) · (7 + 1), and j2 appears exactly

once.

Besides this polynomial, we also need to know modular polynomials Φl(X,Y ) ∈
Z[X,Y ] for various primes l. In order to compute these, we note that we have an

upper bound (l + 1)deg(g) for the degrees in X and Y of Φg
l (X,Y ), where deg(g)

is the degree of g : X0(35) → P1. We know that g generates the function field

C(X0(N)) over C(j), and hence we have deg(g) = degj(Ψ(j,X)) = 2.
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If we compute the modular polynomials, it turns out that the degree is in fact

l + 1 and not 2(l + 1). Since g is invariant under the Atkin-Lehner involution, the

polynomials Φg
l are symmetric by lemma 7.1. For l = 2, 3 we find the following

polynomials.

Φg
2 = X3 + Y 3 −X2Y 2 + 2(XY 2 +X2Y ) +XY

Φg
3 = X4 + Y 4 −X3Y 3 + 3(X2Y 3 +X3Y 2) + 3(Y 3X +X3Y )

+6(X2Y 2)− 3(Y 2X +X2Y )−XY

Since 5 and 7 divide the level 35 of g, we cannot use Φg
5 and Φg

7. We computed all

modular polynomials for primes up to 23. The time needed for this computation is

a few minutes. Again, this computation should be considered as a precomputation.

Next we will show how to use g to compute a generating polynomial for the

Hilbert class field of K = Q(
√
D) with D = −1571. Both 5 and 7 split completely

in O = OD. Note that since 2 is inert in O, we cannot use the Weber function f in

this case.

We start by looking for an elliptic curve E defined over some finite field Fp that

has CM by O. The smallest t > 0 for which there is a solution to t2 − 4p = D with

p prime is t = 15, leading to p = 449. We fix p for the remainder of this section.

Applying the näıve algorithm, we find that the curve E/Fp defined by

Y 2 = X3 +X + 16

of j-invariant 383 has trace of Frobenius 15 and consequently CM by OD . The

polynomial Ψg(j(E), X) ∈ Fp[X ] has 4 roots in Fp, namely b1 = 62, b2 = 130,

b3 = 239 and b4 = 358. By examining theorem 3 of [22] more closely, we see in fact

that all four of these roots are reductions of class invariants. To illustrate our p-adic

techniques, we will reprove that b1, . . . , b4 are reductions of class invariants.

A root bi ∈ Fp is the reduction of a class invariant if it is invariant under the

action of the group (O/35O)∗/{±1} ∼= Z/2Z × Z/2Z × Z/12Z × Z/12Z. We take

{πp, 2πp− 11, 2πp− 19,−πp− 28} as a generating set for (O/35O)∗. We choose this

particular set of generators, because the elements have smooth norm (except πp).

Since bi is an element of Fp, it is invariant under the action of πp. Put α =

2πp−11, the ‘next’ element in our generating set. Then α has order 12 in (O/35O)∗,

and the ideal (α) of norm 1587 = 3 · 232 factors as

(α) = p3 · p2
23 = (3, πp − 1) · (23, πp − 17).

We compute the cycle of j-invariants over Fp for the map ρα : EllD(Fp)→ EllD(Fp):

j(E) = 383
p3−→ 13

p23−→ 24
p23−→ 383.
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The modular polynomial Φg
3(b1, X) ∈ Fp[X ] has 2 roots, namely 64, 95 ∈ Fp. We

check that 64 satisfies Ψ5,7(13, 64) = 0, where 13 is the j-invariant of Ep5 . Further-

more, the other root 95 does not satisfy Ψ5,7(13, 95) = 0. We conclude that we have

bp3

1 = 64 ∈ Fp. Continuing like this, we compute

b1 = 62
p3−→ 64

p23−→ 34
p23−→ 62.

The computation for b2, b3, b4 proceeds similarly and they are also invariant under

the action of (α). The generator 2πp − 19 also has norm 3 · 232 and we compute

b1 = 62
p̄3−→ 95

p̄23−→ 63
p̄23−→ 62.

The other roots b2, b3, b4 are also invariant under the action of (2πp− 19). Finally, a

similar computation shows that all 4 roots are invariant under the action of the last

generator −πp − 28. This proves that b1, . . . , b4 are reductions of class invariants.

We will work with b = b1 = 62 ∈ Fp. To estimate the required accuracy for the

canonical lift b̃ ∈ Qp of b, we compute

k =
π
√
|D|

log p

∑

[a,b,c]∈F+
D

1

a
≈ 62,

as in formula 7.1. Hence, we have to compute b̃ up to d62/24e = 3 p-adic digits

accuracy. As element α for the map ρα : XD(Cp) → XD(Cp) we again take α =

2πp−11 of norm 3·232. We lift E/Fp to the curveE1/Qp defined by Y 2 = X3+X+16

of j-invariant j(E1) = 383 + 224p ∈ Qp. This leads to the lift b1 = 62 + 45p ∈ Qp.

We compute the ‘cycle’ for b1 ∈ Qp corresponding to the map ρα:

b1 = 62 + 45p
p3−→ 64 + 175p

p23−→ 34 + 6p
p23−→ 62− 198p = b

(α)
1

The degree two polynomial Ψ5,7(X, b
(α)
1 ) ∈ Zp[X ] has roots 131− 94p+ O(p2) and

383− 119p+ O(p2). We conclude that we have ρα(j(E1)) = 383− 119p ∈ Qp. We

update this j-value according to the ‘Newton formula’ (7.2)

j(Ek+1) = j(Ek)− ρα(j(Ek))− j(Ek)

(α/ᾱ)− 1
for k ∈ Z≥1.

and obtain j(E2) = 383− 98p ∈ Qp. This is the j-invariant of the canonical lift in

two p-adic digits accuracy. We compute b̃ = 62− 64p+O(p2) ∈ Qp.
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Similarly, we compute j(E3) = 383− 98p+ 127p2 and b̃ = 62− 64p+ 66p2. To

compute the conjugates of b̃ under Pic(O) ∼= Z/17Z ∼= 〈p3〉 we use the modular

polynomial Φg
3 once more. In the end we expand the polynomial

P g
D =

∏

[I]∈Pic(OD)

(X − b̃I) ∈ Z[X ]

and find

P g
−1571 = X17 + 21X16 + 918X15 − 11046X14 + 49849X13 − 115187X12

+112918X11 + 168294X10− 275500X9 + 361744X8− 403346X7

+181066X6− 10143X5 − 3403X4 − 4290X3 + 1422X2

−71X + 1 ∈ Z[X ].

7.5 A large discriminant

The examples in the previous sections are relatively small. This is mostly for esthetic

reasons, and our p-adic algorithm easily handles discriminants of size ≈ −1010. To

illustrate this, we take D = −92806391, the same discriminant as in [7, Section 6].

We have D ≡ 1 mod 8 and 3 - D, so we can use the classical Weber function f.

Recall that the minimal polynomial Ψf of f over Q(j) is given by

Ψf(j,X) = (X24 − 16)3 − jX24 ∈ Z[j,X ].

First we compute a prime p and an elliptic curve E/Fp with End(E) = O = OD.

The smallest positive integer t ∈ Z≥1 with p = (t2−4D)/4 prime is t = 132, leading

to p = 92810747. Applying the näıve algorithm, we find that the curve E/Fp defined

by

Y 2 = X3 + 1086X − 1086

of j-invariant j(E) = 37202456 ∈ Fp has trace of Frobenius 132. As E has all of its

2-torsion points defined over Fp, its endomorphism ring is OD , not O4D .

The polynomial Ψf(j(E), X) ∈ Fp[X ] has 2 roots, cf. theorem 6.6. Both roots

±21677132 are reductions of class invariants. We will work with the root b =

21677132 ∈ Fp.

For the smooth O-ideal (α) inducing ρα : XD(Cp) → XD(Cp) we take (α) =

(−420 + πp) which factors as

(11, 8 + 2πp) · (17, 4 + 2πp)
2 · (23, 16 + 2πp)

2 · (31, 13 + 2πp) · (41, 30 + 2πp).
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Just as before, we compute the cycle in Fp for the j-invariants:

37202456
p11−→ 4967239

p17−→ · · · p31−→ 21402782
p41−→ 37202456.

Using this cycle, we can compute the cycle for b. The polynomial Φf
11(b,X) ∈ Fp[X ]

has 2 roots: 32604444 and 60476019. Only the root 60476019 is also a root of

Ψf(j(E)p11 , X), so this is the root we are after. We compute:

21677132
p11−→ 60476019

p17−→ · · · p31−→ 53004472
p41−→ 21677132.

We lift E/Fp to E1/Qp by lifting the coefficients of its Weierstraß equation, and

we lift b to a root b1 of Ψf (j(E1), X) ∈ Zp[X ]. Now we lift the cycle that we had

for b ∈ Fp to a ‘cycle’ for b1 ∈ Zp by employing the small modular polynomials for

f once more. Since we know that b
(α)
1 is a root of Ψf (j(E1)

(α), X), we can compute

j(E
(α)
1 ) =

((β
(α)
1 )24 − 16)3

(β
(α)
1 )24

and use this value to update j(E1) according to the Newton formula (7.2).

Knowing j(Ẽ) mod p2, we can lift b ∈ Fp to a root of Ψf(j(Ẽ), X) in Zp that

is accurate to two p-adic digits. We continue this process of doubling the precision

until we have b̃ with sufficient accuracy. The first four cycles yield:

b̃ = 21677132 +O(p)

= 21677132 + 28966941p+O(p2)

= 21677132 + 28966941p+ 7010373p2 + 31182954p3 +O(p4)

= 21677132 + 28966941p+ 7010373p2 + 31182954p3− 33808617p4

+27519307p5− 31601027p6− 36195013p7 +O(p8)

= 21677132 + 28966941p+ 7010373p2 + 31182954p3− 33808617p4

+27519307p5− 31601027p6− 36195013p7− 8331811p8

−33957007p9− 18191700p10 + 5895954p11− 42670221p12

+23637278p13− 40784695p14 + 7754196p15 +O(p16) ∈ Zp.

We expect to need d313618/72e = 4356 decimals digits of accuracy, so we compute

b̃ up to 550 p-adic digits. The class group Pic(O), which is cyclic of order 15610,

is generated by a prime of norm 11. We can thus compute all the conjugates of b̃

under Gal(H/K) to 550 p-adic digits using the modular polynomial Φf
11. In the end,

we expand the polynomial of degree 15610 to find the class polynomial

P f
D =

∏

[I]∈Pic(O)

(X − β̃I) ∈ Z[X ].
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The time needed for this computation was roughly 15 minutes on our standard, 32-

bit 2.8 GHz, PC. We implemented the algorithm in the programming language C,

and employed several ‘computer science tricks’ – like Horner’s rule for the evaluation

of a polynomial – to speed up the program. It takes a computer algebra package

like Magma many hours to compute P f
D .
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Samenvatting

Dit proefschrift gaat over algoritmen in de getaltheorie. Het woord algoritme is

een verbastering van de naam van de Perzische wiskundige Muhammad ibn Musa

al-Khwarizmi (± 790–850). Zijn boek Kitab al jabr wa’l-muqabala gaat over het

oplossen van lineaire en kwadratische vergelijkingen, en is van grote invloed geweest

op de wiskunde. Het woord algebra is afgeleid van de titel van zijn boek.

Een algoritme is volgens Van Dale een rekenschema, voorschrift voor het uit-

voeren van rekenkundige operaties en de volgorde daarvan. Een bekende algoritme

is de ‘lagere-schoolmethode’ voor het vermenigvuldigen van twee getallen. Voor het

bepalen van het product 371× 123 maken we een tabel

371
123×

1113
7420

37100 +
45633

en berekenen 371× 123 = 45633.

Naast de formulering van een algoritme, willen we ook graag weten hoe snel

de algoritme is. Een gangbare maat voor de snelheid is het aantal ‘operaties’ dat

een algoritme moet uitvoeren: het aantal optellingen en vermenigvuldigingen met

cijfers tussen 0 en 9. In het voorbeeld moeten er 3 × 2 + (1 + 2 × 2) + 3 = 14

optellingen en 3×3 = 9 vermenigvuldigingen gedaan worden voor de berekening van

371×123. Als we weten hoeveel operaties een algoritme nodig heeft, dan kunnen we

voorspellen hoe lang een computer erover zal doen om de algoritme uit te voeren.

Onze vermenigvuldigalgoritme is erg snel, en een moderne computer kan het product

van twee getallen van duizenden cijfers binnen een fractie van een seconde berekenen.
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De eerste 4 hoofdstukken van dit proefschrift gaan over algoritmen om een ellip-

tische kromme te construeren met een voorgeschreven puntenaantal . Het woord orde

uit de titel van het proefschrift is de vakterm voor puntenaantal. Hier is de invoer

van de algoritme telkens het puntenaantal, en de uitvoer is een elliptische kromme

met dat puntenaantal. Een elliptische kromme wordt gegeven door een vergelijking

van de vorm Y 2 = X3 + aX + b, en ziet er typisch als volgt uit.

Y 2 = X3 −X

De oplossingen van de vergelijking Y 2 = X3 + aX + b heten de punten van de

elliptische kromme. De elliptische kromme in het plaatje heeft oneindig veel punten.

Krommen met oneindig veel punten zijn niet de krommen die ons interesseren in dit

proefschrift. Wij willen graag krommen construeren met een eindig aantal punten. De

truc om dit te bewerkstelligen is door niet te werken over de reële getallen, maar over

een zogenaamd ‘eindig lichaam’. Rekenen in een eindig lichaam gaat precies hetzelfde

als met gewone getallen, maar – de naam zegt het al – in een eindig lichaam hebben

we maar eindig veel getallen. De gebruikelijke notatie voor een eindig lichaam is Fq .

Hier is de F een afkorting van het woord ‘field’, de Engelse vakterm voor lichaam.

De index q geeft aan hoeveel getallen er in het eindige lichaam zitten. Het is niet

ongebruikelijk dat vaktermen niet letterlijk vertaald worden. Het Nederlands volgt

in dezen het Duits, waar een lichaam een ‘Körper’ genoemd wordt. In Vlaanderen

heet een lichaam juist een ‘veld’, wat altijd tot enige spraakverwarring aanleiding

geeft tussen Nederlandse en Vlaamse wiskundigen. . .

Twee gehele getallen zijn gelijk in het eindige lichaam F7 als hun verschil deel-

baar is door 7. Zo zijn bijvoorbeeld 60 en 4 gelijk in F7, aangezien 60−4 = 56 = 8×7

deelbaar is door 7. We kunnen ook een plaatje tekenen van de elliptische kromme

Y 2 = X3 −X over het eindige lichaam F7. De dikke punten in het plaatje zijn de

punten van deze elliptische kromme. Het punt (X,Y ) = (4, 2) ligt bijvoorbeeld op

de kromme, want 43 − 4 = 60 en 22 = 4 zijn gelijk in het eindige lichaam F7.
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Y 2 = X3 −X

Het puntenaantal van deze elliptische kromme is eindig . De elliptische krommen

met voorgeschreven puntenaantal die we in dit proefschrift construeren zijn altijd

elliptische krommen over een eindig lichaam.

Elliptische krommen werden lang als een ‘wiskundig speeltje’ gezien waar je in

het dagelijks leven niets mee kon. Dit veranderde in het midden van de jaren ’80

van de 20e eeuw, toen bleek dat elliptische krommen van grote waarde zijn in de

cryptografie, de kunst van het versleutelen van informatie. Praktisch iedere mobiele

telefoon bevat tegenwoordig een elliptische kromme, en ook bij het versturen van

bijvoorbeeld creditcardgegevens over het internet worden ze steeds meer gebruikt.

Het zal niet als een verrassing komen dat ook vele veiligheidsdiensten, zoals onze

eigen AIVD, gëınteresseerd zijn geraakt in elliptische krommen. Bij iedere confe-

rentie waar algoritmen voor elliptische krommen aan bod komen, zijn experts van

veiligheidsdiensten aanwezig.

Een van de hoofdresultaten uit dit proefschrift is een algoritme die snel een

elliptische kromme kan construeren welke gebruikt kan worden in de cryptografie. Als

voorgeschreven puntenaantal kiezen we op dit moment een priemgetal van ongeveer

60 cijfers. Wie een ‘cryptografische kromme’ wil zien, bladere door paragraaf 7.1.

Wiskundigen willen graag een rigoureuze afschatting voor het aantal operaties

dat een algoritme moet uitvoeren. Anders gezegd: als we beweren dat een algoritme

op zijn hoogst x operaties nodig heeft, dan moeten we deze bewering ook kunnen

bewijzen. Dit is iets anders dan bijvoorbeeld de algoritme 100 keer draaien en daaruit

een schatting afleiden voor de snelheid. Enkel met een wiskundig bewijs hebben we

absolute zekerheid over de snelheid. Ook als zou blijken dat Galileo het onverhoopt

fout had en de zon toch om de aarde draait, dan nog is de algoritme zo snel als we

beweren.

Soms is het echter nog niet mogelijk de snelheid van een algoritme rigoureus te

analyseren. In sommige gevallen moeten we bijvoorbeeld een onbewezen vermoeden,
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zoals de Riemannhypothese, aannemen om tot een sluitend bewijs te komen. Het

kan echter zijn dat zelfs dit niet volstaat, en dan rest ons niets anders dan over

te gaan op een heuristiek , jargon voor nattevingerwerk. We proberen dan op basis

van wiskundige stellingen redelijke vermoedens te bedenken die ons in staat stellen

een goede schatting te geven van de snelheid van een algoritme. Dit is zeker niet

zo mooi als het geven van een echt wiskundig bewijs, maar als de heuristiek precies

verklaart wat we in de praktijk zien gebeuren, dan is er eigenlijk niets aan de hand. In

zekere zin lijkt deze aanpak een beetje op de natuurkunde: hier worden ook theorieën

bedacht die de werkelijkheid moeten verklaren.

De algoritme voor het maken van cryptografische krommen wordt gegeven in hoofd-

stuk 4. Wie hier doorheen bladert, zal een tabel zien met ‘numerical support’. Dit

geeft al aan dat de snelheidsanalyse die in hoofdstuk 4 gegeven wordt heuristisch van

aard is. De aanname die we voor deze heuristiek nodig hebben, betreft een eigenschap

van de verdeling van priemgetallen en heeft niets met elliptische krommen te maken.

De uitkomsten van de experimenten worden prima verklaard door de aannames. Er

bestaan overigens ook algoritmen om elliptische krommen van voorgeschreven orde

te maken die een rigoureuze snelheidsanalyse hebben, zie bijvoorbeeld hoofdstuk 3,

maar deze zijn erg langzaam. Langzaam betekent hier dat als we de algoritme uit

hoofdstuk 3 zouden gebruiken voor het construeren van een cryptografische kromme,

we langer op het antwoord zouden moeten wachten dan de tijd die sinds de oerknal

verstreken is. Met de algoritme uit hoofdstuk 4 staat het antwoord er vrijwel direct.
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Voor de algoritme in hoofdstuk 4 hebben we een subalgoritme nodig om een

‘Hilbertklassenpolynoom’ uit te rekenen. Bij ieder negatief geheel getal hoort een

Hilbertklassenpolynoom, een polynoom met gehele coëfficiënten. Deze polynomen

zijn vernoemd naar David Hilbert (1862–1943). Hilbert was een van de grondleggers

van de klassenlichamentheorie, een theorie die tot vele doorbraken in de 20e eeuw

heeft geleid. Algoritmen voor de berekening van een Hilbertklassenpolynoom vormen

dan ook onderdeel van de computationele klassenlichamentheorie. Ze kunnen – zoals

wij gedaan hebben – gebruikt worden om cryptografische elliptische krommen mee

te maken, maar er zijn veel meer toepassingen.

Er is een klassieke algoritme om een Hilbertklassenpolynoom uit te rekenen,

maar deze heeft een nadeel: we moeten heel erg uitkijken dat er geen afrondfouten

optreden tijdens de berekening. We benaderen de coëfficiënten van het polynoom

namelijk met reële getallen. Als we bijvoorbeeld 0,99832 als coëfficiënt berekenen,

dan ronden we dit af tot 1. Als er veel afrondfouten optreden, dan kan het bijvoor-

beeld zo zijn dat we 0,63781 als antwoord krijgen. Het is een te grote gok dit zomaar

op 1 af te ronden. We kunnen afrondfouten vermijden door ‘p-adisch’ te rekenen.

De p-adische getallen zijn uitgevonden door Kurt Hensel (1861–1941). Rekenen met

p-adische getallen lijkt erg op rekenen met reële getallen, maar het grote voordeel

is dat we in onze berekening geen afrondfouten kunnen krijgen. Het aanpassen van

de klassieke algoritme tot een p-adische algoritme voor het berekenen van een Hil-

bertklassenpolynoom heeft nog aardig wat voeten in de aarde. Het idee achter de

algoritme die we in hoofdstuk 5 uitleggen, komt van de Franse wiskundigen Cou-

veignes en Henocq. In een artikel voor een getaltheorieconferentie in Sydney in 2002

gaven zij een manier om een Hilbertklassenpolynoom p-adisch te berekenen. Hun

artikel was echter redelijk kort en bevatte weinig houvast voor mensen die de algo-

ritme daadwerkelijk wilden uitvoeren op een computer. Er moesten nog aardig wat

gaten ingevuld worden voordat er een echt bruikbare algoritme was. Het resultaat

hiervan is hoofdstuk 5.

Een ander nadeel is dat de coëfficiënten van het Hilbertklassenpolynoom erg

groot zijn. Als we voor onze algoritme als invoer −23 nemen, dan krijgen we

X3 + 3491750X2− 5151296875X + 12771880859375

als polynoom. De coëfficiënten van dit polynoom staan in geen verhouding tot de

bescheiden invoer −23. Een natuurlijke vraag is of er geen ‘beter’ polynoom is dat we

kunnen gebruiken. Deze vraag werd voor het eerst bestudeerd door Heinrich Weber

(1842–1913). In het derde deel van zijn Lehrbuch geeft hij voorbeelden van betere

polynomen met kleinere coëfficiënten. Voor −23 kunnen we bijvoorbeeld ook het
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polynoom

X3 −X − 1

gebruiken. Een systematische aanpak van de zoektocht naar betere polynomen wordt

gegeven door Goro Shimura (1930–). Met zijn ‘wederkerigheidswet’ uit 1971 is het

nu een redelijk mechanische berekening geworden om een ‘beter’ polynoom te vinden

dan het grote Hilbertklassenpolynoom. Echter: zijn aanpak maakt geen gebruik van

p-adische getallen, en dus hebben we weer het probleem van afrondfouten.

In hoofdstuk 6 laten we zien hoe we de technieken van Shimura kunnen uitbreiden

tot een p-adische algoritme. Deze algoritme combineert beide verbeteringen van de

klassieke algoritme voor het berekenen van een Hilbertklassenpolynoom: ook voor

het berekenen van de betere polynomen hoeven we ons nu geen zorgen meer te

maken over afrondfouten. Hoofdstuk 7 is volledig gewijd aan voorbeelden van deze

nieuwe algoritme. Dit hoofdstuk neemt met zijn 28 pagina’s een flink deel in van dit

proefschrift. Het is een zeer bewuste keuze geweest dit laatste hoofdstuk zo lang te

maken: algoritmen zijn er immers voor om ook daadwerkelijk uitgevoerd te worden!
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