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General Introduction 
 

Hepatic steatosis refers to the condition of accumulation of triglycerides (TG) in 

hepatocytes. From a quantitative perspective this storage capacity of the hepatocytes 

is much less important than the accumulation of TG in adipocytes. TG accumulation 

in the liver was thought to be an inert histological epiphenomenon. However, 

nowadays we know that hepatic steatosis is associated with several metabolic 

changes in lipid and glucose metabolism not only in the liver, but also throughout the 

body. In this introduction the emphasis is on TG metabolism since TG are the most 

important lipids that are involved in hepatic steatosis. The regulation of TG 

metabolism is described with special focus on the causes and consequences of 

hepatic steatosis.  

 
Whole body triglyceride and fatty acid metabolism 
Dietary triglycerides are absorbed in the intestines and packed into chylomicrons. 

Chylomicrons are very large particles that contain mainly TG, but also consist of 

phospholipids, cholesterol and proteins.1 Upon secretion from the intestines into the 

lymph and subsequently into the bloodstream, these large TG-containing particles 

acquire apolipoprotein (apo-)B, E and apoCI, -II and III on their surface. The liver also 

produces TG-rich lipoproteins, i.e. very-low density lipoproteins (VLDL-TG). These 

VLDL-TG particles also contain cholesterylesters in the hydrophobic core.1 The 

surface monolayer consists of cholesterol, phospholipids and protein. In addition to a 

single apoB molecule per VLDL-TG particle, the shell of the particles is enriched in 

apoE and apoCI, -II and -III upon secretion into the circulation.  
In the fed state a mixture of VLDL-TG (from the liver) and chylomicrons (from the 

intestines) enters the circulation, where these TG particles are subject to lipolysis by 

endothelium-bound lipoprotein lipase (LPL), as shown in Figure 1.2,3 LPL is 

synthesized in, and secreted by, parenchymal cells throughout the body. It is most 

abundant in cardiac and skeletal muscle and adipose tissue. Several apolipoproteins 

influence the lipolytic conversion by LPL. ApoCII is an activating co-factor for LPL4,5, 

whereas apoCI and apoCIII inhibit lipolysis.6,7 In addition, high amounts of apoE can 

inhibit LPL-mediated lipolysis.8,9 The process of local lipolysis by LPL generates fatty 

acids (FA) that can enter the adipose tissue, muscle or the heart, either for energy 

provision via β-oxidation or for TG storage, depending on the oxidative requirements 

of the respective tissues. LPL expression is regulated by tissue-specific mechanisms, 

that also depend on hormonal and nutritional status.3,10-12 LPL activity decreases 
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during fasting and increases after a meal containing fat.13-15 Postprandially, LPL is 

abundantly expressed on adipose tissue, whereas during fasting the expression on 

skeletal muscle increases.10-12  
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Figure 1. Schematic representation of whole-body TG metabolism. Chylomicrons

from the intestines and VLDL-TG from the liver enter the circulation. In the capillaries these 

particles are lipolyzed by lipoprotein lipase (LPL). The generated FA enter the cardiac and 

skeletal muscle and the adipose tissue where they can be stored as TG or used for energy 

provision. After several lipolysis steps the remnant particles are taken up by the liver and 

further processed. 

 

Hydrolysis of VLDL-TG results in the formation of intermediate density lipoproteins 

(IDL) and subsequently low density lipoproteins (LDL). In addition to LPL, hepatic 

lipase (HL) is responsible for further hydrolysis of the particles.16 After several 

lipolysis steps, these remnant particles are recognized by the liver by their apoB and 

apoE, taken up by specific lipoprotein receptors such as LDL-receptor (LDLr) and 

LDLr-related protein (LRP) and further processed. 

Adipose tissue is an important regulator of triglyceride metabolism. It acquires FA 

from the circulation, either from the free FA pool or from FA derived from plasma TG, 

through the activity of LPL. Moreover, TG contained within adipose tissue are 

continuously hydrolyzed by hormone sensitive lipase (HSL) and other lipases17, 

which results in the release of FA into the plasma. These FA can subsequently either 
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be oxidized in other tissues, or be taken up by the liver. Within the liver these FA 

have two fates: oxidation or re-esterification into TG and subsequent release into the 

plasma in the form of VLDL-TG. Consequently, there is a futile cycle of FA between 

adipose tissue and the liver, enabling the body to adapt rapidly to changes in energy 

requirements. In pathophysiological conditions, in which there are disturbances in this 

cycle, accumulation of TG may occur in the liver. Since there is a huge fat mass in 

relation to the very limited maximum storage capacity of TG in the liver, it is likely that 

only minor changes in fatty acid cycling may result in liver steatosis. This is illustrated 

by a rapid increase of liver TG after skipping just a few meals during short term 

starvation.  

 
Hepatic triglyceride and fatty acid metabolism 
The liver plays a central role in lipoprotein metabolism. It produces, secretes and 

takes up lipoproteins. In FA metabolism the liver also plays an important role: it is 

involved in FA uptake from plasma, FA oxidation, de novo FA synthesis, and VLDL-

TG secretion. Moreover, FA and their derivatives have major effects on expression 

levels of many genes, because these FA serve as ligands for several transcription 

factors which are crucial in the regulation of glucose and fat metabolism.  

 

Hepatic TG metabolism 

Hepatic VLDL-TG production (HVP) is mainly substrate-driven, but it is also 

determined by the hormonal and nutritional status of the individual. VLDL-TG 

assembly and secretion is a two-step process as described by Alexander et al. in 

1976.18 The first step is the association of one apoB with the core lipids. Microsomal 

TG transfer protein (MTTP) forms an important step in VLDL-TG-assembly, since it 

catalyzes the transfer of lipids towards the apoB molecule. This particle fuses with a 

lipid droplet and generates a mature VLDL-TG particle. The flux of FA to the liver and 

the amount of TG in the liver are factors influencing HVP. However, this relationship 

is not always straightforward. The amount of TG accumulated in the liver is not a 

direct determinant of the production of VLDL-TG. In rats it has been shown that acute 

stimulation of de novo lipogenesis leads to steatosis without affecting VLDL-TG 

production.19 Moreover, increased FA flux to the liver does not always lead to 

increased VLDL-TG production. For instance, CD36 knockout mice have a 60% 

increase in hepatic TG content20, but no change in hepatic VLDL-TG production.21 
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Obviously, other factors than merely the availability of FA control hepatic VLDL-TG 

production. Hormonal effects on HVP will be discussed later on in this introduction. 
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Figure 2. Major pathways of hepatic fatty acid/triglyceride metabolism in the 
liver. The liver plays a central role in lipid metabolism through A. Uptake of fatty acids, B. 

Fatty acid oxidation, C. De novo fatty acid synthesis, D. Assembly and secretion of VLDL-TG, 

E. Effects of fatty acids on gene expression. FA = fatty acids, HSL = hormone sensitive 

lipase, LPL = lipoprotein lipase, G6P = glucose-6-phosphate.  

 

Hepatic FA metabolism 

The liver is important in FA metabolism, because it takes up FA from the circulation 

(Figure 2). Most medium- and long-chain FA that enter the liver are oxidized in the 

mitochondrial β-oxidation system. Very-long-chain FA are mainly oxidized in the 

peroxisome.22-24 During fasting FA that enter the liver can be metabolized via acetyl 

coenzyme A (acetyl CoA) to form ketone bodies that can serve as fuel for other 

tissues such as the brain.25,26 When the flux of FA towards the liver exceeds β-

oxidation capacity, this can lead to accumulation of TG in the liver. FA in the liver are 

continuously being re-esterified into TG. TG from this pool can be used for hepatic 

VLDL-TG synthesis and secretion. Actually, most of the plasma VLDL-TG pool is 

derived from plasma FA, re-esterified by the liver and secreted into the plasma, 
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whereas only a very small fraction of plasma VLDL-TG is derived from de novo fatty 

acid synthesis in the liver.27 

 
Hepatic glucose metabolism  
Glucose is the most important energy source in the mammalian body. Especially the 

brain is depending primarily on readily available glucose. Therefore, it is very 

important for the body to control plasma glucose concentrations tightly. The plasma 

glucose level is determined by the balance between dietary uptake in the intestines, 

glucose uptake by peripheral tissues and the production of glucose by the liver. The 

liver plays a very important role in the glucose homeostasis by controlling the balance 

of appearance and disappearance of glucose.  

 

Storage of glucose 

Excess glucose is stored as glycogen (glycogenesis) which is a very efficient storage 

form of glucose.28 In the liver hexokinase, also known as glucokinase, mediates the 

first step of hepatic glucose metabolism, which involves the conversion of glucose 

into glucose-6-phosphate (G6P). G6P is an important metabolic intermediate in the 

glucose metabolism.29 In the second step glycogen is produced via uridine 

diphosphate (UDP-) glucose. In this step glycogen synthase is the rate-controlling 

enzyme. Not all glucose can be stored as glycogen since the liver’s storage capacity 

is limited. The excess glucose is broken down to pyruvate and lactate so that it can 

be used in de novo lipogenesis to produce FA. 

 

Production of glucose 

During fasting the mammalian body depends on the liver and (to a much lesser 

extent) the kidneys for production of glucose.30 In the early phase of fasting the liver 

produces glucose by hydrolysing glycogen via 3 steps (glycolysis). First, a single 

glucose-1-phosphate is cleaved from glycogen mediated by glycogen phosphatase 

and then a debranching enzyme converts glucose-1-phosphate to G6P. Finally, G6P 

is dephosphorylated to glucose and this process is under control of glucose-6-

phosphatase (G6Pase).31 The liver can also form glucose from alternative substrates 

such as amino acids, glycerol, pyruvate and lactate to maintain stable blood glucose 

levels (gluconeogenesis).32 Phosphoenolpyruvate carboxykinase (PEPCK) controls 

the regulation of the latter process. To protect against complete breakdown of the 
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glycogen stores, the liver progressively increases gluconeogenesis during prolonged 

periods of fasting.33 

 

Insulin action 
Insulin is a key regulator in both glucose and lipid metabolism. It is the most 

important hormone controlling hepatic glucose and VLDL-TG output.34 Insulin is a 5.8 

kDa hormone secreted by the β-cells of the islets of Langerhans in the pancreas. 

Insulin is secreted in a biphasic manner in response to an increase in blood glucose 

level. There is an initial burst of insulin secretion that lasts about 5-15 minutes, 

resulting from secretion by the preformed insulin secretory granules. This initial burst 

is followed by a more gradual and sustained insulin secretion resulting from 

biosynthesis of new insulin molecules.  

The binding of insulin to the insulin receptor leads to a phosphorylation cascade 

eventually resulting in the induction of several target genes.34 In addition to glucose, 

amino acids, long-chain FA and several hormones can induce insulin secretion. The 

main target organs for insulin are the liver, skeletal muscle and adipose tissue. The 

overall net result of insulin action is fuel storage of both glucose and lipids. Insulin 

resistance refers to the condition where a specific tissue is (or several tissues are) 

less sensitive to the effects of insulin. 

Insulin exerts direct effects on VLDL-TG production, although the mechanism behind 

this phenomenon remains unclear.35 Insulin is thought to accelerate the degradation 

of apoB36  and VLDL-TG secretion is decreased when apoB availability is decreased. 

Insulin indirectly inhibits HVP by inhibiting HSL. The consequence of decreased TG-

hydrolysis by HSL is a decreased flux of FA towards the liver resulting in decreased 

substrate availability for hepatic VLDL-TG output. 

Hepatic glucose output (HGO) is determined by the rate of hepatic glycogen 

breakdown, which is regulated by G6P and by the rate of hepatic gluconeogenesis 

which is regulated by PEPCK. 37-39 In the fed state insulin inhibits HGO via inhibition 

of these two key regulatory enzymes. Insulin also stimulates glucose uptake by 

peripheral tissues (PGU) such as the muscle and adipose tissue. In these tissues 

insulin stimulates translocation of the glucose transporter-4 (Glut-4) mediating uptake 

of glucose.40  
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Interactions of glucose and lipid metabolism  
In the liver, glucose and lipid metabolism are closely linked. In the presence of 

decreased glucose availability, glucose oxidation decreases and the need for the 

oxidation of FA increases.  

 

Substrate availability 

In 1963 the glucose/FA cycle was postulated by Randle.41 Based on experimental 

evidence, this cycle states that the availability of FA determines the rate of FA 

oxidation and that FA oxidation directly inhibits glucose oxidation. The exact 

mechanism behind this interaction has not been elucidated. Several mechanisms 

have been proposed to explain this link between FA and glucose oxidation including 

the accumulation of intermediates in the FA and glucose metabolism.42 

Some studies investigated the effects of increasing plasma FA by infusion but 

observed no effects on the intermediates such as citrate or G6P levels.43-45 On the 

other hand the infusion of lipids or FA can induce insulin resistance leading to 

decreased uptake of glucose.46 However, this does not automatically include 

decreased glucose oxidation. When plasma FA levels were increased during 

hyperinsulinemic hyperglycemic clamp conditions, no effects on glucose oxidation 

were observed.47 Therefore, it was proposed that glucose availability may be the 

most important determinant for substrate utilisation.48  

 

Transcription factors 

FA derivatives can exert significant effects on transcription factors.49 FA activate 

PPARα by direct binding, leading to the induction of hepatic FA oxidation.50 FA can 

inhibit hepatic FA synthesis by indirectly suppressing sterol responsive element 

binding protein-1c (SREBP-1c), which can be induced by insulin. Fatty acid control of 

this transcription factor is not completely clear yet. On the other hand, glucose can 

activate carbohydrate responsive element binding protein (ChREBP).51,52 Most 

lipogenic enzymes have response elements for binding ChREBP (ChRE) and 

SREBP (SRE). These two factors work synergistically to induce transcription of the 

lipogenic enzyme genes in the presence of glucose and insulin. Glucagon and FA 

can inhibit the activation of the ChRE and SRE. In this way the control of expression 

of lipogenic enzyme genes is regulated in an integrated manner by multiple nutrient 

and hormonal signals. 
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Taken together, FA and glucose control hepatic lipid composition and the type and 

quantity of lipids available for hepatic VLDL-TG production. Because the liver plays a 

central role in lipid metabolism these transcription factors can affect whole-body lipid 

composition. Ultimately, increased plasma levels of FA and glucose contribute to the 

onset and progression of chronic diseases such as atherosclerosis, diabetes and 

obesity.53 It may well be that the interactions between glucose and FA metabolism 

may be dependent on the circumstances and on tissue specific mechanisms. 

Nevertheless, all evidence points towards important interactions between the glucose 

and FA metabolism.  

 
Hepatic steatosis 
TG from the diet are mainly stored in adipose tissue. These TG form the most 

important energy storage in mammals. In humans about 10-30% of the body weight 

is adipose tissue. It provides the body with a virtually limitless capacity to store TG, 

which is reflected by extreme forms of obesity. TG storage is evolutionary very 

important to allow survival during periods when food is scarce. In addition to 

adipocytes, the liver and skeletal muscle can accumulate TG, although to a much 

lesser extent. Hepatic steatosis, or fatty liver, is defined as a histopathological 

condition marked by increased accumulation of lipids within the hepatocytes. Several 

forms of hepatic steatosis can be distinguished, depending on the underlying 

condition and progression of the disease. Although it has been known for a long time 

that excessive alcohol use is associated with hepatic steatosis we focus on non-

alcoholic steatosis in this thesis. 

 

Facts and figures 

In the body there is a continuous cycling and redistribution of non-oxidized FA 

between different organs especially in the post-absorptive state, with a central role for 

the interaction between the liver and the adipose tissue. When the input of FA into 

the liver exceeds the FA oxidation and output of VLDL-TG, hepatic steatosis occurs. 

During fasting or high fat feeding, hepatic steatosis can be readily induced in healthy 

subjects. The flexibility of the liver in the accommodation of TG had already been 

demonstrated in dogs in 1970.54 Hepatic steatosis is observed frequently even in 

normal-weight and moderately overweight subjects.55 The prevalence of fatty liver in 

the general population is estimated to be 3% to 24%, with most estimates in the 6% 
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to 14% range.56 In obese and diabetic subjects the prevalence of hepatic steatosis is 

estimated to be much higher.57 Patients eligible for bariatric surgery have a body 

mass index of ≥ 40 kg/m2 or of ≥ 35 kg/m2 with significant co-morbidities such as type 

2 diabetes. In this population the prevalence of fatty liver is estimated to range even 

from 84% to 96%.56 Nowadays, we know that in about half of the subjects hepatic 

steatosis can progress to fibrosis, 15% progress to cirrhosis and 3% eventually 

experience liver failure or need a liver transplant.58 Apart from progression to these 

more severe stages of liver disease, hepatic steatosis is associated with a number of 

metabolic disturbances in glucose and lipid metabolism in the liver and even 

throughout the body. However, it remains unclear whether these disturbances are a 

cause and/or a consequence of the TG accumulation.  

 

Causes of hepatic steatosis 

The accumulation of TG can be caused by an increased mobilization and increased 

availability of FA in the circulation.59 HSL activity in adipose tissue is regulated 

among others by insulin. In insulin resistant states insulin no longer (or to a lesser 

extent) inhibits HSL, causing too many FA to be released into the circulation.34,60 The 

liver functions as a buffer and takes up the excess FA. Epinephrine and 

norepinephrine stimulate the mobilization of FA from adipose tissue by stimulating 

HSL.61 A high fat diet or long term fasting can also cause an increased flux of FA to 

the liver. The CD36 knockout mouse is a mouse model that lacks the FA transporter 

CD36 in muscle and adipose tissue, causing an increased flux of FA to the liver. 

These mice show hepatic steatosis and have severely insulin resistant livers.20  

Increased de novo lipogenesis in the liver can cause TG accumulation in 

hepatocytes.19,59,62 In this process FA are produced from glucose. Rate-limiting 

enzymes in de novo lipogenesis are acetyl-coenzymeA carboxylase (ACC) and fatty 

acid synthase (FAS). These enzymes are stimulated under fed conditions by insulin 

and high carbohydrate diets. Glucagon inhibits endogenous FA synthesis. Cortisol 

inhibits FAS and endogenous FA synthesis in the liver while it stimulates TG lipolysis 

in the circulation by stimulating LPL activity. 

Increased esterification of FA can also lead to TG accumulation.59 TG in the 

hepatocytes are not an inert storage but are continuously recycled.63 Intracellular TG 

are lipolyzed in larger quantities than necessary to form VLDL-TG. The FA that are 
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not build into VLDL are re-esterified into TG and are transported back into the 

cytoplasmatic pool. When this equilibrium is disturbed, TG accumulation can occur.  

Decreased secretion of VLDL-TG by the liver can cause accumulation of TG. VLDL-

TG production is regulated by several factors as has been discussed previously. An 

important factor regulating VLDL-TG production is the size of the intracellular TG 

pool, but limited synthesis or availability of any of the important components of VLDL-

TG can inhibit the production of the particle. ApoE stimulates the secretion of VLDL-

TG.64 

Finally, decreased mitochondrial β-oxidation can be the cause of hepatic steatosis.65 
Studies in children with inborn deficiencies in one or more enzymes of the FA 

oxidation pathway have shown that, when there is a need for increased β-oxidation 

during short term fasting (for example during infection), this often ends fatal with an 

enormous accumulation of TG in the liver.66 Insulin inhibits and glucagon stimulates 

mitochondrial β-oxidation in the liver. 

Taken together, the accumulation of TG within hepatocytes is caused by a disturbed 

equilibrium between liver TG synthesis and secretion.67 An increased flux of FA to the 

liver from adipose tissue, dietary intake or endogenous synthesis can lead to 

accumulation of TG in the hepatocytes when mitochondrial β-oxidation and VLDL-TG 

secretion and production are not capable of processing all incoming FA. 

  

Metabolic consequences of hepatic steatosis 
Hepatic steatosis is not only a consequence of metabolic disturbances, but steatosis 

per se can also have profound effects on lipid and glucose metabolism and 

cardiovascular risk factors. Accumulation of TG in the liver is strongly associated with 

hepatic insulin resistance.68 This is associated with cardiovascular risk factors such 

as hyperglycemia, hypertriglyceridemia, and elevated levels of alanine transferase 

(ALT), fibrinogen, C-reactive protein (CRP), plasminogen activator inhibitor-1 (PAI-1) 

and factor VII (Figure 3).68  

 

Effects on lipid metabolism 

In insulin resistant states the liver becomes less sensitive to the inhibitory effect of 

insulin on hepatic VLDL-TG production. This contributes to dyslipidemia in insulin 

resistant states. The inability of insulin to accelerate the degradation of apoB results 

in the overproduction of VLDL-TG particles. This contributes to the frequently 
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observed diabetic hypertriglyceridemia. Insulin also has peripheral effects on the lipid 

metabolism, since it normally regulates the expression of LPL, resulting in a net 

storage of lipids into the adipose tissue. In insulin resistant states VLDL-TG particles 

remain longer in the circulation because insulin does not (or to a lesser extent) 

induce LPL-expression. This allows more transfer of TG to LDL and HDL particles by 

cholesteryl ester transfer protein (CETP).69 When CE-depleted TG-rich LDL particles 

are hydrolyzed by LPL and HL, this leaves small dense LDL particles which are 

highly atherogenic. Eventually the frequently observed diabetic dyslipidemia is 

established that poses an increased risk for cardiovascular disease. 
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Figure 3. The fatty liver overproduces cardiovascular risk factors. Hepatic 

steatosis is strongly associated with insulin resistance. The insulin resistant liver 

overproduces glucose, VLDL-TG and other factors known to associate with enhanced 

cardiovascular risk such as alanine transferase (ALT), fibrinogen (FBG), C-reactive protein 

(CRP), plasminogen activator inhibitor-1 (PAI-1) and factor VII (FVII). 

 

Effects on glucose metabolism 

Decreased insulin sensitivity associated with increased hepatic lipid content has 

major effects on the glucose metabolism. The suppressive effect of insulin on 

G6Pase and PEPCK expression levels is decreased. This will lead to more glycogen 

breakdown and more gluconeogenesis and consequently increased hepatic glucose 

output. Postprandially insulin normally decreases the output of glucose and increases 

uptake of glucose by peripheral tissues. Consequently, plasma glucose levels are 
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well controlled. In subjects with fatty liver a higher output of glucose may exist.68 

Because insulin action is impaired postprandially (decreased suppression of liver 

output) the glucose output is less suppressed by insulin. Peripheral tissues still take 

up glucose, however the increased (relatively) steady glucose levels cause diabetic 

adverse effects. The pancreas compensates by increased insulin secretion 

(hyperinsulinemia). In time β-cell failure will occur and the body can no longer 

compensate for insulin resistance with extra insulin secretion. This results in 

hyperglycemia despite hyperinsulinemia and this state is referred to as type 2 

diabetes mellitus.  

 
Outline of this thesis 
The studies described in this thesis focus on the metabolic consequences of hepatic 

steatosis on lipid and glucose metabolism. Many interactions between the glucose 

and lipid metabolism exist. Research usually tends to focus on glucose metabolism 

with regard to insulin resistance and type 2 diabetes mellitus. However, concomitant 

disturbances in lipid metabolism may be of great importance for the major clinical 

endpoints such as cardiovascular disease. In this thesis we investigated the 

integrated role of the glucose and lipid metabolism from the perspective of the liver.  

Hepatic steatosis is frequently observed and is associated with a number of 

cardiovascular risk factors.70-73 From observations in humans it remains unclear to 

what extent hepatic steatosis is a cause rather than a consequence of the metabolic 

syndrome. In this thesis several mouse models of steatosis with targeted disruptions 

of the fatty acid and TG metabolism are used to study these causes and 

consequences of fatty liver. We reviewed reported studies in rodent models of 

hepatic steatosis in Chapter 2.  

Since in humans the liver is not readily accessible and study protocols can be 

limiting, mouse models are often used to investigate mechanisms of insulin 

resistance. The C57/Black 6 mouse is a wild type mouse model that is sensitive to 

diet-induced hyperlipidemia, obesity and insulin resistance.74,75 In this model we 

compared the inhibitory effects of insulin on hepatic glucose and VLDL-TG 

production in Chapter 3. 

In Chapter 4 the CD36-deficient mouse (cd36 -/-) is studied. This mouse completely 

lacks CD36 or Fatty Acid Transporter (FAT) in adipose tissue and muscle and cannot 

take up FA in these peripheral tissues.83 Consequently, a large flux of plasma FA 
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towards the liver exists in these mice. Previously, our group has shown that this 

mouse model displays severe hepatic steatosis and has a very insulin resistant 

liver.20 The peripheral tissues, however, are more sensitive to insulin-mediated 

stimulation of glucose uptake compared to wild type littermates. The CD36-deficient 

mice have increased plasma triglyceride levels. The mechanism behind the observed 

hypertriglyceridemia in cd36 -/- mice was studied in Chapter 4. 

Increased inflammatory cytokine expression levels such as IL-6 and TNFα are 

associated with insulin resistance.76,77 Decreased plasma levels of IL-10 have been 

associated with insulin resistance in humans.78,79 IL-10 is an immunoregulatory and 

anti-inflammatory cytokine that can reduce the IL-6 and TNFα production by 

macrophages.80-82 To evaluate the possible effects of endogenous IL-10 secretion on 

insulin sensitivity we compared the effect of high fat feeding on hepatic steatosis and 

hepatic insulin sensitivity in wild type mouse versus the interleukin-10 knock-out 

mouse (IL-10-/-), which completely lacks IL-10 production capacity. In this mouse 

model we studied the metabolic effects of the absence of IL-10 during high fat 

feeding (Chapter 5). Our hypothesis was that the IL-10-/- mice would be more insulin 

resistant. 

In Chapters 6 and 7 we used the APOE*3-Leiden transgenic mouse to study the 

effects of the antiretroviral drug ritonavir (RTV) on the lipid metabolism and the 

development of atherosclerosis. RTV is a protease inhibitor, which is used in 

treatment of HIV-infection. The introduction of antiretroviral therapy has led to a 

significant reduction in the morbidity and mortality that was associated with HIV-

infection. Unfortunately, these drugs are associated with severe adverse metabolic 

effects. Wasting of subcutaneous fat, with or without the accumulation of fat in the 

dorso-cervical and abdominal region, is frequently observed.84 Interestingly, like in 

excess of adipose tissue (obesity), the wasting of subcutaneous fat (lipoatrophy) is 

also associated with hepatic steatosis.68,85-87 The metabolic adverse effects also 

resemble the metabolic disturbances observed in obesity and include hyperlipidemia, 

hyperinsulinemia and hyperglycemia. RTV use specifically is renowned for the 

association with severe hypertriglyceridemia.88 We used the APOE*3-Leiden 

transgenic mouse to study the underlying mechanisms of RTV-induced 

hypertriglyceridemia, because this transgenic mouse model is a very well 

characterized mouse model with a humanized lipoprotein profile.89-91 Similar to 

humans, APOE*3-Leiden transgenic mice have a much lower clearance rate of 
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VLDL-TG than wild type mice. In contrast to wild type mice, these mice are 

susceptible to diet- and drug-induced hyperlipidemia and to obesity and 

atherosclerosis. Furthermore, these mice are sensitive to several lipid-lowering drugs 

such as statins, fibrates and PPARα- and PPARγ-agonists.92 Consequently, the 

APOE*3-Leiden transgenic mouse represents a suitable model to investigate the 

mechanism underlying RTV-induced hypertriglyceridemia. In Chapter 6 we evaluated 

the cause of hypertriglyceridemia induced by RTV in APOE*3-Leiden transgenic 

mice. Finally, in Chapter 7, we evaluated the effect of RTV on atherosclerosis in 

these mice. 
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Chapter 2 
 

Abstract 
Epidemiological studies in humans, as well as experimental studies in animal models, 

have shown an association between visceral obesity and dyslipidemia, insulin 

resistance and type 2 diabetes mellitus. Recently, attention has been focused on the 

excessive accumulation of triglycerides (TG) in the liver as part of this syndrome. In 

this review important principles of the pathophysiological involvement of the liver in 

this metabolic syndrome obtained in rodent models are summarized. The current 

review focuses on non-alcoholic causes of steatosis, since the animal experiments 

we refer to, did not include alcohol as an experimental condition.  

In general, there is continuous cycling and redistribution of non-oxidized fatty acids 

(FA) between different organs and the liver acts in concert with other organs, 

especially adipose tissue, in the orchestration of this inter-organ FA/TG partitioning. 

The amount of TG in an intrinsically normal liver is not fixed, but can readily be 

increased by nutritional, metabolic and endocrine interactions involving both TG/FA 

partitioning and TG/FA metabolism. Steatosis can also be induced by intrahepatic 

changes in glucose and FA/TG metabolism, independently of extrahepatic conditions. 

Steatosis is not merely a change in hepatic TG storage, but also reflects changes in 

the regulation of hepatic metabolic function. VLDL-TG production rates can be 

decreased, normal or increased in steatosis.  

Several lines of evidence indicate that hepatic TG accumulation is also a causative 

factor involved in hepatic insulin resistance, defined by a decreased ability of insulin 

to suppress hepatic glucose production. Complex interactions between endocrine, 

metabolic and transcriptional pathways are involved in TG-induced hepatic insulin 

resistance. Therefore, the liver participates both passively and actively in the 

metabolic derangements of the metabolic syndrome. We speculate that similar 

mechanisms may also be involved in human pathophysiology. 
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Introduction 
Epidemiological studies in humans have documented an association between 

visceral obesity and cardiovascular risk factors such as dyslipidemia, insulin 

resistance and type 2 diabetes mellitus.1-4 Recently, attention has been focused on 

the excessive accumulation of triglycerides (TG) within the liver as part of this 

metabolic syndrome. It appears that fat accumulation in the liver is associated with 

several features of insulin resistance even in normal-weight and moderately 

overweight subjects.5 Nonetheless, from these observations in humans it remains 

unclear to what extent hepatic steatosis is a cause rather than a consequence of the 

metabolic syndrome.  

This issue is difficult to solve, since the liver is not readily accessible in humans. 

Therefore, we focus in the present review on mouse models with variations in liver 

TG content induced by targeted interventions, in order to elucidate the role of liver 

steatosis in metabolic diseases like dyslipidemia, insulin resistance and type 2 

diabetes mellitus. Although alcohol-induced liver steatosis was already described by 

Thomas Addison in 1845, it is appreciated only since 1962 that steatosis can also 

occur without the use of alcohol, so-called non-alcoholic steatosis.6 The current 

review focuses on non-alcoholic causes of steatosis, since the animal experiments 

we refer to, did not include alcohol as an experimental condition. We will briefly 

describe factors involved in body TG homeostasis, intra- and extrahepatic factors 

causing steatosis, the metabolic consequences of steatosis on VLDL-TG, and 

glucose production and potential molecular mechanisms mediating the effects of 

intrahepatic TG accumulation on hepatic metabolic function. 

 

Whole-body TG homeostasis 
The TG content of hepatocytes is regulated by the integrated activities of cellular 

molecules that facilitate hepatic TG uptake, FA synthesis, and esterification on the 

one hand ("input") and hepatic FA oxidation and TG export on the other ("output").  

Steatosis occurs, when "input" exceeds the capacity for "output". The liver acts in 

concert with other organs in the orchestration of inter-organ FA/TG partitioning. 

Therefore, we will first describe whole body TG homeostasis. 

In the absorptive state, dietary TG are transported by the blood to peripheral organs 

in the form of chylomicrons (Figure 1A). Lipoprotein lipase (LPL) is required for the 

intravascular hydrolysis of plasma chylomicron-, as well as VLDL-TG into FA. 
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Through the tissue-specific action of LPL the TG-derived FA are taken up mainly 

locally in peripheral tissues.7 LPL is stimulated by insulin, especially in adipose 

tissue, and by exercise, especially in muscle. After the hydrolysis of a large part of 

the TGs in chylomicrons by LPL, remnant particles remain which are transported to 

and taken up by the liver.8,9 

  

Figure 1. Diversion of fatty acids towards peripheral tissues. A. In the fed state 

chylomicron-triglycerides and VLDL-triglycerides are lipolyzed by lipoprotein lipase to 

generate fatty acids, that are mainly taken up by muscle and adipose tissue for oxidation and 

esterification into triglycerides, especially in the adipose tissue. B. In the fasting state 

triglycerides within the adipose tissue are lipolyzed by the enzyme hormone-sensitive lipase 

and fatty acids are released into the blood in excess of oxidative requirements. The 

excessive fatty acids can be taken up by the liver, for oxidation or for synthesis of VLDL-

triglycerides. The arrows indicate the fluxes of fatty acids. FA = fatty acids, LPL = lipoprotein 

lipase, HSL = hormone-sensitive lipase, VLDL = very low density lipoprotein, chylom = 

chylomicrons derived from the intestine. 
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In the post-absorptive (fasting) state, whole-body TG metabolism differs from that of 

the absorptive state (Figure 1B). The TG contained within adipose tissue are 

continuously being hydrolyzed into FA and glycerol by the enzyme hormone-sensitive 

lipase (HSL).10 Because HSL is inhibited by insulin, the activity of HSL increases in 

the low insulin state of fasting. Although some of the FA released by HSL are re-

esterified within adipocytes, most FA are released into the blood and transported as 

free FA to other organs. In resting, i.e. non-exercise, conditions the amount of FA 
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released by adipose tissue is considerably larger than the amount required for 

oxidative purposes. In this respect the liver is of paramount importance, because the 

liver takes up a considerable part of these FA. Within the liver these FA are either 

oxidized or re-esterified into TG, which can be secreted into the blood in the form of 

VLDL-TG. The FA re-esterified by the liver into TG are derived almost exclusively 

from the FA initially released by adipose tissue.11 In turn, VLDL-TG are directed 

towards different tissues, depending on the tissue-specific availability of LPL.  

Thus, there is a continuous cycling and redistribution of non-oxidized FA between 

different organs especially in the post-absorptive state, with a central role for the liver 

and the adipose tissue (Figure 2).  
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Figure 2. Major pathways of hepatic FA/TG metabolism in the liver. The liver plays 

a central role in lipid metabolism through A Uptake of fatty acids, B Fatty acid oxidation, C 

De novo fatty acid synthesis, D Assembly and secretion of VLDL-TG, E Effects of fatty acids 

on gene expression. FA = fatty acids, HSL = hormone sensitive lipase, LPL = lipoprotein 

lipase, G6P = glucose-6-phosphate.  
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Extrahepatic causes of steatosis  

A major cause of steatosis is increased FA flux to the liver due to a high availability of 

plasma FA in relation to peripheral oxidative requirements. Several conditions 

increase the FA flux to the liver. An increase of exogenous fat, i.e. high-fat feeding, 

increases liver TG content.12 This increase in hepatic TG content can occur within 10 

days after starting the high fat diet in mice. Overnight fasting increases plasma FA to 

such an extent, that liver TG content increases in mice (unpublished observations). 

This flexibility of the liver to accommodate excessive plasma FA the form of hepatic 

TG after overnight fasting in was demonstrated already in 1970 in dogs.13 These 

observations indicate that the amount of liver TG content is not fixed, but can readily 

be modulated by nutritional conditions in otherwise normal livers.  

FA delivery to the liver can also be increased due to disturbances in FA/TG 

partitioning between different organs. This is illustrated by several observations. Mice 

lacking CD36, a FA transporter in muscle and adipose tissue, have increased plasma 

FA levels and show liver steatosis.14,15 Conversely, mice lacking HSL have low 

plasma FA levels and low hepatic TG content.16 Finally, muscle-specific modulation 

of lipoprotein lipase may result in altered distribution of tissue TG. In mice with 

muscle-specific LPL overexpression, muscle TG content is increased, whereas liver 

TG content is decreased compared to wild-type mice.17 These observations in mouse 

models without excessive changes in adipose tissue mass prove that alterations in 

whole body FA/TG partitioning inversely modulate TG content in the liver. 

The extrahepatic regulation of liver TG content is not merely a function of plasma FA 

delivery alone. Mouse models of lipodystrophy and models of its reverse condition, 

obesity, illustrate this. In both conditions, steatosis is present but can only partly be 

related to increased plasma FA and TG levels. However, lipodystrophy and obesity 

are complex conditions, with changes other than those reflected merely in the FA/TG 

metabolism. Adipose tissue is not only an organ designed for passive storage and 

release of TG. In addition, adipose tissue also actively participates in the integration 

of whole-body energy and fuel metabolism by the secretion of many hormones. 

Important hormones, which are derived from adipose tissue, and modulate hepatic 

TG content, are adiponectin, leptin and resistin.18 Adiponectin decreases TG content 

in the muscle and liver of obese mice and decreased adiponectin levels have been 

implicated in the development of steatosis in mouse models of both obesity and 

lipodystrophy.19 Leptin decreases the hepatic accumulation of TG in the A-ZIP/F-1 
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mouse, a model of severe lipodystrophy and low leptin levels.20 Finally, tissue-

specific overexpression of wild-type leptin receptors in the steatotic livers of obese 

(fa/fa) Zucker rats, which have an inactivating mutation in the leptin receptor, reduced 

TG accumulation in the liver but not in other non-adipose tissues. It has therefore 

been proposed that the physiologic role of leptinemia in conditions of caloric excess 

is to protect non-adipose tissue from steatosis by preventing the up-regulation of 

lipogenesis and increasing FA oxidation.21 These examples indicate that an 

intrinsically normal liver may develop steatosis due to nutritional, metabolic and 

endocrine interactions involving both inter-organ TG/FA partitioning and TG/FA 

metabolism.  

 

Intrahepatic causes of steatosis 

Several intrahepatic mechanisms induce steatosis. These changes involve 

alterations in hepatic glucose and/or FA metabolism. Increased de novo hepatic 

synthesis of FA and subsequent esterification into TG is an important cause of 

steatosis. This is illustrated by several examples. Firstly, high sucrose feeding 

induces liver steatosis by increased de novo lipogenesis.11,22 Secondly, inhibition of 

glucose-6-phosphatase by S4048 results in hepatic entrapment of glucose and de 

novo lipogenesis, leading to massive steatosis within several hours.23 Thirdly, 

inhibition of FA oxidation in the liver is another intra-hepatic cause of the 

development of liver steatosis.  For instance, etomoxir, a carnitine O-

palmitoyltransferase-1 (CPT-1)-inhibitor, inhibits FA oxidation and induces 

steatosis.24 These observations indicate that steatosis can be caused by intra-hepatic 

alterations in glucose and fat metabolism, independently of extrahepatic conditions. 

For a detailed summary of other rodent models with steatosis we refer to Koteish and 

Diehl.24 

 

Steatosis and VLDL-TG secretion 
A number of studies have addressed the relation between steatosis and basal VLDL-

TG production in mice and rats, and vice versa. Inhibition of microsomal TG transfer 

protein (MTP) impairs the assembly and probably the secretion of VLDL-TG particles 

and results in intrahepatic accumulation of TG.25 Although the inverse relation 

between steatosis and VLDL production is self-evident in the case of MTP blockers, 

in other conditions the relation between steatosis and VLDL-production is not 

 37



Chapter 2 
 

straightforward, which is illustrated by several examples. In obese ob/ob mice, which 

have steatosis, hepatic VLDL production is not increased, but rather even 

decreased.26 This decrease in VLDL production despite the high FA flux to the liver 

contributes to the massive steatosis that is observed in these animals. In CD36-

deficient mice the flux of FA towards the liver is increased, precipitating steatosis, but 

there is no evidence of an increase in hepatic VLDL production (unpublished 

observations). Thus, availability of FA is not the only determinant of the rate of 

hepatic VLDL-TG production. 

In mice with increased de novo lipogenesis in the liver, VLDL-TG production can be 

either unaltered or increased probably depending on the cause of the increase in de 

novo lipogenesis and the capacity of the liver to increase FA ß-oxidation to get rid of 

the excess FA. The inhibition of glucose-6-phosphatase by S4048 results in an 

increase in de novo lipogenesis and hepatic TG content without any stimulation of 

hepatic VLDL-TG production.23 In contrast, hamsters with increased de novo 

lipogenesis as a consequence of a diet high in fructose, have increased basal hepatic 

VLDL-TG production.27 When lipogenesis is increased by pharmacological activation 

of the liver X receptor (LXR), hepatic VLDL-TG production is increased 2.5-fold and 

the liver produces large TG-rich VLDL particles.28 Therefore, it is likely that different 

molecular mechanisms are involved to explain the relation between steatosis and the 

rate of basal VLDL production in different conditions. 

 

Steatosis and hepatic insulin resistance 
Steatosis is associated with hepatic insulin resistance, which means that the liver is 

less sensitive to the suppressive effects of insulin on hepatic glucose and VLDL- 

production.29-32 If the ability of insulin to suppress the hepatic output of glucose and 

VLDL is decreased, this contributes to (postprandial) hyperglycemia and 

hyperlipidemia, intrinsic features of the metabolic syndrome. As such, steatosis is not 

only a consequence of, but also a major contributor to, the metabolic syndrome.  

The inhibitory effects of insulin on VLDL production involve  peripheral effects, 

because insulin inhibits FA release from adipose tissue, as well as the direct hepatic 

effects of insulin on hepatic VLDL-TG assembly/secretion.33 Because the effects of 

steatosis on insulin sensitivity of hepatic VLDL-TG production are complex and have 

been less extensively studied than those of glucose metabolism, we focus on insulin 

resistance of the hepatic glucose metabolism.  
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Figure 3. Insulin-mediated inhibition of hepatic glucose production is related to 
hepatic TG content. Muscle-specific LPL-overexpressing mice (LPL-tg) show increased 

TG content in the muscle, whereas liver TG content is decreased compared to wild-type 

mice. During a hyperinsulinemic euglycemic clamp the livers in these mice showed increased 

sensitivity to the suppressive effect of insulin on hepatic glucose production. Mice deficient in 

hormone-sensitive lipase (HSL ) showed decreased hepatic TG content and increased 

inhibition of hepatic glucose production compared to wild-type mice. CD36  mice lacking the 

FA transporter that is normally present in muscle and adipose tissue, showed increased 

hepatic TG content and a decreased sensitivity of hepatic glucose production to insulin.  

-/-

-/-

15-17

 

There is an inverse relationship between hepatic TG content and hepatic insulin 

sensitivity (Figure 3). We observed this inverse relationship in transgenic mice with 

targeted disruptions in TG/FA partitioning. Interestingly, mice with decreased hepatic 

TG content compared to wild-type controls, such as mice with muscle-specific 

overexpression of LPL or HSL-/- mice, revealed increased insulin sensitivity.16,17 

Apparently, the relationship between hepatic TG content and insulin sensitivity holds 

true for both increased and decreased hepatic TG stores. The more complex mouse 

models of obesity, like the ob/ob mice, and its counterpart, the lipodystrophic mice, 

have steatosis with severe hepatic insulin resistance.34-36 Adiponectin and leptin are 

not only capable of reversing steatosis, but also hepatic insulin resistance in these 

mice. These observations further strengthen the notion that hepatic TG accumulation 

is a causative factor involved in hepatic insulin resistance.  
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Paradoxically, this relationship between steatosis and insulin resistance is 

dissociated in some mouse models by treatment with thiazolidinediones. These 

PPARγ-activators improve hepatic insulin resistance despite the augmentation of 

steatosis in obese and diabetic mice, but not in lean controls.37 The mechanisms that 

underlie this paradox have not yet been elucidated. 

 

Molecular mechanisms involved in hepatic insulin sensitivity 
Insulin acts by stimulating the insulin receptor, by sequential phosphorylation of 

proteins of the insulin-signaling pathway.38 Through these proteins insulin exerts its 

metabolic effects, e.g. on glucose transport, glycogen synthesis and lipid synthesis. 

In addition, the insulin-signaling pathway interacts with transcription factors, resulting 

in altered transcription of a multitude of genes, involved in a variety of cellular 

functions.39-41 Strong indications exist that alterations in hepatic FA/TG content 

modulate this insulin-signaling cascade. The expression of insulin receptors and 

phosphoinositol-3 kinase mediated protein kinase B (PKB) phosphorylation are 

considerably decreased in a mouse model with steatosis and hepatic insulin 

resistance, such as CD36 -/- mice.15 Conversely, the expression of the insulin receptor 

and activation of phosphoinositol-3 kinase-mediated PKB-phosphorylation are 

increased in a mouse model of decreased hepatic TG content and increased hepatic 

insulin sensitivity, like in the HSL-/- mice.16 Apparently, the inverse relationship 

between hepatic TG stores and insulin sensitivity is linked to the activity of the 

insulin-signaling cascade at a molecular level. 

There are indications, that a direct interaction between FA derivatives and 

components of the insulin-signaling cascade are involved in the FA-induced insulin 

resistance.42 FA intermediates like diacylglycerols are known to stimulate certain 

protein kinase Cs (PKC). PKCs promote threonine phosphorylation of the insulin 

receptor and its substrates, thereby blocking the insulin cascade. Furthermore, FA 

derivatives act as agonists and antagonists for nuclear transcription factors like 

PPARs, SREBPs and LXR. In addition to their regulation by different FA metabolites, 

these transcription factors are the targets for hormones, like insulin and leptin, growth 

factors, and inflammatory signals. Therefore, they appear to be a point of signaling 

convergence at a gene regulatory level.43 These transcription factors profoundly alter 

the expression of enzymes and proteins that are involved in glucose and lipid 

metabolism. We postulate that these effects on gene expression include alterations in 
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the insulin-signaling cascade. Therefore, the understanding of the extremely complex 

interaction between FA derivatives and nuclear transcription factors is pivotal for 

understanding the relation between steatosis and the metabolic syndrome. This is 

illustrated by several observations in mice. PPARs are a family of nuclear receptors 

that have profound effects on gene expression and are involved in the modulation of 

glucose and lipid metabolism by complex mechanisms that are beyond the scope of 

this review. Nonetheless, several observations in mice point to a relationship 

between the activity of these receptors and hepatic insulin sensitivity. PPARα is 

mainly expressed in the liver. It is important in the regulation of several key enzymes 

in FA oxidation. PPARα-/- mice develop extensive hepatic steatosis after short-term 

fasting due to the considerably diminished hepatic oxidation capacity.44 Drugs that 

activate PPARα, reduce liver TG content and improve hepatic insulin sensitivity in 

rodent models of liver steatosis.45,46 Remarkably, PPARα-/- mice are protected 

against high fat induced insulin resistance.47 This indicates that transcription factors 

like PPARα are involved in the interaction between hepatic FA metabolism and 

hepatic insulin resistance. 

There are indications that inflammatory pathways are sub-clinically stimulated in 

insulin resistance. In tissues obtained from Zucker fa/fa rats, which have steatosis, 

basal I B kinase  (IKK ) activity was increased when compared to lean fa/+ controls. 

IKK  is a proximal activator of the transcription factor NF-κB. Inhibition of NF-κB by 

aspirin reverses hyperglycemia, hyperinsulinemia, and dyslipidemia in obese rodents 

by sensitizing insulin-signaling. The blunted insulin-stimulated phosphorylation of 

PKB in the livers of untreated Zucker rats was increased after salicylate treatment, 

providing a biochemical correlate for increased in vivo insulin sensitivity.  Activation or 

overexpression of the I B kinase  (IKK ) attenuated insulin signaling in cultured 

cells, whereas IKK  inhibition reversed insulin resistance.48 These observations 

suggest that NF-κB may be another transcription factor, involved in steatosis-related 

hepatic insulin resistance. 

To summarize, there are multiple endocrine, metabolic and transcriptionally active 

factors involved in the interaction between hepatic FA/TG metabolism and hepatic 

insulin sensitivity. The hierarchy between these different factors in modulating hepatic 

insulin sensitivity is at present unclear. Because the prevalence of the metabolic 

syndrome reaches endemic proportions, it is important to investigate the causes and 

consequences of this syndrome both in human and in animal studies. The 
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combination of these studies may lead to a better prevention and treatment of the 

metabolic syndrome. 
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Abstract 
Insulin is an important inhibitor of both hepatic glucose output and hepatic VLDL-

triglyceride (VLDL-TG) production. We investigated whether both processes are 

equally sensitive to insulin-mediated inhibition. To test this, we used euglycemic 

clamp studies with four increasing plasma concentrations of insulin in wild type 

C57Bl/6 mice. By extrapolation we estimated that half-maximal inhibition of hepatic 

glucose output and hepatic VLDL-TG production by insulin were obtained at plasma 

insulin levels of ~ 3.6 and ~ 6.8 ng/mL, respectively. In the same experiments, we 

measured that half-maximal decrease of plasma free fatty acid levels and half-

maximal stimulation of peripheral glucose uptake were reached at plasma insulin 

levels of ~ 3.0 and ~ 6.0 ng/mL, respectively. We conclude that, in comparison to 

insulin sensitivity of hepatic glucose output, peripheral glucose uptake and hepatic 

VLDL-TG production are less sensitive to insulin.  

 

 

 

 

 

 

 

 

 48 



Insulin Sensitivity of Hepatic Glucose and VLDL Output 
 

Introduction 
The liver is a very important regulator in the homeostasis of both glucose and lipid 

metabolism. Not only does the liver control the storage, production and secretion of 

glucose, it also produces and secretes very-low density lipoproteins (VLDL) and 

takes up VLDL-remnants, low density lipoproteins (LDL) and albumin-bound fatty 

acids (FA). Insulin inhibits both hepatic glucose and VLDL-TG production. It is not 

known, however, whether both processes are equally sensitive to insulin-mediated 

inhibition. 

Hepatic glucose output (HGO) is determined by the rate of hepatic glycogen 

breakdown, which is regulated by glucose-6-phosphatase (G6Pase), and by the rate 

of hepatic gluconeogenesis, which is regulated by phosphoenolpyruvate 

carboxykinase (PEPCK). In the fed state insulin inhibits HGO via inhibition of these 

two key regulatory enzymes.1-3 Insulin also stimulates glucose uptake by peripheral 

tissues, such as muscle and adipose tissue. In these tissues, insulin stimulates 

translocation of the glucose transporter-4 (Glut-4) mediating uptake of glucose.4 

Previous studies have documented different dose-response effects of insulin on the 

HGO and peripheral glucose uptake (PGU). Rizza et al.5 showed that HGO is more 

sensitive to inhibition by insulin than peripheral glucose uptake is to stimulation by 

insulin.  

Hepatic VLDL-TG production is commonly assumed to be primarily a substrate-driven 

process6, but insulin also plays an important role in the regulation of this VLDL-TG 

production. Insulin can inhibit the hepatic VLDL-TG production via direct and indirect 

mechanisms. The exact mechanism remains unclear, but it is thought that insulin can 

directly accelerate the degradation of apoB which is necessary for VLDL-TG 

secretion.7 An indirect effect of insulin is suggested to work via inhibition of hormone 

sensitive lipase (HSL) in adipose tissue, leading to decreased plasma levels of FA 

and thus, decreased flux of FA from the adipose tissue to the liver.8 However, in a 

study in humans a metabolic relationship between insulin-mediated suppression of 

FA release from adipose tissue and FA flux to the liver on one hand, and the rate of 

hepatic VLDL-TG production on the other hand was not observed.9 A study by Lewis 

et al.10 showed that in normal individuals the acute inhibition of VLDL-TG production 

by insulin in vivo was only partly due to the suppression of plasma FA, and may also 

be due to an FA-independent process. 

 49



Chapter 3 
 

We investigated in wild type C57Bl/6 mice, whether HGO and hepatic VLDL-TG 

production are equally sensitive to insulin-mediated inhibition using the 

hyperinsulinemic euglycemic clamp technique11 which was adapted to mice as 

described previously by our group.12,13 We found that the HGO is much more 

sensitive to insulin-mediated inhibition than hepatic VLDL-TG production.  

 
Materials and Methods 
Animals 

For our experiments we used 12-week old male C57Bl/6 mice that were housed 

under standard conditions. The mice were fed a standard mouse/rat chow diet (Hope 

Farms, Woerden, Netherlands) and water ad libitum. Mice were fasted for 2 h before 

the experiments and randomly assigned to respective groups which were infused 

with different amounts of insulin. Per group 5 to 6 animals were used. All animal 

experiments were approved by the Animal Ethics Committee from our institute. 
 

Hyperinsulinemic euglycemic clamp 

The clamp protocol was adapted from previously published studies performed by our 

group.12,13 Food was withdrawn at 7 A.M. and at 9 A.M. the mice were anaesthetized 

with a combination of acetylpromazine (Vetranquil, Sanofi Santé Nutrition Animale, 

Libourne Cedex, France), midazolam (Dormicum, Roche, Woerden, Netherlands) 

and fentanyl (Fentanyl, Janssen-Cilag, Tilburg, Netherlands). An infusion needle was 

placed into the tail vein and basal glucose turnover rates were determined by infusion 

of D-[3-3H]-glucose (0.6 µCi/kg.min, Amersham Biosciences, Little Chalfont, UK) 

alone during 45 minutes to achieve steady-state levels. After 45 and 60 minutes of 

infusion blood samples (60 µL) were drawn from the tip of the tail into chilled capillary 

tubes (Hawksley and Sons Limited, West Sussex, UK) coated with paraoxan (diethyl 

p-nitrophenyl phosphate, Sigma, St Louis, USA) to prevent ex vivo lipolysis.14 These 

capillaries were kept on ice and spun for 5 min at 13.000 rpm to isolate the plasma 

which was snap-frozen in liquid nitrogen and stored at -20°C until analysis. After the 

basal period a hyperinsulinemic clamp was started with the continuous infusion of a 

combination of D-[3-3H]glucose (0.6 µCi·kg-1·min-1) and insulin at the respective 4 

concentrations (3.5, 7, 14 or 28 mU·h-1). To maintain euglycemic blood glucose 

levels, exogenous glucose was infused via an adjustable infusion of a 20% D-glucose 

solution in phosphate-buffered saline (PBS). A blood sample (<5 µL) was taken every 
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10 min to monitor blood glucose (Freestyle, Disetronic Medical Systems BV, Vianen, 

Netherlands). When steady state blood glucose levels were reached, two blood 

samples (60 µL) were taken with 15 min intervals to measure hyperinsulinemic 

parameters of peripheral glucose uptake and HGO. After the last blood sample, 

Triton was injected which completely blocks lipolysis of plasma triglycerides (TG).15 

Plasma TG were measured before injection of Triton and at 30, 60 and 90 min after 

injection and related to the body mass of the mice. Hepatic TG production was 

calculated from the slope of the curve and expressed as µmol·h-1·kg bodyweight-1. 

The clamp experiments lasted approximately 4 h.  
 

Plasma parameter analyses 

Plasma glucose was measured using the glucose hexokinase method (Instruchemie, 

Delfzijl, Netherlands). FA and TG were determined using commercially available kits 

(#315 and #310-A Sigma GPO-Trinder kit, St. Louis, MA, USA) according to the 

manufacturer’s instructions. Plasma insulin concentrations were measured by ELISA 

(ALPCO Diagnostics, Windham, NH, USA). To measure plasma [3H]glucose, 

trichloroacetic acid (final concentration 10%) was added to 7.5 µL plasma to 

precipitate proteins using centrifugation. The supernatant was dried to remove water 

and resuspended in milliQ. The samples were counted by scintillation counting 

(Packard Instruments, Dowers Grove, IL, USA). 
 

Calculations 

Under steady-state conditions for plasma glucose concentrations, the rate of glucose 

disappearance equals the rate of glucose appearance. The latter (µmol·min-1·kg-1) 

was calculated during the basal period and under steady-state clamp conditions as 

the rate of tracer infusion (dpm/min) divided by the plasma specific activity of 

[3H]glucose (dpm/µmol). The ratio was corrected for body weight. Hyperinsulinemic 

HGO was calculated as the difference between the tracer-derived rate of glucose 

appearance and the glucose infusion rate. 
 

Statistical analysis 

Results are presented as means ± SE for 5 animals per group. Differences between 

experimental groups were determined by the Mann-Whitney U test.  The means per 

group were tested for linear trend (Ptrend) with increasing insulin levels. The level of 
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statistical significance of the differences was set at P < 0.05. Analyses were 

performed using SPSS 12.0 for Windows software (SPSS, Chicago, USA) and Prism 

4.0 (GraphPad). 

 
Results 
Plasma glucose and insulin levels and glucose infusion rates during the clamp 

analyses 

Plasma glucose levels during the basal and hyperinsulinemic clamp period were not 

different between the groups (Table 1).  At basal level plasma insulin levels were not 

different between the groups, averaging at ~1.4 ng/mL. At hyperinsulinemic 

conditions, steady state plasma insulin concentrations in the respective groups 

averaged at 2.4, 3.6, 9.3 and 22.4 ng/mL with increasing insulin infusion rates. In 

addition, to maintain euglycemia during the respective insulin infusion rates, glucose 

infusion rate (GIR) increased concomitantly, as expected (Table 1; Ptrend < 0.01).   

 

Dose-response effects of insulin on peripheral glucose uptake and hepatic glucose 

output  

We observed no differences in basal peripheral glucose uptake between the groups 

(Table 2). During the hyperinsulinemic period insulin dose-dependently stimulated 

peripheral glucose uptake when compared to the respective basal levels, (Ptrend < 

0.01). Similarly, basal HGO did not differ between the groups, whereas HGO was 

dose-dependently inhibited by insulin during the hyperinsulinemic conditions (Ptrend < 

0.01).  

 

Dose-response effects of insulin on plasma FA levels and hepatic VLDL-TG 

production 

The decrease in plasma FA levels was determined as a measure of insulin sensitivity 

of adipose tissue lipolysis. Upon infusion of insulin plasma FA levels decreased dose-

dependently (Ptrend < 0.01; Table 3). To measure the effect of insulin infusion on 

hepatic VLDL-TG production at the end of the hyperinsulinemic period, all groups of 

mice were injected with Triton WR1339 to completely block plasma VLDL-TG 

lipolysis.15 Table 3 presents that insulin infusion leads to a dose-dependent decrease 

in hepatic VLDL-TG production (Ptrend < 0.01; Table 3). 
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Table 1. Plasma levels of glucose and insulin and glucose infusion rates. 

Body weight was measured at the beginning of the experiment. Plasma glucose and insulin 

levels were measured during the basal and during the hyperinsulinemic (Hyper) period. GIR 

is the glucose infusion rate necessary to maintain euglycemia during hyperinsulinemia. 

Values represent means ± SE. (# P < 0.05 compared to basal group; * Ptrend < 0.01; n=5-6 

mice per group) 

 
Insulin 

Infusion 
(mU· h-1) 

 
Bodyweight 

(g) 

 
Plasma Glucose 

(mM) 

 
Plasma Insulin 

(ng/mL) 

 
GIR * 

(µmol·  min 
-1·kg-1) 

  Basal Hyper Basal Hyper *  
 

0 
 

28.3 ± 0.9 
 

7.5 ± 0.5 
 

N.A. 
 

1.1 ± 0.2 
 

N.A. 
 

0 ± 0 

 
3.5 

 
25.5 ± 0.5 

 
7.9 ± 0.6 

 
10.1 ±2.1 

 
1.5 ± 0.4 

 
2.4 ± 0.3# 

 
13 ± 6 

 
7 

 
23.9 ± 0.7 

 
8.9 ± 0.5 

 
8.1 ± 1.3 

 
1.1 ± 0.3 

 
3.6 ± 0.5# 

 
32 ± 11 

 
14 

 
26.0 ± 0.7 

 
8.2 ± 0.3 

 
8.2 ± 1.1 

 
1.4 ± 0.3 

 
9.3 ± 1.0# 

 
104 ± 37# 

 
28 

 
27.2 ± 1.4 

 
8.1 ± 0.5 

 
7.3 ± 0.9 

 
1.7 ± 0.4 

 
22.4 ± 4.3# 

 
152 ± 16# 

 
Table 2. Effects of insulin infusion on peripheral glucose uptake and hepatic 
glucose output. 

 
Insulin 

Infusion 
(mU·h-1) 

 
PGU 

(µmol·min-1·kg-1) 

 
% of basal 

(%)* 
 

 
HGO 

(µmol·min-1·kg-1) 

 
% of 

basal (%)*

 Basal Hyper *  Basal Hyper *  
 

0 
 

58.8±9.4 
 

N.A. 
 

N.A. 
 

58.8 ±9.4 
 

N.A. 
 

N.A. 

 
3.5 

 
64.6 ±6.3 

 
57.2 ±4.4 

 
90 ±7.3 

 
64.6 ±6.3 

 
44.7 ±6.0 

 
69 ±6.9 

 
7 

 
74.8 ±11.1 

 
79.0 ±11.1 

 
107 ±12.9 

 
74.8 ±11.1 

 
45.3 ±11.7 

 
60 ±12.5 

 
14 

 
75.9 ±5.3 

 
152.0 ±14.9#

 
202 ±19.1# 

 
75.9 ±5.3 

 
28.9 ±12.2# 

 
39 ±17.3# 

 
28 

 
61.4 ±7.0 

 
136.4 ±17.0#

 
221 ±8.1# 

 
61.4 ±7.0 

 
12.5 ±7.9# 

 
21 ±13.8# 

During the clamp experiment whole-body glucose uptake (PGU) and hepatic glucose output 

(HGO) were measured under basal and under hyperinsulinemic conditions. Values represent 

means ± SE. (# P < 0.05 compared to basal group; * Ptrend < 0.01; n=5-6 mice per group) 
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Table 3. Effects of insulin infusion on plasma fatty acid levels and hepatic 
VLDL-TG production. 

 
Insulin Infusion 

(mU·h-1) 

 
FA * 
(mM) 

 
% of basal 

(%)* 

 
HVP * 

(µmol·h-1·kg-1) 

 
% of basal 

(%)* 

 
0 

 
0.69 ± 0.06 

 
100 

 
159.6 ± 9.0 

 
100 

 
3.5 

 
0.63 ± 0.05 

 
91 ± 9  

 
189.5 ± 19.5 

 
119 ± 12 

 
7 

 
0.37 ± 0.05# 

 
54 ± 9# 

 
158.1 ± 17.6 

 
99 ± 11 

 
14 

 
0.24 ± 0.03# 

 
35 ± 4# 

 
90.3 ± 6.0# 

 
57 ± 4# 

 
28 

 
0.25 ± 0.02# 

 
36 ± 3# 

 
83.3 ± 7.7# 

 
52 ± 5# 

After the clamp experiment plasma fatty acid levels (FA) and hepatic VLDL-TG production-

HVP) rate were measured under basal and under hyperinsulinemic conditions. Values 

represent means ± SE. (#P < 0.05 compared to basal group; * Ptrend < 0.01; n=5-6 mice per 

group) 

 
Table 4. Plasma insulin levels at half-maximal effect. 

The half-maximal effect of insulin was determined for each parameter during 

hyperinsulinemic clamp studies. We estimated the half-maximal effect by extrapolation from 

the curves using the numbers presented in Table 2 and 3. FA = plasma FA, HGO = hepatic 

glucose output, PGU = peripheral glucose uptake, HVP = hepatic VLDL-TG production. 

Parameter Plasma insulin level 
(ng/mL) 

 
FA 

 
3.0 

 
HGO 

 
3.6 

 
PGU 

 
6.4 

 
HVP 

 
6.8 

 

Comparison of peripheral glucose uptake, plasma FA decrease, HGO and hepatic  

VLDL-TG production regarding insulin sensitivity 

Taken together, the data presented in Tables 2 and 3 clearly indicate that increasing 

plasma concentrations of insulin lead to a dose-dependent increase in peripheral 

glucose uptake (Figure 1A) and a dose-dependent decrease in adipose tissue FA 
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release (Figure 1B). Simultaneously, we measured in the same animals that in the 

liver the HGO (Figure 1C) and hepatic VLDL-TG production were inhibited dose-

dependently (Figure 1D). For comparison of the dose-response characteristics of 

each of these effects of insulin, we estimated by extrapolation the insulin 

concentrations at which the half-maximal inhibitory or stimulatory effect was reached 

for these respective parameters (Table 4). It is obvious, that in the periphery FA 

release from adipose tissue is more sensitive to plasma insulin than peripheral 

glucose uptake. In the liver, HGO is more sensitive to plasma insulin levels than 

hepatic VLDL-TG production. 
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Figure 1. Hepatic glucose production is more sensitive to insulin-mediated 
inhibition than hepatic VLDL-TG production. During a hyperinsulinemic euglycemic 

clamp experiment with different plasma insulin concentrations per group we measured the 

stimulation of peripheral glucose uptake (A) and the decrease in plasma FA (B). 

Simultaneously we measured the insulin-mediated inhibition of hepatic glucose production 

(C) and of hepatic VLDL-TG production (D). The dotted lines indicate the maximal and half-

maximal effect of insulin. 
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Discussion 
Insulin inhibits both hepatic glucose output and VLDL-TG production. So far it was 

not known, whether both processes are equally sensitive to insulin-mediated 

inhibition. In the current study we addressed this question and found that the HGO is 

much more sensitive to insulin-mediated inhibition than hepatic VLDL-TG production.  

Since in humans the liver is not readily accessible, mouse models are often used to 

investigate mechanisms of insulin resistance. The C57Black/6 mouse is a model that 

is sensitive to diet-induced obesity and insulin resistance.16,17 Therefore we chose to 

use these mice for our studies of the glucose and lipid metabolism. In general there 

are three approaches to perform hyperinsulinemic clamp studies in mice in vivo. 

Some groups use free moving mice with preimplanted catheters 18, other groups use 

awake but restrained mice 19, and some groups use anesthetized mice.12,13 Each 

approach has some limitations. In freely moving mice the effects of movement on the 

data of interest have to be taken into account. In restrained mice, the endocrine and 

neural effects of stress through restrainment will affect the data of interest. Finally, in 

anesthetized mice the effects of anesthetics on the parameters of interest have to be 

taken into account. Although formal studies comparing the three methods have not 

been published, it is clear from the publications that each approach is able to detect 

alterations in insulin effects induced by appropriate interventions.  We performed the 

hyperinsulinemic euglycemic clamp experiments in anesthetized mice. Prior to the 

current study we compared different combinations of anesthetics. Using a 

combination of acetylpromazine, midazolam and fentanyl we observed no unwanted 

adverse effects of the anesthetics on glucose, lipid and insulin concentrations (den 

Boer et al. unpublished results). Nonetheless, we can not exclude the possibility that 

the exact dose-response relationships of insulin might be slightly different when one 

of the two other methods of hyperinsulinemic clamp experiments would have been 

used. However, our data on the relation between insulin concentrations and the 

parameters of glucose metabolism resemble those of previous studies.  
By using this animal model we were able to measure the effect of insulin on HGO 

and hepatic VLDL-TG production, and in the same time also on peripheral glucose 

uptake and plasma FA levels, the latter as a measure for insulin sensitivity of adipose 

tissue lipolysis. Although an exact extrapolation for determination of half-maximal 

effect could not be made, Figure 1 shows that plasma FA levels, peripheral glucose 

uptake, HGO and hepatic VLDL-TG production differ in insulin sensitivity. By 
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comparison of the insulin levels at the half-maximal effect, we observed that HGO is 

more sensitive to insulin-mediated regulation than peripheral glucose uptake. This is 

in concordance with the study of Rizza et al.5, who showed in humans that half-

maximal suppression of HGO occurs at insulin levels of 29 µU/mL (~ 0.9 ng/mL), 

while half-maximal stimulation of peripheral glucose uptake occurs at 55 µU/mL (~ 

1.8 ng/mL). Furthermore, the suppression of plasma FA appears to be much more 

sensitive to insulin than the stimulation of peripheral glucose uptake. In fact adipose 

tissue lipolysis and peripheral glucose uptake are two completely different processes. 

While lipolysis by HSL takes place in adipose tissue only, insulin-stimulated 

peripheral glucose uptake occurs both in adipose tissue and in muscle. Therefore, it 

is not possible to quantitatively compare these peripheral parameters regarding their 

regulation by insulin under these conditions.  

The observation that hepatic VLDL-TG production is much less sensitive to the 

inhibitory effect of insulin than HGO suggests, that these two processes are regulated 

differentially. In the regulation of HGO insulin inhibits the forkhead box Other-1 

(FoxO1) which binds to promoter regions of genes encoding the enzymes G6Pase 

and PEPCK20, which are important regulators of glycolysis and gluconeogenesis 

respectively.1-3 The molecular mechanism underlying the insulin-mediated 

suppression of hepatic VLDL-TG production is not completely clear. Studies have 

shown that insulin can inhibit the lipidation of pre-VLDL via inhibition of microsomal 

TG transfer protein (MTTP).21,22 MTTP is the enzyme that catalyzes the fusion of the 

pre-VLDL with a lipid droplet, thereby rendering the pre-VLDL into a mature VLDL 

particle ready for secretion. In addition, in vitro studies have shown that insulin 

stimulates the degradation of apoB in hepatocytes.23-25 Decreased intracellular apoB 

availability leads to a decreased hepatic VLDL-TG production. Furthermore, insulin is 

known to inhibit HSL in adipose tissue, leading to decreased plasma levels of FA and 

thus, to decreased flux of FA from adipose tissue to the liver, which will eventually 

decrease FA re-esterification into TG in hepatocytes.8 It has indeed been shown, that 

in the presence of hyperinsulinemia the liver secretes less and smaller VLDL 

particles.26 However, in a study in humans an association between insulin-mediated 

suppression of FA release from adipose tissue and FA flux to the liver on one hand, 

and the rate of hepatic VLDL-TG production (estimated from the mono-exponential 

slope of VLDL-TG [2H5]glycerol enrichment) on the other hand, was not observed.9 

Another semiquantitative study in humans also showed that in normal individuals the 
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acute inhibition of VLDL-TG production by insulin in vivo is only partly due to the 

suppression of plasma FA.10 In accordance, in the current study, we could not find a 

significant correlation between decrease in plasma FA levels and decrease in hepatic 

VLDL-TG production during hyperinsulinemia. Apparently, plasma FA levels and FA 

availability to the liver per se do not determine hepatic VLDL-TG production. In 

accordance with this notion, we have previously shown that acute redirection of 

hepatic FA flux from β-oxidation to storage does not affect hepatic VLDL-TG 

production.27 We suggest that under the conditions of our experiment insulin exerts 

direct effects on hepatic VLDL-TG production which are apparently of greater 

importance than the indirect effects via suppression of FA release from adipose 

tissue or FA availability in general, at least under the conditions of our experiments. 

We hypothesize that hepatic VLDL-TG production is inhibited by insulin via a 

combination of the three different mechanisms described above and may therefore 

be less sensitive to insulin.  

Metabolic zonation may also be a factor involved in the difference in insulin sensitivity 

of HGO versus hepatic VLDL-TG production. Hepatic metabolic pathways are not 

uniformly distributed across the liver.28 Within the liver acinus different zones exist. In 

the efferent perivenous zone more FA synthesis takes place and the activity of 

acetyl-CoA carboxylase is much higher than in the afferent periportal area. The 

perivenous zone also has a larger capacity to re-esterify exogenous FA into TG. 

Carbohydrate metabolism also differs between the two areas. Glucose uptake for 

glycogen synthesis mainly occurs in the perivenous zone, whereas the generation of 

glucose via glycogenolysis and gluconeogenesis occurs mainly periportally. 

Furthermore, although insulin receptor mRNA is homogenously distributed in the liver 

acinus, insulin receptor protein is mainly expressed in the perivenous area in rat 

liver.29 How these differences in metabolic zonation may be reflected in differential 

regulation of HGO and hepatic VLDL-TG production by insulin is subject to 

speculation. 

In summary, our study shows that HGO is much more sensitive to insulin-mediated 

inhibiton than hepatic VLDL-TG production. This is of major importance for the use of 

the golden standard of measuring insulin sensitivity: the hyperinsulinemic euglycemic 

clamp technique. A low insulin dose already suppresses HGO, while no effect on 

hepatic VLDL-TG production may be observed. Infusion of high insulin dosages may 
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lead to the overlooking of subtle differences in hepatic insulin sensitivity, especially 

with regard to the HGO. 
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Abstract 
CD36 is involved in high affinity peripheral fatty acid (FA) uptake. Mice lacking CD36 

exhibit increased plasma FA and triglyceride (TG) levels. The aim of the present 

study was to elucidate the cause of the increased plasma TG levels in CD36-deficient 

(cd36 -/-) mice. Cd36 -/- mice showed no differences in hepatic VLDL-TG production or 

intestinal [3H]TG uptake as compared to wild type littermates. Importantly, the 

postprandial TG response upon an intragastric fat load was enhanced 2-fold in cd36-/- 

mice compared to wild type mice (13 ± 6 vs 7 ± 2 mM.h; P < 0.05), with a 

concomitant 2.5-fold increased FA response (20 ± 6 vs 8 ± 1 mM.h; P < 0.05), 

suggesting that the elevated FA in cd36 -/- mice may impair LPL-mediated TG 

hydrolysis. Postheparin plasma lipoprotein lipase (LPL) levels were not different 

between cd36 -/- and wild type mice. However, the in vitro LPL-mediated TG-

hydrolysis rate as induced by postheparin plasma of cd36 -/- mice in absence of 

excess FA-free BSA was reduced by 51% compared to wild type littermates (0.13 ± 

0.06 vs 0.27 ± 0.07 nmol oleate/mL/min P < 0.05). This inhibition was relieved upon 

addition of excess FA-free BSA. To study whether LPL activity can be decreased in 

vivo via product inhibition by FA, we increased plasma FA in wild type mice by 

infusion and showed that the plasma half-life of glycerol tri[3H]oleate-labeled VLDL-

like emulsion particles was increased 2.5-fold (t½ = 17.5 ± 10.4 vs 7.0 ± 2.6 min, P < 

0.05) as compared to vehicle-infused mice.  

We conclude that the increased plasma TG levels observed in cd36 -/- mice do not 

result from an increased hepatic VLDL-TG production or intestinal lipid absorption, 

but are caused by decreased LPL-mediated hydrolysis of TG-rich lipoproteins 

resulting from FA-induced product inhibition of LPL.  
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Introduction  
CD36, also known as fatty acid translocase (FAT), is a receptor for several ligands, 

including oxidized LDL and long-chain FA.1-5 Abumrad et al.1 showed that CD36 is 

abundant in peripheral tissues active in FA metabolism, such as adipose tissue, 

skeletal muscle, and cardiac muscle, where it is involved in high-affinity uptake of 

FA.1,6,7 To directly investigate a role for CD36 in lipid metabolism, mice lacking CD36 

were generated by gene-targeting.8 These CD36-deficient (cd36 -/-) mice exhibited 

increased plasma FA and triglyceride (TG) levels.8 Coburn et al.9 showed that FA 

uptake was considerably impaired in muscle and adipose tissue of CD36-deficient 

mice. Febbraio et al.8 further showed that the increase in plasma TG levels in the 

absence of CD36 was primarily due to an increase in VLDL-sized particles. Although 

these data suggest a role for CD36 in TG metabolism in addition to FA metabolism, 

the exact mechanism(s) underlying the increased TG levels in cd36 -/- mice is (are) 

unknown. It has been discussed by Hajri et al.10 that the VLDL-TG production rate 

may be enhanced in CD36-deficient mice, but the increased plasma TG levels may 

also be due to increased intestinal lipid absorption or a decreased lipoprotein lipase 

(LPL)-mediated TG clearance from the circulation.  

Therefore, the aim of the present study was to elucidate the cause of the 

hypertriglyceridemia in CD36-deficient mice in vivo. Our results show that the 

increased plasma TG levels in cd36 -/- mice are caused by a decreased TG hydrolysis 

rate, rather than by differences in the production of hepatic VLDL-TG or intestinal lipid 

absorption. From the present study we conclude that the hypertriglyceridemia 

observed in cd36 -/- mice is caused by decreased LPL-mediated hydrolysis of TG-rich 

lipoproteins resulting from FA-induced product inhibition.  

 
Materials and Methods 
Animals 

CD36-deficient mice were generated by targeted homologous recombination and 

crossed back 6 times to C57Bl/6 background.8 Male and female cd36 -/- mice (4-6 

months of age) were used with wild type littermates (cd36 +/+) as controls. They were 

housed under standard conditions with free access to water and food (standard rat-

mouse chow diet, Standard Diet Services, Essex, UK). Principles of laboratory animal 

care were followed and the animal ethics committee of our institute approved all 

animal experiments. 
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Plasma TG and FA analysis 

To determine plasma lipid levels, tail vein blood was collected from male cd36 -/- and 

cd36 +/+ mice, after 4 h and 16 h fasting, into chilled paraoxon-coated capillary tubes 

to prevent ongoing lipolysis.11 These tubes were placed on ice and immediately 

centrifuged at 4°C. Plasma levels of TG (without free glycerol) and FA were 

determined using the commercially available kits #337-B Sigma GPO-Trinder kit 

(Sigma, St. Louis, MA, USA) and Nefa-C kit (Wako Chemicals GmbH, Neuss, 

Germany), respectively.  

 

Hepatic VLDL-TG production 

After an overnight fast, cd36 -/- and cd36 +/+ male mice were anesthetized (0.5 mL/kg 

hypnorm; Janssen Pharmaceutical, Beerse, Belgium and 12.5 mg/kg midazolam; 

Roche, Mijdrecht, The Netherlands), and injected intravenously into the tail vein with 

500 mg Triton WR1339 per kg body weight as a 10% solution in 0.9% NaCl, which 

virtually completely inhibits serum lipoprotein clearance.12 Blood samples were drawn 

at 0, 15, 30, 60, and 90 min after the Triton injection and TG concentrations were 

determined in plasma as described above and related to the body mass of the mice.  

 

Intestinal lipid absorption 

To study the intestinal lipid uptake, cd36 -/- and cd36 +/+ female mice were injected 

intravenously with 500 mg Triton WR 1339 per kg body weight as a 10 % solution in 

0.9% NaCl. Directly after the Triton injection, mice were given an intragastric 200 µL 

olive oil bolus with 7 µCi glycerol-tri[3H]oleate ([3H]triolein; Amersham, Little Chalfont, 

United Kingdom). Blood samples were drawn at 30, 60, 90, 120, 180, and 240 min 

after bolus administration, and the amount of 3H-radioactivity was determined in 

plasma. TLC analysis revealed that > 90% of the label appeared in the TG fraction. 

Plasma volumes were calculated according to Rensen et al.13 

 

Intragastric fat load 

To investigate the handling of postprandial TG, male cd36 -/- and cd36 +/+ mice, after 2 

weeks on a high fat diet and an overnight fast, were given an intragastric 200 µL olive 

oil bolus. Blood samples were drawn at 0, 1, 2, 4, 6, and 8.5 h after bolus 

administration, and FA and TG concentrations were determined in plasma as 

described above and corrected for the plasma FA and TG levels at t=0. 
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Plasma LPL and hepatic lipase levels 

Plasma was obtained from male cd36 -/- and cd36 +/+ mice, after 2 weeks on a high fat 

diet (46.2% of the calories as fat, Hope Farms, Woerden, the Netherlands) and an 

overnight fast, at 10 min after a tail vein injection of heparin (0.1 U/g body weight, Leo 

Pharma BV, Weesp, The Netherlands). To prevent excessive plasma lipolysis the 

capillaries we used to sample the postheparin plasma were kept on ice, spun 

immediately at 4°C and snap-frozen in liquid nitrogen. Plasma LPL and hepatic lipase 

(HL) levels were determined in postheparin plasma as described.14 In short, the 

lipolytic activity of plasma was assessed by determination of [3H]oleate production 

upon incubation of plasma with a substrate mix containing an excess of both 

[3H]triolein and FA-free BSA as FA-acceptor. HL and LPL activities were 

distinguished in the presence of 1 M NaCl, which specifically blocks LPL. 

 

Modulated plasma LPL and HL activities 

Plasma was obtained from male cd36 -/- and cd36 +/+ mice, after 2 weeks on a high fat 

diet and an overnight fast, at 10 min after a tail vein injection of heparin (0.1 U/g). The 

effect of the FA content of plasma on the activity of LPL and HL in postheparin 

plasma was determined by [3H]oleate production during incubation of plasma with 

[3H]triolein-labeled 75 nm-sized VLDL mimicking protein-free emulsion particles 

essentially as described previously.15 Hereto, mouse plasma (final concentration 

2.5%, v/v) was incubated with emulsion particles (final concentration 0.5 mg TG/mL) 

in the absence and presence of excess FA-free BSA (final concentration 60 mg/mL) 

in a total volume of 200 µL of 0.1 M Tris pH 8.5. Generated [3H]oleate was quantified 

after extraction.15 Under these assay conditions, TG derived from mouse plasma 

contributed only marginally to the total TG present in the incubations (approx. 1%). 

 

Clearance of TG-rich VLDL-like emulsion particles 

[3H]Triolein-labeled VLDL-like emulsion particles were prepared as described 

previously.15 Fed wild type male mice were anaesthetized and an infusion needle 

was placed into the tail vein. The infusion of FA (0.75 µmol [3H]oleate/min/mouse) or 

vehicle was started and after 30 min and 1 h blood samples were drawn to determine 

plasma FA and TG. One hour after the start of infusion of FA or vehicle a bolus of 

[3H]triolein-labeled VLDL-like emulsion particles was injected. At 2, 5, 10 and 15 min 

after the bolus injection blood samples were drawn and the clearance of 3H-activity 
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from the plasma was determined by scintillation counting and corrected for plasma 

volumes.13 

 

Statistical analysis 

The Mann-Whitney nonparametric test for 2 independent samples was used to define 

differences between cd36 -/- and cd36 +/+ mice. The criterion for significance was set 

at P<0.05. All data are presented as means ± SD. 
 

Results 
Increased plasma TG levels in cd36 -/- mice 

In accordance with previously published data8,9, cd36 -/- mice bred at our local facility 

exhibited significantly increased fasting plasma FA levels compared to wild type 

littermates (0.89 ± 0.07 and 0.52 ± 0.09 mM, respectively; P<0.05). Table 1 

summarizes the plasma TG levels in male cd36 -/- and wild type mice as observed by 

us and others.8,10 On average, cd36 -/- mice exhibited significantly 1.3-1.4-fold 

increased plasma TG levels compared to wild type mice after various fasting periods 

and dietary treatments (Table 1).  

 

Table 1. Effect of CD36-deficiency on plasma TG levels (mM) 
 
Diet 

 
chow 

 
chow 

 
chow 8 

 
chow 10 

 
fructose 10  

 
high fat 10 

Fasting 
period 

 
4h 

 
16h 

 
8-12h 

 
16h 

 
16h 

 
16h 

 
cd36 +/+

 

0.32 ± 0.08 

 

0.16 ± 0.04 

 

1.12 ± 0.21 

 

0.56 ± 0.18 

 

0.61 ± 0.13 

 

0.40 ± 0.03 

 
cd36 -/-

 

0.41 ± 0.03*

 

0.39 ± 0.10*

 

1.58 ± 0.38*

 

0.76 ± 0.16*

 

0.88 ± 0.17* 

 

0.50 ± 0.03*

Triglyceride (TG) levels were measured in plasma of cd36 +/+ and cd36 -/- male mice after 

various fasting periods, and compared with data obtained by Febbraio et al.8 and Hajri et al.10 

after correction for molecular weight (MW 870) and conversion of SE into SD values. The 

fructose diet consisted of 60% fructose, 20% protein, and 7% fat as soybean oil.10 The high 

fat diet contained 18.2% sucrose, 33% casein, and 32% safflower oil.10 Mice were fed 

fructose and high fat diets for 12 and 16 weeks, respectively.10 Values represent the mean ± 

SD per group, *P < 0.05 
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Figure 1. Effect of CD36 deficiency on VLDL-TG production rate. Triton WR 1339 

(500 mg/kg body weight) was injected iv into mice which had fasted overnight. Plasma 

triglyceride (TG) levels were determined at 15, 30, 60, and 90 minutes and related to the 

body mass of the mice. Values represent means ± SD of 3 cd36 +/+ and 4 cd36 -/- mice.  

 

Hepatic VLDL-TG production is not affected in CD36 deficiency 

The increased plasma TG levels in cd36 -/- mice can be due either to i) increased 

hepatic VLDL-TG production, ii) increased intestinal lipid absorption, or iii) decreased 

lipolysis and/or clearance of TG from the circulation. To evaluate the effect of CD36- 

deficiency on hepatic VLDL-TG production, cd36 -/- mice and wild type mice were 

injected with Triton WR1339 to block LPL-mediated TG hydrolysis, and the 

accumulation of endogenous VLDL-TG in plasma was monitored over time. Figure 1 

shows that CD36 deficiency did not affect the VLDL-TG production rate (40.9 ± 12.9 

versus 40.2 ± 1.9 µmol TG·kg-1·h-1). Consistently, we did not observe any difference 

in the composition of nascent VLDL-TG that was isolated at 90 min after Triton 

WR1339 treatment (not shown). 

 

Intestinal lipid absorption is not affected in CD36 deficiency 

We next investigated whether the increased plasma TG levels in CD36 deficiency 

could be due to increased intestinal lipid absorption. Hereto, cd36 -/- and wild type 

mice were administered an intragastric load of [3H]triolein-containing olive oil after 

injection of Triton WR1339, and the appearance of 3H-label in plasma was monitored 
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over time (Figure 2). It appeared that, after a lag-phase of approximately 30 min, 3H-

label gradually appeared in plasma of cd36 -/- and wild type mice at a similar rate of 

4.1 ± 1.4 and 3.5 ± 1.3% of bolus·h-1, respectively.  
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Figure 2. Effect of CD36 deficiency on intestinal lipid absorption. Triton WR 1339 

(500 mg/kg body weight) was injected i.v. into mice which were fasted overnight. Directly 

after the Triton injection, mice were given an olive oil bolus including [ H]triolein by 

intragastric gavage. The amount of plasma H-radioactivity was determined, and depicted as 

a percentage of the given bolus. Values represent means ± SD of 5 

3

3

cd36 +/+ and 4 cd36 -/- 

mice.

 

Increased postprandial TG response in cd36 -/- mice 

Apparently, the elevated TG levels in cd36 -/- mice cannot be explained by an 

increased VLDL-TG production or intestinal TG absorption. Therefore, to get more 

insight into the underlying mechanism, we severely stressed TG metabolism by 

giving mice an intragastric fat load, and monitored the appearance of TG and FA in 

plasma (Figure 3). Remarkably, the postprandial TG response was 2-fold enhanced 

in cd36 -/- mice as compared to wild type littermates (AUC0-8.5 h: 13 ± 6 and 7 ± 2 

mM·h, respectively; P < 0.05), which suggests that CD36 deficiency results in 

impaired lipolytic conversion of postprandial TG in plasma (Figure 3A). Interestingly, 

FA levels were also 2.5-fold elevated as compared to wild type littermates (AUC0-8.5 h: 

20 ± 6 and 8 ± 1 mM·h, respectively; P < 0.05; Figure 3B). 
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Figure 3. Effect of CD36 deficiency on postprandial response. After 2 weeks on a 

high fat diet and an overnight fast, cd36 +/+ and cd36 -/- mice were given an intragastric olive 

oil bolus. Blood samples were drawn at 0, 1, 2, 4, 6 and 8.5 h after the bolus and plasma 

triglyceride (A) and FA (B) concentrations were determined in plasma and corrected for 

plasma TG or FA concentrations at t=0. Values represent means ± SD of 6 mice per group, 

*P < 0.05. 

 

CD36 deficiency does not modulate plasma LPL levels 

Since the elevated plasma TG levels in cd36 -/- mice may thus be explained by a 

decreased LPL-mediated TG hydrolysis, the levels of LPL and HL were measured in 

postheparin plasma of cd36 -/- and wild type mice (Figure 4). However, CD36 

deficiency did not affect the total plasma LPL or HL levels as determined by their TG 

hydrolase activity.  

 

Increased plasma FA levels in CD36 deficiency decreases LPL activity 

Since CD36-deficient mice have elevated FA levels, which are severely increased to 

approximately 5 mM after an intragastric fat load (Figure 3), we speculated that these 

elevated FA might interfere with the activity of LPL in plasma. Therefore, we 

determined the FA-modulated LPL and HL activities of plasma from cd36 -/- and wild 

type mice in the absence of excess albumin (Figure 5A). In this setting, although the 

total lipolysis of [3H]triolein-labeled emulsion particles as induced by plasma of cd36 -/- 

mice was not significantly decreased, the LPL activity was indeed decreased by 51% 

(0.13 ± 0.06 vs 0.27 ± 0.07 nmol oleate/mL/min; P < 0.05). However, as shown in 

Figure 5B, the addition of excess FA-free albumin relieved this inhibition of LPL 

activity in cd36 -/- mice (1.31 ± 0.32 vs 0.80 ± 0.40 nmol oleate/mL/min; P = 0.055). 
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Cd36 -/- mice even show an increased total TG hydrolase activity probably due to the 

increased plasma TG levels (1.54 ± 0.25 vs 1.10 ± 0.32 nmol oleate/mL/min; 

P<0.05). Collectively, these data suggest that the increased (postprandial) TG levels 

are caused by a decreased TG hydrolysis rate in vivo caused by product-inhibition of 

LPL resulting from increased plasma FA levels, rather than by an altered production 

of hepatic VLDL-TG or intestinal lipid absorption.  
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Figure 4. Effect of CD36 deficiency on plasma LPL and hepatic lipase (HL) 
levels. After 2 weeks on a high fat diet, postheparin plasma was obtained after an overnight 

fast from cd36 +/+ and cd36 -/- mice. Total triglyceride hydrolase activity was measured in the 

absence (i.e. LPL and HL) or presence (i.e. HL) of 1 M NaCl. Values represent means ± SD 

of 5 mice per group, *P < 0.05. 
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Figure 5. Effect of CD36 deficiency on the TG hydrolase activity of plasma. After 

2 weeks on a high fat diet, postheparin plasma was obtained after an overnight fast from 

cd36 +/+ and cd36 -/- mice. LPL and HL activities were determined by [3H]oleate production 

during incubation of plasma with [3H]triolein-labeled 75 nm-sized VLDL mimicking protein-

free emulsion particles in the absence (A) and presence (B) of excess FA-free BSA. Values 

represent means ± SD of 5 mice per group, *P < 0.05. 
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Increased plasma FA levels in wild type mice decreases LPL-mediated TG clearance 

To provide direct in vivo evidence showing that increased FA levels indeed cause a 

decrease in LPL-dependent plasma TG clearance independent of cd36-/- background, 

we increased plasma FA levels by FA infusion in fed wild type male mice and 

determined the clearance of TG-rich VLDL-like emulsion particles. After 1 h of 

infusion, plasma FA were steadily increased approximately 1.4-fold compared to 

vehicle infused animals (1.93 ± 0.41 vs 1.38 ± 0.16 mM) while plasma TG levels were 

not increased yet. In mice with increased plasma FA levels the plasma half-life of 

[3H]triolein-labeled TG-rich VLDL-like particles was 2.5-fold increased (t½ = 17.5 ± 

10.4 vs 7.0 ± 2.6 min, P < 0.05) compared to mice infused with vehicle (Figure 6) 

indicating a profound in vivo effect of plasma FA levels on LPL-dependent clearance 

of TG-rich lipoprotein particles.  

 

50

100

0 5 10 15 20

FFA infusion
Control

Time after bolus injection (min)

pl
as

m
a 

3 H
-a

ct
iv

ity
(%

 o
f b

ol
us

)

10

**
*

50

100

0 5 10 15 2

FFA infusion
Control

Time after bolus injection (min)

pl
as

m
a 

3 H
-a

ct
iv

ity
(%

 o
f b

ol
us

)

10

**
*

0

 
 
Figure 6. Effect of increased plasma FA on the clearance of [3H]TG-labeled 
VLDL-like emulsion particles. Fed male wild type mice were infused with FA or vehicle 

to increase plasma FA. During steady state plasma FA levels [3H]triolein-labeled VLDL-like 

emulsion particles were injected and the clearance of 3H-activity from the plasma was 

followed in time. Values represent means ± SD of 5 mice in the FA-infused group and 4 mice 

in the vehicle-infused group, *P < 0.05. 
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Discussion 
In agreement with observations by others8-10, we have shown that absence of the 

fatty acid translocase CD36 in mice leads to increased plasma FA levels concomitant 

with 30-40% increased TG levels. The effect of CD36 deficiency on increased plasma 

FA levels can easily be explained by an impaired peripheral uptake.9 Although it has 

been postulated that the VLDL-TG production rate may be enhanced in CD36-

deficient mice10, the mechanism underlying the effect of CD36 on TG metabolism had 

not been addressed yet. The results of the present study clearly show that the 

hypertriglyceridemia observed in cd36 -/- mice is caused by a decreased LPL-

mediated TG hydrolysis rate induced by increased plasma FA levels, rather than by 

an increased production of hepatic VLDL-TG or increased intestinal lipid absorption.  

Recently, we have shown that the increased plasma FA levels in CD36-deficient mice 

lead to an enhanced FA flux towards the liver, resulting in increased TG storage 

(hepatic steatosis).16 Hepatic VLDL-TG production is thought to be primarily a 

substrate-driven process, regulated by the availability of FA (reviewed by Lewis et 

al.17). Furthermore, acute elevation of plasma FA levels stimulates VLDL-TG 

production in humans.18 Therefore, the increased FA flux to the liver in CD36 

deficiency16 may result in an enhanced hepatic VLDL-TG production. Hajri et al.10 

hypothesized that such a mechanism may account for the hypertriglyceridemic effect 

of CD36 deficiency, but no experimental proof has been provided. Although we have 

observed the occurrence of elevated plasma FA levels and hepatic steatosis in cd36 -

/- mice, we did not detect any effect of CD36 deficiency on expression of genes 

involved in transcriptional regulation (pparα, pparγ, srebp1c) or VLDL-TG synthesis 

(apob, apobec, apoe, mttp) (not shown). Importantly, CD36 deficiency did not affect 

the actual VLDL-TG production rate or composition of nascent VLDL-TG. Similar to 

CD36-deficient mice, genetically obese ob/ob mice19 and human apoCI-

overexpressing mice20 also have increased plasma FA levels and hepatic steatosis, 

but display normal hepatic VLDL-TG production. Apparently, increased plasma FA 

levels and hepatic steatosis per se do not necessarily lead to increased VLDL-TG 

production. 

CD36 is highly expressed in the apical membrane of enterocytes in the intestinal 

jejunal villi.1,21 Since this location is the main site of FA (lipid) absorption and CD36 

does act as a FA transporter, CD36 is thought to play a role in the intestinal uptake of 

FA.21,22 Therefore, increased intestinal lipid absorption as a result of CD36 deficiency 

74 



Impaired Lipolysis in CD36-deficient Mice 
 

seemed highly unlikely. Indeed, the present study showed that in the absence of 

CD36, lipid absorption is not affected in vivo in mice, confirming observations from 

our earlier study.23 

To get more insight into the mechanism underlying the observed hypertriglyceridemia 

in CD36-deficient mice, we severely stressed TG metabolism by giving mice an 

intragastric fat load, resulting in a rapid and extensive generation of chylomicrons. 

Remarkably, the postprandial TG response was 2-fold enhanced in cd36-/- mice as 

compared to wild type littermates. Concomitantly, the plasma FA concentrations also 

increased to approximately 5 mM in cd36-/- mice, as compared to only 2 mM in control 

littermates. Mouse plasma contains approximately 0.5 mM albumin, which under 

normal circumstances carries the major part of plasma FA. Since albumin has 4 high-

affinity binding sites for FA24, albumin is capable of binding about 2 mM FA in 

plasma. Apparently, the dramatically increased FA levels upon the intragastric fat 

load in cd36-/- mice to a maximum of 5 mM exceed the maximum albumin-binding 

capacity. Since the amphiphilic nature of FA precludes its presence in plasma in an 

unbound state, it is likely that the FA generated by TG hydrolysis will accumulate in 

the lipoprotein shell and interfere with LPL-mediated lipolysis. Indeed, it appeared 

that, although the total levels of LPL (and HL) were not affected by CD36 deficiency, 

LPL in postheparin plasma obtained from cd36-/- mice was less able to lipolyse VLDL-

like emulsion particles in the absence of excess BSA as FA acceptor. Upon addition 

of an excess of FA-free BSA the inhibition of LPL-mediated lipolysis was relieved. 

These in vitro data thus confirm that the increased plasma TG levels in the absence 

of CD36 are caused by inhibition of lipases (mainly LPL) due to elevated plasma FA 

levels. We have indeed observed that a reduction of LPL activity in heterozygous 

LPL-deficient (lpl +/-) mice (i.e. 40%) markedly elevated the postprandial TG response 

after an intragastric olive oil load as compared to wild type littermates (AUC0-6: 43 ± 

27 vs 3.5 ± 0.6, lpl +/-, respectively; P < 0.05).  

In our study we also show in vivo that in wild type mice 1.4-fold increased plasma FA 

levels lead to a decreased capacity of LPL to lipolyze VLDL-TG. In the short time 

frame in which the experiment was performed it is very unlikely that other LPL 

modulators such as apoCII or apoCIII have changed between groups and impair the 

LPL-mediated TG clearance. Slight changes in plasma concentrations of these 

modulators cannot be excluded in the case of the cd36-/- mice. However, our 

collective findings that 1) the inhibition of LPL activity by plasma from CD36-deficient 
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mice is relieved by addition of the FA-sequestrant BSA, and 2) elevation of plasma 

FA levels by infusion impairs TG clearance, strongly suggest that the 

hypertriglyceridemic phenotype of CD36-deficient mice is indeed mainly explained by 

increased FA levels. 

These effects of increased plasma FA on tissue LPL activity may be explained by 

several mechanisms. Binding of FA to the active site of LPL might cause classical 

product inhibition of LPL activity. We and others25 showed in vitro that the rate at 

which LPL hydrolyzes TG in lipoproteins or emulsions particles decreases sharply 

with the amount of FA formed unless albumin is present. An alternative mechanism 

has been proposed by Saxena and Goldberg26 who showed in vitro that plasma FA 

levels may be important modulators of LPL interaction with the endothelial cell 

surface and apoCII. In vivo evidence for a role of plasma FA in the control of LPL was 

proposed in humans. Peterson et al.27 suggested that LPL is subject to feedback 

control by FA, involving an unusual mechanism that FA may regulate not only the 

catalytic activity of the enzyme but also its distribution between endothelial sites.27  

In summary, in the present study we show that the increased plasma TG levels in 

CD36 deficiency are not due to a previously hypothesized enhancing effect on VLDL-

TG production or to an effect on intestinal lipid absorption. Instead, CD36 deficiency 

resulted in hypertriglyceridemia caused by decreased LPL-mediated hydrolysis of 

TG-rich lipoproteins resulting from FA-induced product inhibition.  
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Abstract   
Several studies have demonstrated an association in humans between plasma levels 

or production capacity of the anti-inflammatory cytokine IL-10, and insulin sensitivity. 

The aim of our study was to investigate the protective role of endogenous IL-10 

availability in the development of diet-induced insulin resistance. We compared 

parameters of glucose and lipid metabolism between IL-10-/- mice and wild type (wt) 

mice fed a high fat diet for 6 weeks. This diet has previously been shown to induce 

steatosis and insulin resistance. After 6 weeks on the high fat diet no differences in 

bodyweight, basal metabolism (measured by indirect calorimetry) and plasma levels 

of glucose, triglycerides (TG) or cholesterol were observed between IL-10-/- and wt 

mice. Nonetheless, in IL-10-/- mice plasma fatty acid levels were 75% increased 

compared to wt mice after overnight fasting (P < 0.05). In addition, hepatic TG 

content was 54% increased in IL-10-/- mice (P < 0.05). During a hyperinsulinemic 

euglycemic clamp no differences were observed in whole-body or hepatic insulin 

sensitivity between both groups.  

We conclude that basal IL-10 production protects against hepatic steatosis, but does 

not improve hepatic or whole-body insulin sensitivity, during high fat feeding.  
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Introduction  
In epidemiological studies insulin resistance is associated with chronic low-grade 

inflammation.1 This is reflected in associations between the degree of insulin 

sensitivity and plasma levels of several cytokines, such as tumor necrosis factor 

(TNF)α and interleukin-(IL)6.2,3 In addition, administration of exogenous TNFα and IL-

6 induces insulin resistance in vivo.4,5 Conversely, IL-6 depletion improves hepatic 

insulin action in an animal model of obesity.6 

IL-10 is a potent anti-inflammatory cytokine, which is produced by T-cells, B-cells, 

monocytes and macrophages and plays a crucial role in the innate immune system.7,8 

IL-10 potently inhibits the production of pro-inflammatory cytokines, including TNFα 

and IL-6.9 Several lines of evidence point to a beneficial effect of IL-10 on insulin 

sensitivity. A recent epidemiological study showed a positive correlation between IL-

10 levels and insulin sensitivity in healthy subjects.10 In the Leiden 85-plus study the 

IL-10 production capacity of whole blood was investigated using lipopolysaccharide 

as a stimulus. The IL-10 production capacity was found to be inversely associated 

with blood glucose and HBA1c levels.11 Finally, administration of IL-10 in mice 

prevented IL-6–induced defects in hepatic insulin action and signalling activity.12 

Although these studies suggest a potentially beneficial role of IL-10 in insulin 

resistant conditions, the beneficial role of endogenous IL-10 secretion in insulin 

resistant states has not been proven.  

To determine whether endogenous IL-10 production can protect against diet-induced 

insulin resistance, we compared metabolic characteristics of IL-10-/- mice and wild 

type (wt) control mice. We fed the mice a high fat diet for 6 weeks and subsequently 

analyzed parameters of lipid and glucose metabolism. Previous studies have 

documented, that high fat feeding induces accumulation of TG in the liver and hepatic 

insulin resistance.13 We phenotyped the interaction between genotypes and diet by 

using the metabolic cages and by assessing insulin sensitivity with the 

hyperinsulinemic euglycemic clamp method. Our data indicate that, in contrast to our 

expectations, basal IL-10 production protects against hepatic steatosis during high fat 

feeding, but does not improve hepatic or whole-body insulin sensitivity. 
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Materials and Methods 
Animals 

Ten weeks old male C57Bl6/J mice (wt) and IL-10-/- mice on the same background 

were purchased from Charles River (Maastricht, Netherlands). Mice had free access 

to water and a normal chow diet (Technilab BMI, Someren, Netherlands) until 12 

weeks of age. Subsequently, mice were fed a high fat diet for 6 weeks (40% of 

calories from bovine lard; Hope Farms, Woerden, Netherlands). A previous study 

showed a 2.5-fold increased liver lipid content on this high fat diet with a concurrent 

decrease in hepatic insulin sensitivity.13 Mice were weighed every week and at t=0 

and after 6 weeks on the high fat diet a blood sample was taken to determine plasma 

triglyceride (TG), cholesterol and glucose levels. Principles of laboratory animal care 

were followed and the animal ethics committee of our institute approved all animal 

experiments. 

 

Plasma lipid and glucose analysis 

In all experiments, tail vein blood was collected into chilled paraoxon-coated capillary 

tubes to prevent in vitro lipolysis.14 These tubes were placed on ice and immediately 

centrifuged at 4°C. Plasma was isolated, snap-frozen in liquid nitrogen and stored at 

–20°C until analysis. The levels of plasma TG, total cholesterol, free fatty acids (FA) 

and glucose were determined enzymatically using commercially available kits and 

standards (#310-A Sigma GPO-Trinder kit, St. Louis, MA, USA; CHOL MPR3, 

Boehringer, Mannheim, Germany; #315 Sigma NEFA-C kit, St. Louis, MA, USA; 

Hexokinase method, Instruchemie, Netherlands).  

 

Metabolic cages 

After 6 weeks on the high fat diet basal metabolism in the IL-10-/- and wt mice was 

studied using the Comprehensive Laboratory Animal Monitoring System (CLAMS; 

Columbus Instruments, Columbus, USA). Metabolic rates were measured using an 

eight-chamber open-circuit system. Animals were maintained at approximately 24°C 

under a 12 h light/dark cycle. Food and water were freely available. The mice were 

housed individually in plexiglass cages through which 0.6 L of air was passed per 

min. Each chamber was sampled for 45 seconds at 7 min intervals for a 24 h period. 

The O2 and CO2 content of the exhaust air was compared to the O2 and CO2 content 
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of the standardized sample air. Before the start of the actual 24 h measurements 

mice were weighed and acclimatized to the cages for 24 h. 

 

Hyperinsulinemic euglycemic clamp experiments 

After 6 weeks on the high fat diet, clamp experiments were performed as described 

previously15,16 after an overnight fast. Animals were anaesthetized by intraperitoneal 

injection with a combination of 6.25 mg/kg acetylpromazine (Sanofi Santé Nutrition 

Animale, Libourne Cedex, France) 6.25 mg/kg midazolam (Roche, Mijdrecht, 

Netherlands) and 0.3125 mg/kg fentanyl (Janssen-Cilag, Tilburg, Netherlands). An 

infusion needle was placed into the tail vein. After 45 min infusion of D-[3-3H]glucose 

at a rate of 0.8 µCi/h (specific activity: 620 GBq/mmol, Amersham, Little Chalfont, 

UK) to achieve steady state levels, basal parameters were determined with 15 min 

intervals. Thereafter a bolus of insulin (4.5 mU, Actrapid, Novo Nordisk, Chartres, 

France) was administered and the hyperinsulinemic clamp was started. Insulin was 

infused at a constant rate of 6.8 mU/h and D-[3-3H]glucose was infused at a rate of 

0.8 µCi/h. A variable infusion of 12.5% D-glucose (in PBS) was also started to 

maintain blood glucose at approximately 7 mM. Blood glucose was measured with 

the FreeStyle hand glucose measurer (Therasense, Disetronic Medical Systems, 

Vianen, Netherlands) every 10 min to monitor glucose levels and adjust the glucose 

pump. After reaching steady state, blood samples were taken at 10 min time intervals 

during 30 min to determine steady state levels of [3H]glucose. After the last blood 

sample mice were sacrificed by cervical dislocation and the organs were dissected. 

An average clamp experiment took approximately 3 h and anaesthesia was 

maintained throughout the procedure.  

 

Analysis of clamp samples 

Plasma insulin concentrations were measured by ELISA (ALPCO Diagnostics, 

Windham, NH, USA). To measure plasma [3H]glucose trichloroacetic acid (final 

concentration 2%) was added to 7.5 µL plasma to precipitate proteins using 

centrifugation. The supernatant was dried to remove water and resuspended in 

milliQ. The samples were counted using scintillation counting (Packard Instruments, 

Dowers Grove, IL, USA). 
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Calculations 

The glucose turnover rate (µmol·min-1·kg-1) was calculated during the basal period 

and under steady-state clamp conditions as the rate of tracer infusion (dpm/min) 

divided by the plasma specific activity of [3H]glucose (dpm/µmol). The ratio was 

corrected for body weight. The hyperinsulinemic hepatic glucose production (HGP) 

was calculated as the difference between the tracer-derived rate of glucose 

appearance and the glucose infusion rate. 

 

Determination of Akt phosphorylation in liver samples 

To investigate hepatic insulin signalling, liver samples (100 mg) from clamped mice 

(n=4-5 mice/group) were homogenized in a buffer containing: 30 mM  Tris, 2.5 mM 

EDTA, 150 mM NaCl, 0.5 mM Na3VO4, 5 mM NaF, 5 mM MgCl2, glycerol, NP40, and 

protease inhibitors. The samples were homogenized using Ultra-Turrax for 20 s. After 

centrifugation (14 000 rpm, 15 min, 4°C) the supernatant was clarified from the pellet 

and its protein content was determined (Pierce, Rockford, IL, USA). For detecting 

protein levels of phosphorylated protein kinase B (pAkt), Akt and insulin receptor (IR) 

equal amounts of protein (25 µg) were solubilized in 5 x Laemmli sample buffer. 

Proteins were separated by SDS-PAGE, transferred to Immobilon-P membranes, 

blocked, incubated with polyclonal anti-IR (Santa Cruz, CA), anti-pAkt, -Akt and -IR 

(Cell Signalling, Beverley, MA) primary antibodies (1:1000) and detected by 

enhanced chemiluminescence after the incubation with HRP-linked secondary 

antibodies (1:5000). The protein bands were quantified using ImageGauge software 

(version 3.12, Fuji Photo Film, Tokyo, Japan). 

 

Liver lipid analysis using high performance thin layer chromatography 

For analysis of lipid content, livers were homogenized in PBS. Lipids were extracted 

with Bligh and Dyer’s method as described.17 Lipids were separated by high 

performance thin layer chromatography (HPTLC) on silica-gel-60 pre-coated plates 

(Alltech) as described.18 The amount of lipid (free cholesterol, TG and 

cholesterylesters) was determined with TINA software (Raytest Isotopen meßgeräte 

GmbH, Straubenhardt, Germany).  
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Determination of fibrinogen and serum amyloid-A 

Plasma fibrinogen and serum amyloid-A (SAA) levels were determined after 6 weeks 

on the high fat diet by ELISA as previously described.19 

 

Statistical analysis 

Results are presented as means ± SD for the number of animals indicated. 

Differences between experimental groups were determined by the Mann-Whitney U 

test. The level of statistical significance of the differences was set at P < 0.05. 

Analyses were performed using SPSS 12.0.1 for Windows software (SPSS, 

Chicago). 

 

Results  
Plasma lipid parameters and basal energy metabolism 

We observed no differences in body weight between the IL-10-/- and wt mice before 

and after 6 weeks on a high fat diet. Blood samples taken after 4 h fasting showed no 

differences between the two groups in plasma TG and cholesterol levels before and 

after 6 weeks on a high fat diet (Figure 1). To study basal energy metabolism, IL-10-/- 

mice and wt controls were studied in the metabolic cages after 6 weeks on the high 

fat diet. Figure 2 shows metabolic characteristics during both the active (night) and 

inactive (day) periods. We observed no differences in O2 consumption (3394 ± 636 vs 

3201 ± 635 mL/kg/h at night), heat production (0.45 ± 0.09 vs 0.44 ± 0.09 kcal/h at 

night) or respiratory exchange ratio (RER; 0.83 ± 0.05 vs 0.82 ± 0.05 at night) after 6 

weeks on the high fat diet.  

 
Hyperinsulinemic euglycemic clamp studies 

We performed hyperinsulinemic euglycemic clamp studies in IL-10-/- mice and wt 

controls after an overnight fast after 6 weeks on a high fat diet. After overnight fasting 

no difference in body weight was observed (Table 1). The plasma values of glucose, 

insulin and FA before and during hyperinsulinemia are shown in Table 1. During 

hyperinsulinemia glucose levels were maintained at approximately 7 mM and plasma 

insulin levels were ~ 5 to 10-fold higher when compared to basal conditions. 

Strikingly, during the hyperinsulinemic period plasma insulin concentrations were ~ 

55% lower in IL-10-/- mice compared to wt control mice (1.8 ± 0.8 vs 4.1 ± 1.5 ng/mL; 
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P < 0.05) despite the infusion of identical amounts of insulin. Basal hepatic glucose 

production, which equals whole body glucose uptake in the basal state, was not 

different between IL-10-/- mice and wt controls (47.3 ± 7.0 vs 50.1 ± 4.0 µmol·min-1·kg-

1; Figure 3A and B). During hyperinsulinemia whole-body glucose disposal (WGD) 

increased to a similar level in the two groups (74.6 ± 17.1 vs 83.8 ± 25.9 µmol·min-

1·kg-1; Figure 3A). No differences in hepatic glucose production (HGP) were observed 

during   hyperinsulinemia (26.5 ± 9.6 vs 26.5 ± 12.0 µmol·min-1·kg-1; Figure 3B). 

However, after correction for the 55% lower hyperinsulinemic plasma insulin levels, 

IL-10-/- mice showed a larger increase in insulin-stimulated whole-body glucose 

uptake. The corrected insulin-mediated decrease (CID) in hepatic glucose production 

was significantly larger in IL-10-/- mice compared to wt control mice (14.5 ± 6.5 vs 5.0 

± 2.6 µmol·min-1·kg-1/ng plasma insulin; P < 0.05; Figure 3C).  
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Figure 1. IL-10 deficiency does not affect plasma lipid levels. Plasma lipid levels 

were measured after 4 h fasting. A. Plasma triglycerides (TG). B. Plasma cholesterol. (n=12 

mice/group) 
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Figure 2. IL-10 deficiency does not affect basal energy metabolism. A. VO2 of IL-

10-/- mice and wt controls after 6 weeks on the high fat diet. (n=4) B. Heat production of IL-10-

/- mice and wt controls after 6 weeks on the high fat diet. (n=4) C. RER of the IL-10-/- mice 
and wt controls after 6 weeks on the high fat diet as measured by indirect calorimetry. (n=4 

mice/group) 
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Table 1. Plasma parameters and glucose infusion rate during the clamp. 

  
BW 

 
Glucose 

(mM) 

 
Insulin (ng/mL) 

 
FA (mM) 

 
GIR 

      
  basal hyper basal hyper basal hyper 

 
(µmol· 

min-1·kg-1)
         

IL-10+/+ 26.0 
1.5 

6.1 
0.5 

7.7 
0.8 

0.36 
0.13 

4.05 
1.50 

0.65 
0.09 

0.29 
0.05 

57.3 
17.9 

         
IL-10-/- 27.2 

1.8 
5.8 
0.5 

7.0 
0.9 

0.36 
0.04 

1.83* 
   0.63 

1.14* 
  0.14 

0.52* 
  0.31 

45.7 
10.8 

The clamp procedure was performed on IL-10-/- mice and wt controls after overnight fasting. 

Hyperinsulinemia and euglycemia were indeed established during the hyperinsulinemic 

period (hyper). Plasma insulin levels were ~ 55% lower in the IL-10-/- mice while infusing an 

identical amount of insulin. Plasma FA were significantly increased in the IL-10-/- mice during 

the clamp. Under hyperinsulinemia the plasma FA were decreased ~ 40% in both groups, but 

remained elevated in the IL-10-/- mice. The glucose infusion rate was not different between 

the groups. (*P < 0.05; n=6-7 mice/group) BW = body weight, GIR = Glucose infusion rate. 
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Figure 3. IL-10 deficiency does not affect peripheral or hepatic insulin 
sensitivity as measured during a hyperinsulinemic euglycemic clamp. Whole-

body glucose disposal (WGD; panel A.) and hepatic glucose production (HGP; panel B.) 

were measured during the basal period and under hyperinsulinemic conditions using the 

hyperinsulinemic euglycemic clamp method in both groups. C. The insulin-mediated 

stimulation of whole-body glucose disposal and the inhibition of hepatic glucose production 

were corrected for the plasma insulin levels (CID) because in the IL-10-/- mice the plasma 

insulin levels were ~ 55% lower compared to wt mice. (* P < 0.05; n= 6-7 mice/group)  
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Basal plasma FA levels were significantly increased in the IL-10-/- mice compared to 

the wt mice after overnight fasting (1.14 ± 0.14 vs 0.65 ± 0.09 mM; P < 0.05; Table 

1). During hyperinsulinemia plasma FA levels decreased in both groups by about 

40% as compared to the respective levels under basal conditions. Nonetheless, 

plasma FA levels remained significantly higher in IL-10-/- mice (0.52 ± 0.31 vs 0.29 ± 

0.05 mM; P < 0.05). 

 

Hepatic pAkt protein expression levels 

To investigate the effect of the hyperinsulinemic euglycemic clamp conditions on 

insulin signalling in the liver, we measured phosphorylation and protein expression of 

Akt and IR protein expression. We performed immunoblotting on liver samples from 

mice, which had undergone the euglycemic hyperinsulinemic clamp.  Despite 

decreased plasma insulin levels, we found increased phosphorylation of Akt in IL-10-/- 

mice upon insulin stimulation during the clamp compared to wt mice (Figure 4, 12.5 ± 

1.4 vs 9.3 ± 2.0 arbitrary units (AU); P < 0.05), while Akt and IR protein levels were 

not changed (2.7 ± 0.3 vs 2.2 ± 0.1 and 8.4 ± 0.5 vs 7.8 ± 1.4 AU, respectively).  
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Figure 4. Increased hepatic Akt phosphorylation in IL-10-/- mice during 
euglycemic hyperinsulinemic clamp conditions. pAkt protein levels were determined 

using western blotting. Equal amounts of protein (25 µg) for pAkt and Akt expression were 

loaded, quantified and corrected for loading differences. A. Western blot. B. Quantification of 

pAkt protein levels corrected for loading differences (* P < 0.05; n=4).  

 

Liver lipid content 

Hepatic TG content is inversely related to hepatic insulin sensitivity in some mouse 

models.20 In IL-10-/- mice we observed a ~ 54% increase in hepatic TG content 
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compared to wt mice (168.7 ± 42.3 vs 109.4 ± 42.3 µg TG/mg protein; P < 0.05; 

Figure 5), even though IL-10-deficiency does not alter plasma TG levels (see Figure 

1). Liver free cholesterol (FC) content was also increased in IL-10-/- mice (17.7 ± 5.2 

vs 11.9 ± 2.7 µg FC/mg protein; P < 0.05), whereas the amount of cholesterylesters 

(CE) was decreased (3.8 ± 1.8 vs 6.3 ± 2.8 µg CE/mg protein; P = 0.063). 

Consequently, the FC/CE ratio was significantly larger in the IL-10 -/- mice (5.9 ± 3.3 

vs 2.3 ± 1.4; P < 0.05).   
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Figure 5. IL-10 protects against hepatic steatosis. Hepatic triglyceride content was 

determined using high performance thin layer chromatography.  (* P < 0.05; n= 6-7 

mice/group) 

 

Adipose tissue mass 

Fatty liver and increased plasma FA are associated with increased visceral adipose 

tissue mass.21 Therefore we measured subcutaneous and visceral adipose tissue 

mass in the IL-10-/- and wt mice and related it to the body weight of the mice. We 

found that visceral adipose tissue mass was significantly increased in IL-10-/- 

compared to wt mice (2.0 ± 0.5 vs 1.5  ± 0.7 % of total body weight; P < 0.05; Figure 

6). The subcutaneous adipose tissue mass was not changed between IL-10-/- and wt 

mice (0.8 ± 0.2 vs 0.7 ± 0.2 % of total body weight).  

 
Plasma fibrinogen and SAA 

To exclude differences in systemic or hepatic inflammation we measured plasma 

fibrinogen and SAA levels after 6 weeks on the high fat diet in both mouse groups. 

No differences in fibrinogen (2.9 ± 1.1 vs 2.6 ± 0.8 mg/mL) or SAA levels (182 ± 170 

vs 217 ± 291 µg/mL) were observed. 

89 



Chapter 5 
 

 

IL10 +/+

IL10 -/- *

0.0

1.5

3.0

subc viscFa
t M

as
s 

(%
 o

f B
W

)

IL10 +/+

IL10 -/- *

0.0

1.5

3.0

subc viscFa
t M

as
s 

(%
 o

f B
W

) *

0.0

1.5

3.0

subc viscFa
t M

as
s 

(%
 o

f B
W

)
 
Figure 6. Increased visceral adipose tissue mass in IL-10  mice.-/-  Visceral and 

subcutaneous adipose tissue was quantified as a percentage of total body weight. (* P < 

0.05; n= 6-7 mice/group) 

 

Discussion 
Our study is the first to establish the direct consequences of IL-10 deficiency on 

hepatic and peripheral insulin sensitivity. Our data show, that basal IL-10 production 

protects against hepatic steatosis during high fat feeding. However, endogenous IL-

10 secretion does not improve hepatic or whole-body insulin sensitivity during high fat 

feeding as assessed by the hyperinsulinemic euglycemic clamp technique. These 

observations argue against a simple protective role of endogenous IL-10 secretion in 

insulin resistant states, at least within our mouse model. Nonetheless, our data also 

indicate that endogenous IL-10 secretion is not metabolically inert, since we 

documented clear effects of IL-10 deficiency on hepatic and peripheral lipid 

metabolism.  

We observed no differences in the plasma levels of TG and total cholesterol between 

high fat-fed IL-10-/- and wt mice. This is in concordance with a previous study 22 in IL-

10-/- mice on an apolipoprotein E-deficient background. In those mice a shift of 

cholesterol from VLDL to LDL was observed, although total cholesterol levels 

remained unchanged. Conversely, over-expression of IL-10 in mice on a LDLr-/- 

background led to a significant decrease in total cholesterol.23 In that study a high 

correlation between plasma total cholesterol levels and plasma IL-10 concentration 

was found. In accordance, several studies in humans documented an inverse 

association between plasma IL-10 and lipid levels.11,24 In contrast, this association 

does not hold in the complete absence of IL-10, as we show in our study in IL-10-/- 

mice on a Black6 background and is shown by others in apolipoprotein E knockout 

90 



Interleukin-10 and Insulin Sensitivity 
 
 

mice.11,22 We can not exclude the possibility that, in the absence of any IL-10 

production capacity, compensatory mechanisms prevent dysregulation of the lipid 

metabolism.  
We expected mice lacking IL-10 to be more catabolic in comparison to wild type 

mice, since they lack this anti-inflammatory cytokine. Interestingly, when we 

compared basal metabolic characteristics we found absolutely no differences in heat 

production, food intake, VO2, VCO2 and respiratory exchange ratio. Apparently, under 

basal conditions IL-10 is not a crucial cytokine in energy metabolism. LPS-mediated 

activation of the immune system may elucidate a more important role for IL-10. 

However, that would be a model of infection rather than a model of metabolic 

regulation per se.  

Strikingly, we found decreased hyperinsulinemic plasma insulin concentrations in the 

IL-10-/- mice compared to the wild type controls although we infused identical 

amounts of exogenous insulin. The amount of insulin infused in our study protocols 

normally results in plasma insulin levels of ~ 4-6 ng/mL as were observed our wild 

type control mice.25,26 Thus, the absence of any difference in hepatic glucose 

production and peripheral glucose uptake between IL-10-/- mice and wt controls 

during the clamp experiment occurred despite lower plasma insulin levels in the IL-

10-/- mice. This combination of data suggests improved insulin sensitivity in IL-10-/- 

mice, rather than the initially hypothesized decreased insulin sensitivity. In addition, 

the data indicate that IL-10 deficiency is associated with a higher rate of plasma 

clearance of insulin, for reasons presently unknown.  

We subsequently evaluated the activity of important markers of the hepatic insulin 

signalling cascade in livers obtained from hyperinsulinemic IL-10-/- mice and wt 

controls. We found, that phosphorylation of Akt was significantly increased in IL-10-/- 

mice despite lower plasma insulin concentrations under hyperinsulinemia, although 

Akt and insulin receptor expression were not changed. Therefore, both the in vivo 

glucose kinetic data obtained during hyperinsulinemia, as well as these markers of 

the insulin signalling cascade point to increased hepatic insulin sensitivity, rather than 

the expected hepatic insulin resistance in IL-10-/- mice.  

IL-10 deficiency is associated with major changes in hepatic lipid content, reflected in 

increased TG content upon high fat feeding. In many mouse models and in humans, 

positive correlations exist between hepatic steatosis and hepatic insulin 
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resistance.20,27-30 However, there are also many examples of steatosis, that are not 

associated with hepatic insulin resistance, including the treatment of mice with 

thiazolidinediones or LXR agonists or the inhibition of fatty acid oxidation.31-33 

Obviously, the relation between steatosis and hepatic insulin resistance is not 

straightforward, because other factors with complex interactions may be involved. 

The increased liver TG content may be due to increased plasma FA flux into the liver 

after overnight fast. Plasma FA levels were significantly increased in the IL-10-/- mice 

both in the basal state and under hyperinsulinemia (Table 1). This may result from 

increased lipolysis and release of FA from the increased visceral adipose tissue store 

in the IL-10-/- mice compared to control mice. In both groups of mice plasma FA as a 

measure of adipose tissue lipolysis is deceased by ~ 40% under hyperinsulinemia, 

suggesting no change in adipose tissue insulin sensitivity. However, in the IL-10-/- 

mice the plasma FA level remains significantly increased compared to controls. 

Increased visceral adipose tissue mass is associated with increased plasma FA and 

fatty liver in humans.21 A potential explanation for this association may be the portal 

delivery of FA to the liver.34 Subsequently, upon uptake by the liver these FA may be 

esterified into TG that may accumulate within the liver, since hepatic VLDL-TG 

production is not increased in IL-10-/- mice. 23 Alternatively, we cannot exclude the 

involvement of other changes in intra-hepatic fatty acid metabolism like an increase 

in the expression of lipogenic enzymes, or a decrease in fatty acid oxidation. 

Although the increase in hepatic cholesterol content could be due to increased 

cholesterol synthesis in the liver, the increased FC/CE ratio indicates an impairment 

of the esterification of cholesterol into cholesteryl esters. The mechanism behind this 

observation is beyond the scope of this paper.  

We measured plasma fibrinogen and SAA in the IL-10-/- and the wt control mice. 

Although fibrinogen and SAA levels increased in both groups in time on the high fat 

diet, no difference in the plasma levels of these markers of systemic and hepatic 

inflammation were observed between the two genotypes. Therefore, we conclude 

that the effects in IL-10 deficient mice do not simply reflect a higher state of chronic 

(hepatic) inflammation. 

In summary, IL-10 deficiency alters peripheral and hepatic lipid metabolism. 

However, this study does not support a causal role of IL-10 in the protection against 

diet-induced hepatic insulin resistance and other metabolic disturbances.  
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Abstract 
The use of the HIV protease inhibitor ritonavir (RTV) is frequently associated with 

hypertriglyceridemia and lipodystrophy. The aim of our study was to determine the 

mechanism underlying the observed hypertriglyceridemia. 

Feeding female APOE*3-Leiden transgenic mice a western-type diet supplemented 

with RTV (35 mg/kg/day) for 2 weeks resulted in a 2-fold increase in fasting plasma 

triglyceride (TG) levels, which was specific for VLDL. RTV did not change the hepatic 

VLDL-TG production. Instead, RTV did increase the postprandial TG response to an 

oral fat load (AUC 25.5 ± 12.1 vs 13.8 ± 6.8 mM.h in controls; P < 0.05). Likewise, 

RTV hampered the plasma clearance of intravenously injected glycerol tri[3H]oleate-

labeled VLDL-like emulsion particles (t½ 19.3±10.5 vs 5.0±1.3 min in controls; P < 

0.05), associated with a decrease of 44% in plasma LPL activity. Accordingly, RTV 

decreased the uptake of TG-derived fatty acids (FA) into adipose tissue, as well as 

the uptake of albumin-bound FA.  

We conclude that RTV causes hypertriglyceridemia via decreased LPL-mediated 

clearance of VLDL-TG. In addition, RTV specifically impairs the uptake of FA in 

adipose tissue which may contribute to the lipodystrophy that is frequently observed 

in HIV-infected subjects on antiretroviral therapy. 
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Introduction 
The introduction of highly active antiretroviral therapy (HAART) has considerably 

decreased morbidity and mortality associated with HIV-infection. This therapy, 

however, is associated with a lipodystrophy syndrome, which is characterized by 

changes in body fat distribution and metabolic abnormalities, such as hyperlipidemia 

and insulin resistance.1,2 Studies in humans investigating the mechanism of HAART-

induced hypertriglyceridemia reveal inconclusive results.3-11 Some of these studies 

suggested that HAART increased VLDL-triglyceride (TG) production rates, whereas 

others suggested that antiretroviral treatment results in defective removal of VLDL-

TG from plasma, either exclusively or in combination with increased VLDL-TG 

production rates. This discrepancy is difficult to resolve in humans, because the 

combination of drugs used in HAART does not permit a distinction between the 

effects of individual antiretroviral drugs. Since the HIV protease inhibitor ritonavir 

(RTV) is the antiretroviral drug that is associated with the most severe 

hypertriglyceridemic effects when used at therapeutic doses,2,12 we aimed at 

conclusively elucidating the mechanism underlying hypertriglyceridemia induced by 

RTV. We used the APOE*3-Leiden transgenic mouse as an experimental model, 

because these mice have a humanized lipoprotein profile and are susceptible to diet- 

and drug-induced hyperlipidemia, obesity and atherosclerosis.13-15 In contrast to wild-

type mice, APOE*3-Leiden transgenic mice are highly sensitive to treatment with 

hypolipidemic drugs, such as statins, fibrates, and PPARα and PPARγ-agonists.16 

Similar to humans, APOE*3-Leiden transgenic mice have a much lower clearance 

rate of VLDL-TG than wild type mice. As a consequence, APOE*3-Leiden mice 

represent a suitable animal model for RTV-associated hyperlipidemia. 

The first aim of the present study was to assess the effects of RTV on both VLDL-TG 

production and clearance rates. We used a low dosage of RTV that induced 

hypertriglyceridemia without causing toxicity, as measured by plasma alanine amino 

transferase (ALAT) levels. The second aim was to evaluate the effects of RTV on 

tissue-specific uptake of fatty acids (FA) derived from VLDL-TG and from the plasma 

free FA pool, by applying our recently described method using differentially labeled 

FA to quantify tissue-specific uptake of FA derived from VLDL-TG and from plasma 

free FA.17 We found that RTV 1) decreased the clearance of VLDL-TG from plasma 

by decreasing lipoprotein lipase (LPL) activity, and 2) decreased the uptake of FA 
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derived from VLDL-TG and of albumin-bound FA in adipose tissue, but not in other 

organs.  

 
Materials and methods 
Animals 

Female APOE*3-Leiden transgenic mice, housed under standard conditions with free 

access to water and food, were used for the experiments. Mice were fed a standard 

mouse chow diet (Hope Farms, Woerden, Netherlands) until 2 months of age. After 

this period they were fed a semi-synthetic western type diet (Hope Farms, Woerden, 

Netherlands) containing 15% saturated fat, 0.2% cholesterol and 40% sucrose for a 5 

weeks run-in period. Mice were randomized and divided into 2 groups. One group 

was fed the western type diet with RTV (Norvir, Abbott, Kent, United Kingdom) added 

at a concentration of 35 mg/kg body weight/day for 2 weeks. The other group of 

APOE*3-Leiden transgenic mice was fed the western type diet without addition of 

RTV to serve as appropriate controls. On the basis of two papers investigating 

pharmacokinetic properties of HIV-protease inhibitors in mice18,19 we designed a 

dose-finding study in which we showed that 35 mg/kg body weight/day did induce 

hypertriglyceridemia without causing liver damage as measured by plasma ALAT 

levels. Principles of laboratory animal care were followed and the animal ethics 

committee of our institute approved all animal experiments. 

 
Plasma lipid analysis  

In all experiments, tail vein blood was collected into chilled paraoxon-coated capillary 

tubes to prevent in vitro lipolysis.20 These tubes were placed on ice and immediately 

centrifuged at 4°C. Plasma levels of TG, total cholesterol and free FA were 

determined enzymatically using commercially available kits and standards (#310-A 

Sigma GPO-Trinder kit, St. Louis, MA, USA; CHOL MPR3, Boehringer, Mannheim, 

Germany; #315 Sigma NEFA-C kit, St. Louis, MA, USA). FPLC analysis was 

performed on pooled plasma to determine the distribution of TG and cholesterol over 

the lipoprotein fractions using the AKTA purifier supplied with a Superose-6 column 

(Amersham Pharmacia Biotech). 
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Hepatic VLDL-TG production by Triton WR1339 injection 

After the diet period mice were fasted overnight, anaesthetized (0.5 mL/kg Hypnorm; 

Janssen Pharmaceutica, Beerse, Belgium and 12.5 mg/kg midazolam; Roche, 

Mijdrecht, The Netherlands) and subsequently injected with Triton WR1339 (500 

mg/kg body weight, 15% solution in 0.9% NaCl). Plasma VLDL clearance is 

completely inhibited under these circumstances.21 Plasma TG were measured before 

injection of Triton and at 30, 60 and 90 min after injection and related to the body 

mass of the mice. Production of hepatic TG was calculated from the slope of the 

curve and expressed as µmol/h/kg body weight. 

 

Postprandial TG response 

After an overnight fast, mice were administered a 200 µL olive oil bolus through intra-

gastric gavage. Blood samples were drawn just before and 1, 2, 4 and 8 h after olive 

oil bolus administration. TG concentrations were determined in plasma as described 

above and corrected for the plasma TG levels at t = 0. 

 

In vivo clearance of VLDL-like TG-rich emulsion particles 

The preparation and characterization of glycerol tri[3H]oleate-labeled 80-nm-sized 

protein-free VLDL-like emulsion particles have previously been described.22 This 

emulsion was stored at 4°C under argon and was used within 3 days. To study the in 

vivo serum clearance of the glycerol tri[3H]oleate-labeled emulsions, fed mice were 

anaesthetized, the abdomen was opened and the emulsion (1 mg of TG) was 

injected intravenously via the vena cava inferior. Blood samples were taken via the 

vena cava inferior at 2, 5 and 10 min after bolus administration and the radioactivity 

in serum was determined by scintillation counting (Packard Instruments, Dowers 

Grove, IL). From these data the serum half-life of the glycerol tri[3H]oleate was 

determined. The total plasma volumes of the mice were calculated from the equation: 

V (mL) = 0.04706 x body weight (g) as determined from 125I-BSA clearance studies 

as previously described.23 

 

Total plasma LPL activity 

To determine the total LPL activity present in plasma, 4 h fasted RTV-treated mice 

and their controls were injected intravenously with heparin (0.1 U/g BW; Leo 

Pharmaceutical Products B.V., Weesp, Netherlands) and blood was collected after 
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10 min. The capillaries were kept on ice and were spun immediately at 4°C. The 

plasma was snap-frozen in liquid nitrogen and stored at -80°C until analysis of the 

LPL activity, as modified from Zechner.24 A TG substrate mixture containing triolein 

(TO; 4.6 mg/mL), [3H]TO (2.5 µCi/mL) essentially FA-free BSA (20 mg/mL; Sigma), 

Triton X-100 (0.1%; Sigma) and heat-inactivated (30 min at 56 °C) human serum 

(20%) in 0.1 M Tris-HCl, pH 8.6, was generated by 6 sonication periods of 1 min 

using a Soniprep 150 at 7 µm output, with 1 min intervals on ice. Ten µL of post-

heparin plasma was added to 0.2 mL of substrate mixture and incubated for 30 min 

at 37 °C in the presence or absence of 1 M NaCl which completely inhibits LPL 

activity, to estimate both the LPL and HL levels. The reaction was stopped by the 

addition of 3.25 mL of heptane-methanol-chloroform (1:1.28:1.37, v/v/v), and 1 mL of 

0.1 M K2CO3 in saturated H3BO3 (pH 10.5) was added. To quantify the [3H]oleate 

generated, 0.5 mL of the aqueous phase obtained after vigorous mixing (20 s) and 

centrifugation (15 min at 3,600 rpm) was counted in 4.5 mL of Ultima Gold (Packard 

Bioscience, Meriden, CT). The LPL activity was calculated as the fraction of total 

lipolytic activity inhibited by 1 M NaCl and expressed as the amount of FA released 

per h per mL of plasma. 

 

Modulated lipolytic activity in plasma 

To study the effect of RTV on LPL activity in plasma in situ, post-heparin mouse 

plasma (2.5% of the incubation volume) was incubated with a mix of [3H]triolein-

labeled 80 nm-sized VLDL-mimicking protein-free emulsion particles (0.25 µg TG/mL, 

prepared as described previously22) and excess FFA-free BSA (60 mg/mL) in 0.1 M 

Tris, pH 8.5. After 1 h of incubation 50 µL samples from the total 200 µL incubation 

volume were taken and added to 1.5 mL of extraction liquid (methanol-chloroform-

heptane-oleic acid; 1404:1245:1001:1; v/v/v/v) and 0.5 mL of 0.2 N NaOH was added 

to terminate lipolysis. Generated [3H]oleate was counted as described above and 

expressed as the amount of FA released per h per mL. In this assay, the lipolytic 

activity of plasma is determined towards a relatively low amount of emulsion particles 

instead of an excess of solubilized TG. Hereby, the modulated lipolytic activity of 

plasma is assessed, by allowing interference of the endogenous activators (e.g. 

apoCII) and inhibitors (e.g. apoCI and apoCIII) with the activity of LPL. 
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Tissue-specific FA uptake 

To determine the effect of RTV on the uptake of FA from VLDL-TG by peripheral 

tissues in the fed state we used a steady-state approach, as described previously by 

Teusink et al.17 In short, glycerol tri[3H]oleate-labeled 80-nm-sized protein-free VLDL-

like emulsion particles which are known to mimic endogenous VLDL-TG particles22 

and [14C]oleate bound to albumin were continuously infused for 2 h. Blood samples 

were drawn at 1.5 h and at 2 h to determine steady-state specific activity in plasma. 

After 2 h infusion the mice were sacrificed and the liver, muscle, heart, and 

subcutaneous adipose tissue were taken out to determine the retention of [3H]oleate 

and [14C]oleate in these tissues as a measure for the uptake of FA from VLDL-TG 

and from albumin-bound FA, respectively. Values were corrected for specific activity 

of FA in the plasma and are expressed as retention of total plasma FA in nmol/mg 

tissue protein.  

 

Statistical analysis 

Results are presented as means ± SD for the number of animals indicated. 

Differences between experimental groups were determined by the Mann-Whitney U 

test. The level of statistical significance of the differences was set at P < 0.05. 

Analyses were performed using SPSS 12.0 for Windows software (SPSS, Chicago). 

 
Results 
Ritonavir increases plasma TG specifically in the VLDL fraction in APOE*3-Leiden 

transgenic mice  

Plasma TG, cholesterol and free FA were measured in APOE*3-Leiden transgenic 

mice after a five-week run-in period on the western type diet (t=0) and, subsequently, 

again after 2 weeks of feeding the same diet with or without the addition of RTV (t=2 

weeks). In RTV-treated mice plasma TG increased from 2.7 to 5.4 mM (Fig. 1A, P < 

0.05) and plasma cholesterol from 12.7 to 15.3 mM (Fig. 1B, P < 0.05), whereas 

plasma lipid levels remained unchanged in the control group. The increase in plasma 

TG was mainly due to an increase in VLDL-TG (Fig. 1C), while cholesterol was 

mainly increased in the VLDL and IDL/LDL lipoprotein fractions (Fig. 1D). Plasma 

free FA increased significantly from 0.70 to 0.93 mM (P < 0.05) after 2 weeks on the 

western type diet with RTV added as is shown in Figure 2. 
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Figure 1. Ritonavir increases plasma TG and cholesterol. Plasma levels of TG (A) 

and cholesterol (B) were measured after a five-week run-in period and after 2 weeks of 

subsequent feeding with or without RTV administration through the diet. Values represent 

means ± SD of 8 mice per group. Lipoproteins in pooled plasma were fractionated by FPLC 

and eluted fractions were analyzed for TG (C) and cholesterol (D) distribution over the 

lipoproteins. * P < 0.05 

 

 

Ritonavir does not change in vivo VLDL-TG production 

To investigate whether the increase in plasma TG levels was due to increased 

hepatic VLDL-TG production, we injected fasted mice with Triton WR 1339, which 

completely inhibits lipolysis of VLDL-TG. However, as is shown in Figure 3A, after 2 

weeks of dietary RTV administration no significant difference was observed in the 

rate of VLDL-TG production, when the RTV-treated mice were compared to the 

controls (139 ± 41 vs 177 ± 60 µmol TG/kg/h). 
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Figure 2. Ritonavir increases plasma free FA. Plasma levels of free FA were 

measured after a five-week run-in period and after 2 weeks of subsequent feeding with or 

without RTV administration through the diet. Values represent means ± SD of 8 mice per 

group. P < 0.05 

 

Ritonavir increases postprandial TG response 

Subsequently, we investigated whether the increase in postprandial plasma TG 

levels was caused by impaired postprandial clearance of TG. For this purpose, an 

intra-gastric bolus of olive oil was administered and subsequently plasma TG levels 

were determined. Figure 3B shows that RTV treatment caused a 2-fold increment in 

the postprandial TG response upon an intragastric olive oil administration (area under 

the curve 25.5 ± 12.1 vs 13.8 ± 6.8 mM.h; P < 0.05), which indeed suggests impaired 

TG clearance.  

 

Ritonavir increases plasma half-life of TG-rich VLDL-like emulsion particles 

To investigate whether the decreased clearance of TG indeed contributes to the 

hypertriglyceridemia observed in RTV-treated mice, mice were i.v. injected with 

glycerol tri[3H]oleate-labeled protein-free VLDL-like emulsion particles. These 

particles mimic the metabolic behavior of TG-rich lipoproteins.22,25 Because LPL is 

more abundantly expressed on the adipose tissue in the postprandial state compared 

to the fasted state26, we used fed mice for this study. As is shown in Figure 4, the 

clearance of glycerol tri[3H]oleate was markedly decreased in RTV treated mice when 

compared to the control group, which is evident from an approximately 4-fold 
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increase in serum half-life of glycerol tri[3H]oleate (t½ 19.3 ± 10.5 vs 5.0 ± 1.3 min; P < 

0.05).  
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Figure 3. Ritonavir does not affect hepatic VLDL-TG production but increases 
the postprandial plasma TG response. A. After overnight fast, mice were 

anaesthetized and injected i.v. with Triton WR1339 (500 mg/kg BW) to completely block the 

peripheral lipolysis of VLDL-TG. Before and 30, 60 and 90 min after Triton injection blood 

samples were drawn. Plasma TG were determined and corrected for body weight and the 

values at T = 0. The slopes of the curves were calculated by linear regression to determine 

the rate of hepatic VLDL-TG production. Values represent means ± SD of 7 mice per group. 
B. After an overnight fast, mice were administered a 200 µL olive oil bolus through intra-

gastric gavage. Blood samples were drawn before and at 1, 2, 4 and 8 h after the olive oil 

bolus and the levels of plasma TG were determined and corrected for the values at T=0. 

Values represent means ± SD of 8 mice per group. * P < 0.05, ** P < 0.01 

 

Ritonavir decreases total LPL activity in post-heparin plasma 

Impaired LPL-mediated TG hydrolysis can be due to decreased expression of LPL 

and/or by a direct effect of RTV on LPL activity. Therefore, we determined the effect 

of RTV on the total lipolytic activity in post-heparin plasma by incubation with a 

glycerol tri[3H]oleate-containing substrate mixture. As shown in Figure 5A, the post-

heparin HL activity in RTV-treated mice did not differ significantly from that of control 

mice (15.1 ± 3.7 vs 12.5 ± 3.7 µmol FA/h/mL). The post-heparin LPL activity, 

however, was significantly decreased by 44% in RTV-treated mice versus control 

mice (11.2 ± 3.3 vs 19.9 ± 11.1 µmol FA/h/mL; P < 0.05). This observation shows that 
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RTV impairs LPL-mediated TG lipolysis by lowering the total LPL activity present in 

plasma. 
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Figure 4. Ritonavir increases the plasma half-life of [3H]TG-labeled VLDL-like 
emulsion particles. Fed mice were injected via the vena cava inferior with glycerol 

tri[3H]oleate-labeled VLDL-like emulsion particles to investigate the plasma clearance. Blood 

samples were drawn at 2, 5 and 10 min after bolus administration and the amount of 3H-

activity in plasma was detemined. Values represent means ± SD of 3 mice per group. * P < 

0.05 

 

Ritonavir decreases the modulated lipolytic activity in post-heparin plasma 

To study the modulated lipolytic activity in plasma, by allowing interference of the 

endogenous activators (e.g. apoCII) and inhibitors (e.g. apoCI and apoCIII) with the 

activity of LPL, we performed an additional assay in which the lipolytic activity of 

plasma is determined towards a relatively low amount of well-defined emulsion 

particles instead of an excess of solubilized TG. As is shown in Figure 5B the post-

heparin modulated lipolytic activity is decreased significantly by 55% in plasma of 

RTV-treated mice as compared to control mice (19.0 ± 3.7 vs 42.8 ± 12.7 nmol 

FFA/h/mL; P < 0.05). 
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Figure 5. Ritonavir decreases total and modulated lipolytic activity in post-
heparin plasma. Mice were fasted for 4 h and injected i.v. with heparin. After 10 min blood 

samples were drawn. A. The total lipolytic activity of post-heparin plasma was assessed by 

determination of [3H]oleate production upon incubation of plasma with a substrate mix 

containing an excess of both [3H]triolein and FA-free BSA as FA-acceptor. HL and LPL 

activities were distinguished in the presence of 1 M NaCl, which specifically blocks LPL. 

Values represent means ± SD of 9 mice in the RTV group and 10 mice in the control group. 

B. The modulated lipolytic activity of post-heparin plasma was assessed by incubation of 

plasma (2.5%) with [3H]triolein-labeled VLDL-mimicking protein-free emulsion particles and 

excess FA-free BSA. After 1 h of incubation samples were taken and the modulated lipolytic 

activity was calculated as the amount of generated [3H]oleate released per h per mL. Values 

represent means ± SD of 7 mice in the RTV group and 6 mice in the control group. * P < 0.05 

 

Ritonavir decreases FA uptake in adipose tissue  

The effect of RTV on the uptake of FA from VLDL-TG and albumin-bound FA by 

various tissues was studied during steady state infusion of glycerol tri[3H]oleate TG-

rich VLDL-like emulsion particles. RTV-treatment did not affect VLDL-TG derived FA 

uptake by the liver, skeletal muscle and the heart (Figure 6A). In adipose tissue, 

however, the uptake of VLDL-TG derived FA was significantly decreased (639 ± 220 

vs 986 ± 80 nmol FA/mg tissue protein; P < 0.05). The uptake of FA bound to 

albumin was also decreased in adipose tissue of RTV-treated mice (514 ± 176 vs 

1078 ± 194 nmol FA/mg tissue protein; P < 0.05), and not in the liver, skeletal muscle 

and the heart when compared to control mice (Figure 6B). 
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Figure 6. Ritonavir specifically decreases the uptake of FA by adipose tissue. 
Fed mice were anaesthetized and infused with a mixture of glycerol tri[3H]oleate-labeled 

VLDL-like emulsion particles and [14C]oleate bound to albumin for 2 h to reach steady state 

specific activity in the plasma. After 2 h of infusion mice were bled and the organs were 

dissected to determine the uptake of VLDL-TG derived and albumin-bound FA. Values 

represent means ± SD of 7 mice per group. * P < 0.05 

 
Discussion 
In this study, we investigated the mechanism underlying the hypertriglyceridemia 

caused by RTV administration in APOE*3-Leiden transgenic mice with a human-like 

lipoprotein profile. Our data demonstrate that RTV clearly inhibits LPL-mediated TG 

clearance, which is supported by multiple lines of evidence. First, RTV increased 

postprandial hypertriglyceridemia indicating defective clearance of TG-rich 

lipoproteins. Second, RTV decreased the plasma clearance of i.v. injected TG-rich 

VLDL-like emulsion particles. Third, RTV decreased post-heparin plasma total LPL 

activity. In addition, the uptake of FA derived from VLDL-TG, as well as albumin-

bound FA, was decreased selectively in adipose tissue where LPL is highly 

expressed in the postprandial state.  

Human studies remain inconclusive with respect to the underlying mechanism of 

RTV-induced hypertriglyceridemia.3-11 Purnell et al. showed that RTV decreased 

hepatic lipase activity, although there was no difference in post-heparin LPL levels 

 109



Chapter 6 
 

between RTV- and placebo-treated healthy subjects.27 In contrast, a study by Baril et 

al.3 showed that RTV caused decreased LPL activity while no differences in the 

amount of apolipoprotein CII (cofactor for LPL) or apolipoprotein CIII (inhibitor of LPL) 

were found, indicating a direct effect of RTV on the LPL enzyme as we now 

conclusively show in our study. Shahmanesh et al.10 showed a significant decrease in 

the fractional catabolic rate of VLDL-TG in individuals treated with RTV either alone 

or in combination with other antiretroviral drugs, due to a decreased activity of LPL 

even in the postabsorptive state. Another study in HIV-negative subjects treated with 

RTV showed a trend towards decreased fat clearance as measured by an 

intravenous fat tolerance test after a 10 h fast.5 A recent study by Sekhar et al.9 

revealed marked abnormalities in the ability of HIV lipodystrophy patients to 

metabolize dietary TG suggesting an impairment of the function of LPL. In humans it 

is impossible to conclusively show the direct effects of the individual drugs on the 

lipid metabolism, because HAART-treated patients are usually on a therapy regimen 

of at least three drugs. Moreover, in humans there is considerable heterogeneity in 

both environmental and genetic background.  

To conclusively determine the mechanism underlying RTV-induced 

hypertriglyceridemia we used the APOE*3-Leiden transgenic mouse as our model. 

Studies in AKR/J mice28 and in C57BL/6 wild type29 mice showed an effect of RTV 

only on hepatic VLDL-TG production rate. In contrast to AKR/J and wild type mice, 

the APOE*3-Leiden transgenic mouse has a lipoprotein profile with close 

resemblance to the human profile.13-15 In these mice plasma cholesterol levels can be 

titrated to any desired level by varying the amount of cholesterol in the diet. In 

contrast to wild-type mice, APOE*3-Leiden transgenic mice are highly sensitive to 

treatment with hypolipidemic drugs, such as statins, fibrates, and PPAR-α and γ-

agonists.16 These observations imply that the APOE*3-Leiden transgenic mice on a 

western type diet represent a suitable animal model for hyperlipidemia.  

 An in vitro study in human and rat hepatoma cells and primary hepatocytes from 

mice showed that protease inhibitor treatment inhibits proteasomal degradation of 

nascent apoB.30 However, protease inhibitors also inhibited secretion of apoB. The 

concentrations of drugs used in these in vitro studies are much higher than the 

maximal plasma concentrations in subjects taking these drugs.31 RTV may affect 

different components of the lipid metabolism depending on the dosage used. The 

dosage we used in our mice was 2 times higher than what an average adult would 
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receive per kg/day. Taking into account the much faster metabolic rate in mice it is 

clear that we used a low physiological dosage in our mice. Unfortunately, we did not 

have the opportunity to assess plasma RTV concentrations. It may be that at 

superphysiological concentrations RTV affects VLDL-TG production rate as well.  

In the present study, RTV impaired FA uptake in adipose tissue under steady state 

conditions while infusing glycerol tri[3H]oleate-labeled VLDL-like particles together 

with albumin-bound 14C-labeled FA. Before tissues can take up FA derived from 

VLDL-TG, these TG have to be lipolyzed by LPL. In the current study we show that 

RTV decreased plasma LPL activity by 44%. As expected, due to decreased LPL 

activity the adipose tissue of RTV-treated mice took up significantly less FA derived 

from VLDL-TG compared to control mice under fed conditions. In the fed state LPL is 

more abundant in adipose tissue than in muscle17,26 explaining why no change is 

seen in the uptake of VLDL-TG derived FA in muscle. In addition to decreased 

uptake of FA derived from VLDL-TG, the adipose tissue of RTV-treated mice also 

took up less albumin-bound FA, a process independent of LPL. The active transport 

of FA into tissues occurs mainly via CD36. CD36 functions as a high affinity 

transporter of long-chain FA in adipose tissue and the muscle.32,33 Serghides et al.34 

have shown that CD36 deficiency was induced by antiretroviral therapy both in 

healthy humans and in HIV-infected subjects. They also showed that RTV 

significantly decreased CD36 levels in THP1 and C32 cells. The observed decrease 

in the uptake of albumin-bound FA in adipose tissue as we observed is in accordance 

with a decrease in CD36 levels. Another study showed that in murine peritoneal 

macrophages CD36 can be upregulated by protease inhibitor therapy leading to 

increased uptake of cholesterol and cholesteryl esters.35 The difference in outcome of 

these studies may be a matter of different concentrations that are used in the in vitro 

studies. Many protease inhibitors, especially RTV, are very poorly soluble and difficult 

to handle in an in vitro assay.36 Alternatively, it may be that the same drug exerts 

different effects in different types of cells.  

In accordance with decreased FA uptake by peripheral tissues we found an increase 

of ~16% in plasma FA levels in RTV-treated mice. As we have shown recently37, 

increased plasma FA levels can directly impair LPL activity most probably via product 

inhibition, because free FA can bind to the active site of LPL. In the present study 

plasma free FA levels are slightly but significantly increased, therefore, in addition to 

 111



Chapter 6 
 

direct impairment of LPL activity RTV may also be contributing indirectly to 

decreased LPL-mediated lipolysis via increased plasma FA.  

Lipodystrophic HAART-treated HIV-infected patients showed an increased 

postprandial TG and FA response compared to non-lipodystrophic HIV-infected 

patients and healthy controls most likely caused by inadequate trapping of FA into 

adipose tissue.38 Decreased postprandial adipose tissue FA uptake was already 

observed in our study after 2 weeks of drug administration, even though no obvious 

lipodystrophy as measured by weighing fat pads was observed yet. The flux of FA to 

adipose tissue mediated by LPL is an important determinant of adipogenesis. 

Deletion of LPL in adipose tissue in leptin-deficient ob/ob mice has been shown to 

prevent excessive storage of TG in the adipose tissue.39 In contrast, the absence of 

apoCIII, the natural LPL inhibitor, enhances fatty acid uptake from plasma 

triglycerides in adipose tissue, which leads to higher susceptibility to diet-induced 

obesity.40 In mice that were administered RTV for a much longer period generalized 

lipoatrophy was shown in male mice, while this lipodystrophy was restricted to the 

gonadal depot in female mice.41 The investigators proposed that the lipodystrophy in 

these mice is caused, at least in part, by reduced PPARγ function. PPARγ 

transcriptionally activates a number of genes that are essential for adipogenesis, lipid 

storage and metabolism, including CD36.  

The cause of the HAART-associated hypertriglyceridemia as observed in humans 

may be multifactorial in nature due to the use of different protease inhibitors 

simultaneously in combination with antiretroviral drugs of other classes. We propose 

that the main mechanism by which RTV increases plasma TG is by decreasing the 

LPL-mediated clearance of TG-rich lipoproteins. In the present study we directly 

show that RTV decreases the uptake of VLDL-TG derived FA and albumin-bound FA 

specifically in adipose tissue, an effect that may well contribute to HAART-associated 

lipodystrophy. 
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Abstract  
The use of the HIV protease inhibitor ritonavir (RTV) is associated with the induction 

of cardiovascular risk factors such as dyslipidemia and insulin resistance. It is not 

clear whether this increase in cardiovascular risk factors may lead to an epidemic of 

premature cardiovascular disease in HIV-infected patients treated with antiretroviral 

drugs.  
To investigate the potential effects of RTV administration on atherosclerosis 

development, we fed APOE*3-Leiden mice, which have a human-like lipoprotein 

profile, a Western-type diet with or without the addition of RTV (35 mg/kg/day). Every 

4 weeks, plasma triglyceride (TG) and total cholesterol levels were measured. RTV 

administration increased plasma TG levels when compared to control mice (P < 

0.05), but did not alter total cholesterol levels. Unexpectedly, after 19 weeks on the 

diet, the mean atherosclerotic lesion area in the aortic root was decreased by ~52 % 

in RTV-treated mice compared to control mice (P < 0.05), which was reflected by 

decreased lesion severity. In contrast, in vitro studies with peritoneal macrophages 

showed that RTV dose-dependently increased oxLDL and lipid association. 

In conclusion, RTV decreased atherosclerotic lesion area and severity, even though 

RTV induced hypertriglyceridemia. We speculate that RTV may decrease 

atherosclerotic lesion formation via an alternative (e.g. cholesterol efflux-enhancing 

or anti-inflammatory) pathway on the cellular or molecular level. 
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Introduction 
The introduction of highly active antiretroviral therapy (HAART) has considerably 

decreased morbidity and mortality associated with HIV-infection. This therapy, 

however, is associated with a lipodystrophy syndrome, which is characterized by 

changes in body fat distribution and increased cardiovascular risk factors, such as 

hyperlipidemia and insulin resistance.1,2 At present, the relationship between HAART 

and the development of premature atherosclerosis in HIV-infected patients is unclear. 

Studies measuring intima-media thickness (IMT) as a surrogate marker for the 

development of atherosclerosis do not conclusively show a correlation between 

HAART and IMT.3-6 Some recent studies observed a slightly increased risk for HIV-

infected individuals treated with HAART for the development of atherosclerosis.5,7,8 It 

should be noted that the characteristics of study cohorts bias results, since HIV-

infected subjects have in general more cardiovascular risk factors such as 

opportunistic infections and smoking compared to the general population.9 However, 

a large prospective observational study showed that HAART was independently 

associated with a 26% relative increase in the rate of myocardial infarction per year 

of exposure during the first 4-6 years of use.10  

Since it is difficult to study the effect of specific antiretroviral drugs on the 

development of atherosclerosis in HIV-infected subjects, several mouse models have 

been used. A study in male apoE knockout (apoE-/-) and low density lipoprotein 

receptor knockout (LDLr-/-) mice showed promotion of atherosclerotic lesion formation 

by the HIV protease inhibitor ritonavir (RTV) accompanied by CD36-dependent 

cholesterylester (CE) accumulation in macrophages.11 In female LDLr-/- mice this 

effect was significantly less pronounced12 even though in general female LDLr-/- mice 

are more susceptible to development of atherosclerosis.13 This observation in 

transgenic mice partly supports the hypothesis that the metabolic effects of RTV may 

ultimately translate into an increased incidence of cardiovascular disease in HAART-

treated subjects.  

In accordance with the studies in humans and mice, we observed in a previous study 

that RTV causes hypertriglyceridemia in APOE*3-Leiden mice.14 This atherogenic 

lipoprotein profile was caused via inhibition of LPL-mediated lipolysis. APOE*3-

Leiden transgenic mice have an attenuated clearance rate of VLDL-TG, which 

resembles the VLDL-TG metabolism of humans, rather than wild type mice. As a 

consequence, the APOE*3-Leiden mouse represents a suitable animal model to 
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study the effects of dyslipidemia on atherosclerosis development.15 Therefore, the 

aim of the present study was to determine the effects of RTV on the development of 

atherosclerosis in this APOE*3-Leiden transgenic mouse model. In contrast to our 

expectations, we observed that RTV significantly decreased atherosclerotic lesion 

area and severity in APOE*3-Leiden mice, compared to control mice, independent of 

plasma cholesterol levels.  

 

Materials and Methods 
Animals 

Female APOE*3-Leiden transgenic mice, housed under standard conditions with free 

access to water and food, were used for the experiment. Mice were fed a standard 

mouse chow diet (Hope Farms, Woerden, Netherlands) until 2 months of age. After 

this period they were fed a semi-synthetic Western type diet (Hope Farms, Woerden, 

Netherlands) containing 15% saturated fat, 0.2% cholesterol and 40% sucrose for a 5 

weeks run-in period. Mice were randomized and divided into 2 groups (n=14). One 

group of APOE*3-Leiden mice was fed the Western type diet with RTV (Norvir, 

Abbott, Kent, United Kingdom) added at a concentration of 35 mg/kg body weight/day 

for 19 weeks. The other group was fed the Western type diet without addition of RTV 

to serve as appropriate controls. On the basis of two papers investigating 

pharmacokinetic properties of HIV-protease inhibitors in mice16,17, we previously 

designed a dose-finding study in which we observed that RTV at a dose of 35 mg/kg 

body weight/day induced hypertriglyceridemia without causing liver damage as 

reflected by increased plasma levels of ALAT.14 Principles of laboratory animal care 

were followed and the animal ethics committee of our institute approved all animal 

experiments. 

 

Plasma lipid analysis  

Every 4 weeks tail vein blood was collected into chilled paraoxon-coated capillary 

tubes to prevent in vitro lipolysis.18 These tubes were placed on ice and immediately 

centrifuged at 4°C. Plasma levels of TG and total cholesterol were determined 

enzymatically using commercially available kits and standards (#310-A Sigma GPO-

Trinder kit, St. Louis, MA, USA; CHOL MPR3, Boehringer, Mannheim, Germany). 
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Atherosclerosis analysis  

After 19 weeks on the Western type diet, with or without the addition of RTV, mice 

were sacrificed. The hearts were perfused with ice-cold PBS, isolated, fixed in 

phosphate-buffered 4% formaldehyde, dehydrated and embedded in paraffin. The 

embedded hearts were cross-sectioned (5 µm) throughout the entire aortic root area. 

Sections were stained with hematoxylin-phloxine-saffron (HPS). Per mouse, 4 

sections at 40 µm intervals within the valve area were used for quantification of 

atherosclerotic lesion area and characterization of lesion severity. Lesion area was 

determined using Image-Pro Plus version 3.0 analysis software (Media Cybernetics, 

U.S.). The atherosclerotic lesions were categorized for severity according to the 

American Heart System for humans19, which has been adapted to categorize lesions 

in mice.20 Three categories were discerned: no or very early lesions (type 0-1 

lesions), moderate lesions that are fatty streaks containing only foam cells (type 2-3 

lesions) or advanced lesions showing foam cells in the media and presence of 

fibrosis, cholesterol clefts, mineralization and/or necrosis (type 4-5 lesions). The 

number observed in each lesion category is expressed as a percentage of the total 

number of lesions present within one group of mice.15  

 

In vitro lipid association studies with peritoneal macrophages 

Four days after i.p. injection of Brewer’s thioglycollate, peritoneal cells from APOE*3-

Leiden transgenic mice were harvested into PBS. The cells were recovered after 

centrifugation, and resuspended in DMEM (Invitrogen) containing 10% fetal calf 

serum (Cambrex) and 1% penicillin and streptomycin. The cells were plated onto 24-

wells plates (Costar, Corning Inc., Corning, NY, USA) at a density of 6.0*105 

cells/well. After incubation at 37°C under 5% CO2 humidified air for 2 h, cells were 

washed to remove non-adhering cells. After o/n culturing, the macrophages were pre-

incubated with RTV (0.1 or 1 µg/mL) or vehicle (0.5% ethanol) for 24 h. To determine 

the effect of RTV on the association of oxLDL with the macrophages, after 24 h of 

pre-incubation, cells were subsequently incubated with 50 µg/mL oxLDL21 and 2 

µCi/mL [1α,2α(n)-3H]cholesterol (Amersham Biosciences, UK) as a tracer in 

presence of RTV or vehicle for another 24 h. Alternatively, to determine the effect of 

RTV on the association of 80 nm-sized TG-rich emulsion particles22, after 24 h of pre-

incubation with RTV or vehicle, cells were incubated with 380 µg TG/mL [3H]TG and 
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[14C]cholesteryl oleate (CO) labeled VLDL-like emulsion particles (380 µg TG/mL) for 

3 h. After incubation with either oxLDL or TG-rich particles, cells were washed three 

times with ice-cold PBS, lyzed with 0.1 M NaOH and subsequently the amount of 

cell-associated radioactivity was determined. 

 

Statistical analysis 

Differences between experimental groups were determined by the Mann-Whitney U 

test for two independent samples. The differences in lesion severity were statistically 

tested using the Chi-Square test. The level of statistical significance of the 

differences was set at P < 0.05. Analyses were performed using SPSS 12.0 for 

Windows software (SPSS, Chicago). 

 
Results 
Ritonavir increases plasma TG 

At the start of the experiment, and every 4 weeks thereafter, blood samples were 

taken to determine plasma levels of TG and total cholesterol. Throughout the whole 

study period, RTV administration significantly increased plasma TG levels 

approximately 2-fold compared to control mice and this effect was sustained until the 

end of the experiment (P < 0.05 for all time points; Figure 1A). In contrast, RTV did 

not affect plasma total cholesterol levels throughout the study period (Figure 1B). 
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Figure 1. RTV increases plasma TG. Mice were fed a Western type diet without or with 

RTV added (35 mg/kg bodyweight/day). At baseline and every 4 weeks thereafter, plasma 

levels of TG (1A) and total cholesterol (1B) were measured after 4 h fasting. (n=14; * P < 

0.05) 
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Ritonavir decreases the development of atherosclerotic lesions 

After 19 weeks on the Western type diet, we sacrificed the mice to quantify the 

atherosclerotic lesion area and to determine atherosclerotic lesion severity in the 

aortic root (Figure 2A). RTV attenuated the development of atherosclerosis as 

indicated by a ~52% decrease in atherosclerotic lesion area compared to control 

mice (39.3 ± 41.4 x 103 µm2 vs 82.6 ± 46.3 x 103 µm2; P < 0.05; Figure 2B). This was 

reflected by a reduction in moderate (type 2-3) and advanced (type 4-5) lesions, 

concomitant with an increase in the percentage of segments with early (type 1) 

lesions, or no lesions at all (type 0) (P < 0.05; Figure 2C).  
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Figure 2. RTV decreases atherosclerotic lesion area and severity. After 19 weeks 

on the Western type diet with or without the addition of RTV (35 mg/kg body weight/day) 

mice were sacrificed and lesion area as well as lesion severity was determined. A. 
Representative overviews of the aortic root area of a control and a RTV-treated mouse. B. 
The lesion area was quantified in the aortic root area. C. The severity of lesions was 

determined in the aortic root area. (n=14; * P < 0.05) 

 

Ritonavir increases the association of oxLDL with macrophages 

To determine whether RTV induces decreased CD36 expression leading to 

decreased oxLDL uptake, and consequently, decreased atherosclerosis, we 

investigated oxLDL uptake by peritoneal macrophages. RTV dose-dependently 

enhanced the cell-association of oxLDL up to 28% at 1 µg/mL RTV (P < 0.05; Figure 

3).  
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Figure 3. Ritonavir increases oxLDL association with peritoneal macrophages. 
After 24 h of pre-incubation with RTV or vehicle, cells were incubated with 50 µg/ml oxLDL 

and 2 µCi/ml [1α,2α(n)-3H]cholesterol as a tracer in presence of RTV or vehicle for another 

24 h. The amount of cell-associated [3H]cholesterol was determined. (n=3; * P < 0.05) 
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Figure 4. Ritonavir increases the association of TG-rich VLDL-like particles with 
peritoneal macrophages. After 24 h of pre-incubation with RTV or vehicle, cells were 

incubated with 380 µg TG/ml [3H]TG/[14C]cholesteryl oleate (CO) labeled VLDL-like particles 

for 3 h. The amount of cell-associated [3H]TG and [14C]CO was determined. (n=4; * P < 0.05) 

 

Ritonavir increases the association of TG-rich VLDL-like particles with macrophages 

We have previously observed that RTV-treatment of APOE*3-Leiden mice reduced 

the systemic expression of LPL, as reflected by reduced postheparin LPL levels.14 To 

evaluate whether RTV would also reduce LPL expression specifically in 

macrophages, thereby reducing lipid uptake, we incubated peritoneal macrophages 

with TG-rich VLDL-like emulsion particles. However, RTV dose-dependently 

increased the association of both [3H]TG and [14C]CO (P < 0.05 ; Figure 4). Since the 

ratio between the uptake of [3H]TG and [14C]CO was similar for all conditions, and 
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was equal to their ratio in the emulsion itself, we conclude that RTV increases whole-

particle association rather than selectively inducing the uptake of TG-derived fatty 

acids.  

 

Discussion 
The introduction of antiretroviral drug therapy has considerably increased the life 

span of HIV infected subjects. Consequently, long-term adverse drug effects become 

more clinically relevant in the considerations for the most optimal drug regimens. In 

this study we have conclusively shown that RTV decreases atherosclerosis in the 

aortic root in APOE*3-Leiden mice, despite the induction of dyslipidemia. Because 

there were no differences in plasma cholesterol levels between RTV-treated and 

control APOE*3-Leiden transgenic mice, this paradoxical effect of RTV was 

independent of plasma cholesterol levels.  

We have previously shown that RTV induced hypertriglyceridemia, which was mainly 

confined to the VLDL fraction.14 In that study we also found a small increase in 

plasma cholesterol after 2 weeks of RTV administration, also confined to VLDL. This 

initial increase in plasma cholesterol was probably secondary to the decreased 

clearance of VLDL, to which adaptation occurred during long-term administration of 

RTV (at the dose of 35 mg/kg body weight/day). 

Previous studies in male apoE-/- and LDLr-/- mice showed, that HIV protease inhibitors 

such as RTV, promoted atherosclerotic lesion formation independent of dyslipidemia, 

which was explained by an increased CD36 expression in macrophages, thereby 

enhancing CD36-dependent cholesterylester accumulation.11 On the other hand, a 

study in healthy volunteers, treatment-naive HIV-infected subjects and in human cell 

lines showed that antiretroviral therapy induced CD36 deficiency in monocytes.23 

Because we found that RTV decreased the formation of atherosclerotic lesions in our 

mouse model, we speculated that decreased CD36 expression on the macrophages 

could be the cause of decreased oxLDL uptake, and consequently of decreased 

development of atherosclerosis. Unexpectedly, we found that RTV dose-dependently 

increased oxLDL association with peritoneal macrophages, which is in accordance 

with the macrophage studies of Dressman et al.11 In female LDLr-/- mice a much less 

pronounced effect of RTV administration on atherosclerosis development was 

observed.12 In most animal models female mice are more susceptible to 

atherosclerosis than male mice.13 Allred et al. suggested that the dissociation from 
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the usual gender difference in their RTV study is due to the pharmacological initiation 

of atherosclerosis.12  

Another possible mechanism underlying the observed decrease in atherosclerosis 

could be decreased LPL expression. In our previous study, we observed that in 

postheparin plasma total LPL activity was considerably decreased by RTV 

administration (i.e. 50%).14 Therefore, we speculated that decreased LPL activity on 

the macrophages in the vascular wall could lead to decreased lipid uptake and 

accumulation by macrophages. Interestingly, when we investigated this hypothesis in 

vitro, we found that RTV dose-dependently increased the association of both TG and 

cholesterylesters with macrophages. These findings indicate that RTV increases the 

whole-particle uptake of VLDL-like emulsion particles by macrophages. RTV 

apparently does not decrease LPL activity in all tissues, at least not in macrophages. 

It is tempting to speculate about the mechanism(s) through which RTV decreases 

atherosclerotic lesion formation in the APOE*3-Leiden transgenic mouse model. It is 

possible, that RTV has anti-atherosclerotic effects at the cellular level in the arterial 

wall that overshadow the increased atherosclerotic risk induced by 

hypertriglyceridemia. For instance, an in vitro study with vascular smooth muscle 

cells showed that RTV inhibits platelet derived growth factor (PDGF)-induced DNA 

synthesis and chemotaxis.24 PDGF is a major contributor to atherogenesis.25 

Furthermore, RTV inhibited PDGF-dependent downstream signaling such as Erk 

activation and these effects were not due to cytotoxicity of apoptosis.24  

The upregulation of CD36 which was observed during RTV-treatment was shown to 

be accompanied by an increase in peroxisome proliferator-activated receptor-γ 

(PPARγ).11 PPARγ is a ligand-activated nuclear transcription factor with pleiotropic 

effects on lipid metabolism and inflammation.26 A study in apoE-/- mice showed that 

although the PPARγ agonist troglitazone upregulated the expression of CD36 in 

macrophage foam cells, this PPARγ agonist inhibited fatty streak lesion formation.27 

PPARγ has anti-atherogenic effects because it promotes cholesterol efflux via 

upregulation of ATP-binding cassette A1 (ABCA1) and ABCG1 and indirectly via 

upregulation of liver X receptor-α (LXRα) leading to decreased foam cell formation.28-

31 Furthermore, PPARγ agonists have anti-inflammatory effects on the macrophage32-

35, protecting against atherosclerosis. Taken together, the PPARγ-increasing activity 

of RTV could be involved in the paradoxical decrease in atherosclerotic lesion 

formation despite the presence of hypertriglyceridemia and upregulation of CD36 in 
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the APOE*3-Leiden mice.27,36-38 We speculate that this anti-atherogenic effect of RTV 

is not observed in the apoE-/- mice because part of the anti-inflammatory and efflux-

enhancing effects of PPARγ are caused by increased apoE expression via LXR 

activation.39  

The Data Collection on Adverse Events of Anti-HIV Drugs (DAD) study showed that 

HIV-infected HAART-treated subjects are at a significantly greater risk of myocardial 

infarction.10 In HAART-treated patients, however, the high prevalence of 

cardiovascular risk factors might overshadow the beneficial inhibitory effects of RTV 

on atherosclerosis.8 The prevalence of the most significant risk factor, i.e. cigarette 

smoking, is high among HIV-infected patients with CHD (69 %).9 Patients may 

already have some atherosclerotic lesion formation due to ageing.9 In contrast, 

treatment of our mice with RTV started at young adulthood. More importantly, prior to 

initiation of HAART treatment, HIV-infected subjects may have been exposed to 

chronic systemic inflammation due to HIV-infection for many years. Several 

opportunistic infections may play a role in the pathophysiology of CHD. It has been 

suggested that Cytomegalovirus and Chlamydiae pneumoniae may promote 

atherosclerosis.40 The APOE*3-Leiden mouse provides a good model to study the 

molecular effects of specific drugs such as RTV in a human-like lipoprotein 

metabolism setting, independent of the many complicating genetic and environmental 

factors that can influence the results in human studies. 

In conclusion, RTV decreases the development of atherosclerosis in the aortic root of 

APOE*3-Leiden transgenic mice, despite the induction of hypertriglyceridemia. 

Because there were no differences in plasma cholesterol levels between RTV treated 

and control APOE*3-Leiden transgenic mice, this paradoxical effect of RTV was 

independent of plasma cholesterol levels. This observation indicates that plasma 

cardiovascular risk factors may not translate into the development of atherosclerosis 

under all conditions.  
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In this thesis the metabolic causes and consequences of hepatic steatosis are 

described. Hepatic steatosis is characterized by excessive accumulation of 

triglycerides (TG). The prevalence of hepatic steatosis will certainly increase in the 

near future, associated with the expected exponential increase in the prevalence of 

obesity and type 2 diabetes mellitus.1-3 At present, hepatic steatosis is observed 

already in 3-24 % of healthy subjects and even in 84-96 % of morbidly obese 

subjects.4 Hepatic steatosis was considered a benign, histological condition, until it 

was discovered that a fatty liver is associated with cardiovascular risk factors such as 

increased levels of VLDL-TG, glucose, PAI and fibrinogen.5 Because the liver is the 

central organ in the disturbances in glucose and lipid metabolism, the main questions 

are: Are these associations links in a chain or spokes on a wheel and what could 

then be the common feature or cause connecting the spokes? Although many studies 

have shown strong associations between hepatic TG content and hepatic insulin 

resistance6,7, only few studies have investigated the mechanisms underlying this 

association. We consider fatty liver as a mediator in the perturbations of glucose and 

lipid metabolism. Hepatic steatosis can be both actively and passively involved in 

these metabolic disturbances. 

 
Comments on the measurements of hepatic insulin sensitivity 
A glucose tolerance test can not discriminate between whole-body and liver-specific 

insulin sensitivity. Therefore, in our studies we used the golden standard for 

measuring whole body and liver-specific insulin sensitivity: the hyperinsulinemic 

euglycemic clamp technique. By primed continuous infusion of D-[3-3H]glucose and 

the measurement of the specific activity of this tracer, we can discriminate between 

the amount of glucose produced by the liver and the amount of glucose taken up by 

peripheral tissues. In Chapter 3 we have compared the dose-dependent effects of 

insulin on glucose production and VLDL-TG production by the liver under 

hyperinsulinemic euglycemic conditions with different insulin concentrations. 

Interestingly, although the liver plays a central role in both glucose and lipid 

metabolism, these two processes are differentially regulated by insulin. We found that 

hepatic glucose output (HGO) is much more sensitive to insulin-mediated inhibition 

than hepatic VLDL-TG production. The mechanism behind this difference in insulin 

sensitivity remains unclear.  
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The mammalian body, especially the brain, largely depends on glucose as an energy 

substrate. From a teleological perspective it is tempting to speculate that maybe 

therefore, plasma glucose levels are tightly regulated, even after a carbohydrate 

containing meal. In contrast, after a fat containing meal, a large increase in plasma 

fatty acids (FA) and TG can be observed. This may be due to the fact that the hepatic 

VLDL-TG production is less sensitive to insulin-mediated inhibition than HGO. 

Normally insulin-mediated suppression of HGO is used as a measure of hepatic 

insulin sensitivity, but it is also relevant to consider insulin sensitivity of hepatic VLDL-

TG production. It appears that these two processes do not change in parallel. For 

instance, we found in our CD36-deficient mice that although HGO is severely insulin 

resistant, the hepatic VLDL-TG production was not different under hyperinsulinemic 

conditions between cd36-/- mice and control littermates (83 ± 2 vs 94 ± 3 µmol TG/kg 

bodyweight/h; unpublished observations). It would be interesting to determine 

whether this dissociation between insulin sensitivity of HGO and of hepatic VLDL-TG 

production also occurs in other conditions. 

The amount of insulin that is infused and the resulting plasma insulin levels are of 

major importance for the implementation and interpretation of the hyperinsulinemic 

euglycemic clamp analysis. A low insulin dose already suppresses HGO, whereas no 

effect on hepatic VLDL-TG production may be observed. Infusion of high insulin 

dosages may lead to the overlooking of subtle differences in hepatic insulin 

sensitivity, especially with regard to HGO. In the ideal situation plasma insulin levels 

are always similar in experimental groups to allow comparison of the clamp results. 

For different reasons, however, the resulting plasma insulin levels sometimes differ 

between groups, despite the infusion of identical amounts of insulin. Some studies 

correct for plasma insulin levels in their results, but should this be allowed? In 

Chapter 5 we also found a difference in plasma insulin levels between groups, 

despite the infusion of identical amounts of insulin. We decided not to correct for this 

observation, since we do not know the underlying cause of this difference in plasma 

insulin levels. Insulin can be cleared faster, with or without having an impact on 

insulin signaling. Therefore, we suggest that when the cause and/or consequence of 

different plasma insulin levels is not clear, corrections should not be used.  

Another important aspect, that needs to be considered in the design of 

hyperinsulinemic euglycemic clamp experiments, is the use of anesthetics. In this 

thesis all clamp studies are performed in mice anaesthetized with acetylpromazine, 
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midazolam and fentanyl (VDF). Early on in our studies we were forced to switch from 

one combination of anesthetics to another combination for practical considerations, 

i.e. the availability of the anesthetics. To validate the new anesthetics we compared 

the old regimen (fluanisone, midazolam and fentanyl; HM) with two new 

combinations: VDF versus medetomodine, midazolam and fentanyl (MMF) on 

parameters obtained during clamp experiments. We found that MMF caused severe 

insulin resistance, whereas HM and VDF did not affect insulin sensitivity. Therefore, it 

is of great importance to validate anesthetics in all physiological experiments, to 

exclude possible interference of these drugs with normal metabolism.  

 
Hepatic steatosis with hepatic insulin resistance 
In this thesis we have used several murine models with targeted disruptions of the FA 

metabolism. The cd36-/- mice and the ritonavir- (RTV-)treated mice confirm the 

inverse association between increased liver lipid content and decreased hepatic 

insulin sensitivity. In these two models we investigated the mechanisms behind the 

disturbances in the lipid metabolism, leading to increased plasma FA and TG levels.  

 

CD36-deficient mice 

CD36, or fatty acid translocase (FAT), is involved in the high affinity uptake of FA in 

the periphery. Mice lacking CD36 have considerably impaired FA uptake in muscle 

and in adipose tissue.8 These mice exhibit increased plasma FA and TG levels and 

show decreased plasma glucose levels.9 In the liver plasma membrane FA-binding 

protein (FABPpm), but not CD36, is the main FA transporter.10 Consequently, in 

cd36-/- mice the increased plasma FA level leads to increased uptake of FA by the 

liver. This increased flux of FA leads to an increase in β-oxidation, reflected in 

increased plasma levels of ketone bodies. The increased FA flux, however, largely 

exceeds β-oxidation capacity. These excess FA, that cannot be oxidized, are stored 

as TG and steatosis develops. Previously, Goudriaan et al. showed that cd36-/- mice 

exhibit hepatic steatosis and severely decreased hepatic insulin sensitivity.11 If the 

liver would have been able to increase the production of VLDL-TG, this increase of 

hepatic TG content could have been prevented. We showed in Chapter 4 that the 

increased plasma TG levels in CD36 deficiency were not due to a previously 

hypothesized enhancing effect on hepatic VLDL-TG production or an effect on 

intestinal lipid absorption. Instead, CD36 deficiency caused hypertriglyceridemia by 
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decreased LPL-mediated hydrolysis of TG-rich lipoproteins resulting from FA-induced 

product inhibition. 

Increased plasma FA levels are commonly associated with insulin resistance.12 In the 

cd36-/- mice despite increased plasma FA (and TG) levels, the periphery is even 

more sensitive to insulin-stimulated glucose uptake compared to controls.11 It 

appears that tissue-specific uptake of FA is more important than plasma FA levels 

per se. The cd36-/- mice may be more sensitive to insulin-stimulation of glucose 

uptake, because in the periphery there is no possibility to use FA as an energy 

source. This is in accordance with the Randle hypothesis, which states that the 

availability of FA for oxidation determines insulin sensitivity and the rate of glucose 

oxidation.13,14 

 
Ritonavir-treated mice 

The introduction of highly active antiviral therapy (HAART) has led to a considerable 

reduction in the morbidity and mortality that was associated with HIV-infection. 

Unfortunately, these drugs are associated with severe adverse metabolic effects, 

such as the lipodystrophy syndrome. In this syndrome subcutaneous wasting of fat is 

observed (lipoatrophy) with or without accumulation of fat in the dorso-cervical region 

(“buffalo hump”) or in the abdomen (lipodystrophy). Several metabolic disturbances 

such as hyperlipidemia, hyperglycemia and insulin resistance are observed in 

subjects with the lipodystrophy syndrome. Hepatic steatosis is also observed 

frequently.15 Few studies have shown a direct mechanism involved in the emergence 

of this syndrome. Several studies indicated that the hyperlipidemia induced by HIV 

protease inhibitors such as RTV is due to an increase in hepatic VLDL-TG 

production. A study in HIV-infected patients hypothesized that excessive FA 

mobilization occurred due to insulin resistance of adipose tissue resulting in 

increased hepatic VLDL-TG production.16 Studies in C57Bl/6 and AKR/J mice 

showed increased VLDL-TG production after RTV treatment.17,18 Evidence also 

existed that HIV protease inhibitors do not reduce the clearance of VLDL-TG 

particles17-19 providing additional support for a mechanism based on increased 

production of TG-rich particles. However, other studies indicated that impaired 

lipoprotein clearance may contribute to protease inhibitor-induced hyperlipidemia. 

Baril et al. found that both LPL and hepatic lipase (HL) were decreased in HIV-

infected patients treated with protease inhibitors such as RTV.20 TG-rich lipoprotein 
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clearance was reduced in HIV-patients after a high fat meal.21 Obviously, many 

contradictory hypotheses with regard to the mechanism underlying protease inhibitor-

induced hyperlipidemia existed. In Chapter 6 we conclusively elucidated the 

mechanism behind RTV-induced hypertriglyceridemia. RTV decreases plasma LPL 

activity, either by decreasing expression levels of LPL but most probably also via 

inhibition of the activity of the LPL enzyme that is present. With respect to the 

underlying mechanism of lipodystrophy, we found that the adipose tissue of RTV-

treated mice takes up less FA derived from the plasma free FA pool and from VLDL-

TG particles. Therefore, long-term inhibition of FA uptake by adipose tissue may 

eventually lead to decreased adipose tissue mass. In addition, we found in 

unpublished observations that RTV-treated mice showed hepatic steatosis and 

hepatic insulin resistance (Figure 1A and 1B). It may be that the excess FA that 

cannot be taken up into the adipose tissue are taken up by the liver, although this 

was not evident from the data of our study on tissue-specific FA uptake. There is an 

intriguing resemblance between the cd36-/- mice described in Chapter 4 and RTV 

treated mice (Chapter 6). Apparently, in both mouse models hypertriglyceridemia is 

present and FA uptake from plasma is decreased. RTV-treated and CD36 deficient 

mice show hepatic steatosis and severe hepatic insulin resistance as is shown in 

Figure 1. However, in cd36-/- mice this is associated with increased peripheral insulin 

sensitivity, whereas in RTV-treated mice peripheral insulin sensitivity was not 

changed. Most likely, this discrepancy indicates that there are different tissue specific 

alterations between both models, which were not addressed directly in our study 

design. For instance, muscle TG content was increased in RTV-treated mice 

compared to control mice, whereas it remained unchanged in cd36-/- mice compared 

to littermates.  

Interestingly, in presence of excess adipose tissue (obesity) and in the absence of 

adipose tissue (lipoatrophy), similar metabolic disturbances are observed: 

hyperglycemia, hyperinsulinemia and hyperlipidemia. Disturbances in adipose tissue 

metabolism affect hepatic FA/TG metabolism, and vice versa.  Several important 

questions remain, however. At present, it remains unclear to what extent the results 

obtained in the RTV-treated APOE*3-Leiden transgenic mice can be extended to the 

action of protease inhibitors in HIV-infected patients. In addition, it is important to 

understand the actual biochemical mechanism(s) behind the RTV-induced decrease 

in adipose tissue FA uptake. For instance, the selectivity for adipose tissue suggests
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Figure 1. Hepatic TG content and insulin sensitivity in the 3 described models. 
Using high performance thin layer chromatography hepatic TG content was determined in 

RTV-treated mice (A), cd36-/- mice (C) and IL-10-/- mice (E) and their appropriate controls. 

Hepatic insulin sensitivity was determined using the hyperinsulinemic euglycemic clamp 

analysis. RTV-treated mice (B) and cd36-/- mice (D) showed a significantly decreased insulin-

mediated inhibition of hepatic glucose output whereas in IL-10-/- mice (F) hepatic insulin 

sensitivity remained unchanged. * P < 0.05 
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the possible involvement of factors like peroxisome proliferator-activated receptor γ 

(PPARγ) which is also important in the regulation of CD36. Further studies are 

needed to investigate the molecular mechanism behind the lipodystrophy syndrome. 

It could be speculated that HIV-infected patients have a high risk of developing 

hepatic steatosis. Multiple factors have been hypothesized to be necessary for the 

development and progression of this condition.22 Potential risk factors in HIV-infected 

individuals include disturbances in glucose and lipid metabolism, chronic 

inflammation, hepatitis co-infection, and treatment with antiretroviral drugs such as 

protease inhibitors. Hepatic steatosis, which is often observed in HIV-infected 

subjects, is associated with increased plasma glucose, FA and TG levels which are 

traditional cardiovascular risk factors. However, studies on steatosis in HIV-infected 

patients are still rare. Nevertheless, while waiting for prospective studies in HIV-

infected patients, improved recognition, diagnosis and management of steatosis are 

required in these patients.  

 

Hepatic steatosis and atherosclerotic risk  

Human cohort studies showed that HAART-treated patients are at greater risk of 

developing premature atherosclerosis.23 This group however has increased 

cardiovascular risk factors which may overshadow the beneficial inhibitory effects of 

RTV on atherosclerosis.24 HIV-infected patients with CHD are older than patients 

without CHD.23 Patients may already have some atherosclerotic lesion formation due 

to their age, whereas our mice started treatment while they were “young adults”. 

Several opportunistic infections may play a role in the pathophysiology of CHD. It has 

been suggested that cytomegalovirus and Chlamydiae pneumoniae may promote 

atherosclerosis.25 Furthermore, before treatment is started patients have been 

exposed to chronic systemic inflammation due to HIV-infection for sometimes up to 

10 years. The prevalence of the traditional risk factor cigarette smoking is high 

among HIV-infected patients with CHD (69 %).23 It may be of interest to follow HIV-

infected children on HAART, and follow the development of atherosclerosis in these 

subjects. The problem here is that it will probably take up to 50 years before 

conclusive results can be drawn from such a study. Therefore, in this thesis we 

studied the development of atherosclerosis in RTV treated mice, which developed 

hepatic steatosis and hepatic insulin resistance, in addition to an atherogenic 

lipoprotein profile. From these adverse effects of RTV on cardiovascular risk factors, 
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we expected that RTV would induce or accelerate atherosclerosis. However, in 

contrast to our expectations, RTV protects against the development of 

atherosclerosis in the APOE*3-Leiden transgenic mice (Chapter 7). The important 

question is to what extent we can extrapolate this remarkable observation in 

(APOE*3-Leiden transgenic) mice to RTV-treated HIV-infected humans, treated with 

other HAART drugs as well. Nonetheless, at present, our mouse model is the most 

appropriate substitute, in which we can study the effects of drugs such as RTV 

without the many complicating genetic and environmental factors that can influence 

results in human studies. 

In the literature discussion exists whether hepatic steatosis should be added to a 

cluster of cardiovascular risk factors (metabolic syndrome) important in determining 

cardiovascular risk. Since a fatty liver is involved the production of cardiovascular risk 

factors, it may be important to take this condition into consideration when establishing 

individual cardiovascular risk. However, the fact that the relationship between hepatic 

steatosis and metabolic disturbances leading to increased cardiovascular risk is 

apparently not straightforward has to be taken into account. 

 

Hepatic steatosis without hepatic insulin resistance 
The association between increased hepatic TG content and hepatic insulin resistance 

does not always hold. In Chapter 2 we already discussed some dissociations in this 

respect, for example the ob/ob mouse treated with rosiglitazone26 or wild type mice 

treated with LXR-agonists.27 These models show increased hepatic TG content with 

paradoxically increased or unchanged hepatic insulin sensitivity compared to their 

respective controls. Another mouse model with increased hepatic TG content without 

a change in hepatic insulin sensitivity is the interleukin-10-(IL-10-) deficient mouse.  

 

IL-10 deficient mice 

In epidemiological studies insulin resistance is associated with chronic low-grade 

inflammation.28 This is reflected in associations between the degree of insulin 

sensitivity and plasma levels of several cytokines, such as tumor necrosis factor 

(TNF)α and interleukin-(IL)6.29,30 IL-10 is a potent anti-inflammatory cytokine, which is 

produced by T-cells, B-cells, monocytes and macrophages and plays a crucial role in 

the innate immune system.31,32 IL-10 potently inhibits the production of pro-

inflammatory cytokines, including TNFα and IL-6.33 Previous studies in humans have 
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shown an association between the production capacity of IL-10 by blood cells and 

cardiovascular risk factors.34 To evaluate a causal relationship between IL-10 

production and metabolic dysregulation, we assessed in Chapter 5 the direct 

consequences of IL-10 deficiency on hepatic and peripheral insulin sensitivity. Our 

data showed, that basal IL-10 production protects against hepatic steatosis during 

high fat feeding (Figure 1E). However, endogenous IL-10 production did not improve 

hepatic or whole-body insulin sensitivity during high fat feeding as assessed by the 

hyperinsulinemic euglycemic clamp technique (Figure 1F). This finding is in contrast 

to the strong association that is found between liver TG content and insulin 

resistance in several other models (Chapter 2). Strikingly, the IL-10-/- mice showed 

decreased plasma insulin levels compared to control mice while infusing similar 

insulin concentrations. Although this complicates the interpretation of the clamp 

results, we can still conclude, that basal IL-10 expression does not improve hepatic 

insulin sensitivity. It would be interesting to perform insulin clearance studies in these 

mice to gain a better insight into the mechanism behind this difference in plasma 

insulin levels. 

The cause of the increased liver TG content may be the increased plasma FA levels 

after overnight fasting. The increased plasma FA levels are most probably due to the 

increased visceral fat mass in the IL-10-/- mice compared to their wild type 

counterparts. Interleukins have been shown to affect adipose tissue metabolism in 

other murine models. The IL-1 receptor antagonist knockout (IL-1Ra-/-) mice have a 

defect in lipid accumulation in adipose tissue, exhibiting leanness, which could be 

expected from their catabolic state.35 IL-6-deficient mice developed obesity and 

obesity-related disorders which could be partly reversed by replacement with the pro-

inflammatory IL-6.36 The absence of the anti-inflammatory IL-10 was also expected to 

lead to a higher inflammatory (catabolic) state, and consequently, to a decreased 

amount of adipose tissue. However, plasma levels of fibrinogen and serum amyloid 

A, which reflect liver and systemic inflammation, respectively, were not changed in 

the IL-10-/- mice compared to the wild type controls. In contrast to our expectations, 

we found an increased amount of visceral adipose tissue in the IL-10-/- mice 

compared to the wild type controls. We currently do not know why the adipose tissue 

mass is increased in the IL-10-deficient mice. A factor that largely determines the 

uptake of FA by the adipose tissue is LPL-activity. An oral fat load experiment in 

which plasma TG and FA appearance in time are measured after an oral olive oil 
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bolus may give an indication of LPL-activity in the IL-10-/- mice. It is also interesting to 

measure the uptake of FA by the adipose tissue in these mice to determine whether 

there is an increased FA uptake from VLDL-TG or the albumin-bound FA pool 

leading to increased adipose tissue mass.37 In our clamp study we did not determine 

adipose tissue-specific insulin sensitivity. The ~40% decrease in plasma FA during 

hyperinsulinemia in both the  IL-10-/- mice and the control mice suggests no change 

in adipose tissue insulin sensitivity. To exclude an effect of IL-10 deficiency on 

adipose tissue insulin sensitivity more specific in vivo and in vitro experiments 

investigating adipose tissue lipolysis are required. 

Our observations in the IL-10-deficient mice argue against a simple protective role of 

endogenous IL-10 secretion in insulin resistant states. Nonetheless, our data also 

indicate that endogenous IL-10 secretion is not metabolically inert, since we 

documented clear effects of IL-10 deficiency on hepatic and peripheral lipid 

metabolism. However, our study did not support a causal role of IL-10 in the 

protection against diet-induced hepatic insulin resistance and other metabolic 

disturbances. IL-10 is a locally acting cytokine, and therefore plasma levels may not 

be causally involved in insulin resistance. The results from epidemiological studies 

investigating similar plasma parameters should therefore be interpreted with caution 

with respect to underlying causal mechanisms. 

 
Hepatic steatosis: Cause or consequence of metabolic disturbances? 
The different models used in this thesis clearly show, that not every form of hepatic 

steatosis has the same metabolic causes and consequences. Different causes of 

steatosis may have different metabolic effects. Human studies investigating causes 

of fatty liver and consequent metabolic disturbances showed that etiology can make 

a difference.38 Like in several mouse models, the causes and effects of hepatic 

steatosis in humans probably also depend on the genetic and environmental 

background. This remains difficult to investigate this since the liver is not easily 

accessible in humans. Therefore, we decided to study the causes and consequences 

of hepatic steatosis in several mouse models. 
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Figure 2. Increased plasma FA fluxes cause hepatic steatosis. The causes and 

consequences of hepatic steatosis differ between the three models described in this thesis, 

but in all models an increased flux of FA is most probably involved. A. RTV-treated mice 

show increased plasma FA levels which are due to decreased FA uptake by adipose tissue 

and an increased postprandial FA response. B. CD36-deficient mice have increased plasma 

FA levels due to decreased uptake of FA in peripheral tissues such as adipose tissue and 

muscle. C. IL-10-deficient mice show increased plasma FA levels after overnight fasting 

which are most probably due to the increased visceral adipose tissue mass observed in 

these mice. 
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Plasma FA flux appears to be important in the emergence of a fatty liver. The 3 

models studied in this thesis all show increased plasma FA levels which are due to 

decreased FA uptake and/or decreased LPL-mediated TG hydrolysis or increased FA 

release from adipose tissue as is shown in Figure 2. The cd36-/- mice and the IL-10-/- 

mice both show hepatic steatosis, most probably due to increased plasma FA levels. 

This induces hepatic insulin resistance in the cd36-/- mice, but not in the IL-10-/- mice. 

Both mouse models show increased plasma FA levels after overnight fasting. In the 

cd36-/- mice this is due to decreased peripheral FA uptake.8 In the IL-10-/- mice this is 

probably due to an increased release of FA from the increased visceral adipose 

tissue mass (Chapter 5). The important difference between these two models is the 

exposure time to the increased plasma FA. The cd36-/- mice have increased plasma 

FA levels from birth, or even in utero, while the IL-10-/- mice only displayed increased 

plasma FA after overnight fasting. The RTV-treated mice show hepatic steatosis and 

hepatic insulin resistance (Figure 1A and B), but here the cause is unclear. It has 

been hypothesized that RTV induces accumulation of activated forms of sterol 

regulatory binding protein (SREBP)-1 and -2 in the nucleus of liver and adipose 

tissue, resulting in elevated expression of lipid metabolism genes.39 We observed 

that postprandially these mice show significantly increased plasma TG and FA, but 

the plasma FA and TG levels were also increased after 4 h fasting. Similar to the 

cd36-/- mice, the RTV-treated mice may also be continuously exposed to increased 

plasma FA levels which may be involved in the emergence of steatosis and insulin 

resistance.  

We have not investigated the distribution of the TG in the hepatic lobules by 

histology. This may also be of importance in the different metabolic causes and 

consequences of hepatic steatosis since metabolic pathways are not uniformly 

distributed in the liver.40-42 Diabetes-associated steatosis is predominantly present in 

the perivenous zones of the liver.  

In recent studies from the group of Rossetti the role of the brain in the regulation of 

insulin action on the liver was investigated.43-45 The overall conclusion from those 

studies was that insulin-mediated control of HGO is controlled by the brain, and more 

specifically, by the hypothalamus. No studies have yet been performed on the role of 

the brain in other aspects of hepatic insulin sensitivity such as in the control of 

hepatic VLDL-TG production. It would be interesting to investigate this aspect of 

insulin action on the liver in a model without hypothalamic control. The hepatic 
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glucose production is under parasympathetic and sympathetic neuronal control, 

which can be eliminated in an experimental setting by transsection of the hepatic 

parasympathetic or sympathetic nerves.46 With these studies of Rossetti in mind, it 

would be interesting to determine to what extent hypothalamic control is involved in 

different consequences of hepatic steatosis. Cd36-/- mice especially would lend 

themselves as good models to investigate this aspect of insulin sensitivity. 

 

In this thesis we considered the causes and consequences of hepatic steatosis. The 

liver is an essential organ involved in the integrative physiology of whole-body 

glucose and FA metabolism. It is very difficult to dissect the causes and 

consequences of hepatic steatosis in the intact individual, due to the complex 

interactions between different organs. These interactions include multiple metabolic 

and endocrine factors transported by the blood between organs and also tissue-

specific activity of the autonomous nervous system. The hierarchy between these 

different factors in modulating hepatic insulin sensitivity remains at present unclear. 

In general, experimental conditions are usually focused on a single factor. Therefore, 

the relative contribution of each of these individual factors on the metabolic causes 

and effects of liver steatosis is difficult to estimate. Because the prevalence of 

metabolic syndrome is reaching endemic proportions, it is important to investigate the 

causes and consequences of hepatic steatosis both in human and in animal studies. 
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In this thesis we focused on the causes and consequences of hepatic steatosis. 

Epidemiological studies in humans, as well as experimental studies in animal models, 

have shown an association between visceral obesity and dyslipidemia, insulin 

resistance and type 2 diabetes mellitus. The mechanism underlying this association 

remains unclear. Recently, attention has focused on the role of excessive 

accumulation of triglycerides (TG) in the liver (hepatic steatosis) in this association. 

Hepatic steatosis was considered a benign condition until it was discovered that a 

nonalcoholic fatty liver is associated with many cardiovascular risk factors. 

Subsequently, many studies have shown a strong association between hepatic TG 

content and hepatic insulin resistance. However, it remains unclear to what extent 

hepatic steatosis is actively or passively involved in the metabolic derangements of 

the glucose and lipid metabolism. 

 

In Chapter 2 we summarize important principles of the pathophysiological 

involvement of the liver in disturbances in the glucose and lipid metabolism obtained 

in rodent models. We observed that in some models the strong association between 

hepatic TG content and hepatic insulin resistance does not hold. From this review we 

concluded that the liver is both actively and passively involved in the disturbances of 

the glucose and lipid metabolism. 

 

The effect of insulin in normal livers with regard to the hepatic glucose output (HGO) 

has been studied extensively. In Chapter 3 we have compared the dose-dependent 

effects of insulin on HGO and VLDL production in the liver under hyperinsulinemic 

euglycemic conditions with different insulin concentrations. Interestingly, while the 

liver plays a central role in glucose and lipid metabolism, HGO and hepatic VLDL-TG 

production are differentially regulated by insulin. We found that hepatic glucose 

output is much more sensitive to insulin-mediated inhibition than hepatic VLDL-TG 

production. 

 

CD36, or fatty acid translocase (FAT), is involved in the high affinity uptake of FA in 

the periphery. Mice lacking CD36 have considerably impaired FA uptake in muscle 

and in adipose tissue. These mice exhibit increased plasma FA and TG levels and 

show decreased plasma glucose levels. Furthermore these mice have an increased 

hepatic TG content and have severely insulin resistant livers. We showed in Chapter 
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4 that the increased plasma TG levels in CD36 deficiency were not due to a 

previously hypothesized enhancing effect on hepatic VLDL-TG production or an 

effect on intestinal lipid absorption. Instead, CD36 deficiency resulted in 

hypertriglyceridemia caused by decreased LPL-mediated hydrolysis of TG-rich 

lipoproteins resulting from FA-induced product inhibition. 

 

In epidemiological studies insulin resistance is associated with chronic low-grade 

inflammation. This is reflected in associations between the degree of insulin 

sensitivity and plasma levels of several cytokines, such as tumor necrosis factor 

(TNF)α and interleukin(IL)-6. IL-10 is a potent anti-inflammatory cytokine, which is 

produced by T-cells, B-cells, monocytes and macrophages and plays a crucial role in 

the innate immune system. IL-10 potently inhibits the production of pro-inflammatory 

cytokines, including TNFα and IL-6. In Chapter 5 we established the direct 

consequences of IL-10 deficiency on hepatic and peripheral insulin sensitivity. Our 

data showed, that basal IL-10 production protects against hepatic steatosis during 

high fat feeding. However, endogenous IL-10 did not improve hepatic or whole-body 

insulin sensitivity during high fat feeding as assessed by the hyperinsulinemic 

euglycemic clamp technique. 

 

The introduction of highly active antiviral therapy (HAART) has led to a significant 

reduction in the morbidity and mortality that was associated with HIV-infection. 

Unfortunately, these drugs are associated with severe adverse metabolic effects, 

such as the lipodystrophy syndrome. In this syndrome subcutaneous wasting of fat is 

observed (lipoatrophy) with or without accumulation of fat in the dorso-cervical region 

(“buffalo hump”) or in the abdomen (lipodystrophy). Hepatic steatosis is often 

observed in these patients. Several metabolic disturbances such as hyperlipidemia, 

hyperglycemia and insulin resistance are observed in subjects with the lipodystrophy 

syndrome. Few studies have shown a direct mechanism involved in the emergence 

of this syndrome. In Chapter 6 we conclusively elucidated the mechanism behind 

RTV-induced hypertriglyceridemia. RTV decreases plasma LPL activity, either by 

decreasing expression levels of LPL but most probably also via inhibition of the 

activity of the LPL enzyme that is present. With regard to the mechanism underlying 

lipodystrophy we found that the adipose tissue of RTV-treated mice takes up less FA 

derived from the plasma free FA pool and from VLDL-TG particles, compared to 
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untreated mice. In contrast to our expectations, although RTV induces an 

atherogenic lipoprotein profile, it protects against the development of atherosclerosis 

in the APOE*3-Leiden transgenic mice (Chapter 7). 

 

In conclusion, the studies in this thesis show that hepatic steatosis is actively and 

passively involved in the metabolic disturbances in the glucose and lipid metabolism. 

The prevalence of hepatic steatosis in western countries is high and will certainly 

increase with the epidemics of obesity and diabetes. This will put an increasing 

number of subjects at risk for disturbances in the glucose and lipid metabolism and 

concomitantly for cardiovascular disease. 
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In dit proefschrift hebben we studies uitgevoerd om de oorzaken en gevolgen van 

leversteatose te bestuderen. Epidemiologische studies in mensen en experimentele 

studies in diermodellen hebben een associatie laten zien tussen viscerale obesitas 

en dyslipidemie, insuline resistentie en type 2 diabetes mellitus. Het mechanisme 

achter deze associatie is nog onduidelijk. Recent is de aandacht gevestigd op de rol 

van overmatige triglyceriden (TG) accumulatie in de lever in deze associatie. 

Leversteatose werd vroeger beschouwd als een goedaardige conditie, totdat in 

epidemiologische studies ontdekt werd dat een vette lever is geassocieerd met vele 

cardiovasculaire risicofactoren. Veel studies hebben een sterke associatie tussen het 

lever TG gehalte en hepatische insuline resistentie laten zien. Het blijft echter 

onduidelijk in hoeverre leversteatose actief of passief betrokken is bij de metabole 

verstoringen van het glucose en lipidenmetabolisme. 

 

In Hoofdstuk 2 hebben we de resultaten van een aantal belangrijke studies in 

diermodellen samengevat, die inzicht hebben gegeven in de pathofysiologische rol 

van de lever in de metabole veranderingen en van het glucose en 

lipidenmetabolisme. In sommige modellen bleek de sterke associatie tussen lever TG 

inhoud en hepatische insuline resistentie echter niet stand te houden. Uit dit review 

hebben we geconcludeerd dat de lever zowel actief als passief betrokken is bij de 

verstoringen van het glucose- en lipidenmetabolisme. 

 

Het effect van insuline op de hepatische glucose productie in normale levers is 

uitgebreid bestudeerd. In Hoofdstuk 3 hebben we de dosis-afhankelijke effecten van 

insuline op zowel de hepatische glucose productie als de very-low density 

lipoproteïnen (VLDL) productie door de lever vergeleken. Hoewel de lever in zowel 

het glucose- als het lipidenmetabolisme een centrale rol speelt, worden de 

hepatische glucose productie en VLDL productie verschillend gereguleerd. Uit onze 

studie hebben we geconcludeerd dat de hepatische glucose productie veel 

gevoeliger is voor remming door insuline dan de VLDL productie. 

 

CD36, ofwel fatty acid translocase (FAT), is betrokken bij de opname van vetzuren in 

de perifere weefsels. In muizen zonder CD36 (cd36 -/-) is de opname van vetzuren in 

de spieren en in het vetweefsel grotendeels verhinderd. Deze muizen hebben hoge 

plasma vetzuren en TG en lage plasma glucose spiegels. De cd36 -/- muizen hebben 
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een verhoogde TG inhoud in de lever en hebben zeer insuline resistente levers. In 

Hoofdstuk 4 laten we zien dat de verhoogde plasma TG spiegels niet werden 

veroorzaakt door een verhoogde hepatische VLDL productie of een veranderde 

darmopname van vetten, zoals eerder was gepostuleerd. Wij concluderen dat in de 

afwezigheid van CD36 hypertriglyceridemie ontstaat doordat de lipoproteïne lipase 

(LPL)-gemedieerde hydrolyse van TG-rijke lipoproteïnen wordt geremd via de 

verhoogde plasma vetzuren (product inhibitie). 

 

In epidemiologische studies wordt insuline resistentie geassocieerd met chronische 

sub-klinische inflammatie. Dit blijkt ook uit de associaties tussen de mate van insuline 

gevoeligheid en de plasma levels van verschillende cytokinen zoals tumor necrose 

factor α (TNFα) en interleukine(IL)-6. IL-10 is een anti-inflammatoir cytokine dat 

geproduceerd wordt door T-cellen, B-cellen, monocyten en macrofagen. Het speelt 

een belangrijke rol in het aangeboren immuunsysteem. IL-10 remt zeer krachtig de 

productie van pro-inflammatoire cytokinen zoals IL-6 en TNFα. In Hoofdstuk 5 

hebben we de directe consequenties van IL-10 deficiëntie op lever-specifieke en 

perifere insuline gevoeligheid bestudeerd. Onze resultaten laten zien dat basale IL-

10 productie beschermt tegen leversteatose tijdens een hoog vet dieet. Uit het 

hyperinsulinemische euglycemische clamp experiment bleek echter dat endogeen IL-

10 niet de insuline gevoeligheid tijdens een hoog vet dieet verbetert. 

 

De introductie van highly active antiretroviral therapy (HAART) heeft tot een enorme 

reductie in de met HIV-infectie geassocieerde morbiditeit en mortaliteit geleid. Helaas 

zijn deze medicijnen geassocieerd met ongewenste metabole bijwerkingen zoals het 

lipodystrophie syndroom. Dit syndroom wordt gekarakteriseerd door het verdwijnen 

van subcutaan vet (lipoatrophie) met of zonder accumulatie van vet in de dorso-

cervicale regio (“buffalo hump”) of in de buikholte. Tevens wordt vaak leversteatose 

gevonden. Patiënten met het lipodystrophie syndroom hebben bovendien vaak 

verschillende metabole bijwerkingen zoals hyperlipidemie, hyperglykemie en insuline 

resistentie. Slechts weinig studies hebben een mechanisme laten zien dat dit 

syndroom zou kunnen verklaren. In Hoofdstuk 6 hebben wij het mechanisme dat de 

door ritonavir (RTV) geïnduceerde hypertriglyceridemie veroorzaakt opgehelderd. 

RTV verlaagt de plasma LPL activiteit, waarschijnlijk via verminderde mRNA en/of 

eiwit expressie levels, maar waarschijnlijk ook via de remming van het LPL enzym 
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zelf dat in het plasma aanwezig is. We hebben tevens gevonden dat het vetweefsel 

van RTV-behandelde muizen minder vetzuren opneemt uit de vrije vetzuur pool en 

uit VLDL-deeltjes vergeleken met controle muizen. Hoewel RTV een atherogeen 

lipoproteïnen profiel veroorzaakt, beschermt het tegen de ontwikkeling van 

atherosclerose in de APOE*3-Leiden transgene muizen (Hoofdstuk 7).  

 

De resultaten van de studies beschreven in dit proefschrift laten zien dat 

leversteatose zowel actief als passief betrokken is bij de metabole verstoringen van 

het glucose- en lipidenmetabolisme. De prevalentie van leversteatose in de westerse 

landen is hoog en zal zeker stijgen met de stijging van de prevalentie van obesitas en 

diabetes. Hierdoor zal voor een groot aantal mensen het risico op verstoringen van 

het glucose- en lipiden metabolisme stijgen en zo ook het risico op cardiovasculaire 

ziekten. 
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