
June 2007

EPL, 78 (2007) 58001 www.epljournal.org

doi: 10.1209/0295-5075/78/58001

Stresses in smooth flows of dense granular media
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Abstract – The form of the stress tensor is investigated in smooth, dense granular flows which
are generated in split-bottom shear geometries. We find that, within a fluctuation fluidized spatial
region, the form of the stress tensor is directly dictated by the flow field: The stress and strain-rate
tensors are co-linear. The effective friction, defined as the ratio between shear and normal stresses
acting on a shearing plane, is found not to be constant but to vary throughout the flowing zone.
This variation cannot be explained by inertial effects, but appears to be set by the local geometry
of the flow field. This is in agreement with a recent prediction, but in contrast with most models
for slow grain flows, and points to there being a subtle mechanism that selects the flow profiles.
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Introduction. – Granular media are amorphous and
athermal materials which can jam into stationary states,
but which can also yield and flow under sufficiently
strong external forcing [1,2]. Slowly flowing granulates, for
which momentum transfer by enduring contacts dominates
over collisional transfer, are characterized by a yielding
criterion and rate independence. The former expresses
that granulates only start to flow when the applied shear
stresses exceed a critical yielding threshold [1–3], while the
latter signifies that a change in the driving rate leaves both
the spatial structure of the flow and the stresses essentially
unaltered [4–8].
Solid friction exhibits a similar combination of yielding

and rate independence: According to the Coulomb friction
law, a block of material resting on an inclined plane starts
to slide when its ratio of shear to normal forces exceeds
the static friction coefficient. And, once the block slides,
the same ratio is given by a lower dynamical friction
coefficient, which is essentially rate independent.
There is no unique manner in which these friction laws

can be translated into a continuum theory, and there
exists a plethora of approaches describing slow granular
flows [3,8–14]. To test these theories, one would like to
determine the stresses and strain rates within the material.
However, experiments cannot easily access the flow in the
bulk of the material, or probe the stress tensor in sufficient
detail. In addition, slow grain flows often exhibit sharp
gradients, thus casting doubt on the validity of continuum
theories [3–6,9]. Finally, granular flows are notoriously

sensitive to subtle microscopic features [5], which often
translates into a substantial number of tunable parameters
in the models [10]. As far as we are aware, no direct
comparison between the full stress and strain rate tensor
has been undertaken for slow granular flows.
In this letter, we numerically study grain flows in split-

bottom geometries as shown in fig. 1. Recently, these flows
were shown to exhibit robust and continuum-like flow
profiles that are numerically tractable and are governed
by a number of universal, i.e. grain-independent, scaling
relations, making them eminently suitable for our purpose.
We relate the stress tensor to the strain-rate tensor in
these flows, thus providing a benchmark for the testing and
development of theoretical models for smooth and dense
grain flows. Experiments and numerics so far have focussed
on the flow in a cylindrical geometry (fig. 1c), where a
wide shear zone is generated by rotating a centre bottom
disc with respect to the cylindrical container [7,14,15]. We
present some data for this cylindrical case, but focus on
the linear version of this geometry (fig. 1a), where we find a
wide shear zone to emanate from the relative motion of two
bottom plates along their “fault line”. In this system, the
physics behind the stresses is easier to disentangle because
the stream lines are not curved.
Our main finding is that, throughout the flowing zone,

the stress and strain tensor are co-linear, meaning that
their eigen-directions, or equivalently, their principle
directions, coincide. Moreover, we find that the ratios
of the non-zero stress components, such as the effective
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Fig. 1: (a) Linear shear geometry where a split along the middle
of the system generates a wide shear zone in a layer of grains.
The curves indicate sheets of constant velocity. (b) Cuboid
element of material showing the definition of the angle θ, the
stresses in the SFS framework, and the labelling of the axis
—the grey objects in a) and c) are examples of such elements.
(c) Cylindrical split-bottom geometry, where the grains are
driven by the rotation of a bottom disc. The two surfaces of
rotation indicate sheets of constant angular velocity. Note that
in the limit Rs→∞ one obtains the linear geometry (a).

friction coefficient, which is the ratio between shear
and normal stresses acting on a shearing plane, are not
constants but vary throughout the flowing zone. This
variation is crucial to understand the finite width of the
shear zones, and is not due to the variation in the magni-
tude of the local strain rate. Both of these findings are in
accord with the main features of theory developed in [8],
and constitute an important step forward in establishing
a general framework for the modelling of grains flows.

SFS framework. – We formulate our results in the
context of the theoretical framework recently developed by
Depken et al. [8]. The central assumption of this so-called
SFS theory is that, once the material is flowing, strong
fluctuations in the contact forces enable otherwise jammed
states to relax within a spatial region which we refer to
as the fluctuation fluidized region. In this region there
cannot be a shear stress without a corresponding shear
flow. This assumption can be interpreted as stating that
the yielding threshold, which determines the onset of flow,
is no longer relevant once part of the material flows, since
this induces strong non-local fluctuations in the contact
forces. Further one observes that the flows can be locally
(and in the present cases also globally) seen as comprised
of material sheets, with no internal average strain rate,
sliding past each other (see fig. 1).
Combining these two ingredients, it follows that both

the shear strains and shear stresses in these material sheets
are zero, and we refer to them as a Shear Free Sheet (SFS).
It also follows that the stress and strain-rate tensors are
co-linear. The major and minor principle directions of the
strain-rate tensor are at an angle of 45◦ with respect to
the SFSs, and in the more intuitive basis specified by these
sheets (see fig. 1b) the stress tensor takes the form:

σSFS =



P ′ 0 0
0 P τ
0 τ P


 . (1)

To test this prediction, we check whether the numeri-
cally obtained stresses are co-linear with the strain rate
tensor and thus are of the form (1). Moreover, when no
further assumptions are made, the three components P ,
P ′, and τ will be different, and in general vary through-
out the sample. In fact, if the stress is of this form, a
simple stress balance argument shows that µeff := τ/P has
to vary throughout the shear zones [8]: A constant µeff
would correspond to a shear zone of zero width, clearly
inconsistent with the available data [7,15].
To put these predictions in perspective, let us briefly

consider the case of faster flows, where collisions play a
role. The arguments for the form of the stress tensor can
be extended to apply also for such systems, and Pouliquen
and co-workers [13] have suggested that the stress tensor is
of the form given in eq. (1). However, they introduce the
following restriction: P ′ = P and τ = µeff(I)P , where
the effective friction is a material-dependent function of
the so-called inertial number I= γ̇d/

√
P/ρ (see footnote 1),

and d and ρ are the particles diameter and density, respec-
tively [12,13]. For the slow flows under consideration
here, we should consider the limit I→ 0. If we only
consider µeff to depend on I, µeff becomes a material
constant, which is, as we explained above, incompatible
with the finite width of the shear zones [8,14,16]. Our
study will thus illuminate how subtle details of the form
of the stress tensor have significant consequences for the
grain flow.

Method. – The simulations are carried out with
a discrete element method (DEM) for 80–100 k mono-
disperse Hertzian spheres satisfying the Coulomb friction
laws. The relevant parameters describing the material
properties of the spheres are the normal stiffness
kn = 2× 105mg/d, the tangential stiffness kt = 2/7kn, the
normal and the tangential viscous damping coefficients
γn = 50

√
g/d, γt = 0, and the microscopic coefficient of

friction µm = 0.5. Here d and m are the diameter and the
mass of spheres, and g is the gravitational acceleration.
The characteristic timescale t0 is given by

√
d/g (e.g.,

t0 = 0.0101 s if d= 1mm). We have studied a range of
driving rates varying from ±0.05 to ±0.005 d/t0 and 0.015
to 0.005 rad/t0 for the linear and circular geometries,
respectively. Stresses and velocities are averaged over
the symmetry direction (along split) and are resolved
with a resolution of 0.9d in the cross-section. The stress
tensor within this volume is the sum of contact and
collisional stresses [17], where the latter is three orders
of magnitude smaller than the former. The linear setup
has dimensions 20d in the shearing direction (periodic
boundary conditions), a width of 80d, and a height of 50d.
The details of the specific implementation can be found
elsewhere [17].

1The inertial number can be seen as the ratio of the characteristic
timescale for a grain to relax back from a local dilation event
(d
√
ρ/P ) to the strainrate (1/γ̇).
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Fig. 2: Stress ratios σij/σ33 in the linear geometry. The data
was taken for a run where the velocity difference across the
sliding bottom plates was 0.05 d/t0, and was averaged over the
time interval ranging from 7150 t0 to 9150 t0 —similar results
where obtained for a velocity difference that was ten times
smaller. We plot the data as a function of θ, the angle between
the “1” direction of the SFS basis (see fig. 1) and the vertical.
Black (red) dots refer to points inside (outside) the fluctuation
fluidized zone (see text), and the curves are quadratic fits to
the data in this zone. The stress tensor follows eq. (1): The
ratios σ12/σ33, σ13/σ33 and σ22/σ33 are very close to zero, zero
and one, while the ratios σ11/σ33 = P

′/P and σ23/σ33 = µeff
vary with θ and do not attain any special value.

The form of the stress tensor. – We first study
the relation between stresses and strain rates in the
linear geometry. Through a cross-section of the flow we
record the time-averaged stress and velocity fields, and
from the latter we extract the orientation of the SFS
basis. In the region far away from the shear zone, these
fields fluctuate strongly, and we limit the analysis to a
“fluctuation fluidized zone”. For this particular data set
we take the boundary of the fluctuation fluidized zone to
be defined by where the inertial number I attains the value
Icut = 4× 10−5 —why this is reasonable is detailed below.
Within this zone, we express the stresses in the SFS

basis, and compare our numerically obtained stresses to
the SFS form (1). We find that, due to gravity, all stress
components grow roughly proportional with depth. Since
the SFS theory makes no prediction on the absolute
values of the various stress components, we focus on the
stress ratios σij/σ33 (note that σ23/σ33 directly yields the
effective friction coefficient, µeff).
In fig. 2 we plot the stress ratios as a function of the

angle θ, which parameterizes the orientation of the SFS
basis with respect to gravity (see fig. 1b). Even though
the stress ratios could vary arbitrarily with position
throughout the cross-section, we find that their main
variation is with θ —the relevance of this angle will be
discussed below. Figure 2 illustrates that in the fluctuation
fluidized zone the stress tensor takes the SFS form (1).
First, all stress ratios within this region appear to collapse
on single curves when plotted as a function of θ, while data
outside the region is scattered more strongly. Second, the
values for the ratio’s σ12/σ33 and σ13/σ33 scatter around
zero. Third, the ratio σ22/σ33 is close to one and does
not vary with θ. Together these points show the validity
of the SFS picture within the fluctuation fluidized region

(see below for a more precise definition). Finally, the stress
ratios σ11/σ33 = P

′/P and σ23/σ33 = τ/P are not constant
and do not attain any special values. The data does not
suggest that it is possible to simplify the form of the stress
tensor (1) any further.

Angle dependence of stress. – The variation of
the effective friction µeff with angle θ takes on a special
significance in the linear geometry. In [8] it was shown
that, given a stress tensor of the SFS form, force balance
dictates that µeff attains its maximum in the middle
of the shear zone, where θ= 0. It was further shown
that the curvature of µeff(θ) could be directly related to
the scaling of the width of the shear zone with vertical
position in the sample; W ∼ zα, α= 1/(1+ ∂θθµeff |θ=0).
For constant µeff , α = 1 and the shear zones become of
zero width [8,14,16].
As fig. 2a shows, µeff varies by roughly 10% throughout

the fluctuation fluidized region and indeed attains a
maximum in the middle. A quadratic fit to µeff yields that
∂θθµeff |θ=0 ≈ 2.5[5], which suggests the scaling exponent
α= 0.35[5]. From the numerical data presented here, and
from the data in [7] and [15], the value of this width
exponent can be estimated to be somewhere in the range
0.25–0.4, consistent with our estimate2. We interpret this
coincidence as a strong check on the validity of the SFS
form —the variation of µeff is clearly a subtle effect, and
one could imagine that small and systematic deviations of
the stresses from the SFS form could destroy the relation
between α and ∂θθµeff |θ=0.

Spatial variation of the stress. – In fig. 3 we plot
the variations of the stress ratios σij/σ33 throughout
a cross-section of the linear cell, including data from
outside the fluctuation fluidized zone. We will now provide
support for our assertion that the dominant variations of
the stress ratios are with θ. We first checked that the
correlation between µeff and dimensionless quantities, such
as the density and the curvatures of the SFS basis, are
unconvincing. Other potential candidates are θ, γ̇, and I,
and these are also shown fig. 3. Figure 3 shows that the
spatial variation of µeff is closer to θ than it is to γ̇ or I.
Moreover, if the variation of µeff is dominated by the

variation of I or γ̇, one would expect the width of the
shear zones to strongly depend on the shear rate —in
stark contrast to both experimental [7,15] and numerical
data [15]. In fact, in runs done for a driving rate which
is a factor 10 smaller than shown here, the stresses,
flow profiles and µeff(θ) are indistinguishable from those
reported here —the system is truly rate independent.
Finally, for the small inertial numbers here, dµeff/dI ∼
O(1) (based on the data presented in [12]), while variations
in I over the shear zone are O(10−3) —far too small to
explain the 10% variation in µeff .

2The error bar on ∂θθµeff |0 is based on its variation with Icut,
when this cutoff ranges from 1.5× 10−5 to 10−4.
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Fig. 3: Components of the stress tensor in the SFS basis for the linear shearing geometry, compared to the angle θ, local strain
rate γ̇ and inertial number I. This data is based on the same run as shown in fig. 2. A qualitative change of behavior of the
stress fields is clearly visible around the dashed lines, which indicates the boundary of what is taken as the fluctuation fluidized
zone, I = Icut = 4× 10−5 (see text).

The fluctuation fluidized region. – Central to the
SFS picture is that shear flows induce force fluctuations
that spread through and fluidize the material, thus elim-
inating the yield stress. How far do these fluidized zones
spread? As can be seen in figs. 2 and 3, there is a clear
region within which the stresses satisfy the SFS form of
eq. (1), while outside this region the stresses become noisy.
We initially expected the total local strain experienced
since the start of the numerical experiment, γ̇t, to distin-
guish regions where fluctuations have allowed the stresses
to relax to the SFS form. But, when attempting to maxi-
mize the spatial region of co-linearity, we found that the
inertial number, I, leads to a better estimate of the fluctu-
ation fluidized region: For the same required accuracy in
co-linearity, a larger region is selected (see footnote 1). In
figs. 2 and 3, the region is defined as I > Icut = 4× 10−5. It
should be noted that this cut-off does not define a region
of visible shear (as seen from the γ̇ plot in fig. 3), but
rather a region within which the microscopic fluctuations,
created mainly in the region of relatively large strain rates,
remove any static shear resistance.
Can we understand the numerical value of Icut? The

total strain experienced after t= 8000 t0 (taken in the
middle of the total time interval over which the stresses
are averaged) equals 8000 t0 γ̇ = 8000

√
d/gγ̇. At the edge

of the fluctuation fluidized zone at a certain height z, the
local strain rate equals Icut/d

√
P/ρ= Icut

√
g(h− z)/d;

hence the total strain experienced at this edge equals
8000Icut

√
(h− z)/d= 0.32√(h− z)/d. Near the bottom

the total strain thus approximates five, while near the
surface it becomes of order 0.3. Even though the fluc-
tuation fluidized region is not directly given by γ, these
numbers nevertheless set a reasonable scale for the amount
of strain the material needs to experience before it is
fluidized, in particular if one realizes that due to the pres-
sure gradient, the strain near the bottom couples more
strongly to the fluctuations of the forces near the surface
than vice versa. It should also be noted that we do not
expect the numerical value of Icut to be universal —in
particular, for longer runs we expect the fluctuation
fluidized region to spread slowly, with Icut ∼ 1/t.

Fig. 4: Stress ratios σij/σ33 as a function of θ, for a circular
geometry. The driving rate Ω was equal to 0.015 rad/t0, and
averages where taken for time ranging from 8000 t0 to 10

4 t0,
corresponding to the interval from approximately 19 to 24
turns. We have checked that similar results where obtained
for a run with Ω equal to 0.005 rad/t0. As before, black (red)
dots referring to points inside (outside) the fluctuation fluidized
zone. For details, see text.

Results in cylindrical geometry. – In fig. 4 we show
simulation results for a cylindrical geometry with H/Rs =
0.675 —similar results are reached for a number of other
filling heights not shown here [18]. Figure 4 shows that also
for the curved geometry, the stresses are in the SFS form:
The values for the ratio’s σ12/σ33, σ13/σ33 and σ22/σ33
scatter around zero, zero, and one, respectively, with
the ratio’s σ11/σ33 = P

′/P and σ23/σ33 = τ/P varying
throughout the fluctuation fluidized zone.
Note that due to the more complex curved geometry,

we have no a priori theoretical reason for expecting the
stress ratios to vary with θ alone. Moreover, there is no
reason that µeff should be maximal in the middle, nor is
it known how µeff(θ) would be related to the width of the
shear zones —if at all.

Conclusion and outlook. – Based on the single,
straightforward and minimal assumption that fluctuations
on the grain scale forbid the occurrence of shear stresses
without an associated shear flow, it was in [8] predicted
that the stress tensor in slow grain flows should take
the form (1), with the stress ratios varying throughout
the sample. The data presented here fully confirms this
prediction: i) In the flowing zones, the stresses indeed take
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the form (1). The three different components P ′, P and
τ are sufficiently different that no further simplifications
are consistent with the data. ii) The ratio P ′/P and
the effective friction µeff = τ/P are not constant. iii) The
variation of µeff can be directly related to the width of
the shear zones. iv) For the cylindrical geometry, the
stress tensor also satisfies the SFS criteria, with P ′/P and
µeff = τ/P varying over the shear zone, but due to the
more complex geometry we cannot relate this variation
directly to the width of the shear zones.
The SFS approach thus provides a powerful framework

for unraveling the relations between flow and stresses in
granular media in general, and the crucial but subtle
spatial variation of the effective friction µeff and the
unexpected variation of P ′/P in particular.
The range of validity of the SFS approach is not yet

clearly mapped out, and additional studies to answer
the following key questions are called for. i) How does the
stress tensor evolve when the flow rate is increased? The
stress tensor in the Pouliquen approach for fast flows
is similar to ours, but with the restrictions that P ′ = P
and that µeff(I) is a function of the local strain rate
only [13]. Here µeff apparently depends on geometry, and
the crossover from geometry (θ) to inertial number (I)
dependence needs to be explored. ii) We have seen here
that P and P ′ are systematically different, as was also seen
in simulations of chute flows [17], and moreover, that P ′/P
is not a constant. Though we do not understand the cause,
nor the precise relevance, of this, it cannot be a priori
ignored given the crucial role played by such variation
of µeff in the formation of the wide shear zones in the
linear geometry. iii) What distinguishes the zone where the
stresses are in the SFS form from the region where they
are not? Underlying the SFS picture is the assumption
that the fluctuations are sufficiently strong and fast, and
one imagines that far away from the shear zones this
no longer holds true, thus leading to a breakdown of
co-linearity. Preliminary data suggest, however, that the
fluctuation fluidized region, most of which is established
after a short transient, very slowly expands as a function
of time [18]. Possibly, after sufficiently long time, all the
material has experienced flow and the stress tensor takes
the SFS form everywhere, but this may be hard to verify
numerically. Similar questions on the validity of the SFS
framework can also be asked when the driving rate is
made excessively slow. Ultimately, these questions are
related to the puzzling nature of the transition between
the static and flowing state of granular media [17,19].
iv) Is the variation of the effective friction the cause or
effect of the smoothness of our shear profiles? We suggest
that the spreading of contact force fluctuations, from the
rapidly shearing center to the tails of the shear zones, may
elucidate the microscopic mechanism by which the width
of the shear zones are selected. In this picture, the spread
of fluctuations would also drive the subtle variations of

the coarse grained and time averaged stresses, which thus
serve to signal an underlying, but unknown, fluctuation-
driven mechanism [20].
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