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We present a theoretical analysis of the connection between classical polarization optics and quantum
mechanics of two-level systems. First, we review the matrix formalism of classical polarization optics from a
quantum information perspective. In this manner the passage from the Stokes-Jones-Mueller description of
classical optical processes to the representation of one- and two-qubit quantum operations, becomes straight-
forward. Second, as a practical application of our classical-vs-quantum formalism, we show how two-qubit
maximally entangled mixed states can be generated by using polarization and spatial modes of photons
generated via spontaneous parametric down conversion.
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I. INTRODUCTION

Quantum computation and quantum information have
been among the most popular branches of physics in the last
decade �1�. One of the reasons for this interest is that the
smallest unit of quantum information, the qubit, could be
reliably encoded in photons that are easy to manipulate and
virtually free from decoherence at optical frequencies �2,3�.
Thus, recently, there has been a growing interest in quantum
information processing with linear optics �4–7� and several
techniques to generate and manipulate optical qubits have
been developed for different purposes ranging from, e.g.,
teleportation �8,9�, to quantum cryptography �3�, to quantum
measurements of qubits states �10� and processes �11�, etc. In
particular, Kwiat and co-workers �12,13� were able to create
and characterize arbitrary one- and two-qubit states, using
polarization and frequency modes of photons generated via
spontaneous parametric down conversion �SPDC� �14�.

Manipulation of optical qubits is performed by means of
linear optical instruments such as half- and quarter-wave
plates, beam splitters, polarizers, mirrors, etc., and networks
of these elements. Each of these devices can be thought as an
object where incoming modes of the electromagnetic fields
are turned into outgoing modes by a linear transformation.
From a quantum information perspective, this transforms the
state of qubits encoded in some degrees of freedom of the
incoming photons, according to a completely positive map E
describing the action of the device. Thus, an optical instru-
ment may be put in correspondence with a quantum map and
vice versa. Such correspondence has been largely exploited
�7,12,13,15� and stressed �16,17� by several authors. More-
over, classical physics of linear optical devices is a textbook
matter �18,19�, and quantum physics of elementary optical
instruments has been studied extensively �20�, as well. How-
ever, surprisingly enough, a systematic exposition of the con-
nection between classical linear optics and quantum maps is
still lacking.

In this paper we aim to fill this gap by presenting a de-
tailed theory of linear optical instruments from a quantum
information point of view. Specifically, we establish a rigor-
ous basis for the connection between quantum maps describ-
ing one- and two-qubit physical processes operated by
polarization-affecting optical instruments and the classical

matrix formalism of polarization optics. Moreover, we will
use this connection to interpret some recent experiments in
our group �21�.

We begin in Sec. II by reviewing the classical theory of
polarization-affecting linear optical devices. Then, in Sec. III
we show how to pass, in a natural manner, from classical
polarization-affecting optical operations to one-qubit quan-
tum processes. Such passage is extended to two-qubit quan-
tum maps in Sec. IV. In Sec. V we furnish two explicit ap-
plications of our classical-vs-quantum formalism that
illustrate its utility. Finally, in Sec. V we summarize our re-
sults and draw the conclusions.

II. CLASSICAL POLARIZATION OPTICS

Many textbooks on classical optics introduce the concept
of polarized and unpolarized light with the help of the Jones
and Stokes-Mueller calculi, respectively �19�. In these cal-
culi, the description of classical polarization of light is for-
mally identical to the quantum description of pure and mixed
states of two-level systems, respectively �22�. In the Jones
calculus, the electric field of a quasimonochromatic polar-
ized beam of light which propagates close to the z direction,
is represented by a complex-valued two-dimensional vector,
the so-called Jones vector E�C2 :E=E0x+E1y, where the
three real-valued unit vectors �x ,y ,z� define an orthogonal
Cartesian frame. The same amount of information about the
state of the field is also contained in the 2�2 matrix J of
components Jij =EiEj

�, �i , j=0,1�, which is known as the co-
herency matrix of the beam �18�. By definition, the matrix J
is Hermitean and positive semidefinite. Further, J has the
projection property J2=J Tr J, and its trace equals the total
intensity of the beam Tr J= �E0�2+ �E1�2. If we choose the
electric field units in such a way that Tr J=1, then J has the
same properties of a density matrix representing a two-level
quantum system in a pure state. In classical polarization op-
tics the coherency matrix description of a light beam has the
advantage, with respect to the Jones vector representation, of
generalizing to the concept of partially polarized light. In this
case the projection property is lost and J has the same prop-
erties of a density matrix representing a two-level quantum
system in a mixed state. Coherency matrices of partially po-
larized beams of light may be obtained by tacking linear
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combinations �NwNJN of coherency matrices JN of polarized
beams �all traveling along the same optical axis z�, where the
index N runs over an ensemble of field configurations and
wN�0. It should be noted that the off-diagonal elements of
the coherency matrix are complex valued and, therefore, not
directly observables. However, as with any 2�2 matrix, J
can be written either in the Pauli basis �� �23� or in the
standard basis Y� : �Y��ij =�2i+j,� �i , j=0,1�, as

J =
1

2 �
�=0

3

s��� = �
�=0

3

y�Y�, �1�

where s�=Tr���J��R, y�=Tr�Y�
†J��C, and, from now on,

all Greek indices � ,� ,� ,� , . . ., take the values 0,1,2,3. The
four real coefficients s�, called the Stokes parameters �24� of
the beam, can be actually measured thus relating J with ob-
servables of the optical field. The real and complex represen-
tations s� and y�, respectively, are related via the matrix
V :V��=Tr���Y��, such that s�=��V��y�, where V†V /2= I4

and I4 is the 4�4 identity matrix.
When a beam of light passes through an optical system its

state of polarization may change. Within the context of po-
larization optics, a polarization-affecting linear optical in-
strument is any device that performs a linear transformation
upon the electric field components of an incoming light beam
without affecting the spatial modes of the field. Half- and
quarter-wave plates, phase shifters, polarizers, are all ex-
amples of such devices. The class of polarization-affecting
linear optical elements comprises both nondepolarizing and
depolarizing devices. Roughly speaking, a nondepolarizing
linear optical element transforms a polarized input beam into
a polarized output beam. On the contrary, a depolarizing lin-
ear optical element transforms a polarized input beam into a
partially polarized output beam �25�. A nondepolarizing de-
vice may be represented by a classical map via a single 2
�2 complex-valued matrix T, the Jones matrix �19�, such
that

Jin → Jout = TJinT
†. �2�

There exist two fundamental kinds of nondepolarizing opti-
cal elements, namely, retarders and diattenuators; any other
nondepolarizing element can be modeled as a retarder fol-
lowed by a diattenuator �26�. A retarder �also known as a
birefringent element� changes the phases of the two compo-
nents of the electric-field vector of a beam, and may be rep-
resented by a unitary Jones matrix TU. A diattenuator �also
known as a dichroic element� instead changes the amplitudes
of components of the electric-field vector �polarization-
dependent losses�, and may be represented by a Hermitean
Jones matrix TH.

Since TikTjl
� = �T � T��ij,kl	Mij,kl we can rewrite Eq. �2�

as �27�

�Jout�ij = Mij,kl�Jin�kl, �3�

where, from now on, summation over repeated indices is
understood and all Latin indices i , j ,k , l ,m ,n , . . ., take the
values 0 and 1. M is also known as the Mueller matrix in the
standard matrix basis �28� and it is simply related to the more
commonly used real-valued Mueller matrix M �19� via the

change of basis matrix V :M =VMV† /2. For the present case
of a nondepolarizing device, M is called the Mueller-Jones
matrix.

With respect to the Jones matrix T, the Mueller matrices
M and M have the advantage of generalizing to the repre-
sentation of depolarizing optical elements. Mueller matrices
of depolarizing devices may be obtained by taking linear
combinations of Mueller-Jones matrices of nondepolarizing
elements as

M = �
e

peMe = �
e

peTe � Te
�, �4�

where pe�0. Index e runs over an ensemble �either deter-
ministic �29� or stochastic �30�� of Mueller-Jones matrices
Me=Te � Te

�, each representing a nondepolarizing device. In
the current literature M is often written as �26�

M = 
M00 dT

p W
� , �5�

where p�R3, d�R3 are known as the polarizance vector
and the diattenuation vector �superscript T indicates transpo-
sition�, respectively, and W is a 3�3 real-valued matrix.
Note that p is zero for pure depolarizers and pure retarders,
while d is nonzero only for dichroic optical elements �26�.
Moreover, W reduces to a three-dimensional orthogonal ro-
tation for pure retarders. It the next section, we shall show
that if we choose M00=1 �this can always be done since it
amounts to a trivial polarization-independent renormaliza-
tion�, the Mueller matrix of a nondichroic optical element
�d=0�, is formally identical to a nonunital, trace-preserving,
one-qubit quantum map �also called channel� �31�. If also
p=0 �pure depolarizers and pure retarders�, then M is iden-
tical to a unital one-qubit channel �as defined, e.g., in Ref.
�1��.

III. FROM CLASSICAL TO QUANTUM MAPS:
THE SPECTRAL DECOMPOSITION

An important theorem in classical polarization optics
states that any linear optical element �either deterministic or
stochastic� is equivalent to a composite device made of at
most four nondepolarizing elements in parallel �32�. This
theorem follows from the spectral decomposition of the Her-
mitean positive semidefinite matrix H �33� associated to M,
and defined as Hij,kl	Mik,jl �27,34�. In view of the claimed
connection between classical polarization optics and one-
qubit quantum mechanics, it is worth noting that H is for-
mally identical to the dynamical �or Choi� matrix, describing
a one-qubit quantum process �35�. After a straightforward
calculation, it can be shown that �27,34�

M = �
�=0

3

	�T� � T�
� , �6�

where �T��ij 	�u���=2i+j. 	��0 are the non-negative eigen-
values of H, and �u��= �u0 ,u1 ,u2 ,u3� is the orthonormal ba-
sis of eigenvectors of H: Hu�=	�u�. Equation �6� represents
the content of the decomposition theorem in classical polar-
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ization optics, as given by Cloude �32,36�. It implies, via Eq.
�3�, that the most general operation that a linear optical de-
vice can perform upon a beam of light can be written as

Jin → Jout = �
�=0

3

	�T�JinT�
† , �7�

where the four Jones matrices T� represent four different
nondepolarizing optical elements. Since 	��0, Eq. �7� is
formally identical to the Kraus form �1� of a completely
positive �CP� one-qubit quantum map E. It worth to note �37�
that a classical Mueller matrix is always equivalent to a
quantum CP map and not, for example, to a positive map.
The reason for this fact is twofold: First, it can be easily
shown �28� that the matrix H associated to a Mueller-Jones
matrix representing a nondepolarizing optical device, is nec-
essarily positive semidefinite. Second, in Ref. �38�, starting
from the exact equations for the propagation of a paraxial
electromagnetic field through an arbitrary linear medium, we
have calculated the form of the corresponding phenomeno-
logical Mueller matrix M that could be measured with a
standard polarization tomography setup. From such calcula-
tion, it straightforwardly follows that M has necessarily the
form given in Eq. �4� and, therefore, is equivalent to a CP
map.

Because of the isomorphism between J and 
 �22�, from
Eq. �7�, it follows that when a single photon encoding a
polarization qubit �represented by the 2�2 density matrix

in�, passes through an optical device classically described by
the Mueller matrix M=��	�T� � T�

� , its state will be trans-
formed according to


in → 
out � �
�=0

3

	�T�
inT�
† , �8�

where the proportionality symbol “�” accounts for a possible
renormalization to ensure Tr 
out=1. Such renormalization is
not necessary in the corresponding classical Eq. �7� since
Tr Jout is equal to the total intensity of the output light beam
that does not need to be conserved. Note that by using the
definition �6� we can rewrite explicitly Eq. �8� as


out,ij � 
̃out,ij = Mij,kl
in,kl, �9�

where �
�ij = �i�
�j are density matrix elements in the single-
qubit standard basis ��i�, i� �0,1�, and 
̃out is the un-
normalized single-qubit density matrix such that 
out
= 
̃out /Tr 
̃out. From Eq. �9�, it readily follows that

Tr 
̃out = M00 + M01�
in,01 + 
in,10� + iM02�
in,01 − 
in,10�

+ M03�
in,00 − 
in,11� , �10�

where we have assumed Tr 
in=1. The equation above
shows that M represents a trace-preserving map only if
M00=1 and dT= �M01,M02,M03�= �0,0 ,0�, namely, only if
M describes the action of a nondichroic optical instrument.
In addition, if 
in represents a completely mixed state, that is,
if 
in=X0 /2, then from Eq. �9� it follows that


̃out =
1

2 �
�=0

3

p�X�, �11�

where we have defined p0	M00 and �p1 , p2 , p3�=p is the
polarizance vector. Equation �11� shows that in this case
Tr 
̃out=M00, and 
out= 
̃out /M00�X0 /2 if p�0, that is, the
map represented by M �or M� is unital only if p=0.

By writing Eqs. �7�–�11� we have thus completed the re-
view of the analogies between linear optics and one-qubit
quantum maps. In the next section we shall study the con-
nection between classical polarization optics and two-qubit
quantum maps.

IV. POLARIZATION OPTICS AND TWO-QUBIT
QUANTUM MAPS

Let us consider a typical SPDC setup where pairs of pho-
tons are created in the quantum state 
 along two well de-
fined spatial modes �say, path A and path B� of the electro-
magnetic field, as shown in Fig. 1. Each photon of the pair
encodes a polarization qubit and 
 can be represented by a
4�4 Hermitean matrix. Let TA and TB be two distinct optical
devices put across path A and path B, respectively. Their
action upon the two-qubit state 
 can be described by a bilo-
cal quantum map 
→EA � EB�
� �39�. A subclass of bilocal
quantum maps occurs when either TA or TB is not present in
the setup, then either EA=I or EB=I, respectively, and the
corresponding map is said to be local. In the above expres-
sions I represents the identity map: It does not change any
input state. When a map is local, that is when it acts on a
single qubit, it is subjected to some restrictions. This can be
easily understood in the following way: For definiteness, let
assume EB=I so that the local map E can be written as
E�
�=EA � I�
�. Let Alice and Bob be two spatially sepa-
rated observer who can detect qubits in modes A and B,
respectively, and let 
 and 
E denote the two-qubit quantum
state before and after TA, respectively. In absence of any
causal connection between photons in path A with photons in
path B, special relativity demands that Bob cannot detect via
any type of local measurement the presence of the device TA
located in path A. Since the state of each qubit received by
Bob is represented by the reduced density matrix 
E

B

TB
Path B

Path A

BD

Nonlinear
crystal

AD

&

TA
Pump

FIG. 1. �Color online� Layout of a typical SPDC experimental
setup. An optically pumped nonlinear crystal emits photon pairs that
propagate along path A and B through the scattering devices TA and
TB, respectively. Scattered photons are detected in coincidence by
detectors DA and DB that permit a tomographically complete two-
photon polarization state reconstruction.
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= �Tr�A�
E�, the locality constraint can be written as


E
B = 
B. �12�

We can write explicitly the map EA � I as a Kraus operator-
sum decomposition �1�


 � 
E � �
�=0

3

	��A� � I�
�A�
†

� I� , �13�

where, from now on, the symbol I denotes the 2�2 identity
matrix and �A�� is a set of four 2�2 Jones matrices describ-
ing the action of TA. Then, Eq. �12� becomes

�
k,l


li,kj��
�=0

3

	�A�
† A��

kl

� �
k


ki,kj , �14�

which implies the trace-preserving condition on the local
map EA � I:

�
�=0

3

	�A�
† A� � I . �15�

Local maps that do not satisfy Eq. �15� are classified as non-
physical. In this section we show how to associate a general
two-qubit quantum map E�
�=EA � EB�
� to the classical
Mueller matrices MA and MB describing the optical devices
TA and TB, respectively. Surprisingly, we shall find that
physical linear optical devices exist �dichroic elements� that
may generate nonphysical two-qubit quantum maps �40�.

Let denotes with �ij	�i � �j, i , j� �0,1� the two-qubit
standard basis. A pair of qubits is initially prepared in the
generic state 
=
ij,kl�ij�kl�=
ik,jl

R �i�k� � �j�l�, where super-
script R indicates reshuffling �34� of the indices, the same
operation we used to pass from M to H: 
ik,jl

R 	
ij,kl
= �ij�
�kl. 
 is transformed under the action of the bilocal
linear map E�
�=EA � EB�
� into the state


E = EA � EB�
� � �
�,�

	�
A	�

B�A� � B��
�A�
†

� B�
†� , �16�

where �A�� and �B�� are two sets of 2�2 Jones matrices
describing the action of TA and TB, respectively. From Eq.
�16� we can calculate explicitly the matrix elements
�ij�
E�kl= �
E�ij,kl in the two-qubit standard basis

�
E�ij,kl � 	�
A�A��im�A�

� �kp
mp,nq
R 	�

B�B�� jn�B�
��lq

= Mik,mp
A M jl,nq

B 
mp,nq
R , �17�

where summation over repeated Latin and Greek indices is
understood. Since by definition �
E�ij,kl= �
E

R�ik,jl we can re-
write Eq. �17� using only Greek indices as

�
E
R��� � M��

A M��
B 
��

R = �MA
� MB���,��
��

R , �18�

where summation over repeated Greek indices is again un-
derstood. Equation �18� relates classical quantities �the two
Mueller matrices MA and MB� with quantum ones �the in-
put and output density matrices 
R and 
E

R, respectively�, thus
realizing the sought connection between classical polariza-
tion optics and two-qubit quantum maps.

An important case occurs when EB=I⇒MB= I4 and Eq.
�18� reduces to


E
R � MA
R. �19�

Equation �19� illustrates once more the simple relation exist-
ing between the classical Mueller matrix MA and the quan-
tum state 
E.

With a typical SPDC setup it is not difficult to prepare
pairs of entangled photons in the singlet polarization state.
Via a direct calculation, it is simple to show that when 

represents two qubits in the singlet state 
s= 1

4 ��0 � �0−�1

� �1−�2 � �2−�3 � �3� and MA is normalized in such a
way that M00

A =1, then the proportionably symbol in the last
equation above can be substituted with the equality symbol:


E
R = M
s

R ⇒ 
E = �M
s
R�R, �20�

where, from now on, we write M for MA to simplify the
notation. Note that this pleasant property is true not only or
the singlet but for all four Bell states �1�, as well. Equation
�20� has several remarkable consequences: Let M denotes
the real-valued Mueller matrix associated to M and assume
M00=1. Then, the following results hold:

Tr�
E
2� = Tr�MMT�/4, �21�

�Tr�A�
̃E� = �A + D� + M01�B + C� + iM02�B − C�

+ M03�A − D� , �22�

where 
̃E	�M
R�R is the un-normalized output density ma-
trix. Equation �22� is more general than Eq. �21�, since it
holds for any input density matrix 
 and not only for the
singlet one 
s. In addition, in Eq. �22� we wrote the input
density matrix 
 in a block-matrix form as


 = 
A B

C D
� , �23�

where A, B, C=B†, and D are 2�2 submatrices and A+D
= �Tr�A�
�. Equation �21� shows that the degree of mixedness
of the quantum state 
E is in a one-to-one correspondence
with the classical depolarizing power �25� of the device rep-
resented by M. Finally, Eq. �22�, together with Eqs. �5� and
�12�, tells us that the two-qubit quantum map Eq. �20� is
trace preserving only if the device is not dichroic, namely,
only if dT= �M01,M02,M03�= �0,0 ,0�. This last result shows
that despite of their physical nature �think of, e.g., a polar-
izer�, dichroic optical elements must be handled with care
when used to build two-qubit quantum maps. We shall dis-
cuss further this point in the next section.

Before concluding this section, we want to point out the
analogy between the 16�16 Mueller matrix M=MA

� MB associated to a bilocal two-qubit quantum map, and
the 4�4 Mueller-Jones matrix M=T � T� representing a
nondepolarizing device in a one-qubit quantum map. In both
cases the Mueller matrix is said to be separable. Then, in Eq.
�4� we learned how to build nonseparable Mueller matrices
representing depolarizing optical elements. By analogy, we
can now build nonseparable two-qubit Mueller matrices rep-
resenting nonlocal quantum maps, as

AIELLO, PUENTES, AND WOERDMAN PHYSICAL REVIEW A 76, 032323 �2007�

032323-4



M = �
A,B

wABMA
� MB, �24�

where wAB�0, wAB�wA�wB, and indices A, B run over
two ensembles of arbitrary Mueller matrices MA and MB

representing optical devices located in path A and path B,
respectively.

V. APPLICATIONS

In this section we exploit our formalism, by applying it to
two different cases. As a first application, we build a simple
phenomenological model capable to explain certain of our
recent experimental results �21� about scattering of entangled
photons. The second application consists in the explicit con-
struction of a bilocal quantum map generating two-qubit
MEMS states. A realistic physical implementation of such
map is also given.

A. Example 1: Simple phenomenological model

In Ref. �21�, by using a setup similar to the one shown in
Fig. 1, we have experimentally generated entangled two-
qubit mixed states that lie upon and below the Werner curve
in the linear entropy-tangle plane �41�. In particular, we have
found the following. �a� Birefringent scatterers always pro-
duce generalized Werner states of the form 
GW=V � I
WV†

� I, where 
W denotes ordinary Werner states �42� and V
represents an arbitrary unitary operation. �b� Dichroic scat-
terers generate sub-Werner states, that is states that lie below
the Werner curve in the linear entropy-tangle plane. In both
cases, the input photon pairs were experimentally prepared in
the polarization singlet state 
s. In this subsection we build,
with the aid of Eq. �20�, a phenomenological model explain-
ing both results �a� and �b�.

To this end let us consider the experimental setup repre-
sented in Fig. 1. According to the actual scheme used in Ref.
�21�, where a single scattering device was present, in this
subsection we assume TB=I, so that the resulting quantum
map is local. The scattering element TA inserted across path
A can be classically described by some Mueller matrix M.
In Ref. �26�, Lu and Chipman have shown that any given
Mueller matrix M can be decomposed in the product

M = MDMBM�, �25�

where M�, MB, and MD are complex-valued Mueller ma-
trices representing a pure depolarizer, a retarder, and a diat-
tenuator, respectively. Such decomposition is not unique, for
example, M=M�MDMB is another valid decomposition
�43�. Of course, the actual values of M�, MB, and MD
depend on the specific order one chooses. However, in any
case they have the general forms given below:

M� = �
1 + c

2
0 0

1 − c

2

0
a + b

2

a − b

2
0

0
a − b

2

a + b

2
0

1 − c

2
0 0

1 + c

2

� , �26�

MB = TU � TU
� , �27�

MD = TH � TH
� , �28�

where a ,b ,c�R and TU, TH are the unitary and Hermitean
Jones matrices representing a retarder and a diattenuator, re-
spectively. Actually, the expression of M� given in Eq. �26�
is not the most general possible �26�, but it is the correct one
for the representation of pure depolarizers with zero polari-
zance, such as the ones used in Ref. �21�. Note that although
MB and MD are Mueller-Jones matrices, M� is not. When
a=b=c	 p : p� �0,1� the depolarizer is said to be isotropic
�or, better, polarization isotropic�. This case is particularly
relevant when birefringence and dichroism are absent. In this
case MB= I4=MD, and Eq. �25� gives M=M�. Thus, by
using Eq. �26� we can calculate M��p� and use it in Eq. �20�
to obtain


E = p
s +
1 − p

4
I4 	 
W, �29�

that is, we have just obtained a Werner state: 
E=
W. Thus,
we have found that a local polarization-isotropic scatterer
acting upon the two-qubit singlet state, generates Werner
states.

Next, let us consider the cases of birefringent �retarders�
and dichroic �diattenuators� scattering devices that we used
in our experiments. In these cases the total Mueller matrices
M of the devices under consideration can be written as M
=MZM�, where either Z=B or Z=D, and M�=M��p� rep-
resents a polarization-isotropic depolarizer. For definiteness,
let consider in detail only the case of a birefringent scatterer,
since the case of a dichroic one can be treated in the same
way. In this case

MBM��p� = �
�=0

3

	��p�TUT� � TU
� T�

� �30�

and, as result of a straightforward calculation, 	0= �1
+3p� /2, 	1=	2=	3= �1− p� /2, T�=X� /�2; while TU is an
arbitrary unitary 2�2 Jones matrix representing a generic
retarder. For the sake of clarity, instead of using directly Eq.
�20�, we prefer to rewrite Eq. �16� adapted to this case as


E = �
�=0

3

	��p��TUT� � I�
s�T�
† TU

†
� I�

= TU � I
�
�=0

3

	��p��T� � I�
s�T�
†

� I��TU
†

� I

= TU � I
WTU
†

� I = 
GW, �31�

where Eq. �29� has been used. Equation �31� clearly shows
that the effect of a birefringent scatterer is to generate what
we called generalized Werner states, in full agreement with
our experimental results �21�.

The analysis for the case of a dichroic scatterer can be
done in the same manner leading to the result
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E � 
̃E = TH � I
WTH
†

� I , �32�

where TH is a 2�2 Hermitean matrix representing a generic
diattenuator �19�

TH = 
d0 cos 2 + d1 sin 2 �d0 − d1�cos  sin 

�d0 − d1�cos  sin  d1 cos 2 + d0 sin 2� ,

�33�

where di� �0,1� are the diattenuation factors, while
� �0,2�� gives the direction of the transmission axis of the
linear polarizer to which TH reduces when either d0=0 or
d1=0. Figure 2 reports, in the linear entropy-tangle plane, the
results of a numerical simulation were we generated 104

states 
E from Eq. �32�, by randomly generating �with uni-
form distributions� the four parameters p, d0, d1, and  in the
ranges p ,d0 ,d1� �0,1�, � �0,2��. The numerical simula-
tion shows that a local dichroic scatterer may generate sub-
Werner two-qubit states, that is, states located below the
Werner curve in the linear entropy-tangle plane. The qualita-
tive agreement between the result of this simulation and the
experimental findings shown in Fig. 3 of Ref. �21� is evident.

Discussion. It should be noticed that while we used the
equality symbol in writing Eq. �31�, we had to use the pro-
portionality symbol in writing Eq. �32�. This is a conse-
quence of the Hermitean character of the Jones matrix TH
that generates a non-trace-preserving map. In fact, in this
case from M =MDM��p�, where MD= �VTH � TH

� V†� /2 and
M��p�= �VM��p�V†� /2, we obtain Tr�
̃E�= �d0

2+d1
2� /2�1.

Moreover, Eq. �22� gives


E
B = �Tr�A�
E� =

X0

2
− p�d0

2 − d1
2

d0
2 + d1

2�X1 sin 2 + X3 cos 2

2
,

�34�

where 
E= 
̃E /Tr�
̃E�. This result is in contradiction, for d0

�d1, with the locality constraint expressed by Eq. �12�
which requires


E
B =

X0

2
. �35�

As we already discussed in the previous section, only the
latter result seems to be physically meaningful since photons
in path B, described by 
E

B, cannot carry information about
device TA which is located across path A. On the contrary,
Eq. �34� shows that 
E

B is expressed in terms of the four
physical parameters p, d0, d1, and  that characterize TA. Is
there a contradiction here?

In fact, there is not. One should keep in mind that Eq. �34�
expresses the one-qubit reduced density matrix 
E

B that is
extracted from the two-qubit density matrix 
E after the latter
has been reconstructed by the two observers Alice and Bob
by means of nonlocal coincidence measurements. Such ma-
trix contains information about both qubits and, therefore,
contains also information about TA. Conversely, 
E

B=X0 /2 in
Eq. �35�, is the reduced density matrix that could be recon-
structed by Bob alone via local measurements before he and
Alice had compared their own experimental results and had
selected from the raw data the coincidence counts.

From a physical point of view, the discrepancy between
Eqs. �34� and �35� is due to the polarization-dependent losses
�that is, d0�d1� that characterize dichroic optical devices
and it is unavoidable when such elements are present in an
experimental setup. Actually, it has been already noticed that
a dichroic optical element necessarily performs a kind of
post-selective measurement �16�. In our case coincidence
measurements post-select only those photons that have not
been absorbed by the dichroic elements present in the setup.
However, since in any SPDC setup even the initial singlet
state is actually a post-selected state �in order to cut off the
otherwise overwhelming vacuum contribution�, the practical
use of dichroic devices does not represent a severe limitation
for such setups.

B. Example 2: Generation of two-qubit MEMS states

In the previous subsection we have shown that it is pos-
sible to generate two-qubit states represented by points upon
and below the Werner curve in the linear entropy-tangle
plane, by operating on a single qubit �local operations� be-
longing to a pair initially prepared in the entangled singlet
state. In another paper �40� we have shown that it is also
possible to generate MEMS states �see, e.g., Refs. �41,44�,
and references therein�, via local operations. However, the
price to pay in that case was the necessity to use a dichroic
device that could not be represented by a “physical,” namely,
a trace-preserving, quantum map. In the present subsection,
as an example illustrating the usefulness of our conceptual
scheme, we show that by allowing bilocal operations per-
formed by two separate optical devices TA and TB located as
in Fig. 1, it is possible to achieve MEMS states without using
dichroic devices.

To this end, let us start by rewriting explicitly Eq. �16�,
where the most general bilocal quantum map E�
�=EA

� EB�
� operating upon the generic input two-qubit state 
, is
represented by a Kraus decomposition

0 0.2 0.4 0.6 0.8 1
Linear entropy, SL

0

0.2

0.4

0.6

0.8

1

elgna
T

,T

0 0.2 0.4 0.6 0.8 1
Linear entropy, SL

0

0.2

0.4

0.6

0.8

1

elgna
T

,T

FIG. 2. Numerical simulation from our phenomenological
model qualitatively reproducing the behavior of a dichroic scatter-
ing system. The gray region represents unphysical states and it is
bounded from below by MEMS �dashed curve�. The lower continu-
ous thick curve represents Werner states.

AIELLO, PUENTES, AND WOERDMAN PHYSICAL REVIEW A 76, 032323 �2007�

032323-6




E = EA � EB�
� = �
�,�

	�
A	�

B�A� � B��
�A�
†

� B�
†� , �36�

where now the equality symbol can be used since we assume
that both single-qubit maps EA and EB are trace preserving

�
�=0

3

	�
AA�

† A� = I = �
�=0

3

	�
BB�

†B� �37�

but not necessarily unital: EF�I�� I, F� �A ,B� �39�. Under
the action of E, the initial state of each qubit traveling in path
A or path B is transformed into either the output state


E
A = �Tr�B�
E� = �

�=0

3

	�
AA�
AA�

† �38�

or


E
B = �Tr�A�
E� = �

�=0

3

	�
BB�
BB�

†, �39�

respectively, where 
A= �Tr�B�
� and 
B= �Tr�A�
�. Without
loss of generality, we assume that the two qubits are initially
prepared in the singlet state 
=
s. Then Eqs. �38� and �39�
reduce to 
E

F=��	�
FF�F�

† /2, F� �A ,B�. From the previous
analysis �see Eqs. �16�–�18�� we know that to each bilocal
quantum map EA � EB can be associated a pair of classical
Mueller matrices MA and MB such that

�
E
R��� = �

�,�
�MA

� MB���,���
s
R���. �40�

The real-valued Mueller matrices MA and MB associated to
MA and MB, respectively, can be written as

MA = 
1 0T

a A
�, MB = 
1 0T

b B
� , �41�

where Eq. �5� with dA=0=dB and M00=1 has been used, and

pA 	 a = �a1

a2

a3
�, pB 	 b = �b1

b2

b3
� , �42�

are the polarizance vectors of MA and MB, respectively. We
remember that the condition dA=dB=0 is a consequence of
the fact that both maps EA and EB are trace preserving, while
the conditions a�0 and b�0 reflect the nonunital nature of
EA and EB. With this notation we can rewrite Eqs. �38� and
�39� as


E
A =

1

2 �
�=0

3

a�X�, �43�


E
B =

1

2�
�=0

3

b�X�, �44�

where we have defined a0=1=b0. Moreover, the output two-
qubit density matrix 
E=E�
s� can be decomposed into a real
and an imaginary part as 
E=
E

Re+ i
E
Im, where


E
Re =

1

4�
�+

+ �+ �+ �+

�+ �−
+ �− �−

�+ �− �+
− �−

�+ �− �− �−
−
� �45�

and


E
Im =

1

4�
0 − �+ − �+ − �+

�+ 0 − �− − �−

�+ �− 0 − �−

�+ �− �− 0
� �46�

with

�±
+ 	 �1 + a3� ± �b3�1 + a3� − C33� ,

�±
− 	 �1 − a3� ± �b3�1 − a3� + C33� , �47�

and

�± 	 b1 ± �a3b1 − C31�, �± 	 a1 ± �a1b3 − C13� ,

�± 	 a1b1 − C11 � �a2b2 − C22� , �48�

and

�± 	 b2 ± �a3b2 − C32�, �± 	 a2 ± �a2b3 − C23� ,

�± 	 a2b1 − C21 ± �a1b2 − C12� , �49�

where Cij 	�ABT�ij, i , j� �1,2 ,3�.
At this point, our goal is to determine the two vectors a, b

and the two 3�3 matrices A, B such that 
E
Im=0 and


E
Re = 
MEMS = �

g�p�/2 0 0 p/2

0 1 − g�p� 0 0

0 0 0 0

p/2 0 0 g�p�/2
� , �50�

where

g�p� = �2/3, 0 � p � 2/3,

p , 2/3 � p � 1.
� �51�

To this end, first we calculate a and b by imposing


E
A = 
MEMS

A = 
1 − g�p�/2 0

0 g�p�/2 � , �52�


E
B = 
MEMS

B = 
g�p�/2 0

0 1 − g�p�/2 � , �53�

respectively. Note that only fulfilling Eqs. �52� and �53�, to-
gether with 
E

Re=
MEMS and 
E
Im=0, will ensure the achieve-

ment of true MEMS states. It is surprising that in the current
literature the importance of this point is neglected. Thus, by
solving Eqs. �52� and �53� we obtain a1=a2=0, a3=1−g�p�,
and b=−a, where Eqs. �43� and �44� have been used. Then,
after a little of algebra, it is not difficult to find that a pos-
sible bi-local map E=EA � EB that generates a solution 
E for
the equation 
E=
MEMS, can be expressed as in Eqs. �40� and
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�41� in terms of the two real-valued Mueller matrices

MA = �
1 0 0 0

0 �p 0 0

0 0 �p 0

1 − g�p� 0 0 g�p�
� ,

MB = �
1 0 0 0

0 − �p 0 0

0 0 �p 0

g�p� − 1 0 0 − g�p�
� . �54�

It is easy to check that both MA and MB are physically ad-
missible Mueller matrices since the associated matrices HA

and HB have the same spectrum made of non-negative eigen-
values �	�

A�= �	�
B�	�	��= �	0 ,	1 ,	2 ,	3�. In particular:

�	�� = �0, 1 − p, 0, 1 + p�, for 2/3 � p � 1 �55�

and

�	�� = �0,
1

3
,
5 − �1 + 36p

6
,
5 + �1 + 36p

6
� �56�

for 0� p�2/3. It is also easy to see that the map E can be
decomposed as in Eq. �36� in a Kraus sum with A0=A2=0

A1
�	1 = 
0 �1 − p

0 0
�, A3

�	3 = 
1 0

0 �p
� �57�

and B0=B2=0

B1
�	1 = 
0 0

0 �1 − p
�, B3

�	3 = 
0 − �p

1 0
� �58�

for 2 /3� p�1. Analogously, for 0� p�2/3 we have A0
=0

A1
�	1 = 
0 1/�3

0 0
� , �59�

A2
�	2 = 
− �− 0

0 �+
�, A3

�	3 = 
�+ 0

0 �−
� �60�

and B0=0

B1
�	1 = 
0 0

0 1/�3
� , �61�

B2
�	2 = 
 0 �+

�− 0
�, B3

�	3 = 
 0 − �−

�+ 0
� , �62�

where

�± 	�1

2�1 ±
1 + 6p

�1 + 36p
� , �63�

�± 	�1

3�1 ±
1 − 9p

�1 + 36p
� . �64�

Note that these coefficients satisfy the following relations:

�+
2 + �−

2 = 1, �65�

1
3 + �+

2 + �−
2 = 1. �66�

A straightforward calculation shows that the single-qubit
maps EA and EB are trace-preserving but not unital, since

�
�=0

3

	�A�A�
† = 
2 − g�p� 0

0 g�p� � �67�

and

�
�=0

3

	�B�B�
† = 
g�p� 0

0 2 − g�p� � . �68�

At this point our task has been fully accomplished. How-
ever, before concluding this subsection, we want to point out
that both maps EA and EB must depend on the same param-
eter p in order to generate proper MEMS states. This means
that either a classical communication must be established
between TA and TB in order to fix the same value of p for
both devices or a classical signal encoding the information
about the value of p must be sent toward both TA and TB.

Physical implementation. Now we furnish a straightfor-
ward physical implementation for the quantum maps pre-
sented above. Up to now, several linear optical schemes gen-
erating MEMS states were proposed and experimentally
tested. Kwiat and co-workers �41� were the first to achieve
MEMS using photon pairs from spontaneous parametric
down conversion. Basically, they induced decoherence in
SPDC pairs initially prepared in a pure entangled state by
coupling polarization and frequency degrees of freedom of
the photons. At the same time, a somewhat different scheme
was used by De Martini and co-workers �44� who instead
used the spatial degrees of freedom of SPDC photons to
induce decoherence. In such a scheme the use of spatial de-
grees of freedom of photons required the manipulation of not
only the emitted SPDC photons, but also of the pump beam.

In this subsection, we show that both single-qubit maps
EA and EB can be physically implemented as linear optical
networks �6� where polarization and spatial modes of pho-
tons are suitably coupled, without acting upon the pump
beam. The basic building blocks of such networks are polar-
izing beam splitters �PBSs�, half-waveplates �HWPs�, and
mirrors. Let �i ,N be a single-photon basis, where the indices
i and N label polarization and spatial modes of the electro-
magnetic field, respectively. We can also write �i ,N= âiN

† �0
in terms of the annihilation operators âiN and the vacuum
state �0. A polarizing beam splitter distributes horizontal �i
=H� and vertical �i=V� polarization modes over two distinct
spatial modes, say N=n and N=m, as follows:

�H,nin → �H,nout and �V,nin → �V,mout,

�H,min → �H,mout and �V,min → �V,nout, �69�

as illustrated in Fig. 3. A half-waveplate does not couple
polarization and spatial modes of the electromagnetic field
and can be represented by a 2�2 Jones matrix THWP�� as
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THWP�� = 
− cos 2 − sin 2

− sin 2 cos 2
� , �70�

where  is the angle the optic axis makes with the horizontal
polarization. Two half-waveplates in series constitute a po-
larization rotator represented by TR��=THWP�0

+ /2�THWP�0�, where 0 is an arbitrary angle and

TR�� = 
cos  − sin 

sin  cos 
� . �71�

By combining these basic elements, composite devices
may be built. Figures 4�a� and 4�b� show the structure of a
horizontal �a� and vertical �b� variable beam splitter, denoted
HVBS and VVBS, respectively. HVBS performs the follow-
ing transformation

�H,nin → cos �H,nout + sin �H,mout, �72�

while VVBS makes

�V,min → cos �V,nout + sin �V,mout. �73�

At this point we have all the ingredients necessary to built
the optical linear networks corresponding to our maps. We
begin by illustrating in detail the optical network implement-

ing EA �for 2 /3� p�1�, which is shown in Fig. 5. Let ��0
=a�H+b�V be the input single-photon state entering the
network. If we define the VVBS angle

p = arccos�p , �74�

then it is easy to obtain after a straightforward calculation:

��1
I  = �	1A1��0 = b�1 − p�H , �75�

��3
I  = �	3A3��0 = a�H + b�p�V . �76�

Since detector DA does not distinguish spatial mode 1 from
spatial mode 2, the two states ��1

I  and ��3
I , sum incoherently

and the single-photon output density matrix can be written as

EA

= ��1
I ��1

I �+ ��3
I ��3

I �, where


EA
= 
�a�2 + �b�2�1 − p� ab��p

a�b�p p�b�2 � . �77�

Of course, if we write the input density matrix as 
0
= ��0��0�, it is easy to see that


EA
= �

�=0

3

	�A�
0A�
† , �78�

where Eq. �57� has been used. Equation �78�, together with
Eq. �38�, proves the equivalence between the quantum map
EA and the linear optical setup shown in Fig. 5. Note that the
Mach-Zehnder interferometers present in Figs. 5 and 6 are
balanced, that is, their arms have the same optical length. In
a similar manner, we can physically implement EB �for 2 /3
� p�1�, in the optical network shown in Fig. 6, where we
have defined

in
,ni out,ni

out
,mj

in,mj

FIG. 3. The polarizing beam splitter couples horizontal and ver-
tical polarization modes �i , j� �H ,V��, with two distinct spatial
modes N=n and N=m of the electromagnetic field.

0θ

20
θθ +

0θ
20
θθ +

in,nH

4
π−

out,cos nHθ

out,sin mHθ

4
π−

in,mV

out,cos nVθ

out,sin mVθ

PBS HWP

HVBS =

VVBS =

(a)

(b)

FIG. 4. The variable beam splitters HVBS and VVBS.

o45

o0

PBS HWP

VVBS Mirror

pθ

H

V

0ψ

AD
I
1α I

3α

FIG. 5. Linear optical network implementing EA �for 2 /3� p
�1�, for MEMS I generation.
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��1
I  = �	1B1��0 = b�1 − p�V , �79�

��3
I  = �	3B3��0 = − b�p�H + a�V , �80�

and, again, 
EB
= ��1

I ��1
I �+ ��3

I ��3
I �.

The optical networks necessary to realize quantum maps
generating MEMS II states are a bit more complicated. In

order to illustrate them we need to define the following two
angles 1/3 and � that determine the transmission amplitudes
of two VVBSs used in the MEMS II networks:

1/3 = arccos�1

3
, �81�

� = arccos��3

2
�+� . �82�

In addition, a third angle � determining the transmission
amplitudes of a HVBS, must be introduced:

� = arccos �+. �83�

Then, the map EA �for 0� p�2/3�, is realized by the optical
network shown in Fig. 7, where we have defined

��2
II = �	2A2��0 = − a�−�H + b�+�V , �84�

��3
II = �	3A3��0 = a�+�H + b�−�V , �85�

��1
II = �	1A1��0 =

b
�3

�H . �86�

In this case, incoherent detection produces the output mixed
state 
EA

= ��2
II��2

II�+ ��3
II��3

II�+ ��1
II��1

II�. Finally, the map EB

�for 0� p�2/3�, is realized by the optical network shown in
Fig. 8, where we have defined

��2
II = �	2B2��0 = b�+�H + a�−�V , �87�

PBS HWP

VVBS Mirror

�0

�45

pθ

H

V

0ψ

BD
I

1β I
3β

FIG. 6. Linear optical network implementing EB �for 2 /3� p
�1�, for MEMS I generation.

AD

o0

ψθ

φθH

II
2α II

3α II
1α

V

0ψ

PBS HWP

VVBS MirrorHVBS

3/1θ

o0
o45

FIG. 7. Linear optical network implementing EA �for 0� p
�2/3�, for MEMS II generation. Each of the two Mach-Zehnder
interferometers constituting the network are balanced.

BD

o45− o0

o45

ψθ

φθH

II
2β II

3β II
1β

V

0ψ

PBS HWP

VVBS MirrorHVBS

3/1θ

FIG. 8. Linear optical network implementing EB �for 0� p
�2/3�, for MEMS II generation. Each of the two Mach-Zehnder
interferometers constituting the network are balanced.
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��3
II = �	3B3��0 = − b�−�H + a�+�V , �88�

��1
II = �	1B1��0 =

b
�3

�V . �89�

As before, now we have 
EB
= ��2

II��2
II�+ ��3

II��3
II�+ ��1

II��1
II�.

VI. SUMMARY AND CONCLUSIONS

Classical polarization optics and quantum mechanics of
two-level systems are two different branches of physics that
share the same mathematical machinery. In this paper we
have described the analogies and connections between these
two subjects. In particular, after a review of the matrix for-
malism of classical polarization optics, we established the

exact relation between one- and two-qubit quantum maps
and classical description of linear optical processes. Finally,
we successfully applied the formalism just developed, to two
cases of practical utility.

We believe that the present paper will be useful to both
the classical and the quantum optics community since it en-
lightens and puts on a rigorous basis, the so-widely used
relations between classical polarization optics and quantum
mechanics of qubits. A particularly interesting aspect of our
work is that we describe in detail how dichroic devices �i.e.,
devices with polarization-dependent losses�, fit into this gen-
eral scheme.
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