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Chapter 1

Introduction

Once the heritable character of a trait has been established, the strategies available for

gene mapping may be split into two classes. In the first ’candidate gene’ approach,

prior biological knowledge is available about the function of one or several genes,

the scientific question to be tested is whether this limited number of pre-identified

genes influences the trait of interest. Subsequently, researchers are usually interested

in quantifying those effects. Although the field of genetics offers some peculiarities,

well known epidemiological methods are suited to answer this type of questions. The

second ’positional mapping’ approach requires, in principle, no prior biological knowl-

edge but its purpose is perhaps less ambitious: it aims at identifying chromosomal

regions which contain genes influencing a trait. As far as the search for genes is con-

cerned, the first approach therefore is an hypotheses-testing exercise while the second

approach generates hypotheses. linkage as well as association studies fall into the posi-

tional mapping category. The former relies on the biological process of recombination

(see 1.1) and the latter on the presence of linkage disequilibrium (see also 1.1) in

populations. In the traditional gene-mapping paradigm, positional mapping precedes

candidate gene-mapping but the frontiers between the two categories are sometimes

fuzzy. Indeed nowadays, association scans often attempt to combine the two steps

together. This thesis only deals with issues related to linkage mapping.

1.1 Some basics in genetics

This section introduces some basic concepts of genetics that are a pre-requisite to the

understanding of the problem of linkage.

A gene is defined as a sequence of desoxyribonucleic acid (DNA) that codes a

protein; most of our DNA is non-coding. Despite this formal definition, the term gene
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Chapter 1. Introduction

is often loosely used to refer to a piece of DNA or genetic material, whether coding

or not. This imprecision in terminology is often a hurdle for statisticians willing to

enter the realm of genetics. Nevertheless, I will adhere to this practice. The genetic

material of human beings is stored in 23 pairs of chromosomes, 22 pairs of autosomes

and 1 pair of sex chromosomes. The transmission of this material from parents to

offspring occurs independently at each chromosome: each parent contributes one copy

of his/her two genes at random to an offspring via their gametes, this is known as the

law of segregation or Mendel’s first law. Parents, however, rarely transmit an entire

copy of one of their two chromosomes (termed grand-paternal and grand-maternal).

Instead, their transmitted chromosome is made up of alternating segments from the

grand-paternal and grand-maternal chromosomes. This exchange of genes between

the grand-paternal and grand-maternal chromosomes occurs during the formation of

gametes or meiosis at points called crossovers, as a result chromosomes in gametes

and resulting offspring are made up of recombinant chromosomes (see Fig.1).

Father

C

Mother

C

C

Gametes ,
×

,

Possible
offspring

, , ,

Figure 1.1: Chromosomes in gametes and offspring after recombinations - C indicates a crossover

event

This recombination process ensures genetic diversity, it is also the phenomenon

that makes linkage analysis possible because it introduces variation in genetic sim-

ilarity between relatives across one single chromosome. A recombination event be-

tween two chromosomal positions or loci is equivalent to an odd number of crossovers

2



Chapter 1. Introduction

between those two loci in one meiosis, this happens at a certain rate called the re-

combination fraction θ. The recombination fraction increases with physical distance,

however the relation between the two varies across the genome. If two loci are close

together on the same chromosome, they are said to be linked; if they are very far

apart, on the same chromosome or on different chromosomes, they are unlinked and

the law of segregation implies that θ = 0.5. The genetic distance dAB (unit=Morgan)

between two loci A and B is defined as the average number of crossovers between

them per meiosis, by linearity of the expectation dAC = dAB + dBC (if B lies between

A and C). This additive property of the genetic distance scale is extremely convenient

but obviously does not apply to recombination fractions although this is the proba-

bilistic quantity needed for computations in linkage testing. Mapping functions that

convert recombination fraction θ into genetic distance m, or conversely, are therefore

available. One slightly simplistic but practically important such function is given by

Haldane’s function θ = 1
2 (1− e−2m) which is obtained by assuming that the number

of crossovers between two loci follows a Poisson distribution with mean proportional

to the genetic distance between loci.

Since the genetic similarity between relatives extends over relatively large chro-

mosomal segments, it would be far too costly and inefficient to sequence the whole

genome of each individual. Geneticists have identified DNA polymorphisms (so called

markers) which can be seen as genes (in the loose sense) whose alleles (the different

forms that a gene can take) can easily be identified by modern molecular biology tech-

niques. It must be stressed that this technology can only determine the unordered

pair of alleles (or genotype) at each marker for the two paired chromosomes of an

individual. Classically, a few hundreds highly polymorphic genetic markers known as

micro-satellites are scattered more or less evenly across all chromosomes. Since they

have many and therefore relatively rare alleles, those markers allow one to tell whether

relatives share the same genes at that location with little uncertainty. Those markers

are usually taken in non-coding regions of the genome and are therefore believed,

due to lack of selective pressure, to be neither related with each other nor with the

potentially causing genes, in the overall population. In genetic jargon, the markers

are said to be in linkage equilibrium with each other and with the genes 1. Another

1In statistical terms, considering the one-allele genotypes of gametes at different loci as random
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Chapter 1. Introduction

type of (bi-allelic) markers known as single nucleotide polymorphisms (SNP) is now

routinely used in gene-association studies, these markers are more densely available

across the genome and they can be cheaply typed in chips called SNP-arrays. They

are now being used in linkage analysis too although their use is more problematic

due to linkage disequilibrium between them. Despite the intensive computations in-

volved in their use in linkage analysis, they offer the promise of a cheap and evenly

distributed linkage information map across the genome.

1.2 Overview of linkage methods

The first traits to be mapped by linkage methods were Mendelian i.e. they were rare

and determined in an almost one-to-one relation by the genotype at a single location.

With such strong genetic effects, the actual mode of inheritance (i.e. genetic model)

was fairly well known via segregation analysis (which only requires phenotypic data

in families). This type of traits lent itself very well to the so-called parametric linkage

methods. In its simplest version, this methodology postulates a genetic model for

the trait values Y given the genotype at the causing locus with genotype G via a

penetrance function P(Y |G). The likelihood L(M |Y ; θ) of the data at a marker

M given the recombination fraction θ between marker M and true locus can be

computed and the corresponding likelihood ratio test supθ
L(M |Y ;θ)

L(M |Y ; θ=0.5) provides a

test for linkage.

This model for linkage was appealing for Mendelian traits and did yield an un-

precedented harvest of genes for those rare diseases but it is much less suited for the

analysis of complex traits. The methodological emphasis has long switched to biomet-

rical models and to the so-called non-parametric linkage methods. This other branch

of methods is essentially based on identifying chromosomal regions where phenotypic

similarity coincides with genotypic similarity. The concept of identity-by-descent

(IBD) formalizes the idea of genetic similarity between relatives: two genes are said

to be IBD if they are copies of the same ancestral gene. The IBD configuration at

different loci in a pedigree is not observable directly but it can be conceived of as

variables (a haplotype is a possible value of the resulting multivariate random variable), two loci are

said to be in linkage equilibrium if the genotypes at those two loci are independently distributed, if

not they are said to be in linkage disequilibrium
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Chapter 1. Introduction

a hidden Markov process whose transition probabilities depend upon the recombi-

nation fractions [Lander and Botstein, 1989] between loci. The observations at the

markers are used to calculate the IBD distribution at any arbitrary position on the

chromosome [Kruglyak et al., 1996; Abecasis et al., 2002].

Continuous traits

For a quantitative trait, a Gaussian distribution naturally arises from the view that

many factors, whether environmental or genetic, with equally small individual effects

contribute to the trait. By further assuming a random mating population, one obtains

the so-called variance components model [Lange et al., 1976; Amos, 1994; Almasy and

Blangero, 1998]. In a simple additive version of the model, the total trait variance

is decomposed into three sources: familial or common environment, additive genetic

and measurement error or unique environment. The covariance of two relatives turns

out to be the sum of the common environment variance and the additive genetic

variance times a kinship coefficient which is proportional to the average proportion of

genes that the relatives share. The model is often used in heritability and segregation

analysis where the purpose is to establish the genetic character of a trait and to further

characterize its mode of inheritance. Monozygotic twins have the same genes while

dizygotic twins share only half of them but the degree to which the environment is

shared by individuals in the two types of twinships is identical. Twin studies therefore

provide a simple design for testing for a purely genetic component.

If IBD was measured exactly at a causative additive gene, the covariance for two

relatives in the variance components model would include a term equal to the product

of kinship coefficient by the gene attributable variance σ2
q times the IBD sharing.

The test for linkage at any putative position is therefore based on rejecting the null

hypothesis that σ2
q = 0 in favor of the alternative σ2

q > 0. In unselected families,

this is traditionally done using a likelihood ratio test statistic. In practice, IBD

is measured at locations nearby the causing gene(s) and the estimated attributable

variance will be a deteriorated version of σ2
q , nevertheless the test statistic will tend

to be maximal at positions closest to the true gene location. The popularity of the

variance components model in quantitative trait locus (QTL) mapping is undoubtedly

due to its extreme flexibility: variance components corresponding to non-additive
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Chapter 1. Introduction

(dominant) gene effects, gene-gene interactions, gene by covariate interactions can

be accommodated, the model mean can be corrected for important covariate effects,

multivariate phenotypes can be conjunctly analyzed, the method can be adapted for

analysis of the sex-chromosomes [Ekstrøm, 2004] and mixtures of variance components

models can be used to face the problem of locus heterogeneity (see 1.3) [Ekstrøm and

Dalgaard, 2003]; these extensions are only hindered by the computations required for

fitting the corresponding models.

The much less computationally greedy regression-based methods for linkage anal-

ysis stem back to the work of Haseman and Elston [1972] who proposed to regress the

squared difference in phenotypic values of siblings on their IBD sharing. In 30 years,

many variations have appeared on the theme and they are all based on the regression

of some form of phenotypic similarity statistic on the IBD sharing. It is only recently

that light has been shed on the relation between Haseman-Elston regressions and the

score test of the linkage parameter σ2
q = 0 in the variance components model [Tang

and Siegmund, 2001; Putter et al., 2002; Wang and Huang, 2002a]: some optimal form

of Haseman-Elston regression happens to coincide with such a score test in an additive

variance components model for sibling pairs. The conceptualization of those regres-

sion methods as score tests in the flexible variance components model frameworks

has opened the way to fruitful generalizations of the regression-based methods e.g. to

arbitrary pedigrees. In addition to their light computational burden, regression-based

or score test based methods are appealing because of their potential robustness (in

terms of false positive rate) to normality and to outliers. Finally, by inverting the

regression i.e. IBD is regressed on a function of phenotypic similarity, the method

can in principle be used to make valid inference in families sampled using their trait

values [Sham et al., 2002].

Qualitative traits

For qualitative traits, which for linkage studies is almost synonymous of binary traits

(i.e. disease in the medical field), non-parametric testing for linkage is usually done

by comparing the average observed IBD sharing with its expected value under the

assumption of no linkage. In designs where only one type of independent relative

pairs is collected (e.g. affected sib-pair designs, ASP), this test based on deviation of
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Chapter 1. Introduction

IBD sharing uses 1 degree of freedom (df), while a totally model-free ASP analysis

necessitates a 2-df test [Risch, 1990]. Although the recognition of constraints for

the parameters reduces the space of alternatives [Holmans, 1993], the higher level

of significance required for the 2-df test often annihilates the gain in non-centrality

parameter and the 1-df test appears to be a good testing strategy for a wide range of

genetic models. Different types of independent relative pairs (e.g. affected sib pairs,

discordant sib pairs, affected cousins) can be combined by using a weighted average of

the excess IBD sharing of each kind; whatever the weights, provided markers segregate

in a Mendelian fashion, the test will have adequate type I error, however its optimality

will depend on how close the chosen relative weights are from the true relative excesses

in IBD sharing at the causative locus [Teng and Siegmund, 1997].

Although less attractive than when disease inheritance is clearly Mendelian, larger

families are sometimes sampled in linkage studies for complex traits. In that case,

IBD-based tests can be generalized by the use of sensible scoring functions of the

different IBD configurations in a pedigree [Whittemore and Halpern, 1994; Kong and

Cox, 1997]. Alternatively, locally optimal tests based on the likelihood of the IBD

configuration in each pedigree may be derived. The tests are pedigree-specific and

only optimal if the true relative weights of the different parameters are known but

sensible guesses provide decent efficiency across a wide range of genetic models [Teng

and Siegmund, 1997]. As in the case of families consisting only of pairs of relatives,

combining families of different types is a matter of assigning relative weights to the

family-specific tests.

The incorporation of covariate information into disease linkage studies has been an

active area of research in the past few years [Schaid et al., 2003]. The usual approach

amounts to regressing the IBD sharing on the covariates of interest in a linear or non-

linear fashion [Olson, 1999]. At least for categorical covariates, the approach can be

made non-parametric at the cost of an increase in the number of parameters, however

parsimonious models are needed in order to carry out efficient inference. Age is a

crucial covariate to take into account in order to include unaffected individuals in a

linkage study. Another way to approach the problem is to use the disease age of onset

as the possibly censored endpoint.

7
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Significance level

Since the position of the true locus is often completely ignored, the whole genome is

scanned using a linkage statistic on a grid of chromosomal positions, this multiplicity

of tests increases the false positive rate. The tests at neighboring positions are highly

correlated so a Bonferroni correction of the α level of each test is too conservative.

Asymptotic arguments based on the theory of Gaussian processes leads to approxi-

mate thresholds for the non-parametric methods statistics [Lander and Green, 1987;

Feingold et al., 1993]. These thresholds rely on the Haldane’s mapping function, they

depend on the type of families studied (which determines the correlation structure

of the process) and the degrees of freedom for the test; although they are derived

under the idealized assumption of a dense map of completely informative markers,

the thresholds seem to be only slightly conservative when applied to discrete evenly

distributed maps of partially informative markers [Teng and Siegmund, 1998]. Due

to a tradition dating back to the early days of parametric linkage [Morton, 1955], sta-

tistical significance of linkage tests is usually presented as a LOD score (originally a

log10 of the odds that a locus is linked versus unlinked) which is obtained by dividing

a χ2
[1]-distributed statistics by 2 × ln(10). In current practical situations of human

sib-pair linkage studies, a LOD score of 3 or higher gives a rule of thumb for declaring

that a 1-df statistics based on average IBD sharing is significant.

In practice, various types of families are often combined, marker information varies

across the genome and the assumptions underlying the linkage model (eg. normality

in variance components model) might not be fulfilled. Nowadays, researchers tend

to base their assessment of significance on simulations. Given the ’experimental con-

ditions’ of a study (marker map characteristics, pedigree structures and patterns of

genotype missingness), marker genotypes can be simulated under the null hypothe-

sis of no linkage i.e. by simply obeying the rules of Mendelian segregation. In that

way, provided the linkage statistic can be quickly computed, the null distribution of

the statistic may be obtained at any point on the genome. This method, sometimes

called gene-dropping, therefore yields point-wise empirical p-values. The number of

times the statistic exceeds a certain threshold on a given chromosome can be counted

(note that this entails the choice of a minimal distance for considering two consecu-
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Chapter 1. Introduction

tive peaks as separate). By combining the corresponding independent p-values on all

chromosomes, one can obtain a genomewide assessment of significance.

1.3 Issues in linkage mapping

Linkage analysis has been successful in the gene mapping of hundreds of mendelian

diseases, however application of the same methodology in the search for genes re-

sponsible for complex traits has proved extremely disappointing. Most studies often

provide only suggestive evidence for linkage, and when clearly significant, replication

of the findings appears to be the exception rather than the rule.

Failure of the linkage approach to gene-mapping of complex traits is often at-

tributed to locus heterogeneity i.e. the fact that the loci influencing a trait differ

across families or groups of families 2. This is indeed a problem likely to be more

acute in linkage studies of complex traits where data from numerous small families are

gathered as opposed to a small number of large families. A direct corollary of locus

heterogeneity is that linkage studies are under-powered. In fact, due to the polygenic

nature of complex traits, most studies probably lack the sample size to detect the

inherent small gene effects.

One obvious way to tackle the problem of heterogeneity is to refine the definition of

a phenotype by defining more homogeneous clinical subgroups, so instead of sampling

breast cancer patients, geneticists successfully selected families with early-onset breast

cancer. Researchers also try to select phenotypes that are likely to be more closely

related to a biological mechanism than a broadly defined disease itself. For instance

different plasma lipid levels can be measured in the search for genes involved in obesity.

One strategy for improving power is to resort to selective genotyping [Risch and

Zhang, 1995] i.e. to only genotype families whose extreme phenotypic values promise

to deliver high linkage information. Another natural route for solving the issue of

power is by a sufficient increase of the sample size. Collaborative efforts such as

the GenomEUtwin project (http://www.genomeutwin.org/) are being set up

in order to gather sufficient data from different centers. This obviously calls for meta-

2Another type of heterogeneity called allelic heterogeneity refers to a situation where different

allelic mutations at the same locus contribute to a phenotype, however, linkage analysis is immune

to this type of heterogeneity
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analytic methodologies routinely used in the field of clinical trials.

It is also felt that the models underlying the linkage methods are too simplistic, for

instance, important covariates or interactions are often ignored. Although biologically

plausible, incorporation of gene-gene interactions in models for linkage analysis is

unlikely to yield substantial benefit [Tang and Siegmund, 2002; Purcell and Sham,

2004]. Using covariate information appears to be a more promising path towards a

refinement of the methods [Peng et al., 2005].

1.4 This thesis

This thesis presents some attempts to improve the current design and analysis of

linkage studies for complex traits. The statistical methodology adopted is driven by

the fact that genes involved in complex traits have small effects, it therefore seems

legitimate to use score tests [Cox and Hinkley, 1974] because of their local optimality

properties. In addition, score tests often give rise to tractable expressions, in the

context of linkage these can be meaningfully interpreted in terms of regressions and

quickly computed which is a crucial feature in genetics.

Chapter 2 deals mainly with the analysis of quantitative traits in families that

have been selected based on their trait values. We derive a general score test for

linkage in arbitrary pedigrees which is based on the likelihood conditional on the phe-

notypic values. Although the derivation of the test relies on the normally distributed

variance components model, its size is robust to deviations from normality. Under

local alternatives and assuming the variance components model correctly specifies the

distribution of the phenotype, the test has some optimality properties. In addition,

the value of the test’s Fisher information provides an indication of the informativeness

of each family and can be used as a criterion for genotyping selection. The test is

adapted to the case of binary data via a liability threshold model.

Chapter 3 advocates the use of selected families in the mapping of complex traits

using twins. The methodology relies on the informativeness criterion derived in chap-

ter 2, but we quantify the potential gains obtained using a series of examples of quan-

titative and qualitative phenotypes that are relevant to the GenomEUtwin project.

Chapter 4 addresses the issue of genotyping error in linkage analysis. We first
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study analytically the impact of genotyping error on linkage and provide formula

for the bias incurred. These results provide insights into some empirical findings,

in particular, we are able to explain the differences in impact of genotyping error

in random and selected designs. Finally, we suggest a robust modification of the

usual linkage test based on a genomic control of the excess IBD sharing, it provides

robustness against genotyping error as well as against other processes whose effect is

to distort the expected value of the IBD sharing.

Chapter 5 is concerned with the (in)validity of a range of standard methods when

marker information is incomplete, in particular circumstances where the generalized

estimating equations method for gene localization [Liang et al., 2001] fails are identi-

fied.

Chapter 6 transfers standard meta-analytic techniques to the field of QTL map-

ping. The field has some specificities that can be accommodated, in particular, the

problem of genetic locus heterogeneity is looked at carefully. In absence of covari-

ate observations at the individual level and under a homogeneous model, the meta-

analytic approach is asymptotically equivalent to an analysis of a pooled data set but

it is logistically much easier to carry out.

Finally, in chapter 7, we develop an approximate score test for linkage in the rich

class of generalized linear models. It is based on a pseudo-likelihood of the data and

although unlikely to be optimal in all situations, the test has the advantage of being

tractable and to have a robust type I error. It provides a simple way to incorporate

known covariate effects into linkage analysis and is applicable to arbitrary pedigrees.

The last chapter is a conclusion where I draw a perspective of the role of linkage

in gene mapping.

11



Chapter 1. Introduction

12



Chapter 2

Score Test for Detecting Linkage to

Complex Traits in Selected Samples

Abstract

We present a unified approach to selection and linkage analysis of selected samples,

for both quantitative and dichotomous complex traits. It is based on the score test

for the variance attributable to the trait locus and applies to general pedigrees. The

method is equivalent to regressing excess IBD sharing on a function of the traits. It

is shown that, when population parameters for the trait are known, such inversion

does not entail any loss of information. For dichotomous traits, pairs of pedigree

members of different phenotypic nature (e.g. affected sib pairs and discordant sib

pairs) can easily be combined as well as populations with different trait prevalences.

This chapter has been published as: J. Lebrec, H. Putter and J.C. van Houwelingen (2004).

Score Test for Detecting Linkage to Complex Traits in Selected Samples. Genetic Epidemiology 6

(2), 97–108.
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Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

2.1 Introduction

In complex traits where the effect of each contributing locus is very small, the sample

sizes needed to carry out linkage analysis usually result in costs far beyond research

budgets, even when using new high throughput genotyping technologies [Risch, 2000].

Geneticists have been aware of this fact for a while and many designs and selection

strategies have been proposed [Risch and Zhang, 1995; Dolan and Boomsma, 1998a;

Purcell et al., 2001]. In the search for genes, prior to any linkage study, researchers

usually gather evidence of heritability for the trait of interest. This is often done

in twin studies including both monozygotic and dizygotic twins from the general

population. In addition to heritability of the trait, these studies provide precise

population marginal means, variability and twin-twin correlation estimates for the

trait of interest.

Complex traits have small locus effect and this is probably why the search for the

corresponding susceptibility loci has proved so disappointing. However this is also

the reason why a score test constitutes a promising testing strategy in this context

since it has local optimality properties [Cox and Hinkley, 1974]. In this article, using

the variance components framework we give a general formulation for a score test to

detect linkage to a putative quantitative trait locus under selective sampling based

on the trait values of the pedigree members. We give simple formulae for the test in

a number of commonly used designs (sibships and nuclear families of arbitrary size).

Using a liability threshold model, we extend our results to dichotomous traits. In

particular, they apply to sib pair designs where different types of pairs (e.g. affected

and discordant sib pairs) can be combined in an optimal way, and subpopulations with

different disease prevalences can be incorporated in a straightforward manner. Our

approach provides a unified framework in which both optimal selection and subsequent

analysis are combined in a natural way, both for quantitative and dichotomous traits.
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2.2 Score test for quantitative traits in selected samples

Model

Our starting point is the variance components model, where we assume that x =

(x1, . . . , xm)′, the vector of phenotypes of the pedigree members, has been standard-

ized so that it has mean vector 0 and variances equal to 1. The m × m matrix

π contains the identity-by-descent (IBD) information at a marker, more precisely

[π]jk = πjk is the proportion of alleles shared IBD by pedigree members j and k.

For now, we assume that the marker map is fully informative, the consequences of

relaxing this assumption will be examined in Section 2.6. The variance components

model specifies that the conditional distribution of the standardized x given IBD in-

formation π follows a normal distribution with zero mean and variance-covariance

matrix Σ given by

[Σ]jk =





a2 + c2 + e2 = 1 , if j = k ,

(πjk −Eπjk)q2 + (Eπjk)a2 + c2 , if j 6= k .

where a2 denotes the total additive genetic variance, c2, the common-environment

variance and e2, the residual variance. This parameterization of the problem was

initially introduced by Tang and Siegmund [2001] and is crucial to the obtention

of simple results. For the time being we will assume absence of any dominance

component of variance. We show an extension incorporating dominance variance in

section 2.4. Since the trait values are standardized to unit variance, these variance

components can also be interpreted as proportions of variance explained by the ap-

propriate components. The total additive genetic variance a2 includes both additive

polygenic variance and the (additive) variance q2 attributable to the putative quanti-

tative trait locus (QTL). The factor Eπjk denotes the expected proportion of alleles

shared identical by descent between pedigree members j and k; it is determined solely

by the family relationship between j and k and equals twice the kinship coefficient

between j and k.

The key parameter in this model is the variance component q2 determining the

presence of linkage (no linkage is equivalent to q2 = 0). It is the only unknown

parameter in the model and we shall denote it by γ in the sequel. Two important
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properties of the variance components model are: that x and π are independent under

the hypothesis of no linkage (γ = 0) and that the marginal distribution of π does not

depend on γ.

Score test for quantitative traits

A score test for detecting linkage to quantitative traits in random samples for general

pedigrees was given by Putter et al. [2002] and by Wang [2002]. Here we extend those

results to a sampling scheme where data are selected based on phenotypic values.

We generalize results obtained by Tang and Siegmund [2001] for sibships to arbitrary

pedigrees and use the continuous case as a building block to the dichotomous case as

exposed in Section 2.5.

The following expression for the score function `xγ in the variance components

model is obtained in the appendix:

`xγ =
1
2

tr
(
Σ−1(π −Eπ)(Σ−1xx′ − I)

)
.

Here tr(A) stands for the trace (sum of the diagonal elements) of matrix A. Using ele-

mentary matrix theory, in particular tr(AB) = tr(BA) and tr(AB) = vec(A′)′vec(B)

(here vec(A) places the n columns of the m× n matrix A into a vector of dimension

mn× 1), this score function can be rewritten as

(2.1) `xγ =
1
2

vec(C)′vec(π −Eπ)

with C = Σ−1x
(
Σ−1x

)′ − Σ−1. Note that the π − Eπ matrix has all diagonal

elements equal to 0.

For selected samples, the conditional distribution of IBD sharing π given the trait

values x gives a natural framework for testing linkage [Sham et al., 2000; Dudoit and

Speed, 2000] and we shall refer to this setting as the selection model. It turns out that

the score function for this selection model, and for the joint model of x and π remains

the same. As we show below, this is true for any joint model of x and π under the

following general conditions, which are satisfied for the variance components model:

1. x and π are independent at γ = 0 and

2. the marginal distribution of π does not depend on γ.
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We now turn to the proof of our previous statement regarding the equality of the scores

for the selection model and the joint model. We denote the conditional distribution of

x |π and π |x by fγ(x |π) and fγ(π |x) respectively, and the joint distribution of x

and π by fγ(x,π). The subscript γ expresses the dependence of those distributions on

γ. The marginal distributions of x and π are denoted by fγ(x) and f(π) respectively.

With this notation, the score function for γ in the x |π model is denoted by `xγ , so

`xγ = ∂
∂γ log fγ(x |π); and in the selection model by `π

γ , so `π
γ = ∂

∂γ log fγ(π |x). By

Bayes’ rule, we have

(2.2) fγ(π |x) =
fγ(x, π)
fγ(x)

=
fγ(x |π) f(π)∫

fγ(x |π) f(π) dπ
.

As a result,

`π
γ =

∂

∂γ
log fγ(x |π)− ∂

∂γ
log

(∫
fγ(x |π)f(π) dπ

)

= `xγ −
∂

∂γ
log

(∫
fγ(x |π)f(π) dπ

)
.

(2.3)

For the score test for linkage in selected samples, we need this score function evaluated

at γ = 0. Since score functions have mean 0, the second term ∂
∂γ log

(∫
fγ(x |π)f(π) dπ

)

equals the expectation of `xγ under π |x evaluated at γ = 0. Since x and π are inde-

pendent at γ = 0, this is just the distribution π (independent of γ). As a result we

obtain,

`π
γ = `xγ −Eπ`xγ .

Hence, in our case `π
γ = `xγ , since `xγ is already, due to the parameterization used,

centered with respect to the distribution of π. The score `xγ is also centered with

respect to the distribution of x. Looking back at equation (2.2), we see that the

score function for γ in the joint model of x and π also equals `xγ = `π
γ . This has the

important consequence that there is no loss of information by basing inference only on

the conditional distribution of x |π for random samples, or only on the distribution

of π |x, the selection model for selected samples.

Fisher’s information Iπ
γ = E

(
− ∂2

∂γ2 log fγ(π |x)
)

for γ in the selection model is

also the variance of the score function varπ(`π
γ ) and is thus given by

(2.4) Iπ
γ =

1
4

vec(C)′ varπ (vec(π)) vec(C) .
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The exact calculation of varπ (vec(π)) involves enumeration of all joint probabilities

P(πij , πkl) for each possible inheritance vector in a pedigree. In practice, this is ef-

ficiently achieved through the use of the --ibd and --matrices options in the

MERLIN software [Abecasis et al., 2002] with a pedigree file describing the appropri-

ate pedigree structure and one marker with all values as missing. Note that under

the assumption of complete IBD information, Fisher’s information as given in For-

mula (2.4) can be directly used as a criterion for selection of the most informative

individuals based on trait values.

The score test statistic z is formed by adding the scores from independent pedigrees

and dividing by the square root of its variance under the null hypothesis:

(2.5) z =

∑
i `π

γ,i√∑
i Iπ

γ,i

.

Under the null hypothesis of no linkage, z has asymptotically a standard normal

distribution. The test is one-sided, only positive values of z being regarded as evidence

for linkage. In other words, z2
+ defined as being equal to 0 if z ≤ 0 and to z2 if z > 0

is asymptotically distributed as 1
2χ2

0 + 1
2χ2

1.

Formulae (2.1) and (2.4) provide an interpretation of this score test in terms of

regression. Similar to Sham et al. [2002], the numerator of the score test statistic z

can be interpreted as an estimate of the slope of the regression through the origin

of excess IBD sharing on a function of the trait values. The dependent variables are

the observed excess IBD sharing between all m(m−1)
2 pairs of members in pedigree

of size m while corresponding observations of the explanatory variable are quadratic

functions of the original trait values as defined above. Those results are applicable

to general pedigrees but take a very simple and appealing form in sib pairs and some

other specialized cases as shown below. The slope estimate of the score test statistic

is standardized by the square root of Fisher’s information, but this standardization

can also be interpreted as the standard error of the slope estimate of the numerator

under the null hypothesis.
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2.3 Special designs

In this section we give explicit formulae for the score test in general sibships and

nuclear families. The interpretation of the test in terms of regression for sib pairs pro-

vides interesting insight into the relation of our method with the so called Haseman-

Elston regressions and helps us understand why these optimal methods for random

samples turn out to be sub-optimal when data are subject to selection unless modi-

fied as in Sham and Purcell [2001]. We refer the reader to Skatkiewicz et al. [2003];

Cuenco et al. [2003] for a comprehensive review and numerical comparison of methods

for selected sib pairs.

Sibships

In a sibship of size m consisting of m siblings, Σ is given by

(2.6) [Σ]jk =





1 if j = k

(πjk − 1
2 )γ + 1

2a2 + c2 if j 6= k .

Hence, for γ = 0, with ρ = 1
2a2 + c2,

(2.7) Σ = (1− ρ)I + ρJ so Σ−1 =
1

1− ρ
(I− ωmJ) ,

with ωm = ρ
1+(m−1)ρ where I is the m×m identity matrix and J is the m×m matrix

whose elements are all equal to 1. It can be shown mathematically that the elements

of the matrix C = Σ−1x
(
Σ−1x

)′ −Σ−1 are given by

(2.8) Cij =
1

(1− ρ)2
(
xixj −mωmx̄(xi + xj) + (mωmx̄)2

)
+

1
1− ρ

ωm .

Under the assumption of perfect marker information, the IBD distributions are un-

correlated for sib pairs within a sibship and have mean 1
2 , the score function is thus

given by

`π
γ =

∑

1≤i<j≤m

Cij

(
πij − 1

2

)

and Fisher’s information by

Iπ
γ =

1
8

∑

1≤i<j≤m

C2
ij .
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In sib pair designs, the two by two covariance matrix Σ is given by

 1 γ(π − 1

2 ) + ρ

γ(π − 1
2 ) + ρ 1


 .

The score function and information in γ = 0 are

`π
γ (x1, x2; ρ) = (π − 1

2
) C(x1, x2; ρ)

Iπ
γ (x1, x2; ρ) =

1
8

C2(x1, x2; ρ)

where

C(x1, x2; ρ) =
(1 + ρ2)x1x2 − ρ(x2

1 + x2
2) + ρ(1− ρ2)

(1− ρ2)2
.

The score test in a sample of n independent sib pairs with phenotypes (xi1, xi2)i=1,...,n

is given by ∑n
i=1

(
πi − 1

2

)
C(xi1, xi2; ρ)√

1
8

∑n
i=1 C2(xi1, xi2; ρ)

and its robust version by
∑n

i=1(πi − 1
2 ) C(xi1, xi2; ρ)√∑n

i=1

(
πi − 1

2

)2
C2(xi1, xi2; ρ)

.

The score test in that instance simply is the regression of the excess IBD sharing

π − 1
2 on a function of the trait values C(x; ρ) through the origin. This method was

already proposed by Tang and Siegmund [2001] and Sham and Purcell [2001]. In

a recent numerical comparison of methods for selected samples, Skatkiewicz et al.

[2003] and Cuenco et al. [2003] showed that it has good properties in finite samples

for extreme proband ascertained sib pairs and discordant sib pairs designs. The same

test was also motivated heuristically using an approximation for excess IBD sharing

in Putter et al. [2003].

In selected samples, one crucial feature of this regression as far as power is con-

cerned, is that it is constrained through the origin. Indeed, the variance of the

slope estimate in an unconstrained regression, which is inversely proportional to
∑

i(Ci − C̄)2 =
∑

i C2
i − nC̄2, will always be greater than its constrained version,

whose variance is inversely proportional to
∑

i C2
i . The contour plot of C is displayed

in Figure 2.1 for ρ = 0.2 and ρ = 0.5, with the corresponding trait values density in-

dicated in gray scale (the density plots were generated using the scatterplots function

20



Chapter 2. Score Test for Detecting Linkage to Complex Traits in Selected Samples

of Eilers and Goeman [2004]). It clearly shows that extreme concordant sib pairs have

moderately large positive C values whereas extremely discordant sib pairs have large

negative C values. As long as sib pairs are selected so that C̄ is close to 0, whether

the regression is constrained through the origin or not is irrelevant. However, should

one consider only extremely discordant pairs, then C̄ is negative and the power can

increase dramatically, when using methods for selected samples.
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Figure 2.1: Joint distribution of sib trait values x (gray scale) and contour plot of C(x, ρ) (ρ = 0.2,

left panel and ρ = 0.5, right panel)

Nuclear families

We now consider a general nuclear family with m sibs with trait value vector xs

and two parents with trait value vector xp, then the variance-covariance matrix Σ

can be partitioned as

Σ =


 Σss Σsp

Σps Σpp


 .

The sib-sib submatrix Σss is the only submatrix to contain the linkage parameter γ.

At γ = 0, Σss is the same as (2.6) and (2.7) with ρ replaced by ρss = 1
2a2 + c2. The

other submatrices are given by Σsp = Σ′
ps = ρspJm2 and Σpp = (1− ρpp)I2 + ρppJ22.

Here, Im is the identity matrix of dimension m and Jml is the matrix of dimension

m × l with all elements equal to 1. The parameter ρsp denotes the parent-sib trait
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correlation and ρpp the father-mother trait correlation, both of which are assumed to

be known. The correlations ρss, ρsp and ρpp are given by 0.5, 0.5 and 0 times the

additive genetic variance respectively, plus a scalar times the common environment

variance. For ρss, this multiplication factor will be 1 but we allow for smaller and

mutually different factors for ρsp and ρpp. Matrices Σsp and Σpp do not involve the

linkage parameter γ because there is no variation in IBD sharing between sibs and

parents, nor between the two parents assuming they do not share alleles identical by

descent. In practice however, parents are often genotyped because they are helpful

in determining the IBD sharing of the siblings. With those conventions and using

a similar reasoning as in (2.2) and (2.3), one can show that the score function for

γ in the π |xp,xs model equals the score function for γ in the xs |π,xp model; in

other words, the parents’ phenotypes can simply be considered as ’covariates’ in the

analysis. Now, using standard results on conditional normal distributions, it turns

out that

xs |π,xp ∼ N (βx̄p, Σss − ρspβJmm) with β =
2ρsp

1 + ρpp
,

thus

(xs − βx̄p) / (1− ρspβ)1/2 |π,xp ∼ N (0,ΣC) ,

where ΣC has diagonal elements equal to 1 and off-diagonal elements equal to
(

(πjk − 1
2
)γ + ρss − ρspβ

)
/ (1− ρspβ) .

Finally, the score obtains as

`π
γ = (1− ρspβ)−1

∑

1≤i<j≤m

Cij

(
πij − 1

2

)

and the information as

Iπ
γ = (1− ρspβ)−2 1

8

∑

1≤i<j≤m

C2
ij ,

with Cij given by formula (2.8) with x = (xs − βx̄p) / (1− ρspβ)1/2 and ρ =

(ρss − ρspβ) / (1− ρspβ). In most realistic situations ρ will be smaller than ρss.

The effect of including the parents on values of C is shown graphically in Figure 2.2.

When the parent-sib trait correlation ρsp is small, whether parents are included or not
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affects C mainly through the distortion of ρ. However when ρsp is substantial (e.g.

high heritability or high household effect) and the parents’ average trait values is high

(or low), the effect is to shift the contour of C towards the north east quadrant (or

south west quadrant) i.e. concordant siblings with non extreme values become valu-

able, whereas concordant siblings with extreme values become less attractive. For

discordant pairs, the contour lines of C for average and extreme parents trait values

cross, indicating that the inclusion of the extreme parents can affect C either way.
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Figure 2.2: Joint distribution of sib trait values x (gray scale) and contour plot of C(x, ρ) (left

panel: ρss = ρsp = 0.2 and ρpp = 0.1, and right panel: ρss = ρsp = 0.5 and ρpp = 0.1) for x̄p = 0

(continuous lines, C values along vertical axis) and x̄p = 2 (dotted lines, C values along horizontal

axis)

Sibships and nuclear families of different sizes can easily be combined by weighting

each family score according to its associated variance as suggested in Section 2.2.

2.4 Dominance

So far in our discussion we have neglected the effect of dominance. We show below

what changes it involves in the score test compared to a fully additive model. We only

consider here the most common design which allows evaluation of dominance variance

component in non-inbred pedigrees: sibships consisting only of dizygotic twins or full
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siblings. In presence of dominance, the conditional covariance Σ given the IBD status

π becomes

[Σ]jk =





a2 + d2 + c2 + e2 = 1 , if j = k ,

(πjk − 1
2 )q2 + (1{πjk=1.0} − 1

4 )t2 if j 6= k .

+ 1
2a2 + 1

4d2 + c2 ,

where d2 denotes total dominance variance and t2 represents the proportion of total

variance attributable to the dominance component at the locus of interest.

We re-parameterize the model as in Tang and Siegmund [2001] so as to make the

terms involving πjk uncorrelated, with mean 0 and same variance: let γ = q2 + t2 and

δ = t2√
2
. The covariance matrix Σ then writes

[Σ]jk =





1 , if j = k ,

(πjk − 1
2 )γ − 1√

2
(1{πjk=0.5} − 1

2 )δ if j 6= k .

+ 1
2a2 + 1

4d2 + c2 ,

The score for γ is as in formula (2.1) (however γ is now the sum of the additive and

the dominant QTL variances) and the score with respect to δ is given by

`π
δ = − 1

2
√

2
vec(C)′vec(1{π=0.5} −

1
2
) .

Due to the new parameterization, `π
γ and `π

δ are orthogonal under complete infor-

mation (this is because πjk and 1{πjk=0.5} are uncorrelated in sib pairs [Amos et al.,

1989]), and Fisher’s information in (γ, δ) = (0, 0) is given by

Iπ
γ,δ =


 Iπ

γ 0

0 Iπ
δ




where Iπ
δ = 1

8vec(C)′ varπ

(
vec(1{π=0.5})

)
vec(C) and Iπ

γ is given by formula (2.4).

Under the assumption of a fully informative marker map Iπ
γ = Iπ

δ = 1
8

∑
1≤i<j≤m C2

ij ,

`π
γ =

∑
1≤i<j≤m Cij

(
πij − 1

2

)
and

`π
γ = − 1√

2

∑
1≤i<j≤m Cij

(
1{πij=0.5} − 1

2

)
with Cij as in formula (2.8), and the one-

sided score test of the joint null hypothesis (γ, δ) = (0, 0) under the constraint 0 ≤
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√
2 δ ≤ γ is then given by

z2
+ =





`π
γ

2

Iπ
γ

+ `π
δ

2

Iπ
δ

, if 0 ≤ √
2 `π

δ ≤ `π
γ ,

`π
γ

2

Iπ
γ

, if 0 < `π
γ and 0 < `π

δ ,

1
3

(√
2 `π

γ + `π
δ

)2
, if − 1√

2
`π
δ < `π

γ <
√

2 `π
δ and `π

δ > 0 ,

0 , otherwise .

The local optimality properties of the univariate score test are preserved by this

statistic since it is asymptotically equivalent to the likelihood ratio test [Verbeke and

Molenberghs, 2003]. Under the null hypothesis of no locus effect, z2
+ is distributed

as (1 − κ)χ2
0 + 1

2χ2
1 + κχ2

2 with κ = 0.098 [Shapiro, 1988]. Note that this test is the

same as the one proposed by Wang and Huang [2002b] (see Section 2.6 for a closer

comparison).

2.5 Dichotomous traits

Zeegers et al. [2003] have developed a modified Haseman-Elston regression for binary

traits and have shown that it is approximately equivalent in power to the liability-

threshold variance components model. In order to apply similar ideas to those devel-

oped in previous sections to dichotomous traits we use this so-called liability threshold

model. Under such setting, a continuous variable arbitrarily scaled to have mean 0

and variance 1 underlies the trait of interest. In pedigrees involving only one type of

family members relationship like sibships, the model is fully characterized by two pa-

rameters: the overall prevalence of the trait K (or equivalently the liability threshold

t where K = 1− Φ(t), Φ denotes here the cumulative density function of a standard

normal) and the correlation ρ between the scaled liabilities of two sibs, also known as

the tetrachoric correlation for the trait of interest. Different types of family members

relationship may correspond to different tetrachoric correlations. Provided population

data are available, the maximum likelihood method can be used to obtain estimates

of the tetrachoric correlation between different relative pairs. Approximate formulae

due to Pearson [1901] appear in Sham [1998, Section 5.5.5].

The probability pγ(y |π) of the affection states of the pedigree members being y,

given π, where y is one of the possible phenotypes, is obtained by integration of the

density fγ(x |π) for the underlying liability as expressed in the variance components
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setting of Section 2.2 over Ry, the region corresponding to phenotype y on the liability

scale

pγ(y |π) =
∫

x∈Ry

fγ(x |π)dx .

The score `yγ for pγ(y |π) at γ = 0 equals

`yγ =
∂

∂γ
log pγ(y |π) =

∫
Ry

∂
∂γ fγ(x |π)dx∫

Ry
fγ(x |π)dx

=

∫
Ry

`xγfγ(x |π)dx∫
Ry

fγ(x |π)dx
= Ex

(
`xγ |x ∈ Ry

)
.

As for the continuous case, the score `π
γ for γ of the selection model π |y is equal to the

score `yγ for the y |π model. Using formula (2.1) and by linearity of the expectation

E,

`π
γ = `yγ =

1
2

vec(Cy)′vec(π −Eπ) ,

and

Iπ
γ =

1
4

vec(Cy)′ varπ (vec(π)) vec(Cy)

with Cy = Ex(C(x, ρ) |x ∈ Ry).

In the case of sib pair designs, there are only three possible unordered phenotypes:

Affected/Affected (AA), Affected/Unaffected (AU) and Unaffected/Unaffected (UU).

This implies that there are only three possible values of Cy: CAA, CAU , CUU , each

corresponding to the conditional expectation of C(x, ρ), given x in the appropriate

region on the liability scale. For a data set consisting of nAA affected sib pairs, nAU

discordant sib pairs and nUU unaffected sib pairs, the score test then equals

z =
CAA

∑
i∈AA

(
πi − 1

2

)
+ CAU

∑
i∈AU

(
πi − 1

2

)
+ CUU

∑
i∈UU

(
πi − 1

2

)
√

1
8 (nAAC2

AA + nAUC2
AU + nUUC2

UU )
,

and a robust score test is given by

z∗ =
CAA

∑
i∈AA

(
πi − 1

2

)
+ CAU

∑
i∈AU

(
πi − 1

2

)
+ CUU

∑
i∈UU

(
πi − 1

2

)
√

C2
AA

∑
i∈AA

(
πi − 1

2

)2 + C2
AU

∑
i∈AU

(
πi − 1

2

)2 + C2
UU

∑
i∈UU

(
πi − 1

2

)2
.

Nowadays, the Cy quantities can be approximated to a sufficient degree of precision

using Monte Carlo simulation techniques.

Values of CAA, CAU and CUU are provided in Table 2.1 for typical values of

the tetrachoric correlation ρ and trait prevalence K. Under this liability threshold

model, the main characteristics of the sib pair designs are that UU sib pairs provide
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very little information whereas AA sib pairs provide the most information especially

as the trait becomes rare. However, it must be stressed that as the prevalence of the

trait increases, AU sib pairs become more informative. If only one type of phenotype

is used (say only affected sib pairs) the score test is equivalent to z = (π̄− 1
2 )√

1/(8n)
and the

robust score test equal z∗ = (π̄− 1
2 )

ŝe(π̄)
which are two standardized versions of the mean

IBD sharing test. These tests are well established [Blackwelder and Elston, 1985] and

have been in popular use for decades. As for the continuous case the test can be

seen as a regression through the origin of the excess IBD sharing on a function C of

the trait, however the function C only takes a limited number of distinct values. To

illustrate this regression, we generated the affection states for 10000 sib pairs using

the liability threshold model with K = 0.05, ρ = 0.4 and γ = 0.15. The 150 most

informative pairs were selected using the corresponding C̄2 obtained from table 2.1;

this resulted in all 97 affected pairs and 53 random discordant pairs being selected.

Figure 2.3 illustrates the regression for this simulated data set.

One attractive feature of our approach is that it naturally allows combination of

sib pairs of different nature (more generally, pedigree pairs of different nature and

familial relationships). Each type of pairs contributes to the deviation from average

IBD sharing with a weight proportional to the average value of the C function in the

corresponding region. Note that in practice, table I can also be used with pedigrees

consisting of other types of relative pairs. For example, if nc
AA pedigrees consisting

of affected cousins also are available then their contribution to the numerator of the

previous z will simply be CAA

∑nc
AA

i=1 (πc
i − 1

8 ) where CAA is drawn from table I

with K as the population prevalence of the trait and ρ equal to the trait tetrachoric

correlation between cousins. Our approach also offers an elegant solution to the

problem of prevalence heterogeneity in the population: if a data set consists of groups

with different disease prevalence, the contribution of each group to the overall test is

weighted accordingly (see Table I).

2.6 Discussion

In the context of the variance components model, we have given an expression of

the score test for linkage under sample selection based on phenotype values. It is
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Figure 2.3: Regression of π − 1
2

on C(x, ρ) for 150 selected sib pairs (K = 0.05, ρ = 0.4 and

γ = 0.15)

a general expression for arbitrary pedigrees which takes a very simple form in some

widely used designs. Commenges [1994] first introduced score tests in the context of

linkage, however his approach is not conditional on trait values and therefore leads

to reduced power in selected samples. In a recent article, Tritchler et al. [2003]

give a general score test in nuclear families conditional on the trait values under the

assumption that the trait distribution depends on different genetic models through

the exponential family. Our results give a very similar expression to theirs. In their

software implementation, they allow the population mean to be specified by the user

but not the population sib-sib correlation and our understanding is that the authors

attempt to estimate this correlation from the selected data, which potentially results

in power loss (unless the ascertainment mechanism is known). Our approach is to fully

acknowledge the fact that selected samples do not provide unbiased estimates of the

population trait distribution characteristics and to assume that unbiased estimates
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of the first and second moments of the population trait are available a priori. In the

context of the GenomEUtwin project, where twin registries provide us with precise

population mean and twin-twin correlation, this seems a realistic assumption.

The score test that we derive also has a simple interpretation in terms of regression

of IBD sharing on a function of the phenotypes. Sham et al. [2002] have recently

proposed a general method of analysis for quantitative linkage data which explicitly

regresses IBD sharing on all possible squared sums and differences of trait values

within a family. As shown in Section 2.2, the score test essentially is a regression

of the excess IBD sharing on a quadratic function of the trait values whose shape

depends on the normality assumption. When the data truly are normal, it seems

reasonable to expect that the score test results in similar regressor as in the method

of Sham et al. [2002]. We have compared the information content provided by the

two methods in sibships and nuclear families of different sizes and they happen to

exactly coincide. In fact, as demonstrated in a recently published paper [Chen et al.,

2004], the two methods are the same for quantitative traits under an additive model

(with trait correlations assumed to be the same over all pairs of relatives). The IBD

covariance matrix is determined solely by family relations; no marker information is

needed to compute it, which is a prerequisite to make it useful for selection prior to

genotyping. Note that calculation of the information index in [Sham et al., 2002] does

not require marker information either.

One possible criticism of the variance components model is that departure from the

normality assumption might invalidate its results. However, the analogy of the test

with regression methods, very much as the score test in unselected data coincides with

the optimally weighted Haseman-Elston regression [Putter et al., 2002], pleads in favor

of its robustness. In fact, as the regression interpretation of the score reveals, the test

depends on the distribution of the trait values only through its second order moments.

So as long as the shape of the distribution does not show any great departure from

normality for those moments (e.g. heavy tail) then the test should remain valid.

When the model clearly is wrong, the robust version of the test should preclude

over-optimistic inference.

We showed in Section 2.2 that in the current variance components setting under

which population marginal characteristics are known and the only unknown parameter
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is the linkage parameter γ, there is no loss of information when conditioning on trait

values. This is a direct consequence of the fact that scores for the selection model π |x,

the x |π model and the joint (x, π) model are identical. The situation becomes more

complicated when population parameters are unknown and need to be conjunctly

estimated.

As announced in Section 2.2, we now turn to the case of imperfect IBD information.

In practice, π is not known with certainty. In fact, the only available data are

marker information which we denote M and the phenotypes x. Strictly speaking, the

likelihood to be considered should be expressed in terms of those data, i.e. we should

write fγ(M,x) for the joint distribution of M and x and fγ(M |x) for the conditional

distribution of M |x . It turns out that the score `M
γ for the M |x distribution simply

becomes the weighted average of the score `π
γ for the idealized fully informative model

`M
γ =

∑
π P (π |M) `π

γ and thus, with π̂ = E(π |M),

`M
γ =

1
2
vec(C)′vec(π̂ −Eπ̂) .

Since Eπ̂ = Eπ, this result means that Formula (2.1) still holds true with imperfect

data but π values have to be replaced by estimates given marker data available π̂.

Values of P (π |M) and π̂ are calculated using for example the Lander-Green or

Elston-Stewart algorithms [Lander and Botstein, 1989] as implemented in publicly

available softwares like GENEHUNTER [Kruglyak et al., 1996] or MERLIN [Abecasis

et al., 2002]. Note that this result theoretically justifies (as mentioned by Commenges

[1994] and Tang and Siegmund [2001]) the use of the so-called π̂ approach in variance

components linkage modelling for arbitrary pedigrees. The corresponding Fisher’s

information is given by

IM
γ =

1
4

vec(C)′ varM (vec(π̂)) vec(C) .

Given a marker map and a certain pedigree structure, Monte Carlo simulations can

be used to approximate varM (vec(π̂)). A conservative alternative is to use Iπ
γ as

given by Formula (2.4) instead of IM
γ in the standardization of `M

γ . One consequence

of imperfect information in the case of sibships for example is that negative terms

appear on the off-diagonal components of the varM (vec(π̂)) matrix. When consider-

ing both additive and dominance variance components, the scores `π
γ and `π

δ derived
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in Section 2.4 are no longer orthogonal and the use of the test as defined in that

section is not optimal. It is possible to obtain the expression of a multivariate score

test that is asymptotically optimal [Verbeke and Molenberghs, 2003] and whose null

distribution ((1 − κ)χ2
0 + 1

2χ2
1 + κχ2

2, where κ depends on informativeness) can be

obtained using results in Shapiro [1988]. The details are beyond the scope of this

article, however the results appear in Wang and Huang [2002b] who consider only

random samples and therefore suggest to estimate the sib-sib correlation as well as

P(π = 0.5 |M), E(π̂) and var(π̂) from the data. Interestingly, our derivation shows

that their approach is perfectly valid in selected samples too, provided the population

sib-sib correlation is known and unbiased values for P(π = 0.5 |M), E(π̂) and var(π̂)

are calculated (e.g. using Monte Carlo simulation technique described above). Note

that in selected samples, the use of population estimates for those ’nuisance’ parame-

ters amounts to constraining the regression through the origin and is critical in order

to maintain maximum power. In practice, the asymptotic results might fail to hold

in finite samples and it seems wise to use re-sampling methods (bootstrap) in order

to obtain a robust assessment of significance.

By use of the liability threshold model, the continuous case extends to the case

of dichotomous traits. Because of the well-known optimality properties of the score

test (which is asymptotically equivalent to the likelihood-ratio test), it provides an

efficient means to test for linkage in affected sib pairs and in discordant sib pairs as

well as a way to combine the two types of data when needs arise. More complicated

pedigrees can also be handled in a very flexible manner. In this selection framework

where IBD sharing π is considered conditional on the trait values x, the extension to

multiple traits, in analogy with multiple regression, should be fairly straightforward.

This score test approach has been implemented into a C program calling upon

the publicly available software MERLIN [Abecasis et al., 2002] and is available at

http://www.msbi.nl/Genetics .
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2.7 Appendix

Score test

The score function for γ in the x |π model is denoted by `xγ and by definition equals

`xγ = ∂
∂γ log fγ(x |π) with

log fγ(x |π) = −m

2
log(2π)− 1

2
log(|Σ|)− 1

2
x′Σ−1x

Standard results on matrix algebra (see, e.g. [Searle et al., 1992, Appendix M.7]) show

that

`xγ =
1
2

{
x′Σ−1(π −Eπ)Σ−1x− tr(Σ−1(π −Eπ))

}

Because of the relation a′b = tr(ba′), the previous equation can be rewritten

`xγ =
1
2

tr
(
Σ−1(π −Eπ)(Σ−1xx′ − I)

)
.
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Chapter 3

Selection Strategies for Linkage

Studies using Twins

Abstract

Genetic linkage analysis for complex diseases offer a major challenge to geneticists.

In these complex diseases multiple genetic loci are responsible for the disease and

they may vary in the size of their contribution; the effect of any single one of them is

likely to be small. In many situations, like in extensive twin registries, trait values

have been recorded for a large number of individuals, and preliminary studies have

revealed summary measures for those traits, like mean, variance and components

of variance, including heritability.

Given the small effect size, a random sample of twins will require a prohibitively

large sample size. It is well known that selective sampling is far more efficient in

terms of genotyping effort.

In this paper we derive easy expressions for the information contributed by sib pairs

for the detection of linkage to a quantitative trait locus (QTL). We consider random

samples as well as samples of sib pairs selected on the basis of their trait values.

These expressions can be rapidly computed and do not involve simulation. We

extend our results for quantitative traits to dichotomous traits using the concept

of a liability threshold model.

We present tables with required sample sizes for height, insulin levels and migraine,

three of the traits studied in the GenomEUtwin project.

This chapter has been published as: H. Putter, J. Lebrec and J.C. van Houwelingen (2003).

Selection Strategies for Linkage Studies using Twins. Twin Research 6 (5), 377–382.
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3.1 Introduction

Genetic linkage analysis (gene mapping) has proved to be a powerful tool for the

identification of genes responsible for monogenic inherited diseases such as Huntington

disease and cystic fibrosis. The diseases for which the genetic basis has not yet been

unravelled do not display a one-to-one correspondence between a single gene and

disease status. In these complex diseases, multiple genetic loci are responsible for the

disease and these genetic loci may vary in the size of their contribution, they may

interact with each other and with external, environmental factors. The effect of any

single one of these genes is likely to be small [Risch, 2000].

The GenomEUtwin project comprises a very large source of twins, through the

union of a number of large twin registries in different countries in Europe. For the

majority of these twins, data on a number of traits of interest have already been

recorded. Examples include quantitative traits like height, BMI, risk factors for car-

diovascular disease and qualitative traits like migraine, diabetes. Some of these traits

are recorded repeatedly over time and require methods for longitudinal data, others

can be thought of as having an age of onset and can be treated like survival data.

The first step in unravelling the genetic basis of a disease is to undertake a her-

itability study. Twin studies are ideally equipped for this purpose, because of the

inherent matching for age and other environmental factors, and because of the dif-

ferential degree of shared genetic variance between monozygotic (MZ) and dizygotic

(DZ) twins [Boomsma et al., 2002]. For many quantitative traits of interest, twin

studies (or similar studies) have given information on the distribution of the trait in

the target population, in particular their mean and variance, and on the heritability.

In the planning phase of a linkage study, one of the important issues is the choice

of sib pairs to be included in a scan. The good news is that for large twin registries,

the number of phenotypes is in principle adequate even to detect very small genetic

effects. Unfortunately, given the anticipated small genetic effect at any one disease

locus, a random sample to achieve 80% power is most probably prohibitively large

in terms of genotyping effort, even with the current high throughput genotyping

technologies. Eaves and Meyer [1994] and Risch and Zhang [1995] showed that similar

power to large random samples can be obtained by selecting only a small subset of
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extreme discordant pairs. Many studies have later refined these recommendations,

giving, under an assumed model, optimal selection strategies for linkage studies. The

drawback of these studies is that they typically require simulation and fail to give

quick, easy and insightful assessments of the amount of information that a given sib

pair is expected to contribute.

In this paper, it is our aim to outline easily computable information content num-

bers for twins in the context of linkage twin studies for complex diseases. We start in

Section 3.2 by considering quantitative traits, with given heritability, mean and vari-

ance, assuming that the effect of the quantitative trait locus is small. We replace much

of the simulation employed in the above papers by explicit calculation, resulting in

particularly easy expressions for the information content for DZ sib pairs. The result

is an easy expression closely related to optimal Haseman-Elston regression [Sham and

Purcell, 2001] and the score function for the QTL variance in a variance components

model [Putter et al., 2002]. We then show in Section 3.3 how the concept of a la-

tent underlying quantitative trait can be used to extend these results to dichotomous

traits. Section 3.4 discusses issues like extended pedigrees and dominance variance.

3.2 Selection strategies for quantitative traits

Random sampling

Starting point of our selection procedure for quantitative traits is the variance com-

ponents model [Schork, 1993; Amos, 1994]. We assume that the traits have been

standardised so as to have zero mean and unit variance. For a DZ twin sharing i

alleles identical by descent (IBD) at a particular marker locus, the distribution of

their phenotypes x = (x1, x2) is assumed to follow a bivariate normal distribution

with mean vector 0 and covariance matrix

Σi =


 1 ρ + i−1

2 γ

ρ + i−1
2 γ 1


 .

Here ρ and γ represent the proportion of this variance that can be attributed to

shared components and the quantitative trait locus respectively. The parameter ρ is

half of the heritability (h2) plus the proportion of common environment variance, c2.

In what follows we consider DZ twins, since MZ twins are not informative for linkage.
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We shall refer to DZ twins as sib pairs in the sequel; for our purposes there is no

distinction between sib pairs and DZ twins.

The amount of information I at γ = 0 contributed by one sib pair is given by

(3.1) I =
1
8

1 + ρ2

(1− ρ2)2
.

This formula has been derived by Williams and Blangero [1999] and is a special case

of our equation (3.5). The factor 1/8 represents the variance of π̂ for sib pairs for

a fully informative marker [Rijsdijk et al., 2001]. This implies that an estimate of γ

based on a random sample of n sib pairs will have a standard error of se(γ̂) = 1√
nI

, in

the absence of nuisance parameters. This fact can be used to determine the number

of sib pairs required to achieve power 1 − β to detect linkage with a QTL effect size

γ, using a significance level α,

(3.2) n =
(zα + zβ)2

Iγ2
.

Here zα denotes the 1−α percentile of the standard normal distribution. For a power

of 80% and a significance level of 0.0001, corresponding to a lod-score of 3, this leads

to n = 20.8
Iγ2 . Graphs for different values of ρ are shown in Figure 3.1.

For a quantitative trait like height, with an estimated heritability of 0.80 and an

estimated common environment variance c2 = 0.1, and hence a value or ρ = 0.5, we

need to genotype approximately 7500 sib pairs or 15000 individuals to detect linkage

with a moderate QTL effect of γ = 0.1. Clearly, this is not feasible, even with the

current high-throughput genotyping technology.

Selective sampling

Risch and Zhang [1995] suggested selecting sib pairs for genotyping on the basis of

their trait values and showed that considerably higher efficiency can be obtained by

selecting extreme discordant sib pairs. Later, these recommendations have been re-

fined, most of the papers employing simulation to calculate the information content

of a sib pair [Dolan and Boomsma, 1998b; Cherny et al., 1999]. A noteworthy excep-

tion is the paper by Purcell et al. [2001], where the information content is obtained

through an exact calculation that considers all possible genotypes at the quantitative

trait locus. We show below a simple approach that can also be used to obtain explicit
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Figure 3.1: Number of sib pairs needed in a random sample to detect linkage to a

quantitative trait for different values of ρ and γ. Power is 80%; significance level =

0.0001, corresponding to a lod-score of 3. For 50%, 60% and 70% power respectively,

required sample sizes decrease by a factor of 1.50, 1.32 and 1.16 respectively.
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expressions for the information content for a number of common designs without the

need to do simulations.

The variance components model specifies the conditional distribution of the phe-

notypes, given the genotypes (IBD-sharing). When dealing with selected samples, it

is more natural to invert the reasoning and to think of the phenotypes as given [Sham

et al., 2000]. This approach is common for the analysis of dichotomous traits. Let z

denote the number of alleles shared IBD by the twins at the marker locus, and π̂ the

proportion of alleles shared IBD. Since it is anticipated that the effect of any single

gene is small, we use a linear expansion in γ along with Bayes’ theorem to obtain,

neglecting terms of smaller order than γ,

P (z = 0|x, γ, ρ) =
1
4
− γ

8
C(x, ρ) ,

P (z = 1|x, γ, ρ) =
1
2

,

P (z = 2|x, γ, ρ) =
1
4

+
γ

8
C(x, ρ) ,

E(π̂|x, γ, ρ) =
1
2

+
γ

8
C(x, ρ) .(3.3)

Here,

C(x, ρ) =
1

(1− ρ2)2
(
(1 + ρ2)x1x2 − ρ(x2

1 + x2
2) + ρ(1− ρ2)

)

is the ”optimal Haseman-Elston ” function [Sham and Purcell, 2001], which was shown

to be the score function for the parameter γ in the variance components model [Put-

ter et al., 2002]. Values of C(x, ρ) range from negative to positive. Details of the

derivation and extension to general pedigrees can be found in Lebrec et al. [2004].

This observation suggests using a regression method like the Haseman-Elston re-

gression method, as already proposed by Sham et al. [2002], for the analysis of selected

samples. The regression for sib pairs amounts to the inverse of the optimal Haseman-

Elston regression, namely regressing π̂ on C(x, ρ). A test for linkage in this setting

is a one-sided test for a positive slope in this regression. Indeed, for the case of sib

pairs, our results coincide with those found in Sham et al. [2002].

In the context of regression, simple rules are available for selecting samples on the

basis of the explanatory variables: since the square of the standard error of the slope

of a regression of y on x is inversely proportional to
∑

(xi− x̄)2, values of x should be
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chosen as widely spaced as possible. This means that sib pairs with extreme values

of C(x, ρ) should be selected for genotyping.

More formally, the optimal Haseman-Elston function C(x, ρ) determines the in-

formation of a sib pair with trait values x1 and x2. It is given by

(3.4) I(x, ρ) =
1
8
C2(x, ρ) ,

and was obtained by Sham and Purcell [2001].

This information number is exact (at γ = 0), in contrast to the approximations

used in the conditional distribution of IBD-sharing above. Figure 3.2 shows the

distribution of information in a hypothetical population of standardised bivariate

normal trait values with ρ = 0.5. Pairs are classified according to whether their

information content is ranked in the top 5%, between 5% and 10% or in the remainder

(i.e., not belonging to the 10% most informative). It clearly shows that both the

extreme discordant and the extreme concordant pairs are most informative. The

majority of the most informative pairs is discordant; in the top 5%, only about 15%

is concordant, in the 5% to 10% category, about 35% is concordant.

For sib pairs chosen such that their trait values lie within a sampling region R,

the average information can be computed by integrating over that region, weighted

by the probability of the trait values:

(3.5) I(R, ρ) =
∫

R

I(x, ρ)ϕ0(x, ρ)dx/

∫

R

ϕ0(x, ρ)dx .

Here ϕ0(x, ρ) denotes the bivariate normal density with mean 0, variance 1 and covari-

ance ρ. Random sampling is a special case of this formula, since it is straightforward

to show that when R is the full two-dimensional space, I(R, ρ) = 1
8

1+ρ2

(1−ρ2)2 . In order

to select e.g. the 5% most informative sib pairs, R is the region of (x1, x2)-pairs with

C(x1, x2, ρ) ≥ C0, where C0 is chosen in such a way that this probability equals 5%

under the null hypothesis.

Sampling over a region of sib pair trait values R, the number of sib pairs required

to achieve power 1−β to detect linkage with a QTL effect size γ, using a significance

level α, then equals

(3.6) n =
(

zα + zβ

γ

)2

/I(R, ρ) .
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Figure 3.2: Scatterplot of trait values. Pairs are classified according to whether their

information content is ranked in the top 5%, between 5% and 10% or in the remainder

(not belonging to the 10% most informative).
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Height (ρ = 0.5) Insulin levels (ρ = 0.35)

h2 = 0.80, c2 = 0.10 h2 = 0.40, c2 = 0.15

QTL variance Selection % Selection %

proportion (γ) Random 10 5 2.5 1 Random 10 5 2.5 1

0.01 748180 105903 66537 43899 27648 1141429 165448 105502 71831 45494

0.02 187045 26476 16634 10975 6912 285357 41362 26375 17958 11373

0.05 29927 4236 2661 1756 1106 45657 6618 4220 2873 1820

0.10 7482 1059 665 439 276 11414 1654 1055 718 455

Table 3.1: The number of sib pairs needed to achieve 80% power to detect linkage

to a quantitative trait with a significance level α = 0.0001, for different values of γ

(proportion of the variance explained by the quantitative trait locus). Height and

insulin levels, two traits studied in the GenomEUtwin project are considered.

Table 3.1 shows the impact of these results on the number of sib pairs required for

height and insulin levels, two quantitative traits studied in the GenomEUtwin project.

For instance, for height, with a QTL variance proportion γ = 0.10, with a selection

percentage of 1%, only 276 sib pairs need to be genotyped, but the trait values of

27,600 sib pairs need to be available, more than 3.5 times the amount needed for

random selection. This is one reason not to go for a too restrictive selection percent-

age. Another, more compelling reason, is that with extreme selection percentages,

the normality of the population trait values will become a crucial issue.

3.3 Selection strategies for dichotomous traits

For dichotomous traits it is convenient to think of the disease as being determined by

an underlying latent quantitative trait (liability). When the value of this quantitative

trait exceeds a threshold t, the individual is affected, otherwise unaffected. The

threshold t is determined by the prevalence of disease K in the population of interest,

through t = Φ−1(1 − K), where Φ is the the distribution function of a standard

normal variable. In a heritability study using twins, the heritability is estimated from

the affection states of the the twins using the tetrachoric correlation of an underlying

bivariate normal variable with zero mean and unit variance. The normal liability

model is primarily a statistical convenience; if in reality there is no underlying normal

liability in risk for an ordinal or dichotomous trait, then the model will be wrong.

The tools of Section 3.2 can be used to determine the information contributed

by a twin with two affected (AA), one affected, one unaffected (AU), and two un-
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Trait I Trait II

latent QTL variance K = 5%, ρ = 0.5 K = 20%, ρ = 0.5

proportion (γ) AA AU UU AA AU UU

0.01 270122 *** *** 962936 *** ***

0.02 67531 649982 *** 240734 403089 ***

0.05 10805 103997 *** 38517 64494 277326

0.10 2701 25999 *** 9629 16124 69331

Table 3.2: The number of sib pairs needed to achieve 80% power to detect linkage

to a dichotomous trait with a significance level α = 0.0001, for different values of

γ (proportion of the variance explained by the latent quantitative trait locus). The

prevalence K and heritability approximately match that of migraine in men and

women respectively. AA, AU and UU denote sib pairs with two affected, one affected

and one unaffected, and two unaffected sibs respectively. *** denotes more than one

million sib pairs needed.

affected (UU), given prevalence K, and tetrachoric correlation ρ (determined by the

heritability). This information is

(3.7)
1
8

{∫

R

C(x, ρ)ϕ0(x, ρ)dx/

∫

R

ϕ0(x, ρ)dx
}2

,

where R is the region of (x1, x2)-pairs with x1 ≥ t, x2 ≥ t (AA), x1 ≥ t, x2 < t (AU)

or x1 < t, x2 < t (UU). From equation (3.3) it can be seen that the expected value of

π̂, conditionally given that x ∈ R equals 1
2 + γ

8E(C(x, ρ) |x ∈ R); the expression in

brackets in the above expression is precisely this conditional expectation of C(x, ρ)

given x ∈ R. Power calculations for dichotomous traits are very similar to (but not

entirely the same as) quantitative traits using the liability threshold approach; the

sampling region is now determined by affection status rather than observed trait values

and does not have optimal form as in Figure 3.2. Table 3.2 shows that for dichotomous

traits with low prevalence, AA sib pairs are most powerful, for traits with moderate

to high prevalence, AU sib pairs however may also be quite informative.
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3.4 Discussion

In this paper we have shown a simple approach to obtain explicit expressions for

the information that a twin is expected to contribute towards detecting linkage to a

quantitative trait. This information is based on the trait values and known values for

the variance components of the trait. To achieve a given power to detect linkage to a

quantitative trait with a given significance level and an anticipated proportion of the

variance explained by the quantitative trait locus, the required number of sib pairs is

straightforward to calculate. The expression extends to dichotomous traits through

the concept of a liability, a latent underlying quantitative trait.

Earlier work uses simulation to calculate the information content of a sib pair and

the number of sib pairs needed to achieve a given power [Dolan and Boomsma, 1998b;

Cherny et al., 1999; Purcell et al., 2001]. For sib pairs, simulation can be replaced by

calculation, as outlined below. These calculations are well known for random samples

[Williams and Blangero, 1999; Rijsdijk and Sham, 2000; Rijsdijk et al., 2001] and have

been pioneered for selected samples for the case of sib pairs [Sham and Purcell, 2001]

and more implicitly for general pedigrees in Sham et al. [2002]. They have been imple-

mented in MERLIN [Abecasis et al., 2002] through the command MERLIN-regress.

The way they have been derived, by considering the conditional distribution of the

IBD-sharing, given the phenotypes [Sham et al., 2000, 2002], also suggests methods

for analysing selected samples. This is the subject of ongoing research in our group.

All expressions in Sections 3.2 and 3.3 are valid for DZ twins (sib pairs) only. It

is well known however that for random samples sibships of larger sizes can achieve

considerably more power than sib pairs [Dolan et al., 1999]. In a sense, a larger sibship

constitutes a collection of sib pairs, and indeed the amount of information is roughly

proportional to the number of sib pairs [Dolan et al., 1999; Williams and Blangero,

1999] in the sibship. Also for selective sampling, sib pairs could still be collected,

even though they belong to a larger sibship. The direction taken in Section 3.2 does

not readily extend to larger sibships or general pedigrees. However, the resulting

expressions can be generalised more formally using efficient score functions. This

approach is followed in Lebrec et al. [2004].

The score approach will also yield information content numbers for general pedi-

45



Chapter 3. Selection Strategies for Linkage Studies using Twins

grees. These information content numbers can be computed in principle, but in

practice the size of the pedigree may limit the calculations. Including parental in-

formation may result in a modest increase in power [Williams and Blangero, 1999];

arguably more important is the use of parental genotypes in other stages; it will in-

crease precision of IBD-information, it can be used in quality control, and it may

increase power in association studies.

The presence of dominance variance in the variance components model adds a

parameter δ specifying the proportion of variance due to dominance variance of the

QTL. The standardised traits of a sib pair sharing i alleles IBD will have covariance

matrix

Σi =


 1 ρ + i−1

2 γ + (1{i=2} − 1
4 )δ

ρ + i−1
2 γ + (1{i=2} − 1

4 )δ 1


 .

For complex diseases, both γ and δ will be small, and similar calculations as in

Sections 3.2 and 3.3 can be made in this case as well. The number of sib pairs

needed to achieve a given power to detect linkage to a quantitative trait with a given

significance level α now depends on both γ and δ through the functions C(x, ρ). In

the case of a rare recessive allele, selection based on C(x, ρ) may no longer be fully

informative Purcell et al. [2001]. Otherwise, dominance variance will not have a strong

influence on selection, but it can influence the power.

The approach to power calculations that we took in this paper (calculating the

Fisher information in an inverted variance components model, where the distribution

of IBD sharing given the trait values is considered) is intimately tied to the method of

analysis to be used later. As mentioned earlier, this is the subject of ongoing research

in our group, but restricting the discussion to sib pairs, we note the following. It

is assumed that trait values are normally distributed and have been standardised to

have zero mean and unit variance. This standardisation entails subtracting the mean

and dividing by the standard deviation, in the absence of covariates. Covariates

can also be incorporated into both the power calculations and the analysis. Then

in the standardisation the covariate values and the estimated regression coefficients

(in the population!) are used instead of a common mean. Covariates can also be

incorporated into the analysis of dichotomous traits; in this case not all affected sib

pairs for instance will have the same CAA value, but this value will now depend on the
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covariate values of the sib pair. When data are not initially normally distributed, a

transformation can be used in the population data to obtain approximate normality.

Even in populations where the trait values are reasonably normally distributed, we

think it is wise to robustify the analysis anyway, by giving sib pairs with extremely

high C(x, ρ) values a lower weight in the inverse regression.
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Chapter 4

Genomic Control for Genotyping

Error in Linkage Mapping for

Complex Traits

Abstract

It has been suggested that genotyping error could dramatically affect the evidence

for linkage, particularly in selective designs. Using the regression-based approach

to linkage, we quantify the effect of simple genotyping error models under specific

selection schemes for sib pairs. We show for example, that in extremely concordant

designs, genotyping error leads to over-pessimistic inference whereas it leads to

increased type I error in extremely discordant designs. Perhaps surprisingly, the

effect of genotyping error on inference is most severe in designs where selection

is least extreme. We suggest a modification of the linkage testing procedure that

accounts for genotyping errors based on a genomic estimate of the error rate.

This chapter has been submitted as: J. Lebrec, H. Putter, J.J. Houwing-Duistermaat and

H.C. van Houwelingen. Genomic Control for Genotyping Error in Linkage Mapping for Complex

Traits.
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4.1 Introduction

In the search for genetic determinants of complex traits, the use of selective designs

appears to be the only way to gain sufficient power to detect typically small gene

effects in linkage studies. A few authors have shown by simulation that the impact

of genotyping error on evidence for linkage could be particularly severe in affected

sib-pair (ASP) designs [Douglas et al., 2000; Abecasis et al., 2001], virtually masking

most of the evidence for linkage. The impact of error on quantitative traits appears to

be less dramatic in random samples, however it is unclear whether the same dramatic

power losses hold in selected samples.

A method of choice is now emerging for the analysis of quantitative traits arising

from selected sib pairs. It boils down to a regression through the origin of excess

identical by descent (IBD) sharing on a function of the trait value, whose slope is an

estimate of the linkage parameter. It was first proposed by Sham and Purcell [2001]

and turns out to be equivalent to a score test [Tang and Siegmund, 2001]. By use

of simple genotyping error models (population frequency error model and false ho-

mozygosity model ), we show analytically what effects such error generating processes

(occurring at rate ε per sib pair) induce for an idealized fully informative marker. It is

shown that it results in a reduction of the slope estimate (i.e. of the estimated linkage

parameter) by a factor 1− ε
2 regardless of whether sib pairs are selected or not. Since

the genotyping error rate ε is typically small, the previous effect on the linkage test

is minimal. In addition to this slope effect, the regression’s intercept is modified and

this may have a much more consequent effect on the test for linkage depending on the

sampling scheme used to select sib pairs. Surprisingly, this simple result allows us to

predict that in extremely concordant (EC) sib pairs designs and in ASP designs, the

effect of genotyping error will be milder as the selection becomes more extreme. In

extreme discordant (ED) designs, the effect can in theory be either over-optimistic

or pessimistic depending on the definition of discordance, the genotyping error rate

and the true linkage effect; in practice however, for small QTL effect, the result will

be over-optimistic inference. It is argued that the basic error generating mechanisms

assumed provide reasonable approximations of real-life situations. Furthermore, re-

sults obtained under the assumption of complete IBD information can be qualitatively
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extended to settings where information is incomplete.

Finally, we suggest a simple genomic control for genotyping error which can easily

be incorporated into the usual linkage testing procedure. This article is organized

as follows: in Section 4.2, we introduce some notations and briefly sketch the in-

verse regression approach to linkage, in Section 4.3, we describe some common error-

generating processes, in Section 4.4, we show analytically what the effect of genotyping

error can be on the IBD sharing distribution and its consequence for linkage testing.

Section 4.4 is devoted to studying the impact of genotyping error in common selective

designs. In Section 4.5, we argue that under certain assumptions regarding the error

model, one can easily implement a linkage test that incorporates a genomic control

for genotyping error.

4.2 Test for linkage in selected sib pairs

We assume that the sib pair phenotypic data x = (x1, x2)′ have been adjusted for

any relevant covariates (e.g. sex, age, country, ...) and have been standardized so

that the (known) population mean, variance and sib-sib correlation are 0, 1 and ρ

respectively. In addition, let’s denote by π the proportion of alleles shared identical

by descent (IBD) at a certain locus by the two sibs and by π̂ its estimated value given

the marker information available [Kruglyak et al., 1996; Abecasis et al., 2002]. The

additive variance components model assumes that x given IBD information π follows

a normal distribution with zero mean and variance-covariance matrix given by


 1 γ(π − 1

2 ) + ρ

γ(π − 1
2 ) + ρ 1


 ,

where γ denotes the proportion of total variance explained by the putative locus.

Sham and Purcell [2001] first proposed the following approach for testing linkage:

regression of the estimated excess IBD sharing π̂− 1
2 through the origin of a function

of the squared difference and squared sum of sib-pair phenotype values C where

(4.1) C(x1, x2, ρ) =
(1 + ρ2)x1x2 − ρ(x2

1 + x2
2) + ρ(1− ρ2)

(1− ρ2)2
.
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In a sample of n independent sib pairs with phenotypes (xi1, xi2)i=1,...,n, the test is

based upon the following z statistic

z =
∑

i(π̂i − 1
2 ) C(xi1, xi2, ρ)√∑

i var0(π̂i) C2(xi1, xi2, ρ)
,

it is one-sided, only positive values of z being regarded as evidence for linkage. In

other words, z2
+ defined as being equal to 0 if z ≤ 0 and to z2 if z > 0 is asymp-

totically distributed as 1
2χ2

0 + 1
2χ2

1. For normal data, this is nothing but a score

test [Tang and Siegmund, 2001] and therefore constitutes an asymptotically optimal

test for linkage with small locus effect γ (see Lebrec et al. [2004] for a generalization

of this score test in arbitrary pedigrees). This test is sometimes referred to as the op-

timal Haseman-Elston regression. In a numerical comparison of methods for selected

samples, Skatkiewicz et al. [2003] and Cuenco et al. [2003] showed that this method

had good properties in finite samples for extreme proband ascertained sib-pair and

discordant sib-pair designs. One important feature of this regression when applied

to selected samples (as far as power is concerned) is that it is constrained through

the origin and this plays an important role in how genotyping error affects linkage.

A different motivation for this regression through the origin was given in Putter

et al. [2003] using a first order Taylor’s approximation for the three IBD probabilities

P(π |x, γ, ρ):

(4.2)

P(π |x, γ, ρ) = ( P(π = 0 |x, γ, ρ) , P(π = 1
2 |x, γ, ρ) , P(π = 1 |x, γ, ρ) )

' ( 1
4 − γ

8 C(x, ρ) , 1
2 , 1

4 + γ
8 C(x, ρ) )

,

with C(x, ρ) given by Formula (4.1) which implies E(π − 1
2 |x, γ, ρ) = γ

8 C(x, ρ)

when IBD information is known with certainty. This approximation is valid for small

quantitative trait locus (QTL) effect γ and will be used in Section 4.4.

4.3 Genotyping error models

We consider two mechanisms for the generation of errors in marker data, namely

the population frequency error model and the false homozygosity model . In those

two models, we consider a single marker with m alleles and further assume that

a maximum of one allelic error per sib pair can be made and that this happens
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with probability ε. This restriction to one error per sib pair is just a first order

approximation, for small ε, of a process where all four alleles would be allowed to be

independently erroneous and does not restrict the generalizability of our results.

The population frequency error model re-assigns the erroneous allele (chosen at

random among the four forming the sib-pair genotype) to one of the possible m alleles

with probability equal to population allele frequency. One mathematical advantage of

this model is that the marginal distribution of alleles and genotypes is unaltered. The

false homozygosity model keeps homozygotes unchanged but re-assigns heterozygotes

to homozygotes with alleles equal to one of the two original alleles chosen according

to probabilities proportional to population allele frequencies.

To our knowledge, false homozygosity is a common type of error: fairly rare al-

leles go un-reported in samples. The population frequency error model provides an

approximation to a process whereby alleles are misread. Errors at the two alleles of

a marker’s genotype might be correlated, we do not consider this type of process in

details here although the effect on linkage will be qualitatively the same as in the

two other models. We refer the reader to Sobel et al. [2002] for a detailed exposé on

genotyping error mechanisms. Note that the two models we have chosen have been

used successfully in the past in order to identify potential genotyping errors [Douglas

et al., 2000; Sobel et al., 2002].

4.4 Impact of genotyping error on linkage

Effect on IBD sharing

Tests for linkage are based on the IBD sharing distribution and although errors as

described in Section 4.3 are made at the genotype level (G is read as Gε), the effect of

errors on linkage will be entirely mediated via the distortion of the IBD distribution

(the true IBD status π of two siblings may be incorrectly inferred as πε). We are

therefore interested in deriving the probability distribution P(πε |π), this is done by

conditioning on both the true and observed genotypes as follows:

P(πε |π) =
∑

Gε

P(πε |Gε)
∑

G

P(Gε |G) P(G |π) .

Let us consider the case of complete information. This can be conceptualized
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by means of an idealized marker whose number of alleles is infinite, in particular

identity by state (IBS) status is equivalent to identity by descent (IBD) status. The

unordered genotypes of a sib pair can be partitioned into seven exclusive classes

denoted ii/ii, ii/ij, ii/jj, ii/jk, ij/ij, ij/ik and ij/kl depending on the number

of homozygous sibs in the pair and the number of distinct alleles in the sib-pair

genotype. Sharing 0 alleles IBD corresponds to a sib-pair genotype of the ij/kl class,

should an error occur according to the population frequency error model then one

of the four alleles would be transformed into yet another type (since the number

of alleles is infinite, the probability that the new allele is read as one of i, j, k or l

tends to 0), therefore the sib pair genotype will remain in the ij/kl class and the

observed IBD status πε will still be 0. For the same starting genotype, an error

according to the false homozygosity model produces an ii/jk class and πε also equals 0

therefore P(πε = 0 |π = 0) = 1 whatever the genotyping error mechanism considered

in Section 4.3. The same line of reasoning leads to P(πε = 0.5 |π = 0.5) = 1 − ε
2 ,

P(πε = 0 |π = 0.5) = ε
2 , P(πε = 1.0 |π = 1.0) = 1 − ε, P(πε = 0.5 |π = 1.0) = ε.

Those results can be summarized by the transition matrix below, where the (i, j)

element is equal to P(πε = (j − 1)/2 |π = (i− 1)/2)

P(πε |π) =




1 0 0
ε
2 1− ε

2 0

0 ε 1− ε


 .

The overall effect of genotyping error is thus to reduce the observed IBD sharing. In

selected samples of extremely concordant sib pairs (EC) where linkage is evidenced

by excess IBD sharing, it therefore seems logical to expect a decrease in power. Con-

versely, in selected samples of extremely discordant sib pairs (ED) where linkage is

evidenced by reduction in IBD sharing, the test might lead to increased type I error.

In Section 4.4, we quantify this bias in selective samples schemes for quantitative

traits under the usual assumption of a normal variance components model.

Effect on linkage

In this section, we concentrate on the case where IBD information is complete. As

exposed in Section 4.2, the test for linkage corresponds to a regression through the
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origin of excess IBD sharing π̂ − 1
2 on a function of phenotype values C = C(x, ρ)

with C as defined by Formula (4.1) i.e. it is based on the approximate relation

(4.3) E(π − 1
2
|x, γ, ε) =

γ

8
C(x, ρ) .

We show in the appendix that, in presence of genotyping error at rate ε, this relation

is changed into

(4.4) E(πε − 1
2
|x, γ, ε) = − ε

4
+ (1− ε

2
)

γ

8
C(x, ρ) .

If we were to know ε, we could correct for it in the regression and the loss in efficiency

would only be due to the 1− ε
2 term preceding γ and would therefore be minimal.

We may ignore genotyping error altogether. In the appendix, we derive a general

expression (Equation (4.9)) for the probability of rejecting the null hypothesis of no

linkage under this scenario. For small values of the error rate ε, the following first

order approximation obtains

(4.5) Φ
(
Φ−1(α) + γI1/2

)
− ε I1/2

(
γ

2
+ 2

C

C2

)
× φ

(
Φ−1(α) + γI1/2

)
,

where α is the nominal type I error rate for the linkage test with a true quanti-

tative trait locus effect γ, C is the average of the C(xi1, xi2, ρ) values (given by

Equation (4.1)) among a sample of n sib pairs, I = n
8 C2 is the sample’s Fisher’s

information for the linkage parameter γ, Φ is the cumulative density function of the

standard normal distribution and φ is the corresponding density function. The first

term Φ
(
Φ−1(α) + γI1/2

)
in this expression gives the value of this probability in ab-

sence of genotyping error while the second term is the deviation from this reference

value; in particular, when γ = 0, it expresses the actual type I error as a deviation

from the nominal type I error rate: α− 2ε C

C2 I1/2 × φ
(
Φ−1(α)

)
.

In extremely concordant (EC) designs, C is positive while it is negative in ex-

tremely discordant (ED) designs, inference will therefore be too conservative in EC

designs and too liberal in ED designs. In random samples and under the variance

components model, C is a score function hence E(C) = 0 therefore its sample esti-

mate C will be small and the effect of genotyping error will be minimal. The same

finding would hold for any ascertainment scheme where C = 0.

We now quantify the effect of genotyping error on power and type I error under

specific designs. The distortion of the linkage test in presence of genotyping error
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Figure 4.1: Three selective schemes: extremely concordant(EC), extremely discordant(ED) and

most informative (I) all for 10%. Joint distribution of sib trait values in gray scale for ρ = 0.5

(generated using the scatterplots function of Eilers and Goeman [2004])

depends heavily on the design-specific quantity C/C2; given an ascertainment scheme

corresponding to a certain region of the possible trait values, it is simple to use Monte

Carlo methods to determine the expected C/C2 value in that region. In table 4.1,

we considered three different ascertainment schemes: extremely concordant (EC),

extremely discordant (ED) and most informative (I) as shown in Figure 4.1. For

example, in the EC10% scheme with sib-sib trait correlation ρ = 0.5, only sib pairs

whose trait values (x1, x2) fulfill x1 > t and x2 > t or x1 ≤ −t and x2 ≤ −t where

t = tEC(10%, ρ = 0.5) = 0.136 are retained (the value of t is such that on average

10% of the overall population is sampled). Analogously for ED, sib pairs whose trait

values belong to regions defined by x1 > t and x2 ≤ −t or x1 ≤ −t and x2 > t

are selected. The I scheme selects the most informative sib pairs determined using

the quantiles of Fisher’s information (I ∝ C2(x1, x2, ρ)) distribution for the linkage

parameter γ [Lebrec et al., 2004]. For example, if the percentage selected equals 10%

and ρ = 0.5 then sib pairs whose trait values fulfill C2(x1, x2, ρ = 0.5) > 4.36 would be

selected. This sampling scheme combines both EC and ED sib pairs and constitutes

a refinement of the so-called EDAC designs [Gu et al., 1996].

Table 4.1 allows us to draw three main conclusions relating to the main bias caused

by the intercept mis-specification in the usual linkage testing procedure:

1. It is negative in EC designs and positive in ED designs, positive but without

substantial influence for I designs,
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ρ sel. EC ED I sel. EC ED I sel. EC ED I

0.1 1% 0.27 -0.23 -0.07 10% 0.47 -0.40 -0.06 30% 0.65 -0.53 -0.04

0.2 0.29 -0.21 -0.13 0.50 -0.36 -0.11 0.69 -0.46 -0.07

0.3 0.30 -0.19 -0.15 0.52 -0.32 -0.14 0.71 -0.39 -0.09

0.4 0.31 -0.17 -0.14 0.53 -0.28 -0.16 0.69 -0.32 -0.11

0.5 0.32 -0.14 -0.12 0.52 -0.24 -0.17 0.62 -0.25 -0.11

0.6 0.31 -0.12 -0.10 0.47 -0.19 -0.15 0.50 -0.19 -0.10

Table 4.1: Average values for the C/C2 term determining bias

2. It is more pronounced as the designs becomes less extreme for both EC and ED,

3. It is fairly independent of sib-sib trait correlation ρ for EC designs while it

decreases with ρ for ED designs.

Overall, for small QTL effects γ, genotyping error will lead to conservative infer-

ence in EC designs and to liberal inference in ED designs. In Figure 4.2, we show the

theoretical type I error rate and probability of rejecting the null hypothesis (obtained

via Formula (4.9)) for different sampling schemes under perfect IBD information. We

have used a QTL explaining 10% of the total trait variance, a trait sib-sib correlation

equal to 0.3 and error rates equal to 0.01, 0.02 and 0.05. Although the power is not

too badly affected at least for small error rates, genotyping error substantially affects

the type I error rate, this may lead to far too liberal inference in ED designs, this

deterioration of the size of the test becomes more acute as sample size increases.

Incomplete IBD information

We saw in Section 4.4 that genotyping error not only deteriorated the slope of the

linkage signal but also introduced an intercept in the regression of excess IBD sharing

on the optimal Haseman-Elston trait function C(x, ρ). In the case of complete infor-

mation and at least for the population frequency error model and false homozygosity

model , the perturbation caused by the error processes only depended on the error

rate ε through the functions given in Equation (4.3). In real-life situations, IBD infor-

mation is incomplete, but under the usual variance components additive model and
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Figure 4.2: Effect of genotyping error on test for linkage in EC (top), ED (middle) and I (bottom)

designs
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in absence of genotyping errors, the excess IBD sharing is approximately related to

the QTL effect γ and the optimal Haseman-Elston trait function C(x, ρ) through the

regression (this is shown for an approximate additive model as given by Formula (4.2)

in the appendix of Lebrec et al. [2006])

E(π̂ − 1
2
|x, γ, ε) ' var0(π̂)γ C(x, ρ) ,

and the effect of genotyping error is to modify this regression into

(4.6) E(π̂ε − 1
2
|x, γ, ε) ' a(ε) + b(ε) var0(π̂)γ C(x, ρ) .

For simple cases, e.g. a single equi-frequent allele marker, explicit formulae can be

derived for a and b; in general though, those functions will depend in a complex

manner on the genotyping error mechanism but also on the markers’ map and no

explicit forms will be available. When multi-point marker data are used to infer IBD

sharing, errors tend to propagate around markers and one can expect a more severe

effect of genotyping error compared to single-point algorithms. As mentioned earlier,

for small QTL effects, most of the impact on linkage in selected samples will be due

to the intercept mis-specification in the linkage regression, we therefore focus on this

issue.

In random samples or under the null hypothesis of no linkage, the sample mean

excess IBD π̂ε− 1
2 (averaged across families) provides an estimate of the intercept a(ε).

We simulated three different marker map configurations in 10000 sib pairs without

parents and quantified by how much IBD sharing was reduced on average under the

population frequency error model and the false homozygosity model (error rates=0.01

and 0.05). MapH and MapL had eleven equi-frequent allele markers located 10cM

apart, markers had 10 alleles in MapH and 2 alleles in MapL. MapM only had six

markers 20cM apart with 5,2,5,2,2 and 5 alleles on the six markers (from left to right).

The results are displayed in Figure 4.3 along with the corresponding map information

content as defined in Kruglyak and Lander [1995] (wiggly curves in bottom part

of each figure, scale on the right y-axis), for clarity and because results were very

similar, we have omitted the curves corresponding to the false homozygosity model

. One clear trend is that IBD is most affected by genotyping error in areas where

marker information is high. Furthermore, even for small error rates, the decrease in
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IBD sharing is substantial.

4.5 Genomic control for genotyping error

As we have seen in previous sections, the main effect of genotyping error is to modify

the intercept in the regression used to test for linkage. In order to obtain more robust

inference, it therefore seems natural to try and constrain the regression through its

correct origin a. In this section, we propose a completely data-driven strategy for

doing this.

At any position, the sample mean IBD sharing has variance var0(π̂)/n where n is

the number of sib pairs available. If we knew that the position is unlinked or if the

sample of sib pairs was random then the deviation of this mean from 1
2 would provide

an estimate of the intercept a in the linkage regression. Unfortunately, detection of a

position-specific intercept corresponding to typical error rates would require a sample

size of order 104, a number that is almost never reached in linkage studies. In order

to obtain an intercept estimate â with sufficient precision, it is therefore essential to

combine information across positions. The value of IBD sharing at positions outside

of the neighborhood of influencing loci (those positions are subsequently referred to

as unlinked) across the genome may serve as control in the test for linkage, this

concept of genomic control has been used to robustify the analysis of association

studies by Devlin and Roeder [1999].

Ad-hoc method

Let’s assume that the proportions of alleles shared IBD π̂ is inferred at a series of

approximately regular positions indexed by t across the whole genome. Let yt be the

sample mean (among families) excess IBD at position t i.e. yt ≡ π̂ε
t − 1

2 . Under the

variance components model and for small QTL effect γ, equation (4.6) implies that

E(yt) '




a , if position t is unlinked ,

a + b
8γC , if position t is linked .

In random samples or in any sample where C ' 0, taking the average of yt across

positions provides and estimate of a. In selected samples, we can use a trimmed

version of the mean of y, for example a 20%-trimmed mean of the (yt)t series (i.e.
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Figure 4.3: Effect of genotyping error on IBD sharing and corresponding map information content

in simulated data - Error rates ε = 0.01 (top) and ε = 0.05 (bottom)
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the mean of the yt values after removing the 20% lowest and and 20% highest values)

will provide a robust genomic estimate â of a. Because a ≤ 0 and C is positive and

negative in EC designs and ED designs respectively, â could be refined by trimming

off only the 20% highest and lowest yt values respectively before taking the mean. Of

course, how much we trim is arbitrary but 20% can safely be taken as a conservative

value for oligogenic traits.

An ad-hoc implementation of the concept of genomic control is then to plug in the

estimate of the intercept â into the linkage regression (4.6). Since most of the bias in

the inference is due to the intercept mis-specification, the precise estimate obtained

by pooling across the genome will eliminate it. The implicit assumption that we make

in this genomic control approach is that the regression intercept is the same at all

positions.

Empirical Bayes

The method in the previous section can be formalized using an empirical Bayes in-

ferential procedure in order to compute the posterior probability that a position is

linked. Having set a minimum level of evidence for deciding whether a position is

linked, the values of yt at unlinked positions could be pooled and the estimate thus

obtained plugged into the linkage regression as in the previous section. The approach

is borrowed from the microarrays literature [Efron and Tibshirani, 2002] and our

problem is analogous to the estimation of the proportion of true null hypotheses in

false discovery rates testing rules.

We assume that the prior density f of the average excess IBD sharing y = (yt)t is

given by a mixture distribution

f(y) = α0f0(y) + (1− α0)f1(y) .

Here, α0 denotes the prior probability that a position is unlinked (a conservative value

would be α0 = 1) and f0(y) is the corresponding prior probability distribution of y,

while f1(y) denotes the prior probability distribution of y at a linked position. Using

Bayes’ theorem, the following posterior distribution obtains

P(position t linked | yt) = 1− α0f0(yt)
f(yt)

.
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Non-parametric density estimation techniques such as kernel density estimation

may be used to estimate f(y) from the data without having to specify f1(y). Unless

the positions where IBD is inferred are chosen far apart, the observations will not be

independent but this does not invalidate the method. It suffers one inherent limitation

though: the effective sample size is small in a human genome (choosing positions

every 50cM produces only approximately 70 almost independent observations) and

this limits our ability to estimate f(y) precisely. Since var(yt) = (8n)−1, the prior

f0(y) could be chosen as an N(a0, (8n)−1 + τ2) where a0 would reflect our prior

knowledge about the intercept a and τ2 the associated uncertainty.

Instead of applying this empirical Bayesian framework to the average excess IBD

sharing (yt)t, we can apply it directly to linkage statistics such as the QTL effect

estimates γ̂t =
∑

i(π
ε
i− 1

2 )Ci
1
8

∑
i C2

i

whose expectation is calculated in the Appendix. Since

var(γ̂t) = ( 1
8

∑
i C2

i )−1, priors f0(y) of the form N(a0, ( 1
8

∑
i C2

i )−1 + τ2) are possible

although asymmetric versions that favor negative values might be more appropriate.

Preliminary simulations give sensible results when the true number of linked positions

is not too low (≥ 5%) and the study is adequately powered, however the limited

number of independent dimensions in a linkage scan is a serious limitation of this

approach.

Alternatives

Alternatives to this genomic-control strategy are possible and they also boil down to

constraining the linkage regression through a new origin as in the ad-hoc method, the

estimation procedure can be adapted to suit particular circumstances.

Firstly, in random samples, the assumption regarding exchangeability of positions

might be relaxed. Indeed, the yt’s may be used as estimates of the position-specific

intercepts since a study sufficiently powered to detect linkage in random samples

should provide sufficient precision. It must be noted though that the advantage of

using a genomic control in random samples is limited because the impact of genotyping

error is small in such designs. Secondly, one could use previous lab data to estimate by

how much IBD sharing deviates from its expected value, this could also been done at

each position separately provided sufficient data are available. In practice, such data

might not be available or they might not trustfully reflect current error mechanisms.
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4.6 Discussion

Under two basic error models, we were able to predict quantitatively the consequences

of genotyping error on inference in linkage analysis. In the idealized situation of com-

plete IBD information, both error models have the same impact on linkage analysis.

As we have seen, the effect is due to a decrease in IBD sharing. A contrario, an error

process which would increase IBD sharing would produce opposite results. The true

error processes involved in practice are complicated mixtures of the models alluded

to here. In our experience however, it seems that processes which lower IBD sharing

are predominant. Because genotyping error tends to decrease the estimated number

of alleles shared IBD, the effect on evidence for linkage is opposite in EC (over-

pessimistic) and ED (over-optimistic) designs, it can be dramatic in typical designs

and paradoxically less severe for more extreme ascertainment schemes. By analogy,

for a dichotomous trait, this means that the effect of genotyping error is less severe

in ASP designs for rare diseases than for common diseases. Remarkably, in designs

combining both ED and EC pairs like the I (or EDAC designs), the competing ef-

fects of genotyping error tend to cancel each other out. We have considered here only

three types of basic selection schemes however the approach can straightforwardly be

applied to any arbitrary selection scheme, under a variance components model, the

important quantity being C/C2.

The genomic-control strategy that we have proposed offers a robust method for

carrying out linkage analysis but obviously relies on a convenient approximation of

a very complex situation. It is probably reasonable to assume that genotyping of

markers with a similar degree of polymorphism (number of alleles and frequencies)

within the same lab is subject to the same error process. On top of the true underlying

error mechanism, in a multi-point setting, not only the number of markers but also

the inter-marker distances could have an impact. Ideally, markers should have similar

numbers of alleles and respective frequencies and be rather evenly distributed across

the genome. Based on results from simulations presented in Section 4.4, it seems

appropriate to pool estimates of regression’s intercept a which correspond to areas

of the genome where marker information is roughly the same. The advent of SNP

chip therefore makes us confident of the applicability of our method, indeed this
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new technology for linkage data holds the promise of providing marker maps with

less variable information content than in classical microsatellites maps [Evans and

Cardon, 2004; Schaid et al., 2004].

Elston et al. [2005] have recently pointed out that the implicit assumption made

in ASP designs, that randomly sampled sib pairs share half of their alleles IBD, might

not hold in practice and have argued for including discordant pairs in such studies.

The approach presented here offers an alternative solution to this issue. Finally we

note that, although we have only considered designs involving sib pairs, the approach

naturally extends to other types of relative pairs.
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4.7 Appendix

Effect of genotyping error on linkage

We show how regression (4.3) is modified in presence of genotyping error. We con-

centrate on the case where IBD information is complete.

By definition E(πε− 1
2 |x, γ, ε) = 1

2 P(πε = 1
2 |x, γ, ε)+P(πε = 1 |x, γ, ε)− 1

2 . We

can then condition on the true IBD status π and use approximation (4.2) in order

to evaluate the probabilities involved in the previous expression: P(πε |x, γ, ε) =
∑

π P(πε |π) P(π |x, γ) P(πε |π). In the present case of complete information, this

yields

(4.7) E(πε − 1
2
|x, γ, ε) = − ε

4
+ (1− ε

2
)

γ

8
C(x, ρ) .

Probability to reject H0

We derive an approximate formula for the probability of rejecting the null hypothesis

of no linkage if we ignore genotyping error.

As we have seen earlier, testing for linkage boils down to regression (4.3). Let’s

denote by γ̂, the estimate of the slope in the regression through the origin of a sam-
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ple
(
πi − 1

2

)
i=1,...,n

on the corresponding Ci = (C(xi1, xi2, ρ))i=1,...,n and by γ̂ε, the

estimate of the slope in the same regression but where the response is replaced by
(
πε

i − 1
2

)
i=1,...,n

.

γ̂ =
∑

i(πi − 1
2 ) Ci

1
8

∑
i C2

i

and E(γ̂ |x, γ) ' γ

i.e. γ̂ is an approximately unbiased estimate of γ. However it appears that γ̂ε =
∑

i(π̂
ε
i− 1

2 ) Ci
1
8

∑
i C2

i

is biased since

E(γ̂ε |x, γ, ε) =
∑

i E(πε
i − 1

2 |x, γ) Ci

1
8

∑
i C2

i

' (1− ε

2
) γ − ε

4
C

C2
.

(4.8)

The bias in γ̂ε depends on two factors: the genotyping error rate ε and the selection

procedure of sib pairs (which determines C = 1
n

∑
i Ci and C2 = 1

n

∑
i C2

i ). Whatever

the ascertainment scheme used (in particular in random samples), the estimate of γ

is systematically biased downwards by a factor 1− ε
2 ; then, depending on the sign and

value of C/C2, γ̂ε can be further decreased or increased. For complex traits and thus

small QTL effects γ, the intercept mis-specification will have a greater impact than

the bias in the slope. The test for linkage is based on the standardized slope estimate
γ̂ε√

var0(γ̂ε)
= γ̂ε√

var0(πε)C2
, since var0(π) = 1

8 is practically unchanged by genotyping

error (var0(πε) = 1
8 − ε2

16 ), the probability of rejecting the null hypothesis is given by

(4.9) Φ
(

Φ−1(α) + (1− ε

2
)γI1/2 − 8

ε

4
C

C2
I1/2

)
,

where I = var0(γ̂)−1 = n
8 C2 is the sample’s Fisher’s information for the linkage

parameter γ, α is the nominal type I error rate for the linkage test with a true quan-

titative trait locus effect γ and Φ is the cumulative density function of the standard

normal distribution. A first order Taylor approximation of (4.9) yields Formula (4.5).

66



Chapter 5

Potential Bias in Generalized

Estimating Equations Linkage

Methods under Incomplete

Information

Abstract

The mean identity-by-descent (IBD) specification used in the Generalized Estimat-

ing Equations (GEE) methodology for linkage is only valid, strictly speaking, under

the assumption of fully polymorphic markers. In practice, markers often provide

only partial IBD information which can potentially result in inconsistency of the

locus location and gene effect estimates obtained by the GEE method. Using both

simulations and theory, we identify some realistic conditions about marker infor-

mation under which the validity of the GEE linkage methods may be arguable.

Namely, researchers should not trust the GEE parameters’ estimates and their as-

sociated confidence intervals in areas of the genome where IBD information is sparse

or when this information changes abruptly. We show that properly standardized

statistics based on IBD sharing provide a valid alternative.

This chapter has been published as: J. Lebrec, H. Putter and J.C. van Houwelingen (2006).

Potential Bias in Generalized Estimating Equations Linkage Methods under Incomplete Information.

Genetic Epidemiology 30 (1), 94–100.
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5.1 Introduction

Since Liang et al. [2001] introduced the use of Generalized Estimating Equations

(GEE) with the purpose of estimating the position of a locus linked to a trait, there has

been increasing interest in this methodology. The approach has attractive features,

in particular, it allows researchers to set a confidence interval around the estimate of

the locus position. In the meantime, some refinements and extensions of the approach

are being developed: covariates can be introduced [Glidden et al., 2003; Chiou et al.,

2005], the methodology can be extended to two linked loci in the region [Biernacka

et al., 2005] and to general pedigrees [Schaid et al., 2005], and it bears potential for

a wider use in the future. Strictly speaking, the GEE linkage method is only valid

when markers are fully polymorphic, in other words, when identity-by-descent (IBD)

status at markers is known with certainty. As far as we are aware, little has been

done to assess how robust the method is under more realistic conditions of marker

information. Indeed, among the aforementioned articles, those that included simula-

tions almost always generated complete IBD data at markers. The only exception is

Biernacka et al. [2005] who recognized that the use of non-fully informative marker

maps produced biased estimates of the genetic effects but hardly any bias in the esti-

mate of locus position, however they only looked at evenly distributed marker maps.

In this article, we identify some realistic conditions about marker information under

which the validity of the GEE linkage methods may be arguable, properly standard-

ized statistics based on IBD sharing provide a valid alternative. In the ‘Methods’

section, we review the principles of the GEE method and show why it may lead to

biased and inconsistent estimation and we prove that some more classical approaches

do not suffer the same drawback under certain conditions. The ‘Results - Monte

Carlo simulations’ section is devoted to simulations that illustrate the findings of the

previous section in a range of realistic scenarios. Finally, in the ‘Discussion’ section,

we discuss our findings and their possible practical impact on linkage analysis.
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5.2 Methods

The GEE methodology

We start by recalling the principle of the GEE methodology as applied to linkage

mapping. For affected sib pairs (ASP) the method is based on the mean specification

of the excess IBD sharing at markers as

(5.1) E(πt − 1
2
|ASP) =

1
8
(1− 2θt,τ )2 C = µt(τ, C),

where πt denotes the true proportion of alleles shared IBD at marker or position t, τ

the position of the true and only locus in the region, θt,τ the recombination fraction

between locations t and τ , while C reflects the genetic model (note here that C in

the previous equation is 4 times the C parameter used in Liang et al. [2001]). We

stress that the derivation of this result assumes that markers are fully polymorphic.

In practice, IBD is uncertain and is estimated using multipoint marker data, it is well

known that the consequence of incomplete information is to shrink the estimated IBD

towards its null value 1
2 , as a result the previous mean model might be erroneous. We

distinguish the true (often unobserved) proportion of alleles shared IBD π from its

estimated counterpart by the use of the notation π̂.

We assume that we have data from i = 1, . . . , N ASPs available at marker positions

t1, . . . , tM with corresponding IBD sharing estimates π̂i = (π̂i,t1 , . . . , π̂i,tM )′, where ′

denotes the transpose of a matrix (bold letters indicate a matrix or a vector as opposed

to a scalar). We denote by V the M ×M working variance-covariance matrix for π̂i

while µ = µ(τ, C) = (µt1 , . . . , µtM )′ then estimation of the parameters τ and C is

carried out by solving the following GEE

N∑

i=1

(
∂µ

∂(τ, C)

)′
V−1 (π̂i − µ(τ, C)) = 0 .

The theory developed by Liang and Zeger [1986] ensures that as long as the mean

of the observations is correctly specified (i.e. E(π̂i) = µ(τ, C)), the GEE estima-

tors of τ and C converge towards the true locus position and genetic effects as the

sample size N increases. A specification of V as the true variance-covariance ma-

trix of the observations π̂i in terms of the unknown parameter τ and C was given
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in Liang et al. [2001] (again, under complete information) but is not essential to the

consistency of the procedure, it only affects its efficiency. In addition, an asymptoti-

cally robust variance-covariance matrix for the estimates (τ̂ , Ĉ)′ can be computed as

Σ̂ = Σ̂−1
1 Σ̂2Σ̂−1

1 with

Σ̂1 = N

(
∂µ

∂(τ, C)

)′
V−1

(
∂µ

∂(τ, C)

)

Σ̂2 =
N∑

i=1

(
∂µ

∂(τ, C)

)′
V−1

(
π̂i − µ(τ̂ , Ĉ)

) (
π̂i − µ(τ̂ , Ĉ)

)′
V−1

(
∂µ

∂(τ, C)

)
,

where ∂µ
∂(τ,C) and possibly V are evaluated in (τ̂ , Ĉ).

An accurate IBD specification under incomplete information

The relation E(π̂) = µ(τ, C) between the mean of the estimated IBD sharing and

the locus position τ and gene effect C, exactly true when IBD is perfectly known, is

only approximate under incomplete information. In fact, Teng and Siegmund [1998]

have shown that a theoretical mean IBD specification can also be derived under

incomplete information, namely for a one-locus (located at τ) additive model on the

IBD scale (which is approximately true for a wide range of disease models; exactly

true if λS = λO [Risch, 1990]) such that




P(πτ = 0 |ASP) = 1
4 − 1

8C

P(πτ = 1
2 |ASP) = 1

2

P(πτ = 1 |ASP) = 1
4 + 1

8C ,

(5.2)

the expected observed excess IBD sharing at any arbitrary position t is given by

(5.3) E(π̂t − 1
2
|ASP) = cov0(π̂t, π̂τ ) C ,

where the covariance cov0(π̂t, π̂τ ) is taken under the null hypothesis (It therefore only

depends on marker map characteristics, pedigree structure and possibly missing geno-

type patterns). For the sake of completeness, we show a proof of this crucial result

in the appendix. The correct specification of the mean IBD sharing as a function

of the locus position τ and genetic effect C is essential in order to obtain valid es-

timates by the GEE method. Comparison of Equations (5.3) and (5.1) allows one

to evaluate the discrepancy between the correct IBD specification and the one used
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in the GEE linkage methods. For illustration purposes, we have displayed two typ-

ical extreme examples in Figure 5.1 assuming the true locus is at τ = 25cM. Under

incomplete information, the variances var0(π̂t) and var0(π̂τ ) are reduced from their

fully polymorphic value 1
8 while the correlation cor0(π̂t, π̂τ ) is increased compared to

its complete information value (1−2θt,τ )2; the net effect is a decrease of cov0(π̂t, π̂τ ).

The exact relationship between cov0(π̂t, π̂τ ) and τ is complex in general, however

the covariance is taken under the null hypothesis and can therefore easily and accu-

rately be calculated by Monte Carlo simulations (or gene dropping simulations) as

advocated in Lebrec et al. [2004]: we used the --simulate option in MERLIN to

generate marker data for a few thousand sib pairs and calculated the sample covari-

ance between π̂t and π̂τ after obtaining multipoint estimates of IBD sharing by use of

the --kin option in MERLIN (in general, one such simulation has to be done for each

type of pedigree and missing genotype pattern). Note that var0(π̂t) can be computed

at any arbitrary position t in a similar manner. We have displayed three possible

IBD mean specifications in Figure 5.1: the correct one, cov0(π̂t, π̂τ )C, labelled ‘T&S’,

the one under complete information, 1
8 (1− 2θt,τ )2C, labelled ‘GEE’ and a third one,

(1− 2θt,τ )2
√

var0(π̂t)var0(π̂τ )C, labelled ‘Var Corrected’ that corrects for the incom-

plete marker information by using the correct variances var0(π̂t) and var0(π̂τ ) but

keeping the correlation as in the ideal situation of complete information (i.e. too

low).

In the symmetric information case (Left panel: two markers with 10 equi-frequent

alleles at 20cM and 40cM), the location estimate will in practice incur little harm

(but the estimate of C will). In presence of asymmetric information (Right panel:

two markers with 2 and 10 equi-frequent alleles at 20cM and 40cM respectively), the

true expected excess IBD is lower at marker A than at marker B although τ is closer to

A, however the true expected excess IBD sharing as per ‘GEE’ is grossly misspecified

since expected IBD is supposed to be much higher at A than at B, the location

estimate will be biased towards the more informative marker B, the ‘Var Corrected’

specification does a better job at approaching the true IBD mean specification but is

not accurate.
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Figure 5.1: Comparison of different mean specifications for excess IBD sharing at position t (E(π̂t−
1
2
|ASP)) - ‘T&S’ (the correct one): cov0(π̂t, π̂τ )C, ‘GEE’ (assumes complete information): 1

8
(1 −

2θt,τ )2C and ‘Var Corrected’: (1− 2θt,τ )2
√

var0(π̂t)var0(π̂τ )C.

A consistent score test

Feingold et al. [1993] have shown that under a complete high-resolution map, the

global test for linkage based on excess IBD sharing given by the supremum of Zt =
∑N

i=1 πt,i− 1
2√

N 1
8

over the putative chromosomal positions t is the log-likelihood ratio test of

a Gaussian process for testing the null hypothesis of no linkage and therefore provides

a consistent estimate of the true disease locus location τ . When information is in-

complete, a similar test was proposed by Teng and Siegmund [1998] as the maximum

of Ẑt across marker positions with

Ẑt =
∑N

i=1 π̂t,i − 1
2√∑N

i=1 var0(π̂t,i)
,

where var0(π̂t,i) may be computed as in subsection ‘An accurate IBD specification

under incomplete information’. Although their test was based on evaluation of Ẑt

across marker positions only, there is no practical reason for such a restriction when

IBD is calculated using multipoint methods and one can in theory calculate Ẑt on an

arbitrarily fine grid of putative locations. Assuming the locus is at τ , the statistic

Ẑτ turns out to be the score test [Cox and Hinkley, 1974] for the C parameter in the
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additive model (5.2) 1 and we refer to this test as such in the sequel. One obvious

estimator of the locus position is the location t = τ̂ where Ẑt is maximized in the

chromosomal region of interest. We are unaware of a formal proof that as in the case

of a high-resolution map, τ̂ provides a consistent estimate of the true locus position,

although this is probably known from experience. It turns out to be a corollary of

relation (5.3) as we show in an appendix. In addition, one can obtain bootstrap

confidence intervals (CI) by resampling with replacement among the N sib pairs and

recalculating τ̂ such that Zτ̂ = sup
t

Ẑt in each new sample. In fact, this score test

is also the score test corresponding to the exponential model used by Kong and Cox

[1997] although they prefer to use the corresponding likelihood ratio test. It is perhaps

worth stressing that the standardization used in Ẑt is crucial to the consistency of

the method, older non-parametric linkage (NPL) methods for ASPs were based on

excess IBD sharing only (i.e. the numerator of Ẑt) and the corresponding maximum

LOD score thus gave inconsistent estimates of the position under uneven incomplete

information even when IBD estimation was done in a multipoint fashion.

5.3 Results - Monte Carlo simulations

In order to assess the impact of incomplete information in practice, we carried out a

number of simulations: we generated data from a simple one-locus bi-allelic (disease

allele D frequency=0.1) additive model (penetrances=0.0, 0.5 and 1.0 in dd, Dd and

DD genotypes resp.; λS = λO = 3.25). A set of 11 equally-spaced markers spanned

a 0− 100cM region and the locus was positioned between the 5th and 6th marker at

either 42.5cM, 45cM or 47.5cM. We looked at three distinct marker maps (mapH,

mapM and mapL) reflecting an increasing degree of systematic differences in marker

information; the last six markers always had 10 equi-frequent alleles whereas the first

five markers had 8 equi-frequent alleles in mapH, 4 equifrequent alleles in mapM

and 2 equi-frequent alleles in mapL. Finally, for each scenario, we considered three

sample sizes N = 100, 200 and 500 ASPs without parents. In all methods of analysis

described below, multipoint IBD estimation was carried out using MERLIN [Abecasis

et al., 2002]. The locus position and genetic effect were estimated according to the

1More precisely, in the model P(g |ASP) =
∑

l=0, 1
2 ,1 P0(g |πτ = l) P(πτ = l |ASP) where g is

the multipoint marker information available and P(πτ = l |ASP) is given by model (5.2).
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GEE method using GeneFinder [Liang et al., 2001], both asymptotic and bootstrap

95% confidence intervals (CI) were calculated. We also carried out two classical

analyses for ASP: on a fine grid of chromosomal positions (every cM), we calculated

the Kong and Cox [1997] test and the score test Ẑt defined in subsection ‘A consistent

score test’, the positions where the respective maximum of these two statistics were

attained provided position estimates for the locus. In addition, for the score test, we

calculated 95% ordinary bootstrap CIs by resampling among the N ASPs. All results

are presented in table 5.1.

The GEE estimates of the location are subject to bias which increases as the asym-

metry in marker map becomes stronger and which does not decrease with increasing

sample size. Although this bias might be considered small, it leads to lower than

nominal coverage probability even for the bootstrap CIs, this coverage probability

can potentially decrease further as the sample size goes up. Note that a bootstrap

algorithm adjusting for bias [Wehrens et al., 2000] could be used here. In contrast,

the location estimates obtained by the score test have low bias (probably due to the

discrete nature in the search for the supremum of Ẑt and inaccuracy in calculating

var0(π̂t)) independent of the marker map, the corresponding bootstrap CIs have close

to nominal coverage probability.

5.4 Discussion

The GEE methodology offers an attractive and flexible framework for fine mapping of

disease loci and its use will likely continue to spread in the coming years. Researchers

should therefore all the more be aware of its limitations. Estimates of disease locus

position (as well as genetic effect) and associated confidence intervals obtained by

existing GEE methods should not be trusted in areas of the genome where IBD

information is sparse in particular when this information changes abruptly. In these

instances, properly standardized classical methods based on excess IBD sharing, when

applied on a fine grid of locations, do provide consistent estimates of the location.

Associated confidence intervals with correct coverage probability can also be obtained

by re-sampling techniques such as the bootstrap.

The reason for underrating the issue of incomplete information has probably to
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GEE Score Kong & Cox

95% 95% 95%

True Map Average Asymptotic Bootstrap Average Bootstrap Average

location (Information N Estimate CI coverage CI coverage Estimate CI coverage Estimate

Contenta) (cM) (%) (%) (cM) (%) (cM)

42.5cM MapL 100 46.4 71.7 78.9 42.4 94.9 42.4

(34-84%) 200 46.4 58.2 63.8 42.3 94.2 42.2

500 46.3 27.8 32.9 42.2 95.4 42.2

MapM 100 43.9 84.9 89.8 41.9 95.7 41.9

(55-84%) 200 44.1 83.3 86.1 42.1 94.4 42.2

500 44.2 76.5 78.5 42.2 94.8 42.3

MapH 100 43.1 85.9 92.1 42.3 95.4 42.0

(66-84%) 200 43.0 86.3 92.0 42.1 95.7 42.0

500 43.1 88.3 90.4 42.3 94.6 42.3

45cM MapL 100 48.2 78.3 84.7 45.7 96.5 45.4

(34-84%) 200 48.1 75.8 77.3 45.4 96.1 45.3

500 47.8 51.6 53.3 45.1 98.0 45.1

MapM 100 46.4 80.9 90.2 45.0 95.1 45.2

(55-84%) 200 46.1 90.9 91.9 45.1 97.5 45.0

500 46.0 91.3 90.0 44.9 96.8 44.9

MapH 100 45.2 85.1 92.6 45.1 97.6 45.0

(66-84%) 200 45.0 94.7 95.3 45.0 96.6 44.9

500 45.1 96.4 95.5 45.0 97.3 45.0

47.5cM MapL 100 49.6 79.2 89.0 47.9 94.9 47.9

(34-84%) 200 49.5 76.5 86.2 47.8 94.9 47.7

500 49.3 78.2 80.7 48.0 94.2 47.8

MapM 100 48.2 84.5 91.8 47.8 94.7 47.9

(55-84%) 200 48.1 84.6 91.2 47.8 95.8 47.8

500 47.9 90.1 92.6 47.7 94.9 47.7

MapH 100 47.3 86.3 92.8 48.0 95.4 47.7

(66-84%) 200 47.4 87.4 93.5 48.0 95.5 47.9

500 47.3 91.6 94.4 47.9 95.3 47.7

Table 5.1: Results of simulations. a Information content is expressed as the range of average

information content as defined in Kruglyak and Lander [1995] over the 0-100cM region.
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do with the nature of the linkage mapping process which usually involves two stages:

following a first low-density scan, higher-density genotyping is carried out in one

or several promising regions. In this case, IBD information can be fairly accurately

determined and the GEE methodology is directly applicable. The advent of SNP chip

data for linkage has the potential to provide marker maps with not only higher but also

less variable information content [Evans and Cardon, 2004; Schaid et al., 2004] than

in classical microsatellites maps, this could potentially increase the reliability of the

GEE method in the future. Of course, SNP chip data can only hold such a promise

if the data are used in a multipoint fashion for IBD estimation which requires the

careful elemination of markers in linkage disequilibrium. However, there are specific

situations where similar scenarios to those chosen in our simulations will occur. For

example, researchers sometimes embark on collaborative projects (or meta-analysis)

whereby several already existing genomewide scans are pooled together in the hope to

gain sufficient power (e.g. GenomEUtwin project). In the search for complex traits

(with inherent small genetic effects), this second strategy is likely to become more

popular. Those distinct scans are often carried out using different marker maps and

their pooling will inevitably give rise to regions with heterogeneous IBD information

at least in part of the large pooled data set. For those reasons, we believe that

the scenarios envisaged in our simulations (and perhaps even more extreme ones as

we have personally experienced) are realistic and that our findings have practical

implications.

5.5 Appendix

Expected IBD sharing in ASP

We show a proof of the result concerning the expected excess IBD sharing in ASPs

under incomplete information. This result is actually due to Teng and Siegmund

[1998]. Recall first that π̂ = π̂(g) = E0(π | g) = 1
2 P0(π = 1

2 | g) + P0(π = 1 | g) where

g is the multipoint marker genotype information available (the subscript 0 indicates
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a probability P0 or expectation E0 independent of the disease locus), then:

E(π̂t − 1
2
|ASP) =

∑
g

(π̂t(g)− 1
2
) P(g |ASP)

where g spans all possible multipoint genotype configurations,

=
∑

g

(π̂t(g)− 1
2
)

∑

l=0, 1
2 ,1

P(g, πτ = l |ASP)

=
∑

g

(π̂t(g)− 1
2
)

∑

l=0, 1
2 ,1

P(g |πτ = l, ASP) P(πτ = l |ASP)

=
∑

g

(π̂t(g)− 1
2
)

∑

l=0, 1
2 ,1

P0(g |πτ = l) P(πτ = l |ASP)

since markers are in full linkage equilibrium with true locus,

=
∑

g

(π̂t(g)− 1
2
)

∑

l=0, 1
2 ,1

P0(πτ = l | g)
P0(πτ = l)

P0(g) P(πτ = l |ASP) .

Now replacing the probabilities for unobserved IBD sharing P(πτ = l |ASP) by their

values under the additive model introduced above and bearing in mind that π̂τ − 1
2 =

1
2 [P0(πτ = 1 | g)−P0(πτ = 0 | g)], it is straightforward to show that

E(π̂t − 1
2
|ASP) =

∑
g

(π̂t − 1
2
) P0(g) + C

∑
g

(π̂t − 1
2
)(π̂τ − 1

2
)P0(g)

= 0 + cov0(π̂t, π̂τ ) C .

Consistency of score test

We prove here the consistency of the score test in the estimation of the locus position

under an additive model. Let us consider Yt = var0(π̂t)−1/2
(
π̂t − 1

2

)
then

E(Yt) = var0(π̂t)−1/2 E(π̂t − 1
2
)

= var0(π̂t)−1/2 cov0(π̂t, π̂τ ) C

= cor0(π̂t, π̂τ ) var0(π̂τ )1/2 C

= cor0(π̂t, π̂τ ) var0(π̂τ )−1/2 E(π̂τ − 1
2
)

< E(Yτ ) for t 6= τ

Since cor0(π̂t, π̂τ ) is strictly monotonic in t, Yτ −Yt has a strictly positive mean µ and

finite variance σ2. By the Central Limit Theorem, we then have that the sequence

(Zτ −Zt)(N) = N−1/2(Yτ − Yt)(N) converges in distribution to N(N1/2σµ, σ2) thus
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P(Zt(N) < Zτ (N)) → 1 as N → +∞ for all t 6= τ . This proves the consistency of

the estimate of locus position t(N) taken such that Zt(N) = sup
t

Zt(N).
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Chapter 6

Classical Meta-Analysis Applied to

Quantitative Trait Locus Mapping

Abstract

We describe how classical methods for meta-analysis of clinical trials can be adapted

to the problem of pooling evidence from different linkage studies. Provided indi-

vidual QTL estimates and associated standard errors are available on a common

chromosomal grid, estimates can be pooled under the assumption of size homogene-

ity or heterogeneity of the QTL effects while homogeneity can itself be tested. We

show also how a simple two-point mixture distribution can be employed as a novel

way to allow for between-study locus heterogeneity. The methods may be applied

to studies having different marker maps, family structures or different sampling

schemes. Finally, we illustrate the methodology using seven data sets for height

originating from the GenomEUtwin project and representing 3212 informative fam-

ilies from Australia, Denmark, Finland, The Netherlands, Sweden and the United

Kingdom.

This chapter will be submitted as: J.J.P. Lebrec, D.I. Boomsma, K. Christensen, N.G. Martin,

N.L. Pedersen, M. Perola, T.D. Spector, H. Putter and H.C. van Houwelingen. Classical Meta-

Analysis Applied to QTL mapping - Genomewide Linkage Scan for Height in the GenomEUtwin

Project.
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6.1 Introduction

Individual loci influencing a complex quantitative trait are most likely to explain

only a small proportion of its total variance. Most linkage studies published to date

only consist of a few hundred pedigrees with a limited number of individuals and

consequently little power to detect linkage of any but the largest QTLs. In order to

enhance power, it is now common practice to retrospectively pool evidence for linkage

from several different studies. The populations used in each of the studies often have

different genetic backgrounds and a locus affecting the trait of interest in one popu-

lation might have no effect in another one; we will refer to this type of heterogeneity

as locus heterogeneity. In other instances, the same locus may influence the trait in

all populations, but there are many reasons to believe that the size of the effect will

vary. For instance, the frequency of the causal allele may be much smaller in some

populations or it may interact with other loci, or with environments and risk factors.

We will refer to this type of heterogeneity as size heterogeneity. Besides those biolog-

ical sources of heterogeneity, some common logistic sources of variation often arise:

typically, genotyping will have been carried out on different marker maps (and even

when identical markers are used, their allele frequencies may vary across populations)

and families may have been sampled according to different schemes. More simply,

the phenotypes measured may vary in their method of collection from study to study.

When the raw data are available, one obvious way to gather evidence from several

studies is to pool the data into a meta-file and proceed with an overall analysis. In

the case of linkage studies with different marker maps, the data manipulations in-

volved are very tedious. Besides, running standard methods of analysis on such large

data files usually requires uncommon computing capacities. Of course another simple

reason for favoring meta-analysis is that researchers usually simply cannot access the

raw data for each study and have to be content with individual test statistics along

with (at best) parameter estimates.

We refer the reader to Dempfle and Loesguen [2003] and Rao and Province [2001]

for recent overviews of meta-analytic methods for linkage studies. Although widely

applicable, rank-based methods such as the GSMA [Wise et al., 1999] are sub-optimal

compared to approaches based on the pooling of estimates of a common linkage pa-
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rameter. The idea of pooling different estimates of a common linkage effect across

studies is not new although it has only been described for sib pair designs to date.

Gu et al. [1998] use the excess IBD sharing as a common effect, but their approach

appears to be limited to studies with the same marker maps. Li and Rao [1996]

and Etzel and Guerra [2002] both use the slope in a classical Haseman-Elston re-

gression as a common effect, the former suffering the same restriction as Gu et al.

[1998] regarding location of markers. Interestingly in the latter, the authors explicitly

adjust for the (study-specific) marker to locus distance and allow for heterogeneity

across studies by means of a random effect. Unfortunately, they do not seem to cor-

rectly take into account the within-study dependence structure between markers. We

therefore advocate an alternative approach.

In the case of quantitative traits, a natural estimate of common linkage effect is

the proportion of total variance explained by a putative location. Classical meth-

ods of meta-analysis originally introduced in the field of clinical trials [DerSimonian

and Laird, 1986] can be adapted to linkage studies. The sufficient statistics used

to perform such approaches are the QTL estimates and their associated standard

errors on a common grid of putative locations. It is a well known fact in the biosta-

tistical literature that in absence of individual covariates and under the assumption

of homogeneity, pooled data and meta-analytic approaches are equivalent [Olkin and

Sampson, 1998], we show in an appendix that a similar result holds for linkage studies.

Assuming that QTL effect estimates and standard errors are available for all stud-

ies on a common grid of locations, we start in Section 6.2 ’Homogeneity’ by describing

the traditional meta-analytic approach in the context of linkage, while in ’A two-

point mixture for locus heterogeneity’ we introduce a simple finite mixture model

to account for potential locus heterogeneity. In ’Individual analyses’, we review the

methods which should be used for the analysis of individual studies in order to yield

the relevant statistics required for meta-analysis. The methodology is then applied to

a genomewide linkage scan for height in seven data sets from six different countries

in Section 6.3. Finally, in Section 6.4, we discuss a few practical and methodological

issues and briefly compare our findings for height to previous scans.
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6.2 Methods

The classical meta-analytic method

Meta-analytic methods are described in full detail in Normand [1999] and van Houwe-

lingen et al. [2002], for example. In this section, we recall briefly how meta-analysis

is classically carried out and introduce some refinement specific to linkage stud-

ies. We assume that at a given common putative position, each study (indexed

by i = 1, . . . , K) provides a consistent estimate γ̂i of the true QTL effect γi and an

associated standard error si.

Homogeneity

Under homogeneity, the effects γi’s are assumed to be equal to a common value γ so

that γ̂i ∼ N(γ, s2
i ). The corresponding maximum likelihood estimator of γ is therefore

given by the weighted average

(6.1) γ̂hom =
∑

i γ̂i/s2
i∑

i 1/s2
i

with standard error SEhom = 1/

√∑

i

1/s2
i .

The corresponding one-sided statistic

(
z+
hom

)2
=





(γ̂hom/SEhom)2 , ifγ̂hom > 0

0 if γ̂hom ≤ 0

follows the mixture distribution 1
2χ2

0 + 1
2χ2

1 under the null hypothesis, where χ2
0 de-

notes the degenerate density with all mass in 0. Of course, one can calculate the

corresponding LODhom score as
(
z+
hom

)2
/ (2× log 10).

Test for heterogeneity

Even when the same locus is affecting a trait in different populations, it seems difficult

to believe, for reasons given in Section 6.1, that the QTL effects are all equal. In the

setting introduced earlier, this situation of size heterogeneity can be tested:

H0 : γhom = γ1 = γ2 = · · · = γK

H1 : at least one γi is different ,
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the hypothesis of homogeneity H0 can be tested using the following statistic

X2 =
K∑

i=1

(γ̂i − γ̂hom)2

s2
i

whose approximate null distribution is χ2
K−1. In practice, any test for heterogeneity

is likely to have little power because individual studies tend to have low precision.

Nonetheless, the test can formally suggest heterogeneity in some instances, as will be

seen in Section 6.3. Note that the X2 statistic has an appealing interpretation (at

least for researchers with experience in parametric linkage), indeed it can be re-written

as

X2 =
K∑

i=1

γ̂2
i

s2
i

− γ̂2
hom

(
∑

i 1/s2
i )−1

= 2× log 10× (
∑

i=1,...,K

LODi − LODhom)

= 2× log 10× (
∑

i=1,...,K

LODi − LODpool)

where LODpool corresponds to the analysis of the pooled meta-file (the fact that

LODpool = LODhom is shown in the appendix). In other words, the individual LODs

add up only when the effect is perfectly homogeneous.

Size heterogeneity in locus effect

The classical way to allow for heterogeneity between studies is to introduce an ad-

ditional layer in the earlier homogeneous model by assuming that the study specific

effects γi’s themselves arise from a normal distribution with common mean γ and a

between study variance σ2. This is referred to as a normal mixture model (or ran-

dom effect model) and results in marginal distributions for the observations given by

γ̂i ∼ N(γ, s2
i + σ2). If the between study variance σ2 were known, the estimate of γ

would be

γ̂het(σ2) =
∑

i wiγ̂i∑
i wi

with wi =
1

σ2 + s2
i

and with standard error SEhet = 1/

√∑

i

wi ,

so one way to carry out estimation is by maximization of the profile log-likelihood

max
σ2

l
(
γ̂het(σ2), σ2

)
. In the context of linkage where the actual effects γi’s are stan-
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dardized variance components themselves, all γi’s should be equal to 0 with probabil-

ity 1 (i.e. σ2 = 0) under the null hypothesis (and not just arising from a N(0, σ2)).

The test for linkage is then given by the corresponding log-likelihood difference

2×
[
max

σ2
l
(
γ̂het(σ2), σ2

)− l
(
γ = 0, σ2 = 0

)]

so that evidence for heterogeneity potentially contributes to the rejection of the null

hypothesis of no linkage. The use of the usual mixture 1
2χ2

0 + 1
2χ2

1 for the null dis-

tribution of this non-standard likelihood is probably anti-conservative, the correct

asymptotic distribution is given by a mixture ( 1
2 − p)χ2

0 + 1
2χ2

1 + pχ2
0 [Self and Liang,

1987]. However, asymptotic results are unlikely to be useful since we typically have

very few observations (i.e. studies) to pool together. In practice, we use the anti-

conservative limits dictated by the 1
2χ2

0 + 1
2χ2

1 mixture as a screening tool and resort

to parametric bootstrapping for refinement of the level of significance once interesting

positions have been identified.

A two-point mixture for locus heterogeneity

In some cases, the previous model will not be adequate to model differences between

studies because heterogeneity is qualitative rather than quantitative, in other words

the locus influences the trait in some studies/populations and not at all in others. In

analogy to what is done routinely at the family level in parametric linkage (e.g. Ott

[1999], see also Holliday et al. [2005] for a recent application) and can be done in the

variance components setting [Ekstrøm and Dalgaard, 2003], one can fit a two-point

mixture model at the study level as follows: γ̂i | γi ∼ N(γi, s
2
i ) with

γi =





γ, with probability α;

0, with probability 1− α

so that

γ̂i ∼ αN(γ, s2
i ) + (1− α)N(0, s2

i ) .

The basic idea is that only a proportion α of the studies show linkage to the putative

locus and γ is the QTL effect among those studies only. For estimation purposes, this

mixture of normal distributions naturally lends itself to the EM algorithm [Dempster

and Laird, 1977]. Denoting by φ(x;µ, σ2) the normal density function with mean µ
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and variance σ2, the E (estimation) step at stage k + 1 of the iterative procedure

consists in calculating the posterior probabilities τ
(k+1)
i ’s that the γ̂i’s have arisen

from a normal distribution with mean γ(k) given the prior mixing proportion α(k) i.e.

τ
(k+1)
i =

α(k)φ(γ̂i, γ
(k), s2

i )
α(k)φ(γ̂i, γ(k), s2

i ) + (1− α(k))φ(γ̂i, 0, s2
i )

,

whereas the M (maximization) step gives the updated parameters α(k+1) and γ(k+1)

as

α(k+1) =
K∑

i=1

τ
(k+1)
i /K

γ(k+1) =
∑K

i=1 γ̂iτ
(k+1)
i /s2

i∑K
i=1 τ

(k+1)
i /s2

i

.

Note that the value of τ
(k+1)
i at convergence gives the posterior probability that

study i is linked. The model parameters α and γ are constrained in [0, 1] and [0, +∞[

respectively and although the EM estimation procedure described above ensures that

α ∈ [0, 1], the estimate of γ will sometimes be negative in which case we set it to 0.

Under usual regularity conditions, the corresponding likelihood-ratio test would be

asymptotically distributed as a 1
2χ2

0 + 1
2χ2

1 under the null hypothesis. However, here

the situation is further complicated by the fact that the model parameters are not

identifiable under the null hypothesis (indeed if γ = 0, any choice of α will give the

same likelihood). One way to tackle this problem is to slightly modify the likelihood

as done by Chen et al. [2001] and derive corresponding simple asymptotics, but for

the same reason alluded to earlier, we prefer to resort to parametric bootstrapping

techniques in order to assess significance of the likelihood-ratio test.

Individual analyses

The basic ingredients of a classical meta-analysis are study specific quantitative trait

locus effects’ estimates γ̂i’s in the i = 1, . . . ,K studies available and their associated

standard errors si’s on a common fine grid of genome locations. In this section, we

explain how to do this in practice and make the adjustment for varying information

across studies more explicit.
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General approach

For random samples of the trait values, the variance components method [Almasy

and Blangero, 1998; Amos, 1994] is the standard way of testing for linkage to a quan-

titative trait. Unfortunately, the emphasis of most computer programs implementing

the variance components method has been placed on testing rather than estimating

and they rarely provide both quantitative trait locus effect estimates and associated

standard errors. In the context of linkage, two exceptions that we know of are the

MENDEL [Lange et al., 2001] and Mx [Neale et al., 1999] softwares. However, in

principle, this is not so much of a problem because asymptotic standard errors s can

be obtained provided the quantitative trait locus effect estimate γ̂ is present (and

differs from 0) in addition to its statistical significance 1. At positions where the

quantitative trait locus estimate is 0, one could interpolate values of s at neighboring

positions where γ̂ 6= 0. One problem with the variance components method, as far

as meta-analysis is concerned, is that γ̂ is constrained to remain positive and pooling

of several imprecise estimates γ̂i’s could result in a positively biased estimate of the

true quantitative trait locus effect γ. Whenever possible, we would personally favor

adequate regression or score test approaches [Lebrec et al., 2004] to linkage whose

slope is equal to γ̂ and is allowed to be negative. As shown by Putter et al. [2002],

such approaches are equivalent to the variance components method.

When data are selected based on phenotype values (selected sample), the vari-

ance components method is no longer valid and appropriate methods that take into

account the sampling scheme need to be employed. These so-called inverse regres-

sion methods first introduced by Sham and Purcell [2001] have been implemented in

MERLIN-regress [Sham et al., 2002] and apply to both random and selected sam-

ples in arbitrary pedigrees. A typical output from the software will provide a signed

estimate of the quantitative trait locus effect γ̂ and associated standard error s at an

arbitrary grid of positions. One outstanding problem with MERLIN-regress is the

use of an imputed covariance for IBD sharing which can lead to bias in estimation

especially in genome areas where markers information is very low. In practice, one

1the standard error s of the quantitative trait locus effect estimate γ̂ is obtained using the ap-

proximate relation (γ̂/s)2 ' χ2 with χ2 = LOD× 2 log 10
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clear indication that the imputed covariance is not a good approximation is when

the software either gives out QTL estimates larger than 1 with huge associated LOD

scores (e.g. tails of chromosomes 8 and 19 in the Finnish data sets - Figure 6.6) or

no estimates at all (NA). In our experience, marker maps and densities often vary

quite widely and we inevitably end up with areas of the genome with scarce informa-

tion. Ideally we would therefore recommend using an implementation of the inverse

regression approach where a precise approximation of the variance of the IBD esti-

mates is obtained by Monte Carlo simulations. We have been in contact with the

authors of MERLIN-regress and we hope that the Monte Carlo calculation of the

IBD covariance will be implemented as an option in the software in the near future.

Special case: sib pair designs

In order to show how we adjust for differing marker maps, we now outline the inverse

regression approach in the simplest and most widespread case of sib pair studies. The

trait values x = (x1,x2)′ are assumed to have been standardized and to follow the

usual additive variance components model i.e. the vector x is assumed to follow a

bivariate normal distribution with mean 0 and covariance matrix Σ

Σ =


 1 γ(π − 1

2 ) + ρ

γ(π − 1
2 ) + ρ 1


 .

Here π is the proportion of alleles shared identical by descent measured exactly

at the quantitative trait locus position and γ therefore represents the proportion

of total variance explained by the quantitative trait locus, ρ is the marginal sib-sib

correlation for the trait of interest. We show in the appendix an extension of a relation

first shown in Putter et al. [2003] under complete information, it gives an approximate

regression (valid for small values of γ) between excess IBD sharing and a function of

the phenotype trait values which is the basis of the inverse regression approach:

E(π̂ − 1
2
|x, γ) ' γ varM (π̂) C(x, ρ)

where

π̂ = 0.5×P(π = 0.5 |M) + 1×P(π = 1 |M)
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is the usual estimate of IBD sharing given marker data M available while

C(x, ρ) =
[
(1 + ρ2)x1x2 − ρ(x2

1 + x2
2) + ρ(1− ρ2)

]
/(1− ρ2)2

and is sometimes referred to as the optimal Haseman-Elston function. For a sample

of j = 1, . . . , N sib pairs, the method of least squares provides an approximately

consistent estimate of γ given by

γ̂ =

∑N
j=1(π̂j − 1

2 )C(xj , ρ)

varM (π̂)×∑N
j=1 C2(xj , ρ)

,(6.2)

with standard error s =


varM (π̂)×

N∑

j=1

C2(xj , ρ)



−1/2

.(6.3)

Here varM (π̂) represents the variance of π̂ with respect to the probability of marker

alleles and would equal 1
8 under complete information. It depends on the pedigree

structure, the markers’ characteristics (i.e. allele frequencies and inter-marker dis-

tances) and the missing pattern of genotypes, and although an exact calculation is

extremely tedious it can be closely approximated by simple Monte Carlo simulations.

We show in Figure 6.1 how widely the measure of information may vary within and

between studies. It is therefore crucial to appropriately account for this variation

when estimating γ, failure to do so may introduce bias in the QTL estimates.

Retrospective analysis of an individual study

Often, the only data at hand are QTL estimates (γ̂’s) and their standard errors (s’s)

on an original grid of locations which is not the common one we wish to use in the

meta-analysis; typically this original grid would be a set of say t = 1, . . . , M markers’

positions. If the characteristics of the original map are available, we show how to

obtain QTL estimates and associated standard errors on this new common grid of

locations.

For the sake of simplicity, we stick to sib-pair designs as in the previous section.

Given the M × 1 vector of original γ̂ = (γ̂t)t=1,...,M and associated standard er-

rors (st)t=1,...,M , the best linear approximation of the QTL effect γ̂q at an arbitrary
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Figure 6.1: Chromosome 6 - Markers’ information in the ’AUS’ map (continuous line) and the

’NL1’ map (dotted line)

position denoted q is given by a weighted least squares estimate

γ̂q =
ω′qV

−1γ̂

ω′qV −1ωq
,

with standard error sq =
(
ω′qV

−1ωq

)−1/2
.

Here V denotes the variance-covariance matrix of the vector γ̂ under the null hypoth-

esis of no linkage and is given by

Vkl =





varM (π̂k)−1 if k = l

covM (π̂k, π̂l) (varM (π̂k)varM (π̂l))
−1 if k 6= l

,

and ωq is the M × 1 vector whose kth element is given by

ωq,k =
covM (π̂k, π̂q)

varM (π̂q)
.

All the varM and covM terms can be calculated by Monte Carlo simulations provided

the map characteristics and pedigree structure are known.

In the idealized case of a saturated map which would supply perfect IBD knowledge

at any location on a chromosome, all varM terms are equal to 1
8 and covM (π̂t1 , π̂t2) =
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1
8 (1 − 2θt1,t2)

2, where θt1,t2 is the recombination fraction between loci at t1 and

t2 [Risch, 1990]. Taking the off-diagonal terms in V to be equal to 0 (i.e. assum-

ing that markers are not linked), one obtains the estimate of QTL effect advocated

by Etzel and Guerra [2002] (with the between-study variance σ2 = 0). In the context

of meta-analysis, it is important to properly account for differences in marker infor-

mation between studies, unless the marker maps are close to saturated in all studies.

Remarkably, the elements needed to calculate γ̂q and sq at any arbitrary location are

just the corresponding estimates at M marker locations and map characteristics, none

of the subject-specific data (traits values, individual IBD estimates π̂i) are needed.

6.3 Results

We applied the methods described in Section 6.2 to seven data sets (labelled ’FIN’,

’DK’, ’NL1’, ’NL2’, ’S’, ’UK’ and ’AUS’ for Finland, Denmark, The Netherlands(x2),

Sweden, the United Kingdom and Australia respectively) gathered by members of

the GenomEUtwin project with phenotypic information on height (see Silventoinen

et al. [2003] for heritability study). The data available for linkage analysis consisted

essentially of sibships and nuclear families of varying sizes and are summarized in Ta-

ble 6.1. Genotyping had been carried out using different marker maps and densities

across studies but we actually had access to the raw data sets and could therefore

easily obtain QTL estimates and standard errors on a common grid of positions. This

was done using the inverse regression method implemented in MERLIN-regress with

heritability values equal to twice the country specific opposite sex sib-sib correlations

observed in the large sample data published in Silventoinen et al. [2003] with an up-

per boundary of 0.99 (heritability values used were thus 0.98, 0.99, 0.86, 0.86, 0.99,

0.99 and 0.92 for the ’FIN’, ’DK’, ’NL1’, ’NL2’, ’S’, ’UK’ and ’AUS’ data sets respec-

tively). Since the data could be considered random samples of height measurements

in each country, we also carried out a variance components analysis as implemented

in MERLIN, this was done as a check of the MERLIN-regress analysis because of its

sometimes erratic behavior in particular in the tails of the chromosomes (e.g. see chro-

mosomes 8 and 19 in the Finnish data set). Finally, we analyzed the X-chromosome

using the variance components method implemented in MINX (MERLIN in X). When
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the QTL variance γi was estimated as 0 in the X chromosome, it was not possible

to derive the asymptotic standard error si according to the method described in Sec-

tion 6.2 ’General approach’. For those positions, we either interpolated the values of

si at other positions by simply taking the average si in data set i, or (when QTL

variance was estimated as 0 at all positions as in the ’DK’ and ’NL1’ data sets) we

just used the si values of the ’FIN’ data set because those three data sets had rather

comparable information on other chromosomes. We realize that those approximations

might seem very crude however it is clear that the results of the subsequent pooled

analysis of X are qualitatively robust.

Family type FIN DK NL1 NL2 S UK AUS

2 sibs 346 313 25 94 51 1107 603

2 sibs + parents 0 0 77 44 0 0 185

3 sibs 14 0 13 0 0 0 84

3 sibs + parents 0 0 45 0 0 0 40

4 sibs 16 0 11 0 0 0 26

4 sibs + parents 0 0 11 0 0 0 22

5 sibs+ 10 0 9 0 0 0 6

5 sibs+ + parents 0 0 4 0 0 0 7

Total number of families 386 313 195 138 51 1107 1022∗

Table 6.1: Informative data available for linkage analysis - ∗ ’AUS’ also contains 49 non-

nuclear families

Prior to linkage analysis, raw phenotypic data were adjusted for sex and age,

within country. For that purpose, separately for each data set and for each sex within

each data set, we fitted the following linear mixed model to the height measurements

of relatives j and k in family i:




heightij = µ + β × ageij + εij

heightik = µ + β × ageik + εik

with





var(εij) = a2 + e2

cov(εij , εik) = E(πjk)a2

where E(πjk) equals the expected IBD sharing between relatives j and k i.e. twice

their kinship coefficient. Estimation of the models’ parameters was carried out using

the −a− option of the QTDT software [Abecasis et al., 2000] and the corresponding
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standardized residuals obtained as
(
heightij − µ̂− β̂ × ageij

)
/
√

â2 + ê2 were then

used as phenotypes in the linkage analysis.

We present graphically the results of two chromosomes which are interesting from

the methodological point of view: chromosome 2 (Figure 6.2) and chromosome 7

(Figure 6.3). In the region of chromosome 2 around 200cM, QTL estimates vary quite

widely across studies which is also suggested more formally by the heterogeneity test.

It is also clear that we are in presence of qualitative heterogeneity since although

the effect is undeniable in ’FIN’ and perhaps present in ’NL2’ and ’AUS’ it seems to

be completely absent in the four other data sets. As a result, the significant signal

observed in the Finnish study has disappeared in the homogeneous model while the

normal mixture and the two-point mixture somehow recover it.

Similar outputs are displayed for chromosome 7 in Figure 6.3. In the region just

right of 0cM, heterogeneity of QTL effects is not as obvious as in the previous example

and in fact the pooled homogeneous analysis enhances statistical significance. Note

that the QTL estimates obtained by the two other methods coincide with those under

the homogeneous model as well as the corresponding LOD scores although LOD scores

do not follow the same null distribution.

Summary results over the whole genome are presented in Figures 4–8. Position

on the chromosomes is expressed in cumulative Kosambi’s cM. Data set specific QTL

estimates and corresponding LOD scores are displayed in Figures 6.4, 6.5 and 6.6, 6.7

(for both MERLIN-regress and variance components analyses) respectively while

similar outputs for the pooled analysis appear on Figures 6.9 and 6.10 (continuous

blue line: homogeneity model, broken green line: random effect model and broken

green line: 2-point mixture model). The test for heterogeneity is shown for the whole

genome in Figure 6.8.

The highest autosomal pooled LOD score (bootstrap adjusted 2-point mixture

LOD=2.11, unadjusted LOD=2.34) is obtained at 48cM on chromosome 5 with α̂ =

0.15 ' 1
7 indicating that only data set ’NL1’ appears to be linked. The second highest

score (unadjusted 2-point mixture LOD=2.06) is obtained at 208cM on chromosome

2 and pools evidence from the ’FIN’ and ’NL2’ data sets (α̂ = 0.24). There are seven

other somewhat less convincing peaks (LOD score between 1 and 2) on chromosomes
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5,7,8,11 and 15. In addition, chromosome X provides undeniable proof for linkage in

two locations (pooled LOD scores around 3 or beyond at 70 cM and 145cM) while

there is suggestion of a third peak at 110cM, all this evidence for linkage appears to

come from the Finnish data set only (α̂ ' 1
7 ).

A glance at the whole genome reveals that positions at which the three methods

differ are fairly rare in the present analysis despite the fact that estimates of variance

appear to vary a lot between studies. This is partly due to the relative small size of

each data set which does not allow to clearly establish heterogeneity between studies.

Once all data from the GenomEUtwin project are gathered, the three methods that we

have described here are likely to yield quite different results. It must be noticed that

the overall pooling exercise may appear fairly disappointing since there are very few

locations where statistical significance is enhanced i.e. where the pooled LOD score

is higher than the maximum of the individual LOD scores. Two such locations are

the beginning of chromosomes 7 and 11 and correspond to fairly small QTL effects

(pooled estimates between 5 and 10 % of total variance), such effect sizes would

require sample sizes in the order of 30000 (unselected) sib pairs in order to have a

decent chance to formally detect linkage [Putter et al., 2003].

6.4 Discussion

We have detailed how classical meta-analytic methods can be adapted to linkage

provided consistent estimates of QTL effects along with standard errors are available

for each study on a common grid of positions. The methods required to obtain such

summary statistics are now well developed and their software implementation has been

publicly available for a number of years. We realize, however, that most published

studies to date will not have sufficient information in order to carry out the method

advocated here. Indeed, it is still common practice nowadays in the literature, even

for QTL mapping where the effect to be estimated is fairly uncontroversial, to publish

statistics conveying statistical significance only (i.e. LOD scores) without any idea of

the actual effect estimate. This heavily hinders powerful pooling of the many small

linkage studies available in the community. Gu et al. [1998] presented guidelines

on how to report linkage studies that would enable future meta-analysis using IBD
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sharing as a common linkage parameter. Since the analysis tools are available (e.g.

MERLIN-regress), it should be expected by journals that researchers publish QTL

effects and associated standard errors (at least as add-on information) on a grid of

locations.

We have demonstrated (see Appendix - Equivalence meta-analysis / pooled data

set) that under the assumption of homogeneity and in absence of individual covariates,

there is simply no advantage in analyzing a meta-file where the raw data from each

separate study would be pooled. This is particularly relevant given the enormous

effort required to combine data from individual sources into such a meta-file. In

practice, pooling of data is a sequential process and having to re-create a meta-file

each time extra data is available would become a major burden. In the purely meta-

analytic approach that we advocate, addition of new data poses no problem. In fact

for the homogeneous analysis, all that is needed for a re-analysis with extra data

(i.e. γextra and sextra) is the previous homogeneous QTL effect estimate γ̂hom and its

associated standard error SEhom. Note that the two methods described to allow for

heterogeneity between studies would still require the same summary study specific

QTL effect estimates and standard errors.

Given the small individual study sizes one typically encounters, any test for het-

erogeneity of quantitative trait locus effects across studies is bound to suffer from a

lack of power. This is reflected in the test for heterogeneity as well as in the estimate

of the between study variance component σ2 which very rarely differs from 0. Note

that the classical random effects model is probably not the most appropriate in the

case of linkage, indeed the fact that the quantitative trait locus effect is a variance

component precludes it from being negative (which is not impossible under the normal

mixture model) and suggests that the random effects γi’s could be more appropriately

modelled as arising from a Γ distribution. Another way of testing locus heterogeneity

is to formally test whether α > 0 in the two-point mixture of Section 6.2 ’A two-point

mixture for locus heterogeneity’.

The idea of applying the concept of finite mixture models to meta-analysis is also

not new [Bohning et al., 1998] although it is new for meta-analysis of linkage studies

as far as we are aware. It is based on the simple idea that only studies with a positive
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effect should be pooled together to provide evidence for linkage. Instead of doing

this ’by hand’, we let the data decide which study exhibits positive linkage. In our

data example, when locus heterogeneity appeared to be present, the resulting LOD

score was always lower than the LOD score obtained in one of the studies showing

strong linkage, however it need not be so in general as the next example shows.

Take five studies with the following estimates of QTL effects γ̂ = (0, 0, 0.2, 0.2, 0.2)

and associated standard errors s = (0, 0, 0.1, 0.1, 0.1), the statistical significance of

the individual studies is given by χ2 statistics equal to (0, 0, 4, 4, 4). The maximum

likelihood estimates of α and γ in the two-point mixture model are 1.0 and 0.12

respectively with a corresponding likelihood ratio test of 7.2. We calculated the

significance of such a value by parametric bootstrapping and the corresponding value

for a χ2 distribution is 6.6 which remains higher than 4. Therefore given sufficient

precision of the individual studies, allowance for heterogeneity can enhance statistical

significance of individual studies.

We have implemented the three methods described in Section 6.2 along with the

test for heterogeneity and the parametric bootstrapping for evaluation of significance

in R. The programs are available at http://www.msbi.nl/Genetics/.

The two dutch data sets ’NL1’ and ’NL2’ that we have used were also part of the

data in Willemsen et al. [2004] although they also included phenotypic information

from untyped individuals in their analysis. The highest pooled peak that we found

at 48cM on chromosome 5 actually corresponds to the ’NL1’ data set only and was

also identified by Willemsen et al. [2004], the nearest QTL identified in that region

until now was at 69cM in a Swedish population [Hirschhorn et al., 2001]. The peak

on chromosome 2 is a replication of findings made in the population of the Botnia

region in Finland. The other suggestive peaks at the beginning of chromosome 8, on

chromosome 11 and 15 appear to be replications of previous findings too. However,

peaks at the end of chromosome 5, on chromosome 7 and in the middle of chromo-

some 8 have not been identified before as far as we are aware. We refer the reader

to [Willemsen et al., 2004] for a recent overview of QTLs involved in height. The

genomewide results in Figures 6.6 and 6.7 also highlight a couple of additional peaks

which seem to be purely country specific, like the start of chromosome 9 in the two
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Dutch data sets and chromosomes 6, 14 and 16 in the Finnish data set. Finally, the

most convincing evidence of linkage comes from the X chromosome in the Finnish

data sets with two substantial peaks which appear to replicate findings in Deng et al.

[2002].

Overall, this pooling exercise may appear disappointing since statistical signifi-

cance was enhanced in only two visible locations over the whole genome. Nevertheless,

there are two lessons to be learnt from this experience. Firstly, allowance for hetero-

geneity has the potential to help in detecting loci with either locus heterogeneity or

size heterogeneity but then sufficient sample size is required in the individual studies

in order to detect heterogeneity. Secondly, when the sample size of individual studies

are small, pooling will enhance statistical significance if the effects are similar across

studies, the most subtle QTL effects are probably more likely to fulfill this assump-

tion of homogeneity. We still have not reached the sample sizes required to detect

such small effect sizes. When the full data potentially available in the GenomEUtwin

project are gathered, we will hopefully be in a position to find QTLs involved in

common complex traits.

6.5 Appendix

Expected IBD sharing under incomplete information

We derive here the expected IBD sharing for sib pairs under incomplete information

and assuming that π̂ is being measured exactly at the locus. Recall first that π̂ =

E(π | g) = 1
2 P(π = 1

2 | g)+P(π = 1 | g) where g is the genotype information available.

E(π̂ − 1
2
|x, γ) =

∑
g

(π̂ − 1
2
) P(g |x)

where g spans all possible multipoint genotype configurations

=
∑

g

(π̂ − 1
2
)

∑

l=0, 1
2 ,1

P(g, π = l |x)

=
∑

g

(π̂ − 1
2
)

∑

l=0, 1
2 ,1

P(g |π = l,x) P(π = l |x)
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Now since markers are in full linkage equilibrium with the true locus, we have

E(π̂ − 1
2
|x, γ) =

∑
g

(π̂ − 1
2
)

∑

l=0, 1
2 ,1

P(g |π = l) P(π = l |x)

=
∑

g

(π̂ − 1
2
)

∑

l=0, 1
2 ,1

P(π = l | g)
P(π = l)

P(g) P(π = l |x) .

Using a first order Taylor approximation for P(π |x) under an additive model in-

troduced in Putter et al. [2003]: P(π = 0 |x, γ, ρ) ' 1
4− γ

8 C(x, ρ), P(π = 1
2 |x, γ, ρ) '

1
2 and P(π = 1 |x, γ, ρ) ' 1

4 + γ
8 C(x, ρ), it is now easy to show that

E(π̂ − 1
2
|x) =

∑
g

(π̂ − 1
2
) P(g) + γC(x)

∑
g

(π̂ − 1
2
)2 P(g)

= 0 + var(π̂) γC(x) .

Equivalence meta-analysis / pooled data set

This appendix presents a formal proof that, under the assumption of homogeneity

of the QTL effect across studies, meta-analysis of the data as advocated in Section 6.2

’Homogeneity’ is equivalent to an analysis of the individual raw data. For this purpose,

we place ourselves in the case where the QTL effect γ is small and score test or inverse

regression strategies are optimal [Lebrec et al., 2004]. Without loss of generality,

we look at the special case of sib-pair designs and use assumptions and notations

introduced in Section 6.2 ’Special case: sib pair designs’ with the addition that the

subscript i = 1, . . . , K stands for the K studies available. In this context, the test for

linkage is a simple regression through the origin of excess identical by descent sharing

on the optimal Haseman-Elston function of the standardized trait values. The proof is

somewhat trivial: all we show is that the regression of the meta-file consisting of the K

individual data sets is just the weighted average of the individual regressions given by

Formula (6.1). In the meta-file, the data consist of the response variable
(
π̂ij − 1

2

)
ij

excess identical by descent sharing measured in the sib pair j = 1, . . . , Ni in study

i = 1, . . . , K and the corresponding regressor equal to the product of the phenotype

function trait value Cij = C(xij1,xij2, ρi) by marker information varMi(π̂ij). The

notation stresses the fact that the sib-sib correlation ρi and the marker information

Mi are study-specific. The response variable will in general have different variance
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across studies so the estimate of the QTL effect γ is given by the weighted least

squares method as:

γ̂pool =

∑K
i=1

∑Ni

j=1(π̂ij − 1
2 )Cij∑K

i=1

∑Ni

j=1 varMi
(π̂ij)C2(xij , ρi)

,

and using notations introduced in Section 6.2 ’Homogeneity’, we have

γ̂pool =
∑

i γ̂i/s2
i∑

i 1/s2
i

= γ̂hom .
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Figure 6.2: Chromosome 2 - QTL analysis for height - Individual analyses (top), test

for heterogeneity (middle) and meta-analyses (bottom)
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Figure 6.3: Chromosome 7 - QTL analysis for height - Individual analyses (top), test

for heterogeneity (middle) and meta-analyses (bottom)
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Figure 6.8: Genomewide χ2 Test for heterogeneity in QTL analysis of height
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Chapter 7

Score Test for Linkage in

Generalized Linear Models

Abstract

We derive a test for linkage in a Generalized Linear Mixed Model (GLMM) frame-

work which provides a natural adjustment for marginal covariate effects. The

method boils down to the score test of a quasi-likelihood derived from the GLMM,

it is computationally inexpensive and can be applied to arbitrary pedigrees. In

particular, for binary traits, relative pairs of different nature (affected and discor-

dant) and individuals with different covariate values can be naturally combined in

a single test. The model introduced could explain a number of situations usually

described as gene by covariate interaction phenomena, and offers substantial gains

in efficiency compared to methods classically used in those instances.

7.1 Introduction

For binary traits, most linkage methods that allow for covariates focus on models

where the identity-by-descent (IBD) probabilities are allowed to depend on those

covariates (e.g. , Olson [1999]). This is often the most straightforward way to go

because linkage studies for binary traits usually consist of families which have been

selected based on their phenotypic values such as affected sib pairs (ASP) designs and

effect of covariates at the population level cannot be estimated based on such data.

This chapter has been accepted for publication in Human Heredity as: J.J.P. Lebrec and H.C. van

Houwelingen. Score Test for Linkage in Generalized Linear Models.
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In many instances, however, some knowledge about the marginal effect of important

covariates can often be gathered from either population-based studies or a literature

review. Nevertheless, existing methods fail to integrate such external knowledge. An

area where incorporation of covariates is a burning problem is late onset diseases, in

fact, incorporation of population estimates of onset for the disease is not just a way to

refine the analysis, it also allows inclusion of unaffected individuals. This can result

in substantial gains in power, especially when traits are fairly common. In the case of

continuous traits, the variance components model (and related regression methods) is

widely accepted as the model of choice for testing for linkage with a putative locus. In

this setting, the effect of important covariates is often modeled through a linear model

while the covariance structure is left untouched. In contrast, the variance-covariance

structure and the mean of binary and count data are intrinsically dependent and it is

unclear how incorporation of covariates in the marginal probabilities impact linkage

testing.

The Generalized Linear Mixed Models (GLMM) framework offers a natural and

flexible extension of the variance components setting to categorical endpoints such as

binary, count and survival data and accommodates covariate effects and arbitrary fam-

ily structures. In accordance with the biometrical view of trait architecture [Fisher,

1918], small covariate effects contribute additively to the formation of a trait. Coupled

with a variance components structure used to described the remaining correlation be-

tween relatives in a family, we obtain a parsimonious representation of the correlation

between relatives. This unobserved latent process is linked to the actual trait values

via a traditional Generalized Linear Model (see Section 7.2). In fact, this type of mod-

els have already been used for estimation of the heritability of binary traits [Burton

et al., 1999; Houwing-Duistermaat et al., 2000; Noh et al., 2005] as well as for linkage

of longitudinal continuous [Palmer et al., 2003] data and survival data [Scurrah et al.,

2000]. Although appealing GLMMs are in general difficult to fit with family data.

Besides we favor simple mathematically tractable expressions for a test, this is to

reduce computational burden, but even more importantly, because we would like to

get insight into the properties of this model when used in linkage studies. In stark

contrast with the above cited approaches, we do not make any attempt to directly

use the GLMM for inference but we resort to an approximation of the corresponding
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likelihood (a quasi-likelihood). Indeed, our inference for linkage is based on a score

test for the variance component corresponding to linkage in this quasi-likelihood (see

Section 7.3). We assume that all segregation parameters in the GLMM have been

obtained from external data and are therefore treated as nuisance parameters when

testing for linkage. Estimation of such parameters in a GLMM is a notoriously difficult

problem (at least for binary responses), we therefore propose an ad-hoc estimation

procedure which appears to yield reasonable estimates in practice (see Section 7.4).

Although the procedure does not always yield a unique set of parameters, we argue

that our linkage test only weakly depends upon the parameters’ choice and that its

size is always preserved. The test is in fact a weighted regression of the deviation

in IBD sharing on the trait values (in the same spirit as the pair-wise IBD scoring

functions introduced by Whittemore and Halpern [1994] for affected relative pairs),

which guarantees fast computations. Finally, in Section 7.5, we illustrate how the

test could be used in linkage studies for two diseases: migraine and breast cancer. In

those two examples we quantify the potential gains obtained compared to approaches

that would either ignore covariates or estimate covariate effects from the linkage data

only. In the discussion, we identify situations where covariate adjustment is likely to

help improving the power of linkage studies.

7.2 Model

The generalized linear mixed model

Conditional on unobserved latent variables and observed covariate values, our model

is specified by a generalized linear model (GLM). All information about the genetic

relationship between individuals is incorporated in the latent variables just in the

same way as in the variance components model for continuous traits. Formally, we

consider the trait values y = (y1, . . . , ym) of m relatives in a family whose values for

k covariates are gathered in an m× k matrix X. Conditional on a vector of random

effects b = (b1, . . . , bm) and a vector of covariate effects β, the yi’s are independently

distributed according to a density function f from the canonical exponential family

(to simplify notations, we have omitted the dispersion parameter), more precisely f

111



Chapter 7. Score Test for Linkage in Generalized Linear Models

has the following form

log f(yi |β, bi) = yi × (xiβ + bi) + a(yi)− ψ(xiβ + bi)

where the first two derivatives of ψ determine the first and second moments of the

GLM i.e. ψ′(xiβ + bi) = E(yi |β, bi) and ψ′′(xiβ + bi) = var(y |β, bi). This type

of models includes the logistic model for binary or binomial data, Poisson model for

count data, continuous data (provided the dispersion parameter is known) as well as

piecewise exponential hazards models for survival data [Agresti, 2002, pp.388-389].

The fixed effects β therefore model the effect of covariates while the dependence

structure between relatives is entirely induced through the covariance of the random

effects b which are assumed to follow a multivariate normal distribution with mean

0 and variance-covariance matrix R(θ) where θ is the set of variance components. In

the simple case of sibships the variance-covariance structure of b is described by a

compound symmetry structure

R = R(θ) = σ2




1 ρ . . . ρ

ρ 1
. . .

...
...

. . . . . . ρ

ρ . . . ρ 1




.

The exact marginal density l(β, θ) of the observations y is obtained by integration

of the random effects l(β, θ) = Eb(
∏

i=1,...,m

f(yi |β, bi)) which entails calculation of a

multivariate integral of potentially high dimension (for extended families).

GLMM for linkage

Our primary interest is on testing for linkage and we will therefore assume that all

nuisance parameters i.e. the fixed covariate effects β and the marginal part of the co-

variance structure R(θ) are known. We delay resolution of this problem to Section 7.4.

We denote by γ the proportion of the random effects total variance σ2 explained by

the putative locus and focus our attention on this parameter by partitioning the set

of variance components as (θ, γ). In analogy with the variance components model for

continuous traits, we model linkage by specifying the conditional covariance structure

R = R(θ, γ) of the random effects b given IBD information π within each family.
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The m×m matrix π contains the identity-by-descent (IBD) information at a putative

chromosomal position, more precisely [π]jk = πjk is the proportion of alleles shared

IBD by pedigree members j and k and

[R]jk =





a2 + c2 = σ2 , if j = k ,

(πjk −Eπjk)γσ2 + (Eπjk)a2 + c2 , if j 6= k .

where a2 denotes the total additive genetic variance and c2, the common-environment

variance, on the underlying random effect scale.

7.3 Test for linkage

Quasi-likelihood for variance components

In an appendix, we show how the following quasi-likelihood for the data y can be

obtained

(7.1) y ∼ N
(

ψ′(Xβ) , Ψ′′(Xβ) + Ψ′′(Xβ).R(θ, γ).Ψ′′(Xβ)
)

,

where ψ′(Xβ) denotes the vector whose ith element is given by ψ′(xiβ) and Ψ′′(Xβ)

denotes the diagonal matrix whose ith diagonal element is given by ψ′′(xiβ). Note

that this is not a normal approximation of the marginal likelihood, the normal shape

is naturally obtained via a 2nd order Taylor approximation of an exponential family

likelihood in the canonical form. This quasi-likelihood can also be motivated by an

approximate marginal model of the GLMM as in [Breslow and Clayton, 1993] and

is the basis of the marginal quasi-likelihood (MQL) fitting algorithm. Another less

crude approximation of the marginal likelihood could be based on a 1st order Laplace

approximation however this would render the approach mathematically intractable.

Quasi-likelihood (7.1) is only accurate for small values of the random effects, hence

small values of their variance σ2; nonetheless, however accurate this approximation,

the approach that we propose in Section 7.3 provides an ’unbiased’ testing strategy.

Score test

For mathematical convenience, we use the quasi-likelihood for variance components

introduced in Section 7.3 but expressed in terms of the first-order maximum-likelihood
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estimates z = y−ψ′(Xβ)
ψ′′(Xβ) of the random effects b. Denoting Σ = R(θ, γ)+Ψ′′−1(Xβ),

this quasi-likelihood writes

log ql(z, γ |π) = −m

2
log(2π)− 1

2
log(|Σ|)− 1

2
z′Σ−1z .

We show in an appendix that the score function `γ for γ can then be written as

(7.2) `γ =
1
2

vec(C)′ . vec(π −Eπ)

with C = Σ−1z
(
Σ−1z

)′ − Σ−1 and Σ taken in γ = 0. Here vec(C) places the

n columns of the m × n matrix C into a vector of dimension mn × 1, it contains

weights for the pairwise IBD sharing vec(π−Eπ). Note that the π−Eπ matrix has

all diagonal elements equal to 0. Our test for linkage is a weighted average of the

different excess IBD sharing between all pairs of relatives in the pedigree. Linkage

studies often include families which have been selected on the basis of their phenotypic

values and it is sometimes unclear what the exact ascertainment scheme used is. A

valid analysis of the data therefore requires that inference be carried out conditional

on observed phenotypic values. Given the parametrization used above, accepting the

quasi-likelihood ql = ql(z |π, γ) as the model generating the ”phenotypic data” z and

relying on known nuisance parameters (β and θ), it turns out that the score function
∂ log P(π | z,γ)

∂γ evaluated at γ = 0 of the corresponding inverse likelihood of IBD sharing

π conditional on transformed trait values z is simply equal to the same `γ function

(see [Lebrec et al., 2004] for a proof). This justifies the use of this score statistic in

selected samples. When the likelihood conditional on trait values is considered, the

corresponding Fisher’s information Iγ = E
(
− ∂2

∂γ2 log Pγ(π | z, γ = 0)
)

for γ is also

the variance of the score function var(`γ | z, γ = 0) and is thus given by

(7.3) Iγ =
1
4

vec(C)′ . var (vec(π) | γ = 0) . vec(C) .

For a set of independent p = 1, . . . , P families with corresponding standardized trait

values z1, . . . zP , we therefore test for linkage using the statistic

T 2
+ =





0 , if
∑P

p=1 `γ,p ≤ 0
(∑P

p=1 `γ,p)2

∑P
p=1 Iγ,p

, otherwise
,

which is is asymptotically distributed as 1
2χ2

0 + 1
2χ2

1 under the null hypothesis (H0) of

no linkage. Indeed, the score conditional on trait values is unbiased since E(`γ | z, γ =
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0) = 0 (the term involving π in `γ is centered) and the standardization used (i.e.

conditional on trait values z) ensures that the test has variance 1 under H0. Note that

this would not necessarily be the case conditional on IBD sharing π (i.e. E(`γ |π, γ =

0) 6= 0) because of model mis-specification.

Special case of relative pairs

Although the test derived previously applies to arbitrary pedigrees, the rest of the

paper is devoted to relative pairs. In this instance, the variance-covariance matrix of

random effects is

R = σ2


1 ρ

ρ 1


 ,

for example, in the case of sib pairs, σ2 = a2 + c2 and ρσ2 = 1
2a2 + c2. If we denote

ψ′i = ψ′(xiβ), ψ′′i = ψ′′(xiβ) and νi = (σ2ψ′′i )−1, the score can be written in terms of

the unstandardized centered trait values (or raw residuals) yi − ψ′i as

`γ = (π −Eπ)× ν1ν2

{
(1 + ν1)(1 + ν2)− ρ2

}−2

× [ {
(1 + ν1)(1 + ν2) + ρ2

}
(y1 − ψ′1)(y2 − ψ′2)

−ρ(1 + ν2)(y1 − ψ′1)
2 − ρ(1 + ν1)(y2 − ψ′2)

2

+ρ(σ2ν1ν2)−1
{
(1 + ν1)(1 + ν2)− ρ2

} ]
.

If we let both ν1 and ν2 tend to +∞, then the excess IBD sharing π − Eπ is simply

weighted by the product of the raw residuals (y1 − ψ′1)(y2 − ψ′2). This means that

in the context of rare diseases and affected pairs (thus y1 = y2 = 1), the effect

of covariates has to be very large for the weights to substantially differ from an

unweighted strategy. Letting both ν1 and ν2 tend to 0, the weight then becomes

(1 + ρ2)z1z2 − ρ(z2
1 + z2

2) + ρσ2(1− ρ2), where the zi’s are the first-order maximum-

likelihood estimates of the random effects bi’s defined in Section 7.3. This expression

is closely related to a version of the so-called Haseman-Elston regressions that is

optimal with normally distributed data [Sham and Purcell, 2001], the main difference

lies in the use of the variances ψ′′i in the standardization of the centered trait values

yi − ψ′i instead of the usual ψ′′i
1/2 as in Pearson residuals.

It is interesting to look at the special case of binary traits, where a ≡ 0 and

ψ(t) = log(1 + et). In this instance, the weights associated to excess IBD sharing
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π − Eπ are positive for ASP and unaffected sib pairs (USP) while they are negative

for discordant sib pairs (DSP). Based on approximation (7.4) used in Section 7.4,

ν1 can be shown to be approximately related to the marginal correlation via ν1 ≈
ρ cor(y1, y2)

−1
ψ′′2

1/2
ψ′′1

−1/2 as long as σ2 is not too large. This provides us with an

order of magnitude for the νi parameters. For example, if the covariate values are the

same for both individuals, ν is simply proportional to the inverse of the trait marginal

correlation, which itself is an increasing function of both the prevalence and the re-

currence risk ratio λS = P(sib 1 is affected and sib 2 is affected)/P(sib 1 is affected)

P(sib 2 is affected). For rare diseases, the νi parameters will likely be very large and

weights given to the excess IBD sharing will be approximately equal to (y1−ψ′1)(y2−
ψ′2) ≈ (y1 − Ey1)(y2 − Ey2) as pointed out in the previous paragraph. In this rare

disease case, a direct application of the optimal Haseman-Elston regression for nor-

mally distributed data [Sham and Purcell, 2001] would lead to a weighting scheme

approximately equal to the product of the Pearson residuals (y1 − Ey1)/(Ey1(1 −
Ey1))1/2 × (y2 −Ey2)/(Ey2(1−Ey2))1/2. Since the denominators (Eyi(1−Eyi))1/2

change rapidly as the trait becomes rare, the weight given to rare phenotypic values

will be too extreme compared to those given to common trait values.

7.4 Estimation of segregation parameters

Estimation in GLMM has been the subject of intense research in the past decade

and has proved notoriously difficult. Direct computation of the marginal likelihood

can in principle be carried out by quadrature methods but are computationally bur-

densome, for that reason, approximate methods such as penalized quasi-likelihood

(PQL) [Breslow and Clayton, 1993] have been proposed, unfortunately they are known

to yield severely biased estimates, especially with binary endpoints. Another route

is Bayesian fitting via Markov chain Monte Carlo algorithms. We refer the reader

to www.mlwin.com for a list and review of possible softwares. Practical solutions

appear to be problem-specific and a few authors have dealt with this problem in

the case of family data [Burton et al., 1999; Houwing-Duistermaat et al., 2000; Noh

et al., 2005]. Besides, in some instances (e.g. , when sib-pair data only are avail-

able), the GLMM may lack identifiability. We therefore propose the approximate
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method described in Section 7.4. There is an extra difficulty in the case of binary

data and we propose an ad-hoc solution which appears to yield sensible guesses of

the nuisance covariance parameters θ and fixed effects β as far as the interest lies

in testing for linkage: although the procedure of Section 7.4 does not give a unique

choice of parameters, we argue that the actual linkage test is fairly insensitive to that

specification.

General case

We first consider the case of a homogeneous population (i.e. no covariates) where three

nuisance parameters need to be estimated, namely, the fixed effect β that reflects the

overall level for the trait of interest, the variance σ2 of the underlying random effect

and the correlation ρ between the random effects in a pair of relatives. The marginal

covariance relates to ρσ2 through the following approximate relation

(7.4) cov(Y1, Y2) ≈ ψ′′1 (β)ψ′′2 (β)ρσ2 ,

and the marginal variance to β and σ2 via

(7.5) var(Y ) ≈ ψ′′(β) + ψ′′(β) 2
σ2 ,

while the marginal mean can be either approximated as

E(Y ) ≈ ψ′(β) +
σ2

2
ψ′′′(β) ,

or calculated exactly as E(ψ′(β + b)) by univariate integration. Together, these three

relations allow estimation of ρ, σ2 and β.

In the case of a heterogeneous population, the simplest approach is to define

relatively homogeneous strata and to apply the procedure described in the previous

paragraph in each stratum separately. The series of ρ and σ2 estimates are then

averaged using the frequency of each stratum in the overall population as weight.

Given those final estimates of ρ and σ2, a second round of stratum-specific β values

can then be computed.

Special case of Binary data

Relation (7.5) reflects over-dispersion in the marginal distribution i.e. the fact that

the relation var(Y ) = ψ′′(β) is violated, unfortunately, this does not apply to the
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binary case where var(Y ) ≡ E(Y )(1−E(Y )) and there can be no such thing as over-

dispersion. We can still use relation (7.4) to estimate σ2 for fixed values of ρ and

the corresponding β by univariate integration of ψ′(β + b) in each stratum. As in the

general case, the values for σ2 are averaged across strata and the stratum-specific fixed

effects β are re-computed with the average σ2 as input. This estimation procedure is

therefore conditional on an arbitrarily chosen value for ρ.

For common diseases such as migraine (see Section 7.5), we can carry out a more

formal procedure based on maximum likelihood. For binary traits, the data consists

of stratum-specific 2 × 2 tables indexed by t. If we use the following notation for

the cell numbers in a given 2 × 2 table t: nt
11 for affected-affected pairs, nt

10 for

affected-unaffected , nt
01 for unaffected-affected and nt

00 for unaffected-unaffected and

if p̂t
..(σ

2, β̂(σ2)) denote the corresponding GLMM probabilities, then the log-likelihood

of the data is given by
∑

table t
nt

11 log p̂t
11 + nt

10 log p̂t
10 + nt

01 log p̂t
01 + nt

00 log p̂t
00 .

If the trait is common, the GLMM probabilities p̂t
..(σ

2, β̂(σ2)) can be calculated rea-

sonably fast by Monte Carlo simulations and the maximization with respect to σ2 is

possible. Again, this maximization is carried out for a chosen ρ so this strategy offers

a compromise between a full maximization of the marginal likelihood and the ad-hoc

method of the previous paragraph.

Although the estimation approach described above is not optimal (in the sense

that it is not guaranteed to yield maximum likelihood estimators), its merit is that

it quickly provides sensible estimates of the nuisance parameters. The information

available is often so sparse that the value of the likelihood depends very weakly (if

at all) on the chosen value for ρ. In fact, as the next series of examples illustrates,

the choice of ρ seems to have a limited impact on the test for linkage. In Table

1, we computed the relative weights of discordant pairs ”AU” and unaffected pairs

”UU” compared to affected pairs ”AA” for three different values of the random effects’

correlation ρ in a wide range of 2×2 tables (i.e. choices of prevalence K and recurrence

risk ratios λS). In each scenario, we used approximation (7.4) to obtain estimates

of the random effect total variance σ2. As long as ρ is chosen not too small and

that the recurrence ratio is not too large, the relative weights given to discordant

118



Chapter 7. Score Test for Linkage in Generalized Linear Models

σ2∗ AU UU

K λS ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.2 ρ = 0.5 ρ = 0.8

0.01 1.1 0.5 0.2 0.1 -0.01 -0.01 -0.01 0.00 0.00 0.00

0.01 1.2 1.0 0.4 0. 3 -0.01 -0.01 -0.01 0.00 0.00 0.00

0.01 1.5 2. 6 1.0 0. 6 0.00 -0.01 -0.01 0.00 0.00 0.00

0.01 2.0 5.1 2.0 1.3 0.00 -0.01 -0.01 0.00 0.00 0.00

0.01 3.0 10.2 4.1 2.6 0.00 0.00 -0.01 0.00 0.00 0.00

0.05 1.1 0. 6 0.2 0.1 -0.05 -0.05 -0.05 0.00 0.00 0.00

0.05 1.2 1. 1 0.4 0.3 -0.04 -0.05 -0.06 0.00 0.00 0.00

0.05 1.5 2. 8 1.1 0. 7 -0.03 -0.05 -0.06 0.00 0.00 0.00

0.05 2.0 5.5 2.2 1. 4 -0.02 -0.05 -0.06 0.00 0.00 0.00

0.05 3.0 11.1 4.4 2.8 -0.01 -0.0 3 -0.06 0.00 0.00 0.00

0.10 1.1 0.6 0.2 0. 2 -0.10 -0.11 -0.12 0.01 0.01 0.01

0.10 1.2 1. 2 0.5 0.3 -0.09 -0.11 -0.12 0.01 0.01 0.01

0.10 1.5 3.1 1. 2 0. 8 -0.0 6 -0.11 -0.13 0.00 0.01 0.01

0.10 2.0 6.2 2.5 1. 5 -0.0 4 -0.11 -0.14 0.00 0.01 0.01

0.10 3.0 12.3 4.9 3.1 -0.0 2 -0. 09 -0.15 0.00 0.00 0.01

0.20 1.1 0.8 0.3 0.2 -0.23 -0.26 -0.27 0.05 0.06 0.06

0.20 1.2 1. 6 0.6 0.4 -0.21 -0.26 -0.28 0.04 0.05 0.06

0.20 1.5 3. 9 1. 6 1.0 -0.1 7 -0.2 8 -0.32 0.02 0.05 0.06

0.20 2.0 7.8 3.1 2.0 -0.1 3 -0.2 9 -0.3 8 0.01 0.04 0.06

0.20 3.0 15.6 6 .2 3. 9 -0. 09 -0.2 8 -0.4 5 0.00 0.03 0.06

0.30 1.1 1.0 0.4 0.3 -0.40 -0.45 -0.47 0.14 0.17 0.18

0.30 1.2 2.0 0.8 0.5 -0.38 -0.47 -0.50 0.12 0.17 0.18

0.30 1.5 5.1 2.0 1. 3 -0.33 -0.51 -0. 60 0.09 0.16 0. 20

0.30 2.0 10.2 4. 1 2. 6 -0.27 -0.54 -0.72 0.06 0.16 0.22

0.30 3.0 20.4 8.2 5.1 -0.2 2 -0.5 6 -0.9 0 0.0 3 0.1 5 0.2 6

Table 7.1: Relative weights for Discordant (AU) and unaffected (UU) pairs (compared to affected

pairs) for a range of 2× 2 tables - ∗ σ2 obtained using approximation (7.4)

pairs and to a lesser extent, to unaffected pairs depend only weakly upon the initial

choice for ρ, although the dependence becomes stronger as the prevalence of the

trait increases. When comparing the relative weights of affected pairs for different

prevalences/recurrence risk ratios, the dependence is even less noticeable (data not

shown). Based on this study, we would advise the choice of a moderate to large value

for ρ (0.5 to 0.8) since we favor the corresponding small values for σ2 (indeed, the

quasi-likelihood is based on an approximation valid for small values of σ2 and so is

relation (7.4) used for estimating σ2).

7.5 Examples

Application to a common disease: Migraine

Migraine is known to be much more frequent in women than in men. In this sec-

tion, we describe how sex could be accounted for in a linkage study for migraine and

quantify the potential gains/losses incurred under different strategies including the
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U m A m U f A f

U m 0.06 -0.60 0.11 -0.33

A m . 2.71 -1.12 1.57

U f . . 0.25 -0.63

A f . . . 1.00

Table 7.2: Relative weights Ci for all sex-sex (f:female and m:male) sib pair combinations (A:

Affected and U: Unaffected)

score test presented in Section 7.3. Based on sex-specific prevalence and recurrence

risk estimates derived from published data in the Dutch population [Mulder et al.,

2003], we first obtain estimates of the segregation parameters ρ, σ2 and β using the

procedure described in Section 7.4. Using possible values of excess IBD sharing, we

then quantify the gain obtained by accounting for sex with the score test described

above. Mulder et al. [2003] fitted a liability threshold model (i.e. with sex-specific

thresholds and a common tetrachoric correlation) to the data. The sex of siblings in a

pair defines three possible strata or 2× 2 tables, we focused on the Dutch population

in the age group 36-68 years old and used the model parameters’ estimates to recon-

struct those three tables. For the Dutch population, the prevalence for migraine was

approximately 0.34 in women and 0.17 in men and the values for λS were 1.31, 1.45

and 1.65 in female-female, male-female and male-male sib pairs respectively. Assum-

ing that the three corresponding 2 × 2 tables were present in proportions 1
4 , 1

2 and
1
4 in the overall population, we estimated σ2 as σ̂2 = 3.3 and β̂ = (−2.40,−1.03) for

ρ = 0.5 according to the formal maximum-likelihood based method described in Sec-

tion 7.4. Based on this set of nuisance parameter estimates we calculated the weights

for all possible types of sib pairs in the linkage test, these are displayed in table 7.2.

Note, first of all, that affected (and unaffected) sib pairs have positive weights

while discordant sib pairs have negative weights. Male-male affected pairs are given

much more weight than female-female affected pairs, while the trend is opposite for

discordant pairs. One interesting feature is that male-female affected-unaffected pairs

are given much more weight than female-male affected-unaffected pairs since the phe-
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notypic discordance is more likely to be due to genetic factors in the former than in

the latter.

We now compare four possible strategies when testing for linkage in presence of

covariates. We define homogeneous groups (indexed by g) of relative pairs (i.e. fami-

lies) depending on their phenotypic values (AA, AU or UU) and (categorical) covariate

values. The excess or reduction in IBD sharing in each group can be parameterized

as E(π − Eπ | group g) = θδg where δg can be positive or negative while θ ≥ 0. A

test for linkage corresponds to testing θ = 0 versus θ > 0. In all tests outlined below,

we assume that the sign of δg is known (+ for AA and UU and − for AU pairs),

depending on what we know or assume about the |δg|’s, four testing strategies can be

derived:

1. All |δg|’s are taken as being equal,

2. The ratios of the |δg|’s are known, this is an ideal situation that will serve as

reference in our comparison,

3. The |δg|’s are estimated from the data,

4. The ratios of the |δg|’s are assumed to be given by the score test of Section 7.3.

All four tests but 3. are asymptotically distributed as 1
2χ2

0 + 1
2χ2

1 under the null

hypothesis of no linkage. For test 3., a penalty has to be paid for estimating the

weights and the corresponding null distribution is 1
2χ2

0 + 1
2χ2

G where G is the total

number of homogeneous groups considered.

To keep things simple in our numerical comparison of the tests when applied to

migraine data, we focused on designs with only sib pairs and two groups (G = 2).

We compared the efficiency of tests 1., 3. and 4. relative to reference test 2. . To do

so, we computed the non-centrality parameters (NCP) for the equivalent χ2 linkage

tests. If Cg denotes the assumed values for the true relative excess IBD sharing δg,

then all tests but 3. are based upon the following statistic T

T =

∑
g

∑
i∈g Cg(πi − 1

2 )

(var(π)×∑
g NgC2

g )1/2
,

where Ng denotes the number of families in group g and N =
∑

g Ng. For complex

traits and thus small gene effect, the variance of π under the alternative hypothesis
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is close to its value under the null var(π | group g) ' var(π) so we have the following

approximation:

E(T 2) ' 1 + N ×

(∑
g fgCg(E(πg)− 1

2 )
)2

var(π)×∑
g fgC2

g

, where fg = Ng

N ,

and the sample size for the corresponding 1 d.f. test is inversely proportional to the

non-centrality parameter in the previous expression. Asymptotically, the estimates

for the weights in test 3. should be very close to their true values, the relative loss of

efficiency in test 3. relative to test 2. (where true weights are assumed to be known)

is therefore only due to the additional degrees of freedom (d.f.=2 here) of the test.

In the context of scan for linkage, using a conservative point-wise type I error rate of

10−4, this loss amounts to about 20%. In the sequel, relative efficiency is expressed

as the ratio of sample size in test 2. to sample size in the test of interest.

Using the GLMM described in Section 7.2 (with ρ = 0.5, σ2 = 3.3 and β̂ =

(−2.40,−1.03) as previously estimated), we mimicked a situation where 10% of the

total variance of the random effect is explained by the putative locus while the rest

of the variance is either explained by common environment or other unlinked loci 1.

Using Monte Carlo simulations, we closely approximated the average IBD sharing for

three types of sib pairs, namely AA male-male, AA female-female and discordant sib

pairs AU female-male. In figure 7.1, we display the relative efficiency of the previously

defined tests 1., 3. and 4. relative to 2. for two types of study designs: one mixing

AA male-male and AA female-female (left-hand side, scenario 1) and one mixing AA

male-male and AU female-male (right-hand side, scenario 2). In scenario 1, the 2

degrees of freedom test (test 3.) always fails in improving efficiency compared to a 1

d.f. test with no weight (test 1.) while the score test based on the quasi-likelihood

of the GLMM (test 4.) almost always yields improved efficiency with gains close to

an ideal strategy (test 2.). In scenario 2, the 2 degrees of freedom test does yield

gains in efficiency compared to test 1. that ignores covariates (note that this test can

incur efficiency loss up to almost 40% in this situation) when the mixing proportions

of AmAm and AfUm are not too extreme, however our test 4. does uniformly better

than any of these two tests with losses in efficiency no larger than approximately 10%.
1Note that for other values of the proportion of total random effect variance γ explained by the

putative locus, the same relative efficiency results hold approximately as long as γ is not too large
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Figure 7.1: Relative efficiency in migraine example - Left: E(π1 − 1
2
) = 0.0033 in AmAm and

E(π2 − 1
2
) = 0.0019 in AfAf and Right: E(π1 − 1

2
) = 0.0033 in AmAm and E(π2 − 1

2
) = −0.0008 in

AfUm.

Application to breast cancer

We put ourselves in a situation where ASP’s for breast cancer status have been gath-

ered among sib pairs of all ages classified in eight classes (see Table 7.3). The disease

status is positive if a woman currently has or has had breast cancer during her life

time. For simplicity, we assume that both siblings belong to the same age class. The

question is how to weight the excess IBD sharing in each age class effectively.

The genetics of breast cancer is often described using Claus model [Claus et al.,

1991] which we will use as the basis for estimation of segregation parameters. Claus

model is based on a one-locus model with a rare autosomal dominant allele (q=0.0033)

leading to an increased risk of breast cancer. The cumulative probability of a woman

to be affected is a function of a woman’s age (see Table 2 in [Claus et al., 1991]),

based on this model, we derived the prevalence and the recurrence risk ratio (λS) for

each age class, thereby closely reproducing observed values. Following the informal

approach described in Section 7.4, we estimated the variance of the random effects σ2

in each age-specific 2 × 2 table based on a correlation equal to ρ = 0.5 and used the

average value across tables σ̂2 = 1.96 (and corresponding age-specific fixed effects).
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Age (Years) Based on Claus model Based on fitted GLMM

K(%) λS λS Test relative weights

20-29 0.03 10.34 8. 1.70

30-39 0.36 5.97 2.32 1.38

40-49 1.62 2.64 2.26 1.21

50-59 3.09 1.93 2.04 1.11

60-69 5.38 1.44 1.83 1.05

70-79 8.55 1.34 1.70 1.01

80+ 13.12 1.15 1.56 1.00

Table 7.3: Prevalence, λS in Claus and GLM models, stratum-specific GLMM weights

The series of λS ’s that this GLMM yields is displayed in Table 7.3, it is flatter than

the observed ones because the GLMM is stretched to its maximum capacity in order

to cover such a wide λS-range.

The relative weights for ASP of each age category are given in the last column

of Table 7.3, they are fairly mild compared to the large differences observed in λS .

An approach that would use time of onset rather than current status data is likely

to be more efficient, however it is conceptually more complicated. As for migraine,

we limited our quantitative comparison to ASP designs with data consisting of two

groups: we chose the two most extreme age categories with a relative weight of 1.70.

We closely approximated excess IBD sharing in the two age categories in the same

way as for the previous example i.e. by mimicking a model where the putative locus

explained 10% of the total variance of the random effect while the rest of the variance

can be conceived as arising either from a common environment or other unlinked loci 2

under the fitted GLMM. Under this model, our approximate score test 4. is the one

closest to the ideal test 2. ; test 3. sometimes performs better than test 1. however

this advantage would disappear if data consisted (more realistically) of sib pairs in

all age categories (see Fig. 7.2).

2but note that the same remark regarding relative efficiency holds as for the migraine example
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7.6 Discussion

Based on the GLMM, we have derived a test for linkage which makes adjustment for

known marginal covariate effects. Our approach is motivated by the fact that the effect

of important covariates on the marginal distribution of a trait is often known via data

external to the linkage study itself, and these should be incorporated in the linkage

analysis. We elude the difficult and computationally intensive problem of making

exact inference based on the likelihood of the GLMM by using a quasi-likelihood, our

test is then based upon a score test for the linkage parameter in this quasi-likelihood

and turns out to be a tractable statistic, in fact, a simple weighted average of the

excess IBD sharing between all pairs of relatives in a family. In that respect, it

is reminiscent of approximate likelihoods based on pairwise joint distributions used,

for example, with correlated binary data [le Cessie and van Houwelingen, 1994]. As

noted by Cox and Reid [2004], the use of such pseudo-likelihoods does not only

alleviate the computational burden, it also enhances the robustness of the method to

model specification. It must be recognized, however, that in absence of covariates,

better family-specific tests that take the full IBD distribution into account can be

derived [Teng and Siegmund, 1997]. If the GLMM correctly describes the data, we

can draw two general conclusions about the effect of covariate adjustment in linkage

studies for binary traits. For rare traits where only affected pairs of individuals

are informative, the effect of covariates needs to be huge in order for any covariate-

adjustment to yield substantial power gains. Indeed, the excess IBD sharing differs

only a little between covariate-specific types of affected pairs. For common traits,

the gains are more easily achieved. Firstly, because discordant pairs can be more

confidently included in the analysis if relevant covariates (e.g. age and sex) are taken

into account, and those pairs do become informative in common traits. Secondly,

because the ratios of deviations in IBD sharing between phenotypic-covariate specific

strata are more likely to be large for such traits.

The test is applicable in arbitrary pedigrees, and in the case of binary traits, it

allows incorporation of both affected and unaffected individuals. This way of han-

dling the issue of covariates in binary traits, contrasts with existing methods that

only use the linkage data available and model the probability of IBD sharing as a
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function of covariates. The most general representative of this type of models (i.e.

which in principle can handle arbitrary pedigrees and both affected and unaffected

individuals) is undoubtedly the conditional logistic model [Olson, 1999; Greenwood

and Bull, 1999]. It is implemented in the LODPAL program of the S.A.G.E. soft-

ware but as far as we are aware (true for version 5.1), the current implementation

suffers from a few important limitations: the program assumes that all pairs of rela-

tives are independent, the covariates have to be pair-specific, when both affected and

discordant pairs are analyzed together, the program cannot handle covariates. These

issues do not arise in our approach. The strength of methods that let IBD sharing

depend upon covariate values invariably turns into a weakness (unless differences be-

tween covariate-specific groups are very large) as the number of covariates increases

because the d.f. of the corresponding test for linkage increases too. We overcome

this problem by incorporating external data and by specifying a model where differ-

ences in IBD sharing naturally arise. The way we handle covariates by feeding some

covariate-adjusted residuals into the linkage analysis is conceptually similar to the

method advocated for sibships by Alcais [2001]. For general pedigrees however, as

far as we are aware, our test actually appears to be the only available practical way

to simultaneously adjust for covariates and to include both affected and unaffected

individuals. In late onset diseases, the suspicion that younger unaffected individuals

might become affected at a later age can explicitly be incorporated using age as a

covariate. We have treated all segregation parameters required by the GLMM as

known parameters and although unbiased estimates could be difficult to obtain, we

propose an estimation procedure that circumvents this problem. As long as interest

lies in testing for linkage and not in actually estimating segregation parameters, this

procedure appears to be acceptable in that: 1) it does not affect the size of our test

2) the test itself is fairly insensitive to the non-unique choices of nuisance parameter

values. By illustrating the use of our method in both common and relatively rare

diseases, we have shown the order of magnitude for the gains that could be expected

in some specific scenarios. We note that the GLMM model does not explicitly in-

corporate potential gene by covariate interaction in its structure, this is not to say

that it forbids this phenomenon, indeed, the recurrence risk ratios and IBD sharing

induced by the model clearly vary depending on covariate values. However, purely
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for mathematical convenience, we have assumed that on the latent scale, there was

no interaction between the gene at the putative location and the covariate. Actually,

recent developments published by Peng et al. [2005] explicitly account for such inter-

actions and these authors have derived the corresponding score test for linkage. The

gene by covariate interaction could be explicitly incorporated into the GLMM model

in a similar way (via the R matrix of variance-covariance of random effects) and the

corresponding test would obtain analogously. We note that in practice the IBD status

is not known exactly but has to be estimated from marker data, the consequence for

the score test is that π has to be replaced by its estimated version π̂ in equation (7.2)

and that the corresponding var(π̂) has to be used in the standardization of the test.

This last term depends on the family structure, the marker allele frequencies, their

position and the possible genotype missingness pattern, and in practice we approxi-

mate its true value using Monte Carlo simulations as implemented in an executable

C program calling upon the MERLIN [Abecasis et al., 2002] software and available at

http://www.msbi.nl/Genetics/. Currently, the GLMM test prescribed in this

manuscript is only available as R code from the authors. Finally, we remark that

although we have focused on the use of our test with binary traits, the approach can

directly be applied to other traits whose distribution is in the canonical exponential

family, in particular to count data with a Poisson distribution as well as survival data.

7.7 Appendix

Derivation of the quasi-likelihood

We use a 2nd order Taylor approximation of the conditional log-likelihood log f(y |β, b)

introduced in Section 7.2 around b = 0 to obtain a quasi-likelihood for the data y in

128



Chapter 7. Score Test for Linkage in Generalized Linear Models

a family:

log f(y |β,b) =
m∑

i=1

log f(yi |β, bi)

'
m∑

i=1

log f(yi |β, bi = 0) + bi(yi − ψ′(xiβ))− 1
2
b2
i ψ′′(xiβ)

'
m∑

i=1

log f(yi |β, bi = 0)− 1
2
ψ′′(xiβ)

(
bi − yi − ψ′(xiβ)

ψ′′(xiβ)

)2

+
1
2
ψ′′(xiβ)

(
yi − ψ′(xiβ)

ψ′′(xiβ)

)2

.

In the previous expression, only the second term involves b which shows that when

β is regarded as constant, log f(y |β,b) behaves as if

y −ψ′(Xβ)
ψ′′(Xβ)

|b ∼ N(b,Ψ′′(Xβ)−1)

where Ψ′′(Xβ) denotes the diagonal matrix whose ith diagonal element is given by

ψ′′(xiβ). We can now easily integrate the random effects b ∼ N(0,R(θ, γ)) out

and log f(y |β) as a function of θ can be regarded as the value of the density for

multivariate normal N(0,R(θ, γ) + ψ′′(Xβ)−1) in the data points y−ψ′(Xβ)
ψ′′(Xβ) :

y −ψ′(Xβ)
ψ′′(Xβ)

∼ N(0,R(θ, γ) + Ψ′′(Xβ)−1) .

Score test

In analogy with the case of normally distributed phenotypes [Lebrec et al., 2004],

standard results on matrix algebra (see, e.g. [Searle et al., 1992, Appendix M.7]) lead

to

`zγ =
∂ log ql

∂γ
=

1
2

{
z′Σ−1(π −Eπ)Σ−1z− tr(Σ−1(π −Eπ))

}

Because of the relation a′b = tr(ba′), the previous equation can be rewritten

∂ log ql

∂γ
=

1
2

tr
(
Σ−1(π −Eπ)(Σ−1zz′ − I)

)
.

Here tr(A) stands for the trace (sum of the diagonal elements) of matrix A. Using ele-

mentary matrix theory, in particular tr(AB) = tr(BA) and tr(AB) = vec(A′)′vec(B)

(here vec(A) places the n columns of the m× n matrix A into a vector of dimension
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mn× 1), this score function can be rewritten as

`zγ =
1
2

vec(C)′ . vec(π −Eπ)

with C = Σ−1z
(
Σ−1z

)′ −Σ−1.

Approximation used in segregation parameters estimation

The marginal covariance can be partitioned as

cov(Y1, Y2) = E (cov(Y1, Y2 |β1, β2, b1, b2)) + cov (E(Y1 |β1, b1),E(Y2 |β2, b2))

≈ 0 + cov (ψ′(β1) + b1ψ
′′(β1), ψ′(β2) + b2ψ

′′(β2)) ,

using a 1st order Taylor expansion of ψ′(βi + bi). It follows that cov(Y1, Y2) ≈
ψ′′(β1) ψ′′(β2) ρσ2. The approximation var(Y ) ≈ ψ′′(β) + ψ′′(β)2

σ2 obtains in

the same manner by setting ρ = 1 and taking a 1st order Taylor approximation of

var(Y |β, b) = ψ′′(β + b) ≈ ψ′′(β) + b ψ′′′(β).

For the marginal mean, we have

E(Y ) = E (E(Y |β, b))

≈ E
(

ψ′(β) + bψ′′(β) +
b2

2
ψ′′′(β)

)

≈ ψ′(β) +
σ2

2
ψ′′′(β) .
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Conclusion

Searching for genes responsible for complex traits is proving extremely challenging,

and this drawback is an incredible incentive for research in statistical methodology.

Even in the relatively ancient field of linkage mapping, researchers have not yet ex-

hausted the possibilities for methodological improvements. This thesis presents some

statistical methods aimed at refining the design and analysis of linkage studies.

The score test developed in chapter 2 and the associated selective genotyping

procedures of chapter 3 provide a strategy for better use of resources and valid testing

in such selective designs for arbitrary pedigrees. Our test is almost identical to that

of Sham et al. [2002] who motivated it in terms of regression. The fact that it is a

score test of the variance components model gives a sound theoretical justification

for its use. It also makes interesting refinements more obvious, for example, different

common environments may be accommodated for different types of paired relatives.

The software implementation of the test Sham et al. [2002] in MERLIN-regress

suffers one important drawback due to the way the covariance matrix of the test

under the null hypothesis is approximated. Unfortunately, there is no fast general

solution for a correct approximation of this covariance, the solution that we have

implemented in a C program calling upon MERLIN for IBD computations is based on

Monte-Carlo simulations. The program will be useful for all linkage tests based upon

IBD sharing and its use is therefore not limited to continuous traits. Linkage studies

involving only one type of selected families such ASP designs rely too heavily on ideal

situations unlikely to be true in practice such as absence of genotyping errors or strict

adherence to law of segregation. The genomic control strategy proposed in chapter 4

offers the promise of a more robust inference. The pooling of existing linkage studies

is essential in order to reach a critical sample size, the meta-analytic techniques of
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chapter 6 can easily be applied once the important effect of partial marker information

has been understood (chapter 5). The problem of heterogeneity may be alleviated by

incorporation of important covariate information into linkage studies, chapter 7 offers

a simple and general way to do so.

The software implementation of the methods developed in preceding chapters are

available at http://www.msbi.nl/Genetics/ and include:

- Approximation of the covariance of IBD sharing by Monte Carlo simulations (C

program),

- Score test for quantitative traits (chapter 2) in arbitrary pedigrees (C program),

- Meta-analytic models (chapter 6) and data-reading tools (R-code).

The issue of statistical significance has been mostly overlooked in this thesis. One

may argue that this is not really a crucial issue in the linkage mapping of complex traits

where power is much more problematic. Indeed, even in the case of a highly heritable

trait such as height, the meta-analysis of chapter 6 which gathered data equivalent to

more than 4300 sib pairs failed to provide any consistent evidence for linkage. In the

light of the sample size calculations of chapter 3 and given the effect sizes actually

observed (i.e. QTL effects between 5 and 10%), this result appears less surprising: an

unselected design, under perfect model specification, requires at least 7500 sib pairs

(and more realistically 30000) in order to have a decent chance to detect such effects.

Until we can genotype such large numbers of individuals routinely, selective designs

offer an attractive sampling scheme. Geneticists are sometimes reluctant from using

such designs because they fear that the genes involved in the formation of extreme

phenotypes might be different from those contributing to the phenotype in a more

standard range. This is a legitimate concern but it is not always recognized that this

criticism equally applies to unselected designs. Indeed, most of the linkage information

in random samples comes from extreme families.

The issue of heterogeneity is ubiquitous in linkage studies with thousands of fam-

ilies possibly arising from different populations. The methods presented in chapter

6 where heterogeneity between different linkage studies is explicitly modelled can, in

principle, be directly applied to the problem of heterogeneity between families. The
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consequences of heterogeneity on power can thus be alleviated, it will nonetheless

be reduced compared to an ideal homogeneous situation. The next natural step is

to gain understanding in heterogeneity by including covariate information. Family-

specific covariates can be readily incorporated using more advanced meta-analytic

techniques such as meta-regression [van Houwelingen et al., 2002]. Individual-specific

covariate marginal effects are routinely incorporated into linkage studies for contin-

uous phenotypes and chapter 7 offers a solution for traits of other types. Further

substantial gains in power will only be obtained by explicitly incorporating gene by

covariate interactions into linkage analysis. The effect of a chosen covariate should be

substantial and its value should vary within families in order to yield added-value.

Linkage studies has been the main tool for generating hypotheses in the positional

approach to gene mapping. The advent of the SNP technology has switched the em-

phasis to association scans in unrelated subjects (case-control designs), however this

methodology is particularly vulnerable to the confounding effect of population strat-

ification; besides its advantage in terms of efficiency heavily rests on the presence of

strong LD between genotyped SNPs and causal variants. The recognition of these

facts has spurred new enthusiasm into family-based studies, although those studies

are primarily aimed at detecting association, they provide new opportunities for ap-

plying and improving linkage methods. In fact, even when strong association with

one or several SNPs has been established, it is often not straightforward to actually

pinpoint the gene(s) involved, it becomes then tempting to use linkage in order to

confirm the implication of a chromosomal region identified by association methods in

family studies. Several genes under a linkage peak may influence a trait and although

one gene may have already been identified, it seems natural to test this hypothesis

formally. The manicheism between linkage and association scans is now becoming

obsolete, it is clear that no one approach is uniformly optimal and in fact the former

should be used to enhance the latter.

One crucial problem in the elucidation of the epidemiology of common diseases is

the integration of knowledge from different sources and nature. Knowledge from gene-

expression, proteomics and gene ontology data need to be pooled together with genetic

data if we want to efficiently gather scientific evidence. Finally and notwithstanding

the biological importance of identifying genes, these are bound to have small effects
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at the population level, and it seems unlikely that such discoveries will revolutionize

public health policies.
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Samenvatting

In dit proefschrift worden manieren beschreven om de huidige opzet en analyse van

studies naar de koppeling van genen (linkage) met complexe eigenschappen te ver-

beteren. In linkage onderzoek wordt gebruik gemaakt van genetische merkers (mark-

ers). Met deze markers kan men genetische overeenkomstigheden tussen verwanten

meten. Door deze genetische gelijkenis te vergelijken met fenotypische overeenkom-

sten, kunnen regio’s op het chromosoom gëıdentificeerd worden waarin genen liggen

die bijdragen tot de vorming van het betreffende fenotype. Hoewel, deze methode

erg succesvol bleek bij het in kaart brengen van genen en eigenschappen, die vol-

gens de wet van Mendel overerven, schiet hij bij meer complexe overervingpatronen

vaak tekort. Omdat betrokken genen maar een zeer beperkte invloed hebben op

complexe eigenschappen is men m.b.t linkage studies intrinsiek beperkt. Deze intrin-

sieke beperking rechtvaardigt een heel eigen statistische benadering, welke de basis

vormt van de methodologie beschreven in dit proefschrift. Voor het toetsen van hy-

pothesen kunnen score toetsen worden gebruikt [Cox and Hinkley, 1974]. De lokale

optimaliteit eigenschappen van deze toetsen blijken zeer geschikt in de context van

compexe eigenschappen. Bovendien hebben zij vaak een herkenbare uitdrukking en

kunnen zij gëınterpreteerd worden in termen van regressieanalyse, waardoor zij in

principe snel uit te rekenen zijn. Dit laatste is van groot belang in genetisch onder-

zoek waarbij vaak grote hoeveelheden data geanalyseerd moeten worden.

In hoofdstuk 1 wordt een inleiding gegeven over de genetische mechanismen die ten

grondslag liggen aan linkage. Tevens volgt een korte beschouwing over de traditionele

methodologie en wordt een samenvatting gegeven van belangrijke nog onopgeloste

vraagstukken.

Hoofdstuk 2 behandelt hoofdzakelijk de analyse van kwantitatieve eigenschappen

die gemeten zijn in geselecteerde families. Hierbij is de selectie gebaseerd op de waarde

van een betreffend kenmerk. Een score toets gebaseerd op de conditionele likelihood

gegeven de fenotypische waarden, wordt afgeleid. Deze toets kan gebruikt worden
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bij data uit willekeurige stambomen. Hoewel bij de afleiding van de toets wordt

aangenomen dat het model normaal verdeelde variatiecomponenten bevat, is de type

I fout van de toets robuust tegen afwijkingen van deze normale verdeling. Onder de

aanname dat het model de verdeling van het fenotype goed beschrijft, heeft de toets

optimale eigenschappen voor lokale alternatieven. Bovendien geeft de waarde van

de bijbehorende Fisher informatie van de toets een indicatie in hoeverre elke familie

informatief is. Deze Fisher informatie kan gebruikt worden als criterium voor het

selecteren van individuen voor genotyperingen. Verderop in het hoofdstuk wordt een

aangepaste versie van de toets gegeven voor binaire gegevens. Een model met een

onderliggende continue latente variabelen wordt gebruikt waarbij deze variabelen in

twee klassen wordt verdeeld door een drempelwaarde te creëren. Dit model wordt

liability treshold model genoemd.

Hoofdstuk 3 bepleit het gebruik van geselecteerde families bij het in kaart bren-

gen van genen voor complexe eigenschappen waarbij tweelingen worden gebruikt.

Met behulp van de methodologie, welke gebaseerd op het informatiecriterium dat in

hoofdstuk 2 is afgeleid, worden potentile voordelen gekwantificeerd door gebruik te

maken van een serie voorbeelden van kwantitatieve en kwalitatieve fenotypen, welke

relevant zijn voor het GenomEUtwin project.

Hoofdstuk 4 behandelt het probleem van genotyperingsfouten binnen linkage onder-

zoek. Het effect van genotyperingsfouten op linkage studies wordt beschreven door

en formule te creëren, die de vertekening die optreedt door genotyperingsfouten weer

kan geven. Deze formule geeft inzicht in enkele van de empirische bevindingen, in het

bijzonder verklaart het de rol van genotyperingsfouten in onderzoeksopzetten met

selecte versus aselecte data. Ten slotte wordt een voorstel gedaan tot een robuuste

aanpassing van de gebruikelijke linkage toetsen gebaseerd op een genoom wijde cont-

role van het overschot van allelen, die een kopie zijn van een zelfde voorouderlijk allel.

Allelen die een kopie zijn van een zelfde voorouderlijk allel worden identical by descent

genoemd. Deze aanpassing geeft niet alleen robuustheid tegen genotyperingsfouten,

maar ook tegen andere processen die de verwachte waarde van deze fractie verstoren.

Hoofdstuk 5 bespreekt de (on)juistheid van aan aantal standaard methoden welke

gebruikt worden als markerinformatie niet volledig is. Het probleem van gevallen

waarbij de methode van gegeneraliseerde schattingsvergelijkingen (generalized esti-
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mating equations) voor het in kaart brengen van genen faalt [Liang et al., 2001] wordt

uitgelicht.

Hoofdstuk 6 vertaalt de standaard meta-analyse technieken naar het onderzoeksveld

van het in kaart brengen van genen die een rol spelen bij kwantitatieve eigenschap-

pen (quantitative trait loci (QTLs)). Dit onderzoeksgebied heeft een aantal speci-

fieke kenmerken waarbij aanpassingen nodig zijn. Het probleem van heterogeniteit in

genetische loci wordt nader toegelicht. Wanneer er geen co-variabelen geobserveerd

zijn op individu nivo en onder een homogeen model, is de meta-analytische aanpak

asymptotisch equivalent aan de analyse van samengevoegde databestanden, maar is

logistiek veel eenvoudiger uit te voeren.

Ten slotte wordt in hoofdstuk 7 een score toets voor linkage analyse in de grote

klasse van de algemene lineaire modellen beschreven. Deze benadering is gebaseerd

op een pseudo-likelihood van de gegevens. Hoewel deze test waarschijnlijk niet opti-

maal is in alle situaties, heeft deze test het voordeel herkenbaar te zijn en een robuuste

type I fout te hebben. Het levert een eenvoudige manier om het bekende effect van

co-variabelen te implementeren in linkage analyse en is toepasbaar voor willekeurige

stambomen.

Het proefschrift wordt afgesloten met conclusie, waarin ik een perspectief schets van

de methodologie die een rol speelt in linkage bij het in kaart brengen van genen.
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