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CHAPTER 1

Introduction

1.1 Classical scattering in optical systems

Light scattering is a very broad topic which has a scientific history of over a century [1].
Generally speaking, light is scattered whenever it propagates in a material medium, because
of its interaction with the molecules constituting the medium, which act as scattering centers.
As a consequence, most of the light that we observe in daily life is scattered light. However,
the arrangement of these molecules strongly determines the effectiveness of the scattering
for a given input wave. For instance, in a perfect crystal the molecular scattering centra are
so orderly arranged that the scattered output waves interfere destructively in such a way that
only the propagation velocity of the incident wave is changed. Conversely, in a gas or a
fluid, the statistical fluctuations of the molecular arrangement can cause significant scatter-
ing. Depending on the nature of the interaction processes, light can be scattered elastically or
inelastically [2]. In elastic (Rayleigh) scattering, the frequency of the scattered light is equiv-
alent to that of the incident light. On the other hand, inelastic (Raman) scattering results in
scattered light of different frequency than the incident. In this Thesis we will concentrate on
elastic scattering processes where the frequency of the incident light is conserved. Addition-
ally, we will restrict our analysis to linear scattering processes, where this linearity refers to
the amplitude of the light field. A scattering process can be consider linear when, for a sum
of incident input waves, the scattered output wave is a linear superposition of the incident
ones. Such linear processes can be described by a scattering matrix, which maps input and
output waves. In this context, we take a broad definition of an elastic light scattering process;
namely, any optical process that changes the direction of the wave-vector of the light. Thus
a scattering process can range from Rayleigh scattering by a point particle to refraction by a
lens.

Formally, light can be described by an electromagnetic field satisfying Maxwell’s equa-
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tions. The interaction of such a field with the molecules in a material medium can modify
its spatial distribution, frequency or polarization. The exact way in which these degrees of
freedom are modified depend on the specific properties of the scattering medium, which can
be described at different length scales. For example in Ref. [3], three levels of description
are identified based upon three length scales. These levels are classified as macroscopic: on
scales much larger than the mean free path /, mesoscopic: on scales of the order of the mean
free path [ and microscopic: on scales comparable to the wavelength of the light A. How-
ever, in this Thesis we are exclusively interested in the changes produced by the scattering
process on the electromagnetic field, thus regarding the scattering medium as a black box.
Within such approach, the medium can be described by a phenomenological set of parame-
ters, usually arranged to form a matrix. The size and properties of such matrix depend on
the particular degrees of freedom of the field one is interested in. For example, when dealing
with polarization degrees of freedom, the scattering process can be represented by a 4 x 4
real-valued matrix, the so called Mueller matrix [4]. On the other hand, when dealing with
propagation of rays of light through an astigmatic paraxial optical device, the information
about the medium is contained in a 2 x 2 real-valued symplectic matrix, the so called ABCD
matrix [5]. In the following subsections we give explicit expressions for the Mueller matrix
and the ABCD matrix of a generic optical system, which are used in the context of polariza-
tion scattering and ray scattering, respectively.

1.1.1 Polarization scattering

The basic elements of a classical light scattering experiment are an incident field which il-
luminates a scattering medium and a detector which measures the intensity of the scattered
field (see Fig. 1.1). For a single spatial mode of the incident field (k;,), here represented by
a plane-wave propagating in a given direction ki, the effect of a single scattering event is
to change the direction of propagation of the field, so that the scattered field is in the output
plane-wave mode (Ko ) characterized by the direction kou. Here |Kin| = |Kout|, since we are
considering elastic scattering processes. The electric field, which determines the polarization,

Incident Scatftered
field field

E! .

n k El
)_. m Scattering out
medium &k

2 out Detector
E in
2
EOut DL/\

Figure 1.1: Geometry for describing a single mode scattering process. The incident
and scattered fields are described by plane-waves, which are characterized by their di-
rections of propagation kin and kou. After the scattering event takes place, the scattered
field intensity is measured at the detector.
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is here represented by the complex vector E € C?:E=E, i+ Ezi, on a plane orthogonal to
the direction of propagation k. Note that the three real-valued unit vectors {i,ﬁ,fc} define
an orthogonal Cartesian frame. Since the polarization E is a transverse degree of freedom,
a transformation on the spatial properties of the light beam (by scattering) is always ac-
companied by an intrinsic transformation on the polarization of the light beam. Any linear
transformation of the polarization properties of the beam by scattering can be represented in
the Mueller-Stokes formalism. Within this formalism, the electric field is fully specified by
the real-valued 4-dimensional Stokes vector S ¢ R2: S = (S0,S1,52,53); namely:

So = |EiP+|E) el

Si = Bl —|E|* < I —Iope

Sy = E\E;+EE] o< Ijso —1_y50

Sy = i(E\Ej — E2E}) o< Izc — Innc.

(1.1)

If we identify the directions 1 and 2 with vertical (90°) and horizontal (0°) polarizations
respectively, then Sy is proportional to the total intensity of the beam, S is proportional to the
difference in intensities between horizontal and vertical linearly polarized components, S is
proportional to the difference in intensities between linearly polarized components oriented
at 45° and —45° and S5 is proportional to the difference in intensities between right hand
RHC and left hand LHC circularly polarized components. It should be stressed that the real
valued 4-dimensional Stokes vector contains the same information as the complex valued 2 x
2 coherency matrix J [6]. The advantage of the Mueller-Stokes formalism is that it is directly
related with measurable quantities, i.e., intensities. The only restriction for a Stokes vector
to represent a physical polarization state is that ¥,;(S;)? < (So)? (i = 1,2,3). Additionally,
any optical system, which transforms an input Stokes vector S;, into an output Stokes vector
Sout, can be characterized by a 4 x 4 Mueller matrix (M), whose 16 real elements map the
polarization state of the input and output beams by:

Sout = MSi. (1.2)

In this Thesis we considered only passive or non-amplifying optical media such that the
output intensity is not larger than the input intensity, in other words for all our scattering
media So ou < So,in- However, it should be noted that an active medium, i.e., a medium with
gain, can in principle also be represented by a Mueller matrix. This is because classically,
a medium with gain, is formally equivalent to a medium with absorption, up to a sign, and
scattering media with polarization dependent absorption, i.e., dichroic scattering media, are
fully described in the Mueller-Stokes formalism.

The Mueller-Stokes formalism is suitable for a single spatial mode description of the
field, i.e., for paraxial angles of propagation of the field. In this context, depolarization mainly
occurs due to coupling of polarization degrees of freedom with temporal domain, for instance
by propagation through dynamic media. However, it is possible to extend this formalism to
the multi-spatial-mode case, this is explained in detail in Chapter 4. When the scattering
process involves many modes (either spectral or spatial) of the field and the polarization
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properties of the outgoing beam are measured with a mode-insensitive device, the scattered
field might appear partially depolarized. The degree of polarization (Pr) of a light beam is
defined by

Pr = \/(51)2+(52)2+(S3)2, (1.3)
So

where 0 < Pr < 1. Fully polarized light has Pr = 1 while unpolarized light has Pr = 0, the
intermediate values for Pr correspond to partially polarized light. The main mechanism of
depolarization that we analyze in this Thesis is given by the coupling of polarization and
spatial degrees of freedom. A typical example of this is the case of a beam of light initially
prepared in a single plane-wave mode (Kj,) that is incident on an inhomogeneous medium.
Due to the spatial inhomogeneities in the medium, the beam suffers multiple scattering and, as
aresult, it emerges as a (partially) incoherent superposition of many plane-waves (ko). Even
when each of the output modes is fully polarized, the output beam appears to be (partially)
depolarized when its spatial information is averaged out in a multi-mode detection set-up.

1.1.2 Ray scattering

in qou
1 0., ABCD 0, :

Martrix

Rl R

Figure 1.2: The input canonical variables (gin,0n), specifying a ray on a refer-
ence plane Ry, are mapped by the ABCD matrix into the output canonical variables
(qout, Bout) of a ray on a reference plane R;.

In the short wavelength limit, a ray-like beam is fully described by two canonical vari-
ables; namely, its position g (on a given reference plane) and its slope 6 (see Fig. 1.2). Ad-
ditionally, the change in ¢ and 6 of an optical ray upon propagation through a wide variety
of optical scattering devices can be written, in the paraxial limit and for a single transverse
dimension, in terms of the 2 X 2 ABCD or ray matrix [5] by:

gotl (A B gin
()= (e 2) (&) a9

It should be stressed that the only condition for an ABCD matrix to represent a physical
transformation upon a ray is that its determinant should be equal to one (i.e., a symplectic
transformation). Therefore, within this limit, an optical transformation can range from de-
flection of light by a particle to refraction of light by a lens. In Chapter 2 and Chapter 3 we
analyzed the dynamical properties of an optical cavity with a stochastic beam splitter. The
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round trip of a ray inside such a cavity can be represented, in the paraxial approximation, by
an ABCD matrix and can thus be interpreted as a linear optical ray scattering process.

1.2 Quantum scattering in optical systems

The quantum aspects of scattering in optical systems that are highlighted in our work refer to
the quantum nature of the light that is incident on different scattering media. At the single-
photon level, the quantum nature of light is revealed by the quantum field fluctuations, which
can be seen as a consequence of the Heisenberg uncertainty relations between the electric and
magnetic fields [7]. In this regard, the effect of multiple scattering on single-photon spatial
correlations has been recently investigated in Ref. [8]. For photon pairs the quantum nature of
light can also manifest itself by the mutual entanglement between the two photons belonging
to the pair; this topic is addressed in this Thesis.

1.2.1 Entangled photons

A pair of photons is considered ‘entangled’” when a measurement on one of the two photons
belonging to the pair completely determines the outcome of measurements on the other one,
regardless of the distance between the photons. These non-local correlations, referred to
as quantum entanglement, can not be explained in terms of any local classical theory and
have puzzled many physicist starting by Einstein, Podolosky and Rosen [9], in 1935. In our
scattering experiments with quantum light, we have concentrated on entangled photon pairs,
where the incident state of light is entangled in the polarization degrees of freedom. A typical
example is the polarization-singlet Bell state:

_ [HiV2) = [ViHy)
\/i 9

where 1 and 2 label the two photons belonging to the pair, and (H,V) label horizontal and
vertical polarizations, respectively. In fact, this state contains maximal information about the
correlations of the two photons but minimal information about the polarization state of each
individual photon. Thus if we measure the polarization of photon 1, and we find that it is
vertical V, then we automatically know that the outcome of a similar measurement on photon
2 would yield H. Note that the anti-correlation between the polarization state of each photon
belonging to the singlet is valid in any polarization basis.

ly™) (1.5)

1.2.2 Light scattering with entangled photons

Quantum theory predicts that the quantum correlations between entangled photons should be
maintained over arbitrary distances. This prediction was verified on free-space propagation
over distances of up to 144 km [10, 11], with polarization entangled photons. Moreover, the
robustness of polarization entanglement has also been proven upon some particular scatter-
ing processes [12]. Generally speaking, scattering processes should not affect polarization
entanglement as long as they are linear (thus describable by a scattering matrix) and as long
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as the photons are detected in a single spatial mode [13, 14]. Therefore, it appears to be rele-
vant to characterize entanglement decay upon linear scattering processes in combination with
multi-mode detection, and that is indeed the central topic of this Thesis.

The main concept behind light scattering with polarization entangled photons is that a
scattering process can couple polarization and spatial degrees of freedom of light. The details
of this coupling depend on the specific scattering medium. If the scattered photons are then
detected in a momentum insensitive way (multi-mode detection), all the spatial information
of the scattering process encoded in the photons is averaged or traced over, leaving each
photon in a mixed polarization state. As one might expect, this transition from pure to mixed
state reduces the degree of entanglement; this has been theoretically explored in recent papers
[13,14].

The output polarization state of the scattered photons can be calculated once we know the
phenomenological polarization matrix (i.e., the Mueller matrix M) characterizing the scatter-
ing medium. For an input state given by a pair of photons, initially prepared in the polarization
singlet state

Pin =W )V, (1.6)

and for a local scattering medium, i.e., a medium acting on a single photon of the entangled
pair, the scattered photon-pair, which is in the mixed polarization state poy, can be written in
a reshuffled basis, here denoted by the superscript (R), as [15]:

pR = 4pf, (1.7)

where the matrix .# maps the input and output polarization states of the photon pairs. .Z is
linearly related to the classical Mueller matrix M of the scattering medium, this is explained
in detail in Chapter 8.

Eq.(1.7) suggests that the study of a local scattering process acting on a pair of photons

is an alternative (and rather sophisticated) way of studying a depolarizing process. In other
words, it is a non-standard way of measuring the Mueller matrix M (or .#) of a depolarizing
medium. We stress that the fact that a scattering experiment with two-photon light reveals the
same amount of information on the scattering medium as a similar experiment with a classical
beam of light is only true as long as we analyze, as we do in this Thesis, local scattering
media. That is, scattering media located on the path of a single photon of the entangled pair.
Nevertheless, although we only experimented with local media, our mathematical formalism
still applies to bi-local scattering media, which can be written as the (outer) product of two
Mueller matrices acting on each photon of the pair, and to non-local scattering media, which
can be written as an inseparable (two-photon) Mueller matrix [15].
Finally, it is important to stress that one of the main goals in our scattering experiments with
entangled photons was to engineer (mixed) quantum states of light in a controllable way (see
Chapter 7 and Chapter 8). As a consequence, in most of our experiments with quantum light,
our target is the two-photon scattered state poy rather than the classical Mueller matrix ..
This is what we consider novel in our approach.
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1.3 Thesis overview

In this Thesis we analyzed the effect of a large variety of linear scattering processes both
on classical light (Chapter 4-5) and on two-photon quantum light (Chapter 6-9). The main
part of this analysis refers to the polarization degrees of freedom of scattered light where
the medium parameters are phenomenologically described within the Mueller matrix formal-
ism. The main tool used for this characterization is multi-spatial-mode optical polarization
tomography, both in its classical and quantum versions.

Additionally, in fact as a starter for this Thesis, we have numerically investigated dynam-
ical properties of ray scattering in optical cavities by using Hamiltonian optics (Chapter 2-3).
The paraxial description of light rays in such optical cavities is described within the ABCD
matrix formalism.

We describe the contents of the Chapters in more detail below:

e In Chapter 2 we report a numerical investigation of the paraxial ray dynamics of light
scattered by an optical cavity with a stochastic ray-splitting mechanism. We show the
results obtained for the paraxial map of the system, applying standard tools from non-
linear dynamics. A discussion on the mixing properties of the system and their relation
with the Kolmogorov-Sinai (KS) entropy is included.

e In Chapter 3 we presents the exact ray dynamics in an optical cavity with a ray splitting
mechanism, similar to the one introduced in Chapter 2. By using exact Hamiltonian
optics, we show that such a simple scattering device presents a surprisingly rich chaotic
ray dynamics.

e In Chapter 4 we describe the theoretical background related to our experiments on
classical light depolarization due to multi-mode scattering. The key theoretical concept
we introduce is the effective Mueller matrix, which describes our spatial multi-mode
detection set-up.

e In Chapter 5 we show experimental results on classical light depolarization due to
multi-mode scattering. By means of polarization tomography, we characterize the de-
polarizing power and the polarization entropy of a broad class of optically scattering
media.

e In Chapter 6 we report experimental results on a controllable source of spatial deco-
herence for polarization entangled photons, based upon commercially available wedge
depolarizers. A full characterization of the scattered states, by means of quantum to-
mography, shows that such a scattering device can be used for synthesizing Werner-like
states on demand.

o In Chapter 7 we present experimental results on the effect of different scattering process
on polarization entangled photons. The scattering media are grouped in isotropic, bire-
fringent and dichroic scattering. We compare the experimental results with a phenom-
enological model based upon the description of a scattering process as a quantum map.

o In Chapter 8 we present a full theoretical framework for the description of a scattering
process as a quantum map. Within this framework, we show how scattering processes
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can be used for entangled-mixed state engineering. We report an experimental scheme
suitable for maximally entangled mixed states engineering and the corresponding ex-
perimental results.

o In Chapter 9 we review some of our experimental results on multi-mode scattering of
entangled photon pairs and their description in terms of trace-preserving and non-trace-
preserving quantum maps. We show that non-trace-preserving quantum maps can lead
to apparent violations of causality, when the two-photon states are post-selected by
coincidence measurements. A brief discussion on relativistic causality is included.

With the exceptions of Chapters 1 and 4, all the Chapters contained in this Thesis are
based on independent publications and can be read separately. As a consequence there is
some overlap between them. Although within a Chapter each physical quantity has a unique
symbol, some symbols are used for different physical quantities in different Chapters.




CHAPTER 2

Paraxial ray dynamics in an optical cavity with a
beam-splitter.

In this Chapter ' we present a numerical investigation of the ray dynamics in an optical
cavity when a ray splitting mechanism is present; we focus mainly on the paraxial limit.
The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved
by inserting an optical beam splitter perpendicular to the cavity axis. We show the results
obtained for the paraxial map of the system [16], applying standard tools from non-linear
dynamics, such as Poincaré Surface of Section (SOS), exit basin diagrams, escape rate
and Lyapunov exponents. Furthermore, a discussion about the mixing properties of the
system and their relation with the Kolmogorov-Sinai (KS) entropy is included. In the
paraxial limit the ray dynamics is irregular and both the Lyapunov exponent and the KS
entropy are positive; however, chaos does not occur.

IBased on G. Puentes, A. Aiello and J. P. Woerdman, Phys. Rev. E 69, 036209 (2004).




2. Paraxial ray dynamics in an optical cavity with a beam-splitter.

2.1 Introduction

A beam splitter (BS) is an ubiquitous optical device in wave optics experiments, used e.g.,
for optical interference, homodyning, etc. In the context of geometrical optics, the action of
a BS is to split a light ray into a transmitted or a reflected ray. Ray splitting provides a useful
mechanism to generate chaotic dynamics in pseudointegrable [17] and soft-chaotic [18-21]
closed systems. In this Chapter we exploit the ray splitting properties of a BS in order to
build an open paraxial cavity which shows irregular ray dynamics as opposed to the regular
dynamics displayed by a paraxial cavity when the BS is absent.

BS

[N

=
™~

=
=

L, L,

Figure 2.1: Schematic diagram of the cavity model. Two subcavities of length L and
Ly are coupled by a BS. The total cavity is globally stable for L=L1+ Ly <2R. A=
Ly — L/2 represents the displacement of the BS with respect to the center of the cavity.

Optical cavities can be classified as stable or unstable depending on the focussing prop-
erties of the elements that compose it [5]. An optical cavity formed by 2 concave mirrors of
radii R separated by a distance L is stable when L < 2R and unstable otherwise. If a light ray
is injected inside the cavity through one of the mirrors it will remain confined indefinitely
inside the cavity when the configuration is stable but it will escape after a finite number of
bounces when the cavity is unstable (this number depends on the degree of instability of the
system). Both stable and unstable cavities have been extensively investigated since they form
the basis of laser physics [5]. Our interest is in a composite cavity which has both aspects of
stability and instability. The cavity is made by two identical concave mirrors of radii R sepa-
rated by a distance L, where L < 2R so that the cavity is globally stable. We then introduce
a beam splitter (BS) inside the cavity, oriented perpendicular to the optical axis (Fig. 2.1).
In this way the BS defines two subcavities. The main idea is that depending on the position
of the BS the left (right) subcavity becomes unstable for the reflected rays when L; (L) is
bigger than R, whereas the cavity as a whole remains always stable (L1 + L, < 2R) (Fig. 2.2).

Our motivation to address this system originates in the nontrivial question whether there
will be a balance between trapped rays and escaping rays. The trapped rays are those which
bounce infinitely long in the stable part of the cavity, while the escaping ones are those which
stay for a finite time, due to the presence of the unstable subcavity. If such balance exists it
could eventually lead to transient chaos since it is known in literature that instability (positive

10
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y
L,=L,<R
(a) R%% R
L, L,
BS
y BS L>R>L,
o ()
L, L
BS y L2>R>L1
R
(o R % ’
L L,

Figure 2.2: The different positions of the beam splitter determine the nature of the
subcavities. In (a) the BS is in the middle, so the 2 subcavities are stable, in (b) the left
cavity is unstable and the right one is stable, and (c) the unstable (stable) cavity is on
the right (left) (b).

Lyapunov exponents) and mixing (confinement inside the system) form the skeleton of chaos
[22].

The BS is modelled as a stochastic ray splitting element [18] by assuming the reflection
and transmission coefficients as random variables. Within the context of wave optics this
model corresponds to the neglect of all interference phenomena inside the cavity; this would
occur, for instance when one injects inside the cavity a wave packet (or cw broad band light)
whose longitudinal coherence length is very much shorter than the smallest characteristic
length of the cavity. The stochasticity is implemented by using a Monte Carlo method to
determine whether the ray is transmitted or reflected by the BS [18]. When a ray is incident
on the ray splitting surface of the BS, it is either transmitted through it with probability p or
reflected with probability 1 — p, where we will assume p = 1/2, i.e., we considered a 50/50
beam splitter (Fig. 2.3). We then follow a ray and at each reflection we use a random number
generator with a uniform distribution to randomly decide whether to reflect or transmit the
incident ray.

11




2. Paraxial ray dynamics in an optical cavity with a beam-splitter.

1
z=const

Figure 2.3: A ray on a reference plane (z = const) perpendicular to the optical axis
(Z) is specified by two parameters: the height g above the optical axis and the angle 6
between the direction of propagation and the same axis. When a ray hits the surface of
the BS, which we choose to coincide with the reference plane, it can be either reflected
or transmitted with equal probability (p). For a 50/50 beam splitter p =1/2.

Our system bears a close connection with the stability of a periodic guide of paraxial
lenses as studied by Longhi [30]. While in his case a continuous stochastic variable €, repre-
sents a perturbation of the periodic sequence along which rays are propagated, in our case we
have a discrete stochastic parameter p, which represents the response of the BS to an inci-
dent ray. As will be shown in section 2.2, this stochastic parameter can take only two values,
either +1 for transmitted rays or -1 for reflected rays; in this sense, our system (displayed
as a paraxial lens guide in Fig. 2.4) allows a surprisingly simple realization of a bimodal
stochastic dynamics.

2.2 Ray dynamics and the paraxial map

The time evolution of a laser beam inside a cavity can be approximated classically by using
the ray optics limit, where the wave nature of light is neglected. Generally, in this limit
the propagation of light in a uniform medium is described by rays which travel in straight
lines, and which are either sharply reflected or refracted when they hit a medium with a
different refractive index. To fully characterize the trajectory of a ray in a strip resonator or
in a resonator with rotational symmetry around the optical axis, we choose a reference plane
z = constant (perpendicular to the optical axis Z), so that a ray is specified by two parameters:
the height g above the optical axis and the angle 6 between the trajectory and the same axis.
Therefore we can associate a ray of light with a two dimensional vector 7 = (g,6). This
is illustrated in the two mirror cavity show in Fig. 2.3, where the reference plane has been
chosen to coincide with the beam splitter (BS). Given such a reference plane z, which is also
called Poincaré Surface of Section (SOS) [23], a round trip (evolution between two successive
reference planes) of the ray inside the cavity can be calculated by the monodromy matrix
M, in other words 7,,;| = M,7,, where the index n determines the number of round trips.
The monodromy matrix M, describes the linearized evolution of a ray that deviates from a
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2.2 Ray dynamics and the paraxial map

reference periodic orbit. A periodic orbit is said to be stable if |TrM,,| < 2. In this case nearby
rays oscillate back and forth around the stable periodic orbit with bounded displacements both
in g and 6. On the other hand when |TrM,,| > 2 the orbit is said to be unstable and rays that
are initially near this reference orbit become more and more displaced from it.

For paraxial trajectories, where the angle of propagation relative to the axis is taken to
be very small (i.e., sin(0) = tan(0) = ), the reference periodic trajectory coincides with
the optical axis and the monodromy matrix is identical to the ABCD matrix of the system.
The ABCD matrix or paraxial map of an optical system is the simplest model one can use
to describe the discrete time evolution of a ray in the optical system [5]. Perhaps the most
interesting and important application of ray matrices comes in the analysis of periodic fo-
cusing (PF) systems in which the same sequence of elements is periodically repeated many
times down in cascade. An optical cavity provides a simple way of recreating a PF system,
since we can think of a cavity as a periodic series of lenses (see Fig. 2.4). In the framework
of geometric ray optics, PF systems are classified, as are optical cavities, as either stable or
unstable.

UG

|

Zl Zz 3 Zn A n+1
Figure 2.4: A ray bouncing inside an optical cavity can be represented by a sequence

of lenses of focus f =2 /R, followed by a free propagation over a distances L. Due to
the presence of the BS, the distance L, varies stochastically between L or L,.

1
|
| rn+l
1
Ll

N- - — — — = = — =

Without essential loss of generality we restrict ourselves to the case of a symmetric cavity
(i.e., two identical spherical mirrors of radius of curvature R). We take the SOS coincident
with the surface of the BS. After intersecting a given reference plane z;, a transmitted (re-
flected) ray will undergo a free propagation over a distance L, (L1), followed by a reflection
on the curved mirror M, (M;), and continue propagating over the distance L, (L1), to hit the
surface of the beam splitter again at z; ;. In Fig. 2.4 the sequence of z; represents the succes-
sive reference planes after a round trip. In the paraxial approximation each round trip (time
evolution between two successive intersections of a ray with the beam splitter) is represented
by:

Gn+1 = Angn+Bn6y,

2.1
0,y1= Cgy+D,0,, @D

where
A,=1-2L,/R, B,=2L,(1-L,/R),

C=-2/R, D,=1-2L,/R

13




2. Paraxial ray dynamics in an optical cavity with a beam-splitter.

and

L, = L+ pna

2
We have defined L = L; + L, and a = L, — Ly; the stochastic parameter p,, is distributed
equally among —1 and +1 for our 50/50 BS, and determines whether the ray is transmitted
(pn = 1) or is reflected (p, = —1).

The elements of the ABCD matrix depend on the index n because of the stochastic re-
sponse of the BS, which determines the propagation for the ray in subcavities of different
length (either L; or Ly). In this way a random sequence of reflections (p, = 1) and trans-
missions (p, = —1) represents a particular geometrical realization of a focusing system. If
we want to study the evolution of a set of rays injected in the cavity with different initial
conditions (qo, 6p), we have two possibilities, either use the same random sequence of re-
flections and transmissions for all rays in the set or use a different random sequence for each
ray. In the latter case, we are basically doing an ensemble average over different geometrical
configurations of focusing systems. As we shall see later it is convenient, for computational
reasons, to adopt the second method.

The paraxial map of Eq. (2.1) describes an unbounded system. That is, a system for which
rays are allowed to go infinitely far from the cavity axis. In order to describe a physical parax-
ial cavity we have to keep the phase space bounded, i.e., it is necessary to artificially introduce
boundaries for the position and the angle of the ray [31]. The phase space boundaries that
we have adopted to decide whether a ray has escaped after a number of bounces or not are
the beam waist (wg) and the diffraction half-angle (®¢) [5] of a gaussian beam confined in
a globally stable two-mirror cavity. Measured at the center of the cavity, the waist and the
corresponding diffraction half-angle result in:

LA 2R—L
2 light
= 2.2
iC T 4L 22)
A
0y = arctan(ﬂ) 2.3)
Two

Where we refer to the optical wavelength as A;;g, in order to avoid confusion with the Lya-
punov exponent A. For our cavity configuration we assume R = 0.15 m, L = 0.2 m and
Aiighe = 500 nm, from which follows that wy = 5.3 x 107> m and ®y = 0.15 x 1073 rad.
One should keep in mind that this choice is somewhat arbitrary and other choices are cer-
tainly possible. The effect of this arbitrariness on our results will be discussed in detail in
subsection 2.3.4.

In the next section we report several dynamical quantities that we have numerically calcu-
lated for paraxial rays in this system, using the map described above (Eq. 2.1). The behavior
of these quantities; namely, the SOSs, the exit basins, the Lyapunov exponent and the escape
rate, is analyzed as a function of the displacement (A) of the BS with respect to the center of
the cavity (see Fig. 2.1).
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2.3 Numerical results

2.3 Numerical results

2.3.1 Poincaré surface of section (SOS)

We have first calculated the SOS for different positions of the BS. In order to get a qualitative
idea of the type of motion, we have chosen as transverse phase space variables y = g and v, =
sin(0) ~ 0. The successive intersections of a trajectory with initial transverse coordinates
go=1x 1073 m, 6y = 0 are represented by the different black points in the surface of section.
The different SOSs are shown in Fig. 2.5. In Fig. 2.5 (a) we show the SOS for A = 0, while in
(b)A=1x10"3mand in (c) A=2x 1072 m. In (a) it is clear that the motion is completely
regular (non-hyperbolic); the on-axis trajectory represents an elliptic fixed point for the map.
In (b), where the BS is slightly displaced from the center (A = 1 x 1073 m) we can see that this
same trajectory becomes unstable because of the presence of the BS, and spreads over a finite
region of the phase space to escape after a large number of bounces (n = 5 x 10*). In this case
we may qualify the motion as azimuthally ergodic. The fact that the ray-splitting mechanism
introduced by the BS produces ergodicity is a well known result [18] for a closed billard. We
find here an analogue phenomenon, with the difference that in our case the trajectory does
not explore uniformly (but only azimuthally) the available phase space, because the system
is open. Finally, in (c) we see that the fixed point in the origin becomes hyperbolic, and the
initial orbit escapes after relatively few bounces (n = 165).

(@) (b) (c)

00001 f | 00006 000075
_ |
b
g -,
E o0 0 0"
D .
00001 ~—__~ | ooo006 _____. 000075 Sl ;
000001 0 ©00001 000004 0 000004 000004 0 000004
g (m) g (m) g (m)

Figure 2.5: SOS for (a) A = 0 where the ray does not escape, (b) A = 0.001 m, where
the ray escapes after n =5 x 10* bounces and (c) A = 0.02 m, where the ray escapes
after n = 165 bounces.

2.3.2 Exit basin diagrams

It is well known that chaotic Hamiltonian systems with more than one exit channel exhibit
irregular escape dynamics which can be displayed, e.g., by plotting the exit basin [24]. For
our open system we have calculated the exit basin diagrams for three different positions of
the BS (Fig. 2.6). These diagrams can be constructed by defining a fine grid (2200 x 2200)
of initial conditions (go, 6y). We then follow each ray for a sufficient number of bounces so
that it escapes from the cavity. When it escapes from above (6, > 0) we plot a black dot in
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2. Paraxial ray dynamics in an optical cavity with a beam-splitter.

the corresponding initial condition, whereas when it escapes from below (6, < 0) we plot a
white dot.

In Fig. 2.6 (a) we show the exit basins for A = 0.025 m, the uniformly black or white
regions of the plot correspond to rays which display a regular dynamics before escaping,
and the dusty region represents the portion of phase space where there is sensitivity to initial
conditions. In Fig. 2.6 (b), we show the same plot for A = 0.05 m, and in (c) for A = 0.075
m.

The exit basin plots in Fig. 2.6 illustrate how the scattering becomes more irregular as the
BS is displaced from the center. In particular, we see how regions of regular and irregular
dynamics become more and more interwoven as A increases. As a reverse trend, for small
values of A as in Fig. 2.6 (a), there is a single dusty region with a uniform distribution of
white and black dots in which no islands of regularity are present.

(a) (b)
0.0015
-
)
o]
Nas) 0
o
D
-0.0015
53x10° 0 53x10° 53x10° 0 53x10° 5.3x10° 0 53x10”

g, (m) g, (m) g, (m)

Figure 2.6: Exit basins for (a) A= 0.025 m, (b) A=0.05 mand (c) A= 0.075 m.

2.3.3 Escape rate and Lyapunov exponent

The dynamical quantities that we have calculated next are the escape rate y and the Lyapunov
exponent A. The escape rate is a quantity that can be used to measure the degree of openness
of a system [31]. For hard chaotic systems (hyperbolic), the number N, of orbits still con-
tained in the phase space after a long time (measured in number of bounces n) decreases as
Noexp(—yn) [32]. The Lyapunov exponent is the rate of exponential divergence of nearby
trajectories.

Since both A and 7y are asymptotic quantities they should be calculated for very long
times. In our system long living trajectories are rare. In order to pick them among the grid
of initial conditions (Ny) one has to increase Ny beyond our computational capability. To
overcome this difficulty we choose a different random sequence for each initial condition. In
this way we greatly increase the probability of picking long living orbits given by particularly
stable random sequences. These long living orbits in turn make possible the calculation of
asymptotic quantities such as A or ¥.

The escape rate 'y was determined by measuring N,, as the slope of a 1g(N,,/Ny) versus n
plot; the total number of initial conditions Ny being chosen as 2200 x 2200.
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We have calculated the dependence of 7y on the displacement of the BS (A) from the center
of the cavity, where 0 < A < L/2. Since for A > R — L/2 the left subcavity becomes unstable,
it would seem natural to expect that this position of the BS would correspond to a critical
point. However, we have found by explicit calculation of both the Lyapunov exponent and
the escape rate, that such a critical point does not manifest itself in a sharp way, rather we
have observed a finite transition region (as opposed to a single point) in which the functional
dependence of A and y changes in a smooth way. In Fig. 2.7 (a) we show the typical be-
havior of N, /Ny vs n in semi-logarithmic plot for three different positions of the BS. The
displacements of the BS are A = 0.0875 m, 0.05 m and 0.03125 m, and the corresponding
slopes (escape rate Y measured in units of the inverse number of bounces n) of the linear fit
are ¥ = 0.17693 n~!, 0.05371 n~!' and 0.01206 n~! respectively. We have found that the
decay is exponential only up to a certain time (approximately 70 — 1000 bounces depending
on the geometry of the cavity) due the discrete nature of the grid of initial conditions.

In Fig. 2.7 (b) we see that y increases with A, revealing that for more unstable config-
urations there is a higher escape rate, as expected. It is also interesting to notice that the
exponential decay fits better when the beam splitter is further from the center position, since
this leads to smaller stability of the periodic orbits of the system. However, the dependence
of the escape rate with the position of the BS is smooth and reveals that the only critical
displacement, where the escape rate becomes positive, is A = 0.

As a next step, we have calculated the Lyapunov exponent A for the paraxial map; A is
a quantity that measures the degree of stability of the reference periodic orbit. For a two-
dimensional hamiltonian map there are two Lyapunov exponents (4;, A;) such that A; +
A2 = 0. In the rest of the Chapter we shall indicate with A the positive Lyapunov exponent
which quantifies the exponential sensitivity to the initial conditions. We have calculated A
for the periodic orbit on axis, using the standard techniques [33], and we have found that the
Lyapunov exponent grows from zero with the distance of the BS from the center (Fig. 2.7
(c)). Therefore, the only critical point revealed by the ray dynamics is again the center of the
cavity (A = 0), where the magnitudes change from zero to a positive value.

The fact that the Lyapunov exponent of our paraxial system does become positive (for A #
0) is rather surprising on its own right. Apparently, the presence of the BS with its stochastic
nature introduces exponential sensitivity to initial conditions in the system for every A # 0,
even when both subcavities are stable. This surprise can be explained by taking into account
the probabilistic theorem by Furstenberg on the asymptotic limit of the rate of growth of a
random product of matrices (RPM) [34]. From this theorem we expect that the asymptotic
behavior of the product of a uniform random sequence M, of D x D matrices, and for any
nonzero vector y € RP:

lim 1<ll‘1 M,¥])o =241 >0, 2.4

n—oo N

where A, is the maximum Lyapunov exponent of the system, and the angular brackets indicate
the average over the ensemble Q of all possible sequences. This means that for RPM the
Lyapunov exponent is a non-random positive quantity. In general, it can be said that there
is a subspace Q* of random sequences which has a full measure (probability 1) over the
whole space of sequences Q for which nearby trajectories deviate exponentially at a rate A;.
Although there exist very improbable sequences in  which lead to a different asymptotic
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Figure 2.7: (a) Linear fits used to calculate the escape rate for three different geomet-
rical configurations of the cavity given by A =0.03125 m, A = 0.05 m and A = 0.0875
m. The time is measured in number of bounces (n). The slope 'y is in units of the inverse
of time (n~"). Fig. (b) shows the escape rate y (n~') as a function of A. Fig. (c) corre-
sponds to different Lyapunov exponents A (n~') as the BS moves from the center A =0
to the leftmost side of the cavity A= 0.10 m. Fig. (d) shows the difference between A —y
(n=1), which is a positive bounded function.

limit, they do not change the logarithmic average (Eq. 2.4) [35]. We have verified this result,
calculating the value of A for different random sequences @, in the asymptotic limit n =
100000 bounces, and we obtained in all cases the same Lyapunov exponent.

234

Dynamical randomness is characterized by a positive Kolmogorov-Sinai (KS) entropy per
unit time hggs [36]. In closed systems, it is known that dynamical randomness is a direct
consequence of the exponential sensitivity to initial conditions given by a positive Lyapunov
exponent. On the other hand, in open dynamical systems with a single Lyapunov exponent A,
the exponential sensitivity to initial conditions can be related to hgg through the escape rate
7, by the relation [27]:

Mixing properties

A =hgs+7. (2.5)

This formula reveals the fact that in an open dynamical system the exponential sensitivity to
initial conditions induces two effects: one is the escape of trajectories out of the neighbor-
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hood of the unstable reference periodic orbit at an exponential rate ¥, and the other one is a
dynamical randomness because of transient chaotic motion near this unstable orbit [27]. This
dynamical randomness is a measure of the degree of mixing of the system and as mentioned
before is quantified by hgs. Therefore, for a given A, the larger the mixing is, the smaller the
escape rate, and viceversa. From Figs. 2.7 (b,c) it is evident that the Lyapunov exponent and
the escape rate have the same smooth dependence on the BS displacement A and that y < A.
We have calculated the difference A — ¥ > 0 for our system and the result is shown in Fig. 2.7
(d).

The actual value of y(A) depends, for a fixed value of A, on the size of the phase space
accessible to the system [31], that is, it depends on wy and 8y. We verified this behavior
by successively decreasing wo and 8y by factors of 10 (see Table 2.1), and calculating Y for
each of these phase space boundaries. It is clear from these results that y increases when
the size of phase space decreases; in fact for wg, 8y =~ 0, one should get A — ¥ and the
cavity mixing property should disappear. It should be noted that the increase of y when
decreasing the size of the accessible phase space (@y, 6p) is a general tendency, independent
of the chosen boundaries. It is important to stress that, although the randomness introduced

[ (wo,600) | x10° [ x10°" | x1072 [ x107? |
’ Y ‘ 0.17639 ‘ 0.17596 ‘ 0.19559 ‘ 0.25259 ‘
Table 2.1: Escape rate for different phase space boundaries. As the boundary shrinks

Y(A) tends to the corresponding value of A(A) = 0.29178n~". In these calculations the
displacement of the BS was A = 0.0875m.

by the stochastic BS is obviously independent from the cavity characteristics, A and y show
a clear dependence on the BS position. When the BS is located at the center of the cavity
it is evident for geometrical reasons that the ray splitting mechanism becomes ineffective:
A =0 =¥. These results confirm what we have already shown in the SOS (Fig. 2.5).

2.4 Summary

In this Chapter we have characterized the ray dynamics of our paraxial optical cavity with ray
splitting by using standard techniques in non-linear dynamics. In particular we have found,
both through the SOS and the exit basin diagrams, that the stochastic ray splitting mechanism
destroys the regular motion of rays in the globally stable cavity. The irregular dynamics
introduced by the beam splitter was quantified by calculating the Lyapunov exponent A; it
grows from zero as the beam splitter is displaced from the center of the cavity. Therefore, the
center of the cavity constitutes the only point where the dynamics of the rays is not affected
by the stochasticity of the BS. The escape rate y has been calculated and it has revealed a
similar dependence with the position of the beam splitter to that of A. Furthermore, we have
verified that the absolute value of the escape rate tends to that of the Lyapunov exponent
as the size of the available phase space goes to zero. This result confirms the fact that the
escape rate and therefore the mixing properties of a map depend sensitively on the choice of
the boundary [31]. Because of this dependence we cannot claim that our system is chaotic,
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2. Paraxial ray dynamics in an optical cavity with a beam-splitter.

despite the positiveness of A. However, as mentioned before, in the next Chapter we shall
demonstrate that ray chaos can be achieved for the same class of optical cavities when non-
paraxial ray dynamics is allowed [37].
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CHAPTER 3

Chaotic ray dynamics in an optical cavity with a beam-splitter

In this Chapter we investigate the exact ray dynamics in an optical cavity when a ray
splitting mechanism is present . The cavity is a conventional two-mirror stable resonator
and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the
cavity axis. Using exact Hamiltonian optics, we show that such a simple device presents

a surprisingly rich chaotic ray dynamics.

IBased on G. Puentes, A. Aiello and J. P. Woerdman, Opt. Lett. 29, 929 (2004).
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3. Chaotic ray dynamics in an optical cavity with a beam-splitter

3.1 Introduction

In this Chapter we present a very simple optical cavity whose ray dynamics is nevertheless
fully chaotic. Our starting point is the fact that a two-mirror optical cavity can be stable or
unstable depending on its geometrical configuration [5]. If a light ray is injected inside the
cavity it will remain confined indefinitely when the configuration is stable but it will escape
after a finite number of bounces when the cavity is unstable. Our interest is in a cavity
which has both aspects of stability and instability (Fig. 3.1). The cavity is modelled as a strip
resonator [5] made of two identical concave mirrors of radius of curvature R separated by
a distance L, where L < 2R so that the cavity is globally stable. We then introduce a beam
splitter (BS) inside the cavity, oriented perpendicular to the optical axis. In this way the BS
defines two planar-concave subcavities: one on the left and one on the right with respect to
the BS, with length L and L,, respectively. The main idea is that depending on the position
of the BS the left (right) subcavity becomes unstable for the reflected rays when L; (L) is
bigger than R, while the cavity as a whole remains always stable (L1 + Ly < 2R).

Consideration of this system raises the nontrivial question whether there will be an “equi-
librium” between the number of trapped rays and escaping rays. The trapped rays are those
which bounce for infinitely long times due to the global stability of the cavity and the es-
caping ones are those which stay only for a finite time. If such equilibrium exists it could
eventually lead to transient chaos since it is known in literature that instability (positive Lya-
punov exponents) and mixing (confinement inside the system) form the skeleton of chaotic
dynamics [22]. In this Chapter we show that under certain conditions such equilibrium can
be achieved in our cavity and that chaotic ray dynamics is displayed.

3.2 Our model

In our system the BS plays a crucial role. It is modelled as a stochastic ray splitting element
by assuming the reflection and transmission coefficients as random variables [18]. Within
the context of wave optics this model corresponds to the neglect of all interference phenom-
ena inside the cavity, as required by the ray (zero-wavelength) limit. The stochasticity is
implemented by using a Monte Carlo method to determine whether the ray is transmitted or
reflected [18]. When a ray is incident on the ray splitting surface of the BS, it is either trans-
mitted through it, with probability p, or reflected with probability 1 — p, where we assume
p=1/2 for a50/50 beam splitter as shown in Fig. 3.1. We then dynamically evolve a ray and
at each reflection we use a random number generator with a uniform distribution to randomly
decide whether to reflect or transmit the incident ray.

In the context of Hamiltonian optics, to characterize the trajectory of a ray we first choose
a reference plane perpendicular to the optical axis Z, coinciding with the surface of the BS.
The intersection of a ray with this plane is specified by two parameters: the height y above
the optical axis and the angle 6 between the trajectory and the same axis. We consider the
rays as point particles, as in standard billiard theory where the propagation of rays correspond
to the trajectories of unit mass point particles moving freely inside the billiard and reflecting
elastically at the boundary. In particular, we study the evolution of the transversal component
of the momentum of the ray, i.e. v, = [V|sin(0) so that we associate a ray of light with the
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Figure 3.1: Schematic diagram of the cavity model; R indicates the radius of curvature
of the mirrors. Two subcavities of length Ly and L, are coupled by a BS. The total cavity
is globally stable for L= Ly +L, < 2R. A= L —L/2 represents the displacement of the
BS with respect to the center of the cavity. When a ray hits the surface of the BS, which
we choose to coincide with the reference plane, it can be either reflected or transmitted
with equal probability (p); for a 50/50 beam splitter p =1/2.

two-dimensional vector 7 = (y,vy). It is important to stress that we use exact 2D-Hamiltonian
optics, i.e. we do not use the paraxial approximation.

The evolution of a set of rays injected in the cavity with different initial conditions
(Y0, Vvy,), is obtained by using a ray tracing algorithm. For each initial condition, the ac-
tual ray trajectory is determined by a random sequence {...rrttrrrrt.. } which specifies if the
ray is reflected (r) or transmitted (t) by the BS. When one evolves the whole set of initial
conditions, one can choose between two possibilities, either use the same random sequence
for all rays in the set of initial conditions or use a different random sequence for each ray. In
this Chapter we use the same random sequence for all injected rays in order to uncover the
dynamical randomness of the cavity.

3.3 Numerical Results

3.3.1 Poincaré Surface of Section (SOS)

The three quantities that we have calculated to demonstrate the chaotic ray dynamics inside
the cavity are the Poincaré Surface of Section (SOS), the exit basin diagrams and the escape
time function [23]. In all calculations we have assumed L; + L, = 0.16 m and the radius of
curvature of the mirrors R = 0.15 m; the diameter d of the two mirrors was d = 0.05 m. In
addition, the displacement A of the BS with respect to the center of the cavity was chosen as
0.02 m (unless specified otherwise), and the time was measured in number of bounces 7.

In Fig. 3.2, the successive intersections of a ray with initial transverse coordinates yy =
1 x 107> m, vy, = 0 are represented by the black points in the SOSs. For A = 0 the cavity
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3. Chaotic ray dynamics in an optical cavity with a beam-splitter

configuration is symmetric and the dynamics is completely regular (Fig. 3.2 (a)); the on-axis
trajectory represents an elliptic fixed point and nearby stable trajectories lie on continuous
tori in phase space. In Fig. 3.2 (b), the BS is slightly displaced from the center (A = 0.02
m), the same initial trajectory becomes unstable and spreads over a finite region of the phase
space before escaping after a large number of bounces (n = 75328). In view of the ring
structure of Fig. 3.2 (b) we may qualify the motion as azimuthally ergodic. The fact that the
ray-splitting mechanism introduced by the BS produces ergodicity is a well known result for
a closed billard [18]. We find here an analogue phenomenon, with the difference that in our
case the trajectory does not explore uniformly but only azimuthally the available phase space,
as an apparent consequence of the openness of the system.

(2 )

1x10* 1.5x107;
v, 0 0

=3

-1x10° -1.5x10° 52X AT
-1x10° o 1x10° -1x10° 0 1x10°
y Y

Figure 3.2: SOS for (a) A = 0: the ray dynamics is stable and thus confined on a torus
in phase space. (b) A= 0.002 m, the dynamics becomes unstable and the ray escapes
after n = 75328 bounces. Note the ring structure in this plot.

3.3.2 Exit basin diagrams

It is well known that chaotic hamiltonian systems with more than one exit channel exhibit
irregular escape dynamics which can be displayed, e.g., by plotting the exit basin diagram
[24]. In our system, this diagram was constructed by defining a fine grid (2200 x 2200)
of initial conditions (yo,vy,). Each ray is followed until it escapes from the cavity. When
it escapes from above (v, > 0) we plot a black dot in the corresponding initial condition,
whereas when it escapes from below (v, < 0) we plot a white dot. This is shown in Fig. 3.3,
the uniform regions in the exit basin diagram correspond to rays which display a regular
dynamics, whereas the dusty regions correspond to portions of phase space where there is
sensitivity to initial conditions, since two initially nearby points can escape from opposite
exits. Moreover, in Fig. 3.3 one can see how the boundary between black and white regions
becomes less and less smooth as one approaches the center of these diagrams. It is known that
this boundary is actually a fractal set [25] whose convoluted appearance is a typical feature
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of chaotic scattering systems [26].
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Figure 3.3: Exit basin for A = 0.02 m. The fractal boundaries are a typical feature of

chaotic scattering systems.

3.3.3 Escape time function

Besides sensitivity to initial conditions, another fundamental ingredient of chaotic dynamics
is the presence of infinitely long living orbits which are responsible for the mixing properties
of the system. This set of orbits is usually called repeller [27], and is fundamental to gener-
ate a truly chaotic scattering system. To verify the existence of this set we have calculated
the escape time or time delay function [28] for a one-dimensional set of initial conditions
specified by the initial position yo (impact parameter) taken on the mirror M; and the initial
velocity vy, = 0. The escape time was calculated in the standard way, as the time (in number
of bounces n) it takes a ray to escape from the cavity.

Fig. 3.4 (a) shows the escape time function. The singularities of this function are a clear
signature of the existence of long living orbits and the presence of peaks followed by flat
regions are a signature of the exponential sensitivity to initial conditions. In order to verify
the presence of an infinite set of long living orbits, we have zoomed in on the set of impact
parameters yo in three different intervals (Fig. 3.4 (b), (c) and (d)). Each zoom reveals the
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Figure 3.4: (a) Escape time as a function of the initial condition yq. (b) Blow up of
a small interval along the horizontal axis in (a). (c) and (d) Blow ups of consecutive
intervals along the set of impact parameters yo shown in (b).

existence of new infinitely long living orbits. Infinite delay times correspond to orbits that
are asymptotically close to an unstable periodic orbit. If we would continue to increase the
resolution we would find more and more infinitely trapped orbits. The repeated existence
of singular points is a signature of the mixing mechanism of the system due to the global
stability of the cavity.

3.4 Summary

In conclusion, in this Chapter we have demonstrated that our simple optical system displays
chaotic ray dynamics. It is important to stress that a key component for the development of
chaos is the inclusion of non-paraxial rays which add the mixing properties to the system [29].
In fact, it has been previously shown that paraxial ray dynamics can be unstable but not
chaotic, in systems with stochastic perturbations [16,30]. In our case, it is the stochastic
ray splitting mechanism induced by the BS that destroys the regular motion of rays in the
globally stable (but non-paraxial) cavity, as shown by the SOSs. Moreover, by calculating
the exit basin diagrams we have found that they show fractal boundaries, which is a typical
feature of chaotic ray dynamics [24]. Finally, through the singularities in the escape time
function, we have verified the presence of infinitely long living orbits, which in turn revealed
the mixing mechanism of our optical cavity. An experimental confirmation of the fractal
properties of the exit basin can be performed, e.g., in the way suggested in [26], by injecting
a narrow laser beam into the cavity either in a regular or in a dusty region of phase space. In
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3.4 Summary

the former case one expects the beam to leave the cavity either from above or below, while in
the latter case both exits should appear illuminated. This proposed experiment is fully within
the context of geometrical optics (interference plays no role) so that our stochastic model of
the BS is adequate.
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cHAPTER 4

Universality in the polarization entropy and depolarizing
power of light scattering media: Theory

In this Chapter we present the theoretical background related to our experiments on light
depolarization due to multi-mode scattering [44]. The key theoretical concept we intro-
duce is the effective Mueller matrix, which describes our spatial multi-mode detection
set-up.
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4. Universality in the polarization entropy and depolarizing power of light scattering media: Theory

4.1 Introduction

In classical optics, a light beam is said to be polarized when its polarization direction de-
scribes a stationary curve during the measurement time, and depolarized when its polariza-
tion direction varies rapidly with respect to other degrees of freedom that are not resolved
during the experiment, such as wavelength, time or position of the beam [4]. Moreover, de-
polarization also occurs when a single-mode input beam is coupled to a multi-mode (either
spectral or spatial) optical system and the polarization properties of the outgoing beam are
measured with a mode-insensitive device. The main mechanism of depolarization that we
analyze in this Chapter is given by the coupling of polarization with spatial degrees of free-
dom. A typical example of this is the case of a beam of light initially prepared in a single
spatial-mode (kj,) that is incident on an optically passive inhomogeneous medium. Due to the
spatial inhomogeneities in the medium, the beam suffers multiple scattering and, as a result,
it emerges as a (partially) incoherent superposition of spatial modes (ko). Even when each
of the output modes is fully polarized, the output beam appears to be (partially) depolarized
when its spatial information is averaged out in a multi-mode detection set-up.

There exist several formalisms that enable to represent the polarization state of light.
Among them, the Mueller-Stokes formalism is particularly well suited for the description
of partially polarized light. Within this formalism, the polarization state of the light field
is completely characterized by the 4 dimensional Stokes vector S = (So,S1,52,53), where
So is to the total intensity of the beam, and S;—; 3 are the relative intensities in the V /H,
45°/ —45°, and RHC/LHC bases. The only restriction for a Stokes vector to represent a
physical polarization state is that }; Sl-2 < S(z). Additionally, any passive optical system can be
characterized by a 4 x 4 Mueller matrix, whose 16 real elements map the polarization state
of the input and output beams. At this point, it might be good to stress that there exists a
considerable ambiguity in the terminology used to characterize different scattering systems;
this ambiguity arises from to the overlap of scientific communities working in the polarimetric
properties of light. We specify that in this contribution we will use the standard notation in
optics introduced by L. Mandel and E. Wolf [45]. This means, we shall consider as scattering
system, any passive optical system that can be characterized by a Mueller matrix (or scattering
matrix). In other words, any medium that transforms an input Stokes vector S;, into an output
Stokes vector Sy, provided that the transformation is linear. Thus, the ensemble of scattering
media may comprise a single element, such as a lens, a polarizer, a retarder, a spatial light
modulator, or an optical fiber, as well as a cascade of optical elements or a solution of micro-
particles. These different media may be grouped in two broad classes: deterministic and
non-deterministic [45]. To the first class belong all media that do not depolarize the input
light, in this particular case, the Mueller matrix representing the medium is a Mueller-Jones
matrix [46]. To the second class belong all media that do indeed depolarize the input light
and whose Mueller matrix has to be written as a sum of (at most) four Mueller-Jones matrices
[46].

For a given depolarizing mechanism, the amount of depolarization can be quantified by
calculating either the entropy (Er) or the degree of polarization (Pr) of the scattered field [4].
It is possible to show that the field quantities Er and Pr are related by a monotonous single-
valued function. For example, polarized light (Pr = 1) has Er = 0 while partially polarized
light (0 < Pr < 1) has 1 > Er > 0. In this sense low (high) polarization entropy implies the
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existence of a strongly (weakly) polarized structure in the light field [47]. When the incident
beam is purely polarized and the output beam is partially polarized, the medium is said to be
depolarizing. Depolarization is called isotropic when the degree of polarization 0 < Pj. < 1
of the scattered field is the same for any input pure state Pr = 1 [48]. In this particular
case, the medium can be characterized by a single parameter, related to the magnitude of
its depolarizing power. However, most media depolarize in different amounts different input
states of polarization. When this is the case, they are termed anisotropic depolarizers and a
single parameter can not fully characterize them. An average measure of the depolarizing
power of a medium is given by the so called index of depolarization Dy, [49], where the
average refers to different pure input states. Non-depolarizing media are characterized by
Dy = 1, while depolarizing media have 0 < Dy < 1.

A depolarizing scattering process is always accompanied by an increase of the entropy
of the light, the increase being due to the interaction of the field with the medium, which
couples the polarization degrees of freedom of the field with the multi-dimensional degrees of
freedom of the scatterer (either spatial or temporal). These extra degrees of freedom are traced
over during the polarization measurement, and leave the polarization degrees of freedom of
the scattered field in a (partially) mixed state. In general, for an anisotropic depolarizer the
entropy added to the light field by the medium will depend on the input state. An average
measure of the entropy that a given random medium can add to the entropy of the incident
light beam, is given by the polarization entropy Ejs [48], where the average again refers to
different pure polarization input states. Non-depolarizing media are characterized by Ey; =0,
while depolarizing media satisfy 0 < Ep; < 1. As the field quantities Er and Pr are related to
each other, so are the medium quantities Ej; and Dy, with the main difference that they are
related through a multi-valued function, the reason being that the corresponding relation for
the field parameters is non-linear.

In Ref. [50] it was shown that there exists a universal relation Ej; (D)) between the po-
larization entropy Ej; and the index of depolarization Dy, valid for any scattering medium.
More specifically, Ejy is related to Dys by a multi-valued function which covers the full range
from zero to total depolarization. This universal relation provides a simple characterization
of the polarization properties of any medium. We emphasize that the results found in [50]
apply both to classical and quantum (single photon) scattering processes, and might therefore
become relevant for quantum communication optical applications, where depolarization is
associated with the loss of quantum coherence [51].

In the next section we review the Mueller-Stokes formalism, suitable for a single spatial
mode description of the light field. In particular we formally introduce the concepts of deter-
ministic and non-deterministic Mueller matrices, which correspond to non-depolarizing and
depolarizing media respectively.

4.2 Mueller-Stokes formalism

Consider a quasi-monochromatic beam of light of mean angular frequency w [52]. Let us de-
note with x,y,z the axes of a Cartesian coordinate system, with the z-axis along the direction
of propagation of the beam whose angular spread around z is assumed to be small enough to
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satisfy the paraxial approximation. Let
Ex(x,y,20,10) = Eo(x,y)e 0070/ E\(x,y,20,10) = Ey (x,y)e 0070/ (41)

be the components of the complex paraxial electric field vector in the x- and y-direction
respectively, at the point (x,y) located in the transverse plane z = zo at time #. If the field is
uniform on the transverse plane, then E, and E, are independent of x and y, and a complete
description of the field can be achieved in terms of a doublet E of complex variables (with
possibly stochastic temporal fluctuations):

_ (Eo
E= ( El) , 4.2)

where Ej and E| are now complex-valued functions of zg and #y only (the subscripts O and 1
correspond to the cartesian directions x and y respectively). A complete study of the propaga-
tion of E along z can be found in [45]. However, the main result we need is that propagation
through non-depolarizing media can be described by a deterministic Mueller (or Mueller-
Jones) matrix M/, while to describe the propagation of a light beam through a depolarizing
medium it is necessary to use a non-deterministic Mueller matrix M.

4.2.1 Deterministic Mueller matrix M’ : non-depolarizing media

In a broad sense, a deterministic linear scatterer as, e.g., a quarter-wave plate, a rotator or a
polarizer, is an optical system which can be described by a 2 x 2 complex Jones [4] matrix

Too To
T = . 4.3
(Tm T11) “-3)

By this we mean that if E and E’ describe the polarization state of the field immediately
before and immediately after the scatterer respectively, then they are linearly related by the
Jones matrix 7T':

E =TE. 4.4)

Therefore a deterministic scattering process, where there are no fluctuations of E with
respect to other degrees of freedom (either spatial or temporal), can be described by a Jones
matrix. To account for the possible fluctuations of the field, we can introduce the coherency
matrix of the field J defined as [6]

where the angular brackets denote the statistical average over different realizations of the
fluctuations of the field. The coherency matrix is Hermitian and positive semi-definite by
construction. By imposing as normalization condition Tr{J} = 1, J can be interpreted as a
quantum density matrix [53]; which evidences the analogy between the classical description
of a partially polarized beam with the quantum description of a single photon in a mixed
state [50]. Given the coherency or covariance matrix J one can calculate the entropy of the
field Er through [4]

Er = —Tr{Jlog,(J)}, (4.6)
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where the symbol Tr{-} denotes the trace operation, and 0 < Er < 1 by definition. From
Eq. (4.6) we see that EF is equivalent to the von Neumann definition of entropy of a single-
photon state [54].

An alternative description can be given in terms of the Stokes parameters of the beam.
The four Stokes parameters S, (1 =0,...,3) of the beam are defined as

Sy=Tr{Jou},  (u=0,...,3), 4.7)

where the {0, } are the normalized Pauli matrices:

(4.8)

Now, if with S, and S}, we denote the Stokes parameters of the beam before and after the
scatterer respectively, it is easy to show that they are linearly related by the real-valued 4 x 4
Mueller-Jones matrix M” as

S, =M, Sy, 4.9)

where summation on repeated indices is understood and
M =AY (T @T*)A, (4.10)

where the symbol “®” denotes the outer matrix product and the unitary matrix A is defined
as

10 0 1
1 (o1 —i o

A—\ﬁ o1 i o A.11)
10 0 -1

The columns of A are given by the elements of the Pauli matrices. From the structure of
M it follows that a deterministic medium does not depolarize, that is Pr(S) = Pr(S') where
the degree of polarization Pr of the field is defined as

\/ST+85+53
Pp(S)=+——. (4.12)

So

By writing the coherency matrix J in terms of the Stokes parameters, and imposing the
normalization condition Tr{J} = 1, it is possible to show that the degree of polarization Pr is
related to the entropy of the field Er by (see Fig. 4.1):

1+ Pp
2

1—Pr

)— B log, (

1 —Pr
2

1+ P

F=— 2 log, (

). (4.13)
Let us conclude by noticing that for deterministic media the two descriptions in terms of

T or M’ are completely equivalent in the sense that the 16 real elements of M’ do not contain
more information than the 4 complex elements of 7.
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0 02 04 06 08 1

P,
Figure 4.1: Entropy (Er) vs degree of polarization (Pr ) for the light field.

4.2.2 Non-deterministic Mueller matrix M: depolarizing media

A non-deterministic scatterer is, in a broad sense, an optical system which cannot be de-
scribed by a Mueller-Jones matrix. In this class fall any depolarizing optical systems, such
as multi-mode optical fibers, particles in suspension, etc. It has been shown [61,62] that it is
possible to describe a non-deterministic optical system as an ensemble of deterministic sys-
tems, in such a way that each realization & in the ensemble is characterized by a well-defined
Jones matrix 7'(&) occurring with probability ps > 0. This ensemble representation, in turn,
reflects some uncertainty in the description of the medium which can be explained in terms
of unobserved degrees of freedom of the probe beam. Then, the Mueller matrix M of the
system can be written as

M= A (TRTF)A, (4.14)

where the bar symbol denotes the average with respect to the ensemble representing the
medium:
TRT =Y peT(E)RT*(&). (4.15)
&

At this point it is useful to introduce the auxiliary 4 x 4 Hermitian matrix H defined as
the system dynamical matrix [47]:

0,3
H=-Y Myy(oy®0y), (4.16)
u,v

| =
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4.2 Mueller-Stokes formalism

where TrH = 1, My, are the elements of the Mueller matrix and o; (i = 0,1,2,3) the nor-
malized Pauli matrices (see Eq. 4.8). H is by definition, positive semi-definite, that is, all
its eigenvalues {Ag,A1,42,A3} are non-negative. It is possible to demonstrate [46] that any
Mueller matrix can be decomposed as a sum of at most four Mueller-Jones matrices:

3
M=Y 1M, (4.17)
i=0

where A; are the eigenvalues of H (Eq. 4.16). This positive decomposition allows us to
give a probabilistic interpretation to A; by considering each of them as the probability of
occurrence of the Mueller-Jones matrix M,-J . Further, it is through (Eq. 4.17) that the statistical
nature of a depolarizing process is revealed, and it becomes clear that two different media
can be described by two different ensembles of Mueller-Jones matrices with exactly the same
coefficients A;. These eigenvalues can, in turn, be combined to form a single scalar quantity
that is a measure of the polarimetric disorder added to the field by the system, i.e., the entropy
of the medium E};:

3
Ey=— Z Avlogys(Ay). (4.18)
v=0

Moreover, it is possible to show that the index of depolarization (or depolarizing power)

Dy of the medium can be written as:
| 3 1/2
3 (42131)] . (4.19)
v=0

For a non-depolarizing system, Ey; = 0, Dy = 1, and H has a single eigenvalue equal
to one, and the rest equal to zero. This means that its corresponding Mueller matrix is a
Mueller-Jones matrix, as expected. Conversely, for a totally depolarizing medium Ep; = 1,
Dy = 0 and H has four eigenvalues equal to 1/4.

In Ref. [50], a universal relation between Ej; and Dy, was found. This universal character
can be explained by noticing that both Ey; and Dy, only depend on the four eigenvalues (4;) of
H. By using the normalization condition Tr{H } = 1, we see there are only three independent
parameters. We choose then to write Ey(Dpr, A1, 42), where 0 < A; » < I are two independent
eigenvalues of H. By varying A, » it is possible to obtain a whole domain en the Ey — Dy
plane (see Fig. 4.2). The analytical curves that determine this domain are detailed in Ref. [50].
Cuspid points in Fig. 4.2 separate different types polarization dependent scattering processes.

In subsection 4.2.1, Eq. (4.6), we pointed out the analogy between the definition of polar-
ization entropy and the von Neumann entropy of a quantum system. In the case of bipartite
systems, the von Neumann entropy quantifies the degree of entanglement of the subsystems
for pure states, and it is a measure of the degree of mixture for non-pure states. It is worth
noticing that it is possible as well to relate the degree of polarization of a system of dimension
N, with its linear entropy, which is an alternative measure of the degree of mixedness of a
system (and is generally easier to calculate than the Von Neumann entropy) [55,56]. Namely,
given the density matrix of the system p, one can define the degree of polarization Py by:

21
py= ML (420)
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Figure 4.2: Numerically determined domain for the entropy (Ey) vs index of depo-
larization (Dyy) corresponding to any scattering process. The solid lines are given by
analytical curves [50]. The four cuspid points are given by A = (0,1), B=(1/3,l0og43),
C=(1/V/3,1/2), and D = (1,0).

Recalling that the linear entropy is defined as [55]:

_ N 2
Sy = 1= Tr{p}) @21

and combining Eq. (4.20), and Eq. (4.21) it is simple to show that:
Sy=1-P}. (4.22)

The mathematical space where medium parameters Ej; and Dy, are defined is equivalent
to that of a quantum system with a Hilbert space of dimension N = 4, i.e., the polarization
state space of two photons. Within this analogy, Ej; can be interpreted as the von Neumann
entropy of a four dimensional (N = 4) quantum system. Additionally, for N = 4 we have
Dy =Py,and Sy =1— D%,,. Equations (4.21) and (4.22) are also valid in the case of a single
photon taking N = 2.

In the next section we formally introduce the concept of effective Mueller matrix which
serves as a theoretical tool to describe our depolarization experiments.
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. Scattering
ki, Medium K.
jo=1 =1 Detector
jo=2 § 4 =2
—— > D<N
j0=Nin \ j=Nout out
Jo=1,2..N,, ] =1,2..N_,

Figure 4.3: An input beam with Ny, spatial modes label by jo impinge on a scattering
medium. The scattering process spans the outgoing beam in Noy spatial modes labelled
by j. Eventually D (D < Nyyu) modes are detected.

4.3 The effective Mueller matrix

The Mueller-Stokes formalism described in the previous section is suitable for a single spa-
tial mode description of the field, where depolarization occurs due to coupling of polarization
degrees of freedom with temporal domain, for instance by propagation on dynamic media.
However, it is possible to extend this formalism to the multi-spatial-mode case. To this end,
let us consider the case of a scattering process in which a coupling between polarization
and spatial modes of the field occurs and a multi-mode detection scheme is employed. This
idea is schematized in Fig. 4.3, where Ny, spatial modes of the field impinge on a scatterer,
Noyt leave from it and D modes are eventually detected. We make the assumption that dif-
ferent spatial modes of the field are uncorrelated, that is, we will consider for simplicity
that the source is spatially incoherent. Moreover, without loss of generality, we assume
Nin = Nowt = N. Let S(j) = {So(j),S1(J),S2(j),S3(j)} be a generic 4-Dim Stokes vector
defined with respect to the mode j, where j € {1,...,N}. For a N-mode field we have a col-
lection (N) of 4-Dim Stokes vectors that can be arranged in a single 4N-Dim “super” Stokes
vector S = {S(1),...,S(N)}. Generally speaking, when the N-mode light beam undergoes a
polarization-sensitive scattering process, the Stokes vectors {Sin(jo)} of the input beam are
related to the set of vectors {Sout(j)} of the output beam by:

N
Sou(j) = Y, M/ (j.jo)Sin(jo),  (j=1,...,N), (4.23)
Jo=1
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where M7 (j, jo) is the 4 x 4 Mueller-Jones matrix that describes the scattering from the input
mode jj to the output mode j. If we introduce a “super” 4N x 4N Mueller matrix defined as

M'(1,1) ... M/(1,N)
M= : : , (4.24)
M’/(N,1) ... M/(N,N)

where each block M’ (i, j») is a 4 x 4 Mueller-Jones matrix, then we can rewrite Eq. (4.23)
in a compact form as
Sout =M - Sy (4.25)

After the scattering process took place, we have to detect its products. In Ref. [13], it
was shown that when D modes of the field are detected out of N scattered modes (D < N), a
mode-insensitive polarization analyzer put in front of a bucket-detector can be described by
a 4N x 4N block-diagonal matrix A:

A(1)

=2
If

(4.26)
A(D)
0

where A(j), (j=1,...,D) are the 4 x 4 transmission Mueller-Jones matrices, of the polariza-
tion analyzer, whose elements depend on the different geometrical projections of the imping-
ing mode-directions j [13]. The 4 x 4 real-valued positive semi-definite transmission matrices
are in fact projectors, and 0 is a null (N — D) X (N — D) matrix. In the paraxial limit (D << N)
each A(j) reduces to the 4 x 4 identity matrix, and the polarization state of the scattered beam
after the analyzer, is described by the super-Stokes-4D vector Sp = {Sp(1),...,Sp(D)} given
by

Sp=A-M-Sj,. (4.27)

Finally, because of the mode-insensitive detection, the sum over all the detected modes D

reduces the number of degrees of freedom of the field from 4D to 4, producing the detected
4-Dim Stokes vector Sp:

D
Sp =) Sp(j) = MegSin(1), (4.28)
=1

where we have assumed that the input light beam is prepared in the single mode jj = 1, so
that Sin(jo) = 8;,1Sin(1) and with Mgy we have denoted an effective 4 x 4 Mueller matrix
defined as

D
Mg =Y A(IM’(j.1), (4.29)

j=1
which is written as a sum of D Mueller-Jones matrices. It is important to notice that while
the product of Mueller-Jones matrices is still a Mueller-Jones matrix (in physical terms: a

cascade of non-depolarizing optical elements is still a non-depolarizing optical system), a
sum, in general, is not. This causes depolarization. Moreover, since the “matrix coefficients”
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A(j) are non-negative, the matrix Mg in Eq. (4.29) is an explicit version of the Mueller
matrix written in Eq. (4.14). Thus we have shown, by an explicit derivation, how to build
the statistical ensemble representing the depolarizing medium, for this particular case. It is
worth noticing, that because of the dependence of the effective Mueller matrix on the number
of detected modes D, it is possible to obtain different Mueller matrices for a given system, by
increasing (or decreasing) the number of detected modes.

4.4 Summary

In this Chapter we have presented the Mueller-Stokes formalism and its extension to the
multi-mode case via the formal definition of the the effective Mueller matrix. This theoretical
framework provides a suitable description of the depolarization experiments that shall be
discussed in the next Chapter.
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CHAPTER D

Universality in the polarization entropy and depolarizing
power of light scattering media: Experiment

In this Chapter we report experimental results on light depolarization due to multi-mode
scattering \. By means of polarization tomography, we characterize the depolarizing
power and the polarization entropy of a broad class of optically scattering media and
confirm the recently predicted universal behavior of these two quantities (A. Aiello and J.
P. Woerdman, Phys. Rev. Lett. 94, 090406 (2005)).

IBased on G. Puentes, D. Voigt, A. Aiello, and J. P. Woerdman, Opt. Lett. 30, 3216 (2005).
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5.1 Introduction

Polarization aspects of light scattering are important in molecular spectroscopy, optical com-
munication, industrial and medical applications; we focus here in particular on the phenom-
enon of depolarization. The depolarizing properties of a scattering medium can be character-
ized by two parameters; i.e. the entropy of the medium (E),), which is an average measure of
the entropy added to the field by the medium, and the index of depolarization of the medium
(Dar), which is an average measure of its depolarizing power [48, 50]. In both cases the aver-
age refers to different pure polarization input states. Recently, it was theoretically predicted,
on the basis of an exact derivation, that the relation between Ej; and Dy, is a multi-valued
function. Moreover, this multi-valued relation possesses a universal character since it is valid
for any optical depolarizing process [50]. In this Chapter we report an experimental study
of the depolarizing properties of a large set of scattering media, ranging from milk to multi-
mode optical fibers. The results confirm the theoretical predictions for the bounds of the
multi-valued function Eps[Dy].

5.2 The effective Mueller matrix

Within the Mueller-Stokes formalism [4], explicit expressions for Dy, and Ey; can be derived
by using the Hermitian operator H defined as [48]:

0,3
20

where TrH = 1, My, are the elements of the Mueller matrix and o; (i = 0,1,2,3) the nor-
malized Pauli matrices. It can be shown that any physically realizable system is character-
ized by a positive-semidefinite matrix H, such that its four eigenvalues satisfy 0 < 4, <1
(v =0,1,2,3). It is then possible to express the polarization entropy Ej; and the index of

depolarization Dy, as [50]:
| 3 1/2
4y A1 . (5.2)
3 v=0

Introduction of an effective Mueller matrix allows to describe depolarization due to cou-
pling between polarization and spatial modes of the field (see Chapter 4, this Thesis). In this
way we extend the standard Mueller-Stokes formalism, which is suitable for a single spatial-
mode description of the field, to the case in which Nj, spatial modes of the field impinge
on the scatterer, Noy modes leave from it and D < N, modes are eventually detected. For
Nin = 1, and within the paraxial approximation D << Ny, the effective Mueller matrix can
be written as:

3
EM = — Z lv10g4(lv)7 DM =

v=0

D
Myg=Y A()IM’(j.1), (5.3)
=1

where j = 1,..,D labels the set of detected modes D, M’ (j, 1) is the Mueller-Jones matrix
connecting the single input mode ”1” with the output mode j, and A(j) is a projection matrix
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whose form is determined by the actual measurement scheme. M. is then written as a sum
of D Mueller-Jones matrices.

5.3 Experimental scheme

In order to measure the effective Mueller matrix Mg and thus the index of depolarization
Dy and the entropy Ejy of a scattering medium, it is straightforward to follow a tomographic
procedure: the light source is successively prepared in four pure polarization basis states of
linear (V,H,+45°) and circular (RHC) polarization, which are represented by four indepen-
dent input Stokes vectors Sj,. For each of these input fields the corresponding Stokes vector
Sout, that represents the polarization state of the output field, is obtained by measuring the
intensities of the scattered light in the same four polarization basis states. This procedure
provides the 4 x 4 independent parameters required to determine the 16 elements My, of the
Mueller matrix in Eq. (5.1). Note that we actually employ two additional polarization basis
states (—45°, LHC) in our experiments and therefore perform 6 x 6 measurements, which
allows us to reduce experimental errors by averaging within the over-complete data set.

S, scattering
[ A media D ....8.0.“‘... L
O ' | | g '
- AT
0 0 0 N
He Ne P P1 HT Q1 MO PO Q2 P2
PU AU

Figure 5.1: Schematic of the polarization tomography set-up. A polarizer unit (PU),
consisting of a fixed polarizer (P1), a half-wave plate (H1), and a quarter-wave plate
(Q1) prepares the polarization input state. A microscope objective (MO) couples the
light into the sample. The scattered light is collimated by a photographic objective
(PO). An adjustable diaphragm (D) defines the amount of transverse spatial average to
be performed at the detector. The analyzer unit (AU) consists of a quarter-wave plate
(Q2) and a polarizer (P2). Lens (L) focuses the light coming from P2 into a photodiode
(PD).

The experimental scheme is illustrated in Fig. 5.1. The light source is a power-stabilized
He-Ne laser at 632.8 nm wavelength. The input field is prepared by the polarizer unit (PU),
consisting of a fixed polarizer (P1), a half-wave plate (H1), and a quarter-wave plate (Q1).
A microscope objective (MO, x 50 magnification, N.A. = 0.55) couples the light into the
sample. The scattered light is collimated by a standard photographic objective (PO, f =
50 mm, f* = 1.9), followed by an adjustable diaphragm or pinhole (D) which fixes the number
of detected spatial modes and thus defines the amount of transverse spatial averaging to be
performed at the detector. The analyzer unit (AU) consists of a quarter-wave plate (Q2)
and a polarizer (P2). Together with a focusing lens (L) and a photodiode (PD), it probes
the polarization state of the scattered output field. As an estimate of the systematic error of
the set-up, we measured the Mueller matrix of air (i.e. the identity matrix) and of well-known
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deterministic optical elements such as wave plates. In all these cases, we found the deviations
from the theoretically predicted matrix elements to be limited to |[AM,,| < 0.02. We ascribe
this mainly to angle-calibration errors as well as imperfections in the used wave plates. This
experimental error can in turn be mapped to the corresponding error in the eigenvalues A; of
H; in all cases we found |A4;| < 0.04.

5.4 Scattering samples

The first category (a) of scattering samples that we used are dynamic scatterers where, e.g.,
Brownian motion induces temporal fluctuations within the detection integration time. Ex-
amples are milk, polystyrene micro-spheres suspended in water, optically active scattering
media such as polymer-dispersed liquid crystals [57] and watery sugar solutions with sus-
pended polystyrene micro-spheres (the micro-spheres were added to provide Mie scattering).
The second category (b) consisted of static scatterers without temporal fluctuations: standard
Lyot and wedge depolarizers [4], glass and polymer multimode optical fibers as well as op-
tical polymer and holographic diffusers. Surface (holographic) diffusers produce a spread in
the direction of propagation of the incident beam which is, on its own, hardly depolarizing.
Therefore, in order to obtain considerable depolarization we combined them with birefringent
wave plates of different thickness. See the caption of Fig. 5.2 for more details on the scat-
tering samples. Several scatterer-specific tuning parameters, such as adjustable fiber bending
radius, or dilution in the case of liquid samples, allowed us to realize a wide range of depolar-
izing media and to reveal details of their depolarizing properties. Additionally, by choosing
different diaphragm diameters between 2 mm and 13 mm (far field full angular spread 2.3°
and 14.6° respectively), we realized scattering systems which were described by different
Me.gs. By choosing a lower limit of 2 mm in the diaphragm diameter, special care was taken
to select a sufficiently large number of speckles in the scattered output field (considering
that step-index glass fiber with 50 um core diameter showed the largest speckles of all our
samples with a far field angular spread of ~ 0.6°).

5.5 Experimental results

Fig. 5.2 shows the measured polarization entropy (Ejy) vs. the corresponding index of depo-
larization (Djyy), for a large collection of scattering samples. The relatively small grey region
corresponds to all physically realizable scattering processes [50]. This region is bounded and
interdivided by solid curves, whose analytical expression were derived in Ref. [50]. The out-
ermost curve connecting the cusp points A and D is special since it sets an upper bound for
the entropy Ey™ for a given depolarizing power Dy, and it can be shown that it is associated
with isotropic depolarizers [50]. As is apparent from the experimental data, our choice of
samples allowed us to largely fill in the range of values (Eys,Dyy), in good agreement with
the predictions from Ref. [50]. Note, however, that we were not able to fill in the region
below the inner curve connecting the points A and C in the (Ej, Dy)-plane with any data so
far.

Some interesting structures are revealed by Fig. 5.2; the isotropy curve E}**[Dy] is
mainly covered by the dynamic scatterers (a) that we probed, as well as by polymer fibers,
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Figure 5.2: Measured polarization entropy (Ey) vs. index of depolarization (Dyy)
for all samples. The theoretically possible parameter range in the (Epr,Dp)-plane
is indicated by the grey-shaded area. Solid curves correspond to analytical bound-
aries predicted by theory. Cusp points are given by A = (0,1), B = (1/3,log, 3),
C = (1/+/3,1/2), and D = (1,0) [50]. Details of samples (a) Dynamic: polystyrene
micro-spheres suspended in water (2 um diameter, Duke Scientific Co., USA); milk
diluted in water (fat particles ~ 2 —3 um [58]); sugar in watery micro-spheres sus-
pension; polymer-dispersed liquid crystal (column thickness 2 mm, 0.1 mm and 10 um,
nematic liquid crystal E7 [57], chiral dope CB15, Merck, Germany); (b) Static: poly-
mer sheet diffusers (100 wm thickness, Zenith™, SphereOptics Hoffman GmbH, Ger-
many); holographic light shaping diffusers (diffusing full angle a@ = 0.5°, 1°, 5°, and
10°, Physical Optics Co., USA); Quartz-wedge/Lyot depolarizers [4] (Halbo Optics,
UK); step-index polymer optical fiber [59, 60] (N.A. = 0.55, core diameters 250 um,
500 um, 750 um ESKA CK type, Mitsubishi Rayon, Japan); step-index glass optical
fiber, (N.A. = 0.48, core diameters 200 um, 400 um, 600 um FT-x-URT type, distrib-
uted by Thorlabs, Inc., USA); step-index glass optical fiber (N.A. = 0.22, core diame-
ters 50 um ASF50 type, distributed by Thorlabs, Inc., USA); step-index glass optical
fiber (N.A. = 0.27, core diameters 62.5 um GIF62S type, distributed by Thorlabs, Inc.,
USA).

where a considerable amount of Rayleigh scattering at density fluctuations is present [59,60].
On the other hand, the inner parts of the allowed (Ejs, Dy) region, which are associated with
anisotropic depolarizers, were covered by static samples (b), where the main depolarizing
mechanism is given by the coupling between spatial and polarization degrees of freedom
produced by the combination of multi-mode scattering with birefringence; an example of this
is bending-induced birefringence in the glass optical fibers. The data obtained for samples
longer than 50 cm (500 cm) in the case of polymer (glass) fibers, are close to the cusp point
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A (Ai=0,123 = 1/4), which corresponds to total depolarization, while the data obtained for
fibers shorter than 2 cm are close to cusp point D (49 = 1, 4;—; 2 3 = 0), which corresponds to
deterministic or non-depolarizing systems.

The wedge depolarizers resulted in a non-zero index of depolarization since they are
designed to depolarize only a well defined linear input polarization [4], whereas our tomo-
graphic measurement procedure represents an average over all independent input polariza-
tions. Additionally, we measured the depolarizing power of two identical wedges in cascade
as a function of the relative angle o between their optical axis. In particular, complete de-
polarization was obtained for o¢ = 45° and no depolarization occurred for &¢ = 0° when the
two wedges were compensated. Not surprisingly, the Lyot depolarizer was, within the exper-
imental error, non-depolarizing since it is designed to depolarize a broadband light source, by
coupling polarization with frequency degrees of freedom, while we operated with a mono-
chromatic laser source.

5.6 Summary

In conclusion, the experimental data for our scatterers covered the theoretically allowed
(Eyp,Dyr) domain almost completely and give thus evidence of the predicted depolariza-
tion universality in light scattering [50]. The quantities Dy, and Ej; provide insights into the
particular depolarization mechanisms of the various media, and may provide a useful clas-
sification of optical scatterers for quantum applications, where depolarization is linked to
decoherence [51].
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CHAPTER O

Tunable spatial decoherers for polarization-entangled
photons

In this Chapter ' we report a novel controllable source of spatial decoherence for twin-
photons, based upon commercially available wedge depolarizers. This allows us to con-
vert the polarization-entangled singlet state into a tunable mixed state. A full character-
ization of this mixed state, by means of quantum tomography, shows that such a spatial
decoherer can be used for synthesizing Werner-like states on demand.

IBased on G. Puentes, D. Voigt, A. Aiello, and J. P. Woerdman, Opt. Lett. 31, 2057 (2006).
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6.1 Introduction

In the previous Chapters we analyzed polarization aspects of light scattering, in a classical
context. This means, by using a classical source of light. Alternatively, in the remaining
Chapters of this Thesis, we will analyze light scattering processes in a non-classical context.
Again, this refers to the quantum nature of the light source. Specifically, for the experiments
described in Chapters 6-9, we used polarization entangled photons as a light source.

Entanglement, the non-classical correlation between separate quantum systems, is con-
sidered a basic resource for quantum information applications including quantum teleporta-
tion [72], quantum cryptography [73], and quantum computation [74]. Most of these ap-
plications work best with quantum systems prepared in a pure maximally entangled state
(i.e., a Bell state). However, practically available quantum systems are generally in mixed
(non-pure) and non-maximally entangled states due to their unavoidable interaction with un-
observed degrees of freedom which act as the environment. This interaction, in turn, induces
decoherence and dissipation. Therefore, in recent years, much effort has been devoted to
the characterization of mixed entangled states [75,76] and to the formulation of appropriate
separability criteria [77,78].

From the experimental point of view, a consistent and systematic study of these aspects re-
quires a reliable source of tunable decoherence, in order to engineer mixed entangled states in
a controllable and reproducible way. In this context, creation and characterization of Werner
states [79] and maximally entangled mixed states (MEMS) [80] based upon twin-photon
generation by spontaneous parametric down conversion (SPDC) has been reported [8§1-85].
While Peters et al. [84] create these well-known families of mixed states by coupling polar-
ization and frequency degrees of freedom (temporal decoherence), Barbieri et al. [85] make
use of the peculiar spatial properties of their source of entangled photons to produce the
desired states. In this Chapter we introduce commercially available quartz wedge depolariz-
ers [4] as a novel source of tunable spatial decoherence for polarization-entangled photons.
The twin-photon states are produced in a standard type-II configuration by SPDC [86] and
characterized by means of quantum tomography [87]. This characterization shows that our
spatial decoherer can be used to engineer Werner-like states in a reproducible manner. Our
results provide evidence against the belief that spatially based decoherence is not suitable for
exploring the twin-photon Hilbert space as it completely destroys entanglement [82].

6.2 Experimental scheme

The experimental set-up is shown in Fig. 6.1. A Krypton-ion laser at413.1 nm pumps a I-mm
thick BBO crystal, where polarization-entangled photons are created by SPDC in a degener-
ate type II phase matching configuration at 826.2 nm. Single-mode fibers (SMF) are used as
spatial filters to assure that the initial state is in a single transverse mode. Polarization con-
trollers (PC) align the axes of the spurious birefringence along the SMFs in the SPDC crystal
basis. The total retardation introduced by the SMFs and walk-off effects at the BBO crystal
are compensated by additional BBO crystals (0.5 mm thick) in both signal and idler paths,
together with a half-wave plate (HWP) [86]. The polarization analyzer used for quantum
tomography consists of a quarter-wave plate (QWP) followed by a polarizer (P) in both arms.
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Figure 6.1: Experimental scheme: a krypton-ion laser pumps a type-I1 BBO crystal.
Walk-off effects are compensated by a half wave-plate (HWP) and two compensating
crystals (CC). The down-converted photons are spatially filtered by single mode fibers
(SMF). Additionally, interference filters (IF) are placed in both arms for bandwidth
selection. A pair of wedge depolarizers in cascade (spatial decoherer) are placed in
the idler path. The amount of decoherence can be controlled by varying the azimuthal
angle (o) between the optical axes (OAl and OA2) of the two wedges. The decohered
twin-photon state is then analyzed by a quantum tomographic procedure by means of
polarization analyzers (QWP and P) and ”bucket”detectors (BD). Bottom box depicts
three different settings for Q.

Additionally, AA = 5 nm interference filters (IF) are used for bandwidth selection. Finally, the
photon pairs are detected in a multi-transverse mode fashion by using momentum-insensitive
or ’bucket”detectors (BD). Specifically, our photon counters (SPCM-AQR-1X, PerkinElmer
TM) consisted of a silicon avalanche photodiode with a circular effective area of d = 150 um
diameter. The twin-photon state that is incident on the spatial decoherer is prepared in the
singlet Bell state (see Fig. 6.2 (a)). The quality of this initial state (before the decoherer) has
to be optimal, i.e., the state has to be maximally entangled and pure, in order to explore the
full dynamic range with the tunable spatial decoherer.

Our tunable spatial decoherer consisted of two identical cascaded quartz-wedge depolar-
izers [4] (Halbo Optics, UK, model No. WDQ10M) placed at normal incidence to the idler
photon (see Fig. 6.1). The beam was expanded by a magnifying telescope to approximately
1 cm, in order to maximize the depolarizing effect of the wedges. Note however, that within
this beam diameter the wedges were classically not completely depolarizing. A classical
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measurement of the average depolarizing power (DP) [44] of a single wedge probed with a
collimated beam expanded to 1 cm (A = 811 nm), revealed DP ~ 0.664 which shows 7%
deviation from the ideal depolarizing power of a perfect wedge DP = \/7 ~ 0.577. Each
quartz-wedge separately was contacted with a fused-silica counter wedge to minimize refrac-
tion. The azimuthal angle (o) between the optical axes (OA1 and OA2) of the two wedges
was used as tuning parameter allowing us to engineer a broad range of mixed-entangled states,
starting from states close to pure and maximally entangled for & = 0° (opposite wedges)
and ending at states close to fully-mixed and non-entangled for o¢ = 45° (see bottom box in
Fig. 6.1).

6.3 The tomographically reconstructed polarization density
matrices

The degree of entanglement and mixedness of the photon pairs were quantified by the tan-
gle (T), i.e., the concurrence squared [88], and the linear entropy (Sz) [89]. These were
calculated from the 4 x 4 polarization density matrix p of the scattered photons, by us-
ing T(p)=(max{0,A; — Ay — A3 — A4})?, where 112 > 7(22 > 132 > 142 are the eigenvalues of
p(02® 62)p* (02 ® 02), with 0> a Pauli matrix [88] and S;.(p) = 5[1 — Tr(p?)]. The den-
sity matrix p was in turn reconstructed via a quantum tomographic technique [87] by using
{|H\H>),|HV2),|ViH3),|ViV2)} as canonical basis. Here H and V represent the horizontal
and vertical linear polarizations of the two photons, and the subscripts {1,2} label signal and
idler, respectively. For ease of notation, subscripts will be omitted in the rest of this Chap-
ter. Finally, all the measured data were processed by using a standard maximum likelihood
estimation method [87]. In Fig. 6.2, we show the real part of some of our tomographically

(a) (b) (¢) (d)

No wedges

el
-

Figure 6.2: Real part of the tomographically reconstructed polarization density matrix
p in the {|H),|V)} basis, as well as calculated tangle T and linear entropy Sy, for
different relative angles () between the optical axes of the wedges: (a) empty set-up
(no decoherers), the initial state is the singlet, (b) o0 = 0° anti-parallel wedges, (c)
o = 15° and (d) o« = 45°, the state is a classical statistical mixture.

reconstructed polarization density matrices p. Fig. 6.2 (a) shows a typical density matrix
for the empty set-up, which is given by the singlet Bell-state |y ~) = (|[HV) — [VH))/v/2

with tangle T ~ 95 % and linear entropy Sp ~ 3 %, (b) corresponds to the measured den-
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sity matrix when the wedges are anti-parallel oriented and the relative angle between their
optical axis is & = 0°. In this configuration the two wedges act as a wave-plate and only
introduce a rotation in the polarization basis; this explains the change in sign of the initially
negative off-diagonal elements of p. There is, however, a residual entanglement degradation
for this setting (T ~ 69 %), which can be explained in terms of residual temporal decoher-
ence by the wedges. Specifically, a chromatic polarization-interferometric analysis (see [90]
for details) performed on a single wedge with a pencil-like beam (=~ 1 mm diameter), re-
vealed a frequency-dependent phase retardation between horizontal and vertical polarizations
of roughly 7 /4 (estimated at the center of the wedge aperture) within our detection bandwidth
of AL =5 nm. This detection bandwidth was chosen as a compromise between sufficiently
low temporal decoherence and sufficiently large count rates (typical coincidence count rates
were approximately 800/s). It should be noted that this initial entanglement degradation can
in principle be reduced by designing the wedges on a thinner quartz substrate (the substrate
width in our wedges was estimated [90] to be ~ 300um).

Proceeding now to Fig. 6.2 (c), we show a typical density matrix for & = 15°. From
the values of Sy and T we see a further entanglement degradation to 7 =~ 35 %. Finally, in
Fig. 6.2 (d) which corresponds to @ = 45°, the off-diagonal elements of p (i.e., the quantum
correlations) have vanished and the state corresponds to a classical statistical mixture (7 = 0).
In Fig. 6.2 (d), we ascribe the deviation of the measured p from the identity to insufficient
transverse spatial average at the wedges.

6.4 Tangle vs linear entropy plane

Fig. 6.3 shows measured data in the 7-S;, plane. The dashed curve that limits the region of
all physical states is given by the maximally entangled mixed states (MEMS) [80], while the
solid curve is produced by Werner states [79]. Werner states Pwerer = W~ ) (W~ |+ (1—r)%
represent an incoherent superposition of the singlet state |y ~) occurring with probability
r (0 <r <1) and the fully mixed state (i.e., the 4 x 4 identity / for the polarization degrees of
freedom) occurring with probability 1 — . These states are useful to model depolarization in
an isotropic noisy channel [65]. Experimental points correspond to different relative angles
between the optical axes of the wedges ranging from o = 0° to o = 45°, in incremental steps
of 5°. It is remarkable that all the data falls on the Werner curve within the experimental
error indicated by error bars in Fig. 6.3 (see Chapter 7 for details); the latter were estimated
from the standard deviation of a numerically generated Gaussian ensemble of photon counts
centered around the measured data.
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Figure 6.3: Experimental data for spatial decoherers on the tangle (T )-linear entropy
(SL) plane. The grey area corresponds to unphysical density matrices. Dashed curve:
Maximally entangled mixed states (MEMS), solid curve: Werner states. As the rela-
tive angle increases from a = 0° to a = 45°, the initial singlet state is progressively

decohered towards a maximally mixed state. Note that Werner states satisfy T = 0 for
Sr > 8/9.

6.5 Summary

In conclusion, in this Chapter we have implemented a simple tunable source of spatial deco-
herence with commercially available wedge depolarizers. The isotropically decohered output
states fall on the Werner curve within the experimental error. We expect also pure input states
of different symmetries than the singlet (i.e., the triplet), or different degrees of entanglement,
to be decohered in a controllable manner by our experimental arrangement.
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CHAPTER /

Entangled mixed-state generation by twin-photon scattering

In this Chapter ' we report experimental results on mixed-state generation by multi-
ple scattering of polarization-entangled photon pairs created from parametric down-
conversion. By using a large variety of scattering optical systems we have experimentally
obtained entangled mixed states that lie upon and below the Werner curve in the linear
entropy-tangle plane. We have also introduced a simple phenomenological model built
on the analogy between classical polarization optics and quantum maps. Theoretical
predictions from such model are in full agreement with our experimental findings.

1Based on G. Puentes, A. Aiello, D. Voigt, and J. P. Woerdman, Phys. Rev. A 75, 032319 (2007).
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7.1 Introduction

The study of spatial, temporal and polarization correlations of light scattered by inhomoge-
neous and turbid media has a history of more than a century [1]. Due to the high complexity
of scattering media only single-scattering properties are known at a microscopic level [2].
Conversely, for multiple-scattering processes the emphasis is mainly on macroscopic theo-
retical descriptions of the correlation phenomena [92]. In most examples of the latter [93-96]
the intensity correlations of the interference pattern generated by multiple-scattered light are
explained in terms of classical wave-coherence. On the other hand, the recent availability of
reliable single-photon sources has triggered the interest in guantum correlations of multiple-
scattered light [8]. Generally speaking, quantum correlations of scattered photons depend on
the quantum state of the light illuminating the sample. In Ref. [8], spatial quantum correla-
tions of scattered light were analyzed for Fock, coherent and thermal input states.

In this Chapter we present the first experimental results on quantum polarization cor-
relations of scattered photon pairs. Specifically, we study the entanglement content in re-
lation to the polarization purity of multiple-scattered twin-photons, initially generated in a
polarization-entangled state by spontaneous parametric down-conversion (SPDC). The initial
entanglement of the input photon pairs will in general be degraded by multiple scattering.
This can be understood by noting that the scattering process distributes the initial correla-
tions of the twin-photons over the many spatial modes excited along the propagation in the
medium. In the case of spatially inhomogeneous media the polarization degrees of freedom
are coupled to the spatial degrees of freedom generating polarization dependent speckle pat-
terns. If the spatial correlations of such patterns are averaged out by multi-mode detection,
the polarization state of the scattered photon(s) is reduced to a mixture, and the resulting
polarization-entanglement of the photon pairs is degraded with respect to the initial one. A
related theoretical background was elaborated in [13, 14].

This Chapter is structured as follows: In section 7.2 we report our experiments on light
scattering with entangled photons. First, we present our experimental set-up and briefly de-
scribe the many different optical systems that we used as scatterers. Next, we show our ex-
perimental results. The notions of generalized Werner and sub-Werner states are introduced
to illustrate these results. In section 7.3 we introduce a simple phenomenological model for
photon scattering that fully reproduces our experimental findings. Finally, in section 7.4 we
draw our conclusions.

7.2 Experiments on light scattering with entangled photons

7.2.1 Experimental set-up

Our experimental set-up is shown in Fig. 7.1. A Krypton-ion laser at 413.1 nm pumps a 1 mm
thick B —BaB,04 (BBO) crystal, where polarization-entangled photon pairs at wavelength
826.2 nm are created by SPDC in degenerate type II phase-matching configuration [86].
Single-mode fibers (SMF) are used as spatial filters to assure that each photon of the ini-
tial SPDC pair travels in a single transverse mode. Spurious birefringence along the fibers
is compensated by suitably oriented polarization controllers (PC). The total retardation in-
troduced by the fibers and walk-off effects at the BBO crystal are compensated by com-
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pensating crystals (CC: 0.5 mm thick BBO crystals) and half-wave plates (1/2), in both
signal and idler paths. In this way the initial two-photon state is prepared in the polariza-
tion singlet state |y,) = (|[HV) — |VH))/\/2, where H and V are labels for horizontal and
vertical polarizations of the two photons, respectively. The experimentally prepared ini-

Singlet state preparation | Scattering
| device

Figure 7.1: Experimental scheme: After singlet preparation, the idler photon propa-
gates through the scattering system J,. The polarization state of the scattered photon-
pairs is then reconstructed via a quantum tomographic procedure (see text for details).

tial singlet state p;' " has a fidelity [91] with the theoretical singlet state p; = |y;) (| of
F(p™ p®P) = |Tr < ,/p‘afpexpw/p‘af> |> ~ 98%. In the second part of the experimental

set-up the idler photon passes through the scattering device .74 before being collimated by
a photographic objective (PO) with focal distance f =5 cm. The third and last part of the
experimental set-up, consists of two tomographic analyzers (one per photon), each made of
a quarter-wave plate (A /4) followed by a linear polarizer (P). Such analyzers permit a full
tomographic reconstruction, via a maximum-likelihood technique [87], of the two-photon
state. Additionally, interference filters (IF) put in front of each detector (AA =5 nm) pro-
vide for bandwidth selection. Detectors Da and Dg are “bucket” detectors, that is they do
not distinguish which spatial mode a photon comes from, thus each photon is detected in a
mode-insensitive way.

7.2.2 Scattering devices

All the scattering optical systems that we used were located in the path of only one of the
photons of the entangled-pair (the idler one), as shown in Fig. 7.1. For this reason, we refer
to such systems as local scatterers. Such scatterers can be grouped in three general categories
according to the optical properties of the media they are made of [44] :

Type I Purely depolarizing media, or diffusers. Such media do not affect directly the polar-
ization state of the impinging light but change the spatial distribution of the impinging
electromagnetic field.

Type II Birefringent media, or retarders. These media introduce a polarization-dependent
delay between different components of the electromagnetic field.
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Type III Dichroic media, or diattenuators. Such media introduce polarization-dependent
losses for the different components of the electromagnetic field.

Type I scattering systems produce an isotropic spread in the momentum of the impinging
photons. Examples of such scattering devices are: spherical-particle suspensions (such as
milk or polymer micro-spheres), polymer and glass multi-mode fibers and surface diffusers.
Type II scattering systems are made of birefringent media, which introduce an optical axis
that breaks polarization-isotropy. Birefringence can be classified as “material birefringence”
when it is an intrinsic property of the bulk medium (for example a birefringent wave-plate),
and as “topological birefringence” when it is induced by a special geometry of the system
that generates polarization-anisotropy, an example of a system with topological birefringence
is an array of cylindrical particles. Finally, type III scattering systems are made of dichroic
media that produce polarization-dependent photon absorbtion. Examples of such devices are
commonly used polarizers. A systematic characterization of all the scattering devices that we
used was given in Ref. [44].

7.2.3 Experimental results
in the tangle versus linear entropy plane

The degree of entanglement and the degree of mixedness of the scattered photon pairs can be
quantified by the tangle (7"), namely, the concurrence squared [88], and the linear entropy (Sr.)
[89]. These quantities were calculated from the 4 x 4 polarization two-photon density matrix

p, by using T (p)=(max{0, VA — VA — A3 —vVA4})?, where A; > A, > A3 > A4 > 0 are the

eigenvalues of p(0, ® 02)p* (02 ® 02), where 0y = (? Bl) and S.(p) = 3[1—Tr(p?)].
Figures 7.2 (a) and (b) show experimental data reported on the linear entropy-tangle plane.
The position of each experimental point in such plane has been calculated from a tomo-
graphically reconstructed [87] two-photon density matrix p**P. The uniform grey area cor-
responds to non-physical states [80]. The dashed curve that bounds the physically admis-
sible region from above is generated by the so-called maximally entangled mixed states
(MEMS) [84, 85]. The lower continuous curve is produced by the Werner states [79] of
the form: py = pps+ ITT”L;, (0 < p <1), where I is the 4 x 4 identity matrix. Figure 7.2 (a)
shows experimental data generated by isotropic scatterers (type I). Specifically, our type I
scatterers consisted of the following categories. (i) Suspensions of milk and micro-spheres in
distilled water, where the sample dilution was varied to obtain different points; (ii) Multi-
mode glass and polymer fibers, where the tuning parameter exploited to obtain different
points was the length of the fiber (cut-back method); (iii) Surface diffusers, where the full
width scattering angle was used as tuning parameter. It should be noted that suspensions of
milk and micro-spheres are dynamic media, where Brownian motion of the micro-particles
induces temporal fluctuations within the detection integration time [44].

In Fig. 7.2 (a), the experimental point at the top-left corner (nearby 7 = 1, Sp = 0),
is generated by the un-scattered initial singlet state. The net effect of scattering systems
with increasing thickness is to shift the initial datum toward the bottom-right corner (7' = 0,
Sz = 1), that corresponds to a fully mixed state.

Figure 7.2 (b) displays experimental data generated by birefringent scattering systems
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Figure 7.2: Experimental data in the linear entropy-tangle (Sp-T ) plane. The grey area
corresponds to unphysical density matrices. Dashed upper curve: Maximally entan-
gled mixed states (MEMS), continuous lower curve: Werner states. (a) Polarization-
isotropic scatterers (type ). (b) Birefringent scatterers (type 1I).

(type II). As an example of a system with “material birefringence” we used a pair of wedge
depolarizers in cascade [4]. Different experimental points where obtained by varying the rel-
ative angle between the optical axis of the two wedges [97] (see Chapter 6, this Thesis). The
systems with “topological birefringence” we considered consisted of two different devices:
(i) The first one was a bundle of parallel optical fibers [98]. Translational invariance along
the fibers axes restricts the direction of the wave-vectors of the scattered photons in a plane
orthogonal to the common axis of the fibers. (ii) The second device was a stack of parallel
microscope slides (with uncontrolled air layers in between). This optical system is depolar-
izing because it amplifies any initial spread in the wave-vector of the impinging photon. This
photon enters via a single-mode-fiber (numerical aperture NA = 0.12), from one side of the
stack and travels in a plane parallel to the slides.

In Fig. 7.3, experimental data generated by dichroic scattering systems (type III) are
shown. We used: (i) Surface diffusers followed by a stacks of microscope slides at the
Brewster angle and (ii) Commercially available polaroid sheets with manually-added sur-

57




7. Entangled mixed-state generation by twin-photon scattering

face roughness on its front surface to provide for wave-vector spread. All data thus obtained
fall below the Werner curve, generating what we called sub-Werner states, namely states with
a lower value of tangle (7') than a Werner state, for a given value of the linear entropy (Sz).
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Figure 7.3: Experimental data generated by dichroic scattering systems (type II1).

In summary, Figs. 7.2 (a)-(b) show that all data generated by type I and II scattering
systems fall on the Werner curve, within the experimental error; while data generated by
scattering samples type III, which are presented in Fig. 7.3, lay below the Werner curve. In
Section III we shall present a simple theoretical interpretation of such results.

7.2.4 Error estimate

In order to estimate the errors in our measured data, we numerically generated 16 Monte
Carlo sets N; (i = 1,...,16) of 10° simulated photon counts, corresponding to each of the 16
actual coincidence count measurements {anp }(i=1,...,16) required by tomographic analy-
sis to reconstruct a single two-photon density matrix. Each set N; had a Gaussian distribution

centered around the mean value y; = anp, with standard deviation 0; = 4 /n?Xp. The sets N;

where created by using the “NormalDistribution” built-in function of the program Mathemat-
ica 5.2. Once we generated the 16 Monte Carlo sets ;, we reconstructed the corresponding
103 density matrices using a maximum likelihood estimation protocol, to assure that they
could represent physical states. Finally, from this ensemble of matrices we calculated the
average tangle 7%" and linear entropy S7'. The error bars were estimated as the absolute
distance between the mean quantities (av) and the measured ones (exp): or = |[T*P — T®|,
os, = |S7" — S%¥|. It should be noted that this procedure produces an overestimation of the
experimental errors. In the cases where part of the overestimated error bars fell into the un-
physical region, the length of such bars was limited to the border of the physically allowed
density matrices.
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7.2.5 Generalized Werner states

Close inspection of the reconstructed density matrices generated by type II scattering systems
revealed that in some cases the measured states represented a generalized form of Werner
states. These are equivalent to the original Werner states py with respect to their values of T
and Sy, but the form of their density matrices is different. Werner states py of two qubits were
originally defined [79] as such states which are U ® U invariant: py = U Q UpyU ToUT.
Here U ® U is any symmetric separable unitary transformation acting on the two qubits.
The generalized Werner states pgy we experimentally generated, can be obtained from py
by applying a local unitary operation V acting upon only one of the two qubits: pgw =

V@IpwVi®I, where I = (3) ?) and

(7.1)

V(a.B.y) = e’%(‘”ﬁ)cosy/Z —e’%w"ﬁ)siny/Z
POZN i@ Bginga  eb@ B cosy2 |

where @, B,y can be identified with the three Euler angles characterizing an ordinary rotation
in R3 [65]. These generalized Werner states have the same values of T and Sy, as the original
pw (since a local unitary transformation does not affect neither the degree of entanglement
nor the degree of purity) but are no longer invariant under unitary transformations of the form
U ®U. By using Eq. (7.1), we calculated the average maximal fidelity of the measured states
pew with the target generalized Werner states py, (p, &, 8, 7). We found F(pgy, pi,) ~
96%, revealing that our data are well fitted by this four-parameter class of generalized Werner
states.

7.3 The phenomenological model

Figure 7.4: Numerical simulation for our phenomenological model. (a) Isotropic and
birefringent scattering, (b) dichroic scattering.

In Ref. [15], a theoretical study of the analogies between classical linear optics and quan-
tum maps was given. Within this theoretical framework it is possible to build a simple phe-
nomenological model capable of explaining all our experimental results. To this end let us
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7. Entangled mixed-state generation by twin-photon scattering

consider the experimental set-up represented in Fig. 7.1. The linear optical scattering ele-
ment 74 inserted across path A can be classically represented by some Mueller matrix .4
which describes its polarization-dependent interaction with a classical beam of light. .# is
also known as the Mueller matrix in the Standard matrix basis [71] and it is simply related to
the more commonly used real-valued Mueller matrix M [101] via the change of basis matrix
Al

M=A"ZA. (7.2)

However, .74 can also be represented by a linear, completely positive, local guantum map
& : p — &|p], which describes the interaction of the scattering element with a two-photon
light beam encoding a pair of polarization qubits. These qubits are, in turn, represented by
a 4 x 4 density matrix p. Since 74 interacts with only one of the two photons, the map &
is said to be local and it can be written as & = &3 ® .#, where &, is the single-qubit (or
single-photon) quantum map representing 74, and .# is the single-qubit identity map.

It can be shown that the classical Mueller matrix .# and the single-qubit quantum map
&4 are univocally related. Specifically, if with .# we denote the complex-valued Mueller
matrix written in the standard basis, then the following decomposition holds:

3
M=) Ty Ty, (7.3)
u=0

where {7}, } is a set of four 2 x 2 Jones matrices, each representing a non-depolarizing linear
optical element in classical polarization optics, and {1} are the four non-negative eigenval-
ues of the “dynamical” matrix H associated to ./ .

Given Eq. (7.3), it is possible to show that the two-qubit quantum map & can be written
as

3
pe=Elple Y Ty ®IpT &I, (74)
n=0

[73R 1)

where the proportionality symbol “e<” on the right hand side of Eq. (7.4) accounts for a
possible renormalization to ensure Tr(ps) = 1. Such renormalization becomes necessary
when 7 presents polarization-dependent losses (i.e., dichroism). We anticipate that when
such re-normalization is necessary the map is considered non-trace preserving. We shall
discuss this issue in detail in Chapter 9.

With these ingredients, a phenomenological polarization-scattering model can be built
as follows. First we use the polar decomposition [99] to write an arbitrary Mueller matrix
M = M\MpAMDp, Where M, #p and A represent a purely depolarizing element, a bire-
fringent (or retarder) element, and a dichroic (or diattenuator) element, respectively. Specific
analytical expressions for .#x, .#p and .#p can be found in the literature [4]. Second, we
use Eq. (7.3) to find the quantum maps corresponding to .#x, .#p and .#p and, by using
such maps, we calculate the scattered two-photon state pe. In our experimental realizations
we used isotropic scatterers .#;s = .# with isotropic depolarization factor 0 < A < 1, bire-
fringent scattering media .#ps, described in terms of the product of a purely birefringent
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medium .#p and an isotropic depolarizer .#Z, i.e. .#ps = M p.#n, and finally, dichroic scat-
tering media .#ps = .#p.#x, which are in turn described by a product of a purely dichroic
medium .#p and a purely depolarizing medium .#,. It should be noted that these prod-
uct decompositions are not unique. Other decompositions with different orders are possible
but the elements of each matrix might change, since the matrices .#, .#p and .#p do not
commute.

Filling in the above expressions with random numbers selected from suitably chosen
ranges, we simulated all scattering processes occurring in our experiments. Fig. 7.4 shows a
numerical simulation of the scattered states in the tangle vs. linear entropy plane, obtained
with the singlet two-photon state as input state. Fig. 7.4 (a) corresponds to isotropic and bire-
fringent scatterers, and Fig. 7.4 (b) to dichroic scatterers. The qualitative agreement between
this model and the experimental results shown in Fig. 7.2 and Fig. 7.3 is manifest.

7.4 Summary

In summary, in this Chapter we have presented experimental results on entanglement prop-
erties of scattered photon-pairs for three varieties of optical scattering systems. In this way
we were able to generate two distinct types of two-photon mixed states; namely Werner-
like and sub-Werner-like states. Moreover, we have introduced a simple phenomenological
model based onto the analogy between classical polarization optics and quantum mechanics
of qubits, that fully reproduces our experimental findings. In the case of sub-Werner states,
the phenomenological model represents a non-trace preserving quantum map. Such descrip-
tion might be considered controversial since a non-trace preserving local map can in principle
lead to violation of causality when it describes the evolution of a composite system made of
two spatially separate subsystems [100]. However, we argue that our measured states do not
violate the signaling condition as they are post-selected by the coincidence measurement, a
procedure which involves classical communication between two detectors (see Chapter 9,
this Thesis). Finally, we expect it to be possible to create states above the Werner curve (in
particular MEMS) [84, 85], by post-selective detection when acting on a single photon [100].
This will be discussed in the next Chapter.

We gratefully acknowledge M. B. van der Mark for making available the bundle of paral-
lel fibers [98].
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CHAPTER 8

Maximally entangled mixed-state generation via local
operations

In this Chapter 1 we present a general theoretical method to generate maximally entan-
gled mixed states of a pair of photons initially prepared in the singlet polarization state.
This method requires only local operations upon a single photon of the pair and exploits

spatial degrees of freedom to induce decoherence. We report experimental confirmation
of these theoretical results.

IBased on A. Aiello, G. Puentes, D. Voigt, and J. P. Woerdman, quant-ph/0603182 (submitted to Phys. Rev. A).
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8. Maximally entangled mixed-state generation via local operations

8.1 Introduction

Entanglement is perhaps the most puzzling feature of quantum mechanics and in the last two
decades it became the key resource in quantum information processing [65]. Entangled qubits
prepared in pure, maximally entangled states are required by many quantum-information
processes. However, in a mundane world, a pure maximally entangled state is an idealization
as, e.g., a plane wave in classical optics. In fact, interaction of qubits with the environment
leads to decoherence that may cause a pure entangled state to become less pure (mixed) and
less entangled. Thus, any realistic quantum-communication/computation protocol must cope
with entangled mixed states and it is desirable to attain the maximum amount of entangle-
ment for a given degree of mixedness. States that fulfill this condition are called maximally
entangled mixed states (MEMS) and, recently, they have been the subject of several papers
(see, e.g., [84,85] and references therein). In this Chapter we propose a new method to create
MEMS from a pair of photons initially prepared in the singlet polarization state.

Kwiat and coworkers [84] were the first to achieve MEMS using photon pairs from spon-
taneous parametric down conversion (SPDC). They induced decoherence in SPDC pairs ini-
tially prepared in a pure entangled state by coupling polarization and frequency degrees of
freedom of the photons. At the same time, a somewhat different scheme was used by De Mar-
tini and coworkers [85] who instead used the spatial degrees of freedom of SPDC photons
to induce decoherence. However, both the Kwiat and the De Martini method require opera-
tions on both photons of the SPDC pair. On the contrary, our technique has the advantage to
require only local operations upon one of the two photons.

This Chapter is structured as follows: In the first part we show the relation existing be-
tween a one-qubit quantum map and a classical-optics setup on the laboratory bench. In the
second part, we exploit this knowledge to design a simple linear-optical set-up to generate
MEMS from a pair of photons via local operations and postselection. Finally, in the third
part we provide an experimental demonstration of our method, using entangled photons from
parametric down-conversion.

8.2 C(lassical linear optics and quantum maps

We begin by giving a brief description of the connection between classical polarization optics
and quantum mechanics of qubits, as recently put forward by several authors [64, 66].

Most textbooks on classical optics introduce the concept of polarized and unpolarized
light with the help of the Jones and Stokes-Mueller calculi, respectively [101]. In these cal-
culi, the description of classical polarization of light is formally identical to the quantum
description of pure and mixed states of two-level systems, respectively [69,70]. In the Jones
calculus, the electric field of a quasi-monochromatic polarized beam of light which propa-
gates close to the z-direction, is represented by a complex-valued two-dimensional vector,
the so-called Jones vector E € C% . E = Eyx + E1y, where the three real-valued unit vectors
{x,y,z} define an orthogonal Cartesian frame. The same amount of information about the
state of the field is also contained in the 2 x 2 matrix J of components J;; = E,-E;.‘, (i,j=0,1),
which is known as the coherency matrix of the beam [6]. The matrix J is Hermitean and pos-
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8.2 Classical linear optics and quantum maps

itive semidefinite
Jh=1, (v,Jv) =|(v,E)|* >0, 8.1)

for all v € C2. Further, J has the projection property J> = JTrJ, and its trace equals the
total intensity of the beam: TrJ = |Ey|> + |E;|%. If we choose the electric field units in such
a way that TrJ = 1, then J has the same properties of a density matrix representing a two-
level quantum system in a pure state. In classical polarization optics the coherency matrix
description of a light beam has the advantage, with respect to the Jones vector representation,
of generalizing to the concept of partially polarized light. Formally, the coherency matrix
of a partially polarized beam of light is characterized by the properties detailed in Eq. 8.1,
while the projection property is lost. In this case J has the same properties of a density
matrix representing a two-level quantum system in a mixed state. Coherency matrices of
partially polarized beams of light may be obtained by tacking linear combinations Yy wyJy
of coherency matrices Jy of polarized beams, where the index N runs over an ensemble of
field configurations and wy > 0. It should be noted that the off-diagonal elements of the
coherency matrix are complex-valued and, therefore, not directly observables. However, as
any 2 X 2 matrix, J can be written either in the Pauli basis X, [102]:

_ (10 (01
Xo—ﬁ(01’ o= 51 o)
(8.2)
— 1 0 —i _ 1 1 0
X2:ﬁ(i0’X3:¢§01’
or in the Standard basis Y :
A /0 1
Yo = <o o>’ no= <o o>’
(8.3)
{0 0 (1 0
ho= (1 o)’ o= (0 1)’
as N 3
J=Y xeXoa =) yp¥p, (8.4)
a=0 B=0

where xo =Tr(XqJ) €R, yg = Tr(YgJ) € C and, from now on, all Greek indices a, 8, U, Vv, ...,
take the values 0,1,2,3. The four real coefficients x, called the Stokes parameters of the
beam, can be actually measured thus relating J with observables of the optical field. Con-
versely, the four complex coefficients yg are not directly measurable but have the advantage
to furnish a particularly simple representation of the matrix J since yg = Joo, y1 = Jo1, Y2 =
J10, y3 =J11. The two different representations x4 and yg are related via the matrix AT

10 0 1
1 o1 1 o0
v L
A_ﬁ 0 i —i o}l @5
10 0 -1

such that x4 = Y ijﬁyﬁ’ where ATaB = Tr(XqYp), and AN =1, = ATA.
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8.2.1 Polarization-transforming linear optical elements

When a beam of light passes through an optical system its state of polarization may change.
Within the context of polarization optics, a linear optical element is any device that performs
a linear transformation upon the electric field components of an input light beam. Half- and
quarter-wave plates, couplers, phase shifters, beam splitters, polarizers, etc., are all exam-
ples of such devices. The class of linear optical elements comprises both non-depolarizing
and depolarizing devices. Roughly speaking, a non-depolarizing linear optical element trans-
forms a polarized input beam into a polarized output beam. On the contrary, a depolarizing
linear optical element transforms a polarized input beam into a partially polarized output
beam [48]. A non-depolarizing device may be represented by a single 2 x 2 complex matrix
T, the Jones matrix, such that Ji, — Jou = TJinT". In this Thesis we consider only passive
(namely, non-amplifying) optical devices for which the relation TrJoy < TrJj, holds. There
exist two fundamental kinds of non-depolarizing optical elements, namely retarders and di-
attenuators; any other non-depolarizing element can be modelled as a retarder followed by a
diattenuator [99]. A retarder (also known as birefringent element) changes the phases of the
two components of the electric-field vector of a beam, and may be represented by a unitary
Jones matrix Ty. A diattenuator (also known as dichroic element) instead, changes the am-
plitudes of components of the electric-field vector (polarization-dependent losses), and may
be represented by a Hermitean Jones matrix 7g.

Let Sap denote a generic non-depolarizing device represented by the Jones matrix 7,
such that Jiy — Joue = TJinT . We can rewrite explicitly this relation in terms of components
as:

(Jou)ij = TueTj; (Jin )k (8.6)

where, from now on, summation over repeated indices is understood and all Latin indices
i,j,k,l,m,n,...take the values 0 and 1. Since Y}ij’; =(T®T")iju = Mij We can rewrite
Eq. (8.6) as:

(Jow)ij = Aijja(Jin)it, (8.7)

where # =T Q T* is a 4 x 4 complex-valued matrix representing the device p, and the
symbol ® denotes the ordinary Kronecker matrix product. . is also known as the Mueller
matrix in the Standard matrix basis [71] and it is simply related to the more commonly used
real-valued Mueller matrix M [101] via the change of basis matrix AT

M=A#A. (8.8)

For the present case of a non-depolarizing device, M is named as Mueller-Jones matrix.
From Egs. (8.4, 8.7) it readily follows that we can indifferently represent the transformation
operated by Zp either in the Standard or in the Pauli basis as:

3 3
Yo' =) Mapyp, or 3" =Y Mapxy, 8.9)
B=0 B=0
respectively.
With respect to the Jones matrix 7', the Mueller matrices .# and M have the advantage of
generalizing to the representation of depolarizing optical elements. Mueller matrices of de-
polarizing devices may be obtained by taking linear combinations of Mueller-Jones matrices
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of non-depolarizing elements as:

M =Y patly =) paTa ST, (8.10)
A A

where p4 > 0. Index A runs over an ensemble of Mueller-Jones matrices .#Zy = Ty ® T,
each representing a non-depolarizing device. The real-valued matrix M corresponding to .#
can be easily calculated by using Eq. (8.8) [71]. In the current literature M is often written

as [99]:
[ My dar
M = ( p W) , (8.11)

where p € R?, d € R3, are known as the polarizance vector and the diattenuation vector
(superscript T indicates transposition), respectively, and W is a 3 x 3 real-valued matrix. Note
that p is zero for pure depolarizers and pure retarders, while d is nonzero only for dichroic
optical elements [99]. Moreover, W reduces to a three-dimensional orthogonal rotation for
pure retarders. It should be noticed that if we choose My = 1 (this can be always done since
it amounts to a trivial polarization-independent renormalization), the Mueller matrix of a
non-dichroic optical element (d = 0), is formally identical to a non-unital, trace-preserving,
one-qubit quantum map (also called channel) [103]. If also p = 0 (pure depolarizers and pure
retarders), then M is identical to a unital, or bistochastic, one-qubit channel [65].

8.2.2 Spectral decompositions

An important theorem in classical polarization optics states that any linear optical element
(either deterministic or stochastic) is equivalent to a composite device made of at most four
non-depolarizing elements in parallel [46]. This theorem follows from the spectral decom-
position of the Hermitean positive semidefinite matrix H [106] associated to .#. In this
subsection we shortly review such theorem and illustrate its equivalence with the Kraus de-
composition theorem of one-qubit quantum maps [65].

Given a Mueller matrix ./, it is possible to built a 4 x 4 Hermitean positive semidefinite
matrix H = H(.#) by simply reshuffling [104] the indices of .#

Hijju = M ji =Y pa(Ta)ij(Ty (8.12)
A

where the last equality follows from Eq. (8.10). Equivalently, after introducing the composite
indices & = 2i+ j, B = 2k +1, we can rewrite Eq. (8.12) as Hyg = Y5 pa(Ta)a(Ty ). In
view of the claimed connection between classical polarization optics and one-qubit quantum
mechanics, it is worth noting that H is formally identical to the dynamical (or Choi) matrix,
describing a one-qubit quantum process [107]. The spectral theorem for Hermitean matrices
provides a canonical (or spectral) decomposition for H of the form

3
Hop =Y Au(uy)a(uy)p, (8.13)
1=0
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where 4, >0, (¥, Ay = Mo ), are the non-negative eigenvalues of H, and {u } = {up, uj, uz, uz }
is the orthonormal basis of eigenvectors of H: Huy, = Ayuy. If we rearrange the four com-
ponents of each eigenvector uy, to form the 2 x 2 matrices 7, defined as:

T, = ((“u)o (“u)l) ’ (8.14)

we can rewrite Eq. (8.13) as Hyp = Y, lu(Tu)a(le‘)[;. Since Eq. (8.14) can be rewritten
as (Ty)ij = (Wy)a=2i4+j, We can go back from Greek to Latin indices and write Hjjx =
Yoy (Tu)ij(TJ)kl =Y A (Tu® T;[),-k,ﬂ. Finally, from the latter relation and using Eq. (8.12),
we obtain

3
M=) Ty Ty (8.15)
n=0

Equation (8.15) represents the content of the decomposition theorem in classical polar-
ization optics. It implies, via Eq. (8.7), that the most general operation that a linear optical
element can perform upon a beam of light can be written as:

3
Jn = Jow =Y AuTuluT,, (8.16)
u=0

where the four Jones matrices 7, represent four different non-depolarizing optical elements.

Since A, > 0, Eq. (8.16) is formally identical to the Kraus form [65] of a completely
positive one-qubit quantum map &. Therefore, if a single photon encoding a polarization
qubit (represented by the 2 x 2 density matrix pj,), passes through an optical device classically
described by the Mueller matrix .2 = Y., A4, Ty ® T}, its state will be transformed according

to
3

Pin = Pout < Y AuTupinT}, (8.17)
u=0
where the proportionality symbol “e<” accounts for a possible renormalization to ensure
Trpou = 1. Such renormalization is not necessary in the corresponding classical equation (8.16)
since TrJoy is equal to the total intensity of the output light beam that does not need to be
conserved.

By writing Egs. (8.16, 8.17) we have thus completed the review of the analogies between
linear optics and one-qubit quantum maps. In the next section we shall analyze how to use
these analogies to engineer maximally entangled mixed-states (MEMS) by acting upon one
qubit of an entangled pair.

8.3 Engineering maximally entangled mixed-states (MEMS)
Now that we have learned how to associate a quantum map to a set of at most four optical
elements, we can apply this knowledge to design a simple optical scheme suitable for MEMS
production. Suppose to have two qubits (encoded in the polarization degrees of freedom

of two SPDC photons, say A and B), initially prepared in the state p : p = p;;ju|ij)(kl| =
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pX ali) (k| @ [j){|. Superscript R indicates reshuffling [104] of the indices: pli’ i1 = Pijk-
Following Ziman and Buzek [105] we assume that p is transformed under the action of the
most general local (that is, acting upon a single qubit) linear map & ® . into the state

3
ps=E®Ipl= Y ATa@IpTiol. (8.18)

a=0

By writing explicitly Eq. (8.18) in the two-qubit basis {|ij) = |i) ® | )}, it is straightfor-
ward to obtain (0,);j k1 < Yo AapX, #1(Ta)im(Tg ) kn- Then, from the definition of .77 it easily
follows that (pg)ij i o< (-# p®)ix ji. By reshuffling pe, this last result can be written in matrix
form as p(‘; o< ./ pR which displays the very simple relation existing between the classical
Mueller matrix .# and the quantum state ps. Via a direct calculation, it is possible to show
that if p represents two qubits in the singlet state p; = %(Xo RX)—X19X] - XX —X3®
X3) [102], then the proportionality symbol in the last equation above can be substituted with
the equality symbol: p§ = ./ pR. 1f the initial state p is different from the singlet one, then
P must be simply renormalized by imposing Tr(.Z p®) = 1.

Now, suppose that we have an experimental setup producing pairs of SPDC photons in
the singlet state p;, and we want to transform py into a given target state p s via a local map
T I ps— pg = (M7pR)R. All we have to do is first to invert the latter equation to
obtain

My =p5 ()", (8.19)

and then to decompose .# 7 as M7 =Y. o AaTo @ T, Thus, we get the (at most four) Jones
matrices Ty, representing the optical elements necessary to implement the desired transfor-
mation.

Our technique is very straightforward and we shall demonstrate its feasibility later, by
applying it to design an optical setup devoted to MEMS generation. However, at this moment,
some caveats are in order. To make .# 5 a physically realizable Mueller matrix, its associated
matrix Hz should be positive semidefinite. If this is not the case, then the transformation
p — pz cannot be implemented via local operations. For example, it is easy to see that
if the initial state is a Werner state py = pps + 1;—”1 , (0 < p <1) and the target state is
the singlet one: ps = ps, then such operation (known as concentration [108]) cannot be
physically implemented by a local setup since H 7 has three degenerate negative eigenvalues.
Another caveat comes from the no-signalling constraint. Since .# 5 describes a local device
operating only upon photon A, a second observer should not be able to distinguish the initial
state p; from the transformed state p ~ by measuring only the state of photon B, that is: p? =
Tra(ps) = Tra(p). This condition requires the one-qubit map .7 to be trace-preserving:
Yo AaTJ Ty = 1. From Eq. (8.11), a straightforward calculation shows that such condition
cannot be fulfilled if d # 0, that is, if the device implementing .7 contains dichroic (or PDL)
elements. This will be discussed in detail in Chapter 9.

With these caveats in mind, we come to the experimental validation of our method. We
choose to generate MEMS 1 states, represented by the density matrix p; = p|¢4) (¢ |+ (1 —
p)[01)(01], where |¢,) = (]00) 4 |11))/+/2 and (2/3 < p < 1). By varying the parameter
p, the entanglement and mixedness of the state p; change. Here, we use the linear entropy
Sz, [89] and the tangle T, namely, the concurrence squared [88], to quantify the degree of

69




8. Maximally entangled mixed-state generation via local operations

Tomographic i

analysis !

MEMS
photon A. Detectors Da and Dg perform coincidence measurements.

mixedness and of entanglement, respectively. They are defined as S;.(p) = %[1 —Tr(p?)],
and T(p) = [max{0,v2o — VA — VA2 — VA3}]%, where Ao > A; > A, > A3 > 0 are the
eigenvalues of p (o, ® 0y)p*(0y ® 0y). After applying Eq. (8.19) with p 5 = py, a straightfor-
ward calculation shows that there are only two non-zero terms in the decomposition of .# o,

namely {Ag =2(1—p), Ay =p}, {Th = (é 8) , T = ((1) _01> }. In physical terms, Tp is

a polarizer and T is a 90° polarization rotator. The two eigenvalues {Ag, A; } give the relative
intensity in the two arms of the device and are physically realized by intensity attenuators.

8.4 Experimental implementation

Our experimental set-up is shown in Fig. 8.1. Its first part (Singlet state preparation) com-
prises a Krypton-ion laser at 413.1 nm that pumps a 1-mm thick § — BaB,04 (BBO) crystal,
where polarization-entangled photon pairs at wavelength 826.2 nm are created by SPDC in
degenerate type II phase-matching configuration [86]. Single-mode fibers (SMF) are used as
spatial filters to assure that each photon of the initial SPDC pair travels in a single transverse
mode. Spurious birefringence along the fibers is compensated by suitably oriented polariza-
tion controllers (PC) [97]. In addition, total retardation introduced by the fibers and walk-off
effects at the BBO crystal are compensated by compensating crystals (CC: 0.5-mm thick BBO
crystals) and half-wave plates (A /2) in both photonic paths. In this way the initial two-photon
state is prepared in the polarization singlet state |y;) = (|HV) — |VH))/\/2, where H and V
are labels for horizontal and vertical polarizations of the two photons, respectively.

In the second part of the experimental set-up (MEMS preparation) the two-term decom-
position of .# 7 is physically realized by a two-path optical device. A photon enters such
a device through a 50/50 beam splitter (BS) and can be either transmitted to path 1 or re-
flected to path 2. The two paths define two independent spatial modes of the field. In path 1
a neutral-density filter (A;) is followed by a linear polarizer (P) oriented horizontally (with
respect to the BBO crystal basis). When the photon goes in this path, the initial singlet is

70




8.5 Experimental results

reduced to |HV') with probability proportional to the attenuation ratio aj of A; (a = Poy/Ppn)-
In path 2 a second neutral-density filter (A;) is followed by two half wave-plates (1/2) in
cascade relatively oriented at 45°: they work as a 90° polarization rotator. When the pho-
ton goes in path 2, the singlet undergoes a local rotation with probability proportional to the
attenuation ratio a, of A,.

The third and last part of the experimental set-up (Tomographic analysis), consists of two
tomographic analyzers (one per photon), each made of a quarter-wave plate (A /4) followed
by a linear polarizer (P). Such analyzers permit a tomographically complete reconstruction,
via a maximum-likelihood technique [87], of the two-photon state. Additionally, interference
filters (IF) in front of each detector (AA = 5 nm) provide for bandwidth selection. It should
be noticed that detector Da does not distinguish which path (either 1 or 2) a photon comes
from, thus photon A is detected in a mode-insensitive way: This is the simple mechanism we
use to induce decoherence.

0 02 04 06 08 1
Linear entropy, S;

Figure 8.2: Experimental data and theoretical prediction (continuous line) in the linear
entropy-tangle plane. The gray region represents unphysical states and it is bounded
from below by MEMS (dashed curve). The lower dotted-dashed curve represents
Werner states. The horizontal (dotted) line at T = 4/9 separates MEMS I (above),
from MEMS II (below). Stars denote MEMS I states p, that have the same linear en-
tropy as the measured states pIe *P (i e., the experimental points above the line T = 4/9).
The agreement between experiment and theory is manifest.

8.5 Experimental results

Experimental results are shown in Fig. 8.2 together with theoretical predictions in the linear
entropy-tangle plane. The experimentally prepared initial singlet state ps * has a fidelity

2
011 F(pe,pS™) = [Tr(y/vppi™ vp)

continuous curve is calculated from the matrix p. : p. = .#7(p)ps ", and varying p. It

represents our theoretical prediction for the given initially prepared state ps *. If it were

possible to achieve exactly ps ¥ = ps, then such curve would coincide with the MEMS curve

~ 97% with the theoretical singlet state p;. The
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above the horizontal (dotted) line 7 = 4/9. Experimental points with 7 > 4/9 (p;*?) are
obtained by varying the neutral-density filters Aj, A, in such a way that ay > a;; while points
with T < 4/9 are achieved for a; < a;. Note that the latter points do not represent MEMSs,
but different mixed entangled states whose density matrix is still given by p; but with the
parameter p now varying as 0 < p <2/3. The average fidelity between the measured states

p;'" an the “target” states p,, is given by F(p,,p; ") ~ 80%. We believe that the main
reason for its deviation from < 100%, is due to spurious, uncontrolled birefringence and
dichroism in the BS and the mirrors composing the set-up. In fact, we calculated the fidelity
between the states p.(p) (obtained by applying the theoretically determined map .7 ® .# to
the experimentally prepared initial singlet state p;"), with the theoretical MEMS py(p). We
have found F[py(p),pc(p)] = 97% for all 2/3 < p < 1; thus the value of F ~ 80% cannot
be ascribed to the imperfect initial singlet preparation. However, Fig. 8.2 shows a very good

agreement between theoretical predictions and experimental data.

8.6 Summary

In conclusion, in this Chapter we have presented a theoretical study of the analogies between
classical linear optics and quantum maps. By using these analogies, we have theoretically
proposed and experimentally tested a new, simple method to create MEMS 1 states of pho-
tons (it can be easily generalized to generate MEMS II states, as well). In particular, we
have shown that it is possible to create MEMS from an SPDC photon pair, by acting on
just a single photon of the pair. This task could appear, at first sight, impossible since it
was recently demonstrated [105] that even the most general local operation cannot generate
MEMS because this would violate relativistic causality. However, our results do not contra-
dict Ref. [105] since we obtained them via postselection operated by coincidence measure-
ments. This shall be will discussed in detail in Chapter 9.
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CHAPTER 9

Twin-photon light scattering and causality

In this Chapter ' we discuss some of our results on multi-mode scattering of entangled
photon pairs and we motivate the description of those scattering processes in terms of
trace-preserving and non-trace-preserving quantum maps. We then show that non-trace-
preserving quantum maps can lead to apparent violations of causality, when the two-
photon states are post-selected by coincidence measurements.

Based on “Twin-photon light scattering and causality’, G. Puentes, A. Aiello, D. Voigt, and J. P. Woerdman,
to appear in the proceedings of the conference “Beyond the Quantum” held at Lorentz Institute, Leiden University,
The Netherlands, June 2006; to be published by World Scientific (Singapore).
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9.1 Introduction

Quantum non-locality has played a crucial role in the foundations of quantum mechanics ever
since it was theoretically discovered by Einstein, Podolsky, and Rosen (EPR) in 1935 [9].
Bell’s findings (1964) that these quantum non-local correlations, also referred to as entangle-
ment, could not be explained in terms of classical local hidden variable models [109] triggered
a prolific experimental activity, starting by Aspect et al. (1982) [110], who experimentally
verified a violation of Bell’s inequalities for the first time. These successful experiments have
formed, in more recent years, the basis of quantum information science. Within this context
it appears to be important to characterize entanglement and its robustness in different kinds
of conditions.

In this spirit, we discuss some of our recent experimental results on the effects that dif-
ferent types of scattering processes can have on the degree of polarization-entanglement of
twin-photon pairs. First, we briefly present the set-up used in our twin-photon scattering
experiments. Second, we discuss some of the constraints imposed by special relativity (i.e.,
causality condition) on the possibly allowed experiments. Third, we motivate the descrip-
tion of scattering processes as trace-preserving and non-trace-preserving quantum maps [65].
Specifically, we show that non-trace-preserving maps can lead to an apparent violation of
causality and that this can be explained in terms of post-selection during the quantum state
reconstruction procedure. Finally we draw our conclusions.

9.2 Our experiments

In our experiments we want to analyze the effect that a given multi-mode scattering process
can have over the polarization degrees of freedom of entangled photons. The pairs of photons
(A-B) are initially created in the polarization singlet state by degenerate type Il spontaneous
parametric down conversion (SPDC) [86,97], where a pump-photon from a Krypton-ion laser
at 413.1 nm is split in two twin-photons of half energy and double wavelength. Then one of
the two photons (A) propagates through a local scattering medium (i.e., a scattering medium
acting on only one photon). The different scattering media we analyzed range from milk to
multi-mode polymer fibers [44]. The polarization density matrix (p4p) of the scattered two-
photon states are then reconstructed via a standard quantum tomographic procedure [87] (see
Fig. 9.1). From this reconstructed density matrix we extract the entanglement content (i.e.,
the tangle [88]) and the degree of purity (i.e., the linear entropy [89]). The measured data is
then displayed in a tangle vs linear entropy plane [84, 85].

In the next sections we will show what are the restrictions on any experiment aiming at
quantifying entanglement, and we will discuss whether these restrictions can apparently be
violated by using local scattering media and quantum tomographic detection.

9.3 Causality condition
In any kind of Bell-type measurement there are two logical loopholes that have to be closed

in order to demonstrate that entanglement is a truly non-local feature of quantum mechanics,
which can not be explained in terms of local hidden variable models. These are, the detection
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Quantum
Tomography

Local
Scattering
Medium

Figure 9.1: Scheme of our experimental set-up. A high-frequency pump photon is split
in two lower-frequency twin-photons (A-B) by SPDC. Photon A undergoes a local scat-
tering process. The polarization density matrix of the scattered photon-pair is then
reconstructed via a quantum tomographic procedure.

loophole and the causality loophole (and it should be noted that they have not been closed
at the same time in any experiment up to date). The first loophole refers to the detection
efficiency and is grounded on the fact that all experiments so far detect only a small subset
of all pairs created [111]. Closure of the second loophole demands that the measurement
processes of the two observers A and B (Alice and Bob) are space-like separated events, so
that they cannot signal each other [112]. There is thus no way to infer from the result of a
local measurement on one wing of the experiment, which measurement has been performed
on the other wing. This causality condition is also referred to as ‘no-signalling condition’.
This idea is schematized in Fig. 9.2. Consider a pair of photons initially created in a polariza-
tion correlated state (for instance by SPDC), which propagate in the forwards direction of the
space-time diagram. Each of these photons is then detected at time #p. Each detection event
is determined by an independent choice of the polarizer setting (6;, i = A, B) symbolized by
a circle. The choices of the polarizers settings have to be space-like separated enough so that
their forward cone of events do not intersect before time #p, which is the time where each
photon is absorbed (a click on a detector). Moreover, each individual detection event has to
be registered on both sides independently and compared only after the whole measurement
procedure is finished. This does not exclude the existence of correlations between A and B,
since they could result from common causes in the overlap region of their backward cone.
The overlap regions, where the two cones intersect, corresponds to systems causally related.
Note that in Fig. 9.1 the arrow of time stops after the detection happens at time #p, since the
photons are irreversibly absorbed during detection. After the irreversible detection process all
that remains is classical information (photon counts). This fact shows dramatically how infor-
mation is always at the boundary between the quantum and the classical world [113]. Once
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Figure 9.2: A pair of twin-photons (A-B) produced by SPDC propagates in the forward
direction of the space-time diagram. The cone of events for each photon is determined
by a choice of each polarizer setting 04 p. In order to satisfy the no-signalling condition
the forward cones of photon A and B should not intersect before the detection time tp.

recorded, this classical information can be cleverly manipulated; for instance only a portion
of the measured counts can be selected in order to display the desired quantum correlations.
Such a selective procedure (named post-selection), involves only classical communication
between Alice and Bob and is present in any type of coincidence measurement procedure. In
particular it is present in standard quantum state reconstruction tomographic procedures.

9.4 Scattering processes as trace-preserving and non-trace-
preserving quantum maps

The mathematical description of a multiple-scattering processes involving a quantum object
(such as a photon) is somewhat cumbersome. The appropriate formulation depends among
other things on a correct specification of the detection mechanism. In its most pedestrian form
the state of a scattered photon can be described as a pure superposition of transverse-spatial
modes with different probability amplitudes (which depend on the scatterer). If the detection
system could resolve each individual transverse-mode, the state would remain pure, and the
whole evolution would be described by a single unitary operator. In a more realistic scenario,
the polarization state of the scattered photon is detected in a multi-transverse-mode fashion,
so that the spatial mode information is averaged (or traced over) upon detection, and the state
of the system is reduced to a statistical mixture represented by a density matrix [13,14]. Thus,
we can effectively describe the system as if it were open, where the role of the environment
is played by the unobserved internal degrees of freedom (i.e., the transverse-spatial modes of
the photons). In this case the evolution of the system cannot be described by a single unitary
operator. It has to be described in terms of a ser of unitary operators. This set of unitary
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operators is usually referred to as ’super-operator”’or quantum map [65]. A quantum map is
a quantum operation that relates input and output density matrices. As much as the evolution
operator for closed systems is considered physical only if it is unitary, a quantum operation
& is a physical map that transforms the input density operators p™™ into the output density
operators p° = & (p'") if it satisfies [65]:

e 0<Tr{&(p™} <1,

e & is a convex-linear map such that:

5(2171'01') = Z[’iéo(pi) (pi >0),

e & is a completely positive map.

The first condition states that 0 < Tr{pout} < 1. When no irreversible processes such as
measurements (i.e., projections) or dissipation (i.e., anisotropic losses) are involved the map
satisfies the condition Tr{& (p™™)} = 1, and it is called a trace-preserving map (also referred to
as a deterministic map). In the context of polarization optics a particular kind of irreversible
process is given by polarization dependent losses. This is in fact the case for dichroic media
such as polarizers, which transmit an arbitrary polarization while absorbing the rest. Such
type of anisotropic losses must be described by a non-trace-preserving map such that 0 <
Tr{&(p™™)} < 1. We will next see that these types of maps give rise to interesting questions.
The second condition requires the map to be linear and to preserve probabilities, and finally
the third one guarantees that p°" is positive semi-definite, so that it represents a legal density
matrix.

9.5 Non-trace-preserving maps and the causality condition

In the context of quantum optics, a common way of proving entanglement between bipartite
systems is by measuring the two-photon density matrix psp by means of quantum tomog-
raphy and then extracting from it a given entanglement measure such as the concurrence or
the tangle [88]. One simply infers from the causality condition that if a pair of photons are
space-like separated in an initial state p/i;}_,;, they cannot communicate before detection and
thus they cannot affect each other states before detection. This implies that if we act locally
on only one of the two photons, say on photon A via a local map &4, and we measure the state
of photon B after the action on photon A took place, we should not see any change in the state
of subsystem B. This condition is so important that it strongly restricts the possible outcomes
we can measure for the two-photon scattered state pS%'. In particular, we have experimentally
demonstrated and numerically verified that a two-photon scattered state generated by a local
scattering process, in the experimental configuration shown in Fig. 9.1, can only have a very
particular shape; namely, it can only belong to a generalized class of Werner states [114] (see
Chapter 7). This statement is quite, but not completely, general. In fact, it is only true when
the scattering system applied on A has no selective losses, in other words when the action
upon subsystem A can be described in terms of a trace-preserving map. On the other hand,
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we have found that when selective losses are allowed, as in the case of dichroic scattering
media, a class of sub-Werner states is obtained for the two-photon scattered state pgy [114]
(see Chapter 7).

What happens then when the scattering system involves selective absorption? So far,
we know that this type of scattering media cannot be described by a trace-preserving map.
But what is the consequence of that? As we will see, by analyzing two practical examples,
non-trace-preserving maps can lead to apparent violations of causality. Consider as a first
example the case of a polarization singlet input state pi% = |y~ ) (y~ | where |y~ ) = (|HV) —
|VH))/+/2. This state contains maximal information about the bipartite correlations, but
minimal information about the state of each subsystem. So, if we measure the reduced input
state of B (pi! = Tra{pl,}) or the reduced input state of A (pi® = Trp{pi,}) we obtain in
both cases a maximally mixed state (proportional to the 2 x 2 identity)

in in 1/2 0
Pa =Pp = ( (/) 1/2) (9])

Let’s imagine now that we place a polarizer (we assume for simplicity that it is oriented
in the H direction) in the path of photon A, this is a typical dichroic system acting locally
on subsystem A. If we then measure the bi-photon output state in a coincidence-count cir-
cuit, we will obtain pJj = |H)(H|4 ® |[V)(V |, which is a separable pure state. If we now
trace over photon A, we obtain that the output state of B is also fully polarized in the V di-
rection Tra{p$y } = pp = |V)(V|; clearly, the output state of B obtained in this way is not
equivalent to piF', so we could claim that photon B was affected by only acting on A, thus
violating causality. The reason why the state of B has apparently changed, without acting
on it, is because there has been classical communication between Alice and Bob (of course
the communication was after detection so there is no violation of causality). Such is the
case in a coincidence-count type of measurement. The state of B has changed only after the
tomographic procedure, which only involves local operations and classical communication.

Besides, on a more sophisticated level, non-trace-preserving maps have proved to be use-
ful for maximally-entangled-mixed state (MEMS) engineering [100], in apparent contradic-
tion with Ref [105]. Note that MEMS are of interest for realistic quantum information appli-
cations [84,85]. Consider the local map proposed in Ref. [100] to create maximally entangled
mixed states type I (MEMS 1, see Chapter §). MEMS I can be written as:

p/2 0 0 p/2
0 1- 0 O

p/2 0 0 p/2

The quantum map that generates MEMS I can be implemented by using a medium with
anisotropic losses (i.e., a dichroic medium). This medium should act locally on one photon
of an entangled pair, initially prepared in the polarization singlet state. Subsequently, after
propagation along the dichroic medium, the twin-photon state should be reconstructed via
quantum tomography. In this way, it can be shown that p{% = pmemst [100].

A medium with anisotropic losses naturally performs a kind of post-selective measure-

ment, since it selectively transmits (or absorbs) a portion of the total number of photons that
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passes through it [66]. These selective losses introduce a non-trivial renormalization to the
measured bipartite output density matrix p{%'". This is in contrast to the trivial renormalization
required for isotropic losses, given for instance by isotropic scattering, where only the total
intensity diminishes (in terms of maps, isotropic or random scattering can be described by a
trace-preserving map up to an overall renormalization constant). If we now want to obtain
the state of photon B (after propagation of photon A through the dichroic medium) by tracing
over the state of photon A, in Eq. (9.2), we will find:

out out p/2 0
P = TrA{pAB - < 0 1_p/2> : 9.3)
By comparing Eq. (9.3) with Eq. (9.1), we see that pi # pg"t. We have apparently mod-
ified the state of B by acting only on A, which seems to violate causality. Once again the
explanation is in the way in which we reconstructed the scattered state. The reconstructed
density matrix of the bipartite output state py will correctly describe the result of any other
experiment involving coincidence measurements (as, e.g., Bell measurements), but it will fail
when describing the result of any single-photon measurement, as it was obtained by local
operations and post-selection of the coincidence counts via classical communication. Note
that any classical communication between distant observers can be considered as a kind of
long range interaction [113]; in this way it is apparently possible to affect the state of B at a
distance. But this does not violate the no-signalling condition, since the communication or
the ‘interaction’ occurs after detection, by post-selection of the counts.

9.6 Summary

In conclusion, in this Chapter we have shown that scattering processes involving twin photons
can be described by quantum maps. In the case of non-trace-preserving maps, as it is the case
for scattering systems with polarization dependent losses, the tomographically reconstructed
bi-photon density matrices can lead to an apparent violation of the no-signalling condition.
This apparent surprise can be overcome when one includes post-selective detection, which is
a procedure that involves classical communication between distant observers.
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Summary

In this summary the reader will find a brief introduction to the central subject in the
Thesis, namely, light scattering with entangled photons. The intention of this summary is
to make the topic of the Thesis as accessible to the inexpert reader as possible, so, as a
general rule, priority is given to simplicity.
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Light scattering with entangled photons:
an heuristic approach

When a beam of light propagates in an homogenous material it follows a straight trajectory. If
during its propagation light encounters an inhomogeneity it can be scattered. The main effect
of a scattering event is to change the direction of propagation (or momentum k) of the light
beam (see Fig. 1). An inhomogeneity or scatterer can be an atom or a molecule, a particle
with different refractive index (with respect to the background homogeneous medium) or
a density fluctuation in a liquid or gas. Such a transformation in the momentum of light
by scattering is always accompanied by a transformation in the polarization of light, since
polarization is a transverse degrees of freedom. That is, transverse to the momentum k (as
indicated by the small transverse arrow in Fig. 1). When a scattering process involves many
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Figure 1: The main effect of a scattering event is to change the direction of propagation
of light. The polarization direction is indicated by the small transverse arrow.

directions of propagation k, the so called multi-mode scattering, there is not a single well
defined transverse plane which characterizes the polarization of the scattered light. When
such is the case the polarization and the momentum of light are said to be coupled, so this
is an example of how a scattering process can affect the polarization degrees of freedom of
light.

Another typical example of the connection between scattering processes and polarization
is Rayleigh scattering of sunlight by small particles at the atmosphere (see Fig. 2). Rayleigh
scattering is not only the reason why the sky looks blue, but it is also the reason why it is
partially polarized. Most of us have experienced the polarized nature of the sky when we use
polaroid sunglasses and we partially block the scattered sunlight. Polarization of skylight is
also used for navigation by insects, such as bees, and there are claims that Vikings already
had a navigation system based on the polarization of light, more that 1000 years ago!

So, it is clear that scattering processes do have an effect on polarization degrees of free-
dom of light. Now we could ask ourselves what would happen if we performed a light
scattering experiment when the quantum nature of light is essential. A prominent example of
‘quantum light’ are entangled photon pairs. So we could ask ourselves the question of what
would happen if we performed a scattering experiment with polarization-entangled photons?.
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Figure 2: Rayleigh scattering by molecules at the atmosphere.

That is indeed the question that we want to answer in this Thesis.

In order to answer this question, lets first see how can we create polarization-entangled
photon pairs. These photon pairs, also called twin-photons, can be created in the laboratory
by the process of spontaneous parametric down-conversion. This is a non-linear process
which happens in a special kind of crystal, called BBO (as an abbreviation to Beta Barium
Borate), in which a pump photon is split into two twin photons of half of the energy (see Fig. 3
(a)). These two photons (labelled 1 and 2) are completely correlated. Actually, because of

(a) (b)

Figure 3: (a) Scheme of twin-photons created by spontaneous parametric down-
conversion. (b) Far-field intensity pattern of down-converted photons. The polarization-
entangled photon pairs are selected from the crossings of the two rings.

the way in which they are created (at the crystal) they are completely anti-correlated, so they
should rather be called ‘anti-twin photons’! The anti-correlation is such that when one of the
two photons is polarized in the direction Pj, the other photon in the pair must be polarized
in the direction P, 1 Py, and this is true for any value of Pj, which is the intrinsically non-
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classical feature of this correlation. This quantum correlation in the polarization degrees
of freedom of photons is called polarization-entanglement. It is important to note that this
quantum correlation exist for any separation between the photons, which is the so called non-
local character of entanglement. The photon pairs created by down-conversion are emitted in
two intersecting cones which are orthogonally polarized (for instance, one cone is vertically
polarized V and the other cone is horizontally polarized H). These cones, when projected on
a fixed plane, look like two intersecting rings. The polarization-entangled photon pairs are
selected from the crossings if these two rings (see Fig. 3 (b)). So that individual photons
coming from the ring-crossings do not have a fix polarization (half of them are V and the
other half are H), but photon pairs coming at the same time from the two crossings must have
relative orthogonal polarization.

Polarization
entangled .
\ D—l Detector 1
> Coincidence
0 Counter
BBO N DJ Detector 2

Polarizer

Figure 4: Scheme for the detection of polarization entanglement of twin-photons.

How can we detect this non-local anti-correlation between the polarization-entangled
photon pairs? A way of doing this is by placing a linear polarizer in the path of each one
of the two photons belonging to the pair. In such a way that polarizer P; is oriented at 6;
and polarizer P, is oriented at 6,. The idea is to then detect the photons transmitted by each
polarizer in a coincidence count circuit (see Fig. 4). A coincidence count is registered when-
ever the two independent detectors (labelled 1 and 2) detect an incoming photon at the same
time (in reality it is never exactly at the same time but within a very very small, 2 or 3 nano-
seconds, coincidence-time interval). So, taking into account that the relative polarization of
the two photons is anti-parallel, we should expect to see many coincidences when 6, L 0,
and almost no coincidences when 6, || 6;, and this should be the case for any orientation of
P, (or Py). That is indeed what one sees in the laboratory, and what is shown in Fig. 5. The
different experimental curves (called visibility curves) correspond to fixing polarizer P> at
6, = 0° (squares) and at 6, = 45° (circles), while rotating P;. Such strong modulation in the
coincidence counts is a signature of the polarization entanglement between the two-photons.

So, we already know that scattering process affect polarization degrees of freedom of
light, we also know how to create polarization-entangled photons and we even know how
to detect this entanglement. So we are ready to answer the question ‘what happens when
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Figure 5: Coincidence counts measurements fixing polarizer P, at 8, = 0° (squares)
and at 0, = 45° (circles).

we perform a scattering experiment with polarization-entangled photons’. Let’s imagine that
we create a pair polarization-entangled photons by parametric down-conversion. The two
entangled photons (labelled 1 and 2) are created in such a way that they propagate with well
defined momenta k; and k>. Then we can place a scattering medium in the path of photon 1
(we could also place a scattering medium in the path of photon 2 but, conceptually, this would
not add anything new to the problem). As the photon propagates in the medium it undergoes
multiple scattering events. Each scattering event transforms the direction of propagation, in
such a way that the momentum of the outgoing scattered photon is in a superposition of many
momenta k,,;, each one with a different polarization plane attached to it (see Fig. 6). So the
scattering process couples the polarization and the momentum degrees of freedom of the
incoming photon. If we then detect the scattered photon pairs in coincidence counts but with
a momentum insensitive detector, this can be done by using detectors with a large detecting
surface, then all the spatial information (contained in the directions of propagation k,,,) is
averaged or traced over, and the polarization of the scattered photon is reduced to a mixture.
This happens, of course, because the scattering process has coupled the polarization and the
spatial degrees of freedom of the light, so that upon detection the spatial degrees of freedom
act as a bath. Such transition from pure to mixed polarization state does unavoidably affect
the polarization entanglement of light.

In this Thesis we analyzed the degradation of polarization entanglement by different scat-
tering processes, ranging from Rayleigh scattering in multi-mode polymer optical fibers to
scattering by fat particles suspended in milk. The reason why we wanted to use different
types of scattering media is because each media provides a particular coupling mechanism,
which in principle can induce a particular entanglement decay.

Finally, how can we detect this entanglement decay by scattering. A straightforward
way would be to measure the visibility after the scattering process, and quantify how much
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Figure 6: One photon belonging to a pair of polarization-entangled photons undergoes
a multi-mode scattering process. When the scattered photon is detected in a momentum-
insensitive way, the spatial degrees of freedom ko, act as a bath, and leave the scattered
photon in a mixed polarization state.

it has dropped. Now, a complication can arise since some of the scattering media that we
analyzed had polarization anisotropy, for instance birefringence or dichroism. In order to
fully quantify the entanglement degradation in these cases, we would have had to measure
the visibility in many different polarization basis. A systematic way of doing this is by
measuring the 4 x 4 polarization density matrix of the two photons, by means of a technic
called quantum tomography; this is the quantum analogue of CT (‘Computed Tomography’)
medical scan. Different entanglement (and mixedness) measures can then be extracted from
the tomographically reconstructed two-photon polarization density matrix. That is indeed the
way in which we analyzed our data.
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Deze samenvatting bevat een korte inleiding tot het centrale onderwerp van dit proef-
schrift, namelijk het verstrooien van verstrengelde fotonen. Het is de bedoeling dat deze
samenvatting het onderwerp van dit proefschrift zo toegankelijk mogelijk maakt voor de
leek, met als gevolg dat eenvoud in het algemeen een hoge prioriteit heeft gekregen.

93




Samenvatting

Lichtverstrooiing met verstrengelde fotonen:
een heuristische benadering

Een lichtbundel die propageert in een homogeen medium volgt een recht pad. Als zich een
inhomogeniteit bevindt in dit pad, dan kan het licht daaraan verstrooien. Het belangrijkste
effect dat optreedt tijdens verstrooiing, is dat de propagatierichting (of de impuls k) van de
lichtbundel verandert (zie Fig. 1). Zo’n inhomogeniteit of verstrooier kan een atoom, een
molecuul, een deeltje met een andere brekingsindex (dan van het homogene medium) of een
dichtheidsfluctuatie in een vloeistof of gas zijn. Een impulsverandering van het licht door
de verstrooier gaat altijd samen met een verandering van de polarisatierichting van het licht,
aangezien deze ook een vrijheidsgraad is die loodrecht (transversaal) staat op de impuls k
(zoals aangegeven met de kleine transversale pijl in Fig. 1). Verstrooiing waar meerdere
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Figuur 1: Het grootste effect van verstrooiing is dat de propagatierichting van het licht
verandert. De polarisatierichting is aangegeven met de kleine transversale pijl.

propagatierichtingen k bij betrokken zijn, noemen we multi-mode verstrooiing. Bij dit proces
is er niet slechts één enkel transversaal vlak waarin het verstrooide licht gepolariseerd is. In
dit geval zegt men dat de impuls en de polarisatie van het licht gekoppeld zijn. Dit is dus een
voorbeeld van hoe een verstrooiingsproces de polarisatie van het licht kan beinvloeden.

Een ander voorbeeld is Rayleigh verstrooiing van zonlicht door kleine deeltjes in de at-
mosfeer (zie Fig. 2). Deze vorm van verstrooiing is niet alleen verantwoordelijk voor de
blauwe kleur van de lucht, maar zorgt er ook voor dat zonlicht gedeeltelijk gepolariseerd is.
De meeste mensen kennen dit verschijnsel wel door het gebruik van een polaroid zonnebril,
die een gedeelte van het verstrooide zonlicht blokkeert. De polarisatie van zonlicht wordt
ook door insecten zoals bijen gebruikt om te navigeren, en er wordt zelfs beweerd dat de
Vikingen duizend jaar geleden al beschikten over een navigatie systeem dat gebruik maakte
van de polarisatie van zonlicht!

Het is nu duidelijk dat verstrooiingsprocessen invloed hebben op de polarisatie vrijheids-
graad van licht. Een voor de hand liggende vraag is wat er zou gebeuren in een verstrooiings-
experiment, wanneer het kwantumkarakter van het licht essentieel is. Een belangrijk voor-
beeld van ‘kwantum licht’ is een verstrengeld fotonpaar. We vragen ons derhalve af wat er
zou gebeuren als we een verstrooiingsexperiment zouden uitvoeren met polarisatieverstren-
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Figuur 2: Rayleigh verstrooiing door moleculen in de atmosfeer.

gelde fotonen. Dit is precies de vraag die we willen beantwoorden in dit proefschrift.

Om deze vraag te beantwoorden, bekijken we eerst hoe zo’n polarisatieverstrengeld fo-
tonpaar gemaakt wordt. Zulke fotonparen, ook tweelingfotonen genoemd, kunnen gecregerd
worden in het lab met behulp van spontane parametrische splitsing. Dit is een niet-lineair
optisch proces dat plaatsvindt in een speciaal soort kristal, genaamd BBO (van Beta Barium
Boraat), waarbij een pompfoton wordt opgesplitst in twee tweelingfotonen met ieder de helft
van de originele energie (zie Fig. 3 (a)). Deze twee fotonen (1 en 2 gelabeld) zijn volledig

(a) (b)

Figuur 3: (a) Schematische voorstelling van het creatieproces van tweelingfotonen
door spontane parametrische splitsing. (b) Verre veld intensiteitspatroon van gesplitste
fotonen. De polarisatieverstrengelde fotonparen worden geselecteerd uit de kruisingen
van de twee ringen.

gecorreleerd. Sterker nog, door de manier waarop zij gecreéerd zijn (in het kristal), zijn ze
compleet antigecorreleerd, en zouden ze eigenlijk ‘anti-tweelingfotonen’ genoemd moeten
worden! De anticorrelatie is zodanig dat als een van de twee fotonen gepolariseerd is in de
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richting P;, het andere foton van het paar gepolariseerd is in de richting P, 1 P;. Dat dit
geldt voor elke waarde van Py, is een intrinsiek niet-klassieke eigenschap van deze correlatie.
Deze kwantumcorrelatie van de polarisatievrijheidsgraden van de fotonen wordt polarisatiev-
erstrengeling genoemd. Merk op dat deze kwantumcorrelatie onafhankelijk is van de afstand
tussen de twee fotonen, hetgeen het niet-lokale karakter van de verstrengeling aantoont. De
fotonparen die ontstaan bij de splitsing worden uitgezonden in twee elkaar doorsnijdende
kegels, die onderling loodrecht gepolariseerd zijn (de ene kegel is bijvoorbeeld verticaal V
gepolariseerd zodat de andere kegel horizontaal H gepolariseerd is). Eenmaal geprojecteerd
op een transversaal vlak zien deze twee kegels eruit als twee elkaar snijdende ringen. De po-
larisatieverstrengelde fotonparen worden geselecteerd uit de kruisingen van deze twee ringen
(zie Fig. 3 (b)). Op deze manier hebben de individuele fotonen die vanuit deze kruisingen
komen geen vaste polarisatie. Echter, het foton uit de ene kruising vormt een paar met het
foton uit de andere kruising en het enige dat vast staat is dat ze in relatie tot elkaar loodrecht
gepolariseerd zijn.
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Figuur 4: Schematische voorstelling van de detectie van polarisatieverstrengeling van
tweelingfotonen.

Hoe kunnen we deze niet-lokale anticorrelatie tussen de polarisatieverstrengelde fotonen
detecteren? Een manier om dit te bewerkstelligen is door in het pad van elk foton een lineaire
polarisator te plaatsen. De ene polarisator P; wordt georiénteerd onder een hoek 6; en de
andere polarisator P> onder een hoek 6,. Vervolgens worden de fotonen die door te polar-
isatoren worden doorgelaten gedetecteerd met behulp van detectoren die aangesloten zijn op
een coincidentiecircuit (zie Fig. 4). Een coincidentiedetectie wordt geregistreerd wanneer de
twee onafhankelijke detectoren (1 en 2 gelabeld) beide gelijktijdig een foton detecteren. In
werkelijkheid arriveren de fotonen nooit gelijktijdig bij de corresponderende detector, maar
wel binnen een zeer klein tijdsinterval van 2 of 3 nanoseconden. Er rekening mee houdend dat
de polarisatie van de twee fotonen anti-parallel is, verwachten we dat we veel coincidenties
detecteren wanneer 6, 1 0; en bijna geen detecteren wanneer 6, || 0;, en dit zou het geval
moeten zijn voor elke willekeurige oriéntatie van P, (of Pj). Dit laatste is inderdaad het
resultaat van een experiment, getoond in Fig. 5. De verscheidene experimentele curves (zo-
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genaamde contrastcurves) corresponderen met een vaste oriéntatie 6, = 0° (vierkanten) en
6, = 45° (cirkels) van polarisator P», terwijl de oriéntatie van P; gevarieerd wordt. De aan-
wezigheid van de sterke modulatie in het aantal coincidenties in beide curven, is karakter-
istiek voor de polarisatieverstrengeling van de tweelingfotonen.

20 [ \ \ T
P2 angle fixed at 0: or 45°

15 | .

Coincidence rate [k/s]
)

N A A WA A
0 90 180 270 360

Angle of polariser P1[°]

Figuur 5: Coincidentiemetingen voor twee vaste instellingen van polarisator P»,
namelijk 6, = 0° (vierkanten) en 6y = 45° (cirkels).

We weten nu dat verstrooiingsprocessen invloed hebben op de polarisatie van licht, we
weten hoe we polarisatieverstrengelde fotonen moeten maken en hoe we de verstrengeling
moeten detecteren. We zijn nu dus gereed om de vraag te beantwoorden wat we zouden
meten als we een verstrooiingsexperiment zouden uitvoeren met polarisatieverstrengelde fo-
tonen. Stel dat we zo’n verstrengeld fotonpaar creéren. De twee polarisatieverstrengelde
fotonen (1 en 2 genoemd) propageren dan met duidelijk gedefinieerde impulsen k; en k.
Vervolgens plaatsen we een verstrooiend medium in het pad van foton 1. We zouden ook een
verstrooier kunnen plaatsen in het pad van foton 2, maar dit heeft geen meerwaarde voor het
beantwoorden van de vraag. Terwijl foton 1 propageert door het medium, zal het meerdere
malen verstrooid worden. Elke verstrooiing verandert de richting van het foton in een su-
perpositie van meerdere impulsen k,,;, elk met een ander polarisatievlak (zie Fig. 6). Het
verstrooiingsproces heeft dus de polarisatie- en impulsvrijheidsgraden van het inkomende fo-
ton gekoppeld. Vervolgens detecteren we het verstrooide fotonpaar in coincidentie, met een
detector die ongevoelig is voor de impuls van de fotonen. Hiervoor gebruiken we detectoren
met een groot oppervlak, zodat over alle ruimtelijke informatie (over de richtingen k) wordt
gemiddeld (of eigenlijk, zodat het spoor over alle ruimtelijke informatie wordt genomen) en
de polarisatietoestand van het verstrooide foton wordt gereduceerd tot een gemengde toe-
stand. Dit gebeurt uiteraard omdat het verstrooiingsproces de polarisatie en impuls heeft
gekoppeld zodat bij detectie, de ruimtelijke vrijheidsgraden als bad fungeren. Deze over-
gang van een zuivere naar een gemengde polarisatietoestand heeft uiteraard invloed op de
polarisatieverstrengeling van het licht.
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Figuur 6: Een van de fotonen van een polarisatieverstrengeld fotonpaar ondergaat een
multi-mode verstrooiingsproces. Als het verstrooide foton wordt gedetecteerd op een
manier die ongevoelig is voor zijn impuls, dan zullen alle ruimtelijke vrijheidsgraden
kour fungeren als een bad, zodat de polarisatie van het verstrooide foton vervalt in een
gemengde toestand.

In dit proefschrift onderzoeken we de degradatie van polarisatieverstrengeling bij ver-
schillende verstrooiingsprocessen, van Rayleigh verstrooiing in multi-mode polymeren fibers
tot verstrooiing aan vetdeeltjes in melk. Ieder van de gebruikte verstrooiingsmedia heeft een
eigen koppelingsmechanisme, dat in principe een specifieke degradatie van verstrengeling
teweeg kan brengen.

Tot slot bekijken we dus hoe deze verstrengeling degradeert. Een eenvoudige manier om
deze te bestuderen is om na het verstrooiingsproces, het contrast van de coincidentiecurve te
kwantificeren. Hier treedt mogelijk een complicatie op, aangezien enkele van de verstrooiers
polarisatieanisotropie vertonen, zoals dubbelbrekendheid of dichroisme. Om de degradatie
van verstrengeling in die gevallen volledig te kwantificeren, zouden we het contrast moeten
meten in vele, verschillende polarisatiebases. Een systematische manier om dit te bewerkstel-
ligen is door het meten van de 4 x 4 polarisatie dichtheidsmatrix van het fotonpaar, volgens
een techniek die bekend staat als kwantumtomografie; dit is een kwantum analogon van de
medische CT (‘Computed Tomography’) scan. Verschillende maten van verstrengeling (en
gemengdheid) kunnen dan worden bepaald uit deze tomografisch gereconstrueerde dichthei-
dsmatrix. Dit is ook de manier waarop wij onze data hebben geanalyseerd.
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