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Chapter 1 | Introduction 

Selective visual attention 

The human visual system is limited in the amount of visual information that it can 

process at a time. If our environment would provide only a modest amount of 

visual information at a time, our visual system could just process it all. In reality, 

however, our environment projects an overdose of visual information to our eyes. 

To cope with this overload of visual information, our visual system selects only 

part of the available visual information at a time for further processing, and 

processes the rest of the visual information less extensively. This process is called 

selective visual attention.   

 

Stimulus-driven and top-down visual attention 

Ideally, our visual system processes the visual information at a given time that 

helps us to act successfully in our environment. Most of the time (or maybe even 

all the time) our actions are influenced by knowledge, expectations and current 

goals. Hence, it would be helpful if our visual system selects visual information 

consistent with knowledge, expectations, and current goals, i.e., top-down visual 

attention.  

For example, suppose that you are playing a tennis match. For that task it is very 

important to select and process the visual information related to the ball. Selection 

of the (visual information related to the) ball may be facilitated by knowledge that 

the ball has a round shape, a yellow color, or by expectations that the ball will be 

located in a specific section of the tennis court (in case you are returning the 

opponent’s serve). 

Nonetheless, it is important that our visual system also processes visual 

information that is not consistent with knowledge, expectations, and current 

goals. We need the flexibility to perceive and act upon novel or unexpected stimuli 

in our environment. For example, when preparing to serve in a tennis match, it is 

better to pause when a streaker suddenly enters the tennis court. Thus, it would be 

useful if our visual system selects visual information, independent of knowledge, 

expectations, and current goals as well, i.e., stimulus-driven visual attention.  

Behavioral and neuroimaging studies on humans and neurophysiological studies 

on monkeys have provided evidence for both stimulus-driven and top-down visual 

attention (for an overview, see Corbetta & Shulman, 2002). 
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Numerous behavioral studies indicated that our visual system automatically 

selects an object that is distinguished by a unique feature from other objects (such 

as a large difference in color, orientation, or size) (e.g., Treisman & Gelade, 1980; 

for an overview, see Wolfe & Horowitz, 2004). Thus it appears that mechanisms of 

stimulus-driven visual attention make the location of an object with unique 

features more conspicuous or salient than the location of objects with common 

features (Cave, 1999; Itti & Koch, 2000; Koch & Ullman, 1985; Li, 2002; Wolfe, 

1994). This phenomenon may be termed global saliency to make a distinction from 

other phenomena of stimulus-driven visual attention (e.g., an abrupt onset 

singleton) (see Chapter 7). Nonetheless, the terms stimulus-driven visual attention 

and (global) saliency are used interchangeably in this thesis, since no other 

phenomena of stimulus-driven visual attention are investigated.  

Other studies showed that stimuli can be selected on the basis of information 

about location (i.e., space-based visual attention) (for an overview, see Yantis & 

Serences, 2003), nonspatial features (e.g., color, shape, and motion) (i.e., feature-

based visual attention) (e.g., Bichot, Rossi, & Desimone, 2005; Chawla, Rees, & 

Friston, 1999; Martinez-Trujillo & Treue, 2004; Motter, 1994a, 1994b; Saenz, 

Buracas, & Boynton, 2002), and complex nonspatial features  (i.e., object-based 

visual attention) (e.g., Chelazzi, Miller, Duncan, & Desimone, 1993; O’Craven, 

Downing, & Kanwisher, 1999) (see Chapter 6). 

 

Visual search 

Selective visual attention is typically studied in visual search (for an overview, see 

Wolfe & Horowitz, 2004). In visual search studies, participants search for a target 

among a number of other items, the distracters. The number of distracters, the 

setsize, is typically varied, and the time (or accuracy) to indicate the presence or 

absence of the target is measured. If the response time is (relatively) independent 

of the number of distracters, it is concluded that the target can be efficiently 

searched (selected) among the distracters. If the response time increases with the 

number of distracters, it is concluded that the target cannot be efficiently searched 

among the distracters.  

When stimulus-driven visual attention is studied in visual search, participants do 

not know the features of the target. The target is distinguished by a unique feature 

(or conjunction of features) from the distracters (e.g., a green target among blue 

distracters or a blue target among green distracters), and participants have to 

indicate whether a deviant item is present or not. Such a target is called a singleton. 
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Efficient search for a singleton among distracters can therefore be attributed to 

stimulus-driven visual attention (although the task instruction to search for a 

singleton may play a role as well (cf., Bacon & Egeth, 1994)).  

When top-down visual attention is studied in visual search, participants do know 

one or more features of the target (e.g., the color). The target features are given 

during the task instructions or are cued before a session or trial. Efficient search 

for such a cued-target among distracters can be attributed to a combination of 

stimulus-driven and top-down visual attention. 

After more than two decades of visual search studies and other studies, there is 

still a lot of discussion about which mechanisms underlie stimulus-driven visual 

attention and top-down visual attention, and how these mechanisms interact. We 

give an overview of several important findings of visual search studies, and of 

theories and models that are proposed to explain these findings, in Chapter 6.  

Evidently, the ability to search for objects is tightly linked with the ability to 

recognize objects. One model that aims to integrate the mechanisms that underlie 

visual search and object recognition is the Closed-Loop Attention Model (CLAM) 

(Van der Velde, De Kamps, & Van der Voort van der Kleij, 2004). In CLAM, visual 

search arises from interaction between visual working memory in the prefrontal 

cortex, object recognition in the ventral pathway, and spatial selection in the 

dorsal pathway. CLAM strongly influenced the questions that are addressed in this 

thesis. Therefore, CLAM is discussed below. After that, an outline of the thesis is 

presented. 

 

CLAM 

Figure 1 illustrates the overall connection structure of CLAM. Modeled after the 

basic architecture of the (visual) cortex, the model consists of four parts. The first 

part consists of the (lower) retinotopic areas of the visual cortex (e.g., V2-PIT). The 

second part consists of the networks in area AIT of the ventral pathway that 

process object identity (e.g., shape, color) (i.e., the feature maps). The third part 

consists of the networks in area PP of the dorsal pathway that process location 

information of objects in the visual field, and that transform this information into 

spatial coordinates for specific movements (e.g., eye, body, head, arm) (i.e., the 

spatial maps). The fourth part consists of visual working memory areas in the 

prefrontal cortex. The four parts are connected in a diamond structure, with 

reciprocal connections. In this way, the diamond connection structure of CLAM 

forms a closed loop. 
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Figure 1. The overall connection structure of CLAM. PFC = prefrontal cortex; AIT = anterior 

inferotemporal cortex; PIT = posterior inferotemporal cortex; PP = posterior parietal cortex. 

 

 
Figure 2. The functional structure of CLAM. 
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Figure 2 illustrates the functional structure of CLAM. Processing in CLAM starts 

in the retinotopic areas. The neurons in these areas have (relatively) small receptive 

fields and they typically encode conjunctions of elementary visual features. For 

instance, they encode elementary conjunctions of shape (e.g., orientation) with 

color, or conjunctions of shape with motion (e.g., an oriented bar moving in a 

particular direction). Because the areas are retinotopic, the neurons encode for 

location as well.  

The ventral and dorsal pathways in CLAM emerge from the (lower) retinotopic 

areas. The ventral pathway transforms the retinotopic information into location 

invariant feature information about object identity. In Figure 2, the ventral 

pathway processes the feature information (i.e., shape, color) of a display that 

consists of a dark (blue) cross on the left and a light (yellow) diamond on the right. 

The dorsal pathway processes the spatial (location) information of the objects in 

this display. In CLAM, the ventral and dorsal pathway each consists of a 

combination of a feedforward network and a feedback network, which interact 

locally (Van der Velde & De Kamps, 2001). 

Interaction between the ventral and dorsal pathway occurs in the retinotopic areas 

(e.g., V2-PIT). These areas function as a visual blackboard (Van der Velde & De 

Kamps, 2003) in which the features of an object (e.g., shape, color, location) can be 

related or bound. The notion of a blackboard derives from the fact that 

representations in these areas combine elementary feature information (e.g., 

shape, color) with location information. If one feature of an object (e.g., shape, 

color) is selected as a cue, the other features of the object (including its location) 

can be selected as well by means of an interaction process in the blackboard (i.e., 

feature-based or object-based visual attention). Likewise, the selection of the 

location of an object can be used to select the other features (e.g., shape, color) of 

the object by means of the interaction within the blackboard (i.e., space-based 

visual attention). 

The ventral and dorsal pathway in CLAM also project (feedforward) to the 

prefrontal cortex (PFC). In the PFC, the features of a target object (or objects) are 

stored in a visual working memory (VWM) blackboard (Van der Velde & De Kamps, 

2003). The VWM-blackboard in PFC is similar in nature to the visual blackboard in 

the visual cortex (e.g., on the level of retinotopic representation in PIT). It interacts 

with location invariant feature representations (e.g., shape, color) that are either 

located in the ventral pathway or in the PFC itself (or perhaps both). It also 

interacts with location representations that are either located in the PFC or in the  



Chapter 1 

 12 

dorsal pathway (or both). The VWM-blackboard is used to bind the features (e.g., 

shape, color, location) of an object stored in visual working memory. The visual 

working memory in PFC projects back to the ventral and dorsal pathway, through 

the representations for features and location. 

 

Object-based visual attention in CLAM 

Figure 3 illustrates the process of object-based (feature-based) visual attention in 

CLAM. A feature of a target object is stored in the VWM-blackboard. For instance, 

the shape of a cross (without a color) was presented earlier on the center of a 

display. Then, after a delay period, a display of two objects is presented, and the 

participant has to select the other features (e.g., color, location) of the cued object 

(i.e., the cross). In CLAM, the selection of the shape of a target object by a cue 

results in enhanced activation on the location of the target in the visual blackboard 

(V2-PIT). This enhanced activation results from the interaction between the 

feedforward network and the feedback network in the ventral pathway (Van der 

Velde & De Kamps, 2001). The feedforward network processes the identity of the 

objects in the display (e.g., shape, color). The feedback network in the ventral 

pathway carries the information of the cue back to the retinotopic areas (the visual 

blackboard). The cue-related activation in the feedback network is initiated by the 

information stored in the VWM-blackboard. 

 
Figure 3. An object-cue (i.e., the shape cross) in visual working memory initiates object selection in CLAM. 
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Space-based visual attention in CLAM 

Figure 4 illustrates the process of space-based visual attention in CLAM. A spatial 

cue (without any identifiable shape) can be stored in the VWM-blackboard. This 

will result in an enhanced activation in the dorsal pathway that selects the location 

of one object (target) in a visual display. In turn, the selection of a location in the 

dorsal pathway will enhance activation on that location in the retinotopic areas 

(V2-PIT), which results in the selection of the shape and the color of the object on 

that location in the ventral pathway, in line with the notion of space-based visual 

attention. 

 
Figure 4. A spatial cue (i.e., a symbolic cue such as an arrow indicating the left location) in visual working 

memory initiates object selection in CLAM. 

 

Outline of the thesis 

We have seen that CLAM provides an architecture that can account for object-

based (feature-based) and space-based visual attention in visual search. In CLAM, 

top-down visual attention in visual search results from interaction between visual 

working memory in the prefrontal cortex, object recognition in the ventral 

pathway, and spatial selection in the dorsal pathway. Nonetheless, CLAM leaves 

many questions about the mechanisms of top-down visual attention in visual 

search open. Following the outline of CLAM (see Figure 5), several of these 

questions are addressed in this thesis by elaborating the visual working memory 
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in the prefrontal cortex and object recognition in the ventral pathway. In addition, 

this thesis explores mechanisms of stimulus-driven visual attention, and the 

interaction between mechanisms of stimulus-driven and top-down visual 

attention, by specifying spatial selection in the dorsal pathway, which was not 

made explicit in CLAM. The questions are investigated both by simulations and by 

behavioral experiments. 

 
Figure 5. Visual working memory in the prefrontal cortex, object recognition in the ventral pathway, and 

spatial selection in the dorsal pathway interact in CLAM. 

 

Visual working memory in the prefrontal cortex  

One assumption of CLAM is that objects that are maintained in visual working 

memory are represented in the VWM-blackboard in PFC. The VWM-blackboard in 

PFC binds the features of an object that is maintained in visual working memory, 

which are either located in the ventral and dorsal stream or in PFC itself (or both) 

(see Figure 6). Behavioral research suggested that the number of objects that can 

be maintained in visual working memory without interference (i.e., loss of 

information) is limited (to about four), but the number of object features (e.g., 

shape, color, location, motion, etc.) is unlimited for each of these objects (Vogel, 

Woodman, & Luck, 2001). Chapter 2 investigates whether the architecture of VWM 

(Van der Velde & De Kamps, 2003) in CLAM can explain this finding. We varied the 

number of objects that are represented in the VWM-blackboard in PFC, and tested 

the model’s ability to use information about the shape and location of an object to 

respectively bind the object’s location and shape. The simulations indicated that 

our model cannot successfully bind the features of an object anymore as the VWM-
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blackboard in PFC gets loaded with an increasing number of objects, which is in 

line with the behavioral findings. 

 
Figure 6. The question addressed in Chapter 2 relates to visual working memory in the prefrontal cortex 

in CLAM. 

 

Object recognition in the ventral pathway  

The ventral pathway in CLAM is hypothesized to transform the retinotopic 

information into location invariant feature information about object identity (e.g., 

shape, color) (see Figure 7). What remains unclear, however, is how location 

invariant object recognition in the ventral pathway is attained. This question is 

addressed in Chapter 3.  

Simulations explored whether location invariant object recognition in the ventral 

pathway can be attained by building up learning in the feedforward network. 

First, the feedforward network learns to identify simple features at all locations 

and therefore becomes selective for location invariant features. Next, the 

feedforward network in the ventral pathway learns to identify objects partly by 

learning new conjunctions of these location invariant features. Once the 

feedforward network is able to identify an object at a new location, all conditions 

for supervised learning of additional, location dependent features for the object 

are set. The learning in the feedforward network can be transferred to the feedback 

network, which is needed to localize an object at a new location. This learning 

scheme resulted in some degree of location invariance for object recognition in the 

ventral pathway in CLAM. 

Nonetheless, it is unanswered whether location invariant object recognition relies 

on the detection of relatively simple features, or additionally on the detection of 
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more complex features. Efficient search is dependent on location invariant object 

recognition, as it requires that the target can reliably be identified among 

distracters (or that the distracters can reliably be identified along with the target 

and altogether discarded (Humphreys & Müller, 1993)), irrespective of the 

location of the target and distracters in the visual display. The question whether 

location invariant object recognition and efficient search rely on the detection of 

relatively simple features, or additionally on the detection of more complex 

features is addressed by three behavioral experiments in Chapter 4.  

Wang, Cavanagh, and Green (1994) found that search for a digital 5 (digital 2) 

among digital 2’s (digital 5’s) is inefficient. The digital 2 and digital 5 differ only 

in the specific conjunctions of the same lines. Search for this target-distracter pair 

may be inefficient, because in general an object can only be recognized on the basis 

of relatively simple features (e.g., lines, edges). Alternatively, it is possible that an 

object can be recognized on the basis of more complex features (e.g., the global 

pattern), but only when an object is familiar enough. In this case, search for a 

digital 5 (digital 2) among digital 2’s (digital 5’s) may become efficient through 

training. 

The first experiment in Chapter 4 investigates whether training could improve the 

stimulus familiarity and the search efficiency with the digital 2 and digital 5. We 

trained and measured stimulus familiarity independently of visual search 

efficiency, to study the relation between the increase of stimulus familiarity and 

the increase of search efficiency in a learning task. Search for a digital 5 (digital 2) 

among digital 2’s (digital 5’s) became more, but not fully, efficient through 

training. This suggests that intensive training does not enable objects to be 

recognized on the basis of more complex features, as required for efficient search. 

Instead, it appears that objects are (partially) recognized on the basis of relatively 

simple features, which are similar for the digital 2 and digital 5, confining the 

search efficiency.  

The results further show that stimulus familiarity and search efficiency are partly 

dissociated. The stimulus familiarity (both of the target and the distracter) 

increased in our experiment, and visual search became more efficient as well. 

However, it was found that the search efficiency can be increased further without 

an effect on stimulus familiarity. Furthermore, the increase in search efficiency 

generalized substantially from trained to untrained locations (i.e., the effect of 

learning was largely location invariant). 
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The second and third experiments in Chapter 4 investigate whether the effect of 

learning persisted two months after training, and whether it transferred to other 

search tasks. It was found that the effect of learning was still (partly) present two 

months after training, and largely specific to the actual stimuli used.  

 
Figure 7. The questions addressed in Chapters 3-4 relate to object recognition in the ventral pathway in 

CLAM. 

 

Interaction between object recognition in the ventral pathway and spatial 

selection in the dorsal pathway  

In Chapters 5-8, mechanisms of stimulus-driven visual attention and the 

interaction between mechanisms of stimulus-driven and top-down visual 

attention are studied by behavioral experiments and simulations.  

Five behavioral experiments in Chapter 5 explore whether the (global) saliency of 

objects gradually increases as fewer objects in the display share some 

characteristic, and the experiments explore the interaction of this gradual saliency 

with top-down visual attention (in the color dimension). In addition, the 

dynamics of gradual saliency and top-down visual attention over time are 

investigated. 

Experiment 1 demonstrates that saliency is indeed gradual. Experiments 2-4 show 

that top-down visual attention makes the search for a target faster, even when the 

target is already located on a (gradually) salient location (e.g., the location of a 

color singleton). Experiment 5 indicates that colored elements activate the 

mechanisms responsible for saliency when they are presented for 50 ms, whereas 



Chapter 1 

 18 

they enable the selection by top-down visual attention when they are presented for 

100 ms. 

Chapter 6 presents an overview of several important findings of behavioral and 

neurophysiological studies in the realm of visual search, and of theories and 

models that are proposed to explain these findings. Two main questions that are 

addressed in this chapter are whether efficient search (which originally was 

attributed to mechanisms of stimulus-driven visual attention (Treisman & Gelade, 

1980)) should be associated with processing in low cortical areas, and whether 

stimulus-driven visual attention is the result of bottom-up and horizontal 

processing, or alternatively of bottom-up, horizontal, and top-down processing. 

Several findings of the behavioral studies that we have reviewed suggest that 

efficient search cannot solely be attributed to processing in low cortical areas. The 

results of reviewed neurophysiological studies leave open whether stimulus-

driven visual attention is the result of bottom-up and horizontal processing, or of 

bottom-up, horizontal, and top-down processing.  

In Chapter 7, an explicit mechanism of global saliency is presented, the Global 

Saliency Model (GSM), and the interaction between the mechanisms of global 

saliency and top-down visual attention is specified. It is hypothesized that global 

saliency is the result of interaction between object recognition in the ventral 

pathway (Van der Velde & De Kamps, 2001) and spatial selection in the dorsal 

pathway (see Figure 8). Spatial selection in the dorsal pathway, which was not 

specified in CLAM, takes place in a number of interacting spatial maps. Consistent 

with the conclusions of the overview in Chapter 6, global saliency in GSM results 

from top-down processing in the ventral pathway, in addition to bottom-up and 

horizontal processing (in the ventral and dorsal pathway).  

Simulations show that the model can explain several important findings in visual 

search, e.g., efficient search for a singleton among distracters (for an overview, see 

Wolfe & Horowitz, 2004) and the effects of target-distracter and distracter-

distracter similarity (Duncan & Humphreys, 1989). In addition, it is shown that 

GSM can explain the findings of the behavioral experiments in Chapter 5. 

Behavioral studies found that the response time to identify or match a target 

decreases with a larger distance between the target and an attended location (i.e., 

the location of a feature singleton) (e.g., Caputo & Guerra, 1998; Mounts, 2000). 

These results and other results have been interpreted as evidence that there is an 

inhibitory annulus around the focus of attention. Chapter 8 investigates whether 

inhibition around the focus of attention might result from pre-attentive lateral 
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inhibition. Models of stimulus-driven visual attention usually assume that (pre-

attentive) lateral inhibition between objects is stronger when objects share 

features with another (e.g., Itti & Koch, 2000; Wolfe, 1994). Hence, such a pre-

attentive lateral inhibition account would predict that the inhibitory surround of 

attention grabbing distracter is stronger when a distracter shares features with the 

target than when it does not. The first behavioral experiment tested this 

prediction by manipulating the similarity between a target and distracter. No 

interaction was found. In fact, we found no evidence of an inhibitory surround if 

the target was also salient, even when a salient distracter grabbed attention. 

Moreover, in a second behavioral experiment it was found that a spatial cue, which 

grabbed attention, produces a facilitatory surround. 

The results of our experiments suggest that the support for an inhibitory annulus 

around the focus of attention is less robust than it seemed, and that attention may 

instead facilitate the processing of stimuli near its focus. In line with GSM, it is 

proposed that salient objects inhibit surrounding objects (independent of whether 

they share features) not after grabbing attention, but pre-attentively through 

lateral inhibition. 

 
Figure 8. The questions addressed in Chapters 5-8 relate to the interaction between object recognition in 

the ventral pathway and spatial selection in the dorsal pathway in CLAM. 

 

Publications 

Parts of Chapter 1 are included in a refereed publication, and Chapters 2, 3, 4, and 
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Chapter 2 | Increasing the number of objects impairs 

binding in visual working memory 

The number of objects that can be maintained in visual working memory without 

interference is limited. We present simulations of a neural model of visual 

working memory in ventral prefrontal cortex that has this constraint as well. One 

layer in ventral PFC represents all objects in memory. These representations are 

used to bind the features (e.g., shape, location) of the objects. If there are too many 

objects, their representations interfere and therefore the quality of the 

representations degrades. Consequently, it becomes harder to bind the features for 

an object that is maintained in visual working memory. 

 

Introduction 

Investigations (Vogel et al., 2001) have shown that humans have the ability to 

maintain a number of visual objects in visual working memory. A remarkable 

characteristic of this finding is that the number of objects that can be maintained 

in visual working memory without interference (i.e., loss of information) is 

limited (to about four), but the number of object features (e.g., shape, color, 

location, motion) is unlimited for each of the objects. We presented a model of 

visual working memory in prefrontal cortex (PFC) that theoretically can explain 

this characteristic (Van der Velde & De Kamps, 2003). A basic characteristic of this 

model is a blackboard that links different processors to one another. The processors in 

this case are networks for feature identification. The blackboard serves to bind the 

information processed in each of the specialized processors. Objects in visual 

working memory are represented in the blackboard. One layer in ventral PFC 

functions as the blackboard, containing representations that consist of 

conjunctions of identity information (e.g., shape, color) and location information. 

When too many objects are put in visual working memory, their representations 

in the blackboard interfere. Consequently, an object’s representation in the 

blackboard muddles and the blackboard’s performance to bind the features of an 

object degrades. 

After getting deeper into this model of visual working memory, we present two 

simulations. One simulation explored how information about the shape of an 

object can be used to bind the object’s location. Another simulation explored the 
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opposite binding route, i.e. how information about the location of an object can be 

used to bind the object’s shape. The results reflect our expectations that the model 

is limited in the number of visual objects that it can maintain without interference 

complicating correct binding. 

 

Blackboard architecture of visual working memory in PFC 

Our model of visual working memory in PFC is based on a neural blackboard 

architecture that is used in a simulation of object-based attention in the visual 

cortex (Van der Velde & De Kamps, 2001). We assume that the neural blackboard 

architecture is located in the ventral prefrontal cortex (V-PFC) (Van der Velde & De 

Kamps, 2003). This is in line with human neuroimaging studies and monkey 

studies (e.g., Wilson, Scalaidhe, & Goldman Rakic, 1993). Activation in V-PFC is 

sustained (reverberating) activation, characteristic of working memory activation 

in the cortex. 

In the model (Figure 1A), the V-PFC has a layered structure with representations 

similar to the representations in the visual (temporal) cortex. First, the posterior 

inferotemporal cortex (PIT) connects to the blackboard. As in PIT itself, the 

representations in this layer of V-PFC consist of conjunctions of location and 

(partial) identity information (e.g., shape, color). The bottom layer of V-PFC is 

connected to higher-level areas in the visual cortex like the anterior 

inferotemporal cortex (AIT) and the posterior parietal cortex (PP), which process 

respectively the shape and location information of an object. 

The connections from these higher-level areas to the bottom layer of V-PFC are 

similar to the connections in the feedback network of the visual cortex (Van der 

Velde & De Kamps, 2001). They associate all possible representations that are 

selective for an activated feature (e.g., shape, location). For example, if one shape is 

selected in AIT, then all representations in the bottom layer of V-PFC that are 

consistent with that shape (on every possible position) are activated. Note that 

these connections have a fan-out structure. Likewise, an attended location in PP 

activates all possible representations (e.g., for any shape) in the bottom layer of V-

PFC on that location in (visual) space. The bottom layer of V-PFC thus represents 

the current focus of attention, whether this is based on location or (location-

invariant) feature information. Consequently, interaction between the bottom 

layer of V-PFC and the blackboard can select the object representation that is 

consistent with the current attentional focus. The resulting activation in the select 



Increasing the number of objects impairs binding in visual working memory 

 23 

layer of V-PFC can be used to bind the features of this object (Van der Velde & De 

Kamps, 2003).  

 

 
 

Figure 1. (A) A blackboard architecture in the prefrontal cortex (PFC). PIT = posterior inferotemporal 

cortex; AIT = anterior inferotemporal cortex; PP = posterior parietal cortex; V-PFC = ventral prefrontal 

cortex. (B) Interference between object representations in the blackboard. 
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Feature binding in visual working memory 

The nature of the representations in V-PFC and the connections with the higher-

level areas in the visual cortex produces the behavioral findings described before. 

The blackboard architecture of V-PFC results in a binding of the feature 

representations of the objects maintained in visual working memory. Therefore, 

the features of an object can be retrieved (selected) in visual working memory as 

long as the representations of the objects stored in V-PFC do not interfere. 

However, when too many objects are present in a display, their representations in 

V-PFC will interfere, which results in loss of information (Figure 1B). As more 

objects are present in a display, the amount of interference increases, and it can be 

expected that the quality of the representation of an object in V-PFC becomes less. 

As a consequence, it becomes harder to correctly bind the feature representations 

of the objects that are maintained in visual working memory. V-PFC might end up 

binding wrong feature representations for an object that is attended to. Following 

simulations tested whether our model of the visual working memory shows this 

behavior. 

 

Simulations 

For the simulations, we linked the V-PFC model with a (trained) neural network 

model of the ventral pathway in the visual cortex that is used in the simulation of 

object-based attention in the visual cortex (Van der Velde & De Kamps, 2001). This 

model consists of a feedforward network that includes the areas V1, V2, V4, PIT 

and AIT, and a feedback network that carries information about the identity of the 

objects to the lower areas in the visual cortex (V1 - PIT). The model shares the basic 

architecture and characteristics (i.e., the nature of the representations) of the 

visual cortex. The feedforward neural network was trained to identify 9 different 

objects on 9 possible positions (using backpropagation). After that, the feedback 

neural network was trained as well. Learning in the feedback network is based on 

the activity in the feedforward network that results when the feedforward 

network identifies an object. In the feedback network, the Hebbian learning rule 

is used so that the activation pattern in the feedforward network modifies the 

connections in the feedback network. In this way, the object selectivity in the 

feedforward network is transferred to the feedback network (Van der Velde & De 

Kamps, 2001). This was done successfully five times, each time resulting in 

slightly different connection weights between the layers, representing different 

instances of the model. 
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Simulation 1: Binding the location by shape 

This simulation explored the selection process in the V-PFC model that involves 

shape information. We expected that information about the shape of an object 

becomes less adequate to bind the object’s location as the number of objects stored 

in visual working memory increases. 

During simulations, displays consisting of N (different shaped) objects, with N 

ranging from 2 to 9, are presented to V1. For each N, 180 random displays are 

presented to each instance of the model. The objects, presented in separate, non-

overlapping, positions, are processed in the visual cortex, and their PIT 

representations also activate the representations in the blackboard in V-PFC. The 

shape of one of the objects is selected (attended) in AIT (e.g., due to competition 

between all object shapes). The activation coding for this shape in AIT activates all 

representations in the bottom layer of V-PFC that are selective for that shape. As a 

result, the interaction between the bottom layer of V-PFC and the blackboard 

modulates the object representation in the select layer of V-PFC that is selective for 

the attended shape. Consequently, the activation in the select layer of V-PFC 

reflects the match between the representations in the blackboard and the bottom 

layer of V-PFC.  

The artificial neurons can have activation values in the range -1 to 1. Positive and 

negative activation can be regarded as activity of separate populations of neurons 

(De Kamps & Van der Velde, 2001). Thus, negative activation in the bottom layer of 

V-PFC and negative activation in the blackboard is also a match. Therefore, we 

simulated the interaction between the blackboard and the bottom layer of V-PFC 

by computing the covariance between them. Note that these covariance values 

offer two kinds of information; the match (positive covariance) and the mismatch 

(negative covariance). 

After every presentation of a display with N objects, the positive covariance for 

every possible position of an object in the select layer of V-PFC was computed. This 

positive covariance was then standardized by subtracting the mean positive 

covariance over all positions in the select layer of V-PFC from the positive 

covariance at a position in the select layer of V-PFC, and dividing this difference in 

positive covariance by the mean positive covariance over all positions in the select 

layer of V-PFC. The same was done for the negative covariance. We will further 

refer to this standardized positive and negative covariance as the match and 

mismatch respectively. 
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It may be clear that within every trial, one position in the select layer of V-PFC 

corresponds to the position of the attended object in the display, and N - 1 

positions in this layer correspond to positions of objects in the display that are 

unattended. The rest of the positions (9 - N) in the select layer of V-PFC correspond 

to locations in the display where no object was presented. 

Figure 2 shows the probability distribution over several amounts of match for 

positions in the select layer of V-PFC of attended objects and unattended objects 

separately. For each number of objects in visual working memory, data of all 5 

instances of the neural network model are averaged over all relevant trials. Note 

that for successful binding to occur, the match should be high on the position of 

the attended object and low on positions of unattended objects. Only then the 

position of the attended object can be clearly distinguished from the positions of 

unattended objects in terms of match. As can be seen in Figure 2, this is the case if 

the number of objects held in visual working memory is low. 
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Figure 2. Probability distribution of match for positions of attended objects (solid line) and positions of 

unattended objects (dashed line) in the select layer of V-PFC as a function of the number of objects in 

visual working memory (see the text for explanation). Y-axis: probability. X-axis: match, from negative 

(left) to positive (right). 
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Figure 3. Probability distribution of mismatch for positions of attended objects (solid line) and positions of 

unattended objects (dashed line) in the select layer of V-PFC as a function of the number of objects in 

visual working memory (see the text for explanation). Y-axis: probability. X-axis: mismatch, from 

negative (left) to positive (right). 

 

Figure 3 shows the probability distribution over several amounts of mismatch for 

positions in the select layer of V-PFC of attended objects and unattended objects 

separately. Again, for each number of objects in visual working memory, data of 

all 5 instances of the neural network model are averaged over all relevant trials. 

Note that for successful binding to occur, the mismatch should be low on the 

position of the attended object and high on positions of unattended objects. Only 

then the position of the attended object can be clearly distinguished from the 

positions of unattended objects in terms of mismatch. Again, as can be seen in 

Figure 3, this is the case if the number of objects held in visual working memory is 

low. 

However, Figures 2 and 3 show that the probability distribution of match and 

mismatch for the positions of attended objects and for the positions of unattended 

objects start to overlap more and more as the number of objects in visual working 

memory increases. This means that the position of the attended object cannot be 
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reliably selected on the basis of positive or negative covariance. As the load on the 

visual working memory gets higher, positions of unattended objects will more 

frequently be selected instead. In other words, the binding process starts to break 

down.  

The mean amount of match for positions of attended objects, positions of 

unattended objects and positions with no object is presented in Figure 4B together 

with the root mean squared error (RMSE). Picking the position of the attended 

object instead of a position of an unattended or empty position on the basis of 

match information clearly becomes very hard as the number of objects in visual 

working memory increases. Does mismatch information enable us to point out the 

correct position of an attended object when the number of objects stored in visual 

working memory increases? The answer is given in Figure 4A, and appears to be 

negative. The distinction between attended and unattended objects gets lost here 

as well. Filling up the visual working memory makes the level of mismatch that 

can be detected in the select layer of V-PFC on the position of the attended object 

more and more similar to the level of mismatch on other positions. Thus, based on 

mismatch information, binding begins to fail as well. 
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Figure 4. (A) Mismatch (mean and RMSE) for positions of attended objects (solid line), positions of 

unattended objects (dot-dot line), and positions without an object (dash-dot line) in the select layer of V-

PFC as a function of the number of objects in visual working memory (see the text for explanation). (B) 

Idem, but then for match. 
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Simulation 2: Binding the shape by location 

This simulation explored the selection process in the V-PFC model that involves 

location information. We expected that information about the location of an 

object becomes less adequate to bind the object’s shape as the number of objects 

stored in visual working memory increases. 

During simulations, displays consisting of N (different shaped) objects, with N 

ranging from 2 to 9, are presented to V1. For each N, 90 random displays are 

presented to each instance of the model. The objects, presented in separate, non-

overlapping, positions, are processed in the visual cortex, and their PIT 

representations also activate the representations in the blackboard in V-PFC. The 

location of one of the objects is selected (attended) in PP (e.g., due to competition 

between all object locations). The activation coding for this location in PP activates 

its corresponding location in the bottom layer of V-PFC. As a result, the interaction 

between the bottom layer of V-PFC and the blackboard modulates the object 

representation in the select layer of V-PFC at the attended location. The activation 

in the select layer of V-PFC is processed further by AIT to identify the object’s 

shape. 

For simplicity, the activity in PP that represents a certain location after 

competition between all object locations, its one-to-one connections to the bottom 

layer of V-PFC, and the interaction between the blackboard and the bottom layer 

of V-PFC are simulated altogether in one step by modulating the object 

representation in the blackboard at the attended location. To implement the last 

step regarding the binding of the object’s shape, the blackboard layer served as 

input to area AIT, which is trained to identify shape information. A winner-takes-

all mechanism in AIT selects the identified shape. 

The nature of attentional modulation is being debated. The model does not 

include a clear perspective on this part. Instead, we have taken a more pragmatic 

stand to simulate, approximately, two competing hypotheses. Attention may 

either increase the sensitivity for attended features by providing an extra input to 

neurons representing those, or may boost the response strength for attended 

features without changing the sensitivity to them (Treue, 2001). We will refer to 

the former mechanism as additive and to the latter as multiplicative. Logically, 

though this is not simulated here, attention may involve a combination of both 

mechanisms as well.  

Hence, location information modulated the representation in the blackboard in 

two qualitatively different ways during separate runs. In multiplicative runs, the 
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activity of neurons representing the attended location in the blackboard was 

multiplied by a certain factor. Alternatively, in additive runs, these neurons were 

given extra input, and new activation values were accordingly computed. To 

ensure results that are sufficiently robust, multiplicative and additive runs were 

done with a varying modulation strength from respectively 1 to 2 and 0 to 0.5, 

with a similar step size of 0.05. In additive runs, the range of extra input was 

chosen to balance apparent levels of sensory input. 

Figure 5 shows the probability of successful binding over the number of objects in 

visual working memory and modulation strength, for both additive and 

multiplicative runs. For each number of objects in visual working memory, data of 

all 5 instances of the neural network model are averaged over all relevant trials. 

Note that a modulation strength of 0 in the additive runs and of 1 in the 

multiplicative runs actually means that there is no selection by location 

information at all. Hence, the proportion of correct binding for each N should 

equal chance level. Figure 5 indeed reflects this fact. Interestingly, we see that a 

slight increase in modulation strength immediately improves binding. 

Nevertheless, there appears to be a limit in the benefit of increasing the 

modulation strength. This makes sense as modulated neurons reach their 

maximum firing rate at some point. 

Moreover, modulation strength also affects unattended, overlapping object 

representations. Both for additive and multiplicative runs, binding is better when 

the number of objects held in visual working memory is low, even for quite high 

values of modulation strength. In other words, as the number of objects increases, 

the model becomes less reliable to select an object’s shape based on its location 

information. Hence, the binding process starts breaking down. Comparing the 

additive and multiplicative runs, we see that the latter show slightly better 

binding (i.e., boosting the output of neurons enables better binding than 

increasing the input). This makes sense as multiplication amplifies the 

representation in the blackboard without affecting its structure, while adding 

does modify the structure of the representation to some extent. 

So far we have assumed that the representation in the blackboard is identical to 

the one in PIT. However, this is not likely to be true. It is possible that the 

representation in the blackboard is reduced compared to PIT. New simulations 

explored the binding power of the model given a sparse and reduced 

representation in the blackboard. Before the location information of one object 
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modulated the activity in the blackboard, a competition mechanism in the 

blackboard reduced its representation and made it sparse. 

Subtracting an inhibitory input from each neuron’s input, which allows 30 

percent of the neurons to be active, and computing new activation values, 

implemented this competition process. In additive runs, the modulation strength 

now ranged from 0 to 0.3 to balance lower sensory input. 
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Figure 5. Proportion of correct binding as a function of the number of objects in visual working memory 

and modulation strength. See the text for explanation. 
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Figure 6. Proportion of correct binding as a function of the number of objects in visual working memory 

and modulation strength, given a sparse and reduced representation in the blackboard. See the text for 

explanation. 
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Figure 6 shows the probability of successful binding over the number of objects in 

visual working memory and modulation strength, for these runs. We see that even 

when the representation in the blackboard is sparse and reduced compared to the 

one in PIT, it can still bind the shape to the location of an object considerably 

when the number of objects in visual working memory is low. As expected, for 

higher number of objects the binding impairment already seen in former runs is 

amplified, as a higher number of objects leads to more competition and thus to a 

more reduced and sparse representation in the blackboard. 

 

Discussion 

The simulations point out that the model of visual working memory that we 

presented is limited in the number of objects that it can maintain in memory 

without interference (i.e., loss of information). Our model cannot successfully 

bind the features (e.g., location, shape) of an attended object anymore as it gets 

loaded with more objects. This is in accordance with behavioral findings about 

visual working memory (Vogel et al., 2001). Naturally, our simulations are of a 

qualitative nature. The fact that there is a limit in the number of objects that 

people can maintain in visual working memory is (probably) inherent to its 

architecture. The model that we presented shares this characteristic. When exactly 

the limit in visual working memory is reached will depend on other factors as well, 

like the level of alertness and the contrast of the objects with the background. 

Our model predicts that this limit is also partly dependent on the distance 

between objects in a display. Another prediction from our model is that the 

resolution of spatial attention is comparably limited in other tasks than visual 

working memory.  Selection by location information is dependent on the amount 

of interference between object representations in the ventral pathway of the visual 

cortex. Note that it does not matter whether spatial attention (also) acts upon areas 

with a higher spatial resolution (e.g., V1 or V2), when areas like V4 and PIT, due to 

their conjunction representations, are still used to bind object’s features. Selecting 

an object by a more centered focus (e.g., a Gaussian) of its location may overcome 

some interference between object representations. However, it also risks ignoring 

important information. 
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Chapter 3 | Learning location invariance for object 

recognition and localization 

A visual system not only needs to recognize a stimulus, it also needs to find the 

location of the stimulus. In this chapter, we present a neural network model that is 

able to generalize its ability to identify objects to new locations in its visual field. 

The model consists of a feedforward network for object identification and a 

feedback network for object localization. The feedforward network first learns to 

identify simple features at all locations and therefore becomes selective for 

location invariant features. This network subsequently learns to identify objects 

partly by learning new conjunctions of these location invariant features. Once the 

feedforward network is able to identify an object at a new location, all conditions 

for supervised learning of additional, location dependent features for the object 

are set. The learning in the feedforward network can be transferred to the feedback 

network, which is needed to localize an object at a new location. 

 

Introduction 

Imagine yourself walking through the wilderness. It is very important that you 

recognize the company of a predator, wherever the predator appears in your visual 

field. Location invariant recognition enables us to associate meaningful 

information (here: danger) with what we see, independent of where we see it. 

Hence location invariance is a very important feature of our visual system. 

Nonetheless, location invariant recognition also implies a loss of location 

information about the object we have identified. Yet, information about where 

something is in our environment is also essential in order to react in a goal-

directed manner upon what is out there. 

Van der Velde and De Kamps (2001) have previously proposed a neural network 

model of visual object-based attention, in which the identity of an object is used to 

select its location among other objects. This model consists of a feedforward 

network that identifies (the shape of) objects that are present in its visual field. In 

addition, the model also consists of a feedback network that has the same 

connection structure as the feedforward network, but with reciprocal connections. 

The feedback network is trained with the activation in the feedforward network as 

input (Van der Velde & De Kamps, 2001). By using a Hebbian learning procedure, 
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the selectivity in the feedforward network is transferred to the feedback network. 

We argue that this is a very natural and simple way to keep the feedback network 

continuously up to date with ongoing learning in the feedforward network. 

How does this architecture allow the step to go from implicitly knowing what to 

knowing where? Suppose the feedforward network identifies a circle in its visual 

field. The feedback network carries back information about the identity of this 

shape to the lower (retinotopic) areas of the model. In these areas, the feedback 

activation produced by the circle interacts with feedforward activation produced 

by the circle. The interaction between the feedforward network and the feedback 

network (in local microcircuits) results in a selective activation at locations in the 

retinotopic areas of the model that correspond to the location of the circle. This 

activation can be used to direct spatial attention to the location of the target (Van 

der Velde & De Kamps, 2001). 

Previous research has focused on location invariant recognition in feedforward 

neural networks (Fukushima, 2004; Riesenhuber & Poggio, 2000). Several models 

are proposed, in which information processing is routed in a bottom-up manner 

to a salient location rather than to other locations (e.g., Itti & Koch, 2000). The goal 

of this chapter is to explore the complementary task of finding, in a top-down 

manner, the location of what is recognized in a location invariant manner in the 

visual field. The model of Amit and Mascaro can perform this task (Amit & 

Mascaro, 2003). They assume a replica module with multiple copies of the local 

feature input that gives (gated) input to a centralized module that learns to 

identify objects completely independent of location, and vice versa. We provide an 

alternative mechanism for location invariant object recognition, by which cells in 

the feedforward network not only become selective for location invariant features, 

but also for location dependent features. Next, we explore how learning such 

location invariant object recognition in the feedforward network transfers to 

location invariant learning in the feedback network in our neural network model. 

This transfer is necessary in order to find something at a new location. 

We have built up learning in the feedforward network in such a way that it 

initially learns to identify simple features (e.g., oriented lines, edges) at all possible 

locations. After that, the feedforward network learns to identify objects at some 

possible locations. The rationale behind this learning procedure is that learning to 

recognize an object may then partly involve abstracting new conjunctions of 

known, location invariant features. This enables the feedforward network to 

generalize its ability to identify an object at trained locations to new locations. A 
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simulation of the network confirmed this line of thought. This simulation is first 

presented in this chapter. 

The second simulation presented here investigated how the ability of the 

feedforward network to recognize an object at a new location relates to finding an 

object at a new location, given the fact that learning in the feedforward network is 

built up in successive stages. The simulation demonstrates that recognizing an 

object at a new location does not automatically lead to finding that new location of 

the object. However, we show that the recognition of an object at a new location 

facilitates efficient, supervised learning of additional location dependent features 

in the feedforward network. Once the improved selectivity for the object at that 

location in the feedforward network is transferred to the feedback network, the 

interaction between the feedforward network and the feedback network does 

enable the selection of the new location of the object. 

 

Network architecture 

For the simulations we used a similar neural network model of (the ventral 

pathway in) the visual cortex as was used in the simulation of object-based 

attention in the visual cortex (Van der Velde & De Kamps, 2001). It basically 

consists of a feedforward network that includes the areas V1, V2, V4, the posterior 

inferotemporal cortex (PIT), the central inferotemporal cortex (CIT) and the 

anterior inferotemporal cortex (AIT), and of a feedback network that carries 

information about the identity of the object to the lower retinotopic areas in the 

visual cortex (V2 - PIT). The model shares the basic architecture and characteristics 

of the visual cortex. First, the receptive field’s size of cells in an area increases, 

while climbing up the visual processing hierarchy. Second, the connections 

between cells in the network are determined so that the retinotopic organization 

is maintained throughout area V1 to area PIT. Yet, the high-level areas CIT and 

AIT have input connections from all cells in the previous area. Cells in CIT and AIT 

thus receive information covering the whole visual field (all positions). Every two 

successive areas are interconnected. For example, area AIT only receives input 

from area CIT. 

Figure 1 illustrates the architecture of the network schematically. From area V1 to 

area PIT, cells are arranged in a two-dimensional array that makes up the visual 

field. The number of layers in an area defines the number of cells per retinotopic 

position (e.g., two from area V2 to area PIT). Multiple layers within an area are not 

interconnected. Each layer in V1 codes for line segments of one of four different 
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orientations (vertical, horizontal, left diagonal, and right diagonal). The input is 

set in area V1 by activating cells in the four layers of cells. Area AIT functions as the 

output layer of the network. 

 

 

 

Figure 1. The architecture of the network. The symbols above the cells in layer AIT show the features that 

the cells were trained to identify. 

 

Simulating location invariant object identification 

The network was trained with backpropagation in three successive stages. In the 

first stage, the network learned to identify oriented line segments (having the 

length of two cells in the input layer) presented at any position within the 

network’s visual field. In the second stage, the network was trained to identify 

edges consisting of various combinations of the oriented line segments (see Figure 

1) at any position within the network’s visual field. In order to avoid (potential) 

catastrophic interference, the oriented line segments learned in the previous stage 

were also included in the training. Note that the nature of the collection of edges 

(two different combinations of each identical set of line segments) forces the 

network to abstract local relation information at a low level in order to identify the 
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edges correctly. Hence, throughout these two stages of supervised training, the 

network learned to identify features of increasing complexity. In the final stage, 

the network was trained to identify objects (see Figure 1) consisting of line 

segments and of one or more trained edges. Importantly, the network was only 

exposed to the objects at four possible locations (see Figure 2A). Again, the 

training set also incorporated features that were previously learned (at all 

locations). 

 

 

 

Figure 2. (A) The nine possible locations in the visual field where objects were presented during testing. 

The network was exposed to objects at four locations during training (white). Before testing, the objects 

had never been presented at the five other (gray) locations. (B) Squared error of the network’s output over 

the number of epochs during training, for the second (2) and third (3) learning stage. 
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The first two training stages were chosen to generate a network, in which cells in 

V4 and PIT are selective for a variety of simple and more complex features like the 

cells in comparable areas of the monkey brain (Tanaka, 1996). The training in the 

first and second stages offered the network an opportunity to draw on formerly 

constructed selectivity while encoding new, more complex information in the 

third stage (i.e., bootstrapping). Note that the exact features that cells in the 

network learn to abstract are not set in advance, but develop as a result of learning. 

Furthermore, representation in the network is distributed, due to the connection 

structure of the network (Van der Velde & De Kamps, 2001). 

Cells in CIT have input connections that cover the whole visual field. In principle, 

during training these cells could become selective only for features that appear in a 

subset of the visual field. However, the number of cells in area CIT was not 

sufficient to allow such a specialization for location information. In order to 

identify the oriented lines and edges at all locations, the cells in CIT learned to 

abstract features largely independent of location information. 

Interestingly, if cells in area CIT are selective for features largely independent of 

location information after the first two training stages, then the network may 

subsequently learn to identify the objects partly by learning new conjunctions of 

such location invariant features. In other words, the network could shape the 

selectivity of some cells by building upon the location invariant selectivity of cells 

that are already present. Such a mechanism would give the network the ability to 

generalize the identification of the objects to locations where the objects have 

never been presented before. 

 

Results of location invariant object identification 

We trained the feedforward neural network according to the training scheme 

described above. This was done successfully five times, each time resulting in 

slightly different connection weights between the areas in the network. 

Figure 2B shows the squared error of the network’s output over the number of 

passes that the network has gone through the training set, both for the second and 

the third stage of training. The data for only one network are displayed in the 

graph, but these data are well representative for other instances of the network. As 

can be seen in Figure 2B, the network very quickly learns to identify the objects in 

the third stage, once it has learned to identify the oriented lines and the edges in 

the previous stage. 
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After the training, the network’s response was tested for each of the four objects 

presented at nine possible locations. Four of the locations were identical to the 

locations at which the objects appeared during training. In contrast, the objects 

were never presented before at the other five locations (see Figure 2A). Given the 

connection structure of the network, more cells in the network receive input from 

an object when it is presented in the center of its visual field than when it is 

presented in a more peripheral location. Therefore, locations where objects 

appeared during training and new locations are chosen in such a way that on 

average the same number of cells in the network respond to an object at each kind 

of location (i.e., trained or new), apart from the center location. 

Each panel in Figure 3 shows the activation value of one cell in area AIT after the 

processing of its selective object and the other objects, at each location. Each cell 

clearly responds selectively to the object that it has been trained to identify. 

 
Figure 3. Each panel shows the activation values of one cell in area AIT trained to identify the object 

drawn above or under the graph, after presentation of each of the 4 objects at both trained (i.e., locations 0, 

1, 7, and 8) and untrained (i.e., locations 2, 3, 4, 5, and 6) locations. 
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Moreover, each cell is optimally active when its preferred object appears at one of 

the trained locations, but it is also active, although to a lesser extend, when its 

preferred object appears at a new location. Particularly, the diamond and the 

square (object 1 and 2) are identified most strongly at new locations. The reduced 

response for a preferred object at new locations compared to trained locations 

shows that the network partly encodes location dependent features for the objects. 

This possibly takes place lower in the processing hierarchy of the network. 

However, the network is clearly able to generalize its identification of objects to 

new locations. This shows that the network also abstracts new conjunctions of 

known location invariant features in addition to location dependent features. 

 

Simulating location invariant top-down visual search 

In the second simulation the model performed a top-down visual search task. In 

this task, a cue is presented first. After that, the target object, matching the cue, 

appears in the visual field with three distracters (see Figure 4A). The location of the 

cued object then has to be selected. The network was tested on this visual search 

task repeatedly with each of the four objects presented as the target. For each 

target object, 180 random search displays are presented (set as input) to the 

network. In the model the task is simulated as follows.  

In the simulation, a cue selectively activates a cell in area AIT of the feedback 

network. Top-down activation in the feedback network results in the activation of 

all other cells in lower areas of the feedback network that are selective for features 

of that object. Next, the cued object and the other objects are set as input at 

random, non-overlapping locations in the visual field of the feedforward network. 

The feedforward network of the model processes all the objects simultaneously. 

After that, the interaction between the processing in the feedforward network and 

in the feedback network is simulated by computing the covariance between the 

activation of cells in the feedforward network and the activation of cells in the 

feedback network (Van der Velde & De Kamps, 2001). 

For each object, the covariance values of all the cells selective for the object in area 

PIT are summed up. To normalize the sum for each object, the sum of covariance 

values for an object is divided by the number of cells, which are selective for the 

object. The group of cells selective for one of the presented objects that has the 

highest level of normalized covariance indicates the location selected for the 

target. Note that area PIT still has a retinotopic organization and that cells in this 

area thus are also partly selective for location information. 
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Figure 4. (A) The top-down visual search task. A cue first indicates the target object (left) and after that the 

target object is presented between other objects (middle). The model then has to select the location of the 

target object (right). (B) The proportion of correct selections of the target’s location for each of the objects as 

the target, when the target is presented at the new locations, the trained locations, or the (new) center 

location. 
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Results of location invariant top-down visual search 

Figure 4B illustrates how the (partly) location invariant object identification 

displayed by the feedforward network (see Figure 3) relates to the model’s ability 

to find the location of an object between other objects. For each of the four objects 

as the target, the proportion of correct selections of the target’s location in the 

visual field is depicted separately for the trained locations, the new locations, and 

the (new) center location of the target. The data are averaged over five instances of 

the model. As can be seen in Figure 4B, the network is better in finding the target’s 

location when its location is one of the locations at which the network is trained to 

identify the target, than when its location is one of the locations at which the 

network is not trained to identify the target. Apparently, the network’s ability to 

generalize its identification of an object to new locations does not transfer 

automatically to the task of finding the location of an object between other 

objects. 

Part of the reason probably lies in the quality of the feedback connections that are 

the basis for top-down attentional selection in the model. The connections in the 

feedback network are trained in a Hebbian manner on all the activation patterns in 

the feedforward network during training (Van der Velde & De Kamps, 2001). As a 

result, cells in the feedback network that are selective for trained locations code 

more elaborate information about an object than cells that are selective for new 

locations (see Figure 3). That is, at trained locations, cells in the feedback network 

are selective for both location invariant features and for location dependent 

features, just like cells in the feedforward network. Instead, at new locations, cells 

in the feedback network are at most selective for location invariant features. 

Furthermore, to retrieve information about the location of an object at new 

locations, the reduced object selectivity in the feedback network has to interact 

with the activation in the feedforward network, which is also less selective for an 

object at new locations than for an object at trained locations. Hence, the 

limitations in the feedback encoding of an object at new locations and the 

limitations in the feedforward encoding of an object at new locations aggravate 

each other.  

Despite this multiplicative effect of a less elaborated encoding of an object at new 

locations, we would still expect the network to select the location of the target in a 

visual search task somewhat above chance level (i.e., proportion correct selection = 

.25). Figure 4B points out that this is, on average, not the case in our simulation. It 

is possible that cells in the network that respond to multiple objects present in the 
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visual field (i.e., cells with large receptive fields), degrade the already basic, 

generalized feedforward encoding of the target at a new location too much for the 

model to put its top-down selection mechanism into effective use (Van der Voort 

van der Kleij, De Kamps, & Van der Velde, 2003). Nevertheless, the network selects 

object 1 and 2 at new locations between other objects above chance level. Note that 

these two objects are precisely the objects, which the feedforward network already 

identified most strongly at new locations (see Figure 3). 

 

Bridging the gap between recognition and localization 

In summary, even when the network recognizes an object at a new location, this 

does not mean that it can immediately find the location of that object. Obviously, 

in real life it is very important that we rapidly learn to bridge this gap. What is the 

mechanism that may constitute that bridge? 

The first simulation demonstrates that an object at a new location can be 

identified. All requirements for supervised learning are therefore present; an 

object is present at a new location and it is recognized. Figure 2B shows that, in 

supervised learning, the feedforward network can learn to abstract additional 

location dependent features of objects relatively fast. As a result the feedforward 

network becomes more selective for the object at that new location. This increased 

selectivity of the feedforward network transfers to the feedback network by means 

of the Hebbian learning in the feedback network (Van der Velde & De Kamps, 

2001). After this, the interaction between the feedforward network and the 

feedback network will enable the localization of the object. 

A similar result has emerged in a study, in which participants had to search for a 

triangle of a particular orientation between triangles of another orientation 

(Sigman & Gilbert, 2000). The ability of the participants to identify the target 

between the other objects improved dramatically over several days of training, but 

this learning was localized to a particular region of the visual field, namely the 

area used for training. This result might indicate that representations of the 

trained object are build separately for different positions across the cortical area 

(Sigman & Gilbert, 2000). 

It is crucial for the mechanism that we propose that the feedforward network 

learns in a build up manner, in which more complex features can partly be learned 

from more simple, location invariant, features. This allows the network to 

generalize its ability to identify an object to new locations and triggers more 
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elaborated, location dependent learning that allows the network to find the object 

at new locations as well. 

 

Discussion  

Our neural network model predicts that the generalization to new locations by the 

visual system is more restricted when we have to find an object between other 

objects than when we have to recognize an object. In line with the second 

simulation, and with the study of Sigman and Gilbert (2000), we hypothesize that 

when we search for an object between other objects, the abstraction of new 

location dependent features of an object may be essential to make the search more 

reliable. It might also speed up the search process.  

We speculate that a visual system can rapidly abstract additional, location 

dependent features that are needed to reliably find an object at new locations, once 

it recognizes an object to some extent. Learning new, location dependent features 

proceeds in parallel to learning new conjunctions of known location invariant 

features. It possibly takes place mostly lower in the visual processing hierarchy. 

Our suggestions relate to Ahissar and Hochstein’s (2004) Reverse Hierarchy 

Theory (RHT), although RHT specifically focuses on perceptual learning, and 

asserts that visual perceptual learning gradually progresses backwards from high-

level areas to the input levels of the visual system. 

A visual system may generalize its recognition of an object to new locations, when 

it learns to identify the object partly by means of new conjunctions of location 

invariant features for which cells of the system are already selective. A simulation 

demonstrated this principle in our neural network model. Such learning may take 

place higher up the visual processing hierarchy. Our neural network model 

learned to recognize objects at multiple locations before testing its ability to 

generalize recognition to new locations. Yet, the neural network model may have 

shown comparable location invariant object recognition with fewer trained 

locations. Nevertheless, it is very likely that we learn to recognize an object at 

multiple locations, even during a single observation, due to movement of the 

object or ourselves (e.g., eye-movements, head movements).  

The neural network model localizes objects in disjoint windows, like some other 

models of visual search (Amit & Mascaro, 2003). In the future, the selection of one 

of multiple disjoint windows may be substituted by a winner-takes-all process, 

which selects the location with the highest activation in the retinotopic areas of 
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the model after the interaction between the feedforward and the feedback network 

(see GSM in Chapter 7). 

The neural network model is not yet very robust to clutter. Scaling up its size and 

changing training to include a larger number of features and objects, will make its 

cells selective for a larger collection of both location dependent and location 

invariant features. In addition, providing multiple examples of an object with a 

realistic amount of within-object variability will strengthen the need to learn the 

most informative features for discriminating between that object and other 

objects (Amit & Mascaro, 2003). Together these extensions could result in sparser 

object representations, helping the neural network model to cope with clutter. 
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Chapter 4 | Learning visual search: A dissociation 

between stimulus familiarity and search efficiency 

Previous studies have shown that stimulus familiarity has an effect on visual 

search efficiency. However, stimulus familiarity was either not tested in these 

studies, or it was tested in a way that was (partly) confounded with search 

efficiency itself. In this study, we tested stimulus familiarity independently of 

visual search efficiency, to compare the increase of stimulus familiarity with the 

increase of search efficiency in a learning task. The results show that stimulus 

familiarity and search efficiency are partly dissociated. Stimulus familiarity 

increases search efficiency, but search efficiency can be increased further without 

an effect on stimulus familiarity. The effects of learning generalized substantially 

from trained to untrained locations. Furthermore, the effects of learning were still 

(partly) present two months after training, and were largely specific to the actual 

stimuli used. 

 

Introduction 

In a visual search task, participants have to search for a target item among a 

variable number of distracters. Depending on the combination of the target and 

distracters, the response time may be (relatively) independent of the number of 

distracters, or increase with the number of distracters. Search is labeled efficient 

when the response time is (relatively) independent of the number of distracters 

and inefficient when the response time increases with the number of distracters. 

In this chapter, we investigate the relation between stimulus familiarity and 

search efficiency. In particular, we investigate the relation between learning 

stimulus familiarity and learning visual search efficiency.  

Several studies have investigated the effect of stimulus familiarity on visual 

search, with sometimes conflicting results. Wang, Cavanagh, and Green (1994) 

asked participants to search for a target among distracters in the four different 

conditions of target and distracter familiarity. They compared the search 

efficiency across the resulting unfamiliar target–unfamiliar distracters (U-U), 

familiar target–unfamiliar distracters (F-U), unfamiliar target–familiar distracters 

(U-F), and familiar target–familiar distracters (F-F) conditions. Search was 

efficient only in the U-F condition. Wang et al. (1994) proposed that unfamiliar 
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items elicit more activation than familiar items, and consequently attract more 

attention. According to this hypothesis search is efficient in the U-F condition, 

because the unfamiliar target is processed before the familiar distracters, whereas 

the target is processed just as the distracters or even after the distracters in the 

other conditions (in the absence of an effective attentional set). Hence, Wang et al. 

(1994) suggested that a difference in familiarity between the target and distracters 

determines search efficiency. 

However, in Wang et al.’s (1994) experiment, the F-U and U-F conditions were 

studied with one set of items (i.e., N / Z versus mirrored N / Z), while the F-F 

condition was studied with another set of items (i.e., digital 2 versus digital 5). 

Wang et al.’s (1994) result that search for a target among familiar distracters is 

efficient only when the target itself is not familiar may thus also be attributed to 

stimulus differences (Malinowski & Hübner, 2001; Shen & Reingold, 2001). 

Malinowski and Hübner (2001) and Shen and Reingold (2001) investigated the 

effect of target and distracter familiarity with one set of items for all conditions. 

They circumvented stimulus differences between conditions by comparing search 

performance between two groups of participants, which differed in familiarity 

with the items. In Malinowski and Hübner’s (2001) study, Slavic participants were 

familiar with both N and mirrored N (each serving as target and distracter), 

whereas the German participants were only familiar with N. In line with the 

results from Wang et al. (1994), search was not efficient when the target was 

familiar and the distracters unfamiliar. However, the results further showed that 

search was not only efficient among familiar distracters when the target was 

unfamiliar, but also when it was familiar. Shen and Reingold (2001) presented 

Chinese and English participants two Chinese characters and their 180º rotated 

forms. The Chinese characters and their rotated forms differed only in the relative 

position of the components (i.e., a rectangle and a plus sign). The results from the 

Chinese participants indicated that for both the familiar and the unfamiliar 

targets, search was more efficient (but not efficient) among familiar distracters 

than among unfamiliar distracters. The familiarity of the target did not alter the 

search efficiency. English participants showed no difference in search efficiency 

between any of the four (U-U) conditions. Both studies provide evidence that the 

familiarity of the distracters, rather than a difference in familiarity between the 

target and distracters, determines search efficiency (Malinowski & Hübner, 2001; 

Shen & Reingold, 2001). More specific, search is (more) efficient when the 

distracters are familiar and (more) inefficient when the distracters are unfamiliar.  
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In the studies of Wang et al. (1994), Malinowski and Hübner (2001) and Shen and 

Reingold (2001), stimuli were used that were assumed (on different grounds) to be 

either familiar of unfamiliar. But a test of stimulus familiarity, independent of 

visual search efficiency itself, was not used in these experiments. In the case of 

Malinowski and Hübner’s (2001) study, one can assume that Slavic participants 

are more familiar with the mirrored N than German participants. Likewise, in the 

case of Shen and Reingold’s (2001) study, one can assume that Chinese 

participants are more familiar with Chinese characters than English participants. 

In the study of Wang et al. (1994), though, stimulus familiarity is less clear. For 

example, in the critical F-F condition, Wang et al. assumed that the digital 2 and 

digital 5 are familiar stimuli. However, the digital 2 and digital 5 are particular 

visual exemplars of the categories (concepts) 2 and 5. The concepts 2 and 5 are 

familiar, but that does not imply that the particular visual exemplars digital 2 and 

digital 5 are equally familiar. Identification of objects at the categorical level can 

be faster than the identification of exemplars (Rosch, Mervis, Gray, Johnson, & 

Boyes-Braem, 1976). Indeed, we show here that the familiarity of the digital 2 and 

digital 5 can be improved significantly by training, which indicates that these 

stimuli were not familiar in Wang et al.’s study. In turn, this undermines their 

conclusion that search is not efficient in the F-F condition. 

The importance of testing stimulus familiarity independently of search efficiency 

can be further illustrated with the study of Mruczek and Sheinberg (2005). They 

investigated the effect of stimulus familiarity on visual search by training 

participants on a set of natural images. In this way, stimulus familiarity was 

controlled in the experiment. That is, stimulus familiarity increased in the course 

of the experiment, so that its effect on search efficiency could be investigated. A 

main conclusion of the study was that distracter familiarity improves visual search 

efficiency, in line with the conclusions of Malinowski and Hübner (2001) and Shen 

and Reingold (2001).  

However, Mruczek and Sheinberg (2005) investigated stimulus familiarity in two 

different ways. The increase in familiarity of the targets was investigated by 

measuring the response time (RT) for target identification. Targets became more 

familiar in the course of the experiment, because the RT of their identification 

decreased. Yet, the familiarity of the distracters was not investigated in this way. 

Instead, distracter familiarity was trained and investigated with a visual search 

task. The increased efficiency of this task, observed in the course of the 

experiment, was taken as a measure of the increase in distracter familiarity. The 
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difficulty of this approach is that stimulus (distracter) familiarity is no longer an 

independent variable, i.e. independent from search efficiency. As a result, the 

conclusion that distracter familiarity improves search efficiency is based on a 

confounding of distracter familiarity with search efficiency. Search efficiency is 

the operational definition of distracter familiarity in this experiment, thus the 

conclusion in effect states that increased search efficiency improves search 

efficiency. 

The results of Mruczek and Sheinberg (2005) do show that search efficiency can be 

trained. However, to investigate whether stimulus familiarity per se influences 

search efficiency, a confounding between stimulus familiarity and search 

efficiency has to be avoided. That is, to investigate the effect of stimulus 

familiarity on search efficiency, both factors have to be investigated and measured 

separately. Likewise, learning stimulus familiarity has to be separated from 

learning search efficiency, to investigate the effect of the one on the other. 

In this study, we investigated the relation between stimulus familiarity and search 

efficiency. As stimuli we used the digital 2 and digital 5 used by Wang et al. (1994). 

Wang et al. (1994) assumed that the digital 2 and digital 5 are familiar stimuli, but 

as noted above, they could have confused the familiarity of the concepts 2 and 5 

with the (visual) familiarity of the exemplars digital 2 and digital 5. Malinowski 

and Hübner (2001) also suggested that the digital 2 and digital 5 are rather 

atypical versions of the numbers, and that such a deviation from the standard 

impairs search performance. Thus, we investigated whether training could 

improve stimulus familiarity and search efficiency with the digital 2 and digital 5. 

To disentangle stimulus familiarity from search efficiency, we trained and 

measured stimulus familiarity and search efficiency separately.  In this way, we 

could investigate the effect of stimulus familiarity on search efficiency and vice 

versa. 

To study stimulus familiarity (Experiment 1), we used an identification task in 

which one stimulus was presented (either the digital 2 or the digital 5). The task of 

the participant was to identify the stimulus as fast as possible. The RTs in the 

identification task are a measure of the familiarity of the stimuli, as in the case of 

the target in Mruczek and Sheinberg’s (2005) study. To study learning of stimulus 

familiarity, participants performed the identification task during a number of 

consecutive days (> 5760 trials). A decrease in RT during the training phase can be 

seen as an increase of stimulus familiarity (as in the target case of Mruczek & 

Sheinberg, 2005). 
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To study search efficiency (Experiment 1), participants were first tested on a search 

for the digital 2 among digital 5’s and on a search for the digital 5 among digital 

2’s. Then, participants were trained on one of these two search tasks (> 5760 trials). 

After training, participants were again tested on a search for the digital 2 among 

digital 5’s and on a search for the digital 5 among digital 2’s (participants always 

searched for a known target). 

Thus, participants were trained on only one search task. This allows us to 

investigate the relation between stimulus familiarity and search efficiency. First, 

with one search task only, the distracter is presented more often than the target 

during the training phase. This could influence the familiarity of the two stimuli, 

that is, the distracter could become more familiar than the target. If so, there will 

be a difference in RT between the distracter and the target in the identification 

task (in favor of the distracter). Second, the increase of the familiarity of the 

stimuli during training could influence search efficiency, even for the search 

combination that was not trained. In particular, if both stimuli (the digital 2 and 

digital 5) are equally familiar, and if search efficiency depends only on stimulus 

familiarity (i.e., the target and distracter familiarity), there should be no difference 

in search efficiency between the trained search task and the untrained search task. 

A further question addressed with our first experiment was the specificity of 

learning for location. Two previous studies have found effects of learning 

conjunction search that were highly specific for trained locations (Sigman & 

Gilbert, 2000; Treisman, Vieira, & Hayes, 1992). We tested the effect of location by 

comparing the effect of learning at trained and untrained locations within the 

visual field. Again, if search efficiency depends only on stimulus familiarity, 

irrespective of the trained locations, and the digital 2 and digital 5 are equally 

familiar, there should be no difference in search efficiency between the trained 

locations and the untrained locations.  

Finally, we investigated whether the effect of learning search efficiency persisted 

two months after training (Experiment 2), and whether it transferred to other 

search tasks (Experiment 3).  

 

Experiment 1 

To investigate the effect of learning on search efficiency, one search task was 

presented to participants during training. Participants thus searched either for the 

digital 2 among digital 5’s, or for the digital 5 among digital 2’s during the 

training phase. Before and after training, we tested the performance on both 
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search tasks. To investigate the effect of learning on stimulus familiarity, 

participants performed an identification task. In this task, participants viewed a 

single item display, and they had to identify whether the item was the digital 2 or 

the digital 5. The identification task was alternated with the search task during 

training. 

Furthermore, during training, the items were briefly presented at a subset of 

locations within the visual field. The presentation time (150 ms) was chosen to 

prevent voluntary eye-movements, to minimize exposure at other locations 

within the visual field. We tested the performance on both search tasks before and 

after training at the same subset of locations (trained locations), and at another 

subset of locations within the visual field (untrained locations). This allowed us to 

determine to what extent learning was location-specific. 

Before training, performance on both search tasks and at both subsets of locations 

should be equivalent. Hence, we compared search performance in five conditions 

(see Table 1). The first condition comprised both search tasks at both subsets of 

locations before training. In the second and third condition, the untrained search 

task was presented after training, respectively at untrained and at trained 

locations. In the fourth and fifth condition, the trained search task was presented 

after training, respectively at untrained and at trained locations. For brevity, we 

will leave out the specification “after training” for the last four conditions in the 

remainder of the text. 

 

Table 1 

Combinations of search task and locations before and after training, and how they map onto the five 

conditions in Experiments 1 and 2 (1 = Both search tasks, both subsets of locations, before training; 2 = 

Untrained search task, untrained locations, after training; 3 = Untrained search task, trained locations, 

after training; 4 = Trained search task, untrained locations, after training; 5 = Trained search task, 

trained locations, after training) 

Locations 

Search task 
BT, 

untrained 

locations 

BT, 

trained 

locations 

AT, 

untrained 

locations 

AT, 

trained 

locations 

BT, untrained search task 1 1   

BT, trained search task 1 1   

AT, untrained search task   2 3 

AT, trained search task   4 5 

Note. BT = before training; AT = after training. 
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Method 

Participants 

Eight participants with normal or corrected-to-normal vision voluntarily took 

part in the experiment. They were paid for their participation. Six participants 

were 20-23 years old and two participants were 49-50 years old. 

 

Stimuli 

Stimuli were presented on 17” Targa TM 1769-A monitors, with a resolution of 

1024 to 768 pixels and a refresh rate of 100 Hz. See Figures 1A and 1B for 

examples of the stimulus display. The items were the same digital 2 and digital 5 

as in Wang et al.’s (1994) study. They subtended 0.6º horizontally and 0.9º 

vertically. Both in the search task and in the identification task, the items 

appeared randomly at 12 of 24 possible locations on two virtual presentation 

circles. The small presentation circle contained 8 possible locations, and the large 

presentation circle 16. The diameter of the small and large presentation circle was 

about 7º and 14º respectively. The items appeared either in the first and third 

quadrant of the presentation circles, or in the second and fourth quadrant of the 

presentation circles. In the search task, the target was either present or absent, and 

the setsize varied from 1 to 12 items. In the identification task, either one digital 2 

or one digital 5 was presented (each one an equal number of times). The computer-

generated stimuli were black and appeared on a white background. A quarter of 

the participants were randomly assigned to each of the four combinations of 

search task and locations for training. 

 

Procedure 

Participants were seated in a dimly lit room at approximately 60 cm of the screen. 

Each trial began with the presentation of a fixation cross at the center of the screen 

for 600 ms, which remained visible in the stimulus display. Immediately 

thereafter, the stimulus display appeared. During training, the stimulus display 

was visible for 150 ms. Before and after training, the stimulus display remained 

present until a response was given. In the search and identification task 

participants were asked to indicate respectively whether the target was absent or 

present and whether the item was a digital 2 or digital 5, by pressing one of two 

keyboard buttons. Participants were requested to respond as quickly as possible 

without making mistakes. A black word (“wrong”) was flashed for 400 ms 
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following errors. The response was followed by an interval of 200 ms until the 

onset of the fixation cross for the following trial. 

 

 
Figure 1. (A) Example of a stimulus display in Experiment 1, for search for the digital 2 among digital 5’s 

at one subset of locations. (B) Example of a stimulus display in Experiment 1, for search for the digital 5 

among digital 2’s at another subset of locations. (C) Example of a stimulus display in Experiment 3, for 

search for the digital 4 among mirrored digital 4’s. (D) Example of a stimulus display in Experiment 3, for 

search for the N among mirrored N’s. 

 

Each participant served in one session of about 2 hour before training, six sessions 

of about 1.5 hour during training, and one session of about 2 hour after training. 

Before and after training, a session consisted of 44 blocks of 48 trials (11 blocks for 

each combination of search task and locations), preceded by 48 practice trials. One 

cycle of 4 blocks was repeated 11 times. Within a cycle, there were two blocks for 

one search task, followed by two for the other, with the same order of locations in 

each pair. Before each block, the search target was displayed on the screen until 
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participants pressed a key. There were 24 presentation combinations in each block 

(target absent vs. target present · 12 setsizes), and each combination was repeated 

two times in a block in random order. After each block, participants received 

feedback about their average response time and their accuracy in the last block, 

and a comparison to the previous block. At the same time, they were encouraged to 

take a break. 

During training, a session consisted of 40 blocks of 48 trials, preceded by 12 

practice trials. One cycle of 20 blocks was repeated twice. Within a cycle, there were 

10 blocks for one specific combination of search task and locations (trained search 

task, trained locations), followed by 10 blocks for the identification task. 

Participants performed the six training sessions within two weeks, and no more 

than one session was scheduled per day. 

 

  
Figure 2. Response time and error rate as a function of training session, for the trained search task, and for 

the identification task separately for the target and distracter item. 

 

Results: Training sessions 

Figure 2 shows the response time (RT) and the error rate as a function of training 

session for the identification task. The two stimuli are defined as targets and 

distracters, in terms of their use in the trained search task. A repeated measures 

analysis of variance (ANOVA) was performed on the RTs and the error rates 

separately, treating the two stimuli (i.e., targets and distracters) and training 

session (i.e., 1, 2, 3, 4, 5, and 6) as within-subject variables. There was only a main 

effect of training session for the RTs [F(5, 35) = 11.72, p < .001], indicating that the 
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stimulus familiarity of the targets and distracters improved in the course of the 

experiment. Figure 2 also shows the RT and the error rate as a function of training 

session for the trained search task. The results show that search efficiency of the 

trained search task improved in the course of the experiment. The increase of 

search efficiency could have affected stimulus familiarity. In particular, the 

distracters outnumber the targets in the training phase of search efficiency. This 

could have induced a difference in familiarity between the target and the 

distracter. However, the target was identified just as fast and accurate as the 

distracter in the identification task [RTs, F(1, 7) = 0.012, p = .917; error rates, F(1, 7) 

= 1.24, p = .302] (see Figure 2).  

 

Results: Comparison before and after training  

Figure 3A shows the RT and the error rate as a function of condition, setsize, and 

target presence. For each participant, response times (RTs) that were more than 2.5 

standard deviations above or below the mean RT of each combination of search 

task, locations, target presence and setsize, before and after training, were 

eliminated. This removed 2.25% of the trials. Analyses of RTs and search slopes are 

done over correct trials. 

RTs and error rates before training were analyzed with an ANOVA, with search 

task, locations, and target presence as within-subject variables. As expected, for 

the RTs, there was only a main effect of target presence [F(1, 7) = 30.70, p = .001]. 

The main effect of search task [F(1, 7) = 0.14, p = .715], the main effect of locations 

[F(1, 7) = 0.85, p = .387], the Search Task · Locations interaction [F(1, 7) = 0.01, p = 

.919], the Search Task · Target Presence interaction [F(1, 7) = 0.55, p = .484], the 

Location · Target Presence [F(1, 7) = 3.46, p = .105], and the Search Task · 

Locations · Target Presence interaction [F(1, 7) = 0.04, p = .842] were all not 

significant. Likewise, for the error rates, there was only a main effect of target 

presence [F(1, 7) = 101.79, p < .001]. The main effect of search task [F(1, 7) = 0.39, p 

= .552], the main effect of locations [F(1, 7) = 0.11, p = .755], the Search Task · 

Locations interaction [F(1, 7) = 0.25, p = .636], the Search Task · Target Presence 

interaction [F(1, 7) = 0.06, p = .820], the Location · Target Presence [F(1, 7) = 0.03, p 

= .868], and the Search Task · Locations · Target Presence interaction [F(1, 7) = 

3.90, p = .089] were all not significant. This allowed us to collapse over the four 

combinations of search task and locations before training, in line with our 

proposed condition scheme. We will refer to the five combinations of search task 

and locations before and after training (see Table 1) as the factor condition. 
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Figure 3. (A) Response time and error rate as a function of setsize, for the condition before training and the 

four conditions after training, separately for target absent and present trials. (B) Response time and error 

rate as a function of setsize, for the condition before training and the four conditions two months after 

training, separately for target absent and present trials. 
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Response times 

RTs were submitted to an ANOVA with condition and target presence as within-

subject variables.1 The analysis revealed a main effect of condition [F(4, 28) = 

65.17, p < .001 (Greenhouse-Geisser)]. Responses were faster after training than 

before training [condition 1 versus 2, t(7) = 6.10, p < .001; condition 1 versus 3, t(7) 

= 6.81, p < .001; condition 1 versus 4, t(7) = 12.34, p < .001; and condition 1 versus 

5, t(7) = 13.34, p < .001]. Responses to the trained search task were faster than to 

the untrained search task [condition 2 versus 4, t(7) = 4.27, p = .004; condition 2 

versus 5, t(7) = 4.54, p = .003; condition 3 versus 4, t(7) = 4.28, p = .004; and 

condition 3 versus 5, t(7) = 5.17, p = .001]. Moreover, responses to the trained 

search task at trained locations were fastest [condition 4 versus 5, t(7) = 3.50, p = 

.010]. As expected, responses were slower in target absent than in target present 

trials [F(1, 7) = 20.15, p = .003 (Greenhouse-Geisser)]. 

In addition, condition interacted significantly with target presence [F(4, 28) = 

15.52, p < .001]. Planned comparisons revealed that responses in target absent 

trials were slowed down less (in comparison to target present trials) after training 

than before training [condition 1 versus 2, t(7) = 3.41, p = .011; condition 1 versus 

3, t(7) = 4.55, p = .003; condition 1 versus 4, t(7) = 6.25, p < .001; and condition 1 

versus 5, t(7) = 4.74, p = .002]. Responses in target absent trials were also slowed 

down less for the trained search task than for the untrained search task, at 

untrained locations [condition 2 versus 4, t(7) = 2.76, p = .028]. 

 

Search slopes 

For each participant, we computed the linear regression of RT on setsize, 

separately for each condition and for target absent and target present trials. The 

search slopes found for each participant were submitted to an ANOVA with 

condition and target presence as within-subject variables. Search slopes differed 

across conditions [F(4, 28) = 22.30, p < .001 (Greenhouse-Geisser)]. Search slopes 

were shallower after training than before training [condition 1 versus 2, t(7) = 3.72, 

p = .007; condition 1 versus 3, t(7) = 2.98, p = .021; condition 1 versus 4, t(7) = 6.94, 

p < .001; and condition 1 versus 5, t(7) = 6.71, p < .001]. In addition, search slopes 

were shallower for the trained search task than for the untrained search task 

[condition 2 versus 4, t(7) = 4.56, p = .003; condition 2 versus 5, t(7) = 5.08, p = .001; 

condition 3 versus 4, t(7) = 3.53, p = .010; and condition 3 versus 5, t(7) = 3.66, p = 

.008]. Finally, search slopes tended to be steeper in target absent than in target 
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present trials, but this effect was only marginally significant [F(1, 7) = 5.25, p = 

.056]. 

 

Error rates 

The mean error rate was 6.51%. Error rates were submitted to an ANOVA with 

condition, target presence and setsize as within-subject variables. The analysis 

revealed a main effect of condition [F(4, 28) = 12.01, p = .001 (Greenhouse-

Geisser)]. The error rate was higher after training than before training [condition 1 

versus 2, t(7) = -5.13, p = .001; condition 1 versus 3, t(7) = -4.24, p = .004; condition 

1 versus 4, t(7) = -3.08, p = .018; and condition 1 versus 5, t(7) = -3.28, p = .014]. 

Participants made less errors to the trained search task at trained locations than to 

the untrained search task at trained or untrained locations [condition 2 versus 5, 

t(7) = 6.02, p = .001; and condition 3 versus 5, t(7) = 4.46, p = .003]. 

Furthermore, participants made more errors in target present than in target 

absent trials [F(1, 7) = 67.23, p < .001]. This difference in error rate tended to be 

larger after training than before training [condition 1 versus 2, t(7) = 2.22, p = .062; 

condition 1 versus 3, t(7) = 4.82, p = .002; and condition 1 versus 4, t(7) = 2.77, p = 

.028], except for the trained search task at trained locations [condition 1 versus 5, 

t(7) = 1.45, p = .19; condition 3 versus 5, t(7) = -4.19, p = .004; and condition 4 

versus 5, t(7) = -2.31, p = .054], as indicated by a significant Condition · Target 

Presence interaction [F(4, 28) = 7.20, p < .001]. This may reflect that the bias for 

absent responses slightly increases through training, except for the trained search 

task at trained locations. 

In addition, the error rate increased with an increasing setsize [F(11, 77) = 10.49, p 

< .001 (Greenhouse-Geisser)]. This effect was more pronounced for target present 

trials than for target absent trials [F(11, 77) = 11.50, p < .001 (Greenhouse-Geisser)]. 

Importantly, condition did not interact with setsize [F(44, 308) = 1.44, p = .233 

(Greenhouse-Geisser)]. 

 

Discussion 

The results show that the stimulus familiarity of the digital 2 and digital 5 

increased during training. Thus, contrary to Wang et al.’s (1994) assumption, the 

digital 2 and digital 5 were not familiar stimuli in their experiment. Therefore, 

the F-F condition in their experiment was in fact an U-U condition. Therefore, the 

lack of search efficiency obtained with the F-F condition in Wang et al.’s 
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experiment cannot be seen as evidence for the notion that efficient search occurs 

only in the U-F condition.  

The results also show that search for the digital 2 (digital 5) among digital 5’s 

(digital 2’s) can become more efficient through training. Yet, search for the digital 

2 (digital 5) among digital 5’s (digital 2’s) did not become as efficient as in Wang et 

al’s (1994) U-F condition, despite intensive practice (> 5760 search trials). The 

average search slope in Wang et al’s (1994) U-F condition, averaged over target 

absent and target present trials, was 5 ms / item for the mirrored N-N target-

distracter pair and 11.5 ms / item for the mirrored Z-Z target-distracter pair. In 

comparison, the average search slope decreased from 33 ms / item before training 

to 13 ms / item for the trained search task at trained locations in our experiment.  

Hence, visual search became more efficient in our experiment, and stimulus 

familiarity (both of the target and the distracter) increased as well. Nonetheless, 

we obtained a dissociation between stimulus familiarity and search efficiency in 

our experiment. Stimulus familiarity, and the increase of stimulus familiarity 

during learning, was the same for targets and distracters. If stimulus familiarity 

(either of the target, the distracters, or both) is the only contributing factor to 

search efficiency, search efficiency should be similar for the trained and the 

untrained search task, because both tasks consisted of equally familiar stimuli. 

Yet, search efficiency increased more in the trained search task than in the 

untrained search task. Naturally, the distracters outnumbered the target in the 

trained search task (averaged over all setsizes). Even though this had no effect on 

the familiarity of the distracters (as compared to the familiarity of the target), the 

training of target and distracters in the trained search task had an additional effect 

on search efficiency.  

The additional increase in search efficiency of the trained search task could 

perhaps have resulted from a locality effect, in particular for the distracters in the 

trained search task. If training a search task affects the local representation of the 

distracters, there would have to be a difference between the trained locations and 

the untrained locations for the trained search displays. Because the trained search 

task is not trained at the untrained locations, the difference between the trained 

and untrained search tasks would have to disappear at the untrained locations.  

However, improvement in search performance specific to the trained search task 

was not limited to trained locations. Also at untrained locations, performance on 

the trained search task was clearly faster and more efficient than performance on 

the untrained search task. In fact, the average search slope for the trained search 
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task was not shallower at trained locations (13 ms / item) than at new (14 ms / item) 

locations. However, responses to the trained search task were faster at trained 

locations (504 ms) than at untrained locations (523 ms). Thus, the improvement in 

search performance specific to the trained search task generalizes greatly from 

trained to untrained locations, except for a small benefit in response time at 

trained locations, as compared with untrained locations. 

Finally, Table 2 reveals that the search slope varied enormously among 

participants before and after training (for the trained search task at trained 

locations). Participants also differed considerably in the decrease in search slope 

through training.  

 

Table 2 

Search slope (in milliseconds per item) for each participant before training and after training for the 

trained search task at trained locations  

Participant 
Condition 

1 2 3 4 5 6 7 8 

BT 43.9 26.2 22.4 45.4 36.2 24.2 34.2 34.7 

AT, trained search 

task, trained locations 
5.7 8.3 10.5 34.6 11.5 5.1 11.6 16.5 

Note. BT = before training; AT = after training. 

 

Experiment 2 

In this experiment we investigated whether the effect of learning in Experiment 1, 

such as the difference between the trained search task and the untrained search 

task, persisted over two months. Therefore, we tested the performance on each 

combination of search task (trained or untrained) and location (trained or 

untrained) two months after training, and compared it with the performance 

before training.2 

 

Method 

The same 8 participants as those in Experiment 1 voluntarily took part in the 

experiment. The stimuli, design and procedure were equal to those before and 

after training in Experiment 1, except for the fact that only the odd numbered 

setsize conditions from Experiment 1 (i.e., 1, 3, 5, 7, 9, and 11) were included. This 

change was made to reduce the duration of the second experiment, as the 

participants already had served about thirteen hours in the first experiment. The 
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setsize thus varied from 1 to 11. The experiment was divided into 24 blocks of 48 

trials (6 blocks for each combination of search task and locations), preceded by 48 

practice trials. One cycle of 4 blocks was repeated 6 times. Within a cycle, there 

were two blocks for one search task, followed by two for the other, with the same 

order of locations in each pair. There were 12 presentation combinations in each 

block (target absent vs. target present · 6 setsizes), and each combination was 

repeated four times in a block in random order.  

As in Experiment 1, we mapped each combination of search task and locations 

onto the conditions 2-5 (see Table 1). For brevity, we will leave out the 

specification “two months after training” for these conditions in the remainder of 

this section. 

 

Results 

Figure 3B plots the RT and the error rate as a function of condition, setsize and 

target presence. For each participant, RTs that were more than 2.5 standard 

deviations above or below the mean RT of each combination of search task, 

locations, target presence and setsize, before and two months after training, were 

eliminated. This removed 2.37% of the trials. Analyses of RTs and search slopes are 

done over correct trials. 

 

Response times 

RTs were submitted to an ANOVA with condition and target presence as within-

subject variables. The analysis revealed a main effect of condition [F(4, 28) = 18.36, 

p = .001 (Greenhouse-Geisser)]. Responses were faster after training than before 

training [condition 1 versus 2, t(7) = 3.26, p = .014; condition 1 versus 3, t(7) = 3.52, 

p = .010; condition 1 versus 4, t(7) = 6.49, p < .001; and condition 1 versus 5, t(7) = 

6.12, p < .001]. Responses to the trained search task were faster than to the 

untrained search task [condition 2 versus 4, t(7) = 2.66, p = .033; condition 2 versus 

5, t(7) = 2.85, p = .025; condition 3 versus 4, t(7) = 2.82, p = .026; and condition 3 

versus 5, t(7) = 3.13, p = .017]. As expected, responses were slower in target absent 

than in target present trials [F(1, 7) = 20.27, p = .003 (Greenhouse-Geisser)]. 

In addition, condition interacted significantly with target presence [F(4, 28) = 

5.11, p = .003]. Planned comparisons revealed that responses in target absent trials 

were slowed down less (in comparison to target present trials) for the trained 

search task than before training [condition 1 versus 4, t(7) = 4.69, p = .002; and 

condition 1 versus 5, t(7) = 2.57, p = .037]. Responses in target absent trials were 
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slowed down least for the trained search task at untrained locations [condition 2 

versus 4, t(7) = 3.03, p = .019; condition 3 versus 4, t(7) = 2.20, p = .063; and 

condition 5 versus 4, t(7) = 2.47, p = .043]. 

 

Search slopes 

For each participant, we computed the linear regression of RT on setsize, 

separately for each condition and for target absent and target present trials. The 

search slopes found for each participant were submitted to an ANOVA with 

condition and target presence as within-subject variables. Search slopes differed 

across conditions [F(4, 28) = 6.50, p < .001]. Search slopes for the trained search task 

were shallower than before training [condition 1 versus 4, t(7) = 4.54, p = .003; and 

condition 1 versus 5, t(7) = 3.67, p = .008]. In addition, search slopes tended to be 

shallower for the trained search task than for the untrained search task, but this 

was only marginally significant [condition 2 versus 4, t(7) = 2.21, p = .063; 

condition 2 versus 5, t(7) = 1.98, p = .088; condition 3 versus 4, t(7) = 2.22, p = .062; 

and condition 3 versus 5, t(7) = 2.11, p = .073]. Finally, search slopes were steeper in 

target absent than in target present trials [F(1, 7) = 11.65, p = .011]. 

 

Error rates 

The mean error rate was 4.93%. Error rates were submitted to an ANOVA with 

condition, target presence and setsize as within-subject variables. The analysis 

revealed a main effect of condition [F(4, 28) = 6.54, p = .001]. The error rate was 

higher for the untrained search task than before training [condition 1 versus 2, t(7) 

= -2.84, p = .025; and condition 1 versus 3, t(7) = -2.61, p = .035]. Participants made 

less errors to the trained search task than to the untrained search task [condition 2 

versus 4, t(7) = 2.65, p = .033; condition 2 versus 5, t(7) = 3.56, p = .009; condition 3 

versus 4, t(7) = 2.35, p = .051; and condition 3 versus 5, t(7) = 3.70, p = .008]. 

Furthermore, participants made more errors in target present than in target 

absent trials [F(1, 7) = 26.98, p = .001 (Greenhouse-Geisser)]. 

In addition, the error rate increased with an increasing setsize [F(5, 35) = 12.45, p = 

.001 (Greenhouse-Geisser)]. This effect was more pronounced for target present 

trials than for target absent trials [F(5, 35) = 4.64, p = .022 (Greenhouse-Geisser)].  

 

Discussion 

We still found an effect of training on the search tasks two months after training. 

The performance on the trained search task was faster and more efficient than 
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before training (see Figure 4). Moreover, performance was faster, less erroneous, 

and slightly more efficient on the trained search task than on the untrained search 

task. Furthermore, there was no benefit in response time anymore for the trained 

search task at trained locations, as compared with untrained locations. Hence, two 

months after training, there was no longer any effect of learning that was specific 

for trained locations. 

 

Experiment 3 

The digital 2 and digital 5 differ only in the global pattern (i.e., the specific 

conjunction of the same lines).  Having established that an effect of training visual 

search for the digital 2 (digital 5) among digital 5’s (digital 2’s) persisted two 

months after training, we tested in a third experiment whether learning in this 

task transferred to another task in which the target and distracters differ only in 

the global pattern (digital 4 among mirrored digital 4’s), and/or to a task in which 

the target and distracters differ in a visual feature, i.e., the orientation of the 

oblique, (N among mirrored N’s). Leonards, Rettenbach, Nase, and Sireteanu 

(2002, Experiment 5), also investigated whether learning a task in which the 

target and distracters differ only in the global pattern transfers to a task in which 

the target and distracters additionally differ in a visual feature. They found no 

transfer of learning between the two tasks. 

 

Method 

Participants 

Six of the participants of Experiment 1 and 14 naïve participants with normal or 

corrected-to-normal vision voluntarily took part in the experiment.  

 

Stimuli 

Two target-distracter pairs were used: the digital 4 as target among mirrored 

digital 4’s as distracters, and the N as target among mirrored N’s as distracters (see 

Figures 1C and 1D). The digital 4 and mirrored digital 4 subtended 0.6º · 0.9º and 

the N and mirrored N 0.9º · 0.9º. The setsize varied from 1 to 6, and items 

appeared randomly at all 24 possible locations on the two virtual presentation 

circles. 
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Figure 4. Response time, error rate and search slope for the condition before training, the four conditions 

after training, and the four conditions two months after training. The error bars show the standard error 

of the mean. 
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Procedure 

The procedure was identical to the one before and after training in Experiment 1, 

except for the number of trials. The experiment consisted of 12 blocks of 48 trials, 

preceded by 24 practice trials. One cycle of 2 blocks was repeated 6 times. Within a 

cycle, there was one block for one target-distracter pair, followed by one for the 

other. Before each block, the search target was displayed on the screen until 

participants pressed a key. There were 12 presentation combinations in each block 

(target absent vs. target present · 6 setsizes), and each combination was repeated 

four times in a block in random order. 

 

Results 

Figure 5 shows the RT and the error rate as a function of experience (naïve 

participants versus trained participants), target presence and setsize, for each 

target-distracter pair. For each participant, RTs that were more than 2.5 standard 

deviations above or below the mean RT of each combination of target-distracter 

pair, target presence and setsize, were eliminated. This removed 2.20% of the 

trials. Analyses of RTs and search slopes are done over correct trials.  

 

Response times 

RTs were submitted to an ANOVA with target-distracter pair and target presence 

as within-subject variables, and experience as a between-subject variable. 

Responses to the N-mirrored N pair were slower than to the digital 4-mirrored 

digital 4 pair [F(1, 18) = 13.94, p = .002 (Greenhouse-Geisser)]. As expected, 

responses were slower in target absent than in target present trials [F(1, 18) = 

43.23, p < .001 (Greenhouse-Geisser)]. 

 

Search slopes 

For each participant, we computed the linear regression of RT on setsize, 

separately for each target-distracter pair and for target absent and target present 

trials. The search slopes found for each participant were submitted to an ANOVA 

with target-distracter pair and target presence as within-subject variables, and 

experience as a between-subject variable. Search slopes were steeper for the N-

mirrored N pair than for the digital 4-mirrored digital 4 pair [F(1, 18) = 7.17, p = 

.015 (Greenhouse-Geisser)]. Furthermore, search slopes were steeper in target 

absent than in target present trials [F(1, 18) = 12.95, p = .002 (Greenhouse-

Geisser)]. 
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Figure 5. Response time and error rate as a function of experience (trained participants / naïve 

participants), target presence and absence, and setsize, when searching for N among mirrored N’s, and 4 

among mirrored 4’s. 

 

Error rates 

The mean error rate was 5.04%. Error rates were submitted to an ANOVA with 

target-distracter pair, target presence and setsize as within-subject variables, and 

experience as a between-subject variable. Participants made more errors to the N-

mirrored N pair than to the digital 4-mirrored digital 4 pair [F(1, 18) = 4.46, p = 

.049 (Greenhouse-Geisser)]. Also, participants made more errors in target present 

than in target absent trials [F(1, 18) = 19.69, p < .001 (Greenhouse-Geisser)]. 

Furthermore, the error rate increased with an increasing setsize [F(5, 90) = 6.82, p < 

.001 (Greenhouse-Geisser)]. This effect was more pronounced for target present 

trials than for target absent trials [F(5, 90) = 10.55, p < .001 (Greenhouse-Geisser)]. 

 

Discussion 

Figure 5 suggests that trained participants searched faster for N among mirrored 

N’s and for digital 4 among mirrored digital 4’s than naïve participants, especially 

for larger setsizes. However, the search performance on these tasks did not differ 
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reliably between naïve participants and trained participants, irrespective of the 

fact that the latter group of participants had extensive practice with the task of 

searching for digital 2 (digital 5) among digital 5’s (digital 2’s). Thus, there was no 

significant benefit of learning a search task in which the target and distracters 

differ only in the global pattern (i.e., the specific conjunction of the same lines) on 

another search task in which the target and distracters differ only in the global 

pattern, or on a search task in which the target and distracters differ in a visual 

feature. Hence, we replicated the finding of Leonards et al. (2002), who found no 

transfer of learning a task in which the target and distracters differ only in the 

global pattern to a task in which the target and distracters in addition differ in a 

visual feature. The results further suggest that learning in Experiment 1 is 

confided to the actual stimuli used. Thus, the results of this experiment indicate 

that the results of Experiment 1 are based on visual learning. 

 

General discussion 

Previous studies provide evidence that stimulus familiarity affects visual search 

efficiency. Wang et al. (1994) concluded on the basis of their experiment that 

visual search is efficient when the target is unfamiliar and the distracters are 

familiar (i.e., the U-F condition). In contrast, Malinowski and Hübner (2001) and 

Shen and Reingold (2001) presented evidence that visual search is efficient when 

the distracters are familiar, regardless of target familiarity. The difference between 

these studies is thus the condition in which the target and the distracters are 

familiar (i.e., the F-F condition). Wang et al. observed inefficient search in this 

condition, in contrast with the (more) efficient search observed by Malinowski and 

Hübner (2001) and Shen and Reingold (2001). However, in their F-F condition, 

Wang et al. (1994) used the digital 2 and digital 5 as stimuli, assuming that they 

are familiar. Here, we showed that the digital 2 and digital 5 can be made more 

familiar by training, which suggests that they were not familiar in Wang et al.’s 

study. Thus, the F-F condition in their study was in effect an U-U condition. As a 

result, the conclusion of Wang et al. that efficient search does not occur in the F-F 

condition is unfounded.  

Yet, the results of Experiment 1 also demonstrate that, even after extensive 

training, search for the digital 2 (digital 5) among digital 5’s (digital 2’s) did not 

become as efficient as in Wang et al.’s (1994) U-F condition. Perhaps the similarity 

between the digital 2 and digital 5, both consisting of the same lines, could also 

have limited the search efficiency in Wang et al.’s (1994) F-F condition. This 
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suggestion is consistent with results of Shen and Reingold (2001, Experiment 1), 

who tested search efficiency for several item pairs (i.e., capital letters and digital 

numbers versus their mirrored forms) in the U-F and the F-U condition. The 

difference in search efficiency between the U-F condition and the F-U condition, as 

well as the search efficiency in each condition, were larger when the two items 

differed in a low-level feature (or a global orientation cue) than when they differed 

only in the arrangements of the same lines.  

The results of the present study emphasize the importance of controlling for the 

level of stimulus familiarity when studying the effect of familiarity in visual 

search. In previous studies, stimulus familiarity was not measured, but assumed 

to exist. One exception is the study of Mruczek and Sheinberg (2005). They trained 

participants on a set of natural images, to be used as targets or distracters in a 

search task. In Mruczek and Sheinberg’s (2005) study, target familiarity was tested 

by measuring RTs in an identification task. However, Mruczek and Sheinberg 

(2005) measured distracter familiarity by means of a search task, in which 

increased search efficiency was taken as a measure of increased familiarity. As a 

result, distracter familiarity was confounded with search efficiency in this study, 

undermining its conclusion that increased distracter familiarity results in more 

efficient search.  

Therefore, to investigate the effect of stimulus familiarity on search efficiency, and 

in particular to investigate the relation between learning stimulus familiarity and 

learning search efficiency, a test of stimulus familiarity is needed that is 

independent of search efficiency itself. To this end, we studied and tested stimulus 

familiarity (both of the target and distracters) using the RTs in an identification 

task. 

We trained participants on the identification task of the digital 2 and digital 5, 

together with one of the two possible search tasks with these stimuli. Thus, 

participants were trained to search for the digital 2 (or digital 5) among digital 5’s 

(or digital 2’s). Participants were tested on both search tasks (before and after 

training). The results of the identification task show that the stimuli became more 

familiar in the course of the experiments, and that there was no difference in the 

familiarity of the stimuli, despite the fact that the distracter stimulus was 

presented more often in the trained search task than the target stimulus. The 

results of both the trained and the untrained search task show that search for the 

digital 2 (digital 5) among digital 5’s (digital 2’s) became more efficient through 

training.3 
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Although the search efficiency thus increased with stimulus familiarity in our 

experiment, stimulus familiarity and search efficiency were also (partly) 

dissociated in our experiment. Stimulus familiarity and the increase of stimulus 

familiarity during learning were the same for targets and distracters. Thus, if 

stimulus familiarity is the only contributing factor to search efficiency, search 

efficiency should be similar for the trained and the untrained search task, given 

that both tasks consisted of equally familiar stimuli. Yet, search efficiency 

increased more in the trained search task than in the untrained search task.  

As we noted above, the additional increase in search efficiency of the trained search 

task could perhaps have resulted from a locality effect, in particular for the 

distracters in the trained search task. This suggestion is in line with the structure 

of the visual cortex. Stimuli are processed and represented through a hierarchy of 

areas, beginning in the lower areas, in which the neurons have small receptive 

fields, and ending in the higher areas, in which neurons have large receptive 

fields. Training of stimulus familiarity could in particular have an effect on the 

higher areas, because stimulus identity is represented in these areas. However, 

training a search task could also affect the processing and representation in the 

lower areas. In particular, the representation and processing of the distracters 

could be affected in these areas, for example, due to an increased interaction 

between these distracter representations. This interaction would not necessarily 

affect the higher areas in the visual cortex, and would therefore not influence the 

familiarity of the distracters, but it could influence the process of searching a 

target among the distracters.   

If training a search task affects the local representation of the distracters, there 

would have to be a difference between the trained locations and the untrained 

locations for the trained search displays. Furthermore, because the trained search 

task is not trained at the untrained locations, the difference between the trained 

and untrained search tasks would have to disappear at the untrained locations.  

Nonetheless, the improvement in performance specific to the trained search task 

was not limited to trained locations. Also at untrained locations, performance on 

the trained search task was clearly faster and more efficient than performance on 

the untrained search task. This difference remained two months after training. 

Furthermore, although responses to the trained search task were faster at trained 

locations than at untrained locations directly after training, this difference 

disappeared two months after training. Thus, the improvement in search 
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performance specific to the trained search task generalizes from trained to 

untrained locations, and this transfer is sustainable over time.  

The (partial) dissociation between stimulus familiarity and search efficiency 

observed in our experiments shows that search efficiency does not only depend on 

the familiarity of the distracters (Malinowski & Hübner, 2001; Shen & Reingold, 

2001; Mruczek & Sheinberg, 2005) or on the difference in familiarity between the 

target and the distracters (Wang et al., 1994). Apparently, learning the distracters 

as a group also affects search efficiency, even though it does not result in an 

increased familiarity of the distracter stimulus as compared to the familiarity of 

the target stimulus. Previous research has shown that learning results in better 

grouping of the distracters, and that this better grouping of the distracters 

facilitates faster target detection (Karni & Sagi, 1991; Treisman, 1982).  

In our experiments, distracter grouping also transferred to untrained locations. In 

contrast, Treisman et al. (1992, Experiment 3) found effects of learning 

conjunction search that were highly specific for trained locations. Participants 

learned to search for four targets defined by a conjunction of a color and shape 

(i.e., a letter) among distracters. Two of the four targets were presented more often 

at one possible display location (non-overlapping) than at the other seven possible 

display locations, the consistent targets. In the course of training (about 4500 

trials), a large benefit emerged for the consistent targets in their frequent location, 

and an increasing cost when they appeared in the infrequent locations. However, 

in Treisman et al.’s (1992) third experiment targets were defined by a conjunction 

of a color and shape. We have proposed before that binding of a color and shape 

requires interaction between bottom-up and top-down processing at lower 

retinotopic visual areas (Van der Velde & De Kamps, 2001; Van der Velde, De 

Kamps, & Van der Voort van der Kleij, 2004). As receptive fields within lower 

visual areas are relatively small, neuronal modification at this level may result in 

highly location-specific learning.  

Sigman and Gilbert (2000) also found effects of learning conjunction search that 

were highly specific for trained locations. They trained participants to detect a 

triangle of a particular orientation among triangles of other orientations. After 

training, search for the trained target was efficient within the training region, but 

not outside the trained region of the visual field. However, in Sigman and 

Gilbert’s (2000) experiment, the untrained region was more eccentric than the 

trained region. As search efficiency is shown to decrease with a smaller search 

items’ size / eccentricity ratio (Humphreys, Quinlan, & Riddoch, 1989), the higher 
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search efficiency within the trained region than within the untrained region in 

Sigman and Gilbert’s (2000) study may be attributed to the difference in 

eccentricity. Moreover, Sigman and Gilbert’s (2000) task required processing at 

lower visual areas, in which the spatial resolution is high, while processing at 

higher visual areas sufficed for our task (c.f., Ahissar & Hochstein, 1997, 2004). 

The stimulus array and setsize were respectively smaller and larger in Sigman and 

Gilbert’s (2000) task (stimulus array, 4.2º · 4.2º; setsize, 24) than in our task 

(stimulus array, diameter 7º-14º; setsize, 1-12). As a result, neuronal modification 

may have resulted in stronger location-specific learning in Sigman and Gilbert’s 

(2000) experiment than in our experiment. 

The results of Experiment 3 suggest that the results of Experiment 1 (and 2) are 

based on visual learning. Thus, it seems that in Experiment 1 a grouping of 

distracters was learned with a representation at a high level of the visual hierarchy 

(perhaps comparable to a Gestalt pattern). In this way, the recognition of the 

pattern of distracters could transfer to other untrained locations. Learning the 

distracters as a pattern had an effect on search efficiency over and above the effect 

produced by the increase of stimulus familiarity, but it did not affect stimulus 

familiarity itself. The persistence of the results two months after training suggests 

that pattern learning of distracters is stable over time. 
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Chapter 5 | Interaction between gradual saliency and 

top-down visual attention within the color dimension 

Models of visual attention suggest that stimulus-driven and top-down attentional 

mechanisms together select locations for attention by respectively favoring 

locations with unique features, explaining pop-out, and locations with designated 

target features. Here, we investigated whether the (stimulus-driven) saliency of 

elements gradually increases as fewer elements in the display share some 

characteristic, and the interaction of this gradual saliency with top-down visual 

attention (for color). Experiment 1 demonstrates that saliency is gradual, while 

the benefit of shifting attention to elements from a minority colored set was 

restricted. Experiments 2-4 show that top-down visual attention decreases the 

response time when the target is already salient. Experiment 5 shows that colored 

elements already activate the mechanisms responsible for saliency when they are 

presented for 50 ms, whereas they enable the selection by top-down visual 

attention when they are presented for 100 ms. 

 

Introduction 

In pop-out visual search, participants are shown displays composed of multiple 

elements on a background. All of the elements share the same features (e.g., color, 

shape, size, etc), the distracters, but one element, the singleton, differs in the value of 

one of these features. The number of distracters has a minimal effect on the time 

needed to detect the singleton. In other words, the search slope is (almost) zero, 

and search is very efficient. There are many studies showing (almost) zero search 

slopes to detect the presence or the absence of a singleton embedded between 

distracters (for an overview, see Wolfe & Horowitz, 2004). 

Pop-out is considered as a bottom-up effect in most models of visual attention 

(Cave, 1999; Itti & Koch, 2000; Li, 2002; Wolfe, 1994). Bottom-up processing refers 

to the processing of a stimulus from lower-level areas to higher-level areas in the 

visual processing hierarchy. It is driven by the stimulus and top-down knowledge 

does not play a role. In these models, the relative uniqueness of each element with 

respect to its context, the saliency, is first computed through bottom-up 

processing. Then, spatial attention is directed either automatically (Cave, 1999; 

Itti & Koch, 2000; Li, 2002; Wolfe, 1994) or voluntary (Treisman & Sato, 1990) to 
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the most salient location. In pop-out visual search, this is the location of the 

singleton, which is unique compared to the other elements. 

The question arises as to whether saliency is an all-or-none phenomenon, or 

whether elements become increasingly salient as fewer and fewer elements in the 

display share a characteristic. Our hypothesis is that elements become increasingly 

salient as fewer and fewer elements in the display share a characteristic. We will 

refer to this as gradual saliency. 

Studies of conjunction search have provided indirect evidence for gradual saliency 

(Sobel & Cave, 2002; Zohary & Hochstein, 1989). In conjunction search, a target is 

(usually) defined by a conjunction of two features, and the distracters share one of 

the two target features. Zohary and Hochstein (1989), for example, had 

participants search for a red vertical element, whereas the distracters were green 

vertical elements and red horizontal elements. They varied the proportions of the 

two types of distracters, and showed that the search for the target proceeded 

through the smallest group of distracters; smaller-group search. Sobel and Cave 

(2002) have replicated this finding in several variations of this task. Smaller-group 

search indicates that rarer elements are searched earlier or faster than more 

common elements. Thus, smaller-group search in conjunction search is consistent 

with the existence of gradual saliency. 

However, in conjunction search it is very advantageous to determine the smaller 

group of distracters and to search this group of distracters, because the target is 

always present within the smaller group of distracters (except for target absent 

trials). The present study was designed to evaluate the existence of gradual 

saliency, without the incentive to search the smaller group of elements. 

Toward this end we developed a method, in which the target that has to be 

searched for (i.e., an oriented line) is superimposed on colored elements, which are 

not relevant for the task at hand. The colored elements are divided in two sets, 

each with a particular color. The proportion of these sets is varied, but the overall 

amount of elements (i.e., given by the combination of both subsets) remains the 

same. As a result we obtain two sets of differently colored elements, with different 

proportions. We compare the time to identify the target on the smallest of these 

sets with the time needed to identify the target on the largest of these sets. Gradual 

saliency predicts that search for the target will be faster on the smallest of these 

sets compared to the largest of these sets. 

Fixing the total number of colored elements in the display has the advantage of 

having an equally strong global transient generated by the onset of colored 
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elements, independently of the proportions of the two sets of differently colored 

elements. Our method bears some similarity with the distance method (Turatto, 

Galfano, Gardini, & Mascetti, 2004), in which the number of colored elements is 

held constant and a target is superimposed with a varying distance from the 

irrelevant color singleton. An important difference with the distance method is 

that in our approach the target can appear on a whole range of gradually salient 

locations, instead of on the classic set of a singleton and a no singleton location.  

Furthermore, our method provides the possibility to study the effect of top-down 

visual attention on (gradual) saliency. Because the colored elements are not 

searched for (i.e., they are not the target), we can investigate whether top-down 

visual attention for one of these colored elements influences the search for the 

target. A number of studies have sought to examine the role of top-down visual 

attention for elements that share one particular feature with the target in 

conjunction search, such as limiting search to the group of elements sharing the 

target’s color for a target defined by a conjunction of color and orientation. 

Furthermore, gradual saliency was either implicitly present due to the proportion 

between the two types of distracters, or explicitly present due to varying 

proportions between the two types of distracters. Such studies concluded that top-

down visual attention for elements that share one particular feature with the 

target (i.e., restricting search to a single set of distracters) is automatic in 

conjunction visual search (Bacon & Egeth, 1997; Egeth, Virzi, & Garbart, 1984), or 

can be induced by instructions (Kaptein, Theeuwes, & Van der Heijden, 1995). 

However, as already argued by Cave and Wolfe (1990) and by Sobel and Cave 

(2002), the previously mentioned studies suffer from limitations concerning the 

attribution of findings to either top-down visual attention or to smaller-group 

search. For example, the presence of top-down visual attention for one target 

feature in Egeth et al.’s (1984) study can alternatively be explained by smaller-

group search, as there were relatively few distracters of the set of distracters that 

participants were instructed to restrict their search to, compared to the other set of 

distracters. In Kaptein et al.’s (1995) experiment, smaller-group search was made 

partly ineffective by making participants search for a target defined by a 

conjunction of a color and a orientation, of which the orientation was difficult to 

discriminate from the orientation of the distracters (0º versus 20º). In Bacon and 

Egeth’s  (1997) study, smaller-group search was not efficient due to an unequal 

distribution of distracter types over all the trials. For this reason, participants 
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might have relied more strongly on top-down visual attention for the target 

feature that less frequently dominated the search displays. 

Sobel and Cave (2002) tested the respective roles of smaller-group search and top-

down visual attention in conjunction search more directly, by manipulating the 

proportions of the two distracter types. Furthermore, in separate experiments, 

they manipulated the discriminability of the defining features of the target, the 

density of the display elements, and the use of explicit instructions to restrict 

search to one set of distracters. Sobel and Cave (2002) found that participants 

largely relied on smaller-group search and little or none on top-down visual 

attention for elements that share one particular feature with the target, as long as 

both target features were easily discriminable from the distracting features and 

the display was dense enough with search elements. The results of this study 

suggest that top-down visual attention for one particular target feature does not 

guide visual search when easily discriminable stimuli allow guidance by saliency 

(whether driven by bottom-up or top-down grouping factors). 

The experiments of Sobel and Cave (2002) were designed to explore the balance 

between smaller-group search and top-down visual attention for elements that 

share one particular feature with the target. Although very interesting, these 

experiments are not ideal to unravel the interaction between gradual saliency and 

top-down visual attention. The reason is that in a conjunction search task, 

participants always have to search for a target that is defined by a combination of 

two features. Hence, participants probably always adopt an attentional set 

encompassing both defining features to some extent, despite explicit instructions to 

restrict search specifically to one set of distracters. 

In our method we investigate the interaction between gradual saliency and top-

down visual attention in a design, in which the latter is manipulated on top of the 

search for the target. This is accomplished by defining our manipulation of top-

down visual attention and gradual saliency in another dimension (i.e., color) than 

top-down visual attention for the target (i.e., orientation). As has already been 

mentioned, our design also reduces the incentive to search the smaller group of 

elements with a particular color compared to conjunction search. 

 

Experiment 1: Gradual saliency 

In the experiments of Sobel and Cave (2002), the proportions of the two distracter 

types were varied in a conjunction search task, and participants showed smaller-

group search with dense displays and with features that were highly discriminable 
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(see also Zohary & Hochstein, 1989). Interestingly, this indicates that saliency is 

gradual (i.e., not an all-or-none phenomenon). However, it is possible that 

participants searched the smaller group of elements, because the target was always 

present within this group of elements. The first experiment was designed to test 

whether elements become increasingly salient as fewer and fewer elements in the 

display share a characteristic, while the benefit of shifting attention to elements 

from a minority colored set was restricted. The target was superimposed on one of 

fifteen colored elements. A minority of the elements (the minority colored set) was 

colored in one particular color and the majority of the elements (the majority colored 

set) in a different color. The target was equally likely to appear on an element from 

a minority colored set or on an element from a majority colored set.  

 

Method 

Participants 

Eighteen Leiden University undergraduate students with normal or corrected-to-

normal vision voluntarily took part in the experiment. All participants reported to 

have normal color vision. They were either paid for their participation, or received 

credits to partially fulfill the requirements of a psychology class. 

 

Stimuli 

Stimuli were presented on 17” Targa TM 1769-A monitors, with a resolution of 

1024 to 768 pixels and a refresh rate of 100 Hz. Each trial began with the 

presentation of a fixation symbol for 600 ms. The fixation symbol was a gray “+” 

(each intersecting line measuring 1.1 degree of visual angle) located on the center 

of a black background. The fixation symbol was followed by a blank screen for 200 

ms, after which the search display appeared. 

The search display consisted of 15 colored disks randomly placed on two virtual 

presentation circles against a black background (see Figure 1). The small 

presentation circle contained 8 potential disk locations, and the large presentation 

circle 16. The diameter of the small and large presentation circle was about 7 and 

14 degrees of visual angle respectively, while the disks measured 1.1 in degrees of 

visual angle. Each disk was either green or blue. The colors green, blue, and gray 

were made equiluminant. 

One disk contained an oriented, black line, which measured approximately 0.5 

degree of visual angle. The oriented line, the target, was tilted 45º to the left or 45º 

to the right. 
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Although the total number of disks in the search display was always fifteen, the 

ratio between the numbers of disks of each color was varied. Each search display 

was equally likely to contain 0, 1, 3, 5, 7, 8, 10, 12, 14, or 15 disks of one color with 

15, 14, 12, 10, 8, 7, 5, 3, 1 or 0 disks of the other color. 

Each potential disk location was equally likely to contain a colored disk, and the 

target was equally likely to be placed in one of 1, 3, 5, 7, 8, 10, 12, 14, or 15 

identically colored disks. Furthermore, the location of the target in a disk on the 

small versus the large presentation circle was independently varied, implying that 

the location of the target in a disk was equally likely to be on the small or on the 

large presentation circle. The locations of the target in a disk on the small 

presentation circle and on the large presentation circle are the two levels of the 

factor eccentricity. Finally, the color of the disk that contained the target was 

equally likely to be green or blue in all conditions.  

 

 

 

Figure 1. Sequence of displays in Experiment 1. Gray denotes the color blue, black denotes the color green, 

and the white line denotes the black target. 
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Procedure 

Participants were seated in a dimly lit room at approximately 60 cm of the screen. 

They were instructed to respond to the diagonal line and to indicate whether it 

was tilted to the left or tilted to the right, by pressing one of two keyboard buttons. 

Participants were requested to respond as quickly as possible without making 

mistakes. A yellow word (“wrong”) was flashed for 400 ms following errors. The 

search display remained visible until one of the buttons was pressed (i.e., self-

terminated response). The response was followed by an interval of 200 ms until 

the onset of the fixation symbol for the following trial. 

The experiment consisted of ten blocks of 36 trials, preceded by 24 practice trials. 

After each block, participants received feedback about their average response time 

(RT) and their accuracy in the last block, and a comparison to the previous block. 

Feedback also functioned as a self-paced break. 

 

Results 

RTs that were faster than 200 ms or slower than 4000 ms were excluded from the 

analysis. This removed 0.08% of the trials. Figure 2A shows the RT and the error 

rate as a function of the number of identically colored elements, on one of which 

the target was superimposed, for all targets. Figure 2B plots the RT and the error 

rate as a function of the number of identically colored elements, on one of which 

the target was superimposed, separately for targets on the small and on the large 

presentation circle. For example, when the number of identical elements is one, 

the target was placed in one uniquely colored element. Similarly, when the 

number of identical elements is fifteen, all elements in the display had the same 

color and the target was placed in one of them. 

RTs were submitted to an analysis of variance (ANOVA), with the number of 

identical elements and eccentricity as within-subject variables. The main effect of 

the number of identical elements, F(8, 136) = 19.08, p < .001 (Greenhouse-Geisser), 

the main effect of eccentricity, F(1, 17) = 77.16, p < .001, and the Number Of 

Identical Elements · Eccentricity interaction, F(8, 136) = 6.82, p < .001 

(Greenhouse-Geisser), were all significant. 

Planned comparisons between pairs of successive conditions showed that 

responses were faster in the condition in which the number of identical elements 

was 1 versus 3, F(1, 17) = 31.95, p < .001; 3 versus 5, F(1, 17) = 11.58, p = .003; 5 

versus 7, F(1, 17) = 14.46, p = .001; and 15 versus 14, F(1, 17) = 8.21, p = .011. 
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An ANOVA of error rates with the number of identical elements and eccentricity as 

within-subject variables, revealed no significant effects. As can be seen in Figure 

2B, errors are equally distributed over all conditions. The pattern of error rates 

discards the possibility of a speed-accuracy trade-off. 

 
Figure 2. (A) Response time (top) and error rate (bottom) in Experiment 1 as a function of the number of 

identical elements, on one of which the target was superimposed. Response times that are predicted by the 

strategy of voluntarily searching elements from the minority colored set before elements from the majority 

colored set are also shown, for ratios 1:1, 1: 2, 1:3, and 2:1 between the target present and the target absent 

search slope (see the text for explanation). (B) Response time (top) and error rate (bottom) in Experiment 1 

as a function of the number of identical elements, on one of which the target was superimposed, separately 

for targets on the small and on the large presentation circle. 

 

Discussion 

We found evidence for gradual saliency, while the benefit of shifting attention to 

elements from a minority colored set was restricted. Responses for targets that are 

located on elements from a minority colored set are faster than for targets that are 



Interaction between gradual saliency and top-down visual attention 

 81 

located on elements from a majority colored set. More specific, responses are 

fastest for targets on color singletons, but there are also RT benefits for targets on 

elements from minority colored sets with more than one element (see Figure 2A). 

Responses for targets that are located on one of fourteen identically colored 

elements in the presence of one uniquely colored element are slower than for 

targets that are located on one of fifteen identically colored elements. 

Taken together, elements from a minority colored set are either searched earlier or 

faster than elements from a majority colored set. Similar to the locations of color 

singletons, the locations of elements from a minority colored set with more than 

one element seem relatively salient. 

One might argue that participants had an incentive to shift top-down visual 

attention more to elements from the minority colored set than to elements from 

the majority colored set, and that the results of Experiment 1 therefore do not 

reflect (gradual) saliency. The reason is that each individual element from the 

minority colored set has a higher probability that the target is placed on it than 

each individual element from the majority colored set, since the target is equally 

likely to be superimposed on an element from the minority colored set or an 

element from the majority colored set. 

Suppose that participants indeed voluntarily searched elements from the minority 

colored set before elements from the majority colored set. In that case, the RTs in 

the conditions with 1 to 7 identical elements reflect the time that is needed to 

search through (on average) half of the elements from the minority colored set (target 

present search), whereas the RTs in the conditions with 8 to 15 identical elements 

reflect both the time that is needed to search through all the elements from the 

minority colored set (target absent search), and the time that is needed to search 

through (on average) half of the elements from the majority colored set (target present 

search). Hence, the RTs in the conditions with 1 to 7 identical elements indicate 

the search slope when the target is present (i.e., 27 ms / item). Based on the target 

present search slope, and the ratio between the target present and the target 

absent search slope, one can predict the RTs in the conditions with 8 to 15 

identical elements, in which all the elements from the minority colored set are 

searched before elements from the majority colored set. 

One generally assumes that the ratio between the target present and the target 

absent search slope is 1:2. Figure 2A shows the predicted RTs for this ratio and 

other ratios between the target present and the target absent search slope: 1:1, 1:3, 

and 2:1. For a ratio of 1:2 between the target present and the target absent search 
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slope, the predicted RT greatly increases between the condition with 7 identical 

elements and the condition with 8 identical elements. The reason is that 

(according to the strategy) in the condition with 7 identical elements on average 

half of the elements from the minority colored set are searched (i.e., 3.5), while in 

the condition with 8 identical elements all of the elements from the minority 

colored set are searched (i.e., 7), plus on average half of the elements from the 

majority colored set (i.e., 4). Likewise, for the ratios 1:1, 1:3, or (very unlikely) 2:1 

between the target present and the target absent search slope, the predicted RT 

also greatly increases between the condition with 7 identical elements and the 

condition with 8 identical elements. However, the actual RT only slightly 

increases between the condition with 7 identical elements and the condition with 

8 identical elements. Furthermore, in the condition with 15 identical elements, 

the predicted RT is much higher than the actual RT. 

In conclusion, it is evident that the actual RTs do not fit the predicted pattern of 

RTs in the conditions with 8 to 15 identical elements, irrespective of the specific 

ratio between the target present and the target absent search slope. Thus, the 

strategy of voluntarily searching elements from the minority colored set before 

elements from the majority colored set does not explain the results of Experiment 

1.  

As expected, participants were faster to identify targets on the small presentation 

circle than targets on the large presentation circle (see Figure 2B). In addition, the 

RT benefit for targets appearing on elements from a minority colored set was 

larger for targets on the large presentation circle than for targets on the small 

presentation circle. One explanation for this finding is that elements are less 

strongly represented with a larger eccentricity from fixation (Parkhurst, Law, & 

Niebur, 2002). As a consequence, the benefit of an increase in saliency due to the 

relative uniqueness of an element with respect to its context may be larger for 

more eccentric stimuli. The faster responses for targets on the small presentation 

circle than for targets on the large presentation circle, and the stronger RT benefit 

of gradual saliency for targets on the large presentation circle than for targets on 

the small presentation circle, are replicated in the other experiments of this 

chapter. These findings will not be repeatedly discussed, because they are not the 

main interest of this chapter. 
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Experiments 2A and 2B: Gradual saliency and top-down visual 

attention 

In a second experiment we investigated the interaction between gradual saliency 

and top-down visual attention. Sobel and Cave (2002) independently varied the 

accessibility of smaller-group search and the presence of top-down visual attention 

for elements that share one particular feature with the target in conjunction 

search. Instructions to search through the elements that share one particular 

feature with the target had little effect when both the target features were easily 

discriminable. Participants only searched the subset of elements that share one 

particular feature with the target when the discrimination of the other target 

feature was difficult. This effect was strengthened by explicit instructions to 

search the easily discriminable feature. 

In conjunction search, participants have to search for a target that is defined by a 

conjunction of two (or more) features. Hence, participants might always adopt an 

attentional set encompassing both (or all) defining features to some extent, 

despite explicit instructions to search the subset of elements that share one 

particular feature with the target and to ignore the other elements. To examine 

the interaction between gradual saliency and top-down visual attention, 

independently from top-down visual attention for the target, we defined the 

target in another dimension (i.e., orientation) than top-down visual attention and 

gradual saliency (i.e., color). 

In Experiments 2A and 2B, top-down visual attention was either set by a color cue 

at the beginning of each trial, or was absent due to a neutral cue. In Experiment 

2A, we used colored disks as cues (explicit cues), whereas we used words (symbolic 

cues) in Experiment 2B. Symbolic cues can mediate the processing of elements 

exclusively by top-down mechanisms. In addition, explicit cues might also prime 

the color (Theeuwes, Reimann, & Mortier, 2006). 

 

Method 

Participants 

A total of thirty-six participants from the same student population as described in 

Experiment 1 were tested (18 in Experiment 2A and 18 in Experiment 2B).  

 

Stimuli 

Stimuli were presented on the same apparatus as in Experiment 1. The stimuli 

were equal to those in Experiment 1, with the difference that all disks now 
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contained an oriented black line, which measured approximately 0.5 degree of 

visual angle. One of these lines was tilted 45º to the left or 45º to the right; the 

target. The other lines were homogeneously oriented, either horizontal or vertical. 

This modification makes the disk with the target more similar to the disks 

without the target. As a consequence, these stimuli might expose larger benefits 

from gradual saliency and from top-down visual attention than the stimuli in 

Experiment 1.  

 

 

 

Figure 3. Sequence of displays in Experiments 2A and 2B. Gray denotes the color blue, black denotes the 

color green, and the white lines denote the gray lines. 

 

Moreover, search displays were now preceded by a cue that was visible at the center 

of the display for 800 ms (see Figure 3). For the participants in Experiment 2A, the 

cue was either a colored (i.e., green or blue) disk, or a gray disk. It subtended 

approximately 2.2 degree of visual angle. In Experiment 2B, the cue was the word 

“green”, “blue” or “neutral”. In color cue trials, the cue preceding the search display 

indicated the color of the disk that would contain the target, whereas in neutral cue 
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trials the cue was neutral (e.g., gray) and therefore not informative. The cue was a 

color cue in half of the trials. In the rest of the trials the cue was neutral, and the 

probability that the target appeared in a green or in a blue disk was equal. The cue 

was followed by a fixation period for another 600 ms. The fixation symbol was a 

gray “*” and measured about 0.5 degree of visual angle. 

 

Procedure 

In addition to the instructions given to participants in Experiment 1, participants 

in Experiments 2A and 2B were also instructed to direct their attention to the 

green disks when the cue was green, and to direct their attention to the blue disks 

when the cue was blue. They were further informed that a neutral cue was equally 

likely to be followed by a target in a green or in a blue disk. 

The response was followed by an interval of 600 ms until the onset of the cue for 

the following trial. The experiment consisted of eleven blocks of 36 trials, 

preceded by 24 practice trials. For the rest, the procedure was the same as in 

Experiment 1. 

 

Results 

RTs that were faster than 200 ms or slower than 4000 ms were excluded from the 

analysis. This removed 0.31% of the trials in Experiment 2A and 0.93% of the trials 

in Experiment 2B. Figure 4A shows the RT and the error rate as a function of the 

number of identically colored elements and cueing for the explicit cues used in 

Experiment 2A. Figure 4B plots the RT and the error rate as a function of the 

number of identically colored elements and cueing for the symbolic cues used in 

Experiment 2B. 

 

Experiment 2A. RTs were submitted to an ANOVA with cueing, the number of 

identical elements, and eccentricity as within-subject variables. There were main 

effects of cueing, F(1, 17) = 21.04, p < .001; the number of identical elements, F(8, 

136) = 27.20, p < .001 (Greenhouse-Geisser), and eccentricity, F(1, 17) = 145.10, p < 

.001. The Cueing · Eccentricity interaction, F(1, 17) = 14.20, p = .002 and the 

Number Of Identical Elements · Eccentricity interaction, F(8, 136) = 7.78, p < .001 

(Greenhouse-Geisser) were also significant. 

Planned comparisons between pairs of successive conditions showed that 

responses were faster in the condition in which the number of identical elements 

was 1 versus 3, F(1, 17) = 59.20, p < .001; 5 versus 7, F(1, 17) = 13.11, p = .002; 8 
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versus 10, F(1, 17) = 4.51, p = .049; and 15 versus 14, F(1, 17) = 5.49, p = .032 (3 

versus 5, F(1, 17) = 4.39, p = .051). 

The mean RT for each level of the number of identical elements was compared 

between the color cue and the neutral cue condition. Paired samples t-tests (two-

tailed) revealed faster responses in the color cue condition than in the neutral cue 

condition for 1 identical element t(17) = 5.09, p < .001; 3 identical elements t(17) = 

3.25, p = .005; 5 identical elements t(17) = 3.58, p = .002; 7 identical elements t(17) 

= 2.52, p = .022; and 8 identical elements t(17) = 2.75, p = .014. 

An ANOVA of the error rate with cueing, the number of identical elements, and 

eccentricity as within-subject variables, revealed only an effect for eccentricity, F(1, 

17) = 12.79, p = .002. Figure 5 shows the RT and the error rate as a function of the 

number of identically colored elements and cueing for the explicit cues used in 

Experiment 2A, separately for targets on the small and on the large presentation 

circle. As can be seen in Figure 5, errors are equally distributed over all conditions, 

except for the two conditions of eccentricity. The error rate is higher for targets on 

the large presentation circle than for targets on the small presentation circle. As 

the RT is also higher for targets on the large presentation circle than for targets on 

the small presentation circle, speed-accuracy trade-offs can be excluded. We will 

not include the effects of eccentricity in the results of Experiment 2B, because they 

are similar and they are not the main interest of this chapter. 

 

Experiment 2B. RTs were examined by an ANOVA with cueing and the number of 

identical elements as within-subject variables. The main effect of cueing, F(1, 17) = 

26.92, p < .001, the main effect of the number of identical elements, F(8, 136) = 

42.47, p < .001, and the Cueing · Number Of Identical Elements interaction, 

F(8,136) = 3.23, p = .002, were all significant. 

Planned comparisons between pairs of successive conditions showed that 

responses were faster in the condition in which the number of identical elements 

was 1 versus 3, F(1, 17) = 58.93, p < .001; 3 versus 5, F(1, 17) = 35.91, p < .001; 5 

versus 7, F(1, 17) = 10.06, p = .006; and 15 versus 14, F(1, 17) = 5.71, p = .029.  

The mean RT for each level of the number of identical elements was compared 

between the color cue and the neutral cue condition. Paired samples t-tests (two-

tailed) revealed faster responses in the color cue condition than in the neutral cue 

condition for 1 identical element, t(17) = 4.21, p = .001; 3 identical elements, t(17) = 

5.93, p < .001; 5 identical elements, t(17) = 2.65, p = .017; 7 identical elements, t(17) 
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= 3.38, p = .004; 8 identical elements, t(17) = 2.69, p = .016; 10 identical elements, 

t(17) = 3.81, p = .001; and 12 identical elements, t(17) = 2.35, p = .031.  

Error rates were submitted to an ANOVA with cueing and the number of identical 

elements as within-subject variables, revealing a main effect of cueing, F(1, 17) = 

5.21, p = .036. As can be seen in Figure 4B, the error rate is higher in the color cue 

condition than in the neutral cue condition. The RT is lower for targets in the 

color cue condition than in the neutral cue condition. Yet, it is unlikely that there 

is a full speed-accuracy trade-off, as the increase in error rate is mainly observable 

in the conditions with 1 to 5 identical elements, whereas the decrease in RT is 

significant in the conditions with 1 to 12 identical elements (see Figure 4B).  

 
Figure 4. (A) Response time (top) and error rate (bottom) in Experiment 2A as a function of the number of 

identical elements, on one of which the target was superimposed, and cueing. (B) Response time (top) and 

error rate (bottom) in Experiment 2B as a function of the number of identical elements, on one of which 

the target was superimposed, and cueing. 
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Figure 5. (A) Response time (top) and error rate (bottom) in Experiment 2A as a function of the number of 

identical elements, on one of which the target was superimposed, and cueing, for targets on the small 

presentation circle. (B) Response time (top) and error rate (bottom) in Experiment 2A as a function of the 

number of identical elements, on one of which the target was superimposed, and cueing, for targets on the 

large presentation circle. 

 

Experiments 2A and 2B. To examine the influence of cue type (explicit vs. 

symbolic), the data of Experiments 2A and 2B were analyzed together. An ANOVA 

of RTs with the number of identical elements and cueing as within-subject 

variables, and cue type as a between-subject variable, revealed that the responses 

tended to be faster for explicit cues than for symbolic cues, F(1, 34) = 4.059, p = 

.052. There was no significant interaction between cue type and the number of 

identical elements and between cue type and cueing. 

Error rates were also submitted to a three-way ANOVA, revealing no main effect of 

cue type, and no interaction between cue type and the number of identical 

elements and between cue type and cueing. 
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Discussion 

The neutral cue condition in this experiment replicates the effect of gradual 

saliency found in Experiment 1. The addition of an oriented black line in all of the 

disks did not change its effect, except for perhaps making it stronger, as it made 

the search for the target more difficult. The most important result of Experiments 

2A and 2B is that top-down visual attention speeds up the search for targets that 

are located on an element with the cued color, even when the target is located on a 

color singleton, or on an element from a minority colored set with more than one 

element (see Figures 4A and 4B). In fact, in Experiment 2B, top-down visual 

attention speeds up the search for the target more strongly with fewer elements 

with the cued color, on one of which the target is located. The reason probably is 

that a cue is more informative (i.e., selective) in conditions in which there are 

relatively few elements with the cued color. When all the elements have the same 

color, top-down visual attention does not speed up the responses. This indicates 

that top-down visual attention does not make participants more attentive in 

general. It appears to facilitate, exclusively, the selection of elements with one 

color among differently colored elements. 

Top-down visual attention produces a stronger RT benefit for targets on the large 

presentation circle than for targets on the small presentation circle, as shown in 

Experiment 2A (see Figure 5). This finding is replicated in Experiment 2B and in 

the following experiments of this chapter. It will not be repeatedly discussed, 

because it is not the main interest of this chapter.  

The findings further suggest that the explicit cues in Experiment 2A speeded up 

search in a similar manner as the symbolic cues in Experiment 2B, although the 

overall RT was somewhat slower for symbolic cues than for explicit cues (see 

Figures 4A and 4B). It is likely that both cue types activated top-down visual 

attention.  

 

Experiments 3A and 3B: Gradual saliency and top-down visual 

attention with briefly visible color displays 

The previous experiments showed that elements become increasingly salient as 

fewer and fewer elements in the display share a color, while the benefit of shifting 

attention to elements from a minority colored set is restricted. Also, top-down 

visual attention is shown to speed up the search, when the target appears on an 

element from a minority colored set with more than one element, or even when it 

appears on a color singleton. 
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Yet, the colored elements were simultaneously present with the oriented lines. 

Accordingly, each colored element and oriented line formed a contrast. Top-down 

visual attention might thus have speeded up the search by enhancing this contrast. In 

Experiments 3A and 3B, we presented the colored elements only briefly before the 

oriented lines (i.e. the search task). If top-down visual attention (and gradual 

saliency) still speeds up the search, this can be attributed to shifts of attention to 

locations of elements with the cued color (and to the locations of elements that are 

salient). In Experiment 3A, we used colored disks as cues, whereas we used words 

in Experiment 3B. 

 

Method 

Participants 

A total of forty-three participants from the same student population as described 

in Experiment 1 were tested (22 in Experiment 3A and 21 in Experiment 3B) 

 

Stimuli 

Stimuli were presented on the same apparatus as in Experiment 1. The sequence 

of the stimuli of Experiments 2A and 2B was modified. The colored disks in the 

search display were now presented for 200 ms. After that, the oriented lines 

appeared on the preceding disks locations (see Figure 6). 

The stimuli were the same as in Experiments 2A and 2B, with two differences. 

First, the oriented lines, which were black in Experiments 2A and 2B, were gray in 

order to be visible against the black background. The green and the blue disks, and 

the gray oriented lines were all made equiluminant. Second, the target line was 

horizontal or vertical. The orientation of the other lines was randomly chosen to 

be either 22.5º tilted to the left, 22.5º tilted to the right, 67.5º tilted to the left or 

67.5º tilted to the right. Horizontal or vertical lines do not pop out between 

heterogeneously oriented tilted lines, meaning that participants had to rely on 

serial search (Theeuwes, 1992). The parallel search task of Experiments 2A and 2B 

was substituted by this more difficult, serial search task in order to encourage 

participants to make use of informative, top-down cues. 

 

Procedure 

The procedure in Experiments 3A and 3B was the same as in Experiments 2A and 

2B, with two exceptions. First, participants were instructed to indicate whether 

the orientation of the target line was horizontal or vertical, by pressing one of two 



Interaction between gradual saliency and top-down visual attention 

 91 

keyboard buttons. Second, participants were now instructed to direct their 

attention to the locations of the green disks when the cue was green, and to direct 

their attention to the locations of the blue disks when the cue was blue. 

 

 

 

Figure 6. Sequence of displays in Experiments 3A and 3B. Gray denotes the color blue, black denotes the 

color green, and the black lines denote the gray lines. 

 

Results 

Data of two participants in Experiment 3A and of four participants in Experiment 

3B were excluded from analysis, because they had an average error rate equal or 

higher than 20% over all trials. The average error rate over all other participants 

was 6.10% in Experiment 3A and 3.59% in Experiment 3B. RTs that were faster 

than 200 ms or slower than 6000 ms were excluded from the analysis. This 

removed 1.97% of the trials in Experiment 3A and 1.62% of the trials in 

Experiment 3B. Figure 7A shows the RT and the error rate as a function of the 

number of identically colored elements, and cueing for the explicit cues used in 

Experiment 3A. Figure 7B plots the RT and the error rate as a function of the 
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number of identically colored elements, and cueing for the symbolic cues used in 

Experiment 3B. 

 

Experiment 3A. RTs were examined by an ANOVA with cueing and the number of 

identical elements as within-subject variables. The main effect of cueing, F(1, 19) = 

49.11, p < .001, the main effect of the number of identical elements, F(8, 152) = 

51.81, p < .001 (Greenhouse-Geisser), and the Cueing · Number Of Identical 

Elements interaction, F(8, 152) = 3.08, p = .014 (Greenhouse-Geisser), were all 

significant. 

Planned comparisons between pairs of successive conditions showed that 

responses were faster in the condition in which the number of identical elements 

was 1 versus 3, F(1, 19) = 33.09, p < .001; 3 versus 5, F(1, 19) = 59.48, p < .001; 5 

versus 7, F(1, 19) = 9.15, p = .007; and 15 versus 14, F(1, 19) = 5.51, p = .030. 

The mean RT for each level of the number of identical elements was compared 

between the color cue and the neutral cue condition. Paired samples t-tests (two-

tailed) revealed faster responses in the color cue condition than in the neutral cue 

condition for 1 identical element, t(19) = 6.38, p < .001; 3 identical elements t(19) = 

5.11, p < .001; 5 identical elements t(19) = 4.51, p < .001; 7 identical elements t(19) 

= 3.83, p = .001; 8 identical elements t(19) = 2.76, p = .012; and 12 identical 

elements t(19) = 2.34, p = .030. 

Error rates were submitted to an ANOVA with cueing and the number of identical 

elements as within-subject variables, revealing no significant effects. Hence, 

speed-accuracy trade-offs cannot explain the results.  

 

Experiment 3B. RTs were examined by an ANOVA with cueing and the number of 

identical elements as within-subject variables. The main effect of cueing, F(1, 16) = 

18.85, p = .001, the main effect of the number of identical elements, F(8, 128) = 

59.85, p < .001 (Greenhouse-Geisser), and the Cueing · Number Of Identical 

Elements interaction, F(8,128) = 4.75, p < .001, were all significant. 

Planned comparisons between pairs of successive conditions showed that 

responses were faster in the condition in which the number of identical elements 

was 1 versus 3, F(1, 16) = 54.34, p < .001; 3 versus 5, F(1, 16) = 45.90, p < .001; and 5 

versus 7, F(1, 16) = 8.22, p = .011. 

The mean RT for each level of the number of identical elements was compared 

between the color cue and the neutral cue condition. Paired samples t-tests (two-

tailed) revealed faster responses in the color cue condition than in the neutral cue 
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condition for 1 identical element, t(16) = 4.68, p < .001; 3 identical elements, t(16) = 

4.46, p < .001; 5 identical elements, t(16) = 3.03, p = .008; 7 identical elements, t(16) 

= 2.91, p = .010; and 8 identical elements, t(16) = 2.28, p = .037. 

Error rates were submitted to an ANOVA with cueing and the number of identical 

elements as within-subject variables, revealing a main effect of cueing, F(1, 16) = 

5.38, p = .034. The Cueing · Number Of Identical Elements interaction, F(8, 128) = 

2.32, p = .024, was also significant. As can be seen in Figure 7B, the error rate is 

higher in the color cue condition than in the neutral cue condition, and this 

increase is more pronounced with fewer identical elements. Likewise, the RT is 

lower for targets in the color cue condition than in the neutral cue condition, and 

this decrease is more pronounced with fewer identical elements. Nevertheless, it is 

unlikely that there is a full speed-accuracy trade-off, as the increase in error rate is 

mainly observable in the conditions with 1 to 5 identical elements, whereas the 

decrease in RT is significant in the conditions with 1 to 8 identical elements (see 

Figure 7B). 

 

Experiments 3A and 3B. To examine the influence of cue type (explicit vs. 

symbolic), the data of Experiments 3A and 3B were analyzed together. An ANOVA 

with the number of identical elements and cueing as within-subject variables, and 

cue type as a between-subject variable, revealed no main effect of cue type, and no 

interaction between cue type and the number of identical elements and between 

cue type and cueing. 

Error rates were also submitted to a three-way ANOVA, revealing no main effect of 

cue type, and no interaction between cue type and the number of identical 

elements. The interaction between cue type and cueing was significant, F(1, 35) = 

4.72, p = .037, indicating that the error rate was higher in the color cue condition 

than in the neutral cue condition for symbolic cues, but not for explicit cues. 
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Experiments 2A, 2B, 3A and 3B. Paired samples t-tests (two-tailed) were 

conducted to evaluate whether attention was shifted to distracting (color) 

singletons in color cue conditions. We compared the mean RT and error rate 

between the color cue condition with a distracting singleton (where 14 elements 

were in the cued color) and the color cue condition in which all the elements have 

the same color (where 15 elements were in the cued color), for Experiments 2A, 2B, 

3A and 3B. The results are shown in Table 1. Responses are slower in the color cue 

condition with a distracting singleton than in the color cue condition in which all 

the elements have the same color, in Experiment 2B (t(17) = 2.419, p = .027) and in 

Experiment 3B (t(16) = 2.488, p = .024). There also is a trend of slower responses in 

the color cue condition with a distracting singleton than in the color cue condition 

in which all the elements have the same color, in Experiments 2A and 3A. Finally, 

in Experiments 2A, 2B, 3A and 3B there is a trend of a higher error rate in the color 

cue condition with a distracting singleton than in the color cue condition in which 

all the elements have the same color. 

 

Table 1 

Response time and error rate for the color cue condition with a distracting singleton and the color cue 

condition in which all the elements have the same color, and the significance level of a paired samples t-

test between both conditions 

RT Error rate 
Experiment 

14 15 p 14 15 p 

2A 1112 1060 .195 .043 .022 .146 

2B 1284 1200 .027 .037 .022 .242 

3A 2155 1999 .052 .068 .050 .062 

3B 2292 2157 .024 .034 .022 .179 

Note. 14 = color cue condition with a distracting singleton; 15 = color cue condition 

in which all the elements have the same color. 

 

Discussion 

The faster responses for targets on locations of color singletons and on locations of 

elements from minority colored sets with more than one element indicate (covert) 

attentional shifts toward the locations of these elements, before the presentation 

of the search display. Likewise, the RT benefit of top-down visual attention reflects 

(covert) shifts of attention toward the locations of elements with the cued color, 

before the presentation of the search display.  
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As in Experiment 2B, in Experiments 3A and 3B the RT benefit of top-down visual 

attention was increasingly stronger with fewer elements with the cued color. This 

indicates that top-down visual attention allows the selection of fewer relevant 

elements in those conditions (i.e., the conditions with fewer elements with the 

cued color). Nonetheless, this finding is more visible in Experiments 3A and 3B 

than in Experiments 2A and 2B. The reason might be that the increase in difficulty 

of the visual search task in Experiments 3A and 3B relative to Experiments 2A and 

2B, resulted in a larger benefit of top-down visual attention. As in Experiments 2A 

and 2B, the results suggest that the explicit cues in Experiment 3A speed up the 

search in a similar manner as the symbolic cues in Experiment 3B. The results 

further show that the colored elements elicit the mechanisms that are responsible 

for gradual saliency, and enable selection by top-down visual attention, when they 

are presented for 200 ms. 

Finally, in the color cue conditions of Experiments 2A, 2B, 3A and 3B, responses 

were generally slower and more erroneous in the condition with a distracting 

singleton than in the condition in which all the elements have the same color. This 

indicates that top-down visual attention does not confine the search to the subset 

of elements with the cued color. Visual attention is also shifted to distracting 

singletons. 

Unfortunately, the error rate was significantly higher in the color cue condition 

than in the neutral cue condition in Experiment 3B, and this increase was stronger 

with fewer elements with the cued color. This issue was addressed in Experiment 

4. 

 

Experiment 4: Prioritizing accuracy over speed 

Experiment 4 is a replication of Experiment 3B, with the difference that 

participants were instructed to prioritize accuracy over RT. This instruction 

should lead to a more equal distribution of the errors over all the conditions than 

in Experiment 3B. Consequently, this would enable us to more clearly evaluate the 

effects on the response time of top-down visual attention, set by symbolic cues, 

and of the interaction between gradual saliency and top-down visual attention. 

 

Method 

Participants 

A total of fourteen participants from the same student population as described in 

Experiment 1 were tested.  



Interaction between gradual saliency and top-down visual attention 

 97 

Stimuli 

The apparatus and the stimuli were the same as in Experiment 3B. 

 

Procedure 

The procedure in Experiment 4 was the same as in Experiment 3B, except for one 

part of the instruction. In Experiment 4, participants were explicitly requested to 

respond without making errors, and next, to respond as quickly as possible. 

 

Results 

Data of three participants were excluded from analysis, because they had an 

average error rate equal or higher than 20% over all trials. The average error rate 

over all other participants was 4.25%. As in Experiment 3B, RTs that were faster 

than 200 ms or slower than 6000 ms were excluded from the analysis. This 

removed 1.19% of the trials. Figure 7C shows the RT and the error rate as a 

function of the number of identically colored elements and cueing for the 

symbolic cues. 

RTs were examined by an ANOVA with cueing and the number of identical 

elements as within-subject variables. The main effect of cueing, F(1, 10) = 32.32, p 

< .001, the main effect of the number of identical elements, F(8, 80) = 43.74, p < 

.001 (Greenhouse-Geisser), and the Cueing · Number Of Identical Elements 

interaction, F(8, 80) = 3.91, p = .011 (Greenhouse-Geisser), were all significant. 

Planned comparisons between pairs of successive conditions showed that 

responses were faster in the condition in which the number of identical elements 

was 1 versus 3, F(1, 10) = 29.40, p < .001; 3 versus 5, F(1, 10) = 48.69, p < .001; 5 

versus 7, F(1, 10) = 11.97, p = .006; and 15 versus 14, F(1, 10) = 5.34, p = .044. 

The mean RT for each level of the number of identical elements was compared 

between the color cue and the neutral cue condition. Paired samples t-tests (two-

tailed) revealed faster responses in the color cue condition than in the neutral cue 

condition for 1 identical element, t(10) = 6.73, p < .001; 3 identical elements, t(10) = 

5.53, p < .001; and 5 identical elements, t(16) = 4.00, p = .003.  

Error rates were submitted to an ANOVA with cueing and the number of identical 

elements as within-subject variables, revealing no significant effects. Hence, 

speed-accuracy trade-offs cannot explain the results. 
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Discussion 

Experiment 4 replicated the RT benefits for gradual saliency and top-down visual 

attention that were found in Experiment 3B (see Figure 7C). Instructing 

participants not to make any errors resulted in an equal distribution of the errors 

over all the conditions. Experiment 4 thus underlines the finding of Experiment 

3B that symbolic cues allow covert attentional shifts to locations of elements with 

the cued color, before the onset of the search display. 

 

Experiment 5: Gradual saliency and top-down visual attention over 

time 

The previous experiments showed that elements from a minority colored set with 

more than one element are salient in an analogous manner as color singletons, 

albeit to a lesser extent, and that this at least partly reflects covert attentional 

shifts. In addition, top-down visual attention appeared to facilitate the selection of 

potential target locations (also at least partly by means of covert attentional shifts), 

even when the target location already was (gradually) salient. In this experiment 

we investigated the dynamics of such gradual saliency and top-down visual 

attention over time. Thereto, we manipulated the duration of the display 

consisting of the colored elements (i.e., from 50 ms to 200 ms), in addition to the 

number of identically colored elements, and top-down visual attention. In the 

neutral cue condition, the varying stimulus onset asynchrony (SOA) conditions 

may elucidate the dynamics of (gradual) saliency over time. In the color cue 

condition, the varying SOA conditions may illuminate the combined dynamics of 

(gradual) saliency and top-down visual attention over time.  

 

Method 

Participants 

A total of twenty participants from the same student population as described in 

Experiment 1 were tested.  

 

Stimuli 

Stimuli were presented on the same apparatus as in Experiment 1. The stimuli in 

Experiment 5 were a subset of the stimuli in Experiment 3A, but the presentation 

time of the colored disks was varied. The interval between the onset of the colored 

disks and the onset of the gray oriented lines, the SOA (equal to the presentation 

time of the colored disks), was 50 ms, 100 ms, 150 ms or 200 ms. In order to limit 



Interaction between gradual saliency and top-down visual attention 

 99 

the total number of trials, the ratio between the numbers of disks of each color was 

less extensively varied. Each search display was equally likely to contain 1, 3, 7, 12, 

or 14 disks of one color with 14, 12, 8, 3, or 1 disks of the other color. The target 

was equally likely to be placed in one of 1, 3, 7, 12, or 14 identically colored disks. 

SOA, the number of identical elements, and cueing were all randomized within 

each block of trials.  

 

Procedure 

The procedure in Experiment 5 was the same as in Experiment 4, except for the 

number of trials. Each participant performed three sessions, each consisting of 

eight blocks of 40 trials, and 24 practice trials. After the completion of both the 

first and the second session, participants had a mandatory, five-minute break. 

 

Results 

Data of one participant were excluded from analysis, because it had an average 

error rate equal or higher than 20% over all trials. The average error rate over all 

other participants was 4.04%. RTs that were faster than 200 ms or slower than 

6000 ms were excluded from the analysis. This removed 1.35% of the trials. Figure 

8 shows the RT and the error rate as a function of the number of identically 

colored elements, cueing, and SOA. 

RTs were submitted to an ANOVA with the number of identical elements, cueing, 

and SOA as within-subject variables. There were main effects of the number of 

identical elements, F(4, 72) = 101.40, p < .001 (Greenhouse-Geisser), and cueing, 

F(1, 18) = 17.00, p = .001. The Number Of Identical Elements · Cueing interaction, 

F(4, 72) = 5.27, p = .004 (Greenhouse-Geisser), and the Cueing · SOA interaction, 

F(3, 54) = 4.52, p = .007 were also significant. 

The mean RT for each SOA condition was compared between the color cue and the 

neutral cue condition. Paired samples t-tests (two-tailed) revealed faster responses 

in the color cue condition than in the neutral cue condition for a SOA of 100 ms, 

t(18) = 3.99, p = .001; 150 ms, t(18) = 4.00, p = .001; and 200 ms, t(18) = 3.20, p = 

.005. 

Planned comparisons between all pairs of SOA conditions showed that cueing 

resulted in a larger RT benefit (the difference between the neutral cue and color 

cue condition) in the condition in which the SOA was 100 ms versus 50 ms, t(18) = 

3.13, p = .006; 150 ms versus 50 ms, t(18) = 3.48, p = .003; and 200 ms versus 50 ms, 

t(18) = 2.14, p = .046. Figure 9 shows the RT as a function of SOA, and cueing. 
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An ANOVA of the error rate with the number of identical elements, cueing, and 

SOA as within-subject variables revealed no significant effects. Hence, speed-

accuracy trade-offs cannot explain the results. 

 
Figure 9. Response time in Experiment 5 as a function of cueing and SOA. The data are collapsed over all 

conditions of the number of identical elements. 

 

Discussion 

The results confirm our previous findings, and show that the faster responses for 

targets on previously cued and salient locations are fairly stable for varying 

durations of the colored elements. The presentation time of the colored elements 

within the range of 50 ms to 200 ms did not modulate the RT for targets, whether 

they appeared on the location of elements from a minority colored set, or on the 

location of elements from a majority colored set (see Figure 8). In other words, 

gradual saliency for these colored elements does not develop progressively within 

the time range of 50 ms to 200 ms. The colored elements already trigger the 

mechanisms responsible for gradual saliency, when they are presented for 50 ms.  

The RT benefit of top-down visual attention was smaller when the colored 

elements were presented for 50 ms than when the colored elements were 

presented for 100 ms to 200 ms (see Figure 9). In fact, responses were not reliably 

faster in the color cue condition than in the neutral cue condition when the 

colored elements were presented for 50 ms. Thus, the colored elements enable 

selection by top-down visual attention, when they are presented for 100 ms to 200 

ms. 
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General discussion 

The objective of this study was to determine whether elements from a minority 

colored set with more than one element are salient in a similar manner as color 

singletons, and to investigate the interaction of this gradual saliency with top-

down visual attention. 

 

Gradual saliency 

In Experiment 1 and in the neutral cue conditions of Experiments 2-5, we found 

that responses are fastest for targets on color singletons, but also that responses for 

targets on elements from a minority colored set with more than one element are 

faster than responses for targets on elements from a majority colored set. This 

result reflects that elements from a minority colored set with more than one 

element are searched earlier or faster than elements from a majority colored set, 

and are thus prioritized in search in a similar manner as color singletons. We 

referred to this as gradual saliency. 

Our finding of gradual saliency is consistent with earlier studies that show 

smaller-group search in conjunction search (Sobel & Cave, 2002; Zohary & 

Hochstein, 1989). In conjunction search participants have an incentive to search 

the smaller group first, as the target is always present among the smaller group of 

distracters. In our design, the target appeared with equal likelihood on one of the 

elements from the minority colored set or on one of the elements from the 

majority colored set. In principle, it is possible that participants still had an 

incentive to voluntarily search elements from the minority colored set before 

elements from the majority colored set, since each individual element from the 

minority colored set had a higher probability that the target was placed on it than 

each individual element from the majority colored set. However, an analysis of the 

predicted RTs according to the strategy of voluntarily searching elements from the 

minority colored set before elements from the majority colored set showed that 

this strategy does not explain our results (see Experiment 1). Hence, gradual 

saliency as observed here is not an artifact of strategic incentives. 

Furthermore, Experiment 5 indicates that the colored elements already trigger the 

mechanisms responsible for gradual saliency when they are presented for 50 ms. 

For these colored elements, gradual saliency does not develop progressively within 

the time range of 50 ms to 200 ms. 
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The interaction between gradual saliency and top-down visual attention 

Experiments 2-5 show that top-down visual attention speeds up the search for a 

target, while its location is already salient. Top-down visual attention even made 

the search for a target faster, when it appeared on a color singleton. We observed 

similar results for explicit and symbolic cues. Experiments 3A and 3B excluded 

the possibility that top-down visual attention speeds up the search by enhancing 

the contrast between each element with the cued color and an oriented line. The 

brief presentation of the colored elements before the oriented lines (i.e. the search 

task) ensured that the faster responses in the color cue condition than in the 

neutral cue condition can be attributed to (covert) shifts of attention to locations of 

elements with the cued color. Furthermore, the absence of a RT benefit of top-

down visual attention in the condition in which all the elements have the same 

color, shows that the RT benefit of top-down visual attention in the presence of 

(gradual) saliency cannot be explained by a generally increased level of attention. 

Top-down visual attention thus appears to facilitate, exclusively, the selection of 

elements with the cued color among all colored elements. 

Finally, in Experiment 5, we found that top-down visual attention speeds up the 

responses for targets on locations of elements with the cued color, when the 

colored elements were presented from 100 ms to 200 ms. Only when the colored 

elements were presented for 50 ms, the RT benefit of top-down visual attention 

disappeared.  

Our finding that top-down visual attention speeds up the search for a target, while 

its location is already salient, is in line with one of the findings of Sobel and Cave 

(2002). They found that the search for a target in a conjunction search task was 

mainly guided by saliency, as long as the two defining features of the target were 

both highly discriminable from their distracter features, and as long as the display 

was dense. Nevertheless, instructions to search for the target by limiting search to 

one type of distracters (i.e., top-down visual attention) had a small (but reliable) 

effect when the guiding feature was much more discriminable from its distracting 

feature than the other target feature. In Sobel and Cave’s (2002) experiments, 

targets were defined by a combination of features on two feature dimensions. The 

attentional set thus always encompassed both defining features to some extent, 

independent of specific instructions to limit search to one set of distracters. Hence, 

specific instructions to limit the search to one set of distracters can only bias top-

down visual attention slightly toward one target feature with respect to the other 

target feature. In our experiments, the target itself was defined by another feature 
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dimension than our experimental manipulation of top-down visual attention. 

Although the target feature was always included in the attentional set, top-down 

visual attention for color was either present or absent. This made the benefit from 

top-down visual attention (for color) very transparent in our experiments, whereas 

it was partly hidden in Sobel and Cave’s (2002) task design. 

 

The attentional mechanisms underlying the interaction between gradual 

saliency and top-down visual attention 

We found evidence for gradual saliency and further demonstrated that top-down 

visual attention speeds up the search for a target that is located on an element with 

a cued color, even when the target is located on a color singleton. Faster responses 

for targets on color singletons after top-down cues indicate that top-down visual 

attention is fast enough to interact with the mechanisms underlying saliency.  

The Guided Search 2.0 (Wolfe, 1994) and FeatureGate (Cave, 1999) models of 

visual attention suggest that the selection of locations for attention is jointly 

governed by two subsystems. The bottom-up subsystem favors locations with 

unique features, and the top-down subsystem favors locations with features 

designated as target features. Each subsystem independently calculates an 

activation for each location, and these activations are summed to produce an 

overall activation for a location. Locations compete for selection on the basis of 

their activations. After the selection and processing of a location, the selected 

location is inhibited and a new competition cycle results in the selection of another 

location. In both Guided Search 2.0 (Wolfe, 1994) and FeatureGate (Cave, 1999) 

the bottom-up subsystem produces pop-out by increasing the salience of objects 

with features that differ from those in neighboring locations. There is no 

assumption that this is an all-or-none process, hence both models would predict 

our finding of gradual saliency. Also, their assumption that the bottom-up and the 

top-down subsystems determine the selection of a location in an additive manner 

is consistent with our finding that top-down visual attention is fast enough to 

interact with (gradual) saliency. 

However, Guided Search 2.0 (Wolfe, 1994) and FeatureGate (Cave, 1999) would 

not predict that top-down visual attention speeds up the responses for targets on 

color singletons with the cued color. The reason is that the bottom-up subsystem 

already allocates a much stronger activation to the color singleton location than to 

other locations, and an even higher activation due to the top-down subsystem 

should not further speed up the selection of the color singleton location. However, 
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strong random noise in the (bottom-up) activations (Wolfe, 1994), could, in 

principle, explain the benefit of top-down visual attention in addition to saliency. 

Alternatively, incorporating the temporal dynamics of the competition between 

locations could also explain the faster responses for targets on color singletons in 

the presence of top-down visual attention. A color singleton location with an 

increased activation due to the presence of top-down visual attention may be faster 

to win its competition with other locations. Guided Search 2.0 (Wolfe, 1994) could 

also account for the benefit of top-down visual attention in addition to saliency by 

treating visual attention as a limited-capacity (spatially) parallel process (Wolfe, 

1994), in which the rate of information processing at each location is proportional 

to the size of its activation (Carrasco & McElree, 2001; Wolfe, Butcher, Lee, & Hyle, 

2003). 

We have previously proposed a neural network model of visual object-based 

attention (CLAM) (Van der Velde et al., 2004), in which the identity (e.g., shape or 

color) of an object is used to select its location among other objects (also see, Van 

der Velde & De Kamps, 2001). This model consists of a feedforward network that 

identifies the shape and color of objects in the visual field, and a feedback network 

that reciprocates the connections of the feedforward network. The selectivity in 

the feedforward network is transferred to the feedback network using Hebbian 

learning (Van der Velde & De Kamps, 2001). How does this architecture allow 

spatial attention to shift to elements with a cued color? Suppose the feedforward 

network identifies elements in two colors in its visual field. The feedback network 

carries back information about the cued color to the lower (retinotopic) areas of the 

model. In these areas, interaction between the feedforward network and the 

feedback network (in local microcircuits) selects activation produced by elements 

with the cued color (Van der Velde & De Kamps, 2001). This selected activation is 

equivalent to directing spatial attention to the location of elements with the cued 

color. This neural network model can explain the RT benefit of top-down visual 

attention in our experiments. 

In Chapter 7, we propose the Global Saliency Model (GSM). This model consists of 

two pathways: ventral and dorsal. The ventral pathway is based on Van der Velde 

and De Kamps’ (2001) neural network model of visual object-based attention, and 

the dorsal pathway consists of a number of interacting spatial maps. The ventral 

and dorsal pathways interact in the model. As discussed in Chapter 7, GSM is 

consistent with both our finding of gradual saliency, and our finding that top-

down visual attention is fast enough to interact with (gradual) saliency. In fact, in 
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Chapter 7 we will present a simulation which compares the model’s response with 

the experiments of this chapter. 

It remains unclear to what extent, and up to which processing stage, the 

mechanisms responsible for (gradual) saliency and top-down visual attention are 

independent. It is possible that (gradual) saliency is the result of purely bottom-up 

processing (e.g., Cave, 1999; Itti & Koch, 2000; Treisman & Sato, 1990; Wolfe, 

1994). Alternatively, (gradual) saliency may be the result of a voluntary (Zohary & 

Hochstein, 1989) or an automatic process (Van der Velde, Van der Voort van der 

Kleij, Haazebroek, & De Kamps, in preparation), which involves top-down 

processing in addition to bottom-up processing. This issue will be addressed 

further in Chapters 6 and 7. 

Does top-down visual attention always generate faster responses for targets on 

locations that already are salient? Here we presented one example in which it does 

within the color dimension. Future experiments might look at the interaction 

between (gradual) saliency and top-down visual attention, while the strength of 

(gradual) saliency is further increased (e.g., by manipulating the density or the 

contrast between two colors), within different dimensions (e.g. orientation, 

shape). 
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Chapter 6 | A review of behavioral and 

neurophysiological studies and models of visual search 

After more than two decades of visual search studies and other studies, there is 

still a lot of discussion about which mechanisms underlie stimulus-driven visual 

attention and feature-based visual attention, and how these mechanisms interact. 

The main questions that are addressed in this chapter are whether efficient search 

should be associated with processing in low cortical areas, and whether stimulus-

driven visual attention is the result of bottom-up and horizontal processing, or 

alternatively of bottom-up, horizontal, and top-down processing. Several findings 

of the behavioral studies that we review suggest that efficient search cannot solely 

be attributed to processing in low cortical areas. The results of reviewed 

neurophysiological studies leave open whether stimulus-driven visual attention is 

the result of bottom-up and horizontal processing, or of bottom-up, horizontal, 

and top-down processing. Finally, an overview is presented of various models that 

are proposed to explain stimulus-driven and/or feature-based visual attention. 

 

Behavioral studies of visual search 

A qualitative distinction between parallel feature search and serial 

conjunction search 

In a visual search task, participants generally have to indicate whether a target 

item is present or absent among a variable number of distracters. When the target 

is distinguished by a unique feature from the distracters (such as a large difference 

in color, orientation, or size), the response time is (relatively) independent of the 

number of distracters. On the other hand, when the target is distinguished by a 

unique conjunction of features from the distracters (such as a target defined by a 

conjunction of a color and an orientation among distracters that share either the 

target color or orientation), the response time often increases with the number of 

distracters. 

On the basis of this observation, Treisman and Gelade (1980) made a qualitative 

distinction between feature and conjunction search. That is, Treisman and Gelade 

(1980) hypothesized that feature search reflects parallel processing of all search 

items across the visual field, whereas conjunction search additionally reflects 

serial processing of the search items. Specifically, Treisman and Gelade’s (1980) 
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Feature Integration Theory (FIT) proposed that, in a preattentive stage, a set of 

simple features is registered in parallel in specialized subsystems (i.e., feature 

maps). When a target is distinguished by a unique feature, the target’s presence or 

absence can be determined by monitoring whether there is (reliable) activation in 

the map of this feature. When a target is distinguished only by a unique 

conjunction of features from the distracters, however, focused attention is needed 

to serially scan the location of one (or at most a few) of the search items, in order to 

integrate and bind the features at that location. As a result of focused attention, 

the same location in all feature maps is selected (via a map of locations), and the 

features of one search item become available for recognition by higher-level areas. 

Are there really two qualitatively different modes of visual search? The qualitative 

distinction between parallel feature search and serial conjunction search has been 

called into question by many behavioral studies. To remain neutral on the 

mechanisms underlying visual search, we will label search in which the response 

time is (relatively) independent of the number of distracters efficient, and search 

in which the response time increases with the number of distracters inefficient. 

Furthermore, we will refer to an item that is distinguished by one or more unique 

features from the other items in the search display (i.e., the distracters) as a target 

or singleton, and to an item that is distinguished from the other items in the 

search display by one or more unique features that are cued (e.g., before a session 

or trial) as a cued-target.  

 

Inefficient feature and (more) efficient conjunction searches 

Some behavioral studies reported inefficient feature search, when the target 

differs only a little along a feature dimension from the distracters (reviewed in 

Duncan & Humphreys, 1989). At the same time, other behavioral studies found 

efficient search for color-orientation conjunctive cued-targets when the feature 

saliency is high enough (Wolfe, Cave, & Franzel, 1989), for cued-targets defined by 

a conjunction of stereoscopic disparity and color or a conjunction of stereoscopic 

disparity and motion (Nakayama & Silverman, 1986), and for cued-targets defined 

by a conjunction of motion (i.e., moving versus static) and shape (McLeod, Driver, 

& Crisp, 1988). Furthermore, even for inefficient conjunction searches, the 

response time was shown to depend not only on the number of distracters, but 

also on the ratio of the number of the two distracter types used (Bacon & Egeth, 

1997; Egeth et al., 1984; Kaptein et al., 1995; Sobel & Cave, 2002; Zohary & 

Hochstein, 1989). For example, Zohary and Hochstein (1989) asked participants to 
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search for a red horizontal element, whereas the distracters were green horizontal 

elements and red vertical elements. Zohary and Hochstein (1989) varied the 

proportions of the two types of distracters, and showed that the search for the 

cued-target proceeded through the smallest group of distracters. 

Thus, behavioral studies provided evidence that feature search may be inefficient, 

whereas conjunction search may be efficient, or more efficient than would be 

predicted by a strictly serial search. This is corroborated by a meta-analysis by 

Wolfe (1998), which indicated that the overall distribution of search slopes from 

2500 experimental sessions (i.e., a single participant doing a single search task) 

across six categories of searches (e.g., feature searches, conjunction searches) is 

unimodal. Obviously, a unimodal distribution of search slopes does not provide 

support for a simple, data-driven distinction between parallel feature and serial 

conjunction search (Wolfe, 1998). The observation that feature search may be 

inefficient, whereas conjunction search may be (more) efficient led to two classes of 

models that discarded a qualitative distinction between feature and conjunction 

search (Mordkoff, Yantis, & Egeth, 1990).  

 

Early parallel processing may guide subsequent serial processing 

One class of models that incorporated results of efficient conjunction search 

supposes that the output of early, parallel processing guides the subsequent 

deployment of focused attention. Wolfe, Cave, and Franzel (1989) first advanced 

this proposal in their Guided Search model. In this model, early, parallel 

processing can guide subsequent serial processing (almost) directly to the location 

of a conjunctive cued-target if the target features are salient enough. However, if 

the target features are not salient enough, early, parallel processing is noisy, and 

cannot guide subsequent serial processing directly to the location of the 

conjunctive cued-target. Treisman and Sato (1990) also maintained the distinction 

between early, parallel processing and subsequent serial processing of the search 

items. Like Wolfe et al. (1989), Treisman and Sato (1990) suggested that early, 

parallel processing may guide subsequent serial processing to conjunctive cued-

targets if the target features are sufficiently salient. Nonetheless, the mechanism 

through which early, parallel processing may guide subsequent serial processing 

in the revised FIT (Treisman & Sato, 1990) differs from the one in Guided Search 

(Wolfe et al., 1989). Whereas early, parallel processing activates locations with 

target features for subsequent serial processing in Guided Search (Wolfe et al., 

1989), early, parallel processing inhibits locations with distracter features for 
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subsequent serial processing in the revised FIT (Treisman & Sato, 1990). That is, 

Treisman and Sato (1990) extended FIT with a feature inhibition mechanism, 

which can simultaneously inhibit all features that are specific to the distracters. 

 

Parallel processing capacity may be limited for feature and conjunction 

search 

The other class of models rejected the assumption that parallel processing is 

necessarily followed by strictly serial processing when searching for a conjunctive 

cued-target. Alternatively, this class of models supposes that a small number of 

search items can be processed simultaneously in both feature and conjunction 

search (Duncan & Humphreys, 1989; Mordkoff et al., 1990; Pashler, 1987). In 

other words, these models suggest a limited parallel processing capacity. As a 

consequence, search is inefficient when the limited parallel processing capacity is 

exceeded and efficient when it is not. Therefore, feature and conjunction search 

may either be efficient or inefficient. Several behavioral studies provided evidence 

for this class of models (e.g., Mordkoff et al., 1990; Pashler, 1987). 

For example, Mordkoff et al. (1990) asked participants to indicate whether a cued-

target defined by a conjunction of color and shape (i.e., a red X) was present, both 

in a redundant-target condition in which the display contained two cued-targets, 

and in single-target conditions in which the display contained one cued-target 

(with or without a distracter). Mordkoff et al.’s (1990) results not only showed that 

fast response times were more frequent in the redundant-target condition than in 

the single-target conditions, but also that the fast response times were faster in the 

redundant-target condition than in the single-target conditions. Even when 

Mordkoff et al. (1990, Experiment 3) kept the number of target features that were 

present in a display constant across the redundant-target and single-target 

conditions by using a setsize of six items, the fast response times still were faster in 

the redundant-target condition than in the single-target conditions (after some 

practice). Strictly serial processing of search items prior to response selection 

cannot explain these results, as this would solely yield a larger number of fast 

response times for displays containing two cued-targets than for displays 

containing one cued-target, but would not yield faster response times for displays 

containing two cued-targets than for displays containing one cued-target. Instead, 

Mordkoff et al.’s (1990) results suggest that at least two search items may 

simultaneously affect the decision for target presence or absence. Hence, given 

that search for the conjunctive cued-target was shown to be inefficient in a 
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separate experiment, this result is consistent with limited-capacity parallel 

processing models. 

Deco, Pollatos, and Zihl (2002) proposed a model that abandons serial processing 

altogether. In their model, search items are always processed in parallel across the 

visual field. Yet, the model produces differences in search efficiency across 

conditions of feature and conjunction search due to different latencies of the 

model’s dynamics across these conditions. We will review Deco et al.’s (2002) 

model and other models below. 

 

Associating efficient search with low cortical areas 

The qualitative distinction between parallel feature searches and serial 

conjunction searches was accompanied by the implicit assumption that the 

features supporting efficient search are the same as the features of early vision (i.e., 

the features that are being found to excite neurons in low cortical areas, such as 

the primary or extrastriate visual cortex) (e.g., Treisman & Gelade, 1980). 

However, this assumption has been questioned in a number of ways. 

First of all, the differences in orientation and color that neurons in low cortical 

areas are able to discriminate during visual processing with attention are finer 

than the differences that result in efficient search (Hochstein & Ahissar, 2002; 

Wolfe, 2003). In other words, the just noticeable difference is much cruder for 

efficient search than for early visual processing with attention. One behavioral 

study even suggested that efficient search can use only information about the 

categorical status of items (Wolfe, Friedman-Hill, Stewart, & O’Connell, 1992). 

Secondly, search can be efficient over a large range of spatial scales, far exceeding 

the small receptive fields of neurons in the primary visual cortex (Hochstein & 

Ahissar, 2002; Shipp, 2004) and other low cortical areas (Hochstein & Ahissar, 

2002). Hence, efficient search cannot fully be explained by the inhibitory and 

excitatory connections between neurons in low cortical areas. Nonetheless, the 

connections between neurons in low cortical areas may play a significant role in 

efficient search, especially at smaller spatial scales (Li, 2002). An early example of 

invariable search performance across a large range of spatial scales came from a 

study by Bergen and Julesz (1983). Bergen and Julesz (1983) tested participants’ 

accuracy to discriminate a singleton in a search display of seven search items, 

which varied over a range of a factor eight in size (i.e., the stimuli subtended 2.8 - 

21.8 degree of visual angle). Bergen and Julesz (1983) found that the uniform 

contraction or dilation of the stimulus had little effect on search performance. 
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Finally, efficient search is reported not only for simple features (e.g., color, 

orientation) that are defined by luminance contrast, but also for simple features 

that are defined by other properties than luminance contrast (Bravo & Blake, 1990; 

Wolfe, 2003) and for high-level features, which include the result of quite 

sophisticated processing (reviewed in Grossberg, Mingolla, & Ross, 1994; 

Hochstein & Ahissar, 2002). While simple features that are defined by luminance 

contrast are thought to be encoded at the earliest stages of cortical processing (e.g., 

area V1), simple features that are defined by other properties than luminance 

contrast and high-level features are thought to be encoded at later stages of 

cortical processing. Behavioral studies that report efficient search for high-level 

features probably provide the strongest evidence against associating efficient 

search with low cortical areas. Therefore, we will review a number of these studies. 

 

Efficient search for high-level features 

Ramachandran (1988) first reported that three dimensional (3D) convex shapes 

(“bumps”) that are conveyed by top to bottom differences in shading can be 

grouped together perceptually and segregated from a background of concave 

shapes (“cavities”). Kleffner and Ramachandran (1992) later extended this finding 

by demonstrating that 3D shape from top to bottom differences in shading can 

provide the basis for efficient search as well. Interestingly, search was not efficient 

for shapes that are conveyed by left to right differences in shading. The result that 

3D shape from top to bottom differences in shading, but not from left to right 

differences in shading, can provide the basis for efficient search implies that 

relatively complex scene-based characteristics such as the direction of lighting 

influence visual search (Kleffner & Ramachandran, 1992). Further, Kleffner and 

Ramachandran (1992) excluded the possibility that efficient search for shapes that 

are conveyed by top to bottom differences in shading can simply be attributed to a 

difference in luminance polarity between the cued-target and distracters. Search 

was significantly less efficient in a control condition, in which the cued-target and 

distracters still differed from each other in luminance polarity, but not in 3D 

shape. Thus, efficient search (largely) depended on a difference in 3D shape. The 

cued-target and distracters in the control condition were formed by a step-change 

in luminance instead of a gradual change in luminance. 

Similarly, Enns and Rensink (1990) let participants search for cued-targets 

composed of lines and polygons shaded with one of three intensities (i.e., white, 

gray, or black). In conditions in which the cued-target and distracters 
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corresponded to 3D blocks that differed in the direction of lightning, and 

optionally additionally in orientation, search was efficient. Search was not 

efficient in conditions in which the cued-target and distracters were two 

dimensional. Therefore, Enns and Rensink (1990) proposed that efficient search 

may be based on scene-based properties such as 3D orientation and the direction 

of lighting. Because such scene-based properties are only captured by the spatial 

relations among Enns and Rensink’s (1990) lines and shaded polygons, they 

require relatively complex visual processing. Aks and Enns (1992) subsequently 

attempted to unravel whether possible precursors of scene-based properties, such 

as the type of shading gradient, the shape of the contour enclosing the gradient, 

and the background luminance contribute additively or interactively to the 

efficiency in visual search. Thereto, Aks and Enns (1992) combined these factors 

orthogonally in a visual search experiment. The results suggested that the type of 

shading gradient, the shape of the contour enclosing the gradient, and the 

background luminance influence the search efficiency in an additive manner. This 

led Aks and Enns (1992) to conclude that efficient search is not guided by 

specialized detectors for scene-based properties such as surface curvature and the 

direction of lighting, but instead by precursors to a rich 3D representation. 

Nonetheless, precursors to a rich 3D representation still include the result of 

relatively complex visual processing. 

Furthermore, other behavioral studies showed that visual search follows 

completion processes facilitated by binocular disparity (He & Nakayama, 1992) 

and monocular cues (Rensink & Enns, 1998). He and Nakayama (1992) asked 

participants to search for an L-shape (mirrored L-shape) among mirrored L-shapes 

(L-shapes), while each search item was accompanied by a square. The binocular 

disparity was varied across conditions so that the search items either all appeared 

to be in a depth plane in front of the squares, or in a depth plane behind the 

squares. When the target and distracters appeared to be in a depth plane in front of 

the squares, eliminating an opportunity for perceptual completion of the target 

and distracters, search was efficient. Search was also efficient when the target and 

distracters appeared to be in a depth plane behind the squares, whilst a small gap 

between each L-shape and square eliminated the opportunity for perceptual 

completion of the target and distracters. However, when the target and distracters 

appeared to be in a depth plane behind the squares, and the relative position 

between the squares and the search items offered an opportunity for perceptual 

completion of the target and distracters, search was inefficient. He and 
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Nakayama’s (1992) results indicate that binocular disparity can reduce the search 

efficiency when it facilitates surface completion of the target and distracters 

behind adjacent occluders, which makes the target and distracter perceptually 

more similar. As participants could not choose to apply search at a lower-level 

representation of feature detection, at which level search would have been easier, 

He and Nakayama (1992) suggested that efficient search probably has to be 

applied at a higher-level representation of perceived shapes or surfaces. 

Finally, Wolfe, Friedman-Hill, and Bilsky (1994) had participants search for cued-

targets (i.e., houses) defined by a conjunction of two colors. In conditions in which 

the cued-target could be characterized in hierarchical terms as a whole item of one 

color with a part of another color, search was (relatively) efficient. In comparison, 

in conditions in which the cued-target consisted of two equal parts that differed in 

color, search was less efficient. In two control experiments, Wolfe et al. (1994) 

ruled out some simple explanations in terms of the relative sizes of colored 

regions, for the efficient search in the part-whole condition. Wolfe et al.’s (1994) 

results add to the picture that efficient search incorporates quite sophisticated 

processing (e.g., the abstraction of part-whole relationships) beyond the mere 

extraction of basic features. 

Other behavioral studies suggested efficient search for high-level features such as 

threatening faces (Ohman, Lundqvist, & Esteves, 2001) and one’s own face (Tong & 

Nakayama, 1999). However, we will not discuss these studies, because it is highly 

debated whether low-level or high-level features provide the basis for efficient 

search in these studies (for an overview, see Wolfe & Horowitz, 2004), and because 

an extensive overview falls outside the scope of this chapter.  

In summary, behavioral studies provided converging evidence that search for a 

(cued-)target that is distinguished by a high-level feature can be efficient. It also 

appeared that search for a target can be less efficient due to high-level completion 

processes, which render the target and distracters less distinguishable. It is 

important to remark that we do not argue which high-level features exactly were 

responsible for efficient search. The target-distracter pairs investigated in the 

studies above likely differ in multiple high-level features, and efficient search may 

have been based on either one of those. For example, the shading in 

Ramachandran (1988), Kleffner and Ramachandran (1992), and Aks and Enns’ 

(1992) study may have created high-level features such as surface orientation, 

direction of lighting, and precursors to a rich 3D representation. Irrespective of 

which high-level feature led to efficient search, it is evident that efficient search 
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may, and sometimes even has to, be based on the results of later stages of cortical 

processing. Hence, efficient search is not confined to (cued-)targets distinguished 

by features that are encoded at the earliest stages of cortical processing. 

 

Neurophysiological evidence 

Besides behavioral data, results from neurophysiological studies also constrain the 

development of neurally plausible models of visual search. Behavioral studies 

allow only inferential conclusions about the stages of processing that make up 

response times. In contrast, neurophysiological measures (i.e., neuronal activity) 

can provide markers that distinguish between the end of one stage of processing 

and the beginning of another (Schall & Thompson, 1999). The neural mechanisms 

of the selection of a target among distracters can be studied with the highest 

spatial and temporal resolution by recording the activity of single neurons in 

monkeys (Schall & Thompson, 1999). 

A number of neurophysiological studies have investigated the selection of a target 

among distracters in (efficient) feature search (Bichot et al., 2005; Bichot & Schall, 

2002; Constantinidis & Steinmetz, 2001; McPeek & Keller, 2002; Schall, Hanes, 

Thompson, & King, 1995; Thompson, Hanes, Bichot, & Schall, 1996) and 

(inefficient) conjunction search for cued-targets defined by a unique combination 

of shape and color (Bichot et al., 2005; Bichot & Schall, 1999; Gottlieb, Kusunoki, 

& Goldberg, 1998).4 As noted in the previous section, in feature search a target is 

distinguished from distracters by a unique feature, although the exact value of 

this feature typically changes over trials (e.g., a white target among black 

distracters or a black target among white distracters). In contrast, in conjunction 

search a target is distinguished from distracters by a unique combination of 

features that usually remains the same over trials. Therefore, in feature search in 

which the target features are unknown, attentional mechanisms have to select the 

target by virtue of its physical saliency, whereas in conjunction search in which the 

target features are known, attentional mechanisms may also use top-down 

knowledge about the target features to select the cued-target. For this reason, 

feature search is associated with stimulus-driven visual attention, and conjunction 

search with a combination of stimulus-driven visual attention and top-down 

visual attention for one or more features (i.e., feature-based visual attention). 

Nevertheless, top-down knowledge about the target features may also play a role 

in feature search when the target features are unknown. For example, (implicit) 

expectations about the target and distracters features, which are raised by 
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repetitions of the target and distracters features in previous trials, decrease the 

response time in feature search (i.e., priming of pop-out) (Maljkovic & Nakayama, 

1994). Furthermore, even when the target features are unknown, the behavioral 

task of detecting a target in feature search may employ specific attentional 

mechanisms. In order to examine whether attention automatically selects an item 

that is distinguished from other items by a unique feature or combination of 

features, some neurophysiological studies presented search displays to monkeys 

when they were irrelevant to the behavioral task (i.e., when monkeys only 

maintained fixation) (Constantinidis & Steinmetz, 2005; Hegdé & Felleman, 2003; 

Thompson, Bichot, & Schall, 1997). 

What have neurophysiological studies revealed about the neural process of 

discriminating an item from other items, while monkeys passively view search 

displays, perform a feature search task, or perform a conjunction search task? That 

is, which neural correlates at the single cell level (and other levels) have been found 

for stimulus-driven visual attention (both in a passive fixation task and feature 

search task) and the combination of stimulus-driven and feature-based visual 

attention respectively? 

 

Neural correlate of stimulus-driven visual attention 

V1 neurons are not specifically selective for feature discontinuities leading to efficient 

search 

Previous neurophysiological studies have shown that already in the primary visual 

cortex (area V1) many neurons respond more strongly to pop-out center-surround 

stimuli, in which a single item in the classical receptive field (CRF) is surrounded 

by items that differ in a feature, than to homogeneous center-surround stimuli, in 

which the item centered on the CRF is identical to the items in the surround (e.g., 

Knierim & Van Essen, 1992). This result, which is also found in anesthetized 

animals (Kastner, Nothdurft, & Pigarev, 1999; Nothdurft, Gallant, & Van Essen, 

1999), has been interpreted as evidence that pop-out results from selection at the 

earliest stages of cortical processing, (largely) independent of top-down processing 

of visual information (e.g., Kastner et al., 1999; Knierim & Van Essen, 1992; Li, 

2002). 

However, a study by Hedgé and Felleman (2003) recently challenged this 

interpretation. Hedgé and Felleman (2003) presented a set of 36 different stimuli, 

consisting of a single bar of a preferred or non preferred color and orientation in 

the CRF and none or 58-109 bars in the surround, to monkeys that had to 
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maintain fixation. The set of stimuli contained center-alone stimuli, and 

homogenous, pop-out and conjunction center-surround stimuli. Hedgé and 

Felleman’s (2003) results indicated that, according to many different response 

measures, neurons in area V1 typically respond similarly to pop-out and 

conjunction center-surround stimuli. Hence, neurons in area V1 appear to be 

selective for feature discontinuities in general, and not specifically for the kind of 

feature discontinuities that lead to perceptual pop-out (i.e., efficient search). 

 

The time course of neural target discrimination in the PP, the FEF and the SC 

Neurophysiological studies have provided converging evidence that neurons in 

the posterior parietal cortex (PP), the frontal eye field (FEF), and the superior 

colliculus (SC) distinguish an item that is defined by a unique feature from other 

items (i.e., a singleton), regardless of whether monkeys passively view stimuli 

(Constantinidis & Steinmetz, 2005; Thompson et al., 1997) or search for the 

singleton (Constantinidis & Steinmetz, 2001; McPeek & Keller, 2002; Thompson 

et al., 1996). The time course of the neuronal target discrimination is also 

investigated in the PP, the FEF, and the SC. Interestingly, several 

neurophysiological studies indicated that the first feedforward sweep of visual 

information through the brain does not discriminate a target from distracters in 

these areas, even when the target is distinguished by a unique feature from the 

distracters (Constantinidis & Steinmetz, 2001, 2005; McPeek & Keller, 2002; 

Thompson et al., 1997; Thompson et al., 1996). Instead, the neuronal 

discrimination of a singleton from distracters in the PP (Constantinidis & 

Steinmetz, 2001, 2005), the FEF (Thompson et al., 1997; Thompson et al., 1996), 

and the SC (McPeek & Keller, 2002) appears to occur in the following epoch, which 

involves both horizontal and feedback processing (J. H. Fecteau, personal 

communication, January 24, 2006). 

Constantinidis and Steinmetz (2005) trained monkeys to maintain fixation while 

they presented single items (i.e., green or red squares), arrays of nine items of 

which one item differed in color (i.e., a green square among red squares or a red 

square among green squares), or arrays of nine identical items (i.e., green squares 

or red squares). They analyzed the responses of neurons in area 7a of the PP that 

displayed significant selectivity for the spatial location of a single item. These 

neurons responded most strongly to a single item in the center of their receptive 

field, and stronger to a singleton in the center of their receptive field than to one of 

the ‘distracters’ in the center of their receptive field. The responses to one of the 
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homogenous items in the center of the receptive field were weaker than the 

responses to a singleton in the center of their receptive field, but stronger than one 

of the ‘distracters’ in the center of their receptive field. 

Furthermore, Constantinidis and Steinmetz’s (2005) results showed that 

responses to a singleton in the center of the receptive field and to one of the 

‘distracters’ in the center of the receptive field initially were remarkably similar. 

After a burst of activity from 50 ms to 150 ms after stimulus onset, responses to 

these stimuli slightly decreased. Only after 180 ms, responses to a singleton in the 

center of the receptive field became reliably stronger than responses to one of the 

‘distracters’ in the center of the receptive field. Not only do Constantinidis and 

Steinmetz’s (2005) results suggest that attentional mechanisms automatically 

select an item that is distinguished from other items by a unique feature such as 

color, but also that this selection occurs only after about 180 ms. 

In Thompson et al.’s (1996) study, monkeys were trained to shift gaze to a target 

that was distinguished by either color or form from the distracters in either of two 

complementary feature search displays (e.g., a red target among green distracters, 

or a green target among red distracters). Initially, the neural activity of visually 

responsive neurons in the FEF did not discriminate between the presence of the 

target or a distracter in their receptive field. After about 100 ms, a selection process 

occurred that resulted in a higher level of neural activity when the target versus a 

distracter was present in the receptive field of visually responsive neurons in the 

FEF. Visually responsive neurons in the FEF thus ultimately indicated the location 

of the target. A later study showed that this neuronal process of discriminating the 

target from the distracters was not dependent of the planning of a saccade (i.e., a 

fast eye movement) (Thompson et al., 1997). Even when monkeys maintained 

fixation at the center of the search display, the neurons in the FEF still 

discriminated the singleton from a ‘distracter’. 

McPeek and Keller (2002) investigated the time course of the neuronal target 

discrimination in the SC. They trained monkeys to make a saccade to a target that 

was distinguished by a unique color from three distracters (i.e., a red target among 

green distracters, or a green target among red distracters). McPeek and Keller 

(2002) found that a subset of visuo-movement (VM) neurons (i.e., neurons showing 

significant visual and saccade-related activity) discriminated the target from a 

distracter at a time that was nearly independent of saccade latency. Thus, this 

subset of VM neurons may be primarily involved in the selection of the target, as 

opposed to eye movement commands. 



A review of behavioral and neurophysiological studies and models of visual search 

 

 119 

Initially, the activity of the subset of VM neurons that were selective for the target 

in the SC did not discriminate the target from a distracter, as was the case for 

neurons in area 7a of the PP (Constantinidis & Steinmetz, 2001, 2005) and the 

visually responsive neurons in the FEF (Thompson et al., 1997; Thompson et al., 

1996). In fact, the discrimination time for the subset of VM neurons that were 

selective for the target was typically about 100-130 ms for VM burst neurons and 

about 140-150 ms for VM prelude neurons. For VM burst neurons, the 

discrimination time coincided with their second burst of activity. The timing of 

the neuronal target discrimination for these VM neurons in the SC is quite similar 

to the timing of the neuronal target discrimination for the visually responsive 

neurons in the FEF (Thompson et al., 1997; Thompson et al., 1996).  

 

Neural correlate of stimulus-driven visual attention and top-down 

knowledge about the target and distracter features in previous trials 

As we briefly discussed above, expectations about the target and distracters 

features that are raised by repetitions of the target and distracters features in 

previous trials may be considered as top-down knowledge, whether it is generated 

in areas of the ventral stream (e.g., within local circuits of the inferotemporal 

cortex) or somewhere else in the brain (e.g., in the prefrontal cortex) (reviewed in 

Bichot & Schall, 2002). How does such top-down knowledge influence the 

neuronal discrimination of a target from distracters in feature search? A study by 

Bichot and Schall (2002) suggests that in the FEF top-down information about the 

target and distracters features in previous trials modifies the same neural correlate 

as the discrimination of a singleton from distracters. 

Bichot and Schall (2002) recorded neurons in the FEF, while monkeys performed a 

feature search task in which either both the target and distracter features or only 

the distracter features switched across trials with a certain probability, or in blocks 

of 10 trials. As in the studies that we discussed above, neurons in the FEF initially 

did not respond selectively to the target. Only in the following epoch, the activity 

of neurons in the FEF discriminated the target from a distracter. Moreover, the 

neuronal target discrimination occurred increasingly earlier in time with an 

increasing number of trials in which the distracter and or target features remained 

constant. For instance, in trials immediately after a change of the target-distracter 

relationship the discrimination time was about 200 ms, whereas in trials 

following 4-9 repetitions of the same target-distracter relationship the 

discrimination time was about 120 ms. These changes in the time of neuronal 
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target discrimination caused by change of the target-distracter relationship 

predicted changes in behavioral performance such as median saccade latency. 

In addition, Bichot and Schall (2002) found that as the accuracy of monkeys 

increased, the target activity increased and the distracter activity decreased. Hence, 

this suggests that the neuronal target discrimination is mediated by both target 

enhancement and distracter suppression. Bichot and Schall’s (2002) results were 

similar, regardless of whether both the target and distracter features changed over 

trials, or only the distracter features. 

 

Neural correlate of the combination of stimulus-driven and feature-based 

visual attention 

So far we have looked at the neuronal process of discriminating a singleton from 

distracters when the target features change over trials, i.e., stimulus-driven visual 

attention. When the target (and distracter) features are known, top-down 

knowledge about these features may assist the search for the cued-target, in 

addition to stimulus-driven visual attention. Two recent neurophysiological 

studies have investigated the neuronal target discrimination in conjunction search 

in which the target features were known, in the FEF (Bichot & Schall, 1999) and 

area V4 (Bichot et al., 2005).  

Bichot and Schall’s (1999) study suggests that the time course of the neuronal 

discrimination of a (known) conjunctive cued-target from distracters is rather 

similar to the time course of neuronal discrimination of a (unknown) singleton 

from distracters in the FEF, even though top-down knowledge about the target 

features is available to select a cued-target. The monkeys in their study had to 

execute a saccade to a cued-target defined by a unique combination of color and 

shape (differently across sessions) among three or five distracters in trials. Bichot 

and Schall (1999) reported the activity of neurons in the FEF in trials in which the 

first saccade was directed to the cued-target. As in Thompson et al.’s (1996) study, 

neurons in the FEF initially responded the same to each search item that appeared 

in their receptive field. Only some time after stimulus presentation (about 100-130 

ms for two of the FEF neurons), neurons in the FEF responded more strongly to 

the cued-target than to a distracter in their receptive field.  

Moreover, Bichot and Schall’s (1999) results indicated that FEF neurons not solely 

discriminated the cued-target from distracters in their receptive field, but also 

distracters that shared one feature with the cued-target from distracters that 

shared no feature with the cued-target. FEF neurons additionally discriminated 
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distracters that had been the cued-target during the previous session from other 

distracters in the receptive field. These two modulations of FEF activity correlated 

with the monkeys’ tendency to make erroneous saccades to distracters that either 

shared a cued-target feature or had been the cued-target during the previous 

session. Bichot and Schall’s (1999) finding that FEF neurons discriminate 

distracters that share one feature with a conjunctive cued-target from distracters 

that share no feature with the conjunctive cued-target is consistent with models of 

visual search that suppose that the search efficiency in conjunction search, and in 

search in general, depends on the similarity between the (cued-)target and 

distracters (Duncan & Humphreys, 1989). 

As neurons in the FEF are not typically selective for visual features (Mohler, 

Goldberg, & Wurtz, 1973), it is likely that the neuronal discrimination of the cued-

target from distracters and of distracters that share one feature with a conjunctive 

cued-target from distracters that share no feature with the conjunctive cued-target 

originates from areas of the ventral stream. Indeed, a recent study by Bichot et al. 

(2005) is consistent with this idea. Bichot et al. (2005) let monkeys freely scan 

complex search displays in both feature search (e.g., color, shape) and conjunction 

search. Bichot et al. (2005) recorded neurons in area V4 whose receptive field 

contained a search item that was not selected for the next saccade. The activity of 

these V4 neurons was greatest and most strongly synchronized when a preferred 

stimulus in their receptive field was the cued-target. Moreover, the activity of V4 

neurons was greater and more strongly synchronized when a preferred stimulus 

in their receptive field was a distracter that shared one feature with the 

conjunctive cued-target, or resembled the feature cued-target, than when a 

preferred stimulus in their receptive field was a distracter that shared no feature 

with the conjunctive cued-target, or did not resemble the feature cued-target.  

It is important to remark that Bichot et al.’s (2005) study demonstrates that 

feature-based visual attention enhances the activity of neurons that represent 

target features in parallel throughout the visual field, at least within area V4. This 

was suggested by previous neurophysiological and imaging studies, which found 

that attention for features or objects results in modulated neural activity within 

visual areas that represent the attended features (Chawla et al., 1999; Martinez-

Trujillo & Treue, 2004; Motter, 1994a, 1994b; Saenz et al., 2002) or objects 

(Chelazzi et al., 1993; O’Craven et al., 1999). Many researchers hypothesized that 

the neural activity within visual areas that represent the attended features is 

modulated by feedback signals from the prefrontal cortex, which maintains a 
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representation of the relevant features (e.g., Deco et al., 2002; Hamker, 2004; Van 

der Velde & De Kamps, 2001; Van der Velde et al., 2004). Although it is evident 

how such a mechanism of feature-based visual attention may help to select a cued-

target (in combination with spatial visual attention5), it is not yet clear how a 

target is selected when the target features are unknown. 

 

Implications of behavioral and neurophysiological studies 

The results of the behavioral and neurophysiological studies that we reviewed 

have important implications for models of visual search. First, behavioral studies 

have reported several findings that suggest that efficient search cannot solely be 

attributed to processing in low cortical areas: differences in orientation and color 

that neurons in low cortical areas are able to discriminate during visual processing 

with attention are finer than the differences that result in efficient search 

(Hochstein & Ahissar, 2002; Wolfe, 2003); search can be efficient over a large range 

of spatial scales, far exceeding the small receptive fields of neurons in the primary 

visual cortex and other low cortical areas (Hochstein & Ahissar, 2002; Shipp, 

2004); and efficient search may (Enns & Rensink, 1990; Kleffner & Ramachandran, 

1992; Wolfe et al., 1994) and sometimes even has to (He & Nakayama, 1992; 

Rensink & Enns, 1998) be based on the results of later stages of cortical processing.  

Second, several neurophysiological studies have found that stimulus-driven visual 

attention does not modulate the first feedforward sweep of visual information 

through the brain (Constantinidis & Steinmetz, 2001, 2005; McPeek and Keller, 

2002; Thompson et al., 1996; Thompson et al., 1997). Only in the epoch following 

the first feedforward sweep of visual information through the brain, responses of 

neurons in the SC (McPeek and Keller, 2002), FEF (Thompson et al., 1996; 

Thompson et al., 1997) and PP (Constantinidis & Steinmetz, 2001, 2005) 

discriminate a singleton from a distracter in the receptive field. This epoch 

involves both horizontal and top-down processing, and it is not yet clear whether 

the neuronal target discrimination depends on horizontal and/or top-down 

processing. Hence, neurophysiological studies leave open whether stimulus-

driven visual attention is the result of bottom-up and horizontal processing, or of 

bottom-up, horizontal, and top-down processing.6 

Third, in the FEF the neuronal discrimination of a singleton from distracters is 

faster after repetitions of the distracter and/or target features over consecutive 

trials than after a change of the distracter and/or target features (Bichot & Schall, 

2002). This result is in line with behavioral studies that found faster response 
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times or saccade latencies (and a higher accuracy) with the repetition of target 

and/or distracter features over consecutive trials in feature search (Maljkovic & 

Nakayama, 1994; McPeek, Maljkovic, & Nakayama, 1999). 

Finally, even though neurons in the FEF of monkeys are primarily selective for 

location information, they are also shown to encode the features of a cued-target 

such as color and shape in a conjunction search task (Bichot & Schall, 1999). This 

selectivity for target features other than location of the FEF neurons probably 

reflects the result of feature-based visual attention originating in areas of the 

ventral stream, such as in area V4. Indeed, in area V4, feature-based visual 

attention is found to enhance the activity of neurons that represent target features 

in parallel throughout the visual field (Bichot et al., 2005). 

 

Models of visual search 

In this section we will review various models of visual search. The models 

incorporate mechanisms of stimulus-driven visual attention (Itti & Koch, 2000; 

Koch & Ullman, 1985; Li, 2002) feature-based visual attention (Deco et al., 2002; 

Hamker, 2004; Van der Velde & De Kamps, 2001; Van der Velde et al., 2004) or 

stimulus-driven and feature-based visual attention (Cave, 1999; Tsotsos et al., 

1995; Wolfe, 1994; Wolfe et al., 1989). Most models that incorporate mechanisms 

of stimulus-driven visual attention assume that stimulus-driven visual attention 

results from bottom-up and horizontal processing (Cave, 1999; Itti & Koch, 2000; 

Koch & Ullman, 1985; Li, 2002; Wolfe, 1994). Only one model that incorporates 

mechanisms of stimulus-driven visual attention suggests that stimulus-driven 

visual attention results from bottom-up, horizontal, and top-down processing 

(Tsotsos et al., 1995). Naturally, models that incorporate mechanisms of feature-

based visual attention have to rely on top-down processing, because they employ 

top-down knowledge about relevant features. We have organized our review of 

models on the basis of the types of visual attention that the models explain (i.e., 

stimulus-driven visual attention, stimulus-driven and feature-based visual 

attention, or feature-based visual attention) and the types of processing that are 

proposed to explain stimulus-driven visual attention (i.e., bottom-up and 

horizontal processing, or bottom-up, horizontal and top-down processing). Table 

1 shows a classification of models based on these two characteristics. 

We define bottom-up processing as the processing of a stimulus from lower-level 

areas to higher-level areas in the visual processing hierarchy, and horizontal 

processing as the processing of a stimulus within an area in the visual processing 
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hierarchy. Top-down processing is defined as the processing of a stimulus from 

higher-level areas to lower-level areas in the visual processing hierarchy. 

 

Table 1 

Classification of models based on the types of visual attention that the models explain (i.e., stimulus-

driven visual attention, stimulus-driven and feature-based visual attention, or feature-based visual 

attention) and the types of processing that are proposed to explain stimulus-driven visual attention (i.e., 

bottom-up and horizontal processing, or bottom-up, horizontal and top-down processing) and feature-

based visual attention (i.e., bottom-up, horizontal and top-down processing) 

Types of VA Types of processing Models  

Bottom-up and 

horizontal processing 

Koch and Ullman (1985) 

Itti and Koch (2000) 

Li (2002) Stimulus-driven VA 

Bottom-up, horizontal, 

and top-down processing  
 

Bottom-up and 

horizontal processing 

Wolfe (1994) 

Cave (1999) Stimulus-driven VA 

Feature-based VA Bottom-up, horizontal, 

and top-down processing 
Tsotsos et al. (1995) 

Feature-based VA 
Bottom-up, horizontal, 

and top-down processing  

Humphreys and Müller 

(1993) 

Van der Velde and De 

Kamps (2001) 

Deco et al. (2002) 

Hamker (2004) 

Note. VA = visual attention. 

 

Models of stimulus-driven visual attention 

Stimulus-driven visual attention results from bottom-up and horizontal processing 

Koch and Ullman (1985) were the first to suggest a neurally plausible circuitry of 

stimulus-driven visual attention. Koch and Ullman’s (1985) model (in principle) 

implements a separate, retinotopic map for each feature that enables pop-out 

search. The activation in each feature map is linearly summed for each retinotopic 

location into a saliency map. In the saliency map, representations at different 

locations, which can be representations of different features (i.e., color, intensity, 

orientation), compete with each other. The location that is most highly activated 

in the saliency map wins the competition and attention is directed to that location. 
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Figure 1. Models of visual search. Each model has been redrafted to preserve its unique architecture but 

using a standard pictography to show equivalent elements across models. Lines with an arrowhead at the 

end denote excitatory connections, while lines with a filled dot at the end denote inhibitory connections. 

(A) Itti and Koch’s (2000) model. (B) Wolfe’s (1994) model. (C) Tsotsos et al.’s (1995) model. (D) Deco et al.’s 

(2002) model. 
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Then, the selected location and its neighbors become inhibited in the saliency map 

and attention switches to the next-most salient location. Following Koch and 

Ullman (1985), many models of stimulus-driven visual attention have 

incorporated an implicit or explicit saliency map, i.e. a two-dimensional map that 

encodes for saliency at every location within the visual field. Yet, these models 

differ in the mechanisms that process a stimulus to compute saliency. 

Itti and Koch (2000) presented a new approach to combine information from a 

variety of feature maps into a saliency map.7 In Koch and Ullman’s (1985) model, 

representations at different locations do not compete with each other within 

feature maps, so that the activation in each feature map is directly summed for 

each retinotopic location into the saliency map. Instead, Itti and Koch (2000) 

implemented competition between representations at different locations within 

each feature map (see Figure 1A). As a consequence, the most highly activated 

representation in each feature map wins the competition. Moreover, after 

competition within each feature map, the activation in feature maps is summed 

(across multiple spatial scales) into three separate conspicuity maps (i.e., color, 

intensity, orientation). For example, the activation in two feature maps encoding 

for color (i.e., red/green, blue-yellow) is summed into the conspicuity map for 

color. Within each conspicuity map, representations at different locations again 

compete with each other. The competition within feature and conspicuity maps 

allows for the selection of the most highly activated representation in these maps, 

and thus diminished the likelihood that many comparably activated 

representations cancel each other out in the saliency map. 

In conclusion, the models of Koch and Ullman (1985) and Itti and Koch (2000) 

suppose that stimulus-driven visual attention results from bottom-up and 

horizontal processing. Although Koch and Ullman (1985) and Itti and Koch (2000) 

did not specifically relate the feature (and conspicuity) maps to one or more 

cortical areas, the processing of low-level features in these maps implies that the 

feature (and conspicuity) maps are associated with low cortical areas.  

Li (2002) hypothesized that area V1 provides a saliency map, in which the activation 

of each neuron increases monotonically with the saliency of the visual input (given 

a visual scene) in its classical receptive field. Accordingly, two neurons in area V1 

are thought to be equally active when the visual input in their classical receptive 

field is equally salient, even though the two neurons are selective and responding 

to different features (e.g., one neuron is color selective and the other neuron is 

motion selective). Li (2002) proposed that bottom-up processing and horizontal 
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processing within area V1 computes saliency, but his model does not implement 

explicit feature maps. In line with known excitatory and inhibitory contextual 

influences observed in area V1 physiology, Li’s (2002) model implements iso-

orientation (iso-feature) suppression and contour enhancement. 

Iso-orientation suppression refers to the suppression of the activation of a neuron 

with a bar of a certain orientation within its classical receptive field, when the bar 

is surrounded by other bars of the same orientation. Iso-orientation (iso-feature) 

suppression results from disynaptically inhibitory connections between 

pyramidal neurons that code for similar orientations (features). Contour 

enhancement refers to the enhancement of the activation of a neuron with a bar of 

a certain orientation within its classical receptive field, when the bar is surrounded 

by other oriented bars that together form a smooth (isolated) contour. Contour 

enhancement results from monosynaptically excitory connections between 

pyramidal neurons. 

Because Li’s (2002) model attributes efficient search to the activity in area V1, Li’s 

(2002) model does not explain efficient search for high-level features (Enns & 

Rensink, 1990; Kleffner & Ramachandran, 1992; Wolfe et al., 1994). Li’s (2002) 

model also does not account for the finding that search can be efficient over a large 

range of spatial scales, far exceeding the small receptive fields of neurons in the 

primary visual cortex and other low cortical areas (Hochstein & Ahissar, 2002; 

Shipp, 2004). Nevertheless, Li (2000) gave an interesting explanation for the 

finding that the differences in orientation and color that neurons in low cortical 

areas are able to discriminate during visual processing with attention are finer 

than the differences that result in efficient search (Hochstein & Ahissar, 2002; 

Wolfe, 2003). That is, Li (2002) suggested that in addition to the response tuning 

of neurons in area V1, the specificity of their horizontal connections determines 

the saliency of a target, and consequently efficient search. 

 

Models of stimulus-driven and feature-based visual attention 

Stimulus-driven visual attention results from bottom-up and horizontal processing 

Wolfe (1994) and Cave (1999) too proposed that stimulus-driven visual attention 

results from bottom-up and horizontal processing in low cortical areas (e.g., 

extrastriate cortex). In addition to mechanisms of stimulus-driven visual 

attention, Wolfe’s (1994) Guided Search 2.0 and Cave’s (1999) FeatureGate 

incorporate mechanisms of feature-based visual attention. In these models, a 

bottom-up subsystem favors locations with unique features (i.e., stimulus-driven 
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visual attention), and a top-down subsystem favors locations with features 

designated as target features (i.e., feature-based visual attention). Together the 

bottom-up and top-down subsystem determine the selection of locations for 

attention. More specific, each subsystem independently calculates an activation 

for each location, and these activations are summed in the activation map to 

produce an overall activation for a location (see Figure 1B). Locations compete for 

selection on the basis of their activations in the activation map. After the selection 

and processing of the most highly activated location in the activation map, the 

selected location is inhibited and a new competition cycle results in the selection 

of the next-most highly activated location in the activation map. 

In Guided Search 2.0 (Wolfe, 1994) and FeatureGate (Cave, 1999), the bottom-up 

subsystem, which is responsible for stimulus-driven visual attention, compares 

features of each location to those in neighboring locations. Specifically, it increases 

the activation of locations with features that differ from those in neighboring 

locations. This is done separately for each feature dimension (i.e., color and 

orientation). In Guided Search 2.0, this activation is calculated at only one spatial 

level (Wolfe, 1994). Instead, FeatureGate reduces the number of long range 

connections that are necessary to compare features of each location to those in 

other locations by implementing a hierarchy of spatial levels (Cave, 1999). At each 

spatial level, features of each location are compared to only those in nearby 

locations. As the size of the receptive fields increases while climbing up the 

hierarchy, features of each location are compared to those in an increasingly larger 

area of the visual field. 

 

Stimulus-driven visual attention results from bottom-up, horizontal, and top-down 

processing 

Another model of stimulus-driven and feature-based visual attention was 

presented by Tsotsos et al. (1995). Tsotsos et al.’s (1995) selective tuning model 

implements stimulus-driven visual attention by bottom-up, horizontal and top-

down processing. This model processes visual information in a hierarchy of layers 

in two cycles. First, visual information is processed by interpretive neurons in a 

bottom-up manner (see Figure 1C). Each interpretive neuron is linked to a gating 

neuron. The gating neuron receives input from this interpretive neuron and from 

a bias neuron. Bias neurons enable the inhibition of specific features or locations 

that are not task-relevant (i.e., feature-based visual attention). 
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After the bottom-up cycle, gating neurons at the highest level of the visual 

processing hierarchy compete with each other; a winner-takes-all (WTA) process. 

There may be multiple winning gating neurons. Each winning gating neuron 

activates one more WTA process across the inputs of its associated interpretative 

neuron at the preceding layer (via a gating control neuron). At the same time, each 

gating neuron that does not win the competition shuts down the WTA across the 

inputs of its associated interpretative unit at the preceding layer. As a result, at the 

preceding level of the visual processing hierarchy, some gating neurons compete 

with each other, while other gating neurons become inactive. Again, each winning 

gating neuron selectively activates one more WTA process across the inputs of its 

associated interpretative neuron at the now preceding layer. Hence, the second 

cycle of processing consists of a top-down cascade of WTA processes. 

As a result, an increasing number of gating neurons becomes inactive at each level 

of top-down processing. This changes subsequent bottom-up processing, as 

bottom-up processing by interpretive neurons is restricted to those with an active 

gating neuron. Eventually, the top level of the visual processing hierarchy 

represents only the most salient location(s), either or not biased by feature-based 

visual attention. 

 

Models of feature-based visual attention 

Duncan and Humphreys (1989) presented a theory of visual search when the target 

features are known (i.e., feature-based visual attention with or without stimulus-

driven visual attention). According to this theory, the similarity between search 

items determines the search efficiency.  Specifically, Duncan and Humphreys 

(1989) hypothesized that search efficiency decreases with increasing target-

distracter (T-D) similarity and with decreasing distracter-distracter (D-D) 

similarity. In addition, T-D similarity and D-D similarity are thought to interact. 

When the target and the distracters are highly dissimilar, decreasing the D-D 

similarity does not make search less efficient. When all distracters are highly 

similar, decreasing the T-D similarity makes search only slightly less efficient. 

However, search is very inefficient when the T-D similarity is high and the D-D 

similarity is low. This is the case in which the distracters have many in common 

with the target, but rather less in common with one other. 

In particular, Duncan and Humphreys (1989) suggested that structural units, such 

as the target and distracters, compete for selection on the basis of selection 

weights. The selection weight for each structural unit increases in proportion to 
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the match of the structural unit to the target template. Accordingly, Duncan and 

Humphreys (1989) distinguished two processes within visual search that are 

influenced by T-D similarity and D-D similarity. First, the similarity between all 

possible targets and distracters determines to what extent each search item 

matches the target template, and thus influences the selection weights. Second, 

the similarity between all targets and distracters in the visual display additionally 

determines perceptual grouping between structural units. Perceptual grouping 

influences the selection weights, because any change in selection weight for one 

structural unit is distributed to other structural units in proportion to the 

strength of perceptual grouping between structural units (i.e., weight linkage). 

Humphreys and Müller (1993) implemented a neural network model of visual search 

that is in part based on Duncan and Humphreys’ (1989) theory. Humphreys and 

Müller’s (1993) Search via Recursive Rejection model (SERR) is a parallel 

processing model that generates efficient search for a shape conjunction (i.e., an 

inverted T) among homogenous shape conjunctions (i.e., upright T’s) and 

inefficient search for a shape conjunction (i.e., an inverted T) among 

heterogeneous shape conjunctions (i.e., upright T’s, left-oriented T’s, or right-

oriented T’s). In SERR, objects that are identical group together. The objects that 

group most strongly are selected and then rejected from further search. Search 

proceeds until either the cued-target is selected (i.e., target present response) or all 

objects are rejected (i.e., target absent response). When the distracters form a 

single group that can be rejected, search is efficient. When there are multiple 

distracter groups, the probability increases that one of the rejected distracter 

groups accidentally includes the cued-target. For that reason a time consuming 

check process is required to reduce the miss rate, which makes search inefficient. 

Grouping in SERR is implemented in match maps. There is a separate match map 

for each target and distracter (i.e., one for an inverted T, upright T, left-oriented T, 

and right-oriented T), which accumulates evidence for the presence of its object 

(via the activation of a corresponding template neuron). Connections between 

neurons within each match map are excitatory, whereas connections between 

neurons between match maps are inhibitory. The excitory connections between 

neurons within each match map result in grouping of identical objects. When a 

group of objects within a match map activates its corresponding template neuron, 

which codes for the cued-target, search ends. However, when a group of objects 

within a match map activates its corresponding template neuron, which codes for 

a distracter, this template neuron inhibits all the neurons in its corresponding 



A review of behavioral and neurophysiological studies and models of visual search 

 

 131 

match map and inhibits all locations in which there is evidence only for this 

object. As a consequence, search proceeds without these distracters. 

Deco et al. (2002) implemented a neural network model of feature-based visual 

attention in which visual attention arises as a consequence of continuous 

competitive interactions within and between modules. Hence, the model does not 

include an explicit saliency map. Attention for specific features or locations bias 

this competition, such that the competition is resolved in favor of attended 

features or locations. Although Deco et al.’s (2002) model processes visual 

information in parallel across the visual field, it produces differences in search 

efficiency across conditions of feature and conjunction search. This is due to 

different latencies of the model’s dynamics across these conditions. 

Deco et al.’s (2002) model includes a ventral and a dorsal pathway of modules. The 

ventral pathway consists of the modules V1, V4 and IT, and the dorsal pathway of 

the modules V1, V4 and PP (see Figure 1D). Modules in the ventral pathway (i.e., 

V1 and V4) process different feature dimensions (e.g., color, size) of a visual item. 

Each feature dimension consists of multiple feature maps (e.g., big, small), which 

extract the values of the features for an item at each position. The PP module 

represents the location of a visual item. The PP module is bidirectionally 

connected with the different feature maps, and can bind the different feature 

dimensions for an item location. Importantly, there is independent competition 

within each feature dimension. That is, a neuron (i.e., a population of neurons) 

inhibits all other neurons within a feature dimension, except for neurons that 

belong to the same feature map. Neurons in the PP module compete at all 

locations with each other. 

When a visual search display is presented, neurons coding for a feature at a 

location that is present in the display receive excitatory sensory input. Feature-

based visual attention is implemented by adding an extra excitatory input to the 

neurons in the feature maps that correspond to the attended feature(s) at each 

location. Likewise, spatial visual attention can be implemented by adding an extra 

excitatory input to the neurons in PP that correspond to the attended location(s). 

The top-down bias for specific features, which is hypothesized to come from the IT 

module, biases the competition within each feature dimension so that only the 

neurons corresponding to the attended feature(s) are able to win the competition. 

The reason is that these neurons receive both excitatory sensory input and 

excitatory top-down input. Interaction between the feature maps and the PP 
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module (intermodular attentional biasing) subsequently results in the selection of 

the spatial location of the attended feature(s) in PP. 

Hamker (2004) suggested a similar neural network model of feature-based visual 

attention. As in Deco et al.’s (2002) model, the location of objects with attended 

features is selected within a continuous dynamic process in Hamker’s (2004) 

model. Also, Hamker’s (2004) model does not include an explicit saliency map. In 

Hamker’s (2004) model, feature-based visual attention biases processing in ventral 

modules such as IT and V4 via top-down connections from prefrontal areas. First, 

inputs into IT that match the top-down bias for specific features get enhanced. 

Next, information about relevant features is transferred to module V4 via top-

down processing between the modules IT and V4, and inputs into module V4 that 

match top-down cues get enhanced. 

Unlike Deco et al. (2002), Hamker (2004) does not implement strong competition 

within the ventral modules IT and V4. Instead, Hamker (2004) hypothesized that 

spatial competition is embedded in the visuo-motor system by competition in 

areas that serve for action selection, such as the FEF. Hence, in Hamker’s (2004) 

model, processing within the ventral pathway (i.e., module V4) provides the 

source for spatial selection, but the spatial competition takes place in the premotor 

map of the FEF8 (or PP). The premotor map affects subsequent processing in 

module V4 via spatially organized connections between the premotor map and 

module V4. This slow spatial reentry leads to facilitated processing of certain 

items, but does not fully suppress the activity of not spatially attended items. 

Van der Velde and De Kamps (2001) proposed a neural model of object-based visual 

attention. This model and the related CLAM have already been discussed in 

preceding chapters and will not be described here. 
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Chapter 7 | The Global Saliency Model 

Most models incorporating mechanisms of global saliency assume that global 

saliency is the result of bottom-up and horizontal processing in the ventral 

pathway, i.e. of within-feature competition (Cave, 1999; Itti & Koch, 2000; Li, 

2002; Wolfe, 1994). However, consistent with neurophysiological evidence (e.g., 

Constantinidis & Steinmetz, 2001, 2005; Hegdé & Felleman, 2003), we present the 

Global Saliency Model (GSM), in which global saliency results from interaction 

between bottom-up, horizontal and top-down processing in the ventral pathway 

and bottom-up and horizontal processing in the dorsal pathway. The ventral 

pathway is based on Van der Velde and De Kamps’ (2001) model of object-based 

visual attention, while the dorsal pathway consists of a number of interacting 

spatial maps. This architecture solves some problems with within-feature 

competition models, e.g., an explosion of the number of necessary (inhibitory) 

horizontal connections, and an early reduction of information. The model 

presented here can explain several findings in visual search, including the 

selection of a singleton among distracters, the effects of target-distracter and 

distracter-distracter similarity, and the findings of the behavioral experiments in 

Chapter 5.   

 

Introduction 

An object stands out, or pops out, among a number of distracters when it is 

distinguished from the distracters by a large difference along a feature dimension 

(e.g., color, orientation, size). An example is a red ball among a number of blue 

balls. The object, the singleton, pops out in the sense that the number of distracters 

does not affect the time it takes to correctly identify its absence or presence in 

visual search (Wolfe & Horowitz, 2004). The selection of a singleton is automatic. 

That is, a singleton is selected among distracters even when the singleton and the 

distracters are irrelevant to the behavioral task (i.e., when the task is only to 

maintain fixation) (e.g., Constantinidis & Steinmetz, 2005; Thompson et al., 

1997). 

An object against a uniform background also stands out (e.g., a red ball on a green 

lawn). This can be explained by the response of neurons in early stages of cortical 

processing. Neurons in the early stages of cortical processing respond vigorously 

to a local discontinuity as given by a contour, or a change in color or shading 
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(Coren, Ward, & Enns, 2003). Accordingly, these neurons respond vigorously to 

the discontinuity between an object and its adjacent (local) background, making 

the (location of the) object salient. We propose to call this form of saliency local 

saliency. 

Local saliency cannot account for the selection of a singleton among distracters 

(e.g., a red ball among blue balls on a green lawn). Both the singleton (i.e., the red 

ball) and the distracters (i.e., the blue balls) are locally salient with respect to the 

background, since they all form a discontinuity with the adjacent background, 

resulting in vigorous activity of neurons in the early stages of cortical processing. 

Hence, the selection of a singleton among distracters is the result of another 

(additional) process. We refer to this process as global saliency, because the singleton 

and the distracters may be distributed over a large region in the visual field.  

Neurophysiological studies found that already in area V1 many neurons respond 

more strongly to pop-out center-surround stimuli, in which a single item in the 

classical receptive field (CRF) is surrounded by items that differ in a feature, than 

to homogeneous center-surround stimuli, in which the item centered on the CRF 

is identical to the items in the surround (e.g., Knierim & Van Essen, 1992). This 

result, which is also found in anesthetized animals (Kastner et al., 1999; Nothdurft 

et al., 1999), has been interpreted as evidence that pop-out results from selection 

at the earliest stages of cortical processing (in the ventral pathway), (largely) 

independent of top-down processing of visual information (e.g., Kastner et al., 

1999; Knierim & Van Essen, 1992; Li, 2002).  

Therefore, most models that incorporate mechanisms of global saliency assume 

that the selection of a singleton among distracters results from bottom-up and 

horizontal processing (Cave, 1999; Itti & Koch, 2000; Li, 2002; Wolfe, 1994) (see 

Chapter 6). More specific, these models implement competition between neurons 

that represent the same features.9 This within-feature competition is organized either 

in a separate map for each feature, a feature map, (Itti & Koch, 2000; Wolfe, 1994) 

or without separate feature maps (Li, 2002). We will refer to this class of models as 

within-feature competition models. Of these models, Itti and Koch’s (2000) model 

has probably been most influential to explain the selection of a singleton among 

distracters. 

How is a singleton selected among distracters in Itti and Koch’s (2000) model? 

Suppose that one red ball and a number of blue balls are present in the visual field 

of the model. The red ball activates neurons in the feature map “red” (i.e., the 

red/green feature map) at its corresponding location, and the blue balls activate 



The Global Saliency Model 

 

 135 

neurons in the feature map “blue” (i.e., the blue-yellow feature map) at their 

corresponding location. In each feature map, representations at different locations 

compete with each other (i.e., there is a WTA process). As a result, the 

representations of the blue balls in feature map blue diminish each other. In 

contrast, the representation of the red ball in the feature map red is unaffected by 

the WTA process, since only one red ball is represented. Next, the activation in 

each feature map is combined into an overall saliency map (via processing in 

conspicuity maps (see Chapter 6)). Within the saliency map, representations at 

different locations again compete with each other. As a consequence, the most 

highly activated location, the location of the red ball, wins the competition in the 

saliency map. Thus, within-feature competition models can account for the 

selection of any singleton among distracters, given that there is competition 

within a feature that is absent in the singleton, but present in the distracters. 

Behavioral studies reported a number of findings that suggest that global saliency 

cannot solely be attributed to processing in low cortical areas (see Chapter 6). First, 

search can be efficient over a large range of spatial scales, far exceeding the small 

receptive fields of neurons in the primary visual cortex (Hochstein & Ahissar, 

2002; Shipp, 2004) and other low cortical areas (Hochstein & Ahissar, 2002). 

Second, efficient search is reported not only for simple features (e.g., color, 

orientation) that are defined by luminance contrast, but also for simple features 

that are defined by other properties than luminance contrast (Bravo & Blake, 1990; 

Wolfe, 2003) and for high-level features, which include the result of quite 

sophisticated processing. Thus, efficient search may (Enns & Rensink, 1990; 

Kleffner & Ramachandran, 1992; Wolfe et al., 1994) and sometimes even has to (He 

& Nakayama, 1992; Rensink & Enns, 1998) be based on the results of later stages of 

cortical processing.  

These behavioral findings pose problems for models that attribute within-feature 

competition exclusively to low cortical areas, such as area V1 (Li, 2002). Although 

other models relate within-feature competition to relatively high cortical areas 

(e.g., extrastriate areas) (Wolfe, 1994), low and high cortical areas (Cave, 1999), or 

do not relate within-feature competition to one or more cortical areas (e.g., Itti & 

Koch, 2000), these models can still be questioned in a number of ways.  

First, the assumption that there is competition within each (simple and high-level) 

feature that can provide the basis for efficient search, entails an explosion of the 

number of horizontal, inhibitory connections (in feature maps) across different 

stages of cortical processing. Second, within-feature competition models suggest a 
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clear dichotomy between features (present in the distracters, but not in the target) 

that enable global saliency and those that do not, depending on whether there is or 

is not competition within a feature. In turn, this should result in a dichotomy 

between search slopes in visual search experiments, which has not been found 

experimentally (Wolfe, 1998). Third, within-feature competition models are based 

on automatic competition within each feature. This is a form of reducing 

information that could be needed in later stages of visual processing (cf., Wolfe & 

Horowitz, 2004). For example, similar features on different locations could belong 

to the same object. Competition among these features reduces the effectiveness of 

recognizing the object.  

In addition, several neurophysiological studies call the assumption that global 

saliency results from bottom-up and horizontal processing into question. 

Recently, Hedgé and Felleman (2003) challenged the interpretation that many 

neurons in area V1 are already selective for pop-out center-surround stimuli (e.g., 

Knierim & Van Essen, 1992). Hedgé and Felleman (2003) presented a set of 36 

different stimuli, consisting of a single bar of a preferred or non preferred color 

and orientation in the CRF and none or 58-109 bars in the surround, to monkeys 

that had to maintain fixation. The set of stimuli contained center-alone stimuli, 

and homogenous, pop-out and conjunction center-surround stimuli. Hedgé and 

Felleman’s (2003) results indicated that, according to many different response 

measures, neurons in area V1 typically respond similarly to pop-out and 

conjunction center-surround stimuli. Hence, neurons in area V1 appear to be 

selective for feature discontinuities in general, and not specifically for the kind of 

feature discontinuities that lead to efficient search. 

Other neurophysiological studies indicated that the first feedforward sweep of 

visual information through the brain does not discriminate a target from 

distracters in these areas, even when the target is distinguished by a unique 

feature from the distracters (Constantinidis & Steinmetz, 2001, 2005; McPeek & 

Keller, 2002; Thompson et al., 1997; Thompson et al., 1996). Instead, the neuronal 

discrimination of a singleton from distracters in the PP (Constantinidis & 

Steinmetz, 2001, 2005), the FEF (Thompson et al., 1997; Thompson et al., 1996), 

and the SC (McPeek & Keller, 2002) appears to occur in the following epoch, which 

involves both horizontal and feedback processing (J. H. Fecteau, personal 

communication, January 24, 2006) (see Chapter 6). Taken together, several 

neurophysiological studies  (Constantinidis & Steinmetz, 2001, 2005; Hegdé & 

Felleman, 2003; McPeek & Keller, 2002; Thompson et al., 1997; Thompson et al., 
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1996) indicate that global saliency may result just as well from a combination of 

bottom-up, horizontal and top-down processing, as from solely bottom-up and 

horizontal processing .  

In this chapter we present a model of global saliency that is not based on within-

feature competition across different stages of cortical processing and only bottom-

up and horizontal processing. Instead, in the Global Saliency Model (GSM), there 

is competition within features only at the latest stage of cortical processing in the 

ventral pathway, and global saliency results from interaction between bottom-up, 

horizontal, and top-down processing in the ventral pathway and bottom-up and 

horizontal processing in the dorsal pathway. We propose that the mechanisms of 

global saliency and object-based visual attention partly overlap. Therefore, 

bottom-up, horizontal, and top-down processing in the ventral pathway is related 

to Van der Velde and De Kamps’ (2001) model of object-based visual attention.  

After introducing GSM, we present several simulations. First, the selection of a 

singleton among distracters is simulated. We then simulate the behavioral 

experiments in Chapter 5 that investigate whether global saliency is an all-or-none 

or a gradual phenomenon, and discuss how GSM can explain the finding of the 

behavioral experiments in Chapter 5 that top-down visual attention speeds up the 

response to a target, even when the location of the target is already (globally) 

salient. In addition, the effects of target-distracter and distracter-distracter 

similarity (Duncan & Humphreys, 1989) are simulated. Finally, we explore how 

illuminance may influence the saliency of objects in GSM.  

 

The model 

Architecture 

Figure 1 illustrates the model for the selection of a singleton (e.g., cross) among 

distracters (e.g., triangles). The model consists of two pathways: ventral and 

dorsal. The ventral pathway processes object identification. When the identity of 

an object is selected in ventral area AIT, it generates feedback activity which 

interacts with stimulus activity in the ventral retinotopic areas (as in Van der Velde 

& De Kamps, 2001). The result is the selection of activity related to the object’s 

location in these retinotopic areas. This selection (activation) is transmitted to the 

dorsal pathway. In the case of object-based attention (Van der Velde & De Kamps, 

2001), the identity of the target is selected due to the memorization of the target. 

In the case of singleton selection discussed here, either the identity of the 

singleton (Figure 1A) or the identity of the distracter (Figure 1B) is selected. This 
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selection is due to a competition process in AIT (Chelazzi et al., 1993). In the case 

of object-based attention (Van der Velde & De Kamps, 2001) this process is 

influenced by the memorization of the target (Chelazzi et al., 1993). In the case of 

singleton selection, the competition is assumed to be random. However, the 

model in Figure 1 selects the location of the singleton, both when the singleton or 

when the distracter is selected in AIT.  

In the dorsal pathway, the objects generate activation in an “input” retinotopic 

map. Activation is location related, not identity related. Each object is locally 

salient, so there is no difference in activation between the objects in the input 

map. The input map activates a “contrast” retinotopic map in a point-to-point 

manner (i.e., retinotopically). In the contrast map, WTA competition occurs 

between different spatial representations. 

The ventral pathway activates a “ventral” retinotopic map, in a point-to-point 

manner. The ventral map inhibits the representations in the contrast map in a 

point-to-point manner. The input and ventral map interact in the contrast map, so 

that the activation (“location”) that is not selected (enhanced) in the ventral map is 

selected. The ventral map also activates a “top-down” retinotopic map (point-to-

point). In the top-down map, WTA competition occurs between different spatial 

representations. Finally, the contrast and top-down map activate a “saliency” 

retinotopic map (point-to-point). In the saliency map, WTA competition occurs 

between different spatial representations (as in Cave, 1999; Itti & Koch, 2000; 

Koch & Ullman, 1985; Wolfe, 1994).  

Figure 1A shows what happens when the singleton (cross) is selected in AIT. Its 

location is selected in the ventral map, and thus in the top-down map. The 

contrast map represents the locations of the distracters (triangles), because the 

location of the cross is inhibited by the ventral map. Due to WTA, distracter 

representations are (more) reduced in the contrast map. As a result, the singleton’s 

location is most strongly activated in the saliency map. The singleton wins the 

WTA competition, and its location is selected.  

Figure 1B shows what happens when the distracter (triangle) is selected in AIT. 

The locations of the triangles are selected in the ventral map, and thus in the top-

down map. But due to WTA, distracter representations are (more) reduced in the 

top-down map. The contrast map represents the location of the singleton (cross), 

because the distracter locations are inhibited by the ventral map. As a result, the 

location of the singleton (cross) is most strongly activated in the saliency map. The 

singleton wins the WTA competition, and its location is selected. 
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Implementation 

The model is implemented in terms of neuron populations in the spatial maps of 

the dorsal pathway. Each spatial map in the dorsal pathway consists of a 

retinotopic layer of 31 · 31 excitatory neuron populations. The activation that 

each object generates in the input map is simulated by injecting external input 

into the input map. Specifically, excitatory neuron populations in the input map 

that represent the location of an object receive excitatory external input. 

Excitatory neuron populations in the input map that do not represent the location 

of an object receive inhibitory external input.10 

The ventral pathway is based on Van der Velde and De Kamps’ (2001) model. In the 

simulations below, processing in the ventral pathway is not explicitly 

implemented. Instead, the selection achieved in the ventral pathway (Van der 

Velde & De Kamps, 2001) is simulated by injecting external input into the ventral 

map. More specific, excitatory neuron populations in the ventral map that 

represent the location of an object of which the identity is selected in the ventral 

pathway receive excitatory external input, while excitatory neuron populations in 

the ventral map that represent the location of an object of which the identity is not 

selected in the ventral pathway receive inhibitory external input. Excitatory 

neuron populations in the ventral map that do not represent the location of an 

object also receive inhibitory external input. We assume that the selection of an 

object identity in AIT is random, unless the identity of the target is cued (i.e., a 

cued-target). We therefore present the results for each object identity that may be 

selected in AIT. 

The objects in our simulation are disks. The location of a disk is represented by 12 

excitatory neuron populations in a spatial map. Excitatory neuron populations in 

the input and ventral map receive external input from the onset of a simulation 

(i.e., time = 0) until the activation of the excitatory neuron populations in the 

saliency map converges to a stable state (i.e., time = 50 ms). 

WTA competition in the top-down, contrast and saliency map is implemented 

through an inhibitory neuron population (Deco et al., 2002; Usher & Niebur, 

1996). The inhibitory neuron population receives input from all excitatory neuron 

populations in a spatial map via excitatory connections, and inhibits all excitatory 

neuron populations in the spatial map via inhibitory connections. Thus, the 

inhibitory neuron population inhibits each excitatory neuron population in the 

spatial map in proportion to the sum of activation over all excitatory neuron 

populations in the spatial map. As a result, excitatory neuron populations that 
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receive the highest net input win the competition from excitatory neuron 

populations that receive lower net input in the spatial map. At the same time, the 

overall level of activation in the spatial map is regulated. 

The activation (average neuron activity) of an excitatory neuron population is 

given by: 

.))(()(
)(

bgextern
m

mmE IItIFWtI
dt

tdI
+++−= ∑τ  

The current I determines the average firing rate in the excitatory neuron 

population. The input from other populations is received through Wm, with Wm > 0 

for excitatory input and Wm < 0 for inhibitory input. Iextern is external input (only for 

the input map and ventral map), and Ibg is background noise (Ibg = 0.025). The 

average firing rate is given by: 

( )
( )( )

,
- θβ −

+
=

Ie1

k
IF  

with k = 80 Hz, θ = 4.0 and β = 1.0. 

All simulations are performed with the same set of parameters, unless the value of 

a parameter was systematically varied for the purpose of a simulation. The 

parameters and their default values are described in detail in the Appendix at the 

end of this chapter. We will specify the value(s) of a parameter in the simulations 

below, when it deviates from the default value.  

 

Simulations 

Selecting a singleton among distracters 

Figure 2 shows the response of the model when a singleton is presented among 

four distracters, both when the singleton (Figure 1A) or the distracter (Figure 1B) 

is selected in AIT. In both cases, the location of the singleton is selected in the 

saliency map (s-SM). Distracter activity in the saliency map is low in both cases (d-

SM). With singleton selection in AIT (Figure 2A), singleton activity in the top-

down map (s-TDM) is stronger than distracter activity in contrast map (d-CM). 

With distracter selection in AIT (Figure 2B), singleton activity in the contrast map 

(s-CM) is stronger than distracter activity in top-down map (d-TDM). These 

differences in activation in favor of the singleton determine the selection of the 

singleton in the saliency map, in the manner as illustrated in Figure 1. 
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Figure 2. (A) The activation in the model over time when the singleton is selected in AIT. (B) The 

activation in the model over time when the distracter is selected in AIT. (s-SM = singleton in saliency 

map, s-TDM = singleton in top-down map, s-CM = singleton in contrast map, d-SM = distracter in 

saliency map, d-TDM = distracter in top-down map, d-CM = distracter in contrast map.)  

 

Figure 2 also shows that the distracter activity in the saliency map is lower than 

the distracter activity in the contrast map (Figure 2A), or lower than the distracter 

activity in the top-down map (Figure 2B). This is due to the fact that in the saliency 

map the WTA process is dominated by the singleton, which is not the case for the 

contrast map or the top-down map. (The role of the contrast map versus the top-

down map in this case results from selecting either the identity of the singleton or 

the identity of the distracter in AIT, as illustrated in Figure 1.)  

The difference in distracter activity between the salience map and the contrast 

map or the top-down map suggests that distracter activity in the saliency map 

would be higher when the singleton is not present. This suggestion is 

corroborated by a simulation of the model: without the presence of a singleton, 

distracter activity in the saliency map is similar to distracter activity in the contrast 

map or the top-down map. This is also true when the singleton is replaced by a 

distracter, so that there are more distracters in that case (which would result in 

more competition). The result of this simulation is in line with an observation of 

distracter activity in posterior parietal area 7a (Constantinidis & Steinmetz, 2005). 

In this experiment, distracter activity in this area was higher when the singleton 

was absent, compared to distracter activity when the singleton replaced one of the 
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distracters. The activity of the singleton, however, was the highest in all cases, as 

in Figure 2. 

The key characteristic of search for a singleton among distracters is that the time it 

takes to correctly determine the presence of the singleton is unaffected by the 

number of distracters (Wolfe & Horowitz, 2004). Figure 3 shows a simulation of 

the model in which a singleton is presented among 1 to 7 identical distracters. The 

activation of the singleton and the distracter in the saliency map (s-SM and d-SM) 

is shown at 50 ms after the onset of the simulation, when the activity of the 

singleton and the distracter has converged to a stable state, the activation at 

convergence. The activation at convergence of an object that is presented alone is 

plotted as a reference (single object-SM). The results of the simulation are 

analogous, whether the singleton (Figure 3A) or the distracter (Figure 3B) is 

selected in AIT. As expected, the singleton activity and the distracter activity in the 

saliency map are nearly equally strong when the singleton is presented with one 

distracter. This is logical because either one of the two presented objects may be 

considered as the singleton or the distracter. However, the singleton activity is 

much stronger than the distracter activity in the saliency map when the singleton 

is presented with two or more distracters. Hence, the location of the singleton is 

selected in the saliency map when the distracters outnumber the singleton.  

  
Figure 3. The activation at convergence in the saliency map of the model as a function of the number of 

distracters, when the singleton (A) or the distracter (B) is selected in AIT. The activation at convergence of 

an object that is presented alone (single object) is plotted as a reference. (s-SM = singleton in saliency map, 

d-SM = distracter in saliency map, single object-SM = single object in saliency map.) 
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Figure 4. The activation at convergence in the saliency map of the model as a function of different 

proportions of set 1 and set 2, when set 1 (A) or set 2 (B) is selected in AIT. The activation at convergence of 

an object when eight objects from one set are presented is plotted as a reference (one set). (set 1-SM = set 1 in 

saliency map, set 2-SM = set 2 in saliency map, one set-SM = one set in saliency map).  

 

Gradual global saliency 

As described in Chapter 5, we investigated whether elements from a minority 

colored set with more than one element are salient in a similar manner as color 

singletons. In our experiments, participants had to search for a target that was 

superimposed on one of fifteen colored disks. Each search display was equally 

likely to contain 0, 1, 3, 5, 7, 8, 10, 12, 14, or 15 disks of one color with 15, 14, 12, 

10, 8, 7, 5, 3, 1, or 0 disks of the other color. The target was equally likely to be 

placed in one of 1, 3, 5, 7, 8, 10, 12, 14, or 15 identically colored disks. We found 

that responses are fastest for targets on color singletons, but also that responses for 

targets on elements from a minority colored set with more than one element are 

faster than responses for targets on elements from a majority colored set. This 

result reflects that elements from a minority colored set with more than one 

element are searched earlier or faster than elements from a majority colored set, 

and are thus prioritized in search in a similar manner as color singletons. We 

referred to this as gradual saliency. 

We tested whether our model also produces gradual saliency. Therefore, we 

presented 8 objects to the model, which were divided in two sets: set 1 and set 2. 

The proportion of both sets was varied. The model was presented 1, 2, 3, 4, 5, 6, or 

7 objects from set 1 and 7, 6, 5, 4, 3, 2, or 1 objects from set 2. In case of set 1 
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selection in AIT, the external input injected into the excitatory neuron 

populations in the ventral map that represent the location of objects from set 1 

was 2, and the external input injected into the excitatory neuron populations in 

the ventral map that represent the location of objects from set 2 was -2. Likewise, 

in case of set 2 selection in AIT, the external input injected into the excitatory 

neuron populations in the ventral map that represent the location of objects from 

set 2 was 2, and the external input injected into the excitatory neuron populations 

in the ventral map that represent the location of objects from set 1 was -2. 

Figure 4 shows the activation at convergence of objects from set 1 and 2 in the 

saliency map (set 1-SM and set 2-SM) as a function of different proportions of both 

sets, both when set 1 (Figure 4A) or set 2 (Figure 4B) is selected in AIT. The 

activation at convergence of an object when eight objects from one set are 

presented is plotted as a reference (one set-SM). Both when set 1 or set 2 is selected, 

the activity of objects from a set in the saliency map is highest when only one 

object from that set and seven objects from the other set are presented. This 

situation is identical to the presentation of a singleton among seven distracters 

(see Figure 3). Interestingly, the activity of objects from a set in the saliency map 

gradually decreases as more and more objects from that set are presented. 

Naturally, the activity of objects from set 1 and 2 in the saliency map is equally 

strong when the same number of objects is presented from each set (i.e., 4 objects 

from set 1 and 2). Thus, our model most strongly selects the location of a 

singleton, but the model also to some extent selects the locations of objects from a 

minority set in the saliency map. 

In order to relate the response time of our experiments (see Chapter 5) in a 

qualitative manner to the activation in the saliency map of our model, we 

normalized both measures. Thereto, we defined the condition, in which the target 

is located on a singleton, as the baseline condition (Experiments, 1:14; Simulation, 

1:7), and the condition, in which a singleton is present, but the target is located on 

another object, as the reference condition (Experiments, 14:1; Simulation, 7:1). 

Next, the increase in response time or activation with respect to the baseline 

condition was computed for each condition (Experiments, 1:14, 3:12, 5:10, 7:8, 

8:7, 10:5, 12:3, 14:1, 15:0; Simulation, 1:7, 2:6, 3:5, 4:4, 5:3, 6:2, 7:1, 8:0). Then, we 

normalized the increase in response time or activation with respect to the baseline 

condition for each condition by taking the increase of the reference condition as 

norm. Thus, the normalized increase is given by: 

(Condition - Baseline condition) / (Reference condition - Baseline condition) 
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Figure 6. The normalized increase as a function of the ratio between the set on which the target is located 

and the set on which the target is not located, for the simulation and averaged over the eleven conditions 

of Experiments 1, 2A, 2B, 3A, 3B, and 4 (see the text for explanation). The error bars indicate the root mean 

squared error of the normalized increase that is averaged over the eleven conditions of Experiments 1, 2A, 

2B, 3A, 3B, and 4. 

 

In other words, the normalized increase indicates the increase in response time or 

decrease in activation with respect to the baseline condition, while taking the 

increase or decrease of the reference condition as the unit of measurement. 

Consequently, the normalized increase is 0 in the baseline condition and 1 in the 

reference condition. 

The conditions in the simulation were mapped in a qualitative manner onto the 

conditions in the experiments. Besides mapping the conditions in the simulation 

in which a singleton is present (1:14 and 14:1) onto the corresponding conditions 

in the experiments (1:7 and 7:1), the condition in the simulation in which only 

objects from one set are present (8:0) was mapped onto the corresponding 

condition in the experiments (15:0). Furthermore, we merged the conditions 7:8 

and 8:7 of the experiments, and mapped it onto the 4:4 condition in the 

simulation. Finally, the intermediate conditions in the simulation, in which the 

ratio between the set on which the target is located and the set on which the target 
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is not located was 2:6, 3:5, 5:3, or 6:2, were mapped onto the conditions in the 

experiments, in which the ratio was respectively 3:12, 5:10, 10:5, or 12:3. 

Figure 5 shows the normalized increase as a function of the ratio between the set 

on which the target is located and the set on which the target is not located, for the 

simulation, and Experiment 1 (Figure 5A), Experiments 2A and 2B (Figure 5B), 

and Experiments 3A, 3B, and 4 (Figure 5C). The normalized values clearly indicate 

that the decrease in activation in the saliency map of our model is qualitatively 

similar to the increase in response time in the experiments as the ratio between the 

set on which the target is located and the set on which the target is not located 

increases. This fit is comparable for the no cue condition (Experiment 1), the 

neutral cue conditions (Experiments 2A, 2B, 3A, 3B, and 4), and the color cue 

conditions (Experiments 2A, 2B, 3A, 3B, and 4). 

Figure 6 shows the normalized increase as a function of the ratio between the set 

on which the target is located and the set on which the target is not located, for the 

simulation, and averaged over Experiments 1, 2A, 2B, 3A, 3B, and 4. The error 

bars indicate the root mean squared error (RMSE) of the normalized increase that 

is averaged over the eleven conditions of Experiments 1, 2A, 2B, 3A, 3B, and 4. 

Again, the normalized values clearly indicate that the decrease in activation in the 

saliency map of our model is qualitatively similar to the increase in response time 

in the experiments as the ratio between the set on which the target is located and 

the set on which the target is not located increases. As can be seen in Figure 6, the 

model somewhat underestimates the saliency when the ratio between the set on 

which the target is located and the set on which the target is not located in the 

simulation is 2:6, 3:5, and 8:0. 

Although the data do not allow a quantitative comparison between the simulation 

and the experiments, since the conditions of the simulations are only qualitatively 

mapped onto the conditions of the experiments, it appears that our model is 

consistent with the finding of gradual saliency in our experiments (Chapter 5). In 

fact, the model’s decrease in saliency as more and more objects share a 

characteristic is qualitatively similar to the increase in response time that we 

observed in the experiments.  

We also investigated the interaction of gradual saliency with top-down visual 

attention (see Chapter 5). In our experiments, top-down visual attention was 

either set by a color cue at the beginning of each trial, or was absent due to a 

neutral cue. We found that top-down visual attention speeds up the search for a 

target, while the location of the target is already salient. Top-down visual 
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attention even made the search for a target faster, when it appeared on a color 

singleton. This finding is predicted by the architecture of our model. In our 

model, top-down visual attention for a color biases the competition process in AIT. 

By biasing the competition process in AIT, top-down visual attention for a color 

speeds up the selection of an object identity (i.e., the attended color) in AIT. As a 

result, the spatial maps of our model are able to compute global saliency earlier in 

time. 

 

Target-distracter (T-D) similarity and distracter-distracter (D-D) similarity 

Several visual search studies varied the difference between the singleton and the 

distracters along a feature dimension (e.g., varying the distracter orientation, 

while fixing the target orientation) (for overviews, see Duncan & Humphreys, 

1989; Wolfe & Horowitz, 2004). In line with numerous visual search studies, the 

findings indicated that as long as the singleton and distracters differ largely along 

a feature dimension (e.g., color, orientation or size), the number of distracters does 

not affect the time it takes to correctly determine the presence of the singleton. 

However, the findings also indicated that the time it takes to correctly determine 

the presence of the singleton increases with an increasing number of distracters as 

the singleton differs less and less from the distracters along a feature dimension.  

Furthermore, a visual search study by Duncan and Humphreys (1989) showed that 

the time it takes to correctly determine the presence of a cued-target was largely 

unaffected by the number of distracters when the distracters were homogeneous, 

but increased with the number of distracters when the distracters were 

heterogeneous.  

Based on these findings and other findings, Duncan and Humphreys (1989) 

proposed that the similarity between search items determines the search 

efficiency, i.e. the degree to which the time it takes to correctly determine the 

presence of a target is unaffected by the number of distracters. Specifically, 

Duncan and Humphreys (1989) hypothesized that search efficiency decreases with 

increasing target-distracter (T-D) similarity and with decreasing distracter-

distracter (D-D) similarity.  

We tested how our model responds to varying T-D and D-D similarity. Thereto, we 

increased T-D similarity in one simulation, and decreased D-D similarity in 

another simulation of the model. In both simulations, a singleton and four 

distracters were presented to the model. We used a fixed number of distracters, as 
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we are interested in demonstrating the mechanisms of the model that determine 

global saliency in this chapter.  

 

T-D similarity 

In our model, the T-D similarity affects the selection achieved in the ventral 

pathway. As the singleton and distracters become more and more similar, 

selection of the singleton (distracter) in AIT results not only in the selection of 

activity related to the singleton’s location (distracters’ location), but also to some 

extent in the selection of activity related to the distracters’ location (singleton’s 

location) in the ventral retinotopic areas. 

We simulated the effect of increasing T-D similarity for the selection achieved in 

the ventral pathway by making the external input of excitatory neuron 

populations in the ventral map that represent the location of an object of which 

the identity is selected in AIT (the selected object current in the ventral map) 

increasingly similar to the external input of excitatory neuron populations in the 

ventral map that represent the location of an object of which the identity is not 

selected in AIT (the unselected object current in the ventral map). The selected 

object current in the ventral map was fixed at 2. However, the unselected object 

current in the ventral map was varied from -2 to 2. Accordingly, the T-D similarity 

is lowest when the unselected object current in the ventral map is -2, and the T-D 

similarity is highest when the unselected object current in the ventral map is 2 

(i.e., in that case, the singleton and the distracters are identical).  

Figure 7 shows the activation at convergence of the singleton and the distracter in 

the saliency map as a function of the T-D similarity, when the singleton is selected 

in AIT. The results are analogous when the distracter is selected in AIT. The 

singleton activity (s-SM) is much higher than the distracter activity in the saliency 

map (d-SM) as long as the T-D similarity is low (e.g., the unselected object current 

in the ventral map is < 1.8). Only when the T-D similarity becomes very high, the 

distracter activity starts approximating the singleton activity in the saliency map. 

As a result, the location of the singleton can no longer (uniquely) be selected in the 

saliency map. In that case, the time it takes to correctly determine the presence of 

the singleton will increase with an increasing number of distracters. Our model is 

thus consistent with Duncan and Humphreys’ (1989) theory and visual search 

studies that varied the difference between the singleton and the distracter along a 

feature dimension (for overviews, see Duncan & Humphreys, 1989; Wolfe & 

Horowitz, 2004). 
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Figure 7. The activation at convergence in the saliency map of the model as a function of the T-D 

similarity, when the singleton is selected in AIT. T-D similarity increases with an increasing value of the 

unselected object current in the ventral map (see the text for explanation). (s-SM = singleton in saliency 

map, d-SM = distracter in saliency map.) 

 

D-D similarity 

The D-D similarity also affects the selection achieved in the ventral pathway in our 

model. Suppose that a singleton is presented among two distracters types, which 

are highly dissimilar: distracter type 1 and distracter type 2. Then, the selection of 

distracter type 1 in AIT results only in the selection of activity related to distracter 

type 1’s location, but not in the selection of activity related to distracter type 2 and 

the singleton’s location in the ventral retinotopic areas. Likewise, the selection of 

distracter type 2 in AIT results only in the selection of activity related to distracter 

type 2’s location, but not in the selection of activity related to distracter type 1 and 

the singleton’s location in the ventral retinotopic areas. The selection of the 

singleton in AIT results only in the selection of activity related to the singleton’s 

location, but not in the selection of activity related to distracter type 1 and 2’s 

location in the ventral retinotopic areas (given low T-D similarity).  

We simulated the effects of decreasing D-D similarity for the selection achieved in 

the ventral pathway as follows. In the case of singleton selection in AIT, the 

external input injected into the excitatory neuron populations in the ventral map 
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that represent the singleton’s location was 2, and the external input injected into 

the excitatory neuron populations in the ventral map that represent the location 

of either distracter type was -2. In the case of distracter type 1 selection in AIT, the 

external input injected into the excitatory neuron populations in the ventral map 

that represent the location of distracter type 1 was 2, the external input injected 

into the excitatory neuron populations in the ventral map that represent the 

singleton’s location was -2, and the external input injected into the excitatory 

neuron populations in the ventral map that represent the location of distracter 

type 2 was varied from -2 to 2 (variable a). Likewise, in the case of distracter type 2 

selection in AIT, the external input injected into the excitatory neuron 

populations in the ventral map that represent the location of distracter type 2 was 

2, the external input injected into the excitatory neuron populations in the ventral 

map that represent the singleton’s location was -2, and the external input injected 

into the excitatory neuron populations in the ventral map that represent the 

location of distracter type 1 was varied from -2 to 2 (variable a). Accordingly, the D-

D similarity is highest when variable a has value 2 (i.e., in that case, both distracter 

types are identical), and the D-D similarity is lowest when variable a has value -2. 

Figure 8 shows the activation at convergence of the singleton, distracter type 1 and 

distracter type 2 in the saliency map as a function of the D-D similarity. When the 

singleton is selected in AIT (Figure 8A), the location of the singleton is selected in 

the saliency map (singleton-SM), independently of the D-D similarity. However, 

when distracter type 1 is selected in AIT (Figure 8B), the location of the singleton is 

only selected in the saliency map as long as the D-D similarity is high enough (a > 

0.25). As the D-D similarity decreases (a < 0.25), the locations of distracter type 1 

are instead selected in the saliency map (distracter type 1-SM). Similarly, when 

distracter type 2 is selected in AIT (Figure 8C), the location of the singleton is only 

selected in the saliency map as long as the D-D similarity is high enough (a > 0.25). 

As the D-D similarity decreases (a < 0.25), the locations of distracter type 2 are 

instead selected in the saliency map (distracter type 2-SM). Given our assumption 

that the selection of an object identity in AIT is random, the results suggest that in 

addition to the singleton, the distracters are frequently selected when the D-D 

similarity is low. In that case, the time it takes to correctly determine the presence 

of the singleton will increase with an increasing number of distracters. Our model 

is thus consistent with Duncan and Humphreys’ (1989) theory and their visual 

search experiments, which investigated the effect of distracter homogeneity and 

heterogeneity. 
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Two unique objects among other objects 

Figure 9 shows the response of the model when six objects are presented to the 

model, of which two objects are unique compared to the other objects (e.g., a red 

and green disk among four gray disks). Suppose that the identity of either object 

(e.g., the color red, green or gray) can independently be selected in the ventral 

stream. The activity of unique object 1, unique object 2 and the common objects in 

the saliency map (unique object 1-SM, unique object 2-SM, and common object-

SM) then depends on whether unique object 1 (Figure 9A), unique object 2 (Figure 

9B) or the common objects are selected in AIT (Figure 9C). When unique object 1 is 

selected in AIT, the location of unique object 1 is selected in the saliency map. 

Likewise, when unique object 2 is selected in AIT, the location of unique object 2 is 

selected in the saliency map. When the common objects are selected in AIT, 

however, the locations of unique object 1 and 2 are selected in the saliency map. 

Yet, the location of a unique object is selected less strongly in the saliency map 

when the common objects are selected in AIT than when the unique object itself is 

selected in AIT. This is due to the fact that the selection of the common objects in 

AIT results in the selection of both unique objects in a spatial map with WTA 

competition (i.e., the contrast map), while the selection of unique object 1 (unique 

object 2) in AIT results in the selection of only unique object 1 (unique object 2) in 

a spatial map with WTA competition (i.e., top-down map). Given our assumption 

that the selection of an object identity in AIT is random, the results indicate that 

the locations of unique object 1 and 2 are as frequently selected in the saliency 

map. 

As has already been mentioned, we assume that object-based visual attention 

biases the competition process in AIT due to the memorization of the target, so 

that the identity of the attended object is (more frequently) selected. Thus, when 

unique object 1 (unique object 2) is attended, unique object 1 (unique object 2) is 

selected in AIT. As a consequence, the location of unique object 1 (unique object 2) 

is selected in the saliency map (Figures 9A and 9B). When the common objects are 

attended, the common objects are selected in AIT. Consequently, the locations of 

unique object 1 and 2 are selected in the saliency map (Figure 9C). 

In conclusion, our model predicts that when no objects are cued (i.e., in the 

absence of object-based visual attention) both unique objects are as frequently  

selected in the saliency map. Conversely, when one of the unique objects is cued, 

this object can be selected. This prediction is consistent with Bacon and Egeth’s 

(1994) proposal that spatial attention is automatically shifted to any singleton 
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when participants are searching for a singleton (i.e., singleton detection mode), 

but not when participants are able to direct top-down visual attention exclusively 

to the relevant feature of a target (i.e., feature search mode). 

 

Saliency by illuminance 

Highly illuminant stimuli (or stimuli with an abrupt onset) activate the 

photoreceptors in the retina more strongly than lowly illuminant stimuli (or 

stimuli with a gradual onset). This neural activity is projected to both the dorsal 

and the ventral pathway (Coren et al., 2003). In the dorsal pathway, we simulate a 

highly illuminant object by increasing the external input to excitatory neuron 

populations in the input map that represent the location of a highly illuminant 

object from 2 tot 2.15. In the ventral pathway, we simulate a highly illuminant 

object by increasing the external input to excitatory neuron populations in the 

ventral map that represent the location of a highly illuminant object from 2 tot 

2.15, provided that the highly illuminant object is selected in AIT. 11  

Figure 10A shows the response of the model when five objects are presented, 

which are identical except that one of the objects is highly illuminant (e.g., four 

gray disks and one highly illuminant gray disk). All the objects are selected in AIT, 

as they have the same object identity (e.g., they are all gray). The location of the 

highly illuminant object is selected in the saliency map (highly illuminant object-

SM). Activity of the other objects in the saliency map is low (other object-SM). The 

activation in the contrast map (highly illuminant object-CM and other object-CM) 

is very low, since the input and ventral map receive the same external input. This 

is due to the fact that all the objects are selected in AIT. The activity of the highly 

illuminant object in the top-down map (highly illuminant object-TDM) is higher 

than the activity of the other objects in the top-down map (other object-TDM). 

This difference in activation in favor of the highly illuminant object determines 

the selection of the highly illuminant object in the saliency map.  

Figure 10B shows the activation at convergence of the highly illuminant object 

and the other objects in the saliency map (highly illuminant object-SM and other 

object-SM) as function of the difference in illuminance. The highly illuminant 

object is increasingly strongly selected in the saliency map as its difference in 

illuminance with the other objects increases. 

In this simulation (and in the other simulations), the input and the ventral map 

are activated at the same time. That is, both the excitatory neuron populations in 

the input map and the excitatory neuron populations in the ventral map receive 
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external input from the onset of a simulation (i.e., time = 0). Nonetheless, it is 

reasonable to assume that the activation that each object generates in the input 

map evolves earlier in time than the activation in the ventral map that results from 

the selection achieved in the ventral pathway. If this is indeed the case, the 

activation in the contrast map, and consequently the activation in the saliency 

map, initially would be influenced primarily by the activation in the input map. 

As the activity of the highly illuminant object is higher than the activity of the 

other objects in the input map, the location of the highly illuminant object would 

still be selected in the saliency map. 

 
Figure 10. The activation in the model when five objects are presented, which are identical except that one 

of the objects is highly illuminant. All objects are selected in AIT. (A) The activation in the model over 

time. (B) The activation at convergence in the saliency map of the model as a function of the illuminance 

of the highly illuminant object. (highly illuminant object-SM = highly illuminant object in saliency map, 

highly illuminant object-TDM = highly illuminant object in top-down map, highly illuminant object-

CM = highly illuminant object in contrast map, other object-SM = other object in saliency map, other 

object-TDM = other object in top-down map, other object-CM = other object in contrast map.) 

 

After the selection in the ventral pathway has taken place, the activation in the 

ventral map neutralizes the initial domination of the highly illuminant object in 

the contrast map. As noted above, the reason is that the activation in the input and 

in the ventral map then become equivalent, and cancel each other out in the 

contrast map. At the same time, the activity of the highly illuminant object in the 

top-down map becomes higher than the activity of the other objects in the top-
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down map. This difference in activation in favor of the highly illuminant object 

subsequently determines the selection of the highly illuminant object in the 

saliency map (see Figure 10A). 

 
Figure 11. A unique object that is attended (cued-target) is presented among one distracter that is unique 

and highly illuminant (unique distracter) and four distracters. Object-based visual attention results in 

the selection of the cued-target in AIT. The graph shows the activation at convergence in the saliency map 

of the model as a function of the illuminance of the unique distracter. The illuminance of the unique 

distracter increases with an increasing value of the corresponding external input current (see the text for 

explanation) (cued-target-SM = cued-target in saliency map, unique distracter-SM = unique distracter in 

saliency map, distracter-SM = distracter in saliency map.) 

 

A unique, attended object among distracters, of which one is unique and 

highly illuminant  

We are interested in the response of our model when a unique object, which is 

attended (cued-target), is presented among one distracter that is unique and 

highly illuminant (unique distracter) and four other distracters (e.g., a red target 

among a highly illuminant green distracter and four gray distracters). Figure 11 

shows the activation at convergence of the cued-target, the unique distracter, and 

the other distracters in the saliency map (cued-target-SM, unique distracter-SM, 

and distracter-SM) as a function of the illuminance of the unique distracter. 
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Object-based visual attention results in the selection of the cued-target in AIT. The 

cued-target activity is higher than the unique distracter activity in the saliency 

map as long as the difference in illuminance between the cued-target and the 

unique distracter is low (e.g., external input current of the unique distracter is < 

2.25). Only when the illuminance of the unique distracter becomes much higher 

than the illuminance of the cued-target (e.g., external input current of the unique 

distracter is >> 2.25), the unique distracter activity surpasses the cued-target 

activity in the saliency map. As a result, the location of the cued-target can no 

longer (uniquely) be selected in the saliency map. Hence, our model predicts that 

even when participants are searching for a unique, attended object, spatial 

attention may automatically be shifted to a unique distracter, given a high enough 

illuminance of the unique distracter (or a distracter with an abrupt onset). 

 

Conclusion 

The Global Saliency Model can explain several findings in visual search. In 

simulations, we showed that a singleton is selected in GSM, as long as the 

distracters outnumber the singleton. That is, the location representation of the 

singleton in the dorsal pathway wins the competition in the saliency map. This 

location representation can subsequently influence the ventral pathway to select 

the identity (e.g., shape, color) of the singleton as well, in particular when the 

distracter was initially selected in AIT (Figure 1B). In this way, the interaction 

between the dorsal and ventral pathway in the model binds location information 

with identity information (Van der Velde & De Kamps, 2001, 2006).  

Other simulations demonstrated that GSM is consistent with the findings of the 

behavioral experiments in Chapter 5. Global saliency appears to be gradual in 

GSM. The model’s decrease in global saliency as more and more objects share a 

characteristic is even qualitatively similar to the increase in response time that we 

observed in the experiments. GSM can also account for the finding that top-down 

visual attention speeds up the search for a target, when the target location is 

already globally salient. In the architecture of GSM, top-down visual attention 

(i.e., object-based visual attention) speeds up the competition process in AIT, by 

biasing the competition process toward the attended object identity. Therefore, 

the spatial maps of the model are able to compute global saliency earlier in time.  

Furthermore, GSM is able to simulate the effects of T-D and D-D similarity 

(Duncan & Humphreys, 1989). The T-D and D-D similarity affect the selection in 

the ventral pathway in GSM. When the T-D similarity is high, or the D-D 
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similarity is low, distracters are frequently selected in the saliency map of our 

model. Accordingly, the time it takes to correctly determine the presence of the 

singleton will increase with an increasing number of distracters, in line with 

Duncan and Humphreys’ (1989) theory and visual search experiments (for 

overviews, see Duncan & Humphreys, 1989; Wolfe & Horowitz, 2004). 

Finally, we explored how illuminance may influence the saliency of objects in 

GSM. In GSM, an object can also be selected among identical objects (i.e., all the 

objects have the same object identity) in the saliency map, when it is more 

illuminant than the other objects. In fact, when a unique object that is attended 

(i.e., a cued-target) is presented among one distracter that is unique and highly 

illuminant and a number of other distracters (e.g., a red target among a highly 

illuminant green distracter and a number of gray distracters), GSM predicts that 

the highly illuminant object is increasingly strongly selected in the saliency map 

as its difference in illuminance with the other objects increases.  

Although other models incorporating mechanisms of global saliency may also 

account for these findings in visual search (e.g., Cave, 1999; Wolfe, 1994), GSM 

does so without implementing within-feature competition across different stages 

of cortical processing. In GSM, there is no competition within features until the 

latest stage of cortical processing in the ventral pathway, in AIT. This avoids the 

drawback of within-feature competition models (Cave, 1999; Itti & Koch, 2000; Li, 

2002; Wolfe, 1994) that information is reduced, which could be needed in later 

stages of visual processing (cf., Wolfe & Horowitz, 2004). In AIT, the identity of an 

object is selected due to competition. When the identity of an object is selected in 

AIT, it generates feedback activity which interacts with stimulus activity in the 

ventral retinotopic areas. The result is the selection of activity related to the 

object’s location in these retinotopic areas. This selection (activation) in the ventral 

pathway, related to Van der Velde and De Kamps’ (2001) model of object-based 

visual attention, is transmitted to the dorsal pathway. In the dorsal pathway, there 

are several maps in which (neurons coding for) different locations compete with 

each other. In the top-down map, the locations that are selected in the ventral 

pathway compete. In the contrast map, all other locations, which are not selected 

in the ventral pathway, compete. The activation in the top-down map and the 

contrast map is combined into the saliency map. Hence, the model has two 

distinctive features. 

First, it is based on a combination of bottom-up, horizontal, and top-down 

processing. This differs from most other models that incorporate mechanisms of 
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global saliency, which assume that global saliency is the result of only bottom-up 

and horizontal processing (Cave, 1999; Itti & Koch, 2000; Li, 2002; Wolfe, 1994), 

but is consistent with neurophysiological evidence (Constantinidis & Steinmetz, 

2001, 2005; Hegdé & Felleman, 2003; McPeek & Keller, 2002; Thompson et al., 

1997; Thompson et al., 1996) (see Chapter 6). 

Second, we propose a strong overlap between the mechanisms of global saliency 

and object-based visual attention. GSM supposes that global saliency and object-

based visual attention mainly differ in the nature of object selection in AIT. When 

the identity of the target is unknown (i.e., when the target is defined as a 

singleton), the competition process in AIT is assumed to be random. When the 

identity of a target is known (in the presence of object-based visual attention), 

however, the competition process in AIT is assumed to be biased (and speeded up) 

toward the attended object (Van der Velde & De Kamps, 2001), due to 

memorization of the target (Chelazzi et al., 1993). From the selection of an object 

in AIT onwards, global saliency and object-based visual attention (Van der Velde & 

De Kamps, 2001) operate in the same way. 

GSM can in principle explain efficient search for any (simple and high-level) 

feature or conjunction of features as long as the feature can be identified in an area 

such as AIT (i.e., it is represented in an area such as AIT) (cf., Ahissar & Hochstein, 

2004; Wolfe, 2003), and its representation in AIT generates feedback activation to 

the retinotopic areas of the visual cortex, which enables the selection of activity 

specifically related to the feature’s location in these retinotopic areas. Hence, GSM 

predicts a range of search slopes, depending on the effectiveness of the feedback 

activation to distinguish between activity related to the target and activity related 

to the distracters (we hypothesize that these feedback connections can be trained 

to some extent, see Chapter 4). This prediction is in line with the observation that 

the overall distribution of search slopes is unimodal (Wolfe, 1998). Instead, 

within-feature competition models predict a bimodal distribution of search 

slopes.  

Evidently, GSM assumes specific feedback connections for (simple and high-level) 

features that can lead to efficient search. Nonetheless, feedback connections are 

anyhow needed to select visual information on the basis of top-down information 

(e.g., knowledge, expectations, goals), such as in the case of feature-based visual 

attention (Chawla et al., 1999; Martinez-Trujillo & Treue, 2004; Motter, 1994a, 

1994b; Saenz et al., 2002) and object-based visual attention (Chelazzi et al., 1993; 

O’Craven et al., 1999). In contrast to within-feature competition models, GSM 
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does not additionally assume an explosion of the number of horizontal, inhibitory 

connections (in feature maps) across different stages of cortical processing. 

 

Appendix  

The spatial maps in the dorsal pathway of GSM 

The dorsal pathway of GSM consists of five spatial maps: the input map (IM), 

contrast map (CM), ventral map (VM), top-down map (TDM) and saliency map 

(SM). Each spatial map is made up of a retinotopic layer of 31 · 31 excitatory 

neuron populations. The excitatory neuron populations in a spatial map are 

connected in a point-to-point manner to the excitatory neuron populations in 

other maps: the IM is connected to the CM, the VM to the CM, the VM to the TDM, 

the CM to the SM, and the TDM to the SM (see Figure 1). 

 

Excitatory neuron populations in the spatial maps 

The excitatory neuron populations are modeled in terms of average neuron 

activity, which represents the overall activity of a neuron population. The average 

neuron activity is given by equations that regulate the input currents to a neuron 

population, and a response function that transforms these input currents into the 

discharge rate. 

The equations that regulate the input currents to the excitatory neuron 

populations in the IM, CM, VM, TDM and SM are: 
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In these equations, k
jiI ,  is the current in the excitatory neuron population in spatial 

map k at retinotopic location (i, j). Furthermore, τ E is the time membrane constant 

for excitatory neuron populations and k
jiI ,−  is the decay (leakage) of the excitatory 
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neuron population in spatial map k at retinotopic location (i, j). The parameter Wk1 

to k2 represents the synaptic weight of a connection from spatial map k1 to spatial 

map k1.  

Moreover, k
jiL , is the lateral input current to the excitatory neuron population in 

spatial map k at retinotopic location (i, j). The parameter Wto k represents the 

synaptic weight of the connection from the inhibitory neuron population that 

provides the lateral input current (as described below) to the excitatory neuron 

population. 

The excitatory neuron populations in the IM receive an external input 

current dorsal
jiI , , and the excitatory neuron populations in the VM receive an external 

input current ventral
jiI , . All neuron populations receive an input current reflecting 

background noise, Ibg, which is randomly selected from a Gaussian with mean MIbg 

and standard deviation sdIbg. 

The function F(I) represents the response function that transforms the input 

currents into the discharge rate A: 

( )
( )( )

.
θβ −−

+
==

Ie1

k
IFA  

 

Inhibitory neuron populations in the CM, TDM, and SM 

WTA competition in the CM, TDM, and SM is implemented through an inhibitory 

neuron population (Deco et al., 2002; Usher & Niebur, 1996). The TDM, CM and 

SM are linked to an inhibitory neuron population that receives input from all 

excitatory neuron populations in a spatial map via excitatory connections and 

inhibits all excitatory neuron populations in that spatial map via inhibitory 

connections. Consequently, each excitatory neuron population within a spatial 

map receives the same amount of inhibition k
k

ji LLij =∀ ,: . The excitatory neuron 

populations are inhibited by choosing a negative weight for Wto k. The input 

currents to the inhibitory neuron population of spatial map k, Lk, are regulated by 

the following equation: 

( ) .
,

, bg

ji

k
jikfromk

k
I IIFWL

dt

dL
++−= ∑τ  

In the above equation, τI is the time membrane constant for inhibitory neuron 

populations. The parameter Wfrom k represents the synaptic weight of the 
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connections from the excitatory neuron populations to the inhibitory neuron 

population in spatial map k. 

 

Parameter settings 

In our simulations, we use τE = 5 ms, τI = 5 ms, k = 80 Hz, θ = 4.0, β = 1.0, MIbg = 

0.025, and sdIbg = 0.03. The synaptic weights are set at the following values: 
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The values of the external input currents dorsal
jiI ,  and ventral

jiI ,  are shown in Table 1.  

As can be seen in Table 1, dorsal
jiI ,  = 2 for excitatory neuron populations in the IM 

that represent the location of an object, and dorsal
jiI ,  = -2 for excitatory neuron 

populations in the IM that do not represent the location of an object. The value of 

the external input current ventral
jiI ,  is 2 for excitatory neuron populations in the VM 

that represent the location of an object of which the identity is selected in the 

ventral pathway, and -2 for excitatory neuron populations in the ventral map that 

represent the location an object of which the identity is not selected in the ventral 

pathway and that do not represent the location of an object. These values of dorsal
jiI ,  

and ventral
jiI ,  are used in simulations, in which the illuminance of the presented 

objects is hypothesized to be ‘standard’ and the selection in the ventral pathway to 

be ‘effective’ (i.e., the T-D similarity is low). When the values of these parameters 

differ from the values in Table 1, their values in a simulation are given in the text. 

 

Table 1 

Default external input currents  

 Ventral Dorsal 

No object -2.0 -2.0 

Object selected in the ventral pathway 2.0 2.0 

Object not selected in the ventral pathway -2.0 2.0 
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Chapter 8 | The inhibitory annulus of attention: Is it 

pre-attentive inhibition? 

It has been proposed that the surrounds of the focus of spatial attention are 

inhibited. Such inhibitory surrounds have been inferred from longer search times 

for targets near attention-grabbing distracters, relative to targets far from such 

distracters. Here, we investigate the existence of such an inhibitory surround in 

two psychophysical experiments. In Experiment 1, evidence for an inhibitory 

surround accompanying attention was only found for inconspicuous targets. In 

Experiment 2, near targets benefited from spatial attention when spatial attention 

was manipulated through cueing, instead of through salient distracters. An 

alternative explanation for findings of an inhibitory surround may be that salient 

distracters inhibit surrounding elements not after grabbing attention, but pre-

attentively through lateral inhibition.  

 

Introduction 

It has long been known that visual stimuli in the focus of attention are detected 

more easily than those outside it. This has also been found at the neural level: 

attended stimuli elicit larger responses, and elicit responses at lower levels of 

contrast than unattended stimuli (Reynolds & Chelazzi, 2004). In the brain, 

attention also has other effects. Attention to one object within the receptive field 

of extrastriate neurons also results in smaller responses to other stimuli within the 

receptive field of the same cell (Moran & Desimone, 1985; Reynolds & Chelazzi, 

2004). Responses to unattended objects close to objects in the focus of attention 

thus seem to be suppressed.  

Evidence for inhibition of unattended objects close to the focus of attention has 

also come from psychophysiological research. Caputo and Guerra (1998) asked 

participants to detect an increase in the length of a line segment presented within 

a target form. They also presented a distracter with a unique color, which, in such 

circumstances, can capture attention (Theeuwes, 1991; Theeuwes, 1992). In 

conditions, in which the target had a unique but changing shape (i.e., its shape 

and those of the nontargets switched trial by trial), the line length threshold 

increased as the distance from the target to the distracter with a unique color 

decreased. Caputo and Guerra surmised that in their experiments attention was 
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first grabbed by the distracter. This then caused surrounding elements to be 

inhibited, making discrimination of surrounding objects more difficult 

(including, in some trials, the target). Similarly, Mounts (2000) let participants 

search for a target letter in displays that also contained attention-grabbing 

distracters. When the target letter was close to the attention-grabbing distracter, it 

was detected more slowly than when it was at some distance of the distracter. This 

was not the case if the distracter did not grab attention. Although the effect was 

small, it was also reported by Theeuwes and Godijn (2001) with different stimuli. 

Similar conclusions were reached with other experimental setups (Bahcall & 

Kowler, 1999; Cave & Zimmerman, 1997; Cutzu & Tsotsos, 2003; Müller, 

Mollenhauer, & Rösler, 2005), which we will review in the general discussion. 

Most theories of visual search can accommodate these results. Many models 

include lateral inhibition between stimuli in each other’s vicinity (Itti & Koch, 

2000; Wolfe, 1994). Although such models usually simulate events only up to the 

moment that attention is focused upon one location, one can easily imagine that 

lateral inhibition of distracters becomes stronger when attention boosts the signal 

associated with an attended target stimulus (see Spivey & Spirn, 2000). One model, 

the Selective Tuning model of attention (Tsotsos et al., 1995), includes an explicit 

inhibitory surround around the focus of attention: within a map of features, 

attention enhances the signal at the attended location, but dampens signals in the 

vicinity of that location. 

Originally, we set out to test two accounts of inhibition around the focus of 

attention, namely strengthened lateral inhibition and an explicit inhibitory 

annulus around the focus of attention. We did this by manipulating the similarity 

between target and distracter. As lateral inhibition is usually assumed to be 

strongest within feature maps (Itti & Koch, 2000; Wolfe, 1994), we reasoned that a 

lateral inhibition account would predict that the inhibitory surround of a 

distracter would be stronger when a distracter shared features with the target than 

when it did not. The inhibitory annulus account would predict no such 

interaction. To preview the results, we indeed found no interaction. In fact, we 

found no evidence at all of an inhibitory surround when the target was also 

somewhat salient. In a second experiment, we then found that an attention-

grabbing cue did not produce an inhibitory surround.  
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Experiment 1: Modulation of inhibitory effects between two feature 

singletons by lateral inhibition within color 

In the experiments of Caputo and Guerra (1998) and Mounts (2000), the distance 

between a target and an attended location (i.e., the location of a feature singleton) 

was varied, and participants’ latency to identify or match the target decreased with 

a larger distance between the attended location and the target. Our first 

experiment was designed to test whether a salient distracter that captures 

attention inhibits a close target stimulus stronger when it shares its defining 

feature with the target, than when it does not, as would be predicted by a lateral 

inhibition account (see above).  

The target was identifiable by its unique shape, within which participants had to 

identify the orientation of a line. The distracter was defined by color. We 

manipulated the distance between the target and the distracter. Moreover, there 

were five conditions in the experiment: in the first and second condition, the 

target and the distracter were both colored, and either had the same color or a 

different color (Same and Different condition). In a third condition, similar to 

experiments of Mounts (2000), a gray target was accompanied by a colored 

distracter. In a fourth condition, the target itself was the only color singleton. The 

final one was a control condition, in which there was no distracter and all elements 

including the target were gray. 

 

Methods 

Participants 

Participants were eleven students at the Vrije Universiteit Amsterdam, who were 

paid for their participation.  

 

Stimuli 

Stimuli were presented on 21” SVGA color (Philips Brillance 201 P) monitors, with 

a resolution of 1024 to 768 pixels and a refresh rate of 120 Hz. Each trial started 

with the presentation of a fixation symbol for 700 ms. The fixation symbol was a 

gray “+” (lines 0.92 degrees of visual angle) located at the center of a black 

background. The fixation symbol remained visible in the search display. 

Search displays were adapted from Theeuwes (1992) (see Figure 1A). They 

consisted of twelve elements randomly placed against a black background on fixed 

locations on an imaginary circle; one diamond, the target, and eleven nontarget 

disks (of which one could be a colored distracter). The diameter of the imaginary 
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circle was about 16.33 degrees of visual angle, while the diamond and disks 

measured 4.01 and 3.21 respectively in degrees of visual angle. 

Each element contained an oriented, gray line with a length of approximately 1.1 

degree of visual angle. The line in the target was horizontal or vertical. The 

orientation of lines in the distracter and nontargets was randomly chosen to be 

22.5º or 67.5º tilted to the left, or 22.5º or 67.5º tilted to the right. Since horizontal 

or vertical lines do not pop out between heterogeneously oriented tilted lines, the 

target line in such displays is usually found through the unique shape 

surrounding it (Theeuwes, 1992).  

 

  

 

Figure 1. Experiment 1. (A) A screenshot of the search display in the gray target and the gray distracter 

condition. (B) A schematic drawing of the five conditions, leaving out the oriented lines and the 

configuration of the stimuli. Gray denotes gray elements. Black denotes the color green, and the dashed, 

black line denotes the other color; red. 
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Table 1 

Combinations of target and distracter color, and how they map onto the five conditions in Experiment 1 

Distracter color 
Target color 

Gray Green Red 

Gray Gray T-gray D Gray T-colored D Gray T-colored D 

Green Colored T-gray D Same color Different color 

Red Colored T-gray D Different color Same color 

Note. T = target; D = distracter. 

 

The target was equally likely to be gray, red or green, which were all made 

equiluminant. In every trial, at least ten of the eleven nontarget disks were gray. 

The last disk, the distracter, was equally likely to be gray, red or green (the gray 

‘distracter’ was equivalent to an 11th nontarget disk). This resulted in nine 

combinations of target and distracter color, which can be grouped into the five 

conditions listed above (see Table 1 and Figure 1B). 

The locations of the target and the distracter -if present- were independently 

varied. This implied that the distance between the diamond and the colored disk 

was equally likely to be 1, 2, 3, 4, 5, or 6 locations. 

 

Procedure 

Participants were seated in a darkened room at approximately 70 cm of the screen. 

Each trial started with the presentation of a fixation symbol for 700 ms, after 

which the search display appeared. Participants were instructed to indicate 

whether the orientation of the line in the diamond was horizontal or vertical, by 

pressing one of two keyboard buttons. They were requested to respond as quickly 

as possible without making mistakes, and received visual feedback for 400 ms 

following errors. The response was followed by an interval of 200 ms until the 

onset of the fixation symbol for the following trial. 

The experiment consisted of ten blocks of 54 trials, preceded by 24 practice trials. 

After each block, participants received feedback about their average response time 

and their accuracy in the last block, and a comparison to the previous block. 

Feedback also functioned as a self-paced break. 
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Figure 2. Response time (left) and error rate (right) as a function of the distance between the target and the 

distracter for each condition. Note that there is no unique distance between the target and the distracter in 

conditions in which the distracter is gray. The values at the x-axis indicate the distance between the target 

and the distracter, which are computed with sinusoidal functions from the number of locations (i.e., 1, 2, 

3, 4, 5, or 6) that the distracter is distant from the target. 

 

Results 

Response times 

RTs that were slower than 1200 ms were excluded from the analysis. This removed 

4.88% of the trials. The average error rate over the remaining trials was 9.19% (one 

participant had a high error rate). Subsequent analyses were carried out over 

accurate trials only. Figure 2 shows average RTs for correct trials and error rates as 

a function of condition and of the distance between the target and the distracter.  

An analysis of variance (ANOVA) performed on the RTs showed that there was an 

effect of condition, F(4, 40) = 18.67, p < .001. Planned comparisons between pairs 

of conditions revealed that in conditions with gray targets responses were slowed 

by the presence of a distracter (RT of 758.12 ms with distracter, vs. 673.47 ms 

without distracter), t(10) = -8.47, p < .001. The same was true for conditions with a 

colored target. RTs were slowed by the presence of an identically colored distracter 

(654.18 ms vs. 685.95 ms), t(10) = -4.66, p = .001, and also by the presence of a 

differently colored distracter (654.18 ms vs. 697.69 ms), t(10) = -5.74, p = .000. This 

indicates that the presence of a colored distracter slows down the identification of 

the target, independent of whether the target was itself colored or not. The colored 

distracter thus reliably captured attention. 



The inhibitory annulus of attention: Is it pre-attentive inhibition? 

 171 

A colored target made responses faster, both in conditions without a distracter, 

t(10) = 5.78, p < .000, and in conditions with a differently colored distracter, t(10) = 

3.67, p < .004. 

Mean RT was not different in the condition with a colored target and identically 

colored distracter, and that with a colored target and a differently colored 

distracter. This result is inconsistent with the hypothesis that lateral inhibition 

within one feature map (i.e., color map) increases competition for attentional 

selection between a colored target and a colored distracter. 

 

Linear regressions of response times over distance 

To evaluate the modulation of inhibitory effects by distance, we plotted RT as a 

function of the target-distracter distance in each condition in which there was a 

colored distracter, for each individual participant. We then fitted linear regression 

lines, and performed our statistical analyses on the slope parameters found for 

each participant in each condition. T-tests (two-tailed) were conducted to evaluate 

whether regression coefficients in each of the three conditions differed 

significantly from zero (see Figure 3). The regression coefficients indicated a 

negative slope only in the condition with a gray target and a colored distracter, t(9) 

= -2.98, p < .015. There was no significant slope in the other two conditions with a 

colored distracter.  

 
Figure 3. The size of regression coefficients averaged over all participants, for each condition in 

Experiment 1. An asterisk indicates a slope significantly different from zero, p < .05, as tested in a two-

tailed, one-sample t-test. 
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Previous studies have noted that there may be costs when attention crosses the 

midline (Hughes & Zimba, 1985; Zimba & Hughes, 1987). As distance between the 

distracter and the target grows, the likelihood increases that the two are in 

different hemifields, and that attention will have to cross the midline when it is 

redeployed from the distracter to the target. To investigate whether this factor 

camouflages part or all of our results, we divided gray-target colored-distracter 

trials12 post hoc into three categories: trials in which the target and distracter were 

in the same hemifield, where they were in different hemifields, and where one of 

the two was placed on the midline. While there was a trend for overall RTs to be 

longer in the condition in which either the target or the distracter appeared on the 

midline, this difference was not significant, F(2, 18) = 2.82, p = .086 (RT same 

hemifield: 767 ms; in different hemifields: 751 ms; target or distracter on midline: 

772 ms). Gradients were noisy due to few trials per cell, but they too did not seem 

to be influenced by whether target and distracter were in the same hemifield or 

not (see Figure 4). There was a trend for RTs to be higher on trials in which target 

and distracter were near, than on trials in which they were further apart, F(1, 9) = 

3.56, p = .09, and there was no effect of hemifield in which target and distracter 

appeared, F < 1. 

 
Figure 4. Response time as a function of the distance between a gray target and a colored distracter, for 

trials in which the target and distracter were in the same hemifield, where they were in different 

hemifields, and where one of the two was placed on the midline. 
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Error rates 

An analysis of variance of the error rate with distance and condition as within-

subject variables revealed no significant effects. As can be seen in Figure 2, errors 

are equally distributed over all conditions, except for the conditions in which a 

gray target and a colored distracter are relatively close to each other. In these 

conditions, the error rate is relatively high. As RTs were also high in these 

conditions, speed-accuracy tradeoffs can be excluded.  

 

Discussion 

In summary, we found evidence for an inhibitory surround around an attention-

capturing distracter when the target was gray, replicating Mounts (2000). When 

the target was colored itself, no such surround was apparent, although we found 

evidence for attentional capture by colored distracters also in those conditions. 

This is inconsistent with the hypothesis that a modulation of lateral inhibition 

causes the inhibitory surround: a colored distracter does not seem to inhibit 

similarly colored targets more than differently colored targets.  

However, our results are also not entirely consistent with theories positing an 

inhibitory annulus around the focus of attention. If such an annulus were to exist, 

it is difficult to explain why such an annulus would affect gray, but not colored 

targets, as we found. One can speculate that the colored targets were more salient, 

and therefore more or less immune to the inhibitory surround, or that the colored 

distracters therefore attracted attention less often or less totally than when the 

target was gray (although this is unlikely in the face of evidence for attentional 

capture by the colored distracter even when the target was colored as well). 

 

Experiment 2: Modulation of inhibitory effects of a feature singleton 

by spatial attention 

In a second experiment we further investigated the hypothesis of an explicit 

inhibitory annulus around the focus of attention. We now manipulated spatial 

attention more directly, by means of a spatial cue, in addition to attentional 

capture by color singletons. The cue, which preceded the search display, either 

directed attention to the location of the target or to the location of the distracter. 

In the cued target location condition the cue appeared on the location of the target, 

whereas in the cued distracter location condition the cue appeared on the location of 

the distracter. Given that the cue will capture attention, the inhibitory annulus 

hypothesis should predict an inhibitory surround around the location of the cue. 
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If the cue appeared at the location of the distracter, we should thus find longer RTs 

when the target appeared close to the distracter, than when the target appeared far 

from the distracter. We should thus find a gradient in the RT as a function of 

target-distracter distance in this condition.  

 

 
 

Figure 5. The sequence of displays within a trial in Experiment 2. Gray denotes gray elements, and black 

denotes the color green. 

 

Methods 

Participants 

Participants were ten students at the Vrije Universiteit Amsterdam, who were paid 

for their participation. 

 

Stimuli 

Stimuli were presented on the same apparatus as in Experiment 1. Search displays 

were equal to those in Experiment 1, with the difference that targets and 

distracters were never red, but only gray or green (ratio 1:1). Moreover, search 
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displays were now preceded by a small, circular gray dot that was visible at one of 

the 12 element locations for 200 ms (see Figure 5). It subtended 0.34 degree of 

visual angle. The spatial cue indicated the location of the upcoming target in 50% 

of the trials. In the remaining trials, the cued appeared at the location of an 

upcoming distracter. This was the colored distracter in the condition where there 

was one, and one of the gray disks, a nontarget, in conditions without a colored 

distracter. 

 

Procedure 

The procedure and instructions in Experiment 2 were the same as in Experiment 

1. 

 

Results 

Response times 

RTs that were slower than 1200 ms were excluded from the analysis. This removed 

7.10% of the trials. The average error rate over the remaining trials was 6.28%. 

Subsequent analyses were carried out over accurate trials only. For the cued 

distracter location and the cued target location condition, RTs and error rates are 

plotted as a function of condition and the distance between the target and 

distracter in Figure 6.  

An analysis of variance (ANOVA) was performed on the RTs, treating the cued 

location and condition (i.e., the combination of target and distracter color) as 

within-subject variables. There were main effects of cued location, F(1, 9) = 32.01; 

p < .001, and condition, F(3, 27) = 20.46, p < .001 (Greenhouse-Geisser). The main 

effect of cueing confirms that participants paid attention to the location cue. 

Participants were faster when the target’s location was cued (649.03 ms) than 

when the distracter’s location was cued (706.20 ms). 

The mean RT in the condition with a gray target and no distracter (672.25 ms) was 

compared to the mean RT in the condition with a gray target and a colored 

distracter (751.59 ms). Again, mean RT was higher when a colored distracter was 

present in the display, t(9) = -4.74, p = .001. The same was true when the target was 

colored: the presence of a colored distracter slowed the responses (671.63 ms vs. 

646.22 ms), t(9) = -3.97, p = .003. As in Experiment 1, attention is captured by the 

colored distracter both with gray and colored targets. As in Experiment 1, a 

colored target was easier to find than a gray target when a distracter was present, 

t(9) = 4.88, p < .001. 
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Figure 6. Response time (top) and error rate (bottom) as a function of the distance between the target and 

the distracter for the cued distracter location (left) and the cued target location (right) separately, for each 

condition.  

 

Linear regressions of response time over distances 

To evaluate the hypothesis of an explicit inhibitory annulus around the focus of 

attention, we plotted RT as a function of the target-distracter distance in each 

condition in which there was a colored distracter or in which the cue indicated the 

location of the upcoming distracter, for each individual participant. We then fitted 

linear regression lines, and performed our statistical analyses on the slope 

parameters found for each participant in each condition.  
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One sample t-tests (two-tailed) were conducted to evaluate whether regression 

coefficients in each of the six conditions (cueing · combination of target and 

distracter color) differed significantly from zero (see Figure 7). The regression 

coefficients indicated a positive slope in the condition with a gray target and no 

distracter, in which the location of a gray nontarget was cued, t(9) = 2.44, p < .037. 

There was no significant slope in the other conditions in which there was a colored 

distracter or in which the cue indicated the location of the upcoming distracter. 

There was a trend towards a positive slope, however, when the location of the 

colored distracter was cued, t(9) = 1.83, p < .010. 

 
Figure 7. The size of regression coefficients averaged over all participants, for the conditions in 

Experiment 2 in which the location of the distracter was cued (left) and for the conditions in which the 

location of the target was cued (right). An asterisk indicates a slope significantly different from zero, p < 

.05, as tested in a two-tailed, one-sample t-test. 

 

Error rates 

An analysis of variance of the error rate with the cued location, distance, and 

condition as within-subject variables, revealed only a main effect of cued location, 

F(1, 9) = 11.24; p < .008. Participants made more errors (M = 0.073) when the 

location of the distracter (or of a nontarget) was cued than when the location of the 

target was cued (M = 0.049). As this increase in errors rate goes hand in hand with 

an increase in RT, speed-accuracy tradeoffs cannot explain our results. 
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Discussion  

We found evidence for attentional capture both by the colored distracter, and by 

the spatial cue. Whether or not the cue captured attention in a purely exogenous 

way cannot be determined, because its 50% validity may have given participants an 

incentive to heed the cue. Whether or not participants did this, is not of 

importance for the results.  

The most important result of Experiment 2 was that neither the cue nor the 

distracter gave rise to an inhibitory surround. The inhibitory effect that was 

present in the gray target / colored distracter condition in Experiment 1 

disappeared when the location of the distracter was cued. Following the 

hypothesis of an inhibitory annulus around the focus of attention, the addition of 

a cue that indicates the location of the upcoming distracter should result in a 

steeper gradient in the condition with a gray target and a colored distracter than 

the gradient that is found in Experiment 1. This is because the cue should enhance 

the potential of the distracter to capture attention, and therefore generate a 

stronger inhibitory annulus. This was not found. 

In the condition in which no distracter was present and the target was gray, 

facilitation was even found when the target appeared close to a cued nontarget 

location. Evidently, spatial attention is not automatically accompanied by 

inhibition of the immediate surroundings. Instead, attending a location seems to 

be accompanied by a facilitatory surround. 

 

General discussion 

No inhibitory annulus around the focus of attention? 

Both Caputo and Guerra (1998) and Mounts (2000) found that when a target 

appears near an attention-grabbing distracter, it is found more slowly or less 

reliably than when it is at some distance from the distracter. We replicated these 

findings in Experiment 1, where we found that the RT increased for gray targets 

near a colored distracter that captured attention. However, the negative slope 

disappeared when the target was also colored, although the colored distracter still 

captured attention in this condition. This result goes against the hypothesis of an 

inhibitory annulus around the focus of attention.  

More evidence against an inhibitory annulus was found in Experiment 2. When 

attention was manipulated by presenting a spatial cue, no inhibitory surround 

around the cued location was evident. Instead, targets close to the cued location 

were found faster than those further away (i.e., in the condition with a gray target 
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and no distracter, in which the location of a gray nontarget was cued), suggesting 

that attention has facilitatory effects, not inhibitory, around its focus. This 

corroborates older findings, in which endogenous cues were used to predict the 

location of upcoming targets. Benefits were found for either the whole 

hemisphere around the cue (Hughes & Zimba, 1985; Zimba & Hughes, 1987), or 

with a gradient around the cued position (Downing & Pinker, 1985; Rizzolatti, 

Riggio, Dascola, & Umilta, 1987; Zimba & Hughes, 1987). 

It is entirely possible that an inhibitory annulus accompanies attention in some 

situations, but not in others. More research should then clarify when it does, and 

when it does not occur. Alternatively, the focus of attention may in fact not be 

accompanied by an inhibitory annulus. A new explanation will then have to be 

found for the findings that suggest such an annulus (Caputo & Guerra, 1998; 

Mounts, 2000, our Experiment 1). We will offer such an alternative explanation 

and then discuss other evidence for an inhibitory surround (Bahcall & Kowler, 

1999; Cave & Zimmerman, 1997; Cutzu & Tsotsos, 2003; Müller et al., 2005). 

 

A pre-attentive inhibitory annulus around each salient location 

Our alternative explanation proceeds from the relatively uncontroversial 

mechanism of pre-attentive lateral inhibition. Such a mechanism, in which nearby 

stimuli reduce one another’s signal, is assumed in many models of visual search 

(Itti & Koch, 2000; Wolfe, 1994), and has also been found in the brain (Reynolds & 

Chelazzi, 2004). More salient stimuli have been shown to inhibit responses to 

other stimuli more strongly than less salient stimuli (Reynolds & Chelazzi, 2004). 

Many models of visual search have implemented lateral inhibition within feature 

maps (separate maps for each color, each orientation, etcetera) at lower levels in 

the visual hierarchy (Itti & Koch, 2000; Wolfe, 1994). Although this is possible, 

lateral inhibition within one or more spatial maps, independent of any specific 

feature value, can also explain our results. 

In conditions in which the distracter is much more salient than the target, the 

result of such a mutual inhibition would be an overshadowing of the target by the 

salient distracter. This can explain the results of Caputo and Guerra (1998), 

Mounts (2000) and from the gray target-colored distracter condition in 

Experiment 1, which show an increasing latency to identify targets near a salient 

feature singleton. Pre-attentive lateral inhibition between all salient stimuli 

would also clarify the absence of evidence for an inhibitory surround in conditions 

of Experiment 1, in which both the target and the distracter are colored. In those 
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conditions, both the target and the distracter are relatively salient. Both stimuli 

will inhibit one another, and therefore their relative saliency will remain the same, 

independent of the distance between the two stimuli. For example, at small 

distance the colored target and the colored distracter may inhibit one another 

strongly. This will make both less salient, but the colored target and the colored 

distracter will remain more salient than the gray nontargets and therefore likely to 

be chosen for attentional selection. The same is true when the target and distracter 

are far from one another, and thus inhibit one another less strongly. 

Mounts (2000) found that when color singletons fail to capture attention, no 

inhibitory surround is present. Although Mounts interpreted this as pointing to a 

role of attention in producing the inhibition, it can also be explained as a result of 

diminished saliency. The ability of distracters to capture attention is tightly linked 

to their saliency (Theeuwes & Godijn, 2001). In conditions in which distracters do 

not capture attention, they are not salient and therefore may not exert much pre-

attentive lateral inhibition on target stimuli. In colored-target conditions in 

Experiment 1, we found evidence for attentional capture but not for an inhibitory 

surround, showing that saliency and not attentional capture may be the better 

predictor of an inhibitory surround. 

Experiment 2 and similar experiments by others (Downing & Pinker, 1985; 

Rizzolatti et al., 1987; Zimba & Hughes, 1987) suggest that when attention is 

directed to a location by a cue, stimuli at surround locations are facilitated. The 

interplay of this facilitation and pre-attentive lateral inhibition could explain why 

the negative slope, found in the gray target and colored distracter condition in the 

Experiment 1, disappeared when the location of the colored distracter was cued in 

Experiment 2. 

 

Evidence for inhibition not relying on capture 

Four experiments have yielded evidence for an inhibitory surround of attention 

without relying on attentional capture. Cave and Zimmerman (1997) used a probe 

technique to investigate the spread of attention after a search task, while both 

Bahcall and Kowler (1999) and Cutzu and Tsotsos (2003) let observers compare 

two locations. Müller and coauthors (Müller et al., 2005) found evidence of an 

inhibitory surround in a flanker task. 

Cave and Zimmerman (1997) had observers search for a target letter within a 

briefly presented eight-letter array. In a portion of the trials they presented a 

probe dot on one of the eight positions following the array. Response times were 
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faster for probes on target locations than for probes at distracter locations. As 

participants received more practice, a second effect appeared. Response times 

became slower for probes at distracter locations near the target than for probes at 

distracter locations more distant from the target. This inhibitory surround was 

stronger when distracter letters near the target shared features with the target 

letter (and thus interfered more), suggesting to Cave and Zimmerman that the 

strength of spatial attention, and consequently the strength of its inhibitory 

surround, is flexibly adjusted according to the amount of interference between the 

target and distracter shapes. Cave and Zimmerman suggested that attention was 

allocated to inhibit distracter locations, and therefore to diminish interference, 

and that its strength (and its precision) increased with practice.  

How might pre-attentive lateral inhibition between all salient stimuli explain this 

result? Although all the letters were equally salient with respect to color, extensive 

practice in search for the target letter could have made the target letter more 

salient through the development of a more elaborated representation. Increasing 

neural response to a target with extended practice is known from the animal 

literature (Bichot, Schall, & Thompson, 1996), and training was surely extensive in 

the experiment (for many participants, increases in RT for locations near the 

target only became significant after 19200 trials).  

Two studies used two targets, and investigated the effect of the distance between 

the two on performance. Bahcall and Kowler (1999) measured the accuracy with 

which two target letters could be identified amidst a circular array of 24 

characters. In different conditions, either the targets were cued by their unique 

color, or the locations of the target letters were cued by uniquely colored letters or 

by specific characters (numbers between letters) in a prior display that also 

consisted of 24 characters. In all cue conditions, the identification of the two target 

letters improved with a larger distance between the two target letters. Cutzu and 

Tsotsos (2003) had participants match the shape of two targets amidst distracters, 

after one of the target’s locations was cued. The accuracy increased with a larger 

distance between the two targets.  

Both Bahcall and Kowler (1999) and Cutzu and Tsotsos (2003) propose an 

explanation for their results in which cueing of a location results in an inhibitory 

surround around the focus of attention. The results of our second experiment and 

previous studies (Downing & Pinker, 1985; Rizzolatti et al., 1987; Zimba & 

Hughes, 1987) make us propose that cueing of a location has facilitatory effects at 

surrounding locations. How can we explain these inconsistent results? Pre-
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attentive lateral inhibition can explain some results of Bahcall and Kowler (1999) 

and Cutzu and Tsotsos (2003). In Cutzu and Tsotsos’ (2003) experiments the two 

targets were always colored, whereas distracters were black. Both target locations 

were consequently salient, and may therefore have pre-attentively inhibited one 

another when they were close. This does not explain results in Bahcall and 

Kowler’s (1999) conditions in which cues were numbers between letters, and all 

characters were black. An alternative explanation for these results was provided by 

Bahcall and Kowler (1999) themselves. They proposed that targeting of attention 

could become less precise with a smaller separation between two targets. This 

explains why the two target letters are harder to identify with smaller target 

separation. That there is some location insecurity in the visual system has long 

been argued by several researchers (Ashby, Prinzmetal, Ivry, & Maddox, 1996; 

Bundesen, 1990, 1998; Intriligator & Cavanagh, 2001; Treisman & Schmidt, 

1982). 

Our finding of a facilitatory surround around the focus of spatial attention is in 

line with results from previous flanker experiments, showing that interference 

between incompatible and task-irrelevant flankers and a target decreases 

monotonically with an increasing target-irrelevant flanker distance (e.g., Eriksen 

& Hoffman, 1972; Eriksen & St James, 1986). However, Müller et al. (2005) 

recently reported evidence for what they called a Mexican hat-shaped distribution 

of attention in an adapted flanker paradigm. In their study a target letter always 

appeared on the same location. Flankers immediately adjacent to the target 

interfered most with target identification, but a flanker at the second position 

from the target interfered less than a flanker at the third position. This implies an 

inhibitory region (the brim of the hat at the second position) around a cone of 

facilitation (first position). Our range of the target-cued distracter distances 

included the visual degrees at which Müller et al. found evidence for inhibition, 

and cannot explain the inconsistent findings. It is possible that task differences 

may have induced different distributions of attention in the two studies. In Müller 

et al.’s experiments targets were presented at one fixed location, while in our 

second experiment the spatial cue was only fifty percent valid. Participants may 

thus have adopted a wider attentional window in our experiments than in those of 

Müller et al. (2005). As a result, the inhibitory surround may have been attenuated 

or made too distant in our Experiment 2. In fact, conditions with colored 

distracters, in which the location of the distracter (or a nontarget) is cued, show a 

nonsignificant decrease in RT for the two positions in which target-distracter 
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distance is largest. This would be in line with an inhibitory surround. 

Alternatively, it is possible that the Mexican hat distribution of attention in 

Müller et al.’s study is an artifact. The pairwise comparison between the second 

and third position in Müller et al.’s study was barely significant, and not corrected 

for the number of tested comparisons.   

 

Conclusion 

Neurophysiological studies have suggested that although attention facilitates 

stimuli in its focus, it inhibits responses to stimuli that are at some distance from 

this focus (Moran & Desimone, 1985; Reynolds & Chelazzi, 2004). Psychophysical 

studies have also found support for this pattern. Here, we found that the support 

is less robust than it seemed, and that attention may instead facilitate the 

processing of stimuli near its focus. We propose that attention-capturing 

distracters may slow search for near-targets through pre-attentive lateral 

inhibition instead of through an inhibitory annulus accompanying the capture of 

attention. Although this can explain our findings and some older ones, other 

findings remain difficult to explain without assuming an inhibitory annulus. 

More research is needed to resolve these inconsistencies. 
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Chapter 9 | Conclusions 

This thesis set out to investigate the mechanisms of global saliency, the 

mechanisms of top-down visual attention, and the interaction between these 

mechanisms, in visual search. Following the outline of CLAM (Van der Velde et al., 

2004), simulations in the preceding chapters explored mechanisms of visual 

working memory in the prefrontal cortex and of object recognition in the ventral 

pathway, and specified mechanisms of spatial selection in the dorsal pathway. 

Behavioral experiments additionally addressed several questions regarding global 

saliency and top-down visual attention in visual search, and their interaction. The 

findings of the simulations and behavioral experiments have implications for 

CLAM in particular, and for the mechanisms of global saliency and top-down 

visual attention in general. An overview of the main findings of the simulations 

and behavioral experiments in this thesis is presented below, together with 

conclusions that may be drawn from these findings. 

 

Visual working memory in the prefrontal cortex 

Behavioral research has shown that the number of objects that can be maintained 

in visual working memory (VWM) without interference (i.e., loss of information) is 

limited (to about four), but the number of object features (e.g., shape, color, 

location, motion, etc.) is unlimited for each of these objects (Vogel et al., 2001). 

The simulations in Chapter 2 indicate that the architecture of visual working 

memory that was proposed in Van der Velde and De Kamps (2003) and in CLAM 

has a qualitatively similar capacity limit. Naturally, the fact that this blackboard 

architecture of visual working memory shows a capacity limit that is also shown by 

its human counterpart does not allow the inference that the visual working 

memory in humans is based on the architecture in CLAM. Other models of visual 

working memory can account for this finding as well (e.g., for an account based on 

neural synchronization within object representations and inhibition between 

object representations, see Raffone & Wolters, 2001). Nonetheless, it is possible 

that the capacity limit of the human visual working memory arises from an 

architecture, in which objects are represented in a blackboard (Van der Velde & De 

Kamps, 2006; Van der Velde et al., 2004). The representation of an object in the 

VWM-blackboard is used to bind the features of the object, which are either 

located in the ventral and dorsal stream or in PFC itself (or both). As the number of 
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objects increases, the representation of an object with a specific feature (i.e., shape 

or location) cannot reliably be selected among the other object representations in 

the VWM-blackboard in PFC, due to interference between the object 

representations. As a result, it becomes impossible to bind the features of an object 

that is represented in visual working memory.  

 

Object recognition in the ventral pathway 

Chapter 3 suggested a process which might contribute to location invariant object 

recognition in the ventral pathway. Central to this proposal is a learning scheme in 

which learning in the feedforward network of the ventral pathway is built up. The 

feedforward network first learns to identify simple features (e.g., oriented lines, 

edges) at all locations and therefore becomes selective for location invariant 

features. Subsequently, the feedforward network of the ventral pathway learns to 

identify objects partly by learning new conjunctions of these location invariant 

features. Simulations showed that such a learning scheme enabled the 

feedforward network of the ventral pathway to identify an object at a new location 

(to some extent).  

Efficient search for a cued-target among distracters not only requires that the 

feedforward network of the ventral pathway is able to identify the target at any 

(trained and new) location (i.e., location invariant object recognition), but also that 

the feedback network of the ventral pathway carries information about the cued-

target to the retinotopic areas (Van der Velde & De Kamps, 2001; Van der Velde et 

al., 2004). In fact, we argued in Chapter 7 that top-down processing is even 

involved in search for a singleton, i.e., in the absence of object-based visual 

attention. Hence, learning in the feedforward network of the ventral pathway 

needs to be transferred to the feedback network of the ventral pathway (Van der 

Velde & De Kamps, 2001). Simulations indicated that transferring the selectivity 

in the feedforward network to the feedback network (using Hebbian learning), in 

the building up learning scheme as used in Chapter 3, is not sufficient to reliably 

find a cued-target at new locations among distracters. Accordingly, we 

hypothesized that, under this learning scheme, additional, location dependent 

features are needed to reliably find a cued-target among distracters, and that this 

can be achieved by supervised learning once the feedforward network is able to 

identify an object at a new location. This hypothesis predicts that the 

generalization to new locations by the visual system is more restricted when we 
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have to find an object among other objects (Van der Velde & De Kamps, 2001), than 

when we have to recognize a single object. 

This prediction was not supported by findings of the behavioral experiments in 

Chapter 4. It was found that search for a digital 2 (digital 5) among digital 5’s 

(digital 2’s), which was highly inefficient before training (also see, Wang et al., 

1994) became more (but not fully) efficient through training. However, this 

increase in search efficiency (and the general decrease in response time) was hardly 

specific for trained locations, but generalized substantially from trained to 

untrained locations. Evidently, building up learning is only one approach to 

obtain some degree of location invariance for object recognition (and localization) 

in the ventral pathway. There are interesting other suggestions about how 

location invariant representations may be achieved in the ventral pathway, and 

these may together or instead underlie the impressive human (and primate) 

performance (e.g., Riesenhuber & Poggio, 2000; Wallis & Rolls, 1997).  

The digital 2 and the digital 5 were chosen as the search items in the behavioral 

experiments in Chapter 4, because inefficient search for this target-distracter pair 

(Wang et al., 1994) seems inconsistent with recent findings about the effect of 

familiarity in visual search (Malinowski & Hübner, 2001; Shen & Reingold, 2001). 

Malinowski and Hübner (2001) and Shen and Reingold (2001) found that the 

familiarity of the distracters largely determines the search efficiency, i.e., search is 

(more) efficient when the distracters are familiar and (more) inefficient when the 

distracters are unfamiliar. Since the digital 2 and the digital 5 are both 

hypothesized to be familiar, search for the digital 2 (digital 5) among digital 5’s 

(digital 2’s) would not be expected to be as inefficient as reported by Wang et al. 

(Wang et al., 1994). 

The finding of the first behavioral experiment in Chapter 4 that the familiarity of 

the digital 2 and digital 5 can be improved significantly through training indicates 

that the digital 2 and digital 5 were not as familiar as assumed by Wang et al. 

(1994). This undermines Wang et al.’s (1994) conclusion that search is not efficient 

when both the target and the distracters are familiar.  

Although search for the digital 2 (digital 5) among digital 5’s (digital 2’s) became 

substantially more efficient through training, it did not become fully efficient. 

Apparently, the intensive training (more than 5760 search trials) in Experiment 1 

did not allow the representations of the digital 2 and digital 5 in the visual cortex 

to become as independent as required for highly accurate, parallel search. This 
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suggests that, after intensive training, objects are still (partially) recognized on the 

basis of relatively simple features, which are similar for the digital 2 and digital 5. 

Moreover, the improvement in search performance was largely specific to the 

trained target-distracter pair (i.e., the digital 2 among digital 5’s or the digital 5 

among digital 2’s). This difference in search performance between the trained and 

the untrained target-distracter pair cannot be explained by a difference in 

familiarity between the target stimulus and the distracter stimulus. The digital 2 

and the digital 5, defined as the target and the distracter stimulus in terms of their 

use in the trained search task, were equally familiar after training (this was tested 

by measuring RTs in an identification task). Thus, the results of the behavioral 

experiments in Chapter 4 suggest that search efficiency does not only depend on 

the familiarity of the distracters (Malinowski & Hübner, 2001; Shen & Reingold, 

2001; Mruczek & Sheinberg, 2005) or on the difference in familiarity between the 

target and the distracters (Wang et al., 1994).  

Apparently, learning the distracters as a group also affects the search efficiency, 

even though it does not result in an increased familiarity of the distracter stimulus 

as compared to the familiarity of the target stimulus. Since the increase in search 

efficiency (and the general decrease in response time) for the trained search task 

generalized substantially from trained to untrained locations, we propose that in 

the first experiment in Chapter 4 a grouping of distracters was learned with a 

representation at a high level of the visual hierarchy, in which neurons have large 

receptive fields. Finally, it was found in Chapter 4 that the effect of learning was 

quite robust over time, i.e., it was still (partly) present two months after training, 

and was largely specific to the actual stimuli used.  

 

Interaction between object recognition in the ventral pathway and 

spatial selection in the dorsal pathway  

The behavioral experiments in Chapter 5 provided evidence that global saliency is 

a gradual phenomenon. Elements from a minority colored set with more than one 

element were searched earlier or faster than elements from a majority colored set, 

and are thus prioritized in search in a similar manner as color singletons. In 

contrast to conjunctive search studies that explained findings of smaller-group 

search by gradual global saliency (Sobel & Cave, 2002; Zohary & Hochstein, 1989), 

the benefit of shifting attention to elements from a minority colored set was 

restricted in our experiments. Moreover, it was shown that our findings could not 

be explained by the strategy of voluntarily searching elements from the minority 
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colored set before elements from the majority colored set. The findings of the 

behavioral experiments in Chapter 5 further demonstrated that top-down visual 

attention speeds up the response to a target, even when the location of the target is 

already globally salient. Regarding the dynamics of the mechanisms of global 

saliency and top-down visual attention over time, evidence was obtained that  

colored elements already activate the mechanisms responsible for global saliency 

when they are presented for 50 ms, whereas they enable the selection by top-down 

visual attention when they are presented for 100 ms. 

Chapter 6 presented an extensive review of behavioral and neurophysiological 

studies and models of visual search. Based on the findings of the reviewed 

behavioral studies, it was concluded that global saliency cannot solely be 

attributed to processing in low cortical areas. From the reviewed 

neurophysiological studies (Constantinidis & Steinmetz, 2001, 2005; Hegdé & 

Felleman, 2003; McPeek & Keller, 2002; Thompson et al., 1997; Thompson et al., 

1996), the conclusion was drawn that global saliency does not necessarily have to 

be the result of solely bottom-up and horizontal processing. Instead, the findings 

of the  reviewed neurophysiological studies are also consistent with the hypothesis 

that global saliency is the result of a combination of bottom-up, horizontal, and 

top-down processing.  

Chapter 7 presented a model of global saliency, GSM, which can account for 

several important findings in visual search. The model differs from other models 

that incorporate mechanisms of global saliency (Cave, 1999; Itti & Koch, 2000; Li, 

2002; Wolfe, 1994). These models implement competition between neurons that 

represent the same features. In order to explain the behavioral findings that 

efficient search may (Enns & Rensink, 1990; Kleffner & Ramachandran, 1992; 

Wolfe et al., 1994) and sometimes even has to (He & Nakayama, 1992; Rensink & 

Enns, 1998) be based on the results of later stages of cortical processing, which we 

reviewed in Chapter 6, within-feature competition models need to assume that 

there is within-feature competition across different stages of cortical processing. 

This assumption entails an explosion of the number of horizontal, inhibitory 

connections across different stages of cortical processing.  

In GSM there is also competition within features, but only at the latest stage of 

cortical processing in the ventral pathway, for example in AIT. In addition to 

reducing the number of horizontal, inhibitory connections, this avoids the 

drawback of within-feature competition models (Cave, 1999; Itti & Koch, 2000; Li, 

2002; Wolfe, 1994) that information is reduced, which could be needed in later 



Chapter 9 

 190 

stages of visual processing (cf., Wolfe & Horowitz, 2004). In GSM, all the visual 

information remains present in the feedforward network of the ventral pathway 

(Van der Velde & De Kamps, 2001) and in the input map of the dorsal pathway.  

We suggested in Chapter 7 that after the selection of an object identity in AIT 

(following the processing of visual information in the feedforward network of the 

ventral pathway), the selected object identity generates activity in the feedback 

network of the ventral pathway, which interacts with the activity in the 

retinotopic areas of the feedforward network in the ventral pathway. The result is 

the selection of activity related to the object’s location in these retinotopic areas. 

This selection (activation) in the ventral pathway, related to Van der Velde and De 

Kamps’ (2001) model of object-based visual attention, is transmitted to the dorsal 

pathway. In the dorsal pathway, spatial selection, which was not yet specified in 

CLAM, is hypothesized to take place in several spatial maps in which (neurons 

coding for) different locations compete with each other. Together, the interaction 

between object recognition in the ventral pathway and spatial selection in the 

dorsal pathway results in global saliency. 

Hence, it is proposed in this thesis that global saliency results from top-down 

processing (in the ventral pathway), in addition to bottom-up and horizontal 

processing (in the ventral and dorsal pathway). This differs from within-feature 

competition models, which assume that global saliency is the result of only 

bottom-up and horizontal processing (Cave, 1999; Itti & Koch, 2000; Li, 2002; 

Wolfe, 1994), but is consistent with neurophysiological evidence. This conclusion 

was drawn from the neurophysiological studies that we reviewed in Chapter 6 

(Constantinidis & Steinmetz, 2001, 2005; Hegdé & Felleman, 2003; McPeek & 

Keller, 2002; Thompson, Bichot, & Schall, 1997; Thompson, Hanes, Bichot, & 

Schall, 1996). 

Thus, we hypothesize that the mechanisms of global saliency and object-based 

visual attention largely overlap, and that they primarily differ in the nature of the 

selection of an object identity in AIT in the ventral pathway. In the case of object-

based visual attention, the competition between object identities in AIT is biased 

toward the attended object identity due to memorization of the attended object in 

visual working memory (Van der Velde & De Kamps, 2001; Van der Velde et al., 

2004), while in the case of global saliency the competition between object 

identities in AIT is random. Therefore, the selection of an object identity in AIT is 

speeded up in the presence of object-based visual attention as compared to in the 

absence of object-based visual attention. As a result, the spatial maps in the dorsal 
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pathway of our model are able to compute global saliency earlier in time. This 

hypothesized interplay between the mechanisms of global saliency and the 

mechanisms of object-based visual attention is consistent with the behavioral 

finding in Chapter 5 that top-down visual attention speeds up the response to a 

target, when the location of the target is already globally salient. 

Behavioral studies found that the response time to identify or match a target 

decreases with a larger distance between the target and an attended location (i.e., 

the location of a feature singleton) (e.g., Caputo & Guerra, 1998; Mounts, 2000). 

These results and other results have been interpreted as evidence that there is an 

inhibitory annulus around the focus of attention. Chapter 8 tested whether 

inhibition around the focus of attention might result from pre-attentive lateral 

inhibition between objects that is stronger when objects share features with 

another than when they do not, as assumed by within feature-competition models 

(Cave, 1999; Itti & Koch, 2000; Li, 2002; Wolfe, 1994). The first behavioral 

experiment tested this prediction by manipulating the similarity between a target 

and distracter. No interaction was found. In fact, we found no evidence of an 

inhibitory surround if the target was also salient, even when a salient distracter 

grabbed attention. Moreover, in a second behavioral experiment it was found that 

a spatial cue, which grabbed attention, produces a facilitatory surround. Hence, 

the findings of the behavioral experiments in Chapter 8 suggest that the support 

for an inhibitory annulus around the focus of attention is less robust than it 

seemed, and that attention may instead facilitate the processing of stimuli near its 

focus. In line with GSM, we propose that salient objects inhibit surrounding 

objects pre-attentively through lateral inhibition and not after grabbing attention, 

but irrespective of whether they share features or not. 

The fact that the response time to identify or match a target may depend on the 

distance between a target and a distracter, as in the condition in which the 

distracter but not the target was salient in Experiment 1 in Chapter 8, and in other 

studies (e.g., Caputo & Guerra, 1998; Mounts, 2000), suggests that the (spatial) 

competition between salient objects is not completely homogeneous across the 

visual field. Instead, the strength of the competition between salient objects seems 

to depend (partly) on the distance between objects, i.e. it is gradual (or has a gradual 

component). In the future, the spatial competition in the saliency map of GSM, 

which is yet completely homogenous across the visual field, may therefore be 

adapted to reflect these findings. 
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Endnotes 

1 For all experiments, analyzing RTs with setsize as an additional within-subject 

variable yielded similar results, with RT · setsize interactions mirroring the 

effects of search slopes. For clarity and conciseness, we only report the interactions 

between setsize and other variables in the analyses of search slopes. 

 
2 An analysis that compared the performance directly after training with the 

performance two months after training revealed that both for the trained and the 

untrained search task (averaged over trained and untrained locations), the RTs and 

the search slopes were respectively slower and steeper two months after training 

than directly after training [RTs: trained search task, F(1, 7) = 8.60, p = .022;  

untrained search task, F(1, 7) = 6.06, p = .043; Search slopes: trained search task, 

F(1, 7) = 7.41, p = .030; untrained search task, F(1, 7) = 7.25, p = .031]. However, 

both for the trained and the untrained search task (averaged over trained and 

untrained locations), the error rate was lower two months after training than 

directly after training [Error rates: trained search task, F(1, 7) = 20.34, p = .003;  

untrained search task, F(1, 7) = 19.17, p = .003], obscuring a clear interpretation of 

these data. 

 
3 Although both for the trained and the untrained search task search became more 

efficient through training, it is not possible to define the exact scope of learning 

due to an accompanying increase in error rate. 

 
4 In neurophysiological studies investigating visual search, monkeys are often 

required to make a fast eye movement to the target. To distinguish between the 

neural activity related to the eye movement command and the neural activity 

related to the selection of the target, monkeys in some studies were trained to 

withhold the saccade to the target until a cue is presented (i.e., throughout a delay 

period). In other studies, monkeys were taught to make the saccade to the target as 

fast as possible. In those studies, a neuron’s activity is taken to be related to either 

the eye movement command or the selection of the target, depending on whether 

the time at which the neuron discriminates the target is correlated or unrelated 

respectively to the saccade latency (Thompson et al., 1996). 
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5 Following parallel, feature-based visual attention, spatial visual attention may 

select the enhanced representation of one or more search items in a serial manner 

for further processing (e.g., Bichot et al., 2005; Hamker, 2004). 

 
6 Nonetheless, if stimulus-driven visual attention results from bottom-up 

processing in combination with horizontal processing, we would expect that the 

neuronal target discrimination occurs faster than the timing of more than 100 ms 

after stimulus onset that is observed. 

 
7 The features in Itti and Koch’s (2002) model are extracted from high-resolution 

photographs. 

 
8 In Hamker’s (2004) model, the FEF is separated into a perceptual and a premotor 

map. The perceptual map receives input across all feature dimensions (e.g., color 

and orientation) from V4. In turn, the perceptual map gives excitatory input to the 

premotor map. As cells in the premotor map inhibit each other (i.e., there is 

surround inhibition), cells that receive more perceptual input than inhibitory 

input become more highly activated, and cells that receive less perceptual input 

than inhibitory input become more highly activated. Fixation cells further 

regulate the level of activation in the premotor map. The activation of the 

premotor cells decreases with an increasing activation of the fixation cells. 

 
9 The model of Wolfe (1994) is not a neural network model. Nonetheless, it is based 

on rules that implement a mechanism similar to within-feature competition. 

 
10 The results of our simulations do not depend on the use of inhibitory and 

excitatory external input per se, but only on their difference. Using varying levels 

of excitatory external input instead of inhibitory and excitatory external input 

yields qualitatively similar results. We start with inhibitory and excitatory 

external input, to explore a range of possible combinations (see Figure 7). 

 
11 The stimulus activity of a highly illuminant object is higher than the stimulus 

activity of a lowly illuminant object in the ventral pathway. As stimulus activity in 

the ventral retinotopic areas interacts with the feedback activity that is generated 

in AIT, we suppose that the selected activity in the ventral retinotopic areas is 

higher when a highly illuminant object is selected in AIT than when a lowly 
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illuminant object is selected in AIT. However, we suppose that the illuminance of 

objects that are not selected in AIT does not influence the level of activity of 

unselected objects in the ventral retinotopic areas. 

 
12 We also investigated gradients on other conditions in which distracters were 

presented. In none of these conditions there was any gradient when trials were 

separated into same-hemifield, different-hemifield or midline trials. 



 

 206 



 

 207 

 

Samenvatting 

Het menselijke visuele systeem is gelimiteerd in de hoeveelheid visuele informatie 

die het op een bepaald moment kan verwerken. Onze omgeving projecteert een 

overdosis aan visuele informatie op onze ogen. Om hiermee om te kunnen gaan, 

selecteert ons visuele systeem telkens slechts een gedeelte van de beschikbare 

visuele informatie voor uitgebreide verwerking en verwerkt de rest van de 

informatie minder uitgebreid. Dit proces wordt selectieve visuele aandacht genoemd.  

Bovengenoemde selectie van visuele informatie gebeurt niet alleen op basis van 

kennis, verwachtingen en doelen, maar ook onafhankelijk hiervan. Het eerste 

wordt top-down visuele aandacht genoemd, het tweede stimulus-driven visuele aandacht. 

Een vorm van stimulus-driven visuele aandacht is de automatische selectie van een 

object dat zich door een uniek kenmerk van andere objecten onderscheidt. Dit 

wordt in dit proefschrift global saliency genoemd. 

Selectieve visuele aandacht wordt vaak bestudeerd in visuele zoektaken, waarin 

proefpersonen moeten zoeken naar een doelobject (target) tussen een aantal 

afleidende objecten (distracters). In deze zoektaken wordt het aantal afleidende 

objecten gevarieerd en wordt meestal de tijd gemeten, die nodig is om te bepalen 

of het doelobject wel of niet aanwezig is. Er wordt onderscheid gemaakt tussen 

efficient zoeken en inefficient zoeken. Bij efficient zoeken heeft het aantal afleidende 

objecten geen of nauwelijks invloed op de reactietijd, bij inefficient zoeken neemt 

de reactietijd toe met een toenemend aantal afleidende objecten.  

Dit proefschrift onderzoekt de mechanismen van stimulus-driven en top-down 

visuele aandacht, aan de hand van zowel gedragsstudies (visuele zoektaken) als 

simulaties van hersengebieden betrokken bij de verwerking van visuele 

informatie. Hierbij wordt uitgegaan van een bestaand model voor top-down 

visuele aandacht, het Closed-Loop Attention Model (CLAM). In CLAM is top-down 

visuele aandacht in visuele zoektaken het resultaat van de interactie tussen het 

visuele werkgeheugen in de prefrontale cortex, objectherkenning in de ventrale 

route en spatiële selectie in de dorsale route. Dit model wordt in hoofdstuk 1 

besproken. 

Hoofdstuk 2 laat zien dat de architectuur van het visuele werkgeheugen in CLAM 

kan verklaren waarom het aantal objecten dat een mens kan onthouden in zijn 

werkgeheugen gelimiteerd is, terwijl er geen limiet is voor het aantal kenmerken 

van elk onthouden object. In CLAM wordt elk object dat moet worden onthouden, 
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abstract gerepresenteerd op een zogenaamd schoolbord (blackboard). Zo’n abstracte 

objectrepresentatie wordt gebruikt om alle kenmerken van het object te 

selecteren. Ruimtelijk bestaat er overlap tussen de objectrepresentaties op het 

schoolbord. De simulaties in dit hoofdstuk tonen aan dat de overlap toeneemt 

naarmate er meer objecten onthouden moeten worden, waardoor het moeilijker 

wordt om een bepaalde objectrepresentatie en de bijbehorende kenmerken te 

selecteren. 

Hoofdstuk 3 onderzoekt met behulp van simulaties een proces waarmee locatie-

invariante objectherkenning tot stand kan komen, zonder dat het object op alle 

mogelijke locaties geleerd hoeft te worden. In het voorgestelde proces wordt het 

leren van objectkenmerken als volgt opgebouwd. Eerst worden simpele 

kenmerken geleerd op alle mogelijke locaties. Hierdoor wordt herkenning van 

deze kenmerken locatie-invariant. Vervolgens wordt geleerd om objecten te 

herkennen, gedeeltelijk door het leren van nieuwe conjuncties van deze locatie-

invariante kenmerken. Hoewel objecten hierdoor op nieuwe locaties inderdaad 

herkend werden, bleek de kennis onvoldoende om een object op een nieuwe 

locatie tussen andere objecten te selecteren. Wij concluderen dat hiervoor ook 

locatie-afhankelijke kenmerken geleerd moeten worden.  

Hoofdstuk 4 onderzoekt de relatie tussen de bekendheid van objecten en de 

zoekefficientie. De bekendheid van de objecten werd getraind in een 

identificatietaak en de zoekefficientie in een zoektaak. De digitale 2 en digitale 5 

werden als objecten gebruikt. De resultaten tonen aan dat de zoekefficientie 

toeneemt als zowel doelobject als afleidend object individueel bekender worden 

(en niet berust op een verschil in bekendheid tussen doelobject en afleidend 

object), maar dat het leren van de afleidende objecten als een groep in een visuele 

zoektaak de zoekefficientie nog verder verhoogt, zonder dat de bekendheid van 

het afleidende object hierdoor toeneemt ten opzichte van de bekendheid van het 

doelobject.  De toename in zoekefficientie beperkte zich niet tot getrainde locaties, 

maar generaliseerde aanzienlijk naar nieuwe locaties. Bovendien was het effect 

van training ook twee maanden later nog zichtbaar in de resultaten. 

Hoofdstuk 5 onderzoekt of de global saliency van objecten gradueel toeneemt 

naarmate een kleiner aantal van de objecten op een display dezelfde kleur heeft. 

Uit de resultaten blijkt dit inderdaad zo te zijn. Daarnaast wordt de interactie 

onderzocht van deze graduele global saliency met top-down visuele aandacht voor 

kleur. De resultaten laten zien dat top-down visuele aandacht helpt bij het 
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selecteren van de locatie van het doelobject, zelfs wanneer deze locatie al global 

salient is. 

Hoofdstuk 6 bespreekt bevindingen uit verscheidene gedragsstudies en 

neurofysiologische studies  en modellen van visueel zoeken. Op basis van de 

bevindingen van de onderzochte gedragsstudies concluderen we dat global 

saliency niet alleen kan worden toegewezen aan de verwerking in lagere corticale 

gebieden. Uit de onderzochte neurofysiologische studies is de conclusie getrokken 

dat global saliency niet noodzakerlijkerwijs het resultaat is van enkel bottom-up 

en horizontale verwerking, maar ook het resultaat kan zijn van een combinatie 

van bottom-up, horizontale en top-down verwerking. 

Hoofdstuk 7 presenteert het Global Saliency Model (GSM). Dit model stelt een 

mechanisme van global saliency voor en specificeert de interactie van dit 

mechanisme met de mechanismen van top-down visuele aandacht. Het model 

gaat uit van de hypothese dat global saliency het resultaat is van een interactie 

tusssen objectherkenning in de ventrale route en spatiële selectie in de dorsale 

route. Spatiële selectie in de dorsale route vindt plaats in een aantal interacterende 

spatiële kaarten (maps). In overeenstemming met de conclusies uit Hoofdstuk 6 is 

global saliency in GSM het resultaat van top-down verwerking in de ventrale 

route, naast bottom-up en horizontale verwerking (in de ventrale en dorsale 

routes). Simulaties tonen aan dat het model een aantal belangrijke bevindingen 

van visueel zoeken kan verklaren, zoals het efficient zoeken van een uniek object 

tussen afleidende objecten en de invloed op visueel zoeken van de gelijkenis 

tussen een doelobject en afleidende objecten en van afleidende objecten onderling. 

Bovendien kan GSM de resultaten van de gedragsstudies in Hoofdstuk 5 

verklaren. 

Hoofdstuk 8 onderzoekt of een inhiberende annulus om een object waarop de 

aandacht gericht is (de focus of attention) het gevolg is van inhibitie tussen objecten 

nog voordat er een object geselecteerd wordt, die sterker is wanneer objecten 

bepaalde kenmerken met elkaar delen dan wanneer zij dit niet doen. In een visuele 

zoektaak werd de gelijkenis tussen één doelobject en één afleidend object 

gemanipuleerd temidden van andere objecten. Het bleek niet uit te maken of het 

doelobject en het afleidend object al dan niet dezelfde kleur hadden. Er was 

überhaupt geen evidentie voor een inhiberende annulus om het afleidende object 

als het doelobject ook salient was, hoewel het saliente afleidende object wel 

aandacht trok. In een ander experiment werd verder gevonden dat een spatiële 

aanwijzing die de aandacht trok juist de verwerking van objecten faciliteerde, 



Samenvatting 

 210 

evenredig met hun afstand tot de spatiële aanwijzing.  In lijn met GSM suggereren 

we dat saliente objecten elkaar inhiberen door middel van laterale inhibitie 

voordat er een object geselecteerd wordt, onafhankelijk van het feit of ze wel of 

niet kenmerken delen.  
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Sezgin en Krispijn, ik waardeer onze koffie-breaks en wandelingen zeer, ondanks 

de terugkerende dreiging dat jij, Sezgin, me het brugje af zou duwen:) Sezgin, 
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bleven in de voortgang en mij altijd met open armen ontvingen. 

Lieve Emer, Mark, Ardan en Petra, dank voor de uren die jullie mij over mijn 

proefschrift hebben willen aanhoren. Ardan en Emer, ik ben ontzettend blij met 

jullie als broer en zus! Dimf en John, heel erg bedankt voor jullie liefde en 

oprechte interesse! John, ik waardeer het dat je soms zo betrokken was dat je zelfs 

gerelateerde artikelen naar me doorstuurde, ook al werd mijn stapel “te lezen 

papers” hierdoor nog hoger:) 

Olwen en Thierry, onze lange avonden en nachten bij De Mexicaan en thuis waren 

het meest effectief om mijn onderzoek te relativeren en werkten als een 

levenselixer. Olwen, je hebt me zo vaak moed in gepraat in de afgelopen jaren. Je 

bent écht een supersis. Thierry, jouw living for the moment spirit werkte bij mij 

zeer aanstekelijk. I love u2. Jullie zijn vraiment superbe. 
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best te verdedigen stelling luidt zonder twijfel “Zonder jou, Vincent, zou dit 
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ook mijn papers en mijn gehele proefschrift (twee keer) gelezen en van 

constructief commentaar voorzien. Ik kan me dan ook geen betere paranimf 
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