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We present a much simplified version of the Collins-Gisin-Linden-Massar-Popescu inequality for the
2� 2� d Bell scenario. Numerical maximization of the violation of this inequality over all states and
measurements suggests that the optimal state is far from maximally entangled, while the best measure-
ments are the same as conjectured best measurements for the maximally entangled state. For very large
values of d the inequality seems to reach its minimal value given by the probability constraints. This gives
numerical evidence for a tight quantum Bell inequality (or generalized Csirelson inequality) for the 2�
2�1 scenario.
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The violation of Bell inequalities [1] by certain quantum
correlations can be seen as a nonclassical property of those
correlations. This ‘‘quantum nonclassicality’’ has its roots
in quantum entanglement. There are several ways to quan-
tify entanglement of which one is the so-called entangle-
ment entropy of a quantum state [2]. Quantum states with
maximal entanglement entropy, so-called maximally en-
tangled states, play an important role in quantum informa-
tion science [3]. It was long believed that the maximally
entangled state must also be the ‘‘most nonclassical’’ state
in the sense of maximal violation of Bell inequalities.
Although this is true for the CHSH inequality [4], it was
given evidence in [5,6] that this is not true for the more
complex Collins-Gisin-Linden-Massar-Popescu (CGLMP)
inequality [7], as also exposed in [8].

In the following, we investigate maximal nonclassicality
in the context of the CGLMP. We present a new simplified
version of the CGLMP inequality. As in [5,6] numerical
analysis suggests that the optimal state for each number of
outcomes above d � 2 is not maximally entangled, where
we mainly work with the assumption that the dimension of
the Hilbert spaceD is equal to the number of outcomes d as
in [5,6], but also investigate the case of d < D and the
validity of this assumption. We give numerical evidence
that the best measurements are the well-known (conjec-
tured) best measurements with the maximally entangled
state. The simple form of our new version of CGLMP
enables us to effectively extend the numerical search to a
number of measurement outcomes and dimension of the
Hilbert spaces of the order of 106. We observe that for these
large values of d the new version of CGLMP seems to
reach its absolute bound at the boundary of the polytope of
all probability vectors. This gives numerical evidence for
the tightness of a quantum Bell inequality (or generalized
Csirelson inequality) for the 2� 2�1 scenario.

The 2� 2� d Bell scenario and a new version of the
CGLMP inequality.—Let us consider the standard scenario

of the CGLMP inequality [7] which consists of two space-
like separated parties, Alice and Bob. Both share a copy of
a pure state j i 2 CD � CD on the composite system. Let
Alice and Bob have a choice of performing two different
projective measurements which each can have d possible
outcomes, where d � D. We call this a 2� 2� d scenario.

Let Aia, a � 1; 2 and i � 0; . . . ; d� 1 denote the posi-
tive operators corresponding to Alice’s measurement a
with outcome i and similar for Bob, Bjb. They satisfyPd�1
i�0 A

i
a � 1. The probability predicted by quantum me-

chanics (QM) that Alice obtains the outcome i and that
Bob obtains the outcome j conditioned on Alice has
chosen measurement a and Bob measurement b then reads

 PQ�i; jja; b� � Tr�Aia � B
j
bj ih j�: (1)

Let us on the other hand consider the framework of local
realistic (LR) theories, where the joint probability distri-
bution can be written as

 P L�i; jja; b� �
X
�

p���P�ija; ��P�jjb; ��; (2)

meaning that conditioned on their mutual past the proba-
bility distributions of Alice and Bob are uncorrelated.

As already mentioned, QM is nonclassical in the sense
that there exist joint probability distributions PQ�i; jja; b�
arising from QM which do not admit a local realistic
representation in the form of (2). Bell [1] was the first to
put this statement into a testable form in terms of an
inequality which is violated for nonclassical probability
distributions.

We now give a new Bell inequality for the 2� 2� d
Bell scenario:

 

PL�A2 <B2� � PL�B2 <A1� � PL�A1 <B1�

� PL�B1 � A2� > 1; (3)

where PL�Aa < Bb� �
P
i<jPL�i; jja; b�.
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This inequality can be easily proven. Let us start with the
following obvious statement: fA2 	 B2g \ fB2 	
A1g \ fA1 	 B1g 
 fA2 	 B1g. Taking the complement
we get fA2 <B1g 
 fA2 <B2g [ fB2 <A1g [ fA1 <B1g.
This implies for the probabilities that PL�A2 <B1� � 1�
PL�A2 	 B1� � PL�A2 <B2� � PL�B2 < A1� � PL�A1 <
B1�, which completes the proof.

The new version (3) of the CGLMP inequality has apart
from its simple form several advantages over previous
versions. One advantage is that the inequality does not
depend on the actual values of the measurement outcomes,
only their relative order on the real line matters. For the
case of measurements with outcomes 0; :::; d� 1 this in-
equality implies another simplified version of the CGLMP
inequality presented in [5], as well as the original CGLMP
inequality. Another advantage is that inequality (3) reads
the same for all values of d. Further, the way the new
inequality is derived might be interesting for finding new,
simpler inequalities for other Bell settings, such as the 2�
3� 2 Bell setting.

In the following section we will investigate the maximal
violation of inequality (3) by QM for large values of the
number of outcomes and dimension of the Hilbert space.

Violation of the CGLMP inequality for the maximally
entangled state—In the following we will assume that the
dimension of the Hilbert space D is equal to the number of
outcomes d which we abbreviate as dimension d. We will
comment on this assumption at the end of this Letter,
where we also present numerical evidence for the validity
of this assumption. For the maximally entangled state,
j�i �

Pd�1
i�0 jiii=

���
d
p

, it has long been conjectured that
the measurements which maximally violate the CGLMP
inequality are described by operators Aa and Bb with the
following eigenvectors [7,9]:

 jiiA;a �
1���
d
p

Xd�1

k�0

exp
�
i

2�
d
k�i� �a�

�
jkiA; (4)

 jjiB;b �
1���
d
p

Xd�1

l�0

exp
�
i

2�
d
l��j� �b�

�
jliB; (5)

where the phases read �1 � 0, �2 � 1=2, �1 � 1=4, and
�2 � �1=4, here i �

�������
�1
p

is the imaginary number.
We evaluate the left-hand side of inequality (3) for the

joint probabilities arising from QM in the case of the
maximally entangled state and the just described measure-
ments. For later purposes we will leave the Schmidt co-
efficients unspecified throughout this calculation and only
equate them to 1=

���
d
p

at the end. We use (1), where the
Aia � jiiA;ahijA;a are the projectors on the corresponding
eigenspaces defined in (4) and (5) and similarly for Bjb. We
obtain

 

Ad� � � PQ�A2 <B2� � PQ�B2 < A1� � PQ�A1 <B1�

� PQ�B1 � A2� �
Xd�1

i�0

Xd�1

j�0

Mij�i�j; (6)

where the d� d matrix M can be simplified to

 Mij � 2�ij �
1

d
cos�1

�
�i� j��

2d

�
: (7)

Putting �i � 1=
���
d
p

, i.e., looking at the maximally en-
tangled state, we obtain for d � 2, A2��� � �3����

2
p
�=2 � 0:792 89 which corresponds to the maximal vio-

lation of the CHSH inequality know from Csirelson’s in-
equality [10].

It is also interesting to look at the conjectured (it is
not known that these are the best measurements) maximal
violation of (3) with the infinite dimensional maximally
entangled state. We get limd!1Ad��� � 2�
16 Cat2=�2 � 0:515 where Cat is Catalan’s constant, re-
producing the result obtained in [7] for the original version
of the CGLMP inequality.

In this section we described what are believed to be the
best measurements for the CGLMP inequality with the
maximally entangled state. Though it is often thought
that the maximally entangled state j�i represents the
most nonclassical quantum state, evidence has been given
in [5,6] that the states which maximally violate inequality
(3) are not maximally entangled. In the following section
we provide further evidence for this and investigate several
properties of the optimal state especially in the case of very
large values of d.

On the maximal violation of the CGLMP inequality—In
the previous section we described the measurements which
in the case of the maximally entangled state appear to give
the maximal violation of inequality (3). However, as men-
tioned above, it has already been given evidence that in the
case of d 	 3 the state that causes the maximum violation
of the inequality is actually not the maximally entangled
state [5,6].

In the following we want to optimize the left-hand side
of inequality (3) over all possible measurements and states.
For this purpose we assume that the state of Alice’s and
Bob’s composite system is a pure state j i 2 Cd � Cd and
that the measurements Aa and Bb describing Alice’s and
Bob’s measurement are projective and nondegenerate as
also considered above.

For small values of d we can numerically perform the
optimization. The results for the first values are summa-
rized in Table I. Shown are the minimal values of the left-
hand side of inequality (3), denoted by minAd� ; Aa; Bb�,
and the Schmidt coefficients of the optimal state for which
Ad� ; Aa; Bb� reaches its minimum.

One observes that for d 	 3 the optimal state is not
maximally entangled. More precisely, as we will see later
the entanglement entropy decreases as d becomes bigger.
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The optimal states arising from the numerical optimization
over Ad� ; Aa; Bb� agree with results obtained in [6], but
differ from the results in [5]. That is because in [5] the
quantity to be optimized was not the CGLMP inequality,
but the Kullback-Leibler divergence (relative entropy)
which contrary to common belief is not equivalent to the
concept of maximal violation of Bell inequalities [12].

Closer analysis of the optimal measurements Aia and Bjb
shows that even though the optimal state is not the maxi-
mally entangled state the best measurements seem to be the
best measurements (4) and (5) of the previous case. Further
numerical optimizations for higher values of d give strong
evidence that this is true in general.

If we assume that (4) and (5) are the best measurements
for all values of d we can further simplify the optimization.
We have already derived in Eq. (6) that in the case of the
measurements (4) and (5) we can write Ad� � �Pd�1
i�0

Pd�1
j�0 Mij�i�j, where j i �

Pd�1
i�0 �ijiii and the

d� d matrix M was given in (7).
Hence under this assumption, finding the maximal vio-

lation of (3) reduces to finding the smallest eigenvalue of
the matrix M. The corresponding eigenvector f�igd�1

i�0 gives
us the optimal state.

For d � 2; 3 we obtain minA2 � �3�
���
2
p
�=2, with

~� � �1; 1�T=
���
2
p

, and minA3 � �12�
������
33
p
�=9, with ~� �

�1; �; 1�T=�
���������������
2� �2

p
�, and � � �

������
11
p

�
���
3
p
�=2, agreeing

with results presented in [6] where violations of the origi-
nal CGLMP inequality were investigated.

More interesting becomes the search for eigenvectors
with minimal eigenvalue for a large number of possible
measurement outcomes. Numerical search for those eigen-
systems is feasible for very large values of d by use of
Arnoldi iteration.

The results of the numerical optimizations are summa-
rized in Fig. 1. Shown is the minimal target value Ad� �
as a function of the dimension d for a range from 2 to 106

both for the case of the maximally entangled state and the
optimal state. In the case of the maximally entangled state,
Ad��� approaches very quickly the asymptotic value
A1��� � 0:515 derived above.

In the case of the optimal state it is interesting that the
maximal violation of (3) does not approach an asymptote
very quickly. In fact, for very large d it falls off slower than
logarithmically with the dimension. The numerical data
shown in Fig. 1 do suggest that the minimal value of
Ad� � approaches zero as d tends to infinity. This is

very interesting since zero is the absolute minimum of
Ad� � on the boundary of the polytope of all probability
vectors. If one could show analytically that there exists an
optimal state which actually causes Ad� � to approach
zero as d tends to infinity, one would have proven a new
tight quantum Bell inequality for the 2� 2�1 scenario
(see conjecture at the end of this section).

Let us now investigate further properties of the optimal
states causing the maximal violation of inequality (3).
Figure 2 shows the typical shape of a optimal state for d 	
3, namely, in the case of d � 10 000. Plotted are the
Schmidt coefficients �i as a function of the index i. The
reflection symmetry around �d� 1�=2 can be easily de-
rived from the specific form of the symmetric kernel Mij.

FIG. 1 (color online). Minimal value of the left-hand side of
inequality (3) as a function of the dimension d: (i) for the
maximally entangled state and (ii) for the optimal state.
Inside: Entanglement entropy E= logd of the optimal state as a
function of the dimension d.

FIG. 2 (color online). The typical shape of a optimal state for
d 	 3. Shown are the Schmidt coefficients �i of the optimal state
for d � 10 000 as a function of the index i.

TABLE I. Violation of the CGLMP inequality.

d minA �0 �1 �2 �3 �4

2 0:7929 0:7071 0:7071         

3 0:6950 0:6169 0:4888 0:6169      

4 0:6352 0:5686 0:4204 0:4204 0:5686   

5 0:5937 0:5368 0:3859 0:3859 0:3859 0:5368
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As d increases the Schmidt coefficient get more and more
peaked at i � 0 and i � d� 1.

It is also interesting to look at the entanglement entropy
of the optimal state. Whereas for the maximally entangled
state E���= logd � 1 for all values of d, in the case of the
optimal state the entanglement entropy decreases with the
dimension. As in the case of the minimal value of Ad� �
the entanglement entropy decreases slower than logarith-
mically, but we are not able to give an asymptotic bound
for it. This is contrary to work presented in [5], where the
entanglement entropy seemed to approach the asymptotic
value limd!1E� � � lnd � 0:69 logd. Again, the dis-
agreement is due to the fact that in the latter the quantity
to be optimized was not the CGLMP inequality, but rather
the Kullback-Leibler divergence.

From the insights gained in this section we state the
following conjecture:

Conjecture (Quantum Bell inequality): For d! 1 the
minimal value of PQ�A2 <B2� � PQ�B2 < A1� �

PQ�A1 <B1� � PQ�B1 � A2� converges to zero, where
the best measurements for each d are the ones presented
above, (4) and (5), and the optimal states are of the form
shown in Fig. 2. Hence,
 

PQ�A2 <B2� � PQ�B2 < A1� � PQ�A1 <B1�

� PQ�B1 � A2� > 0 (8)

is a tight quantum Bell inequality for the 2� 2�1 Bell
setting.

The fact that the inequality seems to reach its minimal
value given by the probability constraints as d! 1 also
relates to recent results derived in [13] for a chained
version of the CGLMP inequality.

Conclusion.—A new version of the CGLMP inequality
for the 2� 2� d Bell scenario has been presented.
Numerically, under the assumption that the number of
outcomes is equal to the dimension of the Hilbert space
D, the optimal states are not maximally entangled for d 	
3, though the best measurements with respect to those
states are the same as for the maximally entangled state.

We investigated the maximal violation of this new in-
equality for very large numbers of measurement outcomes
and dimension of the Hilbert space. We analyzed the
specific form of the best states and their entanglement
entropy. It turned out that for increasing dimension the
entanglement entropy of the optimal state decreases, agree-
ing with the observations made in [5,6]. Interestingly, the
numerics indicate that the maximal violation of the in-
equality tends, as the number of measurement outcomes
and dimension of the Hilbert space tends to infinity, to the
absolute bound imposed by the polytope of probability
vectors. We conjectured from this a tight quantum Bell
inequality for the 2� 2�1 Bell scenario. An analytical

proof of the tightness of this inequality is work in progress
which will hopefully appear soon.

To justify the above assumption that the dimension of
the Hilbert space D is equal to the number of possible
outcomes d we also numerically analyzed the case of d <
D. In particular, we obtained the minimal target value
optimized over Schmidt coefficients and all possible com-
binations of degenerate measurements A1; A2; B1; B2 for
d � 2; 3; 4 with D � 5 and over randomly selected degen-
erate measurements for d � 2; 3; 4; 5 with D � 20. In all
cases the smallest obtained target values agreed with the
corresponding minimal target values obtained under the
assumption that D � d as summarized in Table I up to an
error of 10�3. This gives strong evidence for the validity of
the assumption that D � d and suggests that the minimal
target values obtained under this assumption are also valid
for the case of degenerate projective measurements and
POVM measurements which can always be realized as
projective measurements on a higher-dimensional Hilbert
space due to Naimark’s theorem. Further, it strengthens the
evidence that the optimal state for d > 2 is not maximally
entangled beyond the analysis of [5,6].
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