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We generalize the concept of an optical cavity mode to the case of an astigmatic cavity that rotates about its
optical axis. We show that the modes of such a cavity are both spatially and spectrally confined and use an
algebraic method to study their spatial and spectral structure. Our method involves ladder operators in the spirit
of the quantum-mechanical harmonic oscillator. It hinges upon their algebraic properties as well as on the
group-theoretical properties of the ray �ABCD� matrix that describes the time-dependent ray dynamics of the
rotating cavity.
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I. INTRODUCTION

Light with a complex spatial structure has applications in
different branches of physics. From a quantum information
point of view the spatial degrees of a photon can be used to
encode and manipulate quantum states in a Hilbert space of
many dimensions. An example is provided by the eigen-
modes of orbital angular momentum of light �1,2�. This an-
gular momentum, which arises from the phase structure of
monochromatic light beams, can also be used to manipulate
small particles �3,4�.

The �possibly very complex� spatial structure of the
modes of a two-mirror cavity is determined by the boundary
condition that the electric field must vanish on the mirror
surfaces. For monochromatic beams this implies that the
wave fronts �surfaces of equal phase� of the standing wave
inside the cavity must fit onto the mirror surfaces. The com-
mon approach to finding the modes of a paraxial optical
cavity is by considering the free propagation of a Gaussian
beam and requiring the wave fronts of the beam to fit onto
the mirror surfaces. This is straightforward in the case of
spherical mirrors �5�. The resulting equation can be solved to
obtain the beam parameters. The possible values of the wave
number k follow from the resonance condition that the total
phase that is picked up after each round trip is an integer
multiple of 2� �5�. This approach allows for generalization
to the case of astigmatic or cylindrical mirrors, which are
curved differently in different directions, provided that the
mirrors are aligned. Fundamental difficulties arise in the case
of cavities with astigmatic mirrors in nonparallel alignment
�6�. As a result of the twist of such a cavity, the modes are
twisted as well �7�.

An additional source of complexity arises when the
boundaries of an optical cavity depend on time. Time-
dependent optical cavities are of fundamental �and historical�
importance since they provide a very accurate way to ob-
serve �violations of� local Lorentz invariance �8,9�. Optical
cavities with vibrating mirrors have been studied in detail,
especially in the context of the dynamical modification of the
Casimir effect �10,11�. The resonant coupling of the modes
of such a cavity to the vibration of the mirrors has also been
studied �12�. The interplay between physical rotation of an
optical cavity and wave chaos has been discussed in a recent
paper �13�.

In the present paper we analyze the time-dependent
modes of an astigmatic two-mirror cavity that is rotating at a
uniform velocity about its optical axis. It remains true that
the mode structure is determined by the boundary condition
that the electric field must vanish on the mirror surfaces.
Since modes are usually defined as stationary solutions of a
wave equation, the concept of a mode requires special atten-
tion in this case. As opposed to vibrations, uniform rotations
of the mirrors give rise to a homogeneous time dependence
of the cavity. As a result all times �and therefore all round
trips� are equivalent. In this special case it is natural to as-
sume that the modes adopt the time dependence of the cavity
so that they rotate along with the mirrors. We show that this
property can be used as a defining property of the modes and
derive explicit expressions that we apply to study their spa-
tial and spectral structure.

II. TIME-DEPENDENT PARAXIAL PROPAGATION

The description of the propagation of optical modes is
greatly simplified by making paraxial approximations, which
are almost always justified in experimental situations. Here
we summarize the perturbative derivation of the paraxial ap-
proximation that is due to Lax et al. �14� and its generaliza-
tion to the time-dependent case by Deutsch and Garrison
�15�. This helps us to ensure the consistency of our approach,
in that we retain all terms up to the same order.

The spatial structure of a paraxial beam is characterized
by a vector field u�r , t� that describes the slowly varying
components of the electric field. The field u defines the
electric-field component of the light field by

E�r,t� = Re�E0u�r,t�exp�ikz − i�t�� , �1�

where E0 is an amplitude factor and �=ck is the frequency
of the carrier wave, with k the wave number. In vacuum the
electric field obeys the wave equation

�2E =
1

c2

�2E

�t2 �2�

with the additional requirement that it has a vanishing diver-
gence
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� · E = 0. �3�

Essential for the paraxial approximation is that the beam has
a small opening angle, which we indicate by the smallness
parameter �. Then the beam waist is of the order of the
parameter �, and the diffraction length �or Rayleigh range� is
of the order of the parameter b, where

1

k
= �� = �2b . �4�

So the diffraction length is much larger than the beam waist,
which is much larger than the wavelength. The smallness of
� ensures that the variations of the profile u�r , t� with the
longitudinal coordinate z are slow compared to the variations
with the transverse coordinates R= �x ,y�, which are, in turn,
slow compared to the variations of the carrier wave exp�ikz�
with z.

Time dependence of the spatial profile gives rise to fre-
quency components, so that time-dependent paraxial modes
have spectral structure in addition to their spatial structure.
The concept of a mode loses its meaning if the difference in
diffraction of the frequency components becomes significant,
i.e., if the diffraction due to the time dependence of the pro-
file becomes important. Conversely, we shall show that a
mode remains a useful concept when the time scale for varia-
tion of the cavity boundaries is slower than the transit time
through the focal range of the beam. This transit time is of
the order of

a =
b

c
=

�2

�
. �5�

In order to obtain the time-dependent paraxial wave equation
the profile is expanded in powers of the opening angle �

u = �
n=0

�

�nu�n�. �6�

In order to account for the relative order of magnitudes of the
derivatives, it is convenient to introduce the scaled variables
�=x /�, �=y /�, �=z /b, and 	= t /a. In these variables, the
derivatives of u can be treated as being of the same order in
�. Substituting the expression �1� for the electric field in the
wave equation �2� then gives

� �2

��2 +
�2

��2 + 2i
�

��
+ 2i

�

�	
	u = �2� �2

�	2 −
�2

��2	u , �7�

while the transversality condition �3� gives

�� �ux

��
+

�uy

��
	 = − �2�uz

��
− iuz. �8�

It is natural to assume that to zeroth-order the z component
of u vanishes, and Eq. �8� shows that such a solution can be
found. Then to zeroth-order of the paraxial approximation
the electric field lies in the transverse plane. In the special
case of uniform polarization it can be written as

u�0��r,t� = 
u�r,t� , �9�

where the polarization vector 
 has a vanishing z component.
The scalar function u�r , t� obeys the time-dependent paraxial
wave equation

� �2

�x2 +
�2

�y2 + 2ik
�

�z
+

2ik

c

�

�t
	u�r,t� = 0. �10�

The expansion �6� then shows that all even orders of the
transverse components are coupled by Eq. �7�, and the odd
orders can be assumed to vanish. Equation �8� connects odd
orders of the z component to the even orders of the trans-
verse components, which implies that all even orders �in-
cluding the zeroth� of the longitudinal component vanish.
The first-order contribution to the profile is longitudinal and
by using Eq. �8� this can be expressed in the zeroth term

�u�1��r,t� =
i

k
�
x

�

�x
+ 
y

�

�y
	u�r,t�ez, �11�

where ez is the unit vector in the z direction.
Up to first order of the paraxial approximation finding the

modes of a cavity that has physically rotating mirrors re-
quires solving the time-dependent paraxial wave equation
�10� with the boundary condition that the electric field van-
ishes on the mirror surfaces at all times. The range of validity
of this time-dependent wave equation provides a natural up-
per limit to the rotation frequency of the mirrors. In a typical
experimental setup the diffraction length of the modes of an
optical cavity is of the order of magnitude of the mirror
separation, so that the period of the rotation of the mirror�s�
can be at most comparable to the cavity round-trip time. This
provides an upper limit for the rotation frequency �

� �
c�

L
, �12�

where L is the mirror separation and c is the speed of light.
The cavity ring-down time �which we leave out of our con-
sideration here� provides a natural lower limit for the rotation
frequency of the mirrors.

III. OPERATOR DESCRIPTION OF TIME-DEPENDENT
PARAXIAL WAVE OPTICS

A. Operators and transformations

The standard time-independent paraxial wave equation
follows if we omit the time derivative in Eq. �10�. This has
the same structure as the Schrödinger equation for a free
particle in two dimensions, with k taking the place of m /
and the longitudinal coordinate z playing the role of time.
This analogy can be exploited by adopting the Dirac notation
of quantum mechanics to describe classical light beams �16�,
which naturally leads to an operator description of paraxial
wave optics. We show that this description can be general-
ized to include the time dependence of the profile, even
though the time dependence of the beam u�R ,z , t� does not
have an analog in quantum mechanics.

We associate to the beam profile u�R ,z , t� a vector 
u�z , t��
in the Hilbert space of transverse modes
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u�R,z,t� = �R
u�z,t�� , �13�

where 
R� is an eigenstate of the two-dimensional position

operator R̂= �x̂ , ŷ�. The corresponding momentum operator

can be represented by P̂= �p̂x , p̂y�=−i�� /�x ,� /�y�. The aver-
age �or expectation� value of this operator can be shown to
correspond to the transverse momentum per unit length per
photon �in units of � �17�.

The transformations of paraxial propagation and lossless
optical elements such as thin lenses can be expressed as uni-
tary transformations in the transverse mode space. Express-
ing the time-dependent paraxial wave equation �10� in terms
of the momentum operators gives

� �

�z
+

1

c

�

�t
	
u�z,t�� = − � i

2k
P̂2	
u�z,t�� . �14�

The solution of this equation can be expressed as


u�z,t�� = exp�−
iz

2k
P̂2	
u�0,t − z/c�� = Ûf�z�
u�0,t − z/c�� ,

�15�

where Ûf�z� is the unitary operator that describes free propa-
gation of a paraxial beam. This result shows that the time-
dependent paraxial wave equation describes the beam propa-
gation while incorporating retardation effects.

A thin spherical lens imposes a Gaussian phase profile
and hence the transformation caused by such a lens can be
expressed as


uout� = exp� ikR̂2

2f
	
uin� , �16�

where f is the focal length of the lens. The generalization of
this transformation to the case of a lens that has astigmatism
is given by


uout� = exp� ik

2
R̂F−1R̂	
uin� = Ûl�F�
uin� , �17�

where F is a real and symmetric 2�2 matrix. The eigenval-
ues of F are the focal lengths of the lens and the mutually
orthogonal real eigenvectors fix the orientation of the lens in
the transverse plane.

B. Frequency combs

The operator that rotates a scalar function around the z
axis in the positive �counterclockwise� � direction can be
expressed in the transverse mode space as

Ûr��� = exp�− i�Ĵz� , �18�

where � is the rotation angle and Ĵz= R̂� P̂= x̂p̂y − ŷp̂x
=−i� /�� is the z component of the angular momentum op-
erator. The inverse of this rotation is a rotation in the oppo-

site direction, i.e., Û†���= Û�−��. The transformation of a
rotated lens can be expressed as

Ûr���Ul�F�Ûr
†��� . �19�

This �anti-Heisenberg� transformation property makes sense
if one realizes that rotating a lens is equivalent to rotating the
profile in the opposite direction, applying the lens and rotat-
ing the profile backward. The beam transformation caused by
an astigmatic lens �17� is a function of the position operator

R̂= �x̂ , ŷ� only. The anti-Heisenberg transformation of the po-
sition operator under the rotation about the z axis �18� can be
expressed as

Ûr���R̂Ûr
†��� = � cos � sin �

− sin � cos �
	R̂ = RT���R̂ , �20�

with R��� the two-dimensional rotation matrix. By using this
transformation property of the position operators, the trans-
formation of a rotated lens �19� can be expressed as

Ûl„R���FRT���… . �21�

For a lens rotating at angular velocity �, the rotation angle is
�=�t, so that the time-dependent beam transformation

caused by the rotating lens is given by Ûl(F�t�), where F�t�
=R��t�F�0�RT��t�. Without loss of generality we can
choose the real and symmetric matrix F�t� diagonal at t=0

F�0� = � f� 0

0 f�
	 . �22�

By using Eqs. �19�–�22� and introducing cylindrical coordi-
nates with x=� cos �, y=� sin �, the time-dependent trans-
formation of a rotating lens can be expressed as

Ûl„F�t�… = exp−
ik�2

4
�f�

−1 + f�
−1�

−
ik�2

4
�f�

−1 − f�
−1�cos�2�t − 2��� . �23�

Since Ûl is periodic with period � /� it follows that a rotat-
ing lens introduces frequency sidebands at frequencies
��2p�, with integer p in a monochromatic optical field
�18�.

IV. MODES IN ROTATING CAVITIES

The transformation of a sequence of lossless optical ele-
ments can be constructed by multiplying the transformations
of the elements and free propagation over the distances be-
tween them in the correct order. If any one of the transfor-
mations is time dependent, retardation effects must be incor-
porated.

A. Lens guide picture

In order to describe the evolution of a profile vector

u�z , t�� inside the cavity it is convenient to unfold the cavity
into an equivalent lens guide. As illustrated in Fig. 1, the
mirrors are replaced by lenses with the same focal lengths.
Rather than describing the bouncing back and forth inside
the cavity we describe the propagation along the axis of the
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lens guide, with coordinate z. The dashed line on the left of
the first lens in Fig. 1 indicates the input plane of the lens
guide, which is positioned at z=0. The profile in any trans-
verse plane of the lens guide is connected to the profile in the
input plane by a unitary transformation. Just as in Eq. �15�,
this time-dependent connection involves a retardation time,
as described by


u�z,t�� = Û�z,t�
u�0,t − z/c�� . �24�

The unitary operator Û�z , t� is constructed by successive ap-
plication of the transformations of the optical elements and
free propagation that are in between the reference plane and
the z plane in the correct order. We need only two different
transformation operators for the lenses in the lens guide,

which we denote for simplicity as Û1�t� and Û2�t�. For the
lens guide that corresponds to a cavity rotating at the uni-
form angular velocity �, these time-dependent operators are
given by Eq. �19� with rotation angle �=�t, so that

Ûi�t� = Ûr��t�Ûl„Fi�0�…Ûr
†��t� , �25�

with i=1,2 labeling the two lens types.
Since the orientations of the rotating lenses depend on

time, retardation effects must be included. As an example,
we give the operator that connects the profile vectors in
transverse planes that are separated by one period of the lens
guide

Û�2L,t� = Ûf�L�Û2�t − L/c�Ûf�L�Û1�t − 2L/c� . �26�

Obviously, all lenses that correspond to the same mirror of
the cavity have the same orientation at any instant of time.
Nevertheless, as a result of retardation the orientation of two
lenses that correspond to the same mirror of the cavity is
perceived differently by a light pulse that propagates through
the lens guide.

B. Rotating modes

Cavity modes are resonant field distributions inside an
optical cavity. In a stationary cavity, a field pattern is reso-
nant if it repeats itself after a round trip through the cavity. In
the case of a rotating cavity, the requirement is that the field
pattern in the lens guide is the same in every period, at a
single given instant of time. This implies that the mode vec-
tor 
u�0, t�� in the reference plane for a given value of t
repeats itself after one period 2L, apart from a phase factor


u�2L,t�� = exp�i��
u�0,t�� . �27�

The phase � generalizes the Gouy phase for the round trip in
a stationary cavity �5� to the case of time-dependent paraxial
propagation through a periodic lens guide with rotating
lenses. When the lens guide is rotating at a uniform velocity
�, this mode criterion �27� can be obeyed only if the mode
pattern rotates along with the lenses, so that the time depen-
dence of the mode vector is determined by


u�z,t�� = Ûr��t�
v�z�� . �28�

Then we can eliminate time by introducing the z-dependent
profile


v�z�� = 
u�z,0�� , �29�

which has the significance of the beam profile in the rotating
frame. By combining the relation �28� with Eqs. �24�–�26�,
we find that the propagation of a beam profile in this frame is
governed by the general relation


v�z�� = Û�z,0�Ûr�− �z/c�
v�0�� . �30�

In the special case of the propagation over one period this
gives


v�2L�� = ÛroundÛr
†��t�
u�0,t�� = Ûround
v�0�� . �31�

The operator Ûround is given by the expression

Ûround = Ûf�L�Ûr�− �L/c�Û2�0�Ûf�L�Ûr�− �L/c�Û1�0� .

�32�

It has the significance of the transformation operator over a
round trip in the rotating frame. The analogous transforma-
tion operator at an arbitrary time figures in Eq. �31�. Notice

that the operators for free evolution Ûf are denoted as a

function of length, the lens operators Ûi as a function of

time, and the rotation operators Ûr as a function of angle.

The product Ûf�L�Ûr�−�L /c� can be viewed as the operator
for free propagation over a distance L in the corotating
frame.

Now the mode criterion �27� in the reference plane z=0 in
the rotating frame is obeyed by the eigenvectors of the

round-trip operator Ûround. Once these mode vectors are de-
termined, we can use the propagation equation �15� and the
time dependence �28� to obtain the shape of the modes at
other time instants, and at any position within a period of the
lens guide. The eigenvalues, which are specified by the phase
angles �, determine the resonance frequencies of the modes.
In the next section we shall indicate how the eigenmodes can
be obtained explicitly from a ladder-operator method.

V. RAY MATRICES AND LADDER OPERATORS

A. Time-dependent ray matrices

The transverse spatial structure of paraxial modes in cavi-
ties with spherical mirrors is known to be similar to the spa-
tial structure of the stationary states of a two-dimensional

FIG. 1. Unfolding an optical cavity into an equivalent periodic
lens guide. The mirrors are replaced by lenses with the same focal
lengths and the z=0 plane is indicated by the dashed line.
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quantum harmonic oscillator �5�. Complete sets of modes
can be generated by using bosonic ladder operators �19�. In a
recent paper we used a ladder-operator method to find ex-
plicit expressions of all the modes of an optical cavity that
has nonorthogonal astigmatism �7�. These ladder operators
are conveniently expressed in terms of the eigenvectors of
the ray matrix for one period in the lens guide, or, equiva-
lently, for one round trip in the cavity. Here we generalize
this approach to account for the time dependence that arises
from the rotation of the cavity. In this case, the ray matrices
also depend on time.

In geometric paraxial optics, a light ray is specified by its
position R= �x ,y� and its direction �= ��x /�z ,�y /�z� in the
transverse plane z �5�. They are combined into a four-
dimensional column vector

r�z� = �R�z�
��z�

	 . �33�

The ray matrix M�z� is the 4�4 ray matrix that describes the
transformation of a ray through the lens guide from the ref-
erence plane at z=0 to the transverse plane z. It is the gen-
eralization of the ABCD matrix �5� to two transverse dimen-
sions. In wave optics, the position of a light beam is the

expectation value of the operator R̂, while its direction is the

expectation value of P̂ /k, which is the ratio of the transverse
and the longitudinal momentum. Therefore, the operator for

the direction of the beam is �̂= P̂ /k. This is confirmed by the
fact that the Heisenberg propagation of the operator vector

�R̂ ,�̂� reproduces the ray matrix, as exemplified by the iden-
tity

Û†�z�� R̂

�̂
	Û�z� = M�z�� R̂

�̂
	 . �34�

Here the propagation operator Û acts on the operator nature

of R̂ and �, while the matrix M acts on the four-dimensional
ray vector. This relation may be viewed as the optical analog
of the Ehrenfest theorem in quantum mechanics. Note that
the commutation relations for the components of the position
and direction operators take the form

�R̂x,�̂x� = �R̂y,�̂y� = i/k . �35�

The ray matrix M�z� for propagation from the plane z=0 to
the plane z is the product of the ray matrices for the regions
of free evolution and for the lenses in between these planes
in the right order. These ray matrices can be found in any
textbook on optics. The ray matrix for free propagation is
described by

Ûf
†�z�� R̂

�̂
	Ûf�z� = �1 z1

0 1 	� R̂

�̂
	 = Mf�z�� R̂

�̂
	 , �36�

where 1 and 0 are the two-dimensional unit matrix and the
zero matrix. The transformation for a thin astigmatic lens can
be expressed as

Ûl
†�F�� R̂

�̂
	Ûl�F� = �1 0

F 1	� R̂

�̂
	 = Ml�F�� R̂

�̂
	 . �37�

The ray matrix of a rotation about the z axis follows from the
identity

Ûr
†���� R̂

�̂
	Ûr��� = �R��� 0

0 R��� 	� R̂

�̂
	 = Mr���� R̂

�̂
	 .

�38�

The identities �34� and �37� remain valid for rotating lenses,

which makes both the operators Û and the ray matrices M
depend on time. The transformation of a time-dependent ray
in the reference plane to another transverse plane z is given
by

r�z,t� = M�z,t�r�0,t − z/c� �39�

in analogy to Eq. �24�. A corotating incident ray in the ref-
erence plane must give a corotating ray everywhere in the
lens guide, and the ray matrices in the rotating frame become
independent of time. In complete analogy to Eq. �31�, this
means that the transformation of a ray in the rotating frame
over one period from the reference plane is given by the
round-trip ray matrix

Mround = Mf�L�Mr�− �L/c�M2�0�Mf�L�Mr�− �L/c�M1�0� ,

�40�

with M1�0� and M2�0� the ray matrices for the lenses 1 and 2
at time 0.

Any ray matrix that describes the transformation of a �se-
quence of� lossless optical elements obeys the following
identity:

MTGM = G, where G = � 0 1

− 1 0
	 . �41�

This property generalizes the requirement that the determi-
nant of a ray matrix must be equal to 1 to optical systems
that have two independent transverse dimensions. It is easy
to show that the ray matrices that we have used obey this
identity. The product of matrices that obey this restriction
obeys it as well and in mathematical terms the set of 4�4
matrices that obey this identity forms the symplectic group
Sp�4,R�. Both the underlying algebra and the physics of
such linear phase space transformations has been studied in
detail �20�.

B. Ladder operators in reference plane

The similarity between Hermite-Gaussian modes of a cav-
ity with spherical mirrors and harmonic-oscillator eigenstates
can be traced back to the fact that in the paraxial limit the
Heisenberg evolution of the position and direction operators

R̂ and �̂ is linear, so that ladder operators, which are also
linear in these operators, preserve their general shape under
propagation and optical elements. Though nonorthogonal
astigmatism does not have an analog in quantum mechanics,
ladder operators can be used to generate a basis of astigmatic
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modes as well �21�. Recently we have demonstrated that the
modes of a cavity with nonaligned astigmatic mirrors are
determined by the eigenvectors of the round-trip ray matrix
�22�. In the rotating frame, the relation between the propaga-
tion operators and the ray matrix for a round trip is basically
the same as for a stationary one, and Eqs. �32� and �40� are
obviously analogous. This allows us to apply the same tech-
nique to obtain explicit expressions for the modes of the
rotating cavity. In order to define the ladder operators we
shall need the eigenvectors and eigenvalues of the ray matrix
Eq. �40�. Stability of the rotating cavity requires that the
eigenvalues are unitary, and since the matrix Mround is real,
this implies that its eigenvectors come in two pairs �1,�1

� and
�2,�2

� that are each other’s complex conjugate. The eigen-
value relations are written as

Mround�1 = ei�1�1 and Mround�2 = ei�2�2. �42�

From the general property �41� of ray matrices one directly
obtains the generalized orthogonality properties

�1G�2 = �1
�G�2 = 0, �43�

while the eigenvectors can be normalized in order to obey
the identities �7�

�1
�G�1 = �2

�G�2 = 2i . �44�

We shall now prove that the ladder operators that define the
shape of the modes in the reference plane z=0 at time 0 are
easily expressed in terms of the eigenvectors �1 and �2 of
the ray matrix Mround. In analogy to Ref. �22� we introduce
two lowering operators

âi =�k

2
�iG� R̂

�̂
	 =�k

2
�Ri�̂ − �iR̂� , �45�

where i=1,2. From the generalized orthonormality proper-
ties �43� and �44� of the eigenrays �i combined with the
canonical commutation rules �35� it follows that the ladder
operators obey the bosonic commutation rules

�âi, âj
†� = �ij . �46�

Any set of ladder operators that obey these commutation
relations defines a complete and orthonormal set of trans-
verse modes according to


vnm� =
1

�n ! m!
�â1

†�n�â2
†�m
v00� . �47�

Apart from an overall phase factor, the fundamental mode
�or ground state in the terminology of quantum mechanics�

v00� is determined by the requirement that â1
v00�= â2
v00�
=0. We conclude that the ladder operators determine the
complete set of modes in the rotating frame in the reference
plane z=0. Explicit expressions will be given below.

C. Ladder operators in arbitrary transverse plane

The eigenrays �i�0�=�i refer to the transformation from
the reference plane at z=0 to the plane z=2L in the rotating
frame. We also need the modes 
vmn�z��, and therefore the

eigenrays �i�z� in an arbitrary transverse plane z in the lens
guide, in the rotating frame. The basic equation for the time-
dependent transformation of a ray is given by Eq. �39�, so
that

�i�z� = M�z,0�Mr�− �z/c��p�0� �48�

in analogy to Eq. �30� for the beam profile propagation in the
rotating frame. In the special case of propagation over one
period, we should take z=2L. Then the ray transformation in
Eq. �48� is Mround, which gives

�i�2L� = ei�i�i�0� . �49�

For notational convenience we separate the four-dimensional
eigenvectors in their two-dimensional subvectors as

�i�z� = �Ri�z�
�i�z�

	 . �50�

Then we compose two 2�2 matrices out of the column vec-
tors Ri�z� and �i�z�, by the definition

P�z� � „R1�z�,R2�z�… and T�z� � „�1�z�,�2�z�… .

�51�

The relations �43� and �44� can be summarized as

PTT − TTP = 0, P†T − T†P = 2i1 �52�

in all transverse planes z.
The dependence of the ladder operators on z in the rotat-

ing frame is determined by the requirement that when acting
on a rotating solution of the time-dependent paraxial wave
equation, they must produce another solution. In view of Eq.
�30�, this requirement takes the form

âi�z� = Û�z,0�Ur�− �z/c�âi�0�Ur
†�− �z/c�Û†�z,0� . �53�

In the right-hand side of this equation the propagation opera-

tors Û act as an anti-Heisenberg evolution on the operators R̂

and �̂. In accordance with the general Ehrenfest relation
�34�, and the relation �41�, this gives rise to a product
GM−1=MTG when we substitute the expression �45� for the
lowering operator. This leads to the conclusion that the low-
ering operator obeys the relation

âi�z� =�k

2
�i�z�G� R̂

�̂
	 �54�

for all values of z.

VI. STRUCTURE OF THE MODES

We have described a procedure to construct the ladder
operators that generate the complete set of transverse modes
in all transverse planes of the lens guide. Since the ladder
operators are periodic, the generated modes 
vnm� in the ro-
tating frame are reproduced after a period 2L up to a phase
factor. In this section we describe both the spatial and spec-
tral structure of these modes more explicitly.
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A. Algebraic expressions of modes

The fundamental mode 
v00�z�� in the rotating frame
obeys the requirement that the lowering operators âi�z� give
zero when acting on it for all transverse planes z in the lens
guide. An explicit analytical expression of the normalized
mode function as it propagates through the lens guide can be
found after a slight generalization of our earlier results for a
stationary astigmatic cavity �7,22�. This result showed that
the fundamental mode can be expressed in terms of the
z-dependent eigenrays, which give rise to the 2�2 matrices
P�z� and T�z�. For rotating cavities, the same result applies
in the rotating frame, where the time dependence disappears.
In the rotating frame, the beam profile is given by the general
Gaussian expression

v00�R,z� = �R
v00�z�� =� k

� det P�z�
exp� ik

2
RT�z�P−1�z�R	 .

�55�

From the properties �52� of the matrices P and T it follows
that the matrix TP−1 is symmetric. In the intervals between
the lenses, the corresponding time-dependent mode


u00�z , t��= Ûr��t�
v00�z�� obeys the time-dependent paraxial
wave equation. �10�, and the input-output relation for

u00�z , t�� across a lens of type 1 or 2 corresponds to the lens

operator Û1�t� or Û2�t� as in Eq. �17�.
The periodicity �49� of the eigenrays �i ensures that the

matrix T�z�P−1�z� is periodic with period 2L. Moreover, the
determinant of P picks up a phase factor after one period,
according to the identity

det P�2L� = ei��1+�2�det P�0� . �56�

As a result, the fundamental mode �55� picks up a phase
factor exp�−i��1+�2� /2� after a period of the lens guide, or
over a cavity round trip.

The higher-order modes 
vnm�z�� in the rotating frame are
obtained from the fundamental mode by using the
z-dependent version of Eq. �47�


vnm�z�� =
1

�n ! m!
�â1

†�z��n�â2
†�z��m
v00�z�� . �57�

The periodicity �49� of the eigenray is reflected in a similar
periodicity of the lowering operator, in the form

âi�z + 2L� = ei�iâi�z� , �58�

which in turn will give rise to a periodicity of the modes in
the rotating frame 
vnm�z��. From this equation we find that
the raising operator gets an additional phase exp�−i�i� after a
round trip. The phase factor picked up by the mode 
vnm� �or
by the time-dependent mode 
unm�� is therefore specified by
the relation


vnm�2L�� = e−i�1�n+1/2�−i�2�m+1/2�
vnm�0�� . �59�

The resonance wavelengths of the modes follow from the
requirement that the complex electric field

Enm�R,z,t� = E0
unm�R,z,t�exp�ikz − i�t� �60�

is periodic over a round trip. This implies that the wave
number k of the transverse modes must obey the identity

2kL − �1�n + 1/2� − �2�m + 1/2� = 2�q, q � Z , �61�

where the integer q is the longitudinal mode index. Note that
the round-trip Gouy phases �1 and �2, and thereby the reso-
nance wavelengths are affected by the rotation. This is obvi-
ous since they arise from the eigenvalues of the round-trip
ray matrix Mround, which according to Eq. �40�, contains the
angular velocity �.

B. Spectral structure

Just as in Eq. �28�, the time-dependent mode as viewed
from the �nonrotating� laboratory frame follows from the
mode 
vnm�z�� by a simple rotation, so that

(0, 0) (0, 1) (0, 0) (0, 1)

(1, 0) (1, 1) (1, 0) (1, 1)

(0, 0) (0, 1) (0, 0) (0, 1)

(1, 0) (1, 1) (1, 0) (1, 1)

(0, 0) (0, 1) (0, 0) (0, 1)

(1, 0) (1, 1) (1, 0) (1, 1)

FIG. 2. Intensity patterns of the �0,0�, �0,1�, �1,0�, and �1,1�
modes of the cavity between a stationary spherical and a rotating
astigmatic mirror at different rotation frequencies. The left plots
show the intensity pattern near the spherical mirror while the right
plots show the intensity pattern near the astigmatic mirror. The ra-
dius of curvature of the spherical mirror is 4L, where L is the mirror
separation. The radius of curvature of the astigmatic mirror in the
horizontal direction of the plot is equal to 2L, while its radius of
curvature in the vertical direction is 20L. From the top to the bottom
the rotation frequency is increased from �=0 to �=c� / �30L� and
�=c� / �6L�.
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unm�z,t�� = Ûr��t�
vnm�z�� . �62�

The mode function unm�R ,z , t�= �R 
unm�z , t�� is a corotating
solution of the time-dependent paraxial wave equation �10�.
Since this mode function depends on time, the electric field
�60� is no longer monochromatic. The spectral structure di-
rectly follows from the polar expansion

unm�R,z,t� = �
l

gnml��,z�eil��−�t�. �63�

Since the fundamental Gaussian mode �55� is even for inver-
sion of R, the expansion �63� for u00 contains only even
values of l, so that the fundamental mode only contains side-
bands at frequencies �+2p� with integer p and �=ck. The
ladder operators âi are odd for inversion of R, so that the
modes 
unm� with even values of n+m only contain the even
sidebands �+2p�, while the modes with odd values of n
+m only contain the odd sidebands �+ �2p+1��. The sepa-
ration between neighboring sidebands is always equal to 2�,
which reflects that the cavity returns to an equivalent orien-
tation after a rotation over an angle of 180°.

C. Cavity field

We have unfolded a cavity with rotating mirrors into a
lens guide with rotating lenses and described a method to
obtain expressions of the transverse modes that are repro-
duced after each period of the lens guide. In order to obtain
an expression of the electric field inside the cavity the lens-
guide modes must be folded back into the cavity

Eres�r,t� = Re�− i
E0�u�R,z,t�exp�ikz�

− u�R,2L − z,t�exp�− ikz��exp�i�t�� �64�

for 0�z�L. In the transverse planes near the two mirrors
the two terms between the square brackets differ by phase
factors exp�ikRF1,2

−1 �t�R /2�. For z�0 and z�L the electric
field can be expressed as

Eres�r,t� = 2 Re�
E0f1,2�R,t�sin�kz � kRF1,2
−1 R/4�exp�− i�t�� ,

�65�

where the + and − signs apply near mirror 1 and 2, respec-
tively, and f1,2�R , t� is the profile in the imaginary plane
“halfway the lenses” in the lens guide picture. A lens guide
with nonrotating lenses has inversion symmetry in these

FIG. 3. Spectral structure of the �0,0�, �0,1�, �1,0�, and �1,1� modes of the cavity between a stationary spherical and rotating astigmatic
mirror. The radius of curvature of the spherical mirror is equal to 4L, where L is the mirror separation and the radii of curvature of the
astigmatic mirror are equal to 2L and 20L, respectively. The rotation frequency is equal to �=c� / �6L�.
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planes u�R ,z�=u��R ,−z� and, as a result, the profile f is real
�7� so that the electric field adopts the phase structure of the
lenses �the wave fronts coincide with the mirror surfaces�
and the higher-order modes have a Hermite-Gaussian nature.
In case of rotating lenses, this is no longer true for a fixed
value of time t. The rotation breaks the inversion symmetry
and the profile f�R , t� has phase structure as well.

The sine term in Eq. �65� is the generalization of a stand-
ing wave to modes with transverse spatial structure and it
shows that the electrical field vanishes on the mirror surfaces
even though the wave fronts of the time-dependent modes do
not fit.

VII. EXAMPLES

In this paper we have presented a method that gives ex-
pressions of the modes of uniformly rotating optical cavities.
In this section we discuss some explicit examples.

A. Rotating simple astigmatism

The simplest realization of a uniformly rotating cavity
consists of a stationary spherical and a rotating astigmatic �or
cylindrical� mirror. In the absence of rotation the modes of
such a cavity are astigmatic Hermite-Gaussian modes �5�. A
cavity of this type has two symmetry planes, which are fixed
by the orientation of the astigmatic mirrors and are passing
through the optical axis of the cavity. The modes of such a
cavity scale differently in the corresponding transverse direc-
tions. A typical example of the intensity patterns in the
planes near the mirrors of these astigmatic Hermite-Gaussian
modes is shown in the upper window of Fig. 2. Notice that
the astigmatism of the intensity patterns is most pronounced
on the spherical mirror. This is due to the fact that the astig-
matism of a mirror is visible in the intensity pattern of the
reflected beam only after free propagation over some dis-
tance.

If the astigmatic mirror is put into rotation the mode struc-
ture significantly changes. This is shown in the other two
windows of Fig. 2. As a result of the rotation the cavity no
longer has inversion symmetry in the planes through the mir-
ror axes and the optical axis. Instead, it is invariant under
inversion in those symmetry planes combined with inversion
of the rotation direction. As a result of this symmetry the
intensity patterns of the modes are symmetric in the symme-
try planes whereas the phase distributions are not. The rota-
tion breaks the inversion symmetry of the corresponding lens
guide so that the higher modes are no longer Hermite-
Gaussian modes but resemble generalized Gaussian modes
with a nature in between Hermite- and Laguerre-Gaussian
modes �21,23�. As a result phase singularities �vortices� ap-
pear, which are best visible in the center of the �0,1� and
�1,0� modes in Fig. 2.

The spectral structure of the rotating modes is illustrated
in Fig. 3. These spectra show that the modes are spectrally
confined and confirm that they only have odd or even fre-
quency components depending on the parity of the total
mode number n+m.

B. Rotating nonorthogonal astigmatism

The mode structure becomes significantly more complex
if the cavity has nonorthogonal astigmatism, which is the
case if it consists of two nonaligned astigmatic mirrors. Such
a cavity does not have symmetry planes through the optical
axis. The corresponding lens guide does have inversion sym-
metry in the imaginary plane “halfway the lenses” so that the
higher-order modes are astigmatic Hermite-Gaussian modes.
Typical examples of the modes of a stationary astigmatic
cavity with nonorthogonal astigmatism are shown in the up-
per window of Fig. 4.

At first sight one might guess that a physical rotation of
the two mirrors effectively modifies their relative orientation
so that it can help to reduce the effect of nonorthogonal
astigmatism. This is not the case. The effect of a physical
rotation of the mirrors is essentially different from the effect
of nonorthogonal astigmatism. This is illustrated in the lower
window of Fig. 4. The rotation frequency is chosen such that
the rotation angle after one round trip is equal but opposite to
the angle between the orientation of the two mirrors. Putting
the mirrors into physical rotation breaks the inversion sym-
metry so that the modes are no longer Hermite-Gaussian but
generalized Gaussian modes that have nonorthogonal astig-
matism. As a result, again, vortices appear.

VIII. CONCLUDING DISCUSSION

We have presented an algebraic method to find explicit
expressions of the paraxial modes of an astigmatic optical

(0, 0) (0, 1) (0, 0) (0, 1)

(1, 0) (1, 1) (1, 0) (1, 1)

(0, 0) (0, 1) (0, 0) (0, 1)

(1, 0) (1, 1) (1, 0) (1, 1)

FIG. 4. Modes of an optical cavity between two identical but
nonaligned rotating astigmatic mirrors for different rotation fre-
quencies. The mirrors have radii of curvature that are equal to 2L
and 20L. The axes of the right mirror coincide with the horizontal
and vertical directions of the plots while the axes of the left mirror
are rotated over an angle −� /3. From the top to the bottom the
rotation frequency is increased from �=0 to �=c� / �6L�. The lat-
ter frequency is chosen such that the angle over which the mirrors
are rotated after each round trip is equal but opposite to the angle
between the orientations of the two mirrors.
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cavity that is put into a uniform rotation at a constant veloc-
ity about its optical axis. The modes in such a time-
dependent system are obtained as solutions of the time-
dependent paraxial wave equation �10� that rotate along with
the mirrors, i.e., are stationary in a corotating frame, and
obey the boundary condition that the electric field must van-
ish on the mirror surfaces at all times. The regime of validity
of the time-dependent paraxial wave equation provides an
upper limit for the rotation frequency �12�.

The method we use to find expressions of the modes that
meet the mode criterion involves two pairs of bosonic ladder
operators. They generate a complete set of modes in the ro-
tating frame according to Eq. �47�. The transformation of the
ladder operators from a reference plane in the corotating
frame to an arbitrary transverse plane �53� can be expressed
in terms of the 4�4 ray matrix that describes the linear
transformation of a ray through the same system. As a result
the ladder operators that generate the modes can be con-
structed from the eigenvectors of the ray matrix for a round
trip in the corotating frame �40�. Similar to the case of a
cavity with stationary mirrors geometric stability turns out to
be the necessary and sufficient condition for the optical cav-
ity to have modes. The time-dependent expressions of the
modes 
u�z , t�� in an external observer’s frame can be ob-
tained from the corresponding modes in the rotating frame

v�z�� by using Eq. �28�.

In the rotating frame, the ray and wave dynamics is modi-
fied even though the ray matrices do not depend on time. In
Sec. VII we have shown how the mode structure is modified

for various rotation frequencies and that they remain spec-
trally confined as well. In the last part of Sec. VII we have
shown some results on the interplay between nonorthogonal
astigmatism and rotating mirrors. In both cases the cavity no
longer has inversion symmetry so that the higher-order
modes are generalized Gaussian modes that have a nature in
between Hermite-Gaussian and Laguerre-Gaussian modes.
As a result vortices appear.

The mode criterion that we have formulated in this paper
cannot be applied to the case of cavities that consist of mir-
rors rotating at different frequencies. Such systems are sig-
nificantly more complicated since the rotation cannot be
eliminated by a transformation to a corotating frame. In prin-
ciple, one can define the period of such a system by consid-
ering the number of round trips that is needed for both mir-
rors to return to an equivalent position. Once such a period is
defined, the method that we have developed in this paper can
be applied to find its modes, provided that the cavity is geo-
metrically stable at all times.

Though the specific setup that we have discussed in this
paper might be difficult to experimentally realize, the meth-
ods that we have developed here provide a much more gen-
eral framework to cope with retardation effects in optical
setups that have elements with time-dependent settings. The
only restriction is that the time-dependent paraxial approxi-
mation, which we have formulated in Sec. II of this paper is
justified.
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