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INVASION PERCOLATION ON REGULAR TREES1

BY OMER ANGEL, JESSE GOODMAN, FRANK DEN HOLLANDER

AND GORDON SLADE

University of British Columbia, University of Toronto and Leiden University

We consider invasion percolation on a rooted regular tree. For the infinite
cluster invaded from the root, we identify the scaling behavior of its r-point
function for any r ≥ 2 and of its volume both at a given height and below a
given height. We find that while the power laws of the scaling are the same as
for the incipient infinite cluster for ordinary percolation, the scaling functions
differ. Thus, somewhat surprisingly, the two clusters behave differently; in
fact, we prove that their laws are mutually singular. In addition, we derive
scaling estimates for simple random walk on the cluster starting from the root.
We show that the invasion percolation cluster is stochastically dominated by
the incipient infinite cluster. Far above the root, the two clusters have the same
law locally, but not globally.

A key ingredient in the proofs is an analysis of the forward maximal
weights along the backbone of the invasion percolation cluster. These weights
decay toward the critical value for ordinary percolation, but only slowly, and
this slow decay causes the scaling behavior to differ from that of the incipient
infinite cluster.

1. Introduction and main results.

1.1. Motivation and background. Invasion percolation is a stochastic growth
model introduced by Wilkinson and Willemsen [17]. In its general setting, the
edges of an infinite connected graph G are assigned i.i.d. uniform random variables
on (0,1), called weights, a distinguished vertex o is chosen, called the origin,
and an infinite subgraph of G is grown inductively as follows. Define I0 to be
the vertex o. For N ∈ N0, given IN , let IN+1 be obtained by adjoining to IN the
edge in its boundary with smallest weight. The invasion percolation cluster (IPC)
is the random infinite subgraph

⋃
N∈N0

IN ⊂ G, which we denote by C. We will
occasionally blur the distinction between C as a graph and as a set of vertices.

Invasion percolation is closely related to critical percolation. Indeed, suppose G
has a bond percolation threshold pc that lies strictly between 0 and 1, and color red
those bonds (= edges) whose weight is at most pc. Once a red bond is invaded, all
other red bonds in its cluster will be invaded before the invasion process leaves the
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cluster. For G= Z
d , where critical clusters appear on all scales, we expect larger

and larger critical clusters to be invaded, so that the invasion process spends a
large proportion of its time in large critical clusters. A reflection of this is the fact,
proved for G = Z

d by Chayes, Chayes and Newman [5] and extended to much
more general graphs by Häggström, Peres and Schonmann [6], that the number
of bonds in C with weight above pc + ε is almost surely finite, for all ε > 0.
When G is a regular tree, this fact is easy to prove: For any p > pc, whenever an
edge is invaded with weight above p, there is an independent positive probability
of encountering an infinite cluster consisting of edges of weight at most p, and
never again invading an edge of weight above p. Therefore, the number of invaded
edges above p is finite. The fact that invasion percolation is driven by the critical
parameter pc, even though there is no parameter specification in its definition,
makes it a prime example of self-organized criticality.

Another reflection of the relation to critical percolation has been obtained by
Járai [11], who showed for Z

2 that the probability of an event E under the incip-
ient infinite cluster (IIC) measure (constructed by Kesten [12]) is identical to the
probability of the translation of E to x ∈ Z

2 under the IPC measure, conditional
on x being invaded and in the limit as ‖x‖→∞. It is tempting to take this a step
further and conjecture that the scaling limit of invasion percolation on Z

d when
d > 6 is the canonical measure of super-Brownian motion conditioned to survive
forever (see van der Hofstad [8], Conjecture 6.1). Indeed, such a result was proved
for the IIC of spread-out (= long-range) oriented percolation on Z

d × N0 when
d > 4 in van der Hofstad, den Hollander and Slade [9], and van der Hofstad [8],
and presumably it holds for the IIC of unoriented percolation on Z

d when d > 6
as well.

Invasion percolation on a regular tree was studied by Nickel and Wilkinson [16].
They computed the probability generating function for the height and weight of the
bond added to IN to form IN+1. They looked, in particular, at the expected number
of vertices in IN at level t

√
N , for t ∈ [0,∞] fixed and N→∞, and found that this

expectation is described by the same power law as in critical percolation, but has
a different dependence on t (i.e., has a different shape function). They refer to this
discrepancy as the “paradox of invasion percolation.” Their analysis does not apply
directly to the infinite IPC, so it does not allow for a direct comparison with the
IIC. It does suggest though that the IPC has a different scaling limit than the IIC.

Let Tσ denote the rooted regular tree with forward degree σ ≥ 2 (i.e., all vertices
have degree σ +1, except the root o, which has degree σ ). In the present paper, we
study the IPC on Tσ (see Figure 1 for a simulation), and show that indeed it does
not have the same scaling limit as the IIC. Furthermore, we show that the laws
of the IPC and the IIC are mutually singular. There is no reason to believe that
this discrepancy will disappear for other graphs, such as Z

d , and so the conjecture
raised in [8] must be expected to be false.

Central to our analysis is a representation of C as an infinite backbone (an in-
finite self-avoiding path rising from the root) from which emerge branches having
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FIG. 1. Simulation of invasion percolation on the binary tree up to height 500. The hue of the ith
added edge is i/M , with M the number of edges in the figure. The color sequence is red, orange,
yellow, green, cyan, blue, purple and red. The last edge is almost as red as the first.
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the same distribution as subcritical percolation clusters. The percolation parame-
ter value of these subcritical branches depends on a process we call the forward
maximal weight process along the backbone. We analyze this process in detail, and
prove, in particular, that as k→∞ the maximum weight of a bond on the backbone
above height k is asymptotically pc(1+Z/k), where Z is an exponential random
variable with mean 1. This quantifies the rate at which maximal bond weights ap-
proach pc as the invasion proceeds. It is through an understanding of this process
that the “paradox of invasion percolation” can be resolved, both qualitatively and
quantitatively.

It is interesting to compare the above slow decay with the inhomogeneous model
of Chayes, Chayes and Durrett [4], in which the percolation parameter p depends
on x ∈ Z

d and scales like pc+‖x‖−(ε+1/ν), where ν is the critical exponent for the
correlation length. It is proved in [4] that for Z

2 (and conjectured for Z
d for d > 2)

that when ε < 0 the origin has a positive probability of being in an infinite cluster,
but not when ε > 0. For invasion percolation on a tree, the weight pc(1+ Z/k)

corresponds to the boundary value ε = 0 (we use graph distance on the tree), but
with a random coefficient Z. Invasion percolation, therefore, corresponds in some
sense to the critical case of the inhomogeneous model.

From our analysis of the forward maximal weight process along the backbone of
invasion percolation on a tree, we are able to compute the scaling of all the r-point
functions of C, and of the size of C both at a given height and below a given height.
The scaling limits are independent of σ apart from a simple overall factor. Each
of these quantities scales according to the same powers laws as their counterparts
for the IIC, but with different scaling functions. The Hausdorff dimension of both
clusters is 4. Moreover, we apply results of Barlow, Járai, Kumagai and Slade [1]
to prove scaling estimates for simple random walk on C starting from o. These
estimates establish that C has spectral dimension 4

3 , which is the same as for the
IIC (see also Kesten [13], and Barlow and Kumagai [2]).

It would be of interest to extend our results to invasion percolation on Z
d when

d > 6 in the unoriented setting and on Z
d ×N0 when d > 4 in the oriented setting,

where lace expansion methods could be tried. However, it seems a challenging
problem to carry over the expansion methods developed in Hara and Slade [7], van
der Hofstad and Slade [10], and Nguyen and Yang [15], since invasion percolation
lacks bond independence and uses supercritical bonds. An additional motivation
for the problem on Z

d is the following observation of Newman and Stein [14]: if
the probability that x ∈ C scales like ‖x‖4−d , then this has consequences for the
number of ground states of a spin glass model when d > 8.

We begin in Section 1.2 with a review of the IIC on Tσ , for later comparison
with our results for the IPC, which are stated in Section 1.3. Section 1.4 outlines
the rest of the paper.

Before discussing the IIC, we introduce some notation. We denote the height of
a vertex v ∈ Tσ by ‖v‖; this is its graph distance from o in Tσ . We write Pp for the
law of independent bond percolation with parameter p, P∞ for the law of the IIC
of independent bond percolation, and P for the law of the IPC.
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1.2. The incipient infinite cluster. The IIC on a tree is discussed in detail in
Kesten [13] and in Barlow and Kumagai [2]. It is constructed by conditioning a
critical branching process to survive until height n, and then letting n→∞. In our
case, the branching process has a binomial offspring distribution with parameters
(σ,1/σ). We summarize some elementary properties of the IIC in this section. To
keep our exposition self-contained, we provide quick indications of proofs of these
properties in Section 9.

On Tσ , the IIC can be viewed as consisting of an infinite backbone adorned
with branches at each vertex that are independent critical percolation clusters in
each direction away from the backbone. We write C∞ to denote the IIC. This is an
infinite random subgraph of Tσ , but it will be convenient to think of C∞ as a set
of vertices.

Fix r ≥ 2. Pick r − 1 vertices 	x = (x1, . . . , xr−1) in Tσ\{o} such that no xi lies
on the path from o to any xj (j 
= i). Let S(	x) denote the subtree of Tσ obtained
by connecting the vertices in 	x to o. Call this the spanning tree of o and 	x. Let
N denote the number of edges in S(	x). Write 	x ∈ C∞ for the event that all ver-
tices in 	x lie in C∞, which is the same as the event that S(	x)⊂ C∞. The r-point
function is the probability P∞(	x ∈ C∞) (with o the r th point). Let ∂S(	x) denote
the external boundary of S(	x); this is the set of vertices in Tσ\S(	x) whose parent
is a vertex in S(	x). The cardinality of ∂S(	x) is N(σ − 1)+ σ . For y ∈ ∂S(	x), let
By denote the event that y is in the backbone, that is, y is the first vertex in the
backbone after it emerges from S(	x). Then

σN+1
P∞(	x ∈ C∞)=N(σ − 1)+ σ,

(1.1)

P∞(By | 	x ∈ C∞)= 1

N(σ − 1)+ σ
, y ∈ ∂S(	x).

The first line of (1.1) gives a simple formula for the r-point function of the IIC, in
which only the size of S(	x) is relevant, not its geometry. The second line shows
that the backbone emerges uniformly from S(	x).

Let

C∞[n] = �{x ∈ C∞ :‖x‖ = n},
(1.2)

C∞[0, n] = �{x ∈ C∞ : 0≤ ‖x‖ ≤ n}, n ∈N0,

and abbreviate

ρ = ρ(σ)= σ − 1

2σ
.(1.3)

Then, under the law P∞,

1

ρn
C∞[n] �⇒ 	∞,

1

ρn2 C∞[0, n] �⇒ 	̂∞, n→∞,(1.4)
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where�⇒ denotes convergence in distribution, and 	∞, 	̂∞ are random variables
with Laplace transforms

E∞(e−τ	∞)= (1+ τ)−2, E∞(e−τ 	̂∞)= [cosh
(√

τ
)]−2

, τ ≥ 0.(1.5)

	∞ is the size biased exponential with parameter 1, that is, the distribution with
density xe−x , x ≥ 0. It is straightforward to compute the moments:

E∞(	∞)= 2, E∞(	2∞)= 6, E∞(	̂∞)= 1, E∞(	̂2∞)= 4
3 .(1.6)

1.3. Main results. This section contains our main results for the scaling be-
havior of C under the law P, listed in Sections 1.3.1–1.3.5.

It is easy to see that, under the law P, C has almost surely a single backbone.
Indeed, suppose that with positive P-probability there is a vertex in C from which
there are two disjoint paths to infinity. Conditioned on this event, let M1 and M2
denote the maximal weights along these paths. It is not possible that M1 > M2, be-
cause the entire infinite second branch would be invaded before the edge carrying
the weight M1; M2 > M1 is ruled out for the same reason. However, M1 =M2 has
probability zero, because the distribution of the weights is continuous.

1.3.1. Stochastic domination and local behavior. The following two theorems
will be proved in Section 2. The first theorem is part of a deeper structural repre-
sentation of the IPC, which is described in Section 2.1 and which is the key to all
our scaling results.

THEOREM 1.1. The IIC stochastically dominates the IPC, that is, there exists
a coupling of C∞ and C such that C∞ ⊃C with probability 1.

THEOREM 1.2. Let T ∗σ denote the rooted regular tree in which all vertices
(including the root) have degree σ + 1. Let E be a cylinder event on T ∗σ (i.e., an
event that depend on the status of only finitely many bonds), and suppose that E is
invariant under the automorphisms of T ∗σ . Then

lim‖x‖→∞P(τxE | x ∈ C)= P
∗∞(E),(1.7)

where τx denotes the shift by x, and P
∗∞ denotes the IIC on T ∗σ .

The symmetry assumption on E in Theorem 1.2 is necessary because the unique
path in the tree from o to x must be invaded when x ∈ C, whereas P

∗∞ has no such
preferred path. Theorem 1.2 shows that C and C∞ are the same locally far above
o. Comparing the results in Sections 1.3.2 – 1.3.3 below with the analogous results
for the IIC show that globally they are different.

Járai [11] proves additional statements in the spirit of Theorem 1.2 for invasion
percolation on Z

2. We expect that similar statements can be proved also for the
tree, but we do not pursue these here.
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1.3.2. The r-point function. For r ≥ 2, the invasion percolation r-point func-
tion is the probability P(x1, . . . , xr−1 ∈ C), which we write simply as P(	x ∈ C)

with 	x = (x1, . . . , xr−1). We can and do assume that no xi lies on the path from o

to any xj (j 
= i), since any such xi is automatically invaded when xj is.
To state our result for the asymptotics of the r-point function, some more ter-

minology is required. We recall the definition of S(	x), ∂S(	x), N and By given in
Section 1.2. Let N (	x) denote the set of nodes of S(	x); this is the set consisting
of o, the r − 1 vertices in 	x and any additional vertices where S(	x) branches. For
v ∈N (	x)\{o}, write v− to denote the node immediately below v, and nv to denote
the number of edges in the segment of S(	x) between v− and v. We write w < v

when w is a node below v. For w,v ∈N (	x) with w < v, let Mv
w denote the num-

ber of edges in the subtree obtained from S(	x) by deleting everything above w in
the direction of v. (See Figure 2 for an illustration.)

Given y ∈ ∂S(	x), let v be the first node above or equal to the parent of y, and
let k be the distance from v− to the parent of y. Note that v and k depend on y, but
we will not make this explicit in our notation.

Theorem 1.3 and Corollary 1.4, which will be proved in Section 4, describe a
scaling limit in which the lengths of all the segments of S(	x) tend to infinity while
the geometry of S(	x) stays the same. More precisely, given tv ∈ (0,1) for each

FIG. 2. The illustration at left shows a spanning tree S(	x) for r = 11. The dots are the nodes
in N (	x). The dots at the leaves are the vertices in 	x. The dotted line indicates the cut that deletes
everything above w in the direction of v; Mv

w is the number of edges left after the cut. The illustration
at right, for r = 12, shows the relation between y, v, v−, k, and the dotted line isolates the edges
contributing to Nv

w defined in Section 4.
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v ∈N (	x)\{o}, with
∑

v∈N (	x)\{o} tv = 1, we assume that

nv

N
→ tv, v ∈N (	x)\{o} as N→∞(1.8)

and, given s ∈ [0, tv], that

k

N
→ s as N→∞,(1.9)

with k and v related to y as described above. We write � limN→∞ to denote the
limit in (1.8)–(1.9). Furthermore, we define

� lim
N→∞

Mv
w

N
=mv

w, w,v ∈N (	x)\{o},w < v.(1.10)

In the scaling limit, we may associate with S(	x) and N (	x) a scaled spanning
tree S with nodes N . The segments of this tree are labeled by N \{o} and are
continuous line pieces with lengths tv , v ∈N \{o}. The backbone emerges at height
s above the bottom of segment v.

THEOREM 1.3. Let r ≥ 2. Suppose that S does not branch at o (i.e., o has
degree 1 in S). Then

� lim
N→∞σN+1

P(	x ∈ C,By)= (s +mv
v−)πv, y ∈ ∂S(	x),(1.11)

where

πv =
∏
w∈N

o<w<v

tw +mv
w−

mv
w

(1.12)

with the convention that the empty product is 1.

Note that in the right-hand side of (1.11) the dependence on s is linear, and that
πv and mv

v− are simple functionals of the geometry of the scaled spanning tree S.
Further note that πv is a product of ratios that take values in (0,1).

By summing (1.11) over y ∈ ∂S(	x), which amounts to summing first over 0 <

k ≤ nv and then over v ∈N (	x)\{o}, we will derive the asymptotics for the r-point
function.

COROLLARY 1.4. Let r ≥ 2. Suppose that S does not branch at o. Then

� lim
N→∞

1

(σ − 1)N
σN+1

P(	x ∈ C)= ∑
v∈N \{o}

(
1

2
t2
v + tvm

v
v−

)
πv.(1.13)
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By combining (1.11)–(1.13), we obtain the distribution for the vertex where the
backbone emerges from S(	x), conditional on S(	x) being invaded:

� lim
N→∞(σ − 1)NP(By | 	x ∈ C)

(1.14)

= (s +mv
v−)πv∑

u∈N \{o}((1/2)t2
u + tumu

u−)πu

, y ∈ ∂S(	x).

The restriction in Theorem 1.3 and Corollary 1.4 that S does not branch at o is
essential. We will see in Section 4 that when S branches at o the limit in (1.11) is
zero for all y ∈ S(	x), that is, diagrams branching at the bottom are of higher order.

The following two examples illustrate (1.13)–(1.14):
Two-point function: For r = 2, S(	x) consists of o and a single vertex x1 at height
n1 =N . See Figure 3. In this case, m1

o = 0 and π1 = 1, and therefore

� lim
N→∞

1

(σ − 1)N
σN+1

P(x1 ∈ C)= 1

2
,

(1.15)
� lim

N→∞(σ − 1)NP(By | x1 ∈ C)= 2s, y ∈ ∂S(x1).

The first formula in (1.15) also follows directly from the results of Nickel and
Wilkinson [16]. The second formula in (1.15) shows that the backbone branches
off the path from o to x1 with an asymptotically linear density. This should be
contrasted with the constant density in (1.1) for the IIC. In particular, the backbone
for invasion percolation is more likely to branch off later than earlier. The reason
for this will be discussed at the end of Section 2.1.
Three-point function: For r = 3, S(	x) consists of the nodes o, x∗ at height n∗,
and x1, x2 at heights n1, n2 above x∗. See Figure 3. By definition, m1∗ = t∗ + t2,
m2∗ = t∗ + t1, π∗ = 1, π1 = t∗/(t∗ + t2), and π2 = t∗/(t∗ + t1). Let

u(t∗, t1, t2)= 1

2

(
1+ t1

t∗ + t2
+ t2

t∗ + t1

)
.(1.16)

FIG. 3. Spanning trees for r = 2 and r = 3.
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Then, after some arithmetic, we find that

� lim
N→∞

1

(σ − 1)N
σN+1

P(x1, x2 ∈ C)= t∗u(t∗, t1, t2)(1.17)

and

� lim
N→∞(σ − 1)NP(By | x1, x2 ∈ C)

(1.18)

= 1

u(t∗, t1, t2)
×

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

t∗
s∗, y ∈ ∂S∗(	x),

1+ 1

t∗ + t2
s1, y ∈ ∂S1(	x),

1+ 1

t∗ + t1
s2, y ∈ ∂S2(	x),

where ∂S∗(	x), ∂S1(	x), ∂S2(	x) denote the external boundaries of the respective
segments of S(	x). Note that the right-hand side of (1.18) is a density on the scaled
spanning tree S that is linearly increasing on each segment, and is continuous at
the nodes.

A similar picture follows from (1.14) for all r ≥ 2. The linear slope depends on
the structure of the subtree obtained by cutting off everything above the segment,
and decreases when moving upward in the tree. This is in sharp contrast with the
uniform distribution for the IIC in (1.1), and shows that the scaling limits of the
IPC and the IIC are different.

1.3.3. Cluster size asymptotics. Let P denote the Poisson point process on the
positive quadrant with intensity 1. Write PP to denote its law. Let L: (0,∞)→
(0,∞) denote its lower envelope, defined by

L(t)=min{y > 0 : (x, y) ∈P for some x ≤ t}, t > 0.(1.19)

See Figure 4 for an illustration. This is a cadlag process, piecewise constant
and nonincreasing, with limt↓0 L(t) =∞ and limt→∞L(t) = 0, PP -a.s. In Sec-
tion 3.2, we will compute its multivariate Laplace transform.

As in (1.2), let C[n] denote the number of vertices in C at height n, and
let C[0, n] =∑n

m=0 C[m] denote the number of vertices up to height n. Recall
from (1.3) that ρ = (σ − 1)/2σ .

THEOREM 1.5. Let 	n = 1
ρn

C[n]. Under the law P, 	n �⇒ 	 as n→∞,
where 	 is the random variable with Laplace transform

E(e−τ	)= EP
(
e−S(τ,L)), τ ≥ 0,(1.20)

with

S(τ,L)= 2τ

∫ 1

0
dt

L(t)e−(1−t)L(t)

L(t)+ τ [1− e−(1−t)L(t)] .(1.21)
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FIG. 4. Sketch of the graph of L(t) versus t . The dots are the points in P .

We will show in Section 5 that

lim
n→∞E(	n)= E(	)= 1, lim

n→∞E(	2
n)= E(	2)= 5

3 .(1.22)

THEOREM 1.6. Let 	̂n = 1
ρn2 C[0, n]. Under the law P, 	̂n �⇒ 	̂ as n→∞,

where 	̂ is the random variable with Laplace transform

E(e−τ 	̂)= EP
(
e−Ŝ(τ,L)), τ ≥ 0,(1.23)

with

Ŝ(τ,L)= 4τ

∫ 1

0

dt

L(t)+ κ(τ, t) coth[(1/2)(1− t)κ(τ, t)] ,(1.24)

and κ(τ, t)=√4τ +L(t)2.

We will show in Section 6 that

lim
n→∞E(	̂n)= E(	̂)= 1

2 , lim
n→∞E(	̂2

n)= E(	̂2)= 25
72 .(1.25)

We see no way to evaluate the expectations in (1.20) and (1.23) in closed form,
despite our knowledge of the multivariate Laplace transform of the L-process.
Theorems 1.5–1.6, in addition to showing that the two scaling limits exist, exhibit
the underlying complexity of the IPC and underline the key role that is played
by the L-process. We will see in Section 9 that by setting L ≡ 0, we recover the
expressions for the IIC in (1.5).

The laws of 	 and 	̂ are not the same as their IIC counterparts 	∞ and 	̂∞,
as is immediate from a comparison of (1.22) and (1.25) with (1.6). The power law
scalings of C[n] and C[0, n] in Theorems 1.5–1.6 are, however, the same linear
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and quadratic scalings as for the IIC. In particular, Theorem 1.6 is a statement that
the Hausdorff dimension of the IPC is 4, as it is for the IIC. (For this, we imagine
that paths in the IPC are embedded in Z

d as random walk paths, with the root
mapped to the origin, so that the on the order of n2 = r4 vertices in the IPC below
level n= r2 will be within distance r of the origin.) Comparing the values of the
first and second moments of 	̂ and 	̂∞, we see that the IPC has half the size of the
IIC on average, while the ratio of the variance of the size of the IPC to the square
of its mean is 7

18 , compared to 1
3 for the IIC. The relatively larger fluctuation for

the IPC is due to the randomness of the weights on the backbone; this will be
discussed further in Section 2.1.

The scaling of the first and second moments of C[n] and C[0, n] implied by
(1.22) and (1.25) can also be deduced directly from the scaling of the 2-point and
the 3-point function [recall (1.15) and (1.17)]. In the same manner we can deduce
that

lim
n1,n2→∞
n1/n2→a

E(	n1	n2)= 1+ 1
3a(1+ a), a ∈ [0,1],(1.26)

as we will show in Section 5.3. It would be interesting to study (	n)n∈N as a
process, but we do not pursue this here.

1.3.4. Mutual singularity of IPC and IIC. The following theorem is essen-
tially a consequence of Theorem 1.5. It shows a dramatic manifestation of the
difference between the IPC and the IIC.

THEOREM 1.7. The laws of IPC and IIC are mutually singular.

1.3.5. Simple random walk on the invasion percolation cluster. Given C, let
μy denote the degree in C (both forward and backward) of a vertex y ∈ C. Con-
sider the discrete-time simple random walk X = (Xk)k∈N0 on C that starts at
X0 = x and makes transitions from y in C to any neighbor of y in C with probabil-
ity 1/μy . Denote the law of this random walk given C by P x

C , with corresponding
expectation Ex

C . We will consider three quantities:

Rk = {X0, . . . ,Xk},(1.27)

the range of X up to time k, with cardinality |Rk|; the k-step transition kernel

pC
k (x, y)= 1

μy

PC(Xk = y |X0 = x),(1.28)

which satisfies the reversibility relation pC
k (x, y) = pC

k (y, x); the first exit time
above height n, Tn = min{k ≥ 0 :‖Xk‖ = n}. The following theorem provides
power laws for these three quantities.
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THEOREM 1.8. There is a set 0 of configurations of the IPC with P(0)= 1,
and positive constants α1, α2, such that for each configuration C ∈0 and for each
x ∈C, the simple random walk on C obeys the following:

(a)

lim
k→∞

log |Rk|
log k

= 2

3
, P x

C-a.s.(1.29)

(b) There exists Kx(C) <∞ such that

(logk)−α1k−2/3 ≤ pC
2k(x, x)≤ (log k)α1k−2/3 ∀k ≥Kx(C).(1.30)

(c) There exists Nx(C) <∞ such that

(logn)−α2n3 ≤Ex
C(Tn)≤ (logn)α2n3 ∀n≥Nx(C).(1.31)

The results in Theorem 1.8 are similar to the behavior of simple random walk
on the IIC; see Barlow, Járai, Kumagai and Slade [1], Barlow and Kumagai [2],
Kesten [13]. The spectral dimension ds of C can be defined by

ds =−2 lim
k→∞

logpC
2k(o, o)

log k
.(1.32)

From (1.30) we see that ds = 4
3 . For additional statements concerning the height

‖Xn‖ after n steps, see [1].
With the help of results from [2], it is shown in [1], Example 1.9(ii), that (1.29)–

(1.31) hold for simple random walk on any random subtree of the IIC for Tσ such
that the expectation of 1/C[0, n] is bounded above by a multiple of 1/n2. In view
of Theorem 1.1, to prove Theorem 1.8, it therefore, suffices to prove the following
uniform bound, which will be done in Section 8.

THEOREM 1.9. supn∈N E( n2

C[0,n]) <∞.

1.4. Outline. Section 2 puts forward a structural representation of the invasion
percolation cluster in terms of independent bond percolation, and gives the proof
of Theorems 1.1 and 1.2. This structural representation plays a key role throughout
the paper. Section 3 analyzes the process of forward maximal weights along the
backbone and provides a scaling limit for this process in terms of the Poisson lower
envelope process defined in (1.19). The multivariate Laplace transform of the latter
is computed explicitly. Section 4 gives the proof of Theorem 1.3 and Corollary 1.4,
based on the results in Section 3. Sections 5–8 give the proofs of Theorems 1.5,
1.6, 1.7 and 1.9, respectively. Section 9 provides a quick indication of proofs of
the claims made in Section 1.2.



INVASION PERCOLATION 433

2. Structural representation and local behavior. In Section 2.1, we show
that the IPC can be viewed as a random infinite backbone with subcritical percola-
tion clusters emerging in all directions. The parameters of these subcritical clusters
depend on the height of the vertex on the backbone from which they emerge, and
tend to pc as this height tends to infinity. Theorem 1.1 follows immediately. In
Section 2.2, we prove Theorem 1.2.

2.1. Structural representation and proof of Theorem 1.1.

2.1.1. The structural representation. As noted at the beginning of Section 1.3,
the backbone is a.s. unique. Let Bl , l ∈ N, denote the weights of its successive
edges, and define

Wk =max
l>k

Bl, k ∈N0.(2.1)

To see that the maximum in (2.1) is achieved, we first note that for each k ∈ N0
there must a.s. be an l > k with Bl > pc, since supercritical edges must be invaded
to create an infinite cluster. On the other hand, we showed in Section 1.1 that for
each p > pc there are at most finitely many edges invaded with weight above p.
Thus the maximum in (2.1) is achieved, and Wk > pc a.s. In particular, W0 is
the weight of the heaviest edge on the backbone. Hence, it is also the weight of
the heaviest edge ever invaded, since the existence of the infinite backbone path
implies that no weight heavier than W0 need ever be accepted.

The W -process is at the heart of our analysis, and we will study it in detail in
Section 3. In particular, in a sense to be made precise in Proposition 3.3, we will
see that

Wk ∼ pc

(
1+ 1

k
Z

)
as k→∞(2.2)

with Z an exponential random variable with mean 1. This shows the slow rate of
decay of Wk toward the critical value.

The key observation behind the scaling results in Section 1.3 is the following
structural representation of C in terms of independent bond percolation.

PROPOSITION 2.1. Under P, C can be viewed as consisting of:

(1) a single uniformly random infinite backbone;
(2) for all k ∈ N0, emerging from the kth vertex along the backbone, in all di-

rections away from the backbone, an independent supercritical percolation cluster
with parameter Wk conditioned to stay finite.

PROOF. By symmetry, all possible backbones are equally likely. We condition
on the backbone, abbreviated BB. Conditional on W = (Wk)k∈N0 , the following is
true for every x ∈ Tσ :x ∈ C if and only if every edge on the path between xBB and
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x carries a weight below Wk , with xBB the vertex where the path downward from
x hits BB and k = ‖xBB‖. Indeed, if one of the edges in the path has weight above
Wk , then this edge cannot be invaded, because the entire infinite BB is invaded first.
Conversely, if all edges in the path have weight below Wk , then x will be invaded
before the edge on BB with weight Wk is. In other words, the event {BB= bb,W =
w} is the same as the event that for all k ∈ N0 there is no percolation below level
Wk in each of the branches off BB at height k, and the forward maximal weights
along bb are equal to w. This proves the claim. �

2.1.2. The functions θ and ζ . For independent bond percolation on Tσ with
parameter p, let θ(p) denote the probability that o is in an infinite cluster, and
let ζ(p) denote the probability that the cluster along a particular branch from o is
finite. Then we have the relations

θ(p)= 1− ζ(p)σ , ζ(p)= 1− pθ(p).(2.3)

The critical probability is pc = 1/σ , and θ(pc)= 0, ζ(pc)= 1.
For future reference, we note the following elementary facts. Differentiation of

(2.3) gives

θ ′(p)= σζ(p)σ−1[−ζ ′(p)], ζ ′(p)=−θ(p)− pθ ′(p),(2.4)

from which we see that

−ζ ′(p)= θ(p)

1− pσζ(p)σ−1 .(2.5)

The right-hand side gives 0
0 for p = pc. Using l’Hôpital’s rule and the first equality

of (2.4), we find that

−ζ ′(pc)= σ [−ζ ′(pc)]
−σ + (σ − 1)[−ζ ′(pc)] and hence

(2.6)

−ζ ′(pc)= 2σ

σ − 1
= 1

ρ
,

where we recall the definition of ρ in (1.3), and where derivatives at pc are inter-
preted as right-derivatives. From this, we obtain

θ(p)∼ σ

ρ
(p− pc), 1− ζ(p)∼ 1

ρ
(p− pc) as p ↓ pc.(2.7)

In Section 3 we will need that ζ(p) is a convex function of p ∈ [pc,1]. This
can be seen as follows. Since ζ is decreasing on [pc,1] and maps this interval to
[0,1], it is convex if and only if the inverse function p = p(ζ ) is a convex function
of ζ ∈ [0,1]. By (2.3), p = F(ζ ) with F(x)= 1−x

1−xσ . Computation gives

F ′′(x)= σxσ−2

(1− xσ )3 G(x)

(2.8)
with G(x)=−(σ − 1)xσ+1 + (σ + 1)xσ − (σ + 1)x + (σ − 1),
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and hence it suffices to show that G(x) is positive on [0,1]. However, G(1)= 0,
and

G′(x)=−(σ + 1)[−σxσ−1 + (σ − 1)xσ + 1](2.9)

is negative by the arithmetic-geometric mean inequality (1 − α)x1 + αx2 ≥
(x1−α

1 xα
2 )1/α with α = 1/σ , x1 = xσ and x2 = 1.

For the special case σ = 2, (2.3) solves to give

θ(p)= 0∨ 2p− 1

p2 , ζ(p)= 1∧ 1− p

p
.(2.10)

2.1.3. Duality and proof of Theorem 1.1. The following duality is important in
view of Proposition 2.1. Although this duality is standard in the theory of branch-
ing processes, we sketch the proof for completeness.

LEMMA 2.2. On Tσ , a supercritical percolation cluster with parameter p >

pc conditioned to stay finite has the same law as a subcritical cluster with dual
parameter

p̂ = p̂(p)= pζ(p)σ−1 < pc.(2.11)

Moreover, p̂(pc)= pc, p̂(1)= 0, d
dp

p̂(p) < 0 on (pc,1), and

pc − p̂(p)∼ p− pc as p ↓ pc.(2.12)

For the special case σ = 2, (2.10) and (2.11) imply that the duality relation takes
the simple form p̂ = 1− p.

PROOF OF LEMMA 2.2. Let v be a vertex in Tσ and let C(v) denote the for-
ward cluster of v for independent bond percolation with parameter p. Let U be
any finite subtree of Tσ , say with m edges, and hence with (σ −1)m+σ boundary
edges. Then

Pp

(
U⊂ C(v) | |C(v)|<∞)= Pp(U⊂ C(v), |C(v)|<∞)

Pp(|C(v)|<∞)
(2.13)

= pmζ(p)(σ−1)m+σ

ζ(p)σ
,

the numerator being the probability that the edges of U are open and there is no
percolation from any its vertices. Let

p̂ = pζ(p)σ−1.(2.14)

Then the right-hand side of (2.13) equals p̂m = Pp̂(U ⊂ C(v)). Since U is arbi-
trary, this proves the first claim.
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Since the p̂ percolation clusters are a.s. finite we find p̂ ≤ pc. Since ζ(pc)= 1
and ζ(1) = 0, (2.14) implies that p̂(pc) = pc and p̂(1) = 0. Direct computation
gives d

dp
p̂(p)= ζ(p)σ−1+p(σ−1)ζ(p)σ−2ζ ′(p), which is negative if and only if

−ζ ′(p) > ζ(p)/p(σ −1). By using (2.5) and (2.3), we see that the latter inequality
holds if and only if pσ > 1, which is the same as p > pc. Finally, we use the above
formula for the derivative of p̂(p), together with (2.6), to see that d

dp
p̂(pc)=−1

and hence

pc − p̂(p)∼ p− pc,(2.15)

which is (2.12). �

Since a.s. Wk > pc for all k ∈ N0, we have Ŵk < pc for all k ∈ N0. Combining
Proposition 2.1 and Lemma 2.2, we conclude that C can be regarded as a uniformly
random infinite backbone with independent subcritical branches with parameter
Ŵk emerging from the backbone vertex at height k in all directions away from the
backbone.

We are now in a position to better understand the difference between the IPC
and the IIC. For the IIC, the branches emerging from the backbone are all crit-
ical percolation clusters. For the IPC, the branches are subcritical, and become
increasingly close to critical as they branch off higher. Thus, low branches tend to
be smaller than high branches. Conditional on x ∈ C, it is more likely for x to be
in a larger rather than a smaller branch, consistent with the observation in Section
1.3.2 that the backbone is more likely to branch off the path from o to x higher
rather than lower.

The fact that the IPC is on average thinner than the IIC, as was observed in
Section 1.3.3, is obvious from the fact that the subcritical branches of the IPC
are smaller than the critical branches of the IIC. Moreover, the fact that there is
randomness in the weights Ŵk that determine the percolation parameters for the
branches is consistent with the observation in Section 1.3.3 that the IPC has rela-
tively larger fluctuations than the IIC.

PROOF OF THEOREM 1.1. It was noted in Section 1.2 that the IIC on Tσ can
be viewed as consisting of a uniformly random infinite backbone with independent
critical branches. In view of this observation, the statement made in Theorem 1.1
is an immediate consequence of Proposition 2.1 and Lemma 2.2. �

2.2. Local behavior.

PROOF OF THEOREM 1.2. The main idea in the proof is that a vertex x ∈ C

is unlikely to be very close to the backbone. On the other hand, the branch off the
backbone containing x is unlikely to branch close to o, and so it is close to critical
percolation.
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Fix a cylinder event E on T ∗σ . Let k = kE denote the maximal distance from o

to a vertex in a bond upon which E depends. Fix x ∈ Tσ . Let M =M(x) denote
the height of the highest vertex in the backbone on the path in Tσ from o to x. As
before, we write WM for the forward maximal weight above this vertex at height M

on the backbone. For ε > 0, let

Ax = {M ≥ ‖x‖ − k}, Bx,ε = {WM ≥ pc + ε}
(2.16)

Gx,ε = (Ax ∪Bx,ε)c.

It follows from (1.15) [although we have not yet proved (1.15), we will not use
circular reasoning] that

lim‖x‖→∞P(Ax | x ∈ C)= 0 ∀ε > 0.(2.17)

We will prove that also

lim‖x‖→∞P(Bx,ε | x ∈ C)= 0 ∀ε > 0,(2.18)

implying

lim‖x‖→∞P(Gx,ε | x ∈ C)= 1 ∀ε > 0.(2.19)

To prove (2.18), we put ‖x‖ = n and write

P(Bx,ε | x ∈ C)=
n∑

m=0

P(x ∈ C,M =m,Bx,ε)

P(x ∈ C)
.(2.20)

By (1.15), the denominator is at least cnσ−n for some c > 0. By Proposition 2.1
and Lemma 2.2, the numerator is at most σ−m[p̂(ε)]n−m

P(Wm ≥ pc + ε) with
p̂(ε) the dual of pc + ε (we used the fact that Wm ≥ p implies Ŵm ≤ p̂ for all
p > pc). Since p̂(ε)≤ pc = σ−1, we thus have

P(Bx,ε | x ∈C)≤ 1

cn

n∑
m=0

P(Wm ≥ pc + ε).(2.21)

From Lemma 3.2 in Section 3.1 we will see that P(Wm ≥ pc + ε)≤ exp[−c(ε)m]
for all m ∈ N for some c(ε) > 0. Hence the sum in (2.21) is bounded in n for
fixed ε. This proves (2.18).

For each ε > 0, we have∣∣P(τxE | x ∈ C)− P
∗∞(E)

∣∣≤ ∣∣P(τxE | x ∈ C)− P(τxE | x ∈ C,Gx,ε)
∣∣

(2.22)
+ ∣∣P(τxE | x ∈C,Gx,ε)− P

∗∞(E)
∣∣.

In view of (2.19), the first term on the right-hand side goes to zero as ‖x‖→∞
for ε > 0 fixed, so it suffices to prove that

lim
ε↓0

sup
x∈T ∗σ

∣∣P(τxE | x ∈ C,Gx,ε)− P
∗∞(E)

∣∣= 0.(2.23)
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Now, on the event {x ∈ C} ∩Gx,ε , we have ‖x‖ − k > M , so that the event τxE

depends only on bonds within a branch leaving the backbone at height M , and
WM ∈ [pc,pc + ε), so that this branch is as close as desired to a critical tree
when ε is sufficiently small. Therefore, in the limit as ε ↓ 0, P(τxE | x ∈ C,Gx,ε)

approaches the probability of E under the IIC rooted at x and with a particular
initial backbone segment of length ‖x‖ −M . The rate of convergence depends on
the number of bonds upon which E depends, but is uniform in x. However, by our
hypothesis that E is invariant under the automorphisms of T ∗σ , E has the same
probability under the law P

∗∞ conditional on any choice of the initial backbone
segment. This proves (2.23). �

3. Analysis of the backbone forward maximum process. In this section, we
prove that the backbone forward maximum process W = (Wk)k∈N0 converges, af-
ter rescaling, to the Poisson lower envelope process L= (L(t))t>0. In Section 3.1,
we analyze W as a Markov chain. In Section 3.2, we prove the convergence to L.
Finally, in Section 3.3, we compute the multivariate Laplace transform of L.

3.1. The Markov representation.

PROPOSITION 3.1. W = (Wk)k∈N0 is a decreasing Markov chain taking val-
ues in (pc,1) with initial distribution P(W0 ≤ u)= θ(u) and transition probabili-
ties

P(Wk+1 =Wk |Wk = u)= 1−R(u)θ(u),
(3.1)

P(Wk+1 ∈ dv |Wk = u)= R(u)θ ′(v) dv,

for pc < v < u < 1, where R(u)= 1

−ζ ′(u)
.

PROOF. The event {W0 ≤ u} is the event that there is percolation at level u on
the tree, and hence has probability θ(u).

Denote by 	W<k the vector (Wj )0≤j<k . Clearly the process does not depend
on which particular path forms the backbone, so we may fix the first k edges of
the backbone. Fix a vector 	w and v ≤ u ≤ wk−1, and consider the conditional
probability P(Wk+1 ∈ dv | Wk = u, 	W<k = 	w). This is defined in terms of the
conditional expectation

E[I (Wk+1 ∈ dv) |Wk, 	W<k](3.2)

by setting Wk = u and 	W<k = 	w. We let 	B<k denote the backbone weights below
height k, and note that the above conditional expectation is equal to

E
[
E[I (Wk+1 ∈ dv) |Wk, 	B<k] |Wk, 	W<k

]
,(3.3)
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since the pair Wk, 	B<k specifies more information than the pair Wk, 	W<k . How-
ever, it is clear that

E[I (Wk+1 ∈ dv) |Wk, 	B<k] = E[I (Wk+1 ∈ dv) |Wk],(3.4)

since given Wk the values of 	B<k cannot affect Wk+1. Thus (3.2) is equal to

E
[
E[I (Wk+1 ∈ dv) |Wk] |Wk, 	W<k

]= E[I (Wk+1 ∈ dv) |Wk].(3.5)

This shows that W is a Markov process.
To evaluate the transition probabilities we may consider only the case k = 0.

We have already seen that

P(W0 ∈ du)= θ ′(u) du.(3.6)

For v < u, to have both W0 ∈ du and W1 ∈ dv there must also be an edge e from
the root such that:

1. The threshold for percolation above e is in dv.
2. The weight of edge e is we ∈ du.
3. There is no percolation at level u in the other branches emerging from the

root.

With σ choices for e we get

P(W1 ∈ dv,W0 ∈ du)= σθ ′(v) dv duζσ−1(u).(3.7)

Combining (3.6), (3.7) and using (2.4) we get

P(W1 ∈ dv|W0 = u)= σζσ−1(u)

θ ′(u)
θ ′(v) dv =R(u)θ ′(v) dv.(3.8)

Finally, integrating over v ∈ (pc, u) we find

P(W1 < W0 |W0 = u)=R(u)θ(u),(3.9)

and (3.1) follows from (3.8)–(3.9). �

Note the separation in u and v in (3.1). The convexity of ζ (see Section 2.1.2)
implies that R is increasing and so, together with (2.6), yields

R(u)≥R(pc)= ρ,u ∈ [pc,1].(3.10)

For the special case σ = 2, (2.10) gives R(u)= u2.
We have established already that Wk > pc for all k ∈ N0. The following large

deviation estimate, which we applied in Section 2.2, shows that Wk ↓ pc as k→
∞, P-a.s.
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LEMMA 3.2. For every δ > 0 there is a c(δ) > 0, satisfying c(δ)∼ δ as δ ↓ 0,
such that

P

(
Wk ≥ 1

σ
(1+ δ)

)
≤ e−c(δ)k and

(3.11)

P

(
Ŵk ≤ 1

σ
(1− δ)

)
≤ e−c(δ)k ∀k ∈N0.

PROOF. We first claim that

P(Wk ≥ p)≤ [1− ρθ(p)]k, k ∈N0.(3.12)

Indeed, (3.1) tells us that, for every l ∈ N0, given Wl = u, the probability that
Wl+1 < p is R(u)θ(p). Hence, by (3.10), at each step W has probability at least
ρθ(p) to jump below p, which implies (3.12). By (2.7), we have θ( 1

σ
(1+ δ))∼ δ

ρ

as δ ↓ 0, and so we get the first part of (3.11). The second part follows from the
first via Lemma 2.2. �

From (3.1), we have the following recursive representation for the W -process.
Let (Xk)k∈N0 be i.i.d. random variables with cumulative distribution function
P(X1 ≤ u)= θ(u), u ∈ [0,1]. Then W0 =X0 and, for k ∈N0,

Wk+1 =
{

Wk, with probability 1−R(Wk),
Wk ∧Xk+1, with probability R(Wk).

(3.13)

To prepare the ground for Proposition 3.3 below, let

Yk = ρθ(Wk), k ∈N0.(3.14)

Note that Yk ↓ 0 as k→∞, P-a.s., by Lemma 3.2. Let (Uk)k∈N0 be i.i.d. uniform
random variables on [0,1]. Then it follows from (3.13) that Y = (Yk)k∈N0 is a
Markov chain with initial value Y0 = ρU0 and recursive representation

Yk+1 =
{

Yk, with probability 1− q(Yk),
YkUk+1, with probability q(Yk),

(3.15)

where

q(y)= y

ρ
R

(
θ−1

(
y

ρ

))
(3.16)

with θ−1 the inverse of the function θ . It then follows from (3.10) that

q(y)≥ y for y ∈ [0, ρ] and q(y)∼ y as y ↓ 0.(3.17)

This will be important in Section 3.2.
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3.2. Convergence of the forward maximum process to the Poisson lower enve-
lope process. The key to our analysis is the following proposition, which shows
that the Poisson lower envelope process L in (1.19) is the scaling limit of the back-
bone forward maximum process W in (2.1). In particular, by taking t = 1 in (3.18)
and using the fact that L(1) is an exponential random variable with mean 1, we get
the claim made in (2.2). We write ∗�⇒ to denote convergence in distribution in the
space of cadlag paths endowed with the Skorohod topology (see Billingsley [3],
Section 14).

PROPOSITION 3.3. For any ε > 0,(
k
[
σW�kt� − 1

])
t≥ε

∗�⇒ (L(t))t≥ε as k→∞.(3.18)

PROOF. The proof is based on the representation (3.15).
Let N = (N(t))t≥0 denote the Poisson process on [0,∞) that increases at rate

1. Define

Ỹ (t)= YN(t), t ≥ 0.(3.19)

Then Ỹ = (Ỹ (t))t≥0 is the continuous-time Markov process with initial value Y0
that from height z jumps down to height zU [0,1] at exponential rate q(z). The L-
process defined in (1.19) is the continuous-time Markov process that from height z

jumps down to height zU [0,1] at exponential rate z. Below we will first use (3.17)
to show that, for any ε > 0,

(kỸ (kt))t≥ε
∗�⇒ (L(t))t≥ε.(3.20)

After that we will use the law of large numbers for N , namely limk→∞N(kt)/kt =
1 a.s., to show that, for any ε > 0,

(kY�kt�)t≥ε
∗�⇒ (L(t))t≥ε.(3.21)

Once we have (3.21), the proof is complete because

Y�kt� ∼ σW�kt� − 1 as k→∞ uniformly in t ≥ ε,(3.22)

as is immediate from (2.7) and (3.14), and the fact that the Y -process converges to
0, P-a.s.
Proof of (3.20): The proof uses a perturbative coupling argument, relying on the
fact that q(z) ≥ z for z > 0, while for every δ > 0 there exists a z0 = z0(δ) > 0
such that q(z)≤ (1+ δ)z for all z ∈ (0, z0].
Upper bound: For y0 > 0, let Ly0 = (Ly0(t))t>0 be the restriction to (0,∞) ×
(0, y0] of the lower envelope process associated with the Poisson process P (recall
Figure 4), that is,

Ly0(t)= y0 ∧L(t)
(3.23)

= y0 ∧min{y > 0 : (x, y) ∈P for some x ≤ t}, t > 0.
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From height z≤ y0, Ly0 jumps down at exponential rate z. Therefore, conditional
on Ỹ0 = y0, we can couple Ỹ and Ly0 such that

Ỹ (t)≤ Ly0(t) ∀t > 0.(3.24)

Indeed, to achieve the coupling we use the same uniform random variables for
the jumps downward in both processes (so that the same sequence of heights are
visited), but after each jump we arrange that Ỹ waits less time than Ly0 for its next
jump, which is possible because q(z)≥ z for z > 0. Combining (3.23) and (3.24),
we find that Ỹ and L can be coupled so that

Ỹ (t)≤ Ly0(t)≤ L(t) ∀t > 0.(3.25)

This is a stochastic upper bound valid for all times.
Lower bound: We can imitate the above coupling argument, except that, in order to
properly exploit the inequality q(z) ≤ (1+ δ)z for z ∈ (0, z0], we need a Poisson
process with intensity 1+ δ, which we denote by P 1+δ , and we start the coupling
only after Ỹ has dropped below height z0.

For y0 ≤ z0, let L1+δ
y0

be the restriction to (0,∞)× (0, y0] of the lower envelope
process L1+δ associated with P 1+δ , that is,

L1+δ
y0

(t)= y0 ∧L1+δ(t)
(3.26)

= y0 ∧min{y > 0 : (x, y) ∈P 1+δ for some x ≤ t}, t > 0.

Let

T0 =min{t > 0 : Ỹ (t)≤ z0}.(3.27)

Then, conditional on Ỹ (T0) = y0, we can couple Ỹ and L1+δ
y0

in an analogous
fashion to the coupling in the upper bound, such that

Ỹ (t)≥ L1+δ
y0

(t) ∀t ≥ T0.(3.28)

Next, let

T1 =min{x ≥ T0 : (x, y) ∈P 1+δ for some y < L1+δ
y0

(T0)}.(3.29)

In words, T1 is the first time after T0 that L1+δ
y0

(t) jumps. By construction,

L1+δ
y0

(t)= L1+δ(t) ∀t ≥ T1.(3.30)

Combining (3.28) and (3.30), we find that Ỹ and L1+δ can be coupled so that

Ỹ (t)≥ L1+δ(t) ∀t ≥ T1.(3.31)

This is a stochastic upper bound valid for large times, provided that T1 = T1(T0) <

∞ a.s. For this to be true it suffices that T0 <∞ a.s. The latter is evidently true,
because q is bounded away from 0 outside any neighborhood of z = 0, implying
that Ỹ tends to 0 a.s.



INVASION PERCOLATION 443

Sandwich: For all k ∈ N, (kL(kt))t>0 has the same distribution as (L(t))t>0, and
(L1+δ(t))t>0 has the same distribution as ( 1

1+δ
L(t))t>0. Combined with (3.25) and

(3.31), this implies that Ỹ and L can be coupled so that

1

1+ δ
L(t)≤ kỸ (kt)≤L(t) ∀k ≥ K̃ uniformly in t ≥ ε,(3.32)

where K̃ = K̃(δ, ε) is some finite random variable. Now let δ ↓ 0, to get the claim
in (3.20).
Proof of (3.21): Fix γ > 0. Let N denote the law of N . By the strong law of large
numbers, we have

N(kt) ∈ [(1− γ )kt, (1+ γ )kt] ∀k ≥K uniformly in t ≥ ε,N -a.s.,(3.33)

where K = K(γ, ε) is some finite random variable. Because Ỹ is a decreasing
process, it follows from (3.19) and (3.33) that

kY�kt� ∈ [kỸ
(
(1+ γ )kt

)
, kỸ

(
(1− γ )kt

)]
(3.34)

∀k ≥K uniformly in t ≥ ε,P×N -a.s.

Combining (3.32) and (3.34), we find that there is a K ′ =K ′(γ, δ, ε) such that Y

and L can be coupled so that

1

1+ δ

1

1+ γ
L(t)≤ kY�kt� ≤ 1

1− γ
L(t) ∀k ≥K ′ uniformly in t ≥ ε.(3.35)

Now let δ, γ ↓ 0, to get the claim in (3.21). �

COROLLARY 3.4. For any ε > 0,(
k
[
1− σŴ�kt�

])
t≥ε

∗�⇒ (L(t))t≥ε as k→∞.(3.36)

PROOF. By Lemma 3.2, Wk ↓ pc as k→∞, P-a.s., so (3.36) is immediate
from (2.12) and (3.18). �

3.3. Multivariate Laplace transform of the Poisson lower envelope. Recall the
definition of the L-process in (1.19). The following lemma gives its multivariate
Laplace transform.

LEMMA 3.5. For any n ∈N, τ1, . . . , τn ≥ 0 and 0≤ t1 < · · ·< tn,

E

(
exp

[
−

n∑
i=1

τiL(ti)

])
=

n∏
i=1

(
1− τi

ti + si

)
(3.37)

with si =∑i
j=1 τj .
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PROOF. Let

I= {1≤ i < n :L(ti+1) < L(ti)}.(3.38)

We split the contribution according to the outcome of I. To that end, fix 0≤m≤
n − 1 and A = {a1, . . . , am} with 1 ≤ a1 < · · · < am ≤ n − 1. Put a0 = 0 and
am+1 = n. On the event {I = A}, there are u1 > u2 > · · ·> um > um+1 > 0 such
that

∀j = 1, . . . ,m+ 1 : L(ti) ∈ (uj , uj + duj ] for aj−1 < i ≤ aj .(3.39)

In terms of the Poisson process P , this is the same as the event

∀j = 1, . . . ,m+ 1 :
{

P ∩ (taj−1, taj
] × (0, uj ] =∅,

P ∩ (taj−1, taj−1+1] × (uj , uj + duj ] 
=∅,
(3.40)

where we put t0 = 0. The latter event has probability
m+1∏
j=1

e
−uj (taj

−taj−1 )
(taj−1+1 − taj−1) duj .(3.41)

Furthermore, on this event we have
n∑

i=1

τiL(ti)=
m+1∑
j=1

uj (saj
− saj−1),(3.42)

where we put s0 = 0. Therefore, we obtain

E

(
exp

[
−

n∑
i=1

τiL(ti)

]
1{I=A}

)

=
(

m+1∏
j=1

∫ ∞
0

duj

)
1{u1>u2>···>um>um+1}(3.43)

×
m+1∏
j=1

(taj−1+1 − taj−1)e
−uj [(taj

−taj−1 )+(saj
−saj−1 )]

.

It is straightforward to perform the integrals in (3.43) in the order j =
1, . . . ,m+ 1, noting that the exponent telescopes, to get

m+1∏
j=1

(taj−1+1 − taj−1)

(taj
− ta0)+ (saj

− sa0)
.(3.44)

Since a0 = 0, t0 = 0 and s0 = 0, this gives the formula

E

(
exp

[
−

n∑
i=1

τiL(ti)

]
1{I=A}

)
(3.45)

=
m+1∏
j=1

taj−1+1 − taj−1

taj
+ saj

= t1

tn + sn

∏
i∈A

ti+1 − ti

ti + si
,
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with the empty product equal to 1. Finally, we sum over A and use that

∑
A

∏
i∈A

ti+1 − ti

ti + si
=

n−1∏
i=1

(
1+ ti+1 − ti

ti + si

)
=

n−1∏
i=1

ti+1 + si

ti + si
,(3.46)

to arrive at

E

(
exp

[
−

n∑
i=1

τiL(ti)

])
=

n∏
i=1

ti + si−1

ti + si
,(3.47)

which is the formula in (3.37). �

4. Proof of Theorem 1.3 and Corollary 1.4.

PROOF OF THEOREM 1.3. For fixed 	x, and for w,v ∈N (	x) with w ≤ v, let
Nv

w denote the number of edges in the connected component of w in the subgraph
of S(	x) that is obtained by removing all the edges in the path from o to v (see
Figure 2). Pick y ∈ ∂S(	x), and let v ∈N (	x)\{o} be the first node above the parent
of y, and let 0 < k ≤ nv be the distance from v− to the parent of y. Then the event
{	x ∈ C} ∩By amounts to the following:

(1) The backbone runs from o to v−, runs up a height k along the segment
between v− and v, and then moves to y;

(2) for all w ∈N (	x) with w < v, Nv
w invaded edges are connected to the back-

bone at height ‖w‖;
(3) Nv

v + (nv − k) invaded edges are connected to the backbone at height
‖v−‖+ k.

Therefore

P(	x ∈ C,By |W)
(4.1)

=
(

1

σ

)‖v−‖+k+1
{ ∏

w∈N (	x)
w<v

[Ŵ‖w‖]Nv
w

}
[Ŵ‖v−‖+k]Nv

v+(nv−k),

where the three factors correspond to (1)–(3), and Proposition 2.1 and Lemma 2.2
are used to determine the probabilities of (2) and (3). Taking the average over W

and using the relation

‖v−‖+ k+∑
w≤v

Nv
w + (nv − k)=N,(4.2)

we obtain

σN+1
P(	x ∈ C,By)= E

({ ∏
w∈N (	x)
w<v

[
σŴ‖w‖

]Nv
w

}[
σŴ‖v−‖+k

]Nv
v+(nv−k)

)
.(4.3)
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Since, by assumption, S(	x) does not branch at o, we have Nv
o = 0, and so the

factor with w = o may be dropped.
We next apply Corollary 3.4 in combination with the scaling limit defined by

(1.8)–(1.9). To that end, we define

hw(N)= ‖w‖
N

, nv
w(N)= Nv

w

N
, s(N)= k

N
,

(4.4)
tv(N)= nv

N
, Zh(N)=N [1− σŴhN ],

and fN(x)= (1− x/N)N1[0,N](x), x ∈ (0,∞), and rewrite the right-hand side of
(4.3) as

E

({ ∏
w∈N (	x)
o<w<v

[
fN

(
Zhw(N)(N)

)]nv
w(N)

}
(4.5)

× [fN

(
Zhv− (N)+s(N)(N)

)]nv
v(N)+[tv(N)−s(N)]

)
.

Under the limit � limN→∞, there are hw , nv
w , s and tv such that

hw(N)→ hw, nv
w(N)→ nv

w, s(N)→ s, tv(N)→ tv,(4.6)

and, by Corollary 3.4,((
Zhw(N)(N)

)
o<w<v,Zhv− (N)+s(N)(N)

)
(4.7)

�⇒ (
(L(hw))o<w<v,L(hv− + s)

)
,

provided we assume that s > 0 when v− = o. This last assumption (which will
be removed below) is needed here because Corollary 3.4 only applies for positive
scaling heights. Let f (x) = exp(−x), x ∈ (0,∞). Since fN converges to f as
N→∞ uniformly on (0,∞), and since f is bounded and continuous on (0,∞),
it follows from (4.5)–(4.7) that

� lim
N→∞σN+1

P(	x ∈ C,By)

= E

({ ∏
w∈N

o<w<v

[f (L(hw))]nv
w

}[
f
(
L(hv− + s)

)][nv
v+(tv−s)]

)
(4.8)

= E

(
exp

[
− ∑

w∈N
o<w<v

nv
wL(hw)− [nv

v + (tv − s)]L(hv− + s)

])
,

where N is the set of nodes in the scaled spanning tree S (defined above Theo-
rem 1.3). Next, we use Lemma 3.5 to obtain

� lim
N→∞σN+1

P(	x ∈ C,By)=
{ ∏

w∈N
o<w<v

(
1− nv

w

mv
w

)}(
1− [nv

v + (tv − s)]),(4.9)
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where we recall the definition of mv
w in (1.10), and use the relations hw +∑

o<u≤w nv
u =mv

w and hv− + s +∑o<w≤v− nv
w + nv

v + (tv − s)= 1 [by (4.2) with
Nv

o = 0]. Finally, we note that mv
w − nv

w = tw +mv
w− and 1− (nv

v + tv)=mv
v− , to

obtain the formula in (1.11).
It is easy to remove the restriction that s > 0 when v− = o. Indeed, the right-

hand side of (4.3) is increasing in k, because Ŵl is increasing in l. Therefore, we
can include the case s = 0 via a monotone limit. �

PROOF OF COROLLARY 1.4. In the limit as N→∞, the sum over 0 < k ≤ nv

may be replaced by an integral over s ∈ [0, tv] for all v ∈ N \{o}, by using the
monotonicity in k noted above. �

REMARK. If S(	x) branches at o, then the factor [σŴ0]Nv
o in (4.3) is not 1.

In fact, it tends to zero as N →∞, P-a.s., because σŴ0 is a random variable on
(0,1) while Nv

o ∼ nv
oN→∞ since nv

o > 0. Thus the right-hand side of (4.3) tends
to zero in this case.

5. Cluster size at a given height. In this section, we prove Theorem 1.5.
The cluster size at height n consists of the contributions at height n from branches
leaving the backbone at height k, for all 0≤ k < n, plus the single backbone vertex
at height n. This leads us, in Section 5.1, to first analyze the Laplace transform of
Co[m], which is the contribution to the cluster at height m from a single branch
from the root, in independent bond percolation with parameter p. Section 5.2 then
uses this Laplace transform to provide the proof of Theorem 1.5, while Section 5.3
computes the first and second moment in the scaling limit.

5.1. Laplace transform of Co[m]. For m ∈N, let Co[m] denote the number of
vertices in the cluster of o at height m, via a fixed branch from o, in independent
bond percolation with parameter p ≤ pc = 1/σ . For τ ≥ 0, let

fm(p; τ)= Ep

(
e−τCo[m]).(5.1)

By conditioning on the occupation status of the edge leaving the root, we see that
Co[m+ 1] is 0 with probability 1− p and is the sum of σ independent copies of
Co[m] with probability p. Therefore fm obeys the recursion relation

fm+1(p; τ)= 1− p+ p[fm(p; τ)]σ , f1(p; τ)= 1− p+ pe−τ .(5.2)

We set f0(p; τ)= e−τ/σ , so that the recursion in (5.2) holds for m= 0 as well.
Let gm(p; τ)= 1−fm(p; τ) and ρ = σ−1

2σ
. Our goal is to determine the asymp-

totic behavior of gm(p; τ) for small τ and for p near pc. To emphasize the latter,
we sometimes write p = 1

σ
(1− δ). However, we usually suppress the arguments p

and τ . In terms of gm, the recursion reads

gm+1 = F(gm), g0 = 1− e−τ/σ ,(5.3)
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with

F(x)= p[1− (1− x)σ ], x ∈ [0,1].(5.4)

We will first show that the sequence (gm)m∈N0 is close to the sequence (ĝm)m∈N0

that satisfies the quadratic recursion

ĝm+1 = F̂ (ĝm), ĝ0 = g0,(5.5)

where F̂ (x) is the second-order approximation of F(x), namely,

F̂ (x)= pσ

[
x − σ − 1

2
x2
]
, x ∈ [0,1].(5.6)

After that we will show that the sequence (ĝm)m∈N0 is close to the sequence
(g̃(m))m∈N0 , where g̃(t) satisfies the differential equation

g̃′(t)= F̂ (g̃(t))− g̃(t), g̃(0)= g0.(5.7)

The differential equation (5.7) is easily solved, as follows. We abbreviate q =
1−δ
δ

ρσ , where p = 1
σ
(1− δ), and rewrite (5.7) as(

1

g̃
− q

1+ qg̃

)
g̃′ = −δ.(5.8)

This may be integrated to give

g̃(t)

1+ qg̃(t)
= g0

1+ qg0
e−δt or g̃(t)= g0e

−δt

1+ qg0[1− e−δt ] .(5.9)

The following lemma bounds the difference between gm and g̃(m).

LEMMA 5.1. For m ∈N0, p ≤ pc and τ ≥ 0,

− 1

σ

(
δτ + 1

2
τ 2
)
≤ gm(p; τ)− g̃(m)≤ 1

6σ
mτ 3,(5.10)

with g̃(m) given by (5.9).

PROOF. We will prove the sandwiches

0≤ gm − ĝm ≤ 1

6σ
mτ 3(5.11)

and

0≤ g̃(m)− ĝm ≤ 1

σ

(
δτ + 1

2
τ 2
)
,(5.12)

which together give the lemma.
We begin with (5.11). Since 0 ≤ F ′′′(x) ≤ pσ 3 ≤ σ 2, it follows from a third-

order Taylor expansion that

0≤ F(x)− F̂ (x)≤ 1
6σ 2x3, x ∈ [0,1].(5.13)
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Moreover, F(0)= F̂ (0)= 0, 0≤ F ′(x)≤ 1, and F̂ ′(x)≤ 1, so 0≤ F(x)≤ x and
F̂ (x)≤ x for all x ∈ [0,1], and hence gm, ĝm and g̃(t) are all decreasing. Write

gm+1 − ĝm+1 = [F(gm)− F(ĝm)] + [F(ĝm)− F̂ (ĝm)].(5.14)

If gm ≥ ĝm, then F(gm)− F(ĝm) ≥ 0 by the monotonicity of F , while F(ĝm)−
F̂ (ĝm)≥ 0 because F ≥ F̂ , and so gm+1 ≥ ĝm+1. Since g0 = ĝ0, it follows induc-
tively that

gm ≥ ĝm ∀m ∈N0.(5.15)

Moreover, F(gm)− F(ĝm)≤ gm − ĝm because F ′ ≤ 1, while F(ĝm)− F̂ (ĝm)≤
1
6σ 2ĝ3

m by (5.13). Therefore gm+1 − ĝm+1 ≤ gm − ĝm + 1
6σ 2ĝ3

m. Since ĝm is de-
creasing and ĝ0 = g0 ≤ τ/σ , this yields (5.11).

Next we prove (5.12). Define F̃ (x)= h(1), where h= hx is the solution of

h′(t)= F̂ (h(t))− h(t), h(0)= x.(5.16)

According to (5.7), we have

g̃(m+ 1)= F̃ (g̃(m)).(5.17)

Since F̂ (x)≤ x, the solution of (5.16) is decreasing, and therefore the function F̃

is increasing. Now,

h(1)− h(0)=
∫ 1

0
dt[F̂ (h(t))− h(t)],(5.18)

and so, h(t) and F̂ (x)− x both being decreasing, we have

F̂ (h(0))− h(0)≤ h(1)− h(0)≤ F̂ (h(1))− h(1).(5.19)

Since h(1) = F̃ (h(0)), the lower bound in (5.19) with h(0) = x gives F̃ (x) ≥
F̂ (x). With g̃(0)= ĝ0, because of (5.5) and (5.17) and the fact that F̃ is increasing,
the latter inductively implies that

g̃(m)≥ ĝm ∀m ∈N0.(5.20)

Using the upper bound in (5.19) with h(0)= g̃(k − 1) and h(1)= g̃(k), and once
more that F̂ (x)− x is decreasing in combination with (5.20), we get

g̃(k)− g̃(k− 1)≤ F̂ (g̃(k))− g̃(k)≤ F̂ (ĝk)− ĝk = ĝk+1 − ĝk.(5.21)

Summing (5.21) from k = 1 to k = m − 1, we obtain g̃(m − 1) − g̃(0) ≤ ĝm −
ĝ1. Since g̃(m) ≤ g̃(m − 1), g̃(0) = g0 and ĝ1 = F̂ (ĝ0) = F̂ (g0), this yields the
sandwich

0≤ g̃(m)− ĝm ≤ g0 − F̂ (g0)≤ 1

σ

(
δτ + 1

2
τ 2
)
,(5.22)

where the last inequality is for p = 1
σ
(1−δ) and uses g0 ≤ τ/σ . This proves (5.12).

�
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5.2. Proof of Theorem 1.5. Let Ck,j [n] denote the contribution to the clus-
ter size at height n due to the j th of the σ − 1 branches emerging from height
k on the backbone. Then C[n] = 1 +∑n−1

k=0
∑σ−1

j=1 Ck,j [n], with the additional 1
due to the backbone vertex at level n. We note that Ck,j [n] is a random functional
of Wk and that, conditional on W = (Wk)k∈N0 , the different clusters are all inde-
pendent. According to Proposition 2.1 and Lemma 2.2, each cluster emerging from
the backbone at height k is a subcritical cluster with parameter p = Ŵk . Thus,

E
(
e(−τ/(ρn))Ck,j [n] |W )= fn−k

(
Ŵk; τ

ρn

)
,(5.23)

k = 0, . . . , n− 1; j = 1, . . . , σ − 1; τ ≥ 0,

with fm(p; τ) as defined in (5.1). Consequently,

E(e−τ	n |W)= E
(
e(−τ/(ρn))C[n] |W )

= e(−τ/(ρn))

(
n−1∏
k=0

fn−k

(
Ŵk; τ

ρn

))σ−1

(5.24)

= e(−τ/(ρn)) exp

[
(σ − 1)

n−1∑
k=0

log
(

1− gn−k

(
Ŵk; τ

ρn

))]
.

Note that, compared to Section 5.1, the argument τ has now become τ/ρn.
Fix τ ≥ 0. Fix ε > 0 and, for notational simplicity, assume that εn is integer.

Since gn−k ≤ g0 ≤ τ/σρn, bounding the first εn + 1 and the last εn − 1 terms
in the sum individually and using a linear approximation of the logarithm for the
remaining terms, we get

E(e−τ	n |W)= exp
[
−Sε

n(τ,W)+O

(
ετ + τ 2

n

)]
(5.25)

with

Sε
n(τ,W)= (σ − 1)

∑
εn<k≤n−εn

gn−k

(
Ŵk; τ

ρn

)
.(5.26)

Next, for t ∈ [ε,1− ε], put k = �nt� and Zt
n = n[1− σŴ�nt�], and define

Gt
n(x)= (σ −1)ng�n(1−t)�

(
1

σ

(
1− x

n

)
; τ

ρn

)
1[0,n](x), x ∈ (0,∞).(5.27)

Then we may write (5.26) as

Sε
n(τ,W)=

∫ 1−ε

ε
dtGt

n(Z
t
n).(5.28)
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Applying Lemma 5.1, after some arithmetic we find that for x ∈ [0, n] and
n→∞,

Gt
n(x)=

[
1+O

(
τ

n

)]
2τ

xe−(1−t)x

x + [1+O((x + τ)/n)]τ [1− e−(1−t)x]
(5.29)

+O

(
xτ + τ 2 + τ 3

n

)
.

Put

Gt(x)= 2τ
xe−(1−t)x

x + τ [1− e−(1−t)x] , x ∈ (0,∞).(5.30)

Note that Gt ≤ 2τ and that limx→∞Gt(x) = 0 uniformly in t ∈ [ε,1− ε]. Also,
it follows from the fact that fm(p; τ) is decreasing in p that Gt

n(x) is decreasing
in x. It is clear from (5.29) that Gt

n(x)→ Gt(x) uniformly in x ∈ (0,
√

n] and
t ∈ (ε,1− ε). For x >

√
n, the difference |Gt

n(x)−Gt(x)| is bounded above by
Gt

n(
√

n)+Gt(x), which also goes to zero uniformly in x >
√

n and t ∈ (ε,1− ε).
Therefore, Gt

n(x) converges to Gt(x) as n→∞, uniformly in x ∈ (0,∞) and
t ∈ [ε,1− ε].

Consequently,

lim
n→∞

∫ 1−ε

ε
dt[Gt

n(Z
t
n)−Gt(Zt

n)] = 0, P-a.s.(5.31)

Moreover, we know from Corollary 3.4 that (Zt
n)t∈[ε,1−ε] ∗�⇒ (L(t))t∈[ε,1−ε] as

n→∞. Since (z(t))t∈[ε,1−ε] �→ ∫ 1−ε
ε dtGt(z(t)) is bounded and continuous in

the Skorohod topology, it follows that∫ 1−ε

ε
dtGt(Zt

n)�⇒
∫ 1−ε

ε
dtGt(L(t)) as n→∞.(5.32)

Combining (5.28), (5.31) and (5.32), we obtain

Sε
n(τ,W)�⇒

∫ 1−ε

ε
dtGt(L(t)) as n→∞.(5.33)

We substitute (5.33) into (5.25), and let n→∞ followed by ε ↓ 0, to get

lim
n→∞E(e−τ	n)= E

(
exp
[
−
∫ 1

0
dtGt(L(t))

])
, τ ≥ 0.(5.34)

The integral in the right-hand side equals S(τ,L) of (1.21), and this proves (1.20).

5.3. First and second moment. In this section we prove (1.22).
Differentiation of (1.21) gives

E(	)= E

(
∂S

∂τ
(0,L)

)
= E

(
2
∫ 1

0
e−(1−t)L(t) dt

)
= 2

∫ 1

0
t dt = 1,(5.35)
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where the third equality uses Lemma 3.5. Similarly,

E(	2)= I + II(5.36)

with

I = E

([
∂S

∂τ
(0,L)

]2)
= E

(
4
∫ 1

0
dt

∫ 1

0
dse−(1−t)L(t)e−(1−s)L(s)

)

= E

(
8
∫ 1

0
dt

∫ 1

t
dse−(1−t)L(t)e−(1−s)L(s)

)
(5.37)

= 8
∫ 1

0
dt

∫ 1

t
ds t

1− t + s

2− t

= 4
∫ 1

0
t

(
(2− t)− 1

2− t

)
dt = 20

3
− 8 log 2

and

II = E

(
−∂2S

∂τ 2 (0,L)

)
= E

(
4
∫ 1

0

dt

L(t)
e−(1−t)L(t)[1− e−(1−t)L(t)])

= E

(
4
∫ 1

0
dt

∫ 1

t
ds e−(2−t−s)L(t)

)
(5.38)

= 4
∫ 1

0
dt

∫ 1

t
ds

t

2− s
= 8 log 2− 5.

Summing, we get E(	2)= I + II = 5
3 .

It remains to prove that E(	n) → E(	) and E(	2
n) → E(	2) as n → ∞.

By (1.15), we have

E(C[n])= ∑
x:‖x‖=n

P(x ∈ C)= [1+ o(1)]σn × σ−(n+1)(σ − 1)n1
2 ,(5.39)

and hence

lim
n→∞E(	n)= lim

n→∞
2σ

σ − 1

1

n
E(C[n])= 1.(5.40)

A similar argument applies for the second moment. Indeed, for n1, n2→∞ with
n2 ≥ n1, we write

E(C[n1]C[n2])=
∑

x1 : ‖x1‖=n1

∑
x2 : ‖x2‖=n2

P(x1, x2 ∈ C)

= [1+ o(1)]
n1−1∑
k=0

σk × σn1−k × (σ − 1)σn2−k−1

(5.41)
× σ−[k+(n1−k)+(n2−k)+1](σ − 1)[k+ (n1 − k)+ (n2 − k)]
× k

k + (n1 − k)+ (n2 − k)

1

2

(
1+ n1 − k

n2
+ n2 − k

n1

)
,
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where the terms with o, x1, x2 all on a single path have been absorbed into the
error term, and where we have split the sum according to the height k of the most
recent common ancestor of x1 and x2, counted the number of configurations with
fixed k, and inserted the asymptotic formula in (1.17). For a ∈ (0,1], this gives

lim
n1,n2→∞
n1/n2→a

E(	n1	n2)= lim
n1,n2→∞
n1/n2→a

(
2σ

σ − 1

)2 1

n1n2
E(C[n1]C[n2])

= 2a

∫ 1

0
dt t[1+ a(1− t)+ (a−1 − t)](5.42)

= 1+ 1

3
a(1+ a),

while for a = 0 the limit is 2
∫ 1

0 dt t = 1. This proves (1.26), and with a = 1 also
limn→∞E(	2

n)= 5
3 .

This completes the proof of (1.22).

6. Cluster size below a given height. In this section, we prove Theorem 1.6.
The arguments and notations mirror those in Section 5. We re-use the names of the
functions in Section 5 for new functions here.

6.1. Laplace transform of Co[1,m]. For m ∈N, let Co[1,m] denote the num-
ber of vertices in the cluster of o at all heights from 1 to m, via a fixed branch from
o, in independent bond percolation with parameter p ≤ pc = 1/σ . For τ ≥ 0, let

fm(p; τ)= Ep

(
e−τCo[1,m]).(6.1)

By conditioning on the occupation status of the edge leaving the root, we see that
Co[1,m+ 1] is 0 with probability 1− p and is 1 plus the sum of σ independent
copies of Co[1,m] with probability p. Therefore fm obeys the recursion relation

fm+1(p; τ)= 1− p+ pe−τ [fm(p; τ)]σ , f0(p; τ)= 1.(6.2)

As before, let gm(p; τ) = 1 − fm(p; τ) and ρ = σ−1
2σ

. We again suppress the
arguments p and τ . In terms of gm, the recursion reads

gm+1 = F(gm), g0 = 0,(6.3)

with

F(x)= p[1− e−τ (1− x)σ ], x ∈ [0,1].(6.4)

We will compare gm with the solution of the quadratic recursion

ĝm+1 = F̂ (ĝm), ĝ0 = 0,(6.5)

where F̂ (x) is the second-order approximation of F(x). Thus,

F̂ (x)= p(1− e−τ )+ αx − 1
2βx2, x ∈ [0,1],(6.6)
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where we abbreviate α = pσe−τ and β = (σ − 1)α; note that α ∈ [0,1]. We will
compare ĝm in turn with the solution of the quadratic differential equation

g̃′(t)= F̂ (g̃(t))− g̃(t), g̃(0)= 0.(6.7)

The differential equation (6.7) is easily solved, as follows. By applying the lin-
ear transformation

y(t)= (1− α)+ βg̃(t),(6.8)

we can write (6.7) as y′(t)= 1
2 [D2 − y(t)2], where

D =
√

(1− α)2 + 2βp(1− e−τ ).(6.9)

This can be rewritten as(
1

D + y(t)
+ 1

D − y(t)

)
y′(t)=D,(6.10)

and then integrated to give

D + y(t)

D − y(t)
= D + y(0)

D − y(0)
eDt or y(t)=D

CeDt − 1

CeDt + 1
(6.11)

with

C = D + y(0)

D − y(0)
, y(0)= 1− α.(6.12)

Thus

g̃(m)= 1

β
[y(m)− (1− α)] = 1

β

[
D

CeDm − 1

CeDm + 1
− (1− α)

]
.(6.13)

LEMMA 6.1. For m ∈N0, p ≤ pc and τ ≥ 0,

g̃(m)≤ gm(p; τ)≤ g̃(m)+ τ +m4τ 3,(6.14)

with g̃(m) given by (6.13), (6.9) and (6.12).

REMARK. For τ  1 and p ∼ pc the approximation by g̃(m) is in fact much
better than stated in the lemma, though the upper bound above is sufficient for our
needs.

PROOF OF LEMMA 6.1. The proof closely follows that of Lemma 5.1, but
with some reversals of monotonicity. We will prove the sandwiches

0≤ gm − ĝm ≤m4τ 3(6.15)

and

0≤ ĝm − g̃(m)≤ τ,(6.16)



INVASION PERCOLATION 455

which together give the lemma.
We begin with (6.15). Since 0≤ F ′′′(x)≤ ασ 2 ≤ σ 2, we have

0≤ F(x)− F̂ (x)≤ 1
6σ 2x3, x ∈ [0,1].(6.17)

Moreover, F(0)= F̂ (0)= p(1− e−τ ), 0≤ F ′(x)≤ α, and F̂ ′(x)≤ α, so

0≤ F(x)− F(0)≤ αx, F̂ (x)− F̂ (0)≤ αx.(6.18)

As in (5.14)–(5.15), this inductively yields

gm ≥ ĝm, m ∈N0.(6.19)

In addition, F(x)≤ x + pτ and g0 = 0, and therefore

gm ≤mpτ ≤ mτ

σ
, m ∈N0.(6.20)

It then follows from F ′ ≤ 1, (6.17) and (6.19)–(6.20) that

gm+1 − ĝm+1 = [F(gm)− F(ĝm)] + [F(ĝm)− F̂ (ĝm)]
(6.21)

≤ (gm − ĝm)+ 1

6
σ 2g3

m ≤ (gm − ĝm)+ 1

6σ
m3τ 3,

which yields (6.15).
Next we prove (6.16). Let F̃ (x)= hx(1), where hx is the solution of

h′(t)= F̂ (h(t))− h(t), h(0)= x.(6.22)

According to (6.7), we have

g̃(m+ 1)= F̃ (g̃(m)).(6.23)

Let x∗ = [D − (1 − α)]/β ≥ 0 with D defined in (6.9), and note that F̂ (x) ≥ x

for x ∈ [0, x∗]. Therefore solutions of (6.22) with h(0) ∈ [0, x∗] are increasing on
[0,∞), and the function F̃ is increasing. Henceforth, we will assume the restric-
tion x ∈ [0, x∗]. Now,

h(1)− h(0)=
∫ 1

0
dt[F̂ (h(t))− h(t)],(6.24)

and so, h being increasing and F̂ (x)− x decreasing, we have

F̂ (h(1))− h(1)≤ h(1)− h(0)≤ F̂ (h(0))− h(0).(6.25)

Since h(1)= F̃ (h(0)), the upper bound with h(0)= x gives F̂ (x) ≥ F̃ (x). Since
F̃ is increasing, this inductively implies

ĝm ≥ g̃(m), m ∈N0.(6.26)

Also,

ĝk+1 − ĝk = F̂ (ĝk)− ĝk ≤ F̂ (g̃(k))− g̃(k)≤ g̃(k)− g̃(k − 1),(6.27)
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where the first inequality follows from the fact that F̂ (x)− x is decreasing, and
the second inequality follows from the lower bound of (6.25) with h(0)= g̃(k−1)

and h(1)= g̃(k).
Summing (6.27) from k = 1 to k =m−1, we obtain ĝm− ĝ1 ≤ g̃(m−1)− g̃(0).

Since g̃(m− 1)≤ g̃(m), g̃(0)= g0 = 0 and ĝ1 = F̂ (g0)= F(0), this yields (6.16).
�

6.2. Proof of Theorem 1.6. For k = 0, . . . , n − 1, let Ck,j [k + 1, n] denote
the contribution to the cluster size between heights k + 1 and n due to the j th
of the σ − 1 branches emerging from the backbone at height k. Then C[0, n] =
n+ 1+∑n−1

k=0
∑σ−1

j=1 Ck,j [k+ 1, n], with the additional n+ 1 due to the backbone
vertices. Conditional on W = (Wk)k∈N0 , the Ck,j [k+ 1, n] are all independent. As
in (5.23),

E
(
e−τCk,j [k+1,n] |W )= fn−k(Ŵk; τ),(6.28)

k = 0, . . . , n− 1; j = 1, . . . , σ − 1; τ ≥ 0,

with fm(p; τ) as defined in (6.1). Consequently, since 	̂n = 1
ρn2 C[0, n] and

f0 = 1,

E(e−τ 	̂n |W)

= e−τ(n+1)/ρn2

(
n∏

k=0

fn−k

(
Ŵk; τ

ρn2

))σ−1

(6.29)

= e−τ(n+1)/ρn2
exp

[
(σ − 1)

n∑
k=0

log
(

1− gn−k

(
Ŵk; τ

ρn2

))]
.

Note that the prefactor e−τ(n+1)/ρn2
is equal to 1+O(1/n).

Fix ε > 0 and τ ≥ 0. Since, by (6.20),

0≤ gn−k ≤ (n− k)
τ

ρ2n2 ≤O

(
τ

n

)
,(6.30)

we may linearize the logarithm and disregard the first εn+ 1 and the last εn terms,
to get

E(e−τ 	̂n |W)= e−τ(n+1)/ρn2
exp
[
−Ŝε

n(τ,W)+O

(
ετ + τ 2

n

)]
(6.31)

with

Ŝε
n(τ,W)= (σ − 1)

∑
εn<k≤n−εn

gn−k

(
Ŵk; τ

ρn2

)
.(6.32)
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Next, for t ∈ [ε,1− ε], put k = �nt� and Zt
n = n[1− σŴ�nt�], and define

Gt
n(x)= (σ − 1)ng�n(1−t)�

(
1

σ

(
1− x

n

)
; τ

ρn2

)
1[0,n](x), x ∈ (0,∞).(6.33)

Then we may write (6.32) as

Sε
n(τ,W)=

∫ 1−ε

ε
dtGt

n(Z
t
n).(6.34)

Now we apply Lemma 6.1, noting that n(1− α)= x +O(τ
n
), to obtain

Gt
n(x)=

[
nD

CenD(1−t) − 1

CenD(1−t) + 1
− x

][
1+O

(
x

n
+ τ

n2

)]
(6.35)

+O

(
τ + τ 3

n

)
, x ∈ [0, n], n→∞,

with

nD =
√

x2 + 4τ +O

(
τ

n

)
, C = nD+ x

nD− x
+O

(
τ

n

)
.(6.36)

Let κ̄ = κ̄(τ, x)=√x2 + 4τ , and put

Gt(x)= κ̄
((κ̄ + x)/(κ̄ − x))e(1−t)κ̄ − 1

((κ̄ + x)/(κ̄ − x))e(1−t)κ̄ + 1
− x

(6.37)

= 4τ

x + κ̄ coth[(1/2)(1− t)κ̄] , x ∈ (0,∞).

Note that Gt(x)≤Gt(0)= 4τ and that limx→∞Gt(x)= 0 uniformly in t ∈ [ε,1−
ε]. As n→∞, Gt

n(x) converges to Gt(x) uniformly in x ∈ (0,∞) and t ∈ [ε,1−
ε]. The reasoning applied in (5.30)–(5.33) can also be applied here, to conclude
that

Sε
n(τ,W)�⇒

∫ 1−ε

ε
dtGt(L(t)).(6.38)

We substitute (6.38) into (6.34), and let n→∞ followed by ε ↓ 0, to get

lim
n→∞E(e−τ 	̂n)= E

(
exp
[
−
∫ 1

0
dtGt(L(t))

])
, τ ≥ 0.(6.39)

Since κ̄(τ,L(t)) = κ(τ, t), the integral in the right-hand side equals Ŝ(τ,L) of
(1.24), and this proves (1.23).
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6.3. First and second moment. In this section we prove (1.25).
Taylor’s expansion up to first order in τ of the integrand in (1.24) gives

∂Ŝ

∂τ
(0,L)= 2

∫ 1

0
dt

1

L(t)

[
1− e−(1−t)L(t)],

(6.40)

−∂2Ŝ

∂τ 2 (0,L)= 8
∫ 1

0
dt

(
1

2L(t)3

[
1− e−2(1−t)L(t)]− 1− t

L(t)2 e−(1−t)L(t)

)
.

Hence, applying Lemma 3.5 for the fourth equality, we have

E(	̂)= E

(
∂Ŝ

∂τ
(0,L)

)
= 2

∫ 1

0
dtE

(
1

L(t)

[
1− e−(1−t)L(t)])

(6.41)

= 2
∫ 1

0
dt

∫ 1

t
dsE

(
e−(1−s)L(t))= 2

∫ 1

0
dt

∫ 1

t
ds

t

t + 1− s
= 1

2
.

Also, as in (5.36)–(5.38), we have E(	̂2)= I + II with

I = E

([
∂Ŝ

∂τ
(0,L)

]2)
, II = E

(
−∂2Ŝ

∂τ 2 (0,L)

)
.(6.42)

Using Lemma 3.5, we compute

I = E

([
2
∫ 1

0
dt

∫ 1

t
dse−(1−s)L(t)

]2)

= 8
∫ 1

0
dt1

∫ 1

t1

ds1

∫ 1

t1

dt2

∫ 1

t2

ds2
t1

t1 + (1− s1)

t2 + (1− s1)

t2 + (1− s1)+ (1− s2)

= 8
∫ 1

0
dt1

∫ 1

t1

ds1

∫ 1

t1

dt2
t1

t1 + (1− s1)
[t2 + (1− s1)] log

[
2− s1

t2 + (1− s1)

]

=
∫ 1

0
dt1

∫ 1

t1

ds1 t1[t1 + (1− s1)]
(6.43)

× {4 log[t1 + (1− s1)] − 4 log(2− s1)− 2}

+ 2
∫ 1

0
dt1

∫ 1

t1

ds1
t1(2− s1)

2

t1 + (1− s1)

=
∫ 1

0
dx

{
2x3 logx − 2x(1+ x)2 log(1+ x)+ 13

6
x3 + 8

3
x2 + x

}
= 17

8
− 8

3
log 2,

where to get the next to last line we set x = t1 + (1− s1) and interchange the two
integrals. For II, we expand the integrand of the second line of (6.40) in powers
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of L(t), take the expectation using that E(L(t)k) = k!/tk , k ∈ N0, and sum out
afterward, to obtain

II = E

(
−∂2Ŝ

∂τ 2 (0,L)

)

= E

(
8
∫ 1

0
dt (1− t)3

∞∑
k=0

[−(1− t)L(t)]k
[

2k+2

(k + 3)! −
1

(k + 2)!
])

(6.44)

=
∫ 1

0
dt

{
2t (2− t)2 log(2− t)− 2t3 log t − 1

2
t + 1

2
t2
}

= 8

3
log 2− 16

9
.

Summing, we get E(	̂2)= I + II = 25
72 .

To verify that E(	̂n)→ E(	̂) and E(	̂2
n)→ E(	̂2) as n→∞, we return to

(5.39)–(5.42). Since C[0, n] = 1 +∑n
k=1 C[k] by definition [recall (1.2)], it fol-

lows from (5.40) that limn→∞E(	̂n)= limn→∞ 1
n2

∑n
k=1 k = ∫ 1

0 duu= 1
2 . A sim-

ilar calculation, based on (5.41)–(5.42), yields

lim
n→∞E(	̂2

n)= lim
n→∞

1

n4

n∑
k,l=1

klE(	k	l)

= 2
∫ 1

0
du

∫ 1

u
dv uv lim

n→∞E
(
	�un�	�vn�

)
(6.45)

= 2
∫ 1

0
du

∫ 1

u
dv uv

[
1+ 1

3

u

v

(
1+ u

v

)]

= 25

18

∫ 1

0
dv v3 = 25

72
.

This completes the proof of (1.25).

7. Proof of Theorem 1.7. In this section we prove Theorem 1.7. The key
ingredient is the following mixing property, which is proved below.

LEMMA 7.1. Let W(n) = (W
(n)
k )k∈N0 , n ∈ N, be independent realizations

of W . There exists a sequence (kn)n∈N with kn+1 > nkn, n ∈ N, and a coupling
of W to W(n), n ∈N, such that with probability 1

Wk =W
(n)
k for all k with kn ≤ k ≤ nkn, for all but finitely many n.(7.1)

PROOF OF THEOREM 1.7. Let Ck[n] denote the number of vertices in C

at height n whose most recent ancestor on the backbone is at height at least k,
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and let Ck∞[n] denote the same quantity for C∞. Define 	k
n = 1

ρn
Ck[n], 	k

n,∞ =
1
ρn

Ck∞[n]. A small modification of the proofs of (1.4) and Theorem 1.5 shows that

if k = k(n) = o(n) as n→∞, then 	k
n �⇒ 	 as n→∞ under the law P, and

	k
n,∞ �⇒ 	∞ as n→∞ under the law P∞.
Since different off-backbone branches are conditionally independent given W ,

it follows from Lemma 7.1 that we may couple C with independent realizations of
C(n) such that Ckn[nkn] = C(n),kn[nkn] for all but finitely many n. Let

Sn = 1

n

n∑
m=1

	
km

mkm
, n ∈N.(7.2)

Under the law P, all but finitely many of the summands are equal to independent
random variables that converge in distribution to 	. Consequently, Sn→ E(	) a.s.
as n→∞ under P. On the other hand, let

Sn,∞ = 1

n

n∑
m=1

	
km

mkm,∞, n ∈N.(7.3)

Then, under the law P∞, the summands are already independent and converge
in distribution to 	∞, so that Sn,∞ → E∞(	∞) a.s. as n→∞ under P. Since
E(	) 
= E∞(	∞), it follows that the random variables Sn and Sn,∞ (which are
actually the same variables under different laws) a.s. have unequal limits as n→
∞. Therefore, the laws of IPC and IIC are mutually singular, since the IPC is
supported on clusters for which the limit is E(	), whereas the IIC is supported on
clusters which have the different limit E∞(	∞). �

PROOF OF LEMMA 7.1. Given a realization of the Markov chain W , con-
sider a realization W ′ that uses the same sequence of random variables Xk [recall
(3.13)]. Since R(·) is increasing, it is possible to arrange the coupling so that when-
ever the process with the lower value jumps, the process with the higher value also
jumps (necessarily to the same Xk). Let τ be the first time such a jump occurs, and
note that Wk =W ′k for all k > τ .

Suppose W ′k > Wk for some k. This inequality is preserved until some step
at which W ′ jumps to a value in (pc,Wk). This happens with probability
θ(Wk)R(W ′k), while W jumps with probability θ(Wk)R(Wk). Thus the probability
that the processes coalesce at such a jump is R(Wk)/R(W ′k) ≥ ρ = σ−1

2σ
≥ 1/4

[recall (3.10)].
Let Zk =Wk ∧W ′k . The above shows that whenever Z decreases there is prob-

ability at least ρ that W and W ′ coalesce. Since limk→∞Zk = pc, Z decreases
infinitely often and the processes coalesce at some finite time.

We can now construct the desired coupling. Let W(n) be independent real-
izations of W , derived with random variables X

(n)
k . We fix k1 = 1 arbitrarily,

and define k2, k3, . . . inductively as follows. Having chosen kn−1, consider the
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above coupling of W with W ′ =W(n), started at time (n − 1)kn−1. Note that at
k = (n−1)kn−1, the values Wk and W

(n)
k are independent. By the above argument,

there is some a.s. finite τ so that Wk =W
(n)
k for any k > τ . We can, therefore, se-

lect kn > (n− 1)kn−1 so that P(τ ≥ kn) < n−2, and hence P(Wkn 
=W
(n)
kn

) < n−2.

By the Borel–Cantelli lemma, we have Wkn =W
(n)
kn

for all but finite many n a.s.,
and this equality holds up to nkn. �

8. Proof of Theorems 1.8 and 1.9. In this section, we prove Theorem 1.9. As
mentioned in Section 1.3.5, Theorem 1.8 then follows via [1, Example 1.9(ii)]. We
retain the terminology of Lemma 6.1 and its proof, and begin with two technical
estimates.

LEMMA 8.1. There is a c > 0 such that, for p = 1
σ
(1− δ),

D ≥ [1+ o(1)]√τ , δ, τ ↓ 0,(8.1)

D − (1− α)≥ c

(
τ

δ
∧√τ

)
, 0 < δ, τ  1.(8.2)

PROOF. Recall the definition of α,β below (6.6). As δ, τ ↓ 0,

1− α = 1− (1− δ)e−τ ∼ δ + τ,
(8.3)

2βp(1− e−τ )= 4ρ(1− δ)2e−τ (1− e−τ )∼ 4ρτ.

For (8.1), we use 4ρ ≥ 1 [recall (1.3) with σ ≥ 2] to obtain

D =
√

(1− α)2 + 2βp(1− e−τ )≥ [1+ o(1)]√τ , δ, τ ↓ 0.(8.4)

For (8.2), note that

D ≤ 2
[
(δ + τ)∨√4ρτ

]
, 0 < δ, τ  1,(8.5)

to obtain

D − (1− α)= D2 − (1− α)2

D + (1− α)
(8.6)

≥ 2βp(1− e−τ )

2D
≥ ρτ

D
≥ c

(
τ

δ
∧√τ

)
, 0 < δ, τ  1.

�

LEMMA 8.2. There is a c > 0 such that, for n" 1 and τ ≥ n−2,

gn

(
1

σ
(1− δ); τ

)
≥ c[D − (1− α)].(8.7)
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PROOF. We use Lemma 6.1 and the inequalities β < σ and C > 1 [recall
(6.12)], to estimate

gn

(
1

σ
(1− δ); τ

)
≥ 1

β

[
D

CeDn − 1

CeDn + 1
− (1− α)

]

= 1

β

[
D − (1− α)− 2D

CeDn + 1

]
(8.8)

≥ D − (1− α)

σ

[
1− 2D

[D + (1− α)]eDn

]

≥ D − (1− α)

σ
[1− 2e−Dn] ≥ c[D − (1− α)],

where in the last inequality we use (8.1), which implies that Dn ≥ [1 +
o(1)]n√τ ≥ [1+ o(1)]. �

PROOF OF THEOREM 1.9. For convenience we restrict ourselves to n divisible
by 3, which suffices. Our goal is to get a bound uniform in n for

9n2
E

(
1

C[0,3n]
)
= 9n2

∫ ∞
0

dτE
(
e−τC[0,3n]),(8.9)

where the equality follows from Fubini’s theorem.
The contribution to the right-hand side of (8.9) due to 0≤ τ < n−2 is bounded

by 9. Moreover, due to the presence of the backbone, we have C[0,3n] ≥ 3n+ 1,
and so ∫ ∞

n−1 logn
dτE

(
e−τC[0,3n])≤ ∫ ∞

n−1 logn
dτe−3nτ = 1

3n4 .(8.10)

Thus, it suffices to show that

sup
n∈N

n2
∫ n−1 logn

n−2
dτE

(
e−τC[0,3n])<∞.(8.11)

As in (6.29), we have

E
(
e−τC[0,3n] |W )≤ 3n∏

k=0

(
1− g3n−k(Ŵk; τ)

)σ−1

(8.12)

≤ exp

[
−

2n−1∑
k=n

g3n−k(Ŵk; τ)

]
,

where the second inequality uses gm ≥ 0 and σ ≥ 2. We know that gm(p; τ) is
increasing in p and m [because fm(p; τ) in (6.1) is decreasing in p,m]. Since Ŵk

is increasing in k, we may therefore estimate
2n−1∑
k=n

g3n−k(Ŵk; τ)≥ ngn(Ŵn; τ).(8.13)
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Thus, to get (8.11), it suffices to show that

sup
n∈N

n2
∫ n−1 logn

n−2
dτE(exp[−ngn(Ŵn; τ)]) <∞.(8.14)

Let δn = 1 − σŴn. By Lemma 3.2, P(δn ≥ 1/
√

n) ≤ exp[−c′
√

n] for some
c′ > 0, and so we may restrict the integral in (8.14) to the event {δn < 1/

√
n}.

By Lemmas 8.1–8.2, there is a c > 0 such that, for n sufficiently large to give
δn, τ  1,

exp[−ngn(Ŵn; τ)] = exp
[
−ngn

(
1

σ
(1− δn); τ

)]
(8.15)

≤ exp
[
−cn

(
τ

δn

∧√τ

)]
≤ e−cnτ/δn + e−cn

√
τ .

Thus, to get (8.14), it suffices to show that

sup
n∈N

n2
∫ ∞

0
dτ
[
E(e−cnτ/δn)+ e−cn

√
τ ]

(8.16)

= 1

c
sup
n∈N

E(nδn)+
∫ ∞

0
dte−c

√
t <∞.

But, by Lemma 3.2, the last supremum is finite, and so the proof is complete. �

REMARK. Note that the IIC corresponds to δn = 0 for all n, and that it follows
from [2], equation (2.17) that the term

∫∞
0 dte−c

√
t in (8.16) is an upper bound

for the corresponding IIC expectation E∞(n2/C∞[0, n]). The additional term in
(8.16) is a reflection of the fact that the IPC is smaller than the IIC, and the uniform
boundedness of the expectation E(nδn) is consistent with the scaling of the Ŵ -
process in Corollary 3.4.

9. Proofs for the incipient infinite cluster. In this section, we give quick
proofs of the statements made in Section 1.2. First we look at the structural repre-
sentation of C∞ under the law P∞, and then we turn to the r-point functions and
to the cluster size at and below a given height.
Structural representation. Let {o→ n} denote the event that the root is connected
to a vertex that is distance n from the root. The law P∞ is defined as the limit

P∞(E)= lim
n→∞Ppc(E | o→ n) ∀ cylinder event E.(9.1)

Let a1, . . . , aσ denote the neighbors of o. Then

Ppc(E | o→ n)= 1

σ

∑
1≤i≤σ

Ppc(E | o→ ai, ai
o→ n)+O

(
1

n

)
,(9.2)
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where
o→means a connection avoiding o, and the error term covers the case of two

or more disjoint connections from o to n. Suppose that E is an elementary event,
that is, E determines the state of all the edges it depends on. Let Ti denote the ith
branch of Tσ from o, Ei the restriction of E to Ti , and P

i
pc

the critical percolation
measure on Ti . Then E =⊗σ

i=1Ei and

Ppc(E | o→ ai, ai
o→ n)=

[ ∏
1≤j≤σ

j 
=i

P
j
pc

(Ej )

]
P

i
pc

(Ei | 0→ ai→ n).(9.3)

Now let n→∞ and use that the last factor tends to P
i∞(Ei), which is defined as

the law on Ti under which the edge between o and ai is open and from ai there is
an IIC. Then, using (9.2), we obtain

P∞(E)= 1

σ

∑
1≤i≤σ

[ ∏
1≤j≤σ

j 
=i

P
j
pc

(Ej )

]
P

i∞(Ei).(9.4)

What this equation says is that the IIC can be grown recursively by opening a
random edge, putting critical percolation clusters in the branches emerging from
the bottom of this edge, and proceeding to grow from the top of this edge. �

PROOF OF (1.1). Pick y ∈ ∂S(	x) and recall that By is the event that y is in the
backbone. We have

P∞(By)= σ−‖y‖,
(9.5)

P∞(	x ∈C∞ | By)= σ−(N−‖y‖+1).

Indeed, the first line comes from the fact that the backbone is uniformly random,
while the second line uses that S(	x) has N −‖y‖+ 1 edges off the path from o to
y. We multiply the two equations in (9.5), sum over y, and use that the cardinality
of ∂S(	x) is N(σ − 1)+ σ , to get the first line of (1.1). Then we divide the product
by the sum, to get the second line of (1.1). �

PROOF OF (1.4)–(1.5). In view of Proposition 2.1, Lemma 2.2 and Proposi-
tion 3.3, the IIC corresponds to taking the limit when L≡ 0. In this case S(τ,L)

in (1.21) reduces to

S∞(τ )= 2τ

∫ 1

0
dt

1

1+ τ(1− t)
= 2 log(1+ τ).(9.6)

Hence we get

E∞(e−τ	)= e−S∞(τ ) = (1+ τ)−2.(9.7)
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Similarly, Ŝ(τ,L) in (1.24) reduces to

Ŝ(τ,L)= 2
√

τ

∫ 1

0
dt tanh

(
(1− t)

√
τ
)= 2 log cosh

(√
τ
)
.(9.8)

Hence we get

E∞(e−τ 	̂)= [cosh
(√

τ
)]−2

.(9.9)

A more formal proof of (1.4)–(1.5) can be obtained along the lines of Sections
5–6. This requires that we set p = pc = 1

σ
in Lemmas 5.1 and 6.1 and repeat the

estimates in Sections 5.2 and 6.2, which in fact simplify considerably. �
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