
Workload characterization, modeling, and prediction in
grid Computing
Li, H.

Citation
Li, H. (2008, January 24). Workload characterization, modeling, and
prediction in grid Computing. ASCI dissertation series. Retrieved from
https://hdl.handle.net/1887/12574
 
Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/12574
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/12574


Workload Characterization, Modeling, and
Prediction in Grid Computing

Hui Li





Workload Characterization, Modeling, and
Prediction in Grid Computing

proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. P. F. van der Heijden,
volgens besluit van het College voor Promoties

te verdedigen op donderdag 24 januari 2008
te klokke 11.15 uur

door

Hui Li

geboren te Anhua, Hunan, China in 1979



Promotiecommissie

Promotor: Prof. dr. H. A. G. Wijshoff
Co-promotor: Dr. A. A. Wolters
Referent: Prof. dr. T. Fahringer (University of Innsbruck, Austria)
Overige leden: Prof. dr. ir. E. F. A. Deprettere

Prof. dr. F. J. Peters
Prof. dr. S. M. Verduyn Lunel
Dr. D. L. Groep (NIKHEF)
Dr. D. H. J. Epema (Technische Universiteit Delft)

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 159.

Workload Characterization, Modeling, and Prediction in Grid Computing.
Hui Li.
Thesis Universiteit Leiden.
ISBN-13: 978-90-9022674-3

Printed in the Netherlands



To my mother and father





Contents

1 Introduction 1
1.1 Setting the Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Cluster of Computers . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 A View of Grid As Federation of Distributed Clusters . . . . . . . . . 3
1.1.3 Jobs, Users, and Virtual Organizations . . . . . . . . . . . . . . . . . 4

1.2 Research Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Challenges in Grid Scheduling and Performance Evaluation . . . . . 4
1.2.2 How Workloads Play A Role . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Statistical Background 11
2.1 Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Statistical Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Marginal Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Autocorrelation and Spectrum . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Cross-correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Scaling, Fractals, and Power Law Behavior . . . . . . . . . . . . . . . . . . 15
2.3.1 Scaling and Power Law . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Self-similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Burstiness, LRD, and Heavy Tails . . . . . . . . . . . . . . . . . . . 17
2.3.4 Monofractals and Multifractals . . . . . . . . . . . . . . . . . . . . . 18
2.3.5 Aggregated Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.6 Wavelets and Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Doubly Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Markov Modulated Poisson Processes . . . . . . . . . . . . . . . . . 20

iii



2.4.2 Hyperexponetial Renewal Processes . . . . . . . . . . . . . . . . . . 21
2.5 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Transportation Distance of Time Series . . . . . . . . . . . . . . . . 22
2.6 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Workload Dynamics on Clusters and Grids 25
3.1 Workloads in a Broader Perspective . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Workload Data Under Study . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Job Arrival Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Pseudo-periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Long Range Dependence (LRD) . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Multifractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Run time, Memory, and Parallelism . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Clusters and Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Parallel Supercomputers . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 The Nature of Grid Workload Dynamics . . . . . . . . . . . . . . . . . . . . 37
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Pseudo-Periodic Job Arrivals 41
4.1 Matching Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Atoms and Dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 The Standard Matching Pursuit . . . . . . . . . . . . . . . . . . . . 42

4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Stationarity and Modeling Complexity . . . . . . . . . . . . . . . . . 45
4.2.2 Signals and Residuals . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Pattern Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Long Range Dependence and A Full Arrival Model 53
5.1 Multiplicative Cascades and Wavelets . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Binomial Cascades . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.2 Wavelet Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 A Full Model for Job Arrivals . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.1 Conversion from Rates to Interarrivals . . . . . . . . . . . . . . . . . 57
5.2.2 The Additive Nature of Rates . . . . . . . . . . . . . . . . . . . . . 58

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

iv



5.3.1 Autocorrelation and Scaling . . . . . . . . . . . . . . . . . . . . . . 59
5.3.2 Marginal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.3 VO Aggregation of Rates . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Modeling Correlated Workload Attributes 65
6.1 Model Based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . . . . . 66
6.1.2 The EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1.3 Bayesian Model Section . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.4 The Combined Approach . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 The Locality Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Localized Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3.1 Power Law Distribution of Cluster Repetitions . . . . . . . . . . . . 70
6.3.2 The Cluster Permutation Procedure . . . . . . . . . . . . . . . . . . 70
6.3.3 The Combined Algorithm . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.1 Run Time - 1 Dimension . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.2 Run Time and Memory - 2 Dimensions . . . . . . . . . . . . . . . . 77
6.4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Performance Impacts of Workload Correlations in Grid Scheduling 81
7.1 Evaluation of Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . 81
7.2 Synthetic Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3 Grid Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3.1 Grid Resource Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3.2 Grid Broker Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 A Local Learning Framework for Performance Predictions 93
8.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.2 Statistical Properties Of Workload Data . . . . . . . . . . . . . . . . . . . . 96
8.3 Metrics and Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . 97

8.3.1 Job Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.3.2 Resource State Similarity . . . . . . . . . . . . . . . . . . . . . . . . 99

v



8.4 A Local Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.5 Improving Prediction Accuracy and Performance . . . . . . . . . . . . . . . 102
8.6 Parameter Tuning by Genetic Search . . . . . . . . . . . . . . . . . . . . . . 103
8.7 Adaptive Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.7.1 Bias-Variance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.7.2 Adaptive Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.8 Nearest Neighbor Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.9 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.9.1 Prediction Accuracy of Global Tuning . . . . . . . . . . . . . . . . . 109
8.9.2 Prediction Accuracy of Adaptive Tuning . . . . . . . . . . . . . . . . 111
8.9.3 Prediction Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.9.4 Evaluation of Effective Capacity . . . . . . . . . . . . . . . . . . . . 114

8.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9 Conclusions 119

References 122

Samenvatting 135

Acknowledgement 139

Curriculum Vitae 141

vi



Chapter 1

Introduction

Grid computing emerges as a distributed infrastructure for large-scale data processing and
scientific computing. The term Grid can have different meanings to different people with
different backgrounds. It is like a “grid” by running scientific applications on a large number
of geographically dispersed computers available at the edge of the Internet, such as various
@Home projects (e.g. SETI@home, Folding@Home). Exploiting idle computer cycles in
a LAN or WAN environment using open-source software (Condor, BOINC, or XtremWeb)
can be called “Desktop Grid computing”. More traditional Grid technologies were devel-
oped using a toolkit approach with specifically designed protocols and standards, such as
those offered by Globus 2 [42]. A toolkit-based approach divides the software by function-
alities, such as resource management, information services, data management, and security.
A collection of software is developed to fulfill these functionalities, which are integrated to
form the core middleware layer in a Grid. Grids are embraced by scientific communities
such as High Energy Physics, Astronomy, and Life Sciences, which produce a huge amount
of data and have a large collection of computationally intensive applications. Large-scale
testbeds such as Data Grids, Science Grids and Health Grids are built on top of the so-called
“last-generation” Grid technologies and are widely in production nowadays. The latest devel-
opment of Grid computing is represented by the merge of Grid and web services, which leads
to the Open Grid Services Architecture (OGSA) [43]. It is the future trend to offer computa-
tion, storage, or virtually any resource online as a service, known as utility or service Grids.
Service orientation and virtualization represent a promising direction for Grid development
and open the doors for a broader outreach into business applications and beyond. It also leads
to the heated discussions and debates on the identity and future of Grid computing. In spite
of various application scenarios and underpinning technologies, the essence of a Grid can be

1



1. Introduction

well represented by a checklist proposed by Foster [41]:

1. A Grid coordinates resources that are not subject to centralized control.

2. A Grid uses open, standard protocols and interfaces.

3. A Grid is able to deliver nontrivial qualities of service.

This checklist acts as an informal definition of “Grid” and a system that is called a Grid
must fulfill these requirements. Item 1 and 3 from the list are of particular interest in the
context of this thesis. It is reasonable to assume that a Grid platform exits because the utility
of a coordinated system is significantly greater than the sum of its individual components. To
achieve good performance, however, poses many new challenges in Grids compared to tradi-
tional computing systems such as a single supercomputer. Not subject to centralized control
is arguably the most challenging situation, which makes many well-developed resource man-
agement solutions not applicable to Grids. Therefore new scheduling heuristics and systems
need to be designed and evaluated.

Workloads play a crucial role in the performance evaluation of scheduling strategies. This
thesis focuses on the workload characterization, modeling, and prediction in Grid environ-
ments. Firstly, real Grid workloads are analyzed with emphasis on temporal correlations and
scaling behavior. Secondly, workload models are developed for both job arrival process and
job attributes. Using the synthetic workloads generated by models, it is shown that getting the
workloads right makes a big difference in terms of performance evaluation results. Thirdly,
techniques are developed for performance predictions based on workload data, which provide
important information to support Grid-level scheduling decisions. The core of the thesis is
on fully exploiting the workload data for Grid performance evaluation. It aims at research-
ing what are the real Grid workload characteristics, how to model them properly, why it is
important to get the workload right, and how to make use of it for predictions.

Before diving into the details it is important to understand where the data come from, what
are their basic properties, and the boundaries within which the obtained results apply. The
following section sets such a context by defining system and job model. After that a research
statement presents the motivation of this research and briefly explains how workloads play a
role in performance evaluation and Grid scheduling.

1.1 Setting the Context

In this section a system model and a job model are defined. The system model is based on the
Grid environment from which the data is collected. The job model defines the characteristics

2



1.1. Setting the Context

which compose the workload under study.

1.1.1 Cluster of Computers

Clusters of computers are becoming increasingly popular solutions for high performance
computing (HPC). For instance, architecture share for clusters in the top 500 supercomputer
sites reaches 74.6% in June 2007, compared to a share of merely 16.2% five years ago1. As
the performance/price ratio of PC components and LAN connections keep increasing, more
and more organizations and companies build computer clusters for matching the needs of
their applications. A cluster within one administrative domain, or one site, typically consists
of a number of processing units/nodes connected via networks (commonly Ethernets). The
cluster is space-shared2 and is usually managed by a batch system with scheduling capacities.
Such a setting sometimes is referred as a server farm. It is considered as a building block in
the system model.

1.1.2 A View of Grid As Federation of Distributed Clusters

The system model, or a Grid in this thesis, is defined as a federation of distributed clusters.
These clusters are located in different administrative domains therefore they are not subject
to centralized control. There are components at the Grid level such as resource brokers and
schedulers which are responsible for coordinating the resources. Unless otherwise noted, a
resource is used equivalently as a cluster in the rest of the thesis. Resource brokers typically
have no control over the clusters and it asks the resources for information instead, based on
which the scheduling decisions are made. There are also information services or indices [27]
that collect useful information about resources and make them available to other entries in a
Grid.

Resource brokers are considered as scheduling decision points in a Grid and they have
certain architectures. In a simplest case there can be one central resource broker which is
responsible for job scheduling in the whole Grid. On the other hand, every single user can
have its own broker and makes decisions on its behalf. Somewhere in-between multiple bro-
ker instances can be built with each one dealing with a group of users. Different architectures
require analysis and modeling of workloads at different levels, which are investigated in great
detail in this thesis.

1Statistics of architecture share for top 500 supercomputer sites are obtained from http://www.top500.org.
2Space-shared machines are partitioned into sets of processors and each processor is allocated to a single job

until completion.
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1. Introduction

1.1.3 Jobs, Users, and Virtual Organizations

The job model in this thesis is based on computationally intensive applications run on data
Grids such as LCG and OSG1. It is due to the fact that these Grid systems have been in pro-
duction for a period of time and most of jobs in the workloads belong to this model. The
job model is an independent task entity that runs for a certain amount of time and requires
a single processor. Parallelism has not been taken into account since most of the jobs are
sequential tasks. Hereby a task is equivalent to a job, distinguished from those in workflow
applications. The job attributes for modeling are mainly interarrival times and run times,
while more characteristics are used for prediction. Jobs are submitted to the Grid by users.
Users typically are affiliated to a certain Virtual Organization (VO) or VOs. In the Grid VO
is an important concept [44] and one can consider a VO as a collection of entities (users, re-
sources, etc) that belong to different organizations but have common goals or shared policies.
Due to its importance workload data at the VO level is extensively analyzed and modeled in
the following chapters.

The definitions of the system model and the job model serve as the basis of discussions
for the rest of this thesis. It is very important to bear them in mind for a deep understanding
and justified application of the proposed modeling and prediction methods. For example, the
models for job arrivals are developed and fitted for independent tasks. There is no guarantee
that the results are applicable for applications such as workflows, although the models are
generic enough to be tuned for data fitting. Another example is on performance prediction.
The technique and similarity measures proposed in the later part of this thesis apply on work-
loads from space-shared clusters. If you are working on time-shared systems with measured
CPU loads, time series analysis may be a better approach.

1.2 Research Statement

As previously mentioned, to deliver nontrivial performance is a primary requirement in Grid
computing. The motivation of this research is largely from the challenges in Grid scheduling
and performance evaluation, which are briefly discussed in this section. Workload-related
research questions and overviews of proposed solutions are also presented.

1.2.1 Challenges in Grid Scheduling and Performance Evaluation

Experimental performance studies on computer systems, including Grids, require deep un-
derstanding of the workload characteristics. In many of the challenges in Grid scheduling

1LCG is the LHC Computing Grid and OSG stands for the Open Science Grid in the United States.
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1.3. Thesis Organization

and performance evaluation, there are two of particular interest. Firstly, the design and de-
velopment of effective scheduling strategies for Grids are mostly done via simulations. And
simulation of scheduling algorithms requires representative workloads to produce dependable
results. It is shown in Chapter 7 that getting the workloads right makes a big difference in
terms of performance evaluation results. Secondly, Grid-level resource brokers do not have
control over the computing resources. Instead, the scheduling decisions are made based on
the information available about the resources. It becomes crucial that this information is of
high quality, especially concerning the dynamic state of a resource. Effective and efficient
predictions of important performance metrics on the resources are needed for good decisions
at the Grid level.

1.2.2 How Workloads Play A Role

Workloads play a central role in addressing the two challenges presented above. There are
two levels of workload data collected in production Grids which are under investigation. One
is the accounting logs from the local batch system on the cluster and the other draws from a
global monitoring service which collects job information at the Grid level. After some pre-
processing the workload formats are similar at both levels. Workload contains job objects,
and jobs have multiple attributes such as name, user, submission time, run time, and so on.
The question is how well we understand the data and what we can do about it. Correspond-
ing to the two challenges the research arises from two important and closely-related topics,
namely, workload modeling and performance prediction. Workload modeling aims at build-
ing mathematical models to generate synthetic workloads, which can be used in performance
evaluation of scheduling strategies. The model should statistically resemble the original real
workload data therefore marginal statistics and second-order properties such as autocorrela-
tion and scaling are important matching criteria. Performance prediction, on the other hand,
is to apply statistical learning techniques on historical workload data for providing real-time
forecast of performance metrics. From this perspective prediction accuracy as well as speed
should be considered to evaluate candidate techniques. Although the goals and approaches
differ considerably, both modeling and prediction rely heavily on the representative workload
data and methodologies from statistics and machine learning.

1.3 Thesis Organization

The main contributions of this thesis can be summarized as follows:

5



1. Introduction

1. A comprehensive workload characterization is carried out for clusters and Grids, with
emphasis on the correlation structures and the scaling behavior.
To the author’s best knowledge this is the first statistical study on real production
workloads at the cluster, Grid, and Virtual Organization level. A deep understanding
of the dynamics of data-intensive Grid jobs is obtained. This leads to the identifica-
tion of several important workload patterns, including pseudo-periodicity, long range
dependence, and the “bag-of-tasks” behavior with strong temporal locality. These
salient properties are not present in parallel workloads on conventional supercomput-
ers [24, 36, 91, 118]. By studying the different representations of point processes it is
shown that statistical measures based on interarrivals are of limited usefulness when it
comes to autocorrelations and count based measures should be trusted instead.

2. Workload models are developed to reproduce the important statistical properties, es-
pecially the temporal correlations.
Firstly, pseudo-periodic job arrivals are successfully analyzed and modeled via match-
ing pursuit. Secondly long range dependence is modeled by the Multifractal Wavelet
Model (MWM) and a full arrival model is derived. Thirdly, a new model is developed
for job attributes that can not only fit the distribution but also generate comparable au-
tocorrelations. The locality in the real workload data can be well preserved. By com-
bining these models realistic synthetic workloads can be generated for performance
evaluation studies. A majority of previous research results on parallel workloads, on
the other hand, focus mainly on marginal distributions and first order statistics while
correlations and second order properties receive far less attention [24, 91, 118]. This re-
search shows that temporal burstiness (autocorrelation) is equally important compared
to amplitude burstiness (heavy tails) from a modeling perspective.

3. Performance impacts of workload correlations are quantified via simulations.
The results indicate that autocorrelations in workloads result in worse system perfor-
mance, both at the local and the Grid level. The performance degradation can be up
to several orders of magnitude under long range dependence. It is shown that realistic
workload modeling is indeed necessary to enable dependable performance evaluation
studies. This research presents a first attempt in quantifying the impacts of temporal
correlations for both arrivals and run times in a Grid environment. As is shown later,
temporal burstiness results in worse performance at the cluster level. However, it is not
necessarily a bad situation for Grid-level schedulers since the non-bursty periods can
be exploited for better load balancing at the Grid level. This points out an interesting
research direction of scheduling under autocorrelations.

6



1.3. Thesis Organization

4. A local learning framework is proposed for performance predictions on space-shared
computing environments and a set of techniques are developed for improving predic-
tion accuracy and performance.
Local learning techniques have been studied for application run time predictions [64].
In this research new measures such as resource state similarity are introduced to enable
predictions for queue wait times using the same technique. Under the local learning
framework new performance metrics such as effective capacity are defined and qual-
itatively evaluated. A set of improvements for predictions are proposed and quantita-
tively evaluated, all leading to better and faster predictions. These include a genetic
algorithm and adaptive tuning for parameter optimization, and a M-Tree structure for
efficient nearest neighbor search.

A high level overview of this research can be found in [72]. The rest of this thesis is
organized as follows:

• Chapter 2 includes a summary of statistical measures and techniques used throughout
the thesis. Point process and its representations are defined, which serve as the founda-
tion for analyzing job arrivals. Important statistical measures, such as autocorrelation,
periodicity, scaling, and fractals, are defined and discussed. Double stochastic models
such as Markov modulated Poisson process (MMPP) are introduced. Methods of mea-
suring stationarity are introduced as well. This chapter is published in [69, 82, 84, 88].

• Chapter 3 presents the statistical analysis of workloads on clusters and Grids. Re-
lated workload characterization literature is reviewed and a thorough description of the
workload data is included. Job arrivals, job attributes such as run time and memory
are analyzed in depth. The nature of workload dynamics as well as its implications are
discussed. This chapter is published in [69, 88]. Failure analysis at the job level is not
included here and the reader is referred to [80].

• Chapter 4 analyzes and models pseudo-periodic job arrivals via matching pursuit. The
stationarity of the signal is quantified by permutation entropy and it is shown that
stationarity is directly related to the modeling complexity. Another useful feature of
matching pursuit is to extract patterns from signals so that suitable models can be ap-
plied individually. This chapter is published in [81].

• Chapter 5 models long range dependence and scaling behavior using the Multifractal
Wavelet Model (MWM). The energy decay of wavelet coefficients can be approximated
scale by scale in the MWM model so that the scaling behavior in the original data can

7



1. Introduction

be well reproduced. It is shown that the additive nature of rates makes it possible to
model different patterns separately and aggregate them back to form a whole trace. This
makes our approach general and flexible enough to incorporate various patterns and
form a coherent solution for Grid job arrivals at different levels. A so-called controlled-
variability integrate-and-fire (CV-InF) algorithm is adopted to transform a rate process
into an interarrival process so that a full arrival model is obtained. This chapter is
published in [70, 85].

• Chapter 6 proposes a new model for workload attributes that can capture not only
marginal properties but also the second order statistics such as the autocorrelation func-
tion (ACF). This is fulfilled by a two-stage approach: Firstly the model based clustering
framework is applied for data clustering and parameter estimation of a mixture of Gaus-
sians model. Secondly, a novel localized sampling algorithm is proposed to generate
correlations in the synthetic data series. Furthermore, the approach is able to generalize
to more than one dimension, which means multiple correlated workload attributes can
be modeled simultaneously. This chapter is published in [83, 86].

• Chapter 7 quantitatively evaluate the performance impacts of workload correlations
in Grid scheduling. The simulation environment is based on GridSim and two cases
for performance evaluation are developed, namely Grid resource case and Grid broker
case. The results indicate that autocorrelations in workloads result in worse system
performance, both at the local and the Grid level. These effects should be taken into
consideration in the development of scheduling strategies. This chapter is published
in [73].

• Chapter 8 introduces a local learning framework for performance predictions on space-
shared resources. A set of new attributes are defined to characterize the resource states,
though which predictions for queue wait times are made possible in the framework. A
new performance metric called effective capacity is introduced for data-intensive jobs
and resources. Techniques to improve prediction accuracy and performance are intro-
duced. Genetic algorithms are designed to optimize the parameters of the prediction
algorithm. For improving accuracy local tuning is proposed to tune parameters for sub-
sets of training data. A novel adaptive selection algorithm is developed to effectively
select the tuning methods and avoid overfitting. For improving performance a search
tree structure called M-Tree is adopted for nearest neighbor search, which is able to
speed up the prediction up to 8 times faster. Experimental results are presented to
evaluate prediction techniques using real workload data from production clusters and
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1.3. Thesis Organization

supercomputers. This chapter is published in [71, 74, 76, 79].

• Chapter 9 summarizes the whole thesis, reaches several important conclusions, and
presents an outline of future research.

9





Chapter 2

Statistical Background

This chapter covers the statistical theories and methodologies used in workload characteriza-
tion and modeling. It serves as a reference for the research presented in the later chapters. The
chapter starts with the definition of point process and its representations because they are the
basis for analyzing job arrival processes. Statistical measures such as distributions, autocor-
relation function (ACF), and periodicity are described. A big part of this chapter is dedicated
to introduce and discuss scaling, fractals, and power law behavior. Definitions and relation-
ships among important notions such as long range dependence (LRD), burstiness, scaling and
wavelets are elaborated. These are the theories for understanding the temporal correlations
and dynamics of the workloads presented later in this thesis. Doubly stochastic models such
as Markov modulated Poisson processes (MMPP) and phase-type renewal processes are also
introduced as the reference models for short and middle-range autocorrelations. Methods for
measuring the goodness of fit and stationarity are presented in the final part of this chapter.

2.1 Point Processes

Job traffic can be described as a (stochastic) point process, which is defined as a mathematical
construct that represents individual events as random points at times {tn}. There are different
representations of a point process. An interarrival time process {In} is a real-valued random
sequence with In = tn − tn−1. The sequence of counts, or the count process, is formed by
dividing the time axis into equally spaced contiguous intervals of T to produce a sequence of
counts {Ck(T )}, where Ck(T ) = N((k + 1)T ) − N(kT ) denotes the number of events in the kth
interval. This sequence forms a discrete-time random process of non-negative integers and it
is another useful representation of a point process. A closely related measure is a normalized
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Figure 2.1: An example of a point process and its two representations: an interarrival time
process and a count process.

version of the sequence of counts, called the rate process Rk(T ), where Rk(T ) = Ck(T )/T .
In general, forming the sequence of counts loses information because the interarrival

times between events within interval T are lost. Nevertheless, it preserves the correspon-
dence between its discrete time axis and the absolute “real” time axis of the underlying point
process. The correlation in the process {Ck(T )} can be readily associated with that in the
point process. The interarrival time process, on the other hand, contains all the information
of the point process. However, it eliminates the direct correspondence between absolute time
and the index number thus it only allows rough comparisons with correlations in the point
process [90]. As is shown later, measures based on interarrival times are not able to reliably
reveal the fractal nature of the underlying process and count based measures should be trusted
instead. The different representations of a point process are illustrated in Figure 2.1.

2.2 Statistical Measures

No single statistic is able to completely characterize a point process and each provides a
different view and highlights different properties. A comprehensive analysis towards an im-
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proved understanding requires many such views. In this section the statistical measures used
throughout this thesis are defined. These measures apply to both interarrival time and count
(rate) representations, although their usefulness depends heavily on the analytic context.

2.2.1 Marginal Statistics

The first set of statistics focuses on the marginal properties of the process X = {Xn}, includ-
ing mean (µ), variance (σ2), probability density function (PDF), and cumulative distribution
function (CDF)

• Sample mean: X =
∑n

i=1 Xi

n

• Sample variance: S 2 =
∑n

i=1 (Xi−X)2

n−1

• Probability distribution: F(t) = P{X ≤ t}

• Probability density: f (t) = dF(t)/dt.

In practice the sample mean (X) and sample variance (S 2) are used to estimate mean
and variance, respectively. The so-called complementary cumulative distribution function
(CCDF) F′(t) = 1 − F(t) is commonly used to study probability distributions. Histogram, a
graph that shows the frequency of data in successive equal-szie numerical intervals, is used
to estimate the probability density function. The reader is referred to [111] for a detailed
treatment on these basic statistical measures.

2.2.2 Autocorrelation and Spectrum

The autocorrelation function (ACF) of a process X describes the correlations between differ-
ent points in time. If X is second order stationary, i.e., mean µ and variance σ2 do not change
over time, the autocorrelation function depends only on lag k1 and it can be defined as

R(k) =
E[(Xi − µ)(Xi+k − µ)]

σ2 , (2.1)

where E is the expected value (mean) operator. It should be noted that in signal processing the
above definition is often used without normalization, namely, without subtracting the mean
and dividing by the variance.

For the interarrival time process there is no direct relationship between the lag k and
time t, so the ACF RI(k) as well as other interarrival based measures have limited usefulness,

1For a discrete time series of length n, k is the difference in time and there is 0 ≤ k < n.
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2. Statistical Background

especially in the scaling analysis. The count autocorrelation proves to be a valuable measure
as it provides information about the second-order properties. For distinction count ACF is
denoted as RC(k,T ) for the inclusion of the count interval T .

Fourier transforming the autocorrelation function (ACF) yields the power spectral density
(PSD, or power spectrum) S ( f )

S ( f ) =
∑

k

R(k)e−i2πk f , (2.2)

where f is the frequency. Autocorrelation and power spectrum are commonly-used measures
for studying the correlation structures and second-order properties of a single process. Like
the autocorrelation, the count-based (S C( f ,T )) and rate-based spectrums (S R( f ,T )) prove to
be useful in the identification of fractal behavior. An estimate of power spectrum can be
derived via methods such as periodogram [11]. Discrete Fourier Transform (DFT) is used
exchangeably to show the frequency components of the signal.

2.2.3 Periodicity

From the theory of Fourier analysis it is known that periodicity shows up as peaks in the
frequency domain. Real world data, however, seldom exhibits perfectly periodic behavior. In
most situations pseudo-periodic signals are observed instead, potentially arising from various
sources of noises and the time-varying nature of the generation scheme. From this perspective
it is necessary to use quantitative methods to measure the degree of periodicity in the data.
Periodicity in a process can be detected and quantified using power-spectrum based methods.
The first measure P f is defined as the normalized difference of the sum of the power spectrum
values at the highest amplitude frequency and its multiples, and the sum of the power spec-
trum values at the halfway-between frequencies [100]. The total spectrum entropy (TSE)
calculates the entropy for the whole power spectrum while the saturated spectrum entropy
(SSE) excludes the first one or two “big” power spectrum values, which represent the total
energy of the signal. All measures have values between 0 and 1. Higher P f and lower en-
tropy correspond to stronger periodicity in the signal. These measures are important to study
pseudo-periodic job arrivals in Chapter 4.

2.2.4 Cross-correlation

Besides studying how events of the same process are correlated with each other, it is also im-
portant to reveal the correlations between events of distinct random processes. The simplest
way of investigation is to plot samples of both variables and visually identify if any pattern
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2.3. Scaling, Fractals, and Power Law Behavior

exists. A common alternative is the scatter plot, which displays the sample values of X and Y
jointly in a two-dimential figure. Simply plotting the data gives us lots of information of the
underlying correlation structures.

Nevertheless, visual information cannot be used to give definite answers and quantitative
measures are needed for identifying correlations in practice. In statistics, a simple and com-
mon measure is called correlation coefficient, which indicates the strength and direction of a
linear relationship between two random variables. The best known coefficient is the Pearson
product-moment correlation coefficient and it is obtained by dividing the covariance of the
two variables by the product of their standard deviations. It is formulated as

ρX,Y =
cov(X,Y)
σXσY

=
E((X − µX)(Y − µY ))

σXσY
. (2.3)

A more advanced version is referred as Spearman’s rank correlation coefficent [57], which
does not require any assumptions of linear relationship or the distributions of variables.

2.3 Scaling, Fractals, and Power Law Behavior

Fractal behavior is ubiquitous - it has been extensively reported and studied in both natural
and synthetic systems, such as in mathematics, physics, geology, biology etc, [90] and more
closely-related fields like computer network traffic [1]. Fractals posses a form of scaling: the
whole and its parts can not be statistically distinguished and the parts can be made to fit to
the whole by nontrivial ways of shifting and stretching. The main defining properties and
notions that characterize a fractal process are listed as follows:

• Scaling and the scaling exponent

• Power law behavior

• Self-similarity

• Burstiness

• Long range dependence (LRD)

• Heavy-tail distributions

• Monofractals and multifractals

• Wavelets Analysis.
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The definitions and relationships among these notions are discussed in detail, largely
based on the literature of related topics [1, 4, 10, 90, 106, 108, 122].

2.3.1 Scaling and Power Law

Physical processes can be observed from a vast range of scales, in other words, multi-
resolution. For instance, in network traffic studies one can represent the traffic as number
of bytes or packets at the level of milliseconds, seconds, and even minutes. On clusters and
Grids the number of job arrivals can be aggregated and averaged every second, every minute
or even every hour. Scaling, or scale invariance, means the lack of any special characteristic
scale, namely, all scales have equal importance. In an abstract mathematical construct scal-
ing can be extended to arbitrarily small sizes. Real world data, on the other hand, generally
exhibits minimum and maximum sizes beyond which scaling behavior is not obeyed. The
minimum and maximum scales that bound scaling are called the lower cutoff and the up-
per cutoff, respectively. Scaling leads to power law dependencies in the scaled quantities as
f (as) = g(a) f (s). It is shown in [90] that the only nontrivial solution of this scaling function
for real functions and arbitrary a and s is f (s) = bsc, for some constants b and c. In some
contexts c is referred as the scaling component. Despite the mathematical beauty of scale
invariance property, there is no simple definition that suffices for all real world systems and
processes. self-similar and long range dependent (LRD) processes are two most important
classes that are discussed in the following sections.

The power law relationship is intrinsic to understand the fractal behavior and it occurs
in many of the following presentations, such as the first-order statistics (marginal distribu-
tion), the second-order statistics (slow decaying variance, ACF), and nonlinear transforma-
tions (spectrum, wavelet coefficients).

2.3.2 Self-similarity

As is introduced in the previous section, (self-)scaling means parts of the whole can be shifted
and stretched to fit to the whole. If stretching equally in all directions yields such a fit, then
a process is said to be self-similar. Formally, a self-similar process X(t) with self similarity
parameter H > 0 is defined as

X(at) =d cH X(t), t ∈ R,∀c > 0, (2.4)

where =d means equality for all finite dimensional distributions. Self-similar processes are
non-stationary, and the most important subclass comes from those have stationary increments
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2.3. Scaling, Fractals, and Power Law Behavior

and can be called H-sssi processes1. In practice fractional Brownian motion (fBm) is a simple
yet widely used self-similar process and fractional Gaussian noise (fGn) is formed by its
stationary increments. The self similarity parameter is also called the Hurst parameter, and
H > 1/2 means the process exhibits long range dependence (LRD).

An exact self-similar process has its practical limitations. For instance, one single param-
eter H is not sufficient to reflect the rich scaling behavior. In real world data scaling also has
lower and upper cutoffs.

2.3.3 Burstiness, LRD, and Heavy Tails

Burstiness is the opposite of smoothness, namely, a great degree of variability. As is pointed
out in [1], two types of burstiness should be distinguished. Temporal burstiness arises from
the long range dependence (LRD) of the process, characterized by the autocorrelation (ACF)
and the power spectrum. Amplitude burstiness describes the variations and fluctuations in
data values, which is shown in the marginal distribution as heavy tails.

A process X(t) is said to be long range dependent (LRD) if either its autocorrelation
function or power spectrum satisfies the following conditions

R(k) ∼ crkα−1, k → ∞, or S ( f ) ∼ c f f −α, f → 0, (2.5)

where cr, c f are constants. The autocorrelation function R(k) decays so slowly that
∑∞

k=−∞ R(k) =
∞ and S (0) = ∞. Frequency-domain characterization of LRD also leads to a class of so-
called 1/ f -like processes (1/ f noise) [133].

LRD and the H-sssi process are closed related in that for 1/2 < H < 1,

α = 2H − 1. (2.6)

For marginal distributions heavy tails can be power law like:

P{X ≥ x} ∼ x−α, x→ ∞. (2.7)

It is shown as a straight line in log-log plot. Examples of power law distributions are Pareto
distribution and Zipf’s law. Processes from practical data do not always have such extreme
heavy tails, where Weibull, log-normal or hyperexponential distributions are commonly used
to fit the data.

It is of crucial importance to recognize the usefulness of different representations of pro-
cesses. In network traffic both interarrival and count based measures prove to be useful in

1A H-sssi process is self-similar with stationary increments and has a Hurst parameter H.
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analyzing the scaling behavior [3, 107]. However, for job arrivals on clusters and Grids mea-
sures based on interarrivals fails to reveal the fractal behavior of the underlying process and
only count/rate based measures can be trusted. This problem is discussed with greater detail
in a more theoretical treatment [90].

2.3.4 Monofractals and Multifractals

The scaling behavior introduced so far has one single exponent thus it can be called monofrac-
tal. There are cases in which a range of fractal behaviors exist within one process, or the
scaling exponent is time-dependent. The process is then called multifractal. A complete
presentation of multifractal formalism is referred to [106]. Multifractal scaling extends self-
similarity with a collection of exponents while maintaining a key feature, of which the mo-
ments follow power laws of scales. As is shown in Section 3.3.3, biscaling is a very simple
form of multifractals.

2.3.5 Aggregated Variance

The aggregation procedure is a commonly used technique to analyze processes with long
range dependencies. The aggregated series is equivalent to the rate process in section 2.1,
which is obtained by dividing a given series of length N into blocks of m and averaging the
series over each block

X(m)(k) =
1
m

km∑
i=(k−1)m+1

Xi, k = 1, 2, ..., [N/m]. (2.8)

Its sample variance Var(X(m)) scales like

Var(X(m)) ∼ mβ, β = 2H − 2,−1 ≤ β < 0, (2.9)

for a second-order stationary LRD process or a H-sssi process. In log-log plot the sample
variance versus m should be a straight line with a slope of β = 2H − 2. The aggregation
procedure is shown to be naturally rephrased within the wavelet transform framework and it
is directly related to the approximations in Haar multi-resolution analysis [4].

2.3.6 Wavelets and Scaling

Due to its inherent multi-scale/resolution properties, wavelets provide a natural framework
for analyzing the scaling behavior. Like the Fourier transform that analyzes signals with
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sinusoidal functions, the wavelet transform projects the signal onto the so-called wavelets [35,
121]. A wavelet function ψ(t) is a bandpass function that can be scaled and shifted

ψ j,k(t) = 2− j/2ψ(2− jt − k). (2.10)

There also exists a scaling function φ(t), which is a lowpass function that can be scaled and
shifted as well. A discrete wavelet transform (DWT) of a signal can be executed by passing
the signal recursively through a set of lowpass and bandpass filters [121]. As a result the
signal is decomposed into a sum of weighted scaling functions and wavelet functions

X(t) =
∑

k

c( j0, k)φ j0,k +
∑
j≤ j0

∑
k

d( j, k)ψ j,k(t), (2.11)

where c( j0, k) are referred as scaling coefficients (or approximations) and d( j, k) as wavelet
coefficients (or details).

A very attractive feature of wavelet analysis lies in the fact that the long range dependent,
non-stationary original process turns into stationary, nearly uncorrelated or short range de-
pendent wavelet coefficients d( j, k). In the case of scaling the energy of these coefficients is
power law dependent of scale j, denoted by

1
n j

n j∑
k=1

|d( j, k)|2 ∝ 2 jα. (2.12)

This property leads to a wavelet-based scaling exponent estimation tool called the Logscale
Diagram [2]. Compared with other power law based estimators like aggregated variance
and periodogram, this technique is shown to have better statistical and computational prop-
erties [4]. As has been explained and formulated by Abry et al. [2], generalized scaling
processes can be identified using Logscale Diagrams:

1. If scaling with α > 1 is found over all or almost all of the scales in the data, exact
self-similarity is detected. The Hurst parameter can be related to α with α = 2H + 1.

2. If α ∈ (0, 1) and the range of scales is from some initial scale j1 to the largest scale,
then scaling could be related to LRD with a scaling exponent of measured α.

3. If on the other hand, scaling is concentrated at the lower scales (from j1 = 1 to some
upper cutoff j2), the scaling may be best understood as indicating the fractal nature
(highly irregular) of the sample path.

It is highly possible that real world data have more than one alignment region within
a single Logscale Diagram, which is referred as biscaling. Biscaling can be regarded as
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different scaling exponents at small and large scales, respectively. A natural generalization
of Logscale Diagram beyond second order can be denoted as µ(q)

j = 1/n j
∑

k |d( j, k)|q, where

q is of real value. It is shown in [2] that E[µ(q)
j ] ∼ 2 j(ζ(q)+q/2). For monofractals such as exact

self-similar processes there is ζ(q) = qH, meaning that self similarity can be identified by
testing the linearity of ζ(q). If on the other hand ζ(q) is nonlinear then multifractal scaling
is detected. The so-called Multiscale Diagram is a realization of this result. The qth order
scaling exponent αq = ζ(q) + q/2 can be estimated in the qth order Logscale Diagram for
multiple q values. The Multiscale Diagram consists of the plot of ζ(q) = αq − q/2 against q
along with the confidence intervals. A lack of linearity in the Multiscale Diagram suggests
multifractal behavior therefore it becomes a useful tool for identifying multifractal processes.

2.4 Doubly Stochastic Models

Homogeneous Poisson processes are well-known “zero-memory” models, whose interarrivals
and counts are independently and identically distributed (I.I.D.) random variables. A gener-
alization of the Poisson process is the so-called doubly stochastic Poisson process (DSPP).
Its rate µ(t) is modulated by a positive-valued continuous-time stochastic process rather than
a fixed constant. The resulting process is thus doubly random: one source of randomness
arises from the stochastic rate µ(t) while another comes from the intrinsic Poisson events.

2.4.1 Markov Modulated Poisson Processes

A Markov modulated Poisson process (MMPP) is a doubly stochastic Poisson process (DSPP)
whose intensity is controlled by a finite state continuous-time Markov chain (CTMC). Equiv-
alently, an MMPP process can be regarded as a Poisson process varying its arrival rate ac-
cording to an m-state irreducible continuous time Markov chain. Following the notations
in [40], an MMPP parameterized by an m-state CTMC with infinitesimal generator Q and m
Poisson arrival rates Λ can be described as

Q =


−σ1 σ12 ... σ1m

σ21 −σ2 ... σ2m

. . ... .

σm1 σm2 ... −σm

 , (2.13)

σi =

m∑
j=1, j,i

σi j, (2.14)
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Λ = diag(λ1, λ2, ..., λm). (2.15)

The MMPP model is commonly used in telecommunication traffic modeling [55, 62] and has
several attractive properties, such as being able to capture correlations between interarrival
times while still remaining analytically tractable. The reader is referred to [40] for a thorough
treatment of MMPP properties as well as its related queuing network models.

A natural problem which arises with the applications of MMPPs is how to estimate its
parameters from the data trace. In [112] methods based on moment matching and maximum
likelihood (MLE) are surveyed and it is proven that MLE methods are strongly consistent.
In [113] Ryden proposed an EM algorithm to compute the MLE estimates of the parameters
of a m-state MMPP. Recently, Roberts et al. improved Ryden’s EM algorithm and extended
its applicability in two important aspects [110]: firstly, a scaling procedure is developed to
circumvent the need for customized floating-point software, arising from the exponential
increase of the likelihood function over time; secondly, evaluation of integrals of matrix
exponentials is facilitated by a result of Van Loan, which achieves significant speedup. The
improved version of Ryden’s EM algorithm is implemented in Matlab and it is by far the
best MLE estimator found for m-state MMPPs. Given the difficult numerical issues involved,
estimation errors could still be substantial, though. It should also be mentioned that the
estimation for higher order MMPPs is increasingly difficult, since there are more parameters
to take into account.

2.4.2 Hyperexponetial Renewal Processes

In a renewal process the interarrival times are independently and identically distributed but
the distribution can be general. A Poisson process is characterized as a renewal process with
exponentially distributed interarrival times. In phase-type renewal processes the interarrival
times are distributed in so-called phase-type, e.g. as a n-phase hyperexponential distribution.
In theory any interarrival distribution can be approximated by phase-type ones, including
those which exhibit heavy-tail behavior [109].

However, a major modeling drawback of renewal processes is that the autocorrelation
function (ACF) of the interarrival times vanishes for all non-zero lags so they cannot cap-
ture the temporal dependencies in time series. Unlike the renewal models, MMPPs introduce
dependencies into the interarrival times so they can potentially simulate the traffic more real-
istically with non-zero autocorrelations.

There are special cases where an MMPP is a renewal process and the simplest one is the
Interrupted Poisson Process (IPP). The IPP is defined as a 2-state MMPP with one arrival
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rate being zero. Stochastically, an IPP is equivalent to a 2-phase hyperexponential renewal
process. Following the formulations in [40] the IPP can be described as

Q =

−σ1 σ1

σ2 −σ2

 , Λ = λ 0
0 0

 , (2.16)

and the 2-phase hyperexponential distribution (H2) has the density function

fH2 (t) = pµ1e−µ1t + (1 − p)µ2e−µ2t. (2.17)

The parameters of H2 can be transformed to parameters of IPP by

λ = pµ1 + (1 − p)µ2, (2.18)

σ1 =
p(1 − p)(µ1 − µ2)2

λ
, (2.19)

σ2 =
µ1µ2

λ
, (2.20)

while the H2 parameters (p, µ1, µ2) can be obtained from the data by applying an EM algo-
rithm as described in [5], whose implementation is freely available1.

2.5 Goodness of Fit

Fitting distributions to data requires a good measure of “goodness-of-fit”. A simple and
widely-used measure is Kolmogorov-Smirnov Test, which calculates the maximal distance
between the cumulative distribution function (CDF) of the theoretical distribution and the
samples empirical distribution. Hereby a novel measure called transportation distance is
introduced for better assessment of fitting.

2.5.1 Transportation Distance of Time Series

Coming from a dynamical systems theory background, Moeckel and Murray have given a
measure of distance between two time series [97] that, from a time series perspective, excel-
lently analyzes (short-time) correlations. It is based on recent research on nonlinear dynamics
[9, 63]. Given a time series, the data is first discretized, i.e. binned, with a certain resolution
(a parameter of the method), and then transformed into points in a k–dimensional discrete

1The EMpht program. http://home.imf.au.dk/asmus/pspapers.html.
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space, referred to as the reconstruction space, using a unit-delay embedding. In dimension
2, for example, all n − 1 consecutive pairs (xi, xi+1), 1 ≤ i < n, of n given data points thus
constitute a point yi = (xi, xi+1) in the reconstruction space. The idea is, that the essential
dynamics of generic systems can usually be reconstructed sufficiently in a low dimensional
space. The normalized k–dimensional probability distributions of these data points from the
two series will then be considered as a transportation problem (also called a minimum cost
flow problem): What is the optimal way, given the first probability distribution, to arrive at the
second, just by transporting weight, i.e. probability, from some boxes to some others? With
each movement a transportation cost is given, which is the normalized (by mass) taxi–cab
distance from the first box to the second, measured in units of the discretization size1, which
is given by the resolution parameter of the method. The minimal such transportation cost can
be computed by linear programming. For details on linear programming, the transportation
problem and algorithmic improvements, the reader is referred to [114].

2.6 Stationarity

Stationarity is a fundamental issue in data analysis and modeling. Many statistical models as-
sume that the data series is stationary, however, real world data is most likely non-stationary
and noisy. The short-time Fourier transform (STFT) is a simple way to show time and fre-
quency information simultaneously by Fourier transforming signals by small windows over
time [26]. Another novel method is called permutation entropy (PE), which quantitatively
measure the stationarity of the data. Permutation entropy is a complexity measure for time
series analysis and it can be used to detect dynamic changes in signals. The degree of non-
stationarity of a signal is reflected by a higher variability of its PE. The reader is referred
to [18] for a thorough treatment on this method and its properties.

2.7 Summary

Second-order properties such as autocorrelations and scaling are emphasized in the analysis
of workloads, which leads to the identification of important patterns. Statistical measures are
needed for characterizing the patterns and they have been elaborated in this chapter. Doubly
stochastic models introduced here are included in the performance studies of grid scheduling.
Transportation distance has been used for measuring the goodness of fit. Measures such as
permutation entropy are applied for quantifying stationarity, which is important to understand
how well the model fits the data (especially for pseudo-periodic signals).

1This is equivalent to considering all the points in each discrete box to be located at the center of their box.
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Chapter 3

Workload Dynamics on Clusters
and Grids

This chapter presents a comprehensive statistical analysis of a variety of workloads collected
on production clusters and Grids. The applications are mostly computational-intensive and
each task requires single CPU for processing data, which dominate the workloads on current
production Grid systems. Trace data obtained on a parallel supercomputer is also included
for comparison studies. The statistical properties of workloads are investigated at different
levels, including the Virtual Organization (VO) and user behavior. The aggregation procedure
and scaling analysis are applied to job arrivals, leading to the identifications of several basic
patterns, namely, pseudo-periodicity, long range dependence (LRD), and multifractals. It
is shown that statistical measures based on interarrivals are of limited usefulness and count
based measures should be trusted when it comes to correlations. Other job characteristics like
run time, memory consumption are also studied. A “bag-of-tasks” behavior is empirically
evidenced, strongly indicating temporal locality. The nature of such dynamics in the Grid
workloads is discussed at the end of the chapter.

3.1 Workloads in a Broader Perspective

The most closely related workload studies are from parallel supercomputers. On single paral-
lel machines a large amount of workload data has been collected1, characterized [36, 91, 120],
and modeled [24, 91, 118]. In [24] polynomials of degree 8 to 13 are used to fit the daily
arrival rates. In [91] a combined model is proposed where the interarrival times fit a hyper-

1Parallel Workload Archive. http://www.cs.huji.ac.il/labs/parallel/workload/.
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3. Workload Dynamics on Clusters and Grids

Gamma distribution and the job arrival rates match the daily cycle. Time series models such
as ARIMA are studied in [120], which try to capture the traffic trends and interdependencies.
Other characteristics such as run time and parallelism are also investigated and models are
proposed based on distribution fitting [91] or Markov chains [118]. It could be concluded that
a majority of previous research results on parallel supercomputers focus mainly on marginal
distributions and first order statistics while correlations and second order properties receive
far less attention. The reason could be that characteristics on parallel workloads are inherently
weakly autocorrelated or short range dependent (SRD). For instance, in this chapter analysis
of a representative parallel workload is conducted for comparison studies. It is shown that
the interarrival time process of job arrivals as well as the run time series are indeed short
range dependent. Despite the fractal behavior at small scales, the job count process is also
weakly autocorrelated with quickly-vanishing autocorrelation lags. Data-intensive workloads
on clusters and Grids, on the other hand, exhibit pseudo-periodicity and long range depen-
dence which are not present in parallel workloads. Therefore second order statistics is crucial
and new methodologies should be proposed for both analysis and modeling.

Studies on network traffic are reviewed because it includes a rich collection of advanced
statistic tools for analyzing and modeling self-similar, long range dependent, and fractal be-
havior. The self-similar nature of Ethernet traffic is discovered in [68] and consequently a
set of exact self-similar models such as fractional Brownian motion and fractional Gaussian
noise are proposed as traffic models [99, 127]. Network traffic is also shown to be long
range dependent, exhibiting strong temporal burstiness [1, 108]. Both self-similar and LRD
processes are most well-known examples of general scaling processes, characterized by the
scaling and power law behavior [2]. Due to its inherent multi-resolution nature, wavelet is
proposed as an important tool for analysis and synthesis of processes with scaling behav-
ior [2, 3, 128]. Multifractal models and binomial cascades are proposed for those processes
with rich fractal behavior beyond second-order statistics [39, 107]. Recent advances include
a more general Infinitely Divisible Cascade (IDC) process [21]. These methodologies enable
the scaling analysis on job arrivals and the identification of important patterns.

Workload characterization on clusters with marginal statistics can be found in [59, 78, 96].
In [96] an ON-OFF Markov model is proposed for modeling job arrivals, which is essentially
equivalent to a two-phase hyperexponential renewal process. The major modeling drawback
using renewal processes is that the autocorrelation function (ACF) of the interarrival times
vanishes for all non-zero lags so they cannot capture the temporal dependencies in time se-
ries [62]. A more sophisticated n-state Markov modulated Poisson process is applied for
modeling job arrivals at the Grid and VO level [82], making a step forward towards capturing
autocorrelations. Nevertheless, only limited success is obtained by MMPP because of the rich
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3.2. Workload Data Under Study

Trace Location Arch. Scheduler CPUs Period #Jobs
LCG1 Grid wide data Grid Grid Broker ∼30k Nov 20-30, ’05 188,041
LCG2 Grid wide data Grid Grid Broker ∼30k Dec 19-30, ’05 239,034
NIK05 NIK, NL PC cluster PBS/Maui 288 Sep - Dec, ’05 63,449
RAL05 RAL, UK PC cluster PBS/Maui 1,000 Oct - Nov, ’05 332,662
LPC05 LPC, FR PC cluster PBS/Maui 140 Feb - Apr, ’05 71,271
SBH01 SDSC, US IBM SP LoadLeveler 1152 Jan - Dec, ’01 88,694

Table 3.1: Summary of workload traces used in the experimental study (NIK - NIKHEF).

Category Traces Levels Characteristics to study
Grid LCG1, LCG2 Grid, VO Arrival, Run time
Cluster NIK05, RAL05, LPC05 Site, VO, User Arrival, Run time, Memory
SC SBH01 Site, User Arrival, Run time, Parallelism

Table 3.2: Different levels and characteristics under study for the Grid, the cluster, and the
supercomputer (SC) traces.

behavior and patterns hidden in Grid workloads at different levels. This chapter identifies and
characterizes those salient workload patterns on clusters and Grids.

3.2 Workload Data Under Study

The workload data under study are collected from real production clusters and Grids. Ta-
ble 3.1 presents a summary of workload traces used in this thesis. LCG1 and LCG2 are two
traces from the LHC Computing Grid1. The LCG production Grid consists of approximately
180 active sites with around 30,000 CPUs and 3 petabytes storage (Dec 2005), which is pri-
marily used for high energy physics (HEP) data processing. There are also jobs from biomed-
ical sciences running on this Grid. Almost all the jobs are independent, computationally-
intensive tasks, requiring one CPU to process a certain amount of data. The workloads are
obtained via the LCG Real Time Monitor2 for two periods: LCG1 consists of jobs of eleven
consecutive days from November 20th to 30th in 2005, while LCG2 is from December 19th
to 30th in the same year. These two traces carry valuable information about the user behavior
at the Grid level.

1LCG is a data storage and computing infrastructure for the high energy physics community that will use the
Large Hadron Collider (LHC) at CERN. http://lcg.web.cern.ch/LCG/.

2The Real Time Monitor is developed by Imperial College London and it monitors jobs from all major Resource
Brokers on the LCG Grid therefore the data it collects are representative at the Grid level. A Resource Broker (RB)
is a service to receive and schedule jobs from Grid users. http://gridportal.hep.ph.ic.ac.uk/rtm/.
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3. Workload Dynamics on Clusters and Grids

Trace VO or user names under study
LCG1 lhcb, atlas, cms, dteam
LCG2 lhcb, atlas, cms, dteam
NIK05 lhcb, atlas, com1
RAL05 hep1, atlas
LPC05 biomed
SBH01 user45, user328, user272

Table 3.3: Names for different VOs or users in experimental studies. lhcb, atlas, and cms
are major HEP experiments in the LCG Grid. dteam is a VO mostly consisting of software
monitoring and testing jobs in the Grid. hep1 is a HEP collaboration between institutes in UK
and US, part of which is also involved in LCG. biomed is the VO with biomedical applications
and it contributes to ∼65% of LPC05 jobs. com1 is a company partner with NIKHEF, which
runs medical-related data-intensive jobs. user45, user328, and user272 are the top three users
on SDSC Blue Horizon with most of the job submissions.
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Figure 3.1: Distributions of number of jobs by VOs and users on clusters and Grids.

The Grid sites consists of computing clusters and storage systems. Each cluster runs its
local resource management system and defines its own sharing policies. It is also important
to analyze the workloads at the cluster level. Traces are obtained from three data-intensive
clusters, which are named NIK05, RAL05, and LPC05. They are located at the HEP insti-
tutes in the Netherlands, UK, and France, respectively, and all of them participate in LCG.
The clusters are made of commodity components, and deploys similar cluster software suite
(e.g. PBS/Maui) and Grid middleware from LCG. It should be noted that these clusters are
involved in multiple collaborations simultaneously and have their own local user activities.
Grid jobs from LCG only account for a portion of the whole workloads, depending on the
level of involvement and local policies. The trace SBH01 is from a SDSC parallel supercom-
puter and it is included for comparison studies.

Workloads typically have certain structures. Jobs come from different groups and users.
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Figure 3.2: The histogram plot, autocorrelation function (ACF), and discrete Fourier trans-
form (DFT) for the interarrival time process of lhcb, LCG1.
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Figure 3.3: The sequence plot, autocorrelation function (ACF), and power spectrum via peri-
odogram for the count process of lhcb, LCG1.

In Grids, Virtual Organization (VO) is an important concept and it is defined in Section 1.1.3.
In LCG, VOs are mostly named after major HEP experiments and scientific disciplines, such
as lhcb, atlas, or biomed. It is observed that a small number of top VOs and users often dom-
inate the workload, as is shown in Figure 3.1. This type of patterns can also be empirically
found in many social and physical phenomena, such as database transactions and Unix file
sizes [8, 36]. By analyzing the main VOs and users a good understanding of the whole work-
load can be obtained. Moreover, patterns emerge by simply using the nominal VO names
for categorization without applying sophisticated clustering techniques. From a performance
evaluation perspective it is also desirable to include VO or users in the models since most of
the policy rules are based on their names. Given these many motivations, the analysis in this
chapter focuses on the VO level. User level experiments are carried out for SBH01 because
the VO/group information is not available. The levels and the different VO/user names under
study are shown in Table 3.2 and 3.3, respectively.

Table 3.2 shows the job characteristics at different levels. Different characteristics are
investigated for each level based on their usage and availability. For data-intensive Grids job
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3. Workload Dynamics on Clusters and Grids

Trace TSE SSE P f

lhcb, LCG1 (scale=6) 0.40 0.74 0.84
lhcb, LCG2 (scale=6) 0.18 0.72 0.78
dteam, LCG1 (scale=6) 0.69 0.71 0.94
dteam, LCG2 (scale=6) 0.68 0.70 0.95
com1, NIK05 (scale=8) 0.79 0.80 0.89
all, NIK05 (scale=8) 0.88 0.91 0.79
biomed, LPC05 (scale=8) 0.63 - 0

Table 3.4: Periodicity measures. TSE - total spectrum entropy, SSE - saturated spectrum
entropy. P f - the periodicity measure as defined in Section 2.2.3.

arrivals and run times are being analyzed. On clusters job memory consumption becomes
available for study. In both cases parallelism need not to be considered because of its equality
to one. On the supercomputer, however, parallelism becomes an important characteristics so
it is included in the study.

The analysis is to apply the statistical measures discussed in Chapter 2 to each level of
workloads for different characteristics. This has generated a large number of data and figures.
The interest point, however, is to discover some basic pattern or patterns of the workload
characteristics. Therefore the presentation of results is categorized by the discovered patterns
and only representative figures of each pattern are shown. In the following sections, the
job arrival patterns is analyzed first, followed by run time, memory, and parallelism. Cross-
correlations between characteristics are then examined.

3.3 Job Arrival Process

There are three basic patterns identified for job arrivals on clusters and Grids: pseudo-
periodicity, long range dependence (LRD), and (multi)fractals, which are presented sub-
sequently in the following sections. Short range dependence is also observed for cluster
workloads. It is not included here in the characterization but will be investigated in the per-
formance studies of workload correlations.

3.3.1 Pseudo-periodicity

There are a number of VOs at the Grid and the cluster level which exhibit pseudo-periodic
patterns and lhcb on LCG1 is used as the example here. Figure 3.2 shows the first and second
order statistics of job interarrival times of lhcb, LCG1. A strong deterministic component
of around 20 seconds is observed in the histogram plot. As to the second-order properties,
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Figure 3.4: Plots of the first, second order statistics and scaling analysis for both interarrival
and count processes of biomed, LPC05. The dash line in the Logscale Diagram is the linear
fit for estimating the scaling exponent α.

certain periodicity is detected in the ACF and DFT plot. The decaying peaks in the ACF plot
correspond to the two main spikes in the low frequency domain of the DFT. Nevertheless,
periodicity for interarrival times does not hold for all processes belonging to this pattern. This
is in accordance with the fact that interarrival based measures eliminate the direct relation
with the real time axis and count based measures should be examined.

The next step naturally goes to the aggregation procedure which uses count based mea-
sures. Figure 3.3 plots the count process together with its ACF and power spectrum for scale1

= 6. Periodicity is clearly detected by the equally-spaced peaks in the ACF plot and the mul-
tiple harmonics in the power spectrum. The quantitative measures for periodicity are shown

1A dyadic scale is used so scale j means T = 2 j seconds in the count process. This applies to all the scales in
the count based measures used throughout this paper.
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Figure 3.5: The sequence plot, autocorrelation function (ACF), and power spectrum via peri-
odogram for the count process of atlas, LCG2.
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Figure 3.6: The sequence plot, autocorrelation function (ACF), and discrete Fourier transform
(DFT) for the count process of LCG1.

in Table 3.4. SSE values should be used to examine the strength of periodicity and its results
are consistent with those of P f : lower SSE values correspond to higher P f values, which
indicate stronger periodic behavior. It is observed that all listed processes except biomed,
LPC05 show quite strong periodicity. As a comparison biomed, LPC05 shows no periodicity
at all and it is long range dependent.

3.3.2 Long Range Dependence (LRD)

biomed, LPC05 is used as a representative example for illustrating long range dependence.
As is shown in Figure 3.4, the interarrival time distribution is heavy-tailed and amplitude
burstiness is observed. The ACF of interarrival times, on the other hand, has quickly decaying
lags and shows short range dependence. This is in accordance with the scaling exponent
estimate α = 0.164 in the Logscale Diagram in Figure 3.4. For the Logscale Diagram of
count based measures, the scaling region is from the octave 8 (corresponding to scale 10 in
the variance plot) up to the largest scale with an estimated scaling exponent α = 0.96. This

32



3.3. Job Arrival Process

0 5 10 15
x 10

4

0

1

2

3

4x 10
4

Interarrival seq. number

S
ec

on
ds

hep1, RAL05

0 20 40 60 80
0

2

4

6x 10
4

Job interarrival time (s)

C
ou

nt

Histogram

 

 

hep1, RAL05

0 50 100

0

0.5

1

Lag

A
C

F

Job interarrival time

 

 

hep1, RAL05

2 4 6 8 10 12

18

20

22

24
Logscale Diagram, α−est = 0.21

Octave j

y
j
 

iat − hep1, RAL05

5 10 15
−4
−2

0
2
4
6
8
Logscale Diagram, α−est = 1.11

Octave j

y
j
 

count − hep1, RAL05

0 2 4

−1

−0.5

0

ζ
q
 = α

q
 − q/2

q

ζ
q

0 2 4
−0.3

−0.2

−0.1

0

0.1

h
q
 = ζ

q
 / q

q

h
q

0 2 4 6 8
x 10

4

0

200

400

600

Count interval number

C
ou

nt

hep1, RAL05 (scale = 6)

0 100 200 300

0

0.5

1

Lag

A
C

F

Job arrival count (scale=6)

 

 

hep1, RAL05

0 0.5 1

−20

0

20

40

Normalized Frequency

P
ow

er
/fr

eq
ue

nc
y

Periodogram for count (scale=6)

 

 

hep1, RAL05

Figure 3.7: Plots of the first, second order statistics and scaling analysis for both interarrival
and count processes of hep1, RAL05. The right figure in the middle row is the Multiscale
Diagram as explained in Section 3.3.3.

type of scaling strongly suggests long range dependence behavior [2]. Plotting the count
processes from several scales and their second order statistics further confirm LRD. It is
shown in Figure 3.4 that the ACF and the spectrum of scale 8 decay very slowly. It should be
noted that the scaling and LRD behavior has a certain lower bound beyond which scaling is
not obeyed.

Data from real production systems is highly complex and different patterns can be ob-
served within one process. Long range dependence, for instance, can be mixed with periodic
components. There are two types of periodic components added to a LRD process. The first
type is LRD plus high-frequency periodic components. Figure 3.5 shows the count process of
atlas, LCG2. A slowly-decaying ACF lag indicates the presence of long range dependence.
There is also a high frequency periodic component observed in the power spectrum. As is
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3. Workload Dynamics on Clusters and Grids

Arrival Patterns Level names
Pseudo-periodic lhcb-LCG1, lhcb-LCG2, dteam-LCG1, dteam-LCG2, NIK05, com1-

NIK05, lhcb-NIK05
LRD atlas-LCG1, cms-LCG1, biomed-LPC05, atlas-NIK05, atlas-RAL05
LRD + Periodic LCG1, LCG2, atlas-LCG2, cms-LCG2
Multifractals RAL05, hep1-RAL05, SBH01, user45-SBH01
SRD user328-SBH01, user272-SBH01

Table 3.5: Different levels of workload traces are categorized according to job arrival patterns.

shown in the ACF plot, the periodic fluctuations are nicely aligned with the power law de-
caying lags. The high frequency component can be related to some of the deterministic job
submissions from this Virtual Organization.

The second type of periodic behavior contains multiple components, mostly concentrated
in the lower frequency domain. This type is usually found in the aggregated whole trace
with mixed deterministic and stochastic components. The Grid level LCG1 and LCG2 are
examples of this pattern and LCG1 is shown in Figure 3.6. The count process (scale = 6) is
LRD along with multiple low frequency peaks. These peaks can be related to the behavior
of main VOs. By cross-referring the ACF plot of lhcb, LCG1, it can be found that the 240-
minute peak is contributed by lhcb. This indicates that the count/rate processes at the Grid
level are formed by aggregations of the VO processes.

3.3.3 Multifractals

Figure 3.7 shows hep1, RAL05 as an example for multifractals. The interarrival time process
is short range dependent. The Logscale Diagram of the count process exhibits biscaling (see
Section 2.3.6). The scaling concentrated at the lower scales indicates the fractal nature of the
sample path. The alignment at higher scales, on the other hand, resembles that of a stationary
SRD process. This is further visualized for scale = 6 with quickly vanishing ACF lags and
a white-noise like spectrum. For testing multifractality the Multiscale Diagram of the count
process is plotted (“blue circle”, middle-right in Figure 3.7). A simulated fractional Gaussian
noise (fGn) with H = 0.8 is also shown as reference of monofractals (“red cross” in the fig-
ure). It is shown that the ζq of fGn (star-dotted line) is linear to q while the hep1-RAL05 count
process (circle-dashed line) is nonlinear, indicating multifractal scaling. This corresponds to
the plot on the right: the hq of the count process departs heavily from the horizontal line-like
fGn. A multifractal model is needed to capture the scaling behavior of such patterns [107].
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Figure 3.8: The sequence plot, complementary cumulative distribution function (CCDF), and
autocorrelation function (ACF) for run time and memory of lhcb, NIK05.

Table 3.5 shows that different levels of traces as categorized by the arrival patterns. It
is concluded that most of the data-intensive traces are either pseudo-periodic, long range
dependent or the combination of the two, whether it is at the cluster, the Grid, or the VO
level. Certain VOs and clusters exhibit multifractal behavior (e.g. RAL05) and at larger scales
their count processes turn to be short range dependent (SRD). For the supercomputer trace
multifractal or SRD patterns are observed, excluding long range dependence. The nature and
origin of different arrival patterns are discussed in depth in Section 3.5.

3.4 Run time, Memory, and Parallelism

This section focuses on the workload characteristics such as run time and memory. The data
is ordered ascendantly by the job arrival times and the autocorrelation function is used to
examine temporal correlations in the sequence of data.

3.4.1 Clusters and Grids

Figure 3.8 plots the marginal distributions and autocorrelations for job run time and memory
of lhcb, NIK05. The distributions of run times are highly multimodal, meaning that applica-
tions within one VO are more similar to each other with specific values of run times. Similar
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Figure 3.9: Scatter plots of interarrivals, run time, and memory of lhcb, NIK05.

results are observed for memory consumption. Run times and memories with similar values
also turn to appear subsequently in time, which is evidenced by the fluctuating horizontal
lineups in the sequence plot. It is not surprising to see the strong autocorrelations in the
sequences of run times or memories. One explanation of these observations is that the com-
puting environment at the cluster level is more homogeneous compared to the Grid so less
variations are expected on job run times and memories. The “bag-of-tasks” behavior and
similarity resulted by VO categorization lead to a strong degree of temporal locality [38].

It is also interesting to see how the interarrival times are jointly distributed with the se-
quences of job attributes. This helps to correlate arrivals and run times (memories) and iden-
tify the ”bag-of-tasks” phenomenon on data-intensive environments. Figure 3.9 shows the
scatter plots of run times and memories against interarrival times of lhcb, NIK05. It is ob-
served that job run times and memories are heavily clustered in the range of small interarrival
times. This suggests that not only similar values appear in a sequence, but also times be-
tween arrivals in a sequence are relatively small. Figure 3.9 also contains a scatter plot of run
time against memory, indicating strong correlations. Correlation coefficients calculated by
Pearson’s as well as by Spearman’ rank are given in Table 3.6. Among the three VOs lhcb,
NIK05 shows the strongest correlation between run time and memory. For the other two VOs
weak to moderate correlation coefficients are obtained, however, correlation coefficients are
used only in combination with other measures due to their inherent limitations (especially
Pearson’s). It can concluded that temporal locality and “bag-of-tasks” behavior are clearly
evidenced for workloads on clusters and Grids.

3.4.2 Parallel Supercomputers

Figure 3.10 shows the statistical properties of run times and parallelism for the parallel su-
percomputer SBH01. At the supercomputer level no multimodality is detected, and there is

36



3.5. The Nature of Grid Workload Dynamics

Trace Characteristics Pearson’s CC Spearman’s Rank CC
biomed-LPC05 Run time, Memory 0.173 0.695
lhcb-NIK05 Run time, Memory 0.756 0.826
hep1-RAL05 Run time, Memory 0.013 0.456
SBH01 Run time, Parallelism 0.100 0.430

Table 3.6: Results of Pearson’s and Spearman’s rank correlation coefficients (CC, defined in
Section 2.2.4) for run times v.s. memories on clusters, and for run times v.s. parallelism on
the supercomputer.
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Figure 3.10: Plots of run time and parallelism for a parallel supercomputer trace SBH01.

moderate to weak autocorrelations in the sequence of run times. For parallelism a power-
of-two phenomenon is clearly observed as reported in the parallel workloads literature. In
this case a power-of-eight pattern is prominent, mostly because the IBM SP has nodes with
eight processors. The cross-correlation between run time and parallelism has shown diverse
results [78, 91] and there is no correlations for the parallel workload under study.

3.5 The Nature of Grid Workload Dynamics

The focus of this chapter is on production Grid environments whose workloads consist of
flows of independent, computationally-intensive tasks. By looking at the current workload
structure, together with the booming factor of computing-based solutions to system-level sci-
ences such as physics and biology, it can be envisioned that computationally-intensive appli-
cations contribute to a main part of workloads running on current and future Grids. This type
of applications are also well suited to run on a heterogeneous Grid environment because of
its loosely-coupled and data-parallel nature. Real parallel applications such as those on tradi-
tional supercomputers, on the other hand, are more tightly-coupled with heavy inter-process
communications. Based on the different properties of applications and architectures, it is ex-
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3. Workload Dynamics on Clusters and Grids

pected that cluster and Grid workloads possess structures and patterns that are different from
those on parallel supercomputers. The quest starts with the origin of job arrival dynamics.

There are three patterns that are identified for data-intensive job arrivals. The first one
exhibits strong periodicity, which suggests certain deterministic job submission mechanisms.
lhcb is a large HEP experiment in the LCG Grid with the largest portion of jobs. By taking
into account that close to 90% of lhcb jobs (around 60,000) are from a single “user” during
eleven consecutive days in LCG1, it can be assumed that scripts are made to submit those
jobs, which are deterministic in nature. It can also be interpreted that automated tasks need
to be implemented to process such a huge amount of scientific data. Periodicity can also
comes from testing and monitoring jobs in the Grid such as those from dteam. dteam stands
for “deployment team” and it is dedicated for a continuously functioning and operating Grid.
Mostly testing and monitoring jobs are initiated automatically by software in a periodic fash-
ion. The periodic pattern is also observed for VOs at the cluster level. It is considered as a
basic pattern that originates from automated submission schemes. The second pattern is long
range dependent (LRD) and it applies to many production VOs. It can be partially explained
by the repetitive executions of multiple specific applications. A typical user would submit
sequences of tasks with a heavy-tailed inter-submission time. This behavior shows tempo-
ral burstiness, which is argued in [8] that it essentially originates from a priority selection
mechanism between tasks and non-tasks waiting for execution. LRD forms the second basic
pattern that characterizes job arrivals on clusters and Grids. By combining periodicity and
LRD some interesting patterns emerge. The process can be long range dependent with high
frequency oscillations, rooting from the short-period repetitions of job arrival rates at small
time scales. The process can also be LRD with multiple lower frequency components, which
is mainly due to the addictive nature of aggregation at the Grid level.

When more characteristics such as run time and memory are taken into account, “bags-
of-tasks” behavior is empirically evident for data-intensive workloads. The marginal distri-
butions for run time and memory are highly multimodal. Certain numeric values not only
occur subsequently, but also turn to appear within certain bursty periods. This is because of
the nature of data-intensive applications. On conventional parallel supercomputers, on the
other hand, such behavior is not present in the workloads [24, 78, 91].

3.6 Summary

In this chapter a comprehensive statistical study was carried out for workloads on clusters
and Grids, with an emphasis on the correlation structures and the scaling behavior. It was
shown that statistical measures based on interarrivals are of limited usefulness and count
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3.6. Summary

based measures should be trusted instead when it comes to correlations. Pseudo-periodicity,
long range dependence, and “bag-of-tasks” behavior with strong temporal locality are im-
portant characteristic properties of workloads on clusters and Grids, which is not present in
traditional parallel workloads. Workload models should capture these salient statistical prop-
erties, especially taking into account the rich correlation strcutures. The performance impacts
of correlations in scheduling should be quantitatively evaluated.
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Chapter 4

Pseudo-Periodic Job Arrivals

Based on the results of workload characterization, the following three chapters investigate
how to realistically model the workloads by reproducing important statistical properties. This
chapter focuses on the analysis and synthesis of pseudo-periodic arrival behavior. A signal
decomposition methodology called matching pursuit is adapted and applied in modeling job
arrival processes. Experimental results on real workload data are presented and discussed.

4.1 Matching Pursuit

Sinusoidal modeling has been widely used in modeling pseudo-periodic signals, especially
in audio signal processing [50, 95]. The sinusoidal parameters can be estimated by methods
such as spectral peak picking and analysis-by-synthesis. This chapter focuses on a particular
analysis-by-synthesis method called matching pursuit. The matching pursuit algorithm is
introduced in [94] for signal decomposition and several variations have been proposed [50,
52, 56, 67]. It is a greedy, iterative algorithm which searches a set of candidate functions for
the element that best matches the signal and subtracts this function to form a residual signal to
be approximated in the next iteration. The following subsections introduce the basic notions
of a standard matching pursuit algorithm and the reader is referred to [52, 94] for details.

4.1.1 Atoms and Dictionaries

Decompositions of signals over families of functions that are well localized both in time and
frequency have important applications in signal processing and beyond. Windowed Fourier
transforms and wavelet transforms are well-studied examples of such decompositions. The
basic functions or waveforms are called time-frequency atoms. Gabor atoms are a general
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4. Pseudo-Periodic Job Arrivals

family of waveforms that are widely used for decomposition and they have the form

gs,u,ξ(t) :=
1
√

s
w
( t − u

s

)
ei2πξ(t−u), (4.1)

where s, ξ, u represent scale, frequency, and translation, respectively. Gabor atoms are ob-
tained by dilating, translating, and modulating a mother window w(t), which is real-valued,
positive, and satisfies

∫
|w(t)|2dt = 1. The energy of a particular Gabor atom is centered at

time u and is proportional to s. Fourier transforming gs,u,ξ(t) results in ĝs,u,ξ( f ), whose energy
is concentrated around ξ with a size proportional to 1/s.

Given the strong harmonic components in signals, it is natural to define harmonic atoms
as

h(t) :=
K∑

k=1

ckgs,u,ξk (t),
∫
|h(t)|2dt = 1, (4.2)

where ξk ≈ kξ0, ck are complex coefficients, 1 ≤ k ≤ K. Compared with a Gabor atom,
the Fourier transform of a harmonic atom has K peaks located around frequencies ξk with a
common size proportional to 1/s.

Real-valued Gabor atoms are of the form

gs,u,ξ,φ(t) := cs,ξ,φw
( t − u

s

)
cos(2πξ(t − u) + φ), (4.3)

where φ represents the phase of the cosine function. Gabor atoms are special cases of har-
monic atoms.

A dictionary represents a redundant collection of basic waveforms. For instance, a Gabor
dictionary is a set Dg = {gs,u,ξ ∈ Γg = R+ ×R

2}. A harmonic dictionary Dh is an extension of
the Gabor dictionary Dg [52]. Signals are decomposed into a linear expansion of waveforms
that belongs to a redundant dictionary via matching pursuit.

4.1.2 The Standard Matching Pursuit

A matching pursuit is a greedy algorithm that chooses at each iteration a waveform that is
best adapted to approximate a part of the signal. Given a complete dictionary D and a number
M > 0, it decomposes a signal s(t) into a residual part RM(t) and a linear combination of M
atoms chosen from D

s(t) =
M∑

m=1

λmgm(t) + RM(t), ‖gm‖ = 1, (4.4)
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with the energy conservation property

‖s‖2 = ‖
M∑

m=1

λmgm‖
2 + ‖RM‖

2. (4.5)

Given the strong convergence limM→∞‖RM‖ = 0, it is proven that an arbitrarily good approx-
imation to a signal s(t) can be obtained.

A standard iterative matching pursuit can be described as Algorithm 1. A fast matching
pursuit algorithm with harmonic dictionaries is discussed in detail in [52]. The core imple-
mentation in MPTK [67] is adapted to analyze and synthesize job arrival processes.

Algorithm 1 Standard Matching Pursuit
1: Initialization: M = 0,R0(t) = s(t);
2: while the number of extracted atoms M is less than the desired number or the signal-to-

noise ratio (SNR) has not yet reached the predefined level do
3: ∀g ∈ D, compute |〈RM , g〉|;
4: Select the best matched atom from the dictionary as gM+1: |〈RM , gM+1〉| ≥

supg∈D |〈RM , g〉|;
5: Update the residual RM+1(t) := RM(t) − 〈RM , gM+1〉gM+1(t).
6: end while
7: ŝ(t) =

∑M−1
m=0 〈Rm, gm+1〉gm+1(t), residual RM(t).

4.2 Experimental Results

The workload data used in the experimental studies is drawn from Table 3.1. At the Grid level
lhcb and dteam are the two main VOs that exhibit pseudo-periodic behavior. atlas on LCG2,
another large HEP experiment, contains a high frequency component at small scales (≤ 6)
and it is used as an example to show pattern extraction with matching pursuit. At the cluster
level traces from two data-intensive clusters are used, namely, NIK05 and LPC05. Com1 is
a company partner with NIKHEF which runs medical-related data-intensive jobs. Biomed
is the VO with biomedical applications and it contributes to ∼65% of all LPC05 jobs. Job
arrivals in biomed are not periodic but long range dependent (LRD), which is included here
to demonstrate how a matching pursuit decomposition can be used to approximate arbitrary
signals.

The periodicity measures described in Section 2.2.3 are applied to the data under study
and the results are shown in Table 3.4. It can be seen that all processes (except biomed,
LPC05) show quite strong periodicity. Among all dteam exhibits the strongest periodic be-
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Figure 4.1: Short-time Fourier transform (STFT) calculated by spectrogram and the permu-
tation entropy plot.

havior with P f reaching 0.95.

The applicability of matching pursuit in the analysis and synthesis of pseudo-periodic
job arrivals is empirically evaluated. Firstly, the stationarity of the signal is studied using
the short-time Fourier transform and the permutation entropy. It is shown that for pseudo-
periodic signals the complexity of a matching pursuit decomposition is directly related to
the stationarity of the process. Secondly, the properties of the matching pursuit approach is
studied in detail: the number of atoms needed, signal-to-noise ratio (SNR)1 achieved, and
heuristics for a good stop criterion from a modeling perspective. Finally, matching pursuit
is shown as a powerful tool in extracting patterns from signals, which makes it possible to
model these patterns individually.

1SNR is defined as 10 times the decadic logarithm of the power ratio: S NR(dB) = 10log10(
Psignal
Pnoise

).
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4.2. Experimental Results

Signal-to-noise ratio (SNR)
Trace Na = 20 Na = 100 Na = 500 Na = 1000

lhcb, LCG1 (scale=6) 10.99 14.73 25.52 36.30
lhcb, LCG2 (scale=6) 13.95 17.74 27.60 36.69
dteam, LCG1 (scale=6) 5.82 11.30 24.45 36.56
dteam, LCG2 (scale=6) 6.09 12.11 25.01 36.14
com1, NIK05 (scale=8) 2.52 4.03 9.03 14.72
all, NIK05 (scale=8) 1.54 2.88 5.79 8.25
biomed, LPC05 (scale=8) 3.44 4.81 7.05 8.92

Table 4.1: The signal-to-noise (SNR) ratios achieved by an increasing number of atoms in
matching pursuit.
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Figure 4.2: 1/SNR against the number of atoms used in the matching pursuit.

4.2.1 Stationarity and Modeling Complexity

The short-time Fourier transform (STFT) is a simple way to show time and frequency in-
formation simultaneously by Fourier transforming signals by small windows over time (see
Section 2.6). Figure 4.1 shows the STFTs of three signals via spectrogram. The simulated
“three-cosine” signal, consisting of a superposition of three different cosines, is obviously sta-
tionary with the same harmonic components over time. The job arrival count process of lhcb,
LCG1, however, contains different frequency contents in different periods. Nevertheless, its
energy concentrates mainly on the strong harmonic components which remain roughly the
same over time. It indicates that lhcb stays “closer” to a stationary signal. dteam, on the
other hand, exhibits a much richer frequency content including the harmonics (especially in
the first and the last quarter of the time axis). It shows that dteam is not as stationary as lhcb.
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4. Pseudo-Periodic Job Arrivals

Stationarity can be better analyzed and illustrated by permutation entropy (PE, defined in
Section 2.6). The degree of non-stationarity of a signal is reflected by a higher variability of its
PE. Results for calculating PEs are also shown in Figure 4.1. Clearly the “three-cosine” is the
most stationary by appearing as a straight line in the PE plot. lhcb is relatively more stationary
with a smooth and slow-varying PE curve. dteam, on the other hand, is non-stationary with
many jumps and abrupt changes. The rough idea about stationarity obtained via STFT is
quantified and verified by permutation entropy. The entropy values themselves can also be
linked with the periodicity measures studied above. lhcb is more stationary but less periodic
with more stochastic components, while dteam is less stationary but more periodic with less
stochastic components. The other two processes at the cluster level, namely com1, NIK05
and all, NIK05, exhibit even more non-stationary behavior.

It is argued that the stationarity of a pseudo-periodic signal is directly related to the com-
plexity of the matching pursuit decomposition, namely, how many atoms are used to reach
a certain signal-to-noise ratio (SNR). Naturally a more stationary signal requires less atoms
for a good approximation, which results in a simpler model. This relationship is empirically
shown in the process of decomposing signals into sinusoidal components and residuals.

4.2.2 Signals and Residuals

Figure 4.2 shows the number of atoms used in the matching pursuit decomposition versus
the corresponding SNR achieved. For the stationary “three-cosine” data and the close-to-
stationary lhcb processes, satisfactory SNRs are reached after very limited iterations (i.e.
two) and then increase only slowly with more atoms. For all three processes one constant
atom and one harmonic atom reproduce the majority of energy of the original signal. This
is in accordance with the fact that stationarity simplifies the fitted sinusoidal models. lhcb,
LCG1 is used as an example to illustrate how the synthesized signal resembles the original
one with respect to the number of atoms. As is shown in Figure 4.3, the synthetic signal,
the residual, and the residual spectrum are plotted for an increasing number of atoms from
left to right. For atoms = 2, it is shown that a basic “tune” is set by the synthesized signal.
However, the residual still contains a significant part of the signal, especially in the higher
frequency domain. In other words, the synthesis at this level lacks the “dynamics” present
in the underlying signal. As the atoms increase to 6, and then to 16, it is observed that more
and more components in the original signal represented by atoms are added to the synthetic
one, which makes the matching better. With 500 atoms the synthesis closely resembles the
original one. The residual is white-noise like and contains very little energy. As is shown in
Table 4.1 nearly perfect reconstruction is achieved for lhcb, LCG1 with around 1,000 atoms
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Figure 4.4: SNR against the STFT window size chosen in the matching pursuit.

(SNR=36.30).

For dteam, the SNRs of the matching pursuit decomposition increase along with the
number of atoms used, meaning that more components are needed for a better match. The
achieved SNRs up to 100 atoms (see Table 4.1) are also lower than their lhcb counterparts
because of non-stationarity. Nevertheless, for number of atoms larger than 500 the matching
pursuit performs similarly for both lhcb and dteam. At the cluster level, for VO com1 and the
aggregated whole trace NIK05 more atoms are needed for reaching a certain SNR level and
the absolute SNR values are considerably smaller than the Grid level VOs. This is partially
explained by the fact that the energy of the harmonic contents are relatively lower compared
to that of lhcb or dteam. It may also be caused by the fact that the arrival processes are less
stationary at the cluster level, especially for the aggregated whole data trace. By increasing
the number of atoms better approximations can be obtained, but there is a tradeoff of increas-
ing complexity. In theory the matching pursuit can approximate arbitrarily close to a certain
signal given that the number of atoms grows unlimitedly. This type of decomposition can be
used to analyze and synthesize all types of signals besides periodic ones. For instance, results
of matching are shown for biomed, LPC05 in Table 4.1, whose job arrivals form a long range
dependent (LRD) process. It can be reproduced well by the matching pursuit with a sufficient
number of atoms.

It is also interesting to investigate to what extent the matching of a non-stationary signal
can be improved with a reduced window size of the basic function. Figure 4.4 shows the
SNR versus the smallest window size used in the dictionary for different number of atoms.
Generally speaking a redundant dictionary including smaller window sizes means that there

48



4.2. Experimental Results

0 5000 10000 15000
0

0.05

0.1

0.15

0.2

0.25

Job arrival count sequence number

Jo
b 

ar
riv

al
 r

at
e 

(#
jo

bs
 / 

se
c)

atlas (scale=6), LCG2

 

 

Original

0 5000 10000 15000
0

0.05

0.1

0.15

0.2

0.25

0.3

Job arrival count sequence number

Jo
b 

ar
riv

al
 r

at
e 

(#
jo

bs
 / 

se
c)

atlas (scale=6), LCG2

 

 

After extraction

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Lag

A
C

F

atlas (scale=6), LCG2

 

 

Original

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Lag

A
C

F

atlas (scale=6), LCG2

 

 

After extraction

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

Normalized Frequency  (×π rad/sample)

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/r
ad

/s
am

pl
e)

Periodogram for atlas (scale=6), LCG2 

 

 

Original

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

Normalized Frequency  (×π rad/sample)

Periodogram for atlas (scale=6), LCG2

 

 

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/r
ad

/s
am

pl
e) After extraction

0 5000 10000 15000
−0.1

−0.05

0

0.05

0.1

Job arrival count sequence number

Jo
b 

ar
riv

al
 r

at
e 

(#
jo

bs
 / 

se
c)

atlas (scale=6), LCG2

 

 

Extracted components

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

Normalized Frequency  (×π rad/sample)

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/r
ad

/s
am

pl
e)

Periodogram for atlas (scale=6), LCG2

 

 

Extracted components

Figure 4.5: The count process, the extracted component, and the remaining signal.
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4. Pseudo-Periodic Job Arrivals

are more “short” building blocks available for addition, which would result in a potential
better fitting. For the close-to-stationary lhcb process as is shown on the left of Figure 4.4,
SNRs only improve marginally with the reducing window sizes. It is particularly evident for
small number of atoms and there is a certain window size beyond which no improvements
can be achieved. This is because small window sizes have no significant impact on stationary
or near-stationary signals. It has to be noted that for the stationary signals big window sizes
(up to the length of the signal) prove to be more important and have to be included to achieve
optimal results. For non-stationary signals, on the other hand, small window sizes can indeed
improve the performance of matching pursuit. This is illustrated using the example of NIK05
in the Figure 4.4.

A crucial issue in the matching pursuit practices is how to choose a good stop criterion.
One of them is the signal-to-noise ratio (SNR). The iterative matching pursuit would pro-
ceed until a predefined SNR threshold is reached. Other measures have to be considered as
well for an educated decision. From a modeling for performance evaluation perspective, a
simple parametric model is preferable with controllable parameters. For a close-to-stationary
case like lhcb (see Figure 4.3), using 16 atoms is a good choice because the dynamics of
the process is captured while the parameter space is still relatively small. There is a tradeoff
between the number of atoms and the SNR in the decomposition process. The line between
the signal and the residual is also blurred because parts of the signal are embedded in the
residual if only a limited number of atoms are used for approximation. Models for the resid-
ual (noise) are not studied as it is largely data dependent. If a large number of atoms can be
used, however, it becomes a trivial task to model the residual because it resembles the un-
correlated or weakly-correlated Gaussian white noise with well-controlled energy. For more
non-stationary situations it is up to the practitioner to decide when to stop. For the purpose
of simulation studies of scheduling strategies, further research is needed to reveal the impact
of both periodic and non-stationary parts in the arrival processes.

4.2.3 Pattern Extraction

Another very attractive feature of the matching pursuit is that it can be used to extract patterns
from signals. Lots of real world signals contain multiple patterns and sometimes it is desirable
to separate and model them individually. Figure 4.5 shows the job arrival count process of
atlas, LCG2 at scale 6. It can be seen that the process itself is long range dependent (LRD)
with certain high frequency component. It is identified by the small oscillations along with
the ACF decay and the peak in the power spectrum. This pattern is well extracted from the
original signal by the matching pursuit and it is shown in the ACF plot and spectrum for the
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remaining part. It is possible to approximate the remaining signal by long range dependent
models. The extracted signal and its spectrum are illustrated, too. It is observed that the high
frequency pattern occurs only at specific periods in time, a non-stationary situation for which
the matching pursuit works naturally well.

4.3 Summary

In this chapter the pseudo-periodic job arrivals on clusters and Grids are modeled via match-
ing pursuit. It is found that the stationarity of a signal is directly connected to the complexity
of modeling. Non-stationary signals generally require more atoms to reproduce their dynam-
ics. Grid level processes such as lhcb and dteam are more stationary than the arrival processes
at the cluster level, and the energy of their harmonic content is much stronger. This is evi-
denced by the smaller number of atoms used for synthesis and their higher SNRs achieved.
For a close-to-stationary pseudo-periodic signal, a simple sinusoidal or harmonic model can
be fitted with a manageable number of parameters by matching pursuit. The matching pursuit
is also shown as a powerful tool to extract patterns from signals, which is useful to decompose
complex signals and model the components individually.
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Chapter 5

Long Range Dependence and A
Full Arrival Model

This chapter focuses on modeling long range dependence (LRD) and fractal behavior in the
job arrival processes. It is shown that second order properties such as the autocorrelation
function (ACF) and the scaling behavior can be well reconstructed by a Multifractal Wavelet
Model (MWM). The modeling is done using the count/rate representation based on which the
correlation structures can be reliably revealed. The additive nature of rates makes it possible
to model different processes separately and aggregate them back to form a unified process.
Algorithms are further proposed to transform rates into interarrivals so that a full description
of the arrival process can be obtained. In Section 2.3.6 wavelets are introduced as an analysis
tool for the general scaling processes. It is shown that the decomposition of a signal into
the scaling and wavelet coefficients is a powerful methodology. On one hand, the energy of
wavelet coefficients has a power law relationship with the scale, which can be exploited in the
analysis of scaling behavior. On the other hand, the scaling coefficients themselves are the
output of modeling if the generating process is controlled to reflect the fractal nature of the
original data. This chapter concentrates on the modeling side of a wavelet-based approach
and it starts with the relationship of wavelets and cascading.

5.1 Multiplicative Cascades and Wavelets

A multiplicative process or cascade divides a set into smaller and smaller components accord-
ing to a fixed rule, while fragments the measure of the components by some other rule [34].
Multiplicative cascades form a very important paradigm for generating multifractal processes.
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The discussion in this section starts with the simplest multiplicative process called binomial
cascade.

5.1.1 Binomial Cascades

The binomial measure µ can be generated by cascading as is shown in Figure 5.1. The process
starts with a unit of mass M0

0 on the interval I0
0 = 1. The second step (k = 1) divides this

mass into a fraction M1
0 · M0

0 on the left half I1
0 = [0, 1

2 ] and the remaining part M1
1 · M0

0

(M1
1 = 1 − M1

0) on the right half I1
0 = [ 1

2 , 1]. In the following steps the mass is recursively
fragmented over the dyadic intervals In

k = [k2−n, (k + 1)2−n] with

µ(In
k ) =

n∏
i=0

Mi
ki
= Mn

kn
· Mn−1

kn−1
· · · M1

k1
· M0

0 . (5.1)

The condition M j
2k j−1
+ M j

2k j−1+1 = 1 ensures that the original unit of mass is conserved.

Binomial cascades based models have been proposed to capture the LRD and multifractal
nature of a variety of processes, including disk and network traffic [107, 130]. In this thesis
the multifractal wavelet model (MWM) [107] is applied for modeling job arrival processes
because it provides a coherent wavelet framework for analysis and synthesis of the scaling be-
havior. Moreover, with the wavelet energy decay estimated from the original process, MWM
can potentially model the scaling behavior with multiple exponents (e.g. biscaling). This can
not be achieved, for instance, by models focusing on one single scaling exponent [130].

In the following section the discrete wavelet transform (DWT) is presented under the
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5.1. Multiplicative Cascades and Wavelets

framework of filter banks (introduced by S. Mallat [93]). By doing so the structure of the
multifractal wavelet model (MWM) is well explained and illustrated. It becomes clear that
the MWM is essentially a binomial cascade. By laying out the relationship among cascading,
wavelets, and scaling, it is better understood how the multifractal wavelet model captures
LRD and the fractal behavior.

5.1.2 Wavelet Synthesis

Section 2.3.6 introduces wavelets as a natural framework for analyzing the scaling behavior.
It is shown that a signal can be decomposed into a sum of weighted scaling functions and
wavelet functions. The weights are named as scaling coefficients (or approximations) and
wavelet coefficients (or details), respectively.

A discrete wavelet transform (DWT) of a signal can be calculated by passing the signal
recursively through a set of lowpass and bandpass filters [121]. Therefore the recursive nature
of wavelets can be clearly explained by constructing a tree of filter banks. It is also an
attractive idea to interpret the multifractal wavelet model using the filter bank structure and
illustrate its relationship to cascading algorithms. The following presentations are all based
on the Haar wavelet transform.

The scaling function φ(t) mentioned above corresponds to a lowpass filter while the
wavelet function involves a highpass (or bandpass) filter. In the Haar case the dilation equa-
tion for the scaling function can be defined as φ(t) = φ(2t) + φ(2t − 1). This occurs when
φ(t) is the box function, namely φ(t) = 1 for 0 ≤ t < 1 and φ(t) = 0 otherwise. The wavelet
equation, on the other hand, can be written as ψ(t) = φ(2t) − φ(2t − 1). Explicitly, there is
ψ(t) = 1 for 0 ≤ t < 1

2 and ψ(t) = −1 for 1
2 ≤ t < 1, which is called the Haar wavelet. The

Haar basis, containing all the functions ψ(2− jt − k), constitutes an orthogonal basis.

The logarithmic tree of a filter bank that leads to Haar wavelets is shown in Figure 5.2 (a).
The lowpass filter C computes moving averages while its highpass counterpart D computes
moving differences. Given the dilation and the wavelet equation the averages and differences
of all levels follow the recursion

φ j,k(t) =
1
√

2
(φ j+1,2k(t) + φ j+1,2k+1(t)), (5.2)

ψ j,k(t) =
1
√

2
(φ j+1,2k(t) − φ j+1,2k+1(t)). (5.3)

Consequently the scaling and wavelet coefficients in Equation 2.11 have the following recur-
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sive structure
c j,k =

1
√

2
(c j+1,2k + c j+1,2k+1), (5.4)

d j,k =
1
√

2
(c j+1,2k − c j+1,2k+1). (5.5)

This is illustrated in Figure 5.2 (b) and (c). It is shown that this pyramid-like generating
structure naturally resembles a cascading process.

Introduced by Riedi et al. [107], the multifractal wavelet model (MWM) is capable of
generating stationary, positive, and multifractal processes with non-homogeneous scaling.
Positivity is a desirable feature since the interarrival and rate processes are inherently non-
negative and non-Gaussian. The MWM synthesis procedure resembles the recursive structure
of computing the scaling and wavelet coefficients (see Figure 5.2). By arranging Equation 5.4
and 5.5 to

c j+1,2k =
1
√

2
(c j,k + d j,k), (5.6)

c j+1,2k+1 =
1
√

2
(c j,k − d j,k), (5.7)

a simple constraint can guarantee the positivity of the process

|d j,k | ≤ c j,k. (5.8)

A multiplicative model can be built that automatically satisfies constraint 5.8 by defining
d j,k = A j,k × c j,k with A j,k ∈ [−1, 1]. The recursive structure in Figure 5.2 can be applied to
generate data points: the finest-scale scaling coefficients form the output MWM process.

Another key characteristics of MWM is that the correlations and fractal behavior of the
output process can be controlled by the wavelet energy decay of the data. A simple way to
control energy decay is to fix the energy at the coarsest scale ( j = 0) and set the ratios of
energy for other scales with R j =

var(d j−1,k)
var(d j,k) . For a stationary LRD 1/f process, it can be seen

from Equation 2.12 that R j = 2α is a constant. For the real world data it is shown in [107]
that

R j ∝
var(A( j−1))

var(A( j))(1 + var(A( j−1)))
, (5.9)

and this recurrence can be solved recursively. It is shown that the wavelet energy decay
can be controlled by the multipliers A( j), to be exact, the probability densities for A( j). For
details about the choices of A( j), the data fitting procedure, and the multifractal analysis of
MWM the reader is referred to [107]. A symmetric beta (β) distribution for A( j) is used in the
experimental studies. The model is called β multifractal wavelet model (βMWM) when such
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5.2. A Full Model for Job Arrivals

β-distributed multipliers are used.

It becomes clear that MWM is a binomial cascade. The scaling coefficients c j,k can be
further related to the binomial measure µ by cn,kn = µ(In

k ).

5.2 A Full Model for Job Arrivals

5.2.1 Conversion from Rates to Interarrivals

Although correlations and the scaling behavior can be reliably revealed using the count/rate
process, it is necessary to generate a point process in the form of interarrival times so that
a full description can be obtained for modeling purposes. A simple method of transforming
a rate function into interarrivals is the integrate-and-fire (InF) algorithm. The InF algorithm
generates an event each time the integral of the rate µ(t) reaches a value of unity. It then resets
the integrated value to zero whereupon the process begins anew, so the (k + 1)st event can be
obtained from ∫ tk+1

tk
µ(t)dt = 1. (5.10)

This is a direct conversion from a rate process to a point process therefore the stochastic and
fractal nature is completely determined by the rate process.

A more sophisticated method derived from above is the so-called controlled-variability
integrate-and-fire (CV-InF) algorithm [125]. After generating the event tk+1 according to
Equation 5.10, the (k + 1)st interarrival time (tk+1 − tk) is multiplied by a Gaussian random
variable with zero mean and variance σ2. Therefore tk+1 is now replaced by

tk+1 + σ(tk+1 − tk)N(0, 1), (5.11)

where N(0, 1) is a Gaussian random variable with zero mean and unit variance. CV-InF
introduces a second source of randomness that can be specified and controlled via σ, which
is independent from the rate process. Within the limit σ → 0 CV-InF turns into the standard
integrate-and-fire (InF) algorithm. Within the limit σ → ∞, on the other hand, it leads to
a homogeneous Poisson process and none of the stochastic nature of the rate process will
be preserved. As σ increases from zero, the fractal characteristics of the rate process is
progressively lost. A small σ value (compared to the average interarrival time) is desirable if
one want to preserve the fractal behavior of the rate process and introduce certain randomness
in the interarrival process.
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Figure 5.3: Plotting the rate and the interarrival processes of the original data and the synthetic
traces, respectively (σ = 0.1 in the CV-InF algorithm).

5.2.2 The Additive Nature of Rates

Given the same count interval T , the rate processes can be added together to create an aggre-
gated rate process. This additive nature of rates is very attractive from a modeling perspective.
It suggests that the whole arrival process can be divided into rate processes by Virtual Organi-
zations (VOs), users, or patterns, being modeled individually, and aggregated back to form a
whole unified process. The VO or user names can be included in the synthetic traces, which is
valuable for scheduling studies that take VO/user policies into account [33]. Distinctive pat-
terns, such as pseudo-periodicity and long range dependence, have been identified for VOs
both at the cluster and Grid level. It indicates that VO is an appropriate level for modeling
different patterns. The rate representation not only preserves the correlation structures of the
underlying arrival process but also enables aggregation, which is not possible with interarrival
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times. In the experiments an example of VO aggregation is shown to illustrate the additive
nature of rates.

5.3 Experimental Results

In this section experimental studies are carried out using workload data (see Table 3.1) that
exhibit long range dependent and fractal arrival patterns. At the Grid level cms and atlas are
the two main VOs that have long range dependent job arrivals. At the cluster level traces from
three data-intensive clusters are used, namely, NIK05, LPC05, and RAL05. Arrival processes
of atlas on NIK05, RAL05 and biomed on LPC05 exhibit long range dependence, while hep1
on RAL05 shows fractal (biscaling) behavior. Since no single statistic is able to completely
characterize a point process, the goodness of fit is assessed on a range of statistical measures
reflecting the first order and the second order properties.

5.3.1 Autocorrelation and Scaling

The second order statistics and the scaling behavior are examined as they are the most im-
portant properties in the context of this chapter. Simply plotting the data will give a visual
indication of the fitting, as has been used in the literature [107, 130]. The statistical measures
include the autocorrelation function (ACF) and the Logscale Diagram. Figure 5.3 and 5.4
shows the MWM fitting results for cms on LCG1. For the rate process, it is shown that the fit-
ted model visually resembles the original trace data. The autocorrelations in the rate process
are well reconstructed by the MWM model. It is clearly observed that the interarrival process
is weakly-correlated or short range dependent, which empirically proves that the correlation
structures can only be reliably revealed from the count/rate process. The synthetic interarrival
process obtained by the controlled-variability integrate-and-fire (CV-InF) algorithm is indeed
short range dependent. As to the second-order scaling exponents calculated by the Logscale
Diagram (Figure 5.4), it is shown that the scaling behavior (long range dependence) is almost
perfectly reproduced by the MWM model with a scaling exponent α ≈ 1.1.

Figure 5.5 shows the MWM fitting results for hep1 on RAL05 with multifractal (biscaling)
arrival behavior. At scale = 6 the rate process is short range dependent with quickly vanish-
ing autocorrelation lags. It becomes interesting when looking at the scaling behavior in the
Logscale Diagram. There are two alignment regions: in the smaller scale region (scale < 7)
it indicates the fractal nature of the sampling path. In the larger scale region (scale > 7),
on the other hand, the close-to-horizon alignment suggests short range dependence [125]. It
is shown that this biscaling behavior is well reconstructed by the MWM model. The reason
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Figure 5.4: βMWM fitting results for cms on LCG1 (σ = 0.1 in the CV-InF algorithm).
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Figure 5.5: βMWM fitting results for hep1 on RAL05 (σ = 0.1 in the CV-InF algorithm).
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IAT dimension 1 Rates dimension 1 inverse
atlas 40.7 (10) atlas 0.0063 (10−4) 158.23
cms 7.7 (10) cms 0.0125 (10−3) 8.00
biomed 74.0 (10) biomed 0.0037 (10−4) 273.22
hep1 19.0 (10) hep1 0.0144 (10−3) 69.35

Table 5.1: Transportation distances between original time series and synthetic series. The
binsize used is indicated in brackets after the distances. IAT - interarrival times.

for its success lies in its inherent structure that controls the wavelet energy decay. Recalling
the Equation 5.9, the energy decay ratios of wavelet coefficients are approximated from the
data scale by scale. Through this process it is possible for the MWM to reproduce a range of
scaling behavior, including self-similarity, long range dependence, and multifractals.

5.3.2 Marginal Distributions

The fitting of distributions can be evaluated by plotting the complementary cumulative dis-
tribution functions (CCDF). Transportation distance (Section 2.5.1) is applied to access the
goodness of fit quantitatively. Smaller values of transportation distance indicate better fitting.

The data series plots and CCDF plots of the rate and interarrival processes are shown in
Figure 5.3, 5.4, and 5.5. Visually it can be seen that the amplitude burstiness in the data is
well captured by the fitted model, both for rates and interarrivals. The CCDF of original data
can by approximated by the model in terms of shapes and long tail behavior, however, the
fitting is not very well in some cases. For instance, there are too many zero values (approx.
80%) in the rate process of atlas on LCG1. The model produces a smooth line in the small-
value region of the CCDF plot and thus it is not able to generate as many zero values as in the
real data. These extreme number of certain values in some real-world data, nonetheless, is
very hard to fit perfectly for most stochastic models. Quantitative results from transportation
distances are shown in Table 5.1. The distances for interarrivals and rates can be compared
by taking the inverse in dimension 1, which suggests that interarrivals are fitted slightly better
than rates. The distance measures are consistent with the observations from the CCDF plots:
the dimension 1 distances for cms, LCG1 and hep1, RAL05 are sufficiently small so that the
model fittings of the densities themselves can be considered good. On the other hand, the
fittings are not as good for atlas, LCG1 and biomed, LPC05. This can be caused by the
inherent properties of MWM fitting. As has been discussed in Section 5.1, the main focus of
the MWM model is on the reconstruction of the scaling behavior and second order properties
rather than the exact fitting of marginal distributions. To sum up, the distribution of the arrival
process can be approximated by the model, including the heavy tails.
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Figure 5.6: VO aggregation of long range dependent and pseudo-periodic rate processes.

5.3.3 VO Aggregation of Rates

Figure 5.6 shows an example of VO aggregation to illustrate the additive nature of rates.
The job arrival process of lhcb on LCG1 is pseudo-periodic, which shows a sequence of
equally-spaced peaks in the rate ACF plot. The job arrival process of cms on LCG1 is long
range dependent with a slowly decaying ACF lags. The addition of these two rate processes
is shown as the solid line in the right part of Figure 5.6. This aggregated process shows
the properties of both contributing processes: a slow-decaying rate ACF lags with equally-
spaced peaks. The pseudo-periodic process is modeled by matching pursuit and the long
range dependent process is fitted using the MWM model described above. The aggregation
of synthetic data from the two models, showing as a dotted line in the right part of Figure 5.6,
matches well with the aggregation of the original data. The additive nature of rates is very
attractive in modeling the arrival processes. Different components can be modeled separately
and added back to a whole unified process, in which desired attributes such as VOs and users
can be included. For a full model the CV-InF algorithm can be applied to convert a unified
rate process to an interarrival process.

5.4 Summary

In this chapter the multifractal wavelet model (MWM) is introduced to model long range de-
pendent and fractal job arrival processes. The second order properties such as ACF and scal-
ing of the rate process can be well reconstructed by MWM modeling. A controlled-variability
integrate-and-fire (CV-InF) algorithm is adopted to convert a rate process into an interarrival
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5. Long Range Dependence and A Full Arrival Model

process so that the arrival process can be fully generated. Quantified by the transportation
distance, the marginal distributions of the rate and interarrival processes can be matched
approximately. In some cases the MWM and CV-InF model could not fit the marginal distri-
butions very well. This can be explained by the second-order oriented data fitting in MWM
as well as the irregularity and non-stationarity of real data. Generally speaking, the proposed
approach provides a good model for long range dependent and fractal job arrival processes.
Together with the doubly stochastic models (MMPP) for short to middle range dependence
and the matching pursuit model for pseudo-periodicity, all the basic job arrival patterns iden-
tified in the analysis can be modeled. They are used extensively in the simulation studies in
Chapter 7 for quantifying performance impacts of workload correlations.
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Chapter 6

Modeling Correlated Workload
Attributes

This chapter proposes a new two-stage approach for modeling correlated workload attributes
such as run time and memory. The first stage consists of a mixture of Gaussians model,
whose parameters are estimated via the model based clustering (MBC) framework. The sec-
ond stage includes a localized sampling algorithm for generating autocorrelations in the data
series. It is found that the repetitions of cluster labels empirically follow Zipf-like distribu-
tions, which leads to localized sampling for creating autocorrelations. A cluster permutation
procedure further enhances the localization of sampling and makes the autocorrelation con-
trollable via the window size. Experimental studies are conducted to evaluate the proposed
algorithm using real workload traces. A comprehensive workload model for Grids can be
derived together with the models for job arrival processes in previous chapters.

6.1 Model Based Clustering

Model Based Clustering (MBC), introduced by Fraley and Raftery [45], is a methodological
framework that can be used not only for data clustering but also for (multi)variate density
estimation. The assumption is that data is generated by a mixture of probability distributions
in which each component represents a different cluster. Mixtures of multivariate Gaussians
are well studied and commonly used probability models in practice. Partitions and Gaus-
sian parameters are determined by combining agglomerative hierarchical clustering and the
expectation-maximization (EM) algorithm for maximum likelihood. The number of compo-
nents or clusters can be obtained via Bayesian model selection. The following subsections
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6. Modeling Correlated Workload Attributes

briefly discuss the main definitions and algorithms in a MBC framework.

6.1.1 Gaussian Mixture Models

Given observations x = (x1, ..., xn), a multivariate Gaussian density function with mean µk

and covariance matrix Σk is defined as

fk(xi|µk,Σk) =
exp(− 1

2 (xi − µk)TΣ−1(xi − µk))
|2πΣk |

1/2 , (6.1)

where | · | denotes the matrix determinant and k means the kth components in the mixture.
Data generated by mixtures of Gaussian densities are characterized by clusters centered at
mean µk with increased density for points closer to the mean.

With observations x the likelihood for a mixture of Gaussians model with G components
can be defined as

LM(θ1, ..., θG; τ1, ..., τG |x) =
n∏

i=1

G∑
k=1

τk fk(xi|θk), (6.2)

where fk and θk are the density and parameters (θk = (µk,Σk)) of the kth component in the
mixture and τk is the probability that an observation belongs to the kth component (

∑
k τk =

1).

6.1.2 The EM Algorithm

The EM (Expectation Maximization) algorithm is a general maximum likelihood estimation
method in the presence of incomplete data [28]. In the case of clustering, the complete data
is referred as yi = (xi, zi). There is zi = (zi1, ..., ziG) with zik equal to 1 if xi belongs to cluster
k and 0 otherwise. The density of an observation xi given zi is given by

∏G
k=1 fk(xi|θk)zik and

the complete-data log-likelihood is defined as

L(θk, τk, zik |x) =
n∑

i=1

G∑
k=1

zik[logτk fk(xi|θk)]. (6.3)

The EM algorithm iteratively maximizes the complete-data likelihood in terms of parameters
θk and τk. This is achieved recursively between two steps. In the “E” step, the values of
conditional expectation ẑik are calculated from the observed data and the current parameter
estimates. In the “M” step, the complete-data log-likelihood is maximized with respect to
parameters θk and τk, in which each zik is replaced by ẑik from the “E” step. The iteration
process continues until the increment of log-likelihood is smaller than a sufficiently small
value. Certain limitations are found for the EM algorithm. Firstly, its convergence can be
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6.1. Model Based Clustering

very slow. Secondly, the initialization is critical for good approximation. This is why the
EM algorithm has to be combined with agglomerative hierarchical clustering, which is able
to provide starting values for EM iterations.

6.1.3 Bayesian Model Section

One notable advantage of model based clustering is that it provides a systematic approach to
determine not only the parameterization of the model but also the number of clusters when
comparing to other popular methods such as k-means. This is achieved by Bayesian model
selection via the Bayes factor introduced by Kass and Raftery [66]. The Bayes factor involves
the evaluation of the integral that defines the integrated likelihood and it is difficult to calcu-
late. In practice the integrated likelihood can be approximated by the Bayesian Information
Criterion (BIC)

2logp(D|Mk) ≈ 2logp(D|θ̂k,Mk) − νklog(n) ≡ BICk, (6.4)

where νk is the number of independent parameters to be estimated in model Mk. The first
term of the BIC is the log-likelihood and a large value indicates a better model fitting. To
avoid overfitting the log-likelihood is penalized by the number of parameters in the model,
which is the second term of the BIC. Although it is an approximation of the Bayes factor, the
BIC has given good results in many practical applications [45, 46].

6.1.4 The Combined Approach

By combining the definitions and methods presented in the last subsections, a general model
based clustering framework can be described as follows:

1. Determine a maximum number of clusters M. Generally M should be as small as
possible.

2. Initialization with agglomerative hierarchical clustering and obtain the corresponding
classifications.

3. Using the starting values from step 2, do EM iterations for each parameterization and
each number of clusters from 2 to M.

4. Calculate BIC for the one-cluster model and for the mixture model with the optimal
parameters from step 3 for 2, ..., M clusters.
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6. Modeling Correlated Workload Attributes

5. According to the BIC values, a first local maximum indicates strong evidence for a
fitted model. The parameters for the mixture model, the number of clusters, and the
classifications are obtained.

Model based clustering constitutes the first stage towards modeling correlated workload at-
tributes. As is shown in Section 6.4, the marginal distributions can be excellently fitted by the
mixture of Gaussians models. The classification labels of data obtained by clustering serve as
an indispensable part in the localized sampling algorithm for generating correlations, which
is elaborated in the next section.

6.2 The Locality Principle

The real workload data is far from independently and identically distributed, instead, similar
jobs tends to arrive within bursty periods. The concept of temporal locality has been applied
to study parallel workloads. Given the fact that random sampling from a distribution will not
lead to any type of locality, a locality of sampling algorithm is proposed by Feitelson [37].
It is found that the lengths of repetitions of equivalent jobs empirically follow a Zipf-like
distribution with a power law tail. Consequently the sampling process now consists of two
parts: firstly a sample X and R are drawn from the probability density of data and the fitted
Zipf distribution of repetitions, respectively. Secondly the X is repeated R times and the
procedure starts over until the desired number of samples are generated. Compared with the
simple random sampling process, this sampling algorithm is able to distort the distribution
locally and quantify the difference between local and global distributions.

6.3 Localized Sampling

Introducing the locality principle to sampling is an excellent idea, nevertheless, the algorithm
described in [37] has a number of limitations. Firstly, its aim is to provide a quantification of
locality in the probability distribution, not on the autocorrelation structures in the data series.
Secondly, The “equivalent jobs” for counting repetitions are defined as jobs that execute the
same application and use the same number of nodes. The effectiveness of this definition
is limited in practice since similarity measures using certain attributes such as application
name or number of nodes are not widely applicable. For instance, a large number of real
traces do not include application names or their names are not informative (e.g. “STDIN”).
For data-intensive jobs the number of nodes contains no extra information (all equal to one).
Thirdly, repetition of a single value is a simple treatment and more sophisticated techniques
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Figure 6.1: Log-log plots of histograms for the lengths of repetitions of cluster labels. Both
single attribute (run time) and multiple attributes (run time and memory) are shown. Fitted
Zipf distributions are plotted as well.
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6. Modeling Correlated Workload Attributes

are needed for better stochastic approximation.

6.3.1 Power Law Distribution of Cluster Repetitions

Inspired by the locality principle, a new localized sampling algorithm is proposed that is
specifically designed to approximate the autocorrelation structures in real data. The defini-
tion for “equivalent” or “similar” jobs is based on data clustering, namely, jobs within one
cluster are considered equivalent with respect to the attribute(s) used. The classification labels
can be obtained via model based clustering in the first stage. One component of the mixture
of Gaussians model corresponds to one cluster, which is fitted with a (multi)variate Gaus-
sian distribution. The cluster labels form a series with values belonging to a discrete space
((1, ...,G)). It is found that the repetitions of cluster labels empirically resemble a Zipf-like
distribution. Several examples with Zipf fitting are illustrated in Figure 6.1. The sampling
process starts with selecting one cluster according to its probability and sampling from the
fitted Zipf distribution for the length of repetitions R. Then the fitted Gaussian distribution
of the selected cluster is sampled repeatedly for R times. The advantage of the algorithm is
two-folds: on one hand clustering provides a better and generic way of defining similarity,
through which the length of repetitions can be measured and furthermore the power law dis-
tribution still holds. On the other hand, from the locality perspective sampling R times from a
Gaussian distribution is a better treatment than simply repeating a single value R times. The
Gaussian variance introduces randomness that more realistically resembles the noisy data in
real workloads.

6.3.2 The Cluster Permutation Procedure

The above localized sampling algorithm is able to generate correlations in the synthetic data
but there is no freedom to control the generation process. It is desirable that the correlations
can be controlled in a way that those present in the original data can be matched. A new
cluster permutation procedure is introduced to address this problem. The basic idea focuses
on how the clusters are selected. Normally a cluster is selected according to its probability by
random sampling. After a series of cluster labels have been generated, the procedure divides
the series by a window size W and the labels within each window are arranged by their
values. For example, a sequence [1, 3, 2, 1, 1, 3, 2, 3, 1, 2] turns into [1, 1, 1, 1, 3, 3, 3, 2, 2, 2]
after permutation (W = 10). The order of label appearances in the permutation process
follows the order in the original process.

Formally, given G clusters with probability p : {1, ...,G} → [0, 1],
∑G

i=1 pi = 1, the cluster
permutation procedure can be presented as
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6.3. Localized Sampling

1. Sample w variates C = (c1, ..., cw) from the cluster indices {1, ...,G} according to the
cluster probability p.

2. The order in which new indices appear in the sequence C determines a permutation of
the cluster indices. P = (c1, ..., cσ) ∈ Σ(G), ci , c j, 1 ≤ i < j ≤ σ.

3. Order C according to the permutation P, such that in the ordered sequence Cσ =

(c1,1, c1,2, ..., cσ,Nσ
) one has cσ,i = cσ, 1 ≤ i ≤ Nσ, where Nσ is the number of oc-

currences of the cluster indice σ.

The cluster permutation procedure intensifies localization by imposing order in cluster selec-
tion. Consequently correlations can be controlled via the window size W: a larger W leads to
stronger correlations in the synthetic series.

6.3.3 The Combined Algorithm

Assuming that model based clustering (first stage) has been completed, our localized sam-
pling algorithm can be presented as follows:

1. Input from the first stage: Mixture of Gaussians parameters (µk,Σk; pk), k = 1, ...,G,
classifications Li ∈ {1, ...,G}, i = 1, ..., n.

2. Count the lengths of repetitions in Li and fit a Zipf distribution Z(α,Nmax) for the rep-
etitions.

3. Generate a series of cluster labels C according to cluster probabilities pk.

4. Set the window size W. Form a series Cσ by applying the cluster permutation proce-
dure.

5. Select a cluster label c from Cσ sequentially.

6. Obtain a sample R from the fitted Zipf distribution Z(α,Nmax).

7. Sample the distribution fc(µc,Σc) R times.

8. Go to step 5 until the desired number of samples are generated.

It has to be noted that the proposed algorithm is flexible in composition. Mixture of Gaussians
model may be not suitable for some attributes with discrete values such as parallelism (see
Section 6.4.3), and it can be replaced with another model that can fit the marginal distribution
of the attribute. The repetitions can also be calculated using the number of processors in the
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6. Modeling Correlated Workload Attributes

parallelism case. The localized sampling (Zipf repetitions) can be used without or with the
cluster permutation procedure, depending on the autocorrelation structures of the real data
series. Different compositions of the algorithm are evaluated in the experimental studies.

6.4 Experimental Results

The workload data used in the experimental studies is drawn from Table 3.1. lhcb, atlas
and hep1 are representative Virtual Organizations for large-scale HEP experiments running
on LCG. As suggested by its name, biomed consists of biomedical applications. The trace
SBH01 is from ”Blue Horizon” in San Diego Supercomputer Center (SDSC) and it is a par-
allel workload included for comparison studies.

The model based clustering software MCLUST, developed by Fraley and Raftery, is avail-
able as a R package1. The Matlab implementation of the localized sampling algorithm will
be made publicly available via the Grid Workload Modeling site2. The experimental study is
conducted to answer the following questions:

1. How well can the marginal distributions be fitted using the model based clustering?

2. What is the performance of the proposed localized sampling algorithm in controlling
and matching the autocorrelation function (ACF)?

3. How well is the proposed approach applied to more than one dimension with multiple
workload attributes?

6.4.1 Run Time - 1 Dimension

Figure 6.2 shows the fitting results for run times of lhcb, the largest production VO in terms of
submitted jobs in the LCG Grid. The job arrival process of lhcb shows strong pseudo-periodic
patterns, which partially explains why the series of run times is short range dependent. The
maximum number of clusters defined is 15 in this case and the optimal cluster size found
by model based clustering is 14. There are different ways of generating synthetic data with
the fitted Gaussian mixture parameters. The simplest way is random sampling, by which
the generated data is independently and identically distributed (IID). A more sophisticated
method is to build a Markov chain for cluster transition (Markov). The transition matrix,
whose values are probabilities switching from one cluster to another, can be built empirically

1MCLUST: www.stat.washington.edu/mclust/.
2Workload modeling in production Grids: software and tools. http://www.liacs.nl/home/hli/gwm/.
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Figure 6.2: Fitting the first and the second order properties of run times of lhcb, LCG1 (G =
14). The selected algorithms for synthetic data generation are i.i.d. sampling (IID), Markov
chain of cluster transition (Markov), and the localized sampling algorithm without the cluster
permutation procedure (Zipf).
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Figure 6.3: Fitting the first and the second order properties of run times of hep1, RAL05
(G = 10). The selected algorithms for synthetic data generation are Markov chain of cluster
transition (Markov), the localized sampling algorithm without (Zipf) and with the cluster
permutation procedure (Zipf arranged).

from the cluster labels obtained via clustering. The localized sampling algorithm without
the cluster permutation procedure (Zipf) can also generate synthetic data. The probability
density function (PDF) is shown in a “zoom-in” plot (run time from 0 to 600 seconds). It is
shown that the density of real data is indeed multimodal, and all three selected models (IID,
Markov, and Zipf) are able to fit the PDF excellently. This is confirmed when looking at
the results in the cumulative density function (CDF) plot. It is concluded that the marginal
distribution of synthetic data is mostly determined by the mixture of Gaussians model fitted
in the first stage. The data manipulation in the second stage, whether it is a Markov chain
or the localized sampling algorithm, does not change the first order properties. Since the run
time is short range dependent, the localized sampling algorithm has a good approximation
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Figure 6.4: Fitting the first and the second order properties of run times of SBH01 (G = 15).
The selected algorithms for synthetic data generation are Markov chain of cluster transition
(Markov), the localized sampling algorithm without (Zipf) and with the cluster permutation
procedure (Zipf arranged).
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Figure 6.5: Fitting the joint distribution of run time and memory of lhcb, NIK05 (G = 9).
ACFs of these two attributes are plotted separately. The selected algorithms for synthetic
data generation are the localized sampling algorithm without (Zipf) and with the cluster per-
mutation procedure (Zipf arranged).

of the autocorrelation function even without the cluster permutation procedure. It performs
slightly better than the Markov model. For IID, on the other hand, the autocorrelations vanish
for all non-zero lags as expected.

Figure 6.3 shows the fitting results for run times of hep1, RAL05, the largest produc-
tion VO on the RAL cluster. The series of run times show strong temporal locality and its
autocorrelations have very long lags. Run times of atlas and biomed have similar patterns
and hep1, RAL05 is shown as a representative example. The probability density function of
hep1, RAL05 contains more irregular shapes and peaks than that of lhcb, LCG1, neverthe-
less, it is well matched by the mixture of Gaussians model. As to the autocorrelations, the
Markov model produces synthetic data with short memory and it fails to generate long ACF
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lags. Zipf, the localized sampling algorithm without cluster permutation, is able to produce
long lag autocorrelations but it still could not match the ACF of the original trace data. With
the cluster permutation procedure (Zipf arranged), on the other hand, the localized sampling
algorithm approximates the autocorrelations of the trace data well. As is illustrated in Fig-
ure 6.3, the ACF of the synthetic data generated by Zipf arranged can match the ACF of the
original data by adapting the window size W. Multiple experiments are required to deter-
mine a (sub)optimal W value. The synthesis process is well manageable since the proposed
algorithm is computationally efficient and it can generate trace data of order 105 within a few
seconds. Optimization methods (e.g. forward section) can also be adopted to automatically
select W, which are not investigated in the context of this thesis.

Figure 6.4 shows the fitting results for run times of SBH01, a representative parallel super-
computer workload. With the parameters estimated by model based clustering, the mixture
of Gaussians model gives a very good fit in terms of PDF and CDF. The autocorrelation of
run times on SBH01 is not as strong as those observed in data-intensive workloads and it is
middle range dependent. It is shown that the Markov model is not able to match the autocor-
relation of the real trace. On the other hand, the Zipf model has a reasonably good fit of ACF
while Zipf arranged with a window size of 10 fits slightly better. The advantage of the extra
control dimension introduced by the cluster permutation procedure is one again evidenced: If
sampling with Zipf repetitions could not generate desirable autocorrelations, one can increase
the window size until a satisfactory approximation is obtained.

6.4.2 Run Time and Memory - 2 Dimensions

A mixture of Gaussians model can be readily extended to more than one dimensions, which
is the multivariate Gaussian function (see Equation 6.1). Job run time and memory con-
sumption are strongly correlated attributes in many data-intensive workloads, especially at
the VO level. Therefore it is feasible and also attractive to model these correlated attributes
simultaneously using a mixture of multivariate Gaussians. Figure 6.5 shows the fitting results
for lhcb, NIK05 using the proposed algorithm. It is shown that the joint distribution of run
time and memory can be well approximated by modeling based clustering. This is further
confirmed by the correlation coefficients shown in Table 6.1. The synthetic data produce
very good results compared to the real data for both Pearson’s and Spearman’s Rank method
(see Section 2.2.4). However, it is not satisfactory when examining the autocorrelations of
the attributes individually. In multivariate cases one primary attribute has to be chosen to
apply the cluster permutation procedure and determine an optimal window size. Since the
synthetic data is generated according to multivariate Gaussian density functions, the ACFs

77



6. Modeling Correlated Workload Attributes

Data Pearson Spearman’s Rank
Real 0.67 0.72
Synthetic 0.69 ± 0.08 0.71 ± 0.07

Table 6.1: Correlation coefficients for run time against memory for lhcb, NIK05. Results for
synthetic data are the means and standard deviations of samples from 100 simulations using
Zipf arranged (W=500).

of the other attribute(s) could not be controlled and reflected by the window size of the pri-
mary attribute. There should be no problem with this treatment if both attributes are perfectly
linearly-correlated with a correlation coefficient equal to 1, however, it is rarely the case in
real world situations. Consequently we can see in Figure 6.5 that better approximation is ob-
tained for the run time than the memory. More sophisticated methods are needed to match not
only the correlation coefficient but also the individual ACFs for multiple correlated attributes.

6.4.3 Discussions

For most parallel systems, the number of processors (parallelism) is another important work-
load attribute. Parallelism is not investigated in the context of this thesis. The number of
processors of parallel jobs is typically discrete and shows the power-of-two (2k, k = 1, 2, ...)
behavior [91], suggesting that mixture of Gaussians models are not suitable for fitting the
marginal densities. Models for parallelism are proposed in the literature [24, 91], and there is
no consensus on its correlations with other workload attributes such as run time [24, 78, 91].
It has to be pointed out that the proposed localized sampling algorithm with the cluster per-
mutation procedure is a general method to create autocorrelations in data series. Without the
cluster labels obtained via model based clustering, the repetitions can simply be counted by
the different number of processors in the parallelism case. Once the marginal distribution is
fitted, the proposed algorithm can be applied to generate correlations by changing the order
of sampling in the series.

6.5 Summary

In this chapter a new model is proposed that can potentially capture not only marginal proper-
ties but also second order statistics such as the autocorrelation function (ACF). The modeling
process can be divided into two stages: Firstly, a mixture of Gaussians model is used to
fit the probability density function and its parameters are estimated via model based clus-
tering. The “bag-of-tasks” behavior leads to multimodality in probability densities, which
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indicates (multi)Gaussians are good candidates for fitting the probability distributions. The
model based clustering framework is able to deliver data clustering and density estimation in
one package, and the fitting results in terms of marginal properties are excellent. Secondly,
a novel localized sampling algorithm is proposed to generate correlations in the synthetic
data series. It is found that the number of repetitions of cluster labels obtained via clustering
empirically follow a Zipf (power law) distribution. Sampling repeatedly from one cluster
according to the Zipf law can create autocorrelations in the series. A cluster permutation
procedure is further introduced to manipulate the order of data sampling, through which the
autocorrelations in the synthetic data can be controlled to match those in the real data. The
approach is able to generalize to more than one dimension, which means multiple corre-
lated workload attributes can be modeled simultaneously. Experimental results show that
the proposed algorithm works well in fitting the workload data with different autocorrelation
structures.
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Chapter 7

Performance Impacts of Workload
Correlations in Grid Scheduling

In the previous chapters real production Grid workloads have shown diverse correlation struc-
tures and scaling behavior, which are different than the characteristics of the widely-available
supercomputer workloads and cannot be captured by Poisson or simple distribution-based
models. Workload models are developed in this thesis that are able to reproduce various cor-
relation structures, including pseudo-periodicity and long range dependence. In this chapter
these models are used in the simulation studies of Grid scheduling strategies. The perfor-
mance impacts of workload correlations in Grid scheduling are quantitatively evaluated. It
is shown that realistic workload modeling is necessary to enable dependable performance
evaluation studies.

7.1 Evaluation of Scheduling Algorithms

In order to develop and evaluate new Grid scheduling algorithms, two fundamental issues
have to be addressed for performance evaluation studies. On one hand, representative work-
load traces are needed to produce dependable results. On the other hand, a good simulation
environment should be set up. In this section, the current research in Grid scheduling is
reviewed with a special emphasis on the mentioned two issues.

A Grid scheduling architecture typically consists of two levels, namely, the Grid sched-
uler(s) and the local resource management systems. Since the clusters/resources participating
in a Grid have their own local activities, the workloads are further categorized into Grid-level
jobs (Grid workload) and locally generated jobs (background workload). Due to the lack of
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traces at the Grid level, simplified assumptions on workloads are commonly made in schedul-
ing studies. In [16] and [129] bulk sizes of 200 to 1000 jobs are used to evaluate the proposed
“off-line” scheduling algorithms. For “on-line” mode of scheduling, jobs either arrive in fixed
intervals [33], or strictly in sequence [104]. More realistic treatments include the use of real
workload traces. In [20] traces obtained from Network Weather Service (NWS) are used to
study a set of heuristics for parameter sweep applications, including max-min, min-min, Suf-
ferage, and XSufferage. In [119] there are two specific traces under study: one is obtained
from iPSC/860 parallel workload at NAS, the other consists of parameter sweep applications
(PSA). In [14] traces from a multi-cluster environment (DAS) are utilized in the study of pro-
cessor co-allocation strategies. In [105] workloads on parallel supercomputers available from
the Parallel Workload Archive are used in evaluating a SLA-based cooperative superschedul-
ing algorithm. Work in [54] and [103] focus on workflow scheduling, in which workflows
are randomly generated or based on real traces. Trace-based simulations have the advantages
of easy-to-use, and the results obtained are reproducible and comparable. However, it is not
as flexible as models in case that many traces have to be generated to enable a Grid schedul-
ing study. The traces available from parallel workloads can also have significantly different
characteristics compared to Grid workloads, which has been empirically observed in Chap-
ter 3. Such differences, in return, may lead to considerably different performance evaluation
results.

Background workload is another important issue to be addressed in a heterogeneous and
non-dedicated Grid environment. Many previous work do not include background load infor-
mation because traces or characterization are not widely available concerning the background
workloads on clusters. Some research employs models to generate local jobs as background.
In [129] the local system load is modeled as a Gaussian distribution with predefined mean
and variance. In [119] and [54] background job arrivals are modeled as a Poisson process
and run times are drawn from an exponential distribution in [54]. Although such models are
simple to use and analytically tractable, it might not reflect the real job characteristics at the
cluster level.

The third problem is how to set up a simulation environment for performance evaluation.
GridSim is a popular choice to build Grid simulations [16, 103, 105, 115, 129]. Other simu-
lators developed specially for Grids include Simgrid [20], GangSim [33] and ChicSim [104].
Some researchers build their own version of simulators to meet their research goals [54, 119].
Commercially available products are also employed in conducting simulations [14]. Al-
though many simplifications and assumptions are made in the simulations compared to real
Grid environments, simulations are commonly considered a flexible and tractable way of
evaluating different Grid scheduling algorithms as well as other design issues.
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View Mean CV Distribution ACF
local 0.04/s 9.9 Long tail SRD

RAL05 grid 0.02/s 2.1 Short tail MRD
all 0.06/s 6.3 Long tail SRD
local 0.002/s 8.7 Long tail P.P.

NIK05 grid 0.005/s 4.1 Long tail MRD
all 0.006/s 4.4 Long tail MRD

LPC05 all 0.01/s 2.2 Short tail LRD

Table 7.1: Statistics for job rate processes on clusters (s - seconds, P.P. - Pseudo Periodic).

View Mean CV Distribution ACF
local 10401 1.9 Long tail LRD

RAL05 grid 13973 1.7 Long tail LRD
all 11727 1.9 Long tail LRD
local 14584 1.9 Long tail MRD

NIK05 grid 16934 1.9 Long tail LRD
all 16336 1.9 Long tail LRD

LPC05 all 4585 3.7 Long tail LRD

Table 7.2: Statistics for job run times on clusters (the unit of run time is seconds).

7.2 Synthetic Workloads

The study is to investigate the performance impacts of workload correlations in Grid schedul-
ing. For this purpose synthetic workloads are generated with different correlation structures.
Job arrival processes can be not dependent (NoD), short range dependent (SRD), and long
range dependent (LRD), which can be modeled by a Poisson process, a 2-state Markov mod-
ulated Poisson process (MMPP2, see Section 2.4.1), and a multifractal wavelet model with
CV-InF conversion (MWM, see Chapter 5). Job run times have the same three correlation
structures and they can be modeled by MBC-LSP with different permutation window sizes.
MBC-LSP stands for mobel based clustering and a localized sampling algorithm with cluster
permutation (see Chapter 6). Experimental results of using these models to generate Grid-
level and background workloads are presented in Section 7.4.

7.3 Grid Simulation

The simulation environment is based on GridSim [15]. GridSim provides a discrete-event
framework for simulating core Grid entities such as jobs, resources, and information ser-
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Site Location Cluster OS #CPUs Down
scale

Spec
INT2k

BG workload

CERN Switzerland Sci. Linux 3 3534 354 970 0.05/s
FZK Germany Sci. Linux 3 2662 266 1289 0.04/s
FNAL USA Sci. Linux 4 1925 193 1600 0.033/s
QMUL UK Sci. Linux 4 1644 164 1381 0.033/s
IN2P3 France Sci. Linux 3 1454 145 892 0.025/s
SARA Netherlands Debian 3 1352 135 1636 0.025/s
RAL UK Sci. Linux 3 1266 127 1000 0.02/s
INFN Italy Sci. Linux 3 1238 124 747 0.02/s
Top 8 out of 237 sites in total (0.034%), 15075 out of 36126 CPUs in total (41.7%).

Table 7.3: Characteristics of the largest eight clusters in the LCG Grid (data obtained in
April, 2007) and corresponding parameters used in the simulation. BG workload shows the
local job arrival rate on the cluster. Run times of the local jobs are scaled to obtain different
utilizations.

vices. For the performance evaluation of Grid scheduling under correlated workloads two
case studies are implemented as follows.

7.3.1 Grid Resource Case

The first case is a computing cluster with one FCFS queue. The simulated cluster is space-
shared and has 100 CPUs. In order to understand the background workload traces from three
data-intensive clusters are analyzed. For RAL05 and NIK05 it is able to roughly distinguish
the Grid jobs and the locally generated jobs. By examining the “user name” field in the traces,
jobs from “pool account” (usually a VO name plus a unique number) are considered Grid jobs
while jobs from a “real” user name are seen as local jobs. As is shown in Table 7.1, different
clusters have different job arrival rates and autocorrelation structures. The arrival ratio and
patterns of local jobs versus Grid jobs are also highly diversified. The job run times shown in
Table 7.2, on the other hand, have relatively smaller variances and are long range dependent.
These statistics give a good reference on how to adjust the model parameters for synthetic
workload generation.

7.3.2 Grid Broker Case

The second case naturally extends to the Grid level. Eight space-shared clusters are simu-
lated whose properties resemble those of the eight largest clusters in the LCG Grid (LCG).
The resource properties are shown in Table 7.3. Each cluster has its own local background
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Figure 7.1: Synthetic workload traces with different correlation structures. For job arrival
rate processes, NoD - a Poisson process, SRD - a MMPP2 process, LRD - a MWM process
with CV-InF conversion. For job run times, NoD - MBC with random sampling, SRD - MBC
with localized sampling (W = 1), LRD - MBC with localized sampling (W = 500).
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Model Parameters
Poisson µ = 10
MMPP2 σ1 = 0.04, σ2 = 0.01,

λ1 = 8.0, λ2 = 1.0
MWM p = [3.3, 5.3, 6.6, 7.5, 6.7, 7.1, 4.8,

3.0, 2.2, 1.4], µc = 0.28, σc = 0.33
MBC-LSP α = 1.79, N = 1262, W = 1, 500

Table 7.4: Model parameters used in the experimental study. MWM parameters are fitted
using a representative LRD trace biomed, LPC05. MBC-LSP parameters are fitted for another
representative trace hep1, RAL05 (parameters for Gaussian mixtures are not shown here due
to the space limit).

workload, in which the job arrival rate scale with the capacity of the resource. The cho-
sen algorithm for the Grid broker case is called MCT (Minimum Completion Time) [92].
MCT assigns each incoming job to the cluster with the minimum expected completion time
for that job. Clusters are assumed to be FCFS-based so the minimum completion time can
be estimated by simulating FCFS scheduling for the local queue. The estimated minimum
completion times are published to the Information Service and can be used by the broker for
making a scheduling decision. The job flow at the Grid level is sent to the broker and has
an average arrival rate of 0.1/seconds. The workload models generate synthetic traces with
different structures and are stored in text files. GridSim reads the workloads from the files
and runs the simulation.

7.4 Experimental Results

This section presents the experimental results that quantify the performance impacts of work-
load correlations in Grid scheduling. Table 7.4 shows the model parameters used to generate
synthetic workload traces. In terms of parameter space, the tradeoff is that more complex
models are needed to generate processes with longer range correlations. Different correlation
structures and associated models are shown in Figure 7.1. For all generated processes the
means and standard deviations remain unchanged, only the dependencies in the series are
different. This is the basis of the comparison studies presented as follows.

1. What are the performance impacts of autocorrelations on one FCFS queue with multi-
ple servers?

The Grid resource case is investigated first. Performance is measured by the average job
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Figure 7.2: Performance impacts of autocorrelations on a cluster with one FCFS queue.
Workload structure is denoted as “arrival” “run time”.
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Figure 7.3: Performance impacts of autocorrelations in Grid scheduling. Workload struc-
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slowdown1 as a function of system utilization2, which is shown in Figure 7.2. We can see that
the impacts of autocorrelations is very large: the bigger the ACF, the worse the performance.
Similar results have been reported in a clustered web server environment [135]. The cause
of such performance degradation is the high degree of temporal burstiness in a LRD process.
Bursty arrivals, which is the opposite of smoothness (e.g. Poisson), result in a long queue
of waiting jobs. Consequently it leads to longer queueing delays (bigger slowdown for jobs)
and overall lower system utilization.

2. What are the performance impacts of autocorrelations on a Grid broker and multiple
clusters with background workload?

In the Grid broker case, at the cluster level each resource generates its own local back-
ground workload. At the Grid level one stream of jobs flow into the broker. Therefore there
are two levels of freedom in combining the autocorrelation structures, with each level having
two attributes - job arrival and job run time. In this case the performance is measured by
the average job slowdown for Grid-level jobs as a function of the run time scaling ratio on
resources. The run time scaling ratio is the job MIPS rating versus resource MIPS rating and
a higher ratio indicates a larger average run time. By varying the run time scaling ratio the
results are obtained in Figure 7.3. Firstly, the impacts of Grid-level autocorrelations are inves-
tigated by setting the local background workloads to be not dependent (Figure 7.3 top plot).
Although not as big as in the Grid resource case, performance degradation is observed for
larger autocorrelations in the lower range of the scaling ratios. Secondly, the implications of
different autocorrelation structures are studied in the local background workloads (Figure 7.3
middle plot). Interestingly it is shown that Grid-level jobs actually perform better when the
background workloads have stronger autocorrelations. This is explained by the lower system
utilization resulting from the stronger temporal locality in more autocorrelated processes at
the cluster level. If the local background workloads are set to be long range dependent and
the correlation structures at the Grid level are varied correspondingly, it is observed that big
performance degradation is resulted by long autocorrelations (Figure 7.3 bottom plot). By
combining these effects it can be concluded that autocorrelations in the workloads result in
worse system performance, both at the local and the Grid level.

It is also investigated how the performance of different Grid scheduling algorithms are
compared under various workload structures. Three scheduling heuristics, namely, OLB,

1Slowdown is defined as the average job response time (run time plus queue wait time) divided by the average
job run time.

2Utilization means the average system utilization and it is calculated as the proportion of system’s resources
which are busy.
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Figure 7.4: Performance comparison of four Grid scheduling heuristics. Workload struc-
ture is denoted as “Grid arrival”“Grid run time” “local arrival”“local run time”. N - Not
dependent, S - Short range dependent, L - Long range dependent. For example, “NN LL”
means that the job arrival and run time series at the Grid level are not dependent, while the
background workloads at the local level are long range dependent.

SWITCH, and KPB, are further introduced here for comparison studies [12, 92]. Figure 7.4
shows the performance results of the selected four scheduling heuristics under different work-
load structures. If the local background workloads are not dependent, it is shown that similar
results are obtained no matter what are the Grid-level workload structures. In other words,
the autocorrelations in the Grid-level workloads do not change the performance evaluation
results under independent background workloads: the SWITCH algorithm performs the best
while KPB has the worst mean response time. However, the conclusion becomes different
if the background workloads are long range dependent. Firstly, the absolute average mean
response times are considerably smaller compared to the case where the background work-
loads are not dependent. Secondly, the performance evaluation results change accordingly:
KPB achieves similar performance with SWITCH. In many scheduling studies, researchers
normally assume a smooth background workload using Possion arrivals and exponential run
times. It is important to notice that the obtained results under such conditions should be
carefully evaluated since the real-world workloads can have a big performance difference.

7.5 Summary

In this chapter the practical use of workload models is demonstrated by simulation studies.
Using the synthetic traces the performance impacts of workload correlations in Grid schedul-
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ing were quantified. The results indicate that autocorrelations in workload attributes can
cause performance degradation, and that in many situations this effect is huge. It is shown
that the development of realistic workload models are necessary for dependable performance
evaluation studies of scheduling strategies.

Further research includes how to improve scheduling under autocorrelations. In a two-
level Grid scheduling scenario, long range dependence is not necessarily a bad situation. For
instance, Figure 7.3 (middle plot) shows that better performance is obtained for Grid-level
jobs under LRD background workloads on clusters. Temporal burstiness, the opposite of
smoothness, implies that the system have more idle periods or “holes” in the time line. This
provides opportunities for the broker to do smart load balancing at the Grid level.
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Chapter 8

A Local Learning Framework for
Performance Predictions

Scheduling in large-scale Grids is a challenging problem and it is under active research [98].
Scheduling at the Grid level differs from local scheduling in that Grid schedulers do not have
control over the participating resources. Instead, Grid schedulers make decisions on behalf
of users and hand jobs over to the local resource management systems. Consequently the
goodness of scheduling depends heavily on the quality of information available about the
resources. Predictions of performance metrics, such as application run time and queue wait
time, provide dynamic information about resources that can support Grid-level scheduling
decisions. This chapter addresses the problem of performance predictions on space-shared
computing resources such as clusters. The approach is based on historical performance data,
or workload traces. It is shown that knowledge about resource scheduling policies can be
discovered in the historical data and this knowledge can be utilized for predictions. Local
learning, or Instance Based Learning, is adopted as the prediction framework. This chapter
introduces this framework and defines a set of performance metrics and related similarity
measures. It also presents the techniques for improving performance predictions by local
learning. The chapter starts with reviewing the related work of performance prediction tech-
niques for computer systems and networks.

8.1 Related Work

Although not aiming at provide an exhaustive list of work in the literature, a broad range
of representative methodologies and techniques are reviewed for performance predictions on
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computer systems. The first category of techniques is to build application models and ma-
chine profiles and combine them to estimate running times of applications [17, 19, 123]. This
approach requires direct knowledge of the internal design of the application and the machine
architecture. Consequently there is no proven mechanism for predicting run times from the
application and machine profiling data over a wide range of algorithms and architectures.
Nevertheless, highly accurate predictions can be achieved by this method for the targeted
applications and machines since detailed information is analyzed and incorporated. Combi-
nations of analytic methods with statistical approaches are also proposed by leveraging the
advantages of both methods while trying to overcome some of their limitations [7, 60].

The second category of techniques focuses on deriving predictions from historical ob-
servations. On time-sharing Unix machines and networks, the commonly-used performance
metrics are CPU load [31, 134] and network bandwidth [102, 132]. Predictions of there
metrics provide very useful information for scheduling distributed applications in such envi-
ronments. CPU load or network traffic is typically sampled with a certain frequency to form
a time series of data. Naturally time series models are well studied and applied for predic-
tions [31]. The strong autocorrelations in such series suggest that the methodology based on
historical modeling will most likely work in practice [102]. It is also shown that the relation-
ship between the host load and the execution time is almost linear therefore the estimates for
run times can be easily obtained [31]. Toolkits including sensors and predictors have been
developed and are widely used in various application scenarios [31, 132].

On space-shared parallel supercomputers and clusters, on the other hand, historical data
takes the form of accounting logs or workload traces. The data objects (or “jobs”), consists
of multiple attributes (or “features”) such as user name, number of processors and run time.
Database technologies are introduced in storage and management of performance data and a
number of tools have been developed [58, 65, 101, 124], some of which include data mining
functionalities and prediction capabilities. However, the main focus of these research results
is on the efficient design of systems leveraging databases for the performance analysis and
diagnosis of parallel applications rather than performance predictions.

Two main performance metrics on space-shared resources are reviewed here, namely, ap-
plication run time and queue wait time. A related metric is called data transfer time, which is
important for scheduling in a data Grid and regression techniques are investigated for predi-
tions [126]. An early effort to predict application run times on space-shared environments is
to make “templates” of job attributes to identify “similar” jobs in the historical data and apply
statistical methods such as mean and linear regression to generate predictions [48]. In this
research the “optimal” template(s) are predefined manually by expert information. An auto-
mated technique can generalize better and potentially achieve better prediction results. It is
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in [116] that greedy search and genetic algorithms (GA) are empirically studied for automatic
template definition. The objective function is to minimize the average prediction error and it
is shown that GA is a preferable method. Techniques based on Instance Based Learning (IBL)
have also been investigated for application run time predictions [64]. IBL, or local learning
techniques, use historical data near the query point to build a local model for approximation.
A proper distance metric has to be defined to measure the “nearness” between data instances.
In fact the IBL algorithm is a generalization of the template approach, in which distances are
simplified to binary values (belong or not belong to a specific category).

Job queue wait time on a space-shared machine is generally more complicated and dif-
ficult to predict, involving various factors such as job attributes, the scheduling system, and
the resource state (other running and queuing jobs). In [32] the log-uniform distribution is
used to fit the job life cycles, based on which the prediction of the queue wait time can be
readily obtained by assuming first-come-first-serve (FCFS) scheduling. A recent publica-
tion [13] studies the queue wait time on a batch queue as a random variable and proposes a
binomial method batch predictor (BMBP), which is a quantile-based method capable of gen-
erating bounds of queuing delays. Non-statistical methods are mostly based on simulations
of schedulers. In [117] scheduling algorithms like FCFS and backfilling are simulated for
queue wait time predictions, where application run times are estimated using the “template”
approach [116]. In [75] simulation is used to predict queue wait times for a policy-driven
scheduler so that the QoS for difference groups and users can be reflected. Although good
prediction accuracy can be achieved, several major drawbacks exist for the simulation ap-
proach. Firstly, the simulation process can be very slow hence it cannot meet the requirement
of real-time scheduling. Secondly, it cannot be generalized broadly since there are different
types of local scheduling systems deployed on different resources in a heterogeneous envi-
ronment. Some sites have schedulers with combinations of basic scheduling algorithms, and
most sites enforce highly localized rules and policies.

In this chapter the problem of performance prediction is addressed in a more general
background, which is knowledge discovery and learning from data [53]. From this perspec-
tive, the problem can be redefined as how efficiently the knowledge about local resource
policies can be discovered from the performance data and what kind of metrics are poten-
tially useful for interesting parties such as users and scheduling services. This view not only
incorporates commonly-used metrics such as applications run time and queue wait time, but
also enables new metrics such as effective capacity to be introduced and evaluated. To work
with multidimensional workload data with multiple attributes, a framework is needed within
which metrics can be flexibly introduced and different machine learning techniques can be
exploited. Local learning [6, 89] provides such a framework. The keyword here is “localiza-

95



8. A Local Learning Framework for Performance Predictions

0 0.5 1 1.5 2 2.5
0

2000

4000

6000

8000

Job run time (s)

C
ou

nt

Histogram

 

 

hep1, RAL05

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

Lag

A
C

F

Job run time

 

 

hep1, RAL05

Figure 8.1: Histogram and the autocorrelation function (ACF) plots for run times of hep1,
RAL05. The distribution of run time is multi-modal and there is strong autocorrelation in the
data series.

tion”. Just like “zooming in” data by specifying more attributes in a template approach, local
learning finds similar patterns on-demand and builds a model locally based on these patterns.
In complex situations with dynamically changing states and many possible configurations,
this methodology has many advantages compared to global models.

8.2 Statistical Properties Of Workload Data

Before going into details about the proposed prediction framework, some important statistical
properties of workloads are examined which underpin the success of historical data modeling.
Figure 8.1 plots the first and the second order statistics of application run times of hep1,
RAL05. Hep1 is the largest Virtual Organization (VO) in terms of jobs submitted on RAL05
so the plots shown is a one-level localization according to the group/VO name. We can see
that multimodals are observed in the histogram plot. This is explained in Chapter 3 as the
nature of data-intensive tasks, which is recognized by the fact that certain applications run
repeatedly in massive production mode. These applications typically have certain running
time(s) plus the variations coming from the job parameters, CPU speed, or other factors. As to
the second order properties, long and slow-decaying lags are observed in the autocorrelation
function (ACF). It indicates that the run time is strongly correlated with the data appeared in
the near past. This is partially explained by the job arrival patterns: similar run times tend to
appear together within bursty periods. A practical issue is that the immediate “historical” data
could be unavailable at the time for prediction since those jobs are still running or queuing,
which can have a negative effect on the prediction accuracy.
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Figure 8.2: Time series and the autocorrelation function (ACF) plots for queue wait times
of hep1, RAL05. The sequence of queue wait times is arranged in time-ascending order
according to the job arrival times. Strong autocorrelation is observed in the time series.

Figure 8.2 plots a sequence of queue wait times arranged in time-ascending order with
respect to the job arrival times. Almost linearly-increasing slopes of queue wait times are
observed, which in fact can be related to the number of queuing jobs of that particular group.
The strong autocorrelation in the series also indicates that queue wait times could be predicted
with good accuracy based on historical data. It is a challenge to effectively locate those
relevant data and efficiently make predictions, which is addressed in the following sections.

8.3 Metrics and Similarity Measures

From a user point of view, the main criteria for resource selection are how long it takes for
the job to run and how long it takes for the job to wait in the queue before starting, on a
space-shared computing resource. The performance metrics of interest are application run
time and queue wait time, respectively, which are widely used and well studied. There are
situations where different metrics or representations are better suited for higher-level resource
allocation. For instance, “bag-of-tasks” behavior is identified on data-intensive environments,
strongly suggesting temporal locality. Because of the volume of massive production jobs to
be submitted, the users or brokers of a virtual organization (VO) do not care that much about
individual run times or queue wait times. Instead, metric about how many jobs one can
submit to a certain resource given a predefined QoS level would be more interesting for a VO
broker to allocate jobs efficiently. Based on this metric the broker can divide job requests into
groups with different sizes for submission and potentially balance the load at a meta-level.
A new performance metric called effective capacity of computing resources is introduced in
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Abbr. Job Attribute Type Abbr. Job Attribute Type
g group name nominal n #CPUs numeric
u user name nominal r req. run time numeric
q queue name nominal qt arrival time numeric
e job name nominal st start time numeric
m used memory numeric rm req. memory numeric
rt run time numeric s exit status nominal

Table 8.1: Representative job attributes recorded in workload traces (Abbr. - Abbreviation).
There are two main types of attributes, namely, numbers (numeric) and strings (nominal).

this chapter.

Definition 1 (Effective Capacity) The effective capacity of a space-shared computing re-
source for a certain Virtual Organization (VO) is the number of jobs that this resource can
accept from this VO before reaching a predefined QoS parameter. This parameter, for in-
stance, can be the maximum queue wait time that the VO users can tolerate.

Effective capacity is primarily targeted for data-intensive environments with multiple Virtual
Organizations. Predictions for this metric can be more risky because it essentially predicts
multiple steps into the future. Job arrivals in the near future could have an influence on the
current queue therefore making the predictions less reliable. In this thesis the method of
calculating effective capacity and its statistical properties are investigated.

Once the targeted metric is determined, the key problem is how to define similarity mea-
sures to compare jobs. Table 8.1 shows the representative job attributes recorded in workload
traces. For job run times, some of these attributes can be naturally used for similarity defini-
tion. For queue wait times and effective capacity, however, new attributes need to be defined
as the waiting time of a job is typically a result of interactions among the job, other jobs on
the resource, and the local scheduler. The definitions for job similarity and resource state
similarity are introduced as follows.

8.3.1 Job Similarity

In the context of this thesis seven recorded attributes are considered to define job similarity.
They are “group name” (g), “user name” (u), “queue name” (q), “job name” (e), “number
of CPUs” (n), “requested run times” (r), and “arrival time of day” (tod). Depending on the
availability, Any potentially useful attribute such as node speed and executable arguments
can be added to this list. The pre-selected attributes are mostly self-explanatory by their
names and they have two main types, namely, nominal (g, u, q, e) and numeric scalar (n, r,
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Abbreviation Resource State Attribute Calculation
VRunJobs Vector of categorized number of

running jobs
Vi = Nri

VQueueJobs Vector of categorized number of
queuing jobs

Vi = Nqi

VAlreadyRun Vector of categorized sum of
already run time multiplied by
#CPUs of running jobs

Vi =
∑Nr i

j=1 alrunt( j) × cpu( j)

VRunRemain Vector of categorized sum of re-
maining run time multiplied by
#CPUs of running jobs

Vi =
∑Nr i

j=1 remaint( j) × cpu( j)

VAlreadyQueue Vector of categorized sum of al-
ready queue time multiplied by
#CPUs of queuing jobs

Vi =
∑Nqi

j=1 alrquet( j) × cpu( j)

VQueueDemand Vector of categorized sum of es-
timated run time multiplied by
#CPUs of queuing jobs

Vi =
∑Nqi

j=1 demandt( j) × cpu( j)

Table 8.2: Definition and calculation of resource state attributes. Vi: the value of the ith
category, Nr: number of running jobs, Nq: number of queued jobs. The template for catego-
rization is a subset of <group, user, queue>.

tod). Similarity between jobs are calculated by a distance function and the definitions from
the Heterogeneous Euclidean-Overlap Metric (HEOM) are adopted [131]. HEOM works for
nominal and numeric scalar attributes. The function for nominal values is defined as

overlap(x, y) =

 0 if x = y,
1 otherwise.

(8.1)

And the function for numeric scalar values is defined as

ns diff a(x, y) =
|x − y|

maxa − mina
, (8.2)

where maxa and mina are the maximum and minimum observed value for the attribute a.

8.3.2 Resource State Similarity

A resource state is defined as a pool of running and queuing jobs on the resource at the time
of making a prediction. More issues arise when measuring similarities of resource states and
attributes are needed for their characterization. Firstly, since a resource state consists of a set
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of jobs, attributes have to be defined to represent the resource states in a way that they can be
compared properly. Secondly, policy attributes that reflect the scheduling policies have to be
embedded into the state attributes so that local scheduling information can be discovered.

Three attributes are defined as the candidate policy attributes, namely, group name, user
name, and queue name. These job credential attributes are most frequently used in defining
scheduling policies. For instance, group, or Virtual Organization, is a popular choice to make
scheduling policies on sites. Administrators may define multiple queues and assign different
resource limits. Other attributes that may influence scheduling decisions can be potentially
added.

The policy attributes identify a set of categories to which jobs in a resource state will
be assigned. A new attribute type called numeric vector is defined, which contains a vector
of <key, value> pairs. Six representative attributes of this type are defined to characterize a
resource state from different views, namely, RunJobs (the number of running jobs), Queue-
Jobs (the number of queuing jobs), AlreadyRun (the sum of already-run times multiplied by
#CPUs of running jobs), RunRemain (the sum of estimated remaining run times multiplied
by #CPUs of running jobs), AlreadyQueue (the sum of already-queued times multiplied with
#CPUs of queuing jobs), and QueueDemand (the sum of estimated run times multiplied by
#CPUs of queuing jobs). These resource state attributes and their calculations are summa-
rized in Table 8.2. For each resource state attribute, the key contains values of selected policy
attributes (one category) and the value is a numeric scalar variable associated with that cate-
gory. For example, let us assume that the selected policy attributes are group name and queue
name (written as “group-queue”). They generate categories such as “bioinfo-qlong” and
“astronomy-qshort”. State attribute “VRunJobs” contains a vector of pairs like <“bioinfo-
qlong”, 32>, <“astronomy-qshort”, 8>, etc, where the value in each pair represents the num-
ber of running jobs in the category identified by the key. The same representation holds for
other resource state attributes. By introducing policy attributes the resource states are par-
titioned into a more fine-grained level for similarity comparison. The distance function for
numeric vector values is defined as

nv diff a(x, y) =
∑Na

i=1 |xi − yi|

range(a)
, (8.3)

where i is the ith category and Na is the total number of categories of x and y. range(a) is the
maximum value of difference in the training data for attribute a.

For queue wait times our assumption is that “similar” jobs under “similar” resource states
would most likely have similar waiting times, given that the scheduling algorithm and policies
remain unchanged for a reasonable amount of time [76]. All resource state attributes should
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be considered in the distance function so that policies and attribute weights can be discovered
via training for optimally locating similar data for predictions. For effective capacity, on
the other hand, only RunJobs and QueueJobs have to be considered for resource states. The
policy attribute is predefined as the Virtual Organization (group), and the distance calculations
in Equation 8.3 have to exclude the targeted VO itself. For a certain VO under a certain
resource state, a set of jobs from this VO with similar states can be identified via distance
comparison. The relationship between the number of jobs from this VO and the queue wait
times can then be established from the job set. Given a predefined threshold value for the
queue wait time, the corresponding number of jobs on the resource can be obtained from the
relationship. The effective capacity is calculated as the difference between this value and the
number of VO jobs at the prediction time. In this situation the advantage of local learning
(sometimes referred to as lazy learning) is shown: only localized models can deal with many
possible resource states, which cannot be achieved with one global model.

8.4 A Local Learning Framework

Local learning methods [6, 89], or instance based learning, typically operate on a training
database and the processing of data is carried out only when answering queries. For numeric
prediction problems in the scope of this paper, there are two basic components in a local
learning framework. The first component is the distance function for measuring the relevance
between objects (or jobs). With the distance functions defined for different kinds of attributes
(see last section), the distance between two jobs with input attribute vectors x and y is given
by

D(x, y) =

√∑m
a=1 wa × da(xa, ya)2∑m

a=1 wa
, (8.4)

where wa is the weight and da is the corresponding distance function for attribute a (nominal
- overlap, numeric scalar - ns diff , or numeric vector - nv diff ).

Local learning is adopted as the prediction framework because it is generic and flexible
enough to incorporate various attributes. Recorded job attributes can be included off the shelf.
New and derived attributes such as those defined for resource states can also be included,
which makes predictions possible for metrics such as queue wait time and effective capacity.
Furthermore, attributes in the distance function can be weighted. This makes it possible to
tune the similarity measure for finding the most relevant data.

Once a set of nearest neighbors (according to distances) are identified, an induction model
is applied to generate predictions. The first model, namely weighted average, calculate pre-
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diction values as the weighted average of the nearest n neighbors:

P(q) =
∑n

i=1 Wi × Val(ei)∑n
i=1 Wi

, (8.5)

where P(q) is the metric value to be predicted, ei is the ith nearest neighbors and Val(ei) is its
recorded metric value. Wi = K(D(q, ei)), K(d) = e−(d/k)2

is the kernel function that calculate
a weight for the data from the distance. k is the kernel bandwidth, which is sometimes
referred to as a smoothing parameter. The kernel bandwidth can be a fixed constant value
(fixed bandwidth selection) or it can be set to the largest distance in the nearest neighbor set
(nearest neighbor bandwidth selection).

The second induction model is called Linear Locally Weighted Regression. In this method
the nearest n neighbors are fitted with a weighted linear regression model. Compared with
the unweighted regression, a linear weighted local model strengthens the data nearer to the
query while weakens the data further away. Locally weighted regression has many advantages
over weighted average, especially for irregular data distributions [6]. Nevertheless, simpler
models such as weighted average often work better in practice largely due to the bias/variance
tradeoff introduced in the next chapter.

For effective capacity the relationship between the number of jobs of a VO on a resource
and the queue wait times can be observed from empirical data. In many situations, however, it
is desirable to construct a function which fits the data so that new data points can be generated
through interpolation and extrapolation. If a linear model is used on the weighted data, that is
the linear locally weighted regression case. Polynomial regression of higher degree can also
be applied for a more complex data distribution.

8.5 Improving Prediction Accuracy and Performance

There are many parameters to be tuned for the basic local learning method. For instance,
it is important to emphasize the most relevant attributes in the distance function for better
“nearness” measurement. In other words, weights for attributes have to be determined. The
policy attribute set has to be discovered to reflect the local scheduling policies. The induction
model, history size, neighbor size, and kernel bandwidth have to be set for a practically useful
algorithm. A genetic algorithm is designed to optimize these parameters by minimizing the
average prediction error on the training data set. This is being referred to as “global tuning”
since the evaluation is done on the whole training data. A “local tuning” method is also in-
troduced so that parameters can be tuned for each training subset divided by a pivot attribute.
Furthermore an algorithm is developed to select global or local tuning adaptively based on
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the generalization error and bias-variance decomposition. These techniques are elaborated in
the following sections.

8.6 Parameter Tuning by Genetic Search

The genetic algorithm uses real value encoding and it adopts standard operators such as se-
lection, mutation, and crossover [49]. Chromosomes are structured to match the different
performance metrics.

For application run times, the chromosome is structured as

{ (wg, wu, wq, we, wn, wr, wtod), (#CPUs), (method), (neighbor size), (history size),
(bandwidth type), (bandwidth) }

The first block is the weights for job attributes, ranging from 0 to 1. The second block
consists of attributes used for regression, in which the number of CPUs is the selected at-
tribute. The third block is the induction model with two choices available: WA (weighted
average), and LLWR (linear locally weighted regression). Other parameters are mostly self-
explanatory. Two types of bandwidth selection are evaluated, namely, “global” and “nearest
neighbor”. If global bandwidth is enabled, the value of the last block is used as the fixed
bandwidth in the algorithm. In nearest neighbor bandwidth selection, bandwidth k is set to
be the distance to the nth nearest data entry.

For queue wait times the chromosome is structured as

{ (wpg, wpu, wpq), (wag, wau, waq, wae, wan, war, watod), (wsr j, wsq j, wsalrr, wsalrq,
wsrrem, wsqdem), (#CPUs, queue demand credential, queue demand total), (method), (neigh-
bor size), (history size), (bandwidth type), (bandwidth) }

Compared to application run times, the chromosome of queue wait times has two more
building blocks, which are the weights for three policy attributes and six resource state at-
tributes. Weights for policy attributes are binary to enable policy selection. Weights for
resource state attributes are real values from 0 to 1. There are also two elements added to
the regression attribute list. queue demand credential is the corresponding category value of
“QueueDemand” as identified by the query point. queue demand total is the sum of values
in all categories for “QueueDemand”. These are potentially useful attributes that can be used
in regression. The genetic search is performed on the training set and tries to minimize the
average prediction error. The optimized parameters are used for predictions on the test set.
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For effective capacity there is no clear objective function like the average prediction er-
ror. In this case no optimization is conducted and we predefine the parameters. The policy
attribute is clearly the Virtual Organization, on which the metric effective capacity itself is
based. The job attributes used are group name and user name and the resource state attributes
are RunJobs and QueueJobs. The nearest neighbor size is set to 100 so that enough data
points are included for regression. The history size is set to 8000 to include enough histor-
ical data in the search. Nearest neighbor bandwidth selection is used in this case. Multiple
regression methods including linear and higher degree polynomials are tested for fitting the
empirical data.

8.7 Adaptive Parameter Tuning

One observation based on many Grid sites is that resources typically have one major at-
tribute defined for scheduling policy expression. On many clusters in the LCG Grid (such as
NIKHEF) this attribute is group (or Virtual Organization). On supercomputers such as Blue
Horizon at SDSC the priority factor in the scheduler is based on queue. Of course sites may
have multiple attributes combined to define scheduling rules, however, there is usually one
which has a dominant impact. More interestingly, the number of values for this attribute is
typically quite small. This is because policies are made by site administrators or investors
and it is natural to keep it in a manageable fashion. For example, on Blue Horizon there
are six function or policy queues defined, namely interactive, express, high, normal, low and
diagnosis. On NIKHEF there are around fifteen groups, of which five or six are regularly
active and dominate the workloads in terms of job counts. One idea based on this observation
is to introduce the policy attribute as a pivot to partition training data into subsets and tune
parameters for each subset. This so-called “local tuning” method may improve the predic-
tion accuracy as the parameters are optimized for every targeted policy group. Moreover, as
the number of subspaces is small, there is enough data in each subset for training separate
learners.

However, the problem of local tuning is that it has a higher probability of suffering from
overfitting because of less data. Therefore it is necessary to examine the prediction error
under the framework of bias-variance decomposition.

8.7.1 Bias-Variance Analysis

In many real-life learning problems it is somewhat counter intuitive that simple methods are
often competitive and sometimes superior to more complex ones for estimation. This is be-
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cause the bias and variance components of the estimation error have impacts in a different
way and usually there is so called bias/variance dilemma [47]. In this case the locally tuned
learner may be less biased, but it can introduce more variance during generalization. There-
fore it is important to decompose the bias and variance components of error and analyze their
individual influence.

The bias/variance decomposition of the mean-squared error is introduced based on [47].
Suppose that the regression problem is to construct a function f (x; D) based on a training
set D = {(x1, y1), ..., (xN , yN)}. The mean-squared error of f as an estimator of the regression
E[y|x] can be written as

ED[( f (x; D) − E[y|x])2] =

(ED[( f (x; D)] − E[y|x])2

+ ED[( f (x; D) − ED[ f (x; D)])2]

The first component on the right of the equation is “bias” and the second one is “variance”.
As we can see, both bias and variance can contribute to the mean-squared error. An unbiased
estimator may still have poor performance if the variance is large. There is often a tradeoff
between the bias and variance contributions to the estimation error. Given this tradeoff, a
method is developed that can adaptively determine when it makes sense to use locally tuned
models as compared to the global model.

8.7.2 Adaptive Selection

There are several design principles for the adaptive method. Firstly, there must be enough
data in the training subset for obtaining statistically significant results. Secondly, local tun-
ing must have comparable or smaller bias than global tuning otherwise we are most likely
fitting noise rather than signal. Thirdly, local tuning must produce smaller or comparable
average prediction error on the training set and the last observed generalization set. Based
on these principles, the adaptive method combines the generalization error, training data size
and bias/variance analysis to make an educated selection of tuning.

Algorithm 2 shows the pseudo-code of the adaptive selection method. In essence the al-
gorithm consists of a set of “filters” that implement the design principles. Error is defined as
the average prediction error normalized by the average real value. Line 3 of Algorithm 2 says
that the training subset size (Ntrain) must be large enough and local tuning should perform
better or comparable on the training subset. Moreover, local tuning should have a compa-
rable or smaller bias on the previous generalization set. If the above conditions are met, it
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Algorithm 2 Adaptive Selection of Tuning
1: set the pivot attribute
2: for each training subset divided by the pivot attribute do
3: if TrainErrorlocal − TrainErrorglobal < εerr and Ntrain > εnum and

GenBiaslocal/GenBiasglobal < εbias then
4: if GenErrorglobal −GenErrorlocal > εerr then
5: return LOCAL
6: end if
7: if |GenErrorglobal − GenErrorlocal| < εerr and (GenVarlocal + GenBiaslocal) <

(GenVarglobal +GenBiasglobal) then
8: return LOCAL
9: end if

10: end if
11: return GLOBAL
12: end for
* εerr, εnum, and εbias are threshold values for comparing the prediction errors, the data sizes
and the bias, respectively.

proceeds to examine the errors on the previous generalization set. If local tuning has a smaller
generalization error (line 4), locally tuned estimators are used. If the generalization error is
comparable for global and local tuning (line 7), local tuning is selected only when it also has a
smaller mean-squared error (bias + variance). In other situations the globally tuned model is
used. As is shown in the experimental studies this method is effective in detecting overfitting
caused by local models and combining the advantages of both global and local tuning.

8.8 Nearest Neighbor Search

In a local learning framework, deferring the processing of data to the query time has its
own disadvantages, of which performance is a major issue. Compared to the simulation
approach it is still practical and fast, however, the learning process for optimizing parameters
is shown to become slow if the data size grows large. In the basic prediction algorithm
the k nearest neighbor search is implemented sequentially with some improvements such as
caching. Nevertheless, the sequential search is inherently slow as it has to calculate distances
with all entries in the history base. The distance calculation for queue wait times is especially
expensive because it involves complex resource state attributes. To improve performance a
different access structure called M-Tree is introduced.

M-Tree [23] is a search tree structure to organize and access large data sets from a generic
metric space. In the metric space object proximity is only defined by a distance function sat-
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Name Location Arch. Scheduler CPUs Period #Jobs
NIK04 NIKHEF, NL PC cluster Maui 288 Jun-Dec’04 161,666
SDSC01 SDSC, US IBM SP Catalina 1,152 Jan-Dec’01 88,694
SDSC02 SDSC, US IBM SP Catalina 1,152 Jan-Dec’02 91,751

Table 8.3: Summary of workload traces used in the experimental study. It should be noted
that the traces used for prediction is different than those for characterization and modeling
(Chapter 3).

isfying positivity, symmetry, and triangle inequality postulates [22], on which our distance
functions hold. M-Tree is a tree where a set of representatives are chosen at each node and the
elements closer to each representative are organized into a subtree. Each representative stores
its covering radius r and all objects in the subtree are within the distance r from the represen-
tative. At query time, the query is compared against all the representatives of the node and
enters recursively into all those that cannot be discarded using the covering radius criterion.
The k nearest neighbor search in the M-Tree uses a branch-and-bound technique. The query
radius is firstly assumed positive infinite and it is dynamiclly decreased to the distance to the
k-th nearest neighbor. The M-Tree structure is intrinsically much more effective in reducing
the number of distance calculations compared with the sequential search. Comprehensive
descriptions and formulations of the algorithm are out of scope of this thesis and the reader
is referred to [23] for details. The M-Tree k nearest neighbor query is implemented based on
the XXL library1.

8.9 Experimental Results

This section presents the experimental results of the proposed approach based on real work-
loads on production systems. Table 8.3 shows a summary of workload traces under study.
The NIKHEF cluster is a representative production site consisting of around 288 commod-
ity CPUs, which is primarily used for high energy physics (HEP) data processing. The
cluster is running openPBS as the batch system and Maui as the local scheduler. Jobs are
scheduled according to their priorities, which are determined largely by the fairshare, throt-
tling, and priority policies [61]. NIKHEF defines such policies mainly based on group and
user names. Firstfit backfilling is turned on in the scheduling algorithm. The SDSC Blue
Horizon is a terascale IBM SP supercomputer with 1152 CPUs and its scheduler is called
Catalina. Catalina uses multiple submission queues with different priorities while maintains

1The eXtensible and fleXible Library. http://dbs.mathematik.uni-marburg.de/research/projects/
xxl/xxl.html.
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Figure 8.3: Histograms of relative errors for predicting application run times. A relative error
closer to zero indicates better prediction accuracy.
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Figure 8.4: Histograms of relative errors for predicting queue wait times. A relative error
closer to zero indicates better prediction accuracy.

one priority-based execution queue and performs backfilling. It is different compared to Maui
primarily in that Catalina does not support fairshare and its policies are based on queues. It
is intended for the experimental studies to include workload traces with different application
types, machine architecture, and diverse scheduling policies.

Two kinds of metrics are used for measuring the performance of the prediction algo-
rithm. Prediction accuracy is measured by the average absolute prediction error, defined as∑N

i=1 |test − treal|/N. test and treal are predicted and actual values, respectively. The average
absolute error is normalized by dividing the average run time (or wait time). Moreover, the
relative error is formulated as re = (test − treal)/(test + treal). Prediction time is measured as
the average execution time in milliseconds (ms) for one prediction. The workload dataset is
divided into training and test sets throughout the evaluation.

The evaluation is started with application run time and queue wait time. Results for
prediction accuracy of global tuning and adaptive tuning, and prediction time of caching and
M-tree search are discussed in the following sections.
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Figure 8.5: Comparisons of real and estimated queue wait times for three representative
groups on the NIKHEF trace.

Name Run Time Wait Time
Abs. Err. Nor. Err. Abs. Err. Nor. Err.

NIK04 324.6 m 0.58 299.3 m 0.73
SDSC01 35.9 m 0.49 376.7 m 0.89
SDSC02 50.1 m 0.51 690.2 m 0.70

Table 8.4: The average and normalized absolute errors for application run time and queue
wait time predictions (global tuning case).

8.9.1 Prediction Accuracy of Global Tuning

Table 8.4 shows the prediction accuracy of the proposed algorithm in terms of average abso-
lute errors. Since the average results may be dominated by those with large values, histograms
of relative errors re are plotted in Figure 8.3 and 8.4. As shown good accuracy is achieved
for run time predictions in general. A majority of jobs have relative errors between -0.5
and 0.5, with the largest percentage centered around zero. The relative errors on NIKHEF
are more spreading from the center area compared to SDSC counterparts. This is partially
because the NIKHEF cluster consists of heterogeneous nodes with different speeds whereas
SDSC supercomputer has homogeneous processors. The node information is not known at
the prediction time for queuing jobs, resulting in larger variations for run time predictions.
For queue wait times, the distributions of relative errors are flatter and percentages of “bad”
predictions increase. It indicates that the algorithm is less effective in predicting wait times
than run times. This is expected since queue wait times are generally much more difficult to
predict, involving complex scheduling policies, dynamic resource states, and more uncertain
factors.

It is important that predictions should capture the trends of real wait times to show that the
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Trace Method Nor. Error Abs. Error
NIK04 global 0.77 294 min

local 0.68 259 min
adaptive 0.67 255 min

SDSC01 global 0.89 379 min
local 0.87 370 min

adaptive 0.86 368 min
SDSC02 global 0.70 696 min

local 0.66 659 min
adaptive 0.67 674 min

Table 8.5: Comparisons of generalization errors of global, local, and adaptive tuning for
queue wait time predictions. Generally speaking local tuning achieves better prediction ac-
curacy than global tuning. Adaptive tuning is comparable or further improves accuracy com-
pared to local tuning.

localization is effective. The group behavior on NIKHEF is further investigated since most of
the priority, throttling, and fairshare policies are defined based on groups. Figure 8.5 shows
the comparisons of real and predicted values for three representative groups on NIKHEF.
Group dzero contains many local users and it has relatively high priority. It usually submits
massive production jobs in bags. It can be seen that its waiting times show repetitive patterns
and are predictable to a large extent. From this group’s view the resource available on the
cluster resembles a FCFS queue on a certain partition, which is guaranteed by its higher
priority and the throttling policies. The real scheduling system is certainly more complicated
than this but the main picture has been captured. Remember that there is no assumption
of any knowledge about the scheduling policies (i.e. group name is an important policy
attribute), it is discovered automatically by a genetic optimization process. For group dteam
which has many short-running test jobs, the waiting times may still be small even when the
system is heavy-loaded and the waiting queue is long. This is because of the backfilling
algorithm as well as the throttling policies. The proposed technique works well in this case
while the simple load-based predictors would most likely fail. For group theory, however,
the predictions are not able to match the real values. The reasons are three-folds: firstly,
theory jobs are highly irregular and have large variances in run time predictions, which in
turn result in big errors in estimating resource state attributes. Secondly, group theory has a
relatively low priority and strict resource limits, whose waiting times are more easily affected
by the other jobs. Thirdly, there is not enough similar jobs to learn from the history of group
theory. An interesting observation in the plot of group theory is that predictions reproduce
the previous pattern as the best effort, which fails to match the current trend. It reflects the
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Figure 8.6: Relative generalization errors of global, local, and adaptive tuning for two repre-
sentative groups on the NIKHEF trace. Adaptive tuning provides a lower bound of prediction
errors compared to global and local tuning.

fact that in nearest neighbor search the most relevant data are very likely to be the most recent
entries, which are unfortunately not available at the prediction time.

8.9.2 Prediction Accuracy of Adaptive Tuning

Table 8.5 shows the generalization errors of global, local and adaptive tuning for queue wait
time predictions. In general it is shown that local tuning outperforms global tuning, and
the adaptive method can further improve accuracy. A detailed analysis based on groups and
queues is available in [74]. It shows that the bias and variance contributions to prediction
errors depend highly on the specific groups or queues. In most cases, variance proves to be
the dominant factor. The adaptive method can effectively detect and avoid overfitting by local
tuning while keeps its advantages. Figure 8.6 shows the generalization errors of three tuning
methods for two representative groups on NIKHEF. For dzero the local tuning is able to
consistently outperform global tuning in consecutive months and the adaptive method makes
the correct selections. For atlas, on the other hand, the prediction results are diversified across
different months. Local tuning is able to perform better sometimes while it produces larger
errors in other situations during generalization. It is shown that the adaptive method basically
follows the lower bounds of prediction errors and it is able to achieve higher accuracy than
both global and local tuning. Figure 8.7 shows the generalization errors for two representative
queues on SDSC. Although the adaptive method can still make the right choices of tuning,
it can be seen that local tuning is less effective for the SDSC traces than for its NIKHEF
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Figure 8.7: Relative generalization errors of global, local, and adaptive tuning for two repre-
sentative queues on the SDSC trace. Adaptive tuning provides a lower bound of prediction
errors compared to global and local tuning. Nevertheless, adaptive tuning is considered “con-
servative” since in some cases it favors global tuning than local tuning even the latter achieves
better accuracy.

Name Run Time (nocache) Run Time (cache) Wait Time
mean std mean std mean std

NIK04 38 28 10 8 313 185
SDSC 30 32 23 17 461 516

Table 8.6: Mean and standard deviation (std) of average execution times (in microseconds)
for run time predictions with and without cache. The average execution times for wait time
predictions are also shown. Caching interval ∆t = 100 seconds.

counterparts. This is due to different workload structures in the traces. On NIKHEF the
“bag-of-tasks” behavior dominates the workloads and several main groups typically compete
for resources. There are enough training samples for those groups therefore chances are
higher to find more similar data points for better predictions. On SDSC, however, the group
or queue patterns are not that evident so it is more difficult to find many similar jobs with
similar resource states. This is especially true for local tuning with fewer training samples.

8.9.3 Prediction Time

The first technique for improving prediction performance is by caching. The estimation for
a given attribute vector at time t is cached for another ∆t seconds so jobs arrive before t + ∆t
can use the same prediction. The caching mechanism is not used for wait time predictions
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Figure 8.8: Performance comparisons of the sequential search and the M-Tree nearest neigh-
bor search. Experiments are done on a Intel Xeon machine with four 2.8 GHz CPUs and 3
GB shared memory.

as the resource state attributes may change quickly over time. Table 8.6 shows the aver-
age execution times for run time and wait time predictions. It is shown that with caching
the performance for run time predictions is improved significantly. The average execution
time reduces almost 75% on NIKHEF. On SDSC, however, performance is improved only
marginally. It is because the arrival process of SDSC is not as bursty as NIKHEF and the
caches are less frequently used. For wait times, SDSC also has longer and more spreading
execution times. This can be explained by the compositions of its resource state attributes.
SDSC has much more diverse users, application types, and number of CPUs, leading to a
more complex resource state attributes of vectors. Consequently the distance calculations are
much more expensive. Nevertheless, with an average execution time in the order of millisec-
onds, the proposed algorithm performs much better than the simulation approach [75] and
therefore it is practically useful in heterogeneous Grid environments.

Since the execution time per prediction is mainly decided by the search time for nearest
neighbors, the prediction time can be greatly reduced with an efficient search algorithm. Fig-
ure 8.8 shows the performance comparisons of the sequential search and the M-Tree search
for k nearest neighbor queries. During the experiment all attributes are turned on so the most
expensive distance calculations are anticipated. Firstly it is investigated how the search times
of the two methods scale with the neighbor size given a fixed history size. As is shown in the
left Figure 8.8, the sequential search time remains roughly the same for the same history size
while the M-Tree search time increases slowly along with the growing neighbor size. This is
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because with a fixed data size more or less the same amount of distance calculations are per-
formed by the sequential search but for M-Tree more comparisons need to be done for bigger
neighbor sizes. Secondly, it is studied how search times scale with the history size given a
fixed neighbor size. On the right Figure 8.8, it is shown that as expected the sequential search
time increases linearly with the history size. The M-Tree search, however, scales much better
than the sequential search because substantially fewer distance comparisons are required in
a tree-based structure. Overall the M-Tree search is 2 to 8 times faster than the sequential
search. It is noticed that the performance gain on SDSC is not as big as that on NIKHEF.
One reason is that on SDSC traces there are many instances with “similar” distances in one
node, which results in slower converge time for query. This problem can be solved by using
“approximate” search rather than “exact” search, where the full potential of M-Tree can be
exploited.

8.9.4 Evaluation of Effective Capacity

Effective capacity is a potentially useful metric for scheduling in data-intensive Grid envi-
ronments. Grid-level schedulers typically scan the global job queue and make scheduling
decisions by a fixed interval. Due to the “bag-of-tasks” behavior for data-intensive applica-
tions there may be a lot of jobs arriving within a short time interval. Instead of scheduling
jobs one by one individually, it is an attractive idea to be able to make decisions based on
“group” of jobs. Effective capacity of a computing resource can provide exactly such infor-
mation to the Grid scheduler. Figure 8.9 shows the calculations of effective capacities for
three representative groups on NIKHEF and illustrates how this metric can be used. The data
shown are the nearest neighbors of the group under a certain resource state. The queue wait
time of the job in the end of the current queue, namely the upper bound of wait time under
this state, is plotted against the total number of running and queuing jobs.

For dzero it can be seen that three clearly identifiable alignment regions can be identi-
fied in the plot. Most of the dotted points have relatively small waiting times, indicating that
current jobs on the resource are running and newly arrived jobs can start shortly. For the
circle points, however, queue wait times grow with the number of total jobs and their rela-
tionship can be approximately fitted by a linear regression line. The cross points constitute
another region which can also be fitted with a linear model. The turning point from dots to
circles roughly reflects the throttling policy, which is the maximum number of CPUs can be
used concurrently by this group. The linear relationship suggests that under such a state this
partition of the site can be considered as a FCFS resource from this group’s view. With a pre-
defined maximum tolerable wait time, say 20 minutes (1,200 seconds), a maximum capacity
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Figure 8.9: Calculations of effective capacities given certain states for three representative
groups on NIKHEF.
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of 236 is obtained for dzero under this state. If there are 100 dzero jobs on the resource at the
time, for example, the effective capacity can then be calculated as 236 − 100 = 136. So the
advice to the Grid-level scheduler is to submit not more than 136 jobs from the group to this
site if it does not want to wait for more than 20 minutes.

For theory a linear relationship is also identifiable, from which the effective capacity
can be easily obtained. For lhcb, however, no clear patterns can be observed between the
maximum wait time and the total number of jobs under the given state. Firstly the maximum
number of total jobs on the resource for lhcb is below 30 at this state, which means not many
jobs from this group are submitted to the site within the job’s life cycle. Secondly data points
are quite irregularly distributed. The maximum wait time with a larger number of jobs can be
smaller than that with a smaller number of jobs, especially for data points with x-axis values
between 15 and 30. In this situation the maximum capacity can be set as the maximum
observed number of total jobs (i.e. 30). A more conservative way is to set it to the value
before a huge wait time occurs. For example, 15 would be a quite safe choice in this case.

Effective capacity for data-intensive tasks is proposed and qualitatively evaluated through
illustrations of several representative cases. The quantitative evaluation for this new metric is
difficult, where further research is needed to make use of it in the scheduling simulations and
measure the performance metrics such as response time and utilization.

8.10 Summary

This chapter introduces local learning as the framework for performance predictions on
space-shared computing environments. A set of new attributes are defined to characterize the
resource states, through which resource policies can be reflected and predictions for queue
wait times are made possible in a local learning framework. A new performance metric called
effective capacity is introduced for data-intensive jobs and resources. A set of machine learn-
ing techniques are investigated to improve predictions. These techniques are well integrated
rather than isolated, all serving the goal for better and faster predictions. A genetic algorithm
is designed to optimize parameters of the prediction algorithm. For improving accuracy local
tuning is proposed to tune parameters for subsets of training data. A novel adaptive selection
algorithm is developed to effectively select the tuning methods and avoid overfitting. For
improving performance a search tree structure called M-Tree is adopted for nearest neighbor
search, which is able to speed up the prediction up to 8 times faster. It is also shown that
effective capacity is a potentially useful metric for helping Grid-level schedulers to schedule
groups of jobs to resources. Based on the local learning framework, these machine learning
techniques are integrated to provide a effective and flexible solution to performance predic-
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tions on space-shared computing environments.
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Chapter 9

Conclusions

Experimental performance studies on computer systems, including Grids, require deep un-
derstandings on the workload characteristics. The need arises from two important and closely
related topics in performance evaluation, namely, workload modeling and performance pre-
diction. Both topics rely heavily on the representative workload data and use techniques from
statistics and machine learning. Nevertheless, their goals and the nature of research differ con-
siderably. Workload modeling aims at building mathematical models to generate synthetic
workloads that can be used in simulation-based performance studies. It should statistically
resemble the original real data, therefore marginal statistics and second-order properties such
as autocorrelation and power spectrum are important matching criteria. Performance pre-
diction, on the other hand, intends to provide real-time forecast of important performance
metrics (such as application run time and queue wait time) which can support Grid schedul-
ing decisions. From this perspective prediction accuracy as well as performance should be
considered to evaluate candidate techniques.

This thesis presents an in-depth investigation of the above-mentioned research topics. Af-
ter a comprehensive characterization of real workloads on production clusters and Grids, it
is found that pseudo-periodicity, long range dependence, and “bag-of-tasks” behavior with
strong temporal locality are important characteristic properties. Point processes are intro-
duced to study the job arrivals. It is shown that statistical measures based on interarrivals are
of limited usefulness and count based measures should be trusted instead when it comes to
correlations.

Based on the analytic results workload models are developed to fit the real data. Three
different kinds of autocorrelations are considered for job arrivals. For short to middle range
dependent data, Markov modulated Poisson processes (MMPP) are good models because they
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can capture correlations between interarrival times while remaining analytically tractable.
For long range dependent and multifractal processes, the multifractal wavelet model (MWM)
is able to reconstruct the scaling behavior and it provides a coherent wavelet framework
for analysis and synthesis. Pseudo-periodicity is a special kind of autocorrelation and it is
shown as harmonics in the power spectrum. It can be well modeled using a matching pursuit
approach. Both MWM and matching pursuit are applied to the count/rate processes based on
which the correlation structures can be reliably revealed. A controlled-variability integrate-
and-fire (CV-InF) algorithm is used to convert rates into interarrival times so that a full arrival
model can be obtained.

For workload attributes such as run time a new model is proposed that can fit not only
the marginal distribution but also the second order statistics such as the autocorrelation func-
tion (ACF). This is fulfilled by a two-stage approach: Firstly, a mixture of Gaussians model
is used to fit the probability density function (PDF), whose parameters are estimated via a
framework called model based clustering (MBC). The MBC framework can further cluster
the data according to the Gaussian components, which plays an important role in creating
correlations in the next stage. Secondly, a localized sampling algorithm is proposed to gen-
erate correlations in the synthetic data series. It is discovered that the number of repetitions
of cluster labels obtained via MBC empirically follow a Zipf-like (power law) distribution.
Sampling repeatedly from a certain cluster according to the Zipf law is able to create corre-
lations in the series. Furthermore, a cluster permutation procedure is introduced so that the
autocorrelations in the synthetic data can be controlled to match those in the real trace via a
single parameter. By combining the two methods the model is able to fit both the distribution
and the autocorrelation of the original workload data.

The development of workload models enable the simulation studies of Grid scheduling
strategies. By using the synthetic traces the performance impacts of workload correlations in
Grid scheduling is quantitatively evaluated. The results are highly interesting: It indicates that
autocorrelations in workload attributes can cause performance degradation, in some situations
the difference can be up to several orders of magnitude. The larger the autocorrelation, the
worse the performance, it is proved both at the cluster and Grid level. This study shows the
importance of realistic workload models in performance evaluation studies and the needs for
research going beyond unrealistic assumptions regarding the workloads.

Regarding performance predictions this thesis treats the targeted resources as a “black
box” and takes a purely statistical approach. It does not consider the details of applica-
tions and machine architectures, nevertheless, it makes a history-based approach generic and
widely applicable in a heterogeneous Grid environment. It is shown that statistical learn-
ing based methods, after a well-thought and fine-tuned design, are able to deliver good ac-
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curacy and performance. This thesis address the problem of performance predictions on
space-shared computing resources by applying a set of machine learning techniques on the
workload data. the proposed techniques are well integrated rather than isolated, all serving
the goal for better and faster predictions. Local learning is adopted as the framework, under
which not only traditional performance metrics can be represented but also new metrics can
be introduced. New attributes are defined for comprehensively characterizing the resource
states, through which policies can be reflected and predictions for queue wait times can be
enabled. A new performance metric called effective capacity is defined for data-intensive
tasks and resources. It is shown that effective capacity is a potentially useful metric for help-
ing Grid-level schedulers to schedule groups of jobs to resources. Genetic algorithms are
designed to optimize parameters of the prediction algorithm. For improving accuracy local
tuning is proposed to tune parameters for subsets of training data. A novel adaptive selection
algorithm is developed to effectively select the tuning methods and avoid overfitting. For
improving performance a search tree structure called M-Tree is adopted for nearest neighbor
search, which is able to speed up the prediction up to 8 times faster. Based on the local learn-
ing framework, these techniques are integrated to provide a powerful and flexible solution to
performance predictions.

There are several directions for future research. Firstly it is necessary to investigate how
scheduling under autocorrelated job flows can be improved. Research efforts have been found
on the variety of distributions such as heavy tails. More research concerning the temporal
correlations is needed. Secondly, pseudo-periodicity as a job arrival pattern has to be taken
into account by the Grid-level schedulers. Scheduling optimization can be made based on
the deterministic behavior of periodic arrivals. Thirdly, it is of theoretical interest to prove
the localized sampling algorithm and derive lower and upper bounds of the autocorrelation
function. From a more practical perspective the proposed prediction techniques should be
deployed in production systems and it should be investigated how the schedulers can benefit
from it in real Grid environments.
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Samenvatting

In experimentele performance studies van computer systemen speelt de workload een be-
langrijke rol. Dit proefschrift beschrijft een uitvoerige karakterisatie van daadwerkelijke
workloads op productieclusters en -grids. Een verscheidenheid aan correlatiestructuren en
schalingsfactoren is gevonden voor belangrijke workload attributen zoals job arrivals en run
times. Point processen zijn gentroduceerd om job arrivals te beschrijven. Het is aangetoond
dat statische metingen gebaseerd op interarrivals van beperkte relevantie zijn en dat men voor
correlaties moet uitgaan van tellingen.

Verder zijn workload modellen gebaseerd op analytische resultaten ontwikkeld voor besta-
ande data. Hierbij zijn drie verschillende types van autocorrelatie in beschouwing genomen
voor job arrivals. Ten eerste, voor afhankelijke data met een korte tot middellange dracht
zijn Markov Modulated Poisson Processes goede modellen. Dit omdat ze correlaties kun-
nen leggen tussen interarrival tijden en daarboven ook analytisch beschreven kunnen wor-
den. Ten tweede, voor afhankelijke data met een lange dracht en multi-fractale processen is
het Multifractal Wavelet Model (MWM) in staat om het schalingsgedrag te reconstrueren.
Bovendien levert het een coherent wavelet raamwerk voor analyse en synthese. Ten derde,
pseudo-periodiciteit is een speciaal type autocorrelatie en kan gemodelleerd worden met een
matching pursuit benadering. Zowel MWM als matching pursuit zijn toegepast op count/rate
processen waarmee de correlatiestructuur betrouwbaar gevonden kon worden. Met een zo-
geheten CV-InF algoritme is de rate geconverteerd naar interarrival tijden, waardoor een
volledig arrival model verkregen werd.

Voor workload attributen zoals executietijd is een nieuw model ontwikkeld dat niet alleen
de marginale distributie, maar ook tweede-orde statistieken zoals de Autocorrelatie Func-
tie kan modelleren. Dit is bereikt met een 2-stappen aanpak: Eerst is een mix van Gaus-
sische modellen gebruikt om de waarschijnlijkheidsdichtheidsfunctie te fitten, waarvan de
parameters worden geschat via het zogeheten Model Based Clustering (MBC) raamwerk.
Dit raamwerk kan de data verder clusteren aan de hand van de Gaussische componenten,
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hetgeen een belangrijke rol speelt bij het vinden van de correlaties in de volgende stap. In
deze tweede stap is een localized sampling algoritme gebruikt om datacorrelaties te maken
van de synthetische data series. Hierbij is empirisch gevonden dat de verdeling van optre-
dende clusterlabels verkregen via MBC een Zipf-achtige verdeling (power law) volgt. Her-
haaldelijk samplen van een bepaald cluster volgens deze Zipf verdeling resulteert in het vin-
den van de correlaties in de reeksen. Verder is een cluster permutatie procedure gentroduceerd
waarmee door het aanpassen van n enkele parameter autocorrelaties in de synthetische data
overeenkomen met data in de echte trace. Door beide methodes te combineren is een model
ontwikkeld dat in staat is zowel de distributie als de autocorrelatie te fitten aan de originele
workload data.

Met de ontwikkelde workload modellen zijn simulaties van strategien voor gridscheduling
uitgevoerd. Door synthetische traces te gebruiken zijn performance invloeden van workload
correlaties op gridscheduling kwantitatief beoordeeld. De resultaten blijken uiterst interes-
sant: Autocorrelaties tussen workload attributen kunnen leiden tot performance degradatie,
soms wel tot enkele ordes van grootte. Op zowel cluster- als gridniveau is aangetoond dat hoe
groter de autocorrelatie des te slechter de performance wordt. Dit onderzoek toont het belang
van realistische workload modellen in performance evaluatie studies aan en de noodzaak dat
men uitgaat van realistische aannames over workloads.

In de performance voorspellingen in dit proefschrift zijn resources als zwarte dozen
beschouwd. Verder is uitgegaan van een statistische aanpak. Details van de toepassingen
en de architecturen van de gebruikte machines zijn buiten beschouwing gelaten. Daarente-
gen is uitgegaan van een op historie gebaseerde aanpak, hetgeen generiek is en breed wordt
toegepast in heterogene grid omgevingen. Er is aangetoond dat methodes gebaseerd op statis-
tical learning, na een wel doordacht fine-tuned ontwerp, de gewenste nauwkeurigheid en een
goede performance opleveren. Het probleem van performance voorspellingen voor space-
shared computer resources is aangepakt door een reeks van machine learning technieken los
te laten op de workload data. Local learning is toegepast als een methode, waarin niet alleen
traditionele performance metrieken kunnen worden meegenomen, maar ook nieuw metrieken
kunnen worden gentroduceerd.

Nieuwe attributen zijn gedefinieerd voor een uitvoerige karakterisatie van de toestanden
van resources. Hiermee kunnen policies vastgelegd worden en worden voorspellingen over
rij-wachttijden mogelijk Een nieuwe performance metriek genaamd effective capacity is gede-
finieerd voor data-intensieve taken en resources. Het is aangetoond dat het een bruikbare
metriek is voor grid-level schedulers om groepen van jobs over de resources te schedulen.
Er zijn genetische algoritmen ontworpen om de parameters van het voorspellingsalgoritme
te optimaliseren. Voor een verbetering van de nauwkerigheid van local tuning is het gewenst
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om de parameters te tunen voor subsets van de training data. Een nieuw adaptief selectie
algoritme is ontwikkeld om tuning methoden te selecteren en overfitting te voorkomen. Om
de performance hiervan te verbeteren is een zoekboomstructuur genaamd M-Tree gebruikt
voor het vinden van de dichst bijzijnde buur. Hiermee is een snelheidswinst tot een factor 8
te behalen. Gebaseerd op het local training raamwerk zijn deze technieken geintegreerd om
tot een krachtige en flexibele oplossing voor performance voorspellingen te komen.
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