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Chapter 1

Introduction

1.1 Photosensing in biological systems

The absorption of visible light and its conversion to other forms of energy is
at the core of some of the most fundamental processes in biology. Indeed,
life on earth owes its existence to photosynthesis, a process through which
sunlight is harvested and converted into chemical energy by plants, algae and
photosynthetic bacteria. Another familiar example of light absorption initi-
ating a biological response over several temporal and length scales is vision:
light stimulates a conformational change of the photosensitive component in
the retina, which is followed by a cascade of chemical reactions ultimately
culminating in the stimulation of the optical nerve. In general, photosensing
in a biological system occurs through a photoreceptor protein that hosts a
chromophore (i.e. the molecule bound to the protein proper and responsible
for light absorption and emission) which undergoes a photochemical reaction,
such as photoisomerization, excitation transfer, electron or proton transfer
upon photoexcitation. Deepening our physical understanding of the primary
excitation processes and of the subsequent energy transfer in these photo-
biological systems is important both from a fundamental point of view and
because of existing and potential applications in biology, biotechnology and
artificial photosynthetic devices.

An important example of photosensitive biosystems is the family of aut-
ofluorescent proteins, a class of biological labels that has revolutionized cel-
lular biology in the last decades. These molecules absorb light at one wave-
length and emit (i.e. fluoresce) at a specific and longer wavelength. Since
they can often be coexpressed with non-fluorescent proteins without affect-
ing the latter’s functions, autofluorescent proteins have been used in a multi-
tude of applications, for example as fluorescent labels to visualize and track
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1.1. Photosensing in biological systems 1. Introduction

proteins in living cells, to monitor protein-protein interactions, and as in-
dicators of pH and calcium concentration in vivo. For certain applications,
it is however desirable to modify, enhance or suppress the molecular mech-
anisms that modulate the response of the chromophore to external inputs.
Understanding the relationship between the microscopic structure and the
spectral properties of these biosystems permits the rational design of new
photoactive systems with novel functions through selective mutations of ex-
isting autofluorescent molecules. Examples include shifting their excitation
and emission spectra, or altering the sensitivity to external factors such as
pH or past exposure to light.

Theoretical calculations of the optical properties of photoactive systems
complement experimental spectroscopic data by providing an atomistic de-
scription of the dynamical response of the protein upon light activation.
In order to attack these challenging problems, the computational approach
must however meet several difficult requirements. First, it should provide
an accurate quantum-mechanical description of the ground state and of the
electronic excitations of the photoactive site. It should then include a dynam-
ical description of ground state fluctuations and possibly of photo-induced
dynamical effects. Finally, the calculations must be able to treat a realisti-
cally large model of the biosystem in order to understand how modifications
of the protein environment affect the optical properties of the chromophore.
It is far from trivial to satisfy all the above requirements. In most cases,
ground state properties of large systems can be reliably and efficiently com-
puted from first principles, in particular through density functional theory
(DFT) approaches, and sufficient knowledge has also been accumulated to
establish the reliability of a given calculation. However, the computation of
excitation energies is proving to be more complicated, and there are serious
problems with the approaches employed in the study of large photoactive
biomolecules. In surveying the vast theoretical literature on photosensitive
systems, one finds that the large spread of semi-empirical and first-principle
approaches used for a particular system yields an equally large spread of
results and predictions.

The most appealing approach for the computation of excitations in large
molecular systems is certainly time-dependent density functional theory (TD-
DFT) given its favorable scaling with system size. While generally reasonably
accurate, conventional adiabatic TDDFT often fails to describe charge trans-
fer excitations in extended conjugated systems and excitations characterized
by two- and higher-electron excitations. As we will show in this thesis, these
and other shortcomings may result in the poor description of the excitations
of photoactive chromophores which usually are conjugate π-systems with
electronic states often displaying multi-configurational character. The unre-
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1. Introduction 1.1. Photosensing in biological systems

liability of density-functional-based approaches to accurately describe pho-
toexcitations of biomolecules implies that the main researchers aggressively
working in this field are employing conventional highly-correlated quantum
chemical approaches as multi-reference configuration interaction (MRCI) and
complete active space second-order perturbation theory (CASPT2). These
approaches rely on expanding the wave function in Slater determinants and,
as the system size increases and the energies of the single-particle orbitals be-
come closely spaced, the space of orbitals which must be included to recover
a significant fraction of electronic correlation grows enormously. Therefore,
when these approaches are applied to large biomolecules, compromises must
be taken as in the use of a small atomic basis or a reduced space of active or-
bitals. Consequently, while highly-correlated quantum chemical approaches
are accurate for small systems where these techniques can be pushed to their
limits, the same level of accuracy cannot in general be guaranteed when going
to a large biosystem.

In this thesis, we employ a hierarchy of state-of-the-art computational
methods to deal with the problem at different levels of accuracy. We believe
that, for the description of the ground state properties of these photoactive
biomolecules, conventional techniques are sufficiently accurate while, for ex-
cited states, we want to explore the performance of a different approach as
new theoretical ways to handle excited states are needed. More specifically,
ground state properties can be described using density functional theory in
combination with ab-initio molecular dynamics to equilibrate the structures
and study the thermal fluctuations of the chromophore and its immediate sur-
roundings. The long-range protein-chromophore interactions can be included
via hybrid quantum-classical simulation schemes, where the photoactive site
is described quantum mechanically and the interaction with the rest of the
macromolecule is treated using an atomic force field.

For the computation of excited states, on the other hand, we will use a
different theoretical framework based on many-body quantum Monte Carlo
techniques that has been developed over the last few years by Filippi and
coworkers and has already yielded accurate excitations of a variety of small
photoactive molecules. Moreover, to describe the long-range protein-chromo-
phore interactions, we will combine for the first time quantum Monte Carlo
with a molecular mechanics approach where the chromophore is treated
quantum mechanically and the rest of the protein classically. The advan-
tage of quantum Monte Carlo methods compared to highly correlated quan-
tum chemical approaches is that they scale far more favorably with sys-
tem size. While we already know that quantum Monte Carlo is competitive
with highly-correlated quantum chemical approaches for small molecules, this
study represents the first application of quantum Monte Carlo techniques to
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1.2. The Green Fluorescent Protein 1. Introduction

the description of the excitations of a realistic complex biomolecular system.
Using this hierarchical combination of computational approaches, we stu-

dy here the rich photophysical behavior of Green Fluorescent Protein (GFP),
the prototype of the class of autofluorescent proteins and one of the most
widely used fluorescent labels in cellular biology. In particular, we investigate
the interplay between the spectral properties and the microscopic structural
features of the chromophore-protein complex in its different forms. Beyond
being extremely relevant in biotechnology, GFP represents a perfect play-
ground for our theoretical investigation of photoactive biomolecules due to
several reasons. First, this protein is experimentally very well characterized,
serving as a stringent test for any approach aiming at describing excita-
tion processes in biosystems. Then, GFP has already been the subject of a
large number of theoretical semi-empirical and first-principle studies, none
of which fully conclusive. Finally, despite the substantial body of literature,
several issues which we will not touch in this thesis are still open and not
convincingly addressed by theoretical calculations. These include the confor-
mational changes in the chromophore and their relation to the so-called dark
states which are reversibly accessible after photoexcitation during blinking
and switching. For all these reasons, GFP is the ideal arena where to validate
and possibly sharpen our proposed methodology while addressing the theo-
retical challenge to understand the nature of the excitations in this relevant
autofluorescent protein.

1.2 The Green Fluorescent Protein

Green fluorescent protein (GFP) is the prototype of the class of autofluo-
rescent proteins [1–3]. GFP is an intrinsically fluorescent protein and was
first extracted [4] from the bioluminescent jellyfish Aequorea victoria of the
Pacific Ocean, shown in Fig. 1.1. The Aequorea jellyfish bioluminesces (i.e.
emits light as a result of a chemical reaction) at the rim of its bell and two
proteins are involved in its bioluminescence, aequorin and the Green Fluores-
cent Protein. By a quick release of calcium ions, the jellyfish can induce the
photoprotein aequorin to emit blue light, which is then transduced to green
via radiationless energy transfer to a coupled Green Fluorescent Protein. The
biological function of GFP in the jellyfish Aequorea is therefore to convert
the blue emission of aequorin to green emission. Interestingly, it still remains
unclear how and why these organisms use their bioluminescent capabilities
as yellyfish do not flash at each other in the dark, nor glow continuously [5].
Moreover, it is not understood why these jellyfishes would synthesize a sep-
arate protein rather then mutate the chemiluminescent protein to shift its
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1. Introduction 1.2. The Green Fluorescent Protein

wavelength, and why green emission should be ecologically superior to blue.

Figure 1.1: Two views of the hydromedusa Aequorea victoria from Friday
Harbor, Washington [5].

Independently of the reason, evolution and natural selection has gener-
ated a very efficient optical devise and this optimization through evolution
is probably a reason for the success of GFP in biotechnology. Over the last
decades, GFP has in fact become one of the most widely used markers in
cellular biology. The most successful and numerous applications of GFP are
as a genetic fusion partner to host proteins, which maintain their normal
functions but are now fluorescent and can be dynamically visualized in living
cells and organisms. This property is dramatically illustrated in Fig. 1.2,
where the genetic code of a mouse has been modified to express Green Fluo-
rescent Protein. Moreover, significant experimental efforts have gone in engi-
neering mutants of the original Aequorea victoria GFP with different colors,
enhanced fluorescence and photostability or specific sensitivity to external
factors such as temperature or pH. These mutagenesis studies have resulted
in new fluorescent probes that range in color from blue to yellow. The search
for mutants with longer-wavelength emission has been motivated by the diffi-
culty to distinguish GFP emission from the background cellular fluorescence,
as well as the desire to develop fluorescent resonance energy transfer (FRET)
partners with the required overlap between absorption and emission spectra,
to tag different proteins and study protein-protein interactions in vivo.

Because the construction of red-shifted mutants from the Aequorea victo-
ria jellyfish GFP beyond the yellow spectral region has proven largely unsuc-
cessful, longer-wavelength fluorescent proteins emitting in the orange and red
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1.2. The Green Fluorescent Protein 1. Introduction

Figure 1.2: Mouse expressing Green Fluorescent Protein, illuminated under
blue light [6].

spectral regions, have been extracted from other sea organisms as the marine
anemone, Discosoma striata, and reef corals belonging to the class Anthozoa.
Still other species have been mined to produce similar proteins having cyan,
green, yellow, orange, and deep red fluorescence emission. Consequently, a
broad range of fluorescent protein genetic variants is now available that fea-
ture fluorescence emission spanning almost the entire visible light spectrum.
In the following, we will restrict our discussion to wild-type GFP, that is the
original protein of Aequorea victoria.

The tertiary structure of wild-type Green Fluorescent Protein is shown in
Figure 1.3. The fold comprises 11 β-sheets arranged in a barrel-like structure
with a diameter of about 24 Å and a height of 42 Å. This structure forms the
so-called β-can which is capped by short helical segments. The chromophore
is well protected in the center of the barrel and is linked to the α-helical
stretch which runs close to the central part of the barrel. This fold motif with
minor variations is common to all proteins of the GFP family, including the
fluorescent proteins extracted from other sea organisms. The correct folding
of GFP in the β-can structure and the configuration of the residues around
the chromophore are crucial to the formation and the fluorescence of the
chromophore which is rigidly kept inside this chemically protective structure,

6



1. Introduction 1.2. The Green Fluorescent Protein

displaying high stability and quantum yield of fluorescence. In fact, the
isolated chromophore is not fluorescent in aqueous solution, and denaturation
yields a loss of fluorescence which is regained when the β-can structure is
correctly reformed. The isolated chromophore is also shown in Fig. 1.3 and is
a p-hydroxybenzylideneimidazolinone molecule formed autocatalytically by
an intramolecular post-translational cyclization of three consequtive amino
acids (Ser-65, Tyr-66, and Gly-67).

Figure 1.3: Tertiary structure of Green Fluorescent Protein represented in
strand style (left). The β-can structure has a diameter of about 24 Å and a
height of 42 Å. The chromophore is highlightened in the center of the protein
cavity and is also shown isolated in vacuum (right).

The fluorescent mechanisms of wild-type GFP is prototypical of the GFP
family. At thermal equilibrium, the absorption spectrum of wild-type GFP
has two peaks at 398 nm (3.12 eV) and 478 nm (2.59 eV). Excitation at 398
nm results in an emission maximum in the region of 506 nm (2.45 eV) while ir-
radiation at 478 nm yields emission with a maximum at 482 nm (2.57 eV) [7].
The absorption spectrum of wild-type GFP at room temperature is shown in
Fig. 1.4. The two absorption bands at 398 and 478 nm were attributed early
on to two interconvertible states of the protein with the chromophore in a
neutral (protonated) A form and an anionic (deprotonated) B form, respec-
tively. Upon photoexcitation of the neutral A form, the excited chromophore
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1.2. The Green Fluorescent Protein 1. Introduction

Figure 1.4: Absorption spectra of wild-type GFP at room temperature
(T=295 K) and low temperature (T=1.6 K) from Ref. [7].

transfers a proton through a complex hydrogen-bond network to the residue
Glu-222 forming a transient intermediate anionic state (I∗) which emits in
the region of 506 nm (2.45 eV). After decay to the ground state (I), the sys-
tem usually returns to state A through a ground state inverse proton transfer
process. The green fluorescence at 482 nm (2.57 eV) following excitation of
the B state stems from direct decay of the excited B∗ state. Therefore, both
the I and the B states are characterized by an anionic (deprotonated) chro-
mophore but the I form has a protein environment similar to the neutral A
form while the environment of the B form is structurally different from the A
and I forms with the Thr-203 residue being rotated and forming a hydrogen
bond with the phenolic oxygen. The fluorescence mechanisms of wild-type
GFP is summarized in Fig. 1.5 where a schematic representation of the neu-
tral and anionic chromophores and the corresponding protein binding sites is
also shown. This model for the photocycle of wild-type GFP was originally
proposed after ultrafast excited-state dynamics measurements and rational-
ized on the basis of the resolved x-ray structures of the neutral A form and
of the B form as stabilized in GFP mutants. We will return to a detailed
analysis of the three forms of wild-type GFP and their protein environments
in Chapter 4.

Finally, we report here few additional experimental observations which
are relevant for our theoretical calculations. In particular, the absorption

8



1. Introduction 1.2. The Green Fluorescent Protein

Figure 1.5: Scheme of the fluorescence mechanisms of wild-type Green Fluo-
rescent Protein. The hydrogen bond network from the chromophore through
the residues involved in the proton transfer is shown for the neutral A and the
anionic I and B forms. Note the change in conformation of residue Thr-203
in going from the I to the B form. The figure is adapted from Ref. [3].

spectrum of wild-type GFP at 1.6 K is also shown in Fig. 1.4. At low tem-
perature, the two maxima shift at 407 nm (3.05 eV) and 472 nm (2.63 eV),
and the ratio of the absorbances of the A and B forms inverts with respect
to room temperature indicating that the B form has a slightly lower ground
state than the A form. The broad wing at the red side of the 472 maximum
disappears and is attributed to the I form which is not populated at this low
temperature. Finally, spectral hole-burning experiments have located the
0-0 transitions of the three forms and shown that the ground state of the I
form is higher than the ground states of the A and B forms, and separated
from them by energy barriers of several hundred wavenumbers. Moreover,
the excited-state barrier between A∗ and I∗ is low while the barrier between
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1.3. Previous theoretical work 1. Introduction

I∗ and B∗ is about 2000 cm−1 (0.25 eV), so the only possible interconversion
is between the excited states of the A and I forms [7].

1.3 Previous theoretical work

The structural and optical properties of wild-type Green Fluorescent Pro-
tein have already been the subject of several theoretical investigations. We
will not review the early semi-empirical and quantum chemical studies [8–10]
since they were not able to unambiguously assign the charge states to the
experimental absorption bands. Initially, a cationic and a zwitterionic form
of the protein were even proposed as the protonated and the deprotonated
state of the chromophore. Moreover, some early calculations yielded exci-
tation energies for a particular charge state of the chromophore varying by
more than 1 eV when slightly different quantum chemical approaches were
employed [11]. We will focus instead on the most recent first-principle cal-
culations of the excitations of wild-type GFP.

Particularly relevant is a recent first-principle study of the neutral and
anionic forms of GFP by Marques et al. [12] who report a remarkably good
agreement of the time-dependent density functional theory (TDDFT) spec-
tra in the local density approximation (LDA) with experiments. These the-
oretical results are summarized in Fig. 1.6 where the TDDFT/LDA absorp-
tion peaks of 3.01 eV and 2.67 eV are compared with the experimental low-
temperature maxima of 3.05 and 2.63 eV for the A and the B form, respec-
tively. Few anomalous features characterize however these calculations and
raise doubts about the definite and conclusive nature of this study. While the
chromophore-protein structures are optimized in the presence of the protein
environment using a DFT/LDA quantum mechanics in molecular mechanics
(QM/MM) approach, the TDDFT excitation energies are then computed on
the isolated chromophores without the sourrounding protein environment.
Therefore, possible polarization effects of the protein are not included in the
calculation of the excitations of the chromophore. Moreover, the authors
model the anionic I form and not the B form by deprotonation of the neutral
A form, but erroneously state to be simulating the B form.

Highly-correlated quantum chemical calculations have been recently pub-
lished for the I and B forms by Sinicropi et al. [13] using complete active
second-order perturbation theory (CASPT2) for a large model chromophore
of GFP in the presence of a classical protein environment. With respect to
the original x-ray structure of the neutral A form, only the coordinates of
the chromophore and three water molecules are relaxed within the complete
active space self consistent field (CASSCF) approach. For the construction
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Figure 1.6: TDDFT/LDA spectra of the neutral (think solid line) and anionic
(thick solid line) chromophores of wild-type GFP as computed by Marques et

al. [12]. The experimental low-temperature (thin line) and room-temperature
(crosses) spectra are also shown. The TDDFT calculations are performed
for the isolated chromophores whose structures were optimized in ground
state DFT/LDA QM/MM calculations. We note that the spectrum for the
computed anionic I form is erroneously attributed to the B form. The figure
is adapted from Ref. [12].

of the I form, the neutral chromophore is deprotonated and and some rele-
vant residues are manually reoriented while, for the B form, residue Thr-203
is partially relaxed in its proper conformation. The CASSCF QM/MM em-
bedding scheme is therefore very simple and lacks a complete relaxation of
the chromophore-protein structure. Nevertheless, the CASPT2 absorption
maximum of 2.81 eV for the B form appears to be reasonably close to the
experimental value of 2.63 eV, while a better agreement with experiments is
obtained for the emission maxima of both the I and B forms. Unfortunately,
the authors do not report the excitation for the neutral A form of the protein,
so it is not possible to access whether this approach is actually capable to
correctly describe how the spectrum shifts with the protonation state of the
chromophore.
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1.4. This thesis 1. Introduction

1.4 This thesis

The main focus of this thesis is the computational study of the absorption
properties of wild-type Green Fluorescent Protein in the neutral A and an-
ionic I and B forms. We not only construct a series of model chromophores
in the gas phase but also investigate how the spectral properties of the chro-
mophore are modified by the protein environment using hybrid molecular
mechanics in quantum mechanics approaches to account for the long-range
chromophore-protein interactions. To compute the excitations of GFP, we
employ both conventional time-dependent density functional theory as well
as quantum Monte Carlo techniques. Since this thesis is the first applica-
tion of mixed classical/quantum Monte Carlo methods to the computation
of the excited states of a large biomolecule, it serves the dual purpose of both
understanding the spectral tuning of the excitations of GFP by the protein
proper as well as assessing the performance of quantum Monte Carlo to de-
scribe the excited states of a complex biosystem. This thesis is organized as
follows.

In Chapter 2, we describe the computational methods we use in the the-
sis. We review highly-correlated quantum chemical approaches as well as
density functional theory also in its time-dependent formulation. We discuss
in depth quantum Monte Carlo methods, in particular the functional form
of the trial wave function and the optimization scheme used to obtain the
optimal parameters in the excited-state wave functions. We briefly describe
molecular mechanics techniques and the hybrid quantum mechanics in molec-
ular mechanics (QM/MM) scheme used for the study of Green Fluorescent
Protein. The computational details conclude this Chapter.

In Chapter 3, we construct a set of models of the neutral and anionic
chromophores of GFP in the gas phase to begin exploring the performance
of adiabatic time-dependent density functional theory and quantum Monte
Carlo approaches. The results are puzzling. TDDFT appears to be overesti-
mating the excitations of a small anionic model chromophore as compared to
photodistruction spectroscopy experiments and highly-correlated CASPT2
calculations while the experimental absorption maximum obtained with the
same technique for a cationic model is reasonably well reproduced. If signa-
tures of possible problems in the use of TDDFT can be found for the larger
models that we have constructed, we are not able to rationalize the rea-
sons for its apparent failure in the description of the smaller anionic model
chromophore. Moreover, using quantum Monte Carlo techniques and sophis-
ticated wave functions, we obtain excitations for the small anionic model in
reasonable agreement with TDDFT. A significant difference with TDDFT is
instead that QMC yields a large shift in the excitation when going from the
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1. Introduction 1.4. This thesis

neutral to the anionic model of the GFP chromophore in the gas phase.
In Chapter 4, we construct the protein models of the neutral A and the

two anionic I and B forms of wild-type GFP using a density functional theory
QM/MM approach. The outcome of this ground state modeling is already
surprising and shows how difficult it is to correctly describe a complex biosys-
tem and how easy to be mislead in believing the correctness of a given model
when comparing to relatively few experimental numbers. We carefully an-
alyze the structures of our protein as well as of other models available in
the literature and conclude that the DFT QM/MM calculations by Marques
et al. [12] are incorrect due to what we believe is a wrong description of
the binding site of the chromophore. Naturally, the incorrect description of
the residues surrounding the chromophore affects its response to light and
the perfect agreement of the TDDFT spectra for the corresponding isolated
chromophore with experiments shown in Fig. 1.6 is in fact purely coincidental
and due to the use of incorrect chromophore structures. Our TDDFT/MM
calculations of our chromophore models in the presence of a classical protein
environment yield an absorption maximum in agreement with experiments
for the neutral A but not for the anionic I and B forms of GFP. The red-shift
in excitation due to deprotonation of the chromophore is very badly under-
estimated by adiabatic TDDFT which sees almost no difference between the
neutral and anionic excitations. We then explore for the first time the use
of QMC in describing the excitations of a chromophore in its protein envi-
ronment and perform QMC/MM calculations of the excitation energies of
the three forms of wild-type GFP, using for the moment only a simple wave
function. We find that the experimental shift between the different charge
states of the chromophore-protein complex is well reproduced by QMC but
the absolute excitation energies are overestimated as compared to experi-
ments. We show some first steps to investigate the possible reasons for this
error such as shortcomings in the QM/MM description of the chromophore-
protein interaction, which, we believe, will resolve the issue in combination
with the use of more sophisticated wave functions.

Chapter 5 is self-standing and outside the main thread of the thesis, and
focuses on the cooperative effects of π-π and π-anion interactions, a relevant
theme within supramolecular chemistry for the design of receptors of anionic
species. In particular, we investigate the geometrical and energetic effects in-
duced by π-π stacking on the anion-π system of the unusual triazine-triazine-
nitrate complex recently observed experimentally, using semi-empirical dis-
persion corrected density functional theory and QMC methods. We repro-
duce and rationalize the highly asymmetrical features of the experimental
structure, which are not imposed by the coordination of the anion-π-π sub-
unit within the particular synthesized compound. We quantify the energetic
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stabilization induced by π-π stacking and discuss ways to further enhance
this cooperative effect in the design of anion-host architectures.
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Chapter 2

Computational methods

2.1 Introduction

To investigate the photophysics of Green Fluorescent Protein, we will em-
ploy a variety of computational methods as there is not a single theoretical
approach to date, which is capable to cover the different spatial and tem-
poral scales which characterize this complex problem. Starting from the
x-ray structure of the protein, we will build a realistic model of the protein
environment surrounding the chromophore, that is, the optically active com-
ponent of the protein. As the protein exhibits multiple forms corresponding
to different protonations of the chromophore, the system must be properly
relaxed to describe the different conformations. The electronic properties of
the chromophore within its protein environment are then investigated quan-
tum mechanically in the ground and excited states. These steps translate in a
series of computations involving a hierarchy of theoretical approaches, rang-
ing from classical molecular dynamics to correlated many-body techniques.
In particular, we will present the results of the following calculations:

- Classical molecular mechanics (MM) calculations to equilibrate the pro-
tein in water solution at room temperature.

- Hybrid quantum mechanics in molecular mechanics (QM/MM) calcu-
lations based on density functional theory (DFT) to obtain an accurate
description of the ground state geometry of the optically active chro-
mophore.

- Time-dependent density functional theory (TDDFT) calculations to
compute the excitation spectrum and access how the protein environ-
ment modulates the response of the chromophore to light.

- Correlated post-Hartree-Fock quantum chemical approaches to investi-
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gate the role of correlation and possible shortcomings in the description
of excited states within density functional theory. These calculations
are also a prerequisite for the construction of the many-body wave
function needed in the next step.

- Quantum Monte Carlo (QMC) calculations of the excitation spectrum.
As the application of quantum Monte Carlo to excited states is rather
new, further methodological developments were needed.

In this chapter, we give a short description of the theoretical methods
we employ and of the relevant technical details. We begin with the quan-
tum mechanical methods, in particular the multi-configuration self-consistent
(MCSCF) approach and its state average (SA) version for the computation
of excited states, the variational (VMC) and diffusion (DMC) Monte Carlo
methods, and time-dependent density functional theory (TDDFT). We then
describe how a quantum mechanical approach can be combined with classi-
cal molecular mechanics (QM/MM) for the hybrid treatment of a quantum
site embedded in a larger classical system. Novel methodological develop-
ments will be presented in the following chapters to more clearly illustrate
the context in which they are needed.

2.2 Quantum mechanical calculations

The many-electron Schrödinger equation gives an accurate description of
materials at the quantum mechanical level but is an intractable 3N + 1
dimensional partial differential equation, where the number of electrons N
may be very large. In this thesis, we will consider molecular systems with
typically 100-500 electrons for which we want to investigate the electronic
properties of the ground and lowest excited states.

Most computational quantum mechanical studies of such large electronic
systems circumvent the problem of the high dimensionality by employing
simpler one-electron theories such as Kohn-Sham density-functional theory
(DFT), which replaces the electron-electron interactions by an effective po-
tential, thereby reducing the problem to a set of one-electron equations. De-
spite the successes of DFT in describing the electronic structure of complex
molecular systems, the treatment of electronic correlation within DFT is only
approximate, sometimes leading to incorrect results as we will see in the case
of the excitation spectrum of the Green Fluorescent Protein. Therefore, one
needs to resort to alternative approaches as the more costly wave function
based methods. Here, we will not employ traditional quantum chemistry
wave function methods as for instance the complete active space second or-
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der perturbation theory (CASPT2) technique which is often used to treat
excitations of organic molecules, but we will focus on quantum Monte Carlo
(QMC) techniques, which, for ground state problems, have yielded in the
past very accurate description of correlated properties also of large systems,
where conventional quantum chemistry methods are extremely difficult to
apply. We review here only those aspects of traditional quantum chemistry
approaches which are need to understand how the wave function is con-
structed for quantum Monte Carlo calculations.

Let us define the notation we adopt in this thesis. As we neglect relativis-
tic effects and work in the Born-Oppenheimer approximation, we will assume
that we have a non-relativistic system of N interacting electrons described
by the Hamiltonian:

H = −1

2

N
∑

i=1

∇2
i +

N
∑

i=1

vext(ri) +
N

∑

i<j

1

|ri − rj|
, (2.1)

where we used atomic units (~ = m = e = 1). The external potential vext(r)
is given either by the bare electron-ion Coulomb potential −Z/r where Z is
the charge of the ion, or by a pseudopotential describing the ion plus the
core electrons which have been eliminated from the calculation. We denote
with R the 3N particle coordinates, and with x = (r, σ) the 3 spatial and 1
spin coordinates of one electron where σ = ±1.

2.2.1 Traditional quantum chemistry methods

The simplest approach for the description of a system of N interacting elec-
trons is the the Hartree-Fock (HF) method, where the ground state many-
body wave function is approximated as the optimal non-interacting solution,
that is a Slater determinant of single-particle spin-orbitals {Φi}:

ΨHF(x1, . . . ,xN) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

Φ1(x1) Φ1(x2) · · · Φ1(xN)
Φ2(x1) Φ2(x2) · · · Φ2(xN)

...
...

...
...

ΦN (x1) ΦN (x2) · · · Φ2(xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The optimal single-particle orbitals are determined by minimizing the ex-
pectation value EHF of the interacting Hamiltonian H on the wave function
ΨHF. If the spin-orbitals are written as the product of a spatial and a spin
components, Φi(x) = φi(r)χsi

(σ), one obtains that the spatial orbitals must
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satisfy the self-consistent HF equations:

[

−1

2
∇2 + vext(r) +

N
∑

j=1

∫

dr′
|φj(r

′)|2
|r− r′|

]

φi(r)

−
N

∑

j=1

δsi,sj

∫

dr′
φ∗

j(r
′)φi(r

′)

|r− r′| φj(r) = ǫiφi(r) , (2.2)

where the Lagrange multipliers ǫi arise from the orthonormality constraints
between the orbitals. Each orbital sees the external potential, the Hartree
electrostatic component, and the non-local Hartree-Fock exchange potential.
The HF potential cancels the interaction of the electron with itself, that is
the self-interaction contribution coming from the the Hartree potential, and
keeps the electrons of the same spin apart so that each electron has a hole
around it, known as the exchange hole, containing unit positive charge.

For atoms, the HF equations can be solved directly on a grid but, for
molecular systems, the orbitals are expanded as a linear combination of
atomic orbitals (LCAO) centered on the nuclear positions:

φi(r) =

nuclei
∑

µ

∑

j

aµ
ji ηjµ(r − rµ) , (2.3)

where rµ denotes the position of a nucleus. The LCAO coefficients, aµ
ji, are

optimized to yield the lowest variational energy. In general, most quantum
chemistry codes work with a Gaussian atomic basis:

η(r) = xmynzk exp (−αr2) , (2.4)

as this choice allows all integrals to be computed analytically.
The difference between the exact energy E and the HF energy is called

the correlation energy, Ecorr = E − EHF.

Post Hartree-Fock methods

Quantum chemical post-HF approaches express the many-body wave func-
tion Ψ(x1, . . . ,xN) in terms of a non-interacting basis as they rely implicitly
or explicitly in writing the wave function as an expansion in determinants
of single-particle orbitals. With such an expansion, the matrix elements of
the Hamiltonian on the basis and the overlap of the basis functions can be
readily expressed and even computed analytically if a Gaussian basis set is
employed to express the single-particle orbitals.
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Conceptually, we can imagine to start from the solutions of the HF equa-
tions which give us a complete set of orthonormal orbitals, comprising the
N occupied orbitals and M − N virtual orbitals, where M is the size of the
atomic basis set. We can then proceed as in the configuration interaction
(CI) approach and construct a correlated wave function as

ΨCI = c0DHF +
∑

ab

ca→bD
a→b +

∑

abcd

cab→cdD
ab→cd + . . . , (2.5)

where Da→b denotes a single excitation from the HF determinant where the
occupied orbital a is substituted with the virtual orbital b. Similarly, Dab→cd

indicates a double excitation with the orbitals a and b substituted with the
virtual orbitals c and d. A full CI expansion is obtained if one includes up
to N -body excitations to all virtual orbitals, and the result should then be
extrapolated to the infinite basis limit by considering larger basis sets. We
can rewrite a CI expansion in more compact form as

ΨCI =
K

∑

i=1

ciCi , (2.6)

where Ci are spin and space-adapted configuration state functions (CSF),
that is, fixed linear combination of determinants with proper spin and space
symmetry. By applying the variational principle, one obtains the secular
equations for the coefficients ci:

K
∑

j=1

〈Ci|H|Cj〉c(k)
j = E

(k)
CI

K
∑

j=1

〈Ci|Cj〉c(k)
j , (2.7)

where 〈Ci|Cj〉 = δij as the orbitals are orthonormal.
An advantage of the CI approach is that one obtains not only an approxi-

mation to the ground state wave function but also to the higher excited states
via the coefficients c

(k)
i . In fact, a generalized variational principle applies,

known as the the McDonald’s theorem, which states that the approximate
solutions with energies E

(0)
CI ≤ E

(1)
CI ≤ . . . ≤ E

(K)
CI satisfy

Ei ≤ E
(i)
CI , (2.8)

where Ei are the exact energies of the eigenstates of the Hamiltonian H. A
disadvantage of a CI expansion is that a great number of determinants must
be included due to the lack of explicit dependence of the wave function from
inter-electron coordinates which makes difficult the description of the cusp
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occurring at the electron coalescence points. Moreover, the number of deter-
minants increases very fast with the system size, in particular exponentially
with the number of electrons N . A way to limit the number of determinants
is to include the most important excitations, for instance single and double
(CISD), which yields a computational cost of N6 with consequent loss of size
consistency.

In the multi-configuration self consistent field (MCSF) approach, one op-
timizes not only the linear coefficients ci but also the LCAO coefficients aji

to minimize the total energy. A particular type of MCSCF calculation is the
complete active space self-consistent (CASCF) approach, where a set of active
orbitals is selected, whose occupancy is allowed to vary, while all other or-
bitals are fixed as either doubly occupied or unoccupied. In a CASSCF(n,m)
calculation, n electrons are distributed among an active space of m orbitals
and all possible resulting space- and spin-symmetry-adapted CSFs are con-
structed. The final CASSCF(n,m) wave function consists of a linear combi-
nation of these CSFs, like in a full CI calculation for n electrons in m orbitals,
except that also the orbitals are now optimized to minimize the total energy.

When several states of the same symmetry are requested, there is a dan-
ger in optimizing the higher states that their energy is lowered enough to
approach and mix with lower states, thus giving an unbalanced description
of excitation energies. A well-established solution to this problem is the use
of a state averaged (SA) CASSCF approach where the weighted average of
the energies of the states under consideration is optimized

ESA =
∑

I

wI
〈ΨI |H|ΨI〉
〈ΨI |ΨI〉

, (2.9)

where
∑

I wI = 1 and the states are kept orthogonal. The wave functions
of the different states depend on their individual sets of CI coefficients using
a common set of orbitals. Orthogonality is ensured via the CI coefficients
and a generalized variational theorem applies. Obviously, the SA-CASSCF
energy of the lowest state will be higher than the CASSCF energy obtained
without SA. The most important step for a MCSCF/CASSCF calculation is
the choice of the active space and, unfortunately, there is not a simple rule
to select the proper orbitals. Usually, a great number of trial calculations are
necessary to find out which orbitals must be included in the active space.

2.2.2 Density functional theory

When compared to conventional quantum chemistry methods, density func-
tional theory (DFT) is particularly appealing since it does not rely on the
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knowledge of the complete N-electron wave function but only of the electronic
density. Density functional theory provides an expression for the ground state
energy of a system of interacting electrons in an external potential as a func-
tional of the ground state electronic density [14]. Let us assume for simplicity
that the spin polarization of the system of interest is identically zero. In the
Kohn-Sham formulation of density functional theory [15], the ground state
density is written in terms of single-particle orbitals obeying the equations:

[

−1

2
∇2 + veff ([n] ; r)

]

φi = ǫiφi, (2.10)

where the electronic density is constructed by summing over the N lowest
energy orbitals where N is the number of electrons:

n(r) =

N
∑

i=1

|φi(r)|2 . (2.11)

The effective Kohn-Sham potential is given by

veff ([n] ; r) = vext(r) +

∫

n(r′)

|r − r′|dr
′ + vxc ([n] ; r) (2.12)

vext(r) is the external potential. The exchange-correlation potential vxc ([n] ; r)
is the functional derivative of the exchange-correlation energy Exc [n] that en-
ters in the expression for the total energy of the system:

E = −1

2

N
∑

i=1

∫

φi∇2φi dr +

∫

n (r) vext (r) dr

+
1

2

∫ ∫

n(r)n(r′)

|r − r′| dr dr′ + Exc [n] . (2.13)

Unfortunately, although the theory unlike HF is in principle exact, the energy
functional contains an unknown quantity, called the exchange-correlation en-
ergy, Exc [n], that must be approximated in any practical implementation of
the method. If the functional form of Exc [n], and consequently the exchange-
correlation potential, were available, we could solve the N-electron problem
by finding the self-consistent solution of a set of single-particle equations.

Approximate exchange-correlation functionals

Several approximate exchange-correlation functionals have been proposed in
the literature, the most commonly used ones being the local density approx-
imation (LDA), the generalized gradient approximation (GGA) and, more
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recently, the hybrid functionals. The local density approximation [15] is the
simplest functional:

ELDA
xc [n] =

∫

dr ǫhom
xc (n(r))n(r) (2.14)

where ǫhom
xc (n) is the exchange correlation energy per electron of a uniform

electron gas of density n. This functional is by construction exact for a
homogeneous electron gas but has been shown to work surprisingly well also
when the distribution of electrons is strongly inhomogeneous.

However, LDA does not always provide sufficiently accurate results. For
example, it always overestimates the binding energy and the bond length of
weak bonded molecules and solids. Therefore, a dependence of the exchange-
correlation energy on the derivatives of the electronic density has been in-
troduced in the so-called generalized gradient approximations (GGA), whose
generic functional form (here restricted to second-order derivative) is

EGGA
xc [n] =

∫

n(r) ǫGGA
xc (n(r), |∇n(r)| ,∇2n(r)) dr. (2.15)

Many different GGA’s are available in the literature and, in this thesis, we will
make use of the Becke-Lee-Yang-Parr (BLYP) [16] and the Perdew-Burke-
Ehrennshof (PBE) [17] GGA functionals.

In recent years, hybrid functionals have become very popular in particular
for chemical applications. These functionals introduce a dependence on the
Kohn-Sham orbitals, and mix a portion of exact exchange from Hartree-Fock
theory with the exchange and correlation GGA functional:

Ehybrid
xc [n] = EGGA

xc [n] + cx(E
HF
x [n] − EGGA

x [n]) , (2.16)

where EGGA
x [n] and EGGA

xc [n] are GGA exchange (x) and exchange-correlation
(xc) energies, and EHF

x [n] is the exact exchange which has the same form as
the HF exchange energy:

Ex [n] = −1

2

N
∑

i=1

N
∑

j=1

δsi,sj

∫ ∫

φ∗
i (r)φ

∗
j(r

′)φj(r)φi(r
′)

|r− r′| dr dr′ . (2.17)

The coefficient cx controls the amount of Hartree-Fock exchange: It is unity
for Hartree-Fock, zero for pure DFT, and fractional (typically around 0.25
[18]) for hybrid functionals. This parameter is usually fitted to reproduce a
set of properties as for instance atomization energies of first and second-row
molecules. A widely used hybrid functional available in most DFT codes is
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the three parameter B3LYP functional [19] which combines LDA and the
BLYP GGA with exact exchange:

EB3LYP
xc = ELDA

xc + a0(E
HF
x − ELDA

x )

+ ax(E
GGA
x − ELDA

x ) + ac(E
GGA
c − ELDA

c ) (2.18)

where a0 = 0.20, ax = 0.72, and ac = 0.81. In this thesis, we will use the
hybrid functional B3LYP or PBE0. For more information about DFT, we
refer the reader to Refs. [20–22].

Time-dependent density functional theory

Time-dependent density-functional theory (TDDFT) represents a rigorous
formalism for the calculations of excitation energies. Similarly to ground
state density functional theory, TDDFT is formally exact but relies in prac-
tice on the use of approximate exchange-correlation functionals.

The central theorem of TDDFT is the Runge-Gross theorem [23] which
generalizes the Hohenberg-Kohn theorem to a time-dependent Hamiltonian,
and proves the one-to-one correspondence between the external time-depen-
dent potential vext(r,t) and the time-dependent electronic density, n(r,t).
This theorem leads to construct a time-dependent Kohn-Sham scheme for a
system of non-interacting electrons in an effective external time-dependent
potential:

[

−1

2
∇2 + veff ([n] ; r, t)

]

φi(r, t) = i
∂

∂t
φi(r, t), (2.19)

which yields the exact electronic density constructed from the Kohn-Sham
orbitals as

n(r, t) =
N

∑

i=1

|φi(r, t)|2 . (2.20)

The Kohn-Sham effective potential is given by

veff ([n] ; r, t) = vext(r, t) +

∫

n(r′, t)

|r − r′|dr
′ + vxc ([n] ; r, t) , (2.21)

where the first term in the external potential, the second term takes in ac-
count the electrostatic interaction between the electrons, and the last term
is the exchange-correlation potential. It is important to stress that the time-
dependent Kohn-Sham potential is not the same functional of the density
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as the ground-state Kohn-Sham potential (Eq. 2.12) but equals the func-
tional derivative of the exchange-correlation component of the action func-
tional [23, 24].

Like in the ground-state DFT approach, the only fundamental approxi-
mation in TDDFT is the time-dependent exchange-correlation potential and
the quality of the results crucially depends on the quality of this approxima-
tion. The simplest approximation is the so-called adiabatic approximation:

vadiab
xc ([n]; r, t) = vgs

xc([n]; r)|n=n(r,t) (2.22)

where vgs
xc is some given ground-state exchange-correlation potential. The

adiabatic approximation therefore assumes that the self-consistent potential
is local in time and responds instantaneously and without memory to any
temporal change in the charge density. As the vgs

xc is a ground-state property,
we expect that this approximation works best for time-dependent systems
whose density does not change too much from the ground-state one. By in-
serting the LDA or the BLYP potential (or whatever functional one prefers),
we obtain what we denote as the approximate adiabatic TDDFT/LDA or
TDDFT/BLYP approach.

The excitation energies can be readily obtained from a TDDFT calcu-
lation by knowing how the system responds to a small time-dependent per-
turbation. The key quantity is the linear density response function χ which
measures the change in the density of the system due to a small perturbation
in the external potential:

δnσ(r, ω) =

∫

dr′χ(r, r′, ω) δvext(r
′, ω) (2.23)

and which allows one to compute the dynamic polarizability and therefore
access the photoabsorption cross section. Through the time-dependent Kohn-
Sham scheme (Eqs. 2.19–2.21), we can rewrite the same change in the density
as

δnσ(r, ω) =

∫

dr′χKS(r, r
′, ω) δveff(r′, ω) , (2.24)

where χKS is the density response function of the non-interacting Kohn-Sham
electrons which can be written in terms of the unperturbed time-independent
Kohn-Sham orbitals. Then, using the definition of the exchange-correlation
potential (Eq. 2.20), we can obtain the linear change in the potential as

δveff(r, ω) = δvext(r, ω) +

∫

dr′
[

1

|r− r′| + fxc(r, r
′, ω)

]

δn(r′, ω) , (2.25)
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where fxc([n]; r, r′, ω) is the Fourier transform of the exchange-correlation
kernel:

fxc([n]; r, r′, t − t′) =
δvxc([n]; r, t)

δn(r′, t′)
. (2.26)

Combining Eqs. 2.23–2.25, we derive a Dyson-like equation for the response
function

χ(r, r′, ω) = χKS(r, r
′, ω) (2.27)

+

∫

dx

∫

dx′ χ(r,x, ω)

[

1

|x − x′| + fxc(x,x′, ω)

]

χKS(x
′, r′, ω) ,

which yields the response χ of the interacting system via a self-consistent
solution if the exact exchange-correlation kernel is known. Since a full solu-
tion of this equation is numerically quite difficult, one obtains the excitation
energies by knowing that the density response function, χ, has poles at the
frequencies which correspond to the excitation energies of the interacting
system. Similarly, the poles of the Kohn-Sham response function, χKS, cor-
respond to the non-interacting excitation energies given by the difference of
Kohn-Sham eigenvalues.

Through a series of algebraic manipulations, it is possible to reformu-
late linear-response TDDFT in terms of the so-called Casida’s equations [25]
where the poles of the response functions, Ω = Em − E0, are determined as
solutions of the non-Hermitian eigenvalue problem:

[

A B
B A

](

~X
~Y

)

= Ω

[

−1 0
0 1

](

~X
~Y

)

, (2.28)

where the matrices A and B are defined as

Aia,i′a′ = δii′δaa′(ǫa − ǫi) + Kia,i′a′ ,

Bia,i′a′ = Kia,a′i′ = (ia| 1

|r − r′| |a
′i′) + (ia|fxc|a′i′) . (2.29)

The eigenvalues of these equations give the excitation energies and the eigen-
vectors can be used to compute the oscillator strengths.

It is important to note that TDDFT adiabatic approximation includes
only dressed one-electron excitations [26]. This can be seen in the context of
the Tamm-Dancoff approximation (TDA), which consists of neglecting the B

matrices to obtain A ~X = Ω ~X. The number of possible solutions to this equa-
tion is the dimensionality of A which is the number of single excitations. In
fact, the linear-response time-dependent Hartree-Fock TDA (exchange-only
density functional theory) is simply the well-known configuration interaction

25



2.2. Quantum mechanical calculations 2. Computational methods

singles (CIS) method. The computational cost of TDDFT scales approxi-
mately like O(N3), so TDDFT represents a very appealing theoretical ap-
proach to compute the excitation energies of large molecular systems. While
often reasonably accurate, the main difficulties encountered in conventional
TDDFT include the underestimation of the ionization threshold [27], the un-
derestimation of charge transfer excitations [28–30], and the lack of explicit
two- and higher-electron excitations [26,31]. These shortcomings may be fa-
tal in describing the excitations of biomolecular systems as these systems are
often characterized by charge transfer in the excited states and may display
multi-configurational character.

2.2.3 Quantum Monte Carlo methods

The variational (VMC) and diffusion (DMC) Monte Carlo methods we present
in this Section share with conventional quantum chemistry methods that
they are wave function based approaches. However, differently from quan-
tum chemistry approaches, they attempt to solve the Schrödinger equation
stochastically, and have consequently significantly more freedom in the choice
of the functional form of the many-body correlated wave function. Moreover,
both approaches have a more favorable scaling with the number of electrons,
that is, N4 when compared to N6 of CISD or N7 of the coupled cluster single
and double with perturbative triples approach. Therefore, even though they
are more costly than DFT which only scales as N3, they are significantly
faster than conventional highly-correlated quantum chemistry methods, and
can be applied to larger systems and to solids to provide accurate answers in
situations when DFT is shown to be inadequate.

Variational Monte Carlo

The variational Monte Carlo method is the simplest QMC approach and uses
Monte Carlo techniques to evaluate the expectation value of an operator for
a given wave function. Let us assume we are given the many-body trial wave
function ΨT and that we are interested in computing the expectation value
of the Hamiltonian H:

EV =

∫

Ψ∗
T(R)HΨT(R)dR

∫

Ψ∗
T(R)ΨT(R)dR

(2.30)

This expectation value can be rewritten as

EV =

∫

|ΨT(R)|2[ΨT(R)−1HΨT(R)]dR
∫

|ΨT(R)|2dR =

∫

ρ(R)EL(R)dR , (2.31)
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where

ρ(R) =
|ΨT(R)|2

∫

|ΨT(R)|2dR , (2.32)

and the local energy is defined as

EL(R) = ΨT(R)−1HΨT(R) , (2.33)

Since ρ(R) is a positive quantity and integrates to 1, we can interpret it as
a probability distribution and use Monte Carlo techniques to sample a set of
configurations {Rm} distributed according to ρ(R). The expectation value
can then be estimated as an average of the local energy EL(R) evaluated on
these configurations:

EV ≈ 1

M

M
∑

m=1

EL(Rm) (2.34)

Note that in this derivation, we can substitute the Hamiltonian H with any
operator O diagonal in space representation.

For a realistic system of electrons, the square of the many-body wave func-
tion is a complicated probability distribution in a high-dimensional space, of
which we do not usually know how to compute the normalization. Therefore,
we cannot use direct sampling techniques but we employ the Metropolis al-
gorithm to generate a sequence of configurations {Rm} distributed according
to ρ(R). The Metropolis algorithm is a general method to sample an arbi-
trary probability distribution without knowing its normalization, and is an
application of a Markov chain. In a Markov chain, one changes the state of
the system randomly from an initial state Ri to a final state Rf according to
the stochastic transition matrix M(Rf |Ri) which satisfies

M(Rf |Ri) ≥ 0 and
∑

f

M(Rf |Ri) = 1 . (2.35)

To sample the desired distribution ρ(R), one evolves the the system by re-
peated application of a Markov matrix M which satisfies the stationarity

condition

∑

i

M(Rf |Ri) ρ(Ri) = ρ(Rf ) ,

for any state Rf . The stationarity condition condition tells us that if we start
from the desired distribution ρ, we will continue to sample ρ. Moreover, if
the stochastic matrix M is ergodic, this condition ensures that any initial
distribution will evolve to ρ under repeated applications of M . Therefore, ρ
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is the right eigenvector of M with eigenvalue 1 and it is also the dominant
eigenvector.

In practice, one imposes the more stringent detailed balance condition

M(Rf |Ri) ρ(Ri) = M(Ri|Rf) ρ(Rf) (2.36)

which is a sufficient but not necessary condition to satisfy the stationarity
condition as can be easily seen by summing both sides of the equation over
Ri and using Eq. 2.35. The transition M is then rewritten as the product of
a proposal matrix T and the acceptance A:

M(Rf |Ri) = A(Rf |Ri) T (Rf |Ri) , (2.37)

where M and T are stochastic matrices but A is not. The detailed balance
condition finally becomes

A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) ρ(Rf )

T (Rf |Ri) ρ(Ri)
. (2.38)

For a given T , the choice originally made by Metropolis et al. [32] for the
acceptance is

A(Rf |Ri) = min

{

1,
T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

}

, (2.39)

and is the one which maximizes the acceptance. In choosing the proposal
matrix T , we observe that the Metropolis algorithm generates points which
are sequentially correlated so that the effective number of independent ob-
servations in a Monte Carlo run of M steps is M/Tcorr, where Tcorr is the
autocorrelation time of the observable of interest. Therefore, to achieve a
fast evolution and reduce Tcorr, the optimal T should yield a high acceptance
and at the same time allow large proposed moves. The choice of T will of
course be limited by the fact that we need to be able to sample T directly. We
use here the algorithm described in Ref. [33], which uses a non-symmetrical
T and which we properly modified to deal with pseudopotentials.

In short, the generalized Metropolis algorithm will consist of the following
steps:

1. Choose the distribution ρ(R) and the transition probability T (Rf |Ri).

2. Initialize the configuration Ri.

3. Advance the configuration from Ri to R′:

a) Sample R′ from T (R′|Ri).

28



2. Computational methods 2.2. Quantum mechanical calculations

b) Calculate the ratio

q =
T (Ri|R′)

T (R′|Ri)

ρ(R′)

ρ(Ri)
. (2.40)

c) Accept or reject: If q > 1 or q > r where r is a uniformly
distributed random number in (0,1), set the new configuration
Rf = R′. Otherwise, set Rf = Ri.

4. Throw away the first κ configurations corresponding to the equilibra-
tion time.

5. Collect the averages and block them to obtain the error bars.

Two final comments on the Metropolis algorithm. First, the distribution
ρ(R) does not have to be normalized since only ratios enter in the acceptance.
Therefore, it is possible to sample the square of complex wave functions
(Eq. 2.32) whose normalization we do not know. Second, if M1, M2, . . . , Mn

are matrices which satisfy the stationarity condition, the matrix M =
∏n

i=1 Mi

also satisfies the stationarity condition. Consequently, particles can be moved
one at the time, a necessary feature as the system size grows since the size
of the move would need to be decreased to have a reasonable acceptance of
a move of all particles.

Many-body wave functions used in quantum Monte Carlo

The use of VMC to compute the expectation values of quantum mechanical
operators allows great freedom in the choice of the trial wave function which
on the other hand determines the accuracy as well as the efficiency of the cal-
culation. Therefore, the form of wave function should yield accurate results
while being compact and easy to evaluate.

The ingredients entering in the wave function most commonly used in
quantum Monte Carlo can be understood by inspecting the advantages and
limitations of traditional quantum chemistry approaches. Methods such as
configuration interaction (CI) expand the many body wave function in a lin-
ear combination of Slater determinants of single-particle spin-orbitals. This
form allows the evaluation of the high-dimensional integrals in all expectation
values but the convergence of the expansion is very slow, in part because of
the difficulty in describing the cusps which occur as two electrons approach
each other. Quantum Monte Carlo uses a much more compact representation
of the wave function which is usually given by a sum of few determinants
(tens and not millions like in a CI calculation) multiplied by a component
which can exactly impose the cusps at the inter-particle coalescence points.
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Slater-Jastrow wave function

The trial wave functions used in our quantum Monte Carlo calculations are
of the Jastrow-Slater form, thus they are a product between a sum of deter-
minants of single particle orbitals, and a Jastrow correlation factor:

Ψ(r1, . . . , rN) = J (r1, . . . , rN)
∑

k

dkD
↑

k(r1, . . . , rN↑
)D↓

k(rN↑+1, . . . , rN) ,

(2.41)
where D↑

k and D↓

k are Slater determinants of single particle orbitals for the up
and down spin electrons, respectively. The orbitals are a linear combination
of Slater functions centered on the atoms for all-electron calculations while
are expanded on a Gaussian basis when pseudopotentials are employed. The
Jastrow correlation function is a positive function of the interparticle dis-
tances and explicitly depends on the electron-electron separations.

The wave function is here written in spin-assigned form where the de-
pendence on the spin variables {σi} has disappeared and the wave function
appears to no longer be fully antisymmetric. To obtain such an expression,
we start from a full wave function Ψ(x1, . . . ,xN) depending on both spatial
and spin coordinates, and expand it on its spin components. For a a system
of N electrons with N = N↑ +N↓ and Sz = (N↑−N↓)/2, we introduce a spin
function ζ1

ζ1(σ1, . . . , σN) = χ↑(σ1) . . . χ↑(σN↑
)χ↓(σN↑+1) . . . χ↓(σN) . (2.42)

and construct a set of K = N !/(N↑!N↓!) distinct spin functions ζi by permut-
ing the indices in ζ1. Since the spin functions ζi form a complete orthonormal
set in spin space, we can decompose the wave function Ψ in terms of its spin
components as

Ψ(x1, . . . ,xN) =
K

∑

i=1

Fi(r1, . . . , rN)ζi(σ1, . . . , σN ) . (2.43)

As Ψ is antisymmetric under the interchange of particle indices, each function
Fi is antisymmetric under the interchange of like-spin electrons and all Fi are
the same except for a relabelling of the particle indices and a change in sign
for odd permutations. Therefore, the wave function can be rewritten as:

Ψ(x1, . . . ,xN) = A{F1(r1, . . . , rN)ζ1(σ1, . . . , σN )} (2.44)

It is easy to show using orthonormality of the functions ζi that the expecta-
tion value of an operator O which is spin-independent is the same if we use
the fully antisymmetric wave function Ψ or just one spatial function, say F1:

〈Ψ|O|Ψ〉 = 〈F1|O|F1〉 . (2.45)
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Since it is more convenient to use the function F1 than the full wave func-
tion Ψ, in quantum Monte Carlo, we always work with spin-assigned wave
functions. To obtain F1, we simply assign the spin-variables of the particles
as

Particle 1 2 . . . N↑ N↑+1 . . . N
σ 1 1 . . . 1 −1 . . . −1

so that F1(r1, . . . , rN) = Ψ(r1, 1, . . . , rN↑
, 1, rN↑+1,−1, . . . , rN ,−1).

Finally, the Jastrow-Slater spin-assigned wave function obtained by im-
posing σ = +1 for first N↑ particles and σ = −1 for the others is given
by

Ψ(r1, . . . , rN) = F1(r1, . . . , rN)

= J
∑

k

dk D↑

k(r1, . . . , rN↑
)D↓

k(rN↑+1, . . . , rN) (2.46)

where J = J (r1, . . . , rN) is the Jastrow factor.
The Jastrow factor is generally chosen to be a positive function of the

interparticle distances and therefore does not affect the sign of the wave
function which is solely determined by the determinantal component. At
a large interparticle distances, it plays no role since it becomes constant,
which we achieve by using scaled variables as shown below. The Jastrow
factor is of fundamental importance in describing correlation at short and
intermediate distances. In particular, the electron-electron cusp conditions
are imposed through the Jastrow factor: At the electron-electron coalescence
points, the potential energy diverges at infinity, so the kinetic energy must
have an opposite divergence to the potential to keep the local energy finite.
It is possible to ensure this cancellation if the trial wave function satisfies a
set of cusp conditions and displays a proper discontinuity of the derivatives
at the coalescence points.

The form of the Jastrow factor which we use depends on electron-electron
and the electron-nucleus distances and describes electron-electron, electron-
nucleus and electron-electron-nucleus correlations:

J (r1, . . . , rN) =
∏

α,i

exp
{

A(riα)
}

×
∏

i<j

exp {B(rij)}×

×
∏

α,i<j

exp {C(riα, rjα, rij)} . (2.47)

The electron-nucleus terms A should be included if the determinantal part
is constructed using orbitals obtained from a DFT or a HF calculation and
not reoptimized after the inclusion of the electron-electron Jastrow factor.
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As the electron-electron term alters the single-particle density by reduc-
ing/increasing it in high/low density regions, the resulting density will in
general be worse that the original DFT or HF density which can be repristi-
nated by the inclusion of the electron-nucleus terms. The electron-electron
term B is introduced to impose the electron-electron cusp conditions and to
keep the electrons apart as the electron-electron interaction is repulsive. Fi-
nally, the electron-electron-nucleus terms C can in principle exactly describe
a two-electron atom or ion in an S state. Higher body correlations are clearly
less important as, due to the exclusion principle, it is rare for three or more
electrons to be close since at least two electrons must necessarily have the
same spin.

To keep the Jastrow factor finite at large distances, we use scaled variables
r̄ = (1 − e−κr)/κ for the A and B terms, and r̄ = e−κr for the C terms. The
particular form we employ in this work is:

A(riα) =
a1r̄iα

1 + a2r̄iα
+

Na
ord

∑

p=2

ap+1r̄
p
iα

B(rij) =
b1r̄ij

1 + b2r̄ij

+

Nb
ord

∑

p=2

bp+1r̄
p
ij

C(riα, rjα, rij) =

Nc
ord

∑

p=2

k=p−1
∑

0

l=lmax
∑

0

cmklr̄
k
ij(r̄

l
iα + r̄l

jα)(r̄iαr̄jα)m, (2.48)

where m = (p − k − l)/2, and lmax is p−k if k 6= 0 and p−k−2 if k = 0. Only
terms for which m = (p − k − l)/2 is an integer are included. The a and c
coefficients are different for different atom types. The only spin dependence is
in b1 which is is used to satisfy the electron-electron cusp conditions: b1 = 1/2
for antiparallel spin, and b1 = 1/4 for parallel electrons.

Diffusion Monte Carlo

VMC is a very useful tool which allows us to explore which type of correlation
is relevant in the system under study with a relatively small amount of com-
puter time. For instance, we can investigate how the complexity of the trial
wave function influences the description of the state of interest. However,
its major drawback is that the result will uniquely depend on the the qual-
ity of the trial wave function which cannot be constructed in an automatic
way and whose functional form must be chosen for each particular problem.
Therefore, we would like to have a way to remove (at least in part) the bias
introduced by the wave function.
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Projector Monte Carlo is a more powerful method than VMC and removes
(at least in part) the bias of the trial wave function from the results. It is
a stochastic implementation of the power method for finding the dominant
eigenstate of a matrix or integral kernel. In a projector Monte Carlo method,
one uses an operator that inverts the spectrum of H to project out the ground
state of H from a given trial state. Different operators have been used as
projectors but, here, for simplicity, we only discuss diffusion Monte Carlo
(DMC) which we use in our calculations.

In DMC, we use as projection operator exp[−τ(H − ET)], and given an
initial trial wave function Ψ(0), we repeatedly apply the projection operator
to obtain the sequence of wave functions:

Ψ(n) = e−τ(H−ET)Ψ(n−1) . (2.49)

If we expand the initial wave function Ψ(0) on the eigenstates Ψi with energies
Ei of H, we obtain for Ψ(n):

Ψ(n) =
∑

i

Ψi 〈Ψ(0)|Ψi〉e−nτ(Ei−ET) , (2.50)

where 〈Ψ(0)|Ψi〉 is the overlap between Ψ(0) and the eigenstate Ψi. Since
the coefficients of the excited states die off exponentially fast relative to the
coefficient of the ground state, we obtain

lim
n→∞

Ψ(n) = Ψ0〈Ψ(0)|Ψ0〉e−nτ(E0−ET) . (2.51)

Therefore, if we choose the trial energy ET ≈ E0 to keep the over all nor-
malization of Ψ(n) fixed, the projection yields the ground state Ψ0 of the
Hamiltonian. Note that the starting wave function must have a non-zero
overlap with the ground state one.

To see how to perform the projection, let us first rewrite Eq. 2.49 in
integral from and obtain

Ψ(n)(R′, t + τ) =

∫

dRG(R′,R, τ)Ψ(n−1)(R, t) , (2.52)

where the coordinate Green’s function is defined as

G(R′,R, τ) = 〈R′|e−τ(H−ET)|R〉 . (2.53)

If we can sample the trial wave function and the Green’s function in Eq. 2.52,
we can perform this high-dimensional integral by Monte Carlo integration.
For fermions, since the wave function must be antisymmetric, it cannot be
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interpreted as a probability distribution. Therefore, for the moment, we will
assume that we are dealing with bosons which are characterized by a positive
ground state wave function.

Using the Trotter-Suzuki formula it is possible to show that the approxi-
mate Green’s function for small τ is given by:

〈R′|e−Hτ |R〉 ≈ 1

(2πτ)3N/2
exp

[

−(R′ − R)2

2τ

]

exp [−τ V(R)] . (2.54)

Therefore, the iteration in Eq. 2.52 can be interpreted as a Markov pro-
cess with the difference that the Green’s function is not normalized and we
obtain a branching random walk: the first factor in the short-time Green’s
function is the Green’s function for diffusion while the second term multiplies
the distribution by a positive scalar. Since the short-time expression of the
Green’s function is only valid in the limit of τ approaching zero, in practice,
DMC calculations must be performed for different values of τ and the result
extrapolated for τ which goes to zero.

The use of this Green’s function would however yield a highly inefficient
and unstable algorithm since the potential can vary significantly from con-
figuration to configuration or also be unbounded like the Coulomb potential.
For example, the electron-nucleus potential diverges to minus infinity as the
two particles approach each other, and the branching factor will give raise
to an unlimited number of walkers. Even if the potential is bounded, the
approach becomes inefficient with increasing size of the system since the
branching factor also grows with the number of particles.

These difficulties can be overcame by using importance sampling which
was originally proposed by Kalos [34] for Green’s function Monte Carlo and
extended by Ceperley and Alder [35] to DMC. We start from Eq. 2.52, multi-
ply each side by a trial wave function Ψ and define the probability distribution
f (n)(R) = Ψ(R)Ψ(n)(R) which satisfies

f (n)(R′, t + τ) =

∫

dR G̃(R′,R, τ)f (n−1)(R, t) , (2.55)

where the importance sampled Green’s function is given by

G̃(R′,R, τ) = Ψ(R′)〈R′|e−τ(H−ET)|R〉/Ψ(R) . (2.56)

It is possible to show that resulting drift-diffusion-branching short-time Green’s
function is given by

G̃(R′,R, τ) = (2πτ)3N/2 exp

[

−(R′ − R − τV(R))2

2τ

]

×

× exp {−τ [(EL(R) + EL(R′))/2 − ET]} + O(τ 2) . (2.57)
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where the quantum velocity is defined as

V(R) =
∇Ψ(R)

Ψ(R)
. (2.58)

There are two important new features of G̃(R′,R, τ). First, the quantum
velocity V(R) pushes the walkers to regions where Ψ(R) is large. In addi-
tion, the local energy EL(R) instead of the potential V(R) appears in the
branching factor. Since the local energy becomes constant and equal to the
eigenvalue as the trial wave function approaches the exact eigenstate, we ex-
pect that, for a good trial wave function, the fluctuations in the branching
factor will be significantly smaller. In particular, imposing the cusp con-
ditions on the wave function will remove the instabilities coming from the
singular Coulomb potential.

The DMC algorithm will now be:

1. A set of M0 configurations is sampled from |Ψ(R)|2 using the Metropo-
lis algorithm. This is the zero-th generation and the number of config-
urations is the population of the zero-th generation.

2. The walkers are advanced as R′ = R+ξ+τV(R) where ξ is a normally
distributed 3N dimensional random vector, and the last term is the
drift.

3. For each walker, compute the factor

p = exp {−τ [(EL(R) + EL(R′))/2 − ET]} . (2.59)

Branch the walker by treating p as the probability to survive at the next
step: if p < 1, the walker survives with probability p while, if p > 1,
the walker continues and new walkers with the same coordinates are
created with probability p − 1. This is achieved by creating a number
of copies of the current walker equal to the integer part of p + η where
η is a random number between (0,1).

4. The trial energy ET is adjusted to keep the population stable around
the target population M0.

In Ref. [36], the reader can find a thourough description of several improve-
ments one can bring to the simple algorithm outlined above.

So far, we have assumed that the wave function is positive everywhere
and we have not yet addressed the problem posed by the fact that electrons
are fermions and that the trial wave function must be antisymmetric. Un-
fortunately, straightforward generalizations of the DMC algorithm to handle
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both signs of the wave functions, even if formally correct, lead to the fermion
sign problem: The bosonic component grows at the expenses of the fermionic
one and the antisymmetric signal is lost in the noise. To avoid this prob-
lem, we can simply forbid moves in which the sign of the trial wave function
changes and the walker crosses the nodes which are defined as the set of
points where the trial wave function is zero. This procedure is known as the
fixed-node approximation. Forbidding node crossing is equivalent to finding
the solution of the evolution equation with the boundary condition that it
has the same nodes as the trial wave function. The Schrödinger equation is
therefore solved exactly inside the nodal regions but not at the nodes where
the solution will have a discontinuity of the derivatives. The fixed-node so-
lution will be exact only if the nodes of the trial wave function are exact. In
general, the fixed-node energy will be an upper bound to the exact energy,
in particular the best upper bound consistent with the boundary conditions
given by the nodes of the trial wave function.

Wave function optimization

The quality of the trial wave function controls the statistical efficiency of the
VMC and DMC algorithms and determines the final accuracy of the results.
The ability of optimizing the parameters of the trial wave function is crucial
for the success of quantum Monte Carlo methods. For the optimization of
the parameters in the trial wave function of a system in its ground state, we
use the optimization method within energy minimization recently proposed
by Umrigar, Filippi, and Sorella [37], which we briefly describe below.

The Jastrow-Slater wave function depends on a set of parameters p:

Ψ(p,R) = J (α,R)

NCSF
∑

i=1

ciCi(η,R) (2.60)

where the parameters p are given by parameters α in the Jastrow factors, the
linear parameters ci in from of the CSFs, and the LCAO coefficients η which
enter in the single-particle orbitals. An optimal set of linear coefficients is
readily obtained by solving the generalized eigenvalue problem

NCSF
∑

j=1

Hijcj = EI

NCSF
∑

j=1

Sijcj . (2.61)

The Hamiltonian and overlap matrix elements are estimated by a finite-
sample average in variational Monte Carlo as

Hij =

〈JCi

Ψ

HJCj

Ψ

〉

Ψ2

, Sij =

〈JCi

Ψ

JCj

Ψ

〉

Ψ2

(2.62)
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where the statistical average is over the Monte Carlo configurations sampled
from Ψ2. Importantly, the use of the non-symmetric estimator of the Hamil-
tonian matrix of Eq. (2.62) yields a strong zero-variance principle [38] and
results in a particularly efficient approach.

To find the optimal linear (c) as well as non-linear (α and η) parameters,
we linearize the wave function around the current set of parameters p, and
consider the changes in Ψ given by Ψk = (∂Ψ/∂pk), which can be made
orthogonal to Ψ as

Ψ̄k = Ψk −
〈

Ψk

Ψ

〉

Ψ2

Ψ . (2.63)

We now work in the semi-orthogonal basis of the functions {Ψ̄0, Ψ̄k} where
Ψ̄0 = Ψ, and find the variations ∆pi in the parameters as the lowest eigen-
value solution of the generalized eigenvalue problem

Hij∆pj = E Sij∆pj (2.64)

where ∆p0 = 1. When the parameter values are far from optimal, the new
parameters pi + ∆pi can be worse than the old ones. Therefore, to ensure
convergence, a positive constant adiag is added to the diagonal of the Hamil-
tonian matrix (apart the first element):

Hij = Hij + adiagδij(1 − δi0) (2.65)

which is adjusted at each optimization step.

Wave function optimization and excited states

As we are not only interested in ground state problems, we want to be able to
optimize the parameters of the multiple (ground and excited) states described
by the wave functions:

ΨI =

NCSF
∑

i=1

cI
iJCi . (2.66)

which share the same Jastrow factor and orbitals but different linear coeffi-
cients. To this end, we follow a state-average (SA) approach to determine a
set of orbitals and a Jastrow factor which give a comparably good description
of the states under considerations while preserving orthogonality among the
states. We alternate the optimization of the linear coefficients as outlined
above to a micro-iteration in which the optimized quantity with respect to
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the orbital and Jastrow variations is the weighted average of the energies of
the states under consideration:

ESA =
∑

I∈A

wI
〈ΨI |H|ΨI〉
〈ΨI |ΨI〉

, (2.67)

where the weights wI are fixed and
∑

I wI = 1. Therefore, at convergence,
the averaged energy ESA is stationary with respect to all parameter variations
subject to the orthogonality constraint while the individual state energies Ei

are stationary with respect to variations of the linear coefficients but not with
respect to variations of the orbital or Jastrow parameters. In this approach,
the wave functions are kept orthogonal and a generalized variational theorem
applies.

To improve the orbital and Jastrow parameters at each SA micro-iteration
step, we extend the linear optimization approach of Ref. [37] we described
above to the SA optimization of multiple states. Under a common variation
in an orbital or Jastrow parameter pi, the changes in the states ΨI are given
by ΨI

k = (∂ΨI/∂pk) and can be made orthogonal to the corresponding state
as

Ψ̄I
k = ΨI

k −
〈

ΨI

Ψg

ΨI
k

Ψg

〉

Ψ2
g

ΨI . (2.68)

To linearize the minimization with respect to the non-linear parameters, we
work in the semi-orthogonal basis of the functions {Ψ̄I

0, Ψ̄
I
k} where Ψ̄I

0 = ΨI ,
and find the variations ∆pi in the parameters as the lowest eigenvalue solution
of the generalized eigenvalue problem

HSA
ij ∆pj = E SSA

ij ∆pj (2.69)

where ∆p0 = 1. The SA Hamiltonian matrix is computed as

HSA
ij =

∑

I∈A

wI

〈

Ψ̄I
i

Ψg

HΨ̄I
j

Ψg

〉

Ψ2
g

, (2.70)

and an analogous definition holds for the SA overlap matrix elements. The
matrix elements for all states are computed in a single variational Monte
Carlo run with guiding wave function Ψg. At convergence and for the op-
timal linear coefficients, the minimal energy ESA (Eq. 2.67) is obtained: if
the iterative scheme converges, the matrix elements HSA

i0 are zero and, con-
sequently, the derivatives of ESA with respect to the parameter pi are zero
as they equal HSA

i0 .
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In summary, one iteration of excited state optimization consists of the
following steps: i) Sample the quantities needed for the optimization of the
linear coefficients with the appropriate guiding wave function; ii) diagonalize
the matrix (Eq. 2.61) to obtain the optimal linear coefficients for the states
under consideration; iii) sample for all states the quantities needed in the
linear equations (Eq. 2.69) and obtain the parameters ∆pi; iv) construct
a set of improved orbitals and Jastrow parameters as pi → pi + ∆pi. As
in the optimization of a ground state wave function, when the non-linear
parameters are far from the optimal values, the optimization may need to
be stabilized by shifting all diagonal elements except the first one as HSA

ij →
HSA

ij + aadiagδij(1 − δi0).

The use of pseudopotentials

While the QMC methods can be extended to large systems containing many
electrons, the computational effort increases dramatically with the atomic
number Z as the scaling is approximately Z6, rendering all-electron calcu-
lations quickly intractable. The problem is caused by the core electrons
which yield large energies and large fluctuations of the energy. The most
common way to overcome this difficulty is to replace the core electrons by
pseudopotentials, an approximation which is usually rather good as the core
is chemically inert. An electron-nucleus pseudopotential is usually non-local
and the most commonly used form is a potential which is local in the radial
coordinate and non-local in the angular part as

〈r|vNL|r′〉 =

lmax
∑

l=0

vl(r) δ(r − r′)

l
∑

m=−l

Ylm(Ω)Y∗
lm(Ω′) , (2.71)

where lmax the maximum angular momentum considered, and the function
vl is radial and vanishes outside a core radius rc. The non-local potential
acting on the trial wave functions gives

〈R|VNL|Ψ〉

=

N
∑

i=1

lmax
∑

l=0

vl(ri)

l
∑

m=−l

Ylm(Ωi)

∫

dΩ′
i Y

∗
lm(Ω′

i) Ψ(r1, . . . , r
′
i, . . . , rN) , (2.72)

where the integral is over a sphere of radius r′i = ri centered on the pseu-
doatom. This angular integration poses no particular problem in a VMC
calculation and is done by a numerical quadrature on a regular polyhedron
defined by a set of vertices whose number will depend on the value of lmax [39].
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The use of nonlocal pseudopotential in DMC is more problematic since
the Green’s function (Eq. 2.53) is no longer positive. A possible way to
circumvent this problem is to introduce the so-called locality approximation

and define a new effective core potential by localizing the non-local potential
on the trial wave function [40] as

Veff(R) =
1

Ψ(R)
〈R|VNL|Ψ〉 . (2.73)

This new effective potential is explicitly many-body but is local and can be
easily incorporated in a DMC algorithm. However, the potential depends now
on the trial wave function, and the DMC energy computed with the mixed
estimator is no longer necessarily variational and depends on the quality of
the trial wave function. As the trial wave function approaches the fixed-node
solution obtained without the locality approximation, the DMC energy con-
verges to the correct fixed-node energy quadratically fast in the error on the
trial wave function. A different approach to handle non-local pseudopoten-
tial which is variational and improves the accuracy upon the DMC approach
with the locality approximation was recently proposed in Ref. [41].

Quantum Monte Carlo and excited states

Even though the DMC method was designed to project the ground state of a
given Hamiltonian, it can also be used to study excited states. A straightfor-
ward way of obtain information on excited states is to construct a trial wave
function which is a good approximation of the wave function of the state
of interest. Naturally, this wave function can be used within VMC and, if
the state is the lowest state of a one-dimensional representation of the point
group of the molecules, DMC will yield a solution which is variational.

If the excited state is not the lowest state in its symmetry, we can still use
DMC in the fixed-node approximation as the nodal constraints will prevent
the collapse to the ground state solution. However, we may not be variational.
It is only guaranteed that, if the nodal surface of the trial wave function
is the same as the one of an exact state, fixed-node DMC yields the exact
solution. Therefore, the role of the trial wave function is even more important
when studying excited states within DMC since it not only imposes fermionic
antisymmetry but also selects the state of interest.
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2.3 Quantum mechanics in molecular mechan-

ics techniques

Photochemical processes like absorption or fluorescence in biological systems
are quite difficult to study because light-induced transitions require a quan-
tum mechanical treatment of the system. However, as a biological system
is very large and comprises thousands of atoms, the whole system cannot
be treated at quantum level with the theoretical approaches available today.
Fortunately, the primary process of photoabsorption often involves only few
residues of the protein and is localized in a small spatial region, while the
rest of the protein acts in this phase as spectator. Therefore, one can study
the system by partitioning it into a quantum subsystem which is chemically
active and small enough to be computationally treatable, and a larger envi-
ronment which is assumed to be chemically inert and is simulated by less ex-
pensive classical molecular mechanics methods. These hybrid approaches are
called quantum mechanics in molecular mechanics (QM/MM) approaches. In
Fig. 2.1, we show how the QM/MM partitioning is applied in the simulation
of the Green Fluorescent Protein.

The classical molecular mechanics calculations rely on empirical force
fields to approximately describe the interactions of the classical particles.
The most general form of these inter-particle potentials takes into account
inter-molecular dispersion interactions between neutral atoms and electro-
static interactions between charged atoms, and intra-molecular interactions
to describe the rotational, vibrational and torsional degrees of freedom of
the molecule. To define a force field, one needs to specify the form of the
potential and the values of the parameters whose number is very large as the
same atom type may have different properties depending on which atom it
is bonded to. As bonds cannot be created or broken in such a model, the
bonding structure must be established at the beginning of the simulation.

Different QM/MM techniques are available in the literature, which differ
for instance in how the interface between the MM and QM parts is treated
and or in how the protein environment is simulated. In our work, we adopt
the approach by Röthlisberger and coworkers [42] as implemented in the
code CPMD [46]. The non-bonded interactions between the MM and the
QM parts are modelled as

HNB =
∑

I∈MM

qI

∫

dr
ρ(r)

|r − rI |
+

∑

I∈MM,J∈QM

vvdW(rIJ) (2.74)

where ρ(r) is the density of the electrons and the nuclei of the QM system, qI

are the MM partial charges at positions rI , and the van der Waals interactions
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Figure 2.1: QM/MM partitioning in the simulation of Green Fluorescent
Protein. The optically active part of the system is treated with a QM method
while the rest of the protein is the MM part. The chromophore model is
showed with a ball and sticks representation, while the MM part with solid
lines. The two arrows indicate the two hydrogen-link atom between the QM
and the MM. The MM part closest to the QM atoms is represented with
cylinders.

between QM and MM atoms are described by the classical force field vvdW.
The use of this expression is however problematic if the QM system is close

to some positively charged MM atoms since the electrons will be attracted by
the MM charges and the density overpolarized. This so-called spill-out effect
is non physical and is particularly severe when a plane-wave basis is used as
in the CPMD code. To avoid this problem in the CPMD implementation of
QM/MM, a screening term is introduced for the point charges which are in
proximity of the QM system. The electrostatic interaction of electrons with
the close MM atoms (NN) in the non-bonded Hamiltonian is rewritten as

Hel
NB =

∑

I∈NN

qI

∫

dr ρel(r)vI(|r− rI |) (2.75)

where

vI(r) =
rn
cI − rn

rn+1
cI − rn+1

(2.76)
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with rcI the covalent radius of the atom type I and n=4. We refer the reader
to Ref. [42] for a thorough discussion of the technical tricks used to reduce the
large computational effort involved in computing the first term of Eq. 2.74
within plane-waves.

Finally, it is important to specify how to treat bonded interactions be-
tween the QM and MM parts, which arise when the QM/MM boundary cuts
through a chemical bond of a molecule. In this case, we adopt the solution
to “cap” the broken bond with a link atom, in particular a hydrogen atom.
The QM system sees the hydrogen atom while the MM atoms do not.

2.4 Computational details

We employ different codes for the various steps of the calculations. For
completeness, we conclude this chapter with a brief overview of the programs
used, specifying in which step they were employed and briefly describing the
technical details.

The Amber Molecular Dynamics Package [43] is a set of compu-
tational tools widely used to simulate bio-molecular systems. In particular,
the module Xleap is used to add the missing hydrogens to the starting X-ray
structure, to center the protein in a box of water solution (option solvate-

box ), to add the counterions to the water (option addIons) and finally to
construct starting from the coordinates of the system the Amber force field

which is then used in the Amber module Sander to perform classic molecular
dynamics simulations. the Amber package to equilibrate the protein before
starting the QM/MM calculations. The Amber force field 2003 is used to
parameterize the MM part [44,45]. In all MM simulations, a cutoff of 8 Å is
used for the non-bonded van der Walls interactions.

The CPMD [46] code is used to perform the QM/MM calculation within
density functional theory to describe the QM system while the Gromos [47]
force field is used for the MM part. The QM/MM interface was developed by
Röthlisberger and coworkers [48,49], and, since it makes use of the MM Gro-
mos libraries [47], it is necessary to convert the force field from the Amber
to the Gromos format. The CPMD code is a plane-wave/pseudopotential
code particularly designed for ab-initio molecular dynamics. The finite QM
part is treated within a supercell approach using a sufficiently large peri-
odic cell to avoid interactions between neighboring images. Moreover, we
employ the isolated system module in CPMD which allows studying an iso-
lated molecule or complex within periodic boundary conditions. We perform
all calculations using a 70 Ry plane-wave cutoff and the Troullier-Martins
pseudopotentials [50]. The Poisson equations are solved with the Tucker-
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man’s method [51]. All ground state calculations are carried out using the
PBE [52] functional.

The Gaussian03 [53] code is a quantum-chemistry code we use to per-
form ground state DFT and linear-response TDDFT calculations. It uses
Gaussian basis sets, and a wide range of exchange-correlation functionals is
available. We employ this code to perform geometry optimization of sev-
eral molecular models of the chromophore in vacuum and to compute their
TDDFT spectra. We also calculate the TDDFT spectra in the presence of the
protein environment using the geometries obtained in the QM/MM approach
with the CPMD code. The electrostatic effect of the protein environment is
taken into account by using point charges with the coordinates obtained in
the QM/MM calculation and the values of the charges as in the Amber force
field. It is not possible to screen the charges with Gaussian03 but, as the
basis is Gaussian, we do not expect significant spill-out problems as for a
plane-wave basis.

The Amsterdam Density Functional ADF [54] code is a software package
for first-principles electronic structure DFT calculations, using Slater func-
tions for the construction of the orbitals. We employ this code to perform
some TDDFT calculations with the SAOP [55] and LB94 [56] exchange-
correlation potentials.

The GAMESS [57] code is a general ab-initio quantum chemistry pack-
age which we mostly use to generate the starting QMC wave functions either
through a DFT or a SA-CASSCF calculation. This code employs Gaussian
basis sets. The electrostatic effect of the protein environment can be intro-
duced through the use of screened point charges described by the potential

v(r) =
q

r

(

1 − A e−Br
)

(2.77)

where q is the value of the charge, and A and B are free parameters. We
choose A = 1 to remove the divergence at the origin, and adjust the value
of the B to reproduce the CPMD potential outside the maximum. We find
that the choice B = 1/(1.0828× rc)

2 where rc is the CPMD core radius gives
similar potentials in the valence region.

Finally, the code CHAMP is used for all the quantum Monte Carlo
calculations. It can perform VMC and DMC calculations, and optimize the
wave function parameters by energy minimization.
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Chapter 3

Chromophore in vacuum

3.1 Chromophore models of GFP

Before studying the neutral (protonated) and anionic (deprotonated) forms
of GFP within the protein environment, it is important to understand the
performance of our theoretical techniques on simpler models. We therefore
begin our investigation of GFP with the computation of the electronic ex-
citations of model chromophores in the gas phase since the lower level of
complexity of these systems allow us to push the limits of our theoretical
tools and better understand their limitations. Moreover, absorption exper-
iments and calculations using highly-correlated techniques are available for
several chromophore models in the gas phase [58–60].

The chromophore models studied in this Chapter are depicted in Fig. 3.1,
and can be divided in three groups: The anionic (deprotonated) chromophores
(A, B, C), the neutral (protonated) chromophores (D, E, F), and a positively
charged chromophore (G). For both the anionic and the neutral case, three
models of increasing size are constructed. The geometries of all models are
optimized within all-electron DFT with a cc-pVTZ basis and two different
functionals, BLYP and B3LYP, using the Gaussian03 code [53]. We always
refer to Fig. 3.1 and the its labels when describing the models below.

Anionic models

The anionic minimal model (A) is the smallest possible representation of the
GFP chromophore with the additional nice feature to posses Cs symmetry,
which significantly accelerates most quantum chemical computations. Given
its favorable size and symmetry, it is a simple starting point to investigate
the performance of quantum Monte Carlo in describing GFP. Even though
no experimental characterization has been done on this system, correlated
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Figure 3.1: Gas-phase chromophore models: The three anionic chromophores
in the minimal (A), methyl-terminated (B), and protein-cut (C) models; the
three neutral chromophore in the minimal (D), methyl-terminated (E), and
protein-cut (F) models; the positively charged (neutral+) model (G).
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CASPT2 calculations [60] are available to which we can compare.
The anionic methyl-terminated model (B) is only slightly larger than the

minimal model (A). Since it only differs in the termination with the two hy-
drogens substituted with methyl groups, we expect that the electronic prop-
erties of models (A) and (B) are rather similar. Even though model (B) has
the disadvantage that Cs symmetry is lost and the system has now no symme-
try, we construct this chromophore since it was synthesized and investigated
in the gas-phase spectroscopic experiments described above. Therefore, for
model (B), we can directly compare the calculated excitation energies with
experiments, which place its absorption maximum at 2.59 eV [58].

The largest anionic chromophore (C) is the protein-cut model with a
total of 39 (24 C, N and O) atoms. It corresponds to the chromophore
we employ as the QM part of the QM/MM simulations when the protein
environment is included for a realistic study of wild-type GFP. The geometry
of model (C) is optimized in vacuum and a comparison of the structural and
electronic properties of this model with the one in the protein will allow us to
understand the geometrical and electrostatic changes induced by the protein
environment.

Neutral and neutral+ models

For the neutral chromophore, we also construct three models of increasing
size, which are analogous to the anionic case, that is the minimal (D), methyl-
terminated (E) and protein-cut (F) models. To date, no highly-correlated
quantum chemical calculations nor experiments are available for these neu-
tral chromophores in the gas phase. Nevertheless, the study of the neutral
chromophores allow us to analyze the changes in electronic properties with
respect to the anionic gas-phase chromophores as well as as a function of sys-
tem size. Moreover, we can investigate the geometrical and electronic impact
of the protein environment on the large model (F).

The experimental technique employed for the study of the anionic gas-
phase chromophore (B) makes use of an electrostatic ion storage ring and
can therefore be applied only to negatively or positively charged molecules.
Therefore, not being able to study neutral chromophores, the same experi-
mental group synthesized a positively charged chromophore (G) by attaching
to the methyl-terminated model (E) a positively charged NH+

3 group [59].
We refer to model (G) as the neutral+ chromophore. The relevance of this
chromophore lies in the claim by the same experimental group that the pos-
itively charged group is just a spectator, and that the absorption spectrum
of chromophore (G) should therefore be very close to the one of the neutral
chromophore. In the photodestruction spectroscopy experiment, the absorp-
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tion maximum of model (G) is identified at 2.99 eV and an excitation of 3.11
eV is attributed to the neutral chromophore by correcting the experimental
value by the TDDFT/B3LYP difference between the vertical excitation of
the (G) and the (E) models. We note that, in the neutral+ chromophore, the
positively charged group is hydrogen bonded to the oxygen of the imidazole
ring.

3.2 Structural analysis of the models

Figure 3.2: Atom numbering used for the chromophore of GFP.The benzene
ring is essentially symmetric respect to the C2-C5 axis.

The structural features of the chromophore play a fundamental role in
determining its excited state properties, and it is therefore important to ac-
curately describe the geometry and how this is affected by the charge state of
the chromophore and further modified when the chromophore is embedded
in the protein environment. In particular, the degree of bond-length alterna-
tion in the conjugate chain running through the chromophore is correlated
to the size of the bright π → π∗ transition, with a stronger bond-length al-
ternation yielding a larger excitation energy. For π-conjugate linear chains,
this correspondence between gap and bond-length alternation is well known
as, in going from shorter to longer chains, the energy gap decreases while the
double bonds lengthen and the single bonds shorten. The GFP chromophore
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is also a π-conjugated system even though the presence of the rings makes it
a more complicated system than a linear oligomer.
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Figure 3.3: Bond lengths of the minimal anionic (A) and neutral (D) models
of the GFP chromophore as obtained in a DFT/cc-pVTZ geometry opti-
mization with the BLYP, B3LYP and LDA functionals. The results from a
CASSCF/6-31G∗ calculation [60] are also shown. The bonds of the central
carbon bridge are C5 C6 and C6 C7.

The structures of the chromophores are constructed by relaxing them in
the ground state using DFT and various exchange-correlation functionals.
Even though all models have been generated with at least the BLYP and
B3LYP functionals, we only discuss in detail how the functional influences
the geometry of the chromophore for the minimal anionic (A) and neutral
(D) models as the conclusions apply equally well to all other models. The
bond lengths along the chromophore of the minimal models computed with
various functionals are shown in Fig. 3.3. For the atom labelling, we refer the
reader to Fig. 3.2, where the heavy atoms of the chromophore are numbered
starting from the phenolic oxygen along the top ridge of the phenol, through
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the bridge and around the imidazole ring.
For both the anionic (A) and the neutral (D) minimal model, the geome-

tries obtained with the BLYP and the B3LYP functional are very similar,
with the use of B3LYP shortening all bonds by a very small amount (about
0.01 Å). The structural parameters obtained using the PBE functional which
we employ to generate the QM/MM protein models of GFP are not shown as
they are practically indistinguishable from the BLYP bond lengths with an
average agreement of 0.001 Å. For the anionic model (A), we also compute
the bond lengths with the LDA functional as the local density instead of a
generalized gradient approximation functional is used in the QM/MM cal-
culations by Marques et al. [12] which we extensively discuss in Chapter 4.
As expected, we find that LDA overbinds with respect to B3LYP but the
difference is not very large with an average deviation of 0.01 Å.

In summary, all exchange-correlation DFT functionals yield equivalent
geometries for both the minimal anionic (A) and neutral (D) chromophores,
and a similar finding holds for all other models depicted in Fig. 3.1. No
reference structure exists for the neutral chromophores in the gas phase but,
for the minimal anionic (A) model, we can compare our DFT geometries to
the correlated CASSCF/6-31G∗ calculations by Martin et al. [60]. As shown
in Fig. 3.3, we find good agreement between the CASSCF and the DFT
structures and, in particular, the B3LYP bond lengths are quite close to the
CASSCF values with a maximum deviation of only 0.02 Å. Since there is no
evidence that anionic molecules are better described by DFT than neutral
ones, we can safely assume that the accuracy of DFT for all models of GFP is
well within the spread of the different functionals we tested. Therefore, when
we compare excitation spectra for gas-phase models, the eventual differences
one observes should be attributed to the theoretical approaches employed
to compute the excitation energy rather then to the approach followed to
optimize the geometry.

Figure 3.4: Scheme of the two resonant forms of the anionic chromophore:
Benzenoid (left) and quinonoid (right).
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While the main structural features are largely independent on the func-
tional, the most evident difference is between the bond lengths of the neutral
and the anionic model. To better understand the geometrical changes with
the charge state of the chromophore, we show the two resonant forms of
the anionic chromophore in Fig. 3.4. In the benzenoid form, the negative
charge is localized on the phenolic oxygen and this bond structure is there-
fore also characteristic of the neutral chromophore. Upon deprotonation, the
quinonoid form is also accessible where the negative charge has migrated to
the imidazole oxygen. The change in bond length alternation and its reduc-
tion in the anionic chromophore is a measure of the mixing between the two
forms. As we will see in Chapter 4, the protein environment can further tune
the mixing by driving the resonance towards the benzenoid or the quinonoid
form and therefore changing the bond structure of the chromophore.

The structural changes of Fig. 3.3 between the minimal neutral (D) to
the anionic (A) model can now be more easily understood in terms of the two
resonant forms. The neutral model is characterized by the aromaticity of the
phenolic ring (with rather similar bond lengths between all carbon atoms of
the ring) and by a double-single bond-length alternation at the carbon bridge
given by the bonds C5 C6 and C6 C7. In the anionic model, the hydroxyl
group is deprotonated and the oxygen-carbon bond, O1 C2, shortens by
about 0.1 Å as compared to the neutral model, loosing its single-bond char-
acter. As a consequence, the aromaticity of the phenolic ring is reduced,
yielding a quinoid structure of the ring (double bonds between C2 C3 and
the opposite carbon bond). The degree of bond alternation in the central
carbon bridge is also decreased in the anionic chromophore, yielding a sig-
nificantly stronger bond C5 C6 than in the neutral model: The two central
bonds, C5 C6 and C6 C7 differ by about 0.08 Å in the neutral model
and only 0.02 Å in the anionic chromophore. Beyond the central bridge, the
deprotonation of the phenolic oxygen does not have as large an effect, and
the two most significant changes are a reduction by 0.03 Å of the single bond
C7 C8 and a lengthening by 0.02 Å of the C8 O12 bond.

Finally, we note that the main structural changes between the anionic and
neutral chromophores we describe for the minimal (A) and (D) models are
also present when the larger models of the chromophore are considered. In
Table 3.1, we list the main bond lengths optimized within DFT/BLYP for the
anionic and neutral chromophores of the minimal (A), methyl-terminated (B)
and protein-cut (C) models and the corresponding (D, E, F) neutral models.
Both in the anionic and the neutral case, the bond lengths of the three models
are practically identical, so the addition of the longer tails in the protein-cut
chromophore has no effect on the relevant geometrical parameters of the
chromophore.
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Anionic model Neutral model
A B C D E F

Bond length (Å)

O1 C2 1.26 1.26 1.26 1.37 1.38 1.37
C2 C3 1.46 1.46 1.47 1.40 1.40 1.41
C3 C4 1.37 1.37 1.37 1.39 1.39 1.38
C4 C5 1.44 1.44 1.44 1.42 1.42 1.43
C5 C6 1.41 1.41 1.41 1.45 1.45 1.45
C6 C7 1.39 1.39 1.40 1.37 1.37 1.38
C7 C8 1.47 1.46 1.46 1.50 1.49 1.50
C8 N9 1.43 1.43 1.44 1.42 1.42 1.43
N9 C10 1.39 1.40 1.40 1.38 1.40 1.39
C10 N11 1.31 1.31 1.32 1.30 1.31 1.33
N11 C7 1.41 1.41 1.41 1.41 1.41 1.41
C8 O12 1.24 1.24 1.24 1.22 1.23 1.23

Dihedral angle (◦)

D(C4C5C6C7) 180.0 180.0 178.3 180.0 180.0 179.5

Table 3.1: DFT/BLYP structural parameters of the minimal (A), methyl-
terminated (B), and protein-cut (C) anionic models and the corresponding
(D, E, F) neutral models. We list the most representative bond lengths and
one dihedral angle. See Fig. 3.2 for the labeling of the atoms.

3.3 TDDFT excited states

We compute the low-lying TDDFT vertical excitations of the various model
chromophores in the gas phase and locate the excitation with the largest
oscillator strength which corresponds to the maximum light absorption. We
compare these bright excitations to the available reference data, that is, to
photodistruction spectroscopy experiments for the anionic methyl-terminated
(B) [58] and the neutral+ (G) model [59], and to theoretical CASPT2 calcu-
lations for the anionic minimal (A) model [60]. These gas-phase calculations
will already give us a feeling of which performance we may expect from
TDDFT when the chromophores are embedded in the protein environment.

The all-electron linear-response TDDFT calculations are performed with
the BLYP and B3LYP functionals at the corresponding BLYP and B3LYP
ground state structures. We use the Gaussian03 code [53] and a cc-pVTZ
basis as for the ground state calculations. For all model chromophores, we
report the lowest two singlet excitations with their oscillator strength and
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character which allow us to distinguish bright from dark states, and identify
the electronic transition involved in the excitation. We also give two quanti-
ties which we use as indicators of the reliability of the TDDFT excitations,
that is, minus the Kohn-Sham energy of the highest occupied molecular or-
bitals (HOMO) which indicates the start of the DFT ionization continuum,
and the Kohn-Sham gap between the lowest unoccupied (LUMO) and the
highest occupied molecular orbitals.

Before presenting the TDDFT results, we briefly discuss what we should
expect for the excitations of the model chromophores in the gas phase.
First, the excitation energy should decrease when progressing to larger chro-
mophore sizes in the series (A, B, C) and (D, E, F) for the anionic and neutral
models, respectively. This can be easily understood based on the simple ar-
gument of how the level spacing for a particle in a box behaves as the box is
made larger. Moreover, we would expect the excitations of the anionic chro-
mophores to be lower than the ones of the corresponding neutral models due
to a combination of geometrical and electronic considerations. As discussed
in the previous Section, the degree of bond alternation in proximity of the
central carbon bridge is reduced in the anionic as compared to the neutral
models, so the excitation of the bright π → π∗ will be reduced. Moreover,
as the anionic state can be described as a mixing of the benzenoid or the
quinonoid forms, we expect also the excitation to be more delocalized and
therefore lower than the neutral case. We will now see whether our picture of
the behavior of the excitations is met in practice in the TDDFT calculations.

Anionic models

The TDDFT results for anionic minimal (A), methyl-terminated (B), and
protein-cut (C) models are summarized in Table 3.2. For all three models
and both exchange-correlation functionals, the excitation energy with the
largest oscillator strength has a dominant HOMO → LUMO character. As
the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular or-
bitals are rather similar for the three models and the two functionals, we only
plot them for the BLYP functional and the protein-cut model in Fig. 3.5. The
highest occupied orbital has π-bonding character on the two carbon bonds
of the central bridge while the lowest unoccupied orbital is a π-antibonding
orbital on both bonds, and some degree of charge transfer can be observed
across the bridge from the phenolic to the imidazole ring.

As expected, the electronic properties of the minimal (A) and the methyl-
terminated (B) models are rather similar. The addition of the methyl groups
only lowers the BLYP and B3LYP excitation energies by 0.08 and 0.07 eV,
respectively, while preserving the same character of the excitation and the

53



3.3. TDDFT excited states 3. Chromophore in vacuum

oscillator strength. In the protein-cut (C) model, the BLYP and B3LYP
functionals behave instead rather differently as the BLYP excitation with
the largest oscillator strength is no longer the lowest state. However, if we
consider the bright excitation for both the BLYP and B3LYP functionals,
we find that the absorption maximum is further lowered by 0.03 and 0.05
eV with respect to the smaller methyl-terminated (B) model. Therefore, as
expected, the excitation energy decreases with increasing size of the model.

Figure 3.5: The DFT/BLYP orbitals for the anionic protein-cut (C) model
chromophore in the gas phase. An isosurface of 0.025 is shown in red and an
isosurface of -0.025 in blue. We only show the orbitals which are involved in
the TDDFT/BLYP excitations.

We note that, as the model becomes larger, more orbitals are involved
in the description of the BLYP excited states while the character of the
lowest B3LYP excitation remains unchanged and predominantly HOMO →
LUMO. In particular, for the protein-cut (C) model, the lowest BLYP ex-
citation has HOMO → (LUMO+1) character while the excitation with the
largest oscillator strength has non negligible contributions from transitions
to the (LUMO+1) and (LUMO+3) orbitals, which are depicted in Fig. 3.5.
While the (LUMO+3) orbital is largely localized on the imidazole ring, the
(LUMO+1) orbital is confined in the far tail of the model. As we expect
equivalent electronic properties for a protein-cut chromophore obtained by
differently setting the QM/MM boundary to shorten this tail, it appears
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rather unphysical that the (LUMO+1) orbital would play such a relevant
role in the excited states of the chromophore.

We now compare the linear-response TDDFT/BLYP and B3LYP excita-
tion energies with the available reference data. For the methyl-terminated
(B) anionic model, experiments [58] place the absorption maximum at 2.59
eV, significantly lower than the excitations of 2.89 and 3.09 eV obtained with
the BLYP and B3LYP functionals, which therefore overestimate the exper-
iment by as much as 0.30 and 0.50 eV, respectively. Correlated CASPT2
calculations by Martin et al. [60] for the anionic minimal (A) model give a
vertical excitation energy of 2.67 eV which is in very good agreement with
experiment as we consider that the electronic properties of models (A) and
(B) must be rather similar. For the minimal (A) model, BLYP and B3LYP
yield instead a significantly higher excitation energy of 2.97 and 3.16 eV,
respectively. We discuss below the possible reasons of the apparent failure of
TDDFT in describing the excitation energies of the anionic chromophore in
the gas phase.

Neutral and neutral+ models

The TDDFT results for neutral minimal (D), methyl-terminated (E), and
protein-cut (F) models are summarized in Table 3.3. Similarly to the anionic
case, the B3LYP functional gives the lowest excitation as the one with the
largest oscillator strength and HOMO → LUMO character for all three mod-
els. When the BLYP functional is employed, this is still true for the smaller
models but not for the protein-cut (F) chromophore where the excitation
with the largest oscillator strength is the second one, and has a large HOMO
→ LUMO component but a dominant (HOMO-2) → LUMO transition.

We plot the orbitals which are involved in the BLYP excitations for the
protein-cut (F) model in Fig. 3.6. The highest occupied (HOMO) and lowest
unoccupied (LUMO) molecular orbitals are rather similar for the three mod-
els and the two functionals. The HOMO orbital has π-anti-bonding/bonding
character on the first/second bond of the central carbon bridge while the situ-
tation is reversed in the LUMO where the sequence is instead π-bonding/anti-
bonding. The (HOMO-2) orbital which has dominant weight in the two
lowest BLYP excitations is localized in the upper tail of the chromophore.
Similarly to case of the BLYP excitations of the anionic protein-cut model,
it is rather unphysical that the (HOMO-2) → LUMO excitation is so rele-
vant as we could generate a different chromophore with equivalent electronic
properties but a shorter upper tail by placing a different QM/MM boundary.
This is likely an indication that the adiabatic TDDFT/BLYP description of
the largest model is encountering some problems.
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If we focus on the excitations with the largest oscillator strength for both
functionals, we see that the B3LYP excitation energies are always larger than
the BLYP ones by 0.3 eV, and that the excitation correctly decreases as the
size of the model increases as it was the case for the anionic chromophores.
We also note that the excitations of the neutral chromophores are always
larger than the ones of the corresponding anionic models by roughly 0.2-0.3
and 0.4 eV for the BLYP and the B3LYP functional, respectively.

Figure 3.6: The DFT/BLYP orbitals for the neutral protein-cut (C) model
chromophore in the gas phase. An isosurface of 0.025 is shown in red and an
isosurface of -0.025 in blue. We only show the orbitals which are involved in
the TDDFT/BLYP excitations.

In Table 3.4, we report the TDDFT excitations for the neutral+ (G)
model, which must be compared to the absorption maximum of 2.99 eV
measured in photodistruction spectroscopy experiments [59]. To estimate the
excitation of the methyl-terminated neutral (E) model, the same experimen-
tal group corrects the absorption maximum of the neutral+ (G) chromophore
by the difference between the theoretical TDDFT/B3LYP excitations of the
(G) and (E) models optimized at the MP2 level, and obtains an excitation
of 3.11 eV for the (E) model. We prefer to avoid this procedure as we obtain
for instance different TDDFT corrections of 0.08 and 0.25 eV, when using
the BLYP and the B3LYP functional with the corresponding DFT geome-
tries. We instead focus on the direct comparison with the photodistruction

56



3. Chromophore in vacuum 3.3. TDDFT excited states

spectroscopy experiments for the neutral+ (G) model and the available exper-
imental data obtained with the same spectroscopy technique for the anionic
methyl-terminated (B) model [58]. For the neutral+ (G) model, we find that
TDDFT/BLYP gives an excitation of 3.02 eV in very close agreement with
experiments while the B3LYP excitation of 3.21 eV overestimates experi-
ments by 0.22 eV. The experimental shift of 0.4 eV between the absorption
maximum of the anionic methyl-terminated (B) model (2.59 eV) and the
neutral+ (G) model (2.99 eV) is not reproduced by the TDDFT calculations.
The BLYP and B3LYP shifts are equal to 0.13 and 0.12 eV, respectively, and
therefore significantly smaller than the experimental value.

3.3.1 Assessing the performance of TDDFT

Before discussing the mixed performance of TDDFT when compared to the
reference data for the anionic (A and B) and the neutral+ (G) models, we
analyze some general features observed in the excitations of the gas-phase
chromophores which will also be present when the chromophore is embedded
in the protein environment. For the excited states of the smaller models, pure
(BLYP) and hybrid (B3LYP) functionals yield excited states characterized
by the same type of electronic transitions. For the larger models, BLYP mix
several transitions in contrast to the hybrid B3LYP functional which pre-
serves a dominant single-excitation character. For all excited states, B3LYP
yields higher excitation energies than the corresponding pure functional.

That B3LYP yields higher TDDFT excitation energies than BLYP can
be in part understood from the fact that TDDFT applies a correction to the
single-particle Kohn-Sham excitations given by eigenvalue differences. The
Kohn-Sham eigenvalues behave rather differently if the functional contains
a fraction of exchange as in B3LYP. The occupied orbitals will be lower as
the hybrid functional is partially self-interaction corrected and the exchange-
correlation potential no longer decays exponentially. On the other hand,
the unoccupied orbitals will be higher as the virtual orbitals see a different
number of electrons than the occupied ones due to the presence of Hartree-
Fock exchange in the functional. Consequently, the Kohn-Sham excitations
will be higher for the B3LYP than for the BLYP functional, as can be seen
by inspecting for instance the B3LYP and BLYP HOMO-LUMO gaps in
Tables 3.2, 3.3 and 3.4.

As TDDFT corrects the Kohn-Sham eigenvalue differences, it is impor-
tant to try to establish, if possible, when these corrections are meaningful.
Due to the spatial locality of the approximate adiabatic exchange-correlation
kernel fxc, the TDDFT correction to the Kohn-Sham excitations would van-
ish for a pure functional if the dominant transition is between non-overlapping
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occupied and virtual orbitals. Therefore, if the TDDFT/BLYP excitation re-
duces to the Kohn-Sham eigenvalue difference we are in the presence of an
excitation characterized by charge transfer which is poorly described by adia-
batic TDDFT. When a hybrid functional is employed, the kernel is non-local
in space and the TDDFT correction may not necessarily vanish. Therefore,
as most excited states have a dominant HOMO → LUMO transition, we al-
ways report in the Tables the HOMO-LUMO gap since a comparison of the
TDDFT/BLYP excitation with the corresponding gap reveals if the TDDFT
excitation has charge transfer character and is consequently unreliable.

Another important indicator of the reliability of the TDDFT excitations is
minus the eigenvalue of the HOMO orbital (−ǫHOMO) as it locates the start
of the TDDFT continuum and represents the ionization threshold. This
threshold is usually underestimated in DFT as the Kohn-Sham potential
for pure functionals decays exponentially and therefore too quickly. The
use of hybrid functionals corrects to some degree this problem as they are
partially self-interaction corrected. If the TDDFT excitation lies above the
DFT ionization threshold, its value cannot in general be trusted.

We can now discuss the TDDFT performance for the anionic models. In
Table 3.2, we observe that, for all models, the TDDFT/BLYP excitation
with the largest oscillator strengths has HOMO → LUMO character and its
energy lies well above the HOMO-LUMO gap. Therefore, this indicates that,
for all models, the TDDFT/BLYP corrections to the Kohn-Sham excitations
are not negligible and the brightest excited states are not charge-transfer
excitations. For the protein-cut anion (C) model, the lowest BLYP excitation
is predominantly a HOMO → (LUMO+1) transition and its energy of 2.65 eV
closely agrees with the HOMO-(LUMO+1) gap of 2.68 eV. We had already
noted the unphysical relevance of such a charge-transfer excitation as the
(LUMO+1) orbital is localized in the far tails of the chromophore.

While charge transfer does not appear to pose a severe problem for the
anionic chromophores, we note that the excitation energies of all models and
for both functionals are significantly above the DFT ionization threshold.
The use of B3LYP raises the ionization threshold as compared to BLYP but
not sufficiently to bring it above the lowest excitation energy. As the chro-
mophores are anionic, one may wonder whether the lowest excited state may
actually be a quasi-stable excited state in the continuum which autoionizes
after absorption, and therefore really lies above the ionization threshold. To
investigate this point, we perform TDDFT calculations for the minimal (A)
and the protein-cut (C) anionic models with the LB94 potential and the sta-
tistical average of orbital potential (SAOP) approach, which both yield the
correct Coulombic tail (−1/r) in the exchange-correlation potential.

The TDDFT/LB94 and SAOP results obtained with the ADF code and
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a ETpVQZ basis are reported in Table 3.5 for the ground state DFT/BLYP
geometries. The use of an asymptotically correct exchange-correlation poten-
tial raises the ionization threshold well above the relevant excitation energy.
Therefore, the BLYP/B3LYP excited states are not quasi-bound states in the
continuum but the BLYP/B3LYP ionization threshold is simply underesti-
mated. The TDDFT/LB94 and SAOP excitation energies for the minimal
(A) model differ only by -0.08 and 0.02 eV from the BLYP excitation, re-
spectively. For the protein-cut (C) anionic chromophore, the TDDFT/SAOP
excitations are very similar to the BYLP ones with the lowest excitation
having HOMO → (LUMO+1) character and the (LUMO+1) orbital being
localized in the tails of the chromophore. The second SAOP excitation with
the largest oscillator strength is only 0.07 eV higher than the brightest BLYP
excitation. Therefore, even though the use of an asymptotically corrected po-
tential has removed the issue of the underestimation of the DFT ionization
threshold, the picture remains practically unchanged with respect to the use
of the BLYP functional.

For the excitations of the neutral chromophores of Table 3.3, the under-
estimation of the DFT ionization threshold does not pose a problem as, for
all models and both functionals, the DFT ionization threshold is above the
excitation with the largest oscillator strength. As far as the charge-transfer
character of the excitations, the behavior of the neutral minimal (D) and
methyl-terminated (E) models is very similar to their anionic counterparts:
The TDDFT/BLYP excitations have predominantly HOMO → LUMO char-
acter and the energy is significantly higher than the HOMO-LUMO gap. On
the other hand, for the protein-cut (F) model, the lowest excitation has
(HOMO-2) → LUMO character and the BLYP excitation energy of 2.97 eV
is very close to the (HOMO-2)-LUMO gap of 2.99 eV indicating the charge-
transfer character of the excitation. For this model, the second excitation
has the largest oscillator strength but its energy is rather close to the low-
est state and the predominant transition is still (HOMO-2) → LUMO with
the (HOMO-2) orbital being localized on one the tails of the chromophores.
This may point at some difficulties of adiabatic TDDFT in describing the
excitations of the larger neutral chromophore.

In summary, it is not clear why TDDFT/BLYP and B3LYP should per-
form poorly in the description of the smaller anionic minimal (A) and methyl-
terminated (B) models as compared to experimental and CASPT2 reference
data. The excitations of these smaller models do not appear to be charac-
terized by charge transfer and curing the underestimation of the ionization
threshold with the use of asymptotically corrected functionals leaves the exci-
tation energy practically unvaried. Therefore, it is not evident why TDDFT
should be superior in describing the excitations of the corresponding neutral
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(D) and (F) models or the neutral+ (F) chromophore. We note that, for
the larger protein-cut models, the presence of significant contributions from
charge-transfer transitions also in the excitation with the largest oscillator
strength raises some doubts about the reliability of the TDDFT excitations,
in particular for the neutral protein-cut (F) model.
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Table 3.2: TDDFT/BLYP and B3LYP excitation energies (eV) and oscillator
strengths (in parenthesis) for the minimal (A), methyl-terminated (B), and
protein-cut (C) anionic models of the GFP chromophore, computed using a
cc-pVTZ basis. DFT/BLYP and B3LYP geometries are consistently used.
The dominant electronic transitions and their contributions in parenthesis (if
> 0.1) are also listed. The lowest two singlet excitations are given together
with minus the Kohn-Sham energy of the highest occupied molecular orbitals
(−ǫHOMO) and the Kohn-Sham gap between the lowest unoccupied and the
highest occupied molecular orbitals (∆ǫHL). The experimental absorption
maximum for the methyl-terminated (B) chromophore is 2.59 eV [58] while
CASPT2 calculations for the minimal (A) model give a vertical excitation of
2.67 eV [60].

Model minimal methyl-terminated protein-cut

BLYP functional

S0 → S1 2.97(0.75) 2.89(0.77) 2.65(0.17)

H→L(0.54) H→L(0.54) H→L+1(0.62)
H→L+2(0.13) H→L(0.29)
H→L+3(0.11)

S0 → S2 3.25(0.00) 3.60(<0.01) 2.86(0.62)

H-2→L(0.70) H-2→L(0.59) H→L(0.45)
H→L+5(0.18) H→L+1(0.32)
H→L+3(0.17) H→L+3(0.18)

∆ǫHL 1.82 1.79 1.77

−ǫHOMO 0.59 0.53 1.29

B3LYP functional

S0 → S1 3.16(0.88) 3.09(0.92) 3.04(0.96)

H→L(0.57) H→L(0.58) H→L(0.58)

S0 → S2 4.01(0.00) 4.24(<0.01) 4.02(0.02)

H-3→L(0.70) H-2→L(0.61) H→L+2(0.70)
H→L+6(0.14)
H→L+3(0.14)

∆ǫHL 2.96 2.93 2.91

−ǫHOMO 1.29 1.22 1.98
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Table 3.3: TDDFT/BLYP and B3LYP excitation energies (eV) and oscillator
strengths (in parenthesis) for the minimal (D), methyl-terminated (E), and
protein-cut (F) neutral models of the GFP chromophore, computed using a
cc-pVTZ basis. DFT/BLYP and B3LYP geometries are consistently used.
See caption in Table 3.2 for further explanations.

Model minimal methyl-terminated protein-cut

BLYP functional

S0 → S1 3.22(0.59) 3.10(0.52) 2.97(0.20)

H→L(0.57) H→L(0.57) H-2→L(0.51)
H-5→L(0.13) H-5→L(0.14) H→L(0.36)

H-2→L(0.13) H-1→L(0.22)

S0 → S2 3.66(0.01) 3.56(0.13) 3.10(0.34)

H-2→L(0.57) H-2→L(0.63) H-2→L(0.44)
H-3→L(0.27) H→L+2(0.19) H→L(0.39)
H→L+1(0.19) H-4→L(0.22)
H→L+2(0.18)

∆ǫHL 2.23 2.19 2.13

−ǫHOMO 4.98 4.76 4.87

B3LYP functional

S0 → S1 3.54(0.68) 3.46(0.66) 3.42(0.71)

H→L(0.61) H→L(0.60) H→L(0.60)

S0 → S2 3.56(<0.01) 3.66(<0.01) 3.58(<0.01)

H-1→L(0.69) H-1→L(0.69) H-1→L(0.66)
H-3→L(0.21)

∆ǫHL 3.51 3.55 3.49

−ǫHOMO 5.85 5.62 5.78
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Table 3.4: TDDFT/BLYP and B3LYP excitation energies (eV) and oscilla-
tor strengths (in parenthesis) for the neutral+ (G) model of the GFP chro-
mophore, computed using a cc-pVTZ basis. DFT/B3LYP ground state ge-
ometries are always used. See caption in Table 3.2 for further explanations.

BLYP B3LYP

S0 → S1 3.02(0.73) 3.21(0.86)

H→L(0.56) H→L(0.60)
H-1→L(0.10)

S0 → S2 3.26(<0.01) 3.73(0.02)

H-3→L(0.50) H-1→L(0.67)
H-1→L(0.46) H→L+2(0.13)
H-2→L(0.11)

∆ǫHL 2.01 3.19

−ǫHOMO 7.80 8.63

Table 3.5: TDDFT/LB94 and SAOP excitation energies (eV) and oscilla-
tor strengths (in parenthesis) for the anionic minimal (A) and protein-cut
(C) models computed using a ET-pVQZ basis and the BLYP ground state
geometries. See caption in Table 3.2 for further explanations.

minimal protein-cut
LB94 SAOP SAOP

S0 → S1 2.89(0.75) 2.99(0.79) 2.75(0.29)

H→L(0.95) H→L(0.95) H→L+1(0.67)
H→L(0.32)

S0 → S2 2.93(0.62)

H→L(0.60)
H→L+1(0.32)

∆ǫHL 1.73 1.86 1.83

−ǫHOMO 6.31 5.10 5.85
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3.4 QMC excitation energies

The use of QMC methods in combination with a careful construction of the
many-body trial wave function has proven successful in describing the exci-
tations of small prototypical photoactive molecules in the gas phase [61–64].
Here, we begin our exploration of the applicability of quantum Monte Carlo to
the study of excitations in realistic biosystems, by computing the QMC ver-
tical excitations of the model chromophores of GFP in the gas phase. For the
smaller anionic minimal (A) model, we will also perform a thourough inves-
tigation of the possible limitations of QMC calculations for excited states. In
particular, the dependence of the excitation energy on the trial wave function
will be analyzed by optimizing several thousands parameters in excited-state
trial wave functions of increasing complexity, using a robust and efficient
optimization method we have recently developed [65].

For the QMC calculations in the gas phase, we focus on the chromophores
which are relevant when comparing to reference experimental or CASPT2
data, that is, the anionic minimal (A) and methyl-terminated (B), the neu-
tral minimal (D), and the neutral+ (G) models. We employ the ground
state geometries optimized within DFT/B3LYP for all models expect for the
anionic minimal (A) model where, for historical reasons, we have used the
DFT/BLYP ground state geometry. In quantum Monte Carlo, we compute
the vertical π → π∗ excitations as the difference between the total energies
of the ground and excited states, which we obtain in a three step procedure.
First, a conventional state-average (SA) complete active space (CAS) self-
consistent field (SCF) calculation is performed. The resultant SA-CASSCF
wave functions are then multiplied by a Jastrow factor to include dynami-
cal correlation, and partially or fully reoptimized for the ground and excited
states. Finally, the Jastrow-Slater wave functions are used in a variational
Monte Carlo (VMC) calculation, and the VMC results are further improved
via diffusion Monte Carlo (DMC).

The trial Jastrow-Slater wave functions

We briefly remind the reader about the many-body wave functions we use
since they are the key ingredient which determines the quality of our QMC
calculations, and are here chosen of the Jastrow-Slater type, with the partic-
ular form:

ΨVMC
I = ΨCAS

I

∏

A,i,j

J (rij, riA, rjA) , (3.1)

where I labels the state of interest, rij denotes the distance between electrons
i and j, and riA the distance of electron i from nucleus A. For most calcula-
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tions, we use a Jastrow factor J which correlates pairs of electrons and each
electron separately with a nucleus, and employ different Jastrow factors to
describe the correlation with different atom types. We also investigate the
effect of including electron-electron-nucleus correlation terms in the Jastrow
factor. We refer the reader to Section 2.2.3 for further information on the
specific form of the Jastrow factor.

The determinantal component consists of a complete active space (CAS)
expansion which includes all possible space- and spin-adapted configuration
state functions (CSF) obtained by placing n electrons in the active space
of m orbitals, which is known as a CASSCF(n,m) wave function. Since the
relevant excited state of all our models has the same symmetry as the ground
state, the ground and excited-state wave functions are obtained in a state
average (SA) CASSCF calculation, so the orbitals minimize the weighted
average of the energies of the states of interest and the expansion coefficients
are determined to preserve their orthogonality as explained in Section 2.2.1.
Therefore, the wave functions of the different states share the same Jastrow
factor and the same orbitals, but have different linear expansion coefficients
on the CSFs. We note that, for the largest CASSCF wave functions, we may
only keep the CSFs whose coefficient is above a chosen threshold. In this
case, the threshold is separately applied to the ground- and the excited-state
determinantal expansion, and the union of the surviving CSFs is then kept
in both wave functions.

For the minimal anionic (A) model, we optimize all parameters in the
Jastrow and the determinantal component of the wave function by energy
minimization. Since the optimal orbitals and expansion coefficients in ΨCAS

I

may differ from the CASSCF values obtained in the absence of the Jas-
trow factor J , it is important to investigate the impact on the excitation
energies when we reoptimize the determinantal parameters in the presence
of the Jastrow component. If the wave function were the lowest state of a
given symmetry, we could simply follow the energy-minimization approach
of Ref. [66]. However, since the excited state in our models is not the lowest
in its symmetry, we obtain both the Jastrow and orbitals parameters which
minimize the average energy over the state of interest and the lower states,
while the linear coefficients in the CSF expansion ensure that orthogonality
is preserved among the states [65] as described in Section 2.2.3. For the other
chromophore models studied in QMC, we either optimize a subset of param-
eters as the Jastrow factor and the linear coefficients, or simply optimize the
Jastrow parameters in energy minimization for the ground state, and use the
same Jastrow factor for the excited state calculations with an unoptimized
SA-CASSCF determinantal component.

The trial wave functions of both states are then used in two separate
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diffusion Monte Carlo (DMC) calculations, which produce the best energy
within the fixed-node approximation, that is, the lowest-energy state with
the same zeros (nodes) as the trial wave function.

All QMC calculations are performed with scalar-relativistic energy-consis-
tent Hartree-Fock pseudopotentials specifically constructed for use in QMC,
and with the corresponding Gaussian basis sets [67]. For most calculations,
we employ a cc-pVDZ basis but we explore the effect of augmenting the basis
with diffuse functions [68]. For this purpose, we generate an augmented
cc-pVDZ basis (aug-cc-pVDZ) by adding one s and one p function with
exponents 0.0469 and 0.04041 for carbon, 0.07896 and 0.06856 for oxygen,
and 0.06124 and 0.05611 for nitrogen, respectively, and one s function with
exponent 0.02974 for hydrogen.

3.4.1 The anionic minimal model: A case study

The anionic minimal (A) model represents a perfect playground to under-
stand what the correct ingredients for our QMC calculations are. This model
has the smallest number of atoms, so the calculations are faster, and has Cs

symmetry which reduces the number of parameters in the determinantal
component by roughly a factor of two. This reduction is convenient if we
want to reoptimize the parameters of the SA-CASSCF wave function after
including the Jastrow factor, and also because it is easier to converge very
large CASSCF calculation with the quantum chemistry code GAMESS. In
addition to these computational advantages, it is important to understand
the anionic minimal (A) model which appears to be incorrectly described by
adiabatic linear-response TDDFT (see Tables 3.2 and 3.5).

The determinantal CASSCF component

The first step in the generation of the many-body trial wave function is the
construction of the SA-CASSCF determinantal component. Therefore, we
want to explore the dependence of the excitation energy on the dimensions
of the active space of the CAS wave function, and construct CASSCF(n,n)
expansions of n electrons distributed over n orbitals with increasing values
of n. The active space is build over the π/π∗ orbitals (A′′ symmetry) as the
excitation of interest has π → π∗ character and these orbitals are expected
to be most relevant in describing the excitation. As 8 π orbitals are doubly
occupied at the Hartree-Fock level, the maximum number of electrons in the
active space can be n = 16.

In Table 3.6, we show the SA-CASSCF(n,n) excitation energies as a func-
tion of the dimension n of the active space for the anionic minimal (A) model
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Table 3.6: SA-CASSCF(n,n) lowest excitation energy in eV of the anionic
minimal (A) model as a function of the dimension n of the active space. We
employ three different Gaussian basis sets, that is, cc-pVDZ, cc-pVTZ and
aug-cc-pVDZ.

n cc-pVDZ cc-pVTZ aug-cc-pVDZ

2 4.10 4.05 3.92
4 3.57 3.53 3.38
6 3.47 3.44 3.21
8 3.17 3.12 3.02
10 3.25 3.21 3.20
12 3.21 – –
14 3.11 – –

in combination with different Gaussian basis sets. With the code GAMESS
which we use to perform all CASSCF calculations, we are able to converge
the SA-CASSCF(n,n) wave functions only up to n = 14 when the cc-pVDZ
basis is employed, while we only reach n = 10 for the larger basis sets. From
the calculations with the cc-pVDZ basis, we note that enlarging the active
space significantly reduces the CASSCF excitation, which reaches however
a roughly constant value beyond n = 8. As far as the dependence from the
basis set, we observe that increasing the valence character of the basis from
double (cc-pVDZ) to triple (cc-pVTZ) reduces the excitation energy by less
than 0.05 eV. The augmentation of the cc-pVDZ basis set with diffuse func-
tions has a slightly larger effect on the excitation energy which is lowered by
almost 0.2 eV. However, this gain appears to be lost if the active space is
enlarged to n = 10 where the difference between the excitation energies with
and without augmentation is only 0.05 eV. This finding is in agreement with
the all-electron CASSCF/6-31G∗ calculations by Martin et al. who observe a
reduction of 0.06 eV in the CASSCF(12,11) excitation energy by augmenting
the basis with diffuse functions. We note however that their CASSCF/6-31G∗

excitation of 3.68 eV is higher than our CASSCF(10,10) value, a difference
which is possibly due to their calculation being all-electron.

In summary, from the CASSCF study, we can draw several conclusions
which are useful in setting up the quantum Monte Carlo wave functions.
First, we do not need to increase the valence nature of the basis and using a
cc-pVDZ basis should be sufficient. It is however important to check the effect
of augmentation on the cc-pVDZ basis, which may be visible if one makes
use of small CAS expansions. As far as active space, we should investigate
the effect of increasing the dimensions of the CAS at least up to n = 8.
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The impact of the trial wave function on the QMC excitation

Having established the necessary ingredients in the determinantal component
of the wave function, we now want to determine where DMC places the exci-
tation of the anionic minimal (A) model, and perform several tests which are
summarized in Table 3.7. For these calculations, we employ different deter-
minantal components and an electron-nucleus and electron-electron Jastrow
factor, and optimize the Jastrow and determinantal parameters within en-
ergy minimization in a state average approach. For some of the wave function
forms, we also report the energy obtained without reoptimizing the CASSCF
component, and using for both states the optimal Jastrow factor determined
for the ground state by energy minimization.

Table 3.7: Variational (VMC) and diffusion Monte Carlo (DMC) excitation
energies in eV of the minimal anionic (A) model of the GFP chromophore.
The dimension of the CAS(n,n) determinantal component, the threshold on
the CSFs and the number of CSFs included in the wave function are listed.
Energies are given for the fully optimized (Optimized) wave function and for
the wave function (Unoptimized) where only the Jastrow factor is optimized
in correspondence of the ground state. The CASSCF excitation energy is
given in the last column. The basis set used is specified.

CSF Unoptimized Optimized

Thr Number VMC DMC VMC DMC CASSCF

cc-pVDZ basis

CAS(2,2) 0.00 3 3.38(4) 3.18(4) 3.42(4) 3.15(4) 4.10

CAS(4,4) 0.00 20 3.33(4) 3.29(5) 3.31(4) 3.25(4) 3.57

CAS(6,6) 0.10 7 – – 3.18(4) 3.11(7) 3.47

CAS(8,8) 0.10 9 – – 3.06(4) 3.03(5) 3.17

CAS(8,8) 0.07 15 – – 3.24(4) 3.10(5) 3.17

CAS(8,8) 0.05 25 – – 3.11(4) 3.04(5) 3.17

aug-cc-pVDZ basis

CAS(2,2) 0.00 3 3.24(4) 3.11(7) – – 3.92

We begin our analysis of the DMC results with the simplest CAS(2,2)
wave function which is constructed from the HOMO and the LUMO or-
bitals as this ansatz will also be employed in the preliminary QMC study
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of the chromophores embedded in the protein environment. Optimizing the
orbitals and linear coefficients of the CAS(2,2) determinantal component in
the presence of the Jastrow factor significantly lowers the absolute VMC
and DMC energies of the two states (not shown). However, the VMC and
DMC excitation energies for the optimized and unoptimized wave functions
are equivalent within statistical error. When moving to a larger CAS(4,4)
expansion, the situation is rather similar in the sense that optimization does
not significantly affect the VMC and DMC excitation energies. In compari-
son to the CAS(2,2) results, the DMC excitations energies of the CAS(4,4)
wave functions appear higher even though the difference with the CAS(2,2)
values is still within two standard deviations.

When going to larger CAS expansions, we only keep the CSFs with coef-
ficient above a chosen threshold as the wave function would otherwise not be
tractable within quantum Monte Carlo. The number of CSFs grows indeed
very rapidly with the size of the active space: For instance, the CAS(8,8) wave
function contains 1764 CSFs which become 19404 in a CAS(10,10) expan-
sion. Since each CSF consists of several determinants, the full determinantal
wave function can then be formed by several thousand determinants, which
would render the QMC calculation exceedingly slow. We note that the wave
function obtained by applying a threshold to a given CAS expansion does not
reduce to one of the smaller CAS wave functions as different excitations may
now be important and survive the threshold. Using a CAS(6,6) wave func-
tion with a rather large threshold of 0.1, we obtain a VMC excitation energy
which is 0.22(6) eV smaller than the CAS(2,2) value, and a DMC excitation
of 3.11(7) eV which is still compatible with both the CAS(2,2) and CAS(4,4)
results within statistical error. Finally, we optimize the Jastrow, orbital, and
linear parameters of a CAS(8,8) with a threshold of 0.1, and subsequently,
reduce the threshold to 0.07 and 0.05 reoptimizing only the linear expansion
coefficients. The VMC excitation does not behave monotonically as, by low-
ering the threshold to the intermediate 0.05 value, CSFs more relevant for
the ground than the excited state may have entered the wave function. How-
ever, within statistical error, the DMC excitation energies are always rather
comparable with each other falling in the range 3.03(5)-3.10(5) eV, and are
certainly lower by at least 0.1 eV than the DMC values obtained with the
optimized CAS(2,2) and CAS(4,4) wave functions.

In summary, it appears that the effect of increasing the CAS expansion
and therefore improving the many-body wave function is to reduce the differ-
ence between the VMC and the DMC excitation energies, with the VMC gap
approaching the DMC value from above. The DMC energy is very robust and
depends not too strongly on the size of the active space with the DMC gap
being lowered by only roughly 0.1-0.2 eV when going from a CAS(2,2) to a
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CAS(8,8) wave function. The effect on the DMC excitation of optimizing the
determinantal component in the presence of the Jastrow factor appears to be
rather small. Finally, we note that the use of the cc-pVDZ basis is sufficient
as augmenting the basis does not affect the DMC excitation energy of an
unoptimized CAS(2,2) wave function and we know from the CASSCF study
that the impact of diffuse functions would anyhow be washed out in going to
larger CAS expansions. Further tests on the effect of using electron-electron-
nucleus terms in the Jastrow factor, of performing a time-step extrapolation
of the DMC results, and of treating the non-local pseudopotentials beyond
the locality approximation do not change the present picture.

While this analysis reassures us about the robustness of our DMC ap-
proach in computing the brightest excitation energy of the minimal anionic
(A) model, we must note that the DMC excitation energy is in the range
3.0-3.2 eV and therefore in rather good agreement with the TDDFT values
of 2.97 and 3.16 eV obtained with the BLYP and B3LYP functionals, respec-
tively. Consequently, the DMC excitation energy is significantly higher than
the CASPT2/6-31G∗ value of 2.67 eV for the minimal anionic model [60], and
not in good agreement with the absorption maximum of 2.59 eV obtained
in photodistruction spectroscopy experiments for the closely related anionic
methyl-terminated (B) model [58].

3.4.2 The neutral and anionic models at comparison

To better understand the apparent overestimation by DMC of the excitation
of the minimal anionic (A) model, we want to compare the DMC results
obtained for different model chromophores, that is, the minimal neutral (D),
the anionic methyl-terminated (B) and the neutral+ (G) model. This will
allow us to observe how the excitation correlates to the charge state of the
chromophore, and to compare the QMC excitations to other available ref-
erence data. Since the excitation energy of the anionic minimal (A) model
is not particularly affected by either the optimization of the determinantal
component or the use of large CAS expansions, we perform all QMC calcula-
tions consistently using an unoptimized CAS(2,2) determinantal component
in the wave function. We will take into account in our analysis that the
excitations may be overestimated by roughly 0.1-0.2 eV due to the use of the
small CAS expansion. The results are summarized in Table 3.8.

We first compare the results for the minimal anionic (A) and neutral
(D) models and note that DMC yields an excitation for the neutral species
0.9(1) eV higher than the one for the anionic counterpart. This finding is in
agreement with the difference of 0.8 eV found in semi-empirical configura-
tion interactions (CI) calculations for larger anionic and neutral chromophore
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Table 3.8: Variational (VMC) and diffusion Monte Carlo (DMC) energies
in eV for the minimal anionic (A) and neutral (D), the anionic methyl-
terminated (B), and the neutral+ (G) model, computed using an unopti-
mized CAS(2,2) wave function. The TDDFT/BLYP and B3LYP energies
are also listed together with the photodistruction spectroscopy experimental
absorption maxima from Refs. [58]a and [59]b.

VMC DMC BLYP B3LYP Expt.

Minimal anionic 3.38(4) 3.18(4) 2.97 3.16 –

Minimal neutral 4.27(7) 4.09(7) 3.22 3.54 –

Methyl-term. anionic 3.43(5) 3.20(5) 2.89 3.09 2.59a

Neutral+ 3.67(8) 3.37(7) 3.02 3.21 2.99b

models in the gas phase [69]. The semi-empirical CI excitations energies for
the anionic and neutral models are equal to 3.52 and 2.70 eV, respectively,
but the parameters of the semiempirical approach were tuned to yield an ex-
citation for the anionic model reasonably close to the experimental gas-phase
value [70]. On the other hand, TDDFT yields a significantly smaller differ-
ence between the excitations of the neutral and the anionic minimal models,
that is, 0.25 and 0.38 eV with the BLYP and the B3LYP functional, respec-
tively. Therefore, while the TDDFT excitation for the anionic chromophore
is in reasonable agreement with the DMC value, the TDDFT excitation of
the neutral is lower than the DMC energy by 0.87 and 0.54 eV for the BLYP
and the B3LYP functional, respectively.

If we compare the DMC excitation energies of the anionic methyl-termina-
ted (B) model and the neutral+ (G) models with TDDFT and available ex-
perimental numbers, we should keep in mind that the DMC excitations are
overestimated by 0.1-0.2 eV since, for the moment, we only employed simple
CAS(2,2) wave functions. While a reduction of 0.1-0.2 eV brings the DMC
energies of both models in close agreement with the TDDFT/B3LYP excita-
tions, the resulting excitation for the neutral+ (G) model remains higher by
0.1-0.2 eV than the absorption maximum located in photodistruction spec-
troscopy experiments. Moreover, as already discussed, DMC appears to be
overestimating the excitation of the anionic form by roughly 0.4-0.5 eV.
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3.5 Conclusions

Before studying the neutral and anionic forms of GFP within the protein en-
vironment, we constructed a series of model chromophores of GFP in the gas
phase to begin exploring the performance of adiabatic TDDFT and quantum
Monte Carlo approaches. We built three models of increasing complexity for
both the anionic (deprotonated) and the neutral (protonated) chromophore
of GFP, and also investigated a particular cationic model which was recently
characterized in photodistruction spectroscopy experiments. Reference ex-
perimental data obtained with the same spectroscopy technique as well as
CASPT2 theoretical results are available for two of the smaller anionic mod-
els we study.

The results are rather puzzling. Adiabatic TDDFT reproduces the ex-
perimental absorption maximum of the cationic model reasonably well if a
pure functional is used, but appears to be overestimating the excitation en-
ergies of two small anionic chromophores by 0.3-0.5 eV depending on the
functional employed. Moreover, the TDDFT excitations energies for the
neutral models are not too dissimilar from the excitations of the correspond-
ing anionic chromophores while one would expect a significant shift in the
excitation upon deprotonation. We analysed various possible shortcomings
of TDDFT in describing the anionic form of GFP but we were not able to
identify evident problems of TDDFT, especially in the calculations for the
smaller models of the GFP chromophore. The excitations of these models
do not appear to be characterized by charge transfer and curing the under-
estimation of the DFT ionization threshold with the use of asymptotically
corrected functionals does not change the excitation energy. Therefore, it is
not evident why TDDFT should be superior in describing the excitations of
the corresponding neutral models or of the cationic chromophore. On the
other hand, for the larger model chromophores that we will employ within
the protein, we found significant contributions from charge-transfer transi-
tions in the TDDFT excitations, which are a signature of potential problems
with the TDDFT description of these larger models, especially in the neutral
form.

Using quantum Monte Carlo approaches, we performed a thourough study
of the excitation energy of the smallest anionic model using sophisticated trial
many-body wave functions and state-of-the-art optimization techniques. We
find that the DMC excitation energy is very close to the TDDFT result, and
therefore higher than the reference photodistruction spectroscopy experimen-
tal result by roughly 0.4-0.5 eV. We could attempt to use even more complex
wave functions but, based on the tests done so far, the DMC result appears
to be rather robust. Differently from TDDFT, when comparing the anionic
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and neutral chromophores, we observed a sizable shift in the excitation as the
DMC excited state of the neutral form is 0.9(1) eV higher than the energy
of the corresponding anionic model. Finally, the shift between the anionic
and cationic model chromophores observed in photodistruction spectroscopy
experiments is not well reproduced within DMC but, for both models, the
DMC excitations appear to be rather close to the TDDFT values obtained
using hybrid exchange-correlation functionals.
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Chapter 4

Treating the protein
environment in QM/MM

4.1 Construction of the protein model

Figure 4.1: Absorption spectra of wild-type GFP at room temperature
(T=295 K) and low temperature (T=1.6 K). Adapted from Ref. [7]

As the focus of this Chapter is the construction of a theoretical model
to describe the photophysics of GFP, we briefly remind the reader some
of the key spectral properties of this autofluorescent protein. As shown
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in Fig. 4.1, the room temperature spectrum of wild-type GFP is charac-
terized by two maxima which are attribuited to two interconvertible states
(protonated/deprotonated) of the protein. The absorption band at 398 nm
(3.12 eV) is from the neutral A form while the band at 478 nm (2.59 eV)
from the anionic B form of the protein. Upon photoexcitation of A, the ex-
cited chromophore transfers a proton through a hydrogen-bond network to
the surrounding environment forming a transient intermediate anionic state
(I∗) which emits in the region of 506 nm (2.45 eV). After decay to the ground
state (I), the system usually returns to state A through a ground state in-
verse proton transfer process. The green fluorescence at 482 nm (2.57 eV)
following direct excitation of the B state stems from direct decay of the ex-
cited B∗ state. In Fig. 4.1, the spectrum at 1.6 K is also shown where the
ratio of the absorbances of the A and B forms inverts and the two maxima
shift at 407 nm (3.05 eV) and 472 nm (2.63 eV). The broad wing at the red
side of the 472 maximum disappears and is attributed to the I form which is
not populated at this low temperature. The 0-0 transitions of all three forms
have been located in hole-burning spectroscopy experiments [7].

To compute the spectrum of wild-type GFP, we construct a representative
configuration of the chromophore-protein structure. As we compare to low-
temperature (T=1.6 K) spectroscopy experiments, it is a reasonable choice
to evaluate the theoretical spectrum of a single conformation obtained in a
simulated annealing procedure instead of following the more costly route to
compute the average spectrum over several snapshots of a molecular dynam-
ics (MD) simulation at the experimental temperature. Moreover, we will see
below that the chromophore is kept rather rigidly within its binding site by
a complex network of hydrogen bonds. In this Section, we describe how this
representative conformation for the neutral A and anionic I and B forms of
wild-type GFP is constructed starting from the available X-ray structures of
neutral wild-type GFP and of the GFP mutant S65T where the mutations
stabilize the anionic B form against the A form of GFP.

4.1.1 The neutral form

The starting structure for the construction of the neutral form of the protein
is the X-ray structure [71] at 1.90 Å resolution (entry 1GFL in the Pro-
tein Data Bank [72]). During the crystallization process precedent to the
X-ray scanning, the proteins pack together to form dimers so that the X-ray
structure with code 1GFL contains not one but two GFP proteins. In our
simulations of the neutral and anionic I forms, we keep the dimer for simplic-
ity. The setup and a fast preliminary MM equilibration is performed using
the Amber suite of programs [43] and the Amber force field is used in all
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MM simulations. The structure is then refined in a simulated annealing run
within QM/MM.

Equilibration of GFP with MM

Since X-ray diffraction experiments do not distinguish hydrogen atoms, the
positions of the hydrogens are not given in the X-ray structure of GFP and
must be added when setting up the simulation. This is in part automatically
done using the module Xleap within the Amber package as most of the stan-
dard aminoacids exist in a given ionization state at neutral pH. Exceptions
are the glutamine/glutamic acid, aspartic acid, lysine and histidine which
can have different protonation states. Their charge state is assigned based
on their hydrogen bonding configuration, or chosen as they most frequently
appear in nature. Of these aminoacids, only the histidine and the glutamic
acid are present in the hydrogen-bond network surrounding the chromophore.
Since we do not perform long MD simulation but only refine the structure by
simulated annealing, we focus our attention on the protonation state of the
histidines and the glutamic acids in the binding site, and leave the Amber
package to assign the protonation states of the other residues. Based on the
most likely hydrogen-bonding configuration of the chromophore, the histi-
dine residues numbered 25, 148, 181, 199 and 217 are protonated at their
δ nitrogen while the remaining hystidine residues are protonated at their ǫ
nitrogen. For the protonation of the glutamic acids, particular attention is
given to Glu-222 since this residue is involved in the proton shuffle between
the neutral A and the anionic forms. As explained later, experiments and
theoretical work indicate that Glu-222 is anionic in the A state while is the
proton receptor in the anionic I and B form of GFP. We follow this criterion
in our setup.

To simulate the protein in vivo, the protein is then set in a physiological
solution, with a saline concentration of 0.15 M. The protein is placed at the
center of a cubic MM simulation box, surrounded by 12 Å of TIP3P [73] water
molecules in each direction. As periodic boundary conditions are applied,
the box is sufficiently large to avoid interactions between the images of the
protein. Finally, counter-ions are added to the water solution to achieve
physiologic concentration and to ensure that the cell is completely neutral.
As the total sum of the partial charges of the protein is not zero but equals
−12, we added more positive ions (63 Na+) than negative ones (51 Cl−)
to have a simulation box with zero total charge. The total simulation box
contains around 70000 atoms and its size is roughly 83 × 97 × 82 Å3. In
Fig. 4.2, we show part of the simulation cell comprising the protein and a
few Å of the surrounding water.
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We first perform a classical MM equilibration of the hydrogens and the
waters using the module Sander of the Amber program in order to start the
more costly QM/MM simulations with these many degrees of freedom in a
stable configuration. During the relaxation, the coordinates of the heavy
atoms of the protein are kept fixed to preserve a protein structure close to
the original crystallographic one, and because the force field parameters for
the chromophore are not available in the Amber library as the chromophore
is not a standard aminoacid. The chromophore force field parameters are
available at the Charmm level [74] but their use would then be incompatible
with the subsequent QM/MM simulations.

Even though the heavy atoms of the chromophore are kept fixed, we
need to assign a force field to the chromophore as its atoms interact with
the hydrogens of the protein, the solution waters, and the ions which are
being equilibrated. Fortunately, as the chromophore is kept fixed, we do
not need a very accurate force field and we can proceed to generate one for
our particular purpose as follows. We determine the partial charges of the
atoms of the chromophore by computing a quantum mechanical electrostatic
potential within Hartree-Fock using a 6-31G∗ basis and the Gaussian03 [53]

Figure 4.2: Model of the neutral A form of wild-type GFP in water solu-
tion. The dimerized structure is shown together with the chromophores in
the protein cavities. The diameter of the barrel of a single GFP protein is
approximately 24 Å and the height 42 Å. The distance between the two pro-
teins is approximately 5 Å. The two chromophores do not interact as they
are shielded by the protein barrel and are at a distance of about 17 Å.
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code. The partial charges are then fitted to reproduce this potential on a large
number of grid points covering the region around the chromophore. We assign
the bond, angle, and dihedral parameters to each atom of the chromophore
based on its position and chemical role following Ref. [75]. We know that
this force field is not sufficiently accurate to describe the intra-molecular
interactions of the heavy atoms of the chromophore since an energy relaxation
test performed for this chromophore model does not yield a stable structure.
However, we consider it sufficient to give an approximate description of the
interaction of the chromophore atoms with the rest of the system.

To restrain the protein coordinates, we find that simply locking the pro-
tein coordinates leads to an unstable simulation. Therefore, we introduce
a restoring potential, k ∆x2, where ∆x is the displacement of the atomic
coordinates respect to the reference X-ray structure. Finally, the MM equi-
libration is performed in the following three steps:

1) 1000 steps of energy minimization using the steepest descent algorithm
in the first 10 steps, and the conjugate gradients algorithm afterwards.

2) 33 ps of classical isothermal and isobaric molecular dynamics at 300
K and 1 atm. We use an isotropic pressure scaling and the Andersen
thermostat to couple the temperature to an external bath. We consider
the system equilibrated when the temperature fluctuations are less than
5% and the density is constant within 2%. The time step is 0.0005 ps.

2) 3500 steps of energy minimization.

Finally, an equilibrated structure is obtained with a norm of the atomic
forces of 0.1 kcal/mol/Å.

Simulated annealing within QM/MM

To obtain an accurate description of the structure of the chromophore bind-
ing site and of the internal geometry of the chromophore which was left so far
unrelaxed, we start from the structure obtained in the preliminary MM equi-
libration and perform a simulated annealing procedure within QM/MM. In
the QM/MM relaxation, the atoms of the chromophore are treated quantum
mechanically and the rest of the protein and the solvent are treated classi-
cally. The QM/MM boundary is set through the single COOH Cα bond of
Phe-64 and the single N CA bond of Val-68 as shown in Fig. 4.3. We note
that, as we keep the dimer structure of the original crystallographic struc-
ture, we only treat quantum mechanically the chromophore of one of the two
GFP barels and leave the other chromophore at the fixed crystallographic
coordinates.
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Figure 4.3: QM/MM partitioning for the A form of wild-type GFP. The
QM/MM boundary is set through the single COOH Cα bond of Phe-64 and
the single N CA bond of Val-68. The two arrows indicate the two hydrogen-
link atom between the QM and the MM. The MM part closest to the QM
atoms is represented with cylinders.

The QM/MM simulations are performed with the density functional the-
ory CPMD [46] code using the PBE generalized gradient approximation func-
tional [52] and a plane wave cutoff of 70 Ry. The size of the supercell used
for the QM calculations is roughly 21× 15 × 13 Å3, and the chromophore is
approximatively in the xy plane. A time step of about 0.7 fs is used.

The simulated annealing is performed through a molecular dynamics sim-
ulation where the velocities are rescaled at each step by a factor f . To quench
the system and obtain a converged structure of the chromophore binding site,
we perform:

1) 1.40 ps of molecular dynamics with f = 0.999.

2) 0.35 ps of molecular dynamics with f = 0.99.

At the end of the quenching, the amplitude of the oscillations for the bond
lengths along the chromophore are of the order of 0.005 Å, and thus negligible.

In Fig. 4.4, we show the final structure of the binding site of the neutral
A form with the closest residues to the chromophore which are most relevant
for either of the three forms of wild-type GFP. The A form is character-
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ized by a hydrogen-bond network connecting the oxygen of the chromophore
to the carboxylate of the negative Glu-222 through the water W1 and Ser-
205. As we discuss below in Section 4.1.2, the accepted picture is that this
hydrogen-bond chain provides the path for the proton leaving the photoex-
cited chromophore and being transferred to Glu-222. We also observe that
the negatively charged Glu-222 is stabilized by a hydrogen bond donated by
the oxygen of the tail of the chromophore (Ser-65). The stabilization of the
anionic Glu-222 is crucial for the existence of the A form as perturbation of
the hydrogen-bond network surrounding this residue leads to destabilization
of the A state in favor of the B state.

Figure 4.4: Binding site of the neutral A form of GFP. The residues closest to
the chromophore which are relevant in either the A, B, or I form are shown.
The hydrogen bonds are drawn if the bond length is less than 3 Å and the
donor-hydrogen-acceptor angle is less than 30◦. Glu-222 is negatively charged
in the A form and is the acceptor of the proton leaving the hydroxyl group
of the phenolic ring upon photoexcitation.

4.1.2 The intermediate form

Both the anionic intermediate and B forms differ from the neutral form as the
proton of the hydroxyl group of the phenolic ring has left the chromophore
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and has been transferred to the sourrounding environment. For both forms,
we assume that the proton leaving the phenolic ring is transferred to the
negatively charged residue Glu-222 which becomes neutral upon protonation.

The identification of the residue accepting the proton leaving the chro-
mophore has been a subject of debate for several years. Already in the early
models proposed after structural and spectroscopic analysis of wild-type GFP
and some of its mutants [76–78], it was suggested that Glu-222 is negatively
charged in the A form and the acceptor of the proton upon photoexcitation.
This picture was for instance put forward by Ormö et al. [76] in their X-ray
characterization of the S65T mutant where the B form is stabilized by mu-
tation of the side chain of the chromophore at position 65, which donates
a hydrogen bond to Glu222 in the A form of wild-type GFP (see Fig. 4.4).
This transfer mechanism was however doubted by successive FTIR (Fourier
transform infrared spectroscopy) experiments [79], where Glu-222 appears to
be protonated in both the neutral and the anionic form as the feature cor-
responding to the change in its protonation is absent in the FTIR difference
spectrum. However, theoretical calculations of the vibrational frequencies
of both forms [80] allowed to reinterpret the FTIR results by showing their
compatibility with a protonation state of Glu-222 in the B form different
from the one in the A form. Finally, the good agreement between classical
MD calculations [69] and the X-Ray structure of the S65T mutant where the
chromophore is stabilized in the anion form with a protonated Glu-2222 also
supports the picture of a proton transfer mechanisms from the chromophore
to Glu-222 in wild-type GFP.

Finally, we note that the proton can be added to Glu-222 in the syn- or
the anti -configuration. In the theoretical work by Tozzini and coworkers [69],
it was observed that, during the classical molecular dynamics simulations at
298 K, the hydrogen jumps between the two configurations but that the anti -
conformation is the one occupied for longer times. Therefore,we protonate
the Glu-222 residue with the proton in the anti -configuration. In Fig. 4.5,
we show the anionic intermediate form with the chromophore and the most
important residues which are believed to be involved in the proton transfer
mechanism.

For the calculation on the I form of the chromophore we followed the
same procedure as described for the A form. A QM/MM simulated annealing
procedure is performed on the structure following these steps:

1) 3 ps of molecular dynamics with f = 0.999.

2) 1 ps of classic molecular dynamics at constant volume at 300 K. Only
the residues involved in the hydrogen-bond network of Fig. 4.5 are
moved while the chromophore and the rest of the protein is kept fixed.
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Figure 4.5: Binding site of the anionic I form of GFP. The residues closest
to the chromophore which are relevant in either the A, B, or I form are
shown. The hydrogen bonds are drawn if the bond length is less than 3 Å
and the donor-hydrogen-acceptor angle is less than 20◦. The chromophore
is deprotonated and Glu-222 is commonly considered as the acceptor of the
proton leaving the hydroxyl group of the phenolic ring.

This allows a faster rearrangement of the residues interested in the
proton-shuffle.

3) 0.28 ps of molecular dynamics with f = 0.999.

In Fig. 4.5, the final structure of the binding site of the I form is shown
with the closeby residues which are the most relevant for either of the three
forms of wild-type GFP. The hydrogen-bond network connecting the phe-
nolic oxygen to Glu-222 is shown. In the anionic form, His-148 donates a
hydrogen bond to the phenolic oxygen which is now deprotonated while Glu-
222 is neutral. The electrostatic potential generated by the MM atoms of
the protein and the solvent on the QM system is shown in Fig. 4.6. As ex-
pected, the potential is positive and therefore attractive for electrons around
the positive Arg-94 and the hydrogen atom of Gln-94 which creates a hydro-
gen bond to the oxygen of the imidazole ring. It is also positive along the
hydrogen-bond network running from the phenolic oxygen through the W1
water and Ser-205 to Glu-222.

83



4.1. The protein model 4. Treating the protein environment in QM/MM

Figure 4.6: Electrostatic potential created by the MM atoms on the QM
system. The residues which hydrogen bond to the chromophore are shown
in a thicker representation (also compare with Fig. 4.5). An isosurface of 0.2
a.u. is shown in pink while no negative isosurface of -0.2 a.u. is close to the
chromophore.

4.1.3 The B form

The construction of a model for the B form of wild-type GFP is more complex
as the protein has been only crystallized in the neutral A form (entry 1GFL in
the Protein Data Bank). The B form differs from the neutral one not only in
the protonation of the chromophore and the Glu-222 residue but also because
various residues in the binding pocket of the chromophore have a different,
more stable conformations. The X-ray structure is however available for
mutants of wild-type GFP where the protein is not in its original sequence
but some mutations have been done to enhance the stability of the anionic B
form. The environment of these mutants apart from the particular mutations
is believed to be closer to the one of wild-type GFP in the B form.

The basic idea in the construction of the model for the B form is to
start from the crystallographic structure of one of these mutants and “undo”
the mutations to restore the protein sequence as in its wild-type expression.
Following the theoretical work by Nifosi and Tozzini [69], we start from the
crystallographic structure of mutant S65T (code 1EMG in the Protein Data
Bank [72]). This X-ray structure shows two main differences with the wild-
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type structure as in the 1GFL. First, the S65T substitution is present where
the aminoacid serine at position 65 (Ser-65) is substituted with a threonine
(Thr-65). Second, the biologic unit is now a monomer.

To restore the wild-type structure, we perform a homology modelling. To
restore the aminoacid Ser-65, the methyl group of Thr-65 is substituted by
a hydrogen atom, and the resulting Ser-65 oxygen tail is flipped in the other
direction towards the close Glu-222 residue to form a hydrogen bond. This
structure is then ready for the classic MD simulation for the preliminary
equilibration and the subsequent QM/MM dynamics. In Fig. 4.7 we show
the hydrogen bond network for the B form of the protein after our homol-
ogy modeling construction as compared to the neutral and the intermediate
anionic form.

Starting from the structure constructed by homology, we proceed as in
the case of the neutral form. Using the Amber suite of programs, we add
the missing hydrogens, the waters and the counterions. For the B form,
we only add 10 Å of TIP3P water molecules in each direction to avoid the
occurrence of uninfluential but unpleasant vacuum bubbles at the edges of
the simulation cell which were present in the simulation cell of the neutral
and intermediate forms. The total charge of the protein is −6, the number
or counterions added is 28 Na+ and 22 Cl−, and the box dimensions are
approximately 65× 79× 78 Å3 for a system of about 31000 atoms. In the B
form, the number of atoms in the cell is approximately half the number for
the A or I form because here the crystallized form is a monomer. As before,
we equilibrate the hydrogens and the waters with a classic MD approach,
and we then perform a simulated annealing run with the QM/MM approach.
The procedure followed was:

1) 1.4 ps of molecular dynamics with f = 0.999.

2) 0.35 ps of molecular dynamics with f = 0.997.

3) 0.35 ps of molecular dynamics with f = 0.995.

4) 0.35 ps of molecular dynamics with f = 0.991.

5) 0.35 ps of molecular dynamics with f = 0.987.

The annealing factor is slowly decreased to allow a smoother quenching of
the system. The main hydrogen-bond distances are smoothly dumped during
this slow quenching until a temperature less than 0.02 K is reached.

In Fig. 4.7, we show the optimal binding site of the chromophore as ob-
tained in our QM/MM simulation. The hydrogen-bond network surrounding
the chromophore is very similar to the one of the I form (see Fig. 4.5) with
a chain of hydrogen bonds running from the chromophore to Glu-222 and
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Figure 4.7: Binding site of the anionic B form of GFP. The residues closest
to the chromophore are shown. The hydrogen bonds are drawn if the bond
length is less than 3 Å and the donor-hydrogen-acceptor angle is less than
30◦. The oxygen of the phenolic ring is deprotonated and the Glu-222 residue
becomes neutral as the proton acceptor. The position of Thr-203 is different
than in the I form and forms a hydrogen bond with the chromophore.

back to the chromophore. In addition, Thr-203 is now positioned to further
stabilize the negative charge on the chromophore as it donates a hydrogen
bond to the phenolic oxygen. Since this additional hydrogen bond further
stabilizes the electronic ground state, the absorption maximum of the B form
is expected to be blue shifted with respect to the I form.

4.2 Structural analysis of the models

To analyze the structural features of the models of the neutral and anionic
forms of wild-type GFP obtained in our QM/MM calculations, we focus on
the binding site of the chromophore as these local properties will predom-
inantly determine its excitation spectrum. For the labeling of the atoms
of the chromophore, we refer the reader to Fig. 4.8 where the heavy atoms
are numbered starting from the phenolic oxygen along the top ridge of the
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phenol, through the bridge and around the imidazole ring.
The internal structure of the chromophore is expected to play a very

important role in tuning the excited state properties of the chromophore.
In particular, the degree of bond-length alternation in the conjugate chain
running through the chromophore is correlated to the size of the gap between
the ground state and the lowest π-bonding to antibonding excitation with a
stronger bond-length alternation yielding a larger gap. This fact can be easily
understood by considering the limiting case of an infinite chain of carbon
atoms, where the gap is zero in the absence of bond-length alternation and
opens as the chain dimerizes. In the particular case of GFP, the existence of
correlation between gap and bond-length alternation has been largely verified
through the analysis of several GFP mutants for which the X-ray structure is
available, and the construction of simplified theoretical models of the binding
site of the GFP chromophore [69].

The protein environment and, in particular, the residues in the binding
site of the chromophore can affect the spectral response of the chromophore in
a dual manner. They can in principle tune the internal geometrical structure
of the chromophore as well as act on the excitations more directly as some
close residues may be charged or form hydrogen bond to the chromophore.
The hydrogen-bond network in the active site is in fact rather different in the
three forms of GFP where residues play different roles in stabilizing either
the ground state (opening the gap) or the excited state (closing the gap).
The role of the positively charged Arg-96 in close proximity to the GFP
chromophore will also be discussed at length below.

We begin with a detailed analysis of the neutral A form of GFP as, only
for this form, a comparison with the X-ray structure is possible [71]. The
anionic B form is constructed by homology starting from the X-ray structure
of the mutant S65T but a direct comparison with the crystallographic data
of the mutant would be misleading as the positions of some close residues
are rather different. In Table 4.1, we summarize the main structural fea-
tures of the chromophore of the neutral A form of GFP within the protein
and in vacuum, and compare with the X-ray structure at 1.90 Å resolution
used as starting geometry. We first note that the structural properties of
the chromophore optimized in the protein and in vacuum are remarkably
similar. Both chromophores are essentially planar, and the presence of the
protein only yields an average bond-length shortening of 0.01 Å without
affecting the bond-length alternation of the conjugate chain of the chro-
mophore. When comparing the internal bonds of the chromophore resulting
from our QM/MM simulation to the initial X-ray structure, we see that the
agreement is rather good with a root mean square deviation of 0.04 Å, and
a maximum deviation of only 0.07 Å. The hydrogen-bond lengths between
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Figure 4.8: Atom numbering used for the chromophore of neutral GFP.

hydrogen donor and acceptor are shown for residues in close proximity to
the chromophore and are also found in very good agreement with the X-ray
structure.

In Fig. 4.9, we show the bond lengths along the chromophore of the
neutral A and the anionic I and B forms of GFP obtained in our DFT/PBE
QM/MM calculations and compare them with the the structures optimized
in vacuum. As in the case of the neutral chromophore, the bond lengths of
the anionic I and B forms do not dramatically differ from the values we obtain
when the anionic chromophore is optimized in vacuum. Slight differences are
observed in the degree of bond alternation close to the central bridge as the
difference between the two central bond lengths, C5 C6 and C6 C7, is
smaller in vacuum than in the protein. Overall, we can however conclude
that, for all three forms of wild-type GFP, the protein environment acts to
preserve an internal structure of the chromophore which is not dramatically
altered with respect to the one in vacuum.

As in the comparison of the gas-phase neutral and anionic chromophores
in Chapter 3, it is easier to understand the geometrical changes with the
charge state of the chromophore if we show again the two resonant forms of
the anionic chromophore in Fig. 4.10. In the benzenoid form, the negative
charge is localized on the phenolic oxygen and this bond structure is therefore
also characteristic of the neutral chromophore. Upon deprotonation, the
quinonoid form is also accessible where the negative charge has migrated to
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X-ray Protein Vacuum

Bond length (Å)

O1 C2 1.40 1.36 1.37
C2 C3 1.39 1.40 1.41
C3 C4 1.37 1.38 1.40
C4 C5 1.38 1.42 1.43
C5 C6 1.40 1.44 1.45
C6 C7 1.41 1.37 1.38
C7 C8 1.49 1.47 1.50
C8 N9 1.32 1.39 1.43
N9 C10 1.35 1.40 1.39
C10 N11 1.34 1.31 1.33
N11 C7 1.45 1.40 1.41
C8 O12 1.22 1.25 1.23

Dihedral angle (◦)

D(C4C5C6C7) 173.9 176.8 179.0
D(C6C7N11C10) 178.9 177.1 179.6

Hydrogen-bond length (Å)

Arg-96(N) · · · CHR(O12) 2.71 2.76 –
Gln-94(O) · · · CHR(O12) 3.08 2.86 –
CHR(O1) · · · W1(O) 2.64 2.56 –

His-148(N) · · · CHR(O1) 3.27 3.21 –

Table 4.1: Structural parameters for the neutral A form of GFP obtained in
our QM/MM simulations as compared to the X-ray structure used as initial
configuration. We list the most representative bond lengths and dihedral
angles of the chromophore, and the hydrogen-bond distances between the
hydrogen donor and acceptor (D · · · A) for close residues to the chromophore
(CHR). We also list the values for the chromophore optimized in vacuum.
See Fig. 4.8 for the labeling of the atoms of the chromophore. For reference,
the bonds of the central carbon bridge are C5 C6 and C6 C7.

the imidazole oxygen.
When comparing the neutral and the anionic forms, we see that the largest

difference occurs in proximity of the hydroxyl oxygen of the phenolic ring.
After deprotonation of the hydroxyl group, the oxygen-carbon bond, O1 C2,
looses its single-bond character and significantly shortens by about 0.1 Å
when going from the neutral to the anionic form. The shortening is slightly
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Figure 4.9: Structural properties of the chromophore of the neutral A, and
the anionic I and B forms as obtained in our QM/MM simulations. We
also show the neutral and anionic structures optimized in vacuum within all-
electron DFT/BLYP with a cc-pVTZ basis. The bonds of the central carbon
bridge are C5 C6 and C6 C7.

Figure 4.10: Scheme of the two resonant forms of the anionic chromophore:
Benzenoid (left) and quinonoid (right).
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smaller in the B form as compared to the I form as the negative charge
on the oxygen is further stabilized in the B form by the position of Tyr-203,
which donates an additional hydrogen bond to the oxygen. As a consequence,
while the neutral model is characterized by a more marked aromaticity of the
phenolic ring (with more similar bond lengths between all carbon atoms of
the ring), the aromaticity of the phenolic ring of the anionic forms is reduced,
yielding a quinoid structure. The effect of deprotonation is also visible for the
bonds in proximity of the central bridge of the chromophore where the degree
of bond alternation is reduced in the anionic as compared to the neutral form.
Interestingly, we note that the difference between the neutral and the anionic
bond lengths is overall larger in vacuum: For instance, the two central bonds
of the carbon bridge in the anionic species have almost the same lengths,
the difference being less than 0.01 Å, while in the neutral species, these two
bonds differ by as much as 0.07 Å. In the protein, the same differences for
the I and the neutral form amount to 0.04 and 0.07 Å, respectively. By
inspecting the other bonds along the conjugated chain, it appears that the
protein environment acts to partially compensate the change in protonation
state, and keeps the chromophore in a more similar structural conformation
in the two protonation states with respect to vacuum.

In Fig. 4.12, we compare the geometrical properties of the chromophore
of the three forms of GFP with the results of other simulations available in
the literature. We first focus on the comparison with the work by Marques
et al. [12] who construct their protein models within a DFT/LDA QM/MM
approach. It is important to understand the structural features of their
models as they most significantly differ from ours as well as from other cal-
culations reported in the literature. Moreover, we will show later that, using
their DFT/LDA QM/MM structures, Marques et al. can claim an excel-
lent agreement between TDDFT and the experimental absorption spectra of
wild-type GFP.

For the neutral A form, the structural agreement of our model with the
DFT/LDA calculations by Marques et al. [83] is reasonable while, for the
anionic I form, the models are significantly different. In the neutral form,
Marques et al. find a slightly more marked bond-length alternation along the
chromophore, and the same structure is essentially preserved when moving
to their anionic I form, with the exception of the oxygen-carbon bond of
the phenolic group, O1 C2, which is significantly shorter in the I form in
agreement with our calculations. In particular, the carbon bond alternation
in the central carbon bridge is 0.1 Å in the neutral form and 0.09 Å in the I
form, compared to 0.07 Å and 0.04 Å in our calculations. Another evident
difference with our results is the bond length of the subsequent single carbon
bond of the imidazole ring, C7 C8. In their LDA/DFT model, this bond
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length is longer by 0.05 Å and 0.07 Å than the values we obtain in the neutral
and anionic I form, respectively.

The difference between our model and the one by Marques et al. can-
not be attributed to the use of LDA instead of the generalized gradient ap-
proximation PBE as the exchange and correlation functional employed when
relaxing the chromophore geometry. We showed in our studies of model chro-
mophores in vacuum that the use of LDA yields essentially the same struc-
tural parameters as PBE, BLYP or B3LYP (see Fig. 3.3). A closer analysis
of the protein structures of Marques et al. reveals instead that the different
geometry of the chromophore is likely due to particular choices made in the
setup of the protein environment. The most striking feature in their models
is that all histidine protein residues in both the neutral and I forms are proto-
nated both at the δ and ǫ nitrogens, and carry therefore a positive net charge.
As most histidines are far from the chromophore site, their charge state will
not significantly affect the chromophore geometry. However, His-148 is close
to the chromophore and even creates a hydrogen bond with the chromophore
in the anionic state (Figs. 4.5 and 4.7). Therefore, since protonating both
nitrogen of His-148 corresponds to placing an additional positive charge in
close proximity to the chromophore, we may expect a noticeable effect on the
structural parameters of the system. For clarity, we note a rather misleading
feature of the work by Marques et al. as the structural coordinates made
available by the authors do not correspond to the figure which appears in
their paper where His-148 is drawn as only protonated at the δ nitrogen. We
also note that Marques et al. construct the I form by deprotonation of the
neutral form but always refer incorrectly to this structure as the B form.

To proceed, we need to motivate why we believe our model to be a closer
representation of wild-type GFP in its various protonation forms than the one
by Marques et al.. Our model corresponds to one accepted in the literature
and its validity is mostly supported by the X-ray characterization of the
structures of wild-type GFP and other mutants. The β barrel in GFP appears
to be partially perturbed around the phenolic end of the chromophore in
proximity to His-148. The β strand that covers the chromophore moves
around His-148 and the backbone of one strand from residue 144 to 150 is
not directly hydrogen bonded to the adjacent backbone between residues
165 and 170. The two backbones appear instead to be held together by
forming hydrogen bond with the imidazole ring of His-148, with the backbone
nitrogen of Arg-196 being a donor to nitrogen ǫ of His-148.

Accordingly, as shown in Fig. 4.11, we do not protonate the nitrogen ǫ
of His-148 but allow it to be a hydrogen-bond acceptor for the backbone
nitrogen of Arg-168. With this assumption, we obtain a structure for the
neutral form with an Arg-168(N)· · ·His-148(N) distance of 3.05 Å in close
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Figure 4.11: Particular of the structure of the I form for our model (left)
and the one by Marques et al. [12] (right). The chromophore, the residues
His-148 and Arg-168, and part of the β barrel are shown. Note the difference
in the protonation of the nitrogen ǫ of His-148 which, in our model, is a
hydrogen-bond acceptor for the backbone nitrogen of Arg-168.

agreement with the X-ray value of 2.94 Å. On the other hand, Marques et

al. find a significantly larger nitrogen-nitrogen distance of 3.40 Å since their
His-148 is protonated at both nitrogens and cannot be a hydrogen bond
acceptor for Arg-168. Moreover, as shown in Table 4.2, the positive His-148
in the models by Marques et al. is significantly closer to the chromophore
with a His-148(N)· · ·CHR(O1) distance which is 0.4 Å shorter than the value
in our as well as the X-ray structure. Finally, the bond lengths along the
chromophore are significantly closer in our model to the X-ray values than the
ones computed by Marques et al. We therefore believe that the overall better
agreement of our structure with the crystallographic data is strong evidence
that our model is most likely a closer representation of the real structure of
GFP than the one where His-148 is protonated at both nitrogens.

In Fig. 4.12, we also compare the structure of the chromophore that we
obtain in the three forms of GFP with other models available in the litera-
ture. We find that the structures of our chromophore for the neutral A and
anionic B forms are in close agreement with the simulations denoted as (MM
+ QM) by Laino et al. [81]. These authors construct the missing force field
for the chromophore to perform a first MM relaxation of the protein and,
subsequently, refine the structural parameters by performing a DFT/BLYP
optimization of the chromophore binding site only keeping the close residues
with fixed heavy atoms at the boundary. The structure of the chromophore
in our model is remarkably similar to the one by Laino et al. [81] for both
the neutral and the anionic B form, and the hydrogen-bond distances of the
chromophore to the closeby residues are also in reasonable agreement (see
Table 4.2). A detailed comparison with the hydrogen-bond distances of the
(MM + QM) model is however not proper as only few residues were kept
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in their QM optimization. Even though all distances listed in Table 4.2
do not significantly change in the QM refinement, an exception is the Thr-
203(O)· · ·CHR(O1) distance which in their MM simulation is 2.80 Å but
becomes significantly larger, 3.28 Å, in the subsequent partial QM optimiza-
tion.

Finally, our results for the anionic I and B forms are in reasonable agree-
ment with the CASSCF/MM calculations by Sinicropi et al. [13] who relax
the chromophore structure within CASSCF together with the position and
the orientation of three closeby classical waters. The structure of the re-
maining of the protein in the neutral A form is kept to the original crystallo-
graphic coordinates while the I form is obtained starting from the A form and
manually reorienting the residues Ser-205 and Glu-222 to form the expected
hydrogen bond network (see Fig. 4.5). The B form is derived from the I
form by relaxing Thr-203 in a conformation to form hydrogen bond with the
phenolic oxygen of the chromophore (see Fig. 4.7). Despite the simplicity
of their QM/MM embedding scheme and lack of complete relaxation, the
few available hydrogen-bond distances are in agreement with the values we
find, as shown in Table 4.2. For the chromophore, we find that the degree
of bond-length alternation is slightly larger in CASSCF as compared to the
DFT calculations, but the overall agreement is rather good.
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Figure 4.12: Bond lengths of the chromophore of the A, I, and B forms of
GFP. We compare our QM/MM results to DFT/LDA [12] and CASSCF
QM/MM [13] simulations, and to MM simulations followed by partial QM
relaxation [69]. The neutral and anionic geometries optimized in vacuum are
also shown. The bonds of the central bridge are C5 C6 and C6 C7.
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CHR(O12) CHR(O12) W1 CHR(O1) CHR(O1)

Neutral A form

This work 2.76 2.86 2.56 3.21 –
DFT QM/MM 2.74 3.18 2.77 2.81 –

MM + QM 2.71 3.05 2.61 N/A –

X-ray 2.71 3.08 2.64 3.22 –

Anionic I form

This work 2.77 2.85 2.78 2.96 –

DFT QM/MM 2.72 3.31 2.83 2.67 –
CASSCF QM/MM N/A N/A 2.71 N/A –

Anionic B form

This work 2.76 2.95 2.79 3.02 2.76

CASSCF QM/MM N/A N/A 2.69 N/A N/A

MM + QM 2.63 3.00 2.75 2.80 2.80a

a 2.80 Å is the MM while 3.28 Å the (MM + QM) value [82].

Table 4.2: Most representative hydrogen-bond distances in Å between the hydrogen donor and acceptor (D · · · A)
for close residues to the chromophore (CHR). We compare our DFT/PBE QM/MM results to other models available
in the literature as the DFT/LDA [12] and CASSCF QM/MM [13] simulations and the MM simulations followed
by partial DFT/BLYP relaxation (QM+MM) [69]. Note that, for the bond CHR(O1) · · · W1, the chromophore is
a donor in the neutral A form and an acceptor in the I and B forms, and that Thr-203(O) only forms a hydrogen
bond to the chromophore in the B form.
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4.3 TDDFT/MM absorption spectra

We compute the vertical low-lying singlet excited states of the chromophore
of GFP in the protein environment for the structures of the A, I and B
forms presented in the previous Section using a TDDFT/MM approach and
the Gaussian03 code [53]. We perform all-electron linear-response TDDFT
calculations in the presence of the external field of the classical protein envi-
ronment. Within Gaussian03, the MM atoms are treated as unscreened point
charges which we place at the positions corresponding to the optimal geom-
etry that we obtained in our QM/MM simulations. For the MM atoms, we
use the same partial charges as in the QM/MM simulation. We employ the
BLYP and B3LYP exchange-correlation functionals and a cc-pVTZ Gaussian
basis set. We always compute at least the lowest five solutions as the state
with the largest oscillator strength is not always the lowest.

The linear-response TDDFT results for wild-type GFP in its three forms
are summarized in Table 4.3. We compute two sets of excitation energies cor-
responding to the chromophore in the protein environment (Protein) and to
the same chromophore without the surrounding protein (Vacuum). Compar-
ing the excitation energies with and without the protein environment allows
us to access the polarization effects of the protein on the electronic states
of the chromophore. Moreover, a comparison with the excitations for the
chromophore geometry optimized in vacuum (see Chapter 3) reveals how the
changes in the structure of the chromophore due to the presence of the pro-
tein affects the excitation energies. In all cases, we list the lowest two singlet
excitations, minus the Kohn-Sham energy of the highest occupied molecu-
lar orbitals (HOMO) as the DFT ionization continuum begins at minus the
value of the HOMO orbital energy [84] and the Kohn-Sham gap between the
lowest unoccupied and the highest occupied molecular orbitals.

Comparison with experiments

We first give a general look at the results focusing on the comparison with
the experimental absorption maxima [85, 86]. For all three forms and both
exchange-correlation functionals, the excitation energy with the largest os-
cillator strength is the lowest singlet state with a dominant π → π∗ (HOMO
→ LUMO) character. For the neutral A form, the BLYP and the B3LYP
excitation energies in the protein nicely bracket the experimental value with
BLYP giving an energy 0.03 eV lower and B3LYP 0.18 eV higher than the
experiments. The oscillator strength (about 0.6) and the HOMO → LUMO
contribution to the character of the excitation is comparable when the BLYP
and B3LYP functionals are used. The ionization threshold for both function-
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als is significantly higher than the excitation energies, not to pose a prob-
lem. The effect of polarization by the protein environment is small and only
amounts to a red shift of about 0.04 eV in the excitation energy. We may
therefore regard this result as a success of linear-response TDDFT in describ-
ing the experimental spectrum of the neutral form of GFP but we will return
to this point later when interpreting the TDDFT results for all three forms
of wild-type GFP.

The TDDFT excitations for the anionic forms of GFP are instead not in
good agreement with the experimental values. For the I form, BLYP and
B3LYP overestimate the experimental excitation energy by 0.37 and 0.55
eV, respectively, yielding excitation energies not too dissimilar to the neutral
case. By comparing with the excitations computed in the absence of the
protein, we note that the inclusion of the protein environment yields a blue
shift of 0.05 and 0.18 eV for the BLYP and B3LYP functionals, respectively,
that is, a shift in the opposite direction than for the neutral form. More
importantly, we observe that the inclusion of the protein significantly raises
the DFT ionization threshold so that the excitations in the protein are 1.06
and 1.68 eV lower than the BLYP and the B3LYP ionization threshold, re-
spectively. Therefore, while the meaning of the excitation energies in vacuum
is questionable as they lie above the ionization threshold, the problem rep-
resented by the general underestimation of the ionization threshold in DFT
disappears when the protein is included.

For the B form, the agreement of TDDFT with experiment is equally poor
as for the I form. TDDFT/BLYP and B3LYP overestimate the experimental
value by 0.30 and 0.49 eV, respectively. Also for the B form, the inclusion of
the protein environment yields a blue shift 0.14 and 0.45 eV for the BLYP
and B3LYP functionals, respectively. Differently from the case of the I form,
only the use of the B3LYP functional yields an excitation in the protein well
below the excitation threshold while BLYP gives an excitation in the pro-
tein which is 0.42 eV higher than the BLYP ionization threshold. Moreover,
within TDDFT/BLYP, the two lowest singlet excitations are nearly degen-
erate with a comparable oscillator strength (0.43 and 0.32) and character of
the excitations. This degeneracy is lifted when using the B3LYP functional
which moves the second singlet 0.57 eV higher than the lowest singlet. For
both anionic forms, the use of the B3LYP functional always yields a lowest
state with a higher oscillator strength and a more definite single-excitation
(HOMO → LUMO) character than when the BLYP functional is employed.

On the positive side, we note that TDDFT correctly predicts the expected
blue shift in going from the I to the B form. In the B form, the ground state is
further stabilized with respect to the excited state by the additional hydrogen
bond of the phenolic oxygen of the chromophore with Thr-203, and one would
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expect a larger excitation energy than in the I form. In particular, BLYP and
B3LYP predict the excitation energy of the B form to be higher than the I
form by 0.06 and 0.07 eV, respectively. With the available experimental data,
we can only estimate an upperbound (0.13 eV) to the difference between the
excitations of the B and the I form: For the I form, the location of the
absorption maximum is not available and we therefore use the energy of the
0-0 transition, which is smaller than the absorption maximum by an amount
equal to the Stokes’ shift.

Finally, we note that the mixed agreement we find between TDDFT and
experiments is at odds with the good performance observed by Marques
et al. [12] who obtain 3.05 eV and 2.65 eV as the TDDFT/LDA absorption
maximum for the A and the I form, respectively. We believe that the positive
picture emerging from their work is coincidental and due to the fact that their
model for the I form is different from our structure as discussed in Section 4.2.
For both the neutral A and the anionic I form, they compute the TDDFT
excitations of the protein chromophore without the protein environment. As
their chromophore for the A form is not too dissimilar from our structure,
we know from our calculations that computing the excitation without the
protein environment will indeed yield a TDDFT excitation very close to
the experimental value. On other hand, the chromophore of their I form
is significantly different from our geometry due to how they protonate all
histidine residues in the protein. Apparently, this geometry in vacuum gives a
TDDFT excitation close to the experimental value for the I form. For clarity,
we point out again that even though they build the I form by deprotonation
of the neutral form, they refer to their structure as the B form and therefore
find a particularly good agreement with experiments as they compare with
the absorption maximum of the B form (2.63 eV).

Geometrical and electrostatic effects of the protein environment

In Table 4.4, we summarize the TDDFT excitation spectra for the chro-
mophore optimized in the gas phase and in the protein environment for the
three forms of wild-type GFP, and compute the spectral shift, ∆Eprotein, due
to the interaction of the chromophore with the protein. The spectral shift
can be decomposed in two contributions due to the geometrical change in
the chromophore geometry and to the electrostatic effect of the environment
on the excitation:

∆Eprotein = ∆Egeom + ∆Eelect .

The geometrical shift (∆Egeom) is computed as the difference of the excita-
tion of the protein chromophore without the protein environment and the
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excitation of the chromophore optimized in the gas phase. The electrostatic
shift (∆Eelect) is obtained as the difference of the excitation energies of the
protein chromophore with and without the protein environment.

For the neutral A form, BLYP and B3LYP yield a total red shift due
to the chromophore-protein interaction of −0.08 and −0.19 eV, respectively.
For both functionals, the shift due to the electrostatic interaction with the
MM atoms is very small (less than −0.04 eV) while B3LYP sees a larger
red shift due to geometrical changes than the one obtained with the BLYP
functional. As we have seen in the previous Section, the degree of bond
alternation for the neutral and the anionic forms is more marked for the
chromophore optimized in vacuum than in the protein. As expected, this
translates in a red shift in the excitation energies when going from the gas-
phase chromophore to the protein chromophore, a shift which is significantly
larger (−0.16 eV) when using the B3LYP functional.

For the anionic I form, BLYP and B3LYP predict no protein shift (0.01
eV) as the geometrical red shift and the electrostatic blue shift cancel. The
reference protein shift of −0.09 eV is estimated as the difference between the
energy of the 0-0 transition in the protein [7] and the absorption maximum
of a smaller chromophore in the gas phase [58]. Therefore, it represents a
lowerbound to the true shift, as the excitation of a larger chromophore in the
gas phase (with the same dimensions as the one optimized in the protein)
will be smaller than the excitation of the smaller model chromophore, while
the absorption maximum of the I form is larger than its 0-0 transition. In
the anionic B form, BLYP and B3LYP yield comparable small blue shifts
of 0.07 and 0.08 eV, respectively. For both functionals, the geometrical red
shift is very close to the values obtained for the anionic I form since the
I and B chromophores have very similar geometries. However, due to the
further stabilization of the ground state in the B form discussed above, the
electrostatic blue shift is larger in the B than the I form, yielding a net protein
blue shift. The experimental estimate of the shift is 0.04 and again represents
a lowerbound as we are using the absorption maximum for a smaller model
chromophore to estimate the excitation in the gas phase.

Understanding the mixed performance of TDDFT

The mixed success of TDDFT, which appears to be accurately describing
the excitation of the neutral form but not of the anionic forms of wild-type
GFP, may be due to several factors which we now analyze separately. The
first obvious culprit is the use of TDDFT in the adiabatic approximation and
we will therefore try to understand if any of its commonly known problems
can also affect our results. However, we need to keep in mind that, whether
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there is a problem with TDDFT, it must only affect the anionic and not the
neutral form as the neutral appears to be correctly described by adiabatic
TDDFT.

We begin with the underestimation by DFT of the ionization threshold
and, in Table 4.3, list for all systems minus the Kohn-Sham energy of the
HOMO orbital, which indicates the start of the TDDFT continuum. We
observe that for the neutral chromophore with and without the protein envi-
ronment, the ionization threshold is well above the lowest excitation energy
and therefore does not pose a problem. On the other hand, as in the case of
the anionic model chromophores in the gas phase (Chapter 3), the TDDFT
excitation energies of the I and B anionic chromophores in vacuum lie above
the ionization threshold and their meaning is therefore questionable. The in-
clusion of the protein environment significantly raises the ionization threshold
of the I form above the lowest singlet excitation energy while, for the B form,
only the use of the B3LYP functional brings the ionization threshold above
the relevant excitation energy. However, even though the TDDFT continuum
is now higher than the excitation, TDDFT overestimates the experimental
excitation energies of the I and B forms by 0.4-0.5 eV. We also note that the
TDDFT error in the protein is comparable to the error in the gas phase for
the smaller anionic chromophore, where TDDFT overestimates the excitation
by 0.26 and 0.46 eV when using BLYP and B3LYP, respectively. Therefore,
the position of the ionization threshold does not appear a relevant factor
in understanding why the performance of TDDFT is significantly poorer in
describing the anionic than the neutral form of GFP.

Adiabatic TDDFT is also known to perform rather poorly if the excita-
tions are characterized by significant charge transfer. To understand whether
this is a problem, we can compare the TDDFT excitations and the Kohn-
Sham eigenvalue differences since these two quantities will become equal if
the excitation is characterized by charge transfer. We note that this analysis
holds when no exact exchange is used in the functional as only in this case the
eigenvalue differences are a close representation of excitation energies since
all orbitals see the same potential and therefore a constant number of elec-
trons. In the presence of exact exchange, the virtual orbitals see a different
potential and a different number of electrons than the occupied ones, and
for instance the HOMO-LUMO gap will be closer to the difference between
ionization potential and electron affinity.

In the three forms of GFP, the singlet TDDFT excitations with the largest
oscillator strength are the lowest in energy and have a dominant HOMO →
LUMO character, and should therefore be compared with the Kohn-Sham
HOMO-LUMO gaps which are also listed in Table 4.3. For the neutral A and
anionic I forms, the BLYP HOMO-LUMO gap is always smaller by about
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1 eV than the lowest TDDFT excitation. Therefore, since TDDFT signif-
icantly corrects the Kohn-Sham gap, we can infer that the excitations are
not characterized by strong density transfer. For the B form, the comparison
with the BLYP Kohn-Sham gap is not as straightforward since the two lowest
excitations are nearly degenerate at 2.93 and 2.94 eV, and dominated by the
(HOMO-3) → LUMO contribution even though the HOMO → LUMO tran-
sition is rather large: The HOMO-LUMO BLYP gap is 1 eV smaller than the
lowest excitation while the (HOMO-3)-LUMO eigenvalue difference is equal
to 2.90 eV and therefore very close to the excitation energy. This could be
a sign of potential problems of the TDDFT description of the B form. In
Fig. 4.13, we also show the difference between the ground state density and
an estimate of the TDDFT excited state density for the neutral A and the
anionic I form with and without the protein environment. The anionic ex-
cited state density computed without the protein environment appears to
extend in the tails of the chromophore as compared to the ground state one.
However, this slight charge transfer to the tails disappears when the protein
environment is included and no striking difference can be observed between
the neutral and the anionic case.

In summary, the indicators given by the position of the excitation with
respect to minus the HOMO Kohn-Sham eigenvalue and to the Kohn-Sham
eigenvalue difference are rather similar in the neutral and the anionic forms
(in particular the I form) of wild-type GFP and it is therefore not evident
why TDDFT should give an excellent agreement with experiments for the
neutral form but not the anionic forms. A possible reason for the failure
of TDDFT could be that the excitation has a significant double- or higher-
excitation character in the case of the anion but not in the neutral form. We
come back to this point when analyzing the quantum Monte Carlo results in
the next Section as these results seem to indicate that the character of the
excitation is rather similar in the two cases. Finally, it is important to stress
that, when computing the excitation energies with a QM/MM scheme, the
MM atoms only affect the electronic states of the QM part via an electrostatic
polarization field. Therefore, all the residues which are hydrogen bonded to
the chromophore cannot in reality forming a proper “bond”. In Section 4.5,
we analyze the effect of extending the QM part of the simulation to include
relevant closeby residues.
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Figure 4.13: Difference between the DFT/B3LYP ground and excited state
densities for the protein chromophore of the neutral A form (top) and the
anionic I form (bottom) without (left) and with (right) the protein environ-
ment. The isosurface corresponds to a value of −0.001 in red and +0.001 in
blue. A negative (red) value coresponds to the excited state density being
larger than the ground state one.
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Table 4.3: TDDFT/BLYP and B3LYP excitation energies (eV) and oscillator
strengths (in parenthesis) for the A, I, and B forms of GFP with (Protein)
and without (Vacuum) the protein environment, computed using a cc-pVTZ
basis. The geometries are optimized in the presence of the protein. The
dominant electronic transitions and their contributions in parenthesis (if >
0.1) are also listed. Only the lowest two singlet excitations are given together
with minus the Kohn-Sham energy of the highest occupied molecular orbitals
(−ǫHOMO), which corresponds to the ionization threshold in DFT. Also the
Kohn-Sham gap between the lowest unoccupied and the highest occupied
molecular orbitals (∆ǫHL) is listed.

Vacuum Protein
BLYP B3LYP BLYP B3LYP

Neutral A form (Expt. 3.05 eV)

S0 → S1 3.07(0.63) 3.26(0.58) 3.02(0.65) 3.23(0.64)

H→L(0.47) H→L(0.58) H→L(0.45) H→L(0.58)
H-1→L(0.30) H-1→L(0.19) H-1→L(0.23) H-2→L(0.20)
H-4→L(0.12) H-2→L(0.12) H-3→L(0.21)

S0 → S2 3.19(0.02) 3.66(0.22) 3.14(0.01) 3.48(0.18)
H-3→L(0.69) H-2→L(0.67) H-4→L(0.69) H-2→L(0.66)
H-4→L(0.12) H→L(0.15) H→L(0.17)

∆ǫHL 2.10 3.36 2.05 3.29

−ǫHOMO 5.10 6.01 5.57 6.47

Anionic I form (Expt. ≈2.50 eV)

S0 → S1 2.82(0.60) 2.87(0.67) 2.87(0.71) 3.05(0.96)

H→L(0.43) H→L(0.54) H→L(0.52) H→L(0.58)
H→L+2(0.29) H→L+1(0.31) H-2→L(0.20)
H→L+1(0.27)

S0 → S2 3.03(0.12) 3.19(0.28) 3.08(0.12) 3.48(0.001)

H→L+2 (0.63) H→L+1(0.62) H-2→L(0.60) H-1→L(0.68)
H→L(0.16) H→L+2(0.15) H-4→L(0.19) H-2→L(0.14)

H→L+4(0.13) H-5→L(0.19)

∆ǫHL 1.71 2.79 1.82 2.92

−ǫHOMO 1.05 1.79 3.93 4.73

Continues on the next page
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Continues from the previous page

Vacuum Protein
BLYP B3LYP BLYP B3LYP

Anionic B form (Expt. 2.63 eV)

S0 → S1 2.79(0.57) 2.87(0.75) 2.93(0.43) 3.12(0.90)

H→L(0.43) H→L(0.55) H-3→L(0.46) H→L(0.59)
H→L+2(0.30) H→L+1(0.25) H→L(0.39)
H→L+1(0.26) H-1→L(0.14)
H→L+5(0.10) H→L+1(0.11)

S0 → S2 3.01(0.13) 3.23(0.18) 2.94(0.32) 3.69(0.04)

H→L+2(0.62) H→L+1(0.65) H-3→L(0.53) H-1→L(0.67)
H→L (0.17) H→L(0.16) H→L(0.34) H-3→L(0.10)

H→L+3(0.15) H-1→L(0.11)

∆ǫHL 1.69 2.76 1.92 3.05

−ǫHOMO 1.06 1.81 2.51 3.31
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Table 4.4: TDDFT/BLYP and B3LYP excitation energies in eV computed
for the protein chromophore without (CHRprotein) and with (GFP) the in-
clusion of the protein environment, and for the chromophore optimized in
the gas phase (CHRgas). The spectral shifts due to the geometrical changes
in the chromophore (∆Egeom = CHRprotein−CHRgas) and to the electrostatic
effect of the environment (∆Egeom = GFP−CHRprotein) are listed together
with the total protein shift, ∆Eprotein = ∆Egeom + ∆Eelec.

CHRgas CHRprotein GFP ∆Egeom ∆Eelec ∆Eprotein

Neutral A form

BLYP 3.10 3.07 3.02 -0.03 -0.05 -0.08

B3LYP 3.42 3.26 3.23 -0.16 -0.03 -0.19

Expt. – – 3.05 – – –

Anionic I form

BLYP 2.86 2.82 2.87 -0.04 0.05 0.01

B3LYP 3.04 2.87 3.05 -0.17 0.18 0.01

Expt. ≈2.59 – 2.50 – – -0.09

Anionic B form

BLYP 2.86 2.79 2.93 -0.07 0.14 0.07

B3LYP 3.04 2.87 3.12 -0.17 0.25 0.08

Expt. ≈2.59 – 2.63 – – 0.04
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4.4 QMC/MM excitation energies

We now compute the vertical excitations of the three forms of wild-type GFP
in quantum Monte Carlo. As for the chromophore models in vacuum, we only
compute the bright π → π∗ (HOMO → LUMO) transition, which has the
largest oscillator strength and therefore corresponds to the maximum absorp-
tion of GFP. The QMC excitations are given by the difference of the excited
state S1 and the ground state S0 total energy, which are now computed in
the presence of the MM protein environment. To perform a quantum Monte
Carlo calculation in the presence of the protein environment, we need to in-
clude the environmental effects in the actual QMC calculation as well as in
the construction of the starting many-body wave function.

The inclusion of a classical MM environment in the QMC calculation
is straightforward as it amounts to include an additional external potential
which we simply represent on a grid encompassing the QM component. The
potential is computed using the positions of the MM atoms as obtained in the
DFT/PBE QM/MM calculation to setup the protein model, and the partial
charges of the MM atoms are screened as in the CPMD code. For the setup
of the determinantal component of the QM wave function, we employ the
GAMESS code which allows us to include the MM atoms as screened point
charges via the effective fragment potential module of GAMESS. We only
consider the MM atoms which lie within Rc = 12 Å of the QM/MM boundary
and leave the positions of the MM atoms at the optimal coordinates of the
DFT/PBE QM/MM calculation. As GAMESS only allows a particular way
to screen the point charges which is different than the one in the CPMD code,
we verify below that the use in QMC of the MM potential compatible with
the screening in GAMESS yields equivalent QMC/MM excitation energies
than when using the CPMD screening.

All QMC calculations are performed with Hartree-Fock semi-relativistic
energy-consistent pseudopotentials specifically constructed for use in QMC,
and the corresponding cc-pVDZ basis sets [67]. We use Jastrow-Slater wave
functions where the determinantal component is determined within GAMESS
in the presence of the MM atoms and the Jastrow correlation factor is sub-
sequently optimized by energy minimization using the Hamiltonian with the
additional potential due to the MM environment. In the Jastrow factor, we
only include electron-electron and electron-nucleus correlation terms as the
additional electron-electron-nucleus terms would significantly slow down the
calculations. Moreover, in Chapter 3, we have seen for the small anionic
model chromophore that neglecting the three-body terms in the Jastrow
factor does not significantly affect the DMC excitation energies. For the
determinantal components of the ground and excited states, we use the four
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Table 4.5: Vertical excitation energies (eV) for the neutral A and the an-
ionic I and B forms of wild-type GFP computed within VMC, DMC, and
TDDFT/BLYP and B3LYP. The experimental energies correspond to the
absorption maxima for the A and B forms and the 0-0 transition for the I
form. The CASPT2 results are from Ref. [13]. For the QMC results, the
statistical error on the last figures is given in parenthesis.

A form I form B form

Excitation energy (eV)

Expt. 3.05 2.50 2.63

VMC 3.96(09) 3.34(09) 3.71(9)

DMC 3.66(11) 3.16(11) 3.15(12)

TDDFT/BLYP 3.02 2.87 2.93

TDDFT/B3LYP 3.23 3.05 3.12

CASPT2 [13] – 2.65 2.81

determinants resulting from a two-state SA-CASSCF(2,2) calculation with
equal weights. Again, this choice for the wave function is both motivated by
the necessity to reduce the computational demands of the calculation, and by
the observation for the small anionic model chromophore that the inclusion
of a larger active space as well as the reoptimization of the orbitals in the
presence of the Jastrow factor only affects the DMC excitation energy by at
most 0.1-0.2 eV.

In Table 4.5, we summarize the VMC, DMC and TDDFT vertical exci-
tations for the neutral A and the anionic I and B forms of wild-type GFP
and compare them with experiments as well as CASPT2 results available in
the literature [13]. We observe that the DMC excitation energies are always
lower than the VMC values as in the case of the model chromophores in vac-
uum, but remain too high as compared to experiments. For all three forms,
DMC overestimates the excitation energies by as much as 0.5-0.6 eV while
the available CASPT2 results appear to be in significantly better agreement
with experimental values.

For the anionic I and B forms, the DMC excitation is higher than ex-
periments by roughly the same amount as in vacuum where, for consistency,
we are considering the gas-phase excitation computed with the same type
of wave function, that is, a SA-CASSCF(2,2) determinantal component with
no reoptimized orbitals. Based on our experience in the gas phase, we may
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expect that reoptimizing the determinantal component in the presence of the
Jastrow factor will affect the excitation energy by a small amount of the or-
der of 0.1-0.2 eV and therefore not sufficient to bring the DMC excitations in
agreement with experiments. Again similarly to case of the gas-phase anion,
we find that the DMC excitation is reasonably close to the linear-response
TDDFT excitation. For the neutral form, the DMC excitation energy is also
overestimated as compared to experiments by roughly the same amount as in
the anionic forms and therefore in disagreement with the the TDDFT value
which instead agrees perfectly with the experimental absorption maximum.

On the positive side, the shift in the excitation energy following depro-
tonation of the neutral form is well reproduced by DMC while TDDFT fails
in describing how the energy correlates with the charge state of the chro-
mophore. The DMC difference between the neutral and the anionic I form is
roughly (0.50 ± 0.16) eV, as compared to the experimental value of 0.50 eV.
The DMC difference between the neutral and the anionic B form is instead
(0.49 ± 0.16) eV while the experimental shift is 0.42 eV.

Understanding the mixed performance of quantum Monte Carlo

Since this work represents the first application of quantum Monte Carlo meth-
ods to the computation of the excitations of a large biosystem via a mixed
quantum/classical approach, we are still in the process of understanding the
reasons of its mixed performance. It is certainly positive and extremely im-
portant that DMC can well reproduce the difference between the excitation
energies of the various forms of GFP, especially since TDDFT fails to see sig-
nificant differences between the different charge states of the chromophore.
However, an absolute error of 0.5-0.6 eV is certainly too large and at vari-
ance with the good performance we have previously observed with the present
QMC approach when describing the excitation energies of small prototypical
gas-phase molecules [61–64].

There are essentially three possible errors in a DMC calculation, the time-
step error, the localization error in treating the non-local pseudopotential
and, finally, the fixed-node error. None of this errors is actually small and
we always rely in their cancellation when computing the difference of total
energies. As the shift between the neutral and anionic forms are well re-
produced, the source of error must be affecting all three forms in the same
manner by raising the absolute value of all excitations. The impact of the
time-step and localization errors have been already analyzed in detail for the
small model chromophore in vacuum. The system is now slightly larger and
we are using the same time step of 0.055 a.au. as for the smaller model chro-
mophores. However, the algorithms we are using for the DMC calculation
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is characterized by small time-step errors and in going to the larger system,
we have added the “same” type of atoms (C, N, O and H) and consequently
the “same” type of electrons. Therefore, if the time-step extrapolated exci-
tation energy is indistinguishable within statistical error from the excitation
at τ = 0.055 a.u. for the smaller chromophore, we expect the same to be
true for the protein chromophores. The same analysis holds for the impact
of the localization error on the excitations. For the smaller chromophore,
the use of a three-body Jastrow factor does not significantly affect the DMC
excitation energies within statistical error, so the effect of localizing the non-
local potential appears small. Moreover, the DMC excitation energy of the
small chromophore is also unchanged when a different algorithm beyond the
localization approach is employed. Therefore, as the protein chromophore is
rather similar to the smaller chromophore, we would also expect that time-
step error and localization error are under control.

The most serious source of error is the fixed-node error which can only be
controlled by using better many-body wave functions. In the small anionic
chromophore, all attempts to use more sophisticated wave functions have only
marginally lowered the DMC excitation energy by 0.1-0.2 eV with respect to
the result obtained using the simplest unoptimized SA-CASSCF(2,2) wave
function. For the protein system, we find that using the same simple ansatz
for the many-body wave function yields excitation energies which are all over-
estimated with respect to experiments by 0.5-0.6 eV. If the source of error
were the fixed-node error, the fact that the error is the same for both the an-
ionic and the neutral forms would likely mean that the multi-configurational
nature of the excitation is the same for both charge states and that we are
missing some important static correlations in our wave function. This is
however at odds with the observation that linear-response adiabatic TDDFT
appears to be able to describe the neutral but not the anionic form. In
the previous Section, when trying to understand the mixed performance of
TDDFT, we attributed the problems of TDDFT with the anionic form to the
possible double- and higher-excitation character of this excitation as charge-
transfer or underestimation of the ionization threshold do not seem to play a
role. Now, from the DMC results with the SA-CASSCF(2,2) wave function,
we can infer that, whatever the multi-configurational nature of the excita-
tion, it should be rather similar for both charge states, a fact which leaves
unexplained the mixed success of TDDFT. Therefore, what is the source of
error in the QMC calculations? Certainly, the most likely candidate remains
the fixed-node error and, also in the protein, additional extensive (and com-
putational costly) studies must be performed with larger active spaces in
the determinantal component of the wave functions to really ensure that the
CASSCF(2,2) ansatz is not too simplistic.
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Another obvious source for our problems is the QM/MM model itself, not
being representative of the real protein structure of wild-type GFP and/or of
the chromophore-protein interaction. We have already seen how small vari-
ations in such a complex model can yield very different excitation energies
as in the study by Marques et al. who find perfect agreement of adiabatic
TDDFT with experiments by protonating (we believe) incorrectly a closeby
residue to the GFP chromophore. To understand whether our protein struc-
ture is realistic, one could study different mutants as the availability of more
theoretical data would allow us to better understand correlations between
models and performance of TDDFT and QMC. This rather challenging and
long route has not been undertaken in this thesis.

It is instead conceptually simpler even though computationally rather
costly to check whether the protein-chromophore interaction is poorly de-
scribed in our QM/MM model. In the calculations of the electronic states
of the QM chromophore in the MM environment, the interaction between
the QM and the MM part is purely electrostatic and the environment is
not polarizable in response to the excitation of the quantum chromophore.
Moreover, as already pointed out above, the complete quantum nature of hy-
drogen bonds cannot be described in terms of electrostatic interactions only.
To understand the limitation of our QM/MM description of the protein-
chromophore interaction, we can simply enlarge the QM part to include close
residues. One first step in this direction is described in the next Section.

4.5 Enlargement of the QM part

We focus here on the effect of enlarging the QM part of our QM/MM calcula-
tion of the I form of wild-type GFP. In Fig. 4.14, we show how we enlarge the
QM part of our system by including the residues Arg-96 and Gln-94 which are
hydrogen bonded to the oxygen of the imidazole ring. We choose to include
these two residues as their presence stabilizes the excited state more than the
ground state since, in the excited state, charge is displaced from the phenolic
to the imidazole ring. We therefore expect that, if their approximate MM
treatment is responsible for the poor agreement of the theoretical excitations
with experiments, a correct inclusion in the QM part of these two residues
should lower the excitation in the direction of the experimental numbers.
Also we note that residue Arg-96 is positively charged and has therefore an
important role in stabilizing the negative charge of the anionic chromophore.

The structure of the enlarged QM/MM system is again equilibrated within
DFT/PBE QM/MM with the CPMD code. Starting from the structure of
the I form obtained in Section 4.1.2, we perform the following steps:
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Figure 4.14: Enlarged QM structure of the I form of wild-type GFP. The
original chromophore as well as residues Arg-96 and Gln-94 are emphasized
and are now included in the QM calculation.

1) 0.7 ps of molecular dynamics at constant energy (NVE). The temper-
ature monotonically grows and the QM energy becomes lower.

2) 1 ps of molecular dynamics with f = 0.99 of the MM system only with
the QM atoms at fixed positions.

3) 0.07 ps of molecular dynamics with f = 0.999.

4) 0.14 ps of molecular dynamics with f = 0.995.

At the end of the simulation, the bond lengths along the chromophore
are oscillating less than 0.0005 Å, and the hydrogen-bond distances between
the imidazole oxygen and hydrogens of Arg-96 and Gln-94 vary less than
0.005 Å. In figure 4.14, we show the behavior of the hydrogen-bond distances
between the imidazole oxygen and the hydrogen donated by Arg-96(N) and
Gln-94(N) during the first 0.05 ps of the equilibration process. The starting
structure is the optimal structure obtained with the two residues treated as
classical, where the two bonds lengths determined via an effective electro-
static interaction between the QM oxygen and the MM hydrogens are rather
similar. Interestingly, as the two residues are included in the QM part and
the hydrogen bonds treated fully quantum mechanically, the two bonds im-
mediately start to differ. The bond of the oxygen with the hydrogen from the
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Figure 4.15: Bond lengths in Å between the imidazole oxygen and the hydro-
gen of the hydrogen-donor nitrogens of Arg-96 and Gln-94 which are included
in the QM system. The first 0.05 ps of molecular dynamics are shown. The
starting configuration is the optimal QM/MM structure obtained with the
two residues treated as classical.

positive Arg-96 is stronger and the corresponding distance becomes shorter
while the distance to Gln-94 lengthens. At the end of the dynamics run
(not shown in the figure), the oxygen distance from the hydrogen of Arg-96
and Gln-94 settles at 1.66 and 1.88 Å, respectively. The Arg(N)· · ·O12 and
Gln(N)· · ·O12 distances become 2.71 and 2.86 Å, respectively, that is, only
different by -0.06 and 0.01 Å than the optimal values obtained when the two
residues are treated classically. The distances along the chromophore are less
affected by the inclusion of the two residues in the QM part of the system.
For instance, the central bonds of the carbon bridge become 1.41 and 1.40
Å, as compared to the starting distances of 1.42 and 1.39 Å.

In Table 4.6, we show the TDDFT/MM excitation energies using the
BLYP and the B3LYP functionals which should be compared to the cor-
responding TDDFT energies of Table 4.3. The reduction in the excitation
energy is very small and equal to 0.07 and 0.03 eV for the BLYP and B3LYP
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Table 4.6: TDDFT/MM excitation energies in eV for the I form of wild-type
GFP where the QM part is enlarged to include Arg-96 and Gln-94. The
results obtained with the BLYP and B3LYP functionals are shown.

BLYP B3LYP

S0 → S1 2.80(0.57) 3.02(0.97)

H→L(0.46) H→L(0.58)
H-2→L(0.39)

S0 → S2 3.00(0.26) 3.43(0.0023)

H-2→L(0.53) H-1→L(0.69)
H→L(0.28)

H-3→L(0.17)
H-4→L(0.16)

∆ǫHL 1.82 2.91

−ǫHOMO 4.14 4.93

functional respectively. For this enlarged QM/MM setup, we also perform
quantum Monte Carlo calculations using a SA-CASSCF(2,2) wave function
and including the MM environment. We find a DMC excitation energy of
3.2(1) eV which is compatible with the DMC result of 3.16(11) obtained with
the smaller QM system. Therefore, even though enlarging the QM subsystem
to include the residues Arg-96 and Gln-94 reduces the corresponding hydro-
gen bond distances to the imidazole oxygen, this geometrical changes are
not sufficient to bring a significant shift in the TDDFT and DMC excitation
energies.

4.6 Conclusions

We constructed the protein models of the neutral A and the two anionic I and
B forms of wild-type GFP using a DFT QM/MM approach. For the neutral
form, we started from the available X-ray structure while we obtained the
I form by deprotonating and further relaxing the optimal neutral A form.
The starting structure of the B form was built by homology from the X-ray
structure of the mutant S65T of wild-type GFP.

We first performed a thourough structural analysis of the neutral and
anionic forms comparing to available crystallographic data as well as other
theoretical studies available in the literature. While all evidence points at
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the correctness of our protein models, we find that the DFT QM/MM cal-
culations by Marques et al. [12] yield structures significantly different from
ours since these authors have incorrectly described the binding site of the
chromophore by wrongly protonating a closeby residue. Since the incorrect
description of the residues surrounding the chromophore affects its geometry
and consequently its response to light, it follows that the perfect agreement of
the corresponding TDDFT spectra for the isolated chromophore with the ex-
periments is purely coincidental. This surprising outcome shows how difficult
it is to correctly describe a complex biosystem and how easy to be mislead in
believing the corretness of a given model when comparing to relatively few
experimental numbers.

Starting from our optimal structures, we have computed the vertical
TDDFT excitations of the chromophore of GFP in the protein environment
for the neutral A, and the two anionic I and B forms. We find that adiabatic
TDDFT appears to be accurately describing the excitation of the neutral
form but significantly overestimates the excitations of the anionic forms by
0.3-0.4 eV depending on the functional. Consequently, the TDDFT shift in
the excitation upon deprotonation is not correctly reproduced since TDDFT
gives very similar excitations energy for all three forms of GFP. We tried
to analyze the reasons of this mixed performance but it is not evident why
TDDFT should give an excellent agreement with experiments for the neutral
but not the anionic forms, in particular the I form. The excitations of these
systems do not appear to be characterized by particular charge transfer and
the underestimation of the DFT ionization threshold is not an issue once the
chromophore is embedded in the protein environment. A possible explana-
tion is that the excitation of the anionic form has a significant double- or
higher-excitation character as compared to the neutral case. However, QMC
calculations obtain a comparable description of the excitations of all three
protein forms using the same, simple form of wave function, which indicates
that, whatever the multi-configurational nature of the excitation, it should
be rather similar for both charge states.

Finally, we have explored for the first time the use of QMC in describing
the excitations of a chromophore in its protein environment and performed
QMC/MM calculations of the excitation energies of the three forms of wild-
type GFP using for the moment only a simple wave function. While the DMC
excitation energies of both the neutral and the anionic forms are significantly
higher than experiments by as much as 0.5-0.6 eV, the experimental shift
between the different charge states of the chromophore is well reproduced by
DMC. Even though it is reassuring that DMC can describe relative energies
correctly, the DMC overestimation of the excitation energies is rather large
and we have only begun to investigate the possible reasons for this error
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such as shortcomings in the QM/MM description of the chromophore-protein
interaction.
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Chapter 5

Anion-π and π-π cooperative
interactions

5.1 Introduction

The design of selective receptors of anionic species is a very active area of
research within supramolecular chemistry due to the potential applications
to catalysis, separation processes, and biomolecular systems [87]. Common
neutral receptors bind the anion by hydrogen bonding or coordinate the an-
ion at the Lewis acidic center of an organometallic ligand. As compared to
cationic hosts, neutral receptors avoid the presence of competing negative
counterions and are characterized by higher selectivity due to the direction-
ality of the interactions. In recent years, the alternative route of anion com-
plexation by neutral hosts via anion-π interactions has received considerable
interest. The favorable binding interactions between an anionic species and
an electron-deficient π-electron compound has been demonstrated in several
theoretical studies [88–104] and experimental evidence of these attractive
interactions is now cumulating from both X-ray structures [105–113] and
solution data [114,115].

Aromatic systems which have been investigated as potential anion-host
candidates are either substituted benzene or electron-poor heteroaromatics
such as triazines. Even though π-systems are expected to interact repul-
sively with anions, the presence of electron-withdrawing substituting atoms
in the aromatic compounds modulates the reactivity inverting their natural
electron-donor character. Hexafluorobenzene is the extreme example with a
permanent quadrupole moment of similar magnitude as benzene but oppo-
site sign, leading to attractive electrostatic interactions with electron-donor
species [116]. In general, the interactions between the anion and the π-system
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are predominantly of electrostatic and polarization nature, but dispersion
forces and charge transfer [93,94,102] also contribute to the stability of these
complexes.

Recently, experimental evidence of anion-π-π interactions has emerged
from crystallographic studies [106–109] on synthesized coordination com-
pounds based on the electron-deficient 1,3,5-triazine moieties, suggesting
the possibility to enhance anion-π binding by π-π stacking. Particularly
intriguing are the structural features of the nitrate-triazine-triazine complex
of Ref. [109], as the two aromatic rings are staggered and not perfectly faced,
and the nitrate ion is not parallel to the closest ring. The unusual asymmet-
rical configuration of the closely stacked triazines could be induced by the
particular coordination within the compound, or governed by a subtle inter-
play between anion-π and π-π interactions [101, 104]. In the original paper,
the compound was also investigated theoretically but, due to the poor de-
scription of dispersive interactions by the standard density functional theory
approach employed, no conclusions could be drawn on the stabilization effect
of π-π interactions on the whole complex.

In the present theoretical study, we investigate and rationalize the struc-
tural features of this anion-π-π complex, and quantitatively address the is-
sue of cooperativity of anion-π and π-π interactions using a combination of
dispersion-corrected density functional theory (DFT) and quantum Monte
Carlo (QMC) calculations. The calculated structure is remarkably close to
the one observed experimentally even though the anion-π-π complex was not
additionally coordinated as in the crystal structure. Therefore, the unusual
stacking is an intrinsic feature which stabilizes the anion-π binding, indicating
that the principle of anion-π-π cooperativity is regulating the self-assembly in
this coordination compound. Energetically, the cooperative effect of anion-π
and π-π interactions in the triazine-triazine-nitrate complex is not negligible
but amounts to roughly 6% of the total binding energy.

We want to emphasize that the theoretical investigation of anion-π-π
interactions is particularly demanding. In anion-π systems, correlation sig-
nificantly contributes to the interaction energy [93, 94] and must therefore
be accurately treated. In the presence of aromatic stacking, the need to also
address π-π interactions further complicates matters. Finally, even though
most previous studies of anion-π systems within the MP2 approach were
limited to highly symmetrical configurations, it is important to be able to
explore lower-symmetry complexes for a realistic representation of the anion-
π-π systems observed experimentally. Therefore, we choose here to em-
ploy the efficient DFT approach in combination with the recently proposed
dispersion-corrected atom-centered pseudopotentials (DCACPs) [117, 118],
which we validate against accurate highly-correlated quantum Monte Carlo
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calculations. The DFT-DCACP method is found to reliably predict equilib-
rium structures as well as the relative stability of different complexes, and is
therefore a very promising tool for the investigation of even larger anion-π
systems.

5.2 Computational approaches

We briefly review below the two theoretical methods employed in this work,
that is, the recently developed semi-empirical DFT scheme augmented with
dispersion-corrected atom-centered potentials (DCACPs) and the quantum
Monte Carlo (QMC) approach. We also give all relevant computational de-
tails.

5.2.1 Semi-empirical dispersion corrected DFT

A simple semi-empirical approach has been recently proposed to correct the
deficiency of approximate density functionals in describing London disper-
sion forces [117, 118]. The non-local electron-nucleus pseudopotentials used
in the Kohn-Sham DFT scheme are augmented with DCACPs whose param-
eters are fitted against references data obtained in ab-initio highly-correlated
approaches. By construction, these potentials do not affect valence electronic
properties but appear to significantly improve the description within DFT of
weakly bound systems at no additional computational cost [119, 120].

While the original DCACPs were calibrated against MP2 reference prop-
erties, we use here the latest library of potentials constructed from more
accurate coupled-cluster singles and doubles with a perturbative treatment
of the triples [CCSD(T)] and configuration interaction data [121]. We em-
ploy the generalized gradient approximation (GGA) functional of Becke, Lee,
Yang and Parr (BLYP) [16] and the corresponding DCACPs non-local poten-
tials given in the Troullier-Martins [122] form. We use the DCACPs for all
the atomic species except for F where we use the original Troullier-Martins
BLYP pseudopotential as the corresponding DCACP is not yet available. We
expect that the absence of dispersion corrections for F is not important in
the complexes studied in Section 5.3.3 as the F-F interaction is dominated
by electrostatic repulsion. All the DFT calculations are performed using the
plane-wave basis set program CPMD 3.11.1 [46] with a plane-wave cutoff of
80 Ry. We employ the isolated system module in CPMD which allows study-
ing an isolated molecule or complex within periodic boundary conditions.
The Poisson equations are solved with the Hockney method [123]. We use a
box size of 15 × 15 × 15 Å3 which is sufficiently large for all the complexes
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considered in this work. All the geometry optimizations are performed with-
out imposing any symmetry constraints and with a threshold for the residual
force of 0.0005 a.u. The binding energies of complexes are computed by sub-
tracting the energies of the optimized fragments from the total energy of the
complex. We note that all computed binding energies do not include zero
point energy corrections.

5.2.2 Quantum Monte Carlo methods

QMC methods [124,125] offer an efficient alternative to conventional highly-
correlated ab-initio methods as they can be applied to sufficiently large sys-
tems and still provide an accurate description of both dynamical and static
electronic correlation. The key ingredient which determines the quality of a
QMC calculation is the many-body trial wave function which, in the present
work, is chosen of the Jastrow-Slater type with the particular form,

Ψ = D↑D↓
∏

A,i,j

J (rij , riA, rjA) , (5.1)

where D↑ and D↓ are Slater determinants of single-particle orbitals for the
up- and down-spin electrons, respectively, and the orbitals are represented
using atomic Gaussian basis. The Jastrow correlation factor J depends on
the distance rij between electrons i and j, and on the distance riA and rjA

of electrons i and j from nucleus A. The Jastrow factor is here expressed
as the exponential of the sum of three fifth-order polynomials of electron-
nuclear, of electron-electron, and of pure three-body mixed electron-electron
and electron-nucleus distances, respectively [126]. Different Jastrow factors
are used to describe the correlation with different atom types.

In variational Monte Carlo (VMC), the square of the wave function is
sampled using the Metropolis algorithm and the expectation value of the
Hamiltonian on the wave function is computed by statistically averaging
over a large number of electronic configurations sampled from Ψ2. The wave
function is then used in diffusion Monte Carlo (DMC), which produces the
best energy within the fixed-node approximation, i.e. the lowest-energy state
with the same zeros (nodes) as the trial wave function Ψ. All QMC results
presented below are from DMC calculations.

All QMC calculations are performed with the program package CHAMP
[127]. We employ scalar-relativistic energy-consistent Hartree-Fock pseu-
dopotentials [67] for all the elements, and the hydrogen potential is softened
by removing the Coulomb divergence. To represent the orbitals in the de-
terminantal component, we employ the Gaussian basis sets [67] constructed
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for these pseudopotentials and augment them with diffuse functions. All
calculations are performed with the cc-pVDZ basis augmented with two ad-
ditional diffuse s and p functions with exponents 0.04690 and 0.04041 for
carbon, 0.06124 and 0.05611 for nitrogen, 0.07896 and 0.06856 for oxygen,
and 0.06080 and 0.04660 for chlorine [68]. Only in the computation of the
binding energy of the far-triazine-NO−

3 fragment (see Table 5.3), the basis is
further augmented with two diffuse s and p functions with exponents 0.0138
and 0.0108 for carbon, 0.0167 and 0.0144 for nitrogen, and 0.0206 and 0.0171
for oxygen [68]. The use of these additional diffuse functions allows a stable
QMC simulation in this compound where the triazine and NO−

3 molecules
are at very large distances (about 7 Å). Further augmentation of the basis
with two diffuse d functions for all heavier atoms does not change the binding
energy of the compound.

The parameters in the Jastrow factor are always optimized within VMC
by energy minimization [66] and, when stated, the coefficients of the orbital
expansions over the atomic Gaussian basis are simultaneously optimized with
the Jastrow component. Otherwise, orbitals from a B3LYP density functional
theory [16, 19] calculation are employed, which are obtained using the same
pseudopotentials and basis set with the program GAMESS(US) [57]. An
imaginary time step of 0.075 a.u. is used in the DMC calculations.

As side test, we compute the DMC binding energy and equilibrium dis-
tance of the prototypical triazine-chloride complex with the ion along the C3

axes of the ring, which has been the subject of several MP2 studies [88, 92,
93,95,96,99]. We perform a correlated sampling run [128] using as reference
the MP2/aug-cc-pVDZ geometry with a chloride-centroid distance of 3.13
Å [93], and the corresponding fully optimized QMC wave function. We find
a DMC equilibrium distance of 3.24 Å, which is in the range of the MP2
values obtained with different basis sets [93]. The DMC binding energy of
6.0(3) kcal/mol is slightly smaller than the MP2/aug-cc-pVDZ value of 6.93
kcal/mol [93]. We note that using optimized or B3LYP orbitals in the de-
terminantal component of the wave functions yields statistically equivalent
results even though the B3LYP approach underestimates the binding energy
by about 2 kcal/mol [95].

5.3 Results

To investigate cooperative effects of anion-π and π-π interactions in the un-
usual triazine-triazine-nitrate complex observed experimentally, we first need
to characterize how the anion-π and π-π fragments are separately stabilized.
Studying these smaller components also allows us to access the performance
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of QMC and in particular of the semi-empirical DCACP approach, by com-
paring to MP2 or CCSD(T) calculations when available.

5.3.1 Triazine and NO−
3

Figure 5.1: Side (A) and top (B) view of the triazine-nitrate complex in the
parallel geometry (left) and in the T-like form (right).

The triazine-NO−
3 complex represents one of the first examples of anion-

π interactions observed experimentally [109, 110], and has already been the
subject of several computational studies both at the DFT and MP2 level [93,
109,110]. Thus, it is an ideal system to assess the accuracy and transferability
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of the DCACPs in describing this novel weak interactions as all the atomic
elements in the complex are available in the current library of dispersion
corrected pseudopotentials [121].

Table 5.1: DFT/BLYP-DCACP and DMC binding energies in kcal/mol of
the triazine-NO−

3 complex. The parallel and T-like geometries corresponding
to the MP2 and DFT/BLYP-DCACP equilibrium distances are shown. The
MP2 binding energies are also given when available. R0 and R

′

0 are the
equilibrium distances in Å between the ring centroid and the nitrogen atom
of NO−

3 , and between the centroid and the closest oxygen atom of NO−
3 ,

respectively. The statistical error on the last figure of the DMC binding
energy is given in parenthesis.
Geometry R0 R

′

0 DFT DMC MP2
DFT parallel 3.18 – -6.7 -5.1(3) –
MP2 parallel 2.90a – – -4.9(3)c -6.8a

DFT T-like 3.69 3.07 -8.8 -6.7(3) –
MP2 T-like – 2.75b – – -8.4b

a Ref. [93] MP2/aug-cc-pVDZ; b Ref. [110] MP2/6-311++G(3df,p).
c Wave function fully optimized with VMC [129].

In Table 5.1, we show the binding energy and the equilibrium distance
between the ring centroid and the nitrogen of NO−

3 , calculated with different
approaches. We focus first on the symmetrical geometry where the plane
of the nitrate is parallel to the triazine plane with the nitrogen of the an-
ion located on top of the ring centroid and the oxygens facing the carbon
atoms (Fig. 5.1). We find that DFT/BLYP-DCACP gives a binding energy
which is very close to the one obtained within the MP2 approach [93] but
with a slightly larger (about 10%) equilibrium distance. DMC gives a bind-
ing energy ≈ 1.7 kcal/mol smaller than the DFT and MP2 values. A DMC
equilibrium distance of about 2.9 Å is estimated in a correlated sampling
run using as reference geometry the MP2 geometry and the corresponding
fully optimized QMC wave function [128]. In Fig. 5.2, we show the DFT
binding energies obtained with the standard BLYP and the BLYP-DCACP
pseudopotentials for the parallel geometry at different distances between the
planes. The structure of the fragments is kept fixed at the optimal geometry
of the complex while changing the triazine-nitrate distance. The computed
BLYP binding energy of 2.4 kcal/mol is in line with the value previously
obtained with a Slater-type orbital ET-pVQZ basis [109]. It clearly appears
that the dispersion corrections have a very large effect on the description of
the anion-π interactions. With the inclusion of the DCACP pseudopoten-
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tials, the binding energy increases from 2.4 kcal/mol to 6.7 kcal/mol and the
equilibrium distance decreases by about 6%.

The triazine-nitrate complexes observed experimentally [109, 110] show
however a very different structure from the more intuitive face-to-face con-
figuration. This observation prompted further calculations both at the DFT
and MP2 level [109, 110], which yield an energetically lower T-like arrange-
ment of the triazine-nitrate complex. As shown in Table 5.1, the structure
and the binding energy of the T-like complex computed within DFT/BLYP-
DCACP compare well with the MP2 values [110]. In particular, the disper-
sion corrected potentials predict this configuration to be more stable than
the parallel arrangement by about 2 kcal/mol. Similarly to the MP2 results,
we find that the two oxygens of the nitrate point towards the triazine plane,
one facing the ring centroid and the other facing one hydrogen atom at a
distance dO...H = 2.52Å (see also Fig. 5.1). The interaction with the hydro-
gen appears to further stabilize this geometrical arrangement. The short-
est oxygen-centroid distance R

′

0 predicted by DFT/BLYP-DCACP is again
about 10% larger than the MP2 value. The DMC calculations performed
using the DFT optimized complexes give the same trend for the binding en-
ergy with the T-like geometry being the most stable. DMC results however
indicate that both DFT and MP2 tend to overestimate the binding energy
by ≈2 kcal/mol.

5.3.2 The triazine dimer

The DCACPs have been developed with the main aim of improving the gen-
erally poor description of π-π interactions within DFT. The triazine dimer
makes no exception in this respect, with the BLYP functional giving an un-
bound state. At the contrary, ab-initio correlated methods such as MP2
and CCSD(T) find a bound state with the optimal conformation being a
stacked complex with a 60◦ relative orientation and a vertical distance of
3.4 Å [130, 131]. As shown in Table 5.2, the MP2 method tends to overes-
timates the binding energy in comparison with the more accurate CCSD(T)
approach, a feature which appears to be general in the MP2 description of
van der Waals complexes [130–132].

In Table 5.2, we show the results for the triazine dimer obtained with
the DFT/BLYP-DCACP approach. We consider the face-to-face conforma-
tion with relative orientations, 0◦, 30◦, and 60◦, between the two triazine
molecules (Fig. 5.3). All structures are bound with the binding energy in-
creasing as we move from 0◦ to 60◦. The DFT-DCACP global minimum at
60◦ is consistent with the MP2 finding, but has a slightly smaller binding
energy and a centroid-to-centroid distance 6% larger. DMC calculations per-
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Figure 5.2: Binding energy of the triazine-NO−
3 system in the parallel geom-

etry as a function of the distance between the centroid of the triazine ring
and the nitrogen atom of NO−

3 . The curves are computed within DFT/BLYP
with and without the DCACPs.

formed on the DFT optimized geometries display the same trend as DFT
but give a systematically smaller binding energy by about 1 kcal/mol. We
note that, at the MP2 geometry, the DMC binding energy is equal to the
CCSD(T) prediction. Once more, these results indicate that the BLYP-
DCACPs are able to predict the proper trend and global minimum of the
weakly-bound triazine dimer although they slightly overestimate the binding
energy similarly to the MP2 approach.

In the crystalline structure [109] containing the triazine-triazine-nitrate
complex, an unusual triazine-triazine moiety is observed: The planes of the
triazine molecules are slightly off-centered with a centroid-to-centroid dis-
tance of 3.45 Å, and have a relative orientation of about 30◦ with a dihedral
angle of about 15◦. If we optimize the triazine dimer within DFT-BLYP-
DCACP starting from this experimental conformation, we find a local mini-
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Figure 5.3: Side (A) and top (B) view of four different conformations of the
triazine-triazine dimer. From left to right, the two molecules are rotated with
respect to each other by 0◦, 30◦, and 60◦. The bended geometry (right) is
rotated by roughly 30◦.

mum very similar to the experiment, that is, a distance between the centroids
of 3.79 Å and a dihedral angle between the two rings of 11◦ (see Fig. 5.3).
As shown in Table 5.2, the predicted binding energy for this local minimum
is only 0.6 kcal/mol lower than the global minimum. However, the bending
slightly stabilizes the dimer with respect to the parallel conformation at the
same angle of 30◦. For the bended conformation, DMC gives the same energy
within statistical error as for the DFT global minimum geometry.

5.3.3 Cooperativity of anion-π-π interactions

We now focus on the experimental triazine-triazine-nitrate complex observed
in Ref. [109] to understand the unusual structural features and quantify the
stabilization induced on the anion-π system by π-π stacking. The relevant
anion-π-π unit of the crystalline structure represents the starting point for our
calculations and is shown in Fig. 5.4 together with the DFT/BLYP-DCACP
optimal geometry. The similarity between the experimental and theoreti-
cal complexes is remarkable: The two triazine are staggered by about 30◦

and bended, and slip with respect to each other with the nitrate bound in a
T-like configuration. Moreover, the nitrogen of the anion is displaced with
respect to the normal through the centroid of the ring, consistently with the
experiment. More specifically, we find a centroid-to-centroid distance of 3.74
Å and a distance from the centroid to the N of NO−

3 of 3.50 Å as compared
to the experimental values of 3.45 Å and 3.71 Å, respectively. The two aro-
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Table 5.2: DFT/BLYP-DCACP and DMC binding energies in kcal/mol of
different conformations of the triazine-triazine dimer. The equilibrium dis-
tance R0 in Å is between the centroids of the two rings and the angle indicates
their relative rotation.
Geometry R0 DFT DMC MP2 CCSD(T)
DFT 0◦ 3.80 -1.7 -0.6(3) – –
DFT 30◦ 3.70 -2.5 -1.6(3) – –
DFT 60◦ 3.60 -3.5 -2.2(3) – –
MP2a 60◦ 3.40 – -2.8(3) -3.8a -2.8a

DFT 30◦ bended 3.79 -2.9 -2.1(3) – –
DFT 60◦ bended 3.61 -3.4 – – –
a Ref. [130, 131] with a diffuse cc-pVDZ’ basis set.

matic rings form a dihedral angle of 22◦, close to the experimental value of
18◦. Finally, two oxygen atoms of the nitrate are interacting with the tri-
azine ring, similarly to the observed structure. A more detailed comparison
with the experimental structure is not appropriate as the experimental com-
plex is embedded in the crystalline environment which may induce further
distortions. We note that, with respect to the geometries of the subunits sep-
arately optimized, the presence of the nitrate does not significantly change
the centroid-centroid distance but yields a larger tilt angle between the rings.
As for triazine-nitrate system, the main geometrical effect is that the nitrate
is more parallel and closer to the ring with a centroid-oxygen distance of 2.98
Å.

The total computed binding energy of this anion-π-π complex is -12.4
kcal/mol. To establish the stabilization effect induced by π-π stacking on
this supramolecular complex, we separately compute the π-π and anion-π
contributions to the binding energy. We extract from the optimized structure
the three fragments corresponding to the triazine dimer and the two possible
triazine-nitrate units, and compute their binding energies which are listed in
Table 5.3. By subtracting these contributions from the total binding energy
of the anion-π-π system, we derive a cooperative contribution to the binding
energy of 0.8 kcal/mol, which corresponds to a stabilization enhancement
of about 6%. The cooperative energy predicted by DMC using the DFT
geometries is compatible with the DFT value within two standard deviations,
while the DMC binding energies of the individual fragments are always lower
as already pointed out in the previous sections. In particular, the compound
given by the nitrate and the distant triazine ring is unbound within DMC
due to geometrical deformations of the molecules within the triazine-triazine-
nitrate complex.
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Figure 5.4: Side (A) and top (B) view of the triazine-triazine-NO−
3 complex as

obtained within DFT/BLYP-DCACP (left) and experimentally [109] (right).
In the top view, the bottom ring is parallel to the page.

We note that the triazine rings are not in the optimal staggered configu-
ration of 60◦ (see Table 5.2) but have a relative orientation of about 30◦. This
is certainly due to the geometrical constraints within the crystalline frame-
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work as the triazine rings are strongly coordinated via a complex network to
the metal centers of the compound. To generate a triazine-triazine-nitrate
complex arrangement consistent with the optimal geometries for the separate
fragments, we thus start from a structure in which the triazine rings are par-
allel in the optimal 60◦ orientation, with the nitrate in the T-like form and
two oxygens interacting with the ring (Fig. 5.6). The geometry optimization
shows that the relative orientation remains at 60◦, and the centroid-centroid
distance is unchanged with respect to the isolated dimer. However, the pres-
ence of the anion induces a tilt of about 14◦ of the triazine close to it, which
is likely induced by the interaction between one oxygen of the nitrate and
one hydrogen of the ring. As expected, the binding energy of this complex is
slightly larger than in the structure derived from the experiment (see Table
5.3) and the cooperative effect is of comparable magnitude.

Table 5.3: DFT/BLYP-DCACP and DMC binding energies in kcal/mol of
five π-π complexes interacting with NO−

3 , i.e. two triazine (TAZ) rings at
30◦, two TAZ rings at 60◦, two trifluorotriazine (TFT) at 60◦, and the two
mixed systems with one TAZ and one TFT ring at 60◦. The mixed sys-
tems denoted TAZ-TFT and the TFT-TAZ have the TFT and TAZ ring
closer to the NO−

3 , respectively. The geometry of the ternary compound
(ring-ring-NO−

3 ) is optimized within DFT/BLYP-DCACP and the geome-
tries of the ring-ring, close-ring-NO−

3 , and far-ring-NO−
3 fragments are here

kept fixed when computing their binding energies. The binding energies
are obtained as the difference between the total energy and the energies of
the isolated ring and NO−

3 optimized separately. For example, the binding
energy of the ternary compound is given by Eb(ring-ring-NO−

3 )=E(ring-ring-
NO−

3 )−2×E(ring)−E(NO−
3 ). The cooperative energy is defined as Eb(ring-

ring-NO−
3 )−Eb(close-ring-NO−

3 )−Eb(far-ring-NO−
3 )−Eb(ring-ring).

Compound TAZ 30◦ TAZ 60◦ TFT TAZ-TFT TFT-TAZ
DFT DMC DFT DFT DFT DFT

Ring-ring-NO−
3 -12.4 -8.5(2) -13.5 -21.5 -20.3 -17.3

Ring-ring -2.8 -1.7(2) -3.0 -0.2 -1.6 -2.6
Close-ring-NO−

3 -8.3 -6.0(2) -8.8 -16.5 -16.5 -8.3
Far-ring-NO−

3 -0.5 0.7(2) -0.7 -4.3 -0.7 -4.6
Cooperativity -0.8 -1.6(4) -0.9 -0.6 -1.5 -1.8

Finally, we check the effect of enhancing the π-anion interaction by substi-
tuting the hydrogens in the triazine rings at 60◦ with the strongly electroneg-
ative fluorine [88,92,96]. With this procedure, we generate three complexes,
i.e. (1) two trifluorotriazine rings with a nitrate, (2) one triazine and one tri-
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Figure 5.5: Side (A) and top (B) view of four different π-π complexes inter-
acting with NO−

3 . From left to right, we show two triazine (TAZ) rings at
60◦, two trifluorotriazine (TFT) at 60◦, and the two mixed systems, TFT-
TAZ and the TAZ-TFT. The TFT-TAZ and TAZ-TFT complexes have the
TFT and TAZ ring closer to the NO−

3 , respectively.

fluorotriazine coordinated with the nitrate, and (3) one trifluorotriazine and
one triazine coordinated with the nitrate. The three models are also shown
in Fig. 5.5.

As seen in Table 5.3, the total binding is increased by the fluorine sub-
stitution due to the stronger attractive interaction between the nitrate and
the trifluorotriazine ring(s). However, this increase does not always correlate
with a cooperative enhancement of the π-anion interaction by π-π stacking.
In particular, in the complex with two trifluorotriazine rings, the cooperative
effect is smaller than in the original system with two triazine rings as the π-π
system is now very weakly bound: The binding energy of the ring-ring frag-
ment is only 0.2 kcal/mol, and significantly reduced from the 2.0 kcal/mol of
the trifluorotriazine dimer optimized in the absence of the nitrate. This small
binding can be explained with the strong deformation of the trifluorotriazine
ring close to the nitrate, with one of the fluorine’s bending out of the ring
plane away from one of the nitrate oxygens.

In the mixed triazine-trifluorotriazine compounds, we observe instead a
more favorable balance of π-π and anion-π interactions, leading to an in-
creased cooperativity. In both complexes, the ring-ring fragment is still sig-
nificantly bound even though its binding energy is smaller than the optimal
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value of 3.2 kcal/mol for the isolated dimer. The ring-ring binding energy of
the complex with the triazine coordinated to the nitrate is larger by about 1
kcal/mol than the energy obtained in the case of the trifluorotriazine coor-
dinated to the nitrate. The reduced binding of the latter is due to a strong
deformation of the trifluorotriazine ring vicinal to the nitrate, similarly to
what observed in the compound with two trifluorotriazine rings. Correspond-
ingly, the largest cooperative effect is observed in the mixed complex with
the triazine coordinated to the nitrate where the non-additive contribution
amounts to roughly 10% of the total binding energy. Finally, we note that
the cooperative effect is always present in all the studied complexes while this
does not appear to be a general feature [104] of anion-π-π complexes, and
points to the very versatile nature of the triazine moiety in supramolecular
chemistry [133].

Figure 5.6: Triazine-triazine-NO−
3 complex with relative orientation of the

rings of 60◦ optimized within DFT/BLYP-DCACP (grey). In blue, we show
the starting symmetrical geometry.
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5.4 Conclusions

Using state-of-the-art dispersion corrected DFT and QMC calculations, we
have investigated the geometrical and energetic effects induced by π-π stack-
ing on the anion-π system of the unusual triazine-triazine-nitrate complex
recently observed experimentally. We have reproduced and rationalized the
highly asymmetrical features of the structure, which are not imposed by the
coordination of the anion-π-π subunit within the particular synthesized com-
pound. We show that the two triazines are staggered and bended, and slip
with respect to each other with the nitrate bound off-center in a T-like config-
uration. The stabilization induced by π-π stacking amounts energetically to
about 6% of the total binding energy. An increased cooperative effect of 10%
is obtained if the hydrogens in one of the triazine rings are substituted with
the strongly electronegative fluorine atoms and the dimer is further staggered
in a 60◦ orientation. We want to emphasize that the theoretical investigation
of a realistic anion-π-π system as the one treated in this paper is particularly
demanding as correlation plays an important role, while the system is not
small and must be treated without symmetry constraints. We find that the
use of the recently proposed dispersion corrected DFT approach represents
a good compromise between accuracy and the ability to study complex and
realistic systems involving weak interactions.
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Samenvatting

Absorptie van licht en het omzetten daarvan in andere vormen van energie
ligt aan de basis van een aantal van de meest belangrijke cellulaire processen
in levende organismen. Over het algemeen is een biologisch systeem gevoelig
voor licht door een eiwit dat een chromofoor bevat (dat is een molecuul,
gebonden aan het eiwit, dat verantwoordelijk is voor absorptie en emissie
van licht). Deze chromofoor staat centraal in een fotochemische reactie. Het
verdiepen van onze kennis van de primaire excitatie processen en van de
daaropvolgende energieoverdrachtmechanismen in fotobiologische systemen
is zowel fundamenteel van belang als in bestaande en potentile toepassingen
in de biotechnologie, waar deze kennis bijvoorbeeld kan worden toegepast bij
het ontwikkelen van autofluorescerende eiwitten met nieuwe spectroscopische
eigenschappen, die verkregen worden door selectieve mutaties.

Theoretische berekeningen van de optische eigenschappen van fotoac-
tieve systemen complementeren spectroscopische data door het geven van
een beschrijving op atomair niveau van de reactie van het eiwit op licht. De
theoretische benadering van dergelijke problemen moet een accurate kwan-
tummechanische beschrijving van de grondtoestand en de gexciteerde toes-
tanden van de fotoactieve component van het eiwit bevatten. Ook moet men
een voldoende groot model van het biosysteem kunnen beschrijven, aangezien
de omgeving van het eiwit een rol kan spelen bij het vastleggen van de op-
tische respons van het chromofoor. Het is verre van triviaal om aan deze
voorwaarden te voldoen en ondanks significante vooruitgang van methoden
om elektronische structuur te berekenen, blijft het een moeilijke opgave om
zelfs van relatief kleine organische moleculen de excitatie-energien te bereke-
nen.

In deze dissertatie gebruiken we een aantal state-of-the-art methoden om
het probleem op verschillende niveaus van nauwkeurigheid te behandelen.
Wij menen dat conventionele methoden toereikend zijn voor het beschrijven
van de grondtoestand van deze fotoactieve biomoleculen. Voor de gexciteerde
toestanden zullen we de prestaties van een andere benadering onderzoeken.
In het bijzonder worden eigenschappen van de grondtoestand beschreven met

143



Samenvatting Samenvatting

density functional theory in combinatie met ab-initio moleculaire dynamica
om de gegenereerde structuur naar een evenwicht te brengen en thermische
fluctuaties van de chromofoor en zijn onmiddelijke omgeving te bestuderen.
De interacties tussen het eiwit en de chromofoor, die door een lange afs-
tand worden gekarakteriseerd, worden kwantummechanisch beschreven; de
interacties met de rest van het macromolecuul worden beschreven door een
klassiek atomair krachtenveld. Voor de berekening van de gexciteerde toes-
tanden gebruiken we een ander theoretisch kader, gebaseerd op veel-deeltjes
kwantum Monte Carlo technieken en, voor de lange afstandsinteracties tussen
eiwit en chromofoor, combineren we voor het eerst kwantum Monte Carlo met
klassieke moleculaire mechanica.

Met deze hirarchische combinatie van methoden bestuderen we het com-
plexe gedrag van Green Fluorescent Proteins (GFPs, het prototype van de
klasse van autofluorescente eiwitten en n van de meest gebruikte moleculen
in de celbiologie als fluorescent label) onder invloed van licht. In het bijzon-
der bekijken we de wisselwerking tussen de spectrale eigenschappen en de
microscopische structuur van het chromofoor-eiwit complex in zijn verschil-
lende verschijningsvormen. Naast zijn enorme belang in de biotechnologie,
is GFP interessant omdat het experimenteel zeer goed is gekarakteriseerd en
ook vaak het onderwerp is van zowel semi-empirisch als first principles theo-
retisch onderzoek. Desalniettemin is er nog geen volledige theorie. Daarom
is GFP de ideale arena om de door ons voorgestelde methoden te testen en
zo mogelijk te verbeteren.

In hoofdstuk 1 beschouwen we de algemene relevantie van autofluores-
cente eiwitten en beschrijven we het fluorescentie mechanisme van wild-type
GFP. In zijn neutrale vorm absorbeert de chromofoor van GFP blauw licht,
wat hem in een anionische toestand brengt na het doneren van een proton
aan de rest van het eiwit. De chromofoor fluoresceert daarna groen licht en
keert terug naar zijn neutrale toestand door weer een proton op te nemen.
Als het chromofoor met groen licht wordt gexciteerd, komt het eiwit in een
andere, aangeslagen, anionische toestand terecht.

De berekeningsmethoden die we gebruiken in dit proefschrift worden
beschreven in hoofdstuk 2. We beschouwen kwantumchemische methoden
om sterk gecorreleerde systemen te modelleren en density functional the-
ory (DFT), ook in zijn tijdsafhankelijke vorm (TDDFT). We behandelen
kwantum Monte Carlo (QMC) methoden in detail en beschrijven kort enkele
moleculaire mechanica technieken en de hybride kwantum mechanica in molec-
ulaire mechanica (QM/MM) aanpak.

Hoofdstuk 3 construeren we een paar modellen van neutrale en anionis-
che chromoforen van GFP in de gas fase om de prestaties van adiabatische
TDDFT en QMC methoden te onderzoeken. De resultaten zijn nogal vreemd.
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TDDFT blijkt de excitatie-energie van een klein anionisch model van het
chromofoor te overschatten vergeleken met fotodestructie spectroscopie ex-
perimenten, terwijl het experimentele absorptiemaximum met dezelfde tech-
niek voor een cationisch model wel redelijk gereproduceerd kan worden. We
kunnen de redenen voor het klaarblijkelijk falen van TDDFT voor dit kleine,
anionische model niet vaststellen. Door gebruik te maken van kwantum
Monte Carlo technieken en geavanceerde golffuncties verkrijgen we de en-
ergien van de excitaties voor het kleine, anionische model die redelijk overeen-
stemmen met TDDFT. Een significant verschil met TDDFT is dat QMC een
grote verschuiving oplevert van de excitatie als we van het neutrale naar het
anionische model van het GFP chromofoor in de gas fase gaan.

In hoofdstuk 4 berekenen we de eiwitmodellen van de neutrale vorm en
de twee anionische vormen van wild-type GFP, gebruik makende van den-
sity functional theory QM/MM. De uitkomst van deze berekening van de
grondtoestand is verrassend en laat zien hoe moeilijk het is om een com-
plex biosysteem correct te beschrijven en hoe makkelijk het is om misleid
te worden door te geloven in de correctheid van een gegeven model als dat
vergeleken wordt met relatief weinig experimentele data. Door zorgvuldige
structuuranalyse laten we zien hoe vorige DFT QM/MM berekeningen zoals
men die aantreft in de literatuur incorrect zijn. Dit komt volgens ons door
een onjuiste beschrijving van de bindingslocatie van de chromofoor; de per-
fecte overeenkomst van TDDFT met experimenten is daardoor puur toeval.
Onze TDDFT/MM berekeningen op onze chromofoor-eiwit complexen geven
een absorptiemaximum dat correspondeert met experimenten voor de neu-
trale, maar niet voor de anionische vormen van GFP. De roodverschuiving
van de excitatie, veroorzaakt doordat de chromofoor een proton verliest,
wordt enorm onderschat door adiabatische TDDFT dat bijna geen onder-
scheid aangeeft tussen de neutrale en anionische excitaties. Vervolgens on-
derzoeken we voor het eerst het gebruik van QMC voor het beschrijven van de
excitaties van een chromofoor in zijn eiwit-omgeving en doen we QMC/MM
berekeningen van de excitatie energien van de drie vormen van wild-type
GFP, op dit moment slechts gebruik makende van een simpele Ansatz voor
de veel-deeltjes golffunctie. De experimenteel gevonden verschuiving tussen
de verschillende geladen toestanden van GFP wordt goed gereproduceerd
door QMC, maar de absolute excitatie-energien worden overschat in vergeli-
jking met experimenten. We laten de eerste stappen zien die we genomen
hebben om de mogelijke tekortkomingen van de QM/MM beschrijving van
de chromofoor-eiwit wisselwerking te onderzoeken, waarvan we verwachten
dat ze de problemen verhelpen als ze gecombineerd worden met meer gea-
vanceerde golffuncties.

Hoofdstuk 5 staat op zichzelf en wijkt af van de hoofdlijn van dit proef-
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schrift: het behandelt de coperatieve effecten van π-π en π-anion interacties,
een relevant thema binnen de supramoleculaire chemie voor het ontwikke-
len van receptoren van anionische typen. In het bijzonder onderzoeken we
de geometrische en energetische effecten van π-π stapeling op het anion-π
systeem van het bijzondere triazine-triazine-nitraatcomplex, dat recentelijk
experimenteel is waargenomen, met behulp van met semi-empirische disper-
sie gecorrigeerde density functional theory en QMC methoden. We kwan-
tificeren de stabilisatie van de energetische en structurele eigenschappen die
genduceerd worden door π-π stapeling en bespreken manieren om dit cop-
eratieve effect verder te versterken, wat nuttig is voor het ontwikkelen van
anion-gast structuren.
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