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Chapter 1IntrodutionStatistis is the siene of pulling information out of data. Though they an bewildly polymorphi, any statistial problem may be split into three omponents:the objet we study, the operations we are allowed to use, and the exat mathe-matial question. In other words, what we have, what we an do, and what wewant to know.Quantum statistis diverge from lassial statistis on the �rst point, what wehave. Hene they di�er also on what is allowed, sine the two are linked.In lassial statistis, we often immediately start from the result of measure-ments, whih are modeled by random variables with probability laws. Indeed,if we an measure quantity A or quantity B, we an theoretially measure bothsimultaneously. Experiments often measure every useful and easily aessiblequantity. In theory, �what we an do� is applying any mathematial treatmenton the data to transform it. Mathematially, this means applying any funtionon the data, possibly with a random outome. In pratie, omputational powermight bound suh latitude.In some ases, however, we must already onsider the objet under study, andhoose what measurement we arry out. A typial example would be trying tounderstand what a blak box does. We must probe it with inputs, and eah timewe must hoose the input. This themati is alled design of experiments. �Whatwe an do� may depend hugely on the problem at hand. In the blak box ase, wean hoose the input. The mathematial desription of this hoie might di�erfrom one blak box to another, though. Yet, one the measurement is arriedout, we again have probability laws and we are bak to the previous paragraph.In quantum statistis, the design of experiments annot be avoided. Indeed,when we an measure A or B, the laws of physis themselves forbid us from



2 Introdutionmeasuring A and B, in general. We must then hoose the measurement thatyields the information we need most. Nevertheless, quantum physis gives aframework paralleling that of lassial probability, whih tells us exatly �whatwe an do�. Initially, �what we are given� is a quantum objet, whih is modeledby a quantum state. �What we an do� is measuring the state, getting a lassialrandom variable as a result, or more generally transforming the quantum state.The sets of both measurements and transformations have preise and generalmathematial de�nitions, allowing to treat many questions in a uni�ed way.�What we want to know� seldom di�ers in quantum and lassial statistis. Mostoften, we want either to summarize the information in the data (statistial infer-ene), to disprove a hypothesis or to see what hypothesis in a �nite set best �tsthe data (testing), or to guess with preision what the underlying phenomenonwas that generated the data (estimation). All these an usually be desribed by alassial parameter. The exeption would be when our benhmark is intrinsiallyquantum, for example when trying to approximately lone a quantum state.This thesis, in Part I, studies a number of partiular systems. Namely we onsiderin Chapter 2 how to best deide in whih state among a �nite set a quantumobjet an be; in Chapter 3, we give a fast (1/n) proedure to estimate a blakbox unitary transformation. Chapter 4 and Chapter 5 dwell more on the generalstruture of quantum experiments: the former deals with an order relation onmeasurements, and the latter on �nding �maximally di�erent� subsystems of aquantum system, in the simplest ase.Now, we may have very di�erent questions on a given system. For suh a system,or experiment,�what we have� and �what we an do� will remain the same. Wemay then wonder about what we an say diretly on the system, without refereneto a partiular question. The theory of onvergene of experiments in lassialstatistis works out how well we an approximate an experiment by another. Wean then translate all the proedures we use in one experiment to the other.Hene we get answers to �what we want to know� in both experiments whensolving the question in one.Part II, the main ontribution of this thesis, generalizes to the quantum world themost basi ase of onvergene of experiments, namely loal asymptoti normal-ity. We prove that a su�iently smooth experiment with idential independent(i.i.d.) quantum states onverge to a quantum Gaussian shift experiment. Thepoint is that this experiment is very well-known, and everything we know aboutit an be translated to the large lass of smooth i.i.d. experiments.The remainder of the introdution �rst makes preise the rules of lassial andquantum statistis, and then introdue eah of the hapters of the thesis, and theorresponding problematis, in the order given above.



1.1 Statistis 31.1 Statistis1.1.1 Classial StatistisLe Cam [1986℄ and van der Vaart [1998℄ may be onsulted for further referenes,among many other books on statistis. We summarize in Table 1.1, on page 24,the most basi ingredients of lassial statistis. The sister Table 1.2 gives theorresponding quantum notions.What we haveIn lassial statistis, we are given data, that an be modeled as a random variable
X with probability law p. What we know beforehand is that p is a probabilitylaw in a set

E = {pθ, θ ∈ Θ} , (1.1)with no onstraint in general on the parameter set Θ. The pθ are all de�nedon the same probability spae (Ω,A). This E is alled the experiment or thestatistial model.Remarks:
• The data are often made of many measurements, yielding as many randomvariables X1, . . . , Xn, with probability laws p1, . . . , pn on potentially di�er-ent probability spaes. However, we may still onsider all the data as a sin-gle random variableX = (X1, . . . , Xn) with probability law p = p1⊗· · ·⊗pn,and we stay in the urrent framework.
• Although there is no onstraint on Θ at this point of the theory, this setis often either �nite or a reasonable subset of Rd. The �rst ase leads todisrete statistis, and some families of tests in partiular, the seond aseto parametri statistis. When the set Θ is in�nite-dimensional, we enterthe omplex realm of non-parametri statistis, the main fous of researhin reent years.Examples: Bernoulli experiment, Gaussian shift experimentThe most basi probability spae we may �nd is the two-element spae {0, 1}.An experiment orresponding to a oin toss would be

EBer = {pθ = (θ, 1 − θ), θ ∈ [0, 1]} . (1.2)



4 IntrodutionAlternatively, we might toss the oin n times. Denoting X = (X1, . . . , Xn) theresults, we would get this experiment on {0, 1}⊗n:
EBin =

{
pθ : {X} 7→ θ

P

Xi(1 − θ)n−
P

Xi , θ ∈ [0, 1]
}
. (1.3)When dealing with ontinuous funtions, the most pervading of them all is theGaussian. We are espeially interested in Gaussian shift experiments, where thevariane of the Gaussian is �xed and the parameter is the mean:

Egs =
{
N (θ, I−1), θ ∈ R

d
}
, (1.4)where N means normal law, and I is any �xed positive matrix1.What we an doOne we have our data X , how an we proess them?The most general proedure onsists in drawing a new random variable Y withprobability law pX depending only on X , and measurable as a funtion of X .We an view this protool in two ways. The �rst is onsidering that Y is an answerto �what we want to know�. Then Y is a (randomized) estimator, typially anestimator of θ, in whih ase we also denote it by θ̂.Alternatively, we an onsider that Y is a new random variable, and that we havetransformed our experiment. Our new experiment onsists of Y with probabilitylaw q in the set {qθ, θ ∈ Θ} on a spae (Ω1,B), with density2

qθ(y) = T (pθ)(y)=̂

∫

Ω

pX(y)dpθ(X). (1.5)The transformation T is a Markov kernel.In the lassial ase, the two notions are the same. However, I insist on separatingthem sine they will be di�erent in the quantum ase.1We use this strange notation beause this matrix is the inverse of the Fisher informationmatrix (1.13).2We ould equivalently work with non-dominated sets of probability laws, but that wouldonly make notations heavier. We then assume that all probability laws have a density, and usethe same letter for the law and the density.



1.1 Statistis 5ExamplesLet us go bak to our n-sample Bernoulli experiment EBin (1.3). Our probabilityspae is {0, 1}⊗n. We may use a Markov kernel from that spae to [0, n]∩N thatsimply send X = (X1, . . . , Xn) to Y =
∑
Xi. Here, the pX are merely deltafuntions. We then obtain a binomial probability law for Y , that is qθ = B(n, θ).The orresponding experiment is E = {qθ, θ ∈ Θ}.Alternatively, we might want to build an estimator θ̂. The most obvious onewould be X 7→ ∑

Xi/n = Y . The law of our estimator is the above binomialdivided by n.We might also look for an estimator in Egs (1.4). The �rst thought is yet simpler:we just keep X . The orresponding Markov kernel would be the identity.What we want to knowWe usually want to have information on the unknown underlying proess thatgave rise to our data. In other words, we want to guess the parameter3θ.We an give an answer either with a on�dene interval, or with a guess of ourquantity, maybe with estimates on the variane of the estimate. This guessorresponds to giving an estimator θ̂ of θ.We want to build a good estimator. We therefore need a way to rate estimators.In deision theory, we onsider a ost funtion c(θ, θ̂). That is the ost we have topay if our estimator yields θ̂ when the true parameter is θ. Hene, ost funtionsare usually zero on the diagonal, and grow when θ and θ̂ get farther apart insome sense.A typial ost funtion when Θ is disrete and ountable would be c(θ, θ̂) = δθ,θ̂.When Θ is an open subset of Rd, the most mathematially tratable ost funtionis the square of the Eulidean distane c(θ, θ̂) = ‖θ − θ̂‖2
2, or more generallyany quadrati ost funtion (θ − θ̂)⊤G(θ − θ̂) for a positive matrix G, possiblydepending on θ.Sine θ̂ is a random variable, we want to minimize the expetation of the ost,alled the risk at point θ:

rθ(θ̂) =

∫

Ω1

c(θ, θ̂)dqθ(θ̂). (1.6)3More generally, we may be interested merely in a funtion f of θ. However, we an alwaysuse (θ, f(θ)) as parameter. We then hoose the ost funtions introdued below so that theydepend only on f(θ).



6 IntrodutionHowever, we annot diretly minimize this expression, sine the best guess de-pends on θ, whih is unknown. We must then �nd a way to hoose an e�ientestimator for any θ we are likely to enounter. There are mainly two approahes.A favourite of physiists is the Bayesian paradigm, where we assume the exis-tene of an a priori probability law on the parameter θ. Mathematiians oftenprefer minimax riteria, where a strategy is rated by the worst ase.Bayesian riteriaWe have onsidered our data to be X with probability law p. We assumed thatthe only information we had was the experiment, the set we know p belongs to.Suppose now that we have more information. Namely, we are told beforehandthat θ is hosen at random with a probability law π. Then, on average, the bestestimator would be the one that minimizes the average of the risk (1.6), that is:
Rπ(θ̂) =

∫

Θ

π(dθ)rθ(θ̂)

=

∫

Θ

∫

Ω1

c(θ, θ̂)dqθ(θ̂)π(dθ). (1.7)From the Bayes risk of a spei� estimator θ̂, we an write the Bayes risk asso-iated to the prior π as the in�mum of the risks for all θ̂:
Rπ = inf

θ̂
Rπ(θ). (1.8)The weakness of this approah is that there is no reason why there should be ana priori probability law on Θ, exept a delta funtion on the real θ... whih isexatly what we want to know. We have to hoose a prior and onsider it as thereal one. The risk of the �nal estimator will be underestimated, however.The main strength of a Bayesian estimator is the optimal use of the informationwe get from measurements, given the prior. The prior orresponds to a prioriinformation, whih is generally wrong. The best priors try then to minimizethe information in the prior4. For a �nite Θ, we usually hoose equiprobabilitya priori for eah possible θ. For an open preompat subset of Rd, we hooseJe�reys [1946℄ prior, proportional to the square root of the Fisher information(1.13) de�ned below. A pointwise analysis shows that these estimators are oftenvery good estimators.4Subjetive Bayesians onsider the probability laws as degrees of belief. Hene they an useany prior based on expert information.



1.1 Statistis 7Bayesian estimators an be omputed through the alulations of a posterioridistributions. In some simple ases, these an be arried out expliitly and theestimator is the baryenter of the θ with weights the likelihoods. In more omplexsituations, we an resort to Monte-Carlo Markov hains.Minimax riteriaThe mathematiian is either pessimisti or megalomania, and assumes he playsagainst the Devil. Therefore, he wants to design a strategy that will be e�ientwhatever the real θ is. Hene the benhmark of an estimator θ̂ is its value in theworst ase:
RM (θ̂) = sup

θ
rθ(θ̂). (1.9)The minimax risk is the risk of the best possible estimator:

RM = inf
θ̂
RM (θ̂) = inf

θ̂
sup
θ
rθ(θ̂). (1.10)The weakness of this method is that we might have to worsen muh an esti-mator on intuitively �many� θ for it to be e�ient on some speial ases. Theworkaround is to require adaptiveness, that is, minimax e�ieny on a whole lassof subsets of {pθ}. The latter tehnique is essentially used for non-parametristatistis.The interest of these methods is that they require no assumption. They give ane�ieny we know we attain in reality, as long as the experiment (or model) itselfwas right.Links between Bayesian and minimax riteriaThe main link between the two riteria omes from the following remark. If astrategy θ̂ is Bayes optimal, and suh that the risk of θ̂ does not depend on θ,then θ̂ is also minimax optimal.Indeed, for any π, the Bayes risk of θ is more than the minimax risk:

Rπ(θ̂) ≤ sup
θ
rθ(θ̂) = RM (θ), (1.11)with equality if and only if the risk at θ is the same π-almost everywhere.Under some onditions, a onverse statement is true: a minimax estimator isoptimal for some preise prior, the one for whih the Bayesian risk is maximal.We disuss similar points in Chapter 2.



8 IntrodutionExampleWe ompute the risk of the aforementioned estimator for the Gaussian shiftfamily (1.4). The law of θ̂ is the law of the original data, that is the normal law
N (θ, I−1). So that

rθ(θ̂) = Eθ

[
(θ − θ̂)⊤G(θ − θ̂)

]

= Tr(GI−1). (1.12)This risk at point θ does not depend on θ, so that the same value is the minimaxrisk and the Bayesian risk for any prior of the estimator. We shall see below thatthe estimator is minimax for the model.The remainder of the setion gives a quik summary of what risks we an expetin regular enough ases, for quadrati ost funtions.Fisher informationThe risks we give above depend on the question (the ost funtion) and on theexperiment {pθ, θ ∈ Θ}, but not on any partiular estimator. We may then readinformation about them diretly on the experiment.The most important notion to that end is the Fisher information matrix. It is aloal notion, that an be interpreted as a measure of how fast we an distinguish
pθ from the surrounding pθ+dθ. The Cramér-Rao bound desribed in the nextsetion makes that expliit. Notie that in the following, we need some regularityin the model. Twie di�erentiable is more than enough.The Fisher information at point θ = (θα)α=1...d is given by

Iα,β(θ) =

∫

Ω

∂ ln(pθ(X))

∂θα

∂ ln(pθ(X))

∂θβ
dpθ(X). (1.13)The Fisher information matrix is positive de�nite, and de�nes a metri on Θ,whih is invariant by any smooth hange of variables. This fat an be viewed asthe most basi onnetion between statistis and di�erential geometry. Di�eren-tial geometry an be used to study higher-order asymptotis, as exempli�ed byAmari [1985℄.Developing the logarithms of produts, it is easily seen that having n samples ofthe data multiplies the Fisher information by n, that is I(n)(θ) = nI(1)(θ) where

I(n) is the Fisher information matrix of the experiment E(n) = {p⊗nθ , θ ∈ Θ}.



1.1 Statistis 9Cramér-Rao boundWe an use the Fisher information matrix to derive a lower bound on the varianematrix of loally estimators:
∫

Ω1

(θ − θ̂)(θ − θ̂)⊤dqθ(θ̂) ≥ I−1(θ). (1.14)The bound holds5 for all loally unbiased estimators θ̂, that is as long as∫
θ̂dqθ(θ̂) = θ and ∂/∂θi ∫ θ̂jdqθ(θ̂) = δi,j .An immediate onsequene is that, for loally unbiased estimators, and a quadratiost funtion (θ − θ̂)⊤G(θ − θ̂), we get this lower bound on the risk at point θ:

rθ(θ̂) ≥ Tr(GI−1). (1.15)This bound is known to be asymptotially sharp. Indeed, a n-sample experimentinreasingly resembles a Gaussian shift experiment, for whih it is sharp. Thepreise explanation omes from the theory of onvergene of experiments by LeCam, that we further sketh in Setion 1.6.1.ExamplesWe ompute the Fisher information for the Bernoulli experiment, at point θdi�erent from 0 and 1. The expression is slightly easier sine we have only oneparameter.
I(θ) = θ

(
d ln(θ)

dθ

)2

+ (1 − θ)

(
d ln(1 − θ)

dθ

)2

=
1

θ
+

1

1 − θ

=
1

θ(1 − θ)
.From that and our previous remark for n samples, we see that I(θ) = n/(θ(1−θ))in the binomial experiment Ebin.A slightly more tedious alulation would show that the Fisher information ma-trix of a Gaussian shift experiment is the inverse of the variane of the Gaussians.5Supere�ient estimators suh as Stein estimator prove that we annot simply drop theunbiasedness ondition. However, adding some tehniality (essentially onsidering e�ienyon a whole neighborhood of θ, through either a Bayesian or a minimax approah), we ansuppress the neessity of unbiasedness.



10 IntrodutionHene our hoie of notation in equation (1.4). Moreover, after omparison be-tween the bound (1.15) and the risk (1.12) of the estimator onsisting in X itself,we obtain optimality of the latter estimator among the lass of loally unbiasedestimators.We now try to give the equivalents of those notions in the quantum world.1.1.2 Quantum Objets and OperationsThe books by Helstrom [1976℄ and Holevo [1982℄ are the usual referenes forquantum statistis. We also add the more reent review artile by Barndor�-Nielsen et al. [2003℄. As already mentionned, we have summarized in Table 1.2,on page 25, the most basi ingredients of quantum statistis, with Table 1.1 forlassial orrespondane on the page before.States, density operatorsThe basi objet in quantum probability is the state. The state is the equivalentof a probability law.We de�ne it over a Hilbert spae H. Its mathematial expression is given by adensity operator.De�nition 1.1.1. A density operator ρ over a Hilbert spae H is a trae-lassoperator with the following properties:
• Self-adjointness: ρ is self-adjoint.
• Positivity: ρ is non-negative.
• Normalization: Tr(ρ) = 1.Those are the equivalent of onditions for probability measures: probability mea-sures are real (= self-adjointness), non-negative (= positivity) and normalizedto 1 (= normalization).For �nite-dimensional Hilbert spaes, the operators are matries, and densitymatries also satisfy the above onditions. The real dimension of the manifold ofstates is d2 − 1 if the omplex dimension of H is d.



1.1 Statistis 11Example: QubitsThe most elementary situation arises when dim(H) = 2. Physially, the systemould be an eletron spin. Those states are alled qubit states and heavily usedin quantum information.We de�ne Pauli matries as
σx =

[
0 1
1 0

]
, σy =

[
0 i
−i 0

]
, σz =

[
1 0
0 −1

]
. (1.16)Self-adjointness implies that a density matrix must be a linear ombination ofthose matries and the identity 1. Positivity and normalization further imposethat:

ρ =
1

2

(
1 + ~θ · ~σ

)
, ‖~θ‖ ≤ 1, (1.17)with ~σ = (σx, σy, σz) a vetor of matries.We see that we already need three real parameters to desribe a qubit state,onfer the one parameter we need to desribe a probability law on a lassialtwo-outome spae.Pure statesThe set of lassial probability measures an be seen as the onvex hull of deltafuntions. Similarly, the set of states is the onvex hull of pure states.Pure states are haraterized by being rank-one operators, with eigenvalue one.We an write them |ψ〉 〈ψ|, where |ψ〉 is a norm-one vetor of H. Pure states anthus be represented as points of the projetive spae assoiated to H.They are very important: many treatments of quantum mehanis feature onlypure states. General states an be seen as a lassial mixing of pure states.Unlike for delta funtions, where we merely draw a random variable with theunknown law, there is no measurement that an identify unambiguously anypure state, even if we know beforehand that the state is pure. This fundamentaldi�erene with the lassial world is a hallmark of non-ommutativity betweendi�erent states. The study of pure states in themselves is already hallenging.For qubits with the above parameterization, the pure states orrespondto ‖~θ‖ = 1. This parameterization by a sphere, alled the Bloh sphere, gives agraphial intuition for problems on qubits.The real dimension of the pure states is 2(d− 1) if dimH = d.



12 IntrodutionExample: Coherent statesQubits are the paradigm for �nite-dimensional quantum states. The other fun-damental family of states is that of oherent states6.Those states live on the Fok spae7 F(C), that is the in�nite-dimensional Hilbertspae ℓ2(N). We denote {|k〉}k∈N the anonial basis on ℓ2(N). Physiists all
|k〉 the k-th Fok state.States on Fok spaes are states of the harmoni osillator, an example of whihis the state of monohromati light (laser). We are thus on the playground ofquantum optis. Among those states, oherent states are in some way the mostlassial: they saturate Heisenberg unertainty relations.They are given by one omplex, hene two real, oe�ient θ. Sine they are purestates, we an desribe them with a vetor in F(C), rather than an operator8:

|θ) = exp(−|θ|2/2)
n∑

k=0

θk√
k!

|k〉 . (1.18)Multipartite states, entangled statesLet us onsider two quantum objets ρ1 and ρ2 on H1 and H2. They an be seenas a single quantum objet on H = H1 ⊗H2, with state ρ = ρ1 ⊗ ρ2.Any state on suh omposite Hilbert spae is alled a multipartite state. Nowsome multipartite states annot be written as ∑ ciρ
i
1 ⊗ ρi2 with positive ci. Wemight need some negative ci. In other words, those states are not a lassial ran-domization of a hoie of a pair of states. They ontain an intrinsially quantumoupling. They are alled entangled states.Let us prove they do exist. We write dimH1 = d1 and dimH2 = d2. Hene

dimH = d1d2. Pure multipartite states are pure states on H, so they onstitutea 2(d1d2 − 1) manifold. On the other hand, a pure state of the form∑
ciρ

i
1 ⊗ ρi2with positive ci only allow one term in the sum, with both ρ1 and ρ2 pure states.The orresponding dimension is 2(d1 + d2 − 2) < 2(d1d2 − 1). Hene there aremany entangled pure states.6More generally, all possibly squeezed Gaussian states play an important role in quantumoptis and, as we shall see, in quantum statistis. We stik to oherent states for simpliity ofthe example.7Multidimensional oherent states are tensor produts of oherent states on the tensorizedFok spae F(Cd) = F(C)⊗d.8We use the notation |θ) instead of the usual ket |θ〉 so as to avoid onfusion with Fokstates, in partiular when θ happens to be a positive integer.



1.1 Statistis 13A typial example are maximally entangled states, that is states of the form
|Ψ〉 〈Ψ|, with |Ψ〉 = 1√

d

∑∣∣ψi
〉
⊗
∣∣ψi
〉, where H1 = H2 and {

∣∣ψi
〉
} is an or-thonormal basis of H1. As their name imply, they arry as muh entanglementas possible.Entanglement may be the single most basi and pervasive resoure in quantuminformation. It lies at the heart of quantum teleportation, most quantum ryp-tography protools and the inreased proessing power of a quantum omputer.Literature on the subjet is too daunting to be even srathed upon. In quantumstatistis, apart from the problems linked to estimating entangled states, theyan be used to speed up estimation of quantum transformations.Ations on statesIn the lassial ase, we notied that giving an estimator of a parameter θ ormore generally of any funtion of θ was the same as transforming our initial datato get a new random variable Y with law T (pθ).In the quantum ase, the two notions are distint. Indeed, transforming the datameans getting a new quantum state, that is an operator on a Hilbert spae. Statesundergo a transformation when they are sent through a hannel. An estimator ofa lassial parameter, on the other hand, is a lassial quantity. We then end upwith a lassial random variable. We retrieve this lassial data from the statethrough a measurement.If we merely want to onsider estimators, why are we also interested in hannels?Indeed, applying many hannels and then a measurement an be summed up tousing only a more omplex measurement.The �rst reason is that we might transform our states to a new family for whihwe know what measurement to use. In fat, the whole aim of strong loal asymp-toti normality, whose study onstitutes most of this thesis, is to transform anexperiment to a quasi-equivalent and easier one.Seondly, hannels desribe physial transformations. We might want to studythe transformation itself rather than the state. Typially, the physial transfor-mation ould be generated by a fore we want to measure. We dwell on thesematters in Chapter 3.We all instrument a funtion yielding lassial and quantum data out of a quan-tum input. Real measurement apparatuses are essentially instruments, even ifwe may forget about the outome state. In partiular, ontinuous-time mea-surements are ommon in pratie. Typially, we measure the eletromagneti�eld after interation with matter, as in Chapter 7. These measurements an be



14 Introdutionseen as a sequene of in�nitesimal instruments, and writing the orrespondingevolution equations is the purpose of quantum �ltering, pioneered by Davies andBelavkin [Bouten et al., 2006, for an introdution℄.Measurements, POVMsIf we want to make lassial statistial inferene on the unknown parameters, wehave to translate our quantum information to lassial information. To that end,we apply a measurement. Sine mixed states are lassial mixing of states, werequire linearity of the transformation. The outome should always be a lassialprobability law. We dedue from that the following form of physially allowedmeasurements:De�nition 1.1.2. A positive operator valued measure, or POVM, over a mea-sured spae (Ω,A) is a set {M(A)}A∈A of bounded operators on H suh that:
• M(Ω) = 1H.
• M(A) is positive.
• For any ountable olletion (Ai)i∈N of disjoint Ai, we have M(

⋃
Ai) =∑

M(Ai).We notie that those are exatly the usual axioms for a probability measure,exept that we work with operators instead of real numbers. We all eah M(A)a POVM element.Applying a measurement M on a state ρ yields a probability law Pρ on (Ω,A),given by Born's rule:
Pρ(A) = Tr(ρM(A)). (1.19)In Chapter 4, we srutinize a spei� order relation on POVMs.A few remarks are in order. First of all, we an inlude any lassial proessing ofthe data in the POVM. Indeed, applying a measurement M and then a Markovkernel T (de�ned by (1.5)) on the output random variable is the same as applyingthe measurement N on (Ω1,B) with N(B) =

∫
Ω pω(B)M(dω). So that workingon POVMs is equivalent to working on estimators.Seondly, we annot in general measure simultaneously M1 and M2 on (Ω1,A1)and (Ω2,A2). In ontrast to the lassial ase, where we ould have simultane-ously the results of applying T1 and T2. Indeed, measuring both M1 and M2means measuring N on (Ω1×Ω2) with N(A1×Ω2) = M1(A1) and N(Ω1×A2) =



1.1 Statistis 15
M2(A2). An easy ounterexample illustrating the role of non-ommutativity isgiven by M1 and M2 both de�ned on {0, 1}, with

M1(0) =

[
1 0
0 0

]
, M1(1) =

[
0 0
0 1

]
,

M2(0) =
1

2

[
1 1
1 1

]
, M2(1) =

1

2

[
1 −1
−1 1

]
.All those matries are rank-one. We would now need N(0, 0)+N(0, 1) = M1(0).Sine all POVM elements are positive, we haveM1(0) ≥ N(0, 0). Sine moreover

M1(0) is rank-one, we have N(0, 0) = c1M1(0) for some 0 ≤ c1 ≤ 1. We alsoknow N(0, 0) +N(1, 0) = M2(0). So that N(0, 0) = c2M2(0). The only solutionis c1 = c2 = 0 and N(0, 0) = 0. The same holds for N(0, 1), N(1, 0) and N(1, 1).On the other hand we need N({0, 1}2) = 1C2 . Contradition.Finally, all those measurements are believed to be physially feasible. Howeverthey might be very hard to implement in pratie. In partiular, if the state is amultipartite state, it an make sense to restrit our attention to smaller lassesof measurements. Notably, if di�erent people hold di�erent partiles in di�erentplaes, they annot implement a general measurement, even if they ooperate.The best they an do is: one of them measures his partile (possibly with anon-trivial output quantum state), tells the result to the other, who hooses ameasurement on his partile, keeps the output state and tells the result to the�rst one, and they iterate on the output states. Suh measurements, using onlyloal quantum operations and lassial ommuniation, are dubbed LOCC: LoalOperations, Classial Communiation.In quantum information when the (usually entangled) quantum state is dividedbetween several people, we naturally restrit to LOCC measurements. In quan-tum estimation of a state with n opies of the initial state, we are at least in-terested in what an be ahieved through LOCC measurements, muh easier toimplement than general (olletive) measurements. We an in general really gainpreision with olletive measurements. This might be surprising from the pointof view of physiists, sine the n opies are totally independent. In some ases, no-tably when we know that the unknown state is pure [Matsumoto, 2002℄, olletivemeasurements do not yield muh improvement over LOCC measurements. Thismight be surprising from the point of view of mathematiians, sine the spae ofolletive measurements is muh bigger than that of LOCC measurements.Example: Spin zConsider the binary outome measurement on qubits given by
M(↑) =

[
1 0
0 0

]
=

1

2
(1 + σz), M(↓) =

[
0 0
0 1

]
=

1

2
(1− σz).



16 IntrodutionThis measurement applied to the state ρ = 1+~θ·~σ
2 yields ↑ with probability

Tr(ρM(↑)) =
1

2

(
Tr(1M(↑)) +

∑

α=x,y,z

θαTr(σαM(↑))
)

=
1

2
(1 + θz).In partiular, if θz = 1, then the outome is always ↑. Conversely, if θz = −1, theoutome is always ↓. On the other hand, if θx = 1, so that θz = 0, the outomeis either ↑ or ↓ with probability one half, even though the state ρ is pure.This kind of measurements, where all the POVM elements are projetors, arealso alled observables. They only yield information on the basis in whih all thePOVM elements are diagonal. Notie that usual axioms of quantum mehanisrestrit measurements to observables. However, we get bak all the POVMs byapplying an observable on a multipartite state of whih our state is only a part(Naimark theorem).Heterodyne measurementThe heterodyne measurement gets its name from the tehnique used to implementit in laboratory, with lasers that are o�-phase. This POVM with outome in Chas a mathematial expression given by:

M(A) =
1

π

∫

A

|z)(z|dz, (1.20)where |z) is a oherent state (1.18).The probability law of the outome when measuring ρ has thus a density (z|ρ|z)with respet to Lebesgue at point z. In partiular, the law of the result whenmeasuring a oherent state is a Gaussian:
qθ(dz) =

1

π
(z|θ)(θ|z) =

1

π
exp(−|θ − z|2). (1.21)If we onsider all the omplex θ, we reognize a lassial Gaussian shift experiment(1.4) in R2.More generally, the probability density funtion of the outome of the measure-ment on a state ρ is alled the Husimi funtion of the state:

Hρ(dz) =
1

π
(z|ρ|z). (1.22)States whose Husimi funtion is a Gaussian are alled Gaussian states.



1.1 Statistis 17ChannelsWe now desribe how to make a new quantum state out of the original state.Notie that the �rst state is destroyed in the proess.A physial transformation of a quantum objet takes a state and yield anotherstate, possibly on a di�erent spae. It is desribed by a hannel, the equivalentof a Markov kernel.We reall that a positive superoperator E is a map suh that for any positiveoperator A, the output E(A) is also positive.De�nition 1.1.3. A hannel E is a map from the set T (H1) of trae-lass op-erators to T (H2), with the following properties:
• Linearity: E is linear.
• Complete positiveness: for any auxiliary spae H3, the superoperator E⊗Id :

T (H1 ⊗H3) → T (H2⊗H3) given by (E ⊗ Id)(ρ⊗σ) = E(ρ)⊗σ is positive.
• Trae-preserving: Tr(E(A)) = Tr(A).Notie that Markov kernels satisfy all these riteria, when replaing operators bymeasures9.The neessity of linearity an be proved from the axiom of unitary evolution10and inluding the observer in the system.We want the image of a state to be a state, so a positive operator must be sentto a positive operator. To understand why we need omplete positivity, we mustonsider a possibly entangled state on H1 ⊗ H3. If we transform states on H1,we also transform states on H1 ⊗H3, with E ⊗ Id as the hannel. Therefore thelatter transformation must be positive. Hene we need omplete positivity.Finally, the output is a state if the input is a state, and both are trae-one, sotrae must be preserved.We often onsider the hannels in the (pre)dual piture, that is as ating on theelements of B(H). So that Tr(E(ρ)A) = Tr(ρE∗(A)) for all state ρ and all boundedoperator A. In this ase E∗ is also a ompletely positive linear map, but we must9In the more general setting of C∗-algebras, the spaes of funtions are ommutative C∗-algebras and all positive superoperator on those spaes is ompletely positive.10Quantum mehanis state that the evolution of a system is given by ρ(t) = U(t)ρ(0)U∗(t),where U(t) is a unitary operator that an be omputed from the self-adjoint operator H alledthe Hamiltonian. If the Hamiltonian does not depend on time, then U(t) = eitH .



18 Introdutionreplae the trae-preserving ondition by the identity-preserving ondition, thatis E∗(1) = 1.Notations: We usually write E or F for hannels. Abusing notations, we usuallydrop the star for the pre-dual and also write E in that ase. However, thosestandard notations are also the standard notations for experiments. So that inthe hapters where we use that notion, we use for hannels the same notationsas for Markov kernels, that is T, Tn, S, Sn.Kraus representation, Stinespring theoremThe above de�nition does not make it obvious to deal with hannels. Fortunately,two representation theorems desribe ompletely positive maps in a more usableway. The book by Paulsen [1987℄ is a good referene on those matters.Kraus [1983℄ representation is the main tool when the Hilbert spaes are �nite-dimensional.Theorem 1.1.4. A ompletely positive map E from M(Cd1) to M(Cd2) an bewritten as
E(A) =

∑

α

RαAR
∗
α, (1.23)with α running from 1 to at most d1d2, and Rα ∈Md2,d1(C). Star is the adjoint.Moreover, the hannel is trae-preserving if and only if ∑R∗

αRα = 1Cd1 .The deomposition is not unique. The dual hannel is given by A 7→∑
R∗
αARα.In in�nite dimension, we rather use the more powerful Stinespring [1955℄ dilationtheorem11.Theorem 1.1.5. Let E : B(H1) → B(H2) be a ompletely positive map. Thenthere is a Hilbert spae K and a *-homomorphism (or representation) π : B(H1) →

B(H2) suh that
E(A) = V π(A)V ∗, (1.24)where V : K → H is a bounded operator.Moreover, if E is identity-preserving, then V is an isometry, that is V V ∗ = 1H.If we further impose that K is the losed linear span of π(A)V ∗H, then thedilation is unique up to unitary transformations.11In fat, Stinespring theorem was proved for any unital C∗ algebra as initial spae. It an beshown to imply Kraus representation, but also the GNS representation, a staple of C∗-algebras.



1.1 Statistis 19InstrumentsWe give the representation of instruments for �nite dimensions12. To furthersimplify notations, we restrit ourselves to the ase when the measurement hasa �nite number of outomes.De�nition 1.1.6. An instrument is given by a set {Nω,k} of matries from H1to H2, suh that
∑

ω

∑

k

N∗
ω,kNω,k = 1H1 .The orresponding measurement is given by

M(ω) =
∑

k

N∗
ω,kNω,k,and the output state when the result of the measurement is ω is given by

N (ρ, ω) =

∑
kNω,kρN

∗
ω,k

Tr(ρM(ω))
.The output state lives on H2.We now have another way to understand why we annot measure two POVMssimultaneously: after measuringM , the quantum objet, that is our data, has ingeneral been perturbed. In fat, if the measurement is rih enough, the outputstate depends only on the outome ω, and not anymore on the input state.We now have all the tools to opy the setup from lassial statistis to quantumstatistis.1.1.3 Quantum statistisUsually, we work on quantum states; oasionally we may want to gain knowledgeon a hannel. We treat the two ases separately.States: What we have, what we an do, what we want to knowIn analogy with the lassial ase, we are usually given a quantum state ρ, thatwe know to be in a set

E = {ρθ, θ ∈ Θ} . (1.25)12In in�nite dimension, we have to use the C∗-algebra setting and an instrument is merely ahannel between C∗-algebras.



20 IntrodutionWe again all this set an experiment, or a model.With the examples of the qubits, the usual models would be the 3D full mixedmodel Em = {ρθ, ‖θ‖ < 1} and the 2D pure state model Ep = {ρθ, ‖θ‖ = 1},where we have used our former parameterization for the state ρθ (1.17). Whenhaving n opies of the state, we replae ρθ by ρ⊗nθ .Another typial experiment would be Et = {ρθ, θ ∈ {θ1, θ2}}, where the usualquestion is to disriminate between the two possible θ. We study this kind ofproblem in Setion 1.2 and Chapter 2.We an a priori use any sequene of instruments on the state. If we merely wantlassial information on θ, we may restrit to measurements M , that is POVMs.We then assoiate to M an estimator, say θ̂, with law depending on the trueparameter θ through
qθ(B) =̂ Pθ

[
θ̂ ∈ B

]
= Tr(ρθM(B)).Depending on the irumstanes, we might allow any physial measurement, ora smaller lass, suh as separate or LOCC measurement.Finally, what we want to know is the same as in the lassial ase. We wantto know some funtion of the parameter θ. So that we want to estimate θ, andwe rate our estimator θ̂ through a ost funtion c(θ, θ̂). As before, the mostommon ost funtions are (1− δθ,θ̂), if the parameter set is �nite, and quadratiost funtions (θ̂− θ)⊤G(θ̂− θ) for a positive matrix G, if the parameter lives onan open subset of Rd. The weight matrix G might depend on θ.We an again write the risk (1.6) of an estimator at point θ. Sine we do notknow θ, we then either use the Bayesian risk (1.7) for an appropriate prior, orthe minimax risk (1.9), and optimize (1.8, 1.10) over the available estimators.Notie that the last stage depend on the set of allowed estimators.Quantum Fisher information and Cramér-Rao boundsWe an try to mimi the de�nition of lassial Fisher information and get similarbounds on variane of estimators. In fat, we an build suh an equivalent forany hoie of a logarithmi derivative. We hoose the right logarithmi derivative(RLD), de�ned for eah θ and eah oordinate θα as a matrix λα,θ suh that:

∂ρθ
∂θα

= ρθλα,θ (1.26)on the support of ρθ.



1.1 Statistis 21Then, srutinizing de�nition (1.13) while keeping in mind that Born's rule (1.19)is an equivalent of lassial expetation, we de�ne the quantum Fisher informa-tion matrix by:
Jα,β(θ)=̂ Tr(ρθλβ,θλ

∗
α,θ). (1.27)Helstrom [1976℄ proved that the ovariane matrix of any loally unbiased esti-mator θ̂ was bigger than the inverse of the quantum Fisher information matrix.Hene, for any quadrati ost funtion (θ − θ̂)⊤G(θ − θ̂) we have the followingbound on the risk (1.6):

rθ(θ̂) ≥ Tr
(
Re(G1/2J −1(θ)G1/2) +

∣∣Im(G1/2J −1(θ)G1/2)
∣∣
)
. (1.28)Notie that we do not simply write the right-hand-side as Tr(GJ −1(θ)) sine ourFisher information matrix is self-adjoint, but not real.Holevo [1982℄ further improved13 on this bound for a parameter of dimension pand a system on a Hilbert spae of dimension d:

rθ(θ̂) ≥ inf
~X

Tr
(
Re(G1/2Z( ~X)G1/2) +

∣∣Im(G1/2Z( ~X)G1/2)
∣∣
)
, (1.29)where Zi,j = Tr(ρθXiXj), and ~X = (X1, . . . , Xp) is a vetor of d× d self-adjointmatries onstrained by ∂/∂θi(Tr(ρXj)) = δi,j . The bound applies for all loallyunbiased estimators. Hayashi and Matsumoto [2004℄ proved that this bound isasymptotially sharp for all qubit models. Like in the lassial ase, the under-lying reason is onvergene to a quantum Gaussian shift experiment. Hayashiand Matsumoto's proved that the optimal risk rθ(θ̂) was onverging to that ofthe Gaussian shift experiment. In Part II, we build a theory showing that anyreasonable funtion of the qubit models onverges to its value on a Gaussian shiftexperiment.The bound might look horrible, but it is often omputable. For example, if theparameter θ is d(d − 1) dimensional, there is only one possible ~X. That is thease when our experiment is the full mixed model. Moreover, it an be provedto sale like n when we have n samples. We get bak the square root speed ofonvergene of regular lassial models.These bounds are valid for all physially allowed measurements. If we restritto smaller lasses, we might get tighter bounds [Nagaoka, 1991, Hayashi, 2005a,Gill and Massar, 2000℄.13The Fisher information matrix (1.27) is an aeptable Z( ~X), implying both existene ofthe right-hand-side of equation (1.29), and that it is better than Helstrom bound (1.28).



22 IntrodutionExample: Coherent shift experimentWe onsider the following quantum experiment on the Fok spae:
Eqgs = {|θ)(θ|, θ ∈ C}.Then Yuen and Lax, M. [1973℄ and Holevo [1982℄14 have omputed the Cramér-Rao bound (1.28) and obtained Tr(G)/2 +

√
det(G). If G = 1, this is 2.Using the heterodyne measurement (1.20), we transform our quantum experimentinto a lassial Gaussian shift experiment Egs = {N (θ, 2 ·1), θ ∈ C}. Hene, with

G = 1, we read on our alulation for the lassial ase (1.12) that the risk atpoint θ is 2.Hene the heterodyne measurement saturates the Cramér-Rao bound for theidentity weight matrix. Slight modi�ations of this measurement, using so-alledsqueezed oherent states instead of the oherent states (1.18), ahieve optimalityfor any weight matrix. It should be notied, however, that unlike in the lassialase, the optimal measurement depends on the weight matrix.Example 2: Full mixed model for qubitsIn the full mixed model for qubits Em, the Cramér-Rao bound15 for the ostfuntion (θ − θ̂)T (θ − θ̂) is known to be 3 − 2 ‖θ‖.On the other hand, we also know that [Hayashi and Matsumoto, 2004, for this pre-ise form℄, when only loal measurements are allowed, the bound is (2
√

1 − ‖θ‖)2.We have here an example where using olletive measurements improves the speedof approximation, for all ‖θ‖ ≤ 1, that is for all mixed states.Channels: What we have, what we an doWe have set up our framework when we are given quantum states. In otherappliations, we want to learn about mahines that transform quantum states.In lassial statistis, this problem orresponds to understanding what a blak boxdoes. Mathematially, those mahines are quantum hannels. Ballester [2005a℄notably onduted his thesis on the estimation of unitary hannels, orrespondingto natural evolution of a quantum system. Ji et al. [2006℄ provide another niereent resoure.14For arbitrary weight matrix G.15Hayashi and Matsumoto [2004℄ have omputed it for a general weight matrix, and provedits attainability in all ases.



1.1 Statistis 23In that ase, we are not given anymore a �quantum probability law� ρ, but rathera hannel T : B(H1) → B(H2) within a set
E = {Tθ, θ ∈ Θ} .To gain knowledge on T , we must send a state through it, and we get a moreusual quantum experiment. However, we might use several methods. The mostobvious would just be to send a well-hosen state ρ. We get T (ρ) as an output,and we remain with the model

E1
ρ = {Tθ(ρ), θ ∈ Θ} .However, we may also use an anilla: instead of learning about T , we equivalentlylearn about T ⊗ Id : B(H1 ⊗ H3) → B(H2 ⊗ H3). We send in a multipartite,entangled state ρ and get:

E2
ρ = {(Tθ ⊗ Id)(ρ), θ ∈ Θ} .When allowed to probe several times the hannel, a �rst re�ex might be just tosend in n opies of the same state. We get:
E3
ρ =

{
(Tθ(ρ))

⊗n, θ ∈ Θ
}
.However it might be more e�ient to send in a big entangled state ρ ∈ B(H1)

⊗n.We would then get the very general experiment:
E4
ρ =

{
(Tθ)

⊗n(ρ), θ ∈ Θ
}
.To top it all, we might want to add an anilla to the latter setup:

E5
ρ =

{
((Tθ)

⊗n ⊗ Id)(ρ), θ ∈ Θ
}
.All these distintions are not super�uous16. The �rst strategy is easier than theseond, but Fujiwara [2001℄ proved that sending half of a maximally entangledstate through an unknown qubit hannel and keeping the other half as anillaallows to estimate three times faster asymptotially than any strategy of the �rst,or third types.In a yet muh more impressive way, the use of entanglement (fourth and �fthstrategy) allows estimations of unitary operations with quadrati square errorsaling as 1/n2. In ontrast, any of the �rst strategies would yield n opies of a16Even more ompliated strategies involve feeding in again the output state...



24 Introdution
Classial Simple lassial exampleProbability spae

(Ω,A)
{0, 1}Probability measure

pθ

(
1

2
(1 + θ),

1

2
(1 − θ)

)with −1 ≤ θ ≤ 1.Dira measure
(1, 0) or (0, 1)given by θ = −1 or 1.Estimator with value in measuredspae (X ,A)

X : Ω ⊗ Ω2 → Xwhere (Ω2,B, q) is a probability spaewith known q. X : i 7→ Xi(ω2)with Xi : Ω2 → X for i = 0, 1,where (Ω2,B, q) is a probability spaewith known q.Probability law of the estimator
Pθ [X ∈ A] = (pθ ⊗ q)(X−1(A)). Pθ [X ∈ A] =

1

2
(1 − θ)q(X−1

0 (A))

+
1

2
(1 + θ)q(X−1

1 (A)).Markov kernel (given by (1.5))
τ

pθ 7→ pθ(0)τ0 + pθ(1)τ1with τ0 and τ1 probability laws on thesame spaeFigure 1.1: Basi orresponding quantum and lassial notions



1.1 Statistis 25
Quantum Simple quantum exampleHilbert spae

H
C

2State (given by De�nition 1.1.1)
ρθ

1

2

(
1C2 +

3∑

i=1

θiσi

)with σi given by (1.16) and ‖θ‖ = 1.Pure state
|ψ〉 〈ψ|with 〈ψ|ψ〉 = 1. Rank-one ρθ, equivalent to ‖θ‖ = 1 inthe previous formula.POVM (given by de�nition 1.1.2),with values in measured spae (X ,A)

M = {M(A)}A∈A

No simpli�ation
Probability law of the measurement

Pθ [X ∈ A] = Tr(ρθM(A)).

No simpli�ationChannel (given by De�nition 1.1.3)
E : T (H) → T (K).

If dim(K) = d <∞, then
E(ρθ) =

2d∑

α=1

RαρθR
∗
αwith Rα ∈Md,2(C) and ∑αR

∗
αRα =

1C2 .Figure 1.2: Basi orresponding quantum and lassial notions



26 Introdutionstate, and the quantum Cramér-Rao bound (1.29) ensures that the rate annotbe any better than 1/n.In any ase, hoosing what we allow is only part of the problem. The mosthallenging question remains to know what state to send in. The output quan-tum experiment does depend a lot on that hoie. When using only an anilla,maximally entangled states are the natural hoie. When we deal with the hugeentangled input states of the fourth experiment, group theory provides guidelines.We study disrimination between two Pauli hannels in Chapter 2.Chapter 3 deals with estimation of unitary hannels on �nite-dimensional spaes,and the orresponding setion 1.3 of the introdution dwells further on the historyand referenes.1.2 Disrimination1.2.1 MotivationAlie and Bob want to establish and share a seure ryptographi key. Alie thensends a sequene of partiles to Bob, where eah partile is either in state |ψ1〉or in state |ψ2〉. These states are not orthogonal. Yet, Bob an measure eah ofthem and get one of three possible results: the state is |ψ1〉, |ψ2〉, or �I don't knowthe state�. When he gets a de�nite result, the state is always orretly identi�ed.When he gets the inonlusive result, Bob merely phones Alie to disard thispartiular bit. For maximal e�ieny, Bob wants a measurement that yields aonlusive result as often as possible.As it happens, Eve is eavesdropping. If she is to have any hope not to be notied,she must send a state to Bob, whatever the onlusion of her measurement. Inontrast to Bob, she is not allowed to say �I don't know�. Hene, her best strategyonsists in using the measurement that is most often right, even if she does notknow for sure when it is right. As the states are not orthogonal, she will anyhowmake a mistake in the long run and she will be spotted.This quantum-key-disrimination protool was suggested by Bennett et al. [1992℄.It features two basi examples of quantum disrimination problems. The generalframework is the following. We are given a quantum objet, generally a state.We know it belongs to a �nite set. We must guess whih one it is. To hoosean optimal strategy, we need a ost riterion. The most natural two are thoseappearing in the above example. Bob's riterion is alled optimal unambiguousdisrimination, Eve's is state disrimination with minimum error.



1.2 Disrimination 27Historially minimum error was studied �rst, already by Helstrom [1976℄. In-deed, it orresponds to hypothesis testing, a very important subjet in lassialstatistis. Ivanovi [1987℄ introdued unambiguous disrimination. In ontrastto minimum error disrimination, the orresponding lassial problem is triv-ial. However, there are more obvious onnetions to other quantum informationsubjets, suh as exat loning [Che�es and Barnett, 1998b℄ or entanglementonentration [Che�es and Barnett, 1997℄.1.2.2 Former resultsChe�es [2000℄ and Bergou et al. [2004℄ have written reently two reviews on thesubjet. They are my main soures for this historial part.As a �rst remark, all previous work made use of the Bayesian framework. Wemay then state more preisely Eve's minimum error disrimination problem astrying to �nd a POVM P = (P1, P2) that minimizes the average error probability,or equivalently maximizes the average suess probability:
pS = π1 Tr(ρ1P1) + π2 Tr(ρ2P2), (1.30)with π the a priori probability and ρi = |ψi〉〈ψi|.Bob must maximize the same expression (1.30), but with a POVM P = (P1, P2, P?),and the additional onstraint that Tr(ρ2P1) = Tr(ρ1P2) = 0. Here P? orrespondsto the inonlusive result. With our de�nition of a pratial statistial problemas the three points (what we have, what we are allowed to, what we want), thedi�erene with minimum error disrimination lies in the seond point: what weare allowed to.Let us �rst follow Helstrom [1976℄ on the minimum error disrimination. Sine

P2 = 1 − P1, writing ρ1 = |ψ1〉 〈ψ1| and |ψ2〉 〈ψ2|, we get
pS = π2 Tr(ρ2) + Tr(P1(π1ρ1 − π2ρ2)).Hene an optimal POVM is given by P1 the projetor on the support of thepositive part of π1ρ1−π2ρ2. Notably, the POVM is a Von Neumann measurement.This solves the minimum error disrimination for two possible states, even if theyare mixed. The same strategy would also work if we added weights for di�erenterrors.Di�ulties arise for minimum error when we deal with more than two states, say

N . We an write the funtion to be maximized in a way similar to (1.30), thatis ∑i πi Tr(Piρi). However, the trik of replaing P1 by 1 − P2 annot be used,and there is no known general solution to this maximization problem. Let ussummarize what we do know, though.



28 IntrodutionFor one thing, Eldar [2003℄ has shown that one of the optimal POVMs is alwaysa Von Neumann measurement, as long as all the ρi are linearly independent.Through the use of Lagrange multipliers, Holevo [1973℄ and Yuen et al. [1975b℄have given an impliit solution: the following is a neessary and su�ient ondi-tion for the POVM to be optimal:
Pi(πiρi − πjρj)Pj = 0,

N∑

k=1

(πkρk)Pk − πiρi ≥ 0,for all 1 ≤ i, j ≤ N .We have analytial solutions in a few speial ases [Barnett, 2001, Yuen et al.,1975b, Andersson et al., 2002℄. The most interesting ase is when we have ovari-ane. That is, when πi = 1/N for all i, and there is a unitary operator V suhthat V N = I and ρi = V i−1ρ1V
1−i, we an apply Holevo [1982℄ and look for asolution of the form Pi = V iΞV −i, where Ξ is alled the seed of the POVM. Thisstarting point enabled �rst Ban et al. [1997℄ for pure states, then Eldar et al.[2004℄ and Chou and Hsu [2003℄ for the general mixed ase, to derive an analyt-ial solution. They get the famous �square-root measurement�, whih reads forpure states |ψ1〉:

Pi = B−1/2|ψi〉〈ψi|B−1/2with B =
∑

i

|ψi〉〈ψi|.Though we have an expliit solution for testing two states, it is hard to know ex-atly the rate at whih our guesses get better if we have n opies of the same state,so that we have to disriminate between ρ⊗n1 and σ⊗n
1 . Reent work has fousedon knowing this rate, and what lasses of measurements an attain it [Hayashi,2002b, Nagaoka and Hayashi, 2007, Nussbaum and Szkola, 2006, Audenaert et al.,2007, Kargin, 2005℄. They essentially make use of quantum Cherno� bounds orSanov's theorem, that is quantum large deviations theory. These results alsoapply to the minimax setting.Finally, sine we try to maximize a linear funtional under linear onstraints(that is P must be a POVM), semi-de�nite linear programming yields e�ientnumerial treatment [Jezek et al., 2002℄.Riis and Barnett [2001℄ have experimentally implemented Eve's situation, thatis disriminating two qubits, whereas Clarke et al. [2001b℄ has realized the dis-rimination of the trine and tetrad states, i.e. three and four pure states thatare the verties of a regular triangle and a regular tetahedron.



1.2 Disrimination 29Let us go bak to Bob's problem, unambiguous disrimination of two pure states
|ψ1〉 and |ψ2〉. For the equiprobable prior π1 = π2 = 1/2, Ivanovi [1987℄, Dieks[1988℄ and Peres [1988℄ have found the optimal measurement. The orrespondingprobability of getting a onlusive result is then alled the IDP limit:

pS = 1 − |〈ψ1|ψ2〉|. (1.31)How do we get there? For one thing, the only relevant part of the spae isthat spanned by |ψ1〉 and |ψ2〉, so that it is two-dimensional. We may thusonsider the basis biorthogonal to (ψ1, ψ2), that is a non-orthogonal basis (ω1, ω2)haraterized by 〈ωi|ψj〉 = δij for 1 ≤ i, j ≤ 2. Moreover, the POVM element
P1 must satisfy Tr(P1ρ2) = 0, or equivalently have its support orthogonal to
|ψ2〉. Hene P1 = c1|ω1〉〈ω1|. Similarly, P2 = c2|ω2〉〈ω2|. We must now merely�nd the best c1 and c2 to maximize (1.30) while keeping P1 + P2 ≤ I. Then
P? = I −P1 − P2. By a symmetry argument, for π1 = π2, we must have c1 = c2.So that we take the maximal c1 suh that P1 +P2 ≤ I. Calulations yield (1.31).Unambiguous disrimination, unlike minimum error disrimination, essentiallygeneralizes to several pure states. On the other hand, even disriminating on-lusively between two mixed states is hallenging.Jaeger and Shimony [1995℄ have generalized to the ase when π1 6= π2. For morethan two pure states, we an start in the same way: we write Pi = ci|ωi〉〈ωi|,with {ωi}1≤i≤N the bi-orthogonal basis of {ψi}1≤i≤N . We have then to deal with
N oe�ients only. However there is no expliit general solution. Speial solvedases inlude the ovariant one, when |ψi〉 = V i−1|ψN 〉, and V N = I = V V ∗[Che�es and Barnett, 1998a℄. The main theoretial results for several pure statesare upper and lower bounds on the suess probability. Zhang et al. [2001℄ haveproved that:

pS ≤ 1 − 1

N − 1

∑

1≤j,k≤N
j 6=k

√
πjπk|〈ψi|ψj〉|.We notie that the IDP limit saturates this bound. On the other side, Sun et al.[2002℄ have shown that pS was bigger than the lowest eigenvalue of the N × Nmatrix whose elements are the salar produts 〈ψi|ψj〉. They have used formerwork from Duan and Guo [1998℄, on loning.However, most of the literature revolves around disriminating two, or more,mixed states. I shall be brief enough sine I have not worked on that ase.Rudolph et al. [2003℄ have given lower and upper bounds on the suess proba-bility pS , and shown that they agree in many ases. As a by-produt, they givea solution when the rank of the density matries is the dimension of the Hilbertspae minus one. Moreover Raynal et al. [2003℄ have shown we ould reduethe study of disrimination to that of two density matries with same rank in



30 Introdutiona Hilbert spae of dimension twie this rank. Moreover, Feng et al. [2005℄ hasgiven upper bounds for disriminating between N mixed states, and Qiu [2007℄ alower bound. Herzog and Bergou [2005℄, Raynal and Lütkenhaus [2005℄, Herzog[2007℄ have given expliit solutions for a number of speial ases.Like for minimum error disrimination, Eldar [2003℄ has shown we an apply semi-de�nite programming tehniques. Furthermore, Huttner et al. [1996℄, Clarke et al.[2001a℄ implemented experimentally Bob's ase, that is disriminating betweentwo pure states. Mohseni et al. [2004℄ also experimentally demonstrated the moreompliated situation where we distinguish between one pure and one mixedstate.Up to this point, we have only studied disrimination between states. We analso disriminate between other quantum objets, namely hannels. We have ahannel E and we know it belongs to the �nite set {Ei}1≤i≤k. We must then senda known probe state ρ through our unknown blak box E . The output state is
E(ρ) and we an now disriminate between the states Ei(ρ). We are bak to theformer situation, exept that we must hoose our input state to get the mosteasily distinguishable output states. The hoie of the input state may be themost hallenging part, and raises spei� questions, notably whether using ananilla is useful.Childs et al. [2000b℄ have �rst studied minimum error disrimination for uni-tary hannels, with an emphasis on quantum omputation appliations, suh asGrover's [1996℄ algorithm for database searhing. Sahi [2005b℄ has onsideredPauli hannels, as a basi example of non-unitary hannel. More reently, un-ambiguous disrimination has been applied, with Wang and Ying [2006℄ �ndingunder whih onditions hannels may be unambiguously distinguished, eitherwith one input, or several inputs. In the latter ase, entangling the input stateusually improves results. Finally, Che�es et al. [2007℄ have gathered known re-sults on unambiguous disrimination, and then some, in an artile with quantumomputation motivations learly stated. More work is required on the question.Though they do not appear in this thesis, disrimination overs other aspets. A�rst lass of problems stems from using another optimality riterion [for exampleFiurasek and Jezek, 2003, Touzel et al., 2007, Sasaki et al., 2002℄. Herzog andBergou [2002℄ have also investigated disrimination between lasses of states, or�ltering. A very topial extension is the following: here, we have always assumedwe ould use any physially feasible measurement. If we have a produt state,we might be unable to arry out the most general measurements and may haveto restrit to LOCC measurements. A possible appliation is seret sharing: �nda sheme where Alie and Bob an �nd what the state is if they ooperate, butannot individually. Suh a sheme should be symmetrial. A starting pointfor bibliography is the review artile of [Bergou et al., 2004℄, and the referenestherein, or the more urrent work by [Owari and Hayashi, 2008℄.



1.3 Fast Estimation of Unitary Operations 311.2.3 Contributions of the thesisAs I already mentionned, all previous work made use of the Bayesian paradigm,requiring an a priori probability. My work, in ollaboration with G.M. d'Arianoand M.F. Sahi, has been to study the minimax ase, espeially useful if thereis no �physial� reason to hoose a prior.Using the link between Bayesian and minimax risks, provided in Setion 1.1.1,we have given the solutions when the states are ovariant. The solution is thesame as that for the uniform prior. Here omes an important di�erene withthe Bayesian senario. Even for two states in minimum error disrimination, theoptimal measurement is not, in general, a Von Neumann measurement.We have also proved that there was always a solution to the minimax minimumerror disrimination problem for any �nite set of possibly mixed states ρi, withall states having the same probability of being suessfully identi�ed, that is
Tr(ρiPi) does not depend on i.Minimax unambiguous disrimination turns out to be easier than Bayesian dis-rimination for multiple pure states: we have always an expliit solution. Sim-ilarly to what we explain below equation (1.31), we an prove that the POVMelements must be of the form Pi = ci|ωi〉 〈ωi|, with {ωi} a basis biorthogonal17 to
{ψi}. Then the ci are all given by the minimum eigenvalue of a matrix dependingon ωi. When there are several solutions, we an re�ne our minimax riterion tohoose a unique one.We have also studied minimum error disrimination between two Pauli hannels.When we an make use of an anilla, we have shown that maximal e�ienyould always be ahieved by sending a maximally entangled state, just like in theBayesian ase. We have also haraterized the Pauli hannels for whih usingan anilla improves the suess probability. Interestingly, whereas a Bayesianoptimal input state an always be hosen as an eigenstate of one of the Paulimatries, suh states might not be minimax optimal.1.3 Fast Estimation of Unitary Operations1.3.1 MotivationEvolution of a quantum system without measurement is unitary. Therefore,onsidering this evolution as a blak box to be estimated means estimating a17That is 〈ψi|ωj〉 = δij .



32 Introdutionunitary operator. This may yield relevant information on the physis of thesystem.There are also many ases in quantum information where we have to estimatea unitary operation, most often beause it orresponds to an orientation of theeigenvetors, that is the purely quantum part of a state.With these two main ategories in mind, we may give more details on the variousappliations. Some of them require estimating only one parameter:Quantum loks Evolution of a system is given by Ut = eitH . A quantum lokonsists in estimating the free parameter t, that is the time. Hene, we haveto disriminate between a one-parameter family of unitary operators [Buzeket al., 1999℄.Preision measurements More generally, small fores of known form and un-known intensity show up as a phase in the evolution operator U = eiφH .Finding φ is �nding the fore. We an notably use that for aelerometers[Yurke, 1986℄.Others ask for knowing the full operator:Transmission of referene frames When Alie and Bob want to ommuni-ate by exhanging qubits, or more generally d-dimensional states, theymust agree on what are the axes of measurement, that is the refereneframe [Holevo, 1982℄. These will be rotated when sent from Alie to Bob.Hene, Bob must estimate the rotation of these axes, that is the unitaryevolution of the qubits. Notie, however, that there are shemes for ommu-niating without referene frames, through the use of group representations[Bartlett et al., 2003℄.Estimation of maximally entangled states Maximally entangled states area fundamental resoure for quantum teleportation [Bennett et al., 1993℄and quantum ryptography [Ekert, 1991℄. To ahieve optimal e�ieny,however, Alie and Bob must know whih maximally entangled state theyshare, that is, what is the unitary U suh that |ψ〉 = 1
d

∑ |i〉 ⊗ U |i〉.1.3.2 Former resultsTo my knowledge, Yurke [1986℄ �rst notied that a parameter in a quantum evolu-tion ould be estimated at speed 1/N2 (for square errors), where N is the numberof states that have undergone the evolution. This is extremely remarkable, sineparameters an only be estimated at rate 1/N in usual lassial settings.



1.3 Fast Estimation of Unitary Operations 33This kind of fast estimation, that makes use of entanglement between the inputstates, saturates what the physiists all the Heisenberg limit, the fundamentallimitation on the preision of quantum measurements. Giovannetti et al. [2004℄have reently written a review paper about this kind of speed-up, mentioningexperiments. Most pratial methods involve either photons obtained throughparametri down-onversion [e.g. Eisenberg et al., 2005℄, ion traps [e.g Dalvitet al., 2006℄ or atoms in avity QED [e.g. Vitali et al., 2006℄.Ain et al. [2001℄ �rst gave the general form of an optimal input state, with non-spei�ed oe�ients depending on the ost funtion, for any uniform Bayesianoptimization problem with a SU(d)-ovariant ost funtion. When we are allowedto send N partiles through the unitary operator, it reads:
|Φ〉 =

⊕

~λ:|~λ|=N

c(~λ)√
D(~λ)

D(~λ)∑

i=1

|ψ~λi 〉 ⊗ |ψ~λi 〉, (1.32)where we use the notations of Chapter 3 on group representations. The oe�-ients c(~λ) depend on the optimization funtion, and the |ψ~λi 〉 are an orthonormalbasis of Hλ. Only the �rst N partiles, orresponding to the right of the tensorprodut, are sent through the unitary operator. Sine we start from a problemwhere everything is invariant under ation of SU(d), it should ome as no sur-prise that the solution also is. Later on, Chiribella et al. [2005℄ generalized thisequation to other symmetries, and give the preise oe�ients as oordinates ofan eigenvetor of a matrix depending on Clebsh-Gordan oe�ients.Subsequent work has foused on SU(2). Peres and Sudo [2001℄ �rst gave astrategy onverging at rate 1/N2 with �delity as �gure of merit, though the inputstate and measurement were not ovariant. Bagan et al. [2004a℄ then found theright oe�ients in equation (1.32) and ahieved the same rate, with optimalonstant π2/N2. Then Bagan et al. [2004b℄ and Chiribella et al. [2004℄ bothnoted that an anilla was unneessary. We then have to prepare half less partiles.They replae entanglement with external partiles by �self-entanglement�, usingthe fat that the multipliity M(~λ) of most irreduible representations is highenough in the N -tensor produt representation.Hayashi [2004℄ established similar results with minimax riteria. When it omesto SU(d), Ballester [2005b℄ has given the only indiation that the same speedould be ahieved. He has found an input state suh that the Quantum FisherInformation (1.27) sales like 1/N2. He ould not �nd a omplete estimationproedure, though.Notie that these high speeds annot be generalized to estimation of arbitraryhannels. Indeed, many ontinuous families of hannels an be programmed by aontinuous family of states ρθ, that is we may hoose a unitary operation ating



34 Introdutionon σ ⊗ ρθ, and look only at the e�et on σ. Then estimating θ on the hannelsalso estimate it for ρθ. Beause of the lassial Cramér-Rao inequality (1.15), thelatter estimation is always slower than 1/N [Ji et al., 2006℄. [Fujiwara and Imai,2003℄ have given an expliit derivation of maximum 1/N rate for generalizedPauli hannels, and mentionned an equivalent remark by [Hayashi, 2006℄.1.3.3 Contributions of the thesisAin et al. [2001℄ and Chiribella et al. [2005℄ have given the general form forestimating optimally a unitary operation. However, the speed annot be readthereon. My work has onsisted in �nding oe�ients c(~λ) in the state (1.32)with whih omputations were possible, and proving that we again attain 1/N2rate, in both the Bayesian and minimax frameworks. [Imai and Fujiwara, 2007℄have sine independently given a di�erential geometri interpretation on this rate.The idea was the following: omputations show that c(~λ) must be almost equalto c(~λ)′ for ~λ and ~λ′ di�ering by only one box. When λi = λi+1 for some i, weshould also take a small ~λ. We then hoose the oe�ients proportional to
c(~λ) =

d∏

i=1

(λi − λi+1),and we hek that we get the right rate.1.4 Clean Positive Operator Valued Measures1.4.1 MotivationWe have a measurement apparatus P. We might want to re-use this ostlyapparatus for di�erent measurements. To ahieve this, we may �rst transform
ρ, and then use our apparatus. The ombination of the transformation and themeasurement orresponds to a new measurement apparatus Q.This senario, illustrated by Fig. 1.4.1, raises a few natural questions. Math-ematially, we have a POVM P, and we obtain another POVM Q = E(P) byapplying beforehand a hannel E to the input state ρ. We then say that P isleaner than Q. This is a pre-order relation, denoted P < Q. We may wonderwhether, for given P and Q, there is a hannel E suh that Q = E(P). For agiven P, what are the POVMs Q leanness-equivalent to P, i.e. suh that both
P < Q and Q < P? Yet, the �rst stage in understanding this relation would beto �nd its maximal points: what are the lean POVMs, i.e. the POVMs P suhthat Q < P implies P < Q?
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ρ

E

Q

E(ρ)
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i

Figure 1.3: We apply a hannel E to ρ before feeding it into a POVM P. Theglobal operation, yielding lassial data i from the state ρ, an be seen as mea-suring the state ρ with a POVM Q. We say that P is leaner than Q.1.4.2 Former resultsThe pre-order �leaner than� was introdued by Busemi et al. [2005℄, as a way toformalize preproessing of POVMs, as opposed to postproessing, that is lassialproessing of the lassial output.To give some perspetive, let us mention some other lassial orderings on POVMs[Heinonen, 2005℄:
• A POVM P gives more information than a POVM Q if it an distinguishall the pairs of states that Q an distinguish. A POVM an distinguishtwo states if the probability distributions of the output are di�erent. Max-imal POVMs for this order relation are alled informationally omplete, orinfoomplete [Prugorev£ki, 1977℄.
• The weaker order relation �having greater state determination power than�yields also infoomplete POVMs as maximal elements. A POVM deter-mines a state if the probability distribution of the output an be obtainedonly with this input state [Bush and Lahti, 1989, Davies, 1970℄.
• A POVM Q is a fuzzy version [Martens and de Muynk, 1990℄ of P if wean obtain it by postproessing the outome of P. The maximal POVMsare the rank-one POVMs [Busemi et al., 2005℄.Notie that if Q is a fuzzy version of P, then P gives more information than

Q. However, there is no relation between the maximal elements. We shouldalso notie that rank-one POVMs are the extremal points of the onvex set ofPOVMs, and sine many optimization funtions are onvex, the orrespondingsolutions to the optimization problem are rank-one [Helstrom, 1976℄.



36 IntrodutionIt turns out that the relation �leaner than� has little to do with the formerrelations. Charaterization of their maximal points is also a di�ult problem. Wealready have some partial results, however. Namely, Busemi et al. [2005℄ haveproved that rank-one POVMs are lean, as well as POVMs where the maximaleigenvalue of eah POVM element is one. The latter ase assumes that P hasthe same number of outomes as Q. If we allow P to have more, then the latterPOVMs are not lean, unless they are observables. Indeed, no preproessing aninrease the number of outomes, whereas a preproessed observable an yieldany POVM with no more than d outomes: we merely measure Q and preparethe eigenstate i as input for the observable.Busemi et al. [2005℄ have also proved that if Q is infoomplete and P < Q, then
P is also infoomplete, and that a two-outome POVM P = {P1, 1−P1} is leanerthan another two-outome Q = {Q1, 1 − Q1} if and only if [λm(P1), λM (P1)] ⊃
[λm(Q1), λM (Q1)], where λm and λM are the smallest and biggest eigenvalues.The remainder of their work makes use of related equivalene or order notions.The most basi is unitary equivalene. The POVMs P and Q are unitarilyequivalent if we an obtain Q from P by using a unitary hannel, that is UPiU∗ =
Qi for all POVM elements. We an then go bak to P by using the inversehannel. Thus, unitary equivalene entails leanness-equivalene. The onverseis not true: take for example two e�ets in dimension three, with P1 = |φ〉 〈φ| =
1 − Q1. Then we do not have unitary equivalene, yet λm(P1) = 0 = λm(Q1)and λM (P1) = 1 = λM (Q1), so that P and Q are leanness-equivalent. However,unitary and leanness-equivalene are the same in a number of speial ases: forinfoomplete POVMs, for qubits (that is, with a two-dimensional Hilbert spae)and for rank-one POVMs.To give a taste of the methods, let us prove the latter assertion on rank-onePOVMs. Then we an write Qi = λM (Qi)|ψi〉〈ψi| with |ψi〉 normalized. Wean write λM (Qi) = Tr(Qi |ψi〉 〈ψi|) = Tr(PiE(|ψi〉 〈ψi|)). Sine E(|ψi〉 〈ψi|) isa state, the latter expression is less than λM (Pi) ≤ Tr(Pi). Sine the POVMsare normalized, we know that ∑i λM (Qi) = d =

∑
i Tr(Pi), where d is thedimension of the Hilbert spae. Hene Tr(Pi) = λM (Qi) = λM (Pi), so that

Pi = λM (Qi) |φi〉 〈φi| for some normalized |φi〉. Hene E(|ψi〉 〈ψi|) = |φi〉 〈φi|.So that E(Id) =
∑

i λM (Qi)E(|ψi〉 〈ψi|) =
∑
i Pi = Id, that is, E is both trae-preserving and unital. Hene so is its dual, that sends bak |φi〉 on |ψi〉. We �nishby realling that there are two hannels mapping a set of pure states on another,and bak, if and only if they are unitarily equivalent [Che�es et al., 2003℄.The main other relation they use is �having a larger range�, denoted P ⊃r Q,where the range is the set of possible probability distribution of outomes, i.e.

{(Tr(ρPi))i : ρ state}. Sine we may feed E(ρ) in P and get the same result asif using ρ as input for Q, the relation �leaner than� is stronger than �having



1.4 Clean Positive Operator Valued Measures 37a larger range�. The onverse is not true. However, if there is an infoompletePOVM M on the same Hilbert spae, suh that P⊗M ⊃r Q⊗M, then P < Q.The presene of M ensures that the map de�ned on the span of the POVMelements {Pi} by E(Pi) = Qi is ompletely positive, and hene an be extendedto the whole spae, by Arveson's [1969℄ extension theorem.Finally, Busemi et al. [2005℄ have also proved that the set CP,Q of hannels
E suh that E(P) = Q is a onvex set. We have little more expliit generalinformation that would also hold for non neessarily lean POVMs.1.4.3 Contributions of the thesisWe have seen that we do not have, to this day, a haraterization of lean POVMs.This thesis gives a su�ient ondition, and proves that this ondition is alsoneessary for a ategory of POVMs, that inludes all the POVMs for qubits. Wehave thus haraterized the lean POVMs for qubits.We make use of two main ideas. Let us start with a POVM P. We want to provethat it is lean. In other words, given Q suh that Q < P, we want to provethat the onverse P < Q is also true. The easiest ase is when P = E(Q) with
E unitary. We then try to �nd a ondition on P under whih E is unitary for all
Q.Now, using Kraus deomposition (1.23), we know that Pi =

∑
αR

∗
αQiRα. Allelements of the sum are non-negative, so that Pi ≥ R∗

αQiRα for all i and α.Notably the support of R∗
αQiRα must be inluded in that of Pi, as an operatoron the Hilbert spae H. This yields d − dim(Supp(Pi)) homogeneous linearequations on the matrix elements of Rα, for eah given vetor in the supportof Qi. If we thus get d2 − 1 independent equations, the matries Rα will bedetermined up to a onstant, and the onstraint ∑R∗

αRα = Id will prove that
E is unitary.The di�ulty in the above senario is that the equations depend on Q. I thusintrodue the following de�nition: a set of subspaes of H totally determines Hif they yield enough independent equations when they are the support of Pi forany possible set of vetors |φi〉 in the supports of any Qi. It turns out that a setof vetors {|φi〉} (i.e one-dimensional supports) totally determine H if and onlyif, for any two proper supplementary subspaes V and W , there is an i suh that
|ψi〉 6∈ V and |ψi〉 6∈ W .This yields a su�ient ondition for POVMs to be lean, that an be readilyheked algorithmially. I have also proved that being a rank-one POVM, orsatisfying this ondition, is neessary if all POVM elements are either rank-one,



38 Introdutionor full-rank. I have named suh POVMs quasi-qubit POVMs, sine all POVMsfor qubits are quasi-qubit.The neessity is proved by onsidering hannels E that are near the identity, andtaking their inverse as positive maps. We an then onsider Q = E−1(P) andwe have to prove that Q is a POVM. By a areful hoie of E , based on thesubspaes V and W given in the above paragraphs, we an ensure it.For qubits, the lean POVMs are then the rank-one POVMs on the one hand,and the POVMs with at least three non-olinear rank-one elements. The latterondition is a more intuitive translation of �totally determines� in the ase ofqubits.1.5 Complementary subalgebras1.5.1 MotivationWe are given two entangled qubits. We may let them evolve the way we want,and then measure only one of them. How do we let them evolve, if we want toreonstrut the state of these two qubits with as few di�erent evolutions, and ase�iently as possible?Formally, this translates as having a state on C2 ⊗ C2. We have �fteen real pa-rameters to estimate. We may measure the redued state on a two-dimensionalsubspae, that is on the two �rst oordinates of WC4, where W is unitary, or-responding to the evolution. Eah W yields a redued state, orresponding tothree parameters. We aim at using as few di�erent transformationsW as we an.We obviously need at least �ve di�erent W . We may �rst wonder if that issu�ient. We may also ask for a set of optimal ones. Those two questions arebest answered by notiing that knowing a state is knowing its mean value on thealgebra of observables M2(C) ⊗M2(C). Knowing the redued state on di�erentsubspaes is knowing the original state on the subalgebra Ai = Wi(M2(C) ⊗
Id)W ∗

i , for di�erentWi. Hene the redued states generally determine the initialstate if and only if the subalgebras Ai span, as a vetor spae, the initial algebra
M2(C) ⊗M2(C).Intuitively, we get as muh information as possible if the subalgebras Ai di�eras muh as possible one from the other. Mathematially, we translate that byasking that the subalgebras are omplementary, that is (Ai − C1) is orthogonalto (Aj − C1) for i 6= j and the salar produt 〈A|B〉 = Tr(A∗B) on M4(C).As a summary, we seek �ve subalgebras of M4(C), eah of them isomorphi to
M2(C), and pairwise omplementary.



1.5 Complementary subalgebras 391.5.2 Former resultsPetz, Hangos, Szántó, and Szöll®si [2006℄ have introdued the former notionsand problem. They were also motivated by an analogy with omplementaryobservables, suh as position and momentum. Shwinger [1960℄ might have �rstprovided a mathematially rigorous approah in �nite-dimensional Hilbert spaes.Two observables on a d-dimensional Hilbert spae are omplementary if theireigenbases satisfy 〈φ|ψ〉 = 1/d for all φ in the �rst eigenbasis and ψ in the otherone . Those bases are frequently used in quantum information, be it for statedisrimination [Ivanovi, 1981℄, for �the Mean King's problem� [Kimura et al.,2006℄ or quantum ryptography [Bruss, 1998℄. Now, we an assoiate to anobservable the ommutative algebra of elements diagonal in the same eigenbasis.Two observables are omplementary if and only if the orresponding ommutativealgebras are omplementary. The ubiquity of omplementary observables givessome hope of usefulness for omplementary M2(C) subalgebras.Bak to our initial problem, Petz et al. [2006℄ have proved that �ve di�erentsubalgebras were indeed su�ient to span M2(C)⊗M2(C). They have exhibitedfour omplementary subalgebrasM2(C). However they ould not �nd �ve. Theyhave also onsidered n qubits, with the orresponding algebra M2(C)⊗n. Wethen need at least (22n − 1)/3 subalgebras isomorphi to M2(C) to span theoriginal algebra. They have proved that, if we restrain to subalgebras generatedby elements of the form σ1 ⊗σ2 ⊗· · ·⊗σn, where eah σ is a Pauli matrix (1.16),then this bound is not saturated, and we need at least one more subalgebra.As hoosing subalgebras with suh generators is the easiest way to get omple-mentary subalgebras, this might be interpreted as an indiation that we annotspan the whole algebraM2(C)⊗n with omplementary subalgebras isomorphi to
M2(C).1.5.3 Contributions of the thesisThis is joint work with Dénes Petz. We have proved that the maximal numberof omplementary subalgebras isomorphi toM2(C) inM2(C)⊗M2(C) was four.The idea is the following: we onsider an orthonormal basis of a subalgebra Aisomorphi to M2(C) of the form 1, A1, A2, A3. Sine the basis is orthonormal,the Ai are traeless. Let us also take 1, B1, B2, B3 as an orthonormal basis of
1⊗M2(C). If A is omplementary to M2(C)⊗ 1, then∑i,j |Tr(A∗

iBj)| ≥ 1. Onthe other hand, for {Ci}i≤16 an orthonormal basis of M2(C) ⊗M2(C), we have∑
i,j |Tr(C∗

i Bj)| = 3. Hene, there are at most three omplementary subalgebrasisomorphi to M2(C), that are also omplementary to M2(C) ⊗ 1.



40 IntrodutionFor the sake of ompleteness, I have to mention that sine this work has beenpublished, Petz [2006℄ has proved that the spae orthogonal to the four sub-algebras, plus the identity, was always again a subalgebra, but a ommutativesubalgebra.1.6 Quantum loal asymptoti normality1.6.1 Classial loal asymptoti normalityAs bakground and motivation, we give a very brief survey of Le Cam's [1986℄theory of distane and onvergene of experiments, and espeially loal asymp-toti normality.Wald [1943℄ �rst had the idea of approximating a sequene of experiments byGaussian experiments. Le Cam [1960, 1964℄ then gave a preise set of onditionsunder whih these approximations ould be made, de�ned a notion of distanebetween experiments, and explored the onsequenes for approximation.Let us start with two experiments E = {pθ : θ ∈ Θ} and F = {qθ : θ ∈ Θ} withthe same parameters set Θ. We an de�ne Le Cam de�ieny between E and
F from deision theoreti ideas. We onsider ost funtions c(θ, θ′) boundedbetween 0 and 1. The de�ieny is de�ned as the in�mum of the ǫ suh that forany suh ost funtion, for any estimator θ̂E in the seond experiment F , thereis an estimator θ̂F in the seond experiment satisfying:

rθ(θ̂E) ≤ rθ(θ̂F ) + ǫ ∀θ ∈ Θ,where we have used the former notations (1.6) for the risk of an estimator at agiven point θ.In other words, up to ǫ, we an do as good in experiment E as in experiment
F for any question we may ask, whatever the true value of the parameter. Thede�ieny is denoted δ(E ,F).Consider now a Markov kernel T (given by equation (1.5)) suh that
‖T (pθ) − qθ‖1 = 2ǫ for all θ ∈ Θ. This means approximating the probabilitydistributions of F by those of E . Then for any ost funtion c as above and anyestimator θ̂F , we may onsider the estimator θ̂E de�ned as applying θ̂F to the



1.6 Quantum loal asymptoti normality 41random variable with law T (pθ). We obtain
rθ(θ̂E) − rθ(θ̂F ) =

∫
c(θ, θ̂(x))T (pθ)(dx) −

∫
c(θ, θ̂(x))qθ(dx)

≤ (sup c(θ, θ′))

∫
(T (pθ) − qθ)

+(dx)

≤ 1 × ‖T (pθ) − qθ‖1 /2

≤ ǫ.So that the de�ieny is no more than ǫ. In fat, the onverse is true18. We an�nd a Markov kernel that transforms all pθ in qθ, up to twie the de�ieny. Inother words, we an write:
δ(E ,F) =

1

2
inf
T

sup
θ

‖T (pθ) − qθ‖1 .When we symmetrize the de�ieny, we get a distane, alled Le Cam distane
∆(E ,F). We an then onsider a sequene of experiments En = {pn,θ) thatonverges to a limit experiment F for this distane. In other words, there aretwo families Tn and Sn of Markov kernels suh that ‖Tn(pn,θ) − qθ‖1 → 0 and
‖pn,θ − Sn(qθ)‖1 → 0 uniformly on θ.This onvergene with kernels is alled strong onvergene. There is another typeof onvergene, known as weak onvergene, based on likelihood ratios.Let us onsider experiments E = {pθ} with a �nite parameter set Θ. Then thelikelihood ratios are the stohasti proess ΛΘ(E) =

{
pθ

P

θ pθ

}

θ∈Θ
. With in�niteparameter sets Θ, we say that En onverges weakly to F if the law of the proesses

ΛI(En) onverges weakly to the law of ΛI(F) for any �nite subset I of Θ.It turns out that weak onvergene is the same as strong onvergene for �nite pa-rameter sets. Hene for ountable sets. Modest regularity onditions are neededto extend that to unountable parameter sets Θ.Why so many di�erent de�nitions? The de�nition with risk funtions gives thereal motivation: if En onverges to F , we an answer questions asymptotiallyin the same way for En and for F . Strong onvergene, with Markov kernels,gives a diret way of translating estimators from one experiment to the other: wetransform the �rst experiment, and apply the estimator of the seond experiment.It ensures that we get the same risks. On the other hand, exhibiting Markovkernels in real experiments an be non-obvious. Convergene of likelihood ratios,18Stritly speaking, without a domination hypothesis, we have to resort to objets slightlymore general than Markov kernels, alled transitions. The ideas remain the same.



42 Introdutionon the other hands, is relatively easy to establish. They thus prove existene ofthe kernels. Even if we do not know these kernels, and hene annot translatediretly methods from one experiment to the other, we know that the optimalrisks are the same for all problems, whether in a Bayesian or a minimax setting.The pratial bene�ts of this theory are maximal if the limit experiment is easyand well-understood. Independent identially distributed (i.i.d.) data is themost usual situation in statistis, and an be viewed as random variables withlaw p⊗nθ . Under some regularity onditions, we have onvergene to Gaussianshift experiments, whih are indeed well-known.Theorem 1.6.1. Loal asymptoti normality[Le Cam, 1960℄Let Θ be an open subset of Rk. Let
En =

{
p⊗n
θ0+h/

√
n

: h ∈ R
k
}
.Then if the family {pθ} is su�iently regular19 around 0, the sequene of exper-iments En onverges weakly to a Gaussian shift experiment

F =
{
N (h, I−1

θ0
) : h ∈ R

k
}
,where N (h, I−1

θ0
) is the normal law on Rk, with mean h and ovariane matrix

I−1
θ0

the inverse Fisher information (1.13) at point θ0.There are two di�erenes with a entral limit theorem. First, onvergene to thelimit is uniform20 on sets not growing too fast. Seond, the ovariane matrixis the same for all the Gaussians in the limit experiment. The name �shift ex-periment� stems from that observation: the parameter is merely the mean of theGaussian.Why is that nie? Beause we know the answer to most usual statistial ques-tions for Gaussian shift experiments. In partiular, we know an optimal minimaxestimator for quadrati ost funtion, and we an translate that to i.i.d. experi-ments. This observation is the way to prove asymptoti optimality of maximumlikelihood estimators in this setting, for example. This is the theorem that wewould like to imitate in the quantum world.The astute reader has probably notied that the quadrati ost funtion is notbounded in general, and that we resale the parameter h in our de�nition of En.The former theorem is essentially loal in nature. This is su�ient to show that19The right ondition is alled di�erentiability in quadrati mean. Twie di�erentiable in θis more than enough.20For that, we must use a version with strong onvergene.



1.6 Quantum loal asymptoti normality 43the Cramér-Rao bounds (1.15) bounds annot be better than in the limit exper-iment. However, we annot diretly translate the strategy used in the Gaussianlimit experiment to the initial experiment.In pratie, we overome those di�ulties by using a two-step strategy: we use avanishing part of our n-data set to make a �rst rough estimate, and then use theoptimal estimator yielded by loal asymptoti normality. We must �nally provethat the non-boundedness of the ost funtion results in a vanishing error fator.Le Cam later further developed to a muh larger extent his theory of onvergeneof experiments, for di�erent regularity onditions, yielding di�erent approxima-tions, and in very general settings, based on Riesz latties. The depth and breadthof the theory are suggested by the sheer size of his 1986 book.1.6.2 MotivationIn a physial experiment, we frequently have as output n opies of a state pre-pared in the same way, and want to know something about that state, typiallywhat the state is.A quantum loal asymptoti normality would allow us to answer all the questionsabout those repeated experiments by looking at only one experiment, that wehope to be easier. By analogy with the lassial ase, we would expet to get aquantum Gaussian shift experiment, whih is indeed well-understood.Like for strong onvergene with Markov kernels, we would like to �nd hannelstransforming approximately the states we are given in a Gaussian state, and bak.A drawbak of this strategy is that the equivalene results hold when we areallowed everything physially possible, that is olletive measurements and pro-edures. Those an be hard to implement in pratie. Moreover, we annot studyseparate or LOCC measurements diretly through loal asymptoti normality.The orresponding bene�t of exhibiting hannels is that, provided the hannelan be implemented in laboratory, we an translate methods from the Gaussianexperiments to the initial experiment in pratie.1.6.3 Former and related resultsThe �rst step towards similar results in the quantum world dates bak to Dyson[1956℄, who observed that the �utuations of the total spin omponents orthogo-nal to the z axis of n pure �up� spins behaved like the ground state of a quantum



44 Introdutionosillator, that is a quantum Gaussian state. Generally speaking, the physiiststreat oherent spin states [Holtz and Hanus, 1974℄ as Gaussians. Kitagawa andUeda [1993℄, Geremia et al. [2004℄ extend this situation for types of entanglementthat look like squeezed states.This kind of results an be seen as quantum entral limit theorems, the �rstrigorous proof being that of Cushen and Hudson [1971℄. Hayashi [2003℄, Hayashiand Matsumoto [2004℄ have proved some loal regularity of these limits and usedthat to give the �rst optimal estimation method for a totally unknown qubit stateor for parametri submodels, when olletive measurements are allowed.Finding and explaining suh optimal estimation proedures for various problemsis a big motivation of quantum loal asymptoti normality. The problem of esti-mating qubits from multiple opies has generated a huge bibliography, sine it isvery basi. Studies range from separate measurements to adaptive and olletivemeasurements. Bayesian referenes for pure states inlude [Jones, 1994, Massarand Popesu, 1995, Latorre et al., 1998, Fisher et al., 2000, Hannemann et al.,2002b, Bagan et al., 2002, Embaher and Narnhofer, 2004, Bagan et al., 2005℄,and for mixed states [Cira et al., 1999, Vidal et al., 1999, Mak et al., 2000, Keyland Werner, 2001, Bagan et al., 2004, Zyzkowski and Sommers, 2005, Baganet al., 2006℄. Pointwise approah is featured in [Hayashi, 2002a, Gill and Massar,2000, Barndor�-Nielsen and Gill, R., 2000, Matsumoto, 2002, Barndor�-Nielsenet al., 2003, Hayashi and Matsumoto, 2004℄. The main points to remember are thefollowing: for pure states, and not spei�ally qubits, the easily implementableseparate measurements are asymptotially just as e�ient as olletive measure-ments [Matsumoto, 2002℄; however, for general mixed states, we an expet a realspeed-up from using olletive measurements [Gill and Massar, 2000℄; Bayesianmethods usually use group theory, so are valid only for ovariant priors; Baganet al. [2006℄ give an optimal measurement with �delity as ost funtion, and provethat it is also asymptotially minimax optimal.However, the latter ovariant measurement might not be easy to implement inpratie.On a more fundamental level, Petz and Jen£ová [2006℄ have haraterized quan-tum su�ieny. Classially, an experiment E is su�ient for another F if itsde�ieny δ(E ,F) is zero. Petz and Jen£ová have given haraterizations of suf-�ieny notably through hannels (equivalent to Markov kernels) and throughConnes oyles, that may be seen as equivalents of likelihood ratios.Building on this work, Guµ  and Jen£ová [2007℄ have proved quantum loalasymptoti normality in the sense of onvergene of Connes oyles, orrespond-ing to weak lassial loal asymptoti normality. Namely, an experiment of statesover a �nite-dimensional spae, depending smoothly on a parameter θ in an open



1.6 Quantum loal asymptoti normality 45subset Θ ⊂ Cd onverges to a d-dimensional quantum Gaussian shift experi-ment21. The latter experiment is an experiment where the state is a Gaussianstate22 over the Fok spae F(Cd), whose Husimi funtion (1.22) has mean θ and�xed ovariane matrix.We have seen in setion 1.1.3 that the heterodyne measurement was saturatingthe Holevo bound (1.29) for quantum Gaussian shift experiments. However, thereis no established link yet between weak loal asymptoti normality and deisiontheory, so we annot immediately use those bounds for the �nite-dimensionalexperiments.1.6.4 Contributions of the thesisTogether with M d lin Guµ , I have established strong quantum loal asymptotinormality for qubits [2006℄. Namely, we have exhibited families of hannels Tnand Sn from M2(C)⊗n to T (F(C)) ⊗ L1(R), and bak, that send the i.i.d. den-sity matries ρ⊗n
θ0+h/

√
n
near the produt of a one-dimensional lassial Gaussian,orresponding to the eigenvalues, and a one-dimensional quantum Gaussian, or-responding to the eigenvetors. Derivation of these hannels, obtained throughgroup theory, is heavily inspired from the work of Hayashi and Matsumoto [2004℄.We have proved that the onvergene in L1 operator norm was uniform for ‖h‖ ≤

n1/4−ǫ. This large domain of validity ensures that we an use two-step strategiesto translate proedures from the limit experiment to the initial experiment.We have made this two-step strategy more expliit, together with Guµ  andBas Janssens [2008℄, by onsidering a ontinuous-time interation of the qubitswith the eletromagneti �eld. Using quantum stohasti di�erential equations[Hudson and Parthasarathy, 1984℄, we have proved that the state of the �eld,or monohromati light, was the quantum part of Tn(ρ⊗n) for time longer than
lnn.We an then use the heterodyne measurement on that light and get optimalestimation of the quantum part. The lassial part remain in the qubits, and anbe retrieved by a total spin measurement. This an be ahieved in pratie withanother oupling to the �eld and a homodyne measurement.This estimation strategy is asymptotially globally optimal, both in minimax andBayesian sense for ovariant priors, as long as we are away from the totally mixedstate. We believe it ould be implemented in pratie.21To be perfetly exat, a part of the quantum experiment might degenerate to a lassialGaussian shift experiment, orresponding to determining the eigenvalues with �xed eigenve-tors.22Gaussian states an be viewed as Gaussian mixtures of oherent states (1.18).



46 IntrodutionFinally, M d lin Guµ  and I have generalized the onstrution of the hannels toqudits, for any dimension [2008℄. Here again, the loal parameter h is allowed togrow as a small power funtion, enabling translation of the results from the limitexperiment to the initial one.1.6.5 OutlookFurther researh on the subjet an follow numerous paths:Equivalene between weak and strong onvergene of experimentsThe limit experiments are the same for strong and weak onvergene. Themain fragment of lassial loal asymptoti normality still missing a quan-tum ounterpart is the quasi equivalene of the two notions. Sine weakonvergene is relatively easier to prove, we would get the same bene�ts asin the lassial ase.Remove singularities from strong quantum loal asymptoti normalityNotably, our proofs of strong onvergene involve using group representa-tions. They introdue a singularity for equal eigenvalues, that is not im-portant at the level of algebras, used for weak onvergene. This is whywe ask for the eigenvalues to be pairwise di�erent with strong onvergene,though it is most likely an artefat of the proof.Trying to �nd a method for strong onvergene using only C∗ algebrasseems hard. It would automatially yield an equivalent of the lassial no-tion �di�erentiable in quadrati mean�, though.On the other hand, the singularity generated by equal eigenvalues has aphysial meaning in our �pratial implementation� sheme. It orrespondsto equal energy levels for the qubits. Sine the monohromati light is givenby atomi transitions between the two levels, the oupling we use would getdegenerate.Treat other ases Other researh diretions inlude making expliit onver-gene of experiments for other, non i.i.d. ases, suh as squeezed oherentspin states, or quantum Markov hains.Quantum onvergene of experiments with loal operations Amore am-bitious aim would be to de�ne a LOCC distane between experiments, andthe orresponding onvergene. In other words de�ne equivalene betweenmodels when we are allowed to use only LOCC methods, and not all olle-tive operations. The ubiquity of senarios using LOCC in quantum infor-mation in partiular, and the fat that these methods are pratially easierto implement, would make all the prie of this theory.Pratial implementation To end on a more feasible idea, it should be fairlyeasy to onvert the �pratial implementation� of quantum loal asymptotinormality for qubits to the qudits ase.
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Chapter 2Disrimination
This hapter is a merge of the artiles [D'Ariano et al., 2005a℄ and [D'Arianoet al., 2005b℄.Abstrat: We derive the optimal measurement for quantum statedisrimination, as well as for disrimination between Pauli hannels,in a minimax strategy. For states, we onsider both minimal-errorand unambiguous disrimination problems, and provide the relationbetween the optimal measurements aording to the two shemes.We show that there are instanes in whih the minimum risk annotbe ahieved by an orthogonal measurement, and this is a ommonfeature in the minimax estimation strategy.For Pauli hannels, we onsider only the minimal-error problem, thatis we maximize the smallest of the probabilities of orret identi�a-tion of the hannel. We �nd the optimal input state at the hanneland show the onditions under whih using entanglement stritly en-hanes distinguishability. We �nally ompare the minimax strategywith the Bayesian one.2.1 IntrodutionThe onept of distinguishability applies to quantum states [Wootters, 1981,Braunstein and Caves C. M., 1994℄ and quantum proesses [Gilhrist et al., 2004,



50 DisriminationBelavkin et al., 2005℄, and is stritly related to quantum nonorthogonality, abasi feature of quantum mehanis. The problem of disriminating nonorthog-onal quantum states has been extensively addressed [Bergou et al., 2004, andreferenes therein℄, also with experimental demonstrations. Typially, two dis-rimination shemes are onsidered: the minimal-error probability disrimination[Helstrom, 1976℄, where eah measurement outome selets one of the possiblestates and the error probability is minimized, and the optimal unambiguous dis-rimination [Ivanovi, 1987℄, where unambiguity is paid by the possibility ofgetting inonlusive results from the measurement. The problem has been ana-lyzed also in the presene of multiple opies [Ain et al., 2005℄, and for bipartitequantum states, and global joint measurements have been ompared to LOCCmeasurements, i.e. loal measurements with lassial ommuniation [Walgateet al., 2000, Virmani et al., 2001, Ji et al., 2005℄.The problem of disrimination an be addressed also for quantum operations[Sahi, 2005a℄. This may be of interest in quantum error orretion [Knill et al.,2002, and referenes therein℄, sine knowing whih error model is the proper onein�uenes the hoie of the oding strategy as well as the error estimation em-ployed. Clearly, when a repeated use of the quantum operation is allowed, a fulltomography an identify it. On the other hand, a disrimination approah anbe useful when a restrited number of uses of the quantum operation is available.Di�erently from the ase of disrimination of unitary transformations [Childset al., 2000b℄, for quantum operations there is the possibility of improving thedisrimination by means of anillary-assisted shemes suh that quantum entan-glement an be exploited [Sahi, 2005a℄. Notably, entanglement an enhane thedistinguishability even for entanglement-breaking hannels [Sahi, 2005℄. Theuse of an arbitrary maximally entangled state turns out to be always an optimalinput when we are asked to disriminate two quantum operations that generalizethe Pauli hannel in any dimension. Moreover, in the ase of Pauli hannels forqubits, a simple ondition reveals if entanglement is needed to ahieve the ul-timate minimal error probability [Sahi, 2005a,b℄. All the previous statementsrefer to a Bayesian approah.We address here the problem of optimal disrimination of quantum states, and oftwo Pauli hannels, in the minimax game-theoretial senario. In this strategy noprior probabilities are given. The relevane of this approah is both oneptual,sine for a frequentist statistiian the a priori probabilities have no meaning, andpratial, beause the prior probabilities may be atually unknown, as in a nonooperative ryptographi senario. We shall derive the optimal measurementfor minimax state disrimination both for minimal-error and unambiguous dis-rimination problems. We shall also provide the relation between the optimalmeasurements aording to the minimax and the Bayesian strategies. We shallshow that, quite unexpetedly, there are instanes in whih the minimum risk anbe ahieved only by non orthogonal POVM measurement, and this is a ommonfeature of the minimax estimation strategy. Similarly, for hannels disrimina-



2.1 Introdution 51tion, we shall give the optimal input states and measurements whether or not weallow using an anilla, and show that in the latter ase, the optimal input statemight di�er from the usual Bayesian ones.In more detail, in Setion 2.2, we pose the problem of disrimination of twoquantum states in the minimax senario. Suh an approah is equivalent to aminimax problem, where one should maximise the smallest of the two probabil-ities of orret detetion over all measurement shemes. For simpliity we willonsider equal weights (i.e. equal pries of misidentifying the states), and we willprovide the optimal measurement for the minimax disrimination, along with theonnetion with the optimal Bayesian solution. As mentioned, a striking resultof this setion is the existene of ouples of mixed states for whih the optimalminimax measurement is unique and non orthogonal.In Setion 2.3 we generalize the results for two-state disrimination to the aseof N ≥ 2 states and arbitrary weights. First, we onsider the simplest situationof ovariant state disrimination problem. Then, we address the problem ingenerality, resorting to the related onvex programming method.In Setion 2.4 we provide the solution of the minimax disrimination problem inthe senario of unambiguous disrimination. We re�ne, if need be, the minimaxriterion, so that the solution beomes unique.From Setion 2.5, we turn our attention from states to Pauli hannels. We �rstbrie�y review the problem of disrimination of two Pauli hannels in the Bayesianframework, where the hannels are supposed to be given with assigned a prioriprobabilities. We report the result for the optimal disrimination, along with theondition for whih entanglement with an anillary system at the input of thehannel stritly enhanes the distinguishability.In Setion 2.6 we study the problem of disrimination of two Pauli hannels in theminimax approah. We show that when an entangled-input strategy is adopted,the optimal disrimination an always be ahieved by sending a maximally en-tangled state into the hannel, as it happens in the Bayesian approah. On theontrary, the optimal input state for a strategy where no anillary system is usedan be di�erent in the minimax approah with respet to the Bayesian one. Inthe latter the optimal input an always be hosen as an eigenstate of one of thePauli matries, whereas in the former this may not be the ase.



52 Disrimination2.2 Optimal minimax disrimination of two quan-tum statesWe are given two states ρ1 and ρ2, generally mixed, and we want to �nd theoptimal measurement to disriminate between them in a minimax strategy. Themeasurement is desribed by a positive operator-valued measurement (POVM)with two outomes, namely ~P ≡ (P1, P2), where Pi for i = 1, 2 are non-negativeoperators satisfying P1 + P2 = I.In the usually onsidered Bayesian approah to the disrimination problem, thestates are given with a priori probability distribution ~π ≡ (π1, π2), respetively,and one looks for the POVM that minimizes the average error probability
pE = π1Tr[ρ1P2] + π2Tr[ρ2P1]. (2.1)The solution an then be ahieved by taking the orthogonal POVM made bythe projetors on the support of the positive and negative part of the Hermitianoperator π1ρ1 − π2ρ2, and hene one has [Helstrom, 1976℄

p
(Bayes)
E =

1

2
(1 − ‖π1ρ1 − π2ρ2‖1) , (2.2)where ‖A‖1 denotes the trae norm of A.In the minimax problem, one does not have a priori probabilities. However,one de�nes the error probability εi(~P ) = Tr[ρi(I − Pi)] of failing to identify ρi.The optimal minimax solution onsists in �nding the POVM that ahieves theminimax

ε = min
~P

max
i=1,2

εi(~P ), (2.3)or equivalently, that maximizes the worst probability of orret detetion
1 − ε = max

~P
min
i=1,2

[1 − εi(~P )] = max
~P

min
i=1,2

Tr[ρiPi]. (2.4)The minimax and Bayesian strategies of disrimination are onneted by thefollowing theorem.Theorem 2.2.1. If there is an a priori probability ~π = (π1, π2) for the states ρ1and ρ2, and a measurement ~P that ahieves the optimal Bayesian average errorfor ~π, with equal probabilities of orret detetion, i.e.
Tr[ρ1P1] = Tr[ρ2P2], (2.5)then ~P is also the solution of the minimax disrimination problem.



2.2 Optimal minimax disrimination of two quantum states 53Proof. In fat, suppose on the ontrary that there exists a POVM ~P suhthat mini=1,2 Tr[ρiPi] > mini=1,2 Tr[ρiBi]. Due to assumption (2.5) one has
Tr[ρiPi] > Tr[ρiBi] for both i = 1, 2, whene

∑

i

πi Tr(ρiPi) >
∑

i

πi Tr(ρiBi) (2.6)whih ontradits the fat that ~P is optimal for ~a.The existene of an optimal ~P as in Theorem 2.2.1 will be shown in the following.First, by labeling with ~P (π) an optimal POVM for the Bayesian problem withprior probability distribution ~π = (π, 1 − π), and de�ning
χ(π, ~P )

.
= πTr(ρ1P1) + (1 − π)Tr(ρ2P2), (2.7)we have the lemma:Lemma 2.2.2. The funtion f(π)

.
= Tr(ρ1P

(π)
1 ) − Tr(ρ2P

(π)
2 ) is monotoniallynondereasing, with minimum value f(0) ≤ 0, and maximum value f(1) ≥ 0.In fat, onsider ~P (π) and ~P (̟) for two values π and ̟ with π < ̟ and de�ne

~D = ~P (̟) − ~P (π). Then
χ(π, ~P (̟)) = χ(π, ~P (π)) + χ(π, ~D)

χ(̟, ~P (π)) = χ(̟, ~P (̟)) − χ(̟, ~D).
(2.8)Now, sine χ(π, ~P (π)) is the optimal probability of orret detetion for prior π,and analogously χ(̟, ~P (̟)) for prior ̟, then χ(π, ~D) ≤ 0 and χ(̟, ~D) ≥ 0, andhene

0 ≤ χ(̟, ~D) − χ(π, ~D) = (̟ − π)[Tr(ρ1D1) − Tr(ρ2D2)].It follows that Tr(ρ1D1) ≥ Tr(ρ2D2), namely
Tr(ρ1P

(̟)
1 ) − Tr(ρ1P

(π)
1 ) ≥ Tr(ρ2P

(̟)
2 ) − Tr(ρ2P

(π)
2 ) (2.9)or, equivalently

Tr(ρ1P
(̟)
1 ) − Tr(ρ2P

(̟)
2 ) ≥ Tr(ρ1P

(π)
1 ) − Tr(ρ2P

(π)
2 ). (2.10)Equation (2.10) states that the funtion f(π) is monotonially nondereasing.Moreover, for π = 0 the POVM detets only the state ρ2, whene Tr(ρ2P

(0)
2 ) = 1,and one has f(0) = −1+Tr[ρ1P

(0)
1 ] ≤ 0. Similarly one an see that f(1) ≥ 0.We an now prove the theorem:



54 DisriminationTheorem 2.2.3. An optimal ~P as in Theorem 2.2.1 always exists.Proof. Consider the value π0 of π where f(π) hanges its sign from negative topositive, and there take the left and right limits
~P (∓) = lim

π→π∓
0

~P (π). (2.11)For f(π+
0 ) = f(π−

0 ) = 0 just de�ne ~P = ~P (π0).For f(π+
0 ) > f(π−

0 ) de�ne the POVM ~P

~P =
f(π+

0 )~P (−) − f(π−
0 )~P (+)

f(π+
0 ) − f(π−

0 )
. (2.12)In fat, one has

Tr[ρ1P1] − Tr[ρ2P2] = [f(π+
0 ) − f(π−

0 )]−1×
{Tr[ρ1P

(−)
1 − ρ2P

(−)
2 ]f(π+

0 )−
Tr[ρ1P

(+)
1 − ρ2P

(+)
2 ]f(π−

0 )} = 0 ,

(2.13)namely Eq. (2.5) holds.Notie that the value π0 is generally not unique, sine the funtion f(π) an beloally onstant. However, on the Hilbert spae Supp(ρ1)∪Supp(ρ2), the optimalPOVM for the minimax problem is unique, apart from the very degenerate asein whih D = π0ρ1 − (1 − π0)ρ2 has at least two-dimensional kernel. In fat,upon denoting by Π+ and K the projetor on the stritly positive part and thekernel of D, respetively, any Bayes optimal POVM writes (P1 = Π+ +K ′, P2 =
I−P1), with K ′ ≤ K. Sine for the optimal minimax POVM we need Tr[ρ1P1] =
Tr[ρ2P2], one obtains Tr[(ρ1 + ρ2)K

′] = 1−Tr[(ρ1 + ρ2)Π+], whih has a uniquesolution K ′ = αK if K is a one-dimensional projetor.Corollary 2.2.4. There are ouples of mixed states for whih the optimal mini-max POVM is unique and non orthogonal.For example, onsider the following states in dimension two
ρ1 =

[
1 0
0 0

]
, ρ2 =

[
1
2 0
0 1

2

]
. (2.14)Then an optimal minimax POVM is given by

P1 =

[
2
3 0
0 0

]
, P2 =

[
1
3 0
0 1

]
. (2.15)



2.3 Optimal minimax disrimination of N ≥ 2 quantum states 55In fat, learly there is an optimal POVM of the diagonal form. We need tomaximize mini=1,2 Tr[ρiPi], whene, aording to Theorem 2.2.3, we need tomaximize Tr[ρ1P1] with the onstraints Tr[ρ1P1] = Tr[ρ2P2] and P2 = I − P1.Suh an optimal POVM is unique, otherwise there would exists a onvex ombi-nation π0ρ1−(1−π0)ρ2 with kernel at least two-dimensional, whih is impossiblein the present example (see omments after the proof of Theorem 2.2.3).Notie that when the optimal POVM for the minimax strategy is unique andnon-orthogonal, then there is a prior probability distribution ~π for whih theoptimal POVM for the Bayes problem is not unique, and the non-orthogonalPOVM whih optimizes the minimax problem is also optimal for the Bayes' one.In the example of remark 2.2.4 the optimal POVM (2.15) is also optimal forthe Bayes problem with ~π = (1
3 ,

2
3 ) as one an easily hek. However, in theBayes ase one an always hoose an optimal orthogonal POVM, whereas in theminimax ase you may have to hoose a non-orthogonal POVM.Finally, notie that, unlike in the Bayesian ase, the optimal POVM for theminimax strategy may be also not extremal.2.3 Optimal minimax disriminationof N ≥ 2 quantum statesWe now onsider the easiest ase of disrimination with more than two states,namely the disrimination among a ovariant set. In a fully ovariant statedisrimination, one has a set of states {ρi} with ρi = Uiρ0U

†
i ∀i, for �xed ρ0and {Ui} a (projetive) unitary representation of a group. In the Bayesian asefull ovariane requires that the prior probability distribution {πi} is uniform.Then, one an easily prove (see, for example, Ref. [Holevo, 1982℄) that also theoptimal POVM is ovariant, namely it is of the form Pi = UiKU

†
i , for suitable�xed operator K ≥ 0.Theorem 2.3.1. For a fully ovariant state disrimination problem, there is anoptimal measurement for the minimax strategy that is ovariant, and oinideswith an optimal Bayesian measurement.Proof. A ovariant POVM {Pi} gives a probability p = Tr[ρiPi] independentof i. Moreover, there always exists an optimal Bayesian POVM that is ovari-ant and maximizes p, whih then is also the maximum over all POVM's of theaverage probability of orret estimation Tr[ρiPi] for uniform prior distribution[Holevo, 1982℄. Now, suppose by ontradition that there exists an optimal min-imax POVM {P ′

i} maximizing p′ = miniTr[ρiP
′
i ], for whih p′ > p. Then, onehas p < p′ ≤ Tr[ρiP ′

i ], ontraditing the assertion that an optimal Bayesian



56 DisriminationPOVM maximizes Tr[ρiPi] over all POVM's. Therefore, p = p′, and the ovari-ant Bayesian POVM also solves the minimax problem. Notie thatin the ovariant ase also for any optimal minimax POVM {Pi} one has Tr[ρiPi]independent of i, sine the average probability of orret estimation is equal tothe minimum one.As an immediate onsequene of Theorem 2.3.1 we derive the ase of optimaldisrimination of two pure states:Corollary 2.3.2. For two pure states the optimal POVM for the minimax dis-rimination is orthogonal and unique (up to trivial ompletion of Span{|ψi〉}i=1,2to the full Hilbert spae of the quantum system).Proof. Any set of two pure states {|ψi〉}i=1,2 is trivially ovariant under thegroup {I, U} with |ψ2〉 = U |ψ1〉. Then, there exists an optimal POVM forthe minimax disrimination whih oinides with the optimal Bayesian POVM,whih is orthogonal. Uniqueness of the minimax optimal POVM follows from theassertion after Theorem 2.2.3 when restriting to the subspae spanned by thetwo states.In the following we generalize Theorem 2.2.1 for two states to the ase of N ≥ 2states and arbitrary weights. We haveTheorem 2.3.3. For any set of states {ρi}2≤i≤N and any set of weights wij(prie of misidentifying i with j) the solution of the minimax problem
RM = inf

~P
sup
i

∑

j

wij Tr[ρiPj ] (2.16)is equivalent to the solution of the problem
RM = max

~π
RB(π), (2.17)where RB(~π) is the Bayesian risk

RB(~π)
.
= max

~P

∑

i

πi
∑

j

wij Tr[ρiPj ]. (2.18)Proof. The minimax problem in Eq. (2.16) is equivalent to look for the minimumof the real funtion δ = f(~P ) over ~P , with the onstraints
∑

j wij Tr[ρiPj ] ≤ δ, ∀i
Pj ≥ 0, ∀j
∑
j Pj = I. (2.19)



2.3 Optimal minimax disrimination of N ≥ 2 quantum states 57Upon introduing the Lagrange multipliers:
µi ∈ R

+ , ∀i
0 ≤ Zi ∈Md(C), ∀i
Y † = Y ∈Md(C),

(2.20)
Md(C) denoting the d×dmatries on the omplex �eld, the problem is equivalentto

RM = inf
~P ,δ

sup
~µ,~Z,Y

′ l(~P , δ, ~µ, ~Z, Y ),

l(~P , δ, ~µ, ~Z, Y )
.
= δ +

∑

i

[µi(
∑

j

wij Tr[ρiPj ] − δ)]

−
∑

i

Tr[ZiPi] + Tr[Y (I −
∑

i

Pi)], (2.21)where sup′ denotes the supremum over the set de�ned in Eqs. (2.20). Theproblem is onvex (namely both the funtion δ and the onstraints (2.19) areonvex) and meets Slater's onditions [Boyd and Vandenberghe, 2004℄ (namelyone an �nd values of ~P and δ suh that the onstraints are satis�ed with stritinequalities), and hene in Eq. (2.21) one has
inf
~P ,δ

sup
~µ,~Z,Y

′ l(~P , δ, ~µ, ~Z, Y ) = max
~µ,~Z,Y

′ inf
~P ,δ

l(~P , δ, ~µ, ~Z, Y ). (2.22)It follows that
RM = max

~µ,~Z,Y

′ Tr Y (2.23)under the additional onstraints
∑

i

µi = 1 ,

∑

i

wijµiρi − Zj − Y = 0 , ∀j. (2.24)The onstraints an be rewritten as
µi ≥ 0 ,

∑

i

µi = 1 ,

Y ≤
∑

i

wijµiρi , ∀j. (2.25)Now, notie that for the Bayesian problem with prior ~π, along the same reasoning,one writes the equivalent problem
RB(~π) = max

Y

′ TrY, (2.26)



58 Disriminationwith the onstraint
∑

i

wijπiρi − Zj − Y = 0 , ∀j (2.27)
πi ≥ 0 ,

∑

i

πi = 1 ,

Y ≤
∑

i

wijπiρi , ∀j, (2.28)whih is the same as the minimax problem, with the role of the Lagrange multi-pliers {µi} now played by the prior probability distribution {πi}. Clearly, aPOVM that attains RM in the minimax problem (2.16) atually exists, being thein�mum over a (weakly) ompat set�the POVMs' onvex set�of the (weakly)ontinuous funtion supi
∑

j wij Tr[ρiPj ].2.4 Optimal minimax unambiguous disriminationIn this setion we onsider the so-alled unambiguous disrimination of states[Ivanovi, 1987℄, namely with no error, but possibly with an inonlusive outomeof the measurement. We fous attention on a set of N pure states {ψi}i∈S. Insuh a ase, it is possible to have unambiguous disrimination only if the statesof the set S are linearly independent, whene there exists a biorthogonal set ofvetors {|ωi〉}i∈S, with 〈ωi|ψj〉 = δij , ∀i, j ∈ S. We shall onveniently restrit ourattention to Span{|ψi〉}i∈S ≡ H (otherwise one an trivially omplete the optimalPOVM for the subspae to a POVM for the full Hilbert spae of the quantumsystem). While in the Bayes problem the probability of inonlusive outomeis minimized, in the minimax unambiguous disrimination we need to maximize
mini〈ψi|Pi|ψi〉 over the set of POVM's with 〈ψi|Pj |ψi〉 = 0 for i 6= j ∈ S, andthe POVM element that pertains to the inonlusive outome will be given by
PN+1 = I −∑i∈S

Pi. We have the following theorem.Theorem 2.4.1. The optimal minimax unambiguous disrimination of N purestates {ψi}i∈S is ahieved by the POVM
Pi =κ|ωi〉〈ωi|, i ∈ S ,

PN+1 =I −
∑

i∈S

Pi ,
(2.29)where κ is given by

κ−1 = max eigenvalue of ∑
i∈S

|ωi〉〈ωi| . (2.30)



2.5 Bayesian disrimination of two Pauli hannels 59Proof. We need to maximize mini〈ψi|Pi|ψi〉 over the set of POVM's with
〈ψi|Pj |ψi〉 = 0 for i 6= j ∈ S, whene learly Pj = κj |ωj〉〈ωj |. Then the problemis to maximize mini∈S κi. This an be obtained by taking κi = κ independentof i and then maximizing κ. In fat, if there is a κi > κj for some i, j, thenwe an replae κi with κj , and iteratively we get κi = κ independently of i.Finally, the maximum κ giving PN+1 ≥ 0 is the one given in the statement ofthe theorem.As regards the uniqueness of the optimal POVM, we an show the following.Theorem 2.4.2. The optimal POVM of Theorem 2.4.1 is non-unique if andonly if |ωi〉 ∈ Supp(PN+1) for some i ∈ S.Proof. In fat, if there exists an i ∈ S suh that |ωi〉 ∈ Supp(PN+1), this meansthat there exists ε > 0 suh that ε|ωi〉〈ωi| ≤ PN+1. Then the following is aPOVM

Qj = Pj , for j 6= i

Qi = Pi + ε|ωi〉〈ωi|,
QN+1 = PN+1 − ε|ωi〉〈ωi|,

(2.31)and is optimal as well. Conversely, if there exists another equivalently optimalPOVM {Qj}, then there exists an i ∈ S suh that Qi > Pi (sine both areproportional to |ωi〉〈ωi|, and mini〈ψi|Qi|ψi〉 has to be maximized). Then |ωi〉 ∈
Supp(PN+1).When the optimal POVM aording to Theorem 2.4.2 is not unique, one anre�ne the optimality riterion in the following way. De�ne the set S1 ⊂ S forwhih one has |ωi〉 ∈ Supp(PN+1). Denote by P1 the set of POVM's whih areequivalently optimal to those of Theorem 2.4.1. Then de�ne the set of POVM's
P2 ⊂ P1 whih maximizes mini∈S1〈ωi|Pi|ωi〉. In this way one iteratively reah aunique optimal POVM, whih is just the one given in Eqs. (2.29) and (2.30).2.5 Bayesian disrimination of two Pauli hannelsThe problem of optimally disriminating two quantum operations E1 and E2 anbe reformulated into the problem of �nding the state ρ in the input Hilbert spae
H, suh that the error probability in the disrimination of the output states E1(ρ)and E2(ρ) is minimal. The possibility of exploiting entanglement with an anillarysystem an inrease the distinguishability of the output states [Sahi, 2005a℄.In this ase the output states to be disriminated will be of the form (E1 ⊗IK)ρand (E2 ⊗ IK)ρ, where the input ρ is generally a bipartite state of H ⊗ K, and



60 Disriminationthe quantum operations at just on the �rst party whereas the identity map IKats on the seond.We nowmake use of the expression for the Bayesian risk of disrimination betweenstates (2.2). Upon denoting with R′
B(π) the minimal error probability when astrategy without anilla is adopted, one has

R′
B(π) =

1

2

(
1 − max

ρ∈H
‖π1E1(ρ) − π2E2(ρ)‖1

)
. (2.32)On the other hand, by allowing the use an anillary system, we have

RB(π) =
1

2

(
1 − max

ξ∈H⊗K
‖π1(E1 ⊗ I)ξ − π2(E2 ⊗ I)ξ‖1

)
. (2.33)The maximum of the trae norm in Eq. (2.33) with the supremum over thedimension of K is equivalent to the norm of omplete boundedness [Paulsen,1987℄ of the map π1E1−π2E2, and in fat for �nite-dimensional Hilbert spae thesupremum is ahieved for dim(K) = dim(H) [Paulsen, 1987℄, and in the followingwe shall drop the subindex K from the identity map. Moreover, due to linearityof quantum operations and onvexity of the trae norm, the maximum in bothEqs. (2.32) and (2.33) is ahieved on pure states.Clearly, RB(π) ≤ R′

B(π). In the ase of disrimination between two unitarytransformations U and V [Childs et al., 2000b℄, one has RB(π) = R′
B(π), namelythere is no need of entanglement with an anillary system to ahieve the ultimateminimum error probability, whih is given by

RB(π) = min
|ψ〉∈H

1

2

(
1 −

√
1 − 4π1π2|〈ψ|U †V |ψ〉|2

)

=
1

2

(
1 −

√
1 − 4π1π2D2

)
, (2.34)where D is the distane between 0 and the polygon in the omplex plane whoseverties are the eigenvalues of U †V .In the ase of disrimination of two Pauli hannels for qubits, namely

Ei(ρ) =

3∑

α=0

q(i)α σαρσα i = 1, 2 , (2.35)where ∑3
α=0 q

(i)
α = 1, σ0 = I, and {σ1 , σ2 , σ3} = {σx , σy , σz} denote the us-tomary spin Pauli matries, the minimal error probability an be ahieved byusing a maximally entangled input state, and one obtains [Sahi, 2005a℄

RB(π) =
1

2

(
1 −

3∑

α=0

|rα|
)
, (2.36)



2.6 Minimax disrimination of Pauli hannels 61with
rα = π1q

(1)
α − p2q

(2)
α = π(q(1)α + q(2)α ) − q(2)α , (2.37)where we �xed the prior π = π1 and π2 = 1−π1. For a strategy with no anillaryassistane one has [Sahi, 2005a℄

R′
B(π) =

1

2
(1 − C) , (2.38)where

C = max {|r0 + r3| + |r1 + r2| , |r0 + r1| + |r2 + r3| , |r0 + r2| + |r1 + r3|} ,(2.39)and the three ases inside the brakets orresponds to using an eigenstate of σz ,
σx, and σy, respetively, as the input state of the hannel. More generally, forpure input state ρ = 1

2 (I+~σ ·~n), with ~n = (sin θ cosφ, sin θ sinφ, cos θ), the Bayesrisk for disriminating the outputs will be [Sahi, 2005a,b℄
R′
B(π, ~σ · ~n) =

1

2

(
1 − max

{
|a+ b|,

√
cos2 θ(a− b)2 + sin2 θ(c2 + d2 + 2cd cos(2φ))

})
,(2.40)with a = r0 + r3, b = r1 + r2, c = r0 − r3, and d = r1 − r2. Notie that the term

|a+b| = |2π−1| orresponds to the trivial guessing {E1 if π1 = π > 1/2 , E2 if π <
1/2}.We an also rewrite Eq. (2.38) as

R′
B(π) = min

i=1,2,3
R′
B(π, σi) . (2.41)From Eqs. (2.36�2.39) one an see that entanglement is not needed to ahievethe minimal error probability as long as C =

∑3
i=0 |ri|, whih is equivalent tothe ondition Π3

i=0ri ≥ 0. On the other hand, we an �nd instanes wherethe hannels an be perfetly disriminated only by means of entanglement, forexample in the ase of two hannels of the form
E1(ρ) =

∑

α6=β
qασαρσα , E2(ρ) = σβρσβ , (2.42)with qα 6= 0, and arbitrary a priori probability.2.6 Minimax disrimination of Pauli hannelsAs in the Bayesian approah, the minimax disrimination of two hannels onsistsin �nding the optimal input state suh that the two possible output states are



62 Disriminationdisriminated with minimum risk. Again, we will onsider the two ases withand without anilla, upon de�ning
RM = min

ξ∈H⊗K
RM ((E1 ⊗ I)(ξ), (E2 ⊗ I)(ξ)) ,

R′
M = min

ρ∈H
RM (E1(ρ), E2(ρ)) , (2.43)where RM (ρ1, ρ2) is given in Eq. (2.17). Sine for all ~M , ρ, and π, one has

max{Tr[(E1 ⊗ I)(ρ)M2],Tr[(E2 ⊗ I)(ρ)M1]}
≥ πTr[(E1 ⊗ I)(ρ)M2] + (1 − π)Tr[(E2 ⊗ I)(ρ)M1] , (2.44)then RM ≥ RB(π) for all π. Analogously, R′

M ≥ R′
B(π) for all π.Theorems 2.2.3 and 2.3.3 an be immediately applied to state that the minimaxdisrimination of two unitaries is equivalent to the Bayesian one. In fat, theoptimal input state in the Bayesian problem whih ahieves the minimum errorprobability of Eq. (2.34) does not depend on the a priori probabilities. Thereforeit is also optimal for the minimax problem and there is no need of entanglement[and the minimax risk RM will be equivalent to the Bayes risk RB(1/2)℄.Let us now onsider the problem of disriminating the Pauli hannels of Eq.(2.35) in the minimax framework. In the following theorem, we show that an(arbitrary) maximally entangled state always allows to ahieve the optimal min-imax disrimination as in the Bayesian problem.Theorem 2.6.1. The minimax risk RM for the disrimination of two Paulihannels an be ahieved by using an arbitrary maximally entangled input state.Moreover, the minimax risk is then the Bayes risk for the worst a priori proba-bility:

RM = max
π

RB(π) . (2.45)Proof. Let us disriminate between the states ρi = (Ei ⊗ I)(ξe), where ξe is amaximally entangled state. By Theorem 2.2.1 there are a priori probabilities
(π∗, 1 − π∗) whose optimal Bayes measurement ful�lls

Tr[ρ1P1] = Tr[ρ2P2] . (2.46)Sine the input state ξe is always optimal in the Bayes problem we inferRB(π∗) =
Tr[ρ1P2], and moreoverRM (ρ1, ρ2) = RB(π∗). Now, one has alsoRM = RM (ρ1, ρ2),sine if it would not be true, then there would be an input state ρ and a mea-surement ~M for whih max{Tr[(E1 ⊗ I)(ρ)M2],Tr[(E2 ⊗ I)(ρ)M1]} < RB(π∗),and hene π∗ Tr[(E1 ⊗I)(ρ)M2] + (1− π∗)Tr[(E2 ⊗I)(ρ)M1] < RB(π∗), whih isa ontradition. Equation (2.45) simply omes from the relation RM ≥ RB(π)for all π, along with RM = RB(π∗).



2.6 Minimax disrimination of Pauli hannels 63Notie the nie orrespondene between Eqs. (2.17) and (2.45). Theorem 2.6.1holds true also in the ase of generalized Pauli hannels in higher dimension, sineentangled states again ahieve the optimal Bayesian disrimination, whatever thea priori probability [Sahi, 2005a℄. More generally, Eq. (2.45) will hold in thedisrimination of any ouple of quantum operations for whih the minimal Bayesrisk RB(π) an be ahieved by the same input state for any π.
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Figure 2.1: The optimal Bayes risk RB(π) in the disrimination of two Paulihannels versus the a priori probability π will usually look like this. Notie thatthe rightmost and leftmost segments have slope 1 and (−1), respetively. Theminimal risk for the minimax disrimination orresponds to RM = maxπRB(π),and is ahieved at one of the breakpoints π(α).Now we establish some visual images on whih to read the minimax risks. Wemust look at the funtion RB(π) given in Eq. (2.36) drawn on [0, 1]. By Eq.(2.45), we know that its maximum isRM . As the rα de�ned in (2.37) are inreas-ing a�ne funtions of π, their absolute value is a onvex pieewise a�ne funtion,and hene RB(π) is a onave pieewise a�ne funtion (see Fig. 2.1). The fourbreakpoints orrespond to the four values of π for whih eah rα vanishes. Wede�ne tα = q
(1)
α + q

(2)
α as the slopes of the funtions rα and π(α) = q

(2)
α / tα as thevalue of π for whih rα = 0. We denote by π∗ the point at whih RB(π) reahesits maximum (the maximum will be attained at one of the breakpoints π(α)). Wealso reorder the index α suh that π(0) ≤ π(1) ≤ π(2) ≤ π(3). In this way, RB(π)rewrites

RB(π) =
1

2

(
1 −

3∑

α=0

tα|π − π(α)|
)
. (2.47)Let us now look at the disrimination strategy without any anillary system. An-other piture, that should be superimposed on Fig. 2.6, is the Bayes risk R′

B(π)of Eq. (2.38) versus π for the strategy with no anillary system. One an see



64 Disriminationthat R′
B(π) is the minimum of the three pieewise a�ne funtions R′

B(π, σx),
R′
B(π, σy), R′

B(π, σz), orresponding to the Bayes risks when sending an eigen-state of the Pauli matries. Here again R′
B(π) is the minimum of onave fun-tions, so it is onave as well, and the maximum will be attained at a breakpoint

π = π′
∗ (see Fig. 2.6). To �read� more on these pitures, one again we prove that
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0 1Figure 2.2: An example for the Bayes risksR′
B(π, σi) with i = x, y, z versus the apriori probability π, for disrimination without anilla. Eah of the three di�erentdotted lines orrespond to the Bayes riskR′

B(π, σi) when sending an eigenstate ofthe Pauli matrix σi through the hannel. The solid line is the optimal Bayes risk
R′
B(π) without anillary assistane, and orresponds at any π to the minimumof the three R′

B(π, σi). The minimal risk for the minimax disrimination withno anilla orresponds to R′
M = maxπR′

B(π), and is ahieved at one of thebreakpoints of R′
B(π).the optimal minimax risk R′

M for disrimination without anilla orresponds tothe optimal Bayes risk without anilla for the worst a priori probability π′
∗:Theorem 2.6.2. The optimal minimax disrimination with no anilla is equiv-alent to the solution of the problem

R′
M = max

π
R′
B(π) ≡ R′

B(π′
∗) . (2.48)Proof. Notie again the similarity between equations (2.17), (2.45) and (2.48).For any ρ one has

RM (E1(ρ), E2(ρ)) ≥ R′
M ≥ max

π
R′
B(π) . (2.49)If we �nd an input state ρ~n = 1

2 (I + ~σ · ~n) suh that
max
π

R′
B(π) = max

π
R′
B(π, ~σ · ~n) (2.50)



2.6 Minimax disrimination of Pauli hannels 65from Eq. (2.17) of Theorem 2.3.3 it follows that
RM (E1(ρ~n), E2(ρ~n)) = max

π
R′
B(π, ~σ · ~n) , (2.51)whih, along with Eqs. (2.49) and (2.50), provides the proof. Moreover, ρ~n willbe the optimal input state for the minimax disrimination without anilla.Now we have just to �nd a state suh that ondition (2.50) holds. We alreadynotied that π′

∗ is a breaking point of R′
B(π). Either this breakpoint is also abreakpoint (and the maximum) of R′

B(π, σi) for some i ∈ x, y, z, or else at leasttwo of the R′
B(π, σi) are rossing in π′

∗, one inreasing and the other dereasing(Fig. 2.6). In the �rst ase Eq. (2.50) is immediately satis�ed, and an eigenstateof σi will be the optimal input state. In the seond ase, we show that when two
R′
B(π, σi) are rossing at π′

∗ we an �nd a state ρ~n suh that
R′
B(π′

∗, ~σ · ~n) = R′
B(π′

∗, σi) ,

∂πR′
B(π, ~σ · ~n)|π=π′

∗ = 0 , (2.52)and therefore has the maximum at π′
∗ by onavity. In fat, the rossing, andtherefore non-equality of the R′

B(π, σi) in a neighborhood of π′
∗, implies that foreah of the twoR′

B(π, σi), the maximum in (2.40) for π′
∗ is attained by the squareroot term (sine the term |a+ b| is just a funtion of π). Let us assume that the

σi that give suh a rossing are σx and σy. Then looking at (2.40), we have atpoint π′
∗

|c+ d| = |c− d| ,
∂π |c+ d| ∂π|c− d| < 0 (2.53)(notie that all funtions are linear, i.e. di�erentiable in π′

∗). Indeed, the �rstof Eqs. (2.53) implies that any linear ombination of eigenstate of σx and σysatis�es the �rst of Eqs. (2.52). By taking an input state with θ = π/2 and φsuh that
tan2 φ = − ∂π|c+ d|

∂π|c− d|

∣∣∣∣
π=π′

∗

, (2.54)the seond equation in (2.52) is satis�ed as well. Similarly, if the σi are σz, σxone an take the input state with φ = 0 or π and θ suh that
tan2 θ = − ∂π|a− b|

∂π|c+ d|

∣∣∣∣
π=π′

∗

. (2.55)Finally, for σz, σy one has φ = ±π/2 and
tan2 θ = − ∂π|a− b|

∂π |c− d|

∣∣∣∣
π=π′

∗

. (2.56)



66 DisriminationAs a remark, no eigenstate of σi for i = x, y, z an be an optimal input inthe minimax sense in this situation. This is a typial result of the minimaxdisrimination. As in the ase of disrimination of states, when the orrespondentBayes problem presents a kind of degeneray and have multiple solutions, in theminimax problem the degeneray is partially or totally removed. In the presentsituation, if we have the maximum of R′
B(π) at the rossing point of exatlytwo R′

B(π, σi), one inreasing and the other dereasing, we �nd just four optimalinput states: two non-orthogonal states and their respetive orthogonal states.We shall give an expliit example at the end of the setion.If we want to �nd in whih ase entanglement is not neessary for optimal mini-max disrimination, then we have just to haraterize when R′
B(π′

∗) = RB(π∗).We already notied that we an hoose π∗ to be one of the π(α). The orrespond-ing rα is zero, and hene C =
∑

α |rα|, namely R′
B(π∗) = RB(π∗). Sine onehas

R′
B(π′

∗) = R′
M ≥ RM = RB(π∗) = R′

B(π∗) , (2.57)we only have to hek that π∗ is a maximum of R′
B(π), realling that the funtionis onave (see Fig. 2.6).
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0 1Figure 2.3: Optimal Bayes risks versus the a priori probability π for the disrim-ination of the Pauli hannels with parameters given in Eq. (2.64). The solid linegives RB(π) for an entanglement-assisted strategy; the dotted lines gives R′
B(π)for strategy without anilla. The minimal risk in the optimal minimax disrimina-tion orresponds in both strategies toR′

M = maxπR′
B(π) = maxπRB(π) = RM ,namely there is no need of an anillary system.Ultimately, we shall have to list down ases. Reading them might be learerwith the quantities appearing in Eqs. (2.36�2.39) expliitly written as a funtion



2.6 Minimax disrimination of Pauli hannels 67of π. The most useful segmentation of [0, 1] is based on the π(α), that is thepoints where the rα vanish, and RB(π) breaks. Reall that rα = tα(π − π(α)),and rα > 0 for π > π(α). As we have four α, we have �ve segments (theymay get degenerated). Remember that knowing C in Eq. (2.39) and ∑α |rα| istantamount to knowing R′
B(π) or RB(π). Here is a list of the signs of the rαand the value of C on eah open segment (so that all rα 6= 0):

• (0, π(0)): ∑α |rα| = −∑α rα = C. Notie that R′
B(π) = RB(π) and thattheir ommon slope is 1.

• (π(0), π(1)): ∑α |rα| = r0 − r1 − r2 − r3, so that C = r0 − r1 − r2 − r3 −
2 infα=1,2,3 |rα|. On this segment, R′

B(π) > RB(π).
• (π(1), π(2)) : ∑α |rα| = r0 + r1 − r2 − r3 = C, so that R′

B(π) = RB(π).
• (π(2), π(3)): ∑α |rα| = r0 + r1 + r2 − r3, so that C = r0 + r1 + r2 − r3 −

2 infα=0,1,2 rα and R′
B(π) > RB(π).

• (π(3), 1): ∑α |rα| =
∑

α rα = C and R′
B(π) = RB(π). Their ommon slopeis (−1).A lose look at these expressions, as we shall show in the following, proves that

R′
B(π) is derivable at π(α) unless there is β 6= α suh that π(α) = π(β). With thisin mind, we see that π∗ annot be a maximum of π(α) unless several rα are nullat the same point (with supplementary onditions) or π∗ = π(1) and the segment

(π(1), π(2)) is �at. Here is the full-�edged study, using repeatedly the list above.It is omplete as any other ase an be handled by symmetry (swithing hannels,that is mapping π to 1 − π).
• π∗ = π(0) < π(1): At π(0), we have r0 = 0 and rα < 0 for α 6= 0. Sothat infα |rα| = |r0| on a neighborhood of π(0). On that neighborhood,we dedue C = −∑α rα, and hene ∂πR′

B(π)|π=π(0) = 1, so that π(0) isnot a maximum of R′
B(π). Entanglement is then neessary for optimaldisrimination.

• π∗ = π(0) = π(1) < π(2): On (0, π(0))∪(π(1), π(2)), equalityR′
B(π) = RB(π)holds. Thus, the two funtions are equal on a neighborhood of π∗, and sine

π∗ is a (loal) maximum of RB(π), it is also a loal maximum of R′
B(π).In this ase an unentangled strategy is then as e�ient as any entangledone.

• π∗ = π(0) = π(1) = π(2) < π(3): The risk R′
B(π) is nondereasing onthe left of π∗ (slope 1), we then want it to be non-inreasing on a rightneighborhood of π∗. Now this is part of the segment (π(2), π(3)), where

C = r0 + r1 + r2 − r3 − 2 infα=0,1,2 rα. Reall that rα = tα(π− π(α)). Sine



68 Disrimination
rα = 0 for α 6= 3 at π∗, and they are all nondereasing, infα=0,1,2 rα is theone with the smallest slope tα. It follows that the slope of R′

B(π) on theright of π∗ is t3 − t0 − t1 − t2 + 2 infα=0,1,2 tα, and so entanglement is notneeded if and only if
t3 + 2 inf

α=0,1,2
tα ≤

∑

α=0,1,2

tα (2.58)
• π∗ = π(0) = π(1) = π(2) = π(3): This is the trivial ase where both hannelsare the same. Of ourse, entanglement is useless.
• π(0) < π∗ = π(1) < π(2): In this ase R′

B(π) is derivable at π∗. Indeed,on (π(1), π(2)), we have C = r0 + r1 − r2 − r3 whereas on (π(0), π(1)),
C = r0 − r1 − r2 − r3 − 2 infα=1,2,3 |rα|. In a neighborhood of π∗, onehas infα=1,2,3 |rα| = r1, as it is the only one whih is 0 at π∗; hene C =
r0 + r1 − r2 − r3 also on a left neighborhood of π∗ and the slope of R′

B(π)at π∗ is t3 + t2 − t1 − t0. Sine π∗ is a maximum if and only if this slope isnull, we get the ondition
t0 + t1 = t2 + t3 . (2.59)

• π(0) < π∗ = π(1) = π(2) < π(3): On the left of π∗, we are on the segment
(π(0), π(1)), so that C = r0−r1−r2−r3−2 infα=1,2,3 |rα|. On the right, weare on the segment (π(2), π(3)) and C = r0 + r1 + r2 − r3 − 2 infα=0,1,2 rα.In a neighborhood of π∗, the rα with the smallest absolute value will beeither r1 or r2 (more preisely, the one with the smallest slope tα), so thatwe an write in a neighborhood of π∗ for both sides C = r0 − r3 + |r2 − r1|.The slope of R′

B(π) is then t3− t0 + |t2− t1| and t3− t0−|t2− t1| on the leftand on the right of π∗, respetively. Entanglement is not neessary when
π∗ is a maximum of R′

B(π), and hene we get the neessary and su�ientondition
|t0 − t3| ≤ |t1 − t2| . (2.60)We an summarize the above disussion as followsTheorem 2.6.3. The minimax risk without using anilla is stritly greater thanthe minimax risk using entanglement, exept in the following ases:

• the trivial situation where both hannels are the same, so that π∗ = π(α) = 1
2for all α.

• if π∗ = π(0) ≤ π(1) < π(2)

• if π∗ = π(0) = π(1) = π(2) < π(3) and
t3 + 2 inf

α=0,1,2
tα ≤

∑

α=0,1,2

tα (2.61)
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• if π(0) < π∗ = π(1) < π(2) and

t0 + t1 = t2 + t3 (2.62)
• if π(0) < π∗ = π(1) = π(2) < π(3) and

|t0 − t3| ≤ |t1 − t2| (2.63)
• The symmetri ases (obtained by exhanging hannels 1 and 2, i.e. ex-hanging indexes 0 and 1 with 3 and 2, respetively, both in π(α) and tα.Di�erently from the Bayesian result, we notie that when entanglement is notneessary to ahieve the optimal minimax disrimination, the optimal input statemay not be an eigenstate of the Pauli matries. Consider, for example, the twoPauli hannels featured in Fig. 2.6 that orrespond to the parameters

q
(1)
0 = 0.3 q

(1)
1 = 0.4 q

(1)
2 = 0.2 q

(1)
3 = 0.1

q
(2)
0 = 0.1 q

(2)
1 = 0.3 q

(2)
2 = 0.15 q

(2)
3 = 0.45 (2.64)We an ompute π(α) = q

(2)
α /(q

(1)
α + q

(2)
α ) and get π(α) = (1/4, 3/7, 3/7, 9/11).Here π∗ = 3/7, and we are in the situation of Eq. (2.63), sine tα = (q

(1)
α +

q
(2)
α ) = (0.4, 0.7, 0.35, 0.55). Hene, entanglement is not neessary to ahieve theoptimal minimax risk, but the state to be used is not an eigenstate of the Paulimatries. In fat, we are in the ase of the proof of Theorem 3, where R′

B(π, σx)and R′
B(π, σy) are rossing in π∗. The optimal input state for the minimaxdisrimination will be given by θ = π/2 and φ as in Eq. (2.54), whih gives

tan2 φ = 2/5. Then, we have four optimal input states that lie on the equator ofthe Bloh sphere, with ~n = (±
√

5/7,±
√

2/7, 0).





Chapter 3Fast estimation of unitaryoperations
This hapter is derived from the artile [Kahn, 2007b℄.Abstrat: We give an expliit proedure based on entangled inputstates for estimating a SU(d) operation U with rate of onvergene

1/N2 when sending N partiles through the devie. We prove thatthis rate is optimal. We also evaluate the onstant C suh that theasymptoti risk is C/N2. However other strategies might yield abetter onstant C.3.1 IntrodutionThe question that we are investigating in this hapter is: �What is the best wayof estimating a unitary operation U?�By �unitary operation�, we mean a devie (or a hannel) that sends a densityoperator ρ0 on Cd to another density operator ρ = Uρ0U
∗, where U ∈ SU(d), aspeial unitary matrix.We immediately stress that the solution to this estimation problem an be dividedinto two parts: what is the input state, and whih measurement (POVM) to applyon the output state? Indeed, in order to estimate the hannel U , we have to let it



72 Fast estimation of unitary operationsat on a state (the input state). And one we have the output state, the problemonsists in disriminating states in the family of possible output states.This estimation of unitary operation has been extensively studied over the lastfew years.The �rst invitation was [Childs et al., 2000a℄, featuring numerous speial ases.In most of those, the unitary U is known to belong to some subset of SU(2).Then Ain et al. [2001℄ provided the form of an optimal state to be sent in withnon-spei�ed oe�ients depending on the ost funtion (we give the formula ofthis state in equation (3.2)). In that paper the authors onsider the situationwhere the unitary operation is performed independently on N systems. Thatstudy applied to any SU(d), and any ovariant loss funtion, in partiular �delity,in a Bayesian framework. The proposed input state uses an anilla, that isan auxiliary system that is not sent through the unitary hannel with Hilbertspae (Cd)⊗N . The state is prepared as a superposition of maximally entangledstates, one for eah irreduible representation of SU(d) appearing in (Cd)⊗n. Weemphasize that the state is an entangled state of (Cd)⊗N ⊗ (Cd)⊗N : we do notsend N opies of an entangled state through the devie, but all the N systemsthat are sent through the hannel together with the N partiles of the anillaare part of the same entangled state, yielding the most general possible strategy.There was no evaluation of the rate of onvergene, though.Subsequent works mainly foused on SU(2), as the ase is simpler and yieldsmany appliations, e.g. transmission of referene frames in quantum ommuni-ation. Indeed, the latter is equivalent to the estimation of a SU(2) operation.The �rst strategy to be proved to onverge (in �delity) at 1/N2 rate was notovariant [Peres, 1993℄. It made no use of an anilla. Later, Bagan et al. [2004a℄ahieved the same rate for a ovariant measurement with an anilla through ajudiious hoie of the oe�ients left free in the state proposed by Ain et al.[2001℄. The optimal onstant (π2/N2 for the �delity) was also omputed. Itwas almost simultaneously notied [Bagan et al., 2004b, Chiribella et al., 2004℄that asymptotially the anilla is unneessary. Indeed what we need is entan-gling di�erent opies of the same irreduible representation. Now eah irreduiblerepresentation appears with multipliity in (Cd)⊗N , most of them with highermultipliity than dimension, whih is the ondition we need. This method wasdubbed �self-entanglement�. The advantage is that we need to prepare half thenumber of partiles, as we do not need an anilla. In all these artiles, theBayesian paradigm with uniform prior was used. The same 1/N2 rate was shownto hold true in a minimax sense, in pointwise estimation [Hayashi, 2004℄. Westress the importane of this 1/N2 rate, proving how useful entanglement anbe. Indeed, in lassial data analysis, we annot expet a better rate than 1/N .Similarly the 1/N bound holds for any strategy where the N partiles we sendthrough the devie are not entangled �among themselves� (that is, even if there



3.1 Introdution 73is an anilla for eah of these N partiles).Another popular theme has been the determination of the phase φ for unitaries ofthe form Uφ = eiφH . This very speial ase already has many appliations, espe-ially in interferometry or measurement of small fores, as featured in the reviewartile by Giovannetti et al. [2004℄ and referenes therein. A ommon feature ofthe most e�ient tehniques is the need for entangled states of many partiles,and muh experimental work has aimed at generating suh states. These methodsessentially involve either manipulation of photons obtained through parametridown-onversion (for example [Eisenberg et al., 2005℄), ions in ion traps (for ex-ample [Dalvit et al., 2006℄) or atoms in avity QED (for example [Vitali et al.,2006℄).In reent years, there has been renewed interest in the SU(d) ase. Notably,Chiribella et al. [2005℄ takes o� from [Ain et al., 2001℄, allowing for more gen-eral symmetries and making expliit for natural ost funtions both the freeoe�ients � as the oordinates of the eigenvetor of a matrix � and the POVM(see Theorem 3.2.1 below). With a ompletely di�erent strategy, aiming ratherat pointwise estimation (and therefore minimax theorems), an input state for
U⊗n was found [Ballester, 2005b,a℄ suh that the Quantum Fisher Informationmatrix is saling like 1/N2, yielding hopes of getting as fast an estimator for
SU(d). No assoiated measurement was found in that paper.Given the state of the art, a natural question is whether we an obtain, as for
SU(2), this dramati inrease in performane when using entanglement for gen-eral SU(d). That is, do we have an estimation proedure whose rate is 1/N2,instead of 1/N? Neither Chiribella et al. [2005℄, who do not study the asymp-totis for SU(d), nor Ballester [2005b℄, who does not give any measurement,answer this question.In this hapter, we �rst prove that we annot expet a better rate than 1/N2.This kind of bound based on the laws of quantum physis, without any a priorion the experimental devie, is traditionally alled the Heisenberg limit of theproblem. Then we hoose a ompletely expliit input state of the form (3.2) (asin [Ain et al., 2001℄), by speifying the oe�ients. By using the assoiatedPOVM, the estimator of a unitary quantum operation U ∈ SU(d) onverges atrate 1/N2. The onstant is not optimal, but is brie�y studied at the end ofthe hapter. We obtain these results with �delity as a ost funtion, both in aBayesian setting, with a uniform prior, and in a minimax setting. Notie that weshall not need an anilla.The next setion onsists in formulating the problem and restating Theorem 2of [Chiribella et al., 2005℄ within our framework. Setion 3.3 then shows that itis impossible to onverge at rate faster than O(N−2). In setion 3.4, we write ageneral formula for the risk of a strategy as desribed in Theorem 3.2.1, and in



74 Fast estimation of unitary operationssetion 3.5 we speify our estimators by hoosing our oe�ients in (3.2). Wethen prove that the risk of this estimator is O(N−2). The last setion (3.6)onsists in �nding the preise asymptoti speed of our proedure, that is theonstant C in CN−2. We �nish by stating in Theorem 3.6.1 the results of thehapter.3.2 Desription of the problemWe are given an unknown unitary operation U ∈ SU(d) and must estimate it �aspreisely as possible�. We are allowed to let it at on N partiles, so that we aredisriminating between the possible U⊗N . We shall work both with pointwiseestimation (as preferred by mathematiians) and with a Bayes uniform prior (afavorite of physiists).Any estimation proedure an be desribed as follows (see Figure 3.1): the unitaryhannel U⊗N ats as
U⊗N ⊗ 1 : (Cd)⊗N ⊗K → (Cd)⊗N ⊗K,on the spae of the N systems together with a possible anilla. The input state

ρn ∈ M((Cd)⊗n ⊗ Kn) is mapped into an output state on whih we perform ameasurement M whose result is the estimator Û ∈ SU(d).
U U U U U

? ? ? ? ?

? ? ? ? ? ?Measurement Apparatus
?

ÛFigure 3.1: Most general estimation sheme of U when n opies are available atthe same time, and using entanglement.



3.2 Desription of the problem 75In order to evaluate the quality of an estimator Û , we �x a ost funtion ∆(U, V ).The global pointwise risk of the estimator is
RP (Û) = sup

U∈SU(d)

EU [∆(U, Û)].The probability distribution of Û depends on U , and we take expetation withrespet to this probability distribution.On the other hand, the Bayes risk with uniform prior is:
RB(Û) =

∫

SU(d)

EU [∆(U, Û)]dµ(U).where µ is the Haar measure on SU(d).As ost funtion, we hoose the �delity F (or rather 1−F ), whih for an elementof SU(d) is de�ned as:
∆(U, Û) = 1 − |Tr(U−1Û)|2

d2

= 1 − |χ2(U−1Û)|2
d2where χ2 is the harater of the de�ning representation of SU(d), whose Youngtableau onsists in only one box. In other words, χ2(U) = Tr(U).Before really addressing the problem, we make a few remarks on why this hoieof distane is suitable for mathematial analysis.Firstly, this ost funtion is ovariant, i.e. ∆(U, Û) = ∆(1Cd , U−1Û).Seondly, a useful feature within the Bayesian framework is that ∆ is of theform (3.1), as required in Theorem 3.2.1. Indeed we an rewrite ∆(U, Û) as

1 − χ2(U−1Û)χ∗
2
(U−1Û)/d2. Now the onjugate of a harater is the haraterof the adjoint representation, the produt of two haraters is again the haraterof a possibly reduible representation π. This harater is equal to the sumof the haraters of the irreduible representations appearing in the Clebsh-Gordan development of π, in whih all oe�ients are non-negative. Therefore

∆ = 1− (
∑
~λ a~λχ

∗
~λ
) where a~λ ≥ 0 and ~λ runs over all irreduible representationsof SU(d). That is the ondition (3.1) that we shall need for applying Theorem3.2.1, given at the end of the setion.On the other hand, the theory of pointwise estimation deals usually with thevariane of the estimated parameters when we use a smooth parameterization of

SU(d). As we want to use the Quantum Cramér-Rao Bound (3.9), we need ∆ to



76 Fast estimation of unitary operationsbe quadrati in the parameters to the �rst order, and positive lower bounded for
Û outside a neighborhood of U . As ∆ is ovariant, it is su�ient to hek this with
U = 1Cd . Now an example of a smooth parameterization in a neighborhood of theidentity is U(θ) = exp(

∑
α θαTα) where θ ∈ Rd

2−1 and the Tα are generators ofthe Lie algebra, so that Tr(Tα) = 0. Now Tr[exp(
∑

α θαTα)] = d+
∑
α θαTr(Tα)+

O(‖θ‖2), so that the trae minus d, and onsequently ∆, is quadrati in θ to the�rst order.As stated at the beginning of this setion, we are working with U⊗N . TheClebsh-Gordan deomposition of the n-th tensor produt representation is
U⊗N =

⊕

~λ:|~λ|=N

U
~λ ⊗ 1

CM(~λ)ating on ⊕~λ:|~λ|=N H~λ ⊗ CM(~λ), where H~λ = CD(~λ) is the representation spaeof ~λ, M(~λ) is the multipliity of ~λ in the n-th tensor produt representation, and
D(~λ) the dimension of ~λ. We refer to CM(~λ) as the multipliity spae of ~λ. Wehave indexed the irreduible representations of SU(d) by ~λ = (λ1, . . . , λd), andwritten |~λ| =

∑d
i=1 λi. Notie that this labelling of irreduible representationsis redundant, but that if |~λ1| = |~λ2|, then ~λ1 and ~λ2 are equivalent (denoted

~λ1 ≡ ~λ2) if and only if ~λ1 = ~λ2.The starting point of our argument will be the following reformulation of theresults of [Chiribella et al., 2005℄, with less generality, and without the formulafor the risk whose form is not adapted to our subsequent analysis:Theorem 3.2.1. [Chiribella et al., 2005℄ Let U ∈ SU(d) be a unitary operationto be estimated, through its ation on N partiles. We may use entanglementand/or an anilla.Then, for a uniform prior and any ost funtion of the form
c(U, Û) = a0 −

∑

~λ

a~λχ
∗
~λ
(U−1Û), (3.1)we an �nd as optimal input state a pure state of the form

|Ψ〉 =
⊕

~λ:|~λ|=N

c(~λ)√
D(~λ)

D(~λ)∑

i=1

|ψ~λi 〉 ⊗ |φ~λi 〉 (3.2)with c(~λ) ≥ 0, and the normalization ondition,
∑

~λ

c(~λ)2 = 1. (3.3)



3.2 Desription of the problem 77Moreover |ψ~λi 〉 is an orthonormal basis of Hλ and |φ~λi 〉 are orthonormal vetorsof the multipliity spae, whih may be augmented by an anilla if neessary (seeremark below on the dimensions).The orresponding measurement is the ovariant POVM with seed Ξ = |η〉〈η|given by:
|η〉 =

⊕

~λ|c(~λ) 6=0

√
D(~λ)

D(~λ)∑

i=1

|ψ~λi 〉 ⊗ |φ~λi 〉, (3.4)that is a POVM whose density with respet to the Haar measure is given by
m(U) = U |η〉〈η|U∗ with

U |η〉 =
⊕

~λ|c(~λ) 6=0

√
D(~λ)

D(~λ)∑

i=1

U
~λ|ψ~λi 〉 ⊗ |φ~λi 〉.Remark: We use D(~λ) orthonormal vetors in the multipliity spae of ~λ. Thisrequires M(~λ) ≥ D(~λ). If this is not the ase, we must inrease the dimension ofthe multipliity spae by using an anilla in Cδ. Then the ation of U is U⊗N⊗1Cδwhose Clebsh-Gordan deomposition is⊕~λ||~λ|=N U

~λ⊗1
CδM(~λ) . With big enough

δ, we have δM(~λ) ≥ D(~λ). Notie that an anilla is not neessary if c(~λ) = 0 forall ~λ suh that D(~λ) >M(~λ).Another remark is that, as de�ned, our POVM is not properly normalized:
M(SU(d)) 6= 1, but is equal to the projetion on the spae spanned by the
U |Ψ〉. As this is the only subspae of importane, we an omplete the POVM(through the seed, for example) ad libitum.Our estimator Û is the result of the measurement with POVM de�ned by (3.4)and input state of the form (3.2), with spei� c(~λ). Suh an estimator is o-variant, that is pU (Û) = p1

Cd
(U−1Û), where pU is the probability distributionof Û when we are estimating U . The ost funtion is also ovariant, so that

EU [∆(U, Û)] does not depend on U . This implies that the Bayesian risk and thepointwise risk oinide. With the seond equality true for all U ∈ SU(d), wehave:
RB(Û) = RP (Û) = EU [∆(U, Û)]. (3.5)Theorem 3.2.1 states that there exists an optimal (Bayes uniform) estimator Ûoof this form (orresponding to the optimal hoie of c(~λ)), so that it obeys (3.5).From this we �rst prove that no estimator whatsoever an have a better ratethan 1/N2.



78 Fast estimation of unitary operations3.3 Why we annot expet better rate than 1/N2For proving this result, we need the Bayesian risk for priors π other than theuniform prior:
Rπ(Û) = Eπ[EU [∆(U, Û)]].As Ûo is Bayesian optimal for the uniform prior, we only have to prove that

RB(Ûo) = O(N−2). This is also su�ient for pointwise risk as, for any estimator
Û , we have RB(Û) ≤ RP (Û). Moreover, as EU [∆(U, Ûo)] does not depend on U ,
Rπ(Ûo) = RB(Ûo). It is then su�ient to prove, for a π of our hoie, that:

Rπ(Ûo) = O(N−2). (3.6)The idea is to �nd a Cramér-Rao bound that we an apply to some π. We shallombine the Braunstein and Caves information inequality (3.8) and the Van Treesinequality (3.7) to obtain the desired Quantum Cramér-Rao Bound, muh in thespirit of Gill [2005b℄. This bound will yield an expliit rate through a result ofBallester [2005b℄.Van Trees' inequality states that given a lassial statistial model smoothlyparameterized by θ ∈ Θ ⊂ Rp, and a smooth prior with ompat support Θ0 ⊂ Θ,then for any estimator θ̂, we have:
Eπ [Tr(Vθ(θ̂))] ≥

p2

Eπ [Tr(I(θ))] − Iπ
, (3.7)where I(θ) is the Fisher information matrix of the model at point θ, Iπ is a�nite (for reasonable π) onstant depending on π (quantifying in some way theprior information), and Vθ(θ̂) ∈ Mp(R) is the mean square error (MSE) of theestimator θ̂ at point θ given by:

Vθ(θ̂)α,β = E[(θα − θ̂α)(θβ − θ̂β)].This form of Van Trees inequality is obtained by setting N = 1, G = C = Id and
ψ = θ in (12) of [Gill, 2005b℄.Now the Braunstein and Caves C. M. [1994℄ information inequality yields anupper bound on the information matrix IM (θ) of any lassial statistial modelobtained by applying the measurement M to a quantum statistial model. Forany family of quantum states parameterized by a p-dimensional parameter θ ∈
Θ ∈ Rp, for any measurement M on these states, the following holds:

IM (θ) ≤ H(θ), (3.8)where H(θ) is the quantum Fisher information information matrix at point θ.



3.3 Why we annot expet better rate than 1/N2 79Now it was proved by Ballester [2005b℄ that for a smooth parameterization of anopen set of SU(d), and for any input state, the quantum Fisher information ofthe output states ful�ls:
H(θ) = O(N2).Inserting in (3.7) together with (3.8) we get as quantum Cramér-Rao bound

Eπ [Tr(Vθ(θ̂))] = O

(
1

N2

)
. (3.9)We now want to apply this bound to obtain (3.6). There are a few small tehnialdi�ulties. First of all, we annot use the uniform prior for π as SU(d) is nothomeomorphi to an open set of Rp. We then have to de�ne two neighborhoods ofthe identity Θ0 ⊂ Θ, allowing to use the Van Trees inequality. Now our estimator

Ûo need not be in Θ, so that we shall in fat apply Van Trees inequality to amodi�ed estimator Ũ . Finally, this bound is on the variane, and we must relateit to ∆.Our �rst task onsists in restriting our attention to a neighborhood Θ of 1Cd . Itorresponds to a neighborhood Θ (we use the same notation) of 0 ∈ Rp through
U = exp(

∑
α θαTα). This holds if the neighborhood is small enough, so we de�neit by U ∈ Θ if and only if ∆(1Cd , U) < ǫ for a �xed small enough ǫ. We de�ne

Θ0 through U ∈ Θ0 for ∆(1Cd , U) ≤ ǫ/3, and take a smooth �xed prior π withsupport in Θ0, suh that Iπ <∞.Now we modify our estimator Ûo into an estimator Ũ given by Ũ = Ûo for Ûo ∈ Θand Ũ = 1Cd for Ûo 6∈ Θ. Then, by the triangle inequality, for any U ∈ Θ0, wehave ∆(U, Ûo) ≥ ∆(U, Ũ).The fundamental point of the reasoning (used at (3.10)) is that, as ∆ is quadratiat the �rst-order, there is a positive onstant c suh that, for any U1, U2 ∈ Θ,orresponding to θ1, θ2, we have ∆(U1, U2) ≥ c
∑
α(θ1α − θ2α)2.Finally we get

Rπ(Ûo) = Eπ [EU [∆(U, Ûo)]]

≥ Eπ [EU [∆(U, Ũ)]]

≥ cEπ[Vθ̃ ] (3.10)
= O(N−2).We have thus proved (3.6), and hene our bound on the e�ieny of any estima-tor.We now write formulas for the risk of any estimator of the form given in Theorem3.2.1.



80 Fast estimation of unitary operations3.4 Formulas for the riskBy (3.5), our risk RP (Û) is equal to the pointwise risk at 1Cd , with whih weshall work:
∫

SU(d)

p1
Cd

(Û)

{
1 − |χ2(Û)|2

d2

}
dµ(Û ). (3.11)Now we ompute the probability distribution of Û for a given |Ψ〉 of the form(3.2), that is

p1
Cd

(Û) = 〈Ψ|ÛΞÛ∗|Ψ〉

=

∣∣∣∣∣∣

∑

~λ:|~λ|=N

c(~λ)

D(~λ)
D(~λ)

D(~λ)∑

i=1

〈ψ~λi |U |ψ~λi 〉

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∑

~λ:|~λ|=N

c(~λ)χ~λ(Û)

∣∣∣∣∣∣

2

,where we have used that the harater χ~λ of ~λ is the trae of U in the represen-tation.Then, using (3.11), realling that p1
Cd

is a probability density for Haar measure
µ on SU(d), and that χ~λ1χ~λ2 = χ~λ1⊗~λ2 (for the seond term), we get:

RP (Û) = 1 − 1

d2

∫

SU(d)

∣∣∣∣∣∣

∑

~λ:|~λ|=N

c(~λ)χ~λ⊗2
(Û)

∣∣∣∣∣∣

2

dµ(Û). (3.12)In order to evaluate the seond term, we use the following orthogonality relationsfor haraters: ∫

SU(d)

dµ(U)χ~λ1
(U)χ~λ2

(U)∗ = δ~λ1≡~λ2
. (3.13)To do so we need the Clebsh-Gordan series of ~λ⊗ 2:

~λ⊗ 2 = ⊕{1≤i≤d|λi>λi+1}
~λ+ ei, (3.14)where onventionally λd+1 = 0. Here we see ~λ as a d-dimensional vetor and eias the i-th basis vetor.



3.5 Choie of the oe�ients c(~λ) and proof of their e�ieny 81We then reorganize the sum of haraters as:
∑

~λ:|~λ|=N

c(~λ)χ~λ⊗2
(Û) =

∑

~λ′:|~λ′|=N+1

∑

i∈S(~λ′)

c(~λ′ − ei)χ~λ′ (Û),where S(~λ′) is the set of i between 1 and d suh that ~λ′−ei is still a representation,that is λ′i > λ′i+1. We shall write #S(~λ′) for its ardinality.Inserting in (3.12) and remembering (3.13), we are left with
RP (Û) = 1 −

∑
~λ′:|~λ′|=N+1 |

∑
i∈S(~λ′) c(

~λ′ − ei)|2

d2
. (3.15)To go any further, we must work with spei� c(~λ).3.5 Choie of the oe�ients c(~λ) and proof oftheir e�ienyWe now have to hoose the oe�ients c(~λ) so that the right-hand side of (3.15)is small.It appears useful to introdue subsets of the set of all irreduible representations.Let PN = {~λ| |~λ| = N ;λ1 > · · · > λd > 0}. Obviously, if ~λ′ ∈ PN+1, then

#S(~λ′) = d, and the onverse is true. We an see them intuitively as points on a
(d− 1)-dimensional surfae, and with this piture in mind, we shall speak of theborder of PN (when λi = λi+1 + 1 for some i), or of being far from the border(without preise mathematial meaning).We are ready to give heuristi arguments on how good oe�ients should behave.We must try to get the fration in (3.15) lose to one. Now

∑
~λ′:|~λ′|=N+1 |

∑
i∈S(~λ′) c(

~λ′ − ei)|2

d2

≤
∑

~λ′:|~λ′|=N+1

#S(~λ′)

d

∑
i∈S(~λ′) |c(~λ′ − ei)|2

d

≤
∑

~λ′:|~λ′|=N+1

∑
i∈S(~λ′) |c(~λ′ − ei)|2

d

≤
∑

~λ:|~λ|=N

|c(~λ)|2 = 1.



82 Fast estimation of unitary operationsThe �rst inequality was obtained using Cauhy-Shwarz inequality for eah innersum. There is equality if c(~λ′ − ei) does not depend on i. From this, we deduethat for most ~λ′, the c(~λ′ − ei) must be approximately equal, espeially if theyare large. The seond inequality follows from #S(~λ′) ≤ d. From this we deduethat for ~λ 6∈ PN+1, the oe�ients c(~λ − ei) must be small. Remark that about
1/N of the ~λ′ suh that |~λ′| = N + 1 are not in PN+1, so that if all c(~λ) wereequal, these border terms would ause our rate to be 1/N . The key of the thirdinequality is to notie that eah c(~λ) is appearing in the sum one for eah termin its Clebsh-Gordan series (3.14), and that there are at most d terms. Pleasenote that there are d terms if ~λ ∈ PN , and if ~λ′ is in PN+1, far from the border,then ~λ′ − ei is in PN , far from the border.The onlusion of these heuristis is that we must hoose oe�ients �loally�approximately equal (at most 1/N variation in ratio), and that the oe�ientsmust go to 0 when we are approahing the border of PN .One weight satisfying these heuristis is the following.

c(~λ) = N
d∏

i=1

pi, (3.16)where N is a normalization onstant to ensure that (3.3) is satis�ed and pi =
λi − λi+1. We shall use it below, and prove that it delivers the 1/N2 rate.A �rst remark about these weights is that c(~λ) = 0 if ~λ 6∈ PN . Now, for any
~λ ∈ PN , we have D(~λ) ≥ M(~λ), so that we do not need an anilla.Indeed, using hook formulas (see [Shensted, 1976℄), we get

M(~λ)/D(~λ) = N !
d∏

i=1

(λi + d− i)!

(d− i)!
.Now for ~λ ∈ PN , we know that λi 6= 0. Under this onstraint and∑λi = N , themaximum is attained by λ1 = N − d+ 1 and λi = 1 for i 6= 1. We end up withexatly 1.We shall now use (3.16) and express the numerator of (3.15) with our hoie of

pi. Notie �rst that if pj haraterize ~λ′ then those whih haraterize ~λ′− ei aregiven by p(i)
j = pj + δj,i−1 − δj,i. So

N−1c(~λ′ − ei) =

d∏

j=1

pj + r~λ′(i),



3.5 Choie of the oe�ients c(~λ) and proof of their e�ieny 83with
r~λ′ (i) = −

∏

j 6=i
pj + δj>1




∏

j 6=i−1

pj −
∏

j 6=i,i−1

pj



 .Introduing another notation will make this slightly more ompat. For a vetor
~x with d omponents and E a subset of {1, . . . , d}, de�ne:

xE =
∏

j 6=E
xj . (3.17)Then

r~λ′(i) = −p{i} + δj>1

(
p{i−1} − p{i,i−1}

)
.Notie now that for ~λ ∈ PN , there are exatly d irreduible representationsappearing in the Clebsh-Gordan deomposition of ~λ ⊗ 2 (3.14). So that c(~λ)2appears exatly d times in∑~λ′:|~λ′|=N+1

∑
i∈S(~λ′) c(

~λ′−ei)2. We may then rewritethe renormalization onstant N as
d−1

∑

~λ′:|~λ′|=N+1

∑

i∈S(~λ′)

d∏

j=1

p
(i)2
j .Therefore, rewriting the seond term in (3.15) with our values of c(~λ), we aim atproving:

∑
~λ′:|~λ′|=N+1

(∑
i∈S(~λ′)

∏d
j=1 pj + r~λ′(i)

)2

d
∑
~λ′:|~λ′|=N+1

∑
i∈S(~λ′)

(∏d
j=1 pj + r~λ′ (i)

)2 = 1 +O(N−2). (3.18)Let us expand the numerator:
∑

~λ′:|~λ′|=N+1




∑

i∈S(~λ′)

d∏

j=1

pj + r~λ′(i)




2

= Ct (1 + t1 + t2) ,with
Ct =

∑

~λ′

(#S(~λ′))2
d∏

j=1

p2
j ,

t1 =
2
∑
~λ′
∑
i∈S(~λ′) #S(~λ′)r~λ′ (i)

∏d
j=1 pj

Ct
,

t2 =

∑
~λ′

(∑
i∈S(~λ′) r~λ′(i)

)2

Ct
.



84 Fast estimation of unitary operationsSimilarly the denominator an be read as:
d

∑

~λ′:|~λ′|=N+1

∑

i∈S(~λ′)




d∏

j=1

pj + r~λ′(i)




2

= Cu (1 + u1 + u2) ,with
Cu =

∑

~λ′

d#S(~λ′)
d∏

j=1

p2
j ,

u1 =
2d
∑
~λ′
∑
i∈S(~λ′) r~λ′ (i)

∏d
j=1 pj

Cu
,

u2 =

∑
~λ′ d

∑
i∈S(~λ′) r~λ′(i)

2

Cu
.With these notations, we aim at proving the set of estimates given in Lemma3.5.1. Indeed they imply:

∑
~λ′:|~λ′|=N+1

(∑
i∈S(~λ′)

∏d
j=1 pj + r~λ′(i)

)2

d
∑
~λ′:|~λ′|=N+1

∑
i∈S(~λ′)

(∏d
j=1 pj + r~λ′ (i)

)2

= 1 + t2 − u2 +O(N−3)

(3.19)with (t2−u2) of order N−2. By (3.18), the risk of the estimator is then u2− t2 +
O(N−3). Thus proving Lemma 3.5.1 amounts at proving 1/N2 rate.We shall make use of the notation Θ(f), meaning that there are universal positiveonstants m and M suh that:

mf ≤ Θ(f) ≤Mf.Lemma 3.5.1. With the above notations,
Cu = Ct = d2

∑

~λ′:|~λ′|=N+1




d∏

j=1

pj




2

= Θ(N3d−1)

t1 = u1 = O(N−1)

t2 = O(N−2)

u2 = O(N−2).



3.6 Evaluation of the onstant in the speed of onvergene and �nal result85Proof. We �rst prove the �rst line.Indeed for ~λ′ ∈ PN+1, all i are in S(~λ′), and



∑

i∈S(~λ′)

d∏

j=1

pj




2

= d
∑

i∈S(~λ′)

d∏

j=1

p2
j = d2

d∏

j=1

p2
j .But if ~λ′ 6∈ PN+1, there is at least one pj equal to zero, so they do not ontributeto the sum. So that Cu = Ct = d2

∑
~λ′:|~λ′|=N+1

(∏d
j=1 pj

)2.We have then equality of the denominators of t1 and u1. The same argumentgives equality of the numerators. On PN+1, #S(~λ′) = d so that
∑

i∈S(~λ′)

#S(~λ′)r~λ′ (i)

d∏

j=1

pj = d
∑

i∈S(~λ′)

r~λ′(i)

d∏

j=1

pj ,and outside PN+1,∏d
j=1 pj = 0 so that the equality still holds. Therefore t1 = u1.Now pj ≤ N+1 so that∏d

j=1 pj ≤ (N+1)d and |r~λ′(i)| ≤ 2(N+1)d−1. Moreover,as 1 ≤ λi ≤ N + 1 and λd is known if the other λi are known, the number ofelements ~λ′ in PN+1 satis�es #PN+1 ≤ (N + 1)d−1. Thus the numerator of t1and u1 is O(N3d−2) and that of t2 and u2 is O(N3d−3). To end the proof of thelemma, it is then su�ient to show that Cu = Θ(N3d−1).Let us write N + 1 = a(1 + d(d + 1))/2 + b with a and b natural integers and
b < (1 + d(d + 1)). We then selet hi for i = 1 to d suh that ∑hi = a/2.The number of ways of partitioning a/2 in d parts is (a/2+d−1

d−1

), and this is
Θ(ad−1) = Θ(Nd−1). To eah of these partitions, we assoiate a di�erent ~λ′ in
PN+1 through λi = (d − i + 1)a + δi=1b + hi. For eah of these ~λ′, we have
pj = λj − λj+1 ≥ a/2, so that ∏d

j=1 p
2
j = Θ(N2d). We may lower bound Cu bythe sum over these ~λ′ of ∏d

j=1 p
2
j , so that we have proved Cu = Θ(N3d−1).3.6 Evaluation of the onstant in the speed of on-vergene and �nal resultThe strategy we study is asymptotially optimal up to a onstant, but a betteronstant an probably be obtained. Anything like c(~λ) = (

∏
pj)

α with α ≥
1/2 should yield the same rate, though it would be more umbersome to prove.



86 Fast estimation of unitary operationsPolynomials in the pj ould also bring some improvement. All the same we givein this setion a quik evaluation of the onstant, that may serve as a benhmarkfor more preise strategies.Write pj = (N + 1)xj . Then, realling our notation 3.17,
d∏

j=1

p2
j = (N + 1)2d

d∏

j=1

x2
j

r~λ′ (i) = (N + 1)d−1
(
−x{i} + δi>1x{i−1} +O(N−1)

)
.Similarly, the set of allowed ~x = (x1, . . . , xn) may be desribed as

SN+1 =




~x |xj(N + 1) ∈ N;

d∑

j=1

(d− j + 1)xj = 1




 .We may then rewrite:
u2 =

∑
~x∈SN+1

d
∑d

i=1

(
x{i} − δi>1x{i−1}

)2

d2(N + 1)2
∑
~x∈SN+1

∏d
j=1 x

2
j

+O(N−3)

t2 =

∑
~x∈SN+1

(
x{i} − δi>1x{i−1}

)2

d2(N + 1)2
∑
~x∈SN+1

∏d
j=1 x

2
j

+O(N−3).Subtrating, we obtain (the �rst sums being on SN+1)
u2 − t2 +O(N−3) = (3.20)
∑
~x 2d

(∑d
i=1(x{i})

2 −∑d
i=2 x{i}x{i−1}

)
− (d+ 1)(x{d})

2

n2 d2
∑
~x

∏d
j=1 x

2
j

. (3.21)Now SN+1 is the intersetion S of the lattie in [0, 1]d with mesh size 1/(N + 1)with the hyperplane given by the equation ∑(d − j + 1)xj = 1. Therefore thepoints of SN+1 are a regular paving of a �at (d − 1)-dimensional volume, withmore and more points (we know that #SN+1 = O(Nd−1)). Therefore bothdenominator and numerator of (3.20) are Riemannian sums with respet to theLebesgue measure, with a multipliative onstant that is the same for both.Therefore we have proved:Theorem 3.6.1. The estimator Û orresponding to (3.16) has the following risk:
RB(Û) = RP (Û) = E1

Cd

[
∆(1Cd , Û)

]
= CN−2 +O(N−3)



3.7 Conlusion 87where C is the fration
∫
S 2d

(∑d
i=1(x{i})

2 −∑d
i=2 x{i}x{i−1}

)
− (d+ 1)(x{d})

2d~x

d2
∫
S
∏d
j=1 x

2
jd~x

.Up to a multipliative onstant, this risk is asymptotially optimal, both for aBayes uniform prior and for global pointwise estimation.Numerial estimation, up to two digits, for the low dimensions yields:
10 for d = 2

75 for d = 3

2.7 × 102 for d = 4.3.7 ConlusionWe have given a strategy for estimating an unknown unitary hannel U ∈ SU(d),and proved that the onvergene rate of this strategy is 1/N2. We have furtherproved that this rate is optimal, even if the onstant may be improved.The interest of this result lies in that suh rates are muh faster than the 1/Nahieved in lassial estimation and, though they had already been obtained for
SU(2), they were never before shown to hold for general SU(d).





Chapter 4Clean positive operator valuedmeasures
This hapter is derived from the artile [Kahn, 2007a℄.Abstrat: In a reent paper Busemi et al. [2005℄ have de�ned anotion of lean positive operator valued measures (POVMs). Wehere haraterize whih POVMs are lean in some lass that we allquasi-qubit POVMs, namely POVMs whose elements are all rank-oneor full-rank. We give an algorithm to hek whether a given quasi-qubit POVM satis�es to this ondition. We desribe expliitly all thePOVMs that are lean for the qubit. On the way we give a su�ientondition for a general POVM to be lean.4.1 IntrodutionThe laws of quantum mehanis impose restritions on what measurements anbe arried out on a quantum system. All the possible measurements an bedesribed mathematially by �positive operator-valued measures�, POVMs forshort. Apart from measuring a state, we an also transform it via a quantumhannel. Now suppose we have at our disposal a POVM P and a hannel E . Wemay �rst send our state through E and then feed the transformed state in ourmeasurement apparatus P. This proedure is a new measurement proedure, andan therefore be enoded by a POVM Q. Now transforming the state with E an



90 Clean positive operator valued measuresbe seen as a kind of noise on the POVM P. We may then view Q as a disturbedversion of P, and we say that P is leaner than Q. Now, what are the maximalelements for this order relation?The order relation �leaner than� has been introdued in a reent artile ofBusemi et al. [2005℄. Herein they look at whih POVMs an be obtained fromanother, either by pre-proessing (the situation we just desribed, where we �rstsend our state through a hannel) or by lassial post-proessing of the data.Espeially, they try to �nd whih POVMs are biggest for these order relations(in the former ase, the POVM is said to be lean; there is no �extrinsi� noise).For pre-proessing they get a number of partial answers. One of those is that aPOVM on a d-dimensional spae with n outomes, with n ≤ d, is lean if andonly if it is an observable. They do not get a omplete lassi�ation, though.The objet of the present hapter is to haraterize whih POVMs are lean ina speial lass of measurements. Namely, we are interested in POVMs suh thatall their elements (see de�nition below) are either full-rank or rank-one. We allthese POVMs quasi-qubit POVMs. Notie that all the POVMs for qubits satisfyto this ondition.On the way we prove a su�ient ondition for a POVM to be lean, that is usablealso for POVMs that are not quasi-qubit.It turns out that leanness for quasi-qubit POVMs an be read on the span ofthe rank-one elements. Moreover,if a (non neessarily quasi-qubit) POVM isleaner than a lean quasi-qubit POVM, the latter was in fat obtained by ahannel that is a unitary transform. In other words, for quasi-qubit POVMs,leanness-equivalene is unitary equivalene.We give an algorithm to hek whether a quasi-qubit POVM is lean or not.This algorithm may be the main ontribution of the hapter, as almost all thefollowing theorems an be summed up by saying the algorithm is valid.In the end we apply these results to the qubit, for whih all POVMs are quasi-qubit. We are then left with a very expliit haraterization of lean POVMs forqubits.Setion 4.2 gives preise de�nitions of all the objets we ited in this introdution.We de�ne the algorithm, give heuristially the main ideas and de�ne the impor-tant notion �totally determined� (De�nition 4.3.2) in Setion 4.3.Setion 4.4 gives a su�ient ondition for a POVM to be lean, namely thatthe supports of the elements of the POVM �totally determine� the spae (seeDe�nition 4.3.2). We use this ondition to show that when the algorithm exitswith a positive result, the quasi-qubit POVM is really lean.



4.2 De�nitions and notations 91Setion 4.5 proves that the above su�ient ondition is in fat neessary forquasi-qubit POVMs. It heks that when the algorithm exits with a negativeresult, the POVM is truly not lean.Setion 4.6 gathers the results relative to quasi-qubit POVMs in Theorem 4.6.1and deals with the qubit ase in Corollary 4.6.2.Ultimately setion 4.7 gives a very rough idea for making expliit more expliitthe su�ient ondition for a POVM to be lean we have given in setion 4.4.If one wishes to look for the results of this hapter without bothering with thetehnial proofs, the best would be to read the algorithm of setion 4.3 and thento read Theorem 4.6.1 and Corollary 4.6.2. You would also need Lemma 4.5.3that you ould use as a de�nition of �totally determined� if you are only interestedin quasi-qubit POVMs.If you also want the supplementary results that apply to other POVMs, furtherread De�nitions 4.3.1 and 4.3.2, and Theorem 4.4.1.4.2 De�nitions and notationsWe onsider POVMs on a Hilbert spae H of dimension d ≥ 2. Dimension 2 isthe qubit ase. The set {|ei〉}1≤i≤d will be an orthonormal basis of H. If V isa subspae of H then V⊥ is the subspae orthogonal to V in H. If we are givenvetors {vi}i∈I , we denote by Span(vi, i ∈ I) the spae they generate. The set ofoperators on H is denoted by B(H).A POVM P (with �nite outomes, ase to whih we restrit) is a set {Pi}i∈Iof non-negative operators on H, with I �nite, suh that ∑i∈I Pi = 1. The Piare alled POVM elements. We write Supp(Pi) for the support of this element.This support is de�ned by its orthogonal. The set of |φ〉 ∈ Supp(Pi)
⊥ is exatlythe set of |φ〉 suh that 〈φ|Pi|φ〉 = 0. The rank of a POVM element is its rankas an operator. In partiular, rank-one elements are of the form λi|ψi〉〈ψi| andfull-rank POVMs are invertible. Speial ases of POVMs are rank-one POVMs,that is POVMs whose elements are all rank-one, and full-rank POVMs, that isPOVMs whose elements are all full-rank. We are espeially interested in a lassof POVMs that inludes both:De�nition 4.2.1. Quasi-qubits POVMsA POVM P is a quasi-qubit POVM if all its elements Pi are either full-rank orrank-one.Similarly, we shall speak of strit quasi-qubit POVMs for quasi-qubit POVMswhih are neither rank-one nor full-rank.



92 Clean positive operator valued measuresA hannel E is a ompletely positive identity-preserving map on B(H) the set ofbounded operators on H (in this hapter, hannels are always intended as goingfrom B(H) to the same B(H)). As a remark, this implies that the subspae ofself-adjoint operators Bsa(H) is stable by E . We know we an write it using Kraus[1983℄ deomposition, that is we an �nd a �nite number of operators Rα ∈ B(H)suh that
E(A) =

∑

α

R∗
αARα, with

∑

α

R∗
αRα = 1. (4.1)Here the star is the adjoint.We shall write E = {Rα}α. This deomposition is not unique.Using the hannel E before the measurement P is the same as using the POVM

Q = E(P) de�ned by its POVM elements Qi = E(Pi).De�nition 4.2.2. A POVM P is leaner than a POVM Q if and only if thereexists a hannel E suh that E(P) = Q. We shall also write P ≻ Q.De�nition 4.2.3. Clean POVMA POVM P is lean if and only if, for any Q suh that Q ≻ P, then P ≻ Q alsoholds.We shall further say that two POVMs are leanness-equivalent if both Q ≻ Pand P ≻ Q hold. A speial ase of this (but not the general ase, as proved in[Busemi et al., 2005℄) is unitary equivalene, when there is a unitary operator Usuh that for any i ∈ I, we have UPiU∗ = Qi.4.3 Algorithm and Ideas4.3.1 AlgorithmWe propose the following algorithm to hek whether a quasi-qubit POVM P islean or not.(i) We hek whether P is rank-one. If it is, exit with result �P is lean�.Otherwise:(ii) Write the rank-one elements Pi = λi|ψi〉〈ψi| for 1 ≤ i ≤ n. Chek whetherthese |ψi〉 generate H. If not, exit with result �P is not lean�. Else:



4.3 Algorithm and Ideas 93(iii) We an �nd a basis of H as a subset of those |ψi〉. We assume that thisbasis onsists of |ψi〉 for 1 ≤ i ≤ d. We de�ne a variable C = {Vj}j∈J ,onsisting in a olletion of subspaes whose diret sum is the Hilbert spae
H =

⊕
j Vj . We initialize C with Vi = Span(|ψi〉) for 1 ≤ i ≤ d.(iv) For i from d+ 1 to n, do:(v) Write |ψi〉 =

∑
j vj with vj ∈ Vj . Call J(i) = {j|vj 6= 0}.(vi) Update {Vj}: Suppress all Vj for j ∈ J(i). Add Vi =

⊕
j∈J(i) Vj .(vii) Chek whether C = {H}. If so, exit with result �P is lean�. Otherwise:(viii) End of the �For� loop.(ix) Exit with result �P is not lean�.Notie that the algorithm terminates: every stage is �nite and we enter the loopa �nite number of times.4.3.2 Heuristis: what the algorithm really testsIn the Kraus deomposition (4.1), eah of the terms R∗

αARα is non-negative if
A is non-negative, so that E(A) ≥ R∗

αARα for any α. Hene if E(Q) = P, then
R∗
αQiRα must have support inluded in Supp(Pi) for all α and e ∈ E.The entral idea of the hapter is the following: the ondition Supp(R∗

αQiRα) ⊂
Supp(Pi) yields d− dim(Supp(Pi)) homogeneous linear equations on the matrixentries of Rα, where you should remember that d = dim(H). Now Rα is deter-mined up to a onstant by d2 − 1 homogeneous independent linear equations. Insuh a ase, the additional ondition∑R∗

αRα = 1 yields all Rα are proportionalto the same unitary U , so that the hannel E is unitary, and P ≻ Q.There is still one di�ulty: the equations mentioned above depend not only on
P, but also on Q. We would then like onditions on the supports of Pi suh thatthe system of equations mentioned above is at least of rank d2 − 1 for all Q. Weformalize this requirement with the following de�nitions.De�nition 4.3.1. CorrespondingLet V be a Hilbert spae and {Fi}i∈I a olletion of subspaes of V. Let {vi}i∈Ibe a olletion of vetors of V. This set of vetors orresponds to {Fi}i∈I if forany i ∈ I, there is a linear transform Ri suh that Ri(vi) 6= 0 and, for all j ∈ I,the transform is taking vj within Fj , that is Ri(vj) ∈ Fj .In the text, we usually drop the referene to {Fi}i∈I and write that the {vi}i∈Iare a orresponding olletion of vetors.



94 Clean positive operator valued measuresDe�nition 4.3.2. Totally determinedLet V be a Hilbert spae and {Fi}i∈I a olletion of subspaes of V.If for all orresponding olletions of vetors {vi}i∈I there is only one (up toa omplex multipliative onstant) linear transform R suh that R(vi) ∈ Fi forall i ∈ I, we say that V is totally determined by {Fi}i∈I , or alternatively that
{Fi}i∈I totally determines V.If Fi is one-dimensional with support vetor wi, this means there is only one Rsuh that R(vi) is olinear to wi for all i ∈ I.What the algorithm does is heking that a quasi-qubit POVM P is rank-one(stage (i)), or that P totally determines H.More preisely, Proposition 4.4.9 states that eah of the Vj belonging to C (ap-pearing at stage (iii) and updated at stage (vi)) is totally determined by the |ψi〉suh that |ψi〉 ∈ Vj . When the algorithm exits at stage (vii), then C = {H},so H is totally determined. If the algorithm does not exit at stage (vii), on theother hand, then C has at least two elements at the last stage, and eah |ψi〉is inluded in one of those two elements, whih entails, from Lemma 4.5.3, that
{Supp(Pi)} does not totally determine H.The equivalene with leanness for quasi-qubit POVMs is still needed to getvalidity of the algorithm. This equivalene stems from Theorem 4.4.1 and Theo-rem 4.5.1. The former is the su�ient ondition, for any POVM, not neessarilyquasi-qubit. We have given the intuition for this theorem at the beginning of thesetion. Complementarily, Theorem 4.5.1 states that a strit quasi-qubit POVMis not lean if its supports do not totally determine H.The proof of Theorem 4.5.1 features the last important idea of the hapter. Ahannel E whih is near enough the identity may be inverted as a positive mapon B(H), even though E−1 is not a hannel. Now if we denote Q = E−1(P), wehave E(Q) = P. We are then left with two questions: is Q a POVM, and an we�nd a hannel F suh that F(P) = Q?The main possible obstale to Q being a POVM is the need for eah of the Qito be non-negative. Now, if E is near enough the identity, if Pi was full-rank,then Qi is still full-rank non-negative. The remaining ase is Qi = E−1(Pi) =
λiE−1 (|ψi〉〈ψi|). Now, we shall see that we may use the set of subspaes C = {Vj}given by the algorithm to build hannels ensuring that these Qi are still rank-onenon-negative matries. Furthermore, these Qi will have a bigger �rst eigenvaluethan Pi, so that we are sureQ is stritly leaner thanP, as hannels are spetrum-width dereasing (see Lemma 4.5.2).We now turn to the fully rigorous treatment.



4.4 Su�ient ondition 954.4 Su�ient onditionWe start by proving the following theorem, announed in the previous setion.Theorem 4.4.1. If the supports {Supp(Pi)}i∈I of the elements Pi of a POVMP totally determine H, then P is lean and any leanness-equivalent POVM Qis in fat unitarily equivalent to P.Proof. It is enough to prove that if Q ≻ P, then Q is unitarily equivalent to P.Let Q be a POVM and E = {Rα}α a hannel suh that E(Q) = P.For all i ∈ I, we may write Qi =
∑

k µi,k|φki 〉〈φki |. Then we have
Pi =

∑

α

∑

k

µi,kR
∗
α|φki 〉〈φki |Rα.Now µi,kR∗

α|φki 〉〈φki |Rα ≥ 0 for all k and α, and onsequently µi,kR∗
α|φki 〉〈φki |Rα ≤

Pi. Hene R∗
α|φki 〉 ∈ Supp(Pi).Moreover Pi is nonzero. So that there is at least one k(i) and one α(i) for eah

i suh that R∗
α|φk(i)i 〉 is nonzero. Thus {φk(i)i }i∈I orresponds to {Supp(Pi)}i∈I .As {Supp(Pi)}i∈I totally determines H, there is only one R, up to a onstant,suh that R|φk(i)i 〉 ∈ Supp(Pi) for all i. So that Rα = c(α)R for all α. Sine∑

αR
∗
αRα = 1, there is a onstant suh that λR1 is unitary, and E = {λR1}. Sothat P and Q are unitarily equivalent.Before proving in Theorem 4.4.9 that �when the algorithm exits at stage (vii),then the supports of the POVM P totally determine H�, we need a few moretools.We �rst need the notion of projetive frame. Indeed, in the algorithm, we are deal-ing with supports of rank-one POVMs, that is essentially projetive lines. Andwe want them to totally determine the spae, that is essentially �x it. Projetiveframes are the most basi mathematial objet meeting these requirements. Werede�ne them here, and reprove what basi properties we need; further informa-tion on projetive frames may be found in most geometry or algebra textbooks,e.g. [Audin, 2002℄.De�nition 4.4.2. A projetive frame {vi}1≤i≤d+1 of a vetor spae V is a set of

(dim(V) + 1) vetors in general position, that is, suh that any subset of dim(V)vetors is a basis of V.



96 Clean positive operator valued measuresRemark 4.4.3. Equivalently we may say that {vi}1≤i≤n is a basis of V and
vd+1 =

∑n
i=1 civi with all ci 6= 0.Proposition 4.4.4. A projetive frame Ψ = {ei}1≤i≤(n+1)of V totally deter-mines V.Proof. First we prove that if Φ = {vi}1≤i≤(n+1) is not a projetive frame, the setof vetors {vi}1≤i≤(n+1) does not orrespond to Ψ. Indeed, as Φ is not a projetiveframe, we may �nd n vetors, say the n �rst, suh that ∑n

i=1 aivi = 0 with atleast one ai non-zero, say a1. Then for any R suh that R(vi) is olinear to eifor all i, we still have∑n
i=1 aiR(vi) = 0. As {ei}1≤i≤n is a basis, aiR(vi) = 0 forall i, so that R(v1) = 0. Hene {vi}1≤i≤n+1 does not orrespond to {ei}1≤i≤n+1.Let now Φ = {vi}1≤i≤(n+1) be orresponding to Ψ. Notably, this implies that Φis a projetive frame. Furthermore, there is a nonzero linear transform R suhthat R(vi) is olinear to ei for all i. We must show that R is unique up to aonstant.We know that {ei}1≤i≤n and {vi}1≤i≤n are both bases of V . Hene there is aunique transfer matrix X from the latter basis to the former. Sine R(vi) = Dieifor some Di, we know that R is of the form DX where D is a diagonal matrixwith diagonal values Di.We still have not used our (n + 1)th ondition. We are dealing with projetiveframes, so that en+1 =
∑n

i=1 biei and vn+1 =
∑n

i=1 civi with all bi and ci non-zero. Now R(vn+1) =
∑n
i=1 ciR(vi) =

∑n
i=1 ciDiei, so that ciDi/bi must beindependent on i and D and hene R is �xed up to a omplex multipliativeonstant.We now turn to a few observations about totally determined spaes.Remark 4.4.5. If {Fi}i∈I totally determines H, and if {vi}i∈I orresponds to

{Fi}, then the up to a onstant unique nonzero R suh that Rvi ∈ Fi for all i ∈ Iis invertible.Proof. Let us de�ne Π(kerR)⊥ the projetor on the orthogonal of the kernel of
R along its kernel, and ΠkerR the projetor on the kernel of R along (kerR)⊥.We have R = RΠ(kerR)⊥ , so that RΠ(kerR)⊥vi = Rvi. Thus {Π(kerR)⊥vi}i∈Iis orresponding to {Fi}i∈I . On the other hand, ΠkerRΠ(kerR)⊥ = 0, so that
(R + ΠkerR)(Π(kerR)⊥vi) = R(Π(kerR)⊥vi) ∈ Fi. As {Π(kerR)⊥} is orrespondingto {Fi}, the latter equality implies that R is proportional to (R + ΠkerR). Thisis only possible if ΠkerR = 0. Hene R is invertible.



4.4 Su�ient ondition 97Remark 4.4.6. If {vl}l∈I∪J is orresponding to {Fl}l∈I∪J , then {vi}i∈I (resp.
{vj}j∈J) is orresponding to {Fi}i∈I (resp. {Fj}j∈J .Proof. The set I is a subset of I ∪ J , thus, for all i ∈ I, there is an Ri suh that
Rivi 6= 0 and Rivl ∈ Fl for all l ∈ I ∪ J . A fortiori Rivk ∈ Fk for all k ∈ I.Hene {vi}i∈I is orresponding to {Fi}i∈I . The same proof yields the result for
J .Remark 4.4.7. If {vi}i∈I is orresponding to {Fi}i∈I , then there exists R suhthat Rvi ∈ Fi and Rvi 6= 0 for all i simultaneously.Proof. By the de�nition of �orresponding to�, we have a set {Ri}i∈I of trans-forms suh that Rivi 6= 0 and Rivj ∈ Fj for all j ∈ I. Now, for any set ofoe�ients {ai}i∈I the matrix R =

∑
i aiRi ful�ls Rvi ∈ Fi for all i. If we hooseappropriately {ai} we also have Rvi 6= 0. For example, we may write all the

Rivi in the same basis, take note of all oordinates, and hoose the ai as any realnumbers algebraially independent of those oordinates.Lemma 4.4.8. If V and W are both totally determined by sets of subspaes
{Fi}i∈I and {Fj}j∈J and if V and W interset (apart from the null vetor), thentheir sum U = V + W is totally determined by {Fl}l∈I∪J .Proof. Let {ul}l∈I∪J vetors of U orrespond to {Fl}l∈I∪J . In other words, thereis an R∗ suh that R∗ul ∈ Fl for all l ∈ I ∪ J . By Remark 4.4.7, we may assumethat R∗ul 6= 0 for all l. We must show that R∗ is unique up to a onstant. Notiethat the restrition R∗ul 6= 0 does not play a role: if we �nd another R nonproportional to R∗, suh that Rul ∈ Fl for all l, then R∗ + aR for appropriate aalso ful�ls 0 6= (R∗ + aR)ul ∈ Fl for all l, and is not proportional to R∗.We need a few notations. First, we onsider the spae X = V ∩ W . We alsode�ne Y by V = Y ⊕ X and Z by W = Z ⊕ X . We write IV and IW for thenatural inlusions of V and W in U . We also denote by ΠV for the projetor on
V along Z, by ΠW the projetor on W along Y, and by ΠX the projetor on Xalong Y + Z.Please be aware that we do not de�ne ΠV and ΠW as endomorphisms of U , but asappliations from U to V andW , respetively. The orresponding endomorphismsare IVΠV and IWΠW .As a �rst step, we show that IVΠVR∗ is unique up to a onstant.The rank of IVΠVR∗ is at most dim(V), so we an fatorize it by V : thereexists two linear appliations LU

V from U to V and LV
U from V to U , suh that

IVΠVR∗LV
UL

U
V = IVΠVR∗.



98 Clean positive operator valued measuresNow for all i ∈ I, we have R∗ui ∈ Fi ⊂ V , so that R∗ui = IVΠVR∗ui =
IVΠVR∗LV

UL
U
Vui, so that for all i ∈ I we have the inlusion 0 6= (ΠVR∗LV

U)(LU
Vui) ∈

Fi, where we have used R∗ul 6= 0.. Thus {LU
Vui}i∈I is orresponding to {Fi}i∈I .On the other hand, we know that {Fi}i∈I totally determine V . Hene thereis a nonzero onstant λV , and a RV depending only on {Fi}i∈I , suh that

ΠVR∗LV
U = λVRV . Moreover, by Remark 4.4.5, RV is invertible. So that �-nally IVΠVR∗ = λVIVRVLU

V , with image im(λVIVRVLU
V) = V . Replaing V with

W , we get similarly IWΠWR∗ = λWIWRWLU
W .The last step onsists in proving that the two onstants λV and λW are propor-tional, independently of R∗.We notie that ΠX IVΠV = ΠX = ΠX IWΠW . Hene λVΠX IVRVLU

V =
λWΠX IWRWLU

W . As X ⊂ V and im(λVIVRVLU
V) = V , we know that

λVΠX IVRVLU
V 6= 0. The equality λVΠX IVRVLU

V = λWΠX IWRWLU
W then yieldsthe proportionality of λW and λV .We onlude by realling that V + W = U , so that knowing both IVΠVR∗ and

IWΠWR∗ is equivalent to knowing R∗. As our only free parameter is the multi-pliative onstant λV , we have proved uniqueness of R∗, up to a onstant.Lemma 4.4.8 and Proposition 4.4.4 are the two ingredients for proving the fol-lowing proposition, entral for the validity of the algorithm.Proposition 4.4.9. In the algorithm, the spaes in the set C = {Vj}j∈J arealways totally determined by the supports K(j) = {Span(|ψi〉) : |ψi〉 ∈ Vj} of theone-dimensional POVM elements they ontain.Proof. We prove the proposition by indution on the stronger property Prop =� all Vj are totally determined by K(j), and they are spanned by vetors of theinitial basis, that is, they are of the form Span(|ψi〉 : i ∈ I(j)), where I(j) is asubset of {1, . . . , d}�.Initialization: We initialize C at step (iii). At this stage Vj is de�ned for j ∈
{1, . . . , d} by Vj = Span(|ψj〉). So that on the one hand Vj is of the form
Span(|ψi〉 : i ∈ I(j)), where I(j) is a subset of {1, . . . , d}, and on the other hand
Vj is totally determined by K(j), as it is one-dimensional and |ψj〉 is nonzero.Update: We update C at stage (vi). We must prove that Vi =

⊕
j∈J(i) Vj stillful�ls Prop.For one thing, the spae Vi is a sum of spaes of the form Span(|ψi〉 : i ∈ I(j)),where I(j) is a subset of {1, . . . , d}, hene Vi is also of this form with I(i) =⋃

j∈J(i) I(j).



4.5 Neessary ondition for quasi-qubit POVMs 99Now let us onsider the set Iint = {j : j ∈ {1 . . . d}, 〈ψi|ψj〉 6= 0}, and the spae
Vint = Span(|ψj〉 : j ∈ Iint). Sine the |ψj〉 for j ∈ Iint are part of the initial basis
{|ψj〉}1≤j≤d}, they are independent. The de�nition of Iint also ensures |ψi〉 =∑

j∈Iint
cj |ψj〉 with j nonzero, hene, by Remark (4.4.3), the set {|ψk〉 : k = k ∈

Iint ∪ {i}} is a projetive frame of Vint. So that, by Proposition 4.4.4, the spae
Vint is totally determined by {|ψj〉}j∈Iint∪{i}. We initialize Kint = Iint ∪ {i}.Finally, by de�nition of J(i), we know that Vint∩Vj 6= 0 for all j ∈ J(i). Both aretotally determined, by K(j) and Kint. Hene by Lemma 4.4.8, Vint∪Vj is totallydetermined by K(j)∪Kint. We update Vint = Vint ∪Vj and Kint = Kint ∪K(j).We iterate the latter step for all j ∈ J(i) and we end up with Vint = Vi totallydetermined by ⋃j∈j(i) K(j) ∪ Iint ∪ {i} ⊂ I(i).Corollary 4.4.10. When the algorithm ends at stage (vii), the POVM P islean.Proof. The algorithm ends at stage (vii) only if C = {H}. By the above proposi-tion, this ondition implies that H is totally determined by {Span(|ψj〉) : |ψj〉 ∈
H}. This amounts at saying that H is totally determined by the supports of thePOVM elements Pi, and we onlude by Theorem 4.4.1.This setion aims at giving su�ient onditions for a POVM to be lean, and atproving that one of these onditions is ful�lled if the algorithm exits with result�P is lean�. We thus onlude the setion with the ase when the algorithmexits at stage (i). In other words, we must show that a rank-one POVM is lean.Now, this has already been proved as Theorem 11.2 of [Busemi et al., 2005℄:Theorem 4.4.11. [Busemi et al., 2005℄ If P is rank-one, then Q≻P if andonly if P and Q are unitarily equivalent. Thus, rank-one POVMs are lean.For a quasi-qubit POVM P, we prove in the following setion that P is leanonly if it ful�ls the onditions either of Theorem 4.4.11 or of Theorem 4.4.1.4.5 Neessary ondition for quasi-qubit POVMsThis setion proves that a lean quasi-qubit POVM either is rank-one, or thesupports of its elements totally determine the spae:Theorem 4.5.1. A non-rank-one quasi-qubit POVM where {Supp(Pi)i∈I} doesnot determine H is not lean.



100 Clean positive operator valued measuresWe need a few more tools to prove the theorem.To begin with, we need a way to prove in spei� situations that a POVM is notleaner than another. Using the fat that hannels are spetrum-width dereasingis the easiest method. This is Lemma 3.1 of [Busemi et al., 2005℄:Lemma 4.5.2. If the minimal (resp. maximal) eigenvalue of X is denoted
λm(X) (resp. λM (X)), then λm(X) ≤ λm(E(X)) ≤ λM (E(X)) ≤ λM (X) forany hannel E.This lemma implies that existene of Q ≻ P suh that for some i ∈ I, either
λm(Qi) < λm(Pi) or λM (Qi) > λM (Pi) entails that Q is stritly leaner than P,so that P is not lean.We now give a haraterization of the fat thatH is totally determined by {Fj}j∈Jwhen all the Fj are one-dimensional, that is of when the Fj an be seen as vetors.This haraterization applies to {Supp(Pi)}i∈I for quasi-qubit POVMs, and maybe more intuitive than De�nition 4.3.2. Moreover it is more adapted to ourstrategy of proof.Lemma 4.5.3. A set of vetors {|ψj〉}j∈J totally determine the spae H, if andonly if, for any two supplementary proper subspaes V and W, there is a j ∈ Jsuh that |ψj〉 6∈ V and |ψj〉 6∈ W.Moreover, when the algorithm exits with result �P is not lean�, the supports ofP do not totally determine H.Proof. The proof is made of four steps:(a) For any �nite set of vetors {|ψj〉}j∈J , there is a POVM whose supports ofthe rank-one elements are these vetors.(b) if we feed into the algorithm a non-rank-one quasi-qubit POVM whosesupports of rank-one elements are the |ψj〉 and if {|ψj〉} does not totallydetermine H, then the algorithm exits with result �P is not lean�.() if the algorithm exits with result �P is not lean�, then we an �nd twosupplementary proper subspaes suh that |ψj〉 ∈ V or |ψj〉 ∈ W for allsupports of rank-one elements.(d) �nding two supplementary proper subspaes suh that |ψj〉 ∈ V or |ψj〉 ∈ Wfor all j ∈ J implies that {|ψj〉}j∈J does not totally determine H.The equivalene in the lemma is then proved by ontraposition, and the laststatement by ombining () and (d).



4.5 Neessary ondition for quasi-qubit POVMs 101Step (a): A valid example is given by Pj = 1
2#J |ψj〉〈ψj | for j ∈ J and P#J+1 =

1−∑j Pj . Indeed the latter element is positive sine ∑j Pj ≤ 1
2#J#J1 = 1

21.Step (b): Sine the quasi-qubit POVM is assumed not to be rank-one, we do notexit at stage (i). The only other possible exit with result �P is lean� is at stage(vii). Now the proof of Corollary 4.4.10 states that the algorithm exits at stage(vii) only if the supports of the rank-one elements totally determine H. Hene,the algorithm exits with result �P is not lean�.Step (): Exiting at stage (ii) means that the |ψj〉 do not generate H. Then,if J = ∅, we may hoose any two supplementary proper subspaes V and W .Anyhow |ψj〉 ∈ V for all j ∈ J . If J 6= ∅, then V = Span(|ψi〉, i ∈ I) is a propersubspae of H. Sine |ψj〉 ∈ V for all j ∈ J , any supplementary subspae W of
V will turn the trik.If the algorithm does not exit at stage (ii), then there is a basis inluded in
{|ψj〉}j∈J . We assume that it orresponds to 1 ≤ j ≤ d.Sine the algorithm exits with result, �P is not lean�, it exits at stage (ix). Weend the algorithm with a olletion C = {Vk} of subspaes suh that⊕k Vk = H.Sine we have not exited at stage (vii), we know that C 6= {H}. Hene C ountsat least two non-trivial elements. We take V = V1 and W =

⊕
k 6=1 Vk.The Vk are diret sums of the original Vj = Span(|ψj〉) for 1 ≤ j ≤ d. Hene,for 1 ≤ j ≤ d, either |ψj〉 ∈ V or |ψj〉 ∈ W . On the other hand if |ψj〉 is notone of the original basis vetors, it was used in the �For� loop. At the end of thisloop, C was then ontaining a spae V =

⊕
k∈J(j) Vk. And |ψj〉 was inluded inthis spae. This V is then inluded in one of the �nal Vj and a fortiori either in

V or in W . We have thus proved that when the algorithm exits with a negativevalue we may �nd two supplementary proper subspaes V and W suh that forall i ∈ I, either |ψi〉 ∈ V or |ψi〉 ∈ W .Step (d): Sine 1|ψj〉 = |ψj〉 for all j, by De�nition 4.3.1 the set of vetors
{|ψj〉}j∈J is orresponding to the subspaes {|ψj〉}j∈J . On the other hand, de-noting by ΠV the projetion on V parallel to W , we get that ΠV |ψj〉 is olinearto |ψj〉 for all j ∈ J . Moreover ΠV is not proportional to 1, so that, by de�nition4.3.2, the set of vetors {|ψj〉} does not totally determine H.Finally, as explained in Setion 4.3, we want to build our leaner POVMs as
E−1(P) where the hannel is inverted as a positive map. We need to know someonditions under whih a hannel an be inverted. This is the purpose of Lemma4.5.4, for whih we need the following norms.



102 Clean positive operator valued measuresThe Hilbert-Shmidt norm on B(H) is de�ned as ‖M‖2
HS = Tr(MM∗). Notably,in any orthogonal basis,

‖M‖2
HS =

∑

1≤i,j≤d
|Mi,j |2.Moreover ‖M‖HS = ‖M∗‖HS .We also de�ne a norm on B(B(H)), spae to whih the hannels belong:

‖O‖1 = sup
{M|‖M‖HS=1}

‖O(M)‖HS .Lemma 4.5.4. If in the Kraus representation of a hannel E = {Rα} one of the
Rα ful�ls

‖1−Rα‖HS ≤ ǫ,then
‖1− E‖1 ≤ 2(1 +

√
d)ǫ+ 2ǫ2 = f(ǫ) −→

ǫ→0
0. (4.2)As a onsequene, if f(ǫ) < 1, then E is invertible (as a map on B(H)) and

‖E−1 − 1‖1 ≤ f(ǫ)/(1 − f(ǫ)). This inverse lets Bsa(H) stable.This in turn shows that for any X ∈ Bsa(H) suh that λm(X) ≥ 0, the spetrumof the image by the inverse is bounded through
λm(X) − λM (X)f(ǫ)

√
d/(1 − f(ǫ)) ≤ λm(E−1(X)). (4.3)So that for all X > 0, when ǫ small enough, E−1(X) ≥ 0.Remark: The bound 4.2 is probably far from sharp, but su�ient for our needs.Proof. Without loss of generality, we assume that

‖1−R1‖HS ≤ ǫ.We write S = R1 − 1H and O = E − 1B(H).Then
O : M 7→ S∗MS + S∗M +MS +

∑

α6=1

R∗
αMRα.



4.5 Neessary ondition for quasi-qubit POVMs 103And
‖O‖1 = sup

{M|‖M‖HS=1}

∥∥∥∥∥∥
S∗MS + S∗M +MS +

∑

α6=1

R∗
αMRα

∥∥∥∥∥∥
HS

≤ sup
{M|‖M‖HS=1}

‖S∗‖‖M‖‖S‖+ ‖S∗‖‖M‖

+ ‖M‖‖S‖+
∑

α6=1

‖R∗
α‖‖M‖‖Rα‖

= ‖S‖2
HS + 2‖S‖HS +

∑

α6=1

‖Rα‖2
HS .Now, for one thing, by hypothesis, ‖S‖HS ≤ ǫ. Furthermore

∑

α6=1

‖Rα‖2
HS =

∑

α6=1

Tr(R∗
αRα) = Tr(1−R∗

1R1) = −Tr(S∗S + S + S∗).We �nish our proof of 4.2 with the observation that −Tr(S+S∗) ≤ 2
√
d‖S‖HS =

2
√
dǫ.If ‖O‖1 < 1, we know that E = 1 + O is invertible and E−1 =

∑
n≥0(−O)n. Bytaking the norm, ‖E−1 − 1‖1 ≤∑n≥1 ‖O‖n1 = f(ǫ)/(1 − f(ǫ)).Channels stabilize Bsa(H); as E is furthermore invertible, equality of dimensionshows that E(Bsa(H)) = Bsa(H) and E−1(Bsa(H)) = Bsa(H).Now,X is positive, so that ‖X‖HS ≤

√
dλM (X). This implies ‖(E−1−1)(X)‖HS ≤√

dλM (X)f(ǫ)/(1−f(ǫ)), and in turn E−1(X) ≥ X−
√
dλM (X)f(ǫ)/(1−f(ǫ))1.Taking the bottom of the spetrum ends the proof.We are now ready to prove Theorem 4.5.1.Proof of Theorem 4.5.1. We aim at exhibiting a hannel E and a POVM Qsuh that E(Q) = P and Qi has a wider spetrum than Pi for some e ∈ E. ThenLemma 4.5.2 proves that Q is stritly leaner than P, and in turn that P is notlean.The building bloks are the subspaes supplied by Lemma 4.5.3. Sine H is notdetermined by {Supp(Pi)}i∈I , there are two supplementary proper subspaes Vand W suh that eah rank-one element has support inluded either in V or in

W .



104 Clean positive operator valued measuresWe shall write expliitly several matries in the forthoming proof. All of themshall be written on an orthonormal basis {ej}1≤j≤d of H, hosen so that
{ej}1≤j≤dim(V) is a basis of V . We shall express the matries as two-by-twoblok matries, the bloks orresponding to the subspaes V and V⊥.We study separately the following ases:(a) All POVM elements Pi are proportional to the identity, that is Pi = µi1.(b) The POVM is not full-rank, eah rank-one element has support either in Vor in V⊥, and all POVM elements are blok-diagonal in V and V⊥.() Eah rank-one element has support either in V or V⊥, and at least onePOVM element is not blok-diagonal.(d) At least one rank-one element has support neither in V nor in V⊥.As a sanity hek, let us prove we did not forget any ase. Either our POVM isfull-rank, or it is not. In the latter situation, either there is a rank-one elementwhose support is not inluded in V nor in V⊥ � and we are in ase (d) �, orall rank-one elements are inluded in V or V⊥. Then either there is a POVMelement that is not blok-diagonal � and we are in ase () � or all POVMelements are blok-diagonal � and we are in ase (b). On the other hand, if P isfull-rank, we may hoose the subspaes V and W any way we like. Notably, if onePOVM element Pi is not proportional to the identity, so that it has non-trivialeigenspaes, we may hoose V suh that Pi is not blok-diagonal in V and V⊥� and we are in ase (). Finally, if on the ontrary, all POVM elements areproportional to the identity, we are in ase (a).Case (a): If all POVM elements are of the form Pi = µi1, then, for any E = {Rα},we have E(Pi) =

∑
αR

∗
α(µi1)Rα = µi

∑
αR

∗
αRα = µi1 = Pi. No hannel anhange the wholly uninformative measurement P.On the other hand, many POVMs an be degraded to P. Consider for examplethe POVM given by Q1 = µ1|e1〉〈e1| +

∑d
j=2 |ej〉〈ej | and Qi = µi|e1〉〈e1| for

i > 1. Then Q 6= P, so that P 6≻ Q. Yet, with Rα = |e1〉〈eα| for 1 ≤ α ≤ d, wehave E(Q) = P, and Q ≻ P. Hene P is not lean.Case (b): Sine all rank-one elements are inluded either in V or in V⊥, we take
W = V⊥. We further hoose V to be the smaller of the two subspaes, thatis dim(V) ≤ d/2 ≤ dim(W). Then there is a matrix A : V → W suh that
AA∗ = 1V . If all rank-one elements have support in W , we further impose thatat least one of these supports is not inluded in the kernel of A.



4.5 Neessary ondition for quasi-qubit POVMs 105We then de�ne R∗
V and R∗

W as:
R∗

V(ǫ) =

[
1V ǫA
0 0

]
,

R∗
W(ǫ) =

[
0 0
0 1W

]
.Their images are respetively V and W .From RV(ǫ) and RW(ǫ), we de�ne the hannel Eǫ = {R1(ǫ), R2(ǫ), R3(ǫ)}:

R∗
1(ǫ) =

√
ǫ2

1+ǫ2R
∗
V(ǫ) +

√
1−ǫ2
1+ǫ2R

∗
W(ǫ) =





√
ǫ2

1+ǫ2 1V
√

ǫ4

1+ǫ2A

0
√

1−ǫ2
1+ǫ2 1W



 ,

R∗
2(ǫ) =

√
ǫ2

1+ǫ2R
∗
W(ǫ) =

[
0 0

0
√

ǫ2

1+ǫ2 1W

]
,

R∗
3(ǫ) =

√
1−ǫ2
1+ǫ2R

∗
V(ǫ) −

√
ǫ2

1+ǫ2R
∗
W(ǫ) =





√
1−ǫ2
1+ǫ2 1V

√
ǫ2−ǫ4
1+ǫ2 A

0 −
√

ǫ2

1+ǫ2 1W



 .Sine AA∗ = 1V , we have ∑αR
∗
αRα = 1, hene these matries {Rα} de�ne agenuine hannel. A few alulations show that the e�et of this hannel is:

Eǫ :

[
B C
C∗ D

]
→
[

1
1+ǫ2

(
B + ǫ(AC∗ + CA∗) + ǫ2ADA∗) 0

0 D

]
. (4.4)Now, for any w ∈ W , we have

[
−ǫAw
w

] [
−ǫAw
w

]∗
=

[
ǫ2Aww∗A∗ −ǫAww∗

−ǫww∗A∗ ww∗

]
,so that for any sequene of wj ∈ W , the matrix∑j,k

[
ǫ2Awjw

∗
kA

∗ −ǫAwjw∗
k

−ǫwjw∗
kA

∗ wjw
∗
k

]is non-negative. As any non-negative endomorphism D of W an be written∑
j,k wjw

∗
k for appropriate wj , we get that for any non-negative D, the matrix[

ǫ2ADA∗ −ǫAD
−ǫDA∗ D

] is non-negative. Moreover applying equation (4.4) yieldsthat its image by Eǫ is [ 0 0
0 D

].Similarly, if B ∈ B(V) is non-negative, then [ (1 + ǫ2)B 0
0 0

] is non-negativeand its image by Eǫ is [ B 0
0 0

].



106 Clean positive operator valued measuresWe use these observations to de�ne a map (not a hannel) Fǫ on the blok-diagonal matries:
Fǫ :

[
B 0
0 D

]
→
[

(1 + ǫ2)B + ǫ2ADA∗ −ǫAD
−ǫDA∗ D

]
. (4.5)We get that Eǫ(Fǫ(M)) = M for all blok-diagonal M and that if furthermore

M ≥ 0 then Fǫ(M) ≥ 0.We now isolate one full-rank element of P, say P1. For all i 6= 1, we de�ne
Qi(ǫ) = Fǫ(Pi). They are non-negative and ful�l Eǫ(Qi(ǫ)) = Pi. De�ne now
Q1(ǫ) = 1 − ∑i6=1Qi(ǫ). The losure relation ensures that Eǫ(Q1(ǫ)) = P1.What's more, realling that ∑iBi = 1V and ∑iDi = 1W , we obtain:
Q1(ǫ) =

[
1V − (1 + ǫ2)

∑
i6=1 Bi − ǫ2A(

∑
i6=1Di)A

∗ ǫA
∑
i6=1Di

−ǫ∑i6=1DiA
∗ 1W −∑i6=1Di

]

=

[
(1 + ǫ2)B1 + ǫ2AD1A

∗ − 2ǫ21V ǫA(1W −D1)
ǫ(1W −D1)A

∗) D1

]

−→
ǫ→0

[
B1 0
0 D1

]

= P1.Sine P1 is positive, this onvergene entails the non-negativity of Q1(ǫ) for ǫsmall enough. As Q1(ǫ) has been hosen so that ∑iQi(ǫ) = 1, we have de�neda genuine POVM Q(ǫ) = {Qi(ǫ)}i∈I suh that Eǫ(Q(ǫ)) = P, hene Q ≻ P.We end the study of this ase by onsidering a rank-one element Pi = µi|ψi〉〈ψi|whose support is not in the kernel of A. Using formula (4.5), if |ψi〉 ∈ V , weget Tr(Qi(ǫ)) = (1 + ǫ2)Tr(Pi) > Tr(Pi), else |ψi〉 ∈ W and we get Tr(Qi(ǫ)) =
Tr(Pi) + ǫ2 Tr(A|ψi〉〈ψi|A∗) > Tr(Pi). In both ases, bigger trae implies thatthe spetrum of Qi(ǫ) is wider than that of Pi and Lemma 4.5.2 yields P 6≻ Q.So that P is not lean.Case (): Sine all rank-one elements are inluded either in V or in V⊥, we take
W = V⊥.We now de�ne the hannel Eǫ through:

R1(ǫ) = ǫΠV , R2(ǫ) = ǫΠW = ǫΠV⊥ , R3(ǫ) =
√

1 − ǫ21,where Π denotes here orthogonal projetion.For ǫ small enough, by Lemma 4.2, the hannel is invertible as a positive map.We then de�ne Qi = E−1
ǫ (Pi).



4.5 Neessary ondition for quasi-qubit POVMs 107Through the formula Eǫ(Qi) = Pi, we hek:
If Pi =

[
B C
C∗ D

]
, then Qi(ǫ) =

[
B (1 − ǫ2)−1C

(1 − ǫ2)−1C∗ D

]
. (4.6)The �rst remark is that the losure relation ensures ∑Qi(ǫ) = 1.We also notie that, sine rank-one elements have support either in V or in

W = V⊥, the rank-one elements are blok-diagonal and Qi(ǫ) = Pi .We know that at least one POVM element is not blok-diagonal. So that thereis an i ∈ I suh that Pi is full-rank and C is non-zero (say [C]j,k 6= 0). Then,writing n = dim(V), there is an ǫ+ ∈ (0, 1) suh that
[Qi(ǫ+)]j,j [Qi(ǫ+)]n+k,n+k = [B]j,j [D]k,k

< 1
1−ǫ2+

|[C]j,k|2 = [Qi(ǫ+)]j,n+k[Qi(ǫ+)]n+k,jso that we annot have positivity of Qi(ǫ+).We de�ne the bottom of the spetrum of the images Qi of the full-rank elementsof P:
λm(ǫ) = inf

i|Pi full−rank
λm(Qi(ǫ)).Equation (4.6) implies that the matrix Qi(ǫ) is a ontinuous funtion of ǫ for

ǫ ∈ [0, 1). Hene its spetrum is also a ontinuous funtion of ǫ. Aordingly, thefuntion λm(ǫ) is the minimum of a �nite number of ontinuous funtion of ǫ,therefore λm(ǫ) is ontinuous. Its value in 0 is the bottom of the spetrum of thefull-rank elements of P, that is λm(0) = infi|Pi full−rank λm(Pi(ǫ)) > 0. Moreoverwe have just proved that λm(ǫ+) < 0. Thus, by the intermediate value Theorem,there is an ǫ+ > ǫ > 0 suh that 0 < λm(ǫ) < λm(0).As λm(ǫ) > 0, the Qi(ǫ) = Eǫ(Pi) for Pi full-rank are non-negative, and validPOVM elements. Likewise, we already know that Qi(ǫ) = Pi is a valid POVMelement if Pi is rank-one. Sine we have also shown that ∑Qi(ǫ) = 1, we haveproved that Q(ǫ) is a POVM. Furthermore Eǫ(Q(ǫ)) = P, thus Q(ǫ) ≻ P.As λm(ǫ) < λm(0), there is a full-rank element Pi suh that λm(Qi(ǫ)) < λm(Pi).Hene, using Lemma 4.5.2, we get P 6≻ Q(ǫ) and P is not lean.Hene λm(ǫ+) ≤ 0 < λm. By the intermediate value Theorem, we an �nd an
ǫ0 ∈ (0, ǫ+) suh that λm(ǫ0) = 0. As 0 ≤ λm(ǫ0) < λm we have proved that
Q(ǫ0) ≻ P and that P is not lean.



108 Clean positive operator valued measuresCase (d): As V and W are supplementary we may hoose a matrix
A ∈ Mdim(V),d−dim(V)(C) suh that the non-zero olumns of the following blokmatrix form an orthogonal (though not orthonormal) basis of W :

R∗
W =

[
0 A
0 1

]
.We know that the image of a matrix is spanned by its olumns, so the image of

R∗
W is W .We then de�ne

B(ǫ) =

√

1 −
(

ǫ4

1 − ǫ2
+

ǫ2

(1 − ǫ2)2

)
AA∗. (4.7)This de�nition is valid if the matrix under the square root is positive. Now(

ǫ4

1−ǫ2 + ǫ2

(1−ǫ2)2
) is going to 0 with ǫ, so that

lim
ǫ→0

1−
(

ǫ4

1 − ǫ2
+

ǫ2

(1 − ǫ2)2

)
AA∗ = 1.From this we onlude that 1 −

(
ǫ4

1−ǫ2 + ǫ2

(1−ǫ2)2
)
AA∗ is positive for ǫ smallenough.Aordingly, we an de�ne

R∗
V(ǫ) =

[
B(ǫ) − A

1−ǫ2
0 0

]
.Notie that the image of R∗

V is inluded in V .We may now de�ne our hannel Eǫ by
R∗

1(ǫ) = ǫR∗
V(ǫ) =

[
ǫB(ǫ) − ǫ

1−ǫ2A
0 0

] (4.8)
R∗

2(ǫ) = ǫR∗
W =

[
0 ǫA
0 ǫ1

] (4.9)
R∗

3(ǫ) =
√

1 − ǫ2 (R∗
V(ǫ) +R∗

W) =

[ √
1 − ǫ2B(ǫ) − ǫ2√

1−ǫ2A

0
√

1 − ǫ21

]
. (4.10)Notie that ∑3

α=1R
∗
α(ǫ)Rα(ǫ) = 1 so that E(ǫ) is indeed a hannel.Moreover limǫ→0R3(ǫ) = 1H. Hene, for ǫ small enough, ‖R3 − 1‖HS is as smallas we want. So Lemma 4.5.4 allows us to invert the hannel Eǫ as a map on



4.5 Neessary ondition for quasi-qubit POVMs 109
Bsa(H). We de�ne Q(ǫ) by its elements Qi(ǫ) = E−1

ǫ (Pi). Let us hek that for
ǫ small enough, Q(ǫ) is still a bona �de POVM.First the losure relation still holds, as∑i∈I Qi =

∑
i∈I E−1(Pi) = E−1(1). Now

E(1) =
∑

αR
∗
αRα = 1 and taking the inverse E−1(1) = 1.Remains then to be shown that all Qi(ǫ) are non-negative.If Pi is full-rank, then its spetrum is inluded in [λm, 1], with λm > 0. If R3 isnear enough of the identity, that is, if ǫ is small enough, the inequality (4.3) thenensures that Qi(ǫ) is still positive.If Pi is rank-one Pi = λi|ψi〉〈ψi|, then by hypothesis |ψi〉 ∈ V or |ψi〉 ∈ W . As

R3 is invertible for ǫ small enough, we may onsider |φi〉 non-zero olinear to
(R∗

3(ǫ))
−1|ψi〉. Then R∗

3(ǫ)|φi〉 is olinear to |ψi〉, and non-zero. Notie that |φi〉depends on ǫ, even if we drop it in the notation. Now
R3(ǫ)

∗|ϕ〉 =
√

1 − ǫ2 (R∗
V(ǫ)|ϕ〉 +R∗

W |ϕ〉)
with R∗

V(ǫ)|φ〉 ∈ V and R∗
W |ϕ〉 ∈ W .Sine V and W are supplementary, the latter equality implies that R∗

V(ǫ)|ϕ〉 = 0when R∗
3(ǫ)|ϕ〉 ∈ W and R∗

W(ǫ)|ϕ〉 = 0 when R∗
3(ǫ)|ϕ〉 ∈ V . De�nitions (4.8, 4.9,4.10) then yield Eǫ(|φi〉〈φi|) = R∗

W(|φi〉〈φi|)RW if |ψi〉 ∈ W and Eǫ(|φi〉〈φi|) =
R∗

V(ǫ)(|φi〉〈φi|)RV (ǫ) if |ψi〉 ∈ V . In both ases, the output matrix is of the form
Eǫ(|φi〉〈φi|) = Ci|ψi〉〈ψi|. So that Qi(ǫ) = (λi/Ci)|φi〉〈φi| and is non-negative.Thus, for ǫ small enough, all Qi(ǫ) are non-negative. We have proved that Q(ǫ)is a POVM. Furthermore, sine Eǫ(Q(ǫ)) = P, we know Q(ǫ) ≻ P.We must still show that Q(ǫ) is stritly leaner P.By hypothesis, there is a rank-one element Pi = λi|ψi〉〈ψi| suh that |ψi〉 ∈ Wand |ψi〉 6∈ V⊥. As above, we write |φi〉 suh that Qi(ǫ) = (λi/Ci)|φi〉〈φi|. Westart by proving that Ci is less than one.We write |φi〉 = vi + v⊥i with vi ∈ V and v⊥i ∈ V⊥. Sine |ψi〉 ∈ W , we get:

Eǫ(|φi〉〈φi|) = R∗
W(|φi〉〈φi|)RW =

[
Av⊥i
v⊥i

] [
Av⊥i
v⊥i

]∗
.As the latter expression is also equal to Ci|ψi〉〈ψi|, we obtain that Ci is thesquare of the norm of [ Av⊥i

v⊥i

]. Therefore Ci = ‖Av⊥i ‖2 + ‖v⊥i ‖2. Notie thatthe squared norm of |φi〉 is 1 = ‖vi‖2 + ‖v⊥i ‖2. On the other hand, the image of
|φi〉 by R∗

V(ǫ) is 0, so that B(ǫ)vi − 1/(1 − ǫ2)Av⊥i = 0. From this we get:
Av⊥i = (1 − ǫ2)B(ǫ)vi.



110 Clean positive operator valued measuresSine |ψi〉 6∈ V⊥, this equality shows that vi 6= 0. Now, as AA∗ is non-negativewe see by (4.7) that B(ǫ) ≤ 1. A fortiori, for any ǫ > 0, we have (1−ǫ2)B(ǫ) < 1.So that:
‖vi‖ > ‖(1 − ǫ2)B(ǫ)vi‖ = ‖Av⊥i ‖.Thus, we �nally obtain

Ci = ‖Av⊥i ‖2 + ‖v⊥i ‖2 < ‖vi‖2 + ‖v⊥i ‖2 = 1.Hene the biggest eigenvalue of Qi(ǫ) = (λi/Ci)|φi〉〈φi|, that is λi/Ci, is stritlybigger than the biggest eigenvalue of Pi, that is λi. Lemma 4.5.2 then gives
P 6≻ Q(ǫ), and onsequently P is not lean.
4.6 Summary for quasi-qubit POVMs and a spe-ial aseWe now gather all our results spei� to quasi-qubit POVMs.Theorem 4.6.1. A quasi-qubit POVM P is lean if and only if it is rank-oneor the supports of its rank-one elements totally determine H. The algorithm ofsetion 4.3 �gures out if this is the ase. Moreover if Q is leanness-equivalentto P, the two POVMs are even unitarily equivalent.Proof. Rank-one POVMs are known to be lean (Theorem 4.4.11). If the supportof the rank-one elements of P totally determine H, we also know that P is leanby Theorem 4.4.1. In both ases the theorems state that for these lean POVMs,leanness-equivalene is the same as unitary equivalene.Conversely, if P is neither rank-one nor have rank-one elements that totallydetermine H, then Theorem 4.5.1 applies and P is not lean.Stage (i) of the algorithm heks whether P is rank-one, in whih ase it doessay that P is lean. If P is not rank-one, the fat that it is lean or not dependson the support of its rank-one elements. The only remaining positive exit of thealgorithm is at stage (vii) and Lemma 4.4.9 proves that in this ase the rank-oneelements of P totally determine H.Conversely, if the algorithm exits with a negative value, Lemma 4.5.3 ensuresthat H is not totally determined.



4.7 Outlook 111To get further feeling of these onditions we �nish by making more expliit thequbit ase, where the nie thing is that all POVMs are quasi-qubit.Corollary 4.6.2. A POVM P for a qubit is lean if and only if it is rank-one or ifone an �nd three rank-one elements whose supports are two-by-two non-olinear(that is if they make a projetive frame). For these POVMs leanness-equivaleneis the same as unitary equivalene.Proof. A POVM P for a qubit has non-zero elements whih an be either of rankone, or of rank two, as d = 2. In the latter ase, they are full-rank, so we mayapply Theorem 4.6.1 to P.The only question is when do the supports of the rank-one elements totallydetermine H? They do by Proposition 4.4.4 if they inlude a projetive frame,that is a basis and a vetor with all oe�ients non-zero in this basis. As thespae is of dimension 2, this amounts to saying a basis and a vetor non-olinearto any basis vetor, that is three vetors two-by-two non-olinear.Conversely, if we annot �nd a projetive frame, then we an �nd two vetors vand w suh that the support of any rank-one element is v or w, and we an applyLemma 4.5.3 to obtain that H is not totally determined by the supports of therank-one elements of P. Thus P is not lean.
4.7 OutlookWe have solved the problem of leanness for quasi-qubit POVMs. The obviousontinuation would be to solve it in the general ase. However we do not thinkthat the ondition of Theorem 4.4.1 is then neessary. Moreover it must be madeexpliit.The heuristis in Setion 4.3.2 suggest that, if the support of Pi are in �generalposition� then it is su�ient for P to be lean that ∑i∈I d − dim[Supp(Pi)] ≥
d2−1. Yet, we still need to appropriately de�ne the �general position� for generalsubspaes.





Chapter 5
Complementary subalgebras
This hapter is derived from the artile [Kahn and Petz, 2007℄.Abstrat: Redution of a state of a quantum system to a subsys-tem gives partial quantum information about the true state of thetotal system. In onnetion with optimal state determination for twoqubits, the question was raised about the maximum number of pair-wise omplementary redutions. The main result of the paper tellsthat the maximum number is 4, that is, if A1,A2, . . . ,Ak are pair-wise omplementary (or quasi-orthogonal) subalgebras of the algebra

M4(C) of all 4 × 4 matries and they are isomorphi to M2(C), then
k ≤ 4. The proof is based on a Cartan deomposition of SU(4). In theway to the main result, ontributions are made to the understandingof the struture of omplementary redutions.5.1 IntrodutionThere is an obvious orrespondene between bases of an m-dimensional Hilbertspae H and maximal Abelian subalgebras of the algebra A ≡ B(H) ≃ Mm(C).Given a basis, the linear operators diagonal in this basis form a maximal Abelian(or ommutative) subalgebra. Conversely if |ei〉〈ei| are minimal projetions ina maximal Abelian subalgebra, then (|ei〉)i is a basis. From the points of viewof quantum mehanis, a basis an be regarded as a measurement. Woottersand Fields [1989℄ argued that two measurements orresponding to the bases
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ξ1, ξ2, . . . , ξm and η1, η2, . . . , ηm yield the largest amount of information aboutthe true state of the system in the average if

|〈ξi, ηj〉|2 =
1

m
(1 ≤ i, j ≤ m).Two bases satisfying this ondition are alled mutually unbiased. Mutuallyunbiased bases are interesting from many point of view, for example in quantuminformation theory, tomography and ryptography [Kraus, 1987, Bandyopadhyayet al., 2002, Kimura et al., 2006℄. The maximal number of suh bases is not knownfor arbitrarym. Nevertheless, (m2−1)/(m−1) = m+1 is a bound being hekedeasily [Parthasarathy, 2004, Pittenger and Rubin, 2004℄.The onept of mutually unbiased (or omplementary) maximal Abelian sub-algebras an be extended to more general subalgebras. In partiular, a 4-levelquantum system an be regarded as the omposite system of two qubits,M4(C) ≃

M2(C)⊗M2(C). A density matrix ρ ∈M4(C) desribes a state of the ompositesystem and ρ determines the �marginal� or redued states on both tensor fators.Sine the deomposition M2(C) ⊗M2(C) is not unique, there are many redu-tions to di�erent subalgebras, they provide partial quantum information aboutthe omposite system. It seems that the redutions provide the largest amountof information if the orresponding subalgebras are quasi-orthogonal or omple-mentary in a di�erent terminology. In [Petz et al., 2006℄ the state ρ was to bedetermined by its redutions. 4 pairwise omplementary subalgebras were givenexpliitly, but the question remained open to know if 5 suh subalgebras exist.The main result of this paper is to prove that at most 4 pairwise omplementarysubalgebras exist.5.2 PreliminariesIn this paper an algebrai approah and language is used. A k-level quantum sys-tem is desribed by operators of the algebra Mk(C) of k × k matries. Althoughthe essential part of the paper fouses on a 4-level quantum system, ertain on-epts an be presented slightly more generally. Let A be an algebra orrespondingto a quantum system. The normalized trae τ gives the Hilbert-Shmidt innerprodut 〈A,B〉 := τ(B∗A) on A and we an speak about orthogonality withrespet to this inner produt.The projetions in A may be de�ned by the algebrai properties P = P 2 = P ∗and the partial ordering P ≤ Q means PQ = QP = P . We onsider subalgebrasof A suh that their minimal projetions have the same trae. (A maximalAbelian subalgebra and a subalgebra isomorphi to a full matrix algebra havethis property.) Let A1 and A2 be two suh subalgebras of A. Then the followingonditions are equivalent:



5.3 Complementary subalgebras 115(i) If P ∈ A1 and Q ∈ A2 are minimal projetions, then TrPQ = TrP TrQ.(ii) The traeless subspaes of A1 and A2 are orthogonal with respet to theHilbert-Shmidt inner produt on A.The subalgebras A1 and A2 are alled omplementary (or quasi-orthogonal) ifthese onditions hold. This terminology was used in the maximal Abelian ase[Aardi, 1984, Kraus, 1987, Ohya and Petz, D., 2004, Parthasarathy, 2004℄ andthe ase of nonommutative subalgebras appeared in [Petz et al., 2006℄. Moredetails about omplementarity are presented in [Petz, 2006℄.Given a density matrix ρ ∈ A, its redution ρ1 ∈ A1 to the subalgebra A1 ⊂ Ais determined by the formula
Tr ρA = Tr ρ1A (A ∈ A1).In most ases ρ1 is given by the partial trae but an equivalent way is based onthe onditional expetation [P. Bush and Mittelstaedt, 1991℄. The orthogonalprojetion E : A → A1 is alled onditional expetation. ρ1 = E(ρ) and

E(AB) = AE(B) (A ∈ A1, B ∈ A)is an important property.The situation we are interested in is the algebra M4(C). In the paper M4(C) isregarded as a Hilbert spae with respet to the inner produt
〈A,B〉 =

1

4
TrA∗B = τ(A∗B). (5.1)

M4(C) has a natural orthonormal basis:
σi ⊗ σj (0 ≤ i, j ≤ 3),where σ1, σ2, σ3 are the Pauli matries and σ0 is the identity I:

σ0 :=

[
1 0
0 1

]
, σ1 :=

[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, σ3 :=

[
1 0
0 −1

]
.5.3 Complementary subalgebrasAny subalgebra A1 of M4(C) isomorphi to M2(C) an be written CI ⊗M2(C)in some basis, hene there is a unitary operator W suh that A1 = W (CI ⊗

M2(C))W ∗.



116 Complementary subalgebrasThis setion is organized as follows: we �rst give a haraterization of the Wsuh that A1 is omplementary to A0 = W (CI ⊗ M2(C))W ∗ (Theorem 5.3.1for a general form and Theorem 5.3.2 for a form spei� to our problem). Theseond stage onsists in proving, using the form of W , that any suh A1 has�a large omponent� along B = M2(C) ⊗ CI. Theorem 5.3.4 gives the preiseformulation. It entails that no more than four omplementary subalgebras onbe found (Theorem 5.3.5), whih was our initial aim, and hene is our onlusion.Although our main interest is M4(C), our �rst theorem is more general. Eijstand for the matrix units.Theorem 5.3.1. Let W =
∑n

i,j=1 Eij ⊗Wij ∈ Mn(C) ⊗Mn(C) be a unitary.The subalgebra W (CI⊗Mn(C))W ∗ is omplementary to CI⊗Mn(C) if and onlyif {Wij : 1 ≤ i, j ≤ n} is an orthonormal basis in Mn(C) (with respet to theinner produt 〈A,B〉 = TrA∗B).Proof. Assume that TrB = 0. Then the ondition
W (I ⊗A∗)W ∗ ⊥ (I ⊗B)is equivalently written as

TrW (I ⊗A)W ∗(I ⊗B) =

n∑

i,j=1

TrWijAW
∗
ijB = 0.This implies

n∑

i,j=1

TrWijAW
∗
ijB = (TrA)(TrB) . (5.2)We an transform this into another equivalent ondition in terms of the leftmultipliation and right multipliation operators. For A,B ∈ Mn(C), the op-erator RA is the right multipliation by A and LB is the left multipliationby B: RA, LB : Mn(C) → Mn(C), RBX = XB, LAX = AX . Equivalently,

LA|e〉〈f | = |Ae〉〈f | and RB|e〉〈f | = |e〉〈B∗f |. From the latter de�nition one andedue that TrRALB = TrA TrB. Let |ei〉 be a basis. Then |ei〉〈ej | form abasis in Mn(C) and
TrRALB =

∑

ij

〈|ei〉〈ej |, RALB|ei〉〈ej |〉 =
∑

ij

〈|ei〉〈ej |, |Bei〉〈A∗ej |〉

=
∑

ij

〈ei, Bei〉〈ej , Aej〉.The equivalent form of (5.2) is the equation
n∑

i,j=1

〈Wij , RALBWij〉 = TrA TrB = TrRALB



5.3 Complementary subalgebras 117for every A,B ∈ Mn(C). Sine the operators RALB linearly span the spae ofall linear operators on Mn(C), we an onlude that Wij form an orthonormalbasis.We shall all any unitary satisfying the ondition in the previous theorem a usefulunitary and we shall denote the set of all n2 × n2 useful unitaries by i(n2).We try to �nd a useful 4 × 4 unitary W , that is we require that the subalgebra
W

[
A 0
0 A

]
W ∗ (A ∈M2(C))is omplementary to A0 ≡ CI ⊗M2(C). We shall use the Cartan deomposi-tion of W given by

W = (L1 ⊗ L2)N(L3 ⊗ L4) ,where L1, L2, L3 and L4 are 2 × 2 unitaries and
N = exp(αiσ1 ⊗ σ1) exp(βiσ2 ⊗ σ2) exp(γiσ3 ⊗ σ3) (5.3)is a 4 × 4 unitary in a speial form, see equation (11) in [Zhang et al., 2003℄ or[D'Alessandro and Albertini, 2005℄. The subalgebra

W (CI ⊗M2(C))W ∗ = (L1 ⊗ L2)N(CI ⊗M2(C))N∗(L∗
1 ⊗ L∗

2)does not depend on L3 and L4, therefore we may assume that L3 = L4 = I.The orthogonality of CI ⊗M2(C) and W (CI ⊗M2(C))W ∗ does not depend on
L1 and L2. Therefore, the equations

TrN(I ⊗ σi)N
∗(I ⊗ σj) = 0should be satis�ed, 1 ≤ i, j ≤ 3. We know from Theorem 5.3.1 that theseonditions are equivalent to the property that the matrix elements of N form abasis.A simple omputation gives that

N =

3∑

i=0

ci σi ⊗ σi ,where
c0 = cosα cosβ cos γ + i sinα sinβ sin γ ,
c1 = cosα sinβ sin γ + i sinα cosβ cos γ ,
c2 = sinα cosβ sin γ + i cosα sinβ cos γ ,
c3 = sinα sinβ cos γ + i cosα cosβ sin γ .



118 Complementary subalgebrasTherefore, we have
N =





c0 + c3 0 0 c1 − c2
0 c0 − c3 c1 + c2 0
0 c1 + c2 c0 − c3 0

c1 − c2 0 0 c0 + c3





=





eiγ cos(α− β) 0 0 ieiγ sin(α− β)
0 e−iγ cos(α+ β) ie−iγ sin(α+ β) 0
0 ie−iγ sin(α + β) e−iγ cos(α+ β) 0

ieiγ sin(α− β) 0 0 eiγ cos(α− β)



 .(5.4)Sine the 2 × 2 bloks form a basis (see Theorem 5.3.1), we have
(c0 + c3)(c0 − c3) + (c0 − c3)(c0 + c3) = 0 ,

(c1 − c2)(c1 + c2) + (c1 + c2)(c1 − c2) = 0 ,

|c0 + c3|2 + |c0 − c3|2 = 1 ,

|c1 + c2|2 + |c1 − c2|2 = 1 .These equations give
|c0|2 = |c1|2 = |c2|2 = |c3|2 =

1

4and we arrive at the following solution. Two of the values of cos2 α, cos2 β and
cos2 γ equal 1/2 and the third one may be arbitrary. Let N be the set of allmatries suh that the parameters α, β and γ satisfy the above ondition, inother words two of the three values are of the form π/4+kπ/2. (k is an integer.)The onlusion of the above argument an be formulated as follows.Theorem 5.3.2. W ∈ M(4) if and only if W = (L1 ⊗ L2)N(L3 ⊗ L4), where
Li are 2 × 2 unitaries (1 ≤ i ≤ 4) and N ∈ N .We now turn to the �seond stage�, that is proving that any suh W (CI⊗M2(C)is far from being omplementary to M2(C) ⊗ CI. To get a quantitative result(Theorem 5.3.4), reall that we onsider M4(C) as a Hilbert spae with Hilbert-Shmidt inner produt (see (5.1)). For the proof of Theorem 5.3.4, we shall needthe following obvious lemma:Lemma 5.3.3. Let K1 and K2 be subspaes of a Hilbert spae K and denote by
Pi : K → Ki the orthogonal projetion onto Ki (i = 1, 2). If ξ1, ξ2, . . . , ξr is anorthonormal basis in K1 and η1, η2, . . . , ηs is suh a basis in K2, then

TrP1P2 =
∑

i,j

|〈ξi, ηj〉|2.



5.3 Complementary subalgebras 119Theorem 5.3.4. Let A0 ≡ CI ⊗M2(C) and B ≡M2(C)⊗CI. Assume that thesubalgebra A1 ⊂M2(C)⊗M2(C) is isomorphi to M2(C) and omplementary to
A0. If P is the orthogonal projetion onto the traeless subspae of A1 and Q isthe orthogonal projetion onto the traeless subspae of B, then

TrPQ ≥ 1.Proof. There is a unitary W = (L1 ⊗L2)N suh that A1 = WA0W ∗, L1, L2 are
2 × 2 unitaries and N ∈ M(4). In the traeless subspae of B,

(L1σiL
∗
1) ⊗ I (1 ≤ i ≤ 3)form a basis, while

(L1 ⊗ L2)N(I ⊗ σi)N
∗(L∗

1 ⊗ L∗
2) (1 ≤ i ≤ 3)is a basis in the traeless part of A1. Therefore, we have to show

∑

ij

∣∣∣〈(L1⊗L2)N(I⊗σi)N∗(L∗
1⊗L∗

2), L
∗
1σjL1⊗I〉

∣∣∣
2

=
(
τ(N(I⊗σi)N∗(σj⊗I))

)2

≥ 1.In the omputation we an use the onditional expetation E : M4(C) → B.Reall that it is de�ned as the linear operator whih sends σi ⊗ σj to σi ⊗ I, forall 0 ≤ i, j ≤ 3.Two of its main properties are that it preserves τ , and that E(AB) = E(A)Bwhen B ∈ B. Hene
τ
(
N(I ⊗ σi)N

∗(σj ⊗ I)
)

= τ
(
E
(
N(I ⊗ σi)N

∗
)
(σj ⊗ I)

)
.Elementary omputation in the basis σi ⊗ σj gives the following formulas:

E(N(I ⊗ σ1)N
∗) = sin 2β sin 2γ (σ1 ⊗ I),

E(N(I ⊗ σ2)N
∗) = sin 2α sin 2γ (σ2 ⊗ I),

E(N(I ⊗ σ3)N
∗) = sin 2α sin 2β (σ2 ⊗ I),where α, β and γ are from (5.3) and (5.4). Therefore,

TrPQ = sin2 2β sin2 2γ + sin2 2α sin2 2γ + sin2 2α sin2 2β.Reall that two of the parameters α, β and γ have rather onrete values, heneone of the three terms equals 1, and the proof is omplete.Our main results says that there are at most four pairwise omplementary sub-algebras of M4(C) if they are assumed to be isomorphi to M2(C). Given suh afamily of subalgebras, we may assume that the above de�ned A0 belongs to thefamily.



120 Complementary subalgebrasTheorem 5.3.5. Assume that A0 ≡ CI ⊗ M2(C), A1, . . . , Ar are pairwiseomplementary subalgebras of M4(C) and they are isomorphi to M2(C). Then
r ≤ 3.Proof. Let Pi be the orthogonal projetion onto the traeless subspae of Ai from
M4(C), 1 ≤ i ≤ r. Under these onditions ∑iPi ≤ I. As in Theorem 5.3.4, let
Q the orthogonal projetion on the traeless subspae of B ≡M2(C) ⊗ CI. Theestimate

3 = TrQ ≥ Tr(P1 + P2 + · · · + Pr)Q =

r∑

i=1

TrPiQ ≥ ryields the proof.



Part IIQuantum Loal AsymptotiNormality





Chapter 6
Quantum loal asymptotinormality for qubits
This hapter is derived from the artile [Guµ  and Kahn, 2006℄.Abstrat: We onsider n identially prepared qubits and study theasymptoti properties of the joint state ρ⊗n. We show that for allindividual states ρ situated in a loal neighborhood of size 1/

√
n of a�xed state ρ0, the joint state onverges to a displaed thermal equilib-rium state of a quantum harmoni osillator. The preise meaning ofthe onvergene is that there exist physial transformations Tn (traepreserving quantum hannels) whih map the qubits states asymp-totially lose to their orresponding osillator state, uniformly overall states in the loal neighborhood.A few onsequenes of the main result are derived. We show thatthe optimal joint measurement in the Bayesian set-up is also op-timal within the pointwise approah. Moreover, this measurementonverges to the heterodyne measurement whih is the optimal jointmeasurement of position and momentum for the quantum osillator.A problem of loal state disrimination is solved using loal asymp-toti normality.



124 Quantum loal asymptoti normality for qubits6.1 IntrodutionQuantum measurement theory brings together the quantum world of wave fun-tions and inompatible observables with the lassial world of random phenomenastudied in probability and statistis. These �elds have ome ever loser due tothe tehnologial advanes making it possible to perform measurements on in-dividual quantum systems. Indeed, the engineering of a novel quantum state istypially aompanied by a veri�ation proedure through whih the state, orsome aspet of it, is reonstruted from measurement data [Shiller et al., 1996℄.An important example of suh a tehnique is that of quantum homodyne tomog-raphy in quantum optis [Vogel and Risken, H., 1989℄. This allows the estimationwith arbitrary preision of the whole density matrix [D'Ariano et al., 1995, Leon-hardt et al., 1995, 1996, Artiles et al., 2005℄ of a monohromati beam of light byrepeatedly measuring a su�iently large number of identially prepared beams[Smithey et al., 1993, Shiller et al., 1996, Zavatta et al., 2004℄.In ontrast to this �semi-lassial� situation in whih one �xed measurement isperformed repeatedly on independent systems, the state estimation problem be-omes more �quantum� if one is allowed to onsider joint measurements on nidentially prepared systems with joint state ρ⊗n. It is known [Gill and Massar,2000℄ that in the ase of unknown mixed states ρ, joint measurements performstritly better than separate measurements in the sense that the asymptoti on-vergene rate of the optimal estimator ρ̂n to ρ goes in both ase as C/√n witha stritly smaller onstant C in the ase of joint measurements.Let us look at this problem in more detail: we dispose of a number of n opiesof an unknown state ρ and the task is to estimate ρ as well as possible. The �rststep is to speify a ost funtion d(ρ̂n, ρ) whih quanti�es the deviation of theestimator ρ̂n from the true state. Then one tries to devise a measurement andan estimator whih minimizes the mean ost or risk in statistis jargon:
R(ρ, ρ̂n) := 〈d(ρ̂n(X), ρ)〉 ,with the average taken over the measurement results X . Sine this quantity stilldepends on the unknown state one may hoose a Bayesian approah and try tooptimize the average risk with respet to some prior distribution π over the states
Rn,π =

∫
R(ρ, ρ̂n)π(dρ).Results of this type have been obtained in both the pure state ase [Jones, 1994,Massar and Popesu, 1995, Latorre et al., 1998, Fisher et al., 2000, Hannemannet al., 2002b, Bagan et al., 2002, Embaher and Narnhofer, 2004, Bagan et al.,2005℄ and the mixed state ase [Cira et al., 1999, Vidal et al., 1999, Mak et al.,



6.1 Introdution 1252000, Keyl and Werner, 2001, Bagan et al., 2004, Zyzkowski and Sommers,2005, Bagan et al., 2006℄. However most of these papers use methods of grouptheory that depend on the symmetry of the prior distribution and the form ofthe ost funtion, and thus annot be extended to arbitrary priors.In the pointwise approah [Hayashi, 2002a, Gill and Massar, 2000, Barndor�-Nielsen and Gill, R., 2000, Matsumoto, 2002, Barndor�-Nielsen et al., 2003,Hayashi and Matsumoto, 2004℄ one tries to minimize R(ρ, ρ̂n) for eah �xed
ρ. We an argue that even for a ompletely unknown state, as n beomes largethe problem eases to be global and beomes a loal one as the error in estimat-ing the state parameters is of the order 1√

n
. For this reason it makes sense toparametrize the state as ρ := ρ(θ) with θ belonging to some set in Rk and toreplae the original ost with its quadrati approximation at θ:

d(θ, θ̂n) = (θ − θ̂n)
TG(θ)(θ − θ̂n),where G is a k × k positive, real symmetri weight matrix.Although seemingly di�erent, the two approahes an be ompared [Gill, 2005a℄,and in fat for large n the prior distribution π of the Bayesian approah should be-ome inreasingly irrelevant and the optimal Bayesian estimator should be loseto the maximum likelihood estimator. An instane of this asymptoti equivaleneis proven in Subsetion 6.7.2.In this hapter we hange the perspetive and instead of trying to devise optimalmeasurements and estimators for a partiular statistial problem, we onentrateour attention on the family of joint states ρ(θ)⊗n whih is the primary �arrier� ofstatistial information about θ. As suggested by the loality argument skethedabove, we onsider a neighborhood of size 1√

n
around a �xed but arbitrary pa-rameter θ0, whose points an be written as θ = θ0 +u/

√
n with u ∈ R

k the �loalparameter� obtained by zooming into the smaller and smaller balls by a fator of√
n. Very shortly, the priniple of loal asymptoti normality says that for large

n the loal family
ρun := ρ

(
θ0 + u/

√
n
)⊗n

, ‖u‖ < C,onverges to a family of displaed Gaussian states φu of a of a quantum systemonsisting of a number of oupled quantum and lassial harmoni osillators.The term loal asymptoti normality omes from mathematial statistis [van derVaart, 1998℄ where the following result holds. We are given independent variables
X1, . . . , Xn ∈ X drawn from the same probability distribution P θ0+u/

√
n over Xdepending smoothly on the unknown parameter u ∈ Rk. Then the statistial in-formation ontained in our data is asymptotially idential with the informationontained in a single normally distributed Y ∈ Rk with mean u and variane
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I(θ0)

−1, the inverse Fisher information matrix. This means that for any statis-tial problem we an replae the original data X1, . . . , Xn ∈ X by the simplerGaussian one Y with the same asymptoti results!For the sake of larity let us onsider the ase of qubits with states parametrizedby their Bloh vetors ρ(−→r ) = 1
2 (1 +−→r −→σ ) where −→σ = (σx, σy , σz) are the Paulimatries. De�ne now the two-dimensional family of idential spin states obtainedby rotating the Bloh vetor −→r0 = (0, 0, 2µ− 1) around an axis in the x-y plane

ρun =

[
U

(
u√
n

)(
µ 0
0 1 − µ

)
U

(
u√
n

)∗]⊗n
, u ∈ R

2, (6.1)with unitary U(v) := exp(i(vxσx + vyσy)) and 1
2 < µ ≤ 1.Consider now a quantum harmoni osillator with position and momentum op-erators Q and P on L2(R) satisfying the ommutation relations [Q,P ] = i1. Wedenote by {|n〉, n ≥ 0} the eigenbasis of the number operator and de�ne thethermal equilibrium state

φ0 = (1 − p)

∞∑

k=0

pk|k〉〈k|,where p = 1−µ
µ . We translate the state φ0 by using the displaement operators

D(z) = exp(za∗ − z̄a) with z ∈ C whih map the ground state |0〉 into theoherent state |z〉:
φu := D(

√
2µ− 1αu)φ0D(

√
2µ− 1αu)∗, (6.2)where αu := −uy + iux.Theorem 6.1.1. Let ρun be the family of states (6.1) on the Hilbert spae (C2

)⊗nand φu the family (6.2) of displaed thermal equilibrium states of a quantumosillator. Then for eah n there exist quantum hannels (trae preserving CPmaps)
Tn : M

((
C

2
)⊗n)→ T (L2(R)),

Sn : T (L2(R)) →M
((

C
2
)⊗n)

,
(6.3)with T (L2(R)) the trae-lass operators, suh that

lim
n→∞

sup
u∈I2

‖φu − Tn (ρun) ‖1 = 0,

lim
n→∞

sup
u∈I2

‖ρun − Sn (φu) ‖1 = 0.
(6.4)for an arbitrary bounded interval I ⊂ R.



6.1 Introdution 127Let us make a few omments on the signi�ane of the above result.i) The �onvergene� (6.4) of the qubit states holds in a strong way (uniformly in
u) with diret statistial and physial interpretation. Indeed the hannels Tn and
Sn represent physial transformations whih are analogues of randomizations oflassial data [van der Vaart, 1998℄. The meaning of (6.4) is that the two quantummodels are asymptotially equivalent from a statistial point of view.ii) Indeed for any measurement M on L2(R) we an onstrut the measurement
M ◦Tn on the spin states by �rst mapping them to the osillator spae and thenperforming M . Then the optimal solution of any statistial problem onerningthe states ρun an be obtained by solving the same problem for φu and pullingbak the optimal measurement M as above. We illustrate this in Setion 6.7 forthe estimation problem and for hypothesis testing.iii) The proposed tehnique may be useful for appliations in the domain of oher-ent spin states [Holtz and Hanus, 1974℄ and squeezed spin states [Kitagawa andUeda, 1993℄. Indeed, it has been known sine Dyson [1956℄ that n spin- 12 partilesprepared in the spin up state | ↑〉⊗n behave asymptotially as the ground stateof a quantum osillator when onsidering the �utuations of properly normalizedtotal spin omponents in the diretions orthogonal to z. Our Theorem extendsthis to spin diretions making an �angle� u/

√
n with the z axis, as well as tomixed states, and gives a quantitative expression to heuristi pitures ommonin the physis literature (see Setion 6.3). We believe that a similar approah anbe followed in the ase of spin squeezed states and ontinuous time measurementswith feedbak ontrol [Geremia et al., 2004℄.Next Setion gives an introdution to the statistial ideas motivating our work.In Setion 6.3 we give a heuristi piture of our main result based on the total spinvetor representation of spin oherent states familiar in the physis literature.The proof of Theorem 6.1.1 extends over the Setions 6.4,6.5,6.6 and uses methodsof group theory and some ideas from [Hayashi and Matsumoto, 2004, Ohya andPetz, D., 2004, Aardi and Bah, A., 1987, 1985℄.Setion 6.7 desribes a few appliations of our main result. In Subsetion 6.7.2 weompute the loal asymptoti minimax risk for the statistial problem of qubitstate estimation. An estimation sheme whih ahieves this risk asymptotiallyis optimal in the pointwise approah. We show that this �gure of merit oinideswith the risk of the heterodyne measurement and that it is ahieved by theoptimal Bayesian measurement for the SU(2)-invariant prior [Bagan et al., 2006,Hayashi and Matsumoto, 2004℄. This proves the asymptoti equivalene of theBayesian and pointwise approahes.



128 Quantum loal asymptoti normality for qubitsIn Subsetion 6.7.1 we ontinue the investigation of the optimal Bayesian mea-surement and show that it onverges loally to the heterodyne measurement onthe osillator, whih is an optimal joint measurement of position and momentum[Holevo, 1982℄.Another appliation is the problem disriminating between two states ρ±u
n whihasymptotially onverge to eah other at rate 1/

√
n. In this ase the optimalmeasurement for the parameter u is not optimal for the testing problem, showingin partiular that the quantum Fisher information in general does not enode allstatistial information.6.2 Loal asymptoti normality in statistis andits extension to quantum mehanisIn this Setion we introdue some statistial ideas whih provide the motivationfor deriving the main result.Quantum statistial problems an be seen as a game between a statistiian orphysiist in our ase, and Nature. The latter tries to odify some informationby preparing a quantum system in a state whih depends on some parameter uunknown to the former. The physiist tries to guess the value of the parame-ter by devising measurements and estimators whih work well for all hoies ofparameters that Nature may make. In a Bayesian set-up Nature may build herstrategy by randomly hoosing a state with some prior distribution. In order tosolve the problem the physiist is allowed to use the laws of quantum physisas well as those of lassial stohastis and statistial inferene. In partiular hemay transform the quantum state by applying an arbitrary quantum hannel Tand obtain a new family T (ρu). In general suh transformation goes with a lossof information so one should have a good reason to do it but there are non trivialsituations when no suh loss ours [Petz and Jen£ová, 2006℄, that is when thereexists a hannel S whih reverses the e�et of T restrited to the states of interest

S(T (ρu)) = ρu. If this is the ase the we onsider the two families of states ρuand T (ρu) as statistially equivalent.In statistis suh transformations are alled randomizations and a useful parti-ular example is a statisti, whih is just a funtion of the data whih we want toanalyze. When this statisti ontains all information about the unknown param-eter we say that it is su�ient, beause knowing the value of this statisti alonesu�es and given this information, the rest of the data is useless. For example if
X1, . . . Xn ∈ {0, 1} are results of independent oin tosses with a biased oin, then
X̄ = 1

n

∑
iXi is su�ient statisti and may be used for any statistial deisionwithout loss of e�ieny.



6.2 LAN in statistis and its extension to quantum mehanis 129Quantum randomizations through quantum hannels allows us to ompare seem-ingly di�erent families of states and thus opens the possibility of solving a par-tiular problem by asting it in a more familiar setting. The example of thishapter is that of state estimation for n idential opies of a state whih anbe ast asymptotially into the problem of estimating the enter of a quantumGaussian whih has a rather simple solution [Holevo, 1982℄. The term �asymptot-ially� means that for large n we an �nd quantum hannels Tn, Sn whih almostmap the families of states into eah other as in equation (6.4).The seond main idea that we want to introdue is that of loal asymptotinormality. Bak in the oin toss example we have that X̄ is a good estimator ofthe probability µ of obtaining a 1 and by the Central Limit Theorem the error
X̄ − µ has asymptotially a Gaussian distribution

√
n(X̄ − µ) ; N(0, 1/µ(1 − µ)),in partiular the mean error is 〈(X̄ − µ)2〉 = 1/(nµ(1 − µ)). Now, if for eah nthe unknown parameter µ is restrited to a loal neighborhood of a �xed µ0 ofsize 1/

√
n, one might expet an improvement in the error beause we know moreabout the parameter and we an use that information to built better estimators.However this is not entirely true. Indeed if we write µ = µ0 + u/

√
n then theestimator of the loal parameter u is

ûn =
√
n(X̄ − µ0) ; N(u, 1/µ0(1 − µ0))whih says that the problem of estimating µ in the loal parameter model is asdi�ult as the original problem, i.e. the variane of the estimator is the same.The reason for this is that the additional information about the loation of theparameter is nothing new as we ould guess that diretly form the data with veryhigh probability. Thus without hanging the di�ulty of the original problem wean look at it loally and then we see that it transforms into that of estimating theenter of a Gaussian with �xed variane N(u, 1/µ0(1 − µ0)), whih is a lassialstatistial problem.In general we an formulate the following priniple: given X1, . . . , Xn ∈ X inde-pendent with distribution P θ0+u/

√
n depending smoothly on the unknown param-eter u ∈ Rk, then asymptotially this model is statistially equivalent (there existexpliit randomizations in both diretions) with that of a single draw Y ∈ Rkfrom the Gaussian distribution N(u, I(θ0)

−1) with �xed variane equal to theinverse of the Fisher information matrix [van der Vaart, 1998℄.In the quantum ase we replae the randomizations by quantum hannels andthe Gaussian limit model by its quantum equivalent whih in the simplest ase isa family of displaed thermal states of a quantum osillator (see Theorem 6.1.1),but in general is a Gaussian state on a number of oupled quantum and lassi-al osillators, with anonial variables satisfying general ommutation relations[Petz, 1990℄.



130 Quantum loal asymptoti normality for qubitsA simple extension of Theorem 6.1.1 is obtained by adding an additional loalparameter t ∈ R for the density matrix eigenvalues suh that µ = µ0 + t/
√
n.This leads to a Gaussian limit model in whih we are given a quantum osilla-tor is in state φu and additionally, a lassial Gaussian variable with distribu-tion N(t, 1/µ0(1 − µ0)). The meaning of this quantum-lassial oupling is thefollowing: asymptotially the problem of estimating the eigenvalues deouplesfrom that of estimating the diretion of the Bloh vetor and beomes a lassi-al statistial problem (idential with the oin toss disussed above), while thatof estimating the diretion remains quantum and onverges to the estimationof a Gaussian state of a quantum osillator. Bagan et al. [2006℄, Hayashi andMatsumoto [2004℄ have also observed this deoupling.6.3 The big ball piture of oherent spin statesIn this setion we give a heuristi argument for why Theorem 6.1.1 holds whihwill guide our intuition in later omputations.It is ustomary to represent the state of two dimensional quantum system by avetor −→r in the Bloh sphere suh that the orresponding density matrix is

ρ =
1

2
(1 + −→r −→σ ) =

1

2
(1 + rxσx + ryσy + rzσz),where σi represent the Pauli matries and satisfy the ommutation relations

[σi, σj ] = 2iǫijkσk. In partiular if −→r = (0, 0,±1) then the state is given bythe spin up | ↑〉 and respetively spin down | ↓〉 basis vetors of C2, and the z-omponent of the spin σz takes value ±1. As for the x and y spin omponents,eah one may take the values ±1 with equal probabilities suh that on average
〈σx〉 = 〈σy〉 = 0 but the varianes are 〈σ2

x〉 = 〈σ2
y〉 = 1. Moreover σx and σy donot ommute and thus annot be measured simultaneously.What happens with the Bloh sphere piture when we have more spins? Considerfor the beginning n idential spins prepared in a oherent spin up state | ↑〉⊗n,then we an think of the whole as a single spin system and de�ne the globalobservables L(n)

i =
∑n
k=1 σ

(k)
i for i ∈ x, y, z, where σ(k)

i is the spin omponentin the diretion i of the k's spin. Intuitively, we an represent the joint stateby a vetor of length n pointing to the north pole of a large sphere as in Figure6.1. However due to the quantum harater of the spin observables, the x and yomponents annot be equal to zero and it is more instrutive to think in termsof a vetor whose tip lies on a small blob of the size of the unertainties in x and
y, sitting on the top of the sphere. Exatly how large is this blob? By using theCentral Limit Theorem we onlude that in the limit n→ ∞ the distribution of
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Figure 6.1: (Color online) Quasilassial representation of n spin up qubitsthe ��utuation operator�
S(n)
x :=

1√
2n
L(n)
x =

1√
2n

n∑

k=1

σ(k)
x ,onverges to a N(0, 1/2) Gaussian, that is 〈Sx〉 = 0 and 〈S2

x〉 ≈ 1/2, and similarlyfor the omponent S(n)
y . The width of the blob is thus of the order √n in both

x and y diretions.Now, the two �utuations do not ommute with eah other
[S(n)
x , S(n)

y ] =
i

n
L(n)
z ≈ i1, (6.5)whih is the well know ommutation relation for anonial variables of the quan-tum osillator. In fat the quantum extension of the Central Limit Theorem[Ohya and Petz, D., 2004℄ makes this more preise

lim
n→∞

⊗n〈↑ |
p∏

k=1

S
(n)
ik

|↑〉⊗n = 〈Ω,
p∏

k=1

Xik Ω〉, ∀ik ∈ {x, y},where Xx := Q and Xy := P satisfy [Q,P ] = i1 and Ω is the ground state of theosillator.The above desription is not new in physis and goes bak to Dyson's [1956℄ the-ory of spin-wave interation. More reently squeezed spin states [Kitagawa andUeda, 1993℄ for whih the varianes 〈S2
x〉 and 〈S2

y〉 of spin variables are di�erenthave been found to have important appliations various �elds suh as magnetom-etry [Geremia et al., 2004℄, entanglement between many partiles [Stokton et al.,2003℄ The onnetion with suh appliations will be disussed in more detail inSetion 6.7.



132 Quantum loal asymptoti normality for qubitsWe now rotate all spins by the same small angle for eah partile as in Figure6.2. As we will see, it makes sense to sale the angle by the fator 1√
n
i.e. to

Figure 6.2: (Color online) Rotated oherent state of n qubitsonsider
ψu
n =

[
exp

(
i√
n

(uxσx + uyσy)

)
|↑〉
]⊗n

, u ∈ R
2.Indeed for suh angles the z omponent of the vetor will hange by a smallquantity of the order √

n ≪ n so the ommutation relations (6.5) remain thesame, while the unertainty blob will just shift its enter suh that the newaverages of the renormalized spin omponents are 〈S(n)
x 〉 ≈ −

√
2uy and 〈S(n)

y 〉 ≈√
2ux. All in all, the spins state onverges to the oherent state |αu〉 of theosillator where αu = (−uy + iux) ∈ C and in general

|α〉 := exp
(
−|α|2/2

) ∞∑

j=0

αj

√
j!

|j〉,with |j〉 representing the j's energy level.We onsider now the ase of qubits in individual mixed state µ| ↑〉〈↑ |+(1−µ)| ↓
〉〈↓ | with < 1/2µ < 1. Then the �length� of Lz is n(2µ − 1) but the size of theblob is the same (see Figure 6.3). However the ommutation relations of Sx and
Sy do not reprodue those of the harmoni osillator and we need to renormalizethe spin as

S(n)
x :=

1√
2(2µ− 1)n

Lx, S(n)
y :=

1√
2(2µ− 1)n

Ly.The limit state will be a Gaussian state of the quantum osillator with variane
〈Q2〉 = 〈P 2〉 = 1

2(2µ−1) <
1
2 , that is a thermal equilibrium state

φ0 = (1 − p)
∞∑

k=0

pk|k〉〈k|, p =
1 − µ

µ
.
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Figure 6.3: (Color online) Quasilassial representation of n qubit mixed statesFinally the rotation by exp
(

i√
n
(uxσx + uyσy)

) produes a displaement of thethermal state suh that 〈Q〉 = −
√

2(2µ− 1)uy and 〈P 〉 =
√

2(2µ− 1)ux.6.4 Loal asymptoti normality for mixed qubitstatesWe give now a rigorous formulation of the heuristis presented in the previousSetion. Let
ρ0 =

(
µ 0
0 1 − µ

) (6.6)be a density matrix on C2 with µ > 1/2, representing a mixture of spin upand spin down states, and for every u = (ux, uy) ∈ R2 onsider the state ρu =
U(u) ρ0 U(u)∗where

U(u) := exp(i(uxσx + uyσy)) =

(
cos |u| −e−iϕ sin |u|

eiϕ sin |u| cos |u|

)
,with ϕ = Arg(−uy + iux). We are interested in the asymptoti behavior as

n→ ∞ of the family
Fn :=

{
ρun =

(
ρu/

√
n
)⊗n

,u ∈ I2

}
, (6.7)where I = [−a, a] is a �xed �nite interval.The main result is that Fn is asymptotially normal, meaning that it onvergesas n→ ∞ to a limit family Gn := {φu,u ∈ I2} of Gaussian states of a quantum



134 Quantum loal asymptoti normality for qubitsosillator with reation and annihilation operators satisfying [a, a∗] = 1. Let
φ0 := (1 − p)

∑

k=0

pk|k〉〈k|, (6.8)be a thermal equilibrium state with |k〉 denoting the k's energy level of theosillator and p = 1−µ
µ < 1. For every u ∈ I2 de�ne
φu := D(

√
2µ− 1αu)[φ0]D(−

√
2µ− 1αu), (6.9)where D(z) := exp(za∗−z∗a) is the displaement operator, mapping the vauumvetor |0〉 to the oherent vetor |z〉 and αu = (−uy + iux) .The exat formulation of the onvergene is given in Theorem 6.1.1. Thus thestate ρun of the n qubits whih depends on the unknown parameter u an bemanipulated by applying a quantum hannel Tn suh that its image onverges tothe Gaussian state φu, uniformly in u ∈ I2. Conversely by using the hannel Sn,the state φu an be mapped to a joint state of n qubits whih is onverges to ρununiformly in u ∈ I2. By Stinespring's theorem we know that the hannels are ofthe form

T (ρ) = TrK (V ρV ∗) ,

S(φ) = TrK′ (WφW ∗) ,where the partial traes are taken over some anillary Hilbert spaes K,K′ and
V :

(
C

2
)⊗n → L2(R) ⊗K,

W : L2 (R) →
(
C

2
)⊗n ⊗K′,are isometries (V ∗V = 1 and W ∗W = 1).Our task is now to identify the isometries Vn and Wn implementing the hannels

Tn and respetively Sn satisfying (6.4). The �rst step towards identifying these
Vn is to use group representations methods so as to partially (blok) diagonalizeall the ρun simultaneously.6.4.1 Blok deompositionIn this Subsetion we show that the states ρun have a blok-diagonal form givenby the deomposition of the spae (C2

)⊗n into irreduible representations of therelevant symmetry groups. The main point is that for large n the weights ofthe di�erent bloks onentrate around the representation with total spin jn =
n(µ− 1/2) .



6.4 Loal asymptoti normality for mixed qubit states 135The spae (C2
)⊗n arries a unitary representation πn of the one spin symmetrygroup SU(2) with πn(u) = u⊗n for any u ∈ SU(2), and a unitary representationof the symmetri group S(n) given by the permutation of fators

πn(τ) : v1 ⊗ · · · ⊗ vn 7→ vτ−1(1) ⊗ · · · ⊗ vτ−1(n), τ ∈ S(n).As [πn(u), πn(τ)] = 0 for all u ∈ SU(2), τ ∈ S(n) we have the deomposition
(
C

2
)⊗n

=

n/2⊕

j=0,1/2

Hj ⊗Hj
n, (6.10)where the diret sum runs over all positive (half)-integers j up to n/2, and for eah�xed j, Hj

∼= C2j+1 is a irreduible representation of SU(2) with total angularmomentum J2 = j(j + 1), and Hj
n
∼= Cnj is the irreduible representation of thesymmetri group S(n) with nj =
(

n
n/2−j

)
−
(

n
n/2−j−1

). In partiular the densitymatrix ρun is invariant under permutations and an be deomposed as a mixtureof �blok� density matries
ρun =

n/2⊕

j=0,1/2

pn(j)ρ
u
j,n ⊗ 1

nj
, (6.11)with probability distribution pn(j) given by [Bagan et al., 2006℄:

pn(j) :=
nj

2µ− 1
(1 − µ)

n
2 −j

µ
n
2 +j+1

(
1 − p2j+1

)
, (6.12)where p := 1−µ

µ . A key observation is that for large n and in the relevant rangeof j's, pn(j) is essentially a binomial distribution
Bn,µ(k) :=

(
n

k

)
µk (1 − µ)

n−k
, k = 0, . . . , n.Indeed we an rewrite pn(j) as

pn(j) := Bn,µ(n/2 + j) ×K(j, n, µ) (6.13)where the fator K(j, n, µ) is given by
K(j, n, µ) :=

(
1 − p2j+1

) n+ (2(j − jn) + 1)/(2µ− 1)

n+ (j − jn + 1)/µand jn := n(µ − 1/2). As Bn,µ is the distribution of the sum of n independentBernoulli variables with individual distribution (1− µ, µ) over {0, 1}, we an usethe entral limit Theorem to onlude that its mass onentrates around theaverage µn with a width of order √n, in other words of any 0 < ǫ < 1/2 we have
lim
n→∞

n1/2+ǫ∑

p=−n1/2+ǫ

Bn,µ(µn+ p) = 1. (6.14)



136 Quantum loal asymptoti normality for qubitsLet us denote by Jn,ǫ the set of values j of the total angular momentum of nqubits whih lie in the interval [jn − n1/2+ǫ, jn + n1/2+ǫ]. Then for large n, thefator K(j, n, µ) is lose to 1 uniformly over j ∈ Jn,ǫ and from formulas (6.13),(6.14) we onlude that pn(j) onentrates asymptotially in an interval of order
n1/2+ǫ around jn:

lim
n→∞

pn(Jn,ǫ) = 1. (6.15)This justi�es the big ball piture used in the previous setion.6.4.2 Irreduible representations of SU(2)Here we remind the reader some details about the representation πj of SU(2) on
Hj . Let σx, σy, σz be the Pauli matries and denote πj(σl) = Jj,l for l = x, y, zthen there exists an orthonormal basis {|j,m〉,m = −j, . . . , j} of Hj suh that

Jj,z |j,m〉 = m|j,m〉.Moreover, with Jj,± := Jj,x ± iJj,y we have
Jj,+|j,m〉 =

√
j −m

√
j +m+ 1 |j,m+ 1〉,

Jj,−|j,m〉 =
√
j −m+ 1

√
j +m |j,m− 1〉.With these notations and p = 1−µ

µ as before, the state ρ0j,n an be written as[Hayashi and Matsumoto, 2004℄
ρ0j,n = cj(p)

j∑

m=−j
pj−m|j,m〉〈j,m|,where the normalizing fator is cj(p) = (1 − p)/(1 − p2j+1). The rotated blokstates an be obtained by applying the unitary transformation

ρuj,n = Uj(u/
√
n) ρ0j,n Uj(u/

√
n)∗,with Uj(u) = exp (i(uxJj,x + uyJj,y)). Finally, we de�ne the vetors

|j,w〉 := Uj(w)|j, j〉 (6.16)whih will be used in later omputations, and notie that their oordinates withrespet to the |j,m〉 basis are given by [Hayashi and Matsumoto, 2004℄:
〈j,m|j,w〉 =

√(
2j

j +m

)
ζj−m(1 − |ζ|2) j+m

2 . (6.17)where ζ = eiϕw sin |w| with ϕw = Arg(−wy + iwx).



6.5 Constrution of the hannels Tn 1376.5 Constrution of the hannels TnFor eah irreduible representation spae Hj we de�ne the isometry Vj : Hj →
L2(R) by

Vj : |j,m〉 7→ |j −m〉 (6.18)where {|n〉, n ≥ 0} represents the energy eigenbasis of the quantum osillator witheigenfuntions ψn(x) = Hn(x)e
−x2/2/

√√
π2nn! ∈ L2(R). Using the deomposi-tion (6.10) we put together the di�erent bloks we onstrut for eah n ∈ N the�global� isometry

Vn :=

n/2⊕

j=0,1/2

Vj ⊗ 1 :

n/2⊕

j=0,1/2

Hj ⊗ C
nj → L2(R) ⊗Kn,where Kn :=

⊕n/2
j=0,1/2 C

nj . By traing over Kn we obtain the hannel Tn(ρ) :=

TrKn(VnρV
∗
n ) mapping a joint state of n spins into a state of the quantum os-illator. This hannel satis�es the onvergene ondition (6.4) as shown by theestimate

‖Tn(ρun) − φu‖1 =

∥∥∥∥∥∥

n/2∑

j=0,1/2

pn(j)Vjρ
u
n,jV

∗
j − φu

∥∥∥∥∥∥
1

≤
n/2∑

j=0,1/2

pn(j)
∥∥Vjρun,jV ∗

j − φu
∥∥

1

≤ 2
∑

j /∈Jn,ǫ

pn(j) + sup
u∈I2

max
j∈Jn,ǫ

‖Vjρuj,nV ∗
j − φu‖1,where the �rst term on the right side onverges to 0 by (6.15), and for theseond one we apply the following Proposition 6.5.1 whih is the major tehnialontribution of this hapter.Proposition 6.5.1. The following uniform onvergene holds

lim
n→∞

sup
u∈I2

max
j∈Jn,ǫ

‖Vjρuj,nV ∗
j − φu‖1 = 0.where Jn,ǫ is the set de�ned above equation (6.15).The proof of the Proposition requires a few ingredients whih in our opinion areimportant on their own for whih reason we formulate them apart and refer torelevant papers for the proofs.



138 Quantum loal asymptoti normality for qubitsTheorem 6.5.2. [Ohya and Petz, D., 2004℄ Let a, b ∈M(Cd), satisfying Tr(a) =
Tr(b) = 0 and de�ne

L(a, b) = exp(ia) exp(ib) − exp(ia+ ib) exp

(
1

2
[a, b]

)
.On (C2

)⊗n we de�ne the �utuation operator
Fn(a) =

1√
n

∑
ai,where ai = 1⊗· · ·⊗a⊗· · ·⊗1 with a ating on the i's position of the tensor prod-ut. Notie that exp(iFn(a)) = exp(ia/

√
n)⊗n and √

n[Fn(a), Fn(b)] = Fn([a, b]).Then
lim
n→∞

‖L (Fn(a), Fn(b)) ‖ = 0.The onvergene is uniform over ‖a‖, ‖b‖ < C for some onstant C.This Theorem is a key ingredient of the quantum entral limit Theorem [Ohyaand Petz, D., 2004℄ and it is not surprising that it plays an important role in ourquantum loal asymptoti normality result whih is an extension of the latter.We apply the Theorem to two unitaries of the form U(u) = exp(i(uxσx+uyσy)).We thus get information on the e�et of the Uj(u) on the highest weight vetors
|j, j〉 of an irreduible representation.Corollary 6.5.3. For any unitary U and state τ let Ad[U ](τ) := UτU∗ andonsider the rotated states

τ(u,v, j, n) := Ad

[
Uj

(
u√
n

)
Uj

(
v√
n

)]
(|jj〉〈jj|)

τ(u + v, j, n) := Ad

[
Uj

(
u + v√

n

)]
(|jj〉〈jj|) .Then the following uniform onvergene holds

lim
n→∞

sup
u,v∈I2

sup
j∈Jn,ǫ

‖τ(u,v, j, n) − τ(u + v, j, n)‖1 = 0.Proof. First notie that
[uxσx + uyσy , vxσx + vyσy] = 2(uxvy − uyvx)σz .Applying Theorem 6.5.2 to U(u), we get

∥∥∥∥∥U
(

u√
n

)⊗n
U

(
v√
n

)⊗n
− U

(
u + v√

n

)⊗n
exp

(
uxvy − uyvx√

n
Fn(σz)

)∥∥∥∥∥ −−−−→
n→∞

0.



6.5 Constrution of the hannels Tn 139NowThe following Lemma is a slight strengthening of a theorem by Hayashi andMatsumoto [2004℄.Lemma 6.5.4. The uniform onvergene holds
lim
n→∞

sup
u∈I2

sup
j∈Jn,ǫ

∥∥∥∥VjUj
(

u√
n

)
|jj〉 −|

√
2µ− 1αu〉

∥∥∥ = 0,where |z〉 denotes a oherent state of the osillator, and αu := (−uy + iux) .Moreover for any sequene jn → ∞ we have
lim
n→∞

∥∥Vjnρ0jnV
∗
jn − φ0

∥∥
1

= 0. (6.19)The onvergene holds uniformly over all sequenes jn suh that jn/n > c forsome �xed onstant c > 0, so in partiular for jn ∈ Jn,ǫ.Proof. We �rst prove the easier relation (6.19). As both density matries arediagonal we get
∥∥Vjnρ0jnV

∗
jn − φ0

∥∥
1

=
(1 − p)p2jn+1

1 − p2jn+1

2jn∑

k=0

pk −

(1 − p)

∞∑

k=2jn+1

pk ≤ p2jn+1

1 − p2jn+1
+ p2jn+1 → 0,as n→ ∞.As for the �rst relation, let us denote |u, j, n〉 := VjUj(

u√
n
)|j, j〉, then by (6.17)and (6.18) we have

〈k|u, j, n〉 =

√(
2j

k

)
(sin(|u|/√n)eiφ)k(cos(|u|/√n))2j−k.Now, the following asymptoti relations hold uniformly over j ∈ Jn,ǫ :

sin

( |u|√
n

)k
=

( |u|√
n

)k (
1 +O(|u|2n−1)

)
,

cos

( |u|√
n

)2j−k
= exp(− (2µ− 1)|u|2

2
)
(
1 +O(|u|2n−ǫ)

)
,

(
2j

k

)
=

((2µ− 1)n)k

k!
(1 +O(n−ǫ)),



140 Quantum loal asymptoti normality for qubitsand thus the oe�ients onverge uniformly to those of the orresponding oher-ent states as n→ ∞

〈k|u, j, n〉 → exp

(
− (2µ− 1)|u|2

2

) (
eiφ|u|√2µ− 1

)k
√
k!

.Proof of Proposition 6.5.1. The main idea is to notie that φ0 is a thermalequilibrium state of the osillator and an be generated as a mixture of oherentstates with entered Gaussian distribution over the displaements:
φ0 =

1√
2πs2

∫
e−|z|2/2s2 |z〉〈z| d2z. (6.20)The easiest way to see this is to think of the osillator states in terms of theirWigner funtions. Indeed, the Wigner funtion of a oherent state is

Wz(q, p) = exp
(
−(q −

√
2Re z)2 − (p−

√
2Im z)2

)
,and thus the state given by (6.20) has Wigner funtion whih is the onvolutionof two entered Gaussians whih is again a entered Gaussian with variane equalto the sum of their varianes 2s2 + 1/2 whih is equal to the variane of φ0 for

s2 := p/(2(1 − p)). Similarly,
φu =

1

2πs2

∫
e−|z−√

2µ−1αu|2/2s2 (|z〉〈z|) d2z. (6.21)Let us �rst remark that
∥∥VjnρujnV

∗
jn − φu

∥∥
1
≤

∥∥ρujn − V ∗
jnφ

uVjn
∥∥

1
+

‖φu − Pjnφ
uPjn‖1 ,where Pjn = VjnV

∗
jn is the projetion onto the image of Vjn , and

lim
n→∞

sup
jn∈Jn,ǫ

sup
u∈I2

‖φu − Pjnφ
uPjn‖1 = 0,beause jn → ∞ uniformly and Pjn onverges to the identity in strong operatortopology (a tightness property). Thus it is enough to show that

lim
n→∞

sup
jn∈Jn,ǫ

sup
u∈I2

∥∥ρujn − V ∗
jnφ

uVjn
∥∥

1
= 0.Now

∥∥ρujn − V ∗
jnφ

uVjn
∥∥

1
=

∥∥∥∥Ad

[
Ujn

(
u√
n

)] (
ρ0jn
)
− V ∗

jnφ
uVjn

∥∥∥∥
1

≤
∥∥ρ0jn − V ∗

jnφ
0Vjn

∥∥
1

+
∥∥∥∥Ad

[
Ujn

(
u√
n

)] (
V ∗
jnφ

0Vjn
)
− V ∗

jnφ
uVjn

∥∥∥∥
1

.



6.5 Constrution of the hannels Tn 141The �rst term on the right side of the inequality onverges to zero by Lemma6.5.4, uniformly for any sequene (jn) suh that jn ∈ Jn,ǫ and does not dependon u. Using (6.20) and (6.21) we bound the seond term by
1

s
√

2π

∫
e−|z|2/2s2‖∆(u, z, jn)‖1d

2zwhere the operator ∆(u, z, jn) is given by
∆(u, z, jn) := Ad

[
Ujn

(
u√
n

)](
V ∗
jn |z〉〈z|Vjn

)
−

V ∗
jn

∣∣∣z +
√

2µ− 1αu

〉〈
z +

√
2µ− 1αu

∣∣∣VjnWe analyze the expression under the integral. Let z̃ ∈ R2 be suh that αz̃ =
z/

√
2µ− 1, then

∥∥∥∥Ad

[
Ujn

(
u√
n

)] (
V ∗
jn |z〉〈z|Vjn

)
− V ∗

jn |z +
√

2µ− 1αu〉〈z +
√

2µ− 1αu|Vjn
∥∥∥∥

1

≤
∥∥∥∥Ad

[
Ujn

(
u√
n

)
Ujn

(
z̃√
n

)]
(|jnjn〉〈jnjn|) − Ad

[
Ujn

(
u + z̃√
n

)]
(|jnjn〉〈jnjn|)

∥∥∥∥
1

+

∥∥∥∥VjnAd

[
Ujn

(
z̃√
n

)]
(|jnjn〉〈jnjn|)V ∗

jn − |z〉〈z|
∥∥∥∥

1

+

∥∥∥∥VjnAd

[
Ujn

(
u + z̃√
n

)]
(|jnjn〉〈jnjn|)V ∗

jn − |z +
√

2µ− 1αu〉〈z +
√

2µ− 1αu|
∥∥∥∥

1

.By Corollary 6.5.3, the �rst term on the right side onverges to zero uniformlyin (u, jn) ∈ I2 ×Jn,ǫ. By Lemma 6.5.4 we have that the last two terms onvergeto zero uniformly in (u, jn) ∈ I2 × Jn,ǫ. Thus if we denote
Fn(z) := sup

jn∈Jn,ǫ

sup
u∈I2

‖∆(u, z, jn)‖1then 0 ≤ Fn(z) ≤ 2, limn→∞ Fn(z) = 0 for all z ∈ R2, and by the Lebesguedominated onvergene theorem we get
lim
n→∞

1

s
√

2π

∫
e−|z|2/2s2Fn(z)d

2z = 0.This implies the statement of the Proposition 6.5.1.



142 Quantum loal asymptoti normality for qubits6.6 Constrution of the inverse hannel SnTo omplete our proof of asymptoti equivalene as de�ned by (6.4), we mustnow exhibit the inverse hannel Sn whih maps the displaed thermal states φuof the osillator into approximations of the rotated spin states. As the latter areblok diagonal with weights pn(j) as de�ned in equation (6.12) , it is natural tolook for Sn of the form
Sn(φ) =

n/2⊕

j=0,1/2

pn(j)S
j
n(φ) ⊗ 1

nj
,where Sjn are hannels with outputs in Hj . Moreover beause Vj : Hj → L2(R)is an isometry we an hoose Sjn suh that

Sjn
(
VjρV

∗
j

)
= ρ, (6.22)for all density matries ρ onHj . This property does not �x the hannel ompletelybut it is su�ient for our purposes.Theorem 6.6.1. The following holds

lim
n→∞

sup
u∈I2

‖Sn(φu) − ρun‖1 = 0.Proof. As both ρun and φu are blok-diagonal we may deompose their distaneas
‖Sn(φu) − ρun‖1 =

n/2∑

j=0,1/2

pn(j)‖Sjn(φu) − ρuj,n‖1

≤
∑

j 6∈Jn,ǫ

2pn(j) +
∑

j∈Jn,ǫ

pn(j)‖Sjn(φu) − Sjn
(
Vjρ

u
j,nV

∗
j

)
‖1

+
∑

j∈Jn,ǫ

pn(j)‖Sjn
(
Vjρ

u
j,nV

∗
j

)
− ρuj,n‖1

≤ 2
∑

j 6∈Jn,ǫ

pn(j) +
∑

j∈Jn,ǫ

pn(j)‖φu − Vjρ
u
j,nV

∗
j ‖1,where we have used at the last line that Sjn is a ontration and property (6.22)of Sjn. Now the �rst sum is going to 0 by (6.15) and the seond sum is alsouniformly going to 0 by use of Proposition 6.5.1.



6.7 Appliations 1436.7 Appliations6.7.1 Loal asymptoti equivalene of the optimal Bayesianmeasurement and the heterodyne measurementIn this subsetion we begin a omparison of the pointwise (loal) point of viewwith the global one used in the Bayesian approah. The result is that the optimal
SU(2) ovariant measurement [Bagan et al., 2006, Hayashi and Matsumoto, 2004℄onverges loally to the optimal measurement for the family of displaed Gaussianstates whih is a heterodyne measurement [Holevo, 1982℄. Together with theresults on the asymptoti loal minimax optimality of this measurement, thisloses a irle of ideas relating the di�erent optimality notions and the relationsbetween the optimal measurements.Let us reall what are the ingredients of the state estimation problem in theBayesian framework [Bagan et al., 2006℄. We hoose as ost funtion the �delitysquared F (ρ, σ)2 = Tr(

√√
ρσ

√
ρ)2 and �x a prior prior distribution π over allstates in C

2 whih is invariant under the SU(2) symmetry group. Given n iden-tial systems ρ⊗n we would like to �nd a measurement Mn - whose outome isthe estimator ρ̂n - whih maximizes
Rπ,n :=

∫
〈F (ρ̂n, ρ)

2〉π(dρ).By the SU(2) invariane of π, the optimal measurement an be hosen to be
SU(2) ovariant i.e.

UMn(dσ)U∗ = Mn(U
∗dσU),and an be desribed as follows. First we use the deomposition (6.10) to makea �whih blok� measurement and obtain a result j and the onditional state ρj,nas in (6.11). This part will provide us the eigenvalues of the estimator. Next weperform blok-wise the ovariant measurement Mj,n(d

−→s ) = mj,n(
−→s )d−→s with

mj,n(
−→s ) := (2j + 1)Uj(

−→s )∗|j〉〈j|Uj(−→s ) ⊗ 1jwhose result is a unit vetor −→s where U(−→s ) is a unitary rotating the vetor state
|−→s 〉 to | ↑〉. The omplete estimator is then ρ̂n = 1

2 (1 + 2j
n
−→s −→σ ).We pass now to the desription of the heterodyne measurement for the quantumharmoni osillator. This measurement has outomes u ∈ R2 and is ovariantwith respet to the translations indued by the displaement operatorsD(z) suhthat H(du) = h(u)du with

h(u) := (2µ− 1)D(−
√

2µ− 1αu)|0〉〈0|D(
√

2µ− 1αu).



144 Quantum loal asymptoti normality for qubitsUsing Theorem 6.1.1 we an map H into a measurement on the n-spin systemas follows: �rst we perform the whih blok step as in the ase of the SU(2)-ovariant measurements. Then we map ρj,n into an osillator state using theisometry Vj (see (6.18)), and subsequently we perform H . The result u willde�ne our estimator for the loal state, i.e.
ρ̂n = U

(
u√
n

)(
1
2 + j

n 0

0 1
2 − j

n

)
U

(
u√
n

)∗
. (6.23)We denote by Hn the resulting measurement with values in the states on C2.The next Theorem shows that in a loal neighborhood of a �xed state ρ0, the

SU(2)-ovariant measurementMn and the heterodyne type measurement Hn areasymptotially equivalent in the sense that the probability distributions P (Mn, ρ)and P (Hn, ρ) are lose to eah other uniformly over all loal states ρ suh that
‖ρ− ρ0‖1 ≤ C√

n
for a �xed but arbitrary onstant C <∞.Theorem 6.7.1. Let ρ0 be as in (6.6), and let

Bn(I) =
{
ρv/

√
n : v ∈ I2

}
, , |I| <∞be a loal family of states around ρ0. Then

lim
n→∞

sup
ρ∈Bn(I)

‖P (Mn, ρ) − P (Hn, ρ)‖1 = 0Proof. Note �rst that both P (Mn, ρ) and P (Hn, ρ) are distributions over theBloh sphere and the marginals over the length of the Bloh vetors are identialbeause by onstrution the �rst step of both measurements is the same. Then
‖P (Mn, ρ) − P (Hn, ρ)‖1 =
∑

j

pn(j)

∫
|Tr(ρj,n(mj,n(

−→s ) − hj,n(
−→s )))| d−→s .Aording to (6.15) we an restrit the summation to the interval Jn,ǫ around

j = n(µ − 1
2 ). By Theorem 6.1.1 we an replae (whenever needed) the loalstates ρv/√nj,n by their limits in the osillator spae φv with an asymptotiallyvanishing error, uniformly over v ∈ I2.We make now the hange of variable −→s → u where u ∈ R2 belongs to the ball

|u| < 2
√
nπ, and is the smallest vetor suh that U ( u√

n

)
= U(−→s ).The density of the SU(2) estimator with respet to the measure du is

mj,n(u) :=
2j + 1

n
Uj

(
u√
n

)∗
|j〉〈j|Uj

(
u√
n

)
J

(
u√
n

)
,



6.7 Appliations 145where J is the determinant of a Jaobian related with the hange of variablessuh that J(0) = 1.Similarly the density of the homodyne-type estimator beomes
hj,n(u) :=

∑

k∈N

V ∗
j h

(
u + 2k

√
nπ

u

|u|

)
Vj |Jk,n(u)|,beause displaements in the same diretion whih di�er by multiples of 2

√
nπlead to the same unitary on the qubits. Here Jk,n(u) is again the determinant ofthe Jaobian of the map from the k-th ring to the disk, in partiular J0,n(u) = 1.The integral beomes then

∫

|u|≤2π
√
n

∣∣∣Tr
(
ρ
v/

√
n

j,n (mj,n(u) − hj,n(u))
)∣∣∣ du.We bound this integral by the sum of two terms, the �rst one being

∫

|u|≤2π
√
n

∣∣∣Tr
(
ρ
v/

√
n

j,n (mj,n(u) − h̃j(u))
)∣∣∣ du,where h̃j(u) is just the term with k = 0 in hj,n(u). By Lemma 6.5.4, for any �xed

u we have mj,n(u) → h(u) uniformly over j ∈ Jn,ǫ. Using similar estimates asin Lemma 6.5.4 it an be shown that the funtion under the integral is boundedby a �xed integrable funtion g(u) uniformly over v ∈ I2, and then we an usedominated onvergene to onlude that the integral onverges to 0 uniformlyover v ∈ I2 and j ∈ Jn,ǫ.The seond integral is
∫

|u|≤2π
√
n

∣∣∣Tr
(
ρ
v/

√
n

j,n (h̃j(u) − hj,n(u))
)∣∣∣ du,whih is smaller than

∫

|u|>2π
√
n

∣∣∣Tr
(
ρ
v/

√
n

j,n h (u)
)∣∣∣ du,whih onverges uniformly to 0. This an be seen by replaing the states with

φv whih are �on�ned� to a �xed region of the size I2 in the phase spae, whilethe terms h(u) are Gaussians loated at distane at least 2π
√
n from the origin.Putting these two estimates together we obtain the desired result.



146 Quantum loal asymptoti normality for qubitsRemark. The result in the above theorem holds more generally for all statesin a loal neighborhood of ρ0 but for the proof we need a slightly more generalversion of Theorem 6.1.1 where the eigenvalues of the density matries are not�xed but allowed to vary in a loal neighborhood of (µ, 1−µ). This result will bepresented in a future work onerning the general ase of d-dimensional states.6.7.2 The optimal Bayes measurement is also loallyasymptoti minimaxIn this subsetion we will introdue some ideas from the pointwise approah tostate estimation. We show that the measurement whih is known to be optimalfor a uniform prior in the Bayesian set-up, is also asymptotially optimal in thepointwise sense.Using the jargon of mathematial statistis, we will all quantum statistial ex-periment (model) [Petz and Jen£ová, 2006℄ a family {ρθ ∈ M(Cd) : θ ∈ Θ} ofdensity matries indexed by a parameter belonging to a set Θ. The main exam-ples of quantum statistial experiments onsidered so far are that of n identialqubits
F :=

{
ρ⊗n : ρ ∈M(C2)

}
,the loal model

FI
n :=

{
ρun =

(
ρu/

√
n
)⊗n

,u ∈ I2

}
,and its �limit� model

GI := {φu,u ∈ I2},where I = [−a, a], and ρun and φu are de�ned by (6.1) and (6.2). More generallywe an replae the square I2 by an arbitrary region K in the parameter spaeand obtain:
GK := {φu,u ∈ K ⊂ R

2}.We shall also make use of
G := {φu,u ∈ R

2}.A natural hoie of distane between density matries is the �delity square
F (ρ, σ)2 =

[
Tr (

√
ρσ

√
ρ)

1/2
]2
,whih is loally quadrati in �rst order approximation, i.e.

F (ρun, ρ
v
n)

2 ≈ 1

n
‖u− v‖2.



6.7 Appliations 147As we expet that reasonable estimators are in a loal neighborhood of the truestate we will replae the �delity square by the loal distane
d(u, û) = ‖û− u‖2.and de�ne the risk of a measurement-estimator pair as RM (u, û) = 〈d(u, û)〉,keeping in mind the fator 1/n relating the risks expressed in loal and globalparameters.Similarly to the Bayesian approah, we are interested in estimators whih havesmall risk everywhere in the parameter spae and we de�ne a worst ase �gureof merit alled minimax risk.De�nition 6.7.2. The minimax risk of a quantum statistial experiment E overthe parameter spae Θ is de�ned as

C(E) = inf
û

sup
u∈Θ

RM (u, û). (6.24)where the in�mum is taken over all measurements and estimators (M, û).The minimax risk tells us how di�ult is the model and thus we expet that if twomodels are �lose� to eah other then their minimax risks are almost equal. The�statistial distane� between quantum experiments is de�ned in a natural waywith diret physial interpretation and suh a problem has been already addressedby Che�es et al. [2003℄ for the ase of a quantum statistial experiment onsistingof a �nite family of pure states.De�nition 6.7.3. Let E = {ρθ ∈ M(Cd) : θ ∈ Θ} and F = {τθ ∈ M(Cp) :
θ ∈ Θ} be two quantum statistial experiments (models) with the same parameterspae Θ. We de�ne the disrepanies

δ(E ,F) = inf
T

sup
θ∈Θ

‖T (ρθ) − τθ‖1,

δ(F , E) = inf
S

sup
θ∈Θ

‖ρθ − S(τθ)‖1,where the in�mum is taken over all trae preserving hannels T : M(Cd) →
M(Cp) and S : M(Cp) →M(Cd).With this terminology, our main result states that for any bounded interval I:

lim
n→∞

max
(
δ(FI

n,GI), δ(GI ,FI
n)
)

= 0. (6.25)As suggested above, the disrepany has a diret statistial interpretation: if wewant to estimate θ in both statistial experiments E and F and we hoose abounded loss funtion d(θ, θ̂) ≤ K then for any measurement and estimator θ̂ for
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F with risk RM (θ, θ̂) = 〈d(θ, θ̂)〉 we an �nd a measurement N on E whose riskis at most RM (θ, θ̂) +Kδ(E ,F). Indeed if we hoose T suh that the in�mum inthe de�nition of δ(E ,F) is ahieved, we an map the state ρθ through the hannel
T and then perform M to obtain an estimator θ̃ for whih

RN (θ, θ̃) = 〈d(θ, θ̃)〉 =

∫

Θ

d(θ, θ̃)Tr
(
T (ρθ)M(dθ̃)

)
≤

∫

Θ

d(θ, θ̃)Tr
(
τθM(dθ̃)

)
+ ‖d‖∞‖T (ρθ) − τθ‖1 ≤

RM (θ, θ̂) +Kδ(E ,F).This means that asymptotially the di�ulty of estimating the parameter θ inthe two models is the same. With the above de�nition of the minimax risk andusing the onvergene (6.25) we obtain the following lemma.Lemma 6.7.4. Let I = [−a, a] with 0 < a <∞, then
lim
n→∞

C(FI
n) = C(GI)The minimax risk for the loal family FI
n is a �gure of merit for the �loal di�-ulty� of the global model Fn. It asymptotially onverges to the minimax riskof a family of thermal states. However this quantity depends on the arbitraryparameter I = [−a, a] whih we would like to remove as our last step in de�ningthe loal asymptoti minimax risk:

Cl.a.m.(Fn : n ∈ N) := lim
a→∞

lim
n→∞

C(FI
n) = lim

a→∞
C(GI).As one might expet, the minimax risks for the restrited families of thermalstates will onverge to that of the experiment with no restritions on the para-maters. The proof of this fat is however non-trivial.Lemma 6.7.5. Let I = [−a, a], then we have

lim
a→∞

C(GI) = C(G)Moreover the heterodyne measurement saturates C(G), and thus C(G) is equal tothe Holevo bound.Proof. The inequality in one diretion is easy. For any estimator,
supu∈I2 RM (u, û) ≤ supu∈R2 RM (u, û), so that C(GI) ≤ C(G) and the sameholds for the limit. By the same reasoning, for any K1 ⊂ K2 ⊂ R2 we have
C(GK1) ≤ C(GK2 ).When alulating minimax bounds we are interested in the worst risk of estima-tors within some parameter regionK, and this worst risk is obviously higher than



6.7 Appliations 149the Bayes risk with respet to the probability distribution with onstant densityon K. We shall work on B(0, c+ b) the ball of enter 0 and radius (c+ b), with
b > c, and denote our measurementM with density m(û)dû. In generalM neednot have a density, but this will ease notations. Then

sup
u∈B(0,c+b)

RM (u, û) ≥
∫

B(0,c+b)×R2

du dû

π(c+ b)2
‖u− û‖2 Tr (φum(û)) . (6.26)We �x the following notations

f(D) =

∫

D
dudv‖x − y‖2 Tr (φum(v)) ,

g(D) =

∫

D
dudv Tr (φum(v)) ,and de�ne the domains

D1 = {(u, û)|u ∈ B(0, c+ b), û ∈ R
2}

D2 = {(u + k,k)|u ∈ B(0, c),k ∈ B(0, b)}
D3 = {(u,u + h)|u ∈ B(0, b− c),h ∈ B(0, c)}
D4 = {(u,u + h)|u ∈ B(0, b− c),h ∈ R

2\B(0, c)}.Notie the following relations:
D3 ⊂ D2 ⊂ D1, D4 ⊂ D1\D2. (6.27)Then (6.26) an be rewritten as
sup

u∈B(0,c+b)

RM (u, û) ≥ 1

π(b + c)2
f(D1).The following inequalities follow diretly from the de�nitions:

f(D2) ≤ c2g(D2) f(D3) ≤ c2g(D3)

f(D4) ≥ c2g(D4) g(D4) + g(D3) = π(b − c)2.



150 Quantum loal asymptoti normality for qubitsUsing these and (6.27), we may write:
1

π(c+ b)2
f(D1) ≥

1

π(c+ b)2
(f(D2) + f(D4))

≥ 1

π(c+ b)2
(
f(D2) + c2g(D4)

)

=
(b − c)2

(b + c)2

(
f(D2)

g(D2)

g(D2)

π(b − c)2
+ c2 − c2

g(D3)

π(b − c)2

)

≥ (b − c)2

(b + c)2

(
c2 +

g(D3)

π(b− c)2

(
f(D2)

g(D2)
− c2

))

≥ (b − c)2

(b + c)2
f(D2)

g(D2)
. (6.28)We analyze now the expression f(D2)/g(D2). By using the de�nition (6.2) of thedisplaed thermal states φu we get that Tr

[
φu+km(l)

]
= Tr

[
φkmu(l)

], where
mu(l) := D(−

√
2µ− 1αu)m(l)D(

√
2µ− 1αu).Then

g(D2) =

∫

B(0,c)×B(0,b)

dudkTr
[
φu+km(k)

]
= Tr

[
φ̃cm̃b

]
,where we have written

φ̃c =

∫

B(0,c)

φudu, m̃b =

∫

B(0,b)

mk(k)dk.Upon writing vc :=
∫
B(0,c)

‖u‖2φudu, we get similarly f(D2) = Tr [vcm̃b]. Notethat by rotational symmetry vc and φ̃c are diagonal in the number operatoreigenbasis, so without restriting the generality we may assume that m̃b is alsodiagonal in that basis: m̃b =
∑
k pk|k〉〈k|. We have then

f(D2)

g(D2)
=

∑
k∈N

pk〈k|vc|k〉∑
k∈N

pk〈k|φ̃c|k〉
≥ inf

k∈N

〈k|vc|k〉
〈k|φ̃c|k〉

.The in�mum on the right side is ahieved by the vauum vetor. By Lemma6.7.6, this fat follows from the inequality
〈k|φu1 |k〉
〈k|φu2 |k〉 ≥ 〈0|φu1 |0〉

〈0|φu2 |0〉 , ‖u1‖ ≥ ‖u2‖,whih an be heked by expliit alulations.Letting now c and b go to in�nity with c = o(b) and using (6.28), we obtain that
lim
a→∞

C(Ga) ≥
∫

R2〈0|φu|0〉 ‖u‖2du∫
R2〈0|φu|0〉 du ,



6.7 Appliations 151whih is exatly the pointwise risk of the heterodyne measurement H(du) =
h(u)du whose density is

h(u) = (2µ− 1)D(−
√

2µ− 1αu)|0〉〈0|D(−
√

2µ− 1αu).By symmetry this pointwise risk does not depend on the point, so that C(G) ≤
RH(u, û). And we have our seond inequality: lima→∞C(Ga) ≥ C(G).Moreover, the heterodyne measurement is known to saturate the Holevo boundfor G = Id and the Cramér-Rao bound for loally unbiased estimators [Holevo,1982, Hayashi and Matsumoto, 2004℄. We onlude that the loal minimax riskfor qubits is equal to the minimax risk for the limit Gaussian quantum experimentwhih is ahieved by the heterodyne measurement.Lemma 6.7.6. Let p and q be two probability densities on [0, 1] and assume that

p(x1)

p(x2)
≥ q(x1)

q(x2)
, x1 ≥ x2.Then ∫ x2p(x)dx ≥

∫
x2q(x)dx.Proof. It is enough to show that there exists a point x0 ∈ [0, 1] suh that p(x) ≤

q(x) for x ≤ x0 and p(x) ≥ q(x) for x ≥ x0. Now, if p(x) ≤ q(x) then by usingthe assumption we get that p(y) ≤ q(y) for all y ≤ x. Similarly, if p(x) ≥ q(x)then p(y) ≤ q(y) for all y ≥ x. This implies the existene of the rossing point
x0.We end this setion with the onlusion that the optimal measurement from theBayesian point of view is also asymptotially optimal from the pointwise pointof view. Let us denote by (Mn, û) the measurement-estimator pair from [Baganet al., 2006, Hayashi and Matsumoto, 2004℄.Proposition 6.7.7. The optimal measurement-estimator pair (Mn, û) is a loalasymptoti minimax estimation sheme. That is

lim
n→∞

RMcov (u, û) = Cl.a.m(Fn : n ∈ N).Proof. The pointwise risk ofMcov is known to onverge to that of the heterodynemeasurement [Bagan et al., 2006℄. The rest follows from Lemma 6.7.4 and Lemma6.7.5.



152 Quantum loal asymptoti normality for qubits6.7.3 Disrimination of statesAnother illustration of the loal asymptoti normality Theorem is the problemof disriminating between two states ρ+ and ρ−. When the two states are �xed,this problem has been solved by Helstrom [1976℄, and if we are given n systemsin state ρ⊗n± then the probability of error onverge to 0 exponentially. Here weonsider the problem of distinguishing between two states ρ±n whih approaheah other as n → ∞ with rate ‖ρ+
n − ρ−n ‖1 ≈ 1√

n
. In this ase the probabilityof error does not go to 0 beause the problem beomes more di�ult as we havemore systems, and onverges to the limit problem of distinguishing between two�xed Gaussian states of a quantum osillator.This problem is interesting for several reasons. Firstly it shows that the onver-gene in Theorem 6.1.1 an be used for �nding asymptotially optimal proeduresfor various statistial problems suh as that of parameter estimation and hypoth-esis testing. Seondly, for any �xed n the optimal disrimination is performedby a rather ompliated joint measurement and the hope is that the asymptotiproblem of disriminating between two Gaussian states may provide a more re-alisti measurement whih an be implemented in the lab. Thirdly, this exampleshows that a non-ommuting one-parameter families of states is not �lassial� asit is sometimes argued, but should be onsidered as a quantum �resoure� whihannot be transformed into a lassial one without loss of information. Moreexpliitly, the optimal measurement for estimating the parameter is not optimalfor other statistial problems suh as the one onsidered here, and thus di�erentstatistial deision problems are aompanied by mutually inompatible optimalmeasurements.Let is reall the framework of quantum hypothesis testing for two states ρ±:we onsider two-outomes POVM's M = (M−,M+) with 0 ≤ M+ ≤ 1 and

M− = 1 −M+ suh that the probability of error when the state is ρ− is givenby Tr(M+ρ
−),and similarly for ρ+. As we do not know the state, we want tominimize our worst-ase probability error. Our �gure of merit (the lower, thebetter) is therefore:

R(ρ+, ρ−) = inf
M

max {Tr(ρ+M−),Tr(ρ+M−)}Now we are interested in the ase when ρ± = ρ±u
n as de�ned in (6.1), and in thelimit ρ± = φ±u (reall that both ρun and φu depend on µ). We then have:Theorem 6.7.8. The following limit holds

lim
n→∞

R(ρun, ρ
−u
n ) = R(φu, φ−u).Moreover for pure states this limit is equal to (1 − (1 − e−4|u|2)1/2

)
/2 whih isstritly smaller than 1/2 − erf(|u|) whih is the limit if we do not use olletive



6.7 Appliations 153measurements on the qubits. Here we have used this onvention for the errorfuntion: erf(x) =
∫ x
0
e−t

2

/
√
π dt.Proof. Let M be the optimal disrimination proedure φ±u. Then we use thehannel Tn to send ρ±u

n to states of the osillator and then perform the measure-ment M . By Theorem 6.1.1, ‖φ±u − Tn(ρ
±u
n )‖1 → 0 so that Tr (Tn(ρ

±u
n )M∓) →

Tr (φ±uM∓). Thus M ◦ Tn is asymptotially optimal for ρ±u
n .Now for pure states |ψ+〉 and |ψ−〉 the optimal measurement is well-known [Guµ and Kahn, 2008, Che�es, 2000℄. It is unique on the span of these pure states andarbitrary on the orthogonal. If we hoose the phase suh that 〈ψ−|ψ+〉 > 0, then

M+ is the projetor on the vetor
|ψ+〉 + |ψ−〉

2
√

1 + 〈ψ−|ψ+〉
+

|ψ+〉 − |ψ−〉
2
√

1 − 〈ψ−|ψ+〉and the assoiated risk is
1

2
(1 −

√
1 − |〈ψ+|ψ−〉|2)Now in our ase, in the limit experiment, φu is the oherent state |ψu〉 =

e−|u|2/2∑
n |u|n/

√
n! |n〉. So that
〈ψu|ψ−u〉 = e−|u|2

∑

n

(−|u|2)n
n!

= e−2|u|2 ,and R(φu, φ−u) = 1
2

(
1 −

√
1 − e−4|u|2

)
.We would like to insist here that the best measurement for disrimination is notmeasuring the positive part of the position observableQ (we assume by symmetrythat ±u is on the �rst oordinate), as one might expet from the analogy withthe lassial problem. Indeed if we measure Q then we obtain a lassial Gaussianvariable with density p(x) = e−(x−|u|)2/
√
π and the best guess at the sign ± hasin this ase the risk 1/2 − erf(|u|).This may be a bit surprising onsidering that measuringQ preserves the quantumFisher information. The onlusion is simply that the quantum Fisher informa-tion is not an exhaustive indiator of the statistial information in a family ofstates, as it may remain unhanged even when there is a lear degradation in theinferene power. This example �ts in a more general framework of a theory ofquantum statistial experiments and quantum deisions [Guµ ℄.



154 Quantum loal asymptoti normality for qubits6.7.4 Spin squeezed states and ontinuous time measure-mentsIn an emblemati experiment for the �eld of quantum �ltering and ontrol,Geremia et al. [2004℄ have shown how spin squeezed states an be prepared de-terministially by using ontinuous time measurements performed in the environ-ment and real time feedbak on the spins. Without going in the details, the basiidea is to desribe the evolution of identially prepared spins by passing �rst tothe oherent state piture. There one an easily solve the stohasti Shrödingerequation desribing the evolution (quantum trajetory) of the quantum osillatoronditioned on the ontinuous signal of the measurement devie. The solution isa Gaussian state whose enter evolves stohastially while one of the quadraturesgets more and more squeezed as one obtains more information through the mea-surement. Using feedbak one an then stabilize the enter of the state around a�xed point.This desription is of ourse approximative and holds as long as the errors inidentifying the spins with Gaussian states are not signi�ant. The frameworkdeveloped in the proof of Theorem 6.1.1 an then be used to make more preisestatements about the validity of the results, inluding the squeezing proess.Perhaps more interesting for quantum estimation, suh measurements may beused to perform optimal estimation of spin states. The idea would be to �rstloalize the state in a small region by performing a weak measurement and thenin a seond stage one performs a heterodyne type measurement after rotating thespins so that they point approximately in the z diretion. We believe that thistype of proedure has better hanes of being implemented in pratie omparedwith the abstrat ovariant measurement of Bagan et al. [2006℄, Hayashi andMatsumoto [2004℄.



Chapter 7Optimal estimation of qubitstates with ontinuous timemeasurements
This hapter is derived from [Guµ  et al., 2008℄.Abstrat: We propose an adaptive, two steps strategy, for the esti-mation of mixed qubit states. We show that the strategy is optimalin a loal minimax sense for the trae norm distane as well as otherloally quadrati �gures of merit. Loal minimax optimality meansthat given n idential qubits, there exists no estimator whih anperform better than the proposed estimator on a neighborhood ofsize n−1/2 of an arbitrary state. In partiular, it is asymptotiallyBayesian optimal for a large lass of prior distributions.We present a physial implementation of the optimal estimation strat-egy based on ontinuous time measurements in a �eld that oupleswith the qubits.The ruial ingredient of the result is the onept of loal asymptotinormality (or LAN) for qubits. This means that, for large n, thestatistial model desribed by n identially prepared qubits is loallyequivalent to a model with only a lassial Gaussian distribution anda Gaussian state of a quantum harmoni osillator.The term `loal' refers to a shrinking neighborhood around a �xedstate ρ0. An essential result is that the neighborhood radius an behosen arbitrarily lose to n−1/4. This allows us to use a two steps



156 Optimal estimation of qubit states with ontinuous time measurementsproedure by whih we �rst loalize the state within a smaller neigh-borhood of radius n−1/2+ǫ, and then use LAN to perform optimalestimation.7.1 IntrodutionState estimation is a entral topi in quantum statistial inferene [Holevo, 1982,Helstrom, 1976, Barndor�-Nielsen et al., 2003, Hayashi, 2005b℄. In broad termsthe problem an be formulated as follows: given a quantum system prepared inan unknown state ρ, one would like to reonstrut the state by performing ameasurementM whose random result X will be used to build an estimator ρ̂(X)of ρ. The quality of the measurement-estimator pair is given by the risk
Rρ(M, ρ̂) = E

(
d(ρ̂(X), ρ)2

)
, (7.1)where d is a distane on the spae of states, for instane the �delity distaneor the trae norm, and the expetation is taken with respet to the probabilitydistribution PMρ of X , when the measured system is in state ρ. Sine the riskdepends on the unknown state ρ, one onsiders a global �gure of merit by eitheraveraging with respet to a prior distribution π (Bayesian setup)

Rπ(M, ρ̂) =

∫
π(dρ)Rρ(M, ρ̂), (7.2)or by onsidering a maximum risk (pointwise or minimax setup)

Rmax(M, ρ̂) = sup
ρ
Rρ(M, ρ̂). (7.3)An optimal proedure in either setup is one whih ahieves the minimum risk.Typially, one measurement result does not provide enough information in orderto signi�antly narrow down on the true state ρ. Moreover, if the measurementis �informative� then the state of the system after the measurement will ontainlittle or no information about the initial state [Janssens, 2006℄ and one needs torepeat the preparation and measurement proedure in order to estimate the statewith the desired auray.It is then natural to onsider a framework in whih we are given a number nof identially prepared systems and look for estimators ρ̂n whih are optimal, orbeome optimal in the limit of large n. This problem is the quantum analogue ofthe lassial statistial problem [van der Vaart, 1998℄ of estimating a parameter

θ from independent identially distributed random variables X1, . . . , Xn with



7.1 Introdution 157distribution Pθ, and some of the methods developed in this hapter are inspiredby the lassial theory.Various state estimation problems have been investigated in the literature andthe tehniques may be quite di�erent depending on a number of fators: thedimension of the density matrix, the number of unknown parameters, the purityof the states, and the omplexity of measurements over whih one optimizes. Ashort disussion on these issues an be found in setion 7.2.In this hapter we give an asymptotially optimal measurement strategy for qubitstates that is based on the tehnique of loal asymptoti normality introdued byGuµ  and Kahn [2006℄, Guµ  and Jen£ová [2007℄. The tehnique is a quantumgeneralisation of Le Cam's [1986℄ lassial statistial result, and builds on pre-vious work of Hayashi and Matsumoto [2004℄. We use an adaptive two stageproedure involving ontinuous time measurements, whih ould in priniple beimplemented in pratie. The idea of adaptive estimation methods, whih hasa long history in lassial statistis, was introdued in the quantum set-up byBarndor�-Nielsen and Gill, R. [2000℄, and was subsequently used by Gill andMassar [2000℄, Hayashi [2002a℄, Hayashi and Matsumoto [2005℄. The aim thereis similar: one wants to �rst loalize the state and then to perform a suitablytailored measurement whih performs optimally around a given state. A di�erentadaptive tehnique was proposed independently by Nagaoka [2005℄ and furtherdeveloped by Fujiwara [2006℄.
Figure 7.1: After the �rst measurement stage the state ρ lies in a small ballentered at ρ̃n.In the �rst stage, the spin omponents σx, σy and σz are measured separately ona small portion ñ ≪ n of the systems, and a rough estimator ρ̃n is onstruted.By standard statistial arguments (see Lemma 7.2.1) we dedue that with highprobability, the true state ρ lies within a ball of radius slightly larger than n−1/2,say n−1/2+ǫ with ǫ > 0, entered at ρ̃n. The purpose of the �rst stage is thus toloalize the state within a small neighborhood as illustrated in Figure 7.1 (up toa unitary rotation) using the Bloh sphere representation of qubit states.



158 Optimal estimation of qubit states with ontinuous time measurementsThis information is then used in the seond stage, whih is a joint measurementon the remaining n− ñ systems. This seond measurement is implemented phys-ially by two onseutive ouplings, eah to a bosoni �eld. The qubits are �rstoupled to the �eld via a spontaneous emission interation and a ontinuous timeheterodyne detetion measurement is performed in the �eld. This yields informa-tion on the eigenvetors of ρ. Then the interation is hanged, and a ontinuoustime homodyne detetion is performed in the �eld. This yields information onthe eigenvalues of ρ.We prove that the seond stage of the measurement is asymptotially optimal forall states in a ball of radius n−1/2+η around ρ̃n. Here η an be hosen to be biggerthat ǫ > 0 implying that the two stage proedure as a whole is asymptotiallyoptimal for any state as depited in Figure 7.2.
Figure 7.2: The smaller domain is the loalization region of the �rst step. Theseond stage estimator is optimal for all states in the bigger domain.The optimality of the seond stage relies heavily on the priniple of loal asymp-toti normality or LAN, see [van der Vaart, 1998℄, whih we will brie�y explainbelow, and in partiular on the fat that it holds in a ball of radius n−1/2+ηaround ρ̃n rather than just n−1/2 as it was the ase in Guµ  and Kahn's 2006artile.Let ρ0 be a �xed state. We parametrize the neighboring states as ρu/√n, where
u = (ux, uy, uz) ∈ R

3 is a ertain set of loal parameters around ρ0. Then LANentails that the joint state ρun := ρ⊗n
u/

√
n
of n idential qubits onverges for n→ ∞to a Gaussian state of the form Nu ⊗ φu, in a sense explained in Theorem 7.3.1.By Nu we denote a lassial one-dimensional normal distribution entered at uz.The seond term φu is a Gaussian state of a harmoni osillator, i.e. a displaedthermal equilibrium state with displaement proportional to (ux, uy). We thushave the onvergene

ρun ; Nu ⊗ φu,to a muh simpler family of lassial � quantum states for whih we know howto optimally estimate the parameter u [Holevo, 1982, Yuen and Lax, M., 1973℄.



7.1 Introdution 159The idea of approximating a sequene of statistial experiments by a Gaussian onegoes bak to Wald [1943℄, and was subsequently developed by Le Cam [1986℄ whooined the term loal asymptoti normality. In quantum statistis the �rst ideasin the diretion of loal asymptoti normality for d-dimensional states appearedin a Japanese paper [Hayashi, 2003℄, as well as in Hayashi's onferenes and weresubsequently developed by Hayashi and Matsumoto [2004℄. In Theorem 7.3.1 westrengthen these results for the ase of qubits, by proving a strong version ofLAN in the spirit of Le Cam's pioneering work. We then exploit this result toprove optimality of the seond stage. A di�erent approah to loal asymptotinormality has been developed by Guµ  and Jen£ová [2007℄ to whih we refer fora more general exposition on the theory of quantum statistial models. A shortdisussion on the relation between the two approahes is given in the remarkfollowing Theorem 7.3.1.From the physis perspetive, our results put on a more rigorous basis the treat-ment of olletive states of many idential spins, the keyword here being oherentspin states [Holtz and Hanus, 1974℄. Indeed, it has been known sine Dyson [1956℄that n spin- 12 partiles prepared in the spin up state |↑〉⊗n behave asymptotiallyas the ground state of a quantum osillator, when onsidering the �utuations ofproperly normalized total spin omponents in the diretions orthogonal to z. Weextend this to spin diretions making an �angle� of order n−1/2+η with the z axis,as illustrated in Figure 7.3, as well as to mixed states. We believe that a similarapproah an be followed in the ase of spin squeezed states and ontinuous timemeasurements with feedbak ontrol [Geremia et al., 2004℄.

Figure 7.3: Total spin representation of the state of n ≫ 1 spins: the quantum�utuations of the x and y spin diretions oinide with those of a oherent stateof a harmoni osillator.In Theorem 7.4.1 we prove a dynamial version of LAN. The trajetory in timeof the joint state of the qubits together with the �eld onverges for large n to theorresponding trajetory of the joint state of the osillator and �eld. In other



160 Optimal estimation of qubit states with ontinuous time measurementswords, time evolution preserves loal asymptoti normality. This insures that forlarge n the state of the qubits �leaks� into a Gaussian state of the �eld, providinga onrete implementation of the onvergene to the limit Gaussian experiment.The punh line of the hapter is Theorem 7.6.1 whih says that the estimator ρ̂nis optimal in loal minimax sense, whih is the modern statistial formulation ofoptimality in the frequentist setup [van der Vaart, 1998℄. Also, its asymptotirisk is alulated expliitly.The hapter is strutured as follows: in setion 7.2, we show that the �rst stageof the measurement su�iently loalizes the state. In setion 7.3, we prove thatLAN holds with radius of validity n−1/2+η, and we bound its rate of onver-gene. setions 7.4 and 7.5 are onerned with the seond stage of the mea-surement, i.e. with the oupling to the bosoni �eld and the ontinuous time�eld-measurements. Finally, in setion 7.6, asymptoti optimality of the estima-tion sheme is proven.The tehnial details of the proofs are relegated to the appendies in order togive the reader a more diret aess to the ideas and results.7.2 State estimationIn this setion we introdue the reader to a few general aspets of quantum stateestimation after whih we onentrate on the qubit ase.State estimation is a generi name for a variety of results whih may be lassi�edaording to the dimension of the parameter spae, the kind or family of statesto be estimated and the preferred estimation method. For an introdution toquantum statistial inferene we refer to the books by Helstrom [1976℄ and Holevo[1982℄ and the more reent review paper by Barndor�-Nielsen et al. [2003℄. Theolletion [Hayashi, 2005b℄ is a good referene on quantum statistial problems,with many important ontributions by the Japanese shool.For the purpose of this hapter, any quantum state representing a partiularpreparation of a quantum system, is desribed by a density matrix (positiveselfadjoint operator of trae one) on the Hilbert spaeH assoiated to the system.The algebra of observables is B(H), and the expetation of an observable a ∈
B(H) with respet to the state ρ is Tr(ρa). A measurement M with outomesin a measure spae (X ,Σ) is ompletely determined by a σ-additive olletionof positive selfadjoint operators M(A) on H, where A is an event in Σ. Thisolletion is alled a positive operator valued measure. The distribution of theresults X when the system is in state ρ is given by Pρ(A) = Tr(ρM(A)).



7.2 State estimation 161We are given n systems identially prepared in state ρ and we are allowed toperform a measurement Mn whose outome is the estimator ρ̂n as disussed inthe Introdution.The dimension of the density matrix may be �nite, suh as in the ase of qubits ord-levels atoms, or in�nite as in the ase of the state of a monohromati beam oflight. In the �nite or parametri ase one expets that the risk onverges to zeroas n−1 and the optimal measurement-estimator sequene (Mn, ρ̂n) ahieves thebest onstant in front of the n−1 fator. In the non-parametri ase the rates ofonvergene are in general slower that n−1 beause one has to simultaneously es-timate an in�nite number of matrix elements, eah with rate n−1. An importantexample of suh an estimation tehnique is that of quantum homodyne tomogra-phy in quantum optis [Vogel and Risken, H., 1989℄. This allows the estimationwith arbitrary preision [D'Ariano et al., 1995, Leonhardt et al., 1995, 1996℄ ofthe whole density matrix of a monohromati beam of light by repeatedly mea-suring a su�iently large number of identially prepared beams [Smithey et al.,1993, Shiller et al., 1996, Zavatta et al., 2004℄. Artiles et al. [2005℄, Butueaet al. [2007℄ have shown how to formulate the problem of estimating in�nite di-mensional states without the need for hoosing a ut-o� in the dimension of thedensity matrix, and how to onstrut optimal minimax estimators of the Wignerfuntion for a lass of �smooth� states.If we have some prior knowledge about the preparation proedure, we may enodethis by parametrizing the possible states as ρ = ρθ with θ ∈ Θ some unknownparameter. The problem is then to estimate θ optimally with respet to a distanefuntion on Θ.Indeed, one of the main problems in the �nite dimensional ase is to �nd optimalestimation proedures for a given family of states. It is known that if the state ρis pure or belongs to a one parameter family, then separate measurements ahievethe optimal rate of the lass of joint measurements [Matsumoto, 2002℄. Howeverfor multi-dimensional families of mixed states this is no longer the ase and jointmeasurements perform stritly better than separate ones [Gill and Massar, 2000℄.In the Bayesian setup, one optimizes Rπ(Mn, ρ̂n) for some prior distribution
π. We refer to [Jones, 1994, Massar and Popesu, 1995, Latorre et al., 1998,Fisher et al., 2000, Hannemann et al., 2002b, Bagan et al., 2002, Embaher andNarnhofer, 2004, Bagan et al., 2005℄ for the pure state ase, and to [Cira et al.,1999, Vidal et al., 1999, Mak et al., 2000, Keyl and Werner, 2001, Bagan et al.,2004, Zyzkowski and Sommers, 2005, Bagan et al., 2006℄ for the mixed statease. The methods used here are based on group theory and an be applied onlyto invariant prior distributions and ertain distane funtions. In partiular, theoptimal ovariant measurement in the ase of ompletely unknown qubit stateswas found by Bagan et al. [2006℄ and Hayashi and Matsumoto [2004℄, but it hasthe drawbak that it does not give any lue as to how it an be implemented in



162 Optimal estimation of qubit states with ontinuous time measurementsa real experiment.In the pointwise approah [Hayashi, 2002a, Hayashi and Matsumoto, 2005, Gilland Massar, 2000, Barndor�-Nielsen and Gill, R., 2000, Fujiwara and Nagaoka,H., 1995, Matsumoto, 2002, Barndor�-Nielsen et al., 2003, Hayashi and Mat-sumoto, 2004℄ one tries to minimize the risk for eah unknown state ρ. As theoptimal measurement-estimator pair annot depend on the state itself, one op-timizes the maximum risk Rmax(Mn, ρ̂n), (see (7.3)), or a loal version of thiswhih will be de�ned shortly. The advantage of the pointwise approah is thatit an be applied to arbitrary families of states and a large lass of loss funtionsprovided that they are loally quadrati in the hosen parameters. The underly-ing philosophy is that as the number n of states is su�iently large, the problemeases to be global and beomes a loal one as the error in estimating the stateparameters is of the order n−1/2.The Bayesian and pointwise approahes an be ompared [Gill, 2005a℄, and in fatfor large n the prior distribution π of the Bayesian approah beomes inreasinglyirrelevant and the optimal Bayesian estimator beomes asymptotially optimalin the minimax sense and vie versa.7.2.1 Qubit state estimation: the loalization prinipleLet us now pass to the quantum statistial model whih will be the objet ofour investigations. Let ρ ∈M2(C) be an arbitrary density matrix desribing thestate of a qubit. Given n identially prepared qubits with joint state ρ⊗n, wewould like to optimally estimate ρ based on the result of a properly hosen jointmeasurementMn. For simpliity of the exposition we assume that the outome ofthe measurement is an estimator ρ̂n ∈M2(C). In pratie however, the result Xmay belong to a ompliated measure spae (in our ase the spae of ontinuoustime paths) and the estimator is a funtion of the �raw� data ρ̂n := ρ̂n(X). Thequality of the estimator at the state ρ is quanti�ed by the risk
Rρ(Mn, ρ̂n) := Eρ(d(ρ, ρ̂n)2),where d is a distane between states. The above expetation is taken with re-spet to the distribution Pρ(dx) := Tr(ρM(dx)) of the measurement results,where M(dx) represents the assoiated positive operator valued measure of themeasurement M . In our exposition d will be the trae norm
‖ρ1 − ρ2‖1 := Tr(|ρ1 − ρ2|),but similar results an be obtained using the �delity distane. The aim is to �nda sequene of measurements and estimators (Mn, ρ̂n) whih is asymptotiallyoptimal in the loal minimax sense: for any given ρ0

lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nRρ(Mn, ρ̂n) ≤ lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nRρ(Nn, ρ̌n),



7.2 State estimation 163for any other sequene of measurement-estimator pairs (Nn, ρ̌n). The fator n isinserted beause typially Rρ(Mn, ρ̂n) is of the order 1/n and the optimization isabout obtaining the smallest onstant fator possible. The inequality says thatone annot �nd an estimator whih performs better that ρ̂n over a ball of size
n−1/2+ǫ entered at ρ0, even if one has the knowledge that the state ρ belongsto that ball!Here, and elsewhere in the hapter ǫ will appear in di�erent ontexts, as a generistritly positive number and will be hosen to be su�iently small for eah spei�use. At plaes where suh notation may be onfusing we will use additionalsymbols to denote small onstants.As set forth in the Introdution, our measurement proedure onsists of two steps.The �rst one is to perform separate measurements of σx, σy and σz on a fration
ñ = ñ(n) of the systems. In this way we obtain a rough estimate ρ̃n of thetrue state ρ whih lies in a loal neighborhood around ρ with high probability.The seond step uses the information obtained in the �rst step to perform ameasurement whih is optimal preisely for the states in this loal neighborhood.The seond step ensures optimality and requires more sophistiated tehniquesinspired by the theory of loal asymptoti normality for qubit states [Guµ  andKahn, 2006℄. We begin by showing that the �rst step amounts to the fat that,without loss of generality, we may assume that the unknown state is in a loalneighborhood of a known state. This may serve also as an a posteriori justi�ationof the de�nition of loal minimax optimality.Lemma 7.2.1. Let Mi denote the measurement of the σi spin omponent of aqubit with i = x, y, z. We perform eah of the measurements Mi separately on
ñ/3 identially prepared qubits and de�ne

ρ̃n =
1

2
(1 + r̃σ), if |r̃| ≤ 1,where r̃ = (r̃x, r̃y, r̃z) is the vetor average of the measured omponents. If |r̃| > 1then we de�ne ρ̃n as the state whih has the smallest trae distane to the righthand side expression. Then for all ǫ ∈ [0, 2], we have

P
(
‖ρ̃n − ρ‖2

1 > 3n2ǫ−1
)
≤ 6 exp(− 1

2 ñn
2ǫ−1), ∀ρ.Furthermore, for any 0 < κ < ǫ/2, if ñ = n1−κ, the ontribution to the risk

E(‖ρ̃n − ρ‖2
1) brought by the event E = [ ‖ρ̃n − ρ‖1 >

√
3n−1/2+ǫ ] satis�es

E
(
‖ρ̃n − ρ‖2

1 χE
)
≤ 24 exp(− 1

2n
2ǫ−κ) = o(1).Proof. For eah spin omponent σi we obtain i.i.d oin tossesXi with distribution

P(Xi = ±1) = (1 ± ri)/2 and average ri.



164 Optimal estimation of qubit states with ontinuous time measurementsHoe�ding's inequality [van der Vaart and Wellner, J.A., 1996℄ then states thatfor all c > 0, we have P(|Xi − X̃|2 > c) ≤ 2 exp(− 1
2 ñc). By using this inequalitythree times with c = n2ǫ−1, one for eah omponent, we get

P

(
3∑

1

|r̃i − ri|2 > 3n2ǫ−1

)
≤ 6 exp(− 1

2 ñn
2ǫ−1) ∀ρ,whih implies the statement for the norm distane sine ‖ρ̃n−ρ‖2

1 =
∑
i |r̃i−ri|2.The bound on onditional risk follows from the previous bound and the fat that

‖ρ− ρ̃n‖2
1 ≤ 4.In the seond step of the measurement proedure we rotate the remaining n− ñqubits suh that after rotation the vetor r̃ is parallel to the z-axis. Afterwards,we ouple the systems to the �eld and perform ertain measurements in the �eldwhih will determine the �nal estimator ρ̂n. The details of this seond step aregiven in setions 7.4 and 7.5, but at this moment we an already prove thatthe e�et of errors in the the �rst stage of the measurement is asymptotiallynegligible ompared to the risk of the seond estimator. Indeed by Lemma 7.2.1we get that if ñ = n1−κ, then the probability that the �rst stage gives a �wrong�estimator (one whih lies outside the loal neighborhood of the true state) is ofthe order exp(− 1

2n
2ǫ−κ) and so is the risk ontribution. As the typial risk ofestimation is of the order 1/n, we see that the �rst step is pratially �always�plaing the estimator in a neighborhood of order n−1/2+ǫ of the true state ρ, asshown in Figure 7.2. In the next setion we will show that for suh neighborhoods,the state of the remaining n − ñ systems behaves asymptotially as a Gaussianstate. This will allow us to devise an optimal measurement sheme for qubitsbased on the optimal measurement for Gaussian states.

7.3 Loal asymptoti normalityThe optimality of the seond stage of the measurement relies on the onept ofloal asymptoti normality [van der Vaart, 1998, Guµ  and Kahn, 2006℄. After ashort introdution, we will prove that LAN holds for the qubit ase, with radius ofvalidity n−1/2+η for all η ∈ [0, 1/4). We will also show that its rate of onvergeneis O(n−1/4+η+ǫ) for arbitrarily small ǫ.



7.3 Loal asymptoti normality 1657.3.1 Introdution to LAN and some de�nitionsLet ρ0 be a �xed state, whih by rotational symmetry an be hosen of the form
ρ0 =

(
µ 0
0 1 − µ

)
, (7.4)for a given 1

2 < µ < 1. We parametrize the neighboring states as ρu/√n where
u = (ux, uy, uz) ∈ R3 suh that the �rst two omponents aount for unitaryrotations around ρ0, while the third one desribes the hange in eigenvalues

ρv := U (v)

(
µ+ vz 0

0 1 − µ− vz

)
U (v)∗ , (7.5)with unitary U(v) := exp(i(vxσx + vyσy)). The �loal parameter� u shouldbe thought of, as having a bounded range in R3 or may even �grow slowly� as

‖u‖ ≤ nη.Then, for large n, the joint state ρun := ρ⊗n
u/

√
n
of n idential qubits approahesa Gaussian state of the form Nu ⊗ φu with the parameter u appearing solely inthe average of the two Gaussians. By Nu we denote a lassial one-dimensionalnormal distribution entered at uz whih relays information about the eigenvaluesof ρu/√n. The seond term φu is a Gaussian state of a harmoni osillatorwhih is a displaed thermal equilibrium state with displaement proportional to

(ux, uy). It ontains information on the eigenvetors of ρu/√n. We thus have theonvergene
ρun ; Nu ⊗ φu,to a muh simpler family of lassial - quantum states for whih we know howto optimally estimate the parameter u. The asymptoti splitting into a lassialestimation problem for eigenvalues and a quantum one for the eigenbasis hasbeen also notied by Bagan et al. [2006℄ and by Hayashi and Matsumoto [2004℄,the latter oming pretty lose to our formulation of loal asymptoti normality.The preise meaning of the onvergene is given in Theorem 7.3.1 below. In short,there exist quantum hannels Tn whih map the states ρ⊗n

u/
√
n
into Nu ⊗φu withvanishing error in trae norm distane, and uniformly over the loal parameters

u. From the statistial point of view the onvergene implies that a statistialdeision problem onerning the model ρun an be mapped into a similar problemfor the model Nu ⊗ φu suh that the optimal solution for the latter an betranslated into an asymptotially optimal solution for the former. In our asethe problem of estimating the state ρ turns into that of estimating the loalparameter u around the �rst stage estimator ρ̃n playing the role of ρ0. For thefamily of displaed Gaussian states it is well known that the optimal estimationof the displaement is ahieved by the heterodyne detetion [Holevo, 1982, Yuen



166 Optimal estimation of qubit states with ontinuous time measurementsand Lax, M., 1973℄, while for the lassial part it su�ient to take the observationas best estimator. Hene the seond step will give an optimal estimator û of uand an optimal estimator of the initial state ρ̂n := ρû/
√
n. The preise result isformulated in Theorem 7.6.17.3.2 Convergene to the Gaussian modelWe desribe the state Nu⊗φu in more detail. Nu is simply the lassial Gaussiandistribution

Nu := N(uz, µ(1 − µ)), (7.6)with mean uz and variane µ(1 − µ).The state φu is a density matrix on H = F(C), the representation spae of theharmoni osillator. In general, for any Hilbert spae h, the Fok spae over h isde�ned as
F(h) :=

∞⊕

n=0

h ⊗s · · · ⊗s h, (7.7)with ⊗s denoting the symmetri tensor produt. Thus F(C) is the simplestexample of a Fok spae. Let
φ := (1 − p)

∑

k=0

pk|k〉〈k|, (7.8)be a thermal equilibrium state with |k〉 denoting the k-th energy level of theosillator and p = 1−µ
µ < 1. For every α ∈ C de�ne the displaed thermal state

φ(α) := D(α)φD(−α),where D(α) := exp(αa∗− ᾱa) is the displaement operator, mapping the vauumvetor |0〉 to the oherent vetor
|α〉 = exp(−α2/2)

∞∑

k=0

αk√
k!
|k〉.Here a∗ and a are the reation and annihilation operators on F(C), satisfying

[a, a∗] = 1. The family φu of states in whih we are interested is given by
φu := φ(

√
2µ− 1αu), u ∈ R

3, (7.9)with αu := −uy + iux. Note that φu does not depend on uz.We laim that the �statistial information� ontained in the joint state of n qubits
ρun := ρ⊗n

u/
√
n
, (7.10)is asymptotially idential to that ontained in the ouple (Nu, φu). More pre-isely:



7.3 Loal asymptoti normality 167Theorem 7.3.1. Let ρun be the family of states (7.5) on the Hilbert spae (C2
)⊗n,let Nu be the family (7.6) of Gaussian distributions, and let φu be the family (7.9)of displaed thermal equilibrium states of a quantum osillator. Then for eah nthere exist quantum hannels (trae preserving CP maps)

Tn : T ((C2)⊗n) → L1(R) ⊗ T (F(C)),

Sn : L1(R) ⊗ T (F(C)) → T ((C2)⊗n)with T (H) the trae-lass operators on H, suh that, for any 0 ≤ η < 1/4 andany ǫ > 0,
sup

‖u‖≤nη

‖Nu ⊗ φu − Tn (ρun) ‖1 = O(n−1/4+η+ǫ), (7.11)
sup

‖u‖≤nη

‖ρun − Sn (Nu ⊗ φu) ‖1 = O(n−1/4+η+ǫ). (7.12)Moreover, for eah ǫ2 > 0 there exists a funtion f(n) of order O(n−1/4+η+ǫ)suh that the above onvergene rates are bounded by f(n), with f independentof ρ0 as long as | 12 − µ| > ǫ2.Remark. Note that the equations (7.11) and (7.12) imply that the expressionson the left side onverge to zero as n → ∞. Following the lassial terminologyof Le Cam [1986℄, we will all this type of result strong onvergene of quantumstatistial models (experiments). Another loal asymptoti normality result hasbeen derived by Guµ  and Jen£ová [2007℄ based on a di�erent onept of onver-gene, whih is an extension of the weak onvergene of lassial (ommutative)statistial experiments. In the lassial set-up it is known that strong onver-gene implies weak onvergene for arbitrary statistial models, and the two areequivalent for statistial models onsisting of a �nite number of distributions.These two approahes to loal asymptoti normality in quantum statistis arebased on ompletely di�erent methods and the results are omplementary inthe sense that the weak onvergene of Guµ  and Jen£ová [2007℄ holds for thelarger lass of �nite dimensional states while the strong onvergene has morediret onsequenes as it is shown in this hapter for the ase of qubits. Bothresults are part of a larger e�ort to develop a general theory of loal asymptotinormality in quantum statistis. Several extensions are in order: from qubits toarbitrary �nite dimensional systems (strong onvergene), from �nite dimensionalto ontinuous variables systems, from idential system to orrelated ones, andasymptoti normality in ontinuous time dynamial set-up.Finally, let us note that the development of a general theory of onvergene ofquantum statistial models will set a framework for dealing with other importantstatistial deision problems suh as quantum loning [Werner, 1998℄ and quan-tum ampli�ation [Caves, 1982℄, whih do not neessarily involve measurements.



168 Optimal estimation of qubit states with ontinuous time measurementsRemark. The onstrution of the hannels Tn, Sn in the ase of �xed eigenval-ues (uz = 0) is given in Theorem 1.1 of Guµ  and Kahn [2006℄. It is also shownthat a similar result holds uniformly over ‖u‖ < C for any �xed �nite onstant
C. Guµ  and Jen£ová [2007℄ have shown that weak onvergene also holds in thegeneral ase, with unknown eigenvalues. A lassial omponent then appears inthe limit statistial experiment. In the above result we extend the domain ofvalidity of these Theorems from �loal� parameters ‖u‖ < C to �slowly growing�loal neighborhoods ‖u‖ ≤ nη with η < 1/4. Although this may be seen asmerely a tehnial improvement, it is in fat essential in order to insure that theresult of the �rst step of the estimation will, with high probability, fall insidea neighborhood ‖u‖ ≤ nη for whih loal asymptoti normality still holds (seeFigure 7.2).Proof. Following [Guµ  and Kahn, 2006℄ we will �rst indiate how the hannels
Tn are onstruted. The tehnial details of the proof an be found in Appendix7.A.The spae (C2

)⊗n arries two unitary representations. The representation πn of
SU(2) is given by πn(u) = u⊗n for any u ∈ SU(2), and the representation π̃n ofthe symmetri group S(n) is given by the permutation of fators

π̃n(τ) : v1 ⊗ · · · ⊗ vn 7→ vτ−1(1) ⊗ · · · ⊗ vτ−1(n), τ ∈ S(n).As [πn(u), π̃n(τ)] = 0 for all u ∈ SU(2), τ ∈ S(n), we have the deomposition
(
C

2
)⊗n

=

n/2⊕

j=0,1/2

Hj ⊗Hj
n. (7.13)The diret sum runs over all positive (half)-integers j up to n/2. For eah �xed

j, Hj
∼= C2j+1 is an irreduible representation Uj of SU(2) with total angularmomentum J2 = j(j + 1), and Hj

n
∼= Cnj is the irreduible representation of thesymmetri group S(n) with nj =
(

n
n/2−j

)
−
(

n
n/2−j−1

). The density matrix ρunis invariant under permutations and an be deomposed as a mixture of �blok�density matries
ρun =

n/2⊕

j=0,1/2

pn,u(j) ρuj,n ⊗ 1

nj
. (7.14)The probability distribution pn,u(j) is given by [Bagan et al., 2006℄:

pn,u(j) :=
nj

2µu − 1
(1 − µu)

n
2 −j

µ
n
2 +j+1
u

(
1 − p2j+1

u

)
, (7.15)with µu := µ+ uz/

√
n, pu := 1−µu

µu

. We an rewrite pn,u(j) as
pn,u(j) := Bn,µu

(n/2 + j) ×K(j, n, µ,u), (7.16)



7.3 Loal asymptoti normality 169where
Bn,ν(k) :=

(
n

k

)
νk (1 − ν)

n−k
, k = 0, . . . , nis a binomial distribution, and the fator K(j, n, µ,u) is given by

K(j, n, µ,u) :=
(
1 − p2j+1

u

) n+ (2(j − jn −√
nuz) + 1)/(2µu − 1)

n+ (j − jn −√
nuz + 1)/µu

,for jn := n(µ− 1/2).Now K(j, n, µ,u) = 1+O(n−1/2+ǫ) on the relevant values of j, i.e. the ones in aninterval of order n1/2+ǫ around jn, as long as µu is bounded away from 1/2, whihis automatially so for big n. As Bn,µu
(k) is the distribution of a sum of i.i.d.Bernoulli random variables, we an now use standard loal asymptoti normalityresults [van der Vaart, 1998℄ to onlude that if j is distributed aording to pn,u,then the entered and resaled variable

gn :=
j√
n
−√

n(µ− 1/2),onverges in distribution to a normal Nu, after an additional randomizationhas been performed. The latter is neessary in order to �smooth� the disretedistribution into a distribution whih is ontinuous with respet to the Lebesguemeasure, and will onvergene to the Gaussian distribution in total variationnorm.The measurement �whih blok�, orresponding to the deomposition (7.14), pro-vides us with a result j and a posterior state ρuj,n. The funtion gn = gn(j) (withan additional randomization) is the lassial part of the hannel Tn. The ran-domization onsists of �smoothening� with a Gaussian kernel of mean gn(j) andvariane 1/(2
√
n), i.e. with τn,j := (n1/4/

√
π) exp

(
−√

n(x− gn(j))
2
).Note that this measurement is not disturbing the state ρun in the sense that theaverage state after the measurement is the same as before.The quantum part of Tn is the same as in [Guµ  and Kahn, 2006℄ and onsists ofembedding eah blok state ρuj,n into the state spae of the osillator by meansof an isometry Vj : Hj → F(C),

Vj : |j,m〉 7→ |j −m〉,where {|j,m〉 : m = −j, . . . , j} is the eigenbasis of the total spin omponent
Lz :=

∑
i σ

(i)
z , f. equation (5.1) of [Guµ  and Kahn, 2006℄. Then the ation ofthe hannel Tn is
Tn :

⊕

j

pn,u(j)ρuj,n ⊗ 1

nj
7→
∑

j

pn,u(j) τn,j ⊗ Vjρ
u
j,nV

∗
j .



170 Optimal estimation of qubit states with ontinuous time measurementsThe inverse hannel Sn performs the inverse operation with respet to Tn. Firstthe osillator state is �ut-o�� to the dimension of an irreduible representationand then a blok obtained in this way is plaed into the deomposition (7.13)(with an additional normalization from the remaining in�nite dimensional blokwhih is negligible for the states in whih we are interested).The rest of the proof is given in Appendix 7.A.
7.4 Time evolution of the interating systemIn the previous setion, we have investigated the asymptoti equivalene betweenthe states ρun and Nu⊗φu by means of the hannel Tn. We now seek to implementthis in a physial situation. The Nu-part will follow in setion 7.5.2, the φu-partwill be treated in this setion.We ouple the n qubits to a Bosoni �eld; this is the physial implementation ofLAN. Subsequently, we perform a measurement in the �eld whih will providethe information about the state of the qubits; this is the utilization of LAN inorder to solve the asymptoti state estimation problem.In this setion we will limit ourselves to analyzing the joint evolution of the qubitsand �eld. The measurement on the �eld is desribed in setion 7.5.7.4.1 Quantum stohasti di�erential equationsIn the weak oupling limit [Gardiner and Zoller, 2004℄ the joint evolution of thequbits and �eld an be desribed mathematially by quantum stohasti di�er-ential equations (QSDE) [Hudson and Parthasarathy, 1984℄. The basi notionshere are the Fok spae, the reation and annihilation operators and the quan-tum stohasti di�erential equation of the unitary evolution. The Hilbert spaeof the �eld is the Fok spae F(L2(R)) as de�ned in (7.7). An important linearlyomplete set in F(L2(R)) is that of the exponential vetors

e(f) :=

∞⊕

n=0

1√
n!
f⊗n :=

∞⊕

n=0

1√
n!
|f〉n, f ∈ L2(R), (7.17)with inner produt 〈e(f), e(g)〉 = exp(〈f, g〉). The normalized exponential states

|f〉 := e−〈f,f〉/2e(f) are alled oherent states. The vauum vetor is |Ω〉 := e(0)and we will denote the orresponding density matrix |Ω〉〈Ω| by Φ. The quantum



7.4 Time evolution of the interating system 171noises are desribed by the reation and annihilation martingale operators A∗
t :=

a∗(χ[0,t]) and At := a(χ[0,t]) respetively, where χ[0,t] is the indiator funtionfor [0, t] and
a(f) : e(g) 7→ 〈f, g〉e(g).The inrements dAt := a(χ[0,t+dt]) − a(χ[0,t]) and dA∗

t play the role of non-ommuting integrators in quantum stohasti di�erential equations, in the sameway as the one an integrate against the Brownian motion in lassial stohastialulus.We now onsider the joint unitary evolution for qubits and �eld de�ned bythe quantum stohasti di�erential equation [Hudson and Parthasarathy, 1984,Bouten et al., 2004℄:
dUn(t) = (andA

∗
t − a∗ndAt −

1

2
a∗nandt)Un(t),where Un(t) is a unitary operator on (C2)⊗n ⊗F(L2(R)), and

an :=
1√
2jn

n∑

k=1

σ
(k)
+ , σ

(k)
+ := 1⊗· · ·⊗(σx+iσy)/2⊗· · ·⊗1, jn := (µ−1/2)n.As we will see later, the �oupling fator� 1/

√
jn of the order n−1/2, is neessaryin order to obtain onvergene to the unitary evolution of the quantum harmoniosillator and the �eld.We remind the reader that the n-qubit spae an be deomposed into irreduiblerepresentations as in (7.13), and the interation between the qubits and �eldrespets this deomposition

Un(t) =

n/2⊕

j=0,1/2

Uj,n(t) ⊗ 1,where 1 is the identity operator on the multipliity spae Hj
n, and

Uj,n(t) : Hj ⊗F(L2(R)) → Hj ⊗F(L2(R)),is the restrited oyle
dUj,n(t) = (ajdA

∗
t − a∗jdAt −

1

2
a∗jajdt)Uj,n(t), (7.18)with aj ating on the basis |j,m〉 of Hj as

aj |j,m〉 =
√
j −m

√
(j +m+ 1)/2jn |j,m+ 1〉,

a∗j |j,m〉 =
√
j −m+ 1

√
j +m/2jn |j,m− 1〉.



172 Optimal estimation of qubit states with ontinuous time measurementsRemark. We point out that the lowering operator for Lz ats as reator for ourut-o� osillator sine the highest vetor |j, j〉 orresponds by Vj to the vauumof the osillator. This hoie does not have any physial meaning but is onlyrelated with our onvention µ > 1/2. Had we hosen µ < 1/2, then the raisingoperator on the qubits would orrespond to reation operator on the osillator.By (7.14) the initial state ρ⊗n deomposes in the same way as the unitary oyle,and thus the whole evolution deouples into separate �bloks� for eah valueof j. We do not have expliit solutions to these equations but based on theonlusions drawn from LAN we expet that as n → ∞, the solutions will bewell approximated by similar ones for a oupling between an osillator and the�eld, at least for the states in whih we are interested. As a warm up exerise wewill start with this simpler limit ase where the states an be alulated expliitly.7.4.2 Solving the QSDE for the osillatorLet a∗ and a be the reation and annihilation operators of a quantum osillatorating on F(C). We ouple the osillator with the Bosoni �eld and the jointunitary evolution is desribed by the family of unitary operators U(t) satisfyingthe quantum stohasti di�erential equation
dU(t) = (adA∗

t − a∗dAt −
1

2
a∗adt)U(t).We hoose the initial (un-normalized) state ψ(0) := e(z) ⊗ |Ω〉, where z is anyomplex number, and we shall �nd the expliit form of the vetor state of thesystem and �eld at time t: ψ(t) := U(t)ψ(0).We make the following ansatz: ψ(t) = e(αt) ⊗ e(ft), where ft(s) := f(s)χ[0,t](s)for some f ∈ L2(R). For eah β ∈ C, g ∈ L2(R), de�ne I(t) := 〈e(β)⊗e(g), ψ(t)〉.We then have I(t) = exp(β̄α(t) + 〈g, ft〉), so that it satis�es

dI(t) =
(
β̄ d
dtα(t) + ḡ(t)f(t)

)
I(t)dt . (7.19)We now alulate d

dtI(t) with the help of the QSDE. Sine Ate(f) = 〈χ[0,t], f〉e(f),we have, for ontinuous g, dAte(g) = g(t)e(g)dt. However, sine Ase(ft) is on-stant for s ≥ t, we have dAte(ft) = 0. Thus
dI(t) = 〈e(β)⊗ e(g), (adA∗

t − a∗dAt− 1
2a

∗adt)ψ(t)〉 = (ḡ(t)α(t)− 1
2 β̄α(t))I(t)dt .(7.20)Equating (7.19) with (7.20) for all t, β and ontinuous g, we �nd f(s) = α(s),

d
dtα(t) = − 1

2α(t). Thus α(t) = α(0)e−
1
2 t, ft(s) = α(0)χ[0,t](s)e

− 1
2 s with α(0) =

z.In onlusion ψ(t) = e(ze−
1
2 t) ⊗ e(ze−

1
2 sχ[0,t](s)). For later use we denote thenormalized solution by ψz(t) := U(t)|z〉 ⊗ |Ω〉 = e−|z|2/2U(t)e(z) ⊗ |Ω〉.



7.4 Time evolution of the interating system 1737.4.3 QSDE for large spinWe onsider now the unitary evolution for qubits and �eld:
dUn(t) = (andA

∗
t − a∗ndAt −

1

2
a∗nandt)Un(t).It is no longer possible to obtain an expliit expression for the joint vetor state

ψn(t) at time t. However we will show that for the states in whih we areinterested, a satisfatory expliit approximate solution exists.The trik works for an arbitrary family of unitary solutions of a quantum stohas-ti di�erential equation dU(t) = GdtU(t), and the general idea is the following: if
ψ(t) is the true state ψ(t) = U(t)ψ and ξ(t) is a vetor desribing an approximateevolution (ψ(0) = ξ(0)) then with U tt+dt := U(t+ dt)U(t)−1 we get
ψ(t+ dt) − ξ(t+ dt) = ψ(t+ dt) − U tt+dtξ(t) + U tt+dtξ(t)

−ξ(t) + ξ(t) − ξ(t+ dt)

= U tt+dt [ψ(t) − ξ(t)] + [U(t+ dt) − U(t)]U(t)−1ξ(t)

+[ξ(t) − ξ(t+ dt)]

= U tt+dt [ψ(t) − ξ(t)] +Gdtξ(t) − dξ(t).By taking norms we get
d‖ψ(t) − ξ(t)‖ ≤ ‖Gdtξ(t) − dξ(t)‖. (7.21)The idea is now to devise a family ξ(t) suh that the right side is as small aspossible.We apply this tehnique blok-wise, that is to eah unitary Uj,n(t) ating on

Hj ⊗F(L2(R)) (see equation (7.18)) for a �typial� j ∈ Jn (see equation (7.39)).By means of the isometry Vj we an embed the spae Hj into the �rst 2j + 1levels of the osillator and for simpliity we will keep the same notions as beforefor the operators ating on F(C). As initial states for the qubits we hoose theblok states ρuj,n.Theorem 7.4.1. Let ρuj,n(t) = Uj,n(t)
[
ρuj,n ⊗ Φ

]
U∗
j,n(t) be the j-th blok of thestate of qubits and �eld at time t. Let φu(t) := U(t) [φu ⊗ Φ] U(t)∗ be the jointstate of the osillator and �eld at time t. For any η < 1/6, for any ǫ > 0,

sup
j∈Jn

sup
‖u‖≤nη

sup
t

‖ρuj,n(t) − φu(t)‖1 = O(n−1/4+η+ǫ, n−1/2+3η+ǫ). (7.22)Proof. From the proof of the loal asymptoti normality Theorem 7.3.1 we knowthat the initial states of the two unitary evolutions are asymptotially lose toeah other
sup
j∈Jn

sup
‖u‖≤nη

‖ρuj,n − φu‖1 = O(n−1/4+η+ǫ). (7.23)



174 Optimal estimation of qubit states with ontinuous time measurementsThe proof onsists of two estimation steps. In the �rst one, we will devise anotherinitial state ρ̃uj,n whih is an approximation of φu and thus also of ρuj,n:
sup
j∈Jn

sup
‖u‖≤nη

‖ρ̃uj,n − φu‖1 = O(e−n
ǫ

). (7.24)In the seond estimate we show that the evolved states ρ̃uj,n(t) and φu(t) areasymptotially lose to eah other
sup
j∈Jn

sup
‖u‖≤nη

sup
t

‖ρ̃uj,n(t) − φu(t)‖1 = O(n−1/4+η+ǫ, n−1/2+3η+ǫ). (7.25)This estimate is important beause, the two trajetories are driven by di�erentHamiltonians, and in priniple there is no reason why they should stay lose toeah other.From (7.23), (7.24) and (7.25), and using triangle inequality we get
sup
j∈Jn

sup
‖u‖≤nη

sup
t

‖ρuj,n(t) − φu(t)‖1 = O(n−1/4+η+ǫ, n−1/2+3η+ǫ).The following diagram illustrates the above estimates. The upper line onernsthe time evolution of the blok state ρuj,n and the �eld. The lower line desribesthe time evolution of the osillator and the �eld. The estimates show that thediagram is �asymptotially ommutative� for large n.
S(Hj)

Idj⊗Φ−−−−→ S(Hj ⊗F)
Uj,n(t)−−−−→ S(Hj ⊗F)

Vj ·V ∗
j

y
y

y

S(F(C))
Id⊗Φ−−−−→ S(F(C) ⊗F)

U(t)−−−−→ S(F(C) ⊗F)For the rest of the proof, we refer to Appendix 7.B.We have shown how the mathematial statement of LAN (the joint state of qubitsonverges to a Gaussian state of a quantum osillator plus a lassial Gaussianrandom variable) an in fat be physially implemented by oupling the spins tothe environment and letting them �leak� into the �eld. In the next setion, we willuse this for the spei� purpose of estimating u by performing a measurement inthe �eld.



7.5 The seond stage measurement 1757.5 The seond stage measurementWe now desribe the seond stage of our measurement proedure. Reall thatin the �rst stage a relatively small part ñ = n1−κ, 1 > κ > 0, of the qubits ismeasured and a rough estimator ρ̃n is obtained. The purpose of this estimatoris to loalize the state within a small neighborhood suh that the mahinery ofloal asymptoti normality of Theorem 7.3.1 an be applied.In Theorem 7.4.1 the loal asymptoti normality was extended to the level oftime evolution of the qubits interating with a bosoni �eld. We have proventhat at time t the joint state of the qubits and �eld is
ρun(t) :=

n/2⊕

j=0,1/2

pn,u(j)
1

2πs2

∫

C

dz e−|z−√
2µ−1αu|2/2s2 exp(−|z|2) ×

|e(ze−t/2)j〉〈e(ze−t/2)j | ⊗ |e(ze−u/2χ[0,t](u))〉〈e(ze−u/2χ[0,t](u))|
+O(nη−1/4+ǫ, n3η−1/2+ǫ),for ‖u‖ ≤ nη. The index j serves to remind the reader that the �rst exponentialstates live in di�erent opies F(C)j of the osillator spae, orresponding to Hjvia the isometry Vj . We will ontinue to identify Hj with its image in F(C)j .We an now approximate the above state by its limit for large t, sine

exp(−|z|2)〈e(ze−t/2)j | j, j〉〈e(ze−u/2χ[0,t](u)) | e(ze−u/2)〉 = exp(−|z|2e−t).(7.26)As we are always working with ‖u‖ ≤ nη, the only relevant z are bounded by
nη+δ for small δ. (The remainder of the Gaussian integral has an exponentiallydereasing norm, as disussed before). Thus, for large enough time (i.e. for
t ≥ ln(n)), we an write ρun(t) = ρun(∞) +O(nη−1/4+ǫ, n3η−1/2+ǫ) with

ρun(∞) :=

n/2⊕

j=0,1/2

pn,u(j)|j, j〉〈j, j|⊗

[
1

2πs2

∫

C

dz e−|z−√
2µ−1αu|2/2s2 |e(ze−u/2)〉〈e(ze−u/2)| exp(−|z|2)

]
.(7.27)Thus, the �eld is approximately in the state φu depending on (ux, uy), whihis arried by the mode (u 7→ e−u/2χ[0,∞)(u)) ∈ L2(R) denoted for simpliity by

e−u/2. The atoms end up in a mixture of |j, j〉 states with oe�ients pn,u(j),



176 Optimal estimation of qubit states with ontinuous time measurementswhih depend only on uz, and are well approximated by the Gaussian randomvariable Nu as shown in Theorem 7.3.1. Moreover sine there is no orrelationbetween atoms and �eld, the statistial problem deouples into one onerningthe estimation of the displaement in a family of Gaussian states φu, and one forestimating the enter of Nu.For the former problem, the optimal estimation proedure is known to be theheterodyne measurement [Holevo, 1982, Yuen and Lax, M., 1973℄; for the latter,we perform a �whih blok� measurement. These measurements are desribed inthe next two subsetions.7.5.1 The heterodyne measurementA heterodyne measurement is a �joint measurement� of the quadratures Q :=
(a+ a∗)/

√
2 and P := −i(a− a∗)/

√
2 of a quantum harmoni osillator whih inour ase represents a mode of light. Sine the two operators do not ommute, theprie to pay is the addition of some �noise� whih will allow for an approximatemeasurement of both operators. The light beam passes through a beamsplitterhaving a vauum mode as the seond input, and then one performs a homodyne(quadrature) measurement on eah of the two emerging beams. If Qv and Pvare the vauum quadratures then we measure the following output quadratures

Q1 := (Q + Qv)/
√

2 and P2 := (P − Pv)/
√

2, with [Q1,P2] = 0. Sine thetwo input beams are independent, the distribution of √2Q1 is the onvolutionbetween the distribution of Q and the distribution of Qv, and similarly for√2P2.In our ase we are interested in the mode e−u/2 whih is in the state φu, upto a fator of order O(nη−1/4+ǫ, n3η−1/2+ǫ). From (7.9) we obtain that thedistribution of Q is N(
√

2(2µ− 1)ux, 1/(2(2µ − 1))), that of P is
N(
√

2(2µ− 1)uy, 1/(2(2µ−1))), and the joint distribution of the resaled output
(
(Q + Qv)/

√
2(2µ− 1) , (P − Pv)/

√
2(2µ− 1)

)
,is

N(ux, µ/(2(2µ− 1)2)) ×N(uy, µ/(2(2µ− 1)2)). (7.28)We will denote by (ũx, ũy) the result of the heterodyne measurement resaled bythe fator √
2µ− 1 suh that with good approximation (ũx, ũy) has the abovedistribution and is an unbiased estimators of the parameters (ux, uy).Sine we know in advane that the parameters (ux, uy) must be within the ra-dius of validity of LAN we modify the estimators (ũx, ũy) to aount for thisinformation and obtain the �nal estimator (ûx, ûy):

ûi =

{
ũi if |ũi| ≤ 3nη

0 if |ũi| > 3nη
(7.29)



7.5 The seond stage measurement 177Notie that if the true state ρ is in the radius of validity of LAN around ρ̃, then
‖u‖ ≤ nη, so that |ûi−ui| ≤ |ũi−ui|. We shall use this when proving optimalityof the estimator.7.5.2 Energy measurementHaving seen the φu-part, we now move to the Nu-part of the equivalene between
ρun and Nu ⊗ φu. This too is a oupling to a bosoni �eld, albeit a di�erentoupling. We also desribe the measurement in the �eld whih will provide theinformation on the qubit states.The �nal state of the previous measurement, restrited to the atoms alone (with-out the �eld), is obtained by a partial trae of equation (7.27) (for large time)over the �eld

τun =

n/2∑

j=0,1/2

pn,u(j)|j, j〉〈j, j| +O(nη−1/4+ǫ, n3η−1/2+ǫ) .We will take this as the initial state of the seond measurement, whih willdetermine j.A diret oupling to the J2 does not appear to be physially available, but aoupling to the energyJz is realizable. This su�es, beause the above statesatis�es j = m (up to order O(nη−1/4+ǫ, n3η−1/2+ǫ)). We ouple the atoms to anew �eld (in the vauum state |Ω〉) by means of the interation
dUt = {Jz(dA∗

t − dAt) − 1
2J

2
z dt}Ut ,with Jz := 1√

n

∑n
k=1 σz. Sine this QSDE is `essentially ommutative', i.e. drivenby a single lassial noise Bt = (A∗

t −At)/i, the solution is easily seen to be
Ut = exp(Jz ⊗ (A∗

t −At)) .Indeed, we have df(Bt) = f ′(Bt)dBt+
1
2f

′′(Bt)dt by the lassial It� rule, so that
d exp(iJz ⊗Bt) = {iJzdBt − 1

2J
2
z dt} exp(iJz ⊗Bt) .For an initial state |j,m〉 ⊗ |Ω〉, this evolution gives rise to the �nal state

Ut|j,m〉 ⊗ Ω = |j,m〉 ⊗ exp((m/
√
n)(A∗

t −At))Ω

= |j,m〉 ⊗ |(m/√n)χ[0,t]〉,



178 Optimal estimation of qubit states with ontinuous time measurementswhere |f〉 ∈ F(L2(R)) denotes the normalized vetor exp(−〈f, f〉/2)e(f). Ap-plying this to the states |j, j〉〈j, j| in τun yields
Ut τ

u
n ⊗ ΦU∗

t =

n/2∑

j=0,1/2

pn,u(j)|j, j〉〈j, j| ⊗ |j/√nχ[0,t]〉〈j/
√
nχ[0,t]|

+O(nη−1/4+ǫ, n3η−1/2+ǫ) .The �nal state of the �eld results from a partial trae over the atoms; it is givenby
n/2∑

j=0,1/2

pn,u(j) |(j/√n)χ[0,t]〉〈(j/
√
n)χ[0,t]| +O(nη−1/4+ǫ, n3η−1/2+ǫ) . (7.30)We now perform a homodyne measurement on the �eld, whih amounts to adiret measurement of (At + A∗

t )/2t. In the state |(j/√nχ[0,t]〉, this yields thevalue of j with ertainty for large time (i.e. t ≫ √
n). Indeed, for this state,

E((At + A∗
t )/2t) = j/

√
n, whereas Var(At + A∗

t )/2t) = 1/(4t). Thus the proba-bility distribution pn,u is reprodued up to order O(nη−1/4+ǫ, n3η−1/2+ǫ) in L1-distane.The following is a reminder from the proof of Theorem 7.3.1. If we start with jdistributed aording to pn(j) and we smoothen j√
n
−√

n(µ−1/2)with a Gaussiankernel, then we obtain a random variable gn whih is ontinuously distributed on
R and onverges in distribution to N(uz, µ(1−µ)), the error term being of order
O(nη−1/2) + O(nǫ−1/2). For j distributed aording to the atual distribution,as measured by the homodyne detetion experiment, we an therefore state that
gn is distributed aording to
N(uz, µ(1 − µ)) + O(nη−1/4+ǫ, n3η−1/2+ǫ) +O(nη−1/2) +O(nǫ−1/2). (7.31)As in the ase of (ûx, ûy), we take into aount the range of validity of LAN byde�ning the �nal estimator

ûz =

{
gn if |gn| ≤ 3nη

0 if |gn| > 3nη . (7.32)Similarly, we note that if the true state ρ is in the radius of validity of LANaround ρ̃, then ‖u‖ ≤ nη, so that |ûz − uz| ≤ |ũz − uz|.7.6 Asymptoti optimality of the estimatorIn order to estimate the qubit state, we have proposed a strategy onsisting ofthe following steps. First, we use ñ := n1−κ opies of the state ρ to get a rough



7.6 Asymptoti optimality of the estimator 179estimate ρ̃n. Then we ouple the remaining qubits with a �eld, and performa heterodyne measurement. Finally, we ouple to a di�erent �eld, followed byhomodyne measurement. From the measurement outomes, we onstrut anestimator ρ̂n := ρûn/
√
n.This strategy is asymptotially optimal in a global sense: for any true state ρeven if we knew beforehand that the true state ρ is in a small ball around aknown state ρ0, it would be impossible to devise an estimator that ould dobetter asymptotially, than our estimator ρ̂n on a small ball around ρ. Morepreisely:Theorem 7.6.1. Let ρ̂n be the estimator de�ned above. For any qubit state

ρ0 di�erent from the totally mixed state, for any sequene of estimators ˆ̺n, thefollowing loal asymptoti minimax result holds for any 0 < ǫ < 1/12:
lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nR(ρ, ρ̂n) ≤ lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nR(ρ, ˆ̺n). (7.33)Let (µ0, 1 − µ0) be the eigenvalues of ρ0 with µ0 > 1/2. Then the loal asymptotiminimax risk is
lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nR(ρ, ρ̂n) = Rminimax(µ0) = 8µ0 − 4µ2
0. (7.34)Proof. We write the risk as the sum of two terms orresponding to the events Eand Ec that ρ̃n is inside or outside the ball of radius n−1/2+ǫ around ρ. Reallthat LAN is valid inside the ball. Thus

R(ρ, ρ̂n) = E(‖ρ− ρ̂n‖2
1 χEc) + E(‖ρ− ρ̂n‖2

1 χE),where the expetation omes from ρ̂n being random. The distribution of theresult ˆrhon of our measurement proedure applied to the true unknown state ρdepends on ρ. We bound the �rst part by R1 and the seond part by R2 as shownbelow.
R1 equals P(Ec) times the maximum error, whih is 4 sine for any pair of densitymatries ρ and σ, we have ‖ρ− σ‖2

1 ≤ 4. Thus
R1 = 4P(‖ρ− ρ̃n‖1 ≥ n−1/2+ǫ).Aording to Lemma 7.2.1 this probability goes to zero exponentially fast, there-fore the ontribution brought by this term an be negleted.We an now assume that ρ̃n is in the range of validity of loal asymptoti nor-mality and we an write ρ⊗n = ρun with u the loal parameter around ρ̃n. We



180 Optimal estimation of qubit states with ontinuous time measurementsget the following inequalities for the seond term in the risk.
E(‖ρ− ρ̂n‖2

1 χE) ≤ E

[
‖ρ̂n − ρ‖2

1

∣∣∣ ‖ρ̃n − ρ‖1 ≤ n−1/2+ǫ
]

≤ sup
‖ρ−ρ0‖<n−1/2+ǫ

E

[
‖ρ̂n − ρ‖2

1

∣∣∣ ρ̃n = ρ0

]

≤ sup
‖ρ−ρ0‖<n−1/2+ǫ

Eρun(∞)

[
‖ρ̂n − ρ‖2

1

∣∣∣ ρ̃n = ρ0

]

+ sup
‖ρ−ρ0‖<n−1/2+ǫ

‖ρun(t) − ρun(∞)‖1 sup
ûn

‖ρ̂n − ρ‖2
1

≤ sup
‖ρ−ρ0‖<n−1/2+ǫ

Eρun(∞)

[
‖ρ̂n − ρ‖2

1

∣∣∣ ρ̃n = ρ0

]

+ cn−1+2η sup
‖ρ−ρ0‖<n−1/2+ǫ

‖ρun(t) − ρun(∞)‖1 = R2. (7.35)The �rst two inequalities are trivial. In the third inequality we hange the ex-petation from the one with respet to the probability distribution of our data
Pρun(t) to the probability distribution Pρun(∞). In doing so, an additional term
‖Pρun(t) − Pρun(∞)‖1 appears whih is bounded from above by ‖ρun(t) − ρun(∞)‖1.In the last inequality we an bound ‖ρ̂n − ρ‖2

1 by cn−1+2η for some onstant c.Indeed from de�nitions (7.29) and (7.32) we know that ‖ρ̂n − ρ0‖1 ≤ c′n−1/2+ηand additionally we are under the assumption ‖ρ− ρ0‖1 ≤ n−1/2+ǫ with ǫ < η.For the following, reall that all our LAN estimates are valid uniformly aroundany state ρ0 = ρ̃ as long as µ− 1/2 ≥ ǫ2 > 0. As we are working with ρ di�erentfrom the totally mixed state and ‖ρ− ρ̃‖ ≤ n−1/2+ǫ, we know that for big enough
n, µ̃− 1/2 ≥ ǫ2 for any possible ρ̃. We an then apply the uniform results of theprevious setions.The seond term in R2 is O(n−5/4+3η+δ , n−3/2+5η+δ) where δ > 0 an be hosenarbitrarily small. Indeed in the end of setion 7.4 we have proven that after time
t ≥ lnn, the following holds: ‖ρun(t) − ρun(∞)‖1 = O(n−1/4+η+δ , n−1/2+3η+δ).The ontribution to nR(ρ, ρ̂n) brought by this term will not ount in the limit,as long as η and ǫ are hose suh that 1/12 > η > ǫ.We now deal with the �rst term in R2. We write ρ in loal parametrizationaround ρ0 = ρ̃ as ρun/

√
n. We have

‖ρ̂n − ρ‖2
1 = ‖ρu/√n − ρûn/

√
n‖2

1

= 4
(uz − ûz)

2 + (2µ− 1)2((ux − ûx)
2 + (uy − ûy)

2)

n

+O(‖u − ûn‖3n−3/2). (7.36)The remainder term O(‖u − ûn‖3n−3/2) is negligible. It is O(n3η−3/2) whihdoes not ontribute to nR(ρ, ρ̂n) for η < 1/6. This is beause on the one hand



7.6 Asymptoti optimality of the estimator 181we have asked for ‖ρ̃n − ρ‖ < n−1/2+ǫ, and on the other hand, we have boundedour estimator ûn by using (7.29) and (7.32).We now evaluate Eρun(∞)

[
d(u, ûn)2

] with the notation
d(u,v)2 := 4

[
(uz − vz)

2 + (2µ− 1)2((ux − vx)
2 + (uy − vy)

2)
]
. (7.37)Note that the risk of ûn is smaller than that of ũn (see disussion below (7.29)and (7.32)). Under the law Pρun(∞) the estimator ũn has a Gaussian distributionas shown in (7.28) and (7.31) with �xed and known variane and unknown expe-tation. In statistis this type of model is known as a Gaussian shift experiment[van der Vaart, 1998℄. Using (7.28) and (7.31), we get Eρun(∞)

[
(uz − ûz)

2
]
≤

µ(1 − µ) and Eρun(∞)

[
(ui − ûi)

2
]
≤ µ/(2(2µ − 1)2) for i = x, y. Substitutingthese bounds in (7.36), we obtain (7.34).We will now show that the sequene ρ̂n is optimal in the loal minimax sense:for any ρ0 and any other sequene of estimators ˆ̺n we have

R0 = lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nR(ρ, ˆ̺n) ≥ 8µ0 − 4µ2
0.We will �rst prove that the right hand side is the minimax risk Rminimax(µ0) forthe family of states Nu ⊗ φu whih is the limit of the loal families ρun of qubitstates entered around ρ0. We then extend the result to our sequene of quantumstatistial models ρun.The minimax optimality for Nu ⊗ φu an be heked separately for the lassialand the quantum part of the experiment. For the quantum part φu, the optimalmeasurement is known to be the heterodyne measurement. A proof of this fatan be found in Lemma 7.4 of [Guµ  and Kahn, 2006℄. For the lassial part,whih orresponds to the measurement of Lz, the optimal estimator is simply therandom variable X ∼ Nu itself [van der Vaart, 1998℄.We now end the proof by using the other diretion of LAN. Suppose that thereexists a better sequene of estimators ˆ̺n suh that

R0 < Rminimax(µ0) = 8µ0 − 4µ2
0.We will show that this leads to an estimator û of u for the family Nu ⊗ φuwhose maximum risk is smaller than the minimax risk Rminimax(µ0), whih isimpossible.By means of a beamsplitter one an divide the state φu into two independentGaussian modes, using a thermal state φ := φ0 as the seond input. If r and t arethe re�etivity and respetive transmitivity of the beamsplitter (r2+t2 = 1), thenthe transmitted beam has state φu

tr = φtu and the re�eted one φu
ref = φru. By



182 Optimal estimation of qubit states with ontinuous time measurementsperforming a heterodyne measurement on the latter, and observing the lassialpart Nu, we an loalize u within a big ball around the result ũ with highprobability, in the spirit of Lemma 7.2.1. More preisely, for any small ǫ̃ > 0 wean �nd a > 0 big enough suh that the risk ontribution from unlikely ũ's issmall
E(‖u− ũ‖2χ‖u−ũ‖>a) < ǫ̃.Summarizing the loalization step, we may assume that the parameter u satis�es

‖u‖ < a with an ǫ̃ loss of risk, where a = a(r, ǫ̃).Now let n be large enough suh that nǫ > a, then the parameter u falls withinthe domain of onvergene of the inverse map Sn of Theorem 7.3.1 and by (7.12)(with ǫ replaing η and δ replaing ǫ) we have
‖ρtun − S(N tu ⊗ φtu)‖1 ≤ Cn−1/4+ǫ+δ,for some onstant C.Next we perform the measurement leading to the estimator ˆ̺n and equivalentlyto an estimator ûn of u. Without loss of risk we an implement the ondition

‖u‖ < a into the estimator ûn in a similar fashion as in (7.29) and (7.32). Therisk of this estimation proedure for φu is then bounded from above by the sumof three terms: the risk nRρ(ˆ̺n)/t2 oming from the qubit estimation, the errorontribution from the map Sn whih is a2n−1/4+ǫ+δ, and the loalization riskontribution ǫ̃. This risk bound uses the same tehnique as the third inequalityof (7.35). The seond ontribution an be made arbitrarily small by hoosing nlarge enough, for ǫ < 1/4. From our assumption we have R0 < Rminimax(µ0)and we an hoose t lose to one suh that R0/t
2 < Rminimax(µ0) and furtherhoose ǫ̃ suh that R0/t

2 + ǫ̃ < Rminimax(µ0).In onlusion, we get that the risk for estimating u is asymptotially smaller thatthe risk of the heterodyne measurement ombined with observing the lassialpart whih is known to be minimax [Guµ  and Kahn, 2006℄. Hene no suhsequene ˆ̺n exists, and ρ̂n is optimal.Remark. In Theorem 7.33, we have used the risk funtion R(ρ, ρ̂) = E(d2(ρ, ρ̂)),with d the L1-distane d(ρ, ρ̂) = ‖ρ−ρ̂‖1. However, the obtained results an easilybe adapted to any distane measure d2(ρû, ρu) whih is loally quadrati in û−u,i.e.
d2(ρû, ρu) =

∑

α,β=x,y,z

γαβ(uα − ûα)(uβ − ûβ) +O(‖u − û‖3) .For instane, one may hoose d2(ρ̂, ρ) = 1 − F 2(ρ̂, ρ) with the �delity F (ρ̂, ρ) :=

Tr(
√√

ρ̂ρ
√
ρ̂). For non-pure states, this is easily seen to be loally quadrati



7.7 Conlusions 183with
γ =




(2µ0 − 1)2 0 0

0 (2µ0 − 1)2 0
0 0 1

1−(2µ0−1)2



 .For the orresponding risk funtion RF (ρ, ρ̂n) := E(1 − F 2(ρ, ρ̂n)), this yields
lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nRF (ρ, ρ̂n) = µ0 + 1/4 , (7.38)with the same asymptotially optimal ρ̂. The asymptoti rate RF ∼ 4µ0+1
4n wasfound earlier by Bagan et al. [2006℄, using di�erent methods.7.7 ConlusionsIn this hapter, we have shown two properties of quantum loal asymptoti nor-mality (LAN) for qubits. First of all, we have seen that its radius of validity isarbitrarily lose to n−1/4 rather than n−1/2. And seondly, we have seen howLAN an be implemented physially, in a quantum optial setup.We use these properties to onstrut an asymptotially optimal estimator ρ̂nof the qubit state ρ, provided that we are given n idential opies of ρ. Com-pared with other optimal estimation methods [Bagan et al., 2006, Hayashi andMatsumoto, 2004℄, our measurement tehnique makes a signi�ant step in thediretion of an experimental implementation.The onstrution and optimality of ρ̂n are shown in three steps.I In the preliminary stage, we perform measurements of σx, σy and σz on afration ñ = n1−κ of the n atoms. As shown in setion 7.2, this yields arough estimate ρ̃n whih lies within a distane n−1/2+ǫ of the true state ρwith high probability.II In setion 7.3, it is shown that loal asymptoti normality holds within a ballof radius n−1/2+η around ρ (η > ǫ). This means that loally, for n → ∞,all statistial problems onerning the n identially prepared qubits areequivalent to statistial problems onerning a Gaussian distribution Nuand its quantum analogue, a displaed thermal state φu of the harmoniosillator.Together, I and II imply that the priniple of LAN has been extended to a globalsetting. It an now be used for a wide range of asymptoti statistial problems,inluding the global problem of state estimation. Note that this hinges on therather subtle extension of the range of validity of LAN to neighborhoods of radiuslarger than n−1/2.



184 Optimal estimation of qubit states with ontinuous time measurementsIII LAN provides an abstrat equivalene between the n-qubit states ρ⊗n
u/

√
non the one hand, and on the other hand the Gaussian states Nu ⊗ φu. Insetions 7.4 and 7.5 it is shown that this abstrat equivalene an be im-plemented physially by two onseutive ouplings to the eletromagneti�eld. For the partiular problem of state estimation, homodyne and hetero-dyne detetion on the eletromagneti �eld then yield the data from whihthe optimal estimator ρ̂n is omputed.Finally, in setion 7.6, it is shown that the estimator ρ̂n, onstruted above, isoptimal in a loal minimax sense. Loal here means that optimality holds in aball of radius slightly bigger than n−1/2 around any state ρ0 exept the traialstate. That is, even if we had known beforehand that the true state lies withinthis ball around ρ0, we would not have been able to onstrut a better estimatorthan ρ̂n, whih is of ourse independent of ρ0.For this asymptotially optimal estimator, we have shown that the risk R on-verges to zero at rate R(ρ, ρ̂n) ∼ 8µ0−4µ2

0

n , with µ0 > 1/2 an eigenvalue of ρ.More preisely, we have
lim sup
n→∞

sup
‖ρ−ρ0‖1≤n−1/2+ǫ

nR(ρ, ρ̂n) = 8µ0 − 4µ2
0.The risk is de�ned as R(ρ, ρ̂) = E(d2(ρ, ρ̂)), where we have hosen d(ρ̂, ρ) to bethe L1-distane ‖ρ̂− ρ‖1 := Tr(|ρ̂− ρ|). This seems to be a rather natural hoiebeause of its diret physial signi�ane as the worst ase di�erene between theprobabilities indued by ρ̂ and ρ on a single event.Even still, we emphasize that the same proedure an be applied to a wide rangeof other risk funtions. Due to the loal nature of the estimator ρ̂n for large n,its rate of onvergene in a risk R is only sensitive to the lowest order Taylorexpansion of R in loal parameters û−u. The proedure an therefore easily beadapted to other risk funtions, provided that the distane measure d2(ρû, ρu) isloally quadrati in û − u.Remark. The totally mixed state (µ = 1/2) is a singular point in the param-eter spae, and Theorem 7.3.1 does not apply in this ase. The e�et of thesingularity is that the family of states (7.9) ollapses to a single degenerate stateof in�nite temperature. However this phenomenon is only due to our partiu-lar parametrisation, whih was hosen for its onveniene in desribing the loalneighborhoods around arbitrary states, with the exeption of the totally mixedstate. Had we hosen a di�erent parametrisation, e.g. in terms of the Bloh ve-tor, we would have found that loal asymptoti normality holds for the totallymixed state as well, but the limit experiment is di�erent: it onsists of a threedimensional lassial Gaussian shift, eah independent omponent orrespond-ing to the loal hange in the Bloh vetor along the three possible diretions.



7.A Appendix: Proof of Theorem 7.3.1 185Mathematially, the optimal measurement strategy in this ase is just to observethe lassial variables. However this strategy annot be implemented by ouplingwith the �eld sine this oupling beomes singular (see equation (7.18)).These issues beome more important for higher dimensional systems where theeigenvalues may exhibit more ompliated multipliities, and will be dealt within that ontext.7.A Appendix: Proof of Theorem 7.3.1Here we give the tehnial details of the proof of loal asymptoti normality with�slowly growing� loal neighborhoods ‖u‖ ≤ nη, with η < 1/4. We start with themap Tn.7.A.1 Proof of Theorem 7.3.1; the map TnLet us de�ne, for 0 < ǫ < (1/4 − η) the interval
Jn =

{
j : (µ− 1/2)n− n1/2+ǫ ≤ j ≤ (µ− 1/2)n+ n1/2+ǫ

}
. (7.39)Notie that j ∈ Jn satis�es 2j ≥ ǫ2n for all µ − 1/2 ≥ ǫ2 and n big enough,independently of µ.Then Jn ontains the relevant values of j, uniformly for µ− 1/2 ≥ ǫ2:

lim
n→∞

pn,u(Jn) = 1 −O(n−1/2+ǫ). (7.40)This is a onsequene of Hoe�ding's inequality applied to the binomial distribu-tion, and realling that pn,u(j) = B(n/2 + j)(1 +O(n−1/2+ǫ)) for j ∈ Jn.We upper-bound ‖Tn(ρun) −Nu ⊗ φu‖ by the sum
3
∑

j 6∈Jn

pun,j +

∥∥∥∥∥∥
Nu −

∑

j∈Jn

pn,u(j)τn,j

∥∥∥∥∥∥
1

+ sup
j∈Jn

‖Vjρuj,nV ∗
j − φu‖1.(7.41)The �rst two terms are �lassial� and onverge to zero uniformly over ‖u‖ ≤ nη:for the �rst term, this is (7.40), while the seond term onverges uniformly on
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µ − 1/2 ≥ ǫ2 at rate nη−1/2 [Guµ  and Kahn, 2008℄. The third term an beanalyzed as in Proposition 5.1 of [Guµ  and Kahn, 2006℄:

∥∥Vjρun,jV ∗
j − φu

∥∥
1

≤
∥∥ρun,j − V ∗

j φ
uVj
∥∥

1
+ ‖φu − Pjφ

uPj‖1 , (7.42)where Pj := VjV
∗
j is the projetion onto the image of Vj . We will show thatboth terms on the right side go to zero uniformly at rate n−1/4+η+ǫ over j ∈ Jnand ‖u‖ ≤ nη. The trik is to note that displaed thermal equilibrium states areGaussian mixtures of oherent states
φu =

1√
2πs2

∫
e−|z−√

2µ−1αu|2/2s2 (|z〉〈z|) d2z, (7.43)where s2 := (1 − µ)/(4µ− 2).The seond term on the left side of (7.42) is bounded from above by
1√

2πs2

∫
e−|z−√

2µ−1αu|2/2s2‖|z〉〈z| − Pj |z〉〈z|Pj‖1 d
2z,whih after some simple omputations an be redued (up to a onstant) to

∫
e−|z|2/2s2‖P⊥

j |z +
√

2µ− 1αu〉‖ d2z. (7.44)We now split the integral. The �rst part is integrating over |z| ≥ nη+δ with
0 < δ < 1/4 − η/2. The integral is dominated by the Gaussian and its valueis O(e−n

2(η+δ)/(2s2)). The other part is bounded by the supremum over |z| ≤
2nη+δ (as ‖u‖ ≤ nη) of ‖P⊥

j |z〉‖. Now ‖P⊥
j |z〉‖ ≤ |z|j/√j! = O(e−n(1/2−η−2δ))uniformly on j ∈ Jn, for any µ− 1/2 ≥ ǫ2 sine then 2j ≥ ǫ2n.The same type of estimates apply to the �rst term

∥∥ρun,j − V ∗
j φ

uVj
∥∥

1
=

∥∥∥∥Ad

[
Uj

(
u√
n

)](
ρ0n,j

)
− V ∗

j φ
uVj

∥∥∥∥
1

≤

∥∥ρ0n,j − V ∗
j φ

0Vj
∥∥

1
+

∥∥∥∥Ad

[
Uj

(
u√
n

)] (
V ∗
j φ

0Vj
)
− V ∗

j φ
uVj

∥∥∥∥
1

. (7.45)The �rst term on the right side does not depend on u. From the proof of Lemma5.4 of [Guµ  and Kahn, 2006℄, we know that
∥∥ρ0n,j − V ∗

j φ
0Vj
∥∥

1
≤
(

p2j+1

1 − p2j+1
+ p2j+1

)with p = (1 − µ)/µ. Now the left side is of the order p2j+1 whih onvergesexponentially fast to zero uniformly on µ− 1/2 ≥ ǫ2 and j ∈ Jn.



7.A Appendix: Proof of Theorem 7.3.1 187The seond term of (7.45) an be bounded again by a Gaussian integral
1√

2πs2

∫
e−|z|2/2s2‖∆(u, z, j)‖1d

2z, (7.46)where the operator ∆(u, z, j) is given by
∆(u, z, j) := Ad

[
Uj
(
u/

√
n
)] (

V ∗
j |z〉〈z|Vj

)
−V ∗

j |z+
√

2µ− 1αu〉〈z+
√

2µ− 1αu|Vj .Again, we split the integral along ‖z‖ ≥ nη+δ. The outer part onverges to zerofaster than any power of n, as we have already seen. The inner integral, on theother hand, an be bounded uniformly over ‖u‖ ≤ nη, µ− 1/2 ≥ ǫ2 and j ∈ Jnby the supremum of ‖∆(u, z, j)‖1 over |z| ≤ 2nη+δ, µ − 1/2 ≥ ǫ2, j ∈ Jn and
‖u‖ ≤ nη.Let z̃ ∈ R2 be suh that αz̃ = z/

√
2µ− 1, and denote ψ(n, j,v) = VjUj(v/

√
n)|j, j〉.Then, up to a √

2 fator, ‖∆(u, z, j)‖1 is bounded from above by the
‖ψ(n, j, z̃) − |z〉‖ +∥∥∥ψ(n, j,u + z̃) − |z +

√
2µ− 1αu〉

∥∥∥+
∥∥∥∥Uj

(
u√
n

)
Uj

(
z̃√
n

)
|jj〉 − Uj

(
u + z̃√
n

)
|jj〉

∥∥∥∥ . (7.47)This is obtained by adding and subtrating |ψ(n, j, z̃)〉〈ψ(n, j, z̃)| and |ψ(n, j,u+
z̃)〉〈ψ(n, j,u + z̃)| and using the fat that ‖|ψ〉〈ψ| − |φ〉〈φ|‖1 =

√
2‖ψ − φ‖ fornormalized vetors ψ, φ.The two �rst terms are similar, we want to dominate them uniformly: we replae

u + z̃ by z̃ with |z| ≤ 2nη+δ. We then write:
‖ψ(n, j, z̃) − |z〉‖2 =

∞∑

k=0

|〈k|ψ(n, j, z̃)〉 − 〈k|z〉|2

≤
r−1∑

k=0

|〈k|ψ(n, j, z̃)〉 − 〈k|z〉|2 + 2
∞∑

k=r

(
|〈k|ψ(n, j, z̃)〉|2 + |〈k|z〉|2

)
.(7.48)If z = |z|eiθ then we have [Hayashi and Matsumoto, 2004℄

〈k|ψ(n, j, z̃)〉 =

√(
2j

k

)(
sin(|z|/√n)eiθ

)k (
cos(|z|√n)

)2j−k
,

〈k|z〉 = exp

(
− (2µ− 1)|z|2

2

) (
eiθ|z|√2µ− 1

)k
√
k!

.



188 Optimal estimation of qubit states with ontinuous time measurementsIn (7.48) we hoose r = n2η+ǫ3 with ǫ3 satisfying the onditions 2δ + 2η + ǫ <
2η + ǫ3 + ǫ < 1/2 and η + ǫ3 < 1/4. Then the tail sums are of the order

∞∑

k=r

|〈k|z〉|2 ≤ |z|2r
r!

≤ (2n(η+δ))2n
2η+ǫ3

(n2η+ǫ3)!
= o

(
exp(−n2η+ǫ3)

)
,

∞∑

k=r

|〈k|ψ(n, j, z̃)〉|2 ≤
j∑

k=r

( |z|2
n

)k
(2j)!

(2j − k)!k!
≤ n

|z|2r
r!

= o
(
exp(−n2η+ǫ3)

)
.For the �nite sums we use the following estimates whih are uniform over all

|z| ≤ 2nη+δ, k ≤ r, j ∈ Jn:
√(

2j

k

)
=

((2µ− 1)n)k/2√
k!

(1 +O(n−1/2+ǫ+2η+ǫ3)),

(sin(|z|/√n))k = (|z|/√n)k(1 +O(n4η+ǫ3+2δ−1)),

(cos(|z|/√n))2j−k = exp

(
− (2µ− 1)|z|2

2

)
(1 +O(n2η−1/2+ǫ+2δ)),where we have used on the last line that (1+x/n)n = exp(x)(1+O(n−1/2x)) for

x ≤ n1/2−ǫ4 (f. [Guµ  and Kahn, 2008℄). This is enough to show that the �nitesum onverges uniformly to zero at rate O(n2η−1/2+ǫ+ǫ3) (the worst if ǫ3 is smallenough) and thus the �rst seond terms in (7.47) as the square root of this, thatis O(nη−1/4+ǫ/2+ǫ3/2).Notie that the errors terms depend on µ only through j, and that 2j ≥ ǫn for
µ− 1/2 ≥ ǫ2. Hene they are uniform in µ.We pass now to the third term of (7.47). By diret omputation it an be shownthat if we onsider two general elements exp(iX1) and exp(iX2) of SU(2) with
Xi selfadjoint elements of M(C2) then

exp(−i(X1 +X2)) exp(iX1) exp(iX2) exp([X1, X2]/2) = 1 +O(Xi1Xi2Xi3),(7.49)where the O(·) ontains only third order terms in X1, X2. If X1, X2 are inthe linear span of σx and σy then all third order monomials are suh linearombinations as well.In partiular we get that for z,u ≤ nη+ǫ3 :
U(β) := U

(
−u + v√

n

)
U

(
u√
n

)
U

(
v√
n

)
exp(i(uxvy − uyvx)σz/n)

=

[
1 +O(n−2+4η+4ǫ3) O(n−3/2+3η+3ǫ3)

O(n−3/2+3η+3ǫ3 ) 1 +O(n−2+4η+4ǫ3)

]
. (7.50)



7.A Appendix: Proof of Theorem 7.3.1 189Finally,using the fat that |j, j〉 is an eigenvetor of Lz, the third term in (7.47)an be written as
‖|j, j〉〈j, j| − Uj(β)|j, j〉〈j, j|Uj(β)∗‖and both states are pure, so it su�es to show that the salar produt onvergesto to one uniformly. Using (7.50) and the expression of 〈j|Uj(β)|j〉 [Hayashi andMatsumoto, 2004℄ we get, as j ≤ n,

〈j, j|Uj(β)|j, j〉 = [U(β)1,1]
j

= 1 +O(n−1+4η+4ǫ3 ),whih implies that the third term in (7.47) is of orderO(n−1+4η+4ǫ3). By hoosing
ǫ3 and ǫ small enough, we obtain that all terms used in bounding (7.46) areuniformly O(n−1/4+η+ǫ) for any ǫ > 0.This ends the proof of onvergene (7.11) from the n qubit state to the osillator.7.A.2 Proof of Theorem 7.3.1; the map SnThe opposite diretion (7.12) does not require muh additional estimation, sowill only give an outline of the argument.Given the state Nu ⊗ φu, we would like to map it into ρun or lose to this state,by means of a ompletely positive map Sn.Let X be the lassial random variable with probability distribution Nu. With
X we generate a random j ∈ Z as follows

j(X) = [
√
nX + n(µ− 1/2)].This hoie is evident from the saling properties of the probability distribution

pun whih we want to reonstrut. Let qun be the probability distribution of j(X).By lassial loal asymptoti normality results we have the onvergene
sup

‖u‖≤nη

‖qun − pun‖1 = O(nη−1/2). (7.51)Now, if the integer j is in the interval Jn then we prepare the n qubits in blokdiagonal state with the only non-zero blok orresponding to the j'th irreduiblerepresentation of SU(2):
τun,j :=

(
V ∗
j φ

uVj + Tr(P⊥
j φ

u)1
)
⊗ 1

nj
.The transformation φu 7→ τun,j is trae preserving and ompletely positive [Guµ and Kahn, 2006℄.



190 Optimal estimation of qubit states with ontinuous time measurementsIf j /∈ Jn then we may prepare the qubits in an arbitrary state whih we alsodenote by τun,j . The total hannel Sn then ats as follows
Sn : Nu ⊗ φu 7→ τun :=

n/2⊕

j=0,1/2

qun,jτ
u
n,j .We estimate the error ‖ρun − τun ‖1 as

‖ρun − τun ‖1 ≤ ‖qun − pun‖1 + 2Ppun(j /∈ Jn) + sup
j∈Jn

‖τun,j − ρun,j‖1The �rst term on the r.h.s. isO(nη−1/2) (see (7.51)), the seond term isO(nǫ−1/2)(see (7.40)). As for the third term, we use the triangle inequality to write, for
j ∈ Jn,

‖τun,j − ρun,j‖1 ≤ ‖τun,j − V ∗
j φ

uV ∗
j ‖1 + ‖V ∗

j φ
uV ∗

j − ρun,j‖1 .The �rst term is O(e−n(1/2−η−2δ)), aording to the disussion following equation(7.44). The seond term on the right is O(n−1/4+η+ǫ) aording to equations(7.45) through (7.50).Summarizing, we have ‖Sn(Nu ⊗ φu) − ρun‖1 = O(n−1/4+η+ǫ), whih establishesthe proof in the inverse diretion.
7.B Appendix: Proof of Theorem 7.4.1First estimate. We build up the state ρ̃uj,n by taking linear ombinations ofnumber states |m〉 to obtain an approximate oherent state |z〉, and �nally mixingsuh states with a Gaussian distribution to get an approximate displaed thermalstate. Consider the approximate oherent vetor Pm̃|z〉, for some �xed z ∈ C and
m̃ = nγ , with γ to be �xed later. De�ne the normalized vetor

|ψnz,j〉 :=
1

‖Pm̃|z〉‖
m̃∑

m=0

|z|m√
m!

|m〉, (7.52)We mix the above states to obtain
ρ̃uj,n :=

1√
2πs2

∫
e−|z−√

2µ−1αu|2/2s2 (|ψnz,j〉〈ψnz,j |
)
d2z.



7.B Appendix: Proof of Theorem 7.4.1 191Reall that s2 = (1 − µ)(4µ− 2), and
φu =

1√
2πs2

∫
e−|z−√

2µ−1αu|2/2s2 (|z〉〈z|) d2z.From the de�nition of |ψnz,j〉 we have
‖|ψnz,j〉 − |z〉‖ ≤

√
2
|z|m̃√
m̃!

∧ 2, (7.53)whih implies
‖ρ̃uj,n−φu‖1 ≤

√
2√
πs2

∫
e−|z|2/2s2

( |z +
√

2µ− 1αu|m̃√
m̃!

∧
√

2

)
d2z = O(e−n

2(η+ǫ)

),for any ǫ > 0, for any γ ≥ 2(η+ǫ). Indeed we an split the integral into two parts.The integral over the domain |z| ≥ nη+ǫ is dominated by the Gaussian fator andis O(e−n
2(η+ǫ)

). The integral over the disk |z| ≤ nη+ǫ is bounded by supremumof (7.53) sine the Gaussian integrates to one, and is O(e−(γ/2−η−ǫ)nγ

). In thelast step we use Stirling's formula to obtain log
[
(nη+ǫ)n

γ

/
√
nγ !
]
≈ (η + ǫ −

γ/2)nγ logn. Note that the estimate is uniform with respet to µ− 1/2 > ǫ2 forany �xed ǫ2 > 0.Seond estimate. We now ompare the evolved qubits state ρ̃uj,n(t) and theevolved osillator state φu(t). Let |ψnm,j(t)〉 = Uj,n(t) |m〉⊗ |Ω〉 be the joint stateat time t when the initial state of the system is |m〉 orresponding to |j, j −m〉in the Lz basis notation. We hoose the following approximation of |ψnm,j(t)〉
|ξnm,j(t)〉 :=

m∑

i=0

cn(m, i)αi(t)|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉i, (7.54)where αi(t) = exp((−m+ i)t/2), cn(m, i) := cn(m, i− 1)
√

2j−m+i
2jn

√
m−i+1

i with
cn(m, 0) := 1, and |f〉n := f⊗n as de�ned in (7.17). In partiular for µ−1/2 > ǫ2and j ∈ Jn we have cn(m, i) ≤√(mi )(1 + 2

ǫ2
n−1/2+ǫ)i.We apply now the estimate (7.21). By diret omputations we get

d|ξnm,j(t)〉 = −1

2

m∑

i=0

cn(m, i)αi(t)(m − i)|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉idt

+
m∑

i=1

cn(m, i)αi−1(t)|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉i−1 ⊗s |χ[t,t+dt]〉,(7.55)where
f⊗i ⊗s g :=

i+1∑

k=1

f ⊗ f ⊗ · · · ⊗ g ⊗ · · · ⊗ f.



192 Optimal estimation of qubit states with ontinuous time measurementsFrom the quantum stohasti di�erential equation we get
Gdt |ξnm,j(t)〉 =

− 1

2

m∑

i=0

cn(m, i)αi(t)(m− i)
2j −m+ i+ 1

2jn
|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉idt

+

m∑

i=0

cn(m, i)αi(t)

√
(m− i)(2j −m+ i+ 1)

2jn(i+ 1)
|m− i− 1〉⊗

|e−1/2uχ[0,t](u)〉i ⊗s |χ[t,t+dt]〉. (7.56)In the seond term of the right side of (7.56) we an replae cn(m, i)√ (m−i)(2j−m+i+1)
2jn(i+1)by cn(m, i + 1) and thus we obtain the same sum as in the seond term of theleft side of (7.55). Thus

Gdt|ξnm,j(t)〉 − d|ξnm,j(t)〉 =

1

2

m−1∑

i=0

cn(m, i)αi(t)(m− i)
2(jn − j) +m− i− 1

2jn
|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉i dt.Then using cn(m, i) ≤

√(
m
i

)
(1 + (2/ǫ2)n−1/2+ǫ)i we get that ‖Gdtξnm,j(t) −

dξnm,j(t)‖ is bounded from above by
1

2

[
m−1∑

i=0

(
m

i

)
((1 + n−1/2+ǫ)(1 − e−t))i

e(m−i)t

(
(2(jn − j) +m− i− 1)(m− i)

2jn

)2
]1/2

dt.We have
(2(jn − j) +m− i− 1)(m− i)

2jn
= O(m(n−1/2+ǫ + n−1m))Inside the sum we reognize the binomial terms with the m'th term missing.Thus the sum is

(
1 + n−1/2+ǫ − e−tn−1/2+ǫ

)m
−
(
(1 − e−t)(1 + n−1/2+ǫ)

)m

≤ (1 + n−1/2+ǫ)m(1 − (1 − e−t)m) ≤ (1 + n−1/2+ǫ)mme−t.Then there exists a onstant C (independent of µ if µ− 1/2 ≥ ǫ2) suh that
‖Gdtξnm,j(t) − dξnm,j(t)‖ ≤ C

2
e−t/2m3/2(n−1/2+ǫ +mn−1)

(
1 +

2

ǫ2
n−1/2+ǫ

)m/2By integrating over t we �nally obtain
‖ψnm,j(t) − ξnm,j(t)‖ ≤ Cm3/2(n−1/2+ǫ +mn−1)

(
1 +

2

ǫ2
n−1/2+ǫ

)m/2
. (7.57)



7.B Appendix: Proof of Theorem 7.4.1 193Note that under the assumption γ < 1/3− 2ǫ/3, the right side onverges to zeroat rate n3γ/2−1/2+ǫ for all m ≤ m̃ = nγ . Summarizing, the assumptions whihwe have made so far over γ are
2η + 2ǫ < γ < 1/3 − 2ǫ/3.Now onsider the vetor |ψnz,j〉 as de�ned in (7.52) and let us denote |ψnz,j(t)〉 =

Uj,n(t)|ψnz,j〉 ⊗ |Ω〉. Then based on (7.54) we hoose the approximate solution
|ξnz,j(t)〉 = e−|z|2/2

m̃∑

m=0

|z|m√
m!

m∑

i=0

cn(m, i)αi(t)|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉i.Note that the vetors |ψnk,j(t)〉 and |ξnk,j(t)〉 live in the �k-partile� subspae of
Hj ⊗F(L2(R)) and thus are orthogonal to all vetors |ψnp,j(t)〉 and |ξnp,j(t)〉 with
p 6= k. By (7.57), the error is

‖ψnz,j(t) − ξnz,j(t)‖

≤ Ce−|z|2/2
(

m̃∑

m=0

|z|2m
m!

m3(n−1/2+ǫ +mn−1)2
(

1 +
2

ǫ2
n−1/2+ǫ

)m)1/2

+
|z|2m̃
m̃!

≤ Cm̃3/2(n−1/2+ǫ + m̃n−1)

(
1 +

2

ǫ2
n−1/2+ǫ

)m̃/2
+

|z|2m̃
m̃!

. (7.58)We now ompare the approximate solution ξnz,j(t) with the �limit� solution ψz(t)for the osillator oupled with the �eld as desribed in setion 7.4.2. We anwrite
ψz(t) = e−|z|2/2

∞∑

m=0

|z|m√
m!

m∑

i=0

√(
m

i

)
e−(m−i)t/2|m− i〉 ⊗ |e−1/2uχ[0,t](u)〉i.Then

‖ξnz,j(t) − ψz(t)‖2 =

e−|z|2
m̃∑

m=0

|z|2m
m!

m∑

i=0

e−(m−i)t

∣∣∣∣∣cn(m, i) −
√(

m

i

)∣∣∣∣∣

2

(1 − e−t)i + e−|z|2
∞∑

m=m̃

|z|2m
m!

.
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∣∣∣∣∣cn(m, i) −

√(
m

i

)∣∣∣∣∣

2

≤
∣∣∣∣cn(m, i)

2 −
(
m

i

)∣∣∣∣

≤
(
m

i

) ∣∣∣∣∣1 −
i∏

p=1

(
1 +

2(j − jn) −m+ p

2jn

)∣∣∣∣∣

≤ C2

(
m

i

)
mn−1/2+ǫ,where C2 does not depend on µ as long as µ−1/2 ≥ ǫ2 (reall that the dependenein µ is hidden in jn = (2µ− 1)n). Thus

‖ξnz,j(t)−ψz(t)‖2 ≤ C2n
−1/2+ǫe−|z|2

m̃∑

m=0

m|z|2m
m!

+
|z|2m̃
m̃!

≤ C2n
−1/2+ǫ|z|2+ |z|2m̃

m̃!
.(7.59)From (7.58) and (7.59) we get

‖ψnz,j(t) − ψz(t)‖ ≤ 2 ∧
[
Cm̃3/2(n−1/2+ǫ + m̃n−1)

(
1 +

2

ǫ2
n−1/2+ǫ

)m̃/2

+
|z|2m̃
m̃!

+

[
C2n

−1/2+ǫ|z|2 +
|z|2m̃
m̃!

]1/2 ]

:= E(m̃, n, z)We now integrate the oherent states over the displaements z as we did in thease of loal asymptoti normality in order to obtain the thermal states in whihwe are interested
ρ̃uj,n :=

1√
2πs2

∫
e−|z−√

2µ−1αu|2/2s2 (|ψnz,j〉〈ψnz,j |
)
d2z.We de�ne the evolved states

ρ̃uj,n(t) := Uj,n(t)ρ̃
u
j,nUj,n(t)

∗, and φu(t) := U(t)φuU(t)∗,Then
sup
j∈Jn

sup
‖u‖≤nη

‖ρ̃uj,n(t)−φu(t)‖1 ≤ sup
‖u‖≤nη

1√
πs2

∫
e−|z−√

2µ−1αu|2/2s2E(m̃, n, z) d2z.Here again we ut the integral in two parts. On |z| ≥ nη+ǫ, the Gaussian domi-nates, and this outer part is less than e−nη+ǫ . Now the inner part is dominated



7.B Appendix: Proof of Theorem 7.4.1 195by sup|z|≤nη+ǫ E(m̃, n, z). Now we want m̃ to be not too big for (7.58) to besmall, on the other hand, we want z2m̃/m̃! to go to zero. A hoie whih satis�esthe ondition is γ = 2η + 3ǫ. By renaming ǫ we then get
E(m̃, n, z) = O(nη−1/4+ǫ, n3η−1/2+ǫ),for any small enough ǫ > 0. Hene we obtain (7.22).





Chapter 8Quantum loal asymptotinormality for d-dimensionalstatesThis hapter is derived from [Guµ  and Kahn, 2008℄.Abstrat: We extend strong quantum loal asymptoti normalityto all �nite-dimensional systems. Like in Chapter 6, we onsiderstates of the form ρ⊗n
θ/

√
n
, and require that ρ0 has pairwise di�erenteigenvalues. We then build hannels to and from a limit family. Thislimit family is a produt of a lassial Gaussian shift experiment anda quantum Gaussian shift experiment, and more preisely a produtof displaed thermal states where the temperature does not dependon the parameter θ. Moreover, we allow the parameter spae to grow,and get polynomial rates of onvergene.The proof involves muh tehnial work with Young tableaux, andmakes use of an intermediate result that is of interest per se: thebasis on a representation of SU(d) yielded by semistandard Youngtableaux is �almost� orthogonal.8.1 IntrodutionQuantum statistis is a young interdisiplinary �eld dealing with problems ofstatistial inferene arising in quantum mehanis. The �rst signi�ant results



198 Quantum loal asymptoti normality for d-dimensional statesin this area appeared in the seventies [Helstrom, 1969, Yuen and Lax, M., 1973,Yuen et al., 1975a, Belavkin, 1976, Holevo, 1982℄ and takled issues suh as quan-tum Cramér-Rao bounds for unbiased estimators, optimal estimation for familiesof states possessing a group symmetry, estimation of Gaussian states, optimaldisrimination between non-ommuting states. The more reent theoretial ad-vanes [Hayashi, 2005b, 2006, Paris and �ehá£ek, 2004, Barndor�-Nielsen et al.,2003℄ are losely related to the rapid development of quantum information andquantum engineering, and are often aompanied by pratial implementations[Armen et al., 2002, Hannemann et al., 2002a, Smith et al., 2006℄. In quantumoptis a measurement method alled quantum homodyne tomography [Vogel andRisken, H., 1989, D'Ariano et al., 1995, Leonhardt et al., 1996℄ allows the estima-tion with arbitrary preision [Artiles, L et al., 2005, Butuea et al., 2007℄ of thestate of a monohromati beam of light, by repeatedly measuring a su�ientlylarge number of identially prepared beams [Smithey et al., 1993, Shiller et al.,1996, Zavatta et al., 2004℄.An important topi in quantum statistis is that of optimal estimation of anunknown state using the results of measurements performed on n identially pre-pared quantum systems [Massar and Popesu, 1995, Cira et al., 1999, Vidalet al., 1999, Gill and Massar, 2000, Keyl and Werner, 2001, Bagan et al., 2002,Hayashi and Matsumoto, 2004, 2005, Bagan et al., 2006, Gill, 2005a℄. In the aseof two dimensional systems, or qubits, the problem has been solved expliitlyin the Bayesian set-up in the partiular ase of an invariant prior and �gure ofmerit (risk) based on the �delity distane between states [Bagan et al., 2006℄.However the method used there does not work for more general priors, loss fun-tions or higher dimensions. In the pointwise approah, Hayashi and Matsumoto[2004℄ showed that the Holevo [1982℄ bound for the variane of loally unbiasedestimators an be ahieved asymptotially, and provided a sequene of measure-ments with this property. Their results, building on earlier work [Hayashi, 2003,Hayashi℄, indiate for the �rst time the emergene of a Gaussian limit in theproblem of optimal state estimation for qubits.In [Guµ  and Kahn, 2006, Guµ  et al., 2008℄ we performed a detailed analysis ofthis phenomenon and showed that we deal with the quantum generalization of animportant onept in mathematial statistis alled loal asymptoti normality.Wald [1950℄ introdued the idea of approximating a sequene of statistial modelsby a family of Gaussian distributions, and Le Cam [1986℄ developed it fully. Heoined the term �loal asymptoti normality�. Among the many appliations wemention its role in asymptoti optimality theory and in proving the asymptotinormality of ertain estimators suh as the maximum likelihood estimator.For qubits, loal asymptoti normality means roughly the following [Guµ  andKahn, 2006, Guµ  et al., 2008℄: for large n the model desribed by n qubits,identially prepared in an unknown state, is asymptotially equivalent to a modelonsisting of pairs of lassial Gaussian random variables and Gaussian states of a



8.2 Loal asymptoti normality for qubits 199quantum harmoni osillator, both having known varianes but unknown means.As in the lassial ase, this provides an asymptotially optimal measurementstrategy for qubit states whih onsists in mapping them into states of a harmoniosillator, followed by a heterodyne measurement of the displaement. A morepreise formulation an be found in setion 8.2.Setion 8.3 gives the set-up in whih we work. We formalize the notion of statis-tial model, and reall what transformations are possible on those models. Wethen explain what Le Cam distane is, and its relevane to statistis.In Setion 8.4, we desribe brie�y lassial loal asymptoti normality, both asa referene point, and beause quantum limits of experiments ontain a lassialpart, detailed in Example 8.4.1.We speak about quantum Gaussian states and Fok spaes in Setion 8.5. Thesestates appear in the limit experiment, that we desribe at the end of the setion.We state there Theorem 8.5.1, the main result of the hapter, asserting that quan-tum statistial experiments on n identially prepared states an be polynomiallyapproximated by experiments on quantum Gaussian states.Sine we need to parametrise states using ation of SU(d), we reall basis ofgroup theory in Setion 8.6. The notions are mainly used in the proof of themain theorem. We also prove a possibly independently interesting result inLemma 8.6.9, establishing quasi-orthogonality of the basis given by semistan-dard tableaux.Setions 8.7 and 8.8 might be the heart of the hapter. In the former, we give thepreise form of the hannels (transformations of statistial experiments) that weuse to prove Theorem 8.5.1. In the latter, we give the main ideas of the proof, andsplit the main theorem in a series of tehnial lemmas. Proofs of those lemmasare supplied in Setion 8.9.Notation: Throughout the hapter, we shall denote C onstants that mayhange even within the same line.8.2 Loal asymptoti normality for qubitsFor a more preise formulation let us parametrise the qubit states by their Blohvetors ρ(−→r ) = 1
2 (1 + −→r −→σ ) where −→σ = (σx, σy, σz) are the Pauli matries. Theneighbourhood of the state ρ0 with −→r0 = (0, 0, 2µ − 1) and 1/2 < µ < 1, is athree-dimensional ball parametrised by the deviation u ∈ R of diagonal elementsand ζ ∈ C of the o�-diagonal ones
ρθ =

(
µ+ u ζ∗

ζ 1 − µ− u

)
, θ = (u, ζ). (8.1)



200 Quantum loal asymptoti normality for d-dimensional statesConsider now n identially prepared qubits whose individual states are in a neigh-bourhood of ρ0 of size 1/
√
n, so that their joint state is ρnθ :=

[
ρθ/

√
n

]⊗n
. Wewould like to understand the struture of the family (statistial experiment)

Qn := {ρnθ : ‖θ‖ ≤ C}, (8.2)as a whole, more preisely what is its asymptoti behaviour as n→ ∞?For this we onsider a quantum harmoni osillator with position and momentumoperators Q and P ating on L2(R) and satisfying the ommutation relations
[Q,P] = i1. We denote by {|n〉, n ≥ 0} the eigenbasis of the number operatorand de�ne the thermal equilibrium state at inverse temperature β

G(β) = (1 − e−β)
∞∑

k=0

e−kβ |k〉〈k|, e−β =
1 − µ

µ
,whih has entred Gaussian distributions for both Q and P with variane 1/(4µ−

2) > 1/2. We de�ne a family of displaed thermal equilibrium states
G(ζ, β) := D(ζ/

√
2µ− 1)G(β)D(ζ/

√
2µ− 1)∗, (8.3)where D(ζ) := exp(ζa∗ − ζa) is the unitary displaement operator with ζ ∈ C.Additionally we onsider a lassial Gaussian shift model onsisting of the familyof normal distributions N(u, µ(1−µ)) with unknown mean u and �xed variane.The lassial-quantum statistial experiment to whih we alluded above is

R := {φθ := N(u, µ(1 − µ)) ⊗G(ζ, β) : ‖θ‖ ≤ C} (8.4)where the unknown parameters θ = (u, ζ) are the same as those of Qn.Theorem 8.2.1. Let Qn be the quantum statistial experiment (8.2) and let Rbe the lassial-quantum experiment (8.4). Then for eah n there exist quantumhannels (normalized ompletely positive maps)
Tn : M

(
C

2n
)
→ L1(R) ⊗ T (L2(R)),

Sn : L1(R) ⊗ T (L2(R)) →M
(

C
2n
)
,with T (L2(R)) the trae-lass operators, suh that

lim
n→∞

sup
‖θ‖≤C

‖φθ − Tn (ρnθ ) ‖1 = 0,

lim
n→∞

sup
‖θ‖≤C

‖ρnθ − Sn (φθ) ‖1 = 0,for an arbitrary onstant C > 0.



8.3 Classial and quantum statistial experiments 201The loal asymptoti normality theorem show that from a statistial point ofview the joint qubits states are asymptotially indistinguishable from the limitGaussian system. A onsequene of this insight is that one an design optimalstate estimators, and even propose a realisti measurement set-up for this purpose[Guµ  et al., 2008℄. The loal nature of the result is not a limitation but ratherthe orret normalization of the parameters with n → ∞. Indeed as n growswe have more information about the state and we an easily pin it down to aregion of size slightly larger that 1/
√
n by performing rough measurements on asmall proportion of the systems. In a seond stage we an use more sophistiatedtehniques to estimate the state within the loal neighbourhood of the �rst levelestimator, and it is here where we use results on loal asymptoti normality.8.3 Classial and quantum statistial experimentsLet X be a random variable with values in the measure spae (X ,ΣX ), and let usassume that its probability distribution P belongs to some family {Pθ : θ ∈ Θ}where the parameter θ is unknown. Statistial inferene deals with the questionof how to use the available data X in order to draw onlusions about someproperties of θ. We shall all the family

E := (Pθ : θ ∈ Θ), (8.5)a statistial experiment or model over (X ,ΣX ) [Le Cam, 1986℄.In quantum statistis the data is replaed by a quantum system prepared in astate φ whih belongs to a family {φθ : θ ∈ Θ} of states over an algebra ofobservables. In order to make a statistial inferene about θ one �rst has tomeasure the system, and then apply statistial tehniques to draw onlusionsfrom the data onsisting of the measurement outomes. An important di�erenewith the lassial ase is that the experimenter has the possibility to hoose themeasurement set-up M , and eah set-up will lead to a di�erent lassial model
{P (M)

θ : θ ∈ Θ}, where P (M)
θ is the distribution of outomes when performingthe measurement M on the system prepared in state φθ.The guiding idea of this hapter is to investigate the struture of the family ofquantum states

Q := (φθ : θ ∈ Θ),whih will be alled a quantum statistial experiment. We shall show that inan important asymptoti set-up, namely that of a large number of identiallyprepared systems, the joint state an be approximated by a multidimensionalquantum Gaussian state, for all possible preparations of the individual systems.This will bring a drasti simpli�ation in the problem of optimal estimation for
d-dimensional quantum systems, whih an then be solved in the asymptotiframework.



202 Quantum loal asymptoti normality for d-dimensional states8.3.1 Classial and quantum randomizationsAny statistial deision an be seen as data proessing using a Markov kernel.Suppose we are given a random variable X taking values in (X ,ΣX ) and wewant to produe a �deision� y ∈ Y based on the data X . The spae Y maybe for example the parameter spae Θ in the ase of estimation, or just the set
{0, 1} in the ase of testing between two hypotheses. For every value x ∈ X wehoose y randomly with probability distribution given byKx(dy). Assuming that
K : X ×ΣY → [0, 1] is measurable with respet to x for all �xed A ∈ ΣY , we anregard K as a map from probability distributions over (X ,ΣX ) to probabilitydistributions over (Y,ΣY) with

K(P )(A) =

∫
Kx(A)P (dx), A ∈ ΣY . (8.6)A statisti S : X → Y is a partiular example of suh a proedure, where Kx issimply the delta measure at S(x).Besides statistial deisions, there is another important reason why one wouldlike to apply suh treatment to the data, namely to summarize it in a moreonvenient and informative way for future purposes as illustrated in the followingsimple example. Consider n independent identially distributed random variables

X1, . . . , Xn with values in {0, 1} and distribution Pθ := (1 − θ, θ) with θ ∈ Θ :=
(0, 1). The assoiated statistial experiment is

En := (Pnθ : θ ∈ Θ).It is easy to see that X̄n = 1
n

∑n
i=1Xi is an unbiased estimator of θ and moreoverit is a su�ient statisti for En, i.e. the onditional distribution Pnθ (·|X̄n = x̄)does not depend on θ! In other words the dependene on θ of the total sample

(X1, X2, . . . , Xn) is ompletely aptured by the statisti X̄n whih an be usedas suh for any statistial deision problem onerning En. If we denote by P̄nθthe distribution of X̄n then the experiment
Ēn = (P̄nθ : θ ∈ Θ),is statistially equivalent to En. To onvine ourselves that X̄n does ontain thesame statistial information as (X1, . . . , Xn), we show that we an obtain thelatter from the former by means of a randomized statisti. Indeed for every �xedvalue x̄ of X̄n there exists a measurable funtion
fx̄ : [0, 1] → {0, 1}n,suh that the distribution of fx̄(U) is Pnθ (·|X̄n = x̄). In other words

λ(f−1
x̄ (x1, . . . , xn)) = Pnθ (x1, . . . , xn|X̄n = x̄),



8.3 Classial and quantum statistial experiments 203where λ is the Lebesgue measure on [0, 1]. Then F (X̄n, U) := fX̄n
(U), hasdistribution Pnθ . To summarize, statistis, randomized statistis and Markovkernels, are ways to transform the available data for a spei� purpose. TheMarkov kernel K de�ned in (8.6) maps the experiment E of equation (8.5) intothe experiment

F := {Qθ : θ ∈ Θ},over (Y,ΣY) with Qθ = K(Pθ). For mathematial onveniene it is useful torepresent suh transformations in terms of linear maps between linear spaes. Apositive linear map
T∗ : L1(X ,ΣX , P ) → L1(Y,ΣY , Q)is alled a stohasti operator or transition if ‖T∗(g)‖1 = ‖g‖1 for every g ∈

L1
+(X ). A positive linear map

T : L∞(Y,ΣY , Q) → L∞(X ,ΣX , P )is alled a Markov operator if T1 = 1, and if for any fn ↓ 0 in L∞(Y) we have
Tfn ↓ 0. A pair (T∗, T ) as above is alled a dual pair if

∫
fT (g)dP =

∫
T∗(f)gdQ,for all f ∈ L1(X ) and g ∈ L∞(Y). It is a theorem that for any stohasti operator

T there exists a unique dual Markov operator T and vie versa.What is the relation between Markov operators and Markov kernels? Roughlyspeaking, any Markov kernel de�nes a Markov operator when we restrit tofamilies of dominated probability measures. Let us assume that all distribu-tions Pθ of the experiment E de�ned in (8.5) are absolutely ontinuous withrespet to a �xed probability distribution P , suh that there exist densities
pθ := dPθ/dP : X → R+. Suh an experiment is alled dominated and inonrete situations this ondition is usually satis�ed. Let Kx(dy) be a Markovkernel (8.6) suh that Qθ = K(Pθ), then we de�ne assoiated Markov operator
(T (f))(x) :=

∫
f(y)kx(dy) and have

Qθ = Pθ ◦ T, ∀θ. (8.7)When the probability distributions of two experiments are related to eah otheras in (8.7), we say that F is a randomization of E . From the duality between
T and T∗ we obtain an equivalent haraterization in terms of the stohastioperator T∗ : L1(X ,ΣX , P ) → L1(Y,ΣY , Q) suh that

T∗(dPθ/dP ) = dQθ/dQ, ∀θ .The onept of randomization is weaker than that of Markov kernel transforma-tion, but under the additional ondition that (Y,ΣY) is loally ompat spae



204 Quantum loal asymptoti normality for d-dimensional stateswith ountable base and Borel σ-�eld, it an be shown that any randomizationan be implemented by a Markov kernel [Strasser, 1985℄.What is the analogue of randomizations in the quantum ase? In the languageof operator algebras L∞(X ,ΣX , P ) is a ommutative von Neumann algebra and
L1(X ,ΣX , P ) is the spae of (densities of) normal linear funtionals on it. Thestohasti operator T∗ is the lassial version of quantum hannel, i.e. a om-pletely positive normalized (trae-preserving) map

T∗ : A∗ → B∗where A∗,B∗ are the spaes of normal states on the von Neumann algebra Aand respetively B. Completely positive means that for any algebra C, the map
T∗ ⊗ IdC∗ : A∗ ⊗ C∗ → B∗ ⊗ C∗ is positive. We give a list of lassial examples inSetion 8.9.2. Any normal state φ on A has a density ρ with respet to the traesuh that φ(A) = Tr(ρA) for all A ∈ A. The dual of T∗ is

T : B → A,whih is a unital ompletely positive map and has the property that T (φ)(b) =
φ(T (b)) for all b ∈ B and φ ∈ A∗. We interpret suh quantum hannels as possiblephysial transformations from input to output states.A partiular lass of hannels is that of measurements. In this ase the input isthe state of a quantum system desribed by an algebra A, and the output is aprobability distribution over the spae of outomes (X ,ΣX ). Any measurementis desribed by a positive linear map

M : L∞(X ,ΣX , P ) → A,whih is ompletely spei�ed by the image of harateristi funtions of mea-surable sets, also alled positive operator valued measure (POVM). This map
M : ΣX → A has following properties1. Positive: M(A) ≥ 0, ∀A ∈ ΣX ;2. Countably additive: ∑∞

i=1M(Ai) = M(∪iAi), Ai ∩Aj = ∅, i 6= j;3. Normalized: M(X ) = 1.The orresponding hannel ating on states is a positive map M∗ : A∗ →
L1(X ,ΣX , P ) given by

M(φ)(A) = φ(M(A)) = Tr(ρM(A)),



8.3 Classial and quantum statistial experiments 205where ρ is the density matrix of φ. By applying the hannel M to the quantumstatistial experiment onsisting of the family of states Q = (φθ : θ ∈ Θ) on Awe obtain a lassial statistial experiment
QM := {M(φθ) : θ ∈ Θ},over the outomes spae (X ,ΣX ).As in the lassial ase, quantum hannels an be seen as ways to ompare quan-tum experiments. The �rst steps in this diretion were made by Petz [1986℄,Petz and Jen£ová [2006℄ who developed the theory of quantum su�ieny deal-ing with the problem of haraterizing when a sub-algebra of observables ontainsthe same statistial information about a family of states, as the original algebra.More generally, two experiments Q := (A, φθ : θ ∈ Θ) and R := (B, ψθ : θ ∈ Θ)are alled statistially equivalent if there exist hannels T : A → B and S : B → Asuh that

ψθ ◦ T = φθ and φθ ◦ S = ψθ.As onsequene, for any measurement M : L∞(X ,ΣX , P ) → A there existsa measurement T ◦ M : L∞(X ,ΣX , P ) → A suh that the resulting lassialexperiments oinide QM = RT◦M . Thus for any statistial problem, and anyproedure onerning the experiment Q there exists a proedure for R with thesame risk (average ost), and vie versa.8.3.2 The Le Cam distane and its statistial meaningWe have seen that two experiments are statistially equivalent when they an betransformed into eah other be means of quantum hannels. When this annot bedone exatly, we would like to have a measure of how lose the two experimentsare when we allow any hannel transformation. We de�ne the de�ieny of Rwith respet to Q as
δ(R,Q) = inf

T
sup
θ

‖φθ − ψθ ◦ T ‖ (8.8)where the in�mum is taken over all hannels T : A → B. The norm-one distanebetween two states on A is de�ned as
‖φ1 − φ2‖1 := sup{|φ1(a) − φ2(a)| : a ∈ A, ‖a‖ ≤ 1},and for A = B(H) it is equal to Tr(|ρ1 − ρ2|), where ρi is the density matrixof the state φi. When δ(R,Q) = 0 we say that R is more informative than Q.Note that δ(R,Q) is not symmetri but satis�es a triangle inequality of the form



206 Quantum loal asymptoti normality for d-dimensional states
δ(R,Q)+ δ(Q, T ) ≥ δ(R, T ). By symmetrizing we obtain a proper distane overthe spae of equivalene lasses of experiments, alled Le Cam's [1986℄ distane

∆(Q,R) := max (δ(Q,R) , δ(R,Q)) .What is the statistial meaning of the Le Cam distane? We shall show that if
δ(R,Q) ≤ ǫ then for any statistial deision problem with loss funtion between
0 and 1, any measurement proedure for Q an be mathed by a measurementproedure for R whose risk will be at most ǫ larger than the previous one.A deision problem is spei�ed by a deision spae (X ,ΣX ) and a loss funtion
Wθ : X → [0, 1] for eah θ ∈ Θ. We are given a quantum system prepared inthe state φθ ∈ A∗ with unknown parameter θ ∈ Θ and would like to performa measurement with outomes in X suh that the expeted value of the lossfuntion is small. Let

M : L∞(X ,ΣX , P ) → A,be suh a measurement, and P (M)
θ = φθ ◦M , then the risk at θ is

R(M, θ) :=

∫

X
Wθ(x)P

(M)
θ (dx).Sine the point θ is unknown one would like to obtain a small risk over all possiblerealizations

Rmax(M) = sup
θ∈Θ

R(M, θ).The minimax risk is then Rminmax := infM Rmax(M). In the Bayesian frame-work one onsiders a prior distribution π over Θ and then averages the risk withrespet to π
Rπ(M) =

∫

Θ

R(M, θ)π(dθ).The optimal risk in this ase is Rπ := infM Rπ(M).Coming bak to the experiments Q and R we shall ompare their ahievablerisks for a given deision problem as above. Consider the measurement N :
L∞(X ,ΣX , P ) → B given by N = T ◦M where T : A → B is the hannel whihahieves the in�mum in (8.8). Then

R(N, θ) =

∫

X
W (θ, x)P

(N)
θ (dx) = ψθ(T ◦M(Wθ))

≤ ‖ψθ ◦ T − φθ‖ + φθ(M(Wθ)) ≤ δ(R,Q) +R(M, θ),where we have used the fat that 0 ≤Wθ ≤ 1.Lemma 8.3.1. For every ahievable risk R(M, θ) for Q there exists a measure-ment N : L∞(X ,ΣX , P ) → B for R suh that
R(N, θ) ≤ R(M, θ) + δ(R,Q).



8.4 Loal asymptoti normality in statistis 2078.4 Loal asymptoti normality in statistisIn this setion we desribe the notion of loal asymptoti normality and its signif-iane in statistis [Le Cam, 1986, Torgersen, 1991, Strasser, 1985, van der Vaart,1998℄. Suppose that we observeX1, . . . , Xn with Xi taking values in a measurablespae (X ,ΣX ) and assume that Xi are independent, identially distributed withdistribution Pθ indexed by a parameter θ belonging to an open subset Θ ⊂ Rm.The full sample is a single observation from the produt Pnθ of n opies of Pθ onthe sample spae (Ωn,Σn). Loal asymptoti normality means that for large nsuh statistial experiments an be approximated by Gaussian experiments aftera suitable reparametrisation. Let θ0 be a �xed point and de�ne a loal parameter
u =

√
n(θ−θ0) haraterizing points in a small neighbourhood of θ0, and rewrite

Pnθ as Pn
θ0+u/

√
n
seen as a distribution depending on the parameter u. Loalasymptoti normality means that for large n the experiments

(
Pθ0+u/

√
n : u ∈ R

m
)

and
(
N(u, I−1

θ0
) : u ∈ R

m
)
,have the same statistial properties when the models θ 7→ Pθ are su�iently`smooth'. The point of this result is that while the original experiment maybe di�ult to analyse, the limit one is a tratable Gaussian shift experiment inwhih we observe a single sample from the normal distribution with unknownmean u and �xed variane matrix I−1

θ0
. Here

[Iθ0 ]ij = Eθ0

[
ℓ̇θ0,iℓ̇θ0,j

]
,is the Fisher information matrix at θ0, with ℓ̇θ,i := ∂ log pθ/∂θi the sore funtionand pθ is the density of Pθ with respet to some measure P .There exist two formulations of the result depending on the notion of onvergenewhih one uses. In this hapter we only disuss the strong version based ononvergene with respet to the Le Cam distane, and we refer to van der Vaart[1998℄ for another formulation using the so alled weak onvergene (onvergenein distribution of �nite dimensional marginals of the likelihood ratio proess),and to Guµ  and Jen£ová [2007℄ for its generalization to quantum statistialexperiments.Before formulating the theorem, we explain what su�iently smooth means. Theleast restritive ondition is that pθ is di�erentiable in quadrati mean, i.e. thereexists a measurable funtion ℓθ : X → R suh that as u→ 0

∫ [
p
1/2
θ+u − p

1/2
θ − utℓ̇θp

1/2
θ

]2
dP → 0.Note that ℓ̇θ must still be interpreted as sore funtion sine under some regularityonditions we have ∂p1/2

θ /∂θi = 1
2 (∂ log pθ/∂θi)p

1/2
θ .



208 Quantum loal asymptoti normality for d-dimensional statesTheorem 8.4.1. Let E := (Pθ : θ ∈ Θ) be a statistial experiment with Θ ⊂ Rdand Pθ ≪ P suh that the map θ → pθ is di�erentiable in quadrati mean. De�ne
En = (Pnθ0+u/

√
n : ‖u‖ ≤ C), F = (N(u, I0) : ‖u‖ ≤ C),with I0 the Fisher information matrix of E at point θ0, and C a positive onstant.Then ∆(En,F) → 0. In other words, there are sequenes of randomizations Tnand Sn suh that:

lim
n→∞

sup
‖u‖≤C

∥∥∥Tn(Pnθ0+u/
√
n) −N(u, I0)

∥∥∥ = 0

lim
n→∞

sup
‖u‖≤C

∥∥∥Pnθ0+u/√n − Sn(N(u, I0))
∥∥∥ = 0.Remark. Note that the statement of the Theorem is muh more powerful thanthe Central Limit Theorem whih shows onvergene to a Gaussian distribution ata single point θ0. Indeed loal asymptoti normality states that the onvergeneis uniform around the point θ0, and moreover the variane of the limit Gaussian is�xed whereas the variane obtained from the Central Limit Theorem depends onthe point θ. Additionally, the randomization transforming the data (X1, . . . , Xn)into the Gaussian variable is the same for all θ = θ0 + u/
√
n and thus does notrequire a priori the knowledge of θ.Remark. Loal asymptoti normality is the basis of many important resultsin asymptoti optimality theory and explains the asymptoti normality of er-tain estimators suh as the maximum likelihood estimator. The quantum versionintrodued in the next setion plays a similar role for the ase of quantum statis-tial model. Guµ  et al. [2008℄ have derived an asymptotially optimal estimationstrategy from the qubit version of loal asymptoti normality as presented below.Example 8.4.1. Let Pµ = (µ1, . . . , µd) be a probability distribution with unknownparameters (µ1, . . . , µd−1) ∈ R

d−1
+ satisfying µi > 0 and ∑i≤d−1 µi < 1. TheFisher information at a point µ is

I(µ)ij =

d−1∑

k=1

µk(δikµ
−1
i · δjkµ−1

j ) + (1 −
d−1∑

l=1

µl)
−1 = δijµ

−1
i + (1 −

d−1∑

l=1

µl)
−1,and its inverse is

V (µ)ij := [I(µ)−1]ij = δijµi − µiµj . (8.9)Thus the limit experiment in this ase is F := (N(u, V (µ)) : u ∈ Rd−1, ‖u‖ ≤ C).This experiment will appear again in Theorem 8.5.1, as the lassial part of thelimit Gaussian shift experiment. Let us onsider as loss funtion the square of



8.5 Loal asymptoti normality in quantum statistis 209the ℓ2 distane ‖µ − ν‖2
2 =

∑
i≤d(µi − νi)

2, then in the limit experiment thisorresponds to
W (u, v) =

d−1∑

i=1

(ui − vi)
2 + (

d−1∑

i=1

(ui − vi))
2.The optimal estimator of u for this loss funtion is the data itself û := X ∼

N(u, V (µ)) and the risk is independent of u
R =

d−1∑

i=1

µi(1 − µi) +

d−1∑

i=1

µi(1 − µi) −
∑

1≤i6=j≤d−1

µiµj =

d∑

i=1

µi(1 − µi), (8.10)where the last sum ontains d terms and we used the fat that µd = 1−∑i≤d−1 µi.8.5 Loal asymptoti normality in quantum statis-tisIn this setion we shall present the main result of the hapter, that of loalasymptoti normality for d-dimensional quantum systems, whih means roughlythe following: the sequene Qn of experiments onsisting of joint states ρ⊗n of nidential quantum systems prepared independently in the same state ρ, onvergesto a limit experiment R whih is desribed by a family of Gaussian states on analgebra of anonial ommutation relations. The latter an be deomposed intoa quantum part, on a Fok spae, and a lassial part, on a spae of boundedfuntions.Consider a d-dimensional quantum system whose state is desribed by its densitymatrix ρ ∈ M(Cd). The joint state of n identially prepared systems is givenby ρ⊗n ∈ M(Cd
n

). As our theory will be loal in nature, we �rst parametrisearound one partiular faithful state
ρ0 =





µ1 0 . . . 0

0 µ2
. . . ...... . . . . . . 0

0 . . . 0 µd




with µ1 > µ2 > · · · > µd > 0, (8.11)whih for tehnial reasons is hosen to have di�erent eigenvalues. We write

δ = inf1≤i≤d µi−µi+1, with µd+1 = 0, for the separation between the eigenvalues.The states in a neighbourhood of ρ0 are parametrised by θ = (~ζ, ~u). We shall usea parametrisation that separates learly the quantum and lassial parts of the



210 Quantum loal asymptoti normality for d-dimensional stateslimit, and that we give in equation (8.39). Up to the seond order in θ, it is ofthe form:
ρθ =





µ1 + u1 ζ∗1,2 . . . ζ∗1,d

ζ1,2 µ2 + u2
. . . ...... . . . . . . ζ∗d−1,d

ζ1,d . . . ζd−1,d µd −
∑d−1

k=1 uk




+O(‖θ‖2

), ζi,j ∈ C,uk ∈ R.(8.12)We shall investigate the properties of experiments
Qn := (ρ⊗n

θ/
√
n

: θ ∈ Θn), (8.13)onsisting of n systems, eah one prepared in a state ρθ/√n situated in a loalneighbourhood of ρ0, as it was done in the lassial ase. The loal parameter
θ = (~ζ, ~u) belongs to a neighbourhood Θn of the origin of Cd(d−1)/2×Rd−1, whihis allowed to grow slowly with n in a way that will be made preise later. Beforestating the main result, we study the quantum Gaussian shift experiment thatwill be the limit of the sequene Qn.8.5.1 Quantum Gaussian shift experimentIn this setion we desribe the limit experiment appearing in the loal asymptotinormality Theorem 8.5.1. It ontains a lassial part desribed by a (d − 1)-dimensional Gaussian shift experiment similar to the one appearing in Theorem8.4.1, and a quantum part desribed by a d(d−1)/2-dimensional quantum Gaus-sian shift experiment whih will be analysed in more detail below. The lassialpart orresponds to hanges in the diagonal parameters −→u = (u1, . . . , ud−1) of
ρθ. The quantum part is a produt of Gaussian states of d(d − 1)/2 quantumharmoni osillators, the displaement of eah state being related to one of theo�-diagonal elements ζij of ρθ. For more bakground material on Fok spaes,Gaussian states and more generally the algebra of anonial ommutation relation(CCR), we refer to Petz [1990℄.8.5.2 Symmetri Fok spaesWe turn bak to our speial orthonormal basis ψm. It turns L2(R) into theHilbert spae ℓ2(N), or equivalently the Fok spae F(C). We shall denote the
ψm by |m〉, as is usual for the number basis of the Fok spae.We now onsider the symmetri tensor produt of two spaes H⊗sH, de�ned asthe tensor produt H⊗H with the relations h1 ⊗ h2 − h2 ⊗ h1 = 0 for all vetors
h1 and h2.



8.5 Loal asymptoti normality in quantum statistis 211Symmetri Fok spaes on Cd, denoted by F(Cd), are the tensor produt of dFok spaes on C, that is:
F(Cd) = F(C)⊗d.We get naturally the produt basis on F(Cd) of the form |m〉 = |m1,m2, . . . ,md〉 =

|m1〉 ⊗ |m2〉 ⊗ · · · ⊗ |md〉. Notie that {|m1, . . .md〉 :
∑
mi = n} is a basis of thesymmetri spae (Cd)⊗sn. So that F(Cd) an be seen as the bounded operatorson⊕n∈N

(Cd)⊗sn, hene the name �symmetri Fok spae�.We also get reation and annihilation operators a∗(v) and a(v) assoiated to eahvetor in |v〉 ∈ Cd. Creation operators at on states through
a∗(|v〉) |φ〉 = |v〉 ⊗s |φ〉 , |v〉 ∈ C

d, |φ〉 ∈ F(Cd),and annihilation operators are the adjoint operators of reation operators.We notie that reation annihilators take (Cd)⊗sn to (Cd)⊗sn+1 and hene anni-hilation operators to (Cd)⊗sn−1. Notably, the vetor |0〉 is an eigenvetor witheigenvalue 0 for all annihilation operators. This speial vetor is alled the va-uum.8.5.3 Fok spaesA pure state of a quantum system is desribed by a (norm-one) vetor on aHilbert spae H. Suppose now we have n partiles. The state of the ompoundsystem is a vetor in H⊗n. However, bosons are undistinguishable. Hene f1⊗f2is the same state as f2 ⊗ f1. We must symmetrise the spae to get the rightdesription of the system.So that we de�ne the symmetri tensor produt H⊗s H as the quotient of H⊗2by the relations f1 ⊗ f2 − f2 ⊗ f1 for all f1 and f2 in H. We de�ne similarly the
n-symmetri spae H⊗sn. States of n undistinguishable partiles are desribedby vetors of H⊗sn.Let us now onsider a system with a non-�xed number of undistinguishable par-tiles. Then the orresponding Hilbert spae is alled the (symmetri) Fok spaede�ned as

F(H) =
⊕

n∈N

H⊗sn,where H⊗s0 = C. Fok spaes naturally inherit their salar produt from H.Notie that the n-symmetri spaes are orthogonal.The simplest Fok spae is F(C), orresponding to the quantum harmoni os-illator. Then the number of �partiles� is the exitation number, or number of



212 Quantum loal asymptoti normality for d-dimensional statesphotons for a state of laser light. Notie that F(Cd) an be seen as a olletionof d harmoni osillators F(C)⊗d.We shall usually denote states on Fok spaes by φ, keeping the same notationfor the density operator and the orresponding linear form.There are olletions of operators that reate or annihilate partiles in state
f ∈ H, taking n-symmetri spaes respetively to (n+1)- and (n−1)-symmetrispaes. Creation operators are the adjoint of the orresponding annihilationoperator. These reation operators a∗(f) and annihilation operators a(f) atthrough:

a∗(f)(g1 ⊗s · · · ⊗s gn) =
√
n+ 1 f ⊗s g1 ⊗s · · · ⊗s gn,

a(f)(g1 ⊗s · · · ⊗s gn) =
1√
n

n∑

i=1

〈f |gi〉H g1 ⊗s · · · ⊗s ĝi ⊗s · · · ⊗s gn,where n ∈ N, gi ∈ H for 1 ≤ i ≤ n, and ĝi means that the term does not appearin the produt.Sine annihilation operators derease the number of partiles, a vetor from
H⊗s0 = C is an eigenvetor with eigenvalue 0 for all annihilation operators.Up to a multipliative onstant, this vetor is unique, and is alled the vauum
|0〉.The other eigenvetors of the annihilation operator a(f) are of the form

∑

n∈N

(Cf)⊗sn/
√
n! (8.14)for C ∈ C. They have eigenvalue C ‖f‖2

H. One normalised, they are alledoherent states.For onveniene we now restrit to H = Cd. For our future purposes, we shallneed a basis of the Fok spae F(Cd) known as the Fok basis. We build itfrom a basis {fi}di=1 of the underlying Hilbert spae Cd. Then our basis is givenby {⊗s f
⊗smi

i : mi ∈ N} where the symmetri produt runs over all i. Sinethis vetor depends only on the set of mi, we shall denote it by |m〉, where
m = (m1, . . . ,md), and where we have used the ket notation of physiists. Thesubset of |m〉's suh that ∑mi = n is a basis of the n-symmetri spae.8.5.4 Gaussian statesThrough equation (8.14), we realize that oherent states are in one-to-one orre-spondene with vetors of H. We shall denote them as �kets with parentheses on



8.5 Loal asymptoti normality in quantum statistis 213the right�, most often as |z) as they will appear as an integration variable. Theirformula in the Fok basis is:
|z) = exp(−‖z‖2 /2)

∑

m∈Nd

d∏

i=1

zmi

i√
mi

|m〉 , (8.15)where z =
∑
zifi ∈ H. Note that the vauum an be viewed as both a Fokstate |0〉 and a oherent state |0).We write (z| for the linear form assoiated to vetor |z). So that the densityoperator of a oherent state is |z)(z|. We an ompute the value of this state onan other oherent state |~ζ)(~ζ| seen as an observable, that is a bounded operatoron F(Cd). We get
Tr
[
|z)(z||~ζ)(~ζ|

]
= (~ζ|z)(z|~ζ) = exp

(
−
∥∥∥~ζ − z

∥∥∥
2
)
.This formula explains why oherent states are a speial kind of Gaussian states.In fat, we an take as a de�nition of Gaussian states all states φQ,~ζ suh that

φQ,
~ζ(|z)(z|) = C exp

[
−1

2
(z − ~ζ|Q−1|z − ~ζ)

]
, (8.16)where C is a onstant depending on ~ζ and Q. Here Q is a positive quadratiform that an be thought of as the ovariane matrix of the Gaussian state, andthe vetor ~ζ ∈ Cd may be viewed as the mean of the Gaussian state.Heisenberg unertainty relations impose that

(〈f |Q|f〉 − ‖f‖2
)(〈g|Q|g〉 − ‖g‖2

) ≥ σ(f, g)2, f, g ∈ C
d,where σ is the sympleti form oming from the salar produt on Cd, that is

σ(f, g) = Im(〈f, g〉). There exists a Gaussian state for all Q and ~ζ under thisonstraint.We shall be espeially interested in Gaussian states that are produts of sym-metri Gaussian mixtures of oherent states, that is displaed thermal states.A thermal equilibrium state at inverse temperature β is de�ned on F(C) usingGibbs weights and an energy proportional to the number of partiles, yielding:
φβ = (1 − e−β)

∑

m∈N

e−βm |m〉 〈m| . (8.17)Using the de�nition of oherent states (8.15) for the Fok spae F(C), we get:
φβ =

eβ − 1

π

∫

C

exp
(
−(eβ − 1)|z|2

)
|z)(z|dz. (8.18)



214 Quantum loal asymptoti normality for d-dimensional statesWe now onsider a olletion of operators alled Weyl operators, or displaementoperators. We assoiate to ~ζ ∈ H the operator D(~ζ) with the properties:
D(~ζ)|0) = |~ζ) (8.19)

D(~ζ1)D(~ζ2) = D(~ζ1 + ~ζ2) exp(iσ(~ζ1, ~ζ2)/2),where σ is the sympleti form oming from the salar produt on Cd, that is
σ(~ζ1, ~ζ2) = Im(〈~ζ1, ~ζ2〉). Given that oherent states are a omplete set of vetors,this de�nition determines ompletely the D(~ζ). We do not prove existene here.Note that D∗(~ζ) = D(−~ζ).We may let displaement operators at by intertwining on states, denoting thissuperoperator by D~ζ , that is D~ζ(φ)(A) = φ(D∗(~ζ)AD(~ζ)). From the de�nition ofdisplaement operators and de�nition (8.16), we ompute the ation on Gaussianstates:

D
~ζ1(φQ,

~ζ2) = φQ,
~ζ1+~ζ2 . (8.20)We now understand why these operators are named displaement operators.They shift the mean of the Gaussian states by ~ζ1.We have now all the tools to give a nie desription of the quantum part of thestates that appear in our limit experiment. We de�ne them on F(Cd(d−1)/2) =

F(C)⊗d(d−1)/2. We use (i, j) for 1 ≤ i < j ≤ d as labels for the di�erent Fokspaes. We have said we would use produts of displaed thermal states. We useinverse temperature linked to the eigenvalues µi of ρ0, the state around whihwe parametrise, spei�ally βi,j = ln(µi/µj). Then our states are de�ned for
~ζ ∈ Cd(d−1)/2 as:

φ
~ζ = D

~ζ




⊗

1≤i<j≤d
φβi,j



 =
⊗

1≤i<j≤d
Dζi,j (φβi,j ),where we have used notation (8.17) for thermal states.Using the integral form (8.18), we get the following working formula:

φ
~ζ =




∏

i<j

µi − µj
πµj




∫

Cd(d−1)/2

exp



−
∑

i<j

µi − µj
µj

|zi,j |2



∣∣∣z + ~ζ

)(
z + ~ζ

∣∣∣dz(8.21)
=
⊗

i<j

µi − µj
πµj

∫

C

exp

(
−µi − µj

µj
|zi,j |2

)
|zi,j + ζi,j) (zi,j + ζi,j | dzi,j .From this formula, we see that the ovariane matrix Q as in equation (8.16) ofthose states depends only the eigenvalues µi for 1 ≤ i ≤ d.



8.5 Loal asymptoti normality in quantum statistis 215Our limit quantum experiment shall onsist on those states on F(Cd(d−1)/2)together with the lassial Gaussian family on L∞(Rd−1) given in Example 8.4.1.We then have states on F(Cd(d−1)/2 ⊗ L∞(Rd−1), that we denote by
Φθ = Φ

~ζ,~u = φ
~ζ ⊗ N(~u, Vµ), (8.22)where the ovariane matrix Vµ is given in equation (8.9). The limit experimentis then

R =
{
Φθ : θ = (~ζ, ~u) ∈ C

d(d−1)/2 ⊗ R
d−1
}
.This limit experiment should ome as no surprise, both beause we an see itas the natural generalisation of the qubit ase given in setion 8.2, and beausethe equivalent of lassial weak onvergene to this experiment has already beenproved by Guµ  and Jen£ová [2007℄.For bakground, weak onvergene means onvergene of the Connes oylederivatives. Guµ  and Jen£ová [2007℄ stay at the level of CCR algebras, that isalgebras generated by displaement operators (8.19) assoiated to any sympletispae. Gaussian states an be de�ned diretly on those algebras, by the fat that

φ(D(h)) as a funtion of h ∈ H is the Fourier transform of a Gaussian.These CCR algebras enompass both B(F(H)) and L∞(Rd), and they get on-vergene even if some eigenvalues of ρ0 are equal, in whih ase a Fok spae
F(C) is replaed by a lassial spae L∞(R2). Our methods based on grouprepresentations do not give us this freedom.8.5.5 Main theoremWe now state the theorem of strong quantum loal asymptoti normality.We allow growing domains, as they are required for some appliations. Hene wede�ne the parameter sets

Θn,β,γ =
{

(~ζ, ~u) : ‖~ζ‖∞ ≤ nβ, ‖~u‖∞ ≤ nγ
}
.Reall that δ is the separation between the eigenvalues of ρ0 given by equation(8.11). Though we use parametrisation (8.39) for density matries ρθ, reall alsothat its �rst orders are given in equation (8.12). In fat, with yet a little morework, we ould prove the same theorem for the latter parametrisation.Theorem 8.5.1. Let δ > 0, let β < 1/9 and γ < 1/4. Let the quantum experi-ments

Qn =
{
ρθ,n : θ ∈ Θn,β,γ

}
,

R =
{
Φθ : θ ∈ Θn,β,γ

}
,



216 Quantum loal asymptoti normality for d-dimensional stateswhere ρθ,n = ρ⊗n
θ/

√
n
is the state on M(Cd)⊗n given by equation (8.39), where Φθis the produt of a quantum Gaussian state φ~ζ and a lassial Gaussian probabilitymeasure N (~u, Vµ). Here φ~ζ , that is given by equation (8.21), has mean ~ζ and�xed ovariane Q depending only on the eigenvalues {µi}di=1 of ρ0. On the otherhand N (~u, Vµ) has mean ~u and �xed ovariane matrix Vµ depending only on theeigenvalues of ρ0, with formula given in equation (8.9).Then, if n > n0/δ

k, with n0 and k depending only on β and γ, there are hannels
Tn : M(C) and Sn suh that

sup
θ∈Θn,β,γ

∥∥Φθ − Tn(ρ
θ,n)
∥∥

1
≤ Cn−ǫ/δ, (8.23)

sup
θ∈Θn,β,γ

∥∥Sn(Φθ) − ρθ,n
∥∥

1
≤ Cn−ǫ/δ, (8.24)where C and ǫ > 0 depend only on δ, β and γ.In other words, we get polynomial speed of onvergene of the approximation,whih is enough to build two-step evaluation strategies in the �nite experimentsglobally asymptotially equivalent to strategies in the limit experiment. We giveexpliit onstants in Theorem 8.8.7, but they are probably fairly pessimisti.We now onstrut the parametrisation of ρθ,n we use for the theorem. Thisparametrisation separates learly the quantum part, that is the eigenvetors,and the lassial part, that is the eigenvalue. We shall need some Lie grouptheory.8.6 Group theory primerWe review some basis of group theory, and more spei�ally representations.Young tableaux are intensively used in the proofs in Setion 8.9. Our refer-enes for the setion have been [Shensted, 1976, Fulton and Harris, 1991℄, twotextbooks among many others.8.6.1 Irreduible unitary representationsIn this setion we present some basi results from group theory whih will beuseful in understanding the struture of the irreduible representations of thespeial unitary group SU(d).Let G be a group with elements denoted g, h and produt gh. A unitary repre-sentation of G over a Hilbert spae H is a group homomorphism π from G to



8.6 Group theory primer 217
U(H), the group of unitary operators on H. This means that π(g)π(h) = π(gh)for all g, h ∈ G and π(e) = 1 where e ∈ G is the group unit.Representations an be ombined to onstrut new ones by means of diret sumsand tensor produts. If πa is a representation on Ha and πb a representation on
Hb, we de�ne their diret sum πa ⊕ πb ating on Ha ⊕Hb by

[πa ⊕ πb] (g) : |ψa〉 ⊕ |ψb〉 7→ πa(g)|ψa〉 ⊕ πb(g)|ψb〉.The tensor produt representation πa ⊗ πb ating on Ha ⊗Hb is de�ned through
[πa ⊗ πb] (g) : |ψa〉 ⊗ |ψb〉 7→ πa(g)|ψa〉 ⊗ πb(g)|ψb〉.The representations πa and πb are unitarily equivalent if there is an linear iso-metri isomorphism V : Ha → Hb suh that V πa(g) = πb(g)V for all g ∈ G. Weshall write πa ≡ πb.A representation on H is irreduible if there is no non-trivial subspae of H whihis left invariant by all π(g) for g ∈ G, that is if the π(g) annot be simultaneouslyblok-trigonalized. The following simple result is the well known Shur Lemmaadapted to unitary representations.Lemma 8.6.1. Let π1 and π2 be two unitary irreduible representations of G over

H1 and respetively H2, and let L : H1 → H2 be a linear map whih ommuteswith the group ation, i.e. Lπ1(g) = π2(g)L for all g ∈ G. Then either L = 0 orthe two representations are unitarily equivalent.For �nite groups suh as S(n) or ompat Lie groups suh as SU(d), any repre-sentation an be deomposed into �nite dimensional irreduible representations,that is all π(g) an be simultaneously blok-diagonalized with invariant sub-spaes Hi, suh that the restrition πi : g 7→ PHiπ (g)|Hi
is irreduible, where

PHi denotes the projetion onto Hi. If the equivalene lasses of irreduible rep-resentations are denoted by πλ, the multipliity Mλ of πλ in the representation
π is the number of i suh that πi ≡ πλ. Grouping together unitarily equivalentrepresentations we �nd that there exists an isomorphism

U : H →
⊕

λ

C
dλ ⊗ C

Mλ , (8.25)under whih
π ≡

⊕

λ

πλ ⊗ 1CM(λ) , (8.26)where the diret sum runs over all irreduible representations. Shur's lemmaimplies that the above deomposition into irreduible representations is unique



218 Quantum loal asymptoti normality for d-dimensional statesup to unitary isomorphism and the lassi�ation of unitary representations of Gis redued to the lassi�ation of unitary irreduible representations.The group algebra is a very useful tool in representation theory. For �nite groups
G, the group algebra A(G) is de�ned as the omplex linear spae spanned bythe group elements endowed with the group produt. For two elements a =∑

g∈G a(g)g and b =
∑
g∈G b(g)g the produt is

ab =
∑

g,h

a(g)b(h)(gh) =
∑

k

(
∑

l

a(kl−1)b(l)

)
k.Alternatively one an see A(G) as the spae of funtions a : G → C withthe onvolution produt ab : k → ∑

l a(kl
−1)b(l). The adjoint of a given by

a∗ =
∑

g a(g
−1)g makes A(G) into a ∗-algebra. It is easy to see that unitary rep-resentations π of G give rise to ∗-representations of A(G) by π(a) :=

∑
a(g)π(g),i.e. satisfying π(a)π(b) = π(ab), π(a∗) = π(a)∗, and onversely any unital repre-sentation of A(G) arises in this way.De�nition 8.6.2. A projetion p is an element of A(G) satisfying p = p∗ and

p2 = p. A projetion is minimal if it annot be deomposed as p = q + r with
q 6= 0 and r 6= 0 projetions. A projetion p is alled entral if it ommutes withall group algebra elements, that is ap = pa for all a ∈ A(G). Two projetions
p, q are equivalent if there exists v ∈ A(G) suh that p = vv∗ and q = v∗v.The following theorem establishes the relation between group representations andprojetions in the group algebra.Theorem 8.6.3. Let G be a �nite group. Then the group algebra A(G) is iso-morphi to the diret sum of matrix algebras

A(G) ∼=
⊕

λ

M(Cdλ), (8.27)where the diret sum runs over all irreduible representations of G and dλ is thedimension of the representation πλ. There is a one to one orrespondene betweenequivalene lasses of minimal projetions and irreduible representations. Fur-thermore there is one-to one orrespondene between minimal entral projetionsand irreduible representations.Thus the group algebra enodes information about the dimensions of irreduiblerepresentations through (8.27) and it is easy to see that minimal projetionsorrespond to one dimensional projetions in one of the summandsM(Cdλ) whileminimal entral projetions orrespond to the identity operator 1λ ∈M(Cdλ) andzero for the other omponents.



8.6 Group theory primer 219The above isomorphism is given by a → ⊕
λ πλ(a). Using this identi�ation,and the general form (8.26) of unitary representations we onlude that anyrepresentation of A(G) over a spae H is of the form

π :
⊕

λ

πλ(a) →
⊕

λ

πλ(a) ⊗ 1CMλ ,with H deomposed as in (8.25).The following theorem whih uses Shur's lemma, shows that the operators whihommute with the representation π are preisely those whih have the same blokdiagonal form as π(g) but at as identity on the representation spae Cdλ andarbitrarily on the multipliity spae CMλ . The ommutant of a set of operators
A ⊂ B(H) is

A′ := {b ∈ B(H) : ba = ab, ∀a ∈ A}.Theorem 8.6.4. Let π be the representation of the �nite group G given by (8.25),(8.26). Let Aπ be the algebra π(A(G)) and A′
π its ommutant. Then

A′
π =

⊕

λ

1Cdλ ⊗M(CMλ).To onlude this brief introdution to group representation theory, we mentionthat the notion of group algebra an also be de�ned for ompat Lie groups suhas SU(d) with most of the above results remaining valid.8.6.2 Irreduible representations of SU(d)Let M(Cd) be the algebra of d-dimensional omplex valued matries, and SU(d)be the group of unitary matries U ∈ M(Cd) with determinant Det(U) = 1.Reall that a unitary matrix is de�ned by the property UU∗ = U∗U = 1 where
U∗ is the adjoint of U , i.e. transpose and omplex onjugate.
SU(d) is a Lie group, i.e. it is also a C∞-manifold, of dimension d2 − 1 withthe property that the group produt and inverse are ompatible with the smoothstruture. Sine SU(d) is a ompat group, the representation theory bearssome similarities with that of �nite groups. For instane, any unitary represen-tation an be deomposed into a diret sum involving a ountable number ofnon-equivalent irreduible representations, eah of them of �nite dimension.The Lie algebra su(d) is the tangent spae of SU(d) at the origin, and an beidenti�ed with the real linear subspae of M(Cd) onsisting of skew-selfadjointmatries A∗ = −A with Tr(A) = 0. The identi�ation relies on the fat that thedi�erentiable urve in SU(d) given by t 7→ U(t) = exp(tA), has tangent vetor



220 Quantum loal asymptoti normality for d-dimensional states
A at the origin (t = 0). The Lie produt of su(d) is given by the ommutator
[A,B] = AB −BA and satis�es

[A,B] = lim
t→0

U(t)V (t)U(t)−1V (t)−1 − 1

t2
,where U(t) = exp(tA) and V (t) = exp(tB).In this hapter we mostly use the physis onvention and write U = exp(iH)instead of U = exp(A) where H = −iA is a self-adjoint operator. The groupelements in a su�iently small neighbourhood of the identity an be parametrisedas

U = exp



i




∑

i=1,...,d−1

aiHi +
∑

1≤i6=j≤d
ai,jTi,j







where ai and ai,j are unique real oe�ients in a neighbourhood of 0, and Hiand Ti,j are self-adjoint generators forming a basis of the linear spae of omplexmatries with trae equal to zero. The expliit form of the generators is given by
Hj = Ej,j − Ej+1,j+1 for j ≤ d− 1;

Tj,k = iEj,k − iEk,j for 1 ≤ j < k ≤ d; (8.28)
Tk,j = Ej,k + Ek,j for1 ≤ j < k ≤ d.where Ei,j the matrix with entry (i, j) equal to 1, and all others equal to 0. Therelevant ommutators are

[Ek,k, Ei,j ] = (δi,k − δj,k)Ei,j , [Ei,j , Ek,l] = δk,jEi,l − δl,iEk,j . (8.29)Before studying the general ase, we shall brie�y desribe the irreduible represen-tations of SU(2). For simpliity we denote H1, E1,2, E2,1 by H,E, F respetively.Theorem 8.6.5. Let (π,H) be a irreduible unitary representation of SU(2),and hene of the Lie algebra su(2). Then if the dimension of H is n + 1, with
n ≥ 0, there exists 0 6= ψ0 ∈ H suh that

π(H)ψ0 = nψ0, π(E)ψ0 = 0.De�ne ψk := (1/k!)π(F )kψ0. Then ψ0, . . . ψn form an orthogonal basis for Hand
π(H)ψk = (n− 2k)ψk

π(F )ψk = (k + 1)ψk+1, π(E)ψk = (n− k + 1)ψk−1.Before proving the theorem let us note that π(E) ats as a ladder operator on thebasis vetors by dereasing their index by 1, and annihilating ψ0. The adjoint
π(F ) = π(E)∗ ats as a inreasing operator and annihilates ψn.



8.6 Group theory primer 221Proof. Let ψ be an eigenvetor of π(H) with Hψ = hψ. By using the ommuta-tion relations [H,E] = 2E we get that
π(H)(π(E)ψ) = (h+ 2)π(E)ψ,hene h+2 is also an eigenvalue, or π(E)ψ = 0. By suessively applying π(E) weget a sequene of eigenvetors with eigenvalues h, . . . , h+2m, and sineH is �nitedimensional, there exists a minimal �nitem suh that π(E)m+1ψ = 0. We denoteby ψ0 the vetor π(E)mψ 6= 0 and let Hψ0 = h0ψ0. De�ne ψk := (1/k!)π(F )kψ0as above. The following ommutation relations an be proved by indution

[H,F k] = −2kF k, [E,F k] = kF k−1(H − k + 1).By applying them to the vetor ψk we get
k!π(H)ψk = π(F )kHψ0 + [π(H), π(F k)]ψ0 = (h0 − 2k)F kψ0

k!π(E)ψk = π(F )kEψ0 + [π(E), π(F )k ]ψ0 = k(h0 − k + 1)F k−1ψ0.This implies that all ψk are linearly independent sine they are eigenvetors of Hwith di�erent eigenvalues. Moreover, sine H is �nite dimensional there exists aminimal �nite p suh that π(F )n+1ψ0 = 0. The span of the vetors ψ0, . . . ψp isinvariant under π(su(2)), and sine π is irreduible, we onlude that p = n and
ψk form an orthogonal basis in H.Finally,
0 = π(E)π(F )ψn = π(F )π(E)ψn + π(H)ψn = n(h0 − n+ 1)ψn + (h0 − 2n)ψn

= (n+ 1)(h0 − n)ψn,hene h0 = n.We would like to the extend the ideas used in the proof to representations of
SU(d). What are the ladder operators in this ase and how do they at on thebasis vetors? The generators H1, . . . , Hd−1 form a maximal set of ommutinggenerators of su(d). This implies that for any (�nite dimensional) irreduibleunitary representation (H, π) of SU(d), and hene of its Lie algebra, we anhoose an orthonormal basis in whih all Hk are diagonal:

π(Hk)ψa = ha(k)ψa, a = 1, . . . ,dim(H), k = 1, . . . , d− 1.The vetor ha = (ha(1), . . . ha(d − 1)) is alled a weight vetor, and as we shallsee shortly, the set of weight vetors for the various basis vetors ψa ompletelyharaterise the representation π.



222 Quantum loal asymptoti normality for d-dimensional statesUsing the ommutation relations (8.29) we obtain
[Hk, Ei,j ] = ri,j(k)Ei,j , i 6= j,

π(Hk)(π(Ei,j)ψa) = (ri,j(k) + ha(k))(π(Ei,j)ψa),where ri,j = (ri,j(1), . . . , ri,j(d−1)) are d(d−1) root vetors and the expliit formof their oe�ients is ri,j(k) = δi,k − δi,k+1 − δj,k + δjk+1. Thus, if π(Ei,j)ψais non-vanishing, then ha + ri,j is a weight vetor as well, and π(Ei,j) ats as a`translation' or `ladder' operator on the set of weights. Sine the dimension ofan irreduible representation is �nite, and the suessive appliation of π(Ei,j)leads to a new weight vetor, we onlude that there exists a �nite integer p suhthat π(Ei,j)
p = 0. Moreover, π being irreduible implies that for any given ψaone an �nd a path in the weight spae onneting ha with any other weight, thelatter being reahed by applying a produt of translation operators to the vetor

ψa. Thus, the di�erene between any pair of weights is of the form
ha − hb =

∑

i,j

ni,jri,j , ni,j ∈ N,and the set of weights is haraterised by its boundary and a referene point ina (d− 1)-dimensional lattie de�ned by the root vetors rij .What is the weight spae of the de�ning representation of SU(d) on Cd? Thebasis vetors f1, . . . , fd are eigenvetors of Hk with weight vetors hi given by
hi(k) = δi,k − δi,k+1, i = 1, . . . , d− 1, (8.30)suh that the root vetors rij an be written as rij = hi − hj . The ation of Eijon the basis funtion is simply Eijfj = fi and Eijfk = 0 for k 6= j, whih isonsistent with the general notion of translation on the weight spae.Let us de�ne the set of simple roots
αi =: ri,i+1 = hi − hi+1, i = 1, . . . d− 1and note that any root ri,j with i > j an be expressed in terms of simple roots

ri,j = hi − hj = αi + · · · + αj−1,whih we all positive root, and similarly rj,i will be alled negative root.This notion of positivity de�nes a partial ordering on the weights: we say that
ha > hb if ha − hb is a sum of positive roots with natural oe�ients. In par-tiular the weights (8.30) of the de�ning representation are ordered as follows
ω1 < ω2 · · · < ωd. We notie that fd is the unique vetor orresponding to the'highest weight' ωd and satis�es Eijfd = 0 for all i > j. The generalisationof this observation to arbitrary irreduible representations is the key to theirharaterisation by means of highest weight.



8.6 Group theory primer 223Theorem 8.6.6. Let (π,H) be an irreduible representation of SU(d). Thenthere is a unique highest weight h(π) suh that h(π) > h for all other weights
h, and the orresponding eigenspae is one dimensional. If (π′,H′) is anotherirreduible representation with the same highest weight then π′ ≡ π.Proof. Let us denote by H(h) the joint eigenspae of Hi for the weight h. Thenwe have the deomposition

H =
⊕

h

H(h)Let µ be a maximal weight with respet to the partial ordering and let ψ0 ∈
H(hπ). By using the ommutation relations as before we get that π(Ei,i+1)H(µ) ⊂
H(µ+ αi). Sine µ is maximal we onlude that π(Eij)ψ0 = 0 for all i > j.Let us onsider one of the su(2) subalgebras of su(d) with generators Ei =
Ei,i+1, Fi = Ei+1,i, H = Hi. Note that Ei is di�erent form the diagonal elements
Ei,i. Sine ψ0 is annihilated by π(E), we an apply Theorem 8.6.5 to obtain
π(Hi)ψ0 = niψn with ni non-negative integer, and thus h(π) = (n1, . . . , nd−1).In order to show that H(h(π)) is one dimensional we onstrut a subspae of Hwhih is invariant under π(su(d)) but ontains only one vetor with weight h(π),namely ψ0. Sine the representation is irreduible, the subspae will be the whole
H. Let

K := Span{π(Fi1 ) . . . π(Fip )ψ0 : 1 ≤ i1, . . . , ip ≤ d− 1, p = 0, 1 . . .} ⊂ H.To show that K is invariant under π(su(d)) it su�es to show its invarianeunder the ation of Ei, Fi whih generate su(d) as a Lie algebra. By de�nition
K is invariant under π(Fi), and from the ommutation relations [Ei, Fj ] = δi,jHiwe get

π(Ei)π(Fi1 ) . . . π(Fip)ψ0 = π(Fi1 ) . . . π(Fip )π(Ei)ψ0

+

p∑

j=1

δi,ijπ(Fi1 ) . . . π(Hi) . . . π(Fip)ψ0.The �rst term on the right side is zero sine ψ0 is maximal and eah term in thesum is in K sine the vetor on the right side of Hi is an eigenvetor
π(Hi)π(Fij+1 ) . . . π(Fip)ψ0 = (h(π) − αij+1 − . . . αip)(i)π(Fij+1 ) . . . π(Fip)ψ0.In partiular, the last equation shows that the weight of the vetors spanning Kare of the form

h(π) − αi1 − . . . αip ,whih are smaller than h(π) with the only exeption of the vetor ψ0. Thus,
h(π) = (n1, . . . , nd−1) is the highest weight and H(h(π)) = Cψ0.



224 Quantum loal asymptoti normality for d-dimensional statesLet (π′,H′) be another representation with highest weight h(π). It an be easilyheked that the map
U : π(Fi1 ) . . . π(Fip )ψ0 → π′(Fi1 ) . . . π

′(Fip )ψ′
0extends to a unitary intertwining π and π′. Thus π ≡ π′.Remarks. We have seen that an irreduible representation (π,H) of SU(d) anbe desribed by means of a highest weight vetor ψ0H(h(π)), and the ation ofladder operators π(Ei,j) whih map the weight subspae H(h) into H(h + rij).This struture is very similar with that of irreduible representations of SU(2)desribed in Theorem 8.6.5, but there are some important di�erenes: unlike inthe SU(2) ase the subspaes H(h) need not be one dimensional, and moreoverthe set of vetors π(Fi1 ) . . . π(Fip)ψ0 need not be orthogonal to eah other! Thisissue will play an important role later on.We now make the onnetion between the notion of highest weight and that ofYoung diagram whih will be entral to the next setion.A Young diagram is de�ned by an ordered tuple of integers λ = (λ1, . . . , λd) with

λ1 ≥ · · · ≥ λd ≥ 0, and an be represented graphially as a diagram of d lines,the i-th line having λi boxes. If we onsider the di�erenes between suessiverows we obtain a possible highest weight h = (n1, . . . , nd−1) with n1 = λi−λi+1.Thus, to eah Young diagram we an assoiate an irreduible representation of
SU(d). For example, both λ = (2, 1), representation of SU(2), and λ = (2, 1, 0),representation of SU(3), would be represented as . Similarly (5, 3, 3) orre-sponds to the Young diagram . Conventionally, we set λd+1 = 0. Clearly,there is some redundany in this parametrisation of irreduible representations.Two Young diagrams λa and λb orrespond to equivalent irreduible representa-tions if and only if λai −λbi is independent on i. In other words, if we suppress oradd full olumns, we do not hange the representation. For instane, irreduiblerepresentations of SU(2) are parametrised by only one parameter whih is thedi�erene between the number of boxes in the �rst and seond line.In the next setion we shall see that this assoiation is very fruitful in under-standing the struture of SU(d) representations.8.6.3 Tensor produt representationAfter studying the general properties of the irreduible representations of SU(d),we shall analyse a partiular representation assoiated to n idential d-dimensional



8.6 Group theory primer 225quantum systems. Our main results desribe ertain asymptoti properties of`typial' irreduible representations appearing in the deomposition of the n-thtensor produt representation of SU(d) ating on (Cd)⊗N , when n tends to in-�nity.The n-th tensor produt representation of SU(d) is given by
πn(U) : (Cd)⊗N → (Cd)⊗N , πn(U) : |ψ1〉⊗ · · ·⊗ |ψn〉 7→ U |ψ1〉⊗ · · ·⊗U |ψn〉.By permuting the vetors in the tensor produt we obtain a unitary representation
π̃d of the permutation group S(n) over {1, 2 . . . , n}

π̃d(τ) : |ψ1〉 ⊗ · · · ⊗ |ψn〉 7→ |ψτ−1(1)〉 ⊗ · · · ⊗ |ψτ−1(n)〉, τ ∈ S(n).It is easy to see that the two group representations ommute, i.e. πn(U)π̃d(τ) =
π̃d(τ)πn(U) for all U ∈ SU(d) and τ ∈ S(n) whih means that they an blok-diagonalised simultaneously. In fat a stronger result holds whih is alled theShur-Weyl duality and shows that πn(SU(d)) and π̃d(S(n)) are eah other'sommutant as haraterised in Theorem 8.6.4.Theorem 8.6.7. Let πn and π̃d be the representations of SU(d) and respetively
S(n) on (Cd)⊗n. Then the representation spae deomposes into a diret sumof tensor produts of irreduible representations of SU(d) and S(n) indexed byYoung diagrams with d lines and n boxes:

(Cd)⊗n ∼=
⊕

λ

Hλ ⊗Kλ,

πn ≡
⊕

λ

πλ ⊗ 1Kλ
,

π̃d ≡
⊕

λ

1Hλ
⊗ π̃λ.In partiular, let us onsider a matrix in M((Cd)⊗n of the form ρ⊗n. Then ρ⊗nand p̃id(τ) ommute for all τ . Hene, we may write:

ρ⊗n =
⊕

λ

ρλ ⊗ 1Kλ
(8.31)for some matries ρλ.The fat that the irreduible representations whih appear in the sum are pre-isely those given by Young diagrams with n boxes will beome lear in a moment.The expliit expression of the dimension Mn(λ) of Kλ is

M(~λ) =
n!∏

l=1...d
m=1...λl

gl,m
,



226 Quantum loal asymptoti normality for d-dimensional stateswhere gl,m is the �hook length� of the box (l,m), de�ned as one plus the numberof boxes under plus the number of boxes to the right. For example the dia-gram (5, 3, 3) has the hook lengths : 7 6 5 2 1
4 3 2
3 2 1 . By notiing that ∏λl

m=1 gl,m =
(λl+d−l)

Qd
k=l+1 λl−λk+k−l , we rewrite M(~λ) in the following form whih is more adaptedto our needs:

M(~λ) =

(
n

λ1, . . . , λd

) ∏

l=1...d
k=l+1...d

λl − λk + k − l

λl + k − l
. (8.32)The dimension D(λ) of Hλ is:

D(~λ) =
∏

i=1...d
j=1...λi

j + d− i

gi,j
. (8.33)At this point we would like to gain more insight into the struture of the irre-duible representations πλ. Theorem 8.6.3 shows that minimal projetions in thegroup algebra A(S(n)) are in one to one orrespondene with irreduible repre-sentations, suh that for any suh p ∈ A(S(n)) we have π̃d(p) = 1λ ⊗ pλ for agiven λ and with pλ one-dimensional projetion. In partiular, π̃d(p) projetsonto a subspae whih arries an irreduible representation of SU(d). We shallnow identify one suh projetion for eah index λ and then give a basis of vetorsin this subspae.Young tableaux are Young diagrams �lled with integers. Two types of Youngtableaux will play a role in our disussion.

• a standard Young tableau T is a Young diagram whose boxes are �lled withnumbers from 1 to n suh that the numbers are inreasing from left to rightand top to bottom.
• a semistandard Young tableau T is a Young diagram whose boxes are �lledwith numbers from 1 to d suh that the numbers weakly inrease from leftto right and inrease from top to bottom.To eah standard Young tableau T we assoiate two elements in the S(n) groupalgebra

PT =
∑

σ∈RT

σ, QT =
∑

τ∈CT

sgn(τ)τwhere RT is set of permutations in S(n) whih leave the rows of T invariant, and
CT is the set of permutations whih leave the olumns of T invariant.
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1 2 3
4 5

1 2 4
3 5

1 3 4
2 5

1 2 5
3 4

1 3 5
2 4

1 1 1
2 2

1 1 2
2 2Figure 8.1: Young tableaux for the (3, 2) Young diagram with d = 2, n = 5.top row: standard Young tableaux; bottom row: semistandard Young tableauxNote that

PλPλ = |Rλ|Pλ = (

d∏

i=1

λi!)Pλ, QλQλ = |C(λ)|Qλ = (

d∏

i=1

iλi−λi+1)Qλ.(8.34)and Pλ and Qλ are self-adjoint elements of the S(n) group algebra.The Young symmetriser is de�ned as
YT := QTPT .The following theorem is the basis of Weyl's onstrution of irreduible represen-tations.Theorem 8.6.8. The Young symmetriser YT is a rank one operator, i.e. upto normalisation fators YTY ∗

T and Y ∗
T YT are equivalent minimal projetions andtheir assoiated irreduible representation is λ = λ(T ). In partiular Y 2

T = NTYTfor some normalising fator NT ∈ R.Let us denote yT = π̃d(YT ) and similarly for qT , pT . Theorems 8.6.7 and 8.6.8imply that the range of yT in (Cd)⊗n is the multipliity subspae
HT := {ψ ⊗ φT : ψ ∈ Hλ} ⊂ Hλ ⊗Kλwhih arries the irreduible representation λ(T ) of SU(d). Based on the identi�-ation between the group algebra A(S(n)) and the matrix diret sum of Theorem8.6.3, we an see that the vetor φT ∈ Kλ belongs to the one dimensional subspaede�ned by the minimal projetion YTY ∗

T .We shall now give a (non-orthonormal) basis of HT when T = T0 is the stan-dard Young tableau with the numbers {1, . . . , n} �lling in inreasing order therows from left to right and top to bottom. An example of suh tableau is 1 2 3
4 5
6 .The onstrution an be extended to all (unitary equivalent) SU(d) irreduiblerepresentation spaes HT for the other standard tableaux T .



228 Quantum loal asymptoti normality for d-dimensional statesBy a slight abuse of notation we shall replae the subsript T0 by λ in all thefollowing arguments, so that the opy Hλ ⊗ φT0 is identi�ed with Hλ.Now, if {f1, . . . , fd} is an orthonormal basis of C
d then the vetors fa := fa(1) ⊗

· · · ⊗ fa(n) form an orthonormal basis of (Cd)⊗n with a(k) ∈ {1, . . . , d} an arbi-trary hoie of indies. We an represent eah basis vetor fa as a Young tableau�lled with indies in {1, . . . , d} obtained by replaing the integer k in T0 by theindex i(k) of the k'element of the tensor produt. We denote this Young tableauby ta. For example if fa = f2 ⊗ f2 ⊗ f1 ⊗ f2 ⊗ f1 then ta =
2 2 1
2 1 . Note thatthis di�ers from a semistandard Young tableau by the fat that indies are notneessarily inreasing along rows and olumns.Sine Hλ = Range(yλ), the vetors {yλfa : a ∈ {1, . . . , d}n} form a spanningset for Hλ, but in general they are not linearly independent and in fat some ofthem may be equal to zero. Indeed by using the Young tableau notation fromthe previous example we an see that yλ 2 2 1

2 1 = yλ
1 2 2
1 2 sine yλ = qλpλ and pλis the sum of all permutations leaving the rows of T invariant. Thus we mayrestrit to basis vetors fa whose orresponding Young tableaux ta are weaklyinreasing to the right. On the other hand, let us onsider a vetor fa whih hasthe property that any row permutation σ ∈ Rλ of its assoiated Young tableau tagives rise to a tableau ontaining at least one olumn with two idential indies.Then sine qλ works as anti-symmetriser for the olumn vetors, we obtain that

yλfa = qλpλfa = 0.More generally, it an be proved (see for example [Fulton and Harris, 1991℄) thatthe vetors yλfa for whih ta is a semistandard Young tableaux are a basis of theirreduible representation (πλ,Hλ). The proof is somewhat involved, and we donot give it here. However, it an be seen that the dimension is right by omparingwith (8.32).For the following results it will be onvenient to use another notation for thebasis vetors yλfa indexed by semistandard Young tableaux. Sine the values inthe rows are nondereasing, there is a one-to-one orrespondene between Youngtableaux with a given Young diagram λ, and vetors m = (mi,j)1≤i<j≤d where
mi,j is the number of j's appearing in line i of the Young tableau. Note thatwe need only mi,j for j > i, as there is no j in line i if j < i (the olumns areinreasing), and the number of i in line i is λi−∑d

j=i+1 mi,j . By a slight abuse ofnotation we shall denote the orresponding vetors by yλfm and the normalisedvetors
|mλ〉 := N (mλ)yλfmwhere N (mλ) = 1/‖yλfm‖ . This onstant is in general not easy to ompute.We shall desribe its asymptoti properties in setion 8.9.4.



8.6 Group theory primer 229The basis {|mλ〉} is not orthogonal. However, the following lemma states thatit is not very far from an orthogonal basis, at least for vetors that are not `toofar' from the highest weight vetor m = 0.Lemma 8.6.9. Let (m, λ) and (l, λ) be Young tableaux with diagram λ and let
|m| :=

∑
i<jmij and |l − m| :=

∑
i<j |li,j −mij |.If ∑

j>i

mi,j −
∑

j<i

mj,i 6=
∑

j>i

li,j −
∑

j<i

lj,ifor some 1 ≤ i ≤ d, then
〈m, λ|l, λ〉 = 0.Otherwise, let us suppose that λ be suh that λi−λi+1 > δn for all 1 ≤ i ≤ d−1,and λd > δn, with δ > 0. Let η < 1/3 suh that n3η−1 > C/δ for a onstant Cdepending only on d. If |l| ≤ |m| ≤ nη, then:

|〈m, λ|l, λ〉| ≤ (Cn)

(
(9η−2)|m−l|−3(|m|−|l|)

)
/12δ|m|−|l|−|m−l|/3(1 +O(n−1+3η/δ))where C and the onstant in the remainder term depends only on the dimension d.Notably, the result is of order less than n(9η−2)|m−l|/12 and the bound onvergesto zero for η < 2/9 when n→ ∞.The proof of the lemma is given in setion 8.9.3.Using (8.34)

〈yλfa|yλfb〉 = 〈qλpλfa|qλpλfb〉 = 〈pλfa|q2λpλfb〉 = (
d∏

i=1

iλi−λi+1)〈pλfa|yλfb〉.(8.35)In order to get further simpli�ations, we examine some speial vetor states,that we shall all by analogy with the Fok spaes �nite-dimensional oherentstates.The �rst is the speial vetor |0, λ〉, the highest weight vetor of the representation
(πλ,Hλ), whih later on will play the role of the �nite-dimensional vauum. Thisvetor, as we have seen, orresponds to the semistandard Young tableau whereall the entries in row i are i. An immediate onsequene is that

pλ|f0〉 = (

d∏

i=1

λi!)|f0〉. (8.36)



230 Quantum loal asymptoti normality for d-dimensional statesMoreover 〈f0|qλf0〉 = 1 sine any olumn permutation produes a vetor orthog-onal to f0. Thus the normalised vetor is:
|0λ〉 =

1
∏d
i=1 λi!

√
iλi−λi+1

yλ|f0〉.The �nite-dimensional oherent states are de�ned as πλ(U)|0λ〉 for U ∈ SU(d).From [pλ, πλ(U)] = 0 and (8.36), we get pλπλ(U)|0λ〉 = (
∏d
i=1 λi!)U |0λ〉, thus

〈yλfm|πλ(U)|0, λ〉 =

√√√√
d∏

i=1

iλi−λi+1〈pλfm|qλπλ(U)f0〉 (8.37)The latter expression holds for any linear ombination of fm on the left-hand side,that is for any vetor in Cd, in partiular πλ(V )f0 for another unitary operator
V . In Lemma 8.9.1, we shall examine asymptotis of (8.37) for spei� sequenesof unitaries U when n is going to in�nity. One of the main tools will be formula(8.60).8.7 Parametrisation of the density matries andonstrution of the hannels Tn8.7.1 The �nite-dimensional experimentReall we work with the quantum experiments Qn given in equation (8.13).To express the exat form of our ρθ, we use the following notations, for ~ζ ∈
Cd(d−1)/2 and ~ξ ∈ Rd−1:

U(~ζ, ~ξ) = exp



i




d−1∑

i=1

ξiHi +
∑

1≤j<k≤d

Re(ζj,k)Tj,k + Im(ζj,k)Tk,j
µj − µk









U(~ζ) = U(~ζ,~0), U(~ζ, ~ξ, n) = U(~ζ/
√
n, ~ξ/

√
n), U(~ζ, n) = U(~ζ/

√
n),

(8.38)where the Tj,k and Hi are the generators (8.28) of the Lie algebra of SU(d).We now parametrise our density matries ρθ as:
ρθ = U(~ζ)





µ1 + u1 0 . . . 0

0 µ2 + u2
. . . ...... . . . . . . 0

0 . . . 0 µd −
∑d−1

i=1 ui




U∗(~ζ), ui ∈ R, ζj,k ∈ C.(8.39)



8.7 Parametrisation of the density matries and onstrution of Tn 231We shall write ρθ,n = ρ
~ζ,~u,n for ρ⊗n

θ/
√
n
. We may use the deomposition (8.31)over the representations λ to obtain:

ρθ,n =
⊕

λ

ρθ,nλ ⊗ pθ,nλ 1CMn(λ)

Mn(λ)
, (8.40)where we have used that Kλ had dimension Mn(λ) given by (8.32). As ρθ,n isnon-negative, so are all the ρθ,nλ . We then hoose pθ,nλ suh that ρθ,nλ has traeone, i.e. is a density operator.Notie that if we take {fi} to be the eigenvetors of the ρ~0,~u/√n, then ρ

~0,~u,nis diagonal in the tensor produt basis, with eigenvalues depending only on thenumber of times eah fi omes in. This number does not hange under the ationof π̃λ(τ), whatever the permutation τ , hene the vetors |mλ〉 are eigenvetorsof ρ~0,~u,n for all λ, with eigenvalues:
〈mλ|ρ~0,~u,n|mλ〉 =

d∏

i=1

(µ~u,ni )λi

d∏

j=i+1

(
µ~u,nj

µ~u,ni

)mi,j

, (8.41)where µ~u,ni = µi + ui/
√
n for 1 ≤ i ≤ (d− 1) and µ~u,nd = µd − (

∑
i ui)/

√
n.Let us de�ne the �nite-dimensional displaement operator as

∆
~ζ,~u,n(A) = U(~ζ, ~u, n)AU∗(~ζ, ~u, n). (8.42)We de�ne similarly ∆

~ζ,n. Then we see that ρ~ζ,~u,n = ∆
~ζ,n(ρ

~0,~u,n).When ating on representations λ of SU(d), we naturally de�ne Uλ(~ζ, ~u, n) andonsequently∆
~ζ,~u,n
λ , and so on. Using the deomposition (8.40) of ρ⊗n, we obtain:

ρ
~ζ,~u,n
λ = ∆

~ζ,n
λ (ρ

~0,~u,n
λ ). (8.43)Notie the similarity with equation (8.20). The �nite-dimensional displaementoperators on λ will be the analogue of the displaement operators on the Fokspae.With these notations, we an set about building the hannels Tn.8.7.2 Desription of TnWe look for Tn of the form:

Tn : ρθ,n 7→
∑

λ

Vλρ
θ,n
λ V ∗

λ ⊗ pθ,nλ τnλ . (8.44)



232 Quantum loal asymptoti normality for d-dimensional statesHere, Vλ is an isometry from M(Hλ) to F(Cd(d−1)/2), that is V ∗
λ Vλ = 1Hλ

. Onthe lassial side τnλ is a probability law on Rd−1. We may view τn as a Markovkernel (8.6) from the set of λ to Rd−1.Intuitively, this orresponds to �rst measuring the representation λ we are in.Then, on the one hand, we use a lassial randomization on the result λ, andon the other hand we use a hannel depending on our result λ on the remainingstate. It an be proved from the axioms of quantum mehanis that this state is
ρθ,nλ ⊗ 1CMn(λ)/(Mn(λ)).The underlying idea is the following: the probability distribution pθ,nλ is essen-tially a multinomial depending on ~u only, as an be dedued from (8.41) and(8.32). As we have seen in Example 8.4.1, this onverges to a lassial Gaussianshift experiment. For the quantum part, we send the �nite-dimensional vauum
|0λ〉 to the vauum |0〉, and send the |mλ〉 near the |m〉. We then want to provethat the �nite-dimensional displaement operators at almost like the Fok spaeones, and that Tλ(ρ~0,~u,nλ ) is almost φ~0. Formula 8.43 would end the proof. Finite-dimensional oherent states and formula 8.21 will be the stepping stone to thoseresults.We give in Setion 8.9.2 a proof that Tn of the form (8.44) is indeed a trae-preserving ompletely positive map.Lemma 8.7.1. Appliations of the form (8.44) are bona-�de hannels.After this sanity hek, we an be more spei� about Tn, and give our Vλ and
τn.Let us begin with the Markov kernel τn. To obtain L1 onvergene instead ofonly onvergene in distribution in Le Cam theory, the omponents τnλ must notbe Dira peaks. A slight smoothing is needed. The probability distribution τnλon Rd−1 is de�ned for all λ suh that ∑λi = n by:

dτnλ (x) = τnλ (x)dx = dxδ∀1≤i≤d−1, |n1/2xi+nµi−λi|≤1/2. (8.45)For building an isometry Vλ meeting our requirements, we onentrate on therelevant representations. Spei�ally, de�ne
Λn,α = {λ|∀i ∈ [1, d], |λi − nµi| ≤ nα} .We an then prove:Lemma 8.7.2. Let η < 2/9. Suppose that λi−λi+1 ≥ δn for all 1 ≤ i ≤ d, withthe onvention λd+1 = 0. Then there is an isometry Vλ suh that, if |m| ≤ nη,
〈m|Vλ =

1√
1 + (Cn)(9η−2)/12/δ1/3

〈mλ|



8.8 Main steps of the proof 233with the onstant C depending only on η and the dimension d.We delay the proof to setion 8.9.3. The main tool is Lemma 8.6.9.We just take the Vλ given by the lemma as our Vλ, for all λ ∈ Λn,α. For thoserepresentations and n not too small, we have λi − λi+1 ≥ δn/2 and we merelyabsorb the 2 in the onstant C. For the other representations λ, any Vλ will do:those omponents do not matter asymptotially.We shorthand a few notations: �rst we write Tλ for the hannel ρθ,nλ 7→ Vλρ
θ,n
λ V ∗

λ ,so that
Tn : ρθ,n 7→

∑

λ

Tλ(ρ
θ,n
λ ) ⊗ pθ,nλ τnλ .We shall write for the dual T ∗

λ : φ 7→ V ∗
λ φVλ. Notie that T ∗

λTλ is the identity onthe operators on the operators on the vetor spae Hλ.We shall write φθ,nλ = Tλ(ρ
θ,n
λ ) and bθ,nλ = pθ,nλ τnλ . The latter is merely a non-normalized measure. Reall that pθ,nλ , and hene bθ,nλ , depends only on ~u, andnot on ~ζ.8.8 Main steps of the proof8.8.1 Why Tn does the workWe shall break (8.23) in small manageable piees (muh longer to write, ofourse). The result and brief explanatory remarks, repeating those in the deriva-tion, are given from (8.47) on.We �rst expand (8.44) as

Tn(ρ
θ,n) =

∑

λ

φθ,nλ ⊗ bθ,nλ

= φ
~ζ ⊗N (~u, Vµ) − φ

~ζ ⊗
(
N (~u, Vµ) −

∑

λ

bθ,nλ

)
−
∑

λ

(
φ
~ζ − φθ,nλ

)
⊗ bθ,nλ .Proving (8.23) then amounts to proving

sup
θ∈Θn,β,γ

∥∥∥∥∥φ
~ζ ⊗

(
N (~u, Vµ) −

∑

λ

bθ,nλ

)
+
∑

λ

(
φ
~ζ − φθ,nλ

)
⊗ bθ,nλ

∥∥∥∥∥
1

−−−−→
n→∞

0.



234 Quantum loal asymptoti normality for d-dimensional statesWe now upper bound this norm by other norms, until we reah �elementary�terms, eah of whih we shall bound in a lemma, whose (tehnial) proof an befound in the last setion.First
∥∥∥Tn(ρθ,n) − φ

~ζ ⊗N (~u, Vµ)
∥∥∥

=

∥∥∥∥∥φ
~ζ ⊗

(
N (~u, Vµ) −

∑

λ

bθ,nλ

)
+
∑

λ

(
φ
~ζ − φθ,nλ

)
⊗ bθ,nλ

∥∥∥∥∥
1

≤
∥∥∥∥∥φ

~ζ ⊗
(
N (~u, Vµ) −

∑

λ

bθ,nλ

)∥∥∥∥∥
1

+
∑

λ

∥∥∥
(
φ
~ζ − φθ,nλ

)
⊗ bθ,nλ

∥∥∥
1

≤
∥∥∥φ~ζ

∥∥∥
1

∥∥∥∥∥

(
N (~u, Vµ) −

∑

λ

bθ,nλ

)∥∥∥∥∥
1

+
∑

λ

∥∥∥
(
φ
~ζ − φθ,nλ

)∥∥∥
1

∥∥∥bθ,nλ
∥∥∥

1
.First remark that ‖φ~ζ‖1 = ‖N (~u, Vµ)‖1 = ‖φθ,nλ ‖ = 1, so that ∥∥∥(φ~ζ − φθ,nλ

)∥∥∥
1
≤

2 also holds. Similarly ∑λ ‖b
θ,n
λ ‖1 = 1 (indeed ‖bθ,nλ ‖1 = pθ,nλ ). Our next stageshall then onsist in replaing some of these norms by one or two. Notably, wesplit the sum over λ in two parts, depending on whether or not it belongs to

Λn,α. If it does, we expet that ∥∥∥(φ~ζ − φθ,nλ

)∥∥∥
1
is very small, and the sum of all

‖bθ,nλ ‖1 for the other λ is small. Then
∥∥∥Tn(ρθ,n) − φ

~ζ ⊗N (~u, Vµ)
∥∥∥

≤
∥∥∥∥∥

(
N (~u, Vµ) −

∑

λ

bθ,nλ

)∥∥∥∥∥
1

+ sup
λ∈Λn,α

∥∥∥
(
φ
~ζ − φθ,nλ

)∥∥∥
1
+ 2

∑

λ6∈Λn,α

‖bθ,nλ ‖1.(8.46)Let us pause a few seonds and explain eah term. The �rst term orresponds tothe onvergene of the lassial probabilities, as in the usual Le Cam piture. Ifthe seond term is small, then on Λn,α, the (purely quantum) family ρθ,nλ is nearthe family φ~ζ . The last term orresponds to the other representations. If it issmall, it says that there is onentration of pθ,nλ around the representations withshape λi = nµi. In other words, the only representations that matter are thosein Λn,α, there is almost no mass on the other representations.The hardest term to dominate (notie that the two others are lassial) is the



8.8 Main steps of the proof 235seond. We transform it until we reah tratable fragments.
∥∥∥φ~ζ − φθ,nλ

∥∥∥
1

=
∥∥∥φ~ζ − Tλ(ρ

θ,n
λ )
∥∥∥

1

=
∥∥∥D~ζ(φ

~0) − [Tλ∆
~ζ,n
λ T ∗

λ ](Tλ(ρ
~0,~u,n
λ ))

∥∥∥
1

=
∥∥∥D~ζ(φ

~0) −D
~ζ(Tλ(ρ

~0,~u,n
λ )) +D

~ζ(Tλ(ρ
~0,~u,n
λ )) − [Tλ∆

~ζ,n
λ T ∗

λ ](Tλ(ρ
~0,~u,n
λ ))

∥∥∥
1

≤
∥∥∥D~ζ(φ

~0) −D
~ζ(Tλ(ρ

~0,~u,n
λ ))

∥∥∥
1

+
∥∥∥[D~ζ − Tλ∆

~ζ,n
λ T ∗

λ ](Tλ(ρ
~0,~u,n
λ ) − φ

~0)
∥∥∥

1

+
∥∥∥[D~ζ − Tλ∆

~ζ,n
λ T ∗

λ ](φ
~0)
∥∥∥

1

≤ 3
∥∥∥Tλ(ρ

~0,~u,n
λ ) − φ

~0
∥∥∥

1
+
∥∥∥[D~ζ − Tλ∆

~ζ,n
λ T ∗

λ ](φ
~0)
∥∥∥

1where we have used on the last line that the displaement operators are isometries.Let us pause again. Through this last expression, we are trying to prove that ourquantum parts φ~ζ and φ~ζ,~u,nλ with the following strategy: prove that when theparameter ~ζ is ~0, they are near. Reall that the parameter ~ζ is obtained by lettinga displaement operator at on ~ζ = ~0, and prove that the ��nite-dimensional�displaement operator, after being taken to the Fok spae, is ating on φ~0 likethe in�nite-dimensional operator do.We shall still go one step further in the deomposition for proving this last as-sertion, on the seond term.Using the formula for φ~0, we bound the seond term by
∥∥∥[D~ζ − Tλ∆

~ζ,n
λ T ∗

λ ](φ
~0)
∥∥∥

1
≤
∫

Cd(d−1)/2

f(z)
∥∥∥[D~ζ − Tλ∆

~ζ,n
λ T ∗

λ ](|z)(z|)
∥∥∥

1
dzwith f(z) =

∏
i<j

µi−µj

πµj
exp

(
−µi−µj

µj
|zi,j |2

). Reall that |z)(z| = Dz(|0)(0|), sothat [D
~ζ − Tλ∆

~ζ,n
λ T ∗

λ ](|z)(z|) = [D
~ζDz − Tλ∆

~ζ,n
λ T ∗

λD
z](|0)(0|) .Now, f is a probability density, and the norm in the integrand is dominated bytwo. So that another bound on the seond term of the formula for φ~0 is given by

∥∥∥[D~ζ − Tλ∆
~ζ,n
λ T ∗

λ ](φ
~0)
∥∥∥

1
≤
∫

‖z‖1>nβ

f(z)dz+ sup
‖z‖≤nβ

∥∥∥[D~ζ − Tλ∆
~ζ,n
λ T ∗

λ ](|z)(z|)
∥∥∥

1
.
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D
~ζDz − Tλ∆

~ζ,n
λ T ∗

λD
z =D

~ζ+z − Tλ∆
~ζ+z,n
λ T ∗

λ

+ Tλ∆
~ζ+z,n
λ T ∗

λ − Tλ∆
~ζ,n
λ ∆z,n

λ T ∗
λ

+ Tλ∆
~ζ,n
λ ∆z,n

λ T ∗
λ − Tλ∆

~ζ,n
λ T ∗

λD
z.From this we dedue that

∥∥∥[D~ζ − Tλ∆
~ζ,n
λ T ∗

λ ](|z)(z|)
∥∥∥

1
≤
∥∥∥[D~ζ+z − Tλ∆

~ζ+z,n
λ T ∗

λ ](|0)(0|)
∥∥∥

1

+
∥∥∥[∆

~ζ+z,n
λ − ∆

~ζ,n
λ ∆z,n

λ ](|0λ〉〈0λ|)
∥∥∥

1

+ ‖[∆z,n
λ T ∗

λ − T ∗
λD

z](|0)(0|)‖
1where we have realled that we were dealing with isometries to suppress some Tλand ∆

~ζ,n
λ . Notie that the �rst and third norms are essentially the same.

Saying that the �rst norm is small orresponds to saying that the��nite-dimensional� displaement operator ats on the vauum like the in�nite-dimensional displaement operator. Saying that the seond norm is small amountsto asserting that the ��nite-dimensional� displaement operators multiply likethe in�nite-dimensional operators, at least when seen through their ation onthe vauum. These two points together yield that the ation on oherent statesof ��nite-dimensional� and in�nite-dimensional displaement operators are thesame: a oherent state is obtained through the ation of a displaement oper-ator on the vauum, and the omposition of two displaement operators is thedisplaement operator with parameter the sum of the two parameters.



8.8 Main steps of the proof 237Putting all this together, our �expanded� form for (8.23) is
sup

θ∈Θn,β,γ

∥∥∥Tn(ρθ,n) − φ
~ζ ⊗N (~u, Vµ)

∥∥∥ (8.47)
≤ sup

θ∈Θn,β,γ

∥∥∥∥∥

(
N (~u, Vµ) −

∑

λ

bθ,nλ

)∥∥∥∥∥
1

(8.48)
+ 2 sup

θ∈Θn,β,γ

∑

λ6∈Λn,α

‖bθ,nλ ‖1 (8.49)
+ 3 sup

θ∈Θn,β,γ

sup
λ∈Λn,α

∥∥∥φ~0 − Tλ(ρ
~0,~u,n
λ )

∥∥∥
1

(8.50)
+ sup

‖z‖1≤nβ

sup
θ∈Θn,β,γ

sup
λ∈Λn,α

∥∥∥[D~ζ+z − Tλ∆
~ζ+z,n
λ T ∗

λ ](|0)(0|)
∥∥∥

1
(8.51)

+ sup
‖z‖1≤nβ

sup
θ∈Θn,β,γ

sup
λ∈Λn,α

‖[Dz − Tλ∆
z,n
λ T ∗

λ ](|0)(0|)‖
1

(8.52)
+ sup

‖z‖1≤nβ

sup
θ∈Θn,β,γ

sup
λ∈Λn,α

∥∥∥[∆
~ζ+z,n
λ − ∆

~ζ,n
λ ∆z,n

λ ](|0λ〉〈0λ|)
∥∥∥

1
(8.53)

+

∫

‖z‖≥nβ

f(z)dz. (8.54)Sine we integrate a Gaussian outside the ball where the exponent is less than
δn2β/d, the last term is less than C exp(−δn2β/d)/δ where C depends only onthe dimension d. Under the hypothesis n2β > 2d/δ, this an be bounded againby O(n−2β).We brie�y lie again on the signi�ane of eah term.

• The lassial part of the hannel orresponds to a Markov kernel making(quasi)-equivalent the outome of the measurement �Whih irreduible rep-resentation are we in?� and a Gaussian shift experiment (8.48). Reall that
bθ,nλ depends only on ~u and not on ~ζ, so that we have the same parameterset for the two lassial experiments.

• We must prove onentration around preise values of λ (8.49), those forwhih the quantum hannel Tλ yields the right limit quantum experiment.We restrit for the further points to these representations around whih weonentrate.
• For point ~0, the image of ρ~0,~u,nλ by Tλ is (almost) the expeted image φ~0(8.50). We shall then generalize the result to all ~ζ by realling that we ob-tain φ~ζ and ρ~ζ,~u,nλ from φ

~0 and ρ~ζ,~u,nλ by ations of displaement operators,and that we an deompose them in oherent states. See following points.
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• The ation on the vauum of ��nite-dimensional� and �in�nite-dimensional�displaement operators are almost the same on not too �large� oherentstates. Notably, ��nite-dimensional� oherent states are brought by Tλnear the orresponding oherent states (8.51,8.52).
• �Finite-dimensional� displaement operators multiply as the orrespondingdisplaement operators when ating on the vauum. By the latter point,they thus at alike on any oherent state (8.53).
• The �large� displaement operators have little in�uene on the images ofthe ρθ,n for separated eigenvalues (8.54).The last setion deals with the proof of the lemmas orresponding to eah ofthese points.Lemma 8.8.1. With the above de�nitions, for any ǫ, for n > (C/δ)

1
1−α +

(C/δ)
2

1−2γ , for a onstant C depending only on the dimension and ǫ, we have
sup

θ∈Θn,β,γ

∥∥∥∥∥N (~u, Vµ) −
∑

λ

bθ,nλ

∥∥∥∥∥
1

≤ C
(
n−1/2+ǫ + n−1/4+γ

)
/δ.Lemma 8.8.2. With the above de�nitions, for n > (4/δ)

1
1−α , we have

sup
θ∈Θn,β,γ

∑

λ6∈Λn,α

‖bθ,nλ ‖1 ≤ C1 exp(−C2n
2α−1) −−−−→

n→∞
0,where C1 and C2 depend only on the dimension.Lemma 8.8.3. With the above de�nitions, for nη > C ln(n)/δ,

sup
θ∈Θn,β,γ

sup
λ∈Λn,α

∥∥∥φ~0 − Tλ(ρ
~0,~u,n
λ )

∥∥∥
1

= O(n−1/2+γ+η/δ, n(9η−2)/24).Lemma 8.8.4. With the above de�nitions, for any ǫ, under the supplementaryonditions that 2β + ǫ ≤ η < 2/9, that ǫnβ+ǫ ≥ β, that ‖~ξ‖1 ≤ n−1/2+2β/δ andthat n−1/2+3β+2ǫ ≥ Cδ−3/2 where C depends only on the dimension d,
sup

‖z‖1≤nβ

sup
θ∈Θn,β,γ

sup
λ∈Λn,α

∥∥∥[D~ζ+z − Tλ∆
~ζ+z,~ξ,n
λ T ∗

λ ](|0)(0|)
∥∥∥

1
= R(n)with

R(n) = O
(
n(9η−2)/24δ−1/6, n−1/2+β+η/2δ−1/2, n−1/4+β/2δ−1/4,

n−1/2+α/2+β/2δ−1/2, n−1/2+α/2+η/2δ−1/2, n−1/2+3η/2δ−1/2, n−β/2
)
. (8.55)For estimating the terms (8.51, 8.52), the ase when ~ξ = ~0 is su�ient. Thismore general form is useful for the proof of Lemma 8.8.5.



8.8 Main steps of the proof 239Lemma 8.8.5. With the above de�nitions, under the same hypotheses as inLemma 8.8.4,
sup

‖z‖1≤nβ

sup
θ∈Θn,β,γ

sup
λ∈Λn,α

∥∥∥[∆
~ζ+z,n
λ − ∆

~ζ,n
λ ∆z,n

λ ](|0λ〉〈0λ|)
∥∥∥

1
= R(n)with R(n) given by equation (8.55).As implied by the disussion in the bulk of this subsetion, the role of the threelatter lemmas, together with the bound on the remainder integral (8.54), onsistsin proving the following lemma, whih we an plug into bound (8.46):Lemma 8.8.6. With the above notations and with the above onditions and

n2β > 2d/δ,
sup

θ∈Θn,β,γ

sup
λ∈Λn,α

‖φ~ζ − φθ,nλ ‖ = R(n) +O(n−1/2+γ+η/δ + n(9η−2)/24/δ1/6)with R(n) given by equation (8.55).Gathering all these results yield the following theoremTheorem 8.8.7. For any δ > 0, 1 > α > 1/2, η < 2/9, ǫ > 0, β < (η − ǫ)/2,
γ < 1/4, and n suh that ǫnβ+ǫ > β, n1−α > C/δ, nη/ ln(n) > C/δ, n1/2−γ >
C/δ, the sequene of hannels Tn ensures

sup
θ∈Θn,β,γ

∥∥Tn(ρθ,n) − φ
∥∥

1
≤ C(n−1/2+β+η/2δ−1/2 + n−1/4+β/2δ−1/4+

n−1/2+α/2+η/2δ−1/2 + exp(−Cn2α−1) + n−1/2+3η/2δ−1/2+

n−β/2 + n−1/2+γ+η/δ + n(9η−2)/24/δ1/6) (8.56)where the onstants C depends only on the dimension d.With any expliit α, β, γ, δ, we get an expliit polynomial rate.8.8.2 De�nition of Sn and proof of its e�ienyWe use here the result on Tn to get quikly a orret Sn and (8.24) from (8.23).We need also the Markov kernel that is ompleting the equivalene between thefamily p~u,nλ and N (~u, Vµ). This is σn de�ned by
σn : x ∈ R

d−1 7→ δλx (8.57)



240 Quantum loal asymptoti normality for d-dimensional stateswhere λx is suh that∑d
1 λi = n and for 2 ≤ i ≤ d, then |n1/2xi+nµi−λi| < 1/2,if it exists, else any admissible value, for example (n, 0, . . . , 0). Notie that with(8.45), σnτnσn = σn. Moreover any probability on the λ suh that ∑d

1 λi = n isin the image of σn, so that σnτn(pθ,n) = pθ,n.Lemma 8.8.8. With the above de�nitions, for any ǫ, for n > (C/δ)
1

1−α +

(C/δ)
2

1−2γ , for a onstant C depending only on the dimension and ǫ, we have
sup

~u∈Ξn,ǫ

∥∥σnN (~u, Vµ) − p~u,n
∥∥

1
≤ C

(
n−1/2+ǫ + n−1/4+γ

)
/δ.We delay the proof of this lemma to the last setion.Now the hannel Sn is given by the following sequene of operations. We arestarting from a produt in T +

1 (F(Cd(d−1)/2))⊗L1(Rd−1). We an then at on thetwo parts independently. Spei�ally, we shall sample the probability N (~u, Vµ)to deide whih hannel we are applying to φ~ζ . That is we are using σ on theGaussian and the sampling yield an irreduible representation λ.To λ, we assoiate the hannel Sλ whose ation is
Sλ : φ 7→ S̃λ(φ) ⊗ 1CMn(λ)

Mn(λ)with
S̃λ : φ 7→ T ∗

λφ+ (1 − Tr(T ∗
λ(φ)))|0λ〉〈0λ|Of ourse the seond term is only a remainder and we ould have used any stateinstead of |0λ〉〈0λ|. What is important is that for any density operator ρλ on thevetor spae λ, the operator S̃λ is a pseudo-inverse of Tλ:

S̃λTλ(ρλ) = T ∗
λTλ(ρλ) + (1 − Tr(T ∗

λTλ(ρλ)))|0λ〉〈0λ|
= ρλ + (1 − Tr(ρλ))|0λ〉〈0λ|
= ρλ.From this we prove (8.24). Indeed

Sn(φ
~ζ ⊗N (~u, Vµ)) =

⊕

λ

[σN (~u, Vµ)](λ)S̃λ(φ) ⊗ 1CMn(λ)

Mn(λ)
.So as to be more ompat, let us write σN ~u

λ = [σN (~u, Vµ))](λ) and q~u,nλ =

min(σN ~u
λ , p

~u,n
λ ). Then:

Sn(φ
~ζ ⊗N (~u,1)) − ρθ,n

=
⊕

λ

{
q~u,nλ (S̃λ(φ

~ζ) − ρθ,nλ ) + (σN ~u
λ − q~u,nλ )S̃λ(φ

~ζ) − (p~u,nλ − q~u,nλ )ρθ,nλ

}
⊗ 1CMn(λ)

Mn(λ)
.



8.9 (Even more) tehnial proofs 241Taking L1 norms, and realling that all φ and ρ have trae 1 and that hannels(suh as S̃λ) have operator norm 1, we get the bound:
∥∥∥Sn(φ

~ζ ⊗N (~u, Vµ)) − ρθ,n
∥∥∥

1

≤
∑

λ

∥∥∥q~u,nλ (S̃λ(φ
~ζ) − ρθ,nλ )

∥∥∥
1
+
∑

λ

∣∣∣σN ~u
λ − p~u,nλ

∣∣∣

≤ 2
∑

λ6∈Λn,α

q~u,nλ + sup
λ∈Λn,α

∥∥∥S̃λ(φ
~ζ) − ρθ,nλ

∥∥∥
1

+
∥∥σN (~u, Vµ) − p~u,n

∥∥
1

≤ 2
∑

λ6∈Λn,α

q~u,nλ + sup
λ∈Λn,α

∥∥∥φ~ζ − Tλ(ρ
θ,n
λ )
∥∥∥

1
+
∥∥σN (~u, Vµ) − p~u,n

∥∥
1
.Now the �rst term is smaller than the remainder term of the Gaussian outsidea ball whose radius is nα. Hene this term is going to zero faster than anypolynomial, independently on δ and ~u for ~u ∈ Ξn,γ . The seond term is Lemma8.8.6 (realling that φθ,nλ = Tλ(ρ

θ,n
λ )). And the third term is Lemma 8.8.8.This ends the proof of (8.24).8.9 (Even more) tehnial proofs8.9.1 A few more toolsWe shall need for the proofs or Lemmas 8.6.9 and 8.8.4 good evaluations ofvarious 〈mλ | πλ(U) | lλ〉. The following setion gives the tools to obtain thoseevaluations.We shall usually drop the expliit referene to the representation and write Uinstead of πλ(U). Apart from the identity, we shall be espeially interested inthe unitaries U of the form U(~ζ, ~ξ) or U(~ζ), as de�ned just below (8.38).We �rst introdue some new notations. We write l(c) for the length of theolumn c in the Young diagram assoiated to the representation. There arethen λi − λi+1 olumns suh that l(c) = i. An alternative de�nition would be

l(c) = inf{i|λi ≥ c}.Reall that we alled fa basis funtions of the form fa1 ⊗ · · · ⊗ fan , and thatwe had assoiated to it a Young tableau ta. We denote by tca the funtion fromthe integers [1, l(c)] to [1, d] that assoiates to the row number r the value of the



242 Quantum loal asymptoti normality for d-dimensional statesentry of that Young tableau in olumn c, row r. For example, with ta =
2 2 1
2 1 asin setion 8.6, we get the values:

t1a(1) = 2, t1a(2) = 2, t2a(1) = 2, t2a(2) = 1, t3a(1) = 1.We shall often be interested in the image sets tca([1, l(c)]), or ompare tca to Idcthe identity on the integers [1, l(c)].Now we deompose pλfm =
∑
σ∈Rλ

σfm. The set Rλ is a subgroup of Sn, thatwe let at on fm. Therefore pλfm =
∑
fa∈Oλ(m)

#Rλ

#Oλ(m)fa where Oλ(m) is theorbit in (Cd)⊗n of fm under Rλ.In order to ompute the salar produts, we use the deomposition pλfm =∑
σ∈Rλ

σfm. The set Rλ is the subgroup of Sn letting invariant the rows of theYoung tableau, that we let at on fm. Therefore pλfm =
∑

fa∈Oλ(m)
#Rλ

#Oλ(m)fawhere Oλ(m) is the orbit in (Cd)⊗n of fm under Rλ.Notie that Oλ onsists in the set of fa with suh that there are exatly mi,jboxes with j in row i, and the remainder of the row is i.Sine we antisymmetrize with qλ, we are only interested in the fa in whose everyolumn all the entries are two by two di�erent. We all suh fa admissible.We now de�ne Γ(fa) = |m| − #{tca 6= Idc, 1 ≤ c ≤ λ1}. We shall denote VΓ =
{admissible fa|Γ(fa) = Γ}, for any Γ ∈ N. Notie the dependene on m, that wedo not make expliit in the notation.Notie �rst that Γ ≥ 0. Moreover, if Γ(fa) = 0, then all the tca are either Idc orof the form tca(r) = jδr=i + rδr 6=i for some i ≤ l(c) < j. A tca of this form will bedubbed an (i, j)-substitution.With these de�nitions, we prove in Lemma 8.9.1 many formulas that we shall usefor proving Lemmas 8.8.4 and 8.6.9.A main tool for the proof of these formulas will be the following �algorithm� tobuild all the possible fa for a �xed Γ. It enables us to estimate the ardinals ofthe sets VΓ.AlgorithmOur �rst observation is that what we are doing when designing fa is hoosingwhih ells in row i we �ll with a j. We an see that as having mi,j briks (i, j).The question is where we put them, under the onstraint that in the end, notwo numbers in a olumn are the same (admissible fa). The value Γ(fa) is the



8.9 (Even more) tehnial proofs 243number of those briks we put in a olumn where there was already (at least)one brik before, if we set them sequentially.We an have a slightly di�erent view of the proess. Consider the notion ofolumn-modi�er κ, that is something we apply on a olumn to hange it. An
(i, j) brik is an elementary olumn-modi�er that hanges the i of row i in j.We shall denote it κ(i, j). But we an onsider omposite olumn-modi�ers withtwo or more briks, hanging for example simultaneously i in j and k in l. Inthe end there are less than d! di�erent possible olumn-modi�ers (we annothange twie the ell in row i). An important remark is that a olumn-modi�eralways inreases the value in the ells of the olumn. So that, for any �modi�ed�olumn, the sets of entries in the ells is di�erent from the initial set, that is
tca([1, l(c)]) 6= [1, l(c)].Then fa is obtained by applying all our |m| briks lustered in |m| − Γ olumn-modi�ers (there are mκ times the olumn-modi�er κ), and eah olumn-modi�erbeing applied to a di�erent olumn.We then give the following �algorithm�.1. Choose Γ briks among our |m|. As we have d(d − 1)/2 di�erent types ofbrik (reall that i > j), we have at most [d(d − 1)/2]Γ possibilities. For

Γ = 0, we have only one.2. Consider the remaining briks as a set of olumn-modi�ers. We hange thisset by adding sequentially eah of the Γ briks seleted in stage 1 to one ofthese olumn-modi�ers. At eah stage, there are at most d! di�erent types ofolumn-modi�ers, so that we have overall at most (d!)Γ possibilities. Onlyone if Γ = 0. Notie that anyhow, at least |m|−2Γ of the olumn-modi�ersare elementary (one brik), and that mκ(i,j) ≤ mi,j .3. Apply the olumn-modi�ers to the olumns of f0, so that no two modi�ersare applied to the same olumn, and the resulting fa is admissible.Enumeration of the number of possibilities for the third stage would have beensomewhat too long for the item, so here it is.It is easier to apply the olumn-modi�ers sequentially. We shall then need todivide by the ombinatorial fator oming from idential olumn-modi�ers, thatis ∏κmκ!.When inserting the olumn-modi�er κ, we have less than n possibilities. Let usbe more preise for elementary olumn-modi�ers (i, j). We must have at least
i rows so that we an hange our ell i. We must have an admissible fa in theend, so no seond j in the olumn, so less than j rows. There are then λi − λj



244 Quantum loal asymptoti normality for d-dimensional statespossible olumns. Among those, we must suppress the olumns already modi�ed,whih are less than |m| − Γ. We have then between λi − λj − |m| and λi − λjpossibilities when inserting eah (i, j) elementary olumn modi�er.Hene the number of possibilities at stage three of the algorithm is upper boundedby
n

P

κ6=κi,j
mκ
∏

i<j

(λi − λj)
mκi,j

mκi,j !
, (8.58)and in the ase when Γ = 0, it admits the following lower bound:

∏

i<j

(λi − λj − |m|)mi,j

mi,j !
. (8.59)Notie that the upper bound (8.58) depends on the set {mκ}, whih is not om-pletely �xed by Γ. For further referene, we shall denote Em = {mκ} and E0

m theset where mκi,j = mi,j for all i < j and the other mκ = 0. This E0
m orrespondsto Γ = 0. To any Em, we an assoiate Γ(Em). Moreover, to eah fa, we mayassoiate Em(fa).In a similar way, we shall assoiate with eah κ the set S(κ) of suppressed andadded values in the olumn. If a value is both added and suppressed, it doesnot appear in the set. For example S(κ(i, j)) = ((i,−), (j,+)) and if κ is madeof the two briks (ij) and (jk) then S(κ) = ((i,−), (k,+)). We shall write

mS =
∑
κ|S(κ)=Smκ.We now state our estimates.Lemma 8.9.1. The �rst remark is an exat formula, that is the main tool toprove some of the bounds below.1. For any unitary operator U , for any basis vetors fa and fb, we have

〈fa|qλUfb〉 =
∏

1≤c≤λ1

det(U l(c),t
c
a
,tc

b), (8.60)where U l(c),tca,tcb is the l(c) × l(c) submatrix of U given by [U l(c),t
c
a
,tc

b ]i,j =
Utc

a
(i),tc

b
(j).We now get bounds useful for estimating 〈mλ|U |lλ〉 on the interesting range of



8.9 (Even more) tehnial proofs 245parameters. Suppose that
|m| ≤ nη (8.61)
λ ∈ Λn,α

inf
i
|µi − µi+1| ≥ δ

µd ≥ δ

‖~ζ‖1 ≤ Cnβ

‖~ξ‖1 ≤ n−1/2+2β/δ

n >

(
2

δ

)1/(1−α)

.Then, with the remainder terms all uniform in the eigenvalues µ•, the followingestimates hold:2. The number of admissible fa with Γ(fa) = 0 is
#V0 =

∏

j>i

(λi − λj)
mi,j

mi,j !
(1 +O(n−1+2η/δ)). (8.62)3. The number VEm of admissible fa with Em(fa) = Em and Γ(Em) = Γ isbounded by:

#VEm ≤ n−Γ−P

i<j(mi,j−mκi,j
)
∏

j>i

(λi − λj)
mκi,j

mκi,j !
. (8.63)4. The number of admissible fa with Γ(fa) = Γ is bounded by:

#VΓ ≤ CΓn−Γδ−2Γ|m|2Γ
∏

j>i

(λi − λj)
mi,j

mi,j !
(8.64)for a onstant C depending only on the dimension d.5. Let fa ∈ Oλ(l), with Γl(fa) = Γa. Let us �x Γb and onsider VΓb ∈ Oλ(m).Then:

∣∣∣∣∣∣

〈
fa

∣∣∣∣∣qλ
∑

fb∈VΓb

fb

〉∣∣∣∣∣∣
≤
{

0 if Γb 6= |m| − |l| + Γa

(C|m|)Γb otherwise , (8.65)with C depending only on the dimension d.



246 Quantum loal asymptoti normality for d-dimensional states6. If fa ∈ Oλ(m) and Γ(fa) = 0, then
〈
fa

∣∣∣∣∣qλ
∑

fb∈Oλ(m)

fb

〉
= 1. (8.66)7. If Γ(fa) = 0, then

Z(E0
m)

def
= 〈fa|qλU(~ζ, ~ξ, n)f0〉

= exp(iφ) exp

(
−‖~ζ‖2

2

2

)
∏

i<j

(
ζi,j√

n
√
µi − µj

)mi,j

r(n) (8.67)with the phase and error fator
φ =

√
n

d−1∑

i=1

(µi − µi+1)~ξi,

r(n) = 1 +O
(
n−1+2β+ηδ−1, n−1/2+βδ−1/2, n−1+α+βδ−1

)
.8. If fa ∈ VΓ, and its set of olumn-modi�ers is given by Em = {mκ}, then

|Z(Em)| def
=
∣∣∣〈fa|qλU(~ζ, ~ξ, n)f0〉

∣∣∣

≤ exp

(
−‖~ζ‖2

2

2

)(
‖~ζ‖√
nδ

)P

i<j mi,j−mκi,j
−Γ∏

i<j

(
ζi,j√

n
√
µi − µj

)mκi,j

r(n)(8.68)with error fator
r(n) = 1 +O

(
n−1+2β+ηδ−1, n−1/2+βδ−1/2, n−1+α+βδ−1

)
.9. Under the further hypotheses that |z| ≤ nβ, mi,j ≤ 2|ζi,j |nβ+ǫ for some

ǫ > 0, and n−1/2+3β+2ǫ ≥ δ−3/2C/2 where C is a onstant depending onlyon the dimension d, we have:
〈

∑

fa∈Oλ(|m|)
fa

∣∣∣∣∣qλU(~ζ + z, ~ξ, n)f0

〉

= exp(iφ) exp

(
−‖~ζ + z‖2

2

2

)
∏

i<j

(
(~ζ + z)i,j(

√
n
√
µi − µj)

)mi,j

mi,j !
r(n)(8.69)with

r(n) = 1 +O
(
n−1+2β+ηδ−1, n−1+α+βδ−1, n−1+2ηδ−1,

n−1+α+ηδ−1, δ−3/2n−1/2+3β+2ǫ
)
.



8.9 (Even more) tehnial proofs 24710. Under the further hypotheses that |l| ≤ |m| and n1−3η > 2C/δ, where Cdepends only on the dimension d,
〈

∑

fa∈Oλ(|l|)
fa

∣∣∣∣∣qλ
∑

fb∈Oλ(|m|)
fb

〉

≤ (C|m|)|m|−|l|
∏

i<j

(λi − λj)
li,j

li,j !

(
C|l|2|m|
nδ2

)Γa
min(l,m) (8.70)with

Γamin(l,m) ≥
(
|l − m| + 3|l| − 3|m|

)
+

6
. (8.71)11. With n1−3η > 2C/δ, where C depends only on the dimension d,

〈
∑

fa∈Oλ(|m|)
fa

∣∣∣∣∣qλ
∑

fb∈Oλ(|m|)
fb

〉
=
∏

i<j

(λi − λj)
mi,j

mi,j !

(
1 +O(n3η−1/δ)

)
.(8.72)Proof.Proof of (8.60):We �rst express 〈fa|Ufb〉 as a produt of matrix entries of U :

〈fa|Ufb〉 =
∏

1≤c≤λ1

∏

1≤r≤l(c)
〈ftc

a
(r)|Uftc

b
(r)〉

∏

1≤c≤λ1

∏

1≤r≤l(c)
Utc

a
(r),tc

b
(r).Then we notie that the set Cλ of permutations in Sn letting invariant the olumnsof the Young tableau λ is exatly the produt of the Sc for 1 ≤ c ≤ λ1, where Scis the set of permutations of the ells of the olumn c, that is the set of σ =

∏
c σc,with sc ∈ Sc. Finally, let us mention that if sc ∈ Sc, then its ation on the basisvetors fb is given by (scfb)(c, r) = (fb)c,sc(r). In other words it transforms

tcb(r) into tcb(sc(r)).
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〈fa|Uqλfb〉 =

∑

σ∈Cλ

ǫ(σ)
∏

1≤c≤λ1

∏

1≤≤rl(c)
Utc

a
(r),tc

b
(sc(r))

=
∏

1≤c≤λ1

∑

sc∈Sc

ǫ(sc)
∏

1≤≤rl(c)
Utc

a
(r),tc

b
(sc(r))

=
∏

1≤c≤λ1

∑

sc∈Sc

ǫ(sc)
∏

1≤≤rl(c)
[U l(c),t

c
a
,tc

b ]r,sc(r)

=
∏

1≤c≤λ1

det(U l(c),t
c
a
,tc

b).Remembering that U ommutes with qλ and that U l(c),tca,tcb is the l(c) × l(c)submatrix of U given by [U l(c),t
c
a
,tc

b ]i,j = Utc
a
(i),tc

b
(j), we have proved formula(8.60).Proof of (8.62):The number of admissible fa suh that Γ(fa) = 0 is given by the produts ofthe possibilities at eah stage of the algorithm. For the �rst two stages, there isexatly one possibility when Γ = 0. Hene #V0 is the number of possibilities atthe third stage.Here the upper bound (8.58) reads as ∏j>i(λi − λj)
mi,j/mi,j!.On the other hand, we may use (8.59) as a lower bound, realling that λi −λj ≥

δn/2 with the onditions (8.61). This yields the result (8.62).Proof of (8.63):The number of fa in VEm is given by the third stage of the algorithm (the two�rst stages yield Em).We then obtain (8.63) by applying (8.58) while notiing that ∑κmκ = |m| − Γ.Proof of (8.64):The set VΓ is a union of VEm with Γ(Em) = Γ. Now the �rst two stages of thealgorithm imply that there are at most CΓ di�erent Em with the latter property,with C depending only on the dimension d.Sine ∑mκi,j ≥ |m| − 2Γ, we may write ∏κmκ! ≥ ∏
i<jmi,j ! supi<j m

−2Γ
i,j .Realling also (8.63) and that λi − λj ≥ δn/2, we obtain that the largest #VEmis smaller than

n−Γδ−2Γ|m|2Γ
∏

j>i

(λi − λj)
mi,j

mi,j !
.



8.9 (Even more) tehnial proofs 249Multiplying by the number of possible Em yields the result.Proof of (8.65):Applying (8.60) with U = Id, sine the ells of both fa and fb are in the samebasis, we see that the salar produt 〈fa | qλfb〉 is equal to−1 or 1 if tca([1, l(c)]) =
tcb([1, l(c)]) for all olumns, and 0 otherwise.Now, sine a modi�ed olumn annot satisfy tca([1, l(c)]) = [1, l(c)] (or the samewith b), the vetors fa and fb are orthogonal unless they have the same numberof modi�ed olumns. Finally, that number is |l| − Γa for fa and |m| − Γb for fb.This yields the �rst line of (8.65).We now onentrate on the ase when Γb = |m|−|l|+Γa. Sine eah |〈fa | qλfb〉|is bounded by one, we get a bound on the sum of salar produts if we get a boundon the number of these produts whih is non-zero.For building the relevant fb, we an imitate the algorithm with the further on-dition that, at stage three, all the olummn-modi�ers are applied on the olumnsthat were already modi�ed for fa.The �rst two stages of the algorithm are the same so they yield a CΓb fator. Atthe following stage of the algorithm, we must ensure tca([1, l(c)]) = tcb([1, l(c)]),that is S(κca) = S(κcb), where we denote by κc{a,b} the olumn-modi�er appliedon olumn c of fa, resp. fb. We have therefore ( mS

mκ1 . . .mκk

) hoies for eah
S, where S(κi) = S for eah 1 ≤ i ≤ k.Moreover, for eah elementary olumn-modi�er κi,j , the set S(κi,j) is di�erent,and there are at most Γb non-elementary olumn-modi�ers. Hene∑

SmS − maxκ:S(κ)=Smκ ≤ Γb, so that
∏

S

(
mS

mκ1 . . .mκk

)
≤ |m|Γb

.Multiplying by the CΓ of the �rst stage, we get (8.65).Proof of (8.66):We may use the same strategy as above, notiing �rst that 〈fa | qλfb〉 = 0 if
fb 6= 0, seond that we must have the same modi�ed olumns. In that ase,sine Γb = 0, the onstant from the two �rst stages of the algorithm is 1, mS =
mi,j = mκi,j for all S orresponding to an elementary olumn-modi�er, and 0otherwise. So the ombinatorial fator is again one: we do not have any hoie



250 Quantum loal asymptoti normality for d-dimensional statesin our plaement of olumn-modi�ers. In other words, the only fb suh that
〈fa | qλfb〉 6= 0 is fa.Finally 〈fa | qλfa〉 = 1.Proof of (8.67):We plan to use (8.60). We �rst need a Taylor expansion of the unitary.Entry-wise, for all 1 ≤ i ≤ d on the �rst line, and all 1 ≤ i < j ≤ d on the seondand third lines:

Ui,i(~ζ, ~ξ, n) = 1 + i
ξiδi6=d − ξi−1δi6=1√

n
− 1

2n

∑

j 6=i

|ζi,j |2
|µi − µj |

+O(‖~ζ‖3n−3/2δ−3/2, ‖~ζ‖‖~ξ‖n−1δ−1/2)

Ui,j(~ζ, ~ξ, n) = − 1√
n

ζ∗i,j√
µi − µj

+O(‖~ζ‖2n−1δ−1, ‖~ζ‖‖~ξ‖n−1δ−1/2)

Uj,i(~ζ, ~ξ, n) =
1√
n

ζi,j√
µi − µj

+O(‖~ζ‖2n−1δ−1, ‖~ζ‖‖~ξ‖n−1δ−1/2).For ~ζ ∈ Θn,β and ‖~ξ‖ ≤ n−1/2+2β/δ, with β < 1/6, the remainder term are infat O(n−3/2+3βδ−3/2) and O(n−1−2βδ−1) respetively.Therefore, when our parameters are in this range, we an give preise enoughevaluations of the determinants. The idea is to �nd the dominating terms in theexpansion of the determinant detA =
∑

σ

∏
ǫ(σ)Ai,σ(i).If tca = Idc, the summands with more than two non-diagonal terms are of orderthe remainder term, so that only the identity and the transpositions ount in∑

σ

∏
Ai,σ(i). Then,

det(U l(c),Idc,Idc(~ζ, ~ξ, n)) = 1+i
ξl(c)√
n
− 1

2n

∑

1≤i≤l(c)
l(c)+1≤j≤d

|ζi,j |2
µi − µj

+O(n−3/2−3βδ−3/2).For onise further referene, we shall denote this υ(l). Notie that for l(c) = d,the determinant must be 1.Similarly, if tca 6= Idc, as tca(r) ≥ r for all r, then there is a whole olumn of
U l(c),t

c
a
,Idc that is �lled with entries smaller in modulus than O(‖~ζ‖/

√
nδ) =

O(n−1/2+βδ−1). The same bound holds for the determinant.More spei�ally, if tca is an (i, j)-substitution, that is if there is i ≤ l(c) < j suhthat tca(r) = jδr=i + rδr 6=i, then the only summand that is of this order omes



8.9 (Even more) tehnial proofs 251from the identity. So that
det(U l(c),t

c
a
,Idc(~ζ, ~ξ, n)) =

ζi,j√
n
√
µi − µj

+O(n−1+2βδ−1). (8.73)For further referene, we denote this υ(i, j). Notie that this approximation doesnot depend on l(c), but only on i and j.Now, if fa ∈ V0, then all tca are either Idc, or an (i, j)-substitution. They are
mi,j of them for eah i < j. The Idc suh that l(c) = l are λl − λl+1 − Rl with
0 ≤ Rl ≤ |m|. The reason of these assertions is that there are mi,j boxes with a
j in row i, and if a olumn has no suh substitution, then its entry in row i is i,and tca = Idc. Hene:
〈fa|qλU(~ζ, ~ξ, n)f0〉 =

d∏

l=1

(υ(l)))
λl−λl+1

∏

1≤i<j≤d
(υ(i, j))

mi,j

d∏

l=1

(υ(l))−Rl . (8.74)Now υ(l) = 1 + O(n−1+2βδ−1) and Rl ≤ m ≤ nη, so the last produt is (1 +
O(n−1+2β+ηδ−1)). Similarly, for λ ∈ Λn,α, by de�nition λl − λl+1 = n(µl −
µl+1) + O(nα), so that the �rst produt is, using lemma 8.9.2 (given at the endof this setion),

∏
(υ(l))λl−λl+1 =

∏
exp



iφl −
1

2

∑

1≤l
l+1≤j≤d

|ζi,j |2
µl − µl+1

µi − µj



 r(n)

= exp

(
iφ− ‖~ζ‖2

2

2

)
r(n)with r(n) = (1 +O(n−1+α+βδ−1, n−1/2+βδ−1/2))

φl = δl 6=d
√
n(µl − µl+1)ξl

φ =

d−1∑

l=1

(µl − µl+1)ξlWe turn our attention to υ(i, j)mi,j . This is
υ(i, j)mi,j =

ζi,j√
n
√
µi − µj

(
1 +O

(
n−1+2β+ηδ−1

))where we have realled that |m| ≤ nη.Replaing the fators of (8.74) yields (8.67).



252 Quantum loal asymptoti normality for d-dimensional statesProof of (8.68):We may write, muh like in (8.74),
〈fa|qλU(~ζ, ~ξ, n)f0〉 =

d∏

l=1

(υ(l)))
λl−λl+1

∏

κ

(υ(κ))
mκ

d∏

l=1

(υ(l))−Rlwhere 0 ≤ Rl ≤ |m| − Γ and υ(κ) is the determinant of the partial matrix of Uorresponding to having applied the olumn-modi�er κ. Anyhow, if the entriesin the olumn have been modi�ed in an admissible way, then tca(i) = j > l(c) forsome i, so that υ(κ) = O(‖~ζ‖/
√
nδ) for any κ. Moreover, if κ = κ(i, j), we anuse formula (8.73) for υ(κ). Furthermore, notie that ∑non-elementary κmκ =∑

i<jmi,j −mκ(i,j) − Γ. Then:
∣∣∣∣
Z(Em)

Z(E0
m)

∣∣∣∣

≤ (1 +O(n−1+2β+ηδ−1))

(
‖~ζ‖√
nδ

)P

i<j mi,j−mκ(i,j)−Γ∏

i<j

( |ζi,j |√
n

)mκ(i,j)−mi,j

.(8.75)Multiplying by Z(E0
m) as given by (8.67) yields (8.68).Proof of (8.69):We merely ombine some of the previous entries of the lemma, after notiingthat (~ζ + z) plays the same role as ~ζ with the new onstant C + 1, that is

‖~ζ + z‖ ≤ (C + 1)nβ. So that all the former bounds in the lemma remain validwith ~ζ + z instead of ~ζ.Using (8.62) and (8.67) and remembering that λ ∈ Λn,α, we get:
〈
∑

fa∈V0

fa

∣∣∣∣∣qλU(~ζ + z, ~ξ, n)f0

〉

= exp(iφ) exp

(
−‖~ζ + z‖2

2

2

)
∏

i<j

(
(~ζ + z)i,j(

√
n
√
µi − µj)

)mi,j

mi,j !
r(n)with error fator:

r(n) = 1+O
(
n−1+2β+ηδ−1, n−1/2+βδ−1/2, n−1+α+βδ−1, n−1+2ηδ−1, n−1+α+ηδ−1

)
.



8.9 (Even more) tehnial proofs 253Combining (8.68) and (8.63), on the other hand, we get:
∣∣∣∣∣∣∣∣∣∣

〈
∑

fa∈VEm fa

∣∣∣∣∣qλU(~ζ + z, ~ξ, n)f0

〉

〈
∑
fa∈V0 fa

∣∣∣∣∣qλU(~ζ + z, ~ξ, n)f0

〉

∣∣∣∣∣∣∣∣∣∣

≤ n−Γ
∏

i<j

(
λi − λj
n

)mκi,j
−mi,j mi,j !

mκi,j !

(
‖~ζ + z‖√

δn

)−Γ

×

∏

i<j

( √
δn|~ζ + z|i,j

‖~ζ + z‖√n√µi − µj

)mκi,j
−mi,j

r(n)

≤ O(n−Γ(1/2+β))δ−Γ/2
∏

i<j

(
|ζi,j |

√
µi − µj

mi,j‖~ζ + z‖

)mi,j−mκi,j

≤ O
(
(δ−3/2n−1/2+3β+2ǫ)Γ

)
,where we have used that ‖~ζ + z‖ = O(nβ) (we use the upper bound sine itappears a non-negative number of times in the expression), that ∑i<j mκi,j ≥∑

i<jmi,j − 2Γ and that mi,j ≤ 2|ζi,j |nβ+ǫ.Furthermore, for a given Γ, there are at most CΓ di�erent Em suh that Γ(Em) =
Γ, orresponding to the possible hoies in the two �rst stages of the algorithm,where C depends on the dimension d only. Hene, under the hypothesis that
n−1/2+3β+2ǫ ≥ δ−3/2C/2, we have:
〈

∑

fa∈Oλ(m)

fa

∣∣∣∣∣qλU(~ζ + z, ~ξ, n)f0

〉

=
∑

Γ

〈
∑

fa∈VΓ

fa

∣∣∣∣∣qλU(~ζ + z, ~ξ, n)f0

〉

=
(
1 +O(δ−3/2n−1/2+3β+2ǫ)

)
exp(iφ) exp

(
−‖~ζ + z‖2

2

2

)
×

∏

i<j

(
(~ζ + z)i,j(

√
n
√
µi − µj)

)mi,j

mi,j !
r(n)

= exp(iφ) exp

(
−‖~ζ + z‖2

2

2

)
∏

i<j

(
(~ζ + z)i,j(

√
n
√
µi − µj)

)mi,j

mi,j !
r2(n)



254 Quantum loal asymptoti normality for d-dimensional stateswith, on the last line:
r2(n) = 1 +O

(
n−1+2β+ηδ−1, n−1+α+βδ−1, n−1+2ηδ−1,

n−1+α+ηδ−1, δ−3/2n−1/2+3β+2ǫ
)
.This is exatly (8.69).Proof of (8.70):By multiplying (8.64) and (8.65), we see that:

〈
∑

fa∈VΓ(|l|)
fa

∣∣∣∣∣qλ
∑

fb∈Oλ(|m|)
fb

〉
≤ (C|m|)Γb∏

i<j

(λi − λj)
li,j

li,j !

(
C|l|2
nδ2

)Γa (8.76)
= (C|m|)|m|−|l|

∏

i<j

(λi − λj)
li,j

li,j !

(
C|l|2|m|
nδ2

)ΓaHene, if n1−3η > 2C/δ, the dominating term in the sum of bounds is thatorresponding to the smallest possible Γb, or equivalently Γa. What lower boundan we give to Γa?A neessary ondition for fa not to be orthogonal to fb is that ma
S = lbS for all set

S of suppressed and added values in the olumn. On the one hand, we know that
Γb−Γa = |m|− |l|. On the other hand, we an bound from below Γ(fa)+Γ(fb).Indeed, this quantity inreases by one if and only if we put another (ij) brik in aolumn that was already modi�ed (say with S1). Now suh an operation has thefollowing e�et on the mS (or lS) : the m(i,−),(j,+) andmS1 both derease by one,and mS1+((i,−),(j,+)) inreases by one. Hene the distane∑S |lS−mS| dereaseby at most three. We thus need at least ∑i<j |li,j − mi,j |/3 suh operationsbefore getting the equalities mS = lS . That is, Γ(fa) + Γ(fb) ≥ |l − m|/3.Together with the other inequality Γb − Γa = |m| − |l|, this result yields Γa ≥
(|l − m| + 3|l| − 3|m|)/6. Moreover Γa is non-negative.Replaing in the above equation yields (8.70).Proof of (8.72):Sine l = m, equations (8.62) and (8.66) prove that the bound (8.76) is saturatedwhen Γa = 0, up to the error fator (1 +O(n−1+2η/δ)

). Hene the remainderterm due to the other Γ onsist in a geometri series with reason (C|m|3
nδ2

)
=

O(n1−3η/δ).



8.9 (Even more) tehnial proofs 255The only part of the proof we have still postponed is the following tehniallemma:Lemma 8.9.2. If x = O(n1/2−ǫ), then
(1 +

x

n
)n = exp(x)(1 +O(n−ǫ))Proof. For any y suh that |y| ≤ 1, for any n ∈ N (in fat even for any omplexnumber), we have the Taylor expansion (onverging):

(1 + y)n =

∞∑

k=1

(
n

k

)
yk.Now (n − k)k/k! ≤

(
n
k

)
≤ nk/k! for n ≥ k. If k ≤ n1/2−ǫ/2, then (n − k)k =

nk(1 + O(n−ǫ)). If k ≥ n1/2−ǫ/2, then nk/k! = O(n(1/2+ǫ/2)k). So that if y =
x/n = O(n−1/2−ǫ),

(1 + x/n)n = (1 +O(n−ǫ))
n1/2−ǫ/2∑

k=0

xk

k!
+

∑

k>n1/2−ǫ/2

O(n(1/2+ǫ/2)k(x/n)k

= (1 +O(n−ǫ)) exp(x) +
∑

k>n1/2−ǫ/2

(O(n(1/2+ǫ/2)k − 1/k!)(x/n)k

= (1 +O(n−ǫ)) exp(x) +O(e−n
1/2−ǫ/2

)

= (1 +O(nǫ)) exp(x)as exp(x) ≥ exp(−O(n1/2−ǫ)).8.9.2 Proof of Lemma 8.7.1We want to prove that
Tn : ρθ,n 7→

∑

λ

Vλρ
θ,n
λ V ∗

λ ⊗ pθ,nλ τnλ .is a trae-preserving ompletely positive map.The following are ompletely positive maps:1. Composition of two ompletely positive maps is ompletely positive.2. If all Ti : Ai → Bi are ompletely positive, then T⊗ =
⊕
Ti :

⊕Ai →
⊕Biis ompletely positive. Similarly T⊗ =

⊗
Ti :

⊗Ai →
⊗Bi is ompletelypositive. If all the Ti preserve the trae and/or the identity, then T⊗ and

T⊕ preserve the trae and/or the identity.



256 Quantum loal asymptoti normality for d-dimensional states3. Any positive map to a ommutative algebra, notably Markov kernels.4. Representations of algebras, sending A to π(A) where π is a morphism of
C∗-algebras with value in B(H), preserving the identity.5. Interlaing with a V : H → K, that is sending A to V ∗AV . If V ∗V = 1H,then it preserves identity. If V V ∗ = 1H, then it preserves the trae.In fat, Stinespring [1955℄ theorem states that all ompletely positive maps froma C∗-algebra A to an algebra of bounded operators B(H) an be written as

A 7→ V ∗π(A)V . If V ∗V = 1H, then the map preserves the identity.Let us give a few speial ases. We let the reader �nd the orresponding π and/or
V : 6. Keeping only diagonal bloks: that is sending [ρ1,1 ρ1,2

ρ2,1 ρ2,2

]
∈M(H1 ⊕H2)to ρ1,1 ⊕ ρ2,2 ∈ M(H1) ⊕M(H2) by using projetions on both diagonalbloks. This map is learly both trae- and identity-preserving.7. Summing the images of the same algebra: that is sending ⊕i ρi to ∑ ρiwhere all ρi ∈ A. If the trae is de�ned, this transformation is trae-preserving.We an obtain Tn by �rst traing out the non-diagonal bloks of ρθ,n, sine weknow the deomposition (8.40). In other words, the right-hand-side of (8.40) isobtained through a trae-preserving ompletely positive map, by example 6 ofthe list. The 1CMn(λ) must be understood as an element of the one-dimensionalalgebra generated by the identity. Then sending this identity to any positivefuntion Mn(λ)τ

n
λ on a ommutative spae is a ompletely positive transfor-mation by example 3. If τnλ has integral one, it is trae-preserving. On theother hand, by example 5, we know that ρθ,nλ 7→ V ρθ,nλ V ∗ is ompletely positiveand trae-preserving if V is an isometry. Using example 2, we have obtained⊕

λ Vλρ
θ,n
λ V ∗

λ ⊗ pθ,nλ τnλ . We reah the �nal form (8.23) by applying example 7.8.9.3 Proof of Lemmas 8.6.9 and 8.7.2 and workaroundsfor non-orthogonality issuesWe know that mλ is a sum of n-tensor produt vetors, in whose elements thebasis vetor fi appears exatly λi −∑j>imi,j +
∑

j<imj,i times. As two tensorbasis vetors are orthogonal if they do not have the same number of fi in thedeomposition, we get that 〈mλ|lλ〉 = 0 if ∑j>imi,j +
∑
j<imj,i 6=

∑
j>i li,j +∑

j<i lj,i for any 1 ≤ i ≤ d.



8.9 (Even more) tehnial proofs 257In the general ase,
〈mλ|lλ〉 =

〈qλpλfm|qλpλfl〉√
〈qλpλfm|qλpλfm〉〈qλpλfl|qλpλfl〉

. (8.77)We use (8.35) to erase qλ at the left of eah salar produt, and we deomposethe pλf on orbits under the group Rλ. We notie that the multipliity of theelements in the orbits are the same in numerator and denominator, so that weend up with:
〈mλ|lλ〉 =

〈∑fa∈Oλ(m) fa|qλ
∑

fb∈Oλ(l) fb〉
〈∑fa∈Oλ(m) fa|qλ

∑
f
a′∈Oλ(m) fa′〉〈∑fb∈Oλ(l) fb|qλ

∑
f
b′∈Oλ(l) fb′〉(8.78)The value of the denominator is obtained through (8.72), for λ ∈ Λn,α, with |l|and |m| ≤ nη and n1−3η > 2C/δ with C depending only on the dimension d:

〈
∑

fa∈Oλ(m)

fa

∣∣∣∣∣qλ
∑

f
a′∈Oλ(m)

fa′

〉〈
∑

fb∈Oλ(l)

fb

∣∣∣∣∣qλ
∑

f
b′∈Oλ(l)

fb′

〉

=
∏

1≤i<j≤d

(λi − λj)
(mi,j+li,j)/2

√
mi,j !li,j !

(1 +O(n3η−1/δ))).The numerator is given by (8.70).So that, remembering |m| ≥ |l|:
|〈mλ|lλ〉| ≤

∏

i<j

(λi − λj)
(li,j−mi,j)/2

√
mi,j !

li,j !
(C|m|)|m|−|l|×

(
C|m|3
δ2n

)Γmin (
1 +

(
O(n3η−1/δ)

))
,where Γmin = ((|l − m| + 3|l| − 3|m|)/6) ∧ 0.We �nish the estimate with the following onsiderations: the fatorials an bebounded by ∏i<j

mi,j !
li,j !

≤ |m|
P

(mi,j−li,j)
+ ≤ |m|(|m−l|+|m|−|l|)/2, and we haveassumed |l| ≤ |m| ≤ nη with η ≤ 1/3. Notably, we may forget that Γmin isnon-negative, sine we take an upper bound and C|m|/(δ2n) < 1. So that:

|〈mλ|lλ〉| ≤ δ−2Γmin(Cn)(|l|−|m|)/2−Γmin×
(C|m|)(|m−l|+5(|m|−|l|))/4+3Γmin)(1 +O(n−1+3η/δ))

≤ δ|m|−|l|−|m−l|/3(Cn)−|l−m|/6(Cn)η(3|l−m|−(|l|−|m|))/4(1 +O(n−1+3η/δ)),(8.79)



258 Quantum loal asymptoti normality for d-dimensional stateswhere C depends only on d and η.This is Lemma 8.6.9.A onsequene of these relations is the following lemma:Lemma 8.9.3. Let η ≤ 2/9.Let mλ suh that |m| ≤ nη. Then
∣∣∣∣∣∣∣∣

∑

|l|≤nη

l6=m

〈mλ|lλ〉

∣∣∣∣∣∣∣∣
≤ (Cn)(9η−2)/12δ−1/3.Proof. Using (8.79), and the sum of geometri series, we only have to show thatthere are less than Ck(9η−2)/12 di�erent lλ suh that |l − m| ≤ k for all k. Now,there are d(d− 1)/2 pairs 1 ≤ i < j ≤ d, so that the di�erent values |li,j −mi,j |satisfying∑ |li,j−mi,j | = k are at most (d(d−1)/2−1)k. As our only remaininghoies are the signs, with 2d(d−1)/2 possibilities, we have ended the proof.We use this quasi-orthogonality to prove that we may build Vλ almost sendingthe relevant �nite-dimensional vetors to their Fok ounterparts.Lemma 8.9.4. Let A be a matrix from a �nite spae H to an in�nite spae K,suh that A∗A ≤ 1. Then there is an R suh that (A + R) is an isometry andIm(A) ⊥ Im(R).As a onsequene, for any unit vetor φ, we have ‖Rφ‖2 = 1 − ‖Aφ‖2.Proof. As K is in�nite-dimensional, we may onsider a subspae H′ of K, orthog-onal to Im(A), and the same dimension asH, so that we an �nd an isomorphism

I from H to H′. We then take R = I
√

1−A∗A.We an now prove Lemma 8.7.2.Proof. Let
A =

1√
1 + (Cn)(9η−2)/12/δ1/3

∑

|l|≤nη

|l〉 〈lλ| .



8.9 (Even more) tehnial proofs 259Then, using Lemma 8.9.3:
A∗A =

1

1 + (Cn)(9η−2)/12/δ1/3

∑

|l|≤nη

|lλ〉 〈lλ|

≤ 1Hλ
.Thus, we may apply Lemma 8.9.4, and �nd an R suh that A+R is an isometry,and Im(R) ⊥ Im(A). So that 〈m|R = 0. We set Vλ = A+R. Then

〈m|Vλ = 〈m| (A+R)

= 〈m|A

=
1√

1 + (Cn)(9η−2)/12/δ1/3
〈m|

∑

|l|≤nη

|l〉 〈lλ|

=
1√

1 + (Cn)(9η−2)/12/δ1/3
〈mλ| .

8.9.4 Proof of Lemma 8.8.4First we know that D~ζ+z(|0)(0|) is the density matrix of a (oherent) pure state
|~ζ + z〉 whose deomposition on the Fok basis is given by (8.15).On the other hand Tλ∆~ζ+z,γ,n

λ T ∗
λ (|0)(0|) is the image by Tλ of the �nite-dimensionaloherent state U(~ζ + z, γ, n)|0λ〉. This is a pure state VλU(~ζ + z, γ, n)f0 (reallthat f0 is the semistandard Young tableau with only i in row i). Its oordinatesin the Fok basis are given by:

〈m|VλU(~ζ + z, ~ξ, n)|0λ〉 =






0 if m 6∈ λ,something not important if |m| > nη,
1√

1+(Cn)(9η−2)/12/δ1/3
〈mλ|U(~ζ + z, ~ξ, n)|0λ〉if |m| ≤ nη,(8.80)where we have used Lemma 8.7.2. It should ne notied that we may reast

(1 + (Cn)(9η−2)/12/δ1/3)−1/2 as 1 +O(n(9η−2)/12δ−1/3).Now the L1 distane between two pure states |ψ〉 and |φ〉 an be rewritten
2
√

1 − |〈φ|ψ〉|2. Hene, the lemma is equivalent to
sup

~ζ∈Θn,β

sup
‖~ξ‖≤n−1/2+2β/δ

sup
λ∈Λn,α

1 −
∣∣∣(z + ~ζ|VλU(~ζ + z, ~ξ, n)|0λ〉

∣∣∣ = R(n)2 (8.81)



260 Quantum loal asymptoti normality for d-dimensional statesunder the same onditions and with the same remainder R(n) as in the lemma.We shall prove formula (8.81) by deomposing these vetors in the Fok basis,that is
(z + ~ζ|VλU(~ζ + z, ~ξ, n)|0λ〉 =

∑

m

(~ζ + z|m〉〈m|VλU(~ζ + z, ~ξ, n)|0λ〉. (8.82)As a remark, we are in the situation where we have two sets am and bm suhthat ∑ |am|2 =
∑ |bm|2 = 1. Then for any subset M of the possible m, we havethe following upper bound on the sum on the omplementary subset:

∣∣∣∣∣∣

∑

m 6∈M
ambm

∣∣∣∣∣∣
≤ 1 −

∣∣∣∣∣
∑

m∈M
ambm

∣∣∣∣∣ . (8.83)We onsider separately the m on whih there is weight, that is those satisfyingfor all (i, j):
mi,j ≤ |(~ζ + z)i,j |2nǫ ≤ 2|(~ζ + z)i,j |nβ+ǫ. (8.84)We shall use the seond form, the ondition for applying formula (8.69). Wedenote this set by M. Notie that

∑

m6∈M
|(~ζ + z|m〉|2 ≤ d2n−β (8.85)as long as ǫnβ ≥ β. Indeed, we end up with exp(−x)∑k>xnǫ xk/k! ≤ n−ǫnβ if

x = |(~ζ + z)i,j | ≥ 1 and, if |(~ζ + z)i,j | < 1, the remainder series is diretly lessthan n−β.First, realling that η ≥ 2β + ǫ, we may use third line of (8.80):
〈m|VλU(~ζ + z, ~ξ, n)|0λ〉 =

〈yλfm|yλU(~ζ + z, ~ξ, n)|0λ〉√
〈yλf0|yλf0〉

√
〈yλfm|yλfm〉

(1 +O(n(9η−2)/12δ−1/3)

=
〈pλfm|qλU(~ζ + z, ~ξ, n)f0〉√

〈pλfm|qλpλfm〉
(1 +O(n(9η−2)/12δ−1/3)where we have used (8.35) and (8.37).We write pλfm =

∑
fa∈Oλ(m)

#Rλ

#Oλ(m)fa where Oλ(m) is the orbit in (Cd)⊗n of
fm under Rλ.The multipliative onstant is the same on the numerator and denominator, so



8.9 (Even more) tehnial proofs 261that we an write, with Idc denoting the identity of [1, l(c)],
〈m|VλU(~ζ + z, ~ξ, n)|0λ〉 =

∑
fa∈Oλ

〈fa|qλU(~ζ + z, ~ξ, n)f0〉√∑
fa,fb∈Oλ

〈fa|qλfb〉
(1 +O(n(9η−2)/12δ−1/3)(8.86)

= eiφ−‖~ζ+z‖2
2/2
∏

i≤j

(~ζ + z)mi,j
i,j√

mi,j !

(
n(µi − µj)

λi − λj

)mi,j/2

r(n).We made use of formulas (8.69) and (8.72). The orresponding remainder termis
r(n) = 1 +O

(
n(9η−2)/12δ−1/3, n−1+2β+ηδ−1, n−1/2+βδ−1/2,

n−1+α+βδ−1, n−1+α+ηδ−1, n−1+3ηδ−1
)and the phase is:

φ =
√
n
d−1∑

i=1

(µi − µi+1)ξi.The last piee to the puzzle lies in that (n(µi−µj)
λi−λj

)mi,j/2

= 1 + O(nα−1+η/δ)sine λ ∈ Λn,α and the eigenvalues are separated by δ. This loss an be absorbedin r(n).Finally, for m satisfying (8.84), we have:
〈m|VλU(~ζ + z, ~ξ, n)|0λ〉 = r(n) exp(iφ)〈m|~ζ + z).Putting bak this result in (8.82), and using (8.83) and (8.85), we get

(z + ~ζ|VλU(~ζ + z, ~ξ, n)|0λ〉 = exp(iφ) +O



1 − r(n),
∑

m6∈M
|〈m|~ζ + z)|2





= exp(iφ) +R2(n)with
R2(n) = O

(
n(9η−2)/12δ−1/3, n−1+2β+ηδ−1, n−1/2+βδ−1/2,

n−1+α+βδ−1, n−1+α+ηδ−1, n−1+3ηδ−1, n−β).Through expression (8.81), notiing that R2(n) = R(n)2, we see that we haveproved the lemma.



262 Quantum loal asymptoti normality for d-dimensional states8.9.5 Proof of Lemma 8.8.2Multiplying the sum of eigenvalues (8.41) in the representation by the number oftimes it appears (8.32) yields the value of p~ζ,~u,nλ :
∏

(µ~u,ni )λi

∑

m

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

× cλnwith
cλn =

(
n

λ1, λ2, . . . , λd

) d∏

l=1

λl!
∏d
k=l+1 λl − λk + k − l

(λl + d− l)!Now, for n > (4/δ)
1

1−α , the µ~u,ni are non-inreasing for all ‖~u‖ ≤ nγ , realling
γ ≤ α. Moreover mi,j ≤ n for all (i, j), so that

∑

m

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

≤ nd
2

.On the other hand m = 0 is always in the set of possible m, so that
∑

m

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

≥ 1.Similarly,
1 ≥

d∏

l=1

λl!
∏d
k=l+1 λl − λk + k − l

(λl + d− l)!
≥ 1

(n+ d)d2
.The remaining fators are a multinomial law. We now show that this is thedominating part. Let us write (Y1, . . . , Yd) for the multinomial random variable.Indeed reall Hoe�ding's inequality: for a sum of n independent variables Xiwith values bounded by 0 and 1, the following inequality on the deviations hold:

P[|
∑

Xi − E[Xi]| ≥ x] ≤ 2 exp(−2x2

n
).We apply this to the Bernoulli random variable that yields 1 with probability

µ~u,ni , and else 0, and we get an deviation inequality on the possible results of themultinomial law:
P[|Yi − nµ~u,ni | ≥ x] ≤ 2 exp(−2x2

n
). (8.87)



8.9 (Even more) tehnial proofs 263Now, for n > (4/δ)
1

1−α , for all ‖~u‖ ≤ nγ , and all λ 6∈ Λn,α, there is a i suh that
|λi − nµ~u,ni | ≥ (1/2d)n2/3, so that

P[λ 6∈ Λn] ≤ (n(n+ d))d
2

d∑

i=2

P[|Yi − nµ~u,ni | ≥ (1/2d)nα]

≤ 2d(n(n+ d))d
2

exp(−n2α−1/(2d2))

8.9.6 Proof of Lemma 8.8.1 and Lemma 8.8.8We shall use multinomials as an intermediate step. Realling that bθ,nλ = pθ,nλ τnλ ,we an write:
∥∥∥∥∥N (~u, Vµ) −

∑

λ

bθ,nλ

∥∥∥∥∥
1

≤
∥∥∥pθ,n −Mn

µ~u,n
1 ,...,µ~u,n

d

∥∥∥
1
+

∥∥∥∥∥N (~u, Vµ) −
∑

λ

Mn
µ~u,n

1 ,...,µ~u,n
d

(λ)τnλ

∥∥∥∥∥
1

, (8.88)where Mn
µ~u,n

1 ,...,µ~u,n
d

is the d-multinomial with oe�ients µ~u,ni .For bakground, what we really prove in this lemma is the equivalene of thefollowing lassial experiments, together with an expliit rate:
Pn =

{
p~u,n, ‖~u‖ ≤ nγ

}

Mn =
{
Mn
µ~u,n

1 ,...,µ~u,n
d

, ‖~u‖ ≤ nγ
}

Gn = {N (~u, Vµ), ‖~u‖ ≤ nγ} .Remember that pθ,n = p~u,n. We shall usually shorthand Mn,~u = Mn
µ~u,n

1 ,...,µ~u,n
d

.We �rst bound the �rst term in (8.88), planning to obtain:
sup

‖~u‖≤nγ

∥∥∥p~u,n −Mn
µ~u,n

1 ,...,µ~u,n
d

∥∥∥
1
≤ C

n−1/2+γ + nα−1

δ
. (8.89)



264 Quantum loal asymptoti normality for d-dimensional statesTo show this, we rewrite:
∥∥∥p~u,n −Mn

µ~u,n
1 ,...,µ~u,n

d

∥∥∥
1

=
∑

|λ|=n
|p~u,nλ −Mn

µ~u,n
1 ,...,µ~u,n

d

(λ)|

≤
∑

λ∈Λn,α

|p~u,nλ −Mn
µ~u,n

1 ,...,µ~u,n
d

(λ)|

+
∑

λ6∈Λn,α

p~u,nλ +Mn
µ~u,n

1 ,...,µ~u,n
d

(λ).Lemma 8.8.2 and (8.87) imply that for all ‖~u‖ ≤ nγ , and n > (4/δ)
1−α

? ,
∑

λ6∈Λn,α

p~u,nλ +Mn
µ~u,n

1 ,...,µ~u,n
d

(λ) ≤ C1 exp(−(C2n
2α−1)),with C1 and C2 depending only on the dimension. We end the proof of (8.89) byrealling that

p~u,nλ =
d∏

l=1

λl!
∏d
k=l+1 λl − λk + k − l

(λl + d− l)!

∑

m∈λ

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

Mn
µ~u,n

1 ,...,µ~u,n
d

(λ).Now, for all ‖~u‖ ≤ nγ and all λ ∈ Λn,α, the right hand side without the multi-nomial is
d∏

l=1

d∏

k=l+1

nµl − nµk +O(nα)

nµl +O(nα)

∑

m∈λ

∏

i<j

(
µj
µi

+O(n−1/2+γ)

)mi,j

.On Λn,α, for n > (4/δ)
1

1−α , the ube [0, n1/2]d(d−1)/2 ⊂ λ, so that
∏

i<j

1 − (
µj

µi
+O(n−1/2+γ))n

1/2

1 − µj

µi
+O(n−1/2+γ)

≤
∑

m∈λ

∏

i<j

(
µj
µi

+O(n−1/2+γ)

)mi,j

≤
∏

i<j

1

1 − µj

µi
+O(n−1/2+γ)

.Putting together yields
∣∣∣∣∣∣

d∏

l=1

λl!
∏d
k=l+1 λl − λk + k − l

(λl + d− l)!

∑

m∈λ

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

− 1

∣∣∣∣∣∣
≤ C

n−1/2+γ + nα−1

δ
.We have thus proved (8.89).We now turn our attention to the seond term of (8.88). Our main tool hereonwill be KMT Theorem:



8.9 (Even more) tehnial proofs 265Theorem 8.9.5. [Komlós et al., 1975, Bretagnolle and Massart, 1989℄ Let Xifor i ∈ N be independent uniform random variables on [0, 1]. Let F be the repar-tition funtion of this law (that is, the funtion x 7→ x on [0, 1]), let Fn be the
n-th empirial repartition funtion Fn(t) = 1

n

∑n
i=1 δXi≤t and let αn be the or-responding empirial proess αn(t) =

√
n (Fn(t) − F (t)).Let B be a brownian bridge, that is a Gaussian stohasti proess suh that for

0 ≤ t ≤ u ≤ 1, we have E[B(t)] = 0 and E[B(t)B(u)] = t(1 − u).Then we may onstrut these proesses on the same probability spae suh that:
P

[
sup
t∈[0,1]

√
n |αn(t) −B(t)| > x+ c lnn

]
≤ K exp(−λx) (8.90)for all n and x, where c, K and λ are absolute positive onstants.We shall take x = c lnn below.Now notie that the distribution of the vetor

n[Fn(µ~u,n1 ), Fn(µ~u,n2 + µ~u,n1 ) − Fn(µ
~u,n
1 ), . . . , Fn(1) − Fn(1 − µ~u,nd )] is that of themultinomial with parameters n and µ~u,n. Now if we substrat to this the vetor

nµ and divide by n−1/2, as we do in our transforms τn and σn, we obtain




αn(µ~u,n1 )

αn(µ~u,n2 + µ~u,n1 ) − αn(µ~u,n1 )...
αn(1) − αn(1 − µ~u,nd )




+





u1...
ud−1

−∑d
2 ui




. (8.91)The last part of the e�et of τn is keeping all the omponents of this vetor butthe �rst, and smear out with a (−n1/2/2, n1/2/2)d−1 box so that instead of aolletion of peaks we have a histogram without holes between the bars.Let us also de�ne the Gaussian vetor

B~u,n=̂[B(µ~u,n1 ), B(µ~u,n2 + µ~u,n1 ) −B(µ~u,n1 ), . . . , B(1 − µ~u,nd ) −B(

d−2∑

i=1

µ~u,ni )]

+ [u1, . . . , ud−1].Its law is N (~u, Vµ~u,n), as an be easily shown with the formulas E[B(t)] = 0 and
E[B(t)B(u)] = t(1 − u). Reall that Vµ~u,n is given by formula (8.9), with µ~u,ninstead of µ.



266 Quantum loal asymptoti normality for d-dimensional statesTo make use of Theorem 8.9.5, we must still smear out our funtions. We arewriting Un for the uniform probability on [ f(n)√
n
, f(n)√

n

]d−1 and shall onvolve. Wehoose later the preise f(n).Then let us write an expression where all the terms of the proof of Lemma 8.8.1appear:
∥∥∥N (~u, Vµ) − τnMn

µ~u,n
1 ,...,µ~u,n

d

∥∥∥
1
≤
∥∥N (~u, Vµ) −B~u,n

∥∥
1

(8.92)
+
∥∥B~u,n −B~u,n ⋆ Un

∥∥
1

+
∥∥∥B~u,n ⋆ Un − τnMn

µ~u,n
1 ,...,µ~u,n

d

⋆ Un
∥∥∥

1

+
∥∥∥τnMn

µ~u,n
1 ,...,µ~u,n

d

⋆ Un − τnMn
µ~u,n

1 ,...,µ~u,n
d

∥∥∥
1
.Let us study the �rst term. We have already seen that ∥∥N (~u, Vµ) −B~u,n

∥∥
1

=∥∥N (~u, Vµ) −N (~u, Vµ~u,n)
∥∥

1
Hene we must bound the distane between two Gaus-sians with the same mean and di�erent varianes. Sine µ~u,ni = µi+uin

−1/2 and
‖~u‖1 ≤ nγ , we have
‖Vµ − Vµ~u,n‖1 ≤

∑

k,l

∣∣∣[Vµ]k,l − [Vµ~u,n ]k,l

∣∣∣

≤
∑

1≤i,j≤d−1

|uiuj|n−1 + 2 ∗
∑

i

|ui|n−1/2
∣∣
∑

j

µj
∣∣+
∑

i

|ui|n−1/2

≤ 4n−1/2
∑

i

|ui|

≤ 4nγ−1/2.On the other hand we an bound from above the smallest eigenvalue of Vµ.Indeed, for all 1 ≤ k ≤ (d−1), we have [Vµ]k,k−
∑
l 6=k[Vµ]k,l = µk(1−

∑d
l=2 µl) =

µkµ1 ≥ δ/d. Hene Vµ ≥ (δ/d)1.So that (1 − Cn−1/2+γ/δ
)
Vµ ≤ Vµ~u,n ≤

(
1 + Cn−1/2+γ/δ

)
Vµ, where C dependsonly on the dimension d. We end the omputation of the bound for the �rst term



8.9 (Even more) tehnial proofs 267of (8.92) with:
‖N (~u, Vµ) −N (~u, Vµ~u,n)‖1 =

∫
∣∣∣∣∣∣

e−
1
2x

⊤V −1
µ x

√
(2π)d−1 det(Vµ)

− e−
1
2x

⊤(V
µ~u,n )−1x

√
(2π)d−1 det(V ~u,nµ )

∣∣∣∣∣∣
dx

≤
∫ exp

(
− x⊤V −1

µ x

2(1+Cn−1/2+γ/δ)

)

√
(2π(1 − Cn−1/2+γ/δ))d−1 det(Vµ)

−
exp

(
− x⊤V −1

µ x

2(1−Cn−1/2+γ/δ)

)

√
(2π(1 + Cn−1/2+γ/δ))d−1 det(Vµ)

=
1 + Cn−1/2+γ/δ

1 − Cn−1/2+γ/δ
− 1 − Cn−1/2+γ/δ

1 + Cn−1/2+γ/δ

≤ C2n
−1/2+γ/δ,where C2 still depends only on the dimension, as long as Cn−1/2+γ < δ/2.The seond term of (8.92) orresponds to onvolving Gaussians with sharper andsharper funtions. Now, we may upper bound ‖f ⋆ g‖1 by R supx ‖∇f(x)‖ for ga probability density supported on the ball of radius R. So that

∥∥B~u,n −B~u,n ⋆ Un
∥∥

1
≤ Cf(n)

δ
√
n
,where C depends only on the dimension, and where we have used nγ−1/2 ≤ δ/2.The third term is the one where we use KMT theorem. Indeed, for all ~u, forany positive x that, for all x, for all ~u ∈ Ξn,β , using as an intermediate step theprobability spae (Ω,A, q) on whih αn and B are built, we may write

∥∥∥B~u,n ⋆ Un − τnMn
µ~u,n

1 ,...,µ~u,n
d

⋆ Un
∥∥∥

1

≤
∫

Ω

‖B~u,n(ω) ⋆ Un − τnM
n
µ~u,n

1 ,...,µ~u,n
d

(ω) ⋆ Un‖1 dq(ω)

≤ P

[
sup
t∈[0,1]

|αn(t) −B(t)| > x+ c lnn√
n

]
+

sup
‖y‖∞≤ x+c ln n√

n

∫

Rd−1

|Un(z) − Un(z + y)|dz

≤ K exp(−λx) +

(
1 − f(n) − x− c lnn

f(n)

)d−1



268 Quantum loal asymptoti normality for d-dimensional statesWe now takle the last term of (8.92). We break it in two parts, the �rst beingthe large deviations, and the seond oming expliitly from the onvolution. Forany ǫ,
∥∥∥τnMn

µ~u,n
1 ,...,µ~u,n

d

⋆ Un − τnMn
µ~u,n

1 ,...,µ~u,n
d

∥∥∥
1

≤ 2




∑

λ6∈Λn,1/2+ǫ

Mn
µ~u,n

1 ,...,µ~u,n
d

(λ) + sup
‖x‖≤nǫ

‖x−y‖∞≤f(n)/
√
n

∣∣∣∣∣∣

τnMn
µ~u,n

1 ,...,µ~u,n
d

(x)

τnMn
µ~u,n

1 ,...,µ~u,n
d

(y)
− 1

∣∣∣∣∣∣



Now, the seond term an be upper bounded by
(1 + f(n))

d∑

j=2

sup
λ∈Λn,1/2+ǫ

∣∣∣∣∣∣

Mn
µ~u,n

1 ,...,µ~u,n
d

(λ1, . . . , λj , . . . , λd)

Mn
µ~u,n

1 ,...,µ~u,n
d

(λ1 + 1, . . . , λj − 1, . . . , λd)
− 1

∣∣∣∣∣∣

≤ (1 + f(n))

d∑

j=2

sup
λ∈Λn,1/2+ǫ

∣∣∣∣∣
λ1µ

~u,n
j

λjµ
~u,n
1

− 1

∣∣∣∣∣

≤ (1 + f(n))Cn−1/2+ǫ/δ,where we have realled the assumption nγ−1/2 ≤ δ/2, and where C is a onstantdepending only on the dimension d.Putting the four losses together and speifying f(n) = n1/4 and x = nǫ, we endup with
δ(Mn,Gn) ≤ C(n−1/4+ǫ + n−1/2+γ)/δfor n−1/2+γ > Cδ/2 and C depending only on the dimension d and the universalonstants c,K, λ from Theorem 8.9.5.Adding the part (8.89), and notiing that α − 1 > ǫ − 1/2 for small enough ǫ,ends the proof of Lemma 8.8.1.From here, proving Lemma 8.8.8 (that is the inverse diretion) is easy enough.Indeed, remembering that σnτnpθ,n = pθ,n and that σn is a ontration, we get

∥∥∥σnN (~u, Vµ) − p
~ζ,~u,n

∥∥∥
1

=
∥∥∥σnN (~u, Vµ) − σnτnp

~ζ,~u,n
∥∥∥

1

≤
∥∥∥N (~u, Vµ) − τnp

~ζ,~u,n
∥∥∥

1
.So that we have the same speed and onditions as those of Lemma 8.8.1.



8.9 (Even more) tehnial proofs 2698.9.7 Proof of Lemma 8.8.3First we ompute φ~0 in the Fok basis.Notie that φ~0 �fatorizes� in mi,j , meaning that the number mi,j is indepen-dent of the other omponents of m. Indeed, remember that F(Cd(d−1)/2) =

F(C)⊗d(d−1)/2, and the seond expression for φ~ζ in (8.21).It is now easy to hek that φ~0 is diagonal in the |m〉 basis. Indeed:
〈m0

i,j |
∫
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(
− µi − µj

µj
|zi,j |2

)
|zi,j)(zi,j |dzi,j |m1
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i,j dr

∫ 2π
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0
i,j−m1

i,j)ψdψ

= 0 if m0
i,j 6= m1

i,j .Now, if m1
i,j = m0

i,j + 1 for one preise (i, j) and the other oordinates are equal,then
〈m1|φ~0|m1〉 =

µj
µi

〈m0|φ~0|m0〉.Indeed, we may re-use the former formula, and then integrate by parts:
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φ
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∏

i<j

µi
µi − µj

(
µj
µi

)mi,j

|m〉〈m|. (8.93)We now approximate preisely enough Tλ(ρ~0,~u,nλ ). Using (8.41), we an write
Tλ(ρ

~0,~u,n
λ ) = C~uλ

∑

m∈λ

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

Tλ(|mλ〉〈mλ|) (8.94)



270 Quantum loal asymptoti normality for d-dimensional stateswith C~uλ a normalization onstant. Notie that we have absorbed into it thefator ∏d
i=1

(
µ~u,ni

)λi .Sine nα−1 ≤ δ/2 and α > 1/2 > η, we know that all m suh that |m| ≤ nη is in
λ. We an then ompute C~uλ , on the one hand, and divide the left hand side ofequation (8.94) in two parts. Furthermore, sine µ~u,ni = µi +O(n−1/2+γ), when
|m| ≤ nη, (

µ~u,nj

µ~u,ni

)mi,j

=

(
µj
µi

)mi,j

(1 +O(n−1/2+γ+η/δ)).We an also write:
(C~uλ )−1 =

∑

|m|≤nη

∏

i<j

(
µ~u,nj

µ~u,ni

)mi,j

+
∑
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(
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.The seond part is less than δnηd2(1− δ)nη for nη > C ln(n)/δ, where C dependsonly on the dimension. In that ase, this term is negligible beforeO(n−1/2+γ+η/δ).Hene:
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∑
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µi − µj
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+O(n−1/2+γ+η/δ)We then reall that for unit vetors, we have ‖|ψ〉〈ψ|−|φ〉〈φ|‖1 = 2
√

1 − |〈ψ|φ〉|2.So that, using Lemma 8.7.2, we obtain
‖Vλ|mλ〉〈mλ|V ∗

λ − |m〉〈m|‖1 = O(n(9η−2)/24/δ1/6)when |m| ≤ nη.Putting that bak in formula (8.94), we obtain Tλ(ρ~0,~u,nλ ), so that
Tλ(ρ

~0,~u,n
λ ) =

∑

m∈Nd(d−1)/2

∏
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µi
µi − µj

(
µj
µi

)mi,j
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+O(n−1/2+γ+η/δ, n(9η−2)/24/δ1/6). (8.95)Comparing with (8.93), we get the lemma.



8.9 (Even more) tehnial proofs 2718.9.8 Proof of Lemma 8.8.5The key is to notie that, as we are dealing with a group, there is a r suhthat U−1(~ζ + z,~0, n)U(~ζ,~0, n)U(z,~0, n) = U(−~ζ + z,0, n)U(~ζ,0, n)U(z,0, n) =
U(r, s, n), or the same formula with ∆ instead of U . Now we shall prove belowthat, under the ondition that both ~ζ and z are smaller than nβ , then ‖r‖+‖s‖ =
O(n−1/2+2β/δ). Let us all this the domination hypothesis for further referene.Now, as the ations are unitary, we may rewrite the norm in Lemma 8.8.5:

A =
∥∥∥[∆

~ζ+z,n
λ − ∆

~ζ,n
λ ∆z,n

λ ](|0λ〉〈0λ|)
∥∥∥

1
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1

= ‖[Id− ∆r,s,n
λ ](|0λ〉〈0λ|)‖1As Tλ is an isometry, we may also let it at the left and T ∗

λ on the right and get:
A = ‖|0)(0| − Tλ∆
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λ T ∗

λ(|0)(0|)‖1

= ‖|0)(0| − |r) (r|‖1 + ‖|r) (r| − Tλ∆
r,s,n
λ T ∗

λ(|0)(0|)‖1By the domination hypothesis, the norm of r is dominated by n−1/2+2β/δ, hene
(r|0) = 1−O(n−1+4β/δ), so that the �rst term is O(n−1/2+2βδ−1/2). Notie thatthis is dominated by R(n) given in equation (8.55) sine η > 2β.For the seond term, we apply Lemma 8.8.4, with z = 0. By the dominationhypothesis, ‖s‖ ≤ n−1/2+2β/δ, so we may apply Lemma 8.8.4, and the remainderis given by R(n) in equation (8.55).We �nish the proof of the lemma, and simultaneously that of Theorem 8.5.1, byproving the domination hypothesis.By ontinuity of the produt, if x and y are small enough, then U(−x−y)U(x)U(y)belongs to C, the domain on whih the logarithm is de�ned, introdued at thebeginning of setion 8.6. Hene, sine ‖~ζ‖+‖z‖/√n ≤ nβ−1/2/δ, for n1/2−β > Cδfor a onstant C depending only on the dimension, we know that
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√
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f(x,y) = log
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∑
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(x + y)i,jTi,j



 exp



i
∑

1≤i6=j≤d
xi,jTi,j



 ×

exp



i
∑
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 .and, for i 6= j, with x a omplex vetor,
g(x)i,j =

{
Re(xi,j)/

√
µi − µj if i < j

Im(xi,j)/
√
µi − µj if i < jWith these notations r =

√
nf(g(~ζ/

√
n), g(z/

√
n)).We have C∞ funtions, so we develop to the seond order around (x,y) = (0,0):

r/
√
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∑
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g(~ζ)i,j√
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∂xi,j
+
g(z)i,j√

n

∂f

∂yi,j
+

1

n
O
(
‖g(~ζ), g(z)‖2

)
.Notiing that f(0,0) = 0 and remembering that we suppose both ~ζ and z withnorms smaller than nβ we will have proved that ‖r‖ = O(n−1/2+2β/δ) when wehave proved that the �rst-order derivatives of f are null in (0,0).Now for any i 6= j, for all xi,j , if we de�ne xi,j = (0, . . . , 0,xi,j , 0, . . . , 0), then

f(xi,j ,0) = log [exp (−ixi,jTi,j) exp (ixi,jTi,j) exp (0)] .

= log [exp (i(xi,j − xi,j)Ti,j)]

= 0.We are allowed to write the seond line as Ti,j of ourse ommutes with itself.The same holds true for any yi,j , so that all �rst derivatives are zero.
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Samenvatting
Statistiek is de wetenshap van het verkrijgen van informatie uit data. Hoewelstatistishe problemen veel vershillende vershijningsvormen hebben, kunnen zeworden opgesplitst in drie omponenten: de studie van het objet, de studie vande gebruikte operaties, en de studie van het preieze wiskundige vraagstuk. Inandere woorden, wat we hebben, wat we kunnen doen en wat we willen weten.Kwantum statistiek vershilt van de klassieke statistiek op het eerste punt, watwe hebben. Daarom vershilt zij ook op wat is toegestaan, omdat deze tweeverbonden zijn.In de klassieke statistiek beginnen we vaak met meetresultaten, welke gemodel-leerd worden door stohasten met kanswetten. Namelijk, als we grootheid Aof grootheid B kunnen meten, dan kunnen we theoretish beide ook gezamelijkmeten. Experimenten meten vaak elke bruikbare en toegankelijke grootheid. Intheorie, �wat we kunnen doen� is elke wiskundige methode toepassen om de datate transformeren. Wiskundig betekent dit het toepassen van elke funtie op dedata, zo mogelijk met een random uitkomst. In de praktijk is omputerkrahthiervoor beperkend.In sommige gevallen, ehter, moeten we reeds het studieobjet beshouwen enkiezen welke metingen we uitvoeren. Een kenmerkend voorbeeld is het proberente begrijpen wat een zwarte doos doet. We moeten het in�lteren met invoeren elke keer moeten we de invoer kiezen. Deze thematiek heet ontwerp vanhet experiment. `Wat we kunnen doen� kan sterk afhangen van het spei�ekeprobleem. De wiskundige beshrijving van deze keuze kan niettemin van zwartedoos tot zwarte doos vershillen. Maar toh, zodra de meting is uitgevoerd, zijner wederom kanswetten en zijn we weer terug in het geval van de vorige alinea.In kwantum statistiek kan het ontwerp van het experiment niet buiten beshou-wing gelaten worden. Wanneer wij namelijk A of B kunnen meten, dan verbiedende wetten van de natuurkunde in het algemeen het meten van A én B. We moetendan die meting kiezen die de informatie oplevert die we het hardst nodig hebben.



290 SamenvattingNiettemin geeft kwantum statistiek een raamwerk parallel aan dat van de klassie-ke kansrekening, welke ons preies vertelt �wat we kunnen doen�. Aanvankelijk,�wat ons gegeven wordt� is een kwantum objet, welke gemodelleerd wordt dooreen kwantumtoestand. �Wat we kunnen doen� is het meten van de toestand,resulterend in een stohast als resultaat, of meer algemeen het vervormen van dekwantum toestand.�Wat we willen weten� vershilt in de kwantum statistiek zelden van de klassiekestatistiek. Meestal willen we ofwel de informatie in de data samenvatten (sta-tistishe inferentie), ofwel een hypothese weerleggen, ofwel zien welke hypothesehet beste de data beshrijft (toetsen), ofwel preies shatten welke onderliggendevershijnselen de data genereren (shatten). Gewoonlijk kunnen deze allemaalbeshreven worden door een klassieke parameter. Een uitzondering doet zihvoor wanneer onze benhmark intrinsiek kwantum is, bijvoorbeeld wanneer weeen kwantum toestand proberen na te bootsen.We beshrijven nu kort de wiskundige formulering van de kwantum statistiek,omdat het vershilt van de klassieke statistiek.Een kwantum objet wordt beshreven door een toestand, dat wil zeggen eenniet-negatieve operator ρ met spoor één op een Hilbert ruimte H.Metingen worden beshreven door Positieve Operator-Waardige Maten (POVM,�Positive Operator-Valued Measure� in het engels), dat wil zeggen een verzame-ling {M(A)}A∈A van operatoren, met (X ,A) een kansruimte. Deze operatorenhebben de volgende eigenshappen: ze zijn niet-negatief, M(X ) = 1H en voorelke disjunte aftelbare olletie (Ai)i∈N geldt ∑M(Ai) = M(
⋃
Ai).Het resultaat van een meting M op de toestand ρ is een klassieke stohast X in

(X ,A), met kansverdeling P [X ∈ A] = Tr(ρA).Ten slotte worden kwantum transformaties beshreven door kanalen, dat wil zeg-gen spoor-behoudende volledig positieve afbeeldingen tussen matrix of operatoralgebra's.Dit proefshrift bestaat uit twee delen. In het eerste deel behandelen vershillendeproblemen uit de kwantum statiestiek. In het tweede deel onentreren we ophet thema kwantum lokale asymptotishe normaliteit.In hoofdstuk 2 bestuderen we disriminatie problemen in de minimax setting.Namelijk, gegeven een toestand, of een Pauli kanaal, moeten we de waarden be-palen in een eindige verzameling. Dit is reeds bestudeerd in het Bayesiaanseraamwerk. In het eerste senario willen we de fout van de voorspelling minima-lizeren. Nu orrespondeert de minimax oplossing met de Baysiaanse oplossing



291met een zo ongunstig mogelijke a priori verdeling. Nohthans, terwijl we met hetBeysiaanse riterium altijd de eenvoudigste meting � een observabele � kunnengebruiken, moeten we mogelijk onze toevluht zoeken tot algemene metingen inde minimax setting. Wanneer we toestanden beshouwen kunnen we ook pro-beren nooit een fout antwoord te geven, terwijl het ons we wel is toegestaan tebekennen �dat we het niet weten�. We moeten dan zo vaak mogelijk antwoorden.Als de toestand zuiver is, verkrijgen we altijd een expliiete optimale meting inde minimax setting, in tegenstelling tot in het Beysiaanse geval. Dit werk is insamenwerking met d'Ariano and Sahi.In hoofdstuk 3 behandelen we de shatting van een geheel onbekend kanaal in
SU(d). We vinden shattingssnelheden in 1/n2. We hebben geen anilla nodig,maar moeten gebruik maken van verstrengeling. Representaties van groepenvormen het belangrijkste wiskundige gereedshap.Hoofdstuk 4 behandelt een orde relatie op POVM's, geintrodueerd door Busemiet al. (2006). Een POVM P is zuiverder dan een andere POVM Q als we eenkanaal E kunnen vinden zodat het invoeren van een toestand in ρ and het metenvan de uitvoer met P equivalent is met het uitvoeren van de meting Q. Wegeven een voldoende voorwaarde waaronder een POVM extreem, of zuiver, is.We bewijzen dat deze voorwaarde noodzakelijk is als alle POVM elementen rangéén of volledige rang hebben. In het bijzonder voldoen alle POVM's op qubitsaan deze voorwaarde.Gemotiveerd door de situatie dat we slehts één deeltje van een verstrengeldsysteem kunnen meten, hebben Petz et al. (2006) het begrip van geomplemen-teerde subalgebra's geintrodueerd: A en B zijn geomplementeerd als A ⊖ 1orthogonaal is aan B. We bewijzen in hoofdstuk 5 dat het onmogelijk is vijfgeomplementeerde subalgebra's van M(C4) te vinden, die allemaal isomorf zijnaan M(C2). Dit is gezamenlijk werk met Petz.Deel II gaat over kwantum lokale asymptotishe normaliteit. Lokale asymptoti-she normality is het simpelste voorbeeld van de onvergentie van experimententheorie van Le Cam. Het stelt ons bijvoorbeeld al in staat optimaliteit te bewij-zen van de meest aannemelijke shatter voor geshikte onderling onafhankelijkeen identiek verdeelde experimenten. We hebben de theorie gegeneraliseerd naarhet kwantum geval.Een experiment is een olletie E = {ρθ, θ ∈ Θ} van kwantum toestanden. Weweten dat de onbekende toestand ρ tot E behoort.Samen met Guµ  hebben we de sterke onvergentie van onderling onafhankelijkeen identiek verdeelde experimenten En =

{
ρ⊗n
θ/

√
n
, θ ∈ Θ

} bewezen, met ρ eentoestand op een eindig dimensionale Hilbert ruimte, die op een gladde manierafhangt van θ, met Θ een begrensde open deelverzameling van Rd. De limiet



292 Samenvattingis F = {φθ, θ ∈ Θ}, waar de φθ Gaussishe toestanden zijn op een algebra vankanonieke ommutatie relaties, en θ een displaement parameter is.Met sterke onvergentie bedoelen we dat er kanalen Tn en Sn zijn, zodat
supθ

∥∥∥Tn(ρ⊗nθ/√n) − φθ
∥∥∥

1
en supθ

∥∥∥ρ⊗nθ/√n − Sn(φ
θ
∥∥∥

1
naar nul onvergeren. Ditimplieert dat alle besliskundige problemen (bijna) dezelfde antwoorden hebbenin En en in F .In feite krijgen we iets meer dan dat. We kunnen namelijk Θ laten groeien met

N , polynomiaal maar niet te snel, en we hebben ook polynomiale onvergentie-snelheden van bovenstaande normen. Dit staat toe dat we proedures globaalkunnen aanpassen, in plaats van rond een spei�eke ρ0. De kanalen Tn en Snhangen namelijk van ρ0 af en niet van ρ. Dus gebruiken we eerst een verdwijnenddeel van de n kopieën van ρ om een shatting ρ̃ te krijgen, en gebruiken dan hetkanaal Tn geassoieerd met ρ̃. We gebruiken dan dezelfde proedure die we bijeen gegeven φ ∈ F zouden gebruiken.Het kwantum Gaussishe experiment F is erg bekend. We weten bijvoorbeeld deoptimale strategie om θ te shatten met kwadratishe verlies funties. We kunnendan asymptotish optimale proedures verkrijgen voor hetzelfde probleem voorieder eindig dimensionaal experiment.Hoofdstuk 6 maakt dit expliiet voor qubits, namelijk als ρ gede�nieerd is op C2.Dit is gezamenlijk werk met Guµ .Hoofdstuk 7 suggereert een methode voor het implementeren van de kanalen Tnvoor qubits in een labotarium, door het koppelen van de spins met het eletro-magnetish veld. We laten zien dat de lange termijn oplossing van de kwantumstohastishe di�erentiaalvergelijking orrespondeert met de toestand van spinsdie het veld in lekken. Dit is gezamenlijk werk met Guµ  en Janssens.Ten slotte geeft hoofdstuk 8 de bewijzen voor alle eindig dimensionale systemen,waarbij ρ0 vershillende eigenwaarden heeft. Het bewijs is erg tehnish en maaktgebruik van representaties van groepen. Een opvallend lemma is dat de basis vaneen semi-standaard Young tableaux �bijna� orthogonaal is. Dit is gezamenlijkwerk met Guµ .



Résumé
Les statistiques, étymologiquement sienes de l'État, peuvent être vues ommel'art de tirer des informations de données. Quoiqu'ils puissent prendre des formestrès variées, tout problème de statistiques peut se déomposer en trois moreaux :l'objet étudié, les opérations que nous pouvons e�etuer, et la question mathé-matique préise. En d'autres termes, e que nous avons, e que nous pouvonsfaire, et e que nous voulons savoir.Les statistiques quantiques di�èrent des statistiques lassiques sur le premierpoint, e aue nous avons. Par riohet, elles en di�èrent aussi sur le seond, eque nous pouvons faire.En statistiques lassiques, nous partons en général du résultat des mesuresphysiques, qui sont modélisées par des variables aléatoires et leurs lois de pro-babilité orrespondantes. En e�et, si nous pouvons mesurer les quantités A etB, nous pouvons en théorie mesurer les deux simultanément. Les expérienesmesurent souvent toutes les quantités utiles et aessibles. En théorie, �e quenous pouvons faire� est appliquer n'importe quelle transformation mathématiqueaux données, éventuellement ave une omposante aléatoire supplémentaire. Enpratique, la puissane de alul peut être un fateur limitant.Dans ertains as, ependant, nous devons onsidérer d'ors-et-déjà l'objet étudié,et hoisir quelle mesure e�etuer. Par exemple, si nous voulons omprendre lefontionnement d'une boîte noire, nous devons la sonder ave di�érentes entrées,une nouvelle entrée à haque fois. Cette thématique relève des �plans d'expé-riene�. �Ce que nous pouvons faire� dépend largement du problème spéi�que.Dans le as de la boîte noire, nous pouvons hoisir notre entrée. La desriptionmathématique de e hoix peut varier d'une boîte noire à une autre, ependant.Toutefois, une fois la mesure e�etuée, nous avons de nouveau des probabilités,et sommes de retour au paragraphe préédent.En statistiques quantiques, le plan d'expériene est inévitable. En e�et, si nouspouvons mesurer A ou B, les lois même de la physique nous interdisent de me-surer simultanément A et B, en général. Nous devons don hoisir quelle mesure



294 Résuménous apporte les informations les plus utiles. Néanmoins, la máanique quantiquefournit un adre parallèle à elui des statistiques lassiques, qui nous dit exate-ment �e que nous pouvons faire�. Initialement, �e que noua avons� est un objetquantique, modélisé par un état quantique. �Ce que nous pouvons faire� est me-surer l'état, et obtenir une variable aléatoire lassique, ou bien plus généralementtransformer l'état quantique.�Ce que nous voulons savoir� ne di�ère guère en statistiques quantiques et las-siques. Le plus souvent, nous souhaitons soit résumer les informations ontenuesdans les données (inférene statistique), soit in�rmer une hypothèse ou hoisir lameilleure hypothèse dans un ensemble �ni (test), soit deviner ave préision lephénomène qui a généré les données (estimation). Les réponses à es questionssont toutes dérites par un paramètre lassique. L'exeption est quand nous her-hons à obtenir un objet intrinsèquement quantique, omme par exemple quandnous essayons de loner le plus préisément possible un état.Il est temps de dérire le formalisme mathématique des statistiques quantiques.Un objet quantique est dérit par un état, 'est-à-dire un opérateur positif ρ, detrae un, sur un espae de Hilbert H.Les mesures sont dérites par des mesures à valeur dans les opérateurs positifs(POVM), 'est-à-dire un ensemble {M(A)}A∈A d'opérateurs, où (X ,A) est unespae de probabilité. Ces opérateurs sont positifs, M(X ) = 1H, et M est σ-additive, i.e. M(
⋃
Ai) =

∑
M(Ai) pour toute olletion dénombrable de Aidisjoints.Le résultat de la mesure M e�etuée sur l'état ρ est une variable aléatoire las-sique X à valeurs dans (X ,A), de loi P [X ∈ A] = Tr(ρA).En�n, les transformations quantiques sont dérites par des anaux, 'est-à-diredes appliations omplètement positives qui préservent la trae, entre algèbres dematries ou d'opérateurs.Cette thèse omprend deux parties. La première traite de divers problèmes destatistiques quantiques, la seonde est onsarée à la normalité asymptotiqueloale quantique.Au Chapitre 2, nous appliquons le ritère minimax à des problèmes de disrimi-nation qui n'avaient jusqu'ii été traités que du point de vue bayésien. On nousdonne un état ou un anal et il s'agit de savoir duquel il s'agit parmi un ensemble�ni onnu à l'avane. Si on essaie de minimiser les erreurs, dans les deux as, lasolution minimax orrespond au pire as de Bayes. Toutefois, la mesure à e�e-tuer pour deux états est toujours simple (une observable) dans le as bayésien, et



295peut être plus ompliquée en minimax. Pour les états, on peut aussi imposer dene répondre qu'à oup sûr, en permettant de dire �je ne sais pas�. Pour les étatspurs (de rang un), on a toujours une solution expliite en minimax, e qui n'estpas le as dans une approhe bayésienne. Cei est un travail en ollaboration aved'Ariano et Sahi.Au Chapitre 3, nous nous intéressons à l'estimation d'un anal unitaire totale-ment inonnu, paramétré par SU(d). Nous prouvons des vitesses de onvergenequadratique en 1/n2, omme 'était onnu pour SU(2). Il n'est pas besoin d'utili-ser un système auxiliaire. L'outil physique est l'intriation, l'outil mathématiqueles représentations de groupe.Le hapitre 4 a trait à une relation d'ordre sur les POVMs, introduite par Busemiet al. [2005℄. Une POVM P est plus propre qu'une autre Q si on peut obtenir
Q en faisant passer l'état à mesurer dans un anal, puis en le mesurant ave P.Nous établissons une ondition su�sante pour que P soit propre (extrémale), etmontrons qu'elle est néessaire si tous ses éléments sont de rang un ou plein, equi est notamment le as sur les qubits.Motivé par le as où on ne peut mesurer qu'une seule partiule d'un systèmeintriqué, Petz et al. [2006℄ a introduit la notion de sous-algèbres omplémentaires :
A et B sont omplémentaires si A ⊖ 1 est orthogonale à B. Nous prouvons auChapitre 5 qu'il est impossible de trouver inq sous-algèbres isomorphes àM2(C)deux à deux omplémentaires dans M4(C) (as de deux qubits intriqués). Ceiest un travail en ollaboration ave Petz.La partie II est onsarée à la normalité asymptotique loale quantique. La nor-malité asymptotique loale. est le as le plus simple de la théorie de la onvergened'expérienes de Le Cam. Elle est déjà assez puissante pour montrer l'optimalitéasymptotique de l'estimateur du maximum de vraisemblane pour les expérienes
i.i.d., par exemple. Nous avons généralisé ette théorie au as quantique.Une expériene est la donnée d'un ensemble E = {ρθ, θ ∈ Θ} d'états quantiques.Ce que nous savons est que l'état inonnu ρ qui nous est donné est dans E .Nous avons prouvé ave Madalin Guµ  la onvergene forte des expérienes i.i.d.dé�nies par En = {ρ⊗n

θ/
√
n
, θ ∈ Θ} pour ρ de dimension �nie dépendant de manièrelisse de θ, un paramètre à valeurs dans un ouvert borné de Rd, vers une expériene

F = {φθ, θ ∈ Θ}, où les φθ sont des états gaussiens sur l'algèbre des relations deommutation anoniques, et θ est un paramètre de déplaement.Convergene forte signi�e qu'il existe des anaux Tn et Sn tels que
supθ ‖Tn(ρ⊗nθ/√n)−φθ‖1 et supθ ‖ρ⊗nθ/√n−Sn(φθ)‖1 tendent vers 0. La onséqueneest que tous les problèmes de théorie de la déision ont (presque) les mêmes so-lutions dans En et F .



296 RésuméEn fait, nous obtenons un peu mieux. Nous pouvons laisser Θ grandir ave n,polynomialement quoique pas trop vite, et nous avons aussi des vitesses de onver-gene polynomiales pour les normes i-dessus. Cela permet de transposer globale-ment des proédures d'une expériene vers l'autre, au lieu de le faire uniquementautour d'un ρ0 partiulier. En e�et les anaux Tn et Sn dépendent de ρ0, bienqu'ils ne dépendent pas de ρ. De e fait, nous pouvons tout d'abord utiliser uneproportion négligeable de nos n opies de ρ pour en obtenir une estimation gros-sière ρ̃, et nous utilisons ensuite le anal Tn orrespondant à ρ̃. Nous appliquonsalors la même proédure que si on nous avait donné φ ∈ F .Or l'expériene gaussienne quantique F est très bien onnue. Par exemple, nousonnaissons la stratégie optimale pour estimer θ ave une perte quadratique.Nous obtenons don une proédure asymptotiquement optimale pour le mêmeproblème dans l'expériene de dimension �nie.Le Chapitre 6 expliite ei pour les qubits, 'est-à-dire si ρ est dé�ni sur C2.Cei est un travail en ollaboration ave Guµ .Le Chapitre 7 suggère une méthode pour implanter les anaux Tn pour les qubitsen laboratoire, via un ouplage des spins ave le hamp életromagnétique. Nousprouvons que la solution à long terme de l'équation di�érentielle stohastiquequantique orrespond au passage de l'état des spins dans le hamp. Cei est untravail en ollaboration ave Guµ  et Janssens.En�n, nous donnons les preuves pour tous les systèmes de dimension �nie auChapitre 8, quand ρ0 a des valeurs propres distintes deux à deux. La preuverepose sur un usage très tehnique des représentations de groupe. Un lemmeintéressant per se relève que la base des tableaux de Young semi-standards est�presque� orthogonale. Cei est un travail en ollaboration ave Guµ .
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