

Dynamics and regulation at the tip : a high resolution view on microtubele assembly

Munteanu, L.

Citation

Munteanu, L. (2008, June 24). *Dynamics and regulation at the tip : a high resolution view on microtubele assembly*. Bio-Assembly and Organization / FOM Institute for Atomic and Molecular Physics (AMOLF), Faculty of Science, Leiden University. Retrieved from https://hdl.handle.net/1887/12979

Version:	Corrected Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/12979

Note: To cite this publication please use the final published version (if applicable).

DYNAMICS AND REGULATION AT THE TIP A HIGH RESOLUTION VIEW ON MICROTUBULE ASSEMBLY

Dynamics and regulation at the tip: A high resolution view on microtubule assembly

PROEFSCHRIFT

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties te verdedigen op dinsdag 24 juni 2008 klokke 15.00 uur

door

Emilia Laura Munteanu

geboren te Comănești, Romania in 1978

Promotiecommissie

Promotor: Referent: Overige leden: Prof. dr. M. Dogterom
Prof. dr. K. Visscher (University of Arizona, Tucson, AZ)
Prof. dr. J. P. Abrahams
Dr. A. Akhmanova (Erasmus MC Rotterdam)
Prof. dr. M. E. Janson (Wageningen University)
Dr. ir. J. van Noort
Prof. dr. J. M. van Ruitenbeek

© 2008 by Emilia Laura Munteanu. All rights reserved.

Nederlandse titel: Dynamica en regulatie aan de tip. Een hoge-resolutie-visie op de assemblage van microtubuli.

The work described in this thesis was performed at the FOM Institute for Atomic and Molecular Physics (AMOLF) in Amsterdam, The Netherlands. This work is part of the research programme of the 'Stichting voor Fundamenteel Onderzoek der Materie' (FOM), which is financially supported by the 'Nederlandse Organisatie voor Wetenschappelijk Onderzoek' (NWO).

Cover by Julien Husson.

ISBN: 978-90-77209-24-0

A digital version of this thesis can be obtained from http://ub.leidenuniv.nl/. Printed copies can be obtained by addressing the library at the FOM Institute for Atomic and Molecular Physics (AMOLF):library@amolf.nl; Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands.

Printed in the Netherlands by Ponsen & Looijen BV graphical company, Wageningen.

This is the beginning of a beautiful friendship.

Black Cat, White Cat

This thesis is partly based on the following articles:

Kerssemakers JWJ, Munteanu EL, Laan L, Noetzel TL, Janson ME, Dogterom M (2006) Assembly dynamics of microtubules at molecular resolution. *Nature* **442**: 709-712 (chapter 2 and 3)

Bieling P, Laan L, Schek HT III, Munteanu EL, Sandblad L, Dogterom M, Brunner D, Surrey T (2007) Reconstitution of a microtubule plus-end tracking system *in vitro*. *Nature* **450**: 1100-1105 (chapter 4)

Munteanu EL, Laan L, Brunner D, Surrey T, Dogterom M. Regulation of microtubule dynamics, *in vitro*, by the autonomous microtubule-end tracker Mal3. *to be submitted* (chapter 5)

Other articles:

Laan L, Husson J, Munteanu EL, Kerssemakers JWJ, Dogterom M. (2008) Force generation and dynamic instability of microtubule bundles. *Proc Natl Acad Sci*: accepted

Dogterom M, Husson J, Laan L, Munteanu EL, Tischer C (2007) Microtubule forces and organization. In: Lenz P, editor, *Cell Motility*, Springer New York. pp. 93-115

Laan L, Munteanu EL, Kerssemakers JWJ, Dogterom M (2006) Meten aan microbuisjes met moleculaire resolutie. *Nederlands Tijdschrift voor Natuurkunde* **72**: 388-391

Tolic-Nørrelykke IM, Munteanu EL, Thon G, Oddershede L, Berg-Sørensen K (2004) Anomalous diffusion in living yeast cells. *Phys Rev Lett* **93**: 078102.1-4

Contents

1	Intr	oductio)n	11
	1.1	Micro	tubules	13
		1.1.1	Structural features	13
		1.1.2	Dynamics	15
		1.1.3	Force generation	18
	1.2	Micro	tubule plus-end tracking proteins, +TIPs	19
		1.2.1	End-tracking mechanisms	21
		1.2.2	Regulation of microtubule dynamics	24
	1.3	This tl	hesis	24
2	Mea	suring	microtubule dynamics with near molecular resolution	27
	2.1	Exper	imental method	28
	2.2	'Keyho	ole' optical trap	31
		2.2.1	Optical tweezers set-up	31
		2.2.2	'Keyhole' trap design and features	31
		2.2.3	Determining the trap stiffness	32
	2.3	.3 Experimental considerations		33
		2.3.1	Mechanics of microtubules under load	33
		2.3.2	Finite stiffness of the bead-axoneme construct	34
	2.4	Dynar	nic instability of microtubules measured with optical tweezers	35
		2.4.1	High-resolution details of microtubule dynamics	35
		2.4.2	Dynamics and force generation of multiple microtubules	35
3	Influ	ience o	f XMAP215 on microtubule dynamics	39
	3.1	Micro	tubule assembly in the presence of XMAP215	40
		3.1.1	XMAP215 enhances microtubule growth and catastrophes	40
		3.1.2	Assembly dynamics at molecular resolution	41
	3.2	Discu	ssion	46
	3.3	Metho	ods	47
		3.3.1	Measuring microtubule dynamics	47
		3.3.2	Step fitting algorithm	50
	3.4	XMAP	215-tubulin interactions	53

		3.4.1	Speckled microtubules	53
		3.4.2	FCS measurements on XMAP215-tubulin complex formation	59
	3.5	Additi	onal remarks and discussion	63
4	Rec	onstitut	ion of a microtubule plus-end tracking system <i>in vitro</i>	67
	4.1	Result	s and discussion	68
		4.1.1	Mal3 recognizes and autonomously tracks microtubule growing	
			ends	70
		4.1.2	Tea2 and Tip1 need each other and Mal3 for efficient plus-end	
			tracking	73
		4.1.3	Mal3 acts as a loading factor for the Tea2-Tip1 complex	77
		4.1.4	Microtubule dynamics in the presence of Mal3, Tea2 and Tip1 $$	77
	4.2	Concl	usions	78
	4.3	Metho	ods	79
		4.3.1	End-tracking assay using TIRF microscopy	79
		4.3.2	End-tracking assay using confocal microscopy	80
		4.3.3	+TIPs on static microtubules analyzed by confocal microscopy	81
		4.3.4	DIC assay to measure microtubule dynamics	81
5	Mic	Microtubule dynamics in the presence of Mal3		83
	5.1	Introd	uction	84
	5.2	Result	S	84
		5.2.1	Mal3 enhances the dynamic instability of microtubules <i>in vitro</i>	84
		5.2.2	Mal3 interacts differentially with the tip and with the lattice of	
			growing microtubules	87
		5.2.3	Mal3 promotes formation of microtubule end-structures	89
	5.3	Discus	ssion	94
	5.4	Additi	onal remarks	97
	5.5	Experi	mental procedures and data analysis	98
		5.5.1	Measuring the parameters of microtubule dynamic instability	
			by DIC microscopy.	98
		5.5.2	Evaluating the amount of Mal3 bound on microtubules by	
			confocal microscopy	100
		5.5.3	Microtubule end dynamics measured with optical tweezers	104
6	Mic	rotubul	e catastrophes at molecular resolution	107
	6.1	Result	s	108
		6.1.1	Is there a molecular signature of catastrophes?	109
		6.1.2	Microtubule catastrophes in the presence of XMAP215 and Mal3	109
	6.2	Discus	ssion on the mechanism of catastrophes	112

7	Discussion and future directions		115	
	7.1	Discus	sion	115
	7.2 Future directions			117
		7.2.1	Regulation of microtubule dynamics by the plus-end tracking	
			complex Mal3-Tea2-Tip1	117
		7.2.2	End-tracking of dynamic microtubules by EB proteins	119
		7.2.3	Influence of +TIPs on force generating microtubules	120
Bibliography 1			123	
Summary			137	
Sa	Samenvatting			141
Ac	Acknowledgements			145
Cu	Curriculum vitae			149