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Chapter 1 
 
 
 

Introduction 
 



1.1 Background 
 
Worldwide millions of people suffer from cardiovascular diseases [1;2], which have 
been the number one cause of death in the western world for decades. Possible 
defects in the cardiac system can be either blood flow related, electrically induced, 
or they can be caused by congenital defects of the cardiac anatomy. However, most 
cardiac defects eventually result in a reduced cardiac function, leading to a reduced 
blood flow through the body or worse. 
 
The human heart consists of four chambers, the right atrium, the left atrium, the 
right ventricle and the left ventricle (Figure 1.1). In a healthy subject, deoxygenated 
blood enters the right atrium and oxygenated blood enters the left atrium from the 
lungs. When the atria are filled, they contract and the atrio-ventricular valves open, 
filling both the right and the left ventricle. Subsequently, the atrioventricular valves 
close, both ventricles contract and the semi-lunar valves open. This way the right 
ventricle pumps deoxygenated blood to the lungs while the left ventricle pumps 
oxygenated blood throughout the body. 
 
 

 
Figure 1.1: A cross section of the human heart (© Edwards Lifesciences, Irvine, California, used 
with permission). 
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The process of blood circulation is a delicate rhythmic alternation of contraction 
and relaxation of the four heart chambers that is regulated by an electrical system, 
of which the sino-atrial (SA) node is the pacing element. This area of specialized 
tissue located near the right atrium produces a continuous sequence of electrical 
pulses, of which the frequency adapts to the metabolic demands of the body. This 
electrical discharge of the SA-node propagates over the right and the left atria, 
resulting in a contraction of these chambers, injecting the blood from the atria into 
the ventricles. The electrical signal then passes through the atrio-ventricular (AV) 
node to the bundle of His, the right and left bundle and eventually to the Purkinje 
fibers. This system of electrically conducting fibers causes both the ventricles to 
contract in a controlled fashion, pumping the blood to the lungs and body. 
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A variety of cardiovascular diseases exist, which can be roughly categorized as 
follows. In Ischemic Heart Disease parts of the heart muscle (myocardium) receive 
a limited supply of blood, resulting in a reduction of cardiac function. One of the 
main reasons for Ischemic Heart Disease is a narrowing of one or more of the 
coronary arteries, which supply the myocardium from blood. Such an obstruction 
can be caused either by an accumulation of plaque in the vessel or by an embolism: 
a blockage of the vessel by a blood clot. Myocardial Ischemia can eventually lead to 
the death of myocardial tissue (myocardial infarction). 
Arrhythmia is a combinatory term for defects in the electrical cardiac system. 
Arrhythmia can either be caused by a reduced conductivity, arrhythmical pulse 
generation by the SA-node, or by ectopic triggers. 
Valvular dysfunction can lead to a reduced inflow of blood in a heart chamber or 
regurgitation through the valve. Common causes of valvular dysfunction are 
valvular stenoses, valvular inflammation or a congenital valvular defect. 
Congestive Heart Failure is a disease that is primarily caused by hypertension, 
which if left untreated, may cause an irreversible remodeling of the heart due to the 
increased blood pressure, which in turn reduces cardiac output. It can also be 
triggered by a (combination of) the aforementioned disorders.  
 
Eventually, most cardiac diseases result in a reduced cardiac function. The large 
amount of people suffering from cardiac disease stresses the importance of cardiac 
function diagnostics. Therefore, over time several cardiac imaging methods have 
been developed that enable the assessment of cardiac function, all with different 
characteristics. Echocardiography is non-invasive and can give a quick indication of 
global cardiac function. The image quality however remains relatively poor. 
Positron Emission Tomography (PET) and Single Photon Emission Computed 
Tomography (SPECT) are nuclear imaging modalities, in which a radioactive tracer 
provides information on myocardial perfusion or glucose metabolism in the 
myocardium (PET), albeit with a relatively low resolution. On the other hand, 
Magnetic Resonance Imaging (MRI) and Multi Slice Computed Tomography 
(MSCT) have rapidly evolved over the last decade and are considered to be the 
modalities of the future. MSCT enables the simultaneous assessment of coronary 
and ventricular function, and has a high spatial and temporal resolution and a 
short acquisition time. The main drawback of MSCT is the X-ray radiation dose to 
which the patient is exposed to. MRI also has a high spatial and temporal 
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resolution, it does not involve radiation and it has a wide range of possible scan 
protocols to be applied in order to assess valvular function and ventricular 
function. The prolonged acquisition time is the major disadvantage of using MRI 
for functional cardiac imaging. Nonetheless, MSCT and MRI provide a highly 
intuitive 4 dimensional (3D + time) visualization of the heart. 
 
X-ray LV angiography is also a widely used technique to assess cardiac function. 
Although this modality gives a 2D or bi-plane visualization of the heart, in the 
majority of hospitals worldwide a catheterization laboratory (cathlab) with X-ray 
LV angiography equipment (Figure 1.2) is available. During each cardiac 
catheterization procedure, the LV angiogram is acquired, providing essential 
information to the interventional cardiologist, since it enables the analysis of 
regional and global cardiac function. Drawbacks of X-ray LV angiography are the 
invasive procedure, the use of contrast dye and, similar to MSCT, the radiation 
dose to which the patient is exposed. However, due to the availability and a 
superior spatial and temporal resolution with respect to the MSCT and MRI 
systems available in the average hospital, X-ray LV angiography is still considered 
to be an important clinical standard. 
 
The focus of the work presented in this thesis mainly lies on the analysis of X-ray 
LV angiography, although some chapters also address MRI based studies. The 
emphasis of the latter studies was mainly on elaborating on conceptual 
methodology. 
 
 

 
 
Figure 1.2: A cardiovascular X-ray Angiography Imaging Device: The Toshiba CC-i (© Toshiba 
Cooperation). 
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1.2 X-ray LV Angiography 
 
1.2.1 X-ray LV Angiography Acquisition 
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X-ray LV angiography is a catheterization procedure, in which an X-ray opaque 
contrast dye is injected into the left ventricle through a catheter. This catheter is 
inserted in the patient’s groin, is forwarded through the vascular system of the 
patient and eventually enters the left ventricle through the aorta. The image 
acquisition can be performed from two different angles (bi-plane) or from one fixed 
angle (single-plane). A bi-plane acquisition normally combines the antero-posterior 
view and the lateral view or the 30° right anterior oblique view and the 60° left 
anterior oblique view. Although bi-plane image sequences intrinsically provide 
more information, single-plane acquisitions (generally obtained in the 30° right 
anterior oblique view) are considered to be the clinical standard. 
The amount of injected X-ray opaque contrast dye should be minimized to 
diminish possible adverse reactions in the patient. When the so-called bolus of 
contrast fluid arrives at the left ventricle, it fills the ventricle in approximately two 
or three cardiac cycles. The injection of the contrast agent somewhat irritates the 
myocardium, causing one or two irregular cardiac contractions (extra-systole). 
After 8 to 12 cardiac cycles (i.e. approximately 10 seconds) the contrast fluid has 
been washed out of the left ventricle. The time-window in which the left ventricle is 
visualized therefore is limited: normally the second or third cardiac cycle after the 
injection of the contrast dye is considered to provide an optimal visualization, 
because the distribution of the contrast fluid is maximally homogeneous and 
possible extra-systole have subsided. From this optimally visualized cardiac cycle 
two frames are selected for analysis: the end diastolic (ED) image frame, in which 
the LV volume is maximal, and the first subsequent end systolic (ES) image frame, 
in which the LV is maximally contracted. An example of a pair of properly acquired 
ED and ES LV angiogram is shown in Figure 1.3. 
 
 

         
 
Figure 1.3: ED (left) and ES (right) frame of a properly acquired X-ray angiogram. Black dotted 
lines denote manually drawn expert contours. 
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1.2.2 X-ray LV Angiography Image Processing Challenges 
 
The output of an X-ray LV angiography acquisition is an image sequence of 
approximately 100 to 200 image frames. The clinical information that can be 
extracted from it is twofold: 

 
• The ejection fraction, defined as the difference between the ED and ES 

volumes divided by the ED volume. 
 

• The regional myocardial wall motion characteristics. 
 

The acquisition quality of an X-ray LV angiogram can vary a lot, due to the 
experience of the operator and the physical condition of the patient. For patients it 
is difficult to comply with the requirement of holding their breath during the 
acquisition, which is necessary to prevent the diaphragm from overlapping with the 
posterior wall of the left ventricle. Furthermore, the visualization of the anterior 
wall can be occluded by a rib. Such overlapping anatomical structures complicate 
the image interpretation and patient study analysis. Figure 1.4a displays an 
example of an acquisition in which the LV and the diaphragm are overlapping. 
Figure 1.4b shows a similar impediment for image interpretation: the shutter of the 
imaging device, responsible for prevention of over-exposure, can produce a 
substantial shadow in the image, as expressed in this example as a diagonal dark 
band. 
Poor contrast can be caused by under- or over-exposure of the image sequence, as 
can be seen in Figure 1.4c. This specific example can be regarded a worst case 
scenario. Besides under-exposure of the image, the diaphragm and the left ventricle 
are overlapping and a shutter induced shadow can be observed. Additionally, poor 
contrast can be caused by the selection of the frames that are to be analyzed by the 
expert cardiologist. When, for example, the filling of the LV is not optimal because 
the patient is suffering from dilated cardiomyopathy, or the patient shows a more 
than average amount of extra-systole after the injection of the contrast fluid, there 
will be no optimal cardiac cycle to analyze. 
During the catheterization procedure, the placement of the catheter tip is of 
significant importance. The optimal position is in the vicinity of the valve plane, i.e. 
in the vicinity of the mitral valve (the valve between the left atrium and the left 
ventricle) and the aortic valve (the valve between the left ventricle and the aorta). 
When the contrast dye is released it immediately mixes with the incoming blood 
flow through the mitral valve. Placing the catheter tip near the apex increases the 
risk of an uneven distribution of the contrast dye, as can be seen in Figure 1.4d. 
 
In current clinical practice there are two ways to interpret an X-ray LV 
angiographic image sequence. An experienced cardiologist can make a quick 
estimation of  the ejection fraction,  just by visual inspection of  the image data. In a 
more thorough analysis the endocardial edge of the left ventricle is delineated 
manually in the optimally visualized ED and ES frames, using a dedicated software 
package. Surface areas are calculated from these contour curves and a specialized 
equation, the area-length method [3] is employed to determine the ED and ES  
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     (a)          (b)      (c)          (d) 
 
Figure 1.4: Poor X-ray LV angiogram acquisitions. Upper row displays ED frames, lower row 
displays ES frames, black dotted lines denote manually traced contours. From left to right: diaphragm 
overlap, shutter shadow, poor contrast and uneven distribution of contrast agent (mainly observed near 
the mitral valve in the ED image). 

 
 
volumes. Subsequently the ejection fraction (EF), defined as the difference between 
the ED and ES volumes divided by the ED volume, is calculated and regional wall 
motion can be assessed using a variety of different models [4-6]. Figure 1.5 
presents a typical result of such a wall motion model. 
Both approaches have serious shortcomings. Visual inspection depends highly on 
the training of the clinical expert. Moreover, the training culture can differ between 
different  hospitals.  Visual  inspection is therefore  not always  reproducible,  which  
leads to a non-standardized diagnosis and which complicates follow-up studies of 
patients. Manual contouring on the other hand, brings along a high workload. It is 
time consuming and is prone to inter- and intra-observer variabilities. 
Consequently, the need for an automated methodology to assess global cardiac 
function from X-ray LV angiograms is apparent. It is also clear that, to ensure 
reproducible results, this automated methodology should provide contours that can 
be translated into clinical significance: the ejection fraction and the wall motion 
models. 
 
 

1.3 Prior Literature on Automated X-ray LV Analysis 
 
For more than three decades attempts have been made to facilitate the delineation 
of endocardial left ventricular contours in X-ray angiograms [7-18]. The fact that so 
many researchers have tried to solve this problem underscores the complexity of 
the problem. Mainly the automatic delineation of the ES image is notoriously 
difficult. In a properly acquired angiogram one can expect a proper filling and 
distribution of the contrast dye in the ED frame, making it rather intuitive to decide 
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on the location of the endocardial border. This does not necessarily hold for the ES 
image frame, even in a perfectly acquired image sequence. Due to the cardiac 
contraction, the majority of the mixture of blood and contrast dye is squeezed out 
of the ventricle, complicating the definition of the endocardial boundary. This 
specifically holds in the vicinity of trabeculations and papillary muscles (i.e. the 
muscles restricting the movement of the mitral valve). The amount of contrast fluid 
in between these structures is generally low, hampering local border detection. 
 
It is generally acknowledged that to achieve an automatic delineation of left 
ventricular contours, using low level image processing techniques alone do not 
suffice. Hence the majority of proposed techniques in literature incorporated some 
level of a priori information, mainly regarding the shape of the left ventricle. 
 
Early examples of automated LV contour delineation methods in angiograms used 
a priori information regarding general edge characteristics. Chow and Kaneko [7], 
for example, implemented a dynamic threshold algorithm. Clayton et al. [8] 
determined the left ventricular border positions by calculating edge probabilities. 
Pope et al. [12] applied Dynamic Programming to delineate the left ventricle. Slager 
et al. and Reiber et al. [9-11] used a dynamic thresholding based interactive 
technique that enabled real time (i.e. at video speed being 12.5 to 15 frames/s) 
processing of a cardiac cinefilm; the thresholds were adapted on a video line-by-
line basis. The implemented system, the Contouromat, has been used in many 
clinical research studies, among others by Hooghoudt et al. [19-21]. 
Tehrani et al. [14] proposed one of the first approaches in which a priori 
information of the shape of the ventricle was used. A statistical model, describing 
the shape variation of a cardiac left ventricle, was employed to connect fractions of 
possible LV boundaries, obtained by a low level edge detector. These candidate 
fractions of the endocardial boundary were either rejected or accepted by a means 
of a blackboard architecture and the statistical model. Eventually a selection of 
fractions remained to form a complete LV delineation. 
Lilly et al. [15] used a similar approach. First a series of low level image processing 
algorithms (regional intensity information, edge information, and multiple regional 
thresholding) was used to construct a set of candidate LV edge points. 
Subsequently Dynamic Programming was applied to fit a contour through these 
points. Template matching using a template library, derived from manually traced 
LV contours, incorporated the required a priori information, neutralizing contour 
irregularities and contour drift due to insufficient image information. 
De Figueiredo and Leitão [16] proposed an algorithm based on maximum a priori 
probability in a Bayesian framework in combination with Markov random field 
contour modeling. Contrary to the previously described methods, both shape and 
image intensity information is incorporated in this approach. However, the method 
was only tested on digital subtraction angiography (DSA), in which an image 
acquired before the injection of the contrast fluid is subtracted from all following 
images to suppress the image background. In a clinical setting, optimal background 
removal is extremely difficult, mainly due to motion artifacts. For many patients it 
is difficult to hold their breath during the examination, resulting in respiratory 
motion. Cardiac motion artifacts could be neutralized by ECG gated acquisitions.  
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Figure 1.5: Example results from the centerline wall motion model. Top left: ED and ES contour 
overlay and construction of 100 chords connecting them. Top right: wall motion per chord. Bottom left: 
wall motion specified for the Left Anterior Descending regions. Bottom right: wall motion specified for 
the Right Coronary Artery regions. 

 
Nonetheless, using ECG gating for selecting the proper frames for subtraction from 
the ED and ES images is hampered by arrhythmia caused by the release of the 
contrast agent or catheter contact with the endocardial wall. 
McDonald and Sheehan [17] introduced a method using boosted decision trees for 
pixel classification based on feature images. Similar to [16], both shape and image 
intensity information are exploited. This approach mimicked the drawing behavior 
of the expert cardiologist scrolling through the neighboring time frames around the 
frame of interest. A clinical expert uses this information to grasp additional 
information of the contraction dynamics of the left ventricle. The feature images 
used in McDonald and Sheehan’s algorithm were constructed from geometry 
features and gray-level statistics of such a sequence of images around the ED and 
ES frames. For initialization of the algorithm, three anatomical landmark points 
(the endpoints of the aortic valve and the apex) needed to be positioned manually. 
Suzuki et al. [18] proposed a methodology applying two different edge detection 
mechanisms: a standard edge detection based on low-pass filtering and edge 
enhancement and a modified multilayer neural network. The neural network edge 
detector was trained on manually drawn LV contours and is able to identify less 
pronounced subjective edges. This approach does not utilize image intensity 
information and, as in [16], has been applied on DSA images only. After placing the 
endpoints of the aortic valve manually, the contours are traced automatically. 
 
None of the aforementioned methods has proven to produce left ventricular 
contours that are of a sufficiently high degree of accuracy and robustness that is 
acceptable in clinical practice. Only a few of these methods have been introduced in 
daily clinical practice; van der Zwet et al. [13] proposed a method that was 
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incorporated in a clinical package in the first half of the 1990’s. This approach 
combined a pyramidal segmentation algorithm, neural networks and Dynamic 
Programming. One general conclusion that can be drawn from this listing of prior 
work is that automatic delineation of the cardiac left ventricle in X-ray angiograms 
cannot be achieved without the use of a priori information, describing the shape 
and appearance of the ventricle. In this work we explore the application of 
statistical models of shape and appearance to incorporate a priori information into 
an automatic segmentation scheme for X-ray LV angiograms. 
 
 

1.4 Statistical Models for Image Segmentation 
 
In the past decade, much progress has been made in the field of automated medical 
image segmentation. Especially the statistical shape modeling methods introduced 
by Cootes [22-26] have received widespread attention. Most statistical shape 
modeling methods consist of two parts: a Point Distribution Model (PDM) that 
captures object shape and shape variations from a set of examples, and an intensity 
model that is used for fitting the model to image data. A Point Distribution Model 
[22] describes the training contours by sampling them with an equal number of 
corresponding landmark points. After Procrustes alignment [27] of the training 
shapes to eliminate pose and scale differences, the variations in the shapes are 
computed using Principal Component Analysis (PCA), an eigenvector 
decomposition method. A shape similar to the objects in the training set can be 
generated as a linear combination of the average shape and the modes of variation. 
 
An Active Shape Model (ASM) [23;24] extends the PDM with a model fitting 
algorithm to segment the object in a target image. Through every point of the PDM 
a scanline is placed, perpendicular to the contour. Edge information is gathered 
along these scanlines and used to propose new positions for the contour points. The 
newly hypothesized shape is expressed as a linear combination of the PDM average 
and eigenvariations and if any of the modes of variation exceeds a statistical limit 
(normally 2 or 3 standard deviations), the newly hypothesized shape is constrained 
to this parameter limit. This way, the generated segmentation hypothesis is 
constrained to statistically plausible shapes. ASMs have proven their merit in 
medical image segmentation by combining speed with segmentation robustness. 
Among many others, examples exist of segmentation algorithms in 2D [28], 
2D+time [29] and 3D [30-32]. 
 
While in ASMs only the local image intensities along scanlines are used, an Active 
Appearance Model (AAM) uses an entire image patch to model global image 
intensity characteristics [25;26]. For every training object an image patch is derived 
from the object contour. These patches are resampled and aligned and a PCA is 
applied on the intensities, resulting in an average image intensity representation 
and a set of eigenvariations. Subsequently, the shape model and the intensity 
model are concatenated to form a statistical representation of combined shape and 
intensity. Finally all model and pose parameters are individually perturbed with a 
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set of known magnitudes, to create a set of pre-computed parameter gradients that 
can be employed to estimate parameter updates during model matching. 
Employing an AAM to segment an object of interest in a target image consists of 
initializing the model in the vicinity of the object, followed by an iterative matching. 
The root-mean-square difference between the model and the pixel intensities of the 
underlying image is minimized with respect to the model and pose parameters 
using pre-computed parameter gradients. Convergence is achieved when the error 
does not decrease significantly for a number of iterations. The synthesized model 
shape represents an approximation of the actual object contour in the image. 
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Similar to ASMs, the AAM updates are constrained to a certain statistical limit, 
normally around 2 or 3 standard deviations. Because the parameter gradients that 
are used to direct the parameter updates are determined individually, every single 
parameter adjustment attempts to maximally neutralize the difference between the 
model patch and the underlying image. Hence, parameter updates possibly are 
overestimated and a statistical constraint is needed. 
AAMs implicitly model the relationship between the expert drawn contours and the 
underlying image features. Hence, AAMs are considered to outperform other 
approaches, such as ASMs or deformable models because they can cope with 
images containing fuzzy or spurious edge information. 
 
Application of Active Appearance Models in medical image segmentation are ample 
and diverse in their extensions. Cootes et al. first applied them to knee cartilage 
segmentation in MRI [25] and later used AAMs for the automatic detection of brain 
structures in MRI [33]. Another 2D approach was presented by Roberts et al. [34], 
employing a sequence of Active Appearance sub-Models to vertebra segmentation. 
Beichel et al. [35] proposed a robust AAM and applied it to segmentation of hand 
bones and the segmentation of the diaphragm. In this method the residue, yielded 
from the subtraction of the model intensities from the image intensities, is used to 
construct an optimal set of model parameter updates. The first 3D Active 
Appearance Model, applied to cardiac MRI, was presented by Mitchell et al. [36]. 
Furthermore, Mitchell et al. proposed a hybrid AAM/ASM to improve local border 
delineation in cardiac MRI segmentation [37]. Bosch et al. created the Active 
Appearance Motion Model, modeling a full cardiac cycle of the left ventricle in 
echocardiography [38]. Another echocardiographic application is presented by 
Hansegård et al. [39], segmenting triplane echocardiograms by a Dynamic 
Programming constrained AAM. Üzümcü et al. explored an AAM in which the 
shape modeling was performed by using Independent Component Analysis instead 
of Principal Component Analysis [40]. Finally, Stegmann et al. applied an AAM for 
the registration of cardiac MRI perfusion sequences [41]. 
This wide range of applications proves the value of AAMs in medical image 
segmentation. Also for segmentation of the left ventricle in X-ray angiograms, 
AAMs are expected to perform adequately. 
 
However, some limitations of Active Appearance Models in general and to their 
application to X-ray LV angiograms specifically can be identified. These 
shortcomings and their possible solutions will be explored in this thesis, to 
accomplish a proper segmentation of the left ventricle in X-ray LV angiograms. 
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1.4.1 Limitations of Active Appearance Models 
 
During matching of an AAM to the underlying image information, the model 
parameters are iteratively updated. The decision on whether such a new model 
representation is an improvement or not is based on an error criterion that is 
defined as the sum of squared differences between the image pixel values and the 
corresponding model intensity values. Since the error criterion is a global 
parameter, an AAM does not necessarily emphasize strong local edge information. 
This can be an advantage when fuzzy or spurious edge information is available in 
the image. Nonetheless, locally accurate border detection is not guaranteed and in 
the specific case of X-ray angiography an additional effort is required. 
Furthermore, as Figure 1.6 illustrates, the error criterion has proven to be unstable 
when applying an AAM in X-ray LV angiography. Hence, the need for improving 
the robustness of the algorithm is apparent. 
 
A second limitation is the possible over-constraining towards the training data 
during statistical model fitting. This can be expressed by a suboptimal local border 
definition. As reported by Bosch et al. [38], an AAM has a tendency to find a “too 
normal” shape. Furthermore, statistical models of shape (and intensity) are highly 
dependent on the composition of the training data. For every application it remains 
difficult to estimate the amount of training data needed and the composition of the 
characteristics of the training examples. 
 
 

1.5 Scope of this Thesis 
 
As discussed previously, the interpretation of the ED image in X-ray LV 
angiography is relatively intuitive, while the ES image is notoriously problematic to 
segment. However, the ED and ES image frames represent the same left ventricle 
and the same uptake and washout characteristics of the injected contrast dye. 
Hence, a high degree of similarity in shape and image intensity information can be 
observed. This information should be exploited and integrated in the Active 
Appearance Model. 
 
 

 
 
Figure 1.6: An example of spurious error criterion behavior. Black dotted lines denote manually 
traced reference contours, white dotted lines represent intermediate results obtained by the Active 
Appearance Model. From Left to right, the error criterion decreases, signifying a supposedly improved 
model segmentation. 
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Despite the successful application of AAMs in medical image segmentation, 
applying them in X-ray LV angiograms remains challenging, due to the limitations 
described in the previous section. This thesis investigates the application of Active 
Appearance Models in X-ray LV angiography, to generate an automatic 
segmentation of the left ventricle in both the ED and the ES phase. The goal of the 
research described in this thesis is therefore: 
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• to investigate ways to integrate all available shape and image intensity 

information in the AAM framework, by exploiting redundancies and 
similarities between the ED and ES frames. 

 
• to increase the robustness of AAMs with respect to the unstable behavior of 

the error criterion. 
 

• to investigate the influence of the size and composition of the model 
training data set on AAM segmentation performance. 

 
• to address the issue of over-constraining towards the training data and 

investigate ways to improve local LV border delineation. 
 

• to demonstrate the applicability of the resulting algorithm in daily clinical 
practice, producing clinically acceptable results, reducing the workload of 
the expert cardiologist and reducing inter- and intra-variabilities in clinical 
diagnostics. 

 
 

1.6 Thesis Outline 
 
The remainder of this thesis is structured as follows. 
 
In Chapter 2 an exploratory investigation is reported on the merit of a combined 
modeling of the ED and ES image frames in an Active Appearance Model 
framework. For every training example, one shape vector was constructed, 
concatenating the manually drawn ED and ES contours. Similarly, for all training 
examples, an image intensity vector was constructed, combining information from 
both frames. This representation formed the basis of the presented Multi-View 
Active Appearance Model. In addition, a first step forwards was made towards 
improving local border delineation. After global segmentation of the left ventricle 
in ED and ES by the Multi-View AAM, a specialized AAM was employed, focusing 
on the model description of the LV border. In this specialized model, the intensity 
information of the center of the ventricle was ignored. Only the intensities in a rim 
around the LV border were modeled, covering specifically the edge of the ventricle 
and it’s direct surroundings. 
 
The methodology of the Multi-View Active Appearance Model is similar to the 
Active Appearance Motion Model by Bosch et al. [38] in which a full cardiac cycle 
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was modeled. However, Chapter 3 explored whether this approach could still 
provide acceptable results when either the amount of data is very sparse in the time 
domain (only modeling the ED and ES frame in X-ray LV angiography, instead of a 
full cardiac cycle), or when the shape and intensity features are significantly 
different for all views. For this latter experiment a Multi-View AAM was 
constructed to simultaneously model the short-axis view, the two chamber view 
and the four chamber view of a cardiac MRI acquisition. For both experiments, 
similarly as in Chapter 2, shape and intensity information of multiple views was 
modeled in a combined fashion, while the model pose parameters were modeled 
separately for all views.  
 
Chapter 4 discusses the influence of the composition of the training set that is used 
in constructing an Active Appearance Model. Due to the problem description, the 
research goals and the availability of data, this study was performed on a cardiac 
MRI data set. Three aspects were investigated. First, the optimal size of the training 
data set, was assessed. In other words, how many training examples are required to 
obtain a proper statistical description of the population. Second, the ratio between 
patient study examples and samples from healthy volunteers in the training set was 
examined. The influence of this ratio on the segmentation results was measured. 
And third, the influence of the scanner that is used for acquisition was investigated. 
When segmenting a patient study, acquired with a scanner produced by a specific 
manufacturer, the segmentation results between applying a scanner specific AAM 
and an AAM constructed on data from multiple scanners was compared. 
 
In Chapter 5 a new approach to improve local border delineation is presented. To 
overcome over-constraining of the segmentation result by the model, a dedicated 
Dynamic Programming is proposed. In this post-processing step, the search area 
was constrained by the final segmentation result of the Active Appearance Model. 
Furthermore, the contraction dynamics of the cardiac left ventricle were captured 
in the Dynamic Programming scheme, by constructing a cost matrix on both the 
underlying (ED or ES) image information and the information of a subtraction 
image, created by subtracting the ED frame from the ES frame. A new model 
matching scheme, the Controlled Gradient Descent, was introduced to improve the 
robustness of the AAM. In this approach only one or a few model parameters were 
updated per AAM matching iteration. This way a more smooth and gradual 
convergence towards the object of interest was expected. In addition, a thorough 
technical validation was performed, investigating the overall segmentation 
performance and investigating the merit of all novel elements separately versus 
their merit when they are applied in a synergetic fashion. Finally, Chapter 5 
explored the limits of automation, by comparing a fully automatic X-ray LV 
angiogram segmentation method with a version of the algorithm in which the user 
needed to initialize the model by placing three landmark points manually. 
 
Chapter 6 transfers the created methodology into clinical practice. A study on the 
impact on the clinical workflow was performed, investigating whether the produced 
contours are of clinically acceptable quality, whether the presented method is 
capable of reducing the average patient analysis time and the workload of the 
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cardiologist, and whether the inter- and intra-observer variabilities can be reduced. 
To assess all this, two expert cardiologists were asked to analyze a data set of 30 
patient studies in two ways: First by drawing endocardial contours in ED and ES 
manually and second by using the automated delineation method, which was 
incorporated in a dedicated software package. Naturally, in the latter procedure, 
the expert cardiologists were allowed to edit regions of the automatically 
determined contours, when they considered them to be sub-optimal. Hence, three 
types of contours were generated: manual contours, automatic contours and edited 
automatic contours. These contours were mutually compared with respect to the 
accuracy of LV delineation. In addition, timings of manual and automatic 
procedures were compared. 
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Chapter 7 provides a general discussion and conclusions of the work presented in 
this thesis. 
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Abstract 
 
Automatic Left Ventricle (LV) border detection in X-ray angiograms for the 
quantitative assessment of cardiac function has proven to be a highly challenging 
task. The main difficulty is segmenting the End Systolic (ES) phase, in which much 
of the contrast dye has been squeezed out of the LV due to contraction, resulting in 
poor LV definition. 2D Active Appearance Models (AAMs) have shown utility for 
segmenting End Diastolic (ED) angiograms, but do not perform satisfactory in 
individual ES angiograms. In this work, we present a new Multi-View AAM in 
which we exploit the existing correlation in shape and texture between ED and ES 
phase to steer the segmentation of both frames simultaneously. Model scale, 
orientation and position remain independent, whereas appearance statistics are 
coupled. In addition, an AAM is presented in which the gray-value information of 
the inner part of the LV is not taken into account. This so-called boundary AAM is 
applied mainly to enhance local boundary localization performance. Both models 
are applied in a combined manner and are validated quantitatively. In 61 out of 70 
experiments good convergence for both ED and ES segmentation was achieved, 
with average border positioning errors of 1.86 mm (ED) and 1.93 mm (ES). 
 
 

2.1 Introduction 
 
Left Ventricle (LV) angiography is a widely used modality for assessing left 
ventricular function. Because the heart itself is not visible in X-ray images, patients 
undergo a catheterization procedure, in which the left ventricle is filled with an X-
ray opaque contrast dye. During this procedure 150 to 200 images are acquired in 
the right anterior oblique view, at a typical rate of 25 to 50 images per second. This 
generally covers 7 to 9 cardiac cycles. From this image sequence the second or third 
cardiac cycle is selected. Irregular muscle contractions due to the injection of the 
contrast agent are expected to have faded at this stage, while the contrast agent 
distribution within the left ventricle is expected to be optimal. The End Diastolic 
(ED) and End Systolic (ES) image frames from this cardiac cycle are the starting 
point for the quantification of left ventricular function. In both the ED and the ES 
image, a contour line is drawn around the left ventricle. Subsequently a surface 
area of the projected left ventricle is calculated for both phases, followed by an 
estimation of the ED and ES volumes, for which we used the volume estimation 
method proposed by Sandler and Dodge [1]. The ejection fraction is determined 
from both calculated volumes. 
Currently, software packages are available that assist the cardiologists in drawing 
the contours around the left ventricle manually. But drawing these contours by 
hand is a difficult and time-consuming task. The poor image quality and varying 
distribution of the contrast agent complicate the drawing of correct contours. Also, 
manual contour drawing intrinsically introduces significant inter-observer and 
intra-observer variability. 
Recognizing these difficulties, the need for a reliable and reproducible automatic 
method for segmenting the left ventricle becomes apparent. Automatic contour 
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detection in X-ray angiograms is a challenging task for which a reliable technique 
has not been developed yet to the point of robust clinical application. Several 
knowledge-based approaches have been proposed over the last two decades, 
starting with regular edge detection followed by a procedure to merge the 
separately found LV edges by means of a statistical shape model [2], or approaches 
using Dynamic Programming and template matching [3]. 
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Until now, the most promising results were obtained in segmenting the ED image, 
while results in ES segmentation remained poor. Because much of the contrast 
agent is pumped out of the LV during contraction, the ES image quality and LV 
definition in general is rather poor, hampering the automatic segmentation of the 
ventricle. In this chapter, we overcome this by using additional knowledge: for an 
individual patient, the left ventricular shape and appearance in end diastolic 
images and end systolic images are highly correlated, although the position and 
orientation of the ventricle can change significantly due to cardiac motion and 
contraction. The emphasis of this research lies in the improvement of the ES 
segmentation results, by using this correlation between the ED phase and the ES 
phase, resulting in an overall improved automatic assessment of cardiac function. 
The methodology is an extension on the Active Appearance Models (AAMs), 
introduced by Cootes et al. [4,5], which in recent years have proven to be highly 
successful in automatic object segmentation in medical images. AAMs, derived 
from the earlier introduced Active Shape Models (ASMs), are statistical models 
describing the shape and the appearance of an object. For both shape and gray-
values, an average and a series of eigenvectors is computed, from which the “modes 
of variation” of the model are determined. When matching the model to an unseen 
image, it searches the LV contours by minimizing the error between the model and 
the image, within the boundaries of statistically plausible deformations, as defined 
by the model. 
Direct application of AAMs to ED LV angiograms already shows great potential for 
automatic segmentation and thus towards automatic quantitative evaluation of LV 
function. However, segmenting ES images using general Active Appearance Models 
still does not result in satisfactory results, because of the poor ventricle definition 
in ES. To exploit the correlation between the LV shape in ED (usually with a better 
image contrast) and ES, we have developed the Multi-View AAM, which models 
multiple views of an object. By training the model on the available shape and 
texture information of both ED and ES simultaneously, the existing correlation 
between the two phases is preserved and used to steer the segmentation. The idea 
presented here resembles Cootes’ Coupled View AAMs for tracking faces and 
estimating head pose [6], but differs greatly in both the training and matching 
procedure. 
In addition, Active Appearance Models have proven to be less accurate then Active 
Shape Models [7], when it comes to precise border localization. Because global 
appearance is modeled, accurate border characteristics are less pronounced and 
image intensity in the middle of the ventricle may negatively influence boundary 
localization performance. Therefore, we have developed a matching refinement 
step, where an AAM is applied in which the gray-value information of the inner 
part of the LV is not taken into account. This “boundary AAM” is also applied in a 
Multi-View manner: appearance optimization is coupled, while pose is refined for 
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each frame independently. The principal difference between the boundary AAM 
and the classic Active Shape Model is the simultaneous optimization of shape and 
local appearance using a single criterion function, whereas in ASMs, shape and 
local appearance are optimized independently. 
To summarize the novel aspects of this work: 
 

• We have developed the Multi-View Active Appearance Model, allowing to 
exploit existing correlations between different views of the same object. 

 
• We have introduced a refinement matching procedure, consisting of a 

boundary model that only takes gray-value information near the suspected 
LV border into account. 

 
 

2.2 Active Appearance Models 
 
An Active Appearance Model is a statistical description of appearance of an image 
in terms of object shape and texture. Applying AAMs consists of two parts: training 
and matching. Both the construction of the AAM and the matching procedure are 
briefly introduced in this section. An elaborate explanation can be found in [5]. 
 
 
2.2.1 Active Appearance Model Training 
 
An AAM is trained on a series of representative images, all containing the specific 
object to segment, in our case X-ray LV angiograms. For each image in the training  
 
 

   
 
Figure 2.1: The first three modes of variation for a left ventricle AAM, end diastolic phase. From top 
to bottom, the rows represent mode 1, 2 and 3, respectively. From left to right the columns represent a 
standard deviation of minus two sigma, minus one sigma, zero, plus one sigma and plus two sigma. In 
this example the first mode of variation describes the shape variation in elongation while the texture 
emphasis changes from the lower part of the ventricles embedding to the upper part. The second mode 
of variation mainly describes the shape variation in the bottom part of the ventricle and the brightness 
in the valve area. The third mode of variation is a combination of elongation and skewing variations. 
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set, an expert segments the object of interest manually, the drawn contour is 
sampled in n points and defined (for 2D) as a vector of 2n elements, identifying 
image coordinates. This vector is defined as 
 

2 

L
V

 C
on

to
u

r 
D

et
ec

ti
on

 in
 X

-R
ay

 A
n

gi
og

ra
m

s 
u

si
n

g 
M

u
lt

i-
V

ie
w

 A
A

M
s

)( T
nn yxyxyxyx ,,...,,,,,,x 332211=  (2.1) 

 
Before statistical models of shape and texture are computed, all sample point 
vectors are aligned using Procrustes Analysis. By applying Principal Component 
Analysis (PCA) on the sample covariance matrix, a statistical shape model can be 
built. The eigenvectors and eigenvalues are calculated and the eigenvectors are 
ordered following descending eigenvalues. Arranging the eigenvectors in this 
manner enables elimination of less significant eigenvectors, resulting in a statistical 
model based on the most dominant eigenvectors. The statistical shape model can 
be formulated as 
 

ssbP+≈ xx  (2.2) 

 
where any shape vector x in the training set can be approximated by a linear 
combination of the mean shape x , and the eigenvectors in Ps , which are weighted 
by the shape coefficients in parameter vector bs. 
Creating the texture model consists of the following steps. First, a convex hull is 
constructed from every sample point vector, from which an image patch is sampled. 
For every training image this image patch is warped onto the mean shape, creating 
a shape free patch, from which the texture vectors g are extracted. Usually the area 
of this image patch is dilated to a certain extent, in order to incorporate gray-value 
information of the direct object surroundings in the model. The elements of a 
texture vector g represent the pixel intensities in the image patch. All texture 
vectors are normalized to zero average and unit variance and a PCA is performed 
on the sample covariance matrix, resulting in the statistical texture model. 
Analogous to the shape model, each texture sample g is approximated by 
 

ggbP+≈ gg  (2.3) 

 
with mean texture vector g , texture eigenvector matrix Pg and the set of texture 

parameters bg.  
From the shape and texture models, an Active Appearance Model is created by 
concatenating the shape parameter vector and the texture parameter vector, 
derived from equations (2.2) and (2.3): 
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W denotes a weight factor coupling the shape and texture coefficients. After a final 
Principal Component Analysis over the set of appearance vectors b the resulting 
Active Appearance Model can be written as 
 

Qcb =  (2.5) 

 
in which Q is the matrix containing the eigenvectors and c denotes the appearance 
parameters. The modes of variation of the AAM display the characteristic 
variations in shape and gray-value of the model. Figure 2.1 shows the first three 
modes of variation of an AAM trained on end diastolic LV angiograms. 
The last part of training the AAM is to estimate the parameter update steps 
required to drive the model matching iterations. These are computed from the 
residual images ms0 ggg −=δ , where gs denotes the target image, and gm the model 

synthesized image. By applying parameter perturbations on the model, pose and 
texture parameters for model samples with known parameters, gradient matrices 
Rc, Rp and Rt can be estimated for the model, pose and texture respectively. In our 
approach, we followed Cootes’ direct gradient approach, as recommended in [8]. 
 
 
2.2.2 Active Appearance Model Matching 
 
When matching the model to an unseen image, the model searches the LV contours 
by minimizing the relative mean square error between the model and the image, 
within the boundaries of statistically plausible deformations of the model. Based on 
the model image patch, the image to segment, the current estimate of the model 
parameters c0 and the parameter derivatives for the model, texture and pose 
parameters (matrices Rc, Rt & Rp respectively), Cootes describes an iterative 
matching algorithm, consisting of the following steps [5]: 
 

1) Calculate the difference-vector between the image and model patch 

ms0 ggg −=δ  

 
2) Calculate the root mean square (RMS) error of the difference-vector 

2
00 gδ=E  

 
3) Determine the predicted model parameter updates 0gδδ cRc = , pose 

update  and texture update 0gδδ pRp = 0gδδ tRt =  

 
4) Set k = 1 and determine a new estimate for the model parameters 

ckcc δ−= 01 , pose parameters pkpp δ−= 01  and texture parameters 

tktt δ−= 01  

 
5) Calculate a new model based on c1, p1 & t1  
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Figure 2.2: First mode of variation for a left ventricle Multi-View AAM for X-ray LV angiography. 
Upper row denotes ED, lower row denotes ES. The correlation in shape between ED and ES is clearly 
visible. Also the texture variation, describing mainly the local contrast between the LV and it’s 
embedding around the mitral valve, shows clear similarities for ED and ES. 

 
 

6) Determine a new difference-vector and calculate its RMS error E1 
 

7) If E1 < E0, select c1, p1 & t1 as the new parameter vectors, else try k = 1.5, k = 
0.5, k = 0.25 etc. and go to step 4 

 
The stop criterion of this algorithm is determined by a fixed number of passes 
through step 7.  
 
 
2.2.3 Medical Applications of Active Appearance Models 
 
Several examples exist regarding the application of Active Appearance Models in 
medical image segmentation. Cootes has demonstrated the application of 2D AAMs 
on finding structures in brain MR images [9], and knee cartilage in MR images [5]. 
In 2D cardiac MR images, Mitchell et al. applied AAMs to segment the left and 
right ventricle [10]. Thodberg [11] applied a 2D AAM to reconstruct bones in hand 
radiographs. Bosch et al. successfully used 2D + time AAMs in order to segment 
endocardial borders in echocardiography [12]. Beichel et al. describe a semi 3D 
AAM extension applied to segmentation of the diaphragm dome in 3D CT data [13]. 
Mitchell et al. describe a full 3D AAM extension, and apply it to 3D cardiac MR 
data and 2D + time echocardiograms [14]. Research on utilizing AAMs in other 
modalities is ongoing, but for X-ray LV angiography, no trials have been reported 
yet. 
Active Appearance Models have shown to outperform other segmentation 
approaches in MRI and echocardiography and are also believed to outperform 
other methods in LV angiography because of the following advantages: 
 

• Because in many cases the image quality of left ventricular angiograms is 
poor, it is required to use a priori knowledge about intensity characteristics. 
Active Appearance models make good use of all available gray-value 
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information. By supplying it with a sufficiently varied set of LV images, the 
AAM is adapted to the image appearances that can be expected. This also 
means that, when supplied with sufficient examples in the training set, 
AAMs are capable of recognizing pathological shape variations and texture 
variations caused by acquisition artifacts. 

 
• The left ventricular border does not necessarily coincide with the strongest 

edges in the image. Because an Active Appearance Model is a statistical 
description of shape and appearance, it is able to copy the drawing 
characteristics of the cardiologist(s) that drew the contours in the training 
images. This implies that the model does not necessarily follow the 
strongest edges, but is adaptive to observer preferences. 

 
 

2.3 New AAM Extensions 
 
2.3.1 Multi-View Active Appearance Models 
 
The most challenging aspect of automatic border detection in LV angiography is 
segmenting the left ventricle in the end systolic phase. Due to contraction of the 
papillary muscles, contrast fluid is squeezed out of the LV in the ES phase, seriously 
hampering the ES LV visualization. Since manual segmentation of ES images is 
already highly subjective, automatic segmentation of individual ES images appears 
to be very difficult. In manual segmentation, the cardiologist reviews the images in 
cine-mode, instinctively coupling the shape characteristics and texture information 
of the ventricle and its embedding in ED phase and in ES phase. This observation is 
our main motivation to pursue simultaneous segmentation of both phases. The 
Multi-View Active Appearance Model presented here is designed to exploit this 
existing correlation between ED and ES LV appearance and therefore potentially 
produces better segmentation results in ES images.  
In the Multi-View Active Appearance model, the LV shape is modeled by aligning 
the training shapes for ED and ES separately, and concatenating the aligned shape 
vectors for each view. In this application, a shape vector is defined as: 
 

( )TnESnESESESESESnEDnEDEDEDEDED yxyxyxyxyxyx ,,...,,,,,,,...,,,,x 22112211=  (2.6) 

 
For the intensity vectors, the same applies: all intensity vectors are separately 
normalized to zero mean and unit variance, and subsequently concatenated: 
 

( )TnESESESESnEDEDEDED iiiiiiii ,...,,,,,...,,,g 321321=  (2.7) 

 
Analogous to the single frame AAM, a PCA is applied to the concatenated sample 
covariance matrices for shape and appearance, and subsequently a combined 
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model is computed. In the combined model, the shape and appearance of both 
views are strongly interrelated, as is illustrated in Figure 2.2.  
Estimation of the gradient matrices for computing parameter updates during image 
matching is performed by applying perturbations on the model, pose and texture 
parameters. Because of the correlations between views in the model, a parameter 
disturbance in the model parameters yields difference images in both views 
simultaneously. The pose parameters however, are perturbed for each view 
separately, hence the model is trained to accommodate for trivial differences in 
object pose in each view, whereas the shape and intensity gradients are trained for 
all views.  
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In the matching procedure, the pose transformation for each view is also performed 
separately, whereas the model coefficients intrinsically influence multiple frames at 
a time. Hence, the allowed shape and intensity deformations are coupled for all 
frames, whereas pose parameter vectors for each view are optimized independently. 
This is a significant difference as compared to the coupled view AAM by Cootes et 
al., where separately trained 2D models are matched to each separate view, and 
subsequently the appearance model constraints are imposed from a combined 
appearance model [6]. 
 
 
2.3.2 Boundary Active Appearance Models 
 
Because global appearance is modeled in AAMs, accurate border characteristics are 
less pronounced, causing possible deterioration of boundary localization 
performance. Therefore we have developed a boundary Active Appearance Model, 
which, besides shape information, takes only gray-value information in the vicinity 
of the detected border into account. By eliminating the gray-value information of 
the inner part of the ventricle, we aim to improve the border detection accuracy. 
Figure 2.3 shows the first 3 modes of variation for a boundary AAM. 
 
 

 
 
Figure 2.3: First three modes of variation for a left ventricle boundary AAM, end diastolic phase. 
From top to bottom, the rows represent mode 1, 2 and 3, respectively. From left to right the columns 
represent a standard deviation of minus two, minus one, zero, plus one and plus two sigma. 
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The boundary AAM approach presented here resembles the original ASM 
formulation, however it differs in the fact that more intensity information in the 
vicinity of the boundary is utilized: this way, the relation between the manually 
drawn contour and the underlying image intensity patch is preserved. Also, the 
boundary AAM matching intrinsically relies on the simultaneous optimization of 
shape and appearance using a single criterion function, as in ASMs this is 
performed separately. Applying Active Shape Models for border positioning 
refinement is not likely to improve results, because of the poor LV border definition, 
especially in the ES image. 
 
 

2.4 Experiments and Results 
 
2.4.1 Experimental Setup 
 
To test the clinical efficacy of the Multi-View and boundary AAM, 70 ED-ES pairs 
of representative LV angiograms from infarct patients were collected. Apart from 
high quality images with good LV definition in both ED and ES, images were 
selected, in which frequently appearing acquisition artifacts were present (poor LV 
contrast, inhomogeneous distribution of the contrast agent, presence of an overlap 
of the diaphragm with the LV). Figure 2.4 displays a few examples of images that 
were used in our models. An expert manually defined contours in both frames, and 
point correspondence was defined based on three prominent landmarks: both aorta 
valve points and the apex. Every contour was equidistantly resampled to 60 points. 
14 leave-five-out models were trained on 65 out of 70 ED-ES image pairs, leaving 
out 5 sets for testing purposes. To speed up the training and matching process and 
to reduce model dimensionality, all images were subsampled with a factor 4. 
 
 

          
 

          
 
Figure 2.4: LV example images for ED (upper row) and ES (lower row). From left to right: well 
defined LV, poor contrast, inhomogeneous distribution of the contrast agent (most apparent in ED) and 
presence of an overlap of the diaphragm with the LV. 
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In this validation, we aimed to minimize user interaction, therefore all model 
matching experiments were initialized from a fixed position in the image (the 
image center), assuming that there is sufficient overlap between the model and the 
true location of the LV. To minimize the risk of convergence to local minima, 
sequential application of several AAMs was performed, where the amount of 
preserved AAM variation was increased from 80% to 99%. For the first model 
matching, a coupling between the pose and scale parameters in ED and ES was 
enforced. In subsequent matches, this constraint was released, and pose and scale 
were allowed to vary for each frame separately.  
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In addition, the added value of the boundary AAM was investigated by executing an 
additional model run with the boundary AAM after the regular Multi-View model 
and comparing their performances. 
 
 
2.4.2 Evaluation Method 
 
A matching experiment was considered a success when the distance of more than 
two thirds of the total number of contour points was within 5 pixels of the manual 
contour. Because there was no calibration factor available for every image, we used 
a calibration factor of 0.25 mm per pixel, which is representative for most LV angio 
acquisition systems. In the four-times-subsampled 512 x 512 images that we used, 
an error of 5 pixels corresponds with 5 mm. Failed matches were repeated with 
manually set initial position, and cases still yielding matching failure were reported 
and excluded from further quantitative analysis. These matching failures were 
divided into three classes: failure in only ED, failure in only ES and failure in both 
frames. On the successful matches, a statistical analysis was performed, in which 
the following metrics were used to compare the automatically generated contours 
with the manual reference contours: 
 

• the border positioning errors (point-to-curve) for the ED and ES contours 
separately. 

 
• the error in the surface area enclosed by the contours for the ED and ES 

frames separately. 
 

• the error in estimated ED and ES volumes, as obtained with the Sandler 
and Dodge volume estimation method [1]. 

 
• the error in calculated ejection fraction. 

 
Equation (2.8) describes the volume estimation according to Sandler and Dodge, 
based on the projected surface Area A and the distance LA from the upper aortic 
valve point to the apex: 
 

AL
A

π3
8V

2
=  (2.8) 
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2.4.3 Results 
 
When matching the LV with a fixed initial position, 57 out of 70 cases (81%) 
showed convergence. In 4 cases a failure in the calculated ED contour occurred, in 
4 other cases the computed ES contour was unsatisfactory and in 5 other cases 
there was failure in determining both the ED and the ES contour. These 13 failures 
in LV delineation were matched again, but this time the initialization of the model 
was done manually. This way 9 failures remained (resulting in a success rate of 
87%), 2 in ED, 4 in ES and 3 in ED and ES. Border positioning errors for the 61 
successful segmentations are summarized in Table 2.1. For the ED matching results, 
72% of the calculated LV contour points was positioned within 2 mm from the 
expert contour, another 22% was positioned between 2 and 5 mm from the expert 
contour and the remaining 6% were more than 5 mm away from the expert contour. 
For the ES matching results, the distribution was 67% (error < 2 mm), 27% (2 mm 
< error < 5 mm) and 6% (error > 5 mm). 
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Figure 2.5: Comparison of manual and model results for ED Area (r = 0.93; y = 0.87x + 3.57 [cm2]), 
ES Area (r = 0.93; y = 0.94x + 0.31 [cm2]), ED Volume (r = 0.93; y = 0.83x + 17.74 [cm3]) and ES 
Volume (r = 0.94; y = 0.88x + 2.62 [cm3]). 
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Average 
positioning 
error [mm] 

Average 
upper valve 
error [mm] 

Average 
lower valve 
error [mm] 

Average 
apex 
error [mm] 

ED 1.86 ± 2.45 4.47 ± 3.23 4.60 ± 4.06 4.54 ± 4.63 

ES 1.93 ± 2.11 4.46 ± 2.90 3.68 ± 2.67 6.50 ± 5.11 
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Table 2.1: LV border positioning error and errors in the location of upper valve, lower valve and 
apex. Errors are expressed as unsigned average ± standard deviation. 

 
 

 
Average 
positioning 
error [mm] 

Average 
upper valve 
error [mm] 

Average 
lower valve 
error [mm] 

Average 
apex 
error [mm] 

ED 1.87 ± 2.50 4.47 ± 3.25 4.70 ± 4.22 4.39 ± 4.34 

ES 1.97 ± 2.17 4.56 ± 3.24 3.64 ± 2.62 6.44 ± 5.26 

 
Table 2.2: LV border positioning error and errors in the location of upper valve, lower valve and 
apex, after application of the boundary AAM. Results denote unsigned average ± standard deviation. 

 
 
Good correlation has been achieved in comparing the areas and volumes calculated 
from expert contours and the areas and volumes calculated from the model-
determined contours (Figure 2.5). Comparing the calculated ejection fraction for 
expert contours and model contours, the average signed error was –0.26% with a 
standard deviation of 14.89%. Still large errors occur, varying from -82% to +33%. 
Figure 2.6 shows examples of a good matching result and a rejected matching 
result. 
 
The results for the boundary AAM, also based on the 61 cases of successful 
segmentation, are summarized in Table 2.2. The average signed error between 
calculated ejection fractions for expert contours and model contours is 0.24% with 
a standard deviation of 13.22%. Minimum and maximum errors still can be very 
large ranging from –71% to +32%. The performance of the boundary AAM is 
comparable to the results mentioned above: the average boundary positioning 
errors did not differ statistically significantly as compared to the Multi-View AAM 
alone. Figure 2.7 displays the potential refinement achievement of the boundary 
AAM. 
 
 

2.5 Discussion 
 
The reported method shows promising results in automatic segmentation of left 
ventricles in X-ray angiograms. The method uses coupled statistical information on 
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shape and image intensities in the ED and ES images. The matching procedure is 
based on expert-drawn LV contours and copies human drawing behavior. Although 
the method has not yet evolved to clinical applicability and especially has 
difficulties with the segmentation of the LV in poor-quality images, it is the first 
method that performs well in a large variety of LV shapes in X-ray angiograms for 
both ED and ES, even when using a fixed initialization in the image center. 
 
We divided the 70 image pairs that were used in this study into four categories: 
good contrast (28 cases), poor contrast (30 cases), overlap between LV and 
diaphragm (4 cases) and both poor contrast and overlap (8 cases). When using a 
fixed initialization, in 57 out of 70 experiments (81%), successful segmentation was 
achieved, without requiring user interaction. 13 matching failures occurred from 
which 1 image pair was found to have good contrast, 8 belonged to the poor 
contrast subset, 1 image pair had an overlap between LV and diaphragm and 3 
image pairs both had an overlap and poor contrast. After repeating the 13 failures 
with manual initialization, 9 cases of failure remained (success rate = 87%), in 
which 6 image pairs with poor contrast and 3 image pairs with both poor contrast 
and an overlap between LV and diaphragm. 
 
Figures 2.6a, 2.6b, 2.6e and 2.6f show a representative example of a successful 
segmentation. From a fixed starting position in the image center, with a scaling 
that corresponds to the average LV size in the training set, the model finds the 
correct LV location and deforms within statistically plausible limits to match the 
underlying LV contours as close as possible. For this specific example, the average 
border positioning errors are 1.20 ± 1.07 mm and 1.00 ± 0.97 mm for ED and ES  
 
 

  
 (a)           (b)       (c)              (d) 

  
 (e)           (f)       (g)              (h) 

 
Figure 2.6: Examples of a good matching result (b and f) and a rejected matching result (d and h) 
for both ED (upper row) and ES (lower row). a and e show fixed initializations in the center of the image, 
c and g show manual initialization. 
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respectively. A critical remark that can be made about these successful 
segmentation results concerns the errors in valve positions in the ED frame and the 
error in the apex position in the ES frame, which can have a large effect on the 
volume estimation that is based on the distance between upper valve and apex [1]. 
Figures 2.6c, 2.6d, 2.6g and 2.6h show a representative example of a failed 
segmentation. In this case the ED contour was unsatisfactorily detected; the entire 
region between upper valve and apex should have been drawn wider. This is clearly 
the result of poor image contrast in this region. Hence, most failures can be 
assigned to poor contrast conditions and overlap between LV and diaphragm. In 
the latter case the LV contour will, either locally or entirely, drift away from the 
true location of the LV. 
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The success rate of our method suggests that it is capable to cope with a variety of 
LV shapes. Image pairs with large infarcted areas around the apex however were a 
minor category in the training set and therefore resulted in a failure in 
segmentation. When considering the 61 cases of successful segmentation, the 
average point-to-curve border positioning error was 1.86 ± 2.45 mm for ED images 
and 1.93 ± 2.11 mm for ES images, which for automatic LV angiographic 
segmentation is a good performance. Especially the results for ES images are 
excellent compared to previously explored X ray LV angio segmentation methods 
[2,3] 
The regression lines in Figure 2.5 are based on the 61 occurrences of successful 
convergence and show a good correlation between surface area and volume 
computation based on manually drawn contours and based on model-generated 
contours. Correlation coefficients are 0.93 for ED area, ES Area and ED Volume 
and 0.94 for ES Volumes, which demonstrates that automatic ES segmentation can 
accomplish the same level of performance as automatic ED segmentation 
performance. The error in calculated ejection fraction is –0.26% with a standard 
deviation of 14.89 %. For both calculated volumes and for the ejection fraction, the 
systematic errors are close to zero. The accompanying high standard deviations on 
the other hand show that large errors may still occur, and an improvement is still 
required to meet clinically demanded error margins.  
 
The three landmark points that are used for calculation of LV volume (upper valve 
point, lower valve point and apex) have a considerably higher average positioning 
error than the average border positioning error over the entire contour. Because 
these three points are of high influence on the calculation of LV volume, future 
research must aim on decreasing border positioning errors of these three points. 
 
The main difficulty in interpreting the obtained results is that there is no ‘gold 
standard’, describing the characteristics of a well-drawn LV contour. In clinical 
practice different medical doctors will have different signatures in drawing 
contours and therefore an automatic technique is only clinically reliable when the 
difference in performance between the automatic technique and a medical expert is 
comparable to the difference in performance between several medical experts. In 
order to achieve this for Active Appearance Models one may use multiple contours 
from several different medical experts in model training. 
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 (a)           (b)       (c)              (d) 

 
Figure 2.7: Boundary AAM performance examples for ED (a = AAM result, b = boundary AAM 
result) and ES (c = AAM result, d = boundary AAM result). 

 
 
The performance criterion of 67% of the calculated contour points to be within 5 
millimeters of the actual LV border has not yet been compared with figures for 
inter-observer variability. This standard is likely to be insufficient in clinical 
practice, although inter-observer variability can also amount to high values, 
especially in the difficult images, where observers tend to disagree. Therefore, in 
the current stage of development of an automatic method for LV segmentation in 
X-ray angiograms it is legitimate to use this classification to define convergence to 
an acceptable contour. 
 
The boundary AAM that was introduced for refinement of the segmentation results 
shows results comparable with the regular Multi-View AAM. However, overlooking 
all 61 cases, only 41 ED segmentations (67%) and 34 ES (56%) segmentations 
showed improvement after the boundary AAM. Figure 2.7 shows the potential 
capacity of the boundary AAM. In Figure 2.7a and 2.7b the segmentation of the 
lower part of the LV in ED phase has clearly improved and the location of the upper 
valve is more accurate. Figure 2.7c and 2.7d show improvements in the ES 
segmentation after application of the boundary AAM, especially expressed in a 
better segmentation of the apex region. 
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Multi-View Active Appearance Models: 
Application to X-Ray LV Angiography 

and Cardiac MRI 
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Abstract 
 
This chapter describes a Multi-View Active Appearance Model (AAM) for coherent 
segmentation of multiple cardiac views. Cootes’ AAM framework was adapted by 
considering shapes and intensities from multiple views as single shape and 
intensity samples, while eliminating trivial difference in object pose in different 
views. This way, the coherence in organ shape and intensities between different 
views is modeled, and utilized during image search. The method is validated in two 
substantially different and novel applications: segmentation of combined end-
diastolic and end-systolic X-ray left ventricular angiograms, and simultaneous 
segmentation of a combination of four chamber, two chamber and short-axis 
cardiac MR views.  
 
 

3.1 Introduction 
 
In cardiac imaging, typically multiple acquisitions are acquired within one patient 
examination following fixed imaging protocols, where images may depict different 
geometrical or functional features of the heart. For instance, in cardiac MR 
imaging, the short-axis, long-axis, perfusion, rest-stress and delayed enhancement 
images provide complementary information about different aspects of geometry 
and function of the same heart. Also, in bi-plane X-ray left ventricular (LV) 
angiography, different views are acquired of the LV, which are the left anterior 
oblique 60° and right anterior oblique 30°, showing the left ventricle from different 
projection angles. Different time frames from an angiographic or echographic 
image sequence are other examples of such interrelated views. 
 
To quantify cardiac function and morphology from such image sets, a (preferably 
automatic) segmentation of the heart is required. However, typically, automatic 
segmentation methods focus on one subpart of a patient examination. 
Segmentation is achieved for one view at a time, and the different parts of a patient 
examination are treated separately. As a result, not all available information is used 
to achieve a segmentation result, since additional shape information of the same 
organ may be available from a different view. The goal of this work was to develop a 
segmentation method that exploits existing shape and intensity redundancies and 
correlations between different parts of a patient examination. Potentially, this 
increases robustness, and enforces segmentation consistency between views, 
therefore yielding a better segmentation. 
 
To realize this, we have developed the Multi-View Active Appearance Model 
(AAM): an extension of Cootes’ AAM framework [1-5] that captures the coherence 
and correlation between multiple parts of a patient examination. Model training 
and matching are performed on multiple 2D views simultaneously, combining 
information from all views to yield a segmentation result. To investigate the clinical 
potential, we validate the Multi-View AAM in two substantially different, largely 
unsolved segmentation problems: automatic definition of the LV contours in pairs 
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of X-ray LV angiograms in ED and ES phase, and second, simultaneous LV contour 
detection in a combination of short-axis, four and two chamber cardiac MR views. 
 
 

3.2 Background 
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An Active Appearance Model is a statistical model of object shape and texture. The 
construction of the AAM and the matching procedure are briefly introduced in this 
section. A detailed description can be found in [3].  
 
 
3.2.1 AAM Training 
 
An AAM is trained on a series of representative images, in which an expert 
manually segmented the object of interest. Contours are resampled in n 
corresponding points, and, for the 2D case, expressed as a vector of 2n elements: 
 

( T
nn yxyxyxyx ,,...,,,,,,x 332211=  (3.1) 

 
After Procrustes alignment of the shape vectors to eliminate trivial pose 
differences, a shape model is built by applying Principal Component Analysis (PCA) 
on the sample covariance matrix. Arranging the eigenvectors according to 
descending eigenvalues enables elimination of less significant eigenvectors. 
 
Similarly, a texture model is created by warping the training images onto the mean 
shape and creating a shape free patch, from which pixel intensity vectors g are 
extracted. Texture vectors are normalized to zero average and unit variance and 
PCA is performed on the sample covariance matrix, resulting in the statistical 
texture model. Using the shape and texture models, the sample shapes x and 
textures g can be approximated from the respective models:  
 

ssbP+≈ xx   and    ggbP+≈ gg  (3.2) 

 
where g  and x represent the average texture and shape vectors, Pg  and Ps the 

texture and shape eigenvector matrices, and bg and bs the texture and shape 
parameters characterizing each training sample.  
 
From the shape and texture models, an AAM is created by concatenating the shape 
and texture parameter vectors: 
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W denotes a weight factor coupling the shape and texture coefficients. 
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After a final PCA over the set of appearance vectors b the resulting AAM can be 
written as: 
 

Qcb =  (3.4) 

 
in which Q is the matrix containing the eigenvectors and c denotes the appearance 
parameters for the combined model. 
 
Matching the model to an unseen image involves minimizing the root mean square 
error between the model generated image and the target image, within the 
boundaries of statistically plausible model limits. To drive the model matching 
iterations the parameter update steps are computed from the residual images 

ms0 ggg −=δ , where gs denotes the target image, and gm the model synthesized 

image. By applying known parameter perturbations on model, pose and texture, 
gradient matrices Rc, Rp and Rt can be estimated for model, pose and texture 
respectively. In our approach, we adopted the direct gradient method by Cootes et 
al. [5]. 
 
 
3.2.2 AAM Matching 
 
From the current estimate of the model parameters c0 and the parameter 
derivatives for the model, texture and pose parameters (matrices Rc, Rt & Rp 
respectively), Cootes describes an iterative matching algorithm, consisting of the 
following steps [2]: 
 

1) Calculate the residual between target image and model patch ms0 ggg −=δ  

 

2) Calculate the RMS error from the difference-vector 
2

00 gδ=E  

 
3) Using the pre-computed gradient matrices, determine the model 

parameter update 0gδδ cRc = , pose update  and texture update 0gδδ pRp =

0gδδ tRt =  

 
4) Set k = 1 and determine a new estimate for the model parameters 

ckcc δ−= 01 , pose parameters pkpp δ−= 01  and texture parameters 

tktt δ−= 01  

 
5) Calculate a new model based on c1, p1 & t1 
 
6) Determine a new difference-vector and calculate its RMS error E1, 
 
7) If E1 < E0, select c1, p1 & t1 as the new parameter vectors, else try k = 1.5, k = 

0.5, k = 0.25 etc. and go to step 4 
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Repeat until convergence (either using a fixed number of iterations, or until no 
improvement is achieved). 
 
 
3.2.3 Medical Applications of AAMs 
 
Since introduction, several successful medical applications of AAMs in medical 
image segmentation have been presented. Initially, Cootes has demonstrated the 
application of 2D AAMs on finding structures in brain MR images [2], and knee 
cartilage in MR images [3]. In 2D cardiac MR images, Mitchell et al. successfully 
applied AAMs to segment the left and right ventricle [6]. Thodberg [7] applied a 2D 
AAM to reconstruct bones in hand radiographs. Bosch et al. applied a 2D + time 
AAM to segment endocardial borders in echocardiography [8], introducing a 
correction method to compensate for non-Gaussian intensity distributions in 
echocardiographic images. Beichel et al. described a semi-3D AAM extension 
applied to the segmentation of the diaphragm dome in 3D CT data [9]. Mitchell et 
al. described a full 3D AAM extension, and applied it to 3D cardiac MR data and 2D 
+ time echocardiograms [10]. 
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In many of the applications mentioned here, Active Appearance Models have been 
shown to outperform other segmentation approaches for two reasons: 
 

• They combine correlated intensity and shape knowledge, thus maximally 
integrating a priori knowledge, resulting in highly robust performance. 

 
• They model the relationship between expert contours and underlying 

image data, and are therefore capable of reproducing expert contour 
drawing behavior. 

 
 

3.3 Multi-View Active Appearance Models 
 
The Multi-View AAM presented here is designed to exploit the existing correlation 
between different views of the same object. It is derived from Cootes’ work on 
coupled view AAMs [4], where a frontal and a side view of a face are segmented 
simultaneously by building separate models for each view, and a combined model 
for both views. During matching, segmentation is performed using single view 
models, however shape constraints are applied from a combined model. The 
approach presented here differs in that the organ shape is modeled simultaneously 
for all views from the start, contrary to only imposing model constraints from a 
combined model. 
 
The Multi-View model is constructed by aligning the training shapes for different 
views separately, and concatenating the aligned shape vectors xi for each of the N 
views. A shape vector for N frames is defined as: 
 

( )TT
N

TT xxx K,,x 21=  (3.5) 
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By applying a PCA on the sample covariance matrix of the combined shapes, a 
shape model is computed for all frames simultaneously. The principal model 
components represent shape variations, which are intrinsically coupled for all 
views. 
 
For the intensity model, the same applies: an image patch is warped on the average 
shape for view i and sampled into an intensity vector gi, the intensity vectors for 
each single frame are normalized to zero mean and unit variance, and 
concatenated: 
 

( )TT
N

TT ggg ,,,g 21 K=  (3.6) 

 
Analogous to the single frame AAM, a PCA is applied to the sample covariance 
matrices of the concatenated intensity sample vectors, and subsequently each 
training sample is expressed as a set of shape- and appearance coefficients. A 
combined model is computed from the combined shape-intensity sample vectors. 
In the combined model, the shape and appearance of both views are strongly 
interrelated, as is illustrated in Figure 3.1. 
 
 

 
 
Figure 3.1: First mode of variation for a left ventricle Multi-View AAM, constructed from 70 ED-ES 
X-ray LV angiograms. Upper row = ED, lower row = ES. The correlation in shape between ED and ES is 
clearly visible. Also the texture variation, describing mainly the local contrast between the LV and it’s 
embedding around the mitral valve, shows clear similarities for ED and ES. 

 
 
Estimation of the gradient matrices for computing parameter updates during image 
matching is performed by applying perturbations on the model, pose, and texture 
parameters, and measuring their effect on the residual images. Because of the 
correlations between views in the model, a disturbance in an individual model 
parameter yields residual images in all views simultaneously. The pose parameters 
however, are perturbed for each view separately: the model is trained to 
accommodate for trivial differences in object pose in each view, whereas the shape 
and intensity gradients are correlated for all views. 
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Figure 3.2: X-ray LV angiography example images for ED (upper row) and ES (lower row). From 
left to right: well defined LV, poor contrast, inhomogeneous distribution of the contrast agent (most 
apparent in ED) and presence of a diaphragm overlapping the LV. 

 
 
 
In the matching procedure, the pose transformation for each view is also applied 
separately, whereas the model coefficients intrinsically influence multiple frames at 
a time. Hence, the allowed shape and intensity deformations are coupled for all 
frames, whereas pose parameter vectors for each view are optimized 
independently. This is a significant difference as compared to the coupled view 
AAMs by Cootes et al., where separately trained 2D models are matched to each 
separate view, and subsequently only the appearance constraints are imposed from 
a combined appearance model [4]. 
 
 

3.4 Experimental Validation 
 
To determine the clinical utility of the Multi-View AAMs, we investigated two 
issues: 
 

• To what extent can information from different frames improve overall 
segmentation performance. To address this, we have tested the Multi-View 
AAM on X-ray left ventricular angiography images in the ED and ES phase. 
Though other segmentation methods for LV angiograms have been 
reported [11,12], these images are notoriously difficult to segment, 
especially the ES phase. This is mainly due to the fact that in ES a large 
amount of the contrast agent has already been ejected, therefore border 
definition of the ventricle is rather poor. For this modality, we expect that 
the better LV shape definition in ED frames improves the segmentation of 
ES frames. 
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• The potential of the Multi-View AAM to segment substantially different 
geometrical shapes in multiple views. To evaluate this, we selected a 
combination of cardiac MR short-axis and long-axis views. To our 
knowledge, this is the first report of an automatic contour detection for 
endo- and epicardial contours in long-axis cardiac MR views. 

 
 
3.4.1 X-Ray LV Angiography 
 
The effectiveness of the Multi-View AAM was tested on ED-ES pairs of clinically 
representative LV angiograms from 70 infarct patients, 140 images in total. Apart 
from high quality images with good LV definition in both ED and ES, images were 
selected, in which frequently appearing acquisition artifacts were present (poor LV 
contrast, inhomogeneous distribution of the contrast agent, presence of a 
diaphragm overlapping the LV). Figure 3.2 shows representative examples. 
An expert manually defined contours in both frames, and point correspondence 
was defined based on three prominent landmarks: both aortic valve points and the 
apex. Every contour was equidistantly resampled to 60 points. 14 leave-five-out 
models were trained on 65 out of 70 ED-ES image pairs, leaving out 5 sets for 
testing purposes. To speed up the training and matching process and to reduce 
model dimensionality, all images were subsampled by a factor of 4. 
 
 
3.4.2 Cardiac MRI 
 
To assess the performance of the Multi-View AAM method for simultaneous 
segmentation of several different cardiac views with a different geometric 
definition, the method was evaluated on a commonly acquired combination of 
cardiac MR views. Usually, during acquisition of a routine cardiac MR patient 
exam, a two chamber view, a four chamber view and a short-axis stack are acquired 
following strictly defined acquisition protocols, allowing an optimal depiction of LV 
anatomy. Following this protocol, image data was acquired from 29 patients with 
various cardiac pathologies.  
The Multi-View AAM was constructed based on the ED two chamber view, the ED 
four chamber view and the ED mid-ventricular short-axis slice. Endo- and 
epicardial contours were drawn manually by an expert observer in all views. To 
maximize the amount of evaluation data, validation and training was performed 
using a leave-one-out approach. The initial position for the model matching was 
manually set by indicating the apex and base in the long-axis views, and the LV 
midpoint in the short-axis views. 
 
 
3.4.3 Evaluation Method 
 
Matching results for each patient study were first qualitatively scored to three 
categories: matching success for all views, failure in one view and failure in more 
than one view. Failures were reported and excluded from quantitative evaluation. 
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Figure 3.3: Two successful matches for ED (left) and ES (right). Black dotted lines denote the 
manual contours, white dotted lines represent the model contours. Note that even with inhomogeneous 
contrast agent distribution (ES image top, ED image below), contours are accurately determined. 

 
 
On the successful matches, quantitative comparison with expert contours was 
performed on: 
 

• point-to-curve border positioning errors for the contours as compared to 
the manually defined expert contours, calculated  separately for each view. 

 
• endocardial contour area for each frame separately. 

 
• for the LV angio application, area ejection fraction. 

 
Linear regression was used to determine relationships between manually traced 
and computer determined values. A two-tailed paired samples t-test was applied to 
area measurements from automatic and manual contours to investigate systematic 
errors. A p-value smaller than 0.05 was considered significant. 
 
 
3.4.4 Results 
 
For the LV angiographic study, the Multi-View AAM yielded borders that agreed 
closely with the expert defined outlines in both ED and ES in 56 out of 70 patients. 
In 10 cases, partial failure was observed, where the contour in one frame clearly 
failed. In 4 cases,  neither ED nor ES contours were correctly detected.  In total, 122  
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Figure 3.4: Area regression plots for ED (left) and ES (middle) and area ejection fraction (right). 
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Figure 3.5: Area regression plots for four chamber (left), short-axis (middle) and two chamber 
(right) cardiac MR views. 

 

 
 
 

 Border positioning errors [pixels] 

MRI 2 Chamber 1.7 ± 0.8 

MRI 4 Chamber 1.5 ± 0.7 

MRI Short axis 1.4 ± 0.7 

LV angio ED 6.5 ± 2.8 

LV angio ES 8.0 ± 3.7 

 
Table 3.1: Point-to-curve border positioning errors in pixels for the cardiac MR and LV 
angiography validation studies. 
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out of 140 images (87%) were successfully segmented, whereas in the other 18 
images, manual interaction was required. 
 
In general, for the successful matches, contours showed an excellent agreement 
with the manually defined contours, even in compelling images with artifacts such 
as LV-diaphragm overlap, and partial filling. In Figure 3.3, two representative 
examples of automatically detected contours are given. Border position errors were 
generally small, and are given in Table 3.1. Area and ejection fraction regressions 
are given in Figure 3.4. In both ED and ES phases, area errors were slightly, but 
statistically significantly underestimated (p<0.001, relative error for ED 3.5%, for 
ES 9.4%). The area ejection fraction was slightly overestimated (relative error 7%, 
p=0.003). 
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The cardiac MR validation yielded 27 successful matches out of 29, and in 2 cases 
partial failure was observed, where the model drifted away from the LV boundaries 
in one of the three views. No total failures occurred. Examples of automatically 
detected contours in the cardiac MR views are given in Figure 3.6. For the contours 
from successful matches (87 out of 89 images in total, 98%), area correlations 
between manually and automatically detected contours are given in Figure 3.5, and 
border positioning errors in Table 3.1. In a paired samples t-test, differences 
between manually and automatically determined endocardial contour areas were 
found statistically insignificant for all three views (p>0.7 for all views). 

 
 

 
 
Figure 3.6: Automatically detected contours (white dotted lines) for two patients (top and bottom 
row) in a four chamber (left), short-axis (middle) and two chamber view. 
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3.5 Discussion and Conclusions 
 
In general, the presented Multi-View AAM yielded good results in two challenging 
clinical segmentation problems. Contours were detected with a minimal user 
interaction to initially position the model, and showed high agreement with 
manually defined contours. Especially in ES LV angiograms, segmentation results 
were very good compared to other segmentation methods reported for this 
modality [11,12].  This good performance in ES images can mainly be attributed to 
the coupling of information from both ED and ES. 
 
In LV angiography, a success rate of 87% was achieved. Matching failure mainly 
occurred in cases where contrast was extremely low, when there was a significant 
overlap between the LV and the diaphragm or in cases of large dilated areas near 
the apex, as is illustrated in Figure 3.7.  
 
 

   
 

   
 
Figure 3.7: Examples of segmentation failures for ED (upper row) and ES (lower row), due to poor 
contrast (left), overlap between LV and diaphragm (middle) and large dilated areas near the apex 
(right). The black dotted lines denote the manual contours, the white dotted lines represent the model 
contours. 

 
 
Comparison between manually and automatically derived area measurements 
showed a good correlation, though a slight underestimation of LV area in both ED 
and ES was present. This underestimation is mainly caused by the lack of dynamic 
information: a manual observer draws the contours in ED and ES after reviewing 
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the whole dynamic sequence, whereas automatically generated borders are only 
based on ED and ES views. When manually examining an entire image run, this 
motion is used to decide on the border location of the ventricle, especially in 
“problem areas”; therefore the manual borders are generally drawn slightly wider 
around the ventricle than visually apparent in only ED and ES. Also, since 
interpretation and contour drawing in LV angiograms is highly subjective, an 
assessment of intra- and inter-observer variation inherent to manual contour 
drawing is ongoing, to compare the accuracy and reproducibility of the automated 
method for different experts.  
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The cardiac MR study showed a significantly higher success rate than the LV 
angiography study: in 98% of the images, a successful match was achieved. This 
can mainly be attributed to the better definition of the ventricle in cardiac MR 
views. Though acquisition related artifacts were present in some patient studies 
(surface coil intensity gradients), overall LV endo- and epicardial contour definition 
is significantly stronger in the cardiac MR study. Area calculations, which serve as a 
basis for LV volume estimates, did not differ statistically significantly between 
manual and automatic analysis. Also for this application, border positioning errors 
were small (comparable to errors reported in [6]), and well within clinically 
acceptable margins. 
 
In this study we have tested the Multi-View AAM robustness and performance from 
a manually set initial position, yielding good results. However, we foresee a further 
increase in robustness by also coupling the scale of the object in all views, since this 
is correlated as well between views. This is a topic of current research. Moreover, 
future research will focus on analysis of Multi-View AAM shape parameters to 
distinguish between pathologies. We expect the coupling of shape information from 
different parts of a patient examination to enhance pathology identification. For 
cardiac MR, methods to automatically position the initial models based on a 
geometrical thorax template model [13] will be investigated. 
 
In summary, we conclude that the Multi-View AAM presented here combines a 
high robustness with clinically acceptable accuracy. It demonstrated good 
automatic segmentation results for two substantially different and novel clinical 
applications. A cardiac MR case study showed the utility to simultaneously segment 
different geometrical shapes, and a case study on X-ray LV angiography proving 
that poor ventricle definition in one view (ES) can be resolved by information from 
a corresponding (ED) view.  
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Abstract 
 
This chapter aims to define the characteristics of an optimal training set for the 
automated segmentation of short-axis left ventricular magnetic resonance (MR) 
images in clinical practice, using an Active Appearance Model (AAM). We 
investigated the segmentation accuracy by varying the size and composition of the 
training set (i.e., the ratio between pathologic and normal ventricle images, and the 
vendor dependence). The accuracy was assessed using the degree of similarity and 
the difference in ejection fraction between automatically detected and manually 
drawn contours. Including more images in the training set results in a better 
accuracy of the detected contours, with optimum results achieved when including 
200 to 250 images. Using AAM-based contour detection with a mixed model of 
80% normal and 20% pathologic cases provides good segmentation accuracy in 
clinical routine. Finally, this work shows that it is essential to define different AAM 
models for images from different MRI systems. A model defined on a sufficient 
number of images with the correct distribution of image characteristics achieves 
good results in clinical routine. 
 
 

4.1 Introduction 
 
Cardiac magnetic resonance (MR) imaging is playing an increasingly important 
role in anatomic and functional assessment of the cardiovascular system. An 
accurate delineation of the endocardial (endo) and epicardial (epi) boundaries is 
important to quantify left ventricular (LV) function. Manual segmentation requires 
expert knowledge and is a time-consuming procedure, which limits the routine 
clinical use of cardiovascular MR. Moreover, manual segmentation is observer-
dependent and therefore is associated with considerable inter- and intra-observer 
variability [1]. Various automated contour detection techniques have been 
developed to overcome the disadvantages of manual contour drawing, but clinically 
available systems still require too much user-interaction. 
 
An automated contour detection method should incorporate a priori knowledge, 
including information about the cardiac shape as well as information about the 
image characteristics, which depend on the pulse sequence and the MR hardware 
used (MR vendors, coils, etc). The widely recognized effectiveness of statistical 
models stems from their ability to segment images of anatomic structures by 
exploiting constraints derived from the image data together with a priori 
knowledge about the location, size, and shape of the structures of interest. These 
constraints are derived from training data using manually drawn contours. Active 
Appearance Models have been introduced as a powerful technique for modeling 
images of anatomic objects and has been successfully used in a variety of 
automated medical image segmentation applications [2-4]. 
 
The AAM segmentation procedure consists of 2 different phases, a training phase 
and a matching phase: 
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• For training an AAM, a data set of manually annotated example images is 
used in which all expert drawn contours should have the same point 
distribution. Using principal component analysis (PCA) a statistical model 
is constructed, representing the observed shape variations in the training 
data. After extracting a shape-free pixel intensity patch for all example 
images, PCA is applied on these texture vectors, resulting in a model 
describing the observed pixel intensity variations. Concatenation of both 
statistical models and another PCA results in an AAM. Additionally, this 
model learns the relationship between model parameters and the residual 
errors, induced by known perturbations on single model parameters. 

 
• The matching (detection) phase attempts to find the best fit of the model to 

the data in a new image. Matching to an image involves finding the model 
and pose parameters, which minimize the difference between the image 
and a synthesized model example, projected onto the image. 
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An elaborate description of model training and matching can be found in [2] and 
[5]. Despite promising preliminary results in cardiovascular MR [6-9], the 
validation and definition of optimal settings of such an algorithm are still very 
challenging. Whereas in the cardiac MR case, large variations in shape 
characteristics are seen due to the spectrum of pathologies [10], the assessment of 
the current segmentation techniques remains still narrowed on image data sets 
obtained from healthy subjects and/or small populations of images [1,5,8,11]. 
Moreover, in clinical practice a wide range of acquisition protocols coexists, 
resulting in MR images with large texture variations [12,13]. The evaluation of 
AAM-based techniques has not yet provided conclusions on the definition of the 
optimal constitution of the training set. For instance, it has not been studied 
whether image data from multiple pathologies should be used to define a model, or 
whether image data from different vendors should be included in a single model, or 
vendor-specific models should be used. 
 
Therefore, the purpose of this study was to define the composition of the training 
data set, from which an AAM is constructed that performs optimally in clinical 
practice. This model should provide good segmentation results for images acquired 
by scanners of any vendor, it should be able to cope with the entire range of 
relevant pathologies as seen in short-axis MR examinations, and it should be able 
to deal with possible poor image quality, induced either by acquisition or by 
pathology. Three different questions were addressed in this work: 
 

• What is the optimal number of images to be included in the training set? 
 
• What is the optimal mixture of images from healthy and pathologic cases in 

the training set? 
 

• Is it necessary to construct separate models for different vendors, or is it 
sufficient to construct a model based on data from multiple vendors? 
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4.2 Materials and Methods 
 
4.2.1 Study Population 
 
Clinical short-axis MR imaging studies were obtained from 8 institutions using MR 
equipment from 3 different MR vendors. All examinations were performed using a 
steady-state free-precession (SSFP, 256 x 256 field of view) imaging protocol on a 
1.5 Tesla MR system. The inclusion of data from different institutions guarantees 
sufficient wide range of variation in imaging protocols and patient population. MR 
images of 207 LV short-axis examinations (105 from vendor 1, 35 from vendor 2, 
and 67 from vendor 3) formed the database we used in this study. To differentiate 
between normal and pathologic cases, we used the criteria proposed by Rominger 
et al. [14], defining an ejection fraction (EF) between 54% and 75% combined with 
an LV mass between 79 and 137 gram, as normal [15]. The histograms presented in 
Figure 4.1 illustrate the distribution of EF and LV mass of the population studied. 
Following these criteria, 98 subjects were considered normal and 109 pathologic.  
 
 
4.2.2 Slice Labeling and Manual Contour Tracking 
 
Endocardial and epicardial contours were manually traced in the end-diastolic 
(ED) and end-systolic (ES) phases excluding papillary muscle and trabeculations 
from the myocardial wall. A reference point was placed in each image at the 
posterior junction of the right ventricle free wall with the septum, which was used 
to establish registration between images. For the AAM experiments the images at 
the most basal and most apical slice level were excluded to avoid extreme shape 
and texture variations in the AAM model. 
 
 
4.2.3 Assessment of the Segmentation Quality 
 
To evaluate the quality of the AAM image segmentation, 2 different metrics were 
used: the degree of similarity and the EF calculation. The degree of similarity is 
defined as the percentage of points that is similar between 2 contours [16]: 
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where d is the distance between each pair of corresponding points on the manually 
drawn contour and the automatically detected contour, N is the number of sample 
points per contour (N = 25 for the presented experiments), and T is a distance 
threshold [17]. Pairs of corresponding points are assumed to be similar if the 
distance does not exceed a certain threshold value T (For the presented 
experiments T was set to T = 2 mm). 
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Figure 4.1: Histograms related to the population of MR examinations included in this study. Figure 
A displays the ejection fraction distribution in the study population. Figure B displays the distribution of 
ED mass within the study population. These 2 graphs illustrate that the study population contains 
sufficiently different image characteristics to give a proper representation of the data seen in clinical 
routine. 

 
 
The ejection fraction is an important clinical parameter. Evaluation of the 
difference between the manually derived EF and the automatically derived EF 
should indicate the clinical relevance of the contour detection using AAMs [18]. 
 
 
4.2.4 Inter-Observer Study 
 
To rate the quality and clinical relevance of the automatic segmentation results 
obtained by the AAM, we produced inter-observer variability measures based on 
manual image analysis for comparison. Two observers independently segmented 
24 randomly chosen MR examinations manually (50% pathologic and 50% normal, 
distributed equally between different vendors). The difference in EF and in degree 
of similarity were computed using only the contours in the ED and ES phase, and 
slices comprising the section between apex and base. These differences were used 
as a gold standard in the following studies, presenting the results in a more clinical 
context. 
 
 
4.2.5 Optimal Number of Training Images 
 
This study aims at the assessment of the minimal number of data needed to train a 
model to give good segmentation results. The 2D AAM algorithm used a model 
shape defined on 25 points equidistantly sampled for both the epicardial and 
endocardial contours. Ninety-nine percent of variation in shape, texture, and 
appearance were kept in the defined models to guarantee a proper description of 
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the variation observed in the training data set [4]. A stepwise increase (from 23 to 
298) of the number of randomly chosen training data from a set of normal 
examinations from a single type of MR scanner was used to define different models 
that were used to automatically segment an independent set of 194 images with 
similar characteristics. We analyzed the measurements using a regression analysis. 
 
 
4.2.6 Impact of the Normal versus Pathologic Ratio 
 
In clinical practice, shape characteristics vary mainly with the pathologies. 
Therefore, in this study we analyzed the impact on the accuracy of the 
segmentation when varying the distribution between pathologic (P) and normal (N) 
examinations in the training data. A fixed number of 180 images were included in 
the training set, which approximates the number that was defined by the outcome 
of the previous experiment. Three experiments were realized. The first one 
consisted of defining a model on a 50% N – 50% P distribution training data. The 
accuracy of segmentation using such a model was tested on 3 different matching 
sets (one described with a 50% N – 50% P distribution, the other with a 80% N –
20% P distribution, and the last with a 20% N – 80% P distribution). The second 
and third experiments consisted of repeating the first experiment with models 
defined on a 80% N – 20% P and 20% N – 80% P distribution training set, 
respectively. 
 
 
4.2.7 Impact of the Distribution of Acquisition Systems 
 
The main cause of texture variation can be attributed to the MR system or to the 
pulse sequence used [19,20]. Therefore, we also studied the impact on the 
segmentation accuracy of including images from different vendors in the training 
set. We created 4 different models: 3 were vendor specific and 1 was created on a 
mixed population. We performed the automatic segmentation on different sets of 
images corresponding to different vendors. The “mixed model” was trained on a 
population of images where all 3 vendors were equally represented. Based on the 
limited availability of MR images, the models were trained on a set of 76 images 
defined using 50% N and 50% P examinations and matched on an independent set 
of 76 images showing the same image characteristics. 
 
 

4.3 Results 
 
4.3.1 Inter-Observer Study 
 
The inter-observer variability in EF, based on manual contour tracing, was 4.5% ± 
2.8%, which is in agreement with previously published results [21]. The degree of 
similarity between contours drawn by the 2 experts is summarized in Table 4.1. 
These values will be used as reference values for the degree of similarity and EF. 
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 ED epi ED endo ES epi ES endo

Degree of Similarity 84 % 84 % 81 % 74 % 

 
Table 4.1: Inter-observer variability in the degree of similarity between two observers. 
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Figure 4.2: Influence of the number of images included in the training on the averaged degree of 
similarity (Averaged over results for the ED and ES phases, for the endo and epicardial contours). 
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Figure 4.3: Average difference between and standard deviation of the EF calculated using the 
automatically and manually drawn contours versus the number of images in the training set.  

 
 
4.3.2 Optimal Number of Training Images 
 
Figures 4.2 and 4.3 illustrate how the quality of AAM contour detection is 
influenced by the number of images included in the training set. As expected, the 
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degree of similarity significantly increases with an increasing number of images in 
the training set (P < 0.05 in all the regressions except the variation in ED 
endocardial contours). The best estimation from Figures 4.2 and 4.3 of the minimal 
number of images to be included in the training set was around 200 to 250 images. 
This was supported by the data given in Table 4.2, which shows optimal values for 
ED at 199 training images and for ES at 232 training images, while including more 
training images results in only marginally different values. Table 4.2 also points out 
that the accuracy of the endo contour segmentation is better than the one of the epi 
contour segmentation and that the quality of the automated segmentation is better 
for ED than for ES images. In agreement with these observations, Figure 4.3 shows 
a slight but non-significant (P = 0.72) decrease in the deviation in EF with the 
increase in the number of images in the training set. 
 
 

 ED Phase ES Phase Average 

nr of images endo epi endo epi  

23 74.26 51.03 35.69 16.53 44.38 

33 67.59 56.35 44.32 34.75 50.75 

66 72.64 62.35 46.22 36.68 54.47 

99 71.99 59.14 45.02 36.52 53.17 

132 76.91 66.43 50.45 44.56 59.59 

166 70.42 60.26 43.92 36.35 52.74 

199 79.88 71.35 50.59 42.12 60.99 

232 78.05 70.99 55.05 47.54 62.91 

265 70.71 63.05 51.75 45.7 57.80 

298 76.59 67.6 47.59 41.09 58.22 

 
Table 4.2: Influence of number of images included in the training set on the degree of similarity for 
the endocardial and epicardial contours in the ED and ES phases.  

 
 
4.3.3 Impact of the Normal versus Pathologic Ratio 
 
Figures 4.4 and 4.5 display the impact of using a model defined on a set of images 
for the automatic segmentation of images with different characteristics. Figure 4.4 
shows that the highest segmentation accuracy is obtained using the 80% N – 20% P 
model regardless of the segmentation population. The overall best average degree 
of similarity was observed when applying the 80% N – 20% P model to 80% N – 
20% P data. Similarly, Figure 4.5 shows that the minimum difference between EF is 
obtained when using a model that describe a mixed population of 80% normals and 
20% patient studies. 
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4.3.4 Impact of the Distribution of Acquisition Systems 
 
Tables 4.3 and 4.4 illustrate the impact of using models from different scanners on 
the accuracy of the segmentation. In particular, this study demonstrates that the 
highest accuracy of segmentation (70% in the ED phase and 50% in the ES phase) 
is obtained using a model defined on a population with the same texture 
characteristics as the matching population of image. In terms of segmentation 
performance, a mixed model resulted in lower accuracies (maximally 54% in ED 
phase and 41% in ES phase). These observations were convincing for vendor 1 and 
vendor 2 data, however, considerably lower degrees of similarity were found for 
vendor 3 data, in which rather poor image quality was observed.  
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Figure 4.4: Average degree of similarity between automated segmentation results and manually 
defined gold standard (ED and ES phase, endocardial and epicardial contour) when using different 
models on different matching populations. 
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Figure 4.5: Average difference in ejection fraction between automatically detected and manually 
drawn contours when using different models on different matching populations. 
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ED degree of similarity Matching population 

Model Vendor-1  Vendor-2  Vendor-3  

Vendor-1  70±27 57±28 43±28 

Vendor-2  60±28 58±33 39±31 

Vendor-3  52±22 44±21 34±26 

Mixed  54±29 50±29 50±29 

Vendor - Mixed 16% 8% -16% 

 
Table 4.3: Average degree of similarity (%) and standard deviation observed in the segmentation of 
the ED phase using models trained on images from different vendors. The segmentation accuracy is 
lower when vendor 3 images/model are concerned. 

 
 

ES degree of similarity Matching population 

Model Vendor-1  Vendor-2  Vendor-3  

Vendor-1  50±31 34±30 22±32 

Vendor-2  43±29 42±33 21±31 

Vendor-3  40±31 26±30 15±30 

Mixed  41±30 32±30 27±27 

Vendor - Mixed 9% 10% -12% 

 
Table 4.4: Average degree of similarity (%) and standard deviation observed in the segmentation of 
the ES phase using models trained on images from different vendors. The segmentation accuracy is 
lower when vendor 3 images/model are concerned. 

 
 
 

4.4 Discussion 
 
Domain knowledge about the geometrical properties of cardiac structures is an 
important feature for segmentation in medical images. So far, a strong focus was 
put on the development of new segmentation methods using statistical models. By 
fitting a model to image data, cardiac surface positions can be predicted with a high 
accuracy [6,8,20,22,23]. Potentially such a model can be used to automate a large 
range of diagnostic and therapeutic applications in cardiac medicine [24]. For the 
application of such a model in the context of automatic segmentation of cardiac 
image data, practical issues need to be addressed. The goal of this study was to 
analyze whether AAM-based segmentation could be used in clinical routine. For 
this, we analyzed the impact of the definition of the training set on the accuracy of 
the automatic segmentation. 
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4.4.1 Optimal Number of Training Images 
 
When comparing a model that was trained on 23 images with a model that was 
trained on approximately tenfold more data, an improvement of the degree of 
similarity of 6% and 20% could be observed for ED endo en ED epi (both at n=199), 
respectively. Similar experiments resulted in an increase of the degree of similarity 
of 19% for ES endo and 31% for ES epi (both at n=232), respectively. This indicates 
that increasing the number of data included in the training set improves the AAM 
contour detection. Given that including even more images (n > 199 for ED, n > 232 
for ES) does not substantially improve or deteriorate the degree of similarity, a 
minimal amount of training data should be determined at approximately 200 to 
250 images. This is supported by the results for the difference in ejection fraction 
(Figure 4.3), showing the best results for the three models with the highest amount 
of training images (n=232, n=265 and n=298). 
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contour detection is higher than in the epi contour detection. This could be 
explained by the intensity gradient between external tissue and the myocardial wall 
being weaker than the gradient between the blood pool and the myocardial wall. 
Thus, the border of the endo contour has a clearer definition, and as a consequence 
is delineated more robustly than the epi border. The promising endo contour 
detection results suggest that the presence of papillary muscles or trabeculations 
does not affect the performance of the AAM. This was supported by visual 
inspection. Furthermore, the non-significant variation in the degree of similarity 
measured in the endo contour detection showed that the endo contour detection is 
less dependent on the number of images included in the training set than the epi 
contour detection. 
The measurement in this study displayed significant increase in the degree of 
similarity with the number of images defining the model and non-significant 
decrease in the difference in EF between automatically detected and ground truth 
contours. From this, we conclude that including numerous images in the training 
set to define the AAM’s model does not matter when the clinical study focuses only 
on EF measurements, whereas it does have a big impact when analyzing border 
displacement measurements (wall thickness measurement). 
The design of analyzing the optimal number of images to be included in an AAM 
had some limitations. To facilitate the process of training a model, we narrowed the 
analysis to only examination of healthy ventricles in the training set. Thus, we 
limited the variation in LV shape, and possibly artificially reduced the minimally 
required number of images. This experiment stressed that an AAM model can be 
described using at least 200 to 250 images from normal examinations, and we 
expect that more images should be included in the training set for covering all 
shape change variations in routine clinical practice. 
 
 
4.4.2 Impact of the Normal versus Pathologic Ratio 
 
A difference in degree of similarity up to 15% was noticed when matching a model 
describing a particular shape variation on images with different characteristics, and 
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matching a model defined on the same image characteristics. This experiment 
stressed the importance of using a suitable model for a population of images used. 
The accuracy seemed to be reduced when using an equally mixed model. 
Although there is a significant improvement of the accuracy of the contour 
detection when optimizing the population distribution in the training set, the 
difference in EF measurements (10%) still remained high compared with the inter-
observer variability (4.5%). The results show a noticeable discrepancy between EF 
calculated from detected contours and from reference contours, which can be the 
consequence of either an average poor detection or the presence of few contour 
outliers. In fact, the EF is sensitive to a single contour detection failure for a single 
image, whereas the degree of similarity measurement still remains high. The high 
degree of similarity of the corresponding contours (~70%) associated with a 
standard deviation (~20%) leads to the conclusion that the presence of few outliers 
or detection failure did not affect the degree of similarity because of the larger 
number of samples included in this measure compared with the EF quantification 
quantity (the degree of similarity relies on the number of contour data, whereas the 
EF relies on the number of examinations). 
Regarding short-axis MR segmentation, using a model of 80% normals and 20% 
patients appeared to be the best choice. 
 
 
4.4.3 Impact of the Distribution of Acquisition Systems 
 
Several inherent problems appear in cardiac MR image segmentation. The change 
in image contrast [20], the non-uniform nature of the MR signal intensity 
introduced by noise, physiological factors, and non-uniform radio frequency fields 
[19] are major challenges when designing and implementing a reliable automated 
contour detection algorithm. 
It was observed that the data from vendor 3 was of relatively poor image quality, 
mainly due to radio frequency pulse inhomogeneity artifacts. It is expected that 
Active Appearance Models in which vendor 3 training data was incorporated, were 
possibly deteriorated. When mutually comparing the results for vendor 1 and 
vendor 2, it is proven that vendor specific models provide better results than when, 
for example, a vendor 2 model is used to analyze vendor 1 data, or vice versa. 
Differences in performance can amount to 10% degree of similarity. 
Given the poor image quality of the vendor 3 data, it is difficult to assess the 
performance of the mixed model. However, averaging the values in the bottom 
rows of Tables 4.3 and 4.4, results in a positive score for the vendor specific Active 
Appearance Model results. These findings, combined with the results of the mutual 
comparison of vendor 1 and vendor 2, shows the need for the application of vendor 
specific AAMs in clinical practice. In general, poor quality images should evidently 
not be incorporated in the training data set of an Active Appearance Model. 
Due to the availability of image data, this study was designed on only 76 MR images 
as a training set. Therefore, the overall performance in terms of degree of similarity 
values is lower than the values reported in the other two experiments. These 
findings are in correspondence with the results presented in section 4.3.2 and 
discussed in section 4.4.1. 
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4.5 Conclusions 
 
It was demonstrated that AAM-based contour detection can be used in cardiac MR 
imaging studies in clinical practice. Defining an appropriate training set of at least 
200 to 250 data sets is a crucial step towards obtaining high quality results of the 
AAM-based segmentation. Furthermore, the best training set distribution of 
images from normal and pathologic ventricles seems to be 80–20%. Finally, in case 
MR scanners from multiple vendors are used, it is essential to define different 
models for each of the vendors. The inclusion of low quality images in the training 
set should be avoided. 
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Multi-View Active Appearance Models 
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Automated Contour Detection in X-Ray Left Ventricular Angiograms Using 
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Lelieveldt 
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Abstract 
 
This chapter describes a new approach to the automated segmentation of X-ray left 
ventricular (LV) angiograms, based on Active Appearance Models (AAMs) and 
Dynamic Programming. A coupling of shape and texture information between the 
end-diastolic (ED) and end-systolic (ES) frame was achieved by constructing a 
Multi-View AAM. Over-constraining of the model was compensated for by 
employing Dynamic Programming, integrating both intensity and motion features 
in the cost function. Two applications are compared; a semi-automatic method 
with manual model initialization, and a fully automatic algorithm. The first proved 
to be highly robust and accurate, demonstrating high clinical relevance. Based on 
experiments involving 70 patient data sets, the algorithm’s success rate was 100% 
for ED and 99% for ES, with average unsigned border positioning errors of 0.68 
mm for ED and 1.45 mm for ES. Calculated volumes were accurate and unbiased. 
The fully automatic algorithm, with intrinsically less user interaction was less 
robust, but showed a high potential, mostly due to a Controlled Gradient Descent in 
updating the model parameters. The success rate of the fully automatic method was 
91% for ED and 83% for ES, with average unsigned border positioning errors of 
0.79 mm for ED and 1.55 mm for ES. 
 
 

5.1 Introduction 
 
X-ray left ventricular (LV) angiography is a widely applied modality for the 
assessment of cardiac function. To visualize the heart with this modality, patients 
undergo a catheterization procedure in which the LV is filled with an X-ray opaque 
contrast dye. Acquisition can be made in bi-plane (combining the antero-posterior 
view and the lateral view or combining the 30º right anterior oblique view and the 
60º left anterior oblique view) or in single-plane (generally 30º right anterior 
oblique view). Average acquisition time is around 8 to 10 seconds, covering 7 to 9 
cardiac cycles. In the second or third cardiac cycle after the injection of the contrast 
fluid, irregular cardiac contractions generally have subsided and the distribution of 
the contrast dye within the LV is considered to be optimal. Hence, one of these 
cycles is selected for analysis of cardiac function by choosing the image frame in 
which the LV is fully filled (ED) and the first next image frame in which the 
ventricle is maximally contracted (ES). In both frames endocardial contours are 
drawn around the LV manually and used to determine surface areas of the 
projected LV, from which the ventricular volume in ED and ES can be estimated 
[1]. In addition, relevant clinical parameters such as regional wall motion and 
ejection fraction (EF) can be determined. 
 
Currently, several packages are available that assist the cardiologists in manually 
drawing contours in LV angiograms. However, due to frequently occurring poor 
image quality, an expert examines an X-ray image sequence not only by 
considering the ED and ES image frame. To decide on the correct boundary 
locations neighboring frames around ED and ES are inspected. This way, 

72 



 

knowledge about contraction dynamics is used to improve the segmentation 
accuracy. This makes drawing contours by hand difficult, time-consuming and 
prone to inter- and intra-observer variability. The goal of the work presented here 
is to automate the contour detection process to reduce the cardiologist’s workload 
and diminish inter- and intra-observer variability. Because of the aforementioned 
difficulties of interpreting X-ray angiograms, low level image processing tools have 
not shown to be sufficiently robust and integration of a priori knowledge is a 
necessity. Therefore, we aim to integrate the same priors that an expert uses in 
segmenting the left ventricle, i.e. shape, texture and contraction dynamics priors. 
 
Several knowledge-based approaches for automated segmentation of the left 
ventricle have been reported, however none of these have been incorporated in 
daily clinical practice. Tehrani et al. [2], for example, combined fractions of 
possible LV edges, obtained by low level image processing, by means of blackboard 
architecture and statistical shape models, to come to a full LV delineation.  Lilly et 
al. [3] used Dynamic Programming to fit a contour through a set of proposed 
candidate points, based on regional intensity information, edge information and 
multiple regional thresholding algorithms. Contour irregularities and contour drift 
due to insufficient image information were neutralized by template matching using 
a template library derived from manually traced contours. Figueiredo and Leitão 
[4] proposed an approach using maximum a priori probability in a Bayesian 
framework in combination with Markov random field contour modeling. However, 
this method was applied only on digital subtraction angiography (DSA), in which 
an image acquired before the injection of the contrast agent is subtracted from all 
following images, to remove the background of the images and only retaining the 
object of interest. 
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Recently McDonald and Sheehan [5] introduced a method using boosted decision 
trees for pixel classification based on feature images, containing geometry features 
and gray-level statistics of a sequence of images around the ED and ES frames. By 
using information from images around ED and ES, LV contraction dynamics is 
integrated in these feature images. This semi-automatic method requires 3 
anatomical landmark points (the endpoints of the aortic valve and the apex) to be 
positioned manually.  
Suzuki et al. [6] proposed a combination of edge detection by a modified multilayer 
neural network and a standard edge detection based on low-pass filtering and edge 
enhancement. The first method is able to localize less pronounced subjective edges 
and is trained on manually drawn LV contours, the latter detects rough edges in the 
images. After placing the two aortic valve points manually, the contours are traced 
automatically based on both edge detection methods. As in [4] this approach has 
been applied on DSA images only. 
 
 
5.1.1 Contribution of this Work 
 
Recent work [5-8] has shown the need for a priori knowledge of shape, image 
intensities and contraction induced motion in automated segmentation of LV 
angiograms. The majority of previously reported methods used only shape 
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knowledge, or was applied to DSA in which most of the intensity information is 
removed. Only the approach proposed by McDonald and Sheehan [5] uses 
knowledge about shape and image intensities and motion due to cardiac 
contraction. 
 
The contribution of this work is fourfold: 
 

• Multi-View AAMs are developed in which statistical information of 
different views of the same object is modeled simultaneously. The existing 
correlation in shape and texture between ED and ES is exploited. The more 
reliable LV information present in  the ED images supports the 
segmentation of the frequently poorly defined LV in the ES images. 
 

• To prevent the model from locking in on local minima, we propose a novel, 
Controlled Gradient Descent optimization, in which a limited number of 
model parameters is updated at a time. This greatly improves convergence 
robustness. 
 

• Motion-based Dynamic Programming is applied to compensate for over-
constraining by the model and thus to attain better local border 
delineation. The cost function is constructed from both image features and 
features from a subtraction image (ES minus ED). The latter incorporates 
contraction motion information in the algorithm. 
 

• An elaborate evaluation of clinical efficiency of the algorithm is described 
based on 70 ED-ES image pairs. To our knowledge, this is the largest 
evaluation of  an automated segmentation method for clinically realistic X-
ray LV angiograms. 

 
 

5.2 Background 
 
Active Appearance Models, introduced by Cootes [9,10], are highly suitable to 
integrate knowledge in segmentation problems. AAMs are statistical models 
describing an object’s shape and image texture. For both shape and gray-values, an 
average and a series of eigenvectors is computed, from which the modes of 
variation of the model are determined. When matching the model to an unseen 
image, the object contours are localized by minimizing the error between the model 
and the image, within the boundaries of statistically plausible deformations of the 
model. 
 
Examples of successful application of AAMs in automatic segmentation in medical 
images, whether in 2D, 2D + time, 3D or 3D + time, are ample for a range of 
imaging modalities. An elaborate overview can be found in [11]. The general 
construction of an AAM and the conventional matching procedure are briefly 
introduced in this section. A detailed description can be found in [12].  
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5.2.1 AAM Training 
 
An AAM is trained on a series of representative images, in which an expert 
manually segmented the object of interest. Contours are resampled in n 
corresponding points, and (for 2D) expressed as a vector of 2n elements: 
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After Procrustes alignment [13] of the shape vectors to eliminate pose differences, a 
shape model is built by applying Principal Component Analysis (PCA) on the 
sample covariance matrix. Arranging the eigenvectors according to descending 
eigenvalues enables elimination of less significant eigenvectors. 
 
The texture model is created by warping the intensities of the object of interest 
from the training images onto the mean shape. This way, an image patch is created, 
which is normalized for the shape of the individual samples; from this patch, pixel 
intensity vectors g are extracted. Typically, a thin strip around the object is 
included in the patch, to acquire information of pixel intensities outside the object’s 
boundaries. Texture vectors are normalized to zero average and unit variance and 
PCA is performed on the sample covariance matrix, resulting in the statistical 
texture model. 
 
To reduce model size, AAM models are generally constructed using only the 
eigenvectors corresponding to the largest n eigenvalues, capturing for example 98 
% of the available variation. Using shape and texture models, the sample shapes x 
and textures g can be approximated from the respective models:  
 

ssbP+≈ xx   and    ggbP+≈ gg  (5.2) 

 
where g  and x represent the average texture and shape vectors, Pg  and Ps the 

texture and shape eigenvector matrices, and bg and bs the texture and shape 
parameters characterizing each training sample. 
 
From the shape and texture models, an AAM is created by concatenating the shape 
and texture parameter vectors: 
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b  (5.3) 

 
W denotes a weight factor coupling the shape and texture coefficients. 
 
After a final PCA over the set of appearance vectors b the resulting AAM can be 
written as: 
 

Qcb =  (5.4) 
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in which Q is the matrix containing the combined shape/texture eigenvectors and c 
denotes the appearance parameters for the combined model. 
 
 
5.2.2 Using AAMs for Segmentation 
 
Matching the model to an unseen image involves minimizing the sum of squared 
pixel differences between the model gray-value patch and the normalized target 
image, within the boundaries of statistically plausible model limits. To drive the 
model matching iterations, the parameter update steps are computed from the 
residual images ms0 ggg −=δ , where gs denotes the normalized target image, and 

gm the model synthesized image. From the current estimate of the model 
parameters c0 and the parameter derivatives for the model and pose parameters, 
captured in the pre-computed gradient matrices Rc (for the model parameters) and 
Rp (for the pose parameters), Cootes describes an iterative matching algorithm, 
consisting of the following steps [12,14]: 
 

1) Normalize the target image patch to zero mean and unit variance 
 
2) Calculate the residual between target image and model patch ms0 ggg −=δ  

 

3) Calculate the error from the difference vector 
2

00 gδ=E  

 
4) Using the pre-computed gradient matrices, determine the model 

parameter update 0gδδ cRc =  and pose update  0gδδ pRp =

 
5) Set k = 1 

 
6) Determine new estimates for the model parameters ckcc δ−= 01  and pose 

parameters pkpp δ−= 01  

 
7) Calculate a new model based on c1 and p1 

 
8) Determine a new difference vector and calculate a new error E1 

 
9) If E1 < E0, select c1 and p1 as the new parameter vectors, else try k = 1.5, k = 

0.5, k = 0.25 etc. and go to step 6 
 
Repeat until convergence, either using a fixed number of iterations, or until no 
improvement is achieved. 
 
As mentioned in Section 5.1, we propose a different matching strategy, which 
differs substantially from this approach. This novel approach will be discussed in 
Section 5.3. 
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5.3 Segmentation Method 
 
The proposed method consists of three novel components: the Multi-View AAM, in 
which different views of the same object are modeled simultaneously, a parameter 
updating strategy that isolates the modes of variation yielding the largest criterion 
decrease, and a locally selective Dynamic Programming algorithm as post-
processing to relax potential over-constraining model priors, increasing border 
localization accuracy. 
 
 
5.3.1 Multi-View AAM 
 
In many medical image segmentation problems one deals with multiple viewpoints, 
multiple cross sections or multiple time instances. Because all these views describe 
one single object, correlations in pixel intensities and contour shapes between 
views are present and can be exploited. This is particularly useful for X-ray LV 
angiography. 
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The Multi-View Active Appearance Model introduced here is specifically 
constructed to exploit the existing correlation between different views of the same 
object. The concept is derived from Cootes’ work on coupled-view AAMs [15], 
where a frontal and a side view of a face are segmented simultaneously by building 
separate models for each view and a combined model for both views. During 
matching, segmentation is performed using the single view models, while shape 
constraints are applied from the combined model. Our method differs from this 
concept in that it models both organ shape and organ texture simultaneously for all 
views. Both during model training as during automatic segmentation, ED and ES 
scale, orientation and position are independent. 
 
The key novelty in this approach is the direct modeling of existing correlations in 
image intensities, which is used to drive the segmentation of both images 
simultaneously. Contrary to Cootes’ coupled-view AAM, the Multi-View AAM 
segments all views simultaneously using only one model. Because this model is 
constructed by concatenating, for every training sample, the shape and intensity 
vectors for all views, it directly exploits existing correlations, both in shape and in 
intensities, between the views. 
 
The Multi-View model is constructed by aligning the training shapes for different 
views separately, and concatenating the aligned shape vectors xi (see equation 5.1) 
for each of the N views. A Multi-View shape vector, xmv, for N frames is defined as: 
 

( )TT
N

TT xxx K,,x 21mv =  (5.5) 

 
By applying a Principal Component Analysis on the sample covariance matrix of 
the combined shapes, a shape model is computed for all frames simultaneously. 
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The principal model components represent shape variations, which are intrinsically 
coupled for all views.  
 
For the intensity model, the same applies: an image patch is warped on the average 
shape for view i and sampled into an intensity vector gi, the intensity vectors for 
each single frame are normalized to zero mean and unit variance, and 
concatenated: 
 

( )TT
N

TT ggg ,,,g 21mv K=  (5.6) 

 
Analogous to the single frame AAM, a PCA is applied to the sample covariance 
matrices of the concatenated intensity sample vectors, and subsequently each 
training sample is expressed as a set of shape- and appearance coefficients. A 
combined model is computed from the combined shape/intensity sample vectors. 
Figure 5.1 demonstrates that in the combined model, the shape and appearance of 
both views are strongly interrelated. 
 
 

 
 
Figure 5.1: First mode of variation for a left ventricle Multi-View AAM, constructed from 70 ED-ES 
X-ray LV angiograms. Upper row = ED, lower row = ES. From left to right the columns represent a 
standard deviation of minus two, minus one, zero, plus one and plus two sigma. The black dotted line 
represents the ventricle border. Correlation in shape between ED and ES is clearly visible. Also the 
texture variation, describing mainly the local contrast between the LV and its embedding around the 
mitral valve, shows clear similarities between ED and ES. 

 
 
Estimation of the gradient matrices for computing parameter updates during image 
matching is performed by applying perturbations on the model and pose 
parameters, and measuring their effect on the residual images [12,14]. Because of 
the correlations between views in the model, a disturbance in an individual model 
parameter yields residual images in all views simultaneously. 
 
Although full 2D + time and 3D + time ASMs an AAMs have been reported [16-18], 
this work only reports a coupling of the ED and the ES frame in X-ray LV 
angiography, since they are the most clinically relevant frames. The ES image frame 
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in which much of the injected contrast agent has been ejected is especially difficult 
to interpret. ED images generally exhibit a better contrast. The existing correlations 
between both frames can be exploited by Multi-View AAMs to achieve better 
boundary delineation especially in the ES image. In practice, this will give the 
opportunity to exchange, for example, information about overlapping structures 
between the several views. When, for example in ED segmentation, such an 
overlapping structure is ‘recognized’, this information can be used in the 
simultaneous segmentation of the ES frame. This kind of image intensity 
information exchange between both views is crucial, in particular for difficult to 
interpret images like LV angiograms. 
Stegmann and Pedersen [19] proposed a similar AAM for cardiac MRI, in which 
pose information was captured in the shape vector by concatenating the shapes of 
different views before Procrustes Alignment was carried out. This approach might 
also be useful for exploiting pose correlations between the ED and ES frames in LV 
angiography. It is however an extra factor that can over-constrain the model. 
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5.3.2 Controlled Gradient Descent 
 
LV angiograms may exhibit many acquisition artifacts, such as overlapping 
anatomical structures (ribs, diaphragm) or strong shadows. In these cases, the 
regular AAM matching strategy described above, occasionally shows difficulties in 
converging to the true contour positions. A typical example of a diverging model is 
displayed in Figure 5.2. To cope with these situations during segmentation, images 
like this have to be included in the training data set, resulting in large allowed 
texture variations incorporated in the model. 
 
Also the gradient matrix Rc which is used for updating the model parameters, is 
constructed during training by measuring the effect of disturbances on the isolated 
model parameters, while the pose parameters remain undisturbed. Therefore, 
fitting the model to the image using this matrix therefore will function optimally 
when the pose initialization is (nearly) correct. However, when the model is 
initialized far from the object of interest, or has a strongly deviating scale or 
orientation, the matrix Rc may loose its validity. This explains why a regular AAM 
initialized far from the correct position may converge to a local minimum, since the 
algorithm tries to reduce the difference between model and underlying image based 
on inaccurate gradient approximations. 
 
Several methods have been described on constraining the energy function for 
improved convergence robustness; a review of such methods can be found in [20]. 
A common way to increase robustness is by limiting the number of simultaneous 
degrees of freedom during optimization; this parameter scheduling has been 
described mainly applied for minimizing physics-based energy functions, e.g. [21]; 
In the context of AAM fitting, we developed a Controlled Gradient Descent, 
updating a limited number of parameters at a time, where the free parameters are 
selected dynamically as follows. First all parameter updates, corresponding to the 
specific modes of variation, are sorted to descending magnitude and the largest  
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Figure 5.2: Example of spurious error criterion behavior. Black dotted lines represent correct LV 
borders, white dotted lines represent model results. From left to right the error criterion decreases. 

 
 
single parameter update is executed. If this results in a lower error criterion, the 
proposed update is accepted, new model and pose parameters are calculated and a 
new vector of parameter updates is determined and ordered again in the next 
iteration. In case an update proposal does not lower the error criterion, the number 
of updated model parameters is incremented in the next attempt. If a new update 
proposal is successful, the next iteration will start again with only one model 
parameter. 
 
 
5.3.3 Motion-Based Dynamic Programming 
 
The power of the AAM algorithm is that it is able to still come to an acceptable 
global segmentation in an environment with partly invisible, or only vaguely 
perceptible features. AAM segmentation is based on minimizing the sum of 
squared pixel errors between a global model patch and the normalized underlying 
image and due to the global nature of this criterion it does not focus on local 
borders. Moreover, statistical models such as AAMs generally are over-constrained: 
the model freedom to deform is limited by the modes of variation derived from the 
training data set. Therefore, a shape that slightly deviates from characteristic 
shapes in the training set should also be considered as valid and a refinement of the 
contour is desirable. In previous work [8] an AAM contour refinement was done by 
applying a second AAM, in which only image intensities close to the contour were 
incorporated. This approach had a positive effect on the segmentation, but being 
model-based, it still intrinsically over-constrained the contours towards the 
training data. The same holds for a hybrid ASM/AAM segmentation approach, 
which has been reported for cardiac MR [22]. To allow for more shape flexibility a 
shape relaxation is required. 
 
We developed a Dynamic Programming algorithm, in which the cost function is 
constructed from image and motion features, to mimic the experts’ routine of 
including knowledge of contraction dynamics. A generalized Dynamic 
Programming algorithm that is used in X-ray angiography, for example for 
extracting coronary contours [23], searches for an optimal contour path through a 
cost matrix, based on first and second order derivatives, describing the edges of the 
object to be segmented. The cost function is generally defined by: 
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Figure 5.3: Additional information on true LV border position is available in the subtraction image 
(c): ES (b) minus ED (a). This specific example shows that the subtraction image results in a better 
definition of the mitral valve area in both the ED and ES frame. In addition it diminishes the influence 
of a diagonal shadow in the true image data. 5 
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( ) ( ) ( ) ( )jiTjiGjiC ,1,, αα −+=  (5.7) 
 

in which  is the cost of element in row i and column j, ( jiC , ) ( )jiG ,  represents 

the gradient,  is the second order derivatives and α denotes the weighing 

factor between the first and second order derivatives. 

( jiT , )

 
In this work we have integrated features from a subtraction image (ES image minus 
ED image, see Figure 5.3) into the cost function. The cost function is constructed 
such that it searches a minimal cost path based on directional edges, while 
integrating both information of true image data and the subtraction image. The 
polarity of edges in the subtraction image is defined differently for ED and ES, 
making the cost function locally selective for each phase. In ED the area outside the 
contour should be dark and the area inside the contour should be light. For ES this 
edge polarity is opposite. The use of these directional edges is only possible, 
because the Multi-View AAM already produces a reliable global segmentation in 
each frame, close to the desired solution. This enables Dynamic Programming in a 
limited search space. The cost function used in our algorithm is similar to equation 
5.7: 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )jiTjiGjiTjiGjiC ,1,1,1,, 22221111 ααβααβ −+−+−+=  (5.8) 
 

in which  is the cost of element in row i and column j, β denotes the 

weighing factor between the cost matrix constructed from the true image data and 

the cost matrix constructed from the subtraction image, 

( jiC , )

( )jiG ,1  and  are 

the gradients of both images, 

( jiG ,2 )
( )jiT ,1  and ( )jiT ,2  are the second order derivatives 

and α1 and α2 are weighing factors between the first and second order derivatives 
for the true image data and the subtraction image data respectively. 
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5.4 Clinical Evaluation 
 
The purpose of this study is to determine the clinical utility of our approach and 
more specifically, whether Multi-View AAM segmentation results are of a 
comparable quality as manual segmentation results produced by clinicians. We 
evaluate the automatically generated contours by relating them to contours of three 
experts. Furthermore we determine the state of  automation that can be achieved, 
by comparing a fully automatic method with a semi-automatic approach in which 
for both ED and ES the endpoints of the aortic valve and the apex are predefined by 
a user. In addition we compare the proposed techniques with conventional Active 
Appearance Models and with conventional Dynamic Programming. 
 
 
5.4.1 Data Material 
 
To examine the effectiveness of our methodology we have tested it on 70 single-
plane ED-ES pairs. All angiograms were acquired in the 30º right anterior oblique 
view, using standard contrast agent (Iopamiro© 350). Average acquisition time was 
about 8 to 10 seconds, covering 7 to 9 cardiac cycles. All data stemmed from adult 
patients, suffering from one, two or diffuse coronary diseases. There was no 
pathology-based selection of the data set. Two exclusion criteria were applied: 
ventricles being not fully imaged and ventricles showing only extra-systolic 
contraction. As Figure 5.4 illustrates, many different acquisition artifacts were 
encountered. The situations displayed in Figures 5.4d and 5.4e were 
especially frequently occurring (20 out of 70 cases and 15 out of 70 cases 
respectively).  
 
 
5.4.2 AAM Training 
 
For all 70 paired ED-ES images a clinician has drawn manual contours which have 
been used to train the Active Appearance Model. Point correspondence was 
achieved by resampling every contour to 60 equidistant points, based on three 
specific landmark points: the upper aortic valve point, the lower aortic valve point 
and the apex. This resulted in a training sample description of 120 points, 
combining the ED and the ES shapes. 14 leave-five-out models were trained, on 65 
out of the 70 ED-ES image pairs, leaving out 5 pairs for testing purposes. Using 
leave-five-out instead of leave-one-out was opted mainly for efficiency reasons, 
whereas a model trained on 65 data sets does not differ very much from a model 
trained on 69 data sets.  
 
All models were constructed retaining 100% shape variance and 95% intensity 
variance. This corresponded with 64 shape modes and 27 intensity modes and 
resulted in 64 appearance modes of variation. 
To speed up both AAM training and AAM matching, all training and matching 
experiments were executed after subsampling the images by a factor 4. 
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Figure 5.4: Typical examples of LV angiograms (upper row = ED; bottom row = ES): good contrast 
(a), poor contrast (b), uneven contrast agent distribution (c), partial overlap with the diaphragm (d) and 
substantial shadows caused by the shutter (e), expressed in this example as a diagonal dark band. The 
black dotted lines represent the LV boundaries as determined manually by an expert. Particular 
difficulty can be expected in the ES frame of image (d). In a normal situation the texture knowledge 
within the model consists of a relative dark ventricle in an embedding with higher pixel intensities. 
Locally in this image it is opposite, while the true LV contour apparently coincides more or less with the 
strong edge of the diaphragm. 
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5.4.3 Semi-Automatic Segmentation 
 
In the semi-automatic segmentation, the model was initialized using three 
landmark points: upper aortic valve point, lower aortic valve point and apex. Initial 
model scale, orientation and position were estimated from these three points. 
Initial scale, orientation and position were furthermore used to constrain the pose 
parameters, which were allowed to differ 10% from the initial pose. 
Model parameters were ordered and initially updated separately while the number 
of model parameters was incremented when a proposed model update was 
rejected. To ignore the influence of trivial model parameters, a maximum of 50% of 
the most pronounced modes of variation was employed. Possible local minima were 
evaded by following Cootes’ forced update approach [12,14] twice after the model 
could not improve any further. The best values for model and pose parameters were 
stored and, if not improved in a subsequent attempt, were considered to be the 
final result. 
 
 
5.4.4 Fully Automatic Segmentation 
 
The fully automatic segmentation consisted of two stages. The first stage globally 
positioned the model, after initialization in the image center. The second stage was 
similar to the semi-automatic segmentation. However, without user interaction no 
knowledge about approximate scale, orientation and position was available and 
therefore pose constraints were not applied. 
When large changes in pose parameters occur, it is likely that previous updates of 
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model parameters have been inaccurate, since the overlap between the model and 
the ventricle probably was limited. Therefore, it is better to discard these model 
parameter updates. In the global positioning of the model, model parameters were 
reset when the scaling or orientation deformation exceeded 10% or when the shift 
in x or y direction exceeded 5% of image width or height respectively. 
 
 
5.4.5 Comparison with Conventional Methods 
 
To determine the effect of all proposed contributions, the following comparisons 
were executed: 
 

• A comparison between Single-View and Multi-View AAMs. 
 
• A comparison between the Controlled Gradient Descent and a conventional 

AAM. 
 

• A comparison between the hybrid AAM / Dynamic Programming algorithm 
and standalone AAM / Dynamic Programming. 

 
• A comparison between conventional Dynamic Programming and Dynamic 

Programming in which subtraction image information is included. 
 
 
5.4.6 Dynamic Programming Parameters 
 
Table 5.1 summarizes the relevant Dynamic Programming parameters, used for all 
experiments. The parameters were selected after a pilot study on part of the data 
set. The allowed search area for ED is 16 mm on both sides of the AAM contour, for 
ES this area is set to 6 mm inside and 12 mm outside the AAM contour. Due to lack 
of visible contrast agent in ES and the resulting tendency of the AAM to produce an 
LV ES segmentation with a slightly too small surface area, the Dynamic 
Programming search area for ES is restricted more. The weighting factor β during 
Dynamic Programming is 0.5 for ED and 0.7 for ES. Due to a better definition of 
the ES contour in the subtraction image, information in the subtraction image is  
 
 

 ED ES 

α 0.5 0.5 

β 0.5 0.7 

area outside [mm] 16 12 

area inside [mm] 16 6 

 
Table 5.1: Dynamic Programming parameters. 
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graded higher than the information from the true image data. For the Dynamic 
Programming in the ED frame and in the ES frame, edge convolution filters with 
opposite signs are used. This way the correct edge polarity is created. 
 
 
5.4.7 Evaluation Indices 
 
Experiments were carried out using the data set of 70 ED-ES image pairs. None of 
the test images was included in the model that was used for AAM segmentation. 
Calculated ED volume, calculated ES volume and calculated EF were compared 
with the manually defined independent standard. Volumes were calculated by 
using the area-length equation introduced by Sandler and Dodge [1]: 
 

AL
AV

π3
8 2

=  (5.9) 
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in which A denotes the projected surface area and LA is the distance from upper 
aortic valve point to apex. Linear regression was used to determine relationships 
between manually traced and computer determined values. A two-tailed paired 
samples t-test was applied to volume measurements from manual and automatic 
contours to investigate systematic errors. A p-value smaller than 0.05 was 
considered significant. 
In addition, the point-to-curve errors of the contours and the percentage of the 
automatic contour requiring manual correction by an expert were determined. 
When a contour part of at least 3 successive points had a point-to-curve error larger 
than 2 mm, it was considered necessary to redraw this contour part. This 
parameter for contour editing was not selected to discriminate between proper 
segmentation and failure, but to distinguish between drawing preferences of 
different experts in practice. A quantitative evaluation method from recently 
published work [6] has been adopted for comparison: 
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in which RP is the region within the automatically drawn contour, RD is the region 

within the manually drawn contour, RE is the region of evaluation and  denotes 
the logical exclusive OR operator. Equation 5.10 represents a contour error defined 
as the summation of pixels that are exclusively located within the boundaries of 
either one of the two compared contours, divided by the total sum of pixels of the 
evaluation area (in this case the surface area of the manual contour). Equation 5.11 
denotes the difference in surface area between automatic and manual contour, in 
respect to the surface area of the manual contour. 

⊗

 
It is well known that the difficulty in interpreting LV angiograms results in a large 
inter- (and intra-) observer variability. When comparing, for example, the contours 
of the three experts contributing to this project, differences in estimated ES 
volumes up to a factor 2.6 were observed. The highest observed average unsigned 
point-to-curve differences amounted to 5 mm. Therefore it is difficult to define a 
gold standard or to define the notion of success of an automatic LV segmentation 
algorithm. To this end, we first investigated inter-observer variability for the 
ejection fraction, ED volume calculation, ES volume calculation, ED point-to-curve 
values and ES point-to-curve values. The cut-off parameter thresholds for outliers 
were defined as the average of the three maximum differences in the parameters 
between the three experts. These obvious segmentation failures were noted and 
excluded in further contour evaluation indices. 
 
The performance of our algorithms was tested by comparing obtained results with 
the manual contours, that were used to train the 14 AAMs (expert #1 contours). 
Because the leave-five-out setup was used, none of the tested image pairs was 
included in the specific model that was used for segmentation. To assess the clinical 
relevance of the method, calculated contours were compared with manually drawn 
contours of three experts. In addition, to establish the accuracy of the manually 
defined standard, different experts were compared to each other. 
 
 

5.5 Results 
 
5.5.1 Semi-Automatic Segmentation 
 
The semi automatic algorithm yielded borders that agreed closely to the manual 
expert contours. The success rate of the algorithm is 100% for ED and 99% (1 
outlier) for ES. After removal of the image pair with this partial failure, both ED 
and ES contour errors, calculated areas and calculated volumes were, to our 
knowledge, better than any previously reported method [2-6]. Figure 5.5 displays 
representative examples of obtained contours, proving that accurate segmentation 
is also feasible in images with acquisition artifacts. 
 
Border positioning errors were generally small. Average unsigned point-to-curve 
errors were 0.68 ± 0.37 mm for ED and 1.45 ± 0.76 mm for ES. All quantitative 
results (model vs. expert #1) are summarized in Figure 5.6, together with a  
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Figure 5.5: Successful matches for ED and ES generated with the semi-automatic algorithm. Black 
dotted lines denote the manual contour, white dotted lines represent the semi-automatic contours. 
Semi-automatic contours correspond closely with manual contours, also in images with acquisition 
artifacts such as low contrast (a & b), overlapping diaphragm (c & d), strong shadows (e & f). Contours 
are particularly good in images without acquisition artifacts (g & h). 

 
 

 

 
 
Figure 5.6: Point-to-curve distances (a & f), contour errors (see equation 5.10) (b & g), area errors 
(see equation 5.11) (c & h), volume errors (d & i) and the percentage of contour that needs to be redrawn 
(e & j) for ED (a-e) and ES (f-j). All bars in the graphs denote average values, error ranges span 1 
standard deviation in both directions. Six comparisons are displayed: model vs. expert #1, model vs. 
expert #2, model vs. expert #3, expert #1 vs. expert #2, expert #1 vs. expert #3 and expert #2 vs. expert 
#3. 
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comparison of semi-automatically generated contours with contours drawn by 
expert #2 and expert #3 and a mutual comparison of all three experts. For the 
mutual comparison of experts, only 43 samples of the original 70 paired ED-ES 
data were available. 
 
Excellent correlation between volumes based on manual and semi-automatic 
contours was achieved, as shown in Figure 5.7. In a paired samples t-test 
differences between manually and semi-automatically calculated ED volume, ES 
volume and ejection fraction were found statistically insignificant (p=0.13, p=0.76 
and p=0.15 respectively). Table 5.2 provides an overview of errors in ED volume, 
ES volume and ejection fraction. The semi-automatic algorithm compared to expert 
#1 has the overall best results. In particular, the differences in calculated ES 
volume and EF are remarkably good, better than any of the inter-expert 
differences. 
 
 
 

 
 
Figure 5.7: Volume regression plots for ED (a), ES (b) and ejection fraction (c) for the semi-
automatic algorithm. 
 
 
 

 samples ED error [%] ES error [%] EF error [%] 

model vs exp 1 69 -1.56 -0.88 -1.20 

model vs exp 2 42 -0.86 12.79 -6.20 

model vs exp 3 42 0.30 9.54 -4.26 

exp 1 vs exp 2 43 0.70 12.11 -4.95 

exp 1 vs exp 3 43 1.85 9.45 -2.98 

exp 2 vs exp 3 43 1.15 -3.03 1.96 

 
Table 5.2: Comparison of semi-automatic contours with 3 experts and comparing the experts 
mutually: relative ED volume and ES volume errors and the absolute ejection fraction error. 
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Figure 5.8: Volume regression plots for ED (a), ES (b) and ejection fraction (c) for the automatic 
algorithm. 
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Figure 5.9: Successful matches for ED and ES generated with the automatic algorithm. Black dotted 
lines denote the manual contour, white dotted lines represent the automatic contours. Acceptable 
results can be achieved for good quality images (a & b) as well for images with artifacts such as low 
contrast (c & d), overlapping diaphragm (e & f) and poor contrast distribution (g & h). Also when the LV 
scaling is extremely large (c & d) or when the LV is relatively far from the image center (g & h), where 
the model is initialized, acceptable segmentation is feasible. Note that in image (h) user information on 
the apex location is indispensable for correct segmentation in the apex area. 

 
 
5.5.2 Fully Automatic Segmentation 
 
The success rate of the fully automatic algorithm is 91% for ED and 83% for ES. 6 
complete failures were observed, in which both ED and ES segmentation diverged, 
and 6 partial failures in which only ES segmentation failed. After the removal of 
these outliers, unsigned point-to-curve errors were 0.79 ± 0.43 for ED and 1.55 ± 
0.66 for ES, comparable to the semi-automatic results. 
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Linear regression plots are presented in Figure 5.8, showing acceptable results. 
Only ED volume comparison between manual and automatic contours was 
statistically significant (p=0.03). Errors in ES volume and ejection fraction were 
found statistically insignificant (p=0.33 and p=0.72 respectively). Examples of 
successful fully automatic segmentations are shown in Figure 5.9. 
 
 
5.5.3 Comparison with Conventional Methods 
 
The three proposed technical contributions (Multi-View AAM, Controlled Gradient 
Descent and the hybrid AAM / Dynamic Programming) have been compared with 
conventional AAMs and with conventional Dynamic Programming. Table 5.3 gives 
an overview of the experiments. All results in this table are based on the entire data 
set, without removal of obvious segmentation failures. The values denote averages 
± standard deviation. ED_Ec and ES_Ec denote contour errors for ED and ES, as 
defined by equation 5.10. ED_Ev and ES_Ev denote relative volume errors for ED 
and ES. 
 
The first two lines in Table 5.3 show the difference between Multi-View AAMs and 
Single-View AAMs for the semi-automatic algorithm, when no Controlled Gradient 
Descent and no post-processing by means of Dynamic Programming is applied. 
When initialization is done manually (first 2 lines), the results for Multi-View and 
 
 
 

 ED_EC [%] ED_EV [%] ES_EC [%] ES_EV [%] 

Multi-View (semi) 13.2 ± 6.2 15.7 ± 13.5 22.6 ± 14.8 25.8 ± 37.3 

Single-View (semi) 12.8 ± 6.7 15.3 ± 13.3 22.2 ± 13.9 24.7 ± 29.4 

     

Multi-View (fully) 20.4 ± 15.8 18.7 ± 20.4 34.7 ± 24.2 33.1 ± 40.3 

Single-View (fully) 26.6 ± 21.6 26.7 ± 32.8 48.5 ± 37.2 51.4 ± 63.9 

     

CGD 13.4 ± 8.1 14.3 ± 12.7 25.6 ± 16.4 25.3 ± 23.8 

no CGD 20.4 ± 15.8 18.7 ± 20.4 34.7 ± 24.2 33.1 ± 40.3 

     

AAM + DP 4.1 ± 1.9 3.6 ± 3.5 14.1 ± 12.1 17.4 ± 34.7 

only AAM 13.7 ± 6.0 15.7 ± 13.4 23.3 ± 14.2 26.0 ± 32.8 

only DP 4.8 ± 3.1 4.5 ± 5.5 19.2 ± 17.1 28.7 ± 52.0 

AAM + 1 img DP 5.8 ± 3.9 6.2 ± 7.6 15.5 ± 15.1 21.6 ± 42.2 

 
Table 5.3: Comparison with regular AAMs and Dynamic Programming. 
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Figure 5.10: The benefit of integrating both true image information and subtraction image 
information in Dynamic Programming. Black dotted lines denote the manual contour, white dotted lines 
represent the computed contours. Results after AAM segmentation (left) show a proper segmentation of 
the anterior wall, while the posterior wall is delineated poorly. With regular Dynamic Programming as 
post-processing tool (middle) using only the true image information, the segmentation of the posterior 
wall is corrected. However, due to the strong shadow in the image, the contour near the anterior wall is 
attracted to the wrong edge. Including also subtraction image information (right) results in a proper 
segmentation of both anterior and posterior wall (The subtraction image information for this example 
can be found in Figure 5.3c). 

5 

A
u

to
m

at
ed

 C
on

to
u

r 
D

et
ec

ti
on

 in
 X

-R
ay

 L
V

 A
n

gi
og

ra
m

s 
u

si
n

g 
M

u
lt

i-
V

ie
w

 A
A

M
s 

an
d

 D
P

 
 
Single-View are comparable, although the standard deviation for ES_Ev is 
significantly smaller for the Single-View Model. The added value of the Multi-View 
model becomes obvious when comparing results for fully automatic segmentation 
(lines 3 and 4). For all 4 parameters the Multi-View Model clearly outperforms the 
Single-View models. 
 
To determine the effect of the Controlled Gradient Descent, experiments were 
repeated while using a regular Multi-View AAM instead of the proposed algorithm. 
When applying a regular Multi-View AAM in semi-automatic segmentation, 
performance and accuracy remained similar. However, a significant difference in 
performance occurred when applying a regular Multi-View AAM in fully automatic 
segmentation (lines 5 and 6). 
 
The lines 7-9 in Table 5.3 show the need for a hybrid algorithm, combining AAMs 
and Dynamic Programming. When providing the model with the correct positions 
of the upper valve point, lower valve point and apex point, for both ED and ES, the 
hybrid algorithm obviously outperforms both methods, when applied separately. 
Furthermore, when the subtraction image information is not incorporated in 
Dynamic Programming (last line of the table), results deteriorate. Figure 5.10 
shows a typical example. 
 
 

5.6 Discussion 
 
The method proposed in this chapter introduces three novel elements: a Multi-
View AAM is developed to exploit the coherence between different image frames, a 
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locally selective Dynamic Programming is introduced to relax over-constraining 
inherent to statistical shape models and a Controlled Gradient Descent strategy is 
proposed to improve convergence and lock-in range. The Multi-View AAM robustly 
detects the initial models for the Dynamic Programming, enabling the integration 
of locally selective motion features in the cost function. The proposed method 
proved to be a robust and accurate tool for automatic segmentation of the left 
ventricle in angiographic images. It uses knowledge about shape, texture and 
motion from a large variety of training images and inherently mimics the drawing 
behavior of the clinical expert. Even in images that are difficult to interpret the 
algorithm produces reliable results. 
 
 

 
 
Figure 5.11: The only, partial, segmentation failure when using the semi-automatic algorithm. Black 
dotted lines denote the manual contour, white dotted lines represent the semi-automatic contours. 

 
 
5.6.1 Automatic versus Semi-Automatic Segmentation 
 
The semi-automatic algorithm shows a high success rate of 100% for ED and 99% 
for ES. The only failure occurred when the ES image showed an extremely slim and 
elongated shape (see Figure 5.11). Because of the elongated shape, the model is 
initialized with a relatively large scale. This, in combination with the object’s shape 
extremity and the applied pose constrains, resulted in a failure. In general, pose 
constraints are a useful guarantee to prevent the model from diverging, but this 
example shows that in extreme cases it restricted the model too much. The less 
restricted fully automatic algorithm actually performs better in this example. 
Correlation between manually determined LV volumes and semi-automatically 
calculated LV volumes was excellent. In particular, the ES results were very good 
compared to previously reported segmentation methods for this modality [2,3] 
which can be attributed to the large amount of knowledge, incorporated in the 
model. The correlation values shown in Figure 5.7 are, to our knowledge, the best 
values reported until now. However, correlation values (R2 = {0.99; 0.95; 0.84}) do 
not match inter-observer correlations (R2 = {0.99; 0.98; 0.93}). Due to a lack of 
image information, ES volumes are generally slightly underestimated. 
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Quantitative evaluation results of the semi-automatic algorithm, displayed in 
Figure 5.6 and Table 5.2, proved to be within boundaries of inter-observer 
variability. The average difference and standard deviation in comparing the semi-
automatic method with expert #1 contours (the expert who produced the training 
contours) were comparable to values obtained when comparing different experts. 
The ability to mimic expert drawing behavior is most particularly pronounced in 
Table 5.2. Differences between the semi-automatic algorithm and expert #1 are 
generally smaller than differences between the three experts. Furthermore, 
comparing line 2 with line 4 of Table 5.2 and comparing line 3 with line 5, indicates 
that the model has comparable behavior as expert #1. The proposed method 
produces results that are within limits of inter-observer variability and therefore is 
considered to be clinically relevant. 
Also, our method outperforms other recently published methods. Suzuki’s neural 
edge detector [6], trained on 12 ED and 12 ES images, achieved average contour 
errors EC of 6.2% and 17.1% for ED and ES respectively and average area errors EA 
of 4.2% and 11.6% for ED and ES respectively. The semi-automatic approach 
presented in this chapter needs a similar amount of user interaction and produces 
(after removal of the single ES segmentation failure) EC values of 4.1% and 12.8% 
and EA values of 1.9% and 6.4%, comparing favorably to Suzuki’s results on all 
indices. Moreover, more than five times as much data was used in our evaluation. 
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Both the success rate and the quantitative results for the fully automatic algorithm 
were not as good as the semi-automatic approach. The major difficulty in fully 
automatic segmentation is the location of the three landmark points; upper aortic 
valve point, lower aortic valve point and apex. Errors for these landmarks are 3.8 
mm, 4.1 mm and 3.0 mm respectively for ED and 4.4 mm, 3.8 mm and 6.2 mm for 
ES. Errors in these landmarks strongly influence the volume estimates using the 
area-length method (Equation 5.9). 
In terms of accuracy, the fully automatic algorithm provided very good 
segmentation results, as Figure 5.9 points out. However, the rate of matching 
failures is significantly higher than for the semi-automatic algorithm. After removal 
of these failures, quantitative results are comparable to the results obtained with 
the semi-automatic algorithm. Although fully automatic segmentation results are 
promising, the semi-automatic algorithm is more robust, while the amount of user 
interaction remains limited. 
 
 
5.6.2 Behavior of the Proposed Algorithm 
 
Multi-View versus Single-View 
Given optimal initialization, the Multi-View algorithm displays comparable results 
as Single-View models, as Table 5.3 points out. For ES segmentation, the Single-
View model even appears to be marginally better. The benefit of the Multi-View 
AAM becomes evident when the initialization is not perfect. Table 5.3 clearly shows 
that the average contour error and the average volume error are significantly higher 
for the Single-View models, than for the Multi-View model. More pronounced is 
the difference in the standard deviations of the errors. This all corresponds with the 
higher amount of obvious segmentation failures, observed for the Single-View 
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models. One can conclude that a model that is dedicated to a specific view is only 
slightly better than a model dealing with multiple views, only when the 
initialization is perfect. When the initialization is less good, Multi-View AAMs are 
much more robust than Single-View AAMs. Segmentation of the ES frame is 
improved in particular, due to the coupling of shape and intensity information from 
both the ED phase and the ES phase. 
In LV angiography strong correlation in the ventricle’s pose between the ED image 
and the ES image is apparent. However, strict coupling of the ED and ES pose 
parameters seemed to excessively tie the pose parameters of the two views, 
hampering a correct convergence. 
 
 
Controlled Gradient Descent 
Using the Controlled Gradient Descent further constrains model convergence: The 
model adapts only one or a few model parameters, while pose parameters remain 
unaffected. The constraint, introduced by the Controlled Gradient Descent, results 
in a gradual updating of the model parameters, preventing the model from locking 
in on the direct underlying image features. 
As expected, the Controlled Gradient Descent clearly outperforms a regular AAM, 
as Table 5.3 points out. It is more robust than a regular AAM and it is a proper 
instrument to cope with texture ambiguities and structures that are in some cases 
present in the image, and in some cases not. 
Other solutions to this problem may be possible, such as the one proposed in [19], 
in which the regions in short-axis MR images where papillary muscles could 
possibly be visible were excluded from the model. Since in X-ray LV angiography 
the entire posterior wall can be obstructed by the diaphragm and the entire anterior 
wall can be obstructed by either a rib or a shutter-induced shadow, such a pruning 
technique is not suitable for automatic segmentation of X-ray angiograms. A 
parameter update strategy, comparable to the Controlled Gradient Descent, is 
presented in [21], for fitting blended 3D deformable models. First global 
parameters of one model are adapted, followed by parameters that blend different 
3D models, and subsequently parameters that change the model’s topology. In the 
final stages of fitting the model all parameters are released simultaneously. In this 
updating scheme the parameters are updated in a fixed order. The Controlled 
Gradient Descent, however, first decides in every iteration which parameter(s) 
should be regarded most significant, based on the features found in the underlying 
image. These parameters are updated first, resulting in a tailor-made parameter 
updating strategy. 
 
 
Hybrid AAM and Dynamic Programming 
The proposed AAM is a robust tool for global segmentation. However, because of 
its global nature, it lacks sufficient accuracy for correct border delineation. The 
result contour computed by the AAM on the other hand, creates a solid base for 
subsequent local segmentation by means of Dynamic Programming. Since the AAM 
segmentation result is already close to the desired solution (see for example the left 
image in Figure 5.10), the Dynamic Programming can be constrained to a small 
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specific area. Therefore, the proposed hybrid algorithm outperforms both an AAM 
and Dynamic Programming, when applied separately, as Table 5.3 indicates. 
Including the subtraction image into the Dynamic Programming cost function is a 
way of capturing cardiac motion dynamics. The hyper-intensity area in this image 
strongly correlates with the area in which the ventricle boundary progresses during 
contraction and release. This information is essential to make Dynamic 
Programming a proper post-processing tool for contour refinement, as shown in 
Figure 5.10. 
 
 
5.6.3 Clinical Applicability 
 
The presented results prove that the semi-automatic algorithm is a highly robust 
and accurate method for segmentation of the left ventricle in angiograms. Both 
end-diastolic and end-systolic segmentation results were within boundaries of 
inter-observer variability. Accurate results were obtained, even when acquisition 
artifacts were present, such as poor contrast, overlapping diaphragm or strong 
shadows in the image. 
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A predominant feature of our algorithm is that it is trained on a large data set of 
clinical images and manually drawn expert contours. Therefore it inherently 
mimics the drawing behavior of the clinical expert. Because the model is trained on 
patient data the majority of pathologies can be recognized and matched during 
segmentation. 
The method is fast (1-2 seconds per case) and needs minimal user input. After 
setting 6 seed points, the model produces the ED and ES contours. Subsequent 
manual editing of the contours should be possible in clinical practice, but little need 
for editing is expected. 
Estimations based on experiments are that on average less than 5% of editing is 
needed for an automatically generated ED contour and approximately 20% editing 
is needed for an automatically generated ES contour. To put these numbers in 
perspective, based on the same conditions, expert #1 on average would redraw 2% 
of an ED contour drawn by expert #2, 1% of an ED contour drawn by expert #3, 
14% of an ES contour drawn by expert #2 and 12% of an ES contour drawn by 
expert #3. 
In conclusion, the semi-automatic algorithm can be a helpful and reliable tool in 
automated segmentation of LV angiograms in daily clinical practice. As Table 5.2 
points out, a further refinement of the algorithm can be achieved by training the 
model on expert data from several different experts. This will result in a more solid 
base for creating a quality standard in segmenting LV angiograms.  
 
 

5.7 Conclusions 
 
A new algorithm for semi-automatic segmentation of the left ventricle in X-ray LV 
angiograms is presented. The method is a combination of a Multi-View Active 
Appearance Model and a locally selective Dynamic Programming approach and 
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exploits knowledge about LV shape, image texture and contraction dynamics. The 
algorithm is capable of mimicking the drawing behavior of a clinical expert and 
therefore provides excellent results. ES segmentation results have especially 
improved significantly with respect to previously reported methods, due to the 
coupling of statistical data for both frames. Local AAM border positioning is 
refined by a Dynamic Programming step in which both image information and 
knowledge of contraction dynamics was integrated in the cost function. 
Furthermore, the robustness in fully automatic segmentation has improved 
significantly by introducing a Controlled Gradient Descent approach in updating 
the model parameters, evading local minima. 
The algorithm has been tested on 70 paired ED-ES images from patient studies, 
showing high robustness and accuracy, when compared to expert contours. Results 
were within boundaries of inter-observer variability and derived volume 
calculations were accurate and unbiased. 
Although less robust than the semi-automatic algorithm, the proposed fully 
automatic method has shown high potential. The proposed Controlled Gradient 
Descent has especially shown its benefit in fully automatic segmentation. 
The semi-automatic method has proven to have high relevance for daily clinical 
practice, in segmenting the left ventricle angiograms for the quantitative 
assessment of cardiac function. 
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Automated Left Ventricular Delineation 
in X-Ray Angiograms: 

A Validation Study 
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Automated Left Ventricular Delineation in X-ray Angiograms: A Validation Study 
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Abstract 
 
Recently an automated analysis approach for X-ray left ventricular (LV) 
angiographic studies was proposed. This particular study aims to assess the clinical 
potential of this approach. Over the past 30 years much research has been carried 
out to develop a technique with automated contour detection of the left ventricular 
outline in the end-diastolic (ED) and end-systolic (ES) phases. Very few have made 
it into clinical practice. Our latest approach is based on innovative model-based 
image processing techniques. Two expert cardiologists analyzed 30 patient studies 
both by contouring the LV manually and by using the proposed automated 
methodology. In the latter procedure the experts were allowed to edit the 
automatically generated contours manually. The manual, automatic and edited 
automatic contours were compared, focusing on accuracy, workflow efficiency and 
inter- and intra-observer variabilities. No significant differences between the 
automatically derived and manual LV volumes were observed. The average patient 
study analysis time was reduced by 26%, from 4.2 to 3.1 minutes. When editing was 
required, 19% of the ED and 25% of the ES contour length needed manual 
correction. Furthermore, a reduction in inter-observer variability of 12.4% was 
observed. Employing the proposed automated methodology for X-ray LV 
angiographic study analysis, a considerable reduction in required analysis time and 
manual effort is achieved. Since the acquired results are of clinically acceptable 
quality and the inter- and intra-observer variabilities are reduced, this automated 
approach has the potential to optimize the analysis workflow for X-ray LV 
angiography in clinical practice. 
 
 

6.1 Introduction 
 
A quick and reliable assessment of cardiac function is essential in the diagnosis of 
patients with ischemic heart disease and possible heart failure. Various imaging 
modalities are available in clinical routine. Echocardiography is used for quick 
assessment of global cardiac function and valvular dysfunction. Both MRI and CT 
are evolving towards reliable standards for cardiac imaging based on the fact that 
the heart anatomy is available in three dimensions. Nonetheless, X-ray left 
ventricular (LV) angiography still is a widely used technique, due to it’s high spatial 
resolution and widespread clinical availability. The left ventricular angiogram is 
acquired during each cardiac catheterization procedure and provides essential 
information for the (interventional) cardiologist and cardiac surgeon. 
An objective and reproducible assessment of the cardiac ejection fraction requires 
the delineation of the left ventricular outline in the end-diastolic and end-systolic 
frames, and the subsequent calculation of the corresponding volumes, from which 
the ejection fraction can be derived [1]. Once the outlines are available other 
regional parameters can be derived as well.  
Despite a higher resolution in comparison with MR or CT images, the general 
image quality in LV angiography is relatively low. Since it is a projection image, 
other anatomical structures, such as ribs or the diaphragm (when a patient cannot  
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Figure 6.1: Typical examples of LV angiograms (upper row = ED; bottom row = ES): good contrast 
(a), poor contrast (b), uneven contrast agent distribution (c), partial overlap with the diaphragm (d) and 
substantial shadows caused by the shutter (e), expressed in this example as a diagonal dark band. The 
black dotted lines represent the LV boundaries as determined manually by an expert. 
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comply with the requirement of breath holding), can occlude the left ventricle in an 
X-ray projection. Additionally, shadows induced by the shutter of the imaging 
device may overlap with the LV, making the LV border harder to delineate. The 
biggest problem with LV angiography border detection however, is the presence of 
the trabeculations and the papillary muscles. Depending on the amount of contrast 
still visible between these trabeculations, it is difficult to decide where the actual 
boundary lies. All these challenging aspects make the analysis of LV angiograms 
difficult, time consuming and prone to inter- and intra-observer variability (Figure 
6.1). 
 
Over the past 30 years various approaches have been developed for the automated 
delineation of the left ventricular contours [2-16]. The fact that so many 
researchers have attempted to solve this problem over such a long period 
underlines that it is a difficult image recognition problem. One of the main 
recurrent conclusions in recent literature is that this challenge of achieving a 
sufficiently high degree of robustness, that is acceptable in clinical practice, cannot 
be solved without a priori knowledge about the ventricular shape. One such method 
with a limited amount of a priori information was developed towards a commercial 
application [8]. However, our approach represents a next generation in automated 
LV analysis [16]. The method, based on Active Appearance Models [17,18], has 
been described and technically validated in [16]. This paper illustrated excellent 
results and, as the main conclusion, showed the algorithm’s capacity of mimicking 
the drawing behavior of expert cardiologists. However, it did not investigate any 
improvements in analysis speed and workflow in a clinical setting. 
 
The goal of this chapter is to investigate the clinical efficacy of this novel 
methodology. To this end the algorithm was incorporated in a clinical software 
package to evaluate three performance aspects: 
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• Speed and efficiency of the workflow. 
 
• Accuracy with respect to manual analysis. 

 
• Inter- and intra-observer variability. 

 
On all these points a quantitative comparison between the automated system and 
the manual analyses has been carried out. The software package that has been used 
in these experiments is the QAngio® XA package by Medis medical imaging 
systems B.V., which until recently only provided manual contour drawing facilities. 
 
 

6.2 Materials and Methods 
 
6.2.1 Image Data Acquisition and Processing 
 
Thirty randomly selected patient studies, all acquired at the department of 
cardiology at the Leiden University Medical Center (LUMC) for diagnostic 
purposes, were evaluated. These cases were selected from the data base of the 
department, and served only for validation purposes in this study; as a result, 
informed patient consent was not necessary. All studies were single-plane 30º right 
anterior oblique view acquisitions. Each study was a full image run consisting of 
approximately seven to nine cardiac cycles, covering the arrival and washout of the 
contrast fluid. Two eligibility criteria were pursued in the data selection and 
analysis procedure: within an angiographic image sequence there should be at least 
one pair of an ED frame and subsequent ES frame available in which, according to 
the cardiologist, the ventricle was acceptably filled with contrast medium. 
Furthermore the upper valve point, lower valve point and apical point should be 
visible in and around the two frames that were to be evaluated. 
Two expert cardiologists examined the data set in two ways: first by drawing the 
ED and ES contours manually on a LV workstation, and second by using the 
automatic method presented in [16]. In the latter situation, the cardiologists were 
allowed to edit the contours when the delineation was not fully satisfactory. To 
prevent possible influence of the automatically generated contour on the drawing 
behavior of the expert, the experts were asked to perform the manual contouring 
first. 
 
 
6.2.2 Automatic Contour Detection 
 
Automating the process of delineating the left ventricle in X-ray angiograms cannot 
be achieved without the integration of a priori information. Knowledge about the 
expected shape and image intensity characteristics of the LV is essential. This 
knowledge can be captured and described by an Active Appearance Model (AAM), 
which is a statistical model trained on information from a large data set of 
manually delineated example images. When applying such a model to 
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automatically detect, for example, an anatomical structure in a medical image, the 
model deforms its shape and image intensity representation to optimally fit the 
underlying image. By maintaining these deformations within the statistical 
boundaries of the training data set, only plausible shapes are found. 
 
AAMs have been widely applied in segmenting medical images, as summarized in 
[19]. As mentioned previously, in X-ray angiography the left ventricle is notoriously 
difficult to segment in the ES image frame and in general AAMs will perform poorly 
in these images. To improve the automatic delineation results, Multi-View AAMs 
have been created, in which the shape and intensity of the LV in both the ED and 
the ES frame have been modeled in a combined fashion [14-16]. As Oost et al. 
described, this combined modeling improves the overall segmentation results 
significantly [16]. 
It is generally known that AAMs are a very strong tool for fitting the model globally 
to the object of interest. However, when no clear edges are available, or the overall 
contrast of the image is not optimal, the local border delineation results are not 
satisfactory. In the method described by Oost et al. and used in this study, local 
border detection is improved dramatically by using a dedicated Dynamic 
Programming algorithm as a post-processing step, in which both image 
information and LV motion characteristics are incorporated [16]. A general and 
elaborate description of AAM training and matching can be found in [18]. 
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The AAM used in this validation study was constructed from 65 ED example 
images and 65 ES example images in which the LV contours were drawn manually 
by an expert cardiologist. 
 
 
6.2.3 Analysis Workflow 
 
Manual Workflow 
In manual patient study analysis, the expert cardiologists were asked to first 
calibrate the image data by means of catheter calibration, then select a properly 
displayed ED frame, draw a contour curve delineating the LV using the 
workstation’s mouse, select the subsequent ES frame, and once again delineate the 
LV. After these actions the mitral valve position could be adjusted along the drawn 
contour and a pane, containing the calculated ejection fraction and the results of a 
set of wall motion models (Slager model, centerline model and Stanford model), 
was presented to the user for evaluation purposes. After inspection of this pane the 
study was saved and closed. 
 
Automated Workflow 
When analyzing the image sequences automatically, the workflow was similar, 
apart from the drawing activities: after selecting the ED frame, the upper valve 
point, lower valve point and apical point had to be localized by mouse-clicks. This 
could be done in arbitrary order. Subsequently the ES frame was selected. After 
again identifying the upper valve point, lower valve point and apical point, the 
program automatically started the automatic delineation of both ED and ES 
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frames. Generated contours could be edited by redrawing unsatisfactory contour 
regions manually with the mouse. Further handling was identical to the fully 
manual investigation of a patient study. 
 
Time Recording 
During all analyses, the software package created a log file in which the timing of 
activities was recorded. This data was used to evaluate differences in time 
requirements between the manual and automatic segmentation of the LV. Hence, 
experts were asked to perform all examinations in a fluent fashion, without other 
activities intervening. 
 
 
6.2.4 Comparison Metrics and Statistical Analysis 
 
In terms of generated ED and ES contours, the output of this study is threefold: 
manually drawn contours, automatically generated contours and edited automatic 
contours. Differences in accuracy and required time are presented by comparing 
these contours interdependently, in terms of the following quantified metrics. 
 
Time Requirement 
Two measures were used to assess differences in time requirements between 
manual and automated analysis of patient studies. First, a comparison was 
performed of the time interval from the start of the drawing (manual analysis) or 
landmark identification (automated analysis) in the ED frame until acceptance of 
both ED and ES contours. Second, the entire time required from opening a study 
until closing the study was evaluated. Because a different approach in contour 
generation might lead to different evaluation of the quantified clinical data by the 
expert cardiologists, the total study duration can provide additional insight. From 
hereon these two time periods will be referred to as ‘LV function analysis duration’ 
and ‘total study duration’. 
 
Volumetric Comparison 
Estimating LV volumes from drawn contours was done by means of Sandler and 
Dodge’s area-length method [1], formulated as: 
 

AL
AV

π3
8 2

=  (6.1) 

 
in which A denotes the projected surface area and LA is the distance from the upper 
aortic valve point to the apex. To correct for shape irregularities and the presence of 
papillary muscles and trabeculations, a regression equation was applied [20]. 
Linear regression and Bland-Altman analysis were used to determine volume and 
ejection fraction relationships between manually traced, computer determined and 
edited automatic LV outlines. A two-tailed paired samples t-test was applied to 
investigate systematic errors, where a p-value smaller than 0.05 was considered 
statistically significant. 
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Contour Comparison 
All drawn or calculated contours are defined as a discrete set of points. When 
comparing two differently generated contours with each other, point-to-curve 
differences were measured mutually and averaged. A point-to-curve distance is 
herein defined as the geometrical distance from a single discrete point of contour A 
to the closest interpolated position on contour B. 
An additional measure is the percentage of the contour length that was edited 
manually. This percentage represents the amount of effort required to achieve 
clinical quality contours in cases where the automatic contours are sub-optimal. 
When comparing an edited automatic contour with an automatically generated 
contour, the percentage of required editing can be simply derived. However, when 
comparing the manually drawn contours with the edited automatic contours, both 
could be regarded as gold standard, because both contours have been approved by 
the expert. The same holds when comparing a contour approved by expert 
cardiologist #1 with a contour ratified by expert cardiologist #2. To evaluate this, a 
comparison was made of the amount of editing when for example expert 
cardiologist #1 would evaluate a contour generated by expert cardiologist #2. A 
point-to-curve distance exceeding 8 pixels (i.e. approximately 2 mm.), persisting 
over at least 3 percent of the total contour length, was defined as the threshold for 
editing requirement. This definition is designed to include significant local detail 
differences, while longer contour parts with insignificantly low point-to-curve 
differences are excluded. 
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6.3 Results 
 
Evaluation of the results was carried out on 29 of the 30 initial data sets. After 
inspection one outlier was detected in which the apical area of the LV moved out of 
the image frame. All experiments related to automatic or edited automatic contours 
of MD #1 comprise of 28 data sets, due to an error in saving one of the studies. 
Although all studies were calibrated 4 times (before manual analysis and before 
automated analysis, by 2 MDs), the average calibration factor of 0.273 mm/pixel 
was used for comparison purposes. 
 
 
6.3.1 Ejection Fraction and Volumetric Accuracy 
 
To asses the clinical validity of the proposed automated method, the calculated ED 
and ES volumes and the calculated ejection fractions were compared with the 
manual contour analysis results. 
Excellent correlation was found when comparing the manual and edited automatic 
results, with all correlation coefficients larger than R2 = 0.95 (Table 6.1). All 
comparisons were found statistically insignificant:  p = 0.19 (ED) and p = 0.08 (ES) 
when analyzed by expert cardiologist #1 and  p = 0.57 (ED) and p = 0.05 (ES) for 
expert cardiologist #2. Bland-Altman plots showed a slight but statistically non-
significant overestimation of ES volumes, when using the automated method. For 
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ED no clear over- or underestimation could be observed (Figure 6.2). Bland Altman 
analysis did not show dependence of the error on LV volume. 
 
Also for the ejection fractions good correlation was achieved, with correlation 
coefficients R2 = 0.92 for expert cardiologist #1 and R2 = 0.94 for expert 
cardiologist #2 (Table 6.1, Figure 6.3). In a paired samples t-test, differences were 
found to be statistically insignificant (p = 0.06) for expert #1 and significant (p = 
0.02) for expert #2. The good correlation is supported by the small difference in the 
derived ejection fraction between manual and edited contours, which is 
approximately 2% ejection fraction for both experts (Table 6.2). 
 
 
6.3.2 Workflow Speed 
 
In 23 out of 29 cases, MD #1 was able to analyze a patient in a shorter time period 
with the presented automated algorithm than by drawing contours by hand. For 
MD #2 this figure was 23 out of 28 cases, since the audit trail showed discontinuity 
in the workflow in one case. The speed gain in terms of LV function analysis 
duration was 15.7%. The average total study duration even decreased with 26.1% 
when using the automated method (Table 6.3). 
 
 

 

 
 
Figure 6.2: Bland-Altman analysis of manual and edited automatic volumes. The top row shows the 
results for expert #1, the bottom row shows expert #2 results. The ED results are shown on the left-hand 
side, the ES results are shown on the right. y-axes denote edited minus manual, x-axes denote averages. 
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Figure 6.3: Bland-Altman analysis of manual and edited automatic ejection fractions, for expert #1 
(left) and expert #2 (right). y-axes denote edited minus manual, x-axes denote averages. 
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 MD Regression Equation R2 p 

Edit vs. Man ED 1 y = 1.01x + 1.38 [ml] 0.96 0.19 

Edit vs. Man ES 1 y = 1.06x + 0.99 [ml] 0.96 0.08 

Edit vs. Man EF 1 y = 0.96x + 0.74 [%] 0.92 0.06 

Edit vs. Man ED 2 y = 0.99x + 0.57 [ml] 0.99 0.57 

Edit vs. Man ES 2 y = 0.98x + 4.21 [ml] 0.98 0.05 

Edit vs. Man EF 2 y = 0.95x + 1.13 [%] 0.94 0.02 

     

Auto vs. Edit ED 1 y = 0.99x + 4.13 [ml] 0.98 0.12 

Auto vs. Edit ES 1 y = 0.97x + 6.59 [ml] 0.98 0.01 

Auto vs. Edit ED 2 y = 1.05x – 7.34 [ml] 0.98 0.47 

Auto vs. Edit ES 2 y = 0.93x + 4.73 [ml] 0.98 0.94 

     

Auto vs. Man ED 1 y = 1.01x + 3.99 [ml] 0.96 0.03 

Auto vs. Man ES 1 y = 0.98x + 9.70 [ml] 0.93 0.01 

Auto vs. Man ED 2 y = 1.04x – 5.48 [ml] 0.95 0.80 

Auto vs. Man ES 2 y = 0.91x + 9.13 [ml] 0.98 0.06 

 
Table 6.1: Correlation statistics. 
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6.3.3 Manual Correction Effort 
 
The majority of the automatically generated ED contours was accepted without 
further manual editing. Expert #1 accepted 15 out of 28 contours directly, expert #2 
accepted 19 out of 29 contours. For the ES contours these numbers were 2 and 4 for 
expert #1 and expert #2 respectively. 
When editing was required, on average 18.7% of the total ED contour length was 
corrected manually (14.6% for MD #1 and 22.9% for MD #2). For ES on average 
25.3% of the total contour length was adjusted (26.0% for MD #1 and 24.6% for 
MD #2). 
 
 
6.3.4 Inter- and Intra-Observer Variability 
 
For both ED and ES the difference between edited automatic and automatic 
contours on average is smaller than the difference between manual and automatic  
 
 

 Auto vs. Edit [%] Man vs. Auto [%] Man vs. Edit [%] 

MD #1 -4.6 ± 11.8 6.6 ± 12.2 2.0 ± 5.4* 

MD #2 -0.7 ± 7.8* 2.8 ± 7.9* 2.1 ± 4.4 

 
Table 6.2: Signed differences in ejection fraction in comparing manual, automatic and edited 
automatic results. Numbers denote average ± standard deviation, asterix marks statistical significance. 

 
 

 LV function analysis duration Total study duration 

 Man [s] Auto [s] Gain [%] Man [s] Auto [s] Gain [%] 

MD #1 146.7 135.3 7.7 251.2 201.9 19.6 

MD #2 166.1 127.9 23.0 254.6 171.3 32.7 

Average 156.2 131.7 15.7 252.9 186.9 26.1 

 
Table 6.3: Average LV function analysis duration and average total study duration. 

 
 

 
Inter-Obs, 

Man 
Inter-Obs, 

Edit 
Intra-Obs, 
Expert #1 

Intra-Obs, 
Expert #2 

Auto vs. 
Edit 

ED 0.74 ± 0.21 0.64 ± 0.45 0.80 ± 0.23 0.84 ± 0.32 0.46 ± 0.83 

ES 1.48 ± 0.60 1.33 ± 0.95 0.93 ± 0.21 1.24 ± 0.46 1.06 ± 0.85 

 
Table 6.4: Point-to-curve differences [mm]. 
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contours (Table 6.2). Hence, this indicates that the automatic method introduces a 
bias on the (ratified) edited automatic contours, which reduces the inter-observer 
variability. Furthermore, the average point-to-curve differences between expert 
cardiologists #1 and #2, for the manual contours and the edited automatic contours 
were evaluated (Table 6.4, first two columns). For both ED and ES the inter-
observer variability is lower for the edited automatic contours. For ED the 
variability is 0.64 mm (vs. 0.75 mm for the manual contours), for ES it is 1.33 mm 
(vs. 1.48 mm for the manual contours). 
When comparing the manually drawn contours with the edited automatic contours 
for both experts, the average intra-observer variability is 0.82 mm for ED and 1.08 
mm for ES (Table 6.4, columns three and four). 
All results for inter- and intra-observer variability are based only on comparisons of 
studies in which exactly the same ED or ES frame was selected for analysis. 
 
 
6.3.5 Accuracy of the Automatic Contours 
 

6 

A
u

to
m

at
ed

 L
V

 D
el

in
ea

ti
on

 in
 X

-R
ay

 A
n

gi
og

ra
m

s:
 A

 V
al

id
at

io
n

 S
tu

d
y

The fully automatic contours for ED and ES LV delineation, generated by the 
presented algorithm, are the base for the clinically approved edited automatic 
contours. As the previous section suggests, these automatic contours introduce a  
 
 

 

 
 
Figure 6.4: Bland-Altman analysis of automatic and edited automatic volumes. The top row shows 
the results for expert #1, the bottom row shows expert #2 results. The ED results are shown on the left-
hand side, the ES results on the right. y-axes denote automatic minus edited, x-axes denote averages. 
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bias. It is therefore essential that the quality of the contours presented by the 
algorithm approximate the level of clinical acceptance. 
The success rate for automatic segmentation was 100% for ED for both experts and 
86% (expert #1, 4 failures) and 93% (expert #2, 2 failures) for ES. A segmentation 
failure was defined as when the volume difference was above 30% and the point-to-
curve difference was more than 3 mm. 
Corresponding volumetric differences between the automatically generated 
contours and both ratified contours were low (Table 6.1, Figure 6.4, Figure 6.5). 
Overall correlation coefficients between automatic and edited automatic results 
were high (R2 = 0.98 for all results), with p-values of 0.12 (ED MD #1), 0.01 (ES 
MD #1), 0.47 (ED MD #2) and 0.94 (ES MD #2). Bland-Altman plots showed a 
slight overestimation of the automatic volumes of approximately 2 ml for both ED 
and ES, with respect to the edited volumes (Figure 6.4). 
When comparing the automatic results with the manual contours, the correlation 
coefficients dropped somewhat (R2 = {0.98; 0.93; 0.95; 0.98} for ED MD #1, ES 
MD #1, ED MD #2, ES MD #2 respectively), yet the correspondence still was good, 
with p-values of 0.03 (ED MD #1), 0.01 (ES MD #1), 0.80 (ED MD #2) and 0.06 
(ES MD #2). A slight overestimation of the automatic volumes of approximately 3 
ml (ED) and 6 ml (ES) could be derived from the Bland-Altman analysis (Figure 
6.5). 
 
 

 

 
 
Figure 6.5: Bland-Altman analysis of automatic and manual volumes. The top row shows the results 
for expert #1, the bottom row shows expert #2 results. The ED results are shown on the left-hand side, 
the ES results are shown on the right. y-axes denote automatic minus manual, x-axes denote averages. 
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The average point-to-curve differences between the automatic and the edited 
automatic contours, combined for both expert cardiologists is an additional 
measure to determine the accuracy of the automated method. These differences 
(0.46 mm for ED and 1.06 mm for ES) are generally equal to or smaller than the 
reported inter- and intra-observer variability results (Table 6.4, right column). 
 
 

6.4 Discussion 
 
6.4.1 Accuracy of the Volumetric Measurements 
 
The experiments presented in this chapter provide two reference standards for 
delineation of the left ventricle in X-ray angiograms. First, the manually drawn 
contours by the expert cardiologists and second, the edited automatic contours. 
Both types of contours were approved by the expert cardiologists as valid LV 
delineation. 
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For the most relevant clinical parameter, the ejection fraction, there is an excellent 
correlation between the manual results and the results based on the approved 
edited automatic contours (Table 6.1, Figure 6.3). This holds for the calculated 
ejection fractions by both cardiologists. For cardiologist #1, there was no 
statistically significant difference between the two approaches, meaning that the 
edited automatic contours could be regarded as an equally reliable gold standard as 
the manual contours. The p-value of 0.02 for expert cardiologist #2 does not 
directly support this conclusion. 
Nonetheless, when concentrating on the correspondence between the calculated 
ED and ES volumes, from which the ejection fractions are derived, the correlation 
coefficients were even higher than the ones found for the ejection fraction (Table 
6.1, Figure 6.2). Specifically the results for cardiologist #2 (R2 = 0.99 for ED and R2 
= 0.98 for ES) were excellent. Since in the paired samples t-test differences 
between manually and semi-automatically calculated ED and ES volumes were 
found statistically insignificant for both expert cardiologists, the edited automatic 
contours can be regarded as an equally reliable gold standard as the manual 
contours. 
 
 
6.4.2 Workflow Optimization 
 
The previous section shows that the presented method provides robust, accurate 
and clinically acceptable performance. However, aspects such as the speed of the 
workflow and the amount of manual effort are equally important for clinical 
acceptance. 
The proposed method dramatically reduces the amount of manual contouring. 60% 
of all automatically generated ED contours and 11% of all automatically generated 
ES contours did not need any further manual editing. Furthermore, when editing 
was required, the average amount of manual editing was 18.7% of the total contour 
length for ED and 25.3% of the total contour length for ES. 
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When using the proposed method, the average speed gain in LV function analysis 
duration was recorded at 15.7%. The speed gain in total study duration even 
amounted to 26.1%, reducing the total amount of time spent on analyzing one 
patient from, on average, 253 seconds (= 4 minutes and 13 seconds) to 187 seconds 
(3 minutes and 7 seconds). The additional gain in total study analysis is difficult to 
explain. Possibly the initially generated automatic contours influence the 
interpretation of the experts such that it results in a faster analysis: because they 
are immediately dealing with a set of contours, they are converging towards an 
image interpretation in an earlier stage of the workflow. 
Given the fact that both expert cardiologists were fully familiar with the manual 
workflow, while the automated workflow was new to them, it is likely to expect an 
even further decrease in patient analysis time in routine clinical practice. 
 
 
6.4.3 Inter- and Intra-Observer Variability Decrease 
 
Compared to manual analysis, introducing an automated method that is 
dedicatedly trained on delineating anatomical structures in medical images should 
theoretically reduce the inter- and intra-observer variability in patient analysis. 
Regarding the inter-observer variability, the average point-to-curve difference 
between both expert cardiologists dropped from 0.75 ± 0.23 mm to 0.64 ± 0.45 
mm for ED and from 1.48 ± 0.60 mm to 1.33 ± 0.95 mm for ES. 
Furthermore, the introduction of a bias can evidently be derived: the differences 
between automatic contours and edited automatic contours generally are smaller 
than differences between automatic contours and manual contours (Table 6.2). 
This bias supports the suggestion that the presented automated algorithm does 
reduce the inter-and intra-observer variability. 
Finally, one can argue that the introduction of a bias is not necessarily a good 
development. Nevertheless, the generated contours are edited and/or ratified by an 
expert and the resulting clinical parameters are not significantly affected. 
The intra-observer variability was measured by comparing the manual results with 
the edited automatic results, but this could only be used to assess the quality of the 
automatically generated contours. Nonetheless, given the fact that the inter-
observer variability did decrease when using the automated algorithm, a similar 
trend can be expected for the intra-observer variability. 
 
 
6.4.4 Accuracy of the Automatic Contours 
 
The previous sections show that the results of the presented automated algorithm 
are of clinically acceptable quality, can be generated faster in comparison with 
manual contour drawing and have the capacity to reduce the inter- and intra-
observer variability. These results are a combination of automatically generated 
contours and, possibly, additional manual editing. Since there is a large automatic 
component in the presented method that evidently influences the expert 
cardiologists, a more thorough investigation of the accuracy of the automatically 
generated contours is desired. 
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The described method is incorporated in the QAngio® XA package marketed by 
Medis medical imaging systems B.V. and has been subject to a thorough technical 
validation by Oost et al. [16]. Another available commercial package for automated 
contouring of ventriculograms, the CAAS LVA package, is marketed by Pie Medical 
Imaging B.V. The methodology used in the CAAS LVA package is mainly based on 
Dynamic Programming [8]. The methodology described by Oost et al. is a hybrid 
algorithm in which statistical modeling and Dynamic Programming are combined. 
It has been proven that this hybrid approach outperforms the individual 
application of Dynamic Programming alone [16]. The high degree of accuracy of the 
hybrid approach by Oost et al. is corroborated by the results in this clinical 
validation study. Good agreement was found between the automatically derived ED 
and ES volumes and both reference standards (Table 6.1, Figure 6.4, Figure 6.5). 
Looking at the point-to-curve difference between automatic contours and edited 
automatic contours, the quality of the automatic contours is even more apparent. 
Both the ED and the ES results (0.46 mm and 1.06 mm) are well within the 
measured ranges for inter-observer variability (0.64 - 0.74 mm for ED and 1.33 - 
1.48 mm for ES) and within the ranges of the averaged intra-observer variability for 
expert #1 and expert #2 (0.82 mm for ED and 1.09 mm for ES). 6 
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Furthermore, the presented results for inter-observer variability are based on study 
comparisons in which the frame selection was identical. However, in clinical 
practice different MDs will select different frames to be analyzed, either because 
they have a different judgment on the exact time point for ED or ES, or because 
they consider a different cardiac cycle to be optimal for patient analysis. Hence, 
numbers on inter- and intra-observer variability will be higher in practice than 
those reported in this study. 
 
 

6.5 Conclusions 
 
An automated methodology was presented to delineate the left ventricular contours 
in the ED and ES phases in X-ray LV angiograms. The method proved to be 
accurate and the results were highly similar to the manually traced outlines, which 
were regarded to be the gold standard. The method significantly reduced the 
analysis workload by diminishing the necessary amount of manual contouring and 
by considerably reducing the average time required for a patient analysis. 
Moreover, the algorithm reduced the inter- and intra-observer variability. The 
presented results indicate that this automated approach has the potential to 
optimize the analysis workflow for X-ray LV angiography in clinical practice. 
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Chapter 7 
 
 
 

Summary and Conclusions 
 



7.1 Summary 
 
The high prevalence of cardiovascular diseases worldwide underlines the 
importance of cardiac imaging based diagnostics. In assessing cardiac function, X-
ray left ventricular angiography has been an important clinical standard for years 
and, despite the rapid development of both MRI- and MSCT-based techniques, it is 
expected to retain high value in daily clinical practice. As long as X-ray coronary 
angiography is employed during cardiac catheterization procedures, X-ray LV 
angiograms will be acquired most often in the same session as well. However, the 
manner in which LV angiograms are currently analyzed leaves room for 
improvement. The expert cardiologist either visually inspects the patient image 
data, estimates the cardiac ejection fraction and observes possible wall motion 
defects. Alternatively, patient analysis requires the manual delineation of the 
endocardial boundary in both the end diastolic and end systolic image frames. The 
latter method obviously is preferable, because it introduces a certain diagnostic 
standard and it enables patient follow-up studies. However, manual contouring is 
characterized by a high workload for the cardiologist or technician, it is time 
consuming and prone to inter- and intra-observer variabilities. The need for an 
automated technique for the analysis of  X-ray LV angiograms therefore has been 
apparent for a long time. 
 
The main goal of the work presented in this thesis was to develop an automated 
algorithm for the delineation of the cardiac left ventricle in the ED and ES phase in 
X-ray LV angiography, that would be robust enough so that it can be used in 
routine clinical practice. The general approach to achieve a higher degree of 
automation in the interpretation of X-ray LV angiographic images is based on the 
application of Active Appearance Models. With these statistical models of shape 
and appearance, an automatic delineation of the left ventricle can be realized. This 
thesis has identified both the challenges of automatic interpretation of X-ray LV 
angiograms, and the limitations of Active Appearance Models in general and in 
their application to segment the left ventricle in angiographic images. In exploring 
possible ways of solving this medical image processing problem, the following sub-
goals were formulated in Chapter 1: 
 

• The observed redundancies and similarities between the ED and ES frames 
should be exploited by a combined modeling of the shape and image 
intensity characteristics of both frames in the AAM framework. 

 
• The sensitivity of AAM segmentation with respect to the unstable behavior 

of the error criterion should be decreased. 
 

• Optimal settings regarding the size and composition of the model training 
data set must be investigated to increase AAM segmentation performance. 

 
• The effect of model over-constraining towards the training data should be 

neutralized to improve local LV border delineation. 
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• The clinical relevance of the developed methodology should be 
demonstrated. 

 
Chapters 2 through 6 provide a detailed description of the construction, benefits 
and clinical relevance of an automated methodology for the delineation of the left 
ventricle in X-ray angiograms. 
 
In Chapter 2 the Multi-View Active Appearance Model was introduced, in which 
the desired combined modeling of the ED and ES image frame of an X-ray LV 
angiographic image sequence was realized. In this new extension on the general 
AAM framework, the shape statistics of both frames were correlated by 
concatenating the ED and ES shape vectors for every training sample and applying 
a Principal Component Analysis on the concatenated vectors. An identical method 
was applied to the image intensity vectors of the ED and ES training data. By 
further concatenation of the resulting shape model and intensity model, and 
applying PCA on the data, the Multi-View Active Appearance Model was 
constructed. The ED and ES scale, orientation and position were modeled 
separately, to accommodate for trivial pose differences. Another novelty introduced 
in Chapter 2 was the sequential application of two Multi-View AAMs in the 
segmentation of the left ventricle in the target ED and ES images. The first model 
was the proposed ‘general’ Multi-View AAM, the second was a dedicated model that 
was employed to improve local LV boundary delineation. In this latter model, only 
the image intensity characteristics in the direct vicinity of the LV border were 
modeled, discarding the majority of image information of the LV blood pool. 
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The benefit of these methodological innovations of the AAM framework were tested 
by applying the models on a patient data set of 70 subjects, describing a variety of 
pathologies and image acquisition artifacts. Without manual initialization a 
performance of 81% was achieved. The remaining 13 failure cases were 
subsequently initialized manually, by which the robustness of the algorithm was 
improved to 87%. Good correlation was observed between the projected areas and 
derived volumes of the manually drawn reference contours and the automatically 
generated contours. However, the automated algorithm showed a minor 
underestimation of the projected areas and derived volumes. Also the border 
positioning differences between the manual and automated approach were 
generally small and the calculated ejection fractions did not show a systematic 
error. 
The negligible differences in robustness between ED and ES convergence and the 
similarity in the linear regression trends and correlation coefficients, demonstrated 
the advantageous effect of the Multi-View AAM. However, the benefit of the 
boundary AAM seemed arguable. Although a possible positive effect could be 
observed occasionally, systematic improvement could not be proven. 
 
Chapter 3 described the application of the Multi-View AAM approach in two 
different modalities. First in X-ray LV angiograms, similar to the work presented in 
Chapter 2, and second in cardiac MRI images. With respect to Chapter 2, an 
optimization was made of the percentages of shape and image intensity 
information that were incorporated in the model, during the training of the AAM. 
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Applying the Multi-View AAM in cardiac MRI resulted in a model that was capable 
of combining shape and image intensity information of three views of one 
anatomical object, showing three substantially different geometrical shapes. 
For X-ray LV angiography the same data set as in Chapter 2 was used. Without 
manual interaction, convergence was achieved in 87% of the cases. A small but 
statistically significant underestimation of the automatically defined projected LV 
areas was observed, while the automatically derived area ejection fraction showed a 
slight statistically significant overestimation.  
For cardiac MRI the methodology was tested on a data set of 29 patients, providing 
short-axis views, two chamber views and four chamber views. The Multi-View AAM 
successfully segmented all three views in 27 cases. In the other two data sets only 
one contour did not converge properly, resulting in an overall success rate of 98%. 
Good correlation was observed between manually and automatically derived 
surface areas for all three views. Differences between manual and automatic area 
calculations proved to be statistically insignificant. No volumetric reconstruction 
was intended in this experiment. Hence, no registration between the three different 
views was performed. In future experiments more views (a stack of short-axis 
views, combined with the two chamber and four chamber views) could be modeled 
simultaneously, from which a 3D reconstruction could be made by registering all 
views. 
The results presented in Chapter 3 proved that poor left ventricle definition in one 
view could be overcome by utilizing image information from a corresponding view. 
Furthermore, the generic potential of the Multi-View was underlined by the 
excellent performance in the cardiac MRI study, segmenting substantially different 
geometrical shapes simultaneously. 
 
Chapter 4 presented a study into the optimal characteristics of a data set in training 
Active Appearance Models for medical image segmentation purposes. Three issues 
in construction a training data set were addressed, focusing on the application of 
AAMs in segmenting the left ventricle endo- and epicardial ED and ES contours in 
short-axis cardiac MRI images. First the optimal size of the data set was assessed. 
Second, the influence of the data composition in terms of healthy subjects versus 
patients was investigated and third, the effect of the data composition in terms of 
image material from different MRI scanners was explored. 
When the training of the AAM and the model fitting were performed on short-axis 
cardiac MRI image data from healthy subjects, an optimal data set size was found 
to be approximately 200 to 250 images. No experiments on pathological data were 
executed, but numbers for such data sets were expected to be higher. In general, 
when increasing the number of training samples, the AAM segmentation 
performance trend showed asymptotic behavior, rather than a deterioration of 
accuracy when a surplus of training data was used. 
Three different compositions of training data were constructed to assess the 
influence of healthy subject examples and patient data examples. For one model 
the data consisted of 80% healthy subjects and 20% patients, for another model 
healthy subjects and patients were equally represented and a third model was 
constructed for 20% on healthy subjects data and for 80% on patient data. In a 
cross validation study the Active Appearance Model that was composed of 80% 
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healthy subjects data and 20% patient data, showed the best overall performance. 
In the studies performed and discussed in Chapter 4, data material of three 
different MRI vendors was available. This data was used to assess whether an AAM 
constructed from images from multiple scanner brands would outperform a model 
that was trained on vendor specific image data. The obtained results proved the 
contrary; vendor specific Active Appearance Models showed a higher accuracy in 
automatic left ventricular contour delineation and ejection fraction calculation. 
 
In Chapter 5 the Multi-View Active Appearance Model, first explored in Chapters 2 
and 3, was further optimized for automated segmentation of the ED and ES frames 
in X-ray LV angiography. A novel model matching scheme, the Controlled Gradient 
Descent, was developed, in which the updates of the model parameters were 
evaluated and only the most significant updates were processed. Furthermore, a 
dedicated Dynamic Programming algorithm was employed to improve local border 
delineation. The search area of the Dynamic Programming scheme was restricted to 
the direct vicinity of the final AAM segmentation result. Another novelty was the 
incorporation of information on the contraction dynamics of the left ventricle by 
constructing the cost function from both image features and from features of a 
subtraction image (ES minus ED). The described approach was validated both as a 
semi-automatic method, in which the upper and lower valve points and the apex 
position were specified, and as a fully automatic method. 7 
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The semi-automatic algorithm attained a performance of 100% for ED 
segmentation and 99% for ES segmentation, in which only one failure was 
observed. Border positioning errors were generally low, also in examples with a 
poor LV definition. Although a slight underestimation was perceived, excellent 
correlation was observed between the manually and semi-automatically derived 
volumes and the resulting ejection fractions (R2 = {0.99; 0.95; 0.84} for ED, ES 
and EF respectively). Differences between manual and semi-automatic results were 
found statistically insignificant. 
The accuracy of the fully automatic algorithm was comparable to the accuracy of 
the semi-automatic method. The correlation with the manual reference was 
similarly good (R2 = {0.99; 0.96; 0.82}) and besides the ED calculation, all 
differences were found statistically insignificant. However, the robustness of the 
fully automatic approach proved to be inferior, converging in 91% of the ED and 
83% of the ES cases. 
The efficacy of the four novel elements of our approach (Multi-View AAM, 
Controlled Gradient Descent, dedicated Dynamic Programming as post-processing 
step and the incorporation of cardiac contraction dynamics in Dynamic 
Programming) was validated by comparison with baseline AAM and Dynamic 
Programming techniques. The Multi-View AAM resulted in a tremendous 
improvement of the segmentation results for ES, while the initial high quality 
results for ED remained unaffected. Both the ED and ES segmentation results were 
significantly improved by the Controlled Gradient Descent algorithm. This effect 
was mainly observed in the fully automatic approach. The hybrid application of the 
Multi-View Active Appearance Model and Dynamic Programming outperformed 
the separate utilization of both methods. Furthermore, the benefit of the 
incorporation of cardiac contraction dynamics in Dynamic Programming was 
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clearly shown. 
The semi-automatic algorithm showed better results than previously reported 
approaches. It was clearly proven that, due to the wide range of information that 
was incorporated in the algorithm, it had the capacity to mimic the drawing 
characteristics of a clinical expert. The resulting algorithm satisfied the first, second 
and fourth requirements as formulated in Chapter 1. Because the errors in the 
volume calculations were within the limits of inter-observer variability, the fifth 
goal, clinical relevance, was also suggested. 
 
Chapter 6 investigated whether the proposed algorithm could be viable in daily 
clinical practice. For this clinical validation study, two expert cardiologists were 
asked to analyze a set of 30 patient studies. This was done in two ways; first by 
drawing the left ventricular contours manually, and second by using the proposed 
automated method. In the latter situation, the two experts had to manually localize 
the upper and lower aortic valve point and the apex for initialization. Furthermore, 
the cardiologists were allowed to correct the automatically generated contours by 
hand. The focus of the experiments was to gain insight in the accuracy, workflow 
efficiency and inter- and intra-observer variabilities when using the automated 
methodology. 
In comparing the automated and manual LV outlines, no statistically significant 
differences were observed. For both the ED and ES image frames an excellent 
correlation was found between the volumes, calculated by the two approaches: R2 = 
{0.96; 0.99} for ED (for the two cardiologists) and R2 = {0.96; 0.98} for ES. Also 
the derived ejection fraction showed good correlation: R2 = {0.92; 0.94}. Only a 
small systematic difference of 2% ejection fraction was observed when comparing 
the automated results with the manual results. 
The overall reduction in the analysis time required for a patient study was 26%, 
from 4.2 minutes to 3.1 minutes. In addition, according to the expert cardiologists, 
60% of the automatically generated ED contours did not need any manual 
modification. Obviously for ES this number was lower: 11%. However, when editing 
was required, only 19% of the ED contour length and 25% of the ES contour length 
was manually corrected. 
The inter-observer variability was reduced when the automated methodology was 
used. The point-to-curve difference between both experts dropped from 0.75 mm 
to 0.64 mm for ED and from 1.48 mm to 1.33 mm for ES. Also the obtained intra-
observer variability was low: 0.82 mm for ED and 1.08 mm for ES. 
The results presented in Chapter 6 showed that by utilizing the proposed 
automated methodology a considerable reduction could be achieved in patient 
analysis time, manual contouring effort and inter- and intra-observer variabilities, 
while the calculated ED and ES volumes were equally accurate as manually derived 
volumes. Hence, these results proved the applicability of the method in daily 
clinical practice to optimize the analysis workflow for X-ray left ventricular 
angiography. 
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7.2 Conclusions and Future Work 
 
Based on the results presented in Chapters 2 to 6 it can be concluded that all 
formulated goals have been achieved to a large extent. The coupling of different 
views of one single object significantly improved the AAM segmentation, the 
robustness of the model has been improved and the accuracy in local LV border 
delineation has been increased. When utilizing the created algorithm in clinical 
practice, it proved to decrease the analysis time, the manual effort and the inter-
observer variability, while providing ED and ES volumes that did not show any 
statistical difference from manually derived volumes. 
Given the satisfactory results of the presented methodology, the algorithm 
presented in Chapters 5 and 6 has been recently incorporated in a clinical software 
package (QAngio® XA, by Medis medical imaging systems bv, The Netherlands), 
which is sold worldwide. 
Though the overall performance of the proposed methodology was satisfactory, 
some further improvements can still be made. In Chapter 4 insight was gained in 
the optimal composition of the model training set. However, this knowledge was 
not yet integrated in the proposed algorithm. 
Furthermore, the resulting Multi-View AAM was trained only on manually drawn 
LV contours from one clinical expert. As a result, Chapter 5 proved the remarkable 
mimicking behavior of the algorithm, showing a clear bias towards the preferred 
contour drawing characteristics of the expert cardiologist. Although the clinical 
validation of the model, performed in Chapter 6, showed no statistical difference 
between manually and automatically derived ED and ES volumes, a model based 
on contours from a variety of different clinical experts is expected to improve the 
standardization of the analysis of X-ray LV angiograms even further. 
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Due to the availability of clinical data, all the experiments described in this thesis 
concerning X-ray LV angiography were based on single-plane angiograms. Hence, 
the applied Multi-View Active Appearance Model was constructed on only two 
images; the ED and ES projections in the 30° right anterior oblique view. A more 
comprehensive model description and possibly better segmentation results could 
be obtained when the Multi-View AAM is constructed from bi-plane acquisitions. 
Zhang et al. [1] showed the additional value of statistical shape models of the heart, 
in distinguishing between normal subjects and pathological cases. The two 
strongest modes of variation of a 3D or 4D statistical model of the left and right 
cardiac ventricle proved to be good classifiers to separate normals from Tetralogy 
of Fallot patients. Similarly, Suinesiaputra et al. showed that the strongest 
principal component of a statistical model of short-axes MR images could 
discriminate between normal subjects and infarct patients [2]. Furthermore, when 
the statistical shape model was constructed using independent component analysis, 
the infarcted region could be localized more precisely [3]. Future work in 
employing the proposed methodology as described in this thesis could include a 
similar approach in recognizing various pathologies. However, because the 
proposed method is a hybrid algorithm combining the Multi-View Active 
Appearance Model and Dynamic Programming, the contours provided by the 
Multi-View AAM are not the final result. Hence, using Dynamic Programming as a 
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post-processing tool to refine the AAM contours, a discrepancy between the 
resulting model parameters and the final endocardial contours is created. This 
might reduce the efficacy in distinguishing between normal and pathological cases. 
In addition, improvements in model initialization could be considered. The results 
in Chapter 2 pointed out that the accuracy in local border detection was 
considerably lower in the vicinity of the upper and lower aortic valve points and the 
apex, when compared to overall border delineation accuracy. Because of the 
sensitivity of the area-length method to sub-optimal placement of these three 
points, the implemented clinical version of the algorithm required the manual 
localization of these landmarks. To establish a fully automatic delineation 
algorithm, dedicated Active Appearance Models describing only the valve plane or 
the apex could be considered. This could be either employed to provide image 
coordinates of the desired landmarks, or it could be implemented similarly to the 
method proposed by Roberts et al. [4]. 
A final modification to come to a fully automated methodology is the design of an 
algorithm to automatically extract the optimal ED and ES frame from a full X-ray 
left ventricular angiographic image sequence. 
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やれやれ、これで一安心だ 
‘Well, we don’t have to worry about that for a while…’ 

 
 
 

 
 
 
 

Chapter 8 
 
 
 

Samenvatting en Conclusies 
 



8.1 Samenvatting 
 
Het hoge aantal gevallen van cardiovasculaire aandoeningen wereldwijd 
onderstreept het belang van cardiale beeldacquisitie en diagnostiek. Röntgen 
linkerventrikel angiografie is al geruime tijd een belangrijke klinische standaard in 
het beoordelen van de hartfunctie. De snelle opkomst van zowel op MRI (Magnetic 
Resonance Imaging) en MSCT (Multi Slice Computed Tomography) gebaseerde 
technieken ten spijt, zal röntgen linkerventrikel angiografie haar waarde in de 
klinische praktijk blijven behouden. Zolang röntgen angiografie wordt ingezet om 
de coronaire vaten af te beelden tijdens katheterisatieprocedures, zullen 
linkerventrikel angiogrammen in het meerendeel van de procedures gelijktijdig 
worden geacquireerd. De manier waarop het linkerventrikel angiogram wordt 
geanalyseerd kan echter nog verbeterd worden. In sommige gevallen zal de expert 
cardioloog door middel van visuele interpretatie van de beeldsequentie de globale 
ejectiefractie en mogelijke wandbewegingsdefecten kunnen bepalen. In de meeste 
gevallen zal de arts handmatig een contourlijn moeten tekenen rondom de 
endocardiale wand in zowel het eind diastolische (ED) als in het eind systolische 
(ES) beeld. Deze laatste methode verdient de voorkeur, aangezien het een bepaalde 
diagnostische standaardisatie introduceert en aangezien het vervolgstudies bij 
patiënten mogelijk maakt. Echter, het handmatig tekenen van contouren is 
arbeidsintensief, tijdrovend en onderhevig aan inter- en intraobserver 
variabiliteiten. De noodzaak van een geautomatiseerde techniek voor de analyse 
van linkerventrikel angiogrammen is daarom evident. 
 
Het voornaamste doel van het in dit proefschrift gepresenteerde werk was de 
ontwikkeling van een algoritme voor de geautomatiseerde contourbepaling van het 
cardiale linkerventrikel in de ED en ES fase in röntgen linkerventrikel angiografie, 
dat voldoende robuust is om toegepast te kunnen worden in de klinische praktijk. 
Om dit te bereiken is gebruik gemaakt van Active Appearance Modellen (AAM). 
Met behulp van deze statistische modellen, waarin tegelijkertijd de vorm en 
grijswaardes van een afgebeeld object worden gemodelleerd, kan een automatische 
omlijning van het linkerventrikel worden gerealiseerd. In dit proefschrift zijn zowel 
de uitdagingen van het automatisch interpreteren van linkerventrikel 
angiogrammen belicht, alsmede de beperkingen van Active Appearance Modellen 
in het algemeen en de beperkingen bij de toepassing van deze modellen op het 
segmenteren van het linkerventrikel in röntgen angiografische beelden. Om dit 
medische beeldverwerkingsvraagstuk op te lossen werden in hoofdstuk 1 de 
onderstaande doelstellingen geformuleerd: 

 
• De geobserveerde overeenkomsten tussen het ED en het ES beeld dienen 

benut te worden door het gelijktijdig modelleren van vormkennis en 
grijswaardekennis van beide beelden met behulp van AAM technologie. 

 
• De gevoeligheid van de op AAM gebaseerde segmentatie methode, ten 

opzichte van het instabiele karakter van het fout-criterium, dient beperkt te 
worden. 
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• Om de prestaties van AAM segmentatie te verbeteren moet onderzoek 
gedaan worden naar de optimale omvang en samenstelling van de dataset 
waarop het model getraind wordt. 

 
• Om de locale omlijning van het linkerventrikel te verbeteren dient het 

effect van statistische, model-intrinsieke beperkingen te worden 
geneutraliseerd. 

 
• De klinische relevantie van de ontwikkelde methode dient te worden 

gedemonstreerd. 
 
De hoofdstukken 2 tot en met 6 geven een uitgebreide beschrijving van de 
methodologie, de voordelen en de klinische relevantie van het ontwikkelde 
algoritme voor de geautomatiseerde contourbepaling van het linkerventrikel in 
röntgen linkerventrikel angiografie. 
 
In hoofdstuk 2 werd het Multi-View Active Appearance Model geïntroduceerd, 
waarmee de gewenste gecombineerde modellering van het ED en ES beeld van een 
röntgen linkerventrikel angiografie beeldsequentie werd gerealiseerd. Met deze 
uitbreiding van het gangbare AAM werd de statistische vormkennis van beide 
beelden gecorreleerd door voor elk trainingsvoorbeeld de vormvectoren aaneen te 
schakelen en vervolgens een Principal Component Analysis (PCA) uit te voeren op 
de gekoppelde vectoren. Een identieke methode werd toegepast om de statistische 
intensiteitskennis van het ED en ES beeld te koppelen. Door vervolgens de 
verkregen vorm- en intensiteitsmodellen aaneen te schakelen en wederom een PCA 
uit te voeren, werd uiteindelijk het Multi-View Active Appearance Model 
geconstrueerd. Om triviale verschillen in pose tussen beide beelden te kunnen 
modelleren, werden de schaling, orientatie en locatie afzonderlijk gemodeleerd 
voor ED en ES. Een andere innovatie die in hoofdstuk 2 werd geïntroduceerd was 
de opeenvolgende toepassing van twee Multi-View AAMs, met als doel de 
segmentatie van het linkerventrikel in ED en ES beelden. Het eerste model was het 
voorgestelde ‘generieke’ Multi-View AAM, het tweede was een model dat zich 
specifiek richtte op het verbeteren van de locale detectie van de rand van het 
linkerventrikel. In dit laatste model waren enkel de karakteristieken van de 
beeldintensiteit in de directe omgeving van de rand van het ventrikel gemodelleerd 
en werd de overgebleven beeldinformatie genegeerd. 
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De mogelijk effecten van deze innovaties van het AAM werden getest door het 
model toe te passen op de detectie van het linkerventrikel in een dataset van 70 
patiënten, waarin een veelheid aan ziektebeelden en beeldacquisitie-artefacten 
gerepresenteed was. Zonder handmatige initialisatie werd 81% van de beelden 
globaal goed geïnterpreteerd. Na handmatige initialisatie in de 13 overgebleven 
gevallen werd de robuustheid van het algoritme verhoogd tot 87%. Een goede 
correlatie in geprojecteerde oppervlakten en berekende volumes tussen de 
automatisch gegenereerde contouren en de handmatig getekende contouren kon 
worden aangetoond. Desalniettemin liet het automatische algoritme een lichte 
onderschatting van de oppervlakten en volumes zien. De verschillen tussen de 
automatische en handmatige analyse met betrekking tot het positioneren van de 
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rand van het ventrikel waren over het algemeen klein en de berekende 
ejectiefracties vertoonden geen systematische fout. 
De verwaarloosbare verschillen in robuustheid tussen het vinden van het 
linkerventrikel in ED en in ES, de vergelijkbare trends in lineaire regressie en de 
vergelijkbare correlatie coëfficiënten, tonen het voordelig effect van het Multi-View 
AAM aan. De toegevoegde waarde van het model waarin enkel de intensiteiten rond 
de rand van het ventrikel werden gemodeleerd kon niet aangetoond worden. 
Hoewel er regelmatig voorbeelden waren waarin een positief effect kon worden 
geobserveerd, kon er geen systematische verbetering worden bewezen. 
 
Hoofdstuk 3 beschreef de toepassing van het Multi-View Active Appearance Model 
op twee verschillende modaliteiten. Ten eerste in röntgen linkerventrikel 
angiografie, zoals ook beschreven in hoofdstuk 2, en ten tweede in cardiale MRI 
beelden. Ten opzichte van hoofdstuk 2 werd een optimalisering bereikt in de 
percentages van vormkennis en grijswaardekennis die tijdens het trainen in het 
model opgenomen dienden te worden. Bij het toepassen van het Multi-View AAM 
in de cardiale MRI beelden, werd een model gecreëerd waarin de vorm- en 
beeldintensiteitskennis werden gekoppeld van drie verschillende aanzichten van 
één anatomisch object, met drie aanmerkelijk verschillende geometrische vormen. 
Voor de experimenten in röntgen linkerventrikel angiografie werd dezelfde dataset 
gebruikt als bij de experimenten beschreven in hoofdstuk 2. Zonder handmatige 
interactie werd 87% van de beelden globaal goed geïnterpreteerd. De automatisch 
bepaalde projectie oppervlakten lieten een lichte maar statistisch significante 
onderschatting zien. De automatisch bepaalde oppervlakte ejectiefracties 
vertoonden een lichte maar statistisch significante overschatting ten opzichte van 
de handmatig bepaalde oppervlakte ejectiefracties. 
Voor de experimenten in cardiale MRI was een dataset met korte-as, twee-kamer 
en vier-kamer opnamen van 29 patiënten beschikbaar. Toepassing van het Multi-
View AAM op deze dataset resulteerde in 27 gevallen in een succesvolle 
segmentatie van alle drie de aanzichten. In de twee andere gevallen werd slechts 
één van de drie aanzichten verkeerd geïnterpreteerd, waardoor de algehele score 
van het algoritme 98% bedroeg. Voor alle drie de aanzichten werd een goede 
correlatie gevonden tussen de handmatig en automatisch bepaalde projectie 
oppervlakten van het linkerventrikel. Verschillen tussen handmatige en 
automatische methode bleken statistisch insignificant. Aangezien het binnen de 
uitgevoerde experimenten niet beoogd was om volumes te bepalen is er geen 
aandacht besteed aan het registreren van de drie aanzichten tot een 3D 
reconstructie van het hart. In toekomstig onderzoek zouden meer aanzichten 
gelijktijdig gemodeleerd kunnen worden (bijvoorbeeld de gehele verzameling van 
korte-as slices, gecombineerd met de twee-kamer en vier-kamer aanzichten), 
waaruit een 3D reconstructie zou kunnen worden afgeleid. 
De in hoofdstuk 3 gepresenteerde resultaten toonden aan dat het mogelijk is om 
een beeld van het linkerventrikel waarin weinig contrast aanwezig is, automatisch 
goed te kunnen interpreteren op basis van informatie van een gerelateerd beeld. 
Daarnaast werd de generieke kracht van het Multi-View AAM aangetoond door de 
excellente prestaties in de cardiale MRI studie, waarin totaal verschillende 
geometrische vormen tegelijkertijd werden gesegmenteerd. 
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De in hoofdstuk 4 beschreven studie was gericht op het vinden van de optimale 
omvang en samenstelling van een dataset die gebruikt wordt voor het trainen van 
een Active Appearance Model dat wordt ingezet voor het interpreteren van 
medische beelddata. Met het segmenteren van de endo- en epicardiale rand van het 
linkerventrikel in korte-as slices MRI beelden als toepassing, werden drie 
parameters geoptimaliseerd. Ten eerste de omvang van de dataset. Ten tweede de 
ratio tussen patiëntendata en data van gezonde personen. Ten derde werd het effect 
gemeten van de verhouding waarin data van drie verschillende MRI scanners in de 
training dataset aanwezig was. 
Voor het trainen van een AAM op basis van korte-as cardiale MRI data van gezonde 
personen, bleek een dataset van rond de 200 tot 250 beelden een optimaal 
segmentatieresultaat op te leveren. Vergelijkbare experimenten met patiëntendata 
werden niet uitgevoerd, maar de optimale omvang voor het trainen van een 
dergelijk model werd groter ingeschat. Op basis van de experimenten viel op te 
maken dat bij een verhoging van de hoeveelheid trainingsdata er een asymptotische 
trend ontstaat in het segmentatieresultaat. Een verslechtering van de resultaten 
vanwege een overvloed aan trainingsdata kon niet worden vastgesteld. 
Om de invloed van de hoeveelheid patiëntendata versus de hoeveelheid data van 
gezonde personen in te schatten, werden drie verschillende samenstellingen van 
trainingsdata getest. Bij één model was 80% van de trainingsdata van gezonde 
personen en 20% betrof patiëntendata. In een ander model waren beide groepen 
evenredig verdeeld en bij een derde model werd een verhouding gemaakt van 20% 
data van gezonde personen en 80% van patiënten. Alle drie de getrainde modellen 
werden getest op drie test-datasets, die vergelijkbare ratios hadden als in de drie 
getrainde modellen gebruikt was. Hieruit volgde dat met het model met 80% data 
van gezonde personen en 20% data van patiënten over de gehele breedte de beste 
resulaten werden behaald. 
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Daarnaast werden in hoofdstuk 4 experimenten beschreven met beelddata van drie 
verschillende merken MRI scanners. Het doel van deze experimenten was om te 
testen of een AAM waarin beelddata van verschillende scanners verwerkt was, beter 
zou werken dan merk-specifieke AAMs. De resultaten bewezen het 
tegenovergestelde; merk-specifieke Active Appearance Modellen vertoonden een 
hogere nauwkeurigheid, zowel in de automatische contourbepalingen als in de 
resulterende ejectiefracties. 
 
In hoofdstuk 5 werd het Multi-View Active Appearance Model verder 
geoptimaliseerd voor de geautomatiseerde segmentatie van het ED en het ES beeld 
in röntgen linkerventrikel angiografie. Een nieuwe manier om het model te sturen 
naar de correcte oplossing werd ontwikkeld, de zogeheten Controlled Gradient 
Descent. Met deze methode werd voorafgaand aan elke model-iteratie een analyse 
gemaakt van de updates van de model parameters en werden vervolgens enkel de 
meest significante updates voor de parameters van het AAM uitgevoerd. Verder 
werd een gespecialiseerd minimale kosten algoritme (ook wel Dynamic 
Programming genoemd) ontwikkeld om de lokale contourbepaling te verbeteren. 
De zoekruimte van dit minimale kosten algoritme werd beperkt tot de directe 
omgeving van de door het AAM berekende omlijning van het linkerventrikel. 
Verder werd gepoogd om in het minimale kosten algoritme de dynamiek van de 
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samentrekking van de hartspier op te nemen, door de kostenmatrix te baseren op 
zowel de grijswaarden van het ED en het ES beeld, alsook op de 
grijswaardekarakteristieken van een subtractiebeeld (ES beeld minus ED beeld). 
Het algoritme, bestaand uit alle hierboven benoemde componenten, werd getest 
voor een volledig automatische toepassing en voor een semi-automatische 
oplossing waarin de uiteinden van het aortaklepvlak en de locatie van de apex 
waren gespecificeerd. 
Het semi-automatische algoritme presteerde goed in 100% van de ED beelden en in 
99% van de ES beelden, waarvan slechts één verkeerd werd geïnterpreteerd. De 
foutmarge in de contourbepaling was laag, zelfs in gevallen waar de rand van het 
linkerventrikel moeilijk was te onderscheiden. Ondanks een lichte onderschatting 
door de semi-automatische methode, was een uitstekende correlatie te zien tussen 
de handmatig en de semi-automatisch bepaalde volumes en ejectiefracties (R2 = 
{0.99; 0.95; 0.84} voor ED, ES en EF, respectievelijk). De verschillen tussen de 
handmatige en de semi-automatische methode bleken statistisch insignificant. 
De nauwkeurigheid van de volledig automatische methode bleek vergelijkbaar met 
de nauwkeurigheid van de semi-automatische methode, met vergelijkbaar goede 
correlatie-coëfficiënten  (R2 = {0.99; 0.96; 0.82} voor ED, ES en EF, 
respectievelijk). Afgezien van de berekende ED volumes, bleken de verschillen 
tussen de handmatige en de volledig automatische methode statistisch 
insignificant. Echter, de robuustheid van de volledig automatische methode bleek 
beduidend minder. In 91% van de ED beelden en 83% van de ES beelden werd de 
omlijning van het linkerventrikel correct geïnterpreteerd. 
De doeltreffendheid van de vier innovatieve elementen van onze aanpak (Multi-
View AAM, Controlled Gradient Descent, specialistische Dynamic Programming als 
verfijningsmethode en de toevoeging van informatie over de dynamiek van de 
hartspier in Dynamic Programming) werd getest door ze te vergelijken met de 
standaard AAM en Dynamic Programming technieken. Ten opzichte van een AAM 
dat enkel getraind was op ES beelden, zorgde het Multi-View AAM voor een 
geweldige verbetering van de ES segmentatie, terwijl de goede kwaliteit van de 
segmentatie van de ED beelden gewaarborgd bleef. Zowel voor ED als voor ES 
beelden was een duidelijke verbetering in segmentatie te zien wanneer de 
Controlled Gradient Descent methodiek werd toegepast. Deze methode bleek 
vooral effectief in het geval van volledig automatische segmentatie. De sequentiele 
toepassing van het Multi-View AAM en Dynamic Programming bleek betere 
resultaten op te leveren dan de gevallen waarin beide methodieken afzonderlijk 
werden toegepast. Daarnaast werd duidelijk aangetoond dat het toevoegen in 
Dynamic Programming van informatie over de dynamiek van de hartspier, de 
verfijning van de segmentatieresultaten positief beïnvloed. 
Het semi-automatische algoritme liet beduidend betere resultaten zien dan eerder 
gerapporteerde methoden. Bewezen werd dat, vanwege de grote hoeveelheid 
informatie die in het algoritme was verwerkt, het algoritme de capaciteit had om de 
manier van tekenen van een klinisch expert te imiteren. De behaalde resultaten 
realiseerden de eerste, tweede en vierde doelstelling, zoals geformuleerd in 
hoofdstuk 1. Aangezien de foutmarges in de berekende volumes binnen de grenzen 
van de inter-observer variabiliteit vielen, leek het vijfde doel, klinische relevantie, 
eveneens gehaald. 
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Hoofdstuk 6 was gericht op het inschatten van de klinische relevantie van het 
voorgestelde algoritme. Voor deze klinische validatie studie werd twee expert 
cardiologen gevraagd om een dataset van 30 patiëntenstudies te analyseren. In 
eerste instantie door middel van het handmatig tekenen van de contourlijnen 
rondom het linkerventrikel in ED en ES, en vervolgens door middel van de 
ontwikkelde geautomatiseerde methode. In het laatste geval dienden de experts de 
uiteinden van het aortaklepvlak en de locatie van de aorta handmatig aan te geven. 
Daarnaast was het de cardiologen toegestaan om de automatisch gegenereerde 
contouren zo nodig handmatig aan te passen. Het doel van de experimenten was 
om inzicht te krijgen in de nauwkeurigheid, de efficiëntie van de werkzaamheden 
en de inter- en intra-observer variabiliteiten, wanneer het geautomatiseerde 
algoritme werd gebruikt. 
De verschillen tussen de geautomatiseerde en de handmatige methode bleken 
statistisch insignificant. Voor zowel ED volumes als voor ES volumes werd een 
uitstekende correlatie waargenomen tussen beide methoden: R2 = {0.96; 0.99} 
voor ED (voor de twee cardiologen) and R2 = {0.96; 0.98} voor ES. Ook de 
bepaalde ejectiefracties vertoonden een goede correlatie: R2 = {0.92; 0.94}. Slechts 
een klein systematisch verschil van 2% ejectiefractie werd waargenomen bij het 
vergelijken van de geautomatiseerde resultaten met de handmatige resultaten. 
De gemiddeld benodigde tijd voor het analyseren van een patiëntenstudie werd met 
26% gereduceerd, van 4.2 minuten tot 3.1 minuten. Daarnaast was er volgens beide 
expert cardiologen voor 60% van de automatisch gegenereerde ED contouren geen 
noodzaak voor handmatige aanpassingen. Vanzelfsprekend was dit getal lager voor 
ES: 11%. Echter, wanneer handmatige aanpassingen nodig bleken, behoefde 
gemiddeld slechts 19% van de ED contourlengte en 25% van de ES contourlengte 
handmatig te worden verbeterd. 
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Met het toepassen van de geautomatiseerde methode werd de inter-observer 
variabiliteit verlaagd. De point-to-curve verschillen tussen beide experts daalden 
van 0.75 mm tot 0.64 mm voor ED en van 1.48 mm tot 1.33 mm voor ES. Daarnaast 
was de intra-observer variabiliteit laag: 0.82 mm voor ED en 1.08 mm voor ES. 
De in hoofdstuk 6 gepresenteerde resultaten toonden aan dat, met het toepassen 
van het algoritme voor het geautomatiseerd analyseren van linkerventrikel 
angiogrammen, er een aanzienlijke vermindering kan worden bereikt van de 
benodigde analysetijd, van de hoeveelheid handmatig werk en van de inter- en 
intra-observer variabiliteiten, terwijl de berekende ED en ES volumes even 
nauwkeurig waren als handmatig bepaalde volumes. Deze resultaten bewezen 
daarmee dat de methode toegepast kan worden om de analyse van röntgen 
linkerventrikel angiogrammen in de dagelijkse klinische praktijk te optimaliseren. 
 
 

8.2 Conclusies en Aanbevelingen 
 
Op basis van de in de hoofdstukken 2 tot en met 6 gepresenteerde resultaten kan 
worden geconcludeerd dat alle geformuleerde doelstellingen grotendeels zijn 
behaald. Het gelijktijdig modelleren van meerdere aanzichten van één object 
resulteerde in een duidelijke verbetering van met AAMs behaalde 
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segmentatieresultaten. Verder werd door het toepassen van de ontwikkelde 
methodiek de robuustheid en de nauwkeurigheid van de geautomatiseerde 
contourbepaling van het linkerventrikel in röntgen angiogrammen verbeterd. In 
een klinische validatiestudie bleek dat het algoritme in staat was om zowel de 
analysetijd, als de noodzaak tot handmatig tekenen van (delen van) contourlijnen, 
als de inter-observer variabiliteit te reduceren. Tevens bleken de geautomatiseerd 
bepaalde ED en ES volumes geen statistisch significante verschillen met handmatig 
bepaalde volumes te vertonen. 
Vanwege de bevredigende resultaten is het in hoofdstuk 5 en 6 gepresenteerde 
algoritme recent geïntegreerd in een klinisch software pakket (QAngio® XA, van 
Medis medical imaging systems bv, Nederland), dat wereldwijd wordt verkocht. 
Ondanks de goede resultaten zijn er nog enkele verbeteringen op het algoritme 
denkbaar. In hoofdstuk 4 werd inzicht verkregen met betrekking tot de optimale 
omvang en samenstelling van de training dataset voor het AAM. Deze kennis is nog 
niet opgenomen in het huidige algoritme. 
Het Multi-View Active Appearance Model werd getraind op de handmatig 
getekende linkerventrikel contouren van slechts één klinisch expert. Hierdoor kon 
in hoofdstuk 5 het uitzonderlijke kopieergedrag van het algoritme worden 
aangetoond. Hoewel de klinische validatie van dit model, uitgevoerd in hoofdstuk 
6, geen statistisch significante verschillen liet zien tussen handmatig en 
automatisch gegenereerde ED en ES volumes, is de verwachting dat een model dat 
gebaseerd is op de handmatig getekende contourlijnen van meerdere klinische 
experts de standaardisatie in het analyseren van linkerventrikel angiogrammen nog 
sterker zal bevorderen. 
Vanwege het gebrek aan beschikbare data zijn alle beschreven experimenten, die 
betrekking hebben op linkerventrikel angiografie, uitgevoerd op single-plane 
angiogrammen. Zodoende is het ontwikkelde Multi-View Active Appearance Model 
slechts gebaseerd op twee beelden; de ED en ES projecties in het zogeheten 30° 
right anterior oblique view. Een uitgebreider model van het linkerventrikel, met 
mogelijk verbeterde segmentatieresultaten als gevolg, zou gerealiseerd kunnen 
worden wanneer het AAM op bi-plane data gebaseerd zou zijn. 
Zhang et al. [1] toonden de toegevoegde waarde van vorm-beschrijvende 
statistische modellen van het hart aan door ze in te zetten voor het onderscheiden 
van gezonde personen en pathologische gevallen. De twee sterkste variaties van een 
3D of 4D statistisch model van het linker- en rechterventrikel bleken goede 
parameters voor het onderscheiden van gezonde personen van patiënten met 
Tetralogie van Fallot. Op vergelijkbare wijze lieten Suinesiaputra et al. zien dat 
gezonde personen en patiënten met een infarct van elkaar onderscheiden konden 
worden met behulp van de sterkste principal component van een statistisch korte-
as MRI model [2]. Tevens kon de regio waarin het infarct zich bevond 
nauwkeuriger worden bepaald, wanneer er tijdens de constructie van het model 
gebruik werd gemaakt van independent component analysis in plaats van principal 
component analysis [3]. Mogelijk zou het in dit proefschrift beschreven algoritme 
voor de segmentatie van linkerventrikel angiogrammen op een vergelijkbare wijze 
bepaalde ziektebeelden kunnen herkennen. Echter, aangezien het ontwikkelde 
algoritme een combinatie van een statistische model en Dynamic Programming is, 
corresponderen de uiteindelijke contourlijnen niet volledig met de geregistreerde 
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model parameters. Dit zou het onderscheidend vermogen van het algoritme 
kunnen aantasten. 
Eveneens zouden verbeteringen in het initialiseren van het model overwogen 
kunnen worden. De resultaten in hoofdstuk 2 toonden aan dat de nauwkeurigheid 
van het algoritme aanzienlijk lager was in de directe omgeving van het 
aortaklepvlak en rondom de apex. Vanwege de gevoeligheid van de area-length 
methode voor de sub-optimale plaatsing, vereist de commerciele versie van het 
algoritme een handmatige aanduiding van deze punten. Om een volledig 
automatisch algoritme te realiseren zou gebruik gemaakt kunnen worden van 
gespecialiseerde AAMs die zich richten op het detecteren van het aortaklepvlak of 
de apex. Deze modellen zouden de coördinaten voor de initialisatie van het 
linkerventrikel model kunnen genereren, of een vergelijkbare methode zoals 
ontwikkeld door Roberts et al. zou kunnen worden gebruikt [4]. 
Een laatste verbetering zou de automatische selectie van de geschikte ED en ES 
beelden uit een volledige linkerventrikel beeldsequentie zijn. Hiermee zou een 
volledig automatisch algoritme kunnen worden gerealiseerd. 
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