
Parallel and distributed processing in high speed traffic monitoring
Cristea, M.L.

Citation
Cristea, M. L. (2008, October 1). Parallel and distributed processing in high speed traffic
monitoring. ASCI dissertation series. Retrieved from https://hdl.handle.net/1887/13122

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13122

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13122

Parallel and Distributed Processing
in

High Speed Traffic Monitoring

Mihai-Lucian Cristea

Parallel and Distributed Processing in
High Speed Traffic Monitoring

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. P. F. van der Heijden,
volgens besluit van het College voor Promoties

te verdedigen op woensdag 1 oktober 2008
klokke 15:00 uur

door

Mihai-Lucian Cristea

geboren te Galaţi, România

in 1976

Samenstelling promotiecommissie:

promotor: Prof.dr. H.A.G. Wijshoff Universiteit Leiden
co-promotor: Dr. H.J. Bos Vrije Universiteit
referent: Dr. E.P. Markatos FORTH, Greece

overige leden: Prof.dr. E. DePrettere Universiteit Leiden
Prof.dr. F.J. Peters Universiteit Leiden
Prof.dr. J.N. Kok Universiteit Leiden
Dr. C.Th.A.M. de Laat Universiteit van Amsterdam
Dr. B.H.H. Juurlink Technische Universiteit Delft

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number: 164.

Parallel and Distributed Processing in High Speed Traffic Monitoring
Mihai-Lucian Cristea.
Thesis Universiteit Leiden. - With ref. - With summary in Dutch
ISBN 978-973-1937-03-8

Copyright c©2008 by Mihai-Lucian Cristea, Leiden, The Netherlands.
All rights reserved. No part of the material protected by this copyright notice may be repro-
duced or utilised in any form or by any means, electronic or mechanical, including photo-
copying, recording or by any information storage and retrieval system, without permission
from the author.
Printed in Romania by ALMA PRINT Galaţi

părinţilor şi soţiei mele: Lăcrămioara, Emil şi Violeta

vi

Contents

1 Introduction 1
1.1 Problem definition . 2
1.2 Approach . 3
1.3 State of the Art in network traffic monitoring 6

1.3.1 Network monitoring applications 6
1.3.2 Specialised hardware for network monitoring 9
1.3.3 Storing traffic at high-speeds . 11

1.4 Traffic processing at high link rates . 12
1.5 Thesis overview . 13

2 Background 15
2.1 The FFPF framework . 15

2.1.1 The FFPF architecture . 16
2.1.2 The FPL-1 language . 21

2.2 Network Processors . 24
2.2.1 Common characteristics in NPs . 24
2.2.2 The IXP1200 processor . 25
2.2.3 The IXP2400 processor . 27
2.2.4 The IXP2850 processor . 29

3 A Resource Constrained Language for Packet Processing: FPL 31
3.1 The FFPF packet language: FPL . 31

3.1.1 From interpreted to compiled code 32
3.1.2 The FPL language . 32
3.1.3 The FPL-compiler architecture . 42
3.1.4 The FPL-compiler tool . 46
3.1.5 Authorisation of FPL filters into the run-time environment 47

3.2 Evaluation of the FPL-compiler . 48
3.3 Examples of FPL applications . 50

3.3.1 Traffic characteristics histogram . 50
3.3.2 Packet anonymisation for further recording 51

viii Contents

3.4 Summary . 53

4 FPL Run-time Environments 55
4.1 FFPF on commodity PCs . 55

4.1.1 Buffer management . 55
4.1.2 The FFPF run-time environment for compiled filter object 57
4.1.3 FFPF packet sources . 58

4.2 FFPF on NPs: NIC-FIX . 59
4.2.1 Mapping packet processing tasks onto the NP hardware 60
4.2.2 NIC-FIX architecture . 62
4.2.3 NIC-FIX on the IXP1200 . 64
4.2.4 NIC-FIX on the IXP2400 . 64
4.2.5 NIC-FIX on the IXP2850 . 65

4.3 FFPF on FPGA: NIC-FLEX . 65
4.3.1 High-level overview . 67
4.3.2 Extensions to the FPL language . 67
4.3.3 Using system level synthesis tool 69

4.4 Evaluation . 70
4.4.1 FFPF on commodity PC . 70
4.4.2 FFPF on NP: NIC-FIX . 71
4.4.3 FFPF on FPGA: NIC-FLEX . 73

4.5 Summary . 77

5 Distributed Packet Processing in Multi-node NET-FFPF 79
5.1 Introduction . 79
5.2 Architecture . 80

5.2.1 High-level overview . 80
5.2.2 Distributed Abstract Processing Tree 81
5.2.3 Extensions to the FPL language . 82

5.3 Implementation . 84
5.4 Evaluation . 89
5.5 Summary . 91

6 Towards Control for Distributed Traffic Processing: Conductor 93
6.1 Introduction . 93
6.2 Architecture . 96

6.2.1 Task re-mapping . 96
6.2.2 Traffic splitting . 98
6.2.3 Traffic processing . 100
6.2.4 Resource accounting . 101
6.2.5 Resource screening . 101
6.2.6 Resource control topologies . 103

6.3 Summary . 103

Contents ix

7 A Simple Implementation of Conductor Based on Centralised Control 105
7.1 Centralised control for adaptive processing 107

7.1.1 Model identification in a distributed traffic processing system 107
7.1.2 Control design . 111

7.2 Experiments . 114
7.2.1 Test-bench . 114
7.2.2 Application task: pattern matching 115
7.2.3 Controller behaviour . 116

7.3 Summary . 118

8 Beyond Monitoring: the Token Based Switch 119
8.1 Introduction . 119
8.2 Architecture . 122

8.2.1 High-level overview . 123
8.2.2 Token principles . 125

8.3 Implementation details . 126
8.3.1 Hardware platform . 127
8.3.2 Software framework: FFPF on IXP2850 127
8.3.3 Token Based Switch . 131

8.4 Evaluation . 132
8.5 Discussion . 135

8.5.1 Summary . 136

9 Conclusions 137
9.1 Summary of contributions . 138
9.2 Further research . 139

Bibliography 140

Samenvatting 151

Acknowledgments 155

Curriculum Vitae 157

Chapter 1
Introduction

How could anybody imagine in the late 1960s, when the Internet was born on those 50 Kbps
wires of the ARPANET, that nowadays, less than five decades later, we are using connection
speeds of multiple Gbps over millions of nodes. Although the Internet development started
as a military project, ARPANET, it went to public domain and is currently supported world-
wide from people’s need to share and exchange their knowledge. Currently, there is a huge
amount of information available on the Internet that no one man can assimilate by himself
in a lifetime. Extrapolating from these facts, can anybody imagine how fast our machines
will communicate in the next few decades? What kind of material or immaterial support will
be used by that time for information exchange? How will the ‘network of networks’ (the
Internet) manage/control itself?

Since the Internet was born on the first packet-switched data networks, there has been a
need for traffic processing at the nodes of this network (e.g., for routing). Currently, however,
the need arises for increasingly complex processing at these nodes. For instance, increasing
concerns about security demand efficient scanning of payloads and other needs such as net-
work monitoring. Unfortunately, it seems that the network speed increases at least as fast as
the processing capacity and probably faster [1]. It has often been suggested that parallelism is
the only way to handle future link rates [2–4]. In this thesis, the assumption is that link rates
grow so fast as to exceed the capacity of a single processor. The question we try to address
is how to handle the link rate of the future. To limit the scope of this research to a man-
ageable problem domain, we restrict ourselves primarily to network monitoring applications
(although we also consider other domains).

This chapter briefly summarises the research questions and the approach towards a so-
lution in the first two sections, followed by the current state-of-the-art in traffic monitoring
which will be described in Section 1.3. The thesis statement and argumentation are presented
in Section 1.4. And finally, an overview of the main results is shown in Section 1.5.

2 Introduction

1.1 Problem definition
In recent years there has been a growing gap between the link speeds and the processing
and storage capacity for user traffic that flows through the Internet links. On the one hand,
the link speed improvements are given mostly by the advances in optical fields. On the
other hand, the evolution of processing capacity is much slower than that of link speeds
because it is limited by the (slow) evolution of memory access time technology. Using fast
memory like SRAM instead of DRAM to cope with the memory bottleneck is a feasible
solution for many applications in the computer industry where caching can be aggressively
exploited because the applications exhibit a lot of locality of reference. Unfortunately, most
networking applications offer very little locality of reference, so the benefit of caching are
small. Figure 1.1 illustrates in logarithmic scale, as observed by McKeown [5], a normalised
growth of the trends of aggregated user traffic that passes the routers of a typical backbone in
the Internet 1© versus DRAM memory access time 2©.

Figure 1.1: Trends in technology and traffic.

The memory bottleneck pushes us towards using parallel and distributed systems. Mod-
ern networking equipment often uses distributed systems made of tightly coupled parallel
systems: multi-core. However, when using multi-cores hardware systems we need to design
and develop networking applications that map onto the parallel system. Moreover, when us-
ing different hardware systems for various traffic processing tasks (e.g., a commodity PC for
traffic shaping or audio/video streams processing specialised hardware) we need to address
a heterogeneous distributed processing system. How can we build such a heterogeneous dis-
tributed system for traffic processing?

In addition to the distributed demands, traffic processing systems also face the problem of
changing conditions. For instance, a traffic processing application may be designed and de-
veloped for certain traffic assumptions. However, one day, the traffic exceeds the assumptions
made at design time (e.g., increase in service users, introduction of a new popular service,
or malicious traffic). Therefore, a second demand is to build a ‘distributed traffic processing
system’ that can autonomously adapt to an unforeseen and changing environment. For this
purpose, we need to address the following research questions:

• initial system state (at deployment time): how to compute a proper mapping of the

1.2 Approach 3

system requirements onto a given distributed hardware architecture composed of het-
erogeneous nodes;

• continuous adaptive system (at runtime): how to adjust the distributed processing
system (e.g., by traffic re-routing or tasks re-mapping) according to the environment
changes so that the entire system remains stable and works at an optimal level.

1.2 Approach
In these days, there is an increasingly demand for traffic monitoring at backbone speeds.
Most of the advanced traffic monitoring systems such as network intrusion detection systems
(NIDS) need to process all incoming packets by touching the entire packet byte stream in or-
der to scan for virus signatures, for instance. Moreover, other traffic monitoring systems such
as network intrusion prevention systems (NIPS) need, in addition to the NIDS, to perform on
each packet intensive computations like checksums, packet fragmentation for transmission,
encryption/decryption, etc.

Current, programmable traffic processing systems build on one (or both) of the following
available hardware processing architectures: a general purpose CPU such as Intel Pentium
4, or specifically designed embedded systems for packet processing such as Intel IXP2xxx
network processors. Both architectures present the same major barrier that stands against
providing the processing power required by the traffic monitoring applications: the memory
bottleneck. The processing technology is trying hard to cope with the memory bottleneck by
using parallel threads or cores and multiple memory buses so as to hide the memory latency.

Assuming an average Internet packet size of 250Bytes, Figure 1.2 illustrates the packet
inter-arrival time for current and future link speeds. In other words, a traffic processing
system has to receive, process, and eventually transmit every incoming packet within a certain
time determined by the packet inter-arrival time so as to keep up with the link speed in use.
When the time that the processing system spends on each packet exceeds this packet inter-
arrival time, then the system starts dropping packets because a new packet arrives before the
system finished with the current one.

Figure 1.2: Link versus memory access speeds.

4 Introduction

The packet inter-arrival time chart shown in Figure 1.2 decreases exponentially with the
use of higher link speeds in time. Although the latest official link speed is not in use cur-
rently, the first optical transceiver working at OC-3072 (cca. 160 Gbps) speed was already
announced by IBM on 29 March 2007. Figure 1.2 also illustrates the memory access time
needed to write and read a chunk of 250 data bytes in an external DRAM memory at different
moments in time, as the memory technology evolved and is predicted to evolve by Inphi Cor-
poration [6]. However, when comparing the evolution of the packet inter-arrival time against
those of the memory access time, we can see that there is a growing disparity. Moreover, this
disparity does not include the time a general CPU architecture would need to transfer the data
across other buses such as the PCI express.

‘Parallelism’ is a well known concept that helps to build architectures that cope with the
disparity risen because of a bottleneck in the data process flow. Since the end of the 90s,
network processor architectures specialised in packet processing were built on a ‘tightly cou-
pled’ parallelism concept: multiple cores on the same silicon. The external shared memory
(DRAM) was connected to the multi-core architecture through parallel buses so as to hide
the memory latency as much as possible. However, as shown in Figure 1.2, after a certain
link speed the disparity becomes so large that even a single parallel processing system is not
sufficient and we will show how we can cope with higher speeds by distributing the workload
onto a distributed architecture.

In our context of traffic processing, such a system works as follows: First, there is a
traffic splitter that splits the input traffic in substreams and distributes them on a hierarchy of
possible heterogeneous processing nodes. Next, each processing node performs, in parallel,
specific traffic processing tasks over its received stream. In the end, the processed packets can
be modified and sent out, dropped, or forwarded out as they came in. These actions belong to
the packet processing tasks deployed by a user on the entire distributed system. In addition
to the processing actions, a supervisor host can collect some of the processing results (e.g.,
packet counters, virus occurrence numbers) from all processing nodes. These results are then
available for further investigation by the user (e.g., a system administrator).

Although the idea of a distributed network monitor was first advocated by Kruegel et al.
in May 2002 [7], it was used only in the context of a distributed intrusion detection system
development using one traffic splitter and several other hosts for distributed processing. An-
other usage of the traffic splitting idea was introduced by Charitakis et al. in [8] also in a
NIDS. Although their implementation used a heterogeneous architecture (a network proces-
sor card plugged in a commodity PC), the splitter was used to separate the traffic processing
of an NIDS into two steps: ‘early filtering’ and ‘heavy processing’. The first step was de-
signed to process a few bytes (e.g., packet header fields) so as to slice and load balance the
traffic onto a distributed NIDS sensors. While the ‘early filtering’ step was implemented on a
network processor card, the ‘heavy processing’ step was implemented in several commodity
PCs using the Snort NIDS software. Our approach uses the splitter idea in a generalised
context of a fully distributed processing system composed of processing nodes that form a
processing hierarchy where nodes near the root perform traffic splitting and processing to-
gether, and the nodes near the leaves perform only ‘heavy processing’ tasks. Our architecture
is fully programmable by the way the traffic is split/routed across the distributed nodes and
is designed to support various traffic processing applications and aims to cope with speed,
scalability, and heterogeneous demands.

1.2 Approach 5

The approach proposed in this thesis is illustrated in Figure 1.3 and consists mainly of
a distributed traffic processing system that processes the input traffic, sends out some of the
processed traffic, and interacts with a user. In addition, the illustrated architecture provides
autonomy and self-adaptive properties by using a ‘supervisor’ component that monitors the
system and environment states and re-configures the system so the entire architecture remains
stable regardless of the environment changes (e.g., increase in traffic input, hardware failure).

Supervisor

ReconfigurationMonitoring

Traffic

user

Distributed
Traffic Processing System

Traffic

OUTIN

Figure 1.3: Self-adaptive architecture for traffic processing.

We have chosen to use a distributed system for the purpose of traffic processing for the
following reasons. First, there is an increasing demand for intensive traffic processing appli-
cations such as the Network Intrusion Detection Systems (NIDS) and the Network Intrusion
Prevention Systems (NIPS). Second, running the traffic processing applications at backbone
line rate (10 Gbps and more) is a challenge in itself. Third, special hardware systems called
network processors (NPs) provide hardware parallelism (using multi-cores) to cope with high
bandwidth from a backbone line, but programming them is difficult and the performance is
still insufficient. For instance, even a basic NIDS implementation on a network processor (as
Bos et al. show in [9]) cannot perform more than 1 Gbps. Fourth, the life cycle of the special
purpose hardware for traffic processing (e.g., network processors) gets shorter and shorter.
Moreover, these hardware systems are expensive and a customer often has multiple hardware
system generations in use. We see an increasing demand for using heterogeneous hardware
for processing nodes in a distributed system. Fifth, various traffic processing applications
make use of hardware designed for a specific purpose: network processors for generic traffic
processing such as routing, monitoring, limited payload scanning; custom FPGA designs for
specific processing tasks such as processing video streams; etc. Using a distributed system
is a solution for unifying every specific traffic processing node. Concluding, a distributed
system offers the following benefits: (1) heterogeneity (using a federated architecture com-
posed of various hardware processing system such as commodity PCs, network processors);
(2) scalability (practical because there is no limitation for the size of the system). At the same
time, a distributed approach comes at a price: the increased complexity of the system.

The traffic processing system in which we are interested is designed to work at the net-
work edge of enterprise gateways. Once the system is deployed by an administrator, we
expect it to work non-stop. However, it is well known that there are always peaks in the
network traffic (e.g., rush hours or malicious traffic). Therefore, in addition to the distributed

6 Introduction

property we also propose to use an automatic control system (the ‘supervisor’ in Figure 1.3)
that provides (3) a high availability property, meaning robustness to congestions for unex-
pected environment changes.

1.3 State of the Art in network traffic monitoring

In the following subsections we describe the state-of-the-art problems in traffic monitoring
and the current related technologies.

1.3.1 Network monitoring applications

The explosion of network based applications increases the complexity of the traffic by means
of more and more protocols and their relationships to be analysed by any system administrator
in case of network problems. Every network user produces and consumes traffic data through
the applications he/she uses. For example, in the early days of Internet, most of the traffic
seen at a corporate gateway was produced by e-mail client/server applications and could
be monitored easily by a commodity PC over a 10/100 Mbps connection. At the present
time, the peer-to-peer and web-service applications have risen the traffic bandwidth to such
a level that soon no piece of hardware could monitor, alone, the entire traffic that passes a
corporate backbone. Moreover, there are specific demands for handling high speed traffic
(multi Gbps) in various research fields such as super computing, grid computing, etc. For
instance, a scientist needs to access, remotely, the results of certain physics experiments from
his office across the ocean. This action requests huge amount of data over a (physically) long
connection that bypasses the regular Internet and uses specially demanded fibre optic links.
In order to provide such links on-demand dynamically, we need to monitor the traffic at these
high speeds so as to prevent un-authorised traffic using the requested links.

For a convenient description of the network tools, we classify them in two categories:
high-level and low-level. The latter are run-time libraries and tools for packet processing at
the lowest level (OS kernel or specialised hardware) on top of which the former are built:
network monitoring applications.

High-level: applications

Although there are monitoring applications that need to analyse the full backbone traffic such
as network intrusion detection or prevention systems, there are also monitoring applications
that are interested in only part of the traffic. Such tools that monitor only part of the traffic
are: network debugging that answer to questions like ‘what is the performance between two
clients?’, traffic accounting tools that identify ‘what traffic is p2p’, etc.

Traffic monitoring applications can diagnose network problems by protocol analysis. For
instance, a performance analysis of real-time streams between two nodes may take into ac-
count the following parameters:

• total delay: it is given by the network latency and usually is a stable value for any
connection;

1.3 State of the Art in network traffic monitoring 7

• bandwidth consumption: it may be shown by the average, or maximum value or, the
peak burst value of the moving average bit rate;

• jitter: distribution of packet inter-arrival time determines how many packets are de-
layed beyond the jitter buffer;

• packet loss: determine the effect on quality due to packet loss for real-time streams.

Traffic monitoring provides critical information for internet service providers (ISPs) look-
ing to optimise network speed, content delivery and performance of subscribed services on
the network. Advanced reporting also helps ISPs categorise unidentified traffic for increased
security from unidentified P2P traffic, for instance.

In the end, we see an increasing demand for a monitoring system that supports multiple
monitoring applications processing together the incoming traffic within the same hardware
due to speed demands and cost reasons.

For example, multiple monitoring applications (e.g., snort [10], tcpdump [11], ntop [12],
CoralReef [13]) access identical or overlapping sets of packets. Therefore, we need tech-
niques to avoid copying a packet from the network device to each application that needs it.
For instance, the FFPF tool [14] provides different ‘copy’ semantics so as to minimise the
packet copying. The most common mechanism is using shared buffers. As an example, the
FFPF implementation uses a large shared packet buffer (where all received packets are stored)
and one small index buffer for each application. Applications use the local indexes to find the
interesting packets in the shared buffer. One of the copy semantic features available in FFPF
is called ‘copy-once’. In other words, the system copies only once the received packet from
NIC to the host’s shared memory. Usually this copy is transparently performed by the network
card itself through DMA channels. Another copy semantic provided by FFPF is ‘zero-copy’.
In zero-copy, every incoming packet is stored in a large shared buffer within the network
card and the packet index is provided to each monitoring application running locally in the
card or remotely in the host. Then the application uses this packet index to point to the main
packet data from the card’s buffer and checks the fields it is interested in. There is a trade-off
between the usage of zero-copy or copy-once, depending on the application demands and
on the available hardware support. For instance, when we have monitoring applications that
are interested in processing the entire stream of incoming packets (e.g., NIDS) it is feasible
to use copy-once. However, using zero-copy may be better when the most processing takes
place on the card and only statistics are sent to the host, or when the host accesses packets ir-
regularly and only for checking a few bytes of the packet (e.g., various protocol performance
analysers).

One of the most intensive traffic processing applications is network intrusion detection/pre-
vention systems because they usually process the full traffic (entire packet payload). In In-
formation Security, intrusion detection is “the act of detecting actions that attempt to com-
promise the confidentiality, integrity or availability of a resource” [15]. Intrusion detection
does not, in general, include prevention of intrusions. In other words, a network intrusion
detection system (NIDS) detects computer systems threats by means of malicious usage of
the network traffic. A NIDS works by identifying patterns of traffic presumed to be malicious
that cannot be detected by conventional firewalls such as network attacks against vulnerable
services, data driven attacks on applications, etc. A network intrusion prevention system
(NIPS) works differently from IDS in the sense that it analysis each packet for malicious

8 Introduction

content before forwarding it and drops packets sent by an intruder. To do so, the IPS has
to be physically integrated into the network and needs to process the actual packets that run
through it, instead of processing copies of the packets at some place outside the network.
Therefore, independent of the way they are built, all IPSes introduce the same problem: a
decrease in performance (e.g., inter-packet delay) of the network they try to protect.

A lightweight network intrusion detection system is Snort [10]. Snort is the most widely
deployed intrusion detection and prevention technology worldwide and has become the de
facto standard for the industry. Snort is an open-source software capable of performing real-
time traffic analysis and packet logging on IP networks. It can perform protocol analysis,
content searching/matching and can be used to detect a variety of attacks and probes, such as
buffer overflows, stealth port scans, CGI attacks, OS fingerprinting attempts, and much more.
Snort uses a flexible rules language to describe traffic that it should collect or pass, as well
as a detection engine that uses a modular plugin architecture. Snort has a real-time alerting
capability as well as alerting mechanisms for syslog, or a user specified file. However, Snort
copes fairly well with low speed links, but it cannot handle multi-gigabit link rates.

Other intensive traffic processing applications such as transcoders are currently adjust-
ing the encoded video streams (e.g., JPEG-2000, MPEG-4) to the unreliable transmission
medium which uses fast and low transmission-delay protocols such as UDP. On the one hand,
the encoded video streams are sensitive to the arrival order of consequent packets which com-
pose video frames. On the other hand, a best effort protocol such as UDP does not offer any
guarantee of the packet arrival correctness. Therefore, the encoded multimedia stream needs
to be ‘transcoded’ into a more appropriate format stream for the transmission capabilities.
For example, a transcoding from the layered representation in which any frame loss brings
a huge quality drop (e.g., video de-synchronisation) to multiple distinct descriptions of the
source which can be synergistically combined at the other end would enhance the quality [16].
Transcoding may also use algorithms such as Forward Error Correction (FEC) which requires
intensive computation in real-time and thus, we see the need for parallel and distributed ar-
chitectures in order to provide the required processing power for the current and the future
encoded media streams.

Other intensive traffic processing applications are those that require encryption compu-
tation. For example, network oriented applications which require specific networks such as
direct end-to-end fibre interconnection (e.g., grid computation, corporate database transfers)
need to provision a safe authentication for the dynamically demanded fibres. Therefore, en-
cryption per-packet is sometimes used to provide the end-to-end paths over multiple network
domains where different policy applies [17]. Again, parallel and distributed architectures
help to bring the required traffic processing power.

Low-level: run-time libraries

Most of the high-level applications are built on top of a few, common, low-level libraries or
tools. In this section, we briefly describe the evolution of the packet filtering tools and their
techniques.

The Berkeley Packet Filter (BPF) [18] was one of the first generation of packet filter-
ing mechanism. BPF used a virtual machine built on a register-based assembly language
and a directed control flow graph. However, BPF lacks in an efficient filter composition
technique because the time required to filter packets grows linearly with the number of con-

1.3 State of the Art in network traffic monitoring 9

catenated filters and hence, BPF does not scale well with the number of active consumers.
MPF [19] enhances the BPF virtual machine with new instructions for demultiplexing to mul-
tiple applications and merges filters that have the same prefix. This approach is generalised by
PathFinder [20] which represents different filters as predicates of which common prefixes
are removed. PathFinder is interesting in that it is well suited for hardware implementation.
DPF [21] extends the PathFinder model by introducing dynamic code generation. BPF+ [22]
shows how an intermediate static single assignment representation of BPF can be optimised,
and how just-in-time-compilation can be used to produce efficient native filtering code. Like
DPF, the Windmill protocol filters [23] also targets high performance by compiling filters
in native code. And like MPF, Windmill explicitly supports multiple applications with over-
lapping filters. All of these approaches target filter optimisation especially in the presence
of many filters. Nprobe [24] aims at monitoring multiple protocols and is therefore, like
Windmill, geared towards applying protocol stacks. Also, Nprobe focuses on disk bandwidth
limitations and for this reason captures as few bytes of the packets as possible. In contrast,
FFPF [14] has no a priori notion of protocol stacks and supports full packet processing.

The current packet filtering generation, so called packet classification, uses advanced
searching algorithms for rules matching. Packet classification is currently used in many traf-
fic processing tools such as traffic monitoring, routers, firewalls, etc. While in the early days
of packet filtering, tools like iptables used a matching algorithm which traverses the rules
in a chain linearly per packet. However, nowadays, when many rules have to be checked, a
linear algorithm is not suitable anymore. There are many solutions that may use, for instance,
geometric algorithms, heuristic algorithms, or specific hardware accelerated searching algo-
rithms. For instance, nf-HiPAC [25] offers a packet classification framework compatible
with the known iptables. An ongoing research effort in a packet classification using regular
expressions is described in [26, 27].

We note that the most popular high-level tools in use currently (e.g., tcpdump, ntop,
snort) are built on top of the pcap library (libpcap) [28]. libpcap provides a cross-
platform framework for low-level network monitoring. We notice that libpcap uses a packet
filtering mechanism based on the BSD packet filter (BPF).

1.3.2 Specialised hardware for network monitoring
The current demands of monitoring high speed network links such as backbone links and the
increasing speed of those links beyond the processing capabilities of nowadays’ commodity
PCs opened the market for specialised architectures for traffic processing. Such architec-
tures uses specialised hardware systems that accelerate specific packet processing functions
(e.g., hashing, encryption, searching algorithms) similarly to the graphic accelerators in the
1990s. Currently, the available hardware technology for traffic processing, namely network
processors, make use of parallelism to cope with the increasing gap between the link and the
memory access speeds.

Filtering and processing in network cards was initially promoted by some Juniper
routers [29] and the Scout project [30]. In programming Intel IXP network processors
(IXPs), the most notable projects are NPClick [31] and netbind [32]. Although NPClick
and netbind introduce interesting programming models, they were not designed for moni-
toring.

Although the network processors are the current state-of-the-art of specialised technology

10 Introduction

for traffic processing, they are surpassed by FPGA technology for specific intensive computa-
tion such as custom encryption algorithms, or other mathematically based encoders/decoders.
FPGAs are fully programmable chips and suitable for experimental software development in
the hardware until an ASIC chip may be deployed.

SpeedRouter [33] is one of the first FPGA-based network processor, but as such, it may
require more user programming than most of the network processors (NPs). While the device
provides basic packet-forwarding functions, it is up to the user to program functions such as
key extraction and packet modification. SpeedRouter was designed for a cut-through data
path, as opposed to the store-and-forward nature of most pipelined architectures met in NPs.

DAG cards [34] are another example of NICs based on FPGA technology. They are de-
signed especially for traffic capture at full link rate. DAG cards make use of FPGA parallelism
to be able to process the incoming traffic at high speeds, they offer accurate time-stamp using
GPS signals (7.5ns resolution), and transfer the full traffic directly to the host PC’s memory
for a further processing/storing.

The value seen in FPGA prototyping for emulating ASIC designs is recognised across a
growing spectrum of design applications. For instance, Shunt [35] is an FPGA-based proto-
type for an Intrusion Prevention System (IPS) accelerator. The Shunt maintains several large
state tables indexed by packet header fields, including IP/TCP flags, source and destination
IP addresses, and connection tuples. The tables yield decision values that the element makes
on a packet-by-packet basis: forward the packet, drop it, or divert it through the IPS. By
manipulating table entries, the IPS can specify the traffic it wishes to examine, directly block
malicious traffic, and ‘cutting through’ traffic streams once it has had an opportunity to ‘vet’
them, all on a fine-grained basis.

Using reconfigurable hardware for increased packet processing efficiency was previously
explored in [36] and [37]. Our architecture differs in that it provides explicit language support
for this purpose. As shown in [38], it is efficient to use a source-to-source compiler from a
generic language (Snort Intrusion Detection System) to a back-end language supported by
the targeted hardware compiler (e.g., Intel µEngineC, PowerPC C, VHDL). We propose a
more flexible and easy to use language as front-end for users. Moreover, our FPL language
is designed and implemented for heterogeneous targets in a multi-level system.

Offloading the traffic handling down to the NIC

The current hardware technology contributes to improve the way the traffic is processed in
a commodity PC by offloading intensive computations from general purpose CPU down to
the NIC card. For instance, looking at the workload that a general purpose CPU spends on
processing the network traffic in any user PC connected to a network, it is known that the
TCP protocol requires the most CPU time spent on traffic handling before the data arrives
at the application. Hence, the first ‘protocol accelerators’ arrived on the market are: TCP
Offload Engine (TOE) and TCP segmentation offloading (TSO).

TCP Offload Engine (TOE) is the name for moving part or all of the TCP/IP protocol
processing down to a specialised NIC. In other words, by moving of the TCP/IP processing to
a separate dedicated controller off the main host CPU, the overall system TCP/IP performance
can be improved. Currently, the developer community is reluctant to adopt TOE, as we will
see shortly.

In addition to the protocol overhead that TOE addresses (e.g., sliding window calculations

1.3 State of the Art in network traffic monitoring 11

for packet acknowledgment and congestion control, checksum and sequence number calcu-
lations), it can also address some architectural issues that affect many host based endpoints.
For example, a TOE solution, located on the network interface, is placed on the other side
of the (slow) PCI bus from the CPU host so it can address some I/O efficiency issues. Thus
the data needed to cross the TCP connection can be sent to the TOE from the CPU across the
PCI bus using large data burst sizes with none of the smaller TCP packets having to traverse
the PCI bus.

On the other hand, there are several reasons to consider the full network stack offload
(TOE) of little use, as also observed by J. Mogul [39] and summarised as follows:

• Security updates: A TOE network stack is proprietary source firmware. System ad-
ministrators have no way to fix security issues that arise;

• Hardware-specific limits: TOE NICs are more resource limited than the overall com-
puter systems. This is most readily apparent under load factors which arise when trying
to support thousands of simultaneous connections. TOE NICs often simply do not have
the memory resources to buffer thousands of connections;

• Dependency on vendor-specific tools: In order to configure a TOE NIC, hardware-
specific tools are usually required. This dramatically increases support costs.

The TCP segmentation offloading (TSO) features can improve performance by offloading
some TCP segmentation work to the adapter and cutting back slightly on bus bandwidth. For
instance, when large chunks of data are to be sent over a computer network, they need to be
first broken down into smaller segments that can pass through all the network elements like
routers and switches between the source and destination computers. This process is referred
to as segmentation. Segmentation is often done by the TCP protocol in the host computer.
Offloading this work to the network card is called TCP segmentation offload (TSO).

However, despite its benefits, TSO has also several drawbacks. One drawback is that once
a TSO capability was developed to work in an OS vendor’s software, the NIC hardware and
driver modifications that allow offloading will not work with other OSes. A second drawback
is that the offload capability is one-way (transmit) only. A third drawback is that the host
cannot offload a data block larger than the remote endpoint’s receive window size.

1.3.3 Storing traffic at high-speeds

Traffic monitoring by means of traffic capture requires also storing functionality. The received
traffic from a network tap needs to be transferred to disks for a further detailed analysis.
Support for high-speed traffic capture is provided by OCxMon [40]. Like the work conducted
at Sprint [41], OCxMon supports DAG cards to cater to multi-gigabit speeds [34]. Besides
using a host PC for traffic capture from a high speed link onto a storage disk, another research
area is to use custom FPGA designs as a glue between fibre optic for traffic input and fast
serial data lines (e.g., SATA) for output to storage disks. Such systems are currently in use
by Storage Area Network (SANs) systems [42].

12 Introduction

1.4 Traffic processing at high link rates
In this section we present the speed problems that arises when more and more tools want to
process packets at higher and higher speeds as shown in the previous sections.

Figure 1.4 shows, in logarithmic scale, the trends in the technologies related to networking
as found by McKeown [5]. We see the smallest technology improvement in the DRAM
memory access time (chart 1©). We can also see that according to Moore’s Law, processor
complexity (and hence the performance) is constantly growing at mostly the same rate as the
line capacity until year 1995 (chart 2©). By that time, the optical revolution in wave division
multiplexing (DWDM) came together with another prophecy: Gilder’s law [1]. George Gilder
predicted that “network bandwidth would triple every year for the next 25 years” (chart 3©).
The most rising chart, user traffic (chart 4©), is constantly growing since the early days of the
Internet, and sustained by the web innovation in beginning of 1990s, by doubling each year.

Figure 1.4: Trends in technology, routers and traffic.

Considering the disparity between memory access time (chart 1©) and processors speed
(chart 2©), we can say that accessing memory becomes twice as expensive every 18 months [5].
In this context, a generic CPU uses bigger caches and better pre-fetching algorithms, and net-
working uses more processing cores in order to hide the memory latency because networking
cannot offer the locality of reference of the processed data on which a caching technology
needs to work.

For example, as mentioned earlier, the networking industry may use specifically designed
processors called network processors (NPs). NPs use a highly parallelised internal architec-
ture (typically more than 8 cores), several memory types (e.g., SRAM, DRAM) organised in
multiple banks and interconnected through parallel buses. NPs use multiple cores specialised
in packet processing in order to offer flexibility (they support many applications and deal
with protocol and standards changes), and reduce risks (bugs are easier to fix in software
than in hardware). NPs try hard to hide memory latency by means of asynchronous memory
access because conventional caching is not suitable for networking applications (no temporal
or spatial locality, cache misses decrease throughput).

Summarising, the bottleneck moved from processor clock speeds down to the memory
latency. In this context, the most important issues in packet processing are the answers to

1.5 Thesis overview 13

‘how the packets come in and get out of a chip and memory’; computation becomes a side
issue.

The current technologies provide scalability in traffic processing by means of tightly-
coupled parallelism (multi-core). Although there are powerful packet processing systems
(e.g., network processors) that perform traffic processing applications at high-speed links in
use now, we believe that application demands increase beyond the processing ability of only
one stand-alone, single processing node system. Moreover, new hardware components best
specialised for parts of the processed traffic (FPGAs) become available. The thesis of this
dissertation is that processing traffic at future link rates is facilitated by parallel processing
tasks either on single node, or for even higher rates, using multiple nodes in a heterogeneous
distributed architecture.

Using distributed system addresses, at a minimum, two current demands. The first de-
mand is scalability. More work needs to be done in the same time by only one node (e.g.,
traffic processing at multi-gigabit rates needed at the network edges in large community ar-
eas). The second demand is the use of heterogeneous systems shown by the possibility to use
specialised systems for various and different traffic functions (e.g., IDS, generic traffic moni-
toring, video streams processing), or to use different hardware generations for the purpose of
traffic processing.

One can say that using a parallel machine (e.g., many Pentium cores on the same die)
can give the same processing power as a distributed system could do, but at a smaller de-
velopment price (e.g., using better development environments and known trade-offs from the
generic symmetric multi-processing research domain). However, getting good performance
from parallel machines requires careful attention to data partitioning, data locality, and pro-
cessor affinity. When using distributed systems, we care less about such low-level application
partitions, and we focus on higher level issues like how to map the application on multiple
nodes so that it processes the traffic optimally. For instance, in a processing hierarchy, the
first nodes may offload the processing tasks of the last (leaf) nodes by pre-processing part of
the entire task. For instance, a distributed intrusion detection system can use heterogeneous
processing nodes such as old generation network processors for traffic splitting, and several
state-of-the-art network processors for deep traffic inspection.

In addition to a distributed traffic system we show that we need systems that are able to
manage themselves because the complexity of the systems (and applications) grows in time
and the environment becomes more and more hostile at the same time. For example, when the
traffic increases beyond the processing capacity of one node from the processing hierarchy
then a supervisor may decide to offload the affected node by moving the task onto another
node (having more resources) or by replicating the troubled task over multiple nodes.

1.5 Thesis overview
The thesis is outlined as follows:

Chapter 2 (Background) gives a brief presentation of the FFPF software framework used
(and extended) for providing proof of concepts during this research. The text in this section
is based on the FFPF paper of which the author of this thesis was a co-author. The chap-
ter then describes the state-of-the-art hardware, network processors, that are largely used in
networking applications at high-speeds at the present time.

14 Introduction

Chapter 3 (FPL: a Resource Constrained Language for Packet Processing) introduces
the FPL language and the FPL compiler as a support added to the FFPF software framework.
The FPL language is a new packet processing language proposed as a means of obtaining
the levels of flexibility, expressive power, and maintainability that such a complex packet
processing system requires.

Parts of this chapter have been published in the Proceedings of the 6th USENIX Sympo-
sium on Operating Systems Design (OSDI’04).

Chapter 4 (FPL Run-time Environments) presents the run-time extensions made to the
FFPF packet processing framework in order to support the FPL applications onto several
hardware architectures in use in these days: commodity PCs, network processors, and FP-
GAs. Although the run-time environments make use of tightly coupled parallelism through
multi-cores, they are limited to a single-node architecture.

Parts of this chapter have been published in the Proceedings of the 5th Conference of the
Embedded Computer Systems: Architectures, MOdeling, and Simulation (SAMOS’05) and
in the IEEE Proceedings on IP Operations & Management (IPOM’04).

Chapter 5 (Distributed packet processing in multi-node: NET-FFPF) introduces the dis-
tributed traffic processing concepts that form some of the key components in the extended
multi-node FFPF framework. This chapter presents the distributed network processing en-
vironment and the extensions made to the FPL programming language, which enable users
to process network traffic at high speeds by distributing tasks over a network of commodity
and/or special purpose devices such as PCs and network processors. A task is distributed
by constructing a processing tree that executes simple tasks such as splitting traffic near the
root of the tree while executing more demanding tasks at the lesser-travelled leaves. Explicit
language support in FPL enables us to efficiently map a program to such a tree.

Parts of this chapter have been published in the Proceedings of the 4th International
Conferences on Networking (Networking’05).

Chapter 6 (Control for Distributed Traffic Processing: ConDucTor) introduces a control
architecture for distributed traffic processing systems. The control architecture proposes a
control loop that monitors and adjusts each processing node of the entire distributed system.
In order to achieve the stability goal, the controller re-maps the application tasks from a con-
gested node to another and re-distributes the traffic across the distributed processing hierarchy
accordingly.

Chapter 7 (A Simple Implementation of Conductor Based on Centralised Control) presents
an implementation of the centralised control approach applied to our distributed traffic pro-
cessing system.

Chapter 8 (Case study: Token Based Switch) presents a case study in which the FPL com-
piler and the extended run-time version of the FFPF framework described in Chapter 3 are
applied to build a specific application: traffic authentication at multi-gigabit speeds using
hardware encryption support.

Parts of this chapter have been published in the Proceedings of the 6th International
Conferences on Networking (Networking’07).

Chapter 9 (Conclusions) closes the thesis with a summary and discussion of the presented
research topics, and concludes with some suggestions for future research.

Chapter 2
Background

In this chapter, we introduce the software framework – Fairly Fast Packet Filter (FFPF) – and
the hardware – IXP network processors – used as a background support for the development
of the tools needed to prove the concepts of parallel and distributed traffic processing.

2.1 The FFPF framework
Most network monitoring tools in use today were designed for low-speed networks under the
assumption that computing speed compares favourably to network speed. In such environ-
ments, the costs of copying packets to user space prior to processing them are acceptable. In
today’s networks, this assumption is no longer true. The number of cycles available to pro-
cess a packet before the next one arrives (the cycle budget) is minimal. The situation is even
worse if multiple monitoring applications are active simultaneously, which is increasingly
common as monitors are used for traffic engineering, intrusion detection, steering schedulers
in GRID computing, etc.

In this section, we discuss the implementation of the fairly fast packet filter (FFPF) frame-
work. FFPF introduces a novel packet processing architecture that provides a solution for fil-
tering and classification at high speeds. FFPF has three ambitious goals: speed (high rates),
scalability (in number of applications) and flexibility. Speed and scalability are achieved by
performing complex processing either in the kernel or on a network processor, and by min-
imising copying and context switches. Flexibility is considered equally important, and for
this reason, FFPF is explicitly extensible with native code and allows complex behaviour to
be constructed from simple components in various ways.

On the one hand, FFPF is designed as an alternative to kernel packet filters such as
CSPF [43], BPF [18], mmdump [44], and xPF [45]. All of these approaches rely on copying
many packets to userspace for complex processing (such as scanning the packets for intru-
sion attempts). In contrast, FFPF permits processing at lower levels and may require as few
as zero copies (depending on the configuration) while minimising context switches. On the
other hand, the FFPF framework allows one to add support for any of the above approaches.

FFPF is not meant to compete with monitoring suites like Coralreef that operate at a

16 Background

higher level and provide libraries, applications and drivers to analyse data [13]. Also, un-
like MPF [19], Pathfinder [20], DPF [21] and BPF+ [22], the FFPF goal is not to optimise
filter expressions. Indeed, the FFPF framework itself is language neutral and currently sup-
ports five different filter languages. One of these languages is BPF, and an implementation of
libpcap [28] exists, which ensures not only that FFPF is backward compatible with many
popular tools (e.g., tcpdump, ntop, snort [11, 46]), but also that these tools get a signif-
icant performance boost (see the FFPF evaluation on Section 4.4). Better still, FFPF allows
users to mix and match packet functions written in different languages.

To take full advantage of all features offered by FFPF, we implemented two languages
from scratch: FPL-1 (FFPF Packet Language 1) and its successor, FPL. The main difference
between the two is that FPL-1 runs in an interpreter, while FPL code is compiled to fully
optimised native code. The FPL-1 language is briefly illustrated in Section 2.1.2 and the FPL
language is described in Section 3.1 as a part of the thesis work.

The aim of FFPF is to provide a complete, fast, and safe packet handling architecture that
caters to all monitoring applications in existence today and provides extensibility for future
applications.

Some contributions of the FFPF framework are summarised below.

• We generalise the concept of a ‘flow’ to a stream of packets that matches arbitrary user
criteria;

• Context switching and packet copying are reduced (up to ‘zero copy’).

• We introduce the concept of a ‘flow group’, a group of applications that share a com-
mon packet buffer;

• Complex processing is possible in the kernel or NIC (reducing the number of packets
that must be sent up to userspace), while Unix-style filter ‘pipes’ allow for building
complex flow graphs;

• Persistent storage for flow-specific state (e.g., counters) is added, allowing filters to
generate statistics, handle flows with dynamic ports, etc.

2.1.1 The FFPF architecture
The FFPF framework can be used in userspace, the kernel, an IXP2xxx network processor, a
custom FPGA hardware, or a combination of the above. As network processors and FPGAs
are not yet widely used, and (pure) userspace FFPF does not offer many speed advantages,
the kernel version is currently the most popular. For this reason, we use FFPF-kernel to
explain the architecture here, and describe the network processor and FPGAs versions later
in Sections 4.2 and 4.3, respectively.

To introduce the architecture and the terminology, Figure 2.1 shows an example scenario
in which two applications (A and B) monitor the network. We assume, for illustration pur-
poses, that they are interested in overlapping ‘flows’, with the definition of ‘flow’ as follows.
A flow is a kind of generalised socket which is created and closed by an application in or-
der to receive/send a stream of packets, where the packets match a set of arbitrary criteria.
Examples include: ‘all packets in a TCP connection’, ‘all UDP packets’, ‘all UDP packets

2.1 The FFPF framework 17

containing a worm signature plus all TCP SYN packets’, etc. A flow is captured by a set of
interconnected filters, where a filter is defined as a processing engine that at the very least
takes a stream of packets as input and generates a new (possibly empty) stream of packets
as output (in addition, it may produce statistics and perform sophisticated tasks). Connected
filters form ‘processing graphs’ through which packets flow.

PBuf
(shared by
A and B)

application A application B

1 2 3 4 5 MBuf(f)MBuf(f)

IBuf(f)

userspace

filter-specific
memory-array

A B
kernel

filter A

filter B

extensions

FFPF kernel module

packet sources

4 5

23 1 3

6

A 2 IBuf(f)B 2

Figure 2.1: The FFPF architecture

The idea behind FFPF is simple (see Figure 2.1). In the kernel users load sets of connected
filters that process packets 4©. Strictly speaking, a filter is an instantiation of a filter class,
and may perform more complex tasks than just filtering (e.g., it may generate statistics). The
precise nature of the filters will be discussed in detail in Section 2.1.1. If a packet is classified
by filter A as ‘interesting’, and it is not yet in a shared circular buffer (PBuf), it is pushed in
PBuf, while a pointer to the packet is placed in filter A’s index buffer (IBufA). If B is also
interested in the packet, the packet is not copied, but rather another pointer to the packet is
placed in B’s index buffer (IBufB). Applications use the index buffers of filters to find the
packets in which they are interested in PBuf. Clearly, proper management of the buffers is
needed, but we skip the details in this section and return to this issue in Section 4.1.1. The
third buffer, MBuf, is used for exchanging information between the application and the filter
code in kernel space or to store persistent state. For instance, the expression may use it to
store statistics.

All buffers are memory mapped, so in addition to avoiding copies to multiple applications,
we also avoid copies between kernel and userspace. Depending on the language that is used
for the filters, a filter expression may call extensions in the form of ‘external functions’ loaded
either by the system administrator or the users themselves 5©. External functions contain
highly optimised native implementations of operations that are too expensive to execute in a
‘safe’ language (e.g., pattern matching, generating MD5 message digest).

Packets enter FFPF via one of the packet sources 6©. Currently, three sources are defined.
One is attached to the Linux netfilter framework. The second grabs packets even before
they reach netfilter at the kernel’s netif_rx() function. The third packet source captures
packets from a network processor [47,48] and will be described in more detail in Section 4.2.
Due to FFPF’s modularity, adding more packet sources is trivial. In addition, depending on

18 Background

the flow expressions, IPv4 and IPv6 sources can be mixed.
We will now summarise the relevant aspects of the FFPF architecture.

Flows

As said before, a key concept in FFPF is the notion of a flow. Flows are simply defined as a
subset off all network packets. This definition is broader than the traditional notion of a flow
(e.g., a ‘TCP connection’) and encompasses for instance all TCP SYN packets or all packets
destined for the user with UID 0. To accommodate for such diverse flows, FFPF, instead of
specifying filters itself, allows for varied selection criteria through extensions. This makes
it more versatile than traditional flow accounting frameworks (e.g., NetFlow or IPFIX [49]).
Furthermore, FFPF filters can be interconnected into a graph structure similar to that of the
Click [50] router for even more fine-grained control. A filter embedded in such a graph is
called a flowgrabber.

Grouping

The flowgroup constitutes a second key concept in FFPF. Flowgroups allow multiple flows
to share their resources. As resource sharing poses a security hazard, group membership is
decided by an application’s access constraints. Network packets can be shared safely between
all applications in a single flowgroup. Whenever a packet is accepted by one or more filters
in a flowgroup, it is placed in a circular packet buffer (PBuf) only once, and a reference to
this packet is placed in the individual filters’ index buffers (IBuf). In other words, there is no
separate packet copy per application. As buffers are memory mapped, there is no copy from
kernel to userspace either. For instance, if a flow A is in the same flow group as another flow
B it is allowed to read all packets captured by B. As a result, the packets can be read from
the same buffer and need not be copied to each application individually.

Filter expressions

FFPF is language neutral, which means that different languages may be mixed. As mentioned
earlier, we currently support five languages: BPF, FPL-1, FPL, C, and OKE-Cyclone. Sup-
port for C is limited to root users. The nature of the other languages will be discussed in more
detail in Section 4.1. Presently, we only sketch how multiple languages are supported by the
framework.

Figure (2.2.a) shows an example with two simplified flow definitions, for flows A and B,
respectively. The grabber for flow A scans web traffic for the occurrence of a worm signature
(e.g., CodeRed) and saves the IP source and destination addresses of all infected packets. In
case the signature was not encountered before, the packet is also handed to the application.
Flow grabber B counts the number of fragments in web traffic. The first fragment of each
fragmented packet is passed to the application.

There are a few things that we should notice. First, one of these applications is fairly
complex, performing a full payload scan, while the other shows how the state is kept re-
gardless of whether a packet itself is sent to userspace. It is difficult to receive these flows
efficiently using existing packet filtering frameworks, because they either do not allow com-
plex processing in the kernel, or do not keep persistent state, or both. Second, both flows may

2.1 The FFPF framework 19

end up grabbing the same packets. Third, the processing in both flows is partly overlapping:
they both work on HTTP packets, which means that they first check whether the packets are
TCP/IP with destination port 80 (first block in Figure 2.2.a). Fourth, as fragmentation is rare
and few packets contain the CodeRed worm, in the common case there is no need for the
monitoring application to get involved at all.

[BPF]
is IP/TCP/HTTP?

[FPL-2]
contains CodeRed?

[FPL-2]
is Fragment?

[FPL-1]
save IP<src,dest>

[FPL-2]
incr FragCount

[FPL-1]
if (first) return pkt

[FPL-2]
if (first) return pkt

[FPL-2]
stmt1 -> stmt2 -> stm3

[FPL-1]
Create hashtable

[C]
find ’top-10’ in table

(a) (b)

B B B

A A A

A B+

Figure 2.2: (a) combining different languages in two flows (A and B), (b) calling external functions
from a single flow

Figure (2.2.a) shows how these two flows can be accommodated. A common BPF filter
selecting HTTP/TCP/IP packets is shared by both flows. They are connected to the flow-
specific parts of the data paths. As shown in the figure, the data paths are made up of small
components written in different languages. The constituent filters are connected in a fashion
similar to UNIX pipes. Moreover, a pipe may be ‘split’ (i.e., sent to multiple other pipes, as
shown in the figure) and multiple pipes may even be ‘joined’. Again, in UNIX fashion, the
framework allows applications to create complex filter structures using simple components.
A difference with UNIX pipes, however, is the method of connection: FFPF automatically
recognises overlapping requests and merges the respective filters, thereby also taking care of
all component interconnects.

Each filter has its own IBuf, and MBuf, and, once connected to a packet source, may
be used as a ‘flow grabber’ in its own right (just like a stage in a UNIX pipe is itself an
application). Filters may read the MBuf of other filters in their flow group. In case the same
MBuf needs to be written by multiple filters, the solution is to use function-like filter calls
supported by FPL-1 and FPL, rather than pipe-like filter concatenation discussed so far. For
filter call semantics, a filter is called explicitly as an external function by a statement in an
FPL expression, rather than implicitly in a concatenated pipe. An explicit call will execute
the target filter expression with the calling filter’s IBuf and MBuf. An example is shown in
Figure (2.2.b), where a first filter call creates a hash table with counters for each TCP flow,
while a second filter call scans the hash table for the top-10 most active flows. Both access
the same memory area.

Construction of filter graphs by users

FFPF comes with a few constructs to build complex graphs out of individual filters. While the
constructs can be used by means of a library, they are also supported by a simple command-
line tool called ffpf-flow. For example, pronouncing the construct ‘->’ as ’connects to’
and ’|’ as ’in parallel with’, the command below captures two different flows:

./ffpf-flow "(device,eth0) | (device,eth1) -> (sampler,2,4) -> \

20 Background

(FPL-2,"...") | (BPF,"...") -> (bytecount,,8)"
"(device, eth0) -> (sampler,2,4) -> (BPF,"...") -> (packetcount,,8)"

The top flow specification indicates that the grabber should capture packets from devices
eth0 and eth1, and pass them to a sampler that captures one in two packets and requires
four bytes of MBuf. Next, sampled packets are sent both to an FPL filter and to a BPF filter.
These filters execute user-specified filter expressions (indicated by ‘. . .’), and in this example
require no MBuf. All packets that pass these filters are sent to a bytecount ‘filter’ which stores
the byte count statistic in an MBuf in an eight byte counter. The counter can be read directly
from userspace, while the packets themselves are not passed to the monitoring application.
The second flow has a prefix of two ‘filters’ in common with the first expression (devices are
treated as filters in FFPF), but now the packets are forwarded to a different BPF filter, and
from there to a packet counter.

As a by-product, FFPF generates a graphical representation of the entire filter-graph. A
graph for the two flows above is shown in Figure 2.3. For illustration purposes, the graph
shows few details. We just show (a) the configuration of the filter graph as instantiated by
the users (the ovals at the top of the figure), (b) the filter instantiations to which each of
the component filters corresponds (circles), and (c) the filter classes upon which each of the
instantiations is based (squares). Note that there is only one instantiation of the sampler, even
though it is used in two different flows. On the other hand, there are two instantiations of the
BPF filter class. The reason is that the filter expressions in the two flows are different.

Figure 2.3: Auto-generated diagram of filter graph

The ability to load and interconnect high-speed packet handlers in the kernel was also
explored by Wallach et al., with an eye on integrating layer processing and reducing copy-
ing [51]. Similarly, Click allows programmers to load packet processing functions consisting

2.1 The FFPF framework 21

of a configuration of simple elements that push (pull) data to (from) each other [50]. The same
model was used in the Corral, but with support for third parties that may add and remove el-
ements at runtime [52]. The filter concatenation and support for a hierarchy that includes
IXP1200s resembles paths in the Scout project [30]. Scout was not designed for monitoring
per se and, hence, does not directly provide some of FFPF’s features such as new languages
or flow groups. Mono-lingual kernel-programming projects that also do not support these
features include FLAME [53] and Open Kernel Environment [54]) which provide high speed
processing by loading native code (compiled Cyclone) in the kernel.

2.1.2 The FPL-1 language
As noticed before, the FFPF framework was designed to support multiple packet processing
languages such as BPF [18] and FPL. FPL-1 is a new language that allows to write ‘filtering’
expressions which can be injected in the FFPF runtime. FPL-1 was one of the first attempt
towards a packet processing language that combines the advantages of existing languages and
also allows future extensions. The FPL-1 language elements are described below.

Filter expressions

Filtering means that any packet matching the filter will be added to the FFPF internal circular
buffer. Expressions are postfix and relatively simple affairs, for example:

(subexpr1)(subexpr2)||(subexpr3)&&
This will evaluate to true as follows: subexpr3 is true and either subexpr1 or subexpr2 is

true.

Operators

Operators allowed are:
1. ’&&’, ’||’
2. ’&’, ’|’
3. ’<’, ’>’, ’<=’, ’>=’, ’=’, ’!=’
4. ’+’, ’-’, ’*’, ’/’, ’%’.

Operands

Besides the operators, FPL-1 has operands that are typed as follows: b=bit, c=octet, s=int16,
i=int32, N=‘32bit const number’.

Notice that types b, c, s, i are followed by an offset to specify an instance in the data, e.g.
‘c18’ denotes the octet at index 18. If we need to indicate a constant number instead of some
bit of data in the packet, use the ’N’ type.

We note that brackets ‘()’ and commas ‘,’ have no real meaning whatsoever. We can use
them, but they will be ignored in the evaluation process. Their only real use is to distinguish,
for instance, a logical AND operation from a binary AND operation following it as in the
following example:
the following is ambiguous:

22 Background

...,s10,N0,&&&... # & followed by &&, or && followed by &?
so replace by
...,(s10,N0,&)&& # unambiguous: & followed by &&
However, the square brackets ‘[]’ do have a special meaning, as illustrated later in the

example section.

FPL-1 by examples

In order to show the way FPL-1 looks like, we present some examples which assume IP traffic
on top of Ethernet, as follows:

1. a simple test for a UDP port: true if (int16 at offset 10) == (const number 54322)
(s10,N54322,=)

2. a test for certain types of packets such as used in a drop filter: match every packet with
54321 in the 10th short (e.g. UDP port), 118 in the 28th byte, and a ‘seqnum’ that is
not a multiple of 10
(s10,N54321,=)(c28,N118,=)(i8,N10,%)&&&&

3. data as dynamic offset by using square brackets to define subexpressions. This allows
us, for instance, to use a specific byte in the data as an offset. The following example
matches all packets that have a value of 10 in the byte at the offset determined by the
value of byte 1
(c[c1],N10,=)

Moreover, between the square brackets one can enter arbitrary new expressions, such
as: (c[(c1,N5,+),i[c3],*],N10,=)

4. stateful memory: MBufis implemented as an array of unsigned longs of specified length
in which one may store temporary results. The format is: (val,index,@) to store
‘val’ in the array at position ‘index’ (val will be on top of the stack). Use (index,$)
to push the value of the memory at position ‘index’ on the stack. In the following, the
element at index i in the memory array will sometimes be written as M[i].

• sample store: store 0 in the 7th element of the array (M[7])
(N0,N7,@)

• sample store: store 7 in the array element indexed by c10
(N7,c10,@)

• sample load: push M[0] on the stack (also returned)
(N0,$)

• sample load: return 1 if M[0] contains 7
(N0,$),N7,=

Note that in these memory operations, all parameters are always removed from the
stack including, for instance, the value that you are writing into memory. The result is
always pushed onto the stack. Example:

• after the following expression the stack will contain 5: N5,N1,@

2.1 The FFPF framework 23

• after the following expression the stack will contain the value of array element 0:
N0,$

• after the following expression the stack will be 5: (N5,N1,@),N1,$

5. hashing: the hash operation pops two values of the stack (offset and len) and calculates
a hash over the data in the packet buffer starting at the ‘offset’ and for a length of
‘len’. Both parameters should be given in bytes. For example, the following expression
pushes a hash over the (ipsrc, ipdest) pair on the stack:
N11,N8,H

6. for loops is a construct that allows one to implement simple loops (either ascending or
descending). The loop variable is kept somewhere in the memory array, at an index de-
termined by the user complying with a stack-based approach. The format is as follows:
(index,startval,endval,stepsize,FOR) ... FBR ... FEND ,
where:

• ‘index’ is the index in the memory which identifies the cell to use as loop;

• ‘startval’ is the initial value of the loop;

• ‘endval’ is the target value of the loop. Note that if endval < startval then the
loop is descendent;

• ‘stepsize’ is the step used to increase or decrease the loop counter;

• FOR: We notice that the for loops in FPL-1 cannot be nested;

• FBR: break from for loop, save to stack, unwind stack, push saved value, and
continue with the expression following FEND;

• FEND: check if startval has overtaken endval; if so, do as in FBR; if not, continue
with the expression following FOR.

It is clear that for loops like these do not match a simple expression language well.
However, it allows us to build very powerful expressions (e.g., one that searches for a
substring). Here is a trivial example:

Test memory and loop: if the first byte in the packet is a 1, count all zeros in the first
10 bytes. Maintain the loop variable in M[0] and the ‘zero counter’ in M[1]:
(c0,N1,=)(N0,N1,@)(N0,N0,N10,N1,FOR)
(((c[N0,$],N0,=)(N1,$)+),N1,@)(FEND)+*"

7. external functions: It is possible to call external functions (previously registered) from
FFPF filter expressions.
(X’HelloFn’)

Note that external functions are potentially powerful and fast. For example, we may use
an external function to check whether we have received a real-time signalling protocol
(RTSP) packet and if so, we change the filter to find also all corresponding multimedia
‘data’ packets. These data packets tend to be UDP packets sent to a set of dynamic port
numbers and which therefore, could not easily be captured by a static filter.

24 Background

8. return from subexpression: It is possible to return from any subexpression to the ex-
pression one level up by way of the return instruction ’R’. Upon encountering the
return instruction, the top of the stack is popped and returned as the result of the subex-
pression. Execution resumes at the statement following the end of the subexpression.
This can be either a real end-of-subexpression marker (‘]’), or the end of the top-level
expression if we are executing at the highest level already.

For example, return after the first add, and do not execute any of the remaining instruc-
tions. The result will be 2.
(N1,N1,+),R,N5,*,3,2,+,-

Summarising, FPL-1 is a powerful language by providing operators and operands to build
expressions in order to handle any packet data. Moreover, it is also extensible by means of
external functions concept. However, the language itself is not easy to use due to its stack
based implementation and arcane syntax. In this respect, we will introduce the successor, the
FPL language, in Section 3.1. FPL provides a more ‘intuitive’ way to write packet processing
applications and better performance by using a new tool, the FPL-compiler, to compile the
user expressions into ‘native’ code for a specific hardware architecture target.

2.2 Network Processors
A network processor (NP) is an Application Specific Instruction Processor (ASIP) for the net-
work application domain. In other words, an NP is a programmable device with architectural
features for packet processing. As a result, network processors (NPs) share characteristics
with many different implementation choices:

• communication processors used for networking applications;

• ‘programmable’ state machines used for routing;

• reconfigurable fabrics (e.g., FPGAs);

• general purpose processor (GPP) used for configuration, routing.

Network processors appeared as a solution to the needs for customisability, in-the-field
programmability, and shrinking time-to-market windows in the network processing applica-
tion domain.

In the following sections we present shortly the common hardware characteristics of NPs,
and then we describe the Intel network processors.

2.2.1 Common characteristics in NPs
In the last few years, many silicon manufacturers released NPs [47, 48, 55–62] with archi-
tectures designed to suit specific network configurations, types of packets being processed,
speed of the network physical layer, multithreading capability, co-processor support, mem-
ory types with various access speeds, etc. Although the NPs are made of various components
with different configurations depending on the design specifications, a common objective is

2.2 Network Processors 25

to process network packets at wire speed for the most used packet processing tasks, and give
programmable flexibility to adopt fast evolving protocol definitions.

The common components of a NP are:

• programmable processing elements (PE) with or without multithreading capabilities;

• on-chip memories with different access speeds (e.g., local mem, scratch, registers);

• external memory interfaces with different access speeds and sizes such as SRAM and
DRAM;

• function specific co-processors or ASICs such as hashing, or encryption units;

• external network connection bus and interfaces (e.g., SPI);

• Switch fabric support for interconnection to other packet processor units (NPs, FPGA
processors, etc.);

• connection to an external general processor such as a PCI bus interface;

• hardware specific instruction set oriented for packet processing (no floating point units
for instance);

• compilers/assemblers;

• debugging and programming tools with some GUI support.

For the purpose of this research we have chosen the Intel IXP network processors because
we had access to the (expensive) hardware and they emerged as one of the most popular
choices for the research world. In the next sections we describe the Intel network processors
dedicated to high speed packet processing and used during this research. The first generation
was opened by IXP1200, then the second generation includes IXP2400 and IXP28xx.

Comparing the evolution of Intel IXP NPs in a total MIPS benchmark chip, we note that
the first generation, IXP1200 – 1999, provided 1200 MIPS, the second generation, IXP2400 –
2002, provided 4800 MIPS, and the last generation, IXP28xx – 2004, provides 23000 MIPS.

2.2.2 The IXP1200 processor
The Intel IXP1200 runs at a clockrate of 232 MHz and is mounted on a PCI board, in our case
the Radisys ENP2506, together with 8 MB of SRAM and 256 MB of SDRAM. The board
contains two Gigabit network ports. Packet reception and packet transmission over these ports
is handled by the code on the IXP1200 processor. The Radisys board is connected to a Linux
PC via a PCI bus. The IXP itself consists of a StrongARM host processor running embedded
Linux and six independent RISC processors, known as microengines (see Figure 2.4). Each
µEngine has its own instruction store and register sets. On each of the µEngines, registers are
partitioned between four hardware contexts or ‘threads’ that have their own program counters
and allow for zero-cycle context switches.

The IXP1200 consists of the following elements (see Figure 2.4) which reside on the
same die:

26 Background

Unit
PCI

SRAM
Unit

IX bus 64−bit @ 104MHz

IXP1200
OtherATM, SONET, etc.

Ethernet MACs
10/100/1000Mbps

StrongARM
Core

SDRAM
Unit

Scratchpad
Memory

Hash Unit

Interface
IX bus

FBI Unit

SDRAM
Up to 256MB

SRAM
Up to 8MB

Eµ 1

Host CPU (optional)

P
C

I bus 32−
bit @

 66M
H

zEµ 2 Eµ 3

Eµ 4Eµ 5Eµ 6

IXP1200

Figure 2.4: The IXP1200 NP block diagram.

• StrongARM core: It has 16 KBytes of instruction cache and 8 KBytes of data cache.
The StrongARM is commonly used to initialize the chip, to handle exceptional packets,
to communicate with other processors etc.;

• Microengines: The IXP1200 has six simple RISC processors used for packet process-
ing at line rate. Each µEngine operates at the same frequency as the StrongARM and
contains a large number of registers so that it supports four threads with zero-cycle
context switches;

• SDRAM Unit: A unit for interfacing to external SDRAM modules;

• SRAM Unit: A unit for interfacing to external SRAM modules;

• PCI Unit: The unit for interfacing to PCI bus;

• Hash Unit: The unit implementing customizable hash functions;

• Scratchpad: 4 KBytes of internal SRAM, called ‘Scratchpad’;

2.2 Network Processors 27

• IX Bus Unit: A bus unit used for interfacing external devices such as fibre optic or
copper PHYs, other NICs, etc. ;

• FBI Unit: The FIFO Bus Interface is a unit which hosts the IX bus interface, the
Scratchpad memory and the Hash unit;

• Interconnection Bus: Separate buses for on-chip communication as illustrated in Fig-
ure 2.4.

Each µEngine supports up to four microcode context threads. Each µEngine thread has
32 general-purpose registers (GPRs) and a microprogram counter. The GPRs can be shared
between threads of a µEngine or dedicated to a single thread. Thread context switches occur
without delay, for instance, a µEngine can be executing one cycle in one thread and on the
next cycle switch to another thread. The µEngines have an instruction store of 2K microwords
each. µEngines can queue requests to memory on separate buses, enabling parallel access and
maximum use of available memory bandwidth.

The IXP1200 network processor combines the best attributes of a network ASIC with the
flexibility, performance, and scalability of a programmable embedded processor to accelerate
development of the next-generation Internet products. The IXP1200 is considered to be the
first Intel network processor generation. It was followed by the second generation: IXP2xxx.

2.2.3 The IXP2400 processor
Figure 2.5 shows the hardware architecture of the IXP2400 network processor and the func-
tional blocks are described in the next paragraphs.

CAP
Unit
Hash

1Eµ 2Eµ

0Eµ 3Eµ 4Eµ

5Eµ 6Eµ

7Eµ

ME cluster 1ME cluster 0

XScale
Core

DRAM
Controller

SRAM
Controller 1SRAM

Controller 0
Scratchpad

Memory
Media Switch

FabricController
PCI

IXP2400

Figure 2.5: The IXP2400 NP block diagram.

Intel XScale core. The control processor is a general-purpose 32-bit RISC processor com-
patible to ARM Version 5 Architecture. Since the XScale core is a common ARM compliant

28 Background

CPU, we run an ARM cross-compiled Linux for big endian. The XScale core is used to
initialise and manage the chip, and can be used for higher layer network processing tasks.

Microengines (µEngines). The parallel architecture consists of 8 x 32-bit programmable
engines (RISC processors) specialised for packet processing in parallel. µEngines do the
main data plane processing per packet. A µEngine has hardware support for eight threads
by providing all logic and registers for zero-overhead context switching. A control applica-
tion running on the XScale core initialises and loads the µEngines’ code. The µEngines in
the IXP2400 have the following enhancements over the IXP1200 µEngines: (1) multiplier
unit, (2) pseudo-random number generator, (3) CRC calculator, (4) 4x32-bit timers and timer
signaling, (5) 16-entry CAM for inter-thread communication, (6) timestamping unit, (7) gen-
eralized thread signaling, (8) 640x32-bit words of local memory, (9) µEngines are divided
into two clusters with independent command and SRAM buses.

Memory controllers. A network processor offers a good trade-off of cost/performance and
hence, it combines different memory technologies such as expensive on-chip memory (e.g.,
registers, local memory), less expensive off-chip memory such as SRAM, and plenty of the
cheap external DRAM memory. Combining these different memory types in a programmable
manner so the user can choose where the program variables are located is successfully done
with the help of the following controllers:

• DRAM Controller: one DDR SDRAM controller. Typically DRAM is used for data
buffer storage;

• SRAM Controller: two independent controllers for QDR SRAM. Typically SRAM is
used for control information storage;

• Scratchpad Memory: 16 KBytes of on-chip memory for general-purpose use.

Media and Switch Fabric Interface (MSF). MSF is an interface for network framers
and/or Switch Fabric. Contains receive and transmit buffers.

Hash Unit. The IXP2400 has a polynomial hash accelerator which the XScale core and
µEngines can use it to offload hash calculations.

PCI Controller. The PCI controller provides a 64-bit PCI bus which can be used to either
connect to a host processor, or to attach PCI-compliant peripheral devices.

Control and status register Access Proxy (CAP). CAP contains the chip-wide control
and status registers. These provide special inter-processor communication features to allow
flexible and efficient inter-µEngine and µEngine-to-XScale-core communication.

The most visible high-level improvements of IXP2400 over its predecessor, IXP1200 are
described in Table 2.1:

2.2 Network Processors 29

IXP1200 IXP2400
control processor StrongARM 233MHz XScale 600MHz
µEngines 6 µEngines @ 233MHz 8 µEngines @ 600MHz
media switch fabric FBI MSF
receive/transmit buses shared buses separate buses

Table 2.1: IXP2400 versus IXP1200.

2.2.4 The IXP2850 processor
Figure 2.6 shows the hardware architecture of the last Intel network processor generation up
to date: IXP2850.

Crypto
Unit 1Crypto

Unit 0

SRAM
Controller 3SRAM

Controller 2SRAM
Controller 1SRAM

Controller 0
Media Switch

Fabric

XScale

Core

PCI

Controller

Host CPU (optional)

Ethernet MACs
10x1Gbps, 10Gbps

SRAM SDRAM

Eµ
98

Eµ

Eµ
11

Eµ
10

Eµ
13

Eµ
12

Eµ
15

Eµ
14

µE cluster 1 1

2

37

8
0

Eµ
1

Eµ

2
Eµ

3
Eµ

4
Eµ

5
Eµ

6
Eµ

7
Eµ

µE cluster 0

Scratchpad
Memory

Hash Unit

CAP

SHaC

9

DRAM
Controller 2DRAM

Controller 1DRAM
Controller 0

IXP2850

4

6

5

Figure 2.6: The IXP2850 NP block diagram.

The major IXP2850 blocks, also seen in the previous IXP architecture, IXP2400, are:
1© XScale core, 2© µEngines, 3© SRAM and DRAM Controllers, 4© Scratchpad and Local

Memory, 5© Hash Unit, 6© Control and Status Register Access Proxy (CAP), 7© Media and
Switch Fabric Interface (MSF), 8© PCI Controller.

The most notable advances in IXP2850 against the previous NP concerns the 10 Gbps
processing capability and also the encryption/decryption hardware support 9©. For instance,

30 Background

IXP2850 has built-in two crypto units each containing two Triple Data Encryption Standard
cores (3DES), two Secure Hash Algorithm cores (SHA-1), one Advance Encryption Standard
core (AES) and one checksum unit.

The most visible high-level enhancements of IXP2850 over its predecessor, IXP2400 are
described in Table 2.2.

IXP2400 IXP2850
µEngines 8 µEngines @ 600MHz 16 µEngines @ 1.4GHz
SRAM controllers 2 4
DRAM controllers 1, DDR 3, Rambus
media switch fabric SPI-3 SPI-4.2
cryptography engines – 2x cryptography blocks that provides

hardware acceleration of popular encryption
and data integrity algorithms

Table 2.2: IXP2850 versus IXP2400.

Chapter 3
A Resource Constrained Language
for Packet Processing: FPL

In this chapter we introduce a new language for packet processing in order to provide a pro-
grammable system capable of traffic monitoring at high speeds (Gbps). The programmability
is offered with the help of a filtering language and a compiler for several hardware archi-
tectures in use currently: commodity PCs, network processors, and FPGAs. This chapter
represents a first step towards handling high speed traffic by using tightly coupled parallelism
through multi-cores.

The fairly fast packet filter (FFPF), as described in Section 2.1, is a packet processing
architecture that provides a solution for filtering and classification at high speeds with three
goals: speed (high rates), scalability (in number of applications) and flexibility. Speed and
scalability are achieved by performing complex processing either in the kernel of a commod-
ity PC or on specialised hardware such as a network processor, and by minimising copying
and context switches. FFPF is explicitly extensible with native code and allows complex
behaviour to be constructed from simple components.

3.1 The FFPF packet language: FPL

The need for a new packet processing language came together with the needs to provide a safe
and easily programmable packet processing framework. Safety implies that the language
must provide fairly strict control over resources, e.g., in order to prevent programs from
consuming more cycles than available at link rate. It also implies that the user-provided code
that may run in the lowest levels of the processing hierarchy is not able to access data or
function for which it has no authorisation. Other requirements such as hiding to a user the
hardware complexity, or the performance of the compiled code are equally important.

32 A Resource Constrained Language for Packet Processing: FPL

3.1.1 From interpreted to compiled code

FFPF was initially developed with a stack-based language called FFPF packet language 1:
FPL-1. FPL-1 was difficult to program as it has an arcane syntax that explicitly expresses its
stack-based implementation. Moreover, its mix of stack-based language and “conventional”
for loops is somewhat counter-intuitive. Moreover, FPL-1 would not be efficiently supported
by special purpose hardware such as network processors because the FPL-1 runtime uses an
interpreter.

FPL-1 is a low-level stack language with support for most simple types and all common
binary and logical operators, as briefly described in Section 2.1.2. In addition, FPL-1 provides
restricted looping and explicit memory operations to access the persistent memory array.
Flow expressions in FPL-1 are compiled to byte code and inserted in the FFPF kernel module
by means of a special purpose code loader. Each time a packet arrives on one of the monitored
interfaces, the FPL-1 expression of a flow f is called to see whether or not f is interested in
this packet.

The disadvantage of FPL-1 is that it is slow as the filter’s byte-code runs in an interpreter.
It is difficult to compete both in writing efficient code optimisers and in providing an efficient
packet processing environment, so rather than aiming for the best possible code generator
we have chosen to exploit the optimisers of existing compilers for each supported hardware
architecture. In other words, we use a source-to-source compiler followed by a back-end
compiler for each specific hardware architecture. For instance, when using a commodity PC
architecture, the FPL compiler generates C code that is subsequently compiled by gcc to a
Linux kernel module that interfaces with the FFPF’s run-time environment.

Summarising, we see an opportunity for a better language that addresses the following
requirements: (1) safety against malicious or buggy code, (2) intuitive usage of language
constructs, (3) hide specific hardware complexity, (4) extensibility, and (5) support for multi-
ple hardware architectures. Although the next packet language generation would normally be
called FPL-2, for the sake of naming simplicity we call the second packet language generation
just FPL throughout the remainder of this thesis.

3.1.2 The FPL language

In the following subsections, we describe the support that was added for FPL, a new language
that (1) compiles to fully optimised object code, and (2) is based on registers and memory.

Operators, expressions and statements in FPL

Operators act upon operands and specify what is to be done to them. Expressions combine
variables and constants to create new values. Statements are expressions, assignments, exter-
nal function calls, or control flow statements which make up filter programs. As illustrated in
Table 3.1, most of the operators/expressions are designed in a way that resembles well-known
imperative languages such as C or Pascal. Therefore, the users should easily adopt this filter
language.

3.1 The FFPF packet language: FPL 33

operator-type operator
Arithmetic +, -, /, *, %, --, ++
Assignment =,*=, /=, %=, +=, -=

<<=, >>=, &=, ˆ=, |=
Logical/Relational ==, !=, >, <, >=, <=,

&&, ||, !
Bitwise &, |, ˆ, <<, >>

statement-type operator
if/then IF (expression)

THEN statement
FI

if/then/else IF (expression)
THEN statement1
ELSE statement2

FI
for() FOR (initialise; test; update)

statements; BREAK; statements;
ROF

external function INT EXTERN(STR function name,
INT sharedMem IndexRead, INT sharedMem IndexWrite)

return a value INT RETURN (val)
hash() uint64 HASH(INT start byte, INT len, INT range)

Table 3.1: Operators, expressions, and statements in FPL.

Memory data addressing

Memory addressing is a language element used for accessing the memory locations. We
support two types of memory: a shared memory array ‘M[]’ and fast local registers ‘R[]’.

The shared memory, declared in a filter program by ‘MEM[size]’ statement, is pro-
vided by the FFPF core at filter initialisation by mean of an MBuf. Therefore, the filter module
does not perform dynamic memory allocation/deallocation. MBuf consists of a byte array of a
specified size. The shared memory can be used for various purposes. First, a shared memory
is used for sharing the processing results in a filter to a higher level application (e.g., a user
interface). Second, in a stateful packet processing demand, a shared memory can be used for
storage between consecutive calls of the filter on different packets. Third, we will see how
shared MBufs can be used for data exchange between filters.

The second supported memory type, registers allocated by the ‘REG[size]’ statement,
are general purpose registers available on the target hardware (e.g., x86 CPU, network pro-
cessor). Generally, using data stored in registers increases the processing speed in case of
very often used variables. The maximum number of local registers is defined in a resource
configuration and depends on the hardware. However, we emphasise that placing something
in registers serves as a hint only in some architectures.

As shown below, a memory location is easily accessed (retrieved from/stored in) by using
the assignment operator.

34 A Resource Constrained Language for Packet Processing: FPL

1 MEM[1 0 2 4] ; / / a sk f o r a s ha re d memory o f 1024 o f INT
2 REG [2] ; / / a sk f o r two l o c a l r e g i s t e r s
3 M[9]=123+45∗6/7−M[8] ; / / memory a c c e s s
4 R[0] =M[8]%R [1] ; / / r e g i s t e r a c c e s s
5 R[1]=10+R [1] ; / / compute a r e l a t i v e i n d e x
6 M[R [1]] += 1 0 ; / / a c c e s s a sha re d memory l o c a t i o n a t a v a r i a b l e

i n d e x computed b e f o r e h a n d

Packet data addressing

Another language element is the access to the packet stream. Specific to our system is that
regardless of how much parallelism the hardware system supports, at any time, a filter in-
stance processes one packet: the current packet. This current packet is provided by the FFPF
framework through the ‘PKT.type[offset]’ statement by means of an offset to a start
pointer of the packet. By choosing the type of the offset we can extract any bit of data within
the packet data, as shown in Table 3.2. For improving the readability of programs, we use
the lexical conventions according to the industrial standard IEC 1131-3 [63]. For instance, a
byte (8 bits), word (16 bits), or a dword (32 bits) out of the packet at a specified offset are ex-
pressed by PKT.B[], PKT.W[], and PKT.DW[], respectively. Moreover, we can retrieve
a subset of the main offset by means of a sub-index specified through .U1, .U4, .U8, .U16,
for bit, nibble, byte, or word, respectively.

Data type syntax
Memory access:
Register n R[n]
Shared memory location n M[n]
Packet access:
-byte f(n) PKT.B[f(n)]
-word f(n) PKT.W[f(n)]
-double word f(n) PKT.DW[f(n)]
-bit m in byte n PKT.B[n].U1[m]
-nibble m in byte n PKT.B[n].U4[m]
-bit m in word n PKT.W[n].U1[m]
-byte m in word n PKT.W[n].U8[m]
-bit m in dword n PKT.DW[n].U1[m]
-byte m in dword n PKT.DW[n].U8[m]
-word m in dword n PKT.DW[n].U16[m]
-macro PKT.macro name
-ip proto PKT.IP PROTO
-ip length PKT.IP TOTAL LEN
-etc. customised macros

Table 3.2: Memory & packet data addressing modes.

In addition to direct access to the packet fields by using offsets, as described before,
there is also a possibility to use macros for the most used packet fields. A macro is pre-
viously defined in a compiler configuration file and then is used in any filter program by

3.1 The FFPF packet language: FPL 35

‘PKT.macro_name’ statement. Some examples of macros that work on a system where
FFPF provides the start packet pointer at the IP layer are drawn in Table 3.3. These ex-
amples show how easy and intuitive a specific IP field is reached within the packet. Sum-
marising, macros allow users to customise the way they express themselves and also to hide
non-uniform implementation aspects between different hardware systems. For instance, the
start packet pointer in a commodity PC points to the IP layer while in a network processor it
points to the Ethernet layer.

Moreover, using a register or memory variable as index for packet reference the language
increases considerably the applications area. In the (trivial) example shown below, the sum
of the first 20 bytes in the packet is computed.

1 FOR (R[0] = 0 ;R[0] <20;R[0] + +)
2 M[0]+= PKT . B[R [0]] ;
3 ROF

Macro name operator in IP layer result
IP VERS PKT.B[0].HI U8 (the value of high four bits of the first byte)
IP HDRLEN PKT.B[0].LO U8 (the value of low four bits of the first byte)
IP TOS PKT.B[1] U8 (the value of whole byte)
IP TOTAL LEN PKT.W[1] U16 (the value of second word)
IP DATAGRAM PKT.W[2] U16 (the value of third word)
IP FRAGM PKT.W[3] U16 (the value of fourth word)
IP TTL PKT.B[8] or U8

PKT.W[4].HI
IP PROTO PKT.B[9] or U8

PKT.W[4].LO
IP HDRCHK PKT.W[5] U16
IP SRC PKT.DW[3] U32
IP DEST PKT.DW[4] U32

UDP SRC PKT.DW[5].HI or U16
PKT.W[10]

UDP DEST PKT.DW[5].LO or U16
PKT.W[11]

UDP LEN PKT.DW[6].HI or U16
PKT.W[12]

UDP CHECKSUM PKT.DW[6].LO or U16
PKT.W[13]

Table 3.3: Examples of macros for IP packet fields.

HASH() construct

Hash functions are an efficient way to compute a ‘unique’ identifier on a given input data set
(e.g., a string or a byte array). In software development, hashing is mostly used to build so-
called hash tables because they offer an excellent average search time. For instance, Linux
relies on hash tables to manage pages, buffers, and other data objects. In networking, we

36 A Resource Constrained Language for Packet Processing: FPL

use hash tables to manage routing tables. The construct is often used for getting a ‘unique’
identifier of packets that belong to the same network user (e.g., by hashing the src/dest IP
addresses of the packets) or that belong to the same application (e.g., by hashing also src/dest
port addresses in addition to the IP addresses).

The hash construct in our FPL language applies a hash function to a sequence of bytes in
the packet data provided as input parameters. However, when using different architectures we
might have different hash implementation for this construct. For example, in a commodity PC
running Linux, the hash function used is a simple software implementation using Horner’s
rule to avoid expensive computation such as handling coefficients with high values in power.
Besides software implementations, we have also hardware-accelerated hash functions avail-
able in special purpose processors such as network processors. Such hardware-accelerated
hash functions use a hard-wired polynomial algorithm and a programmable hash multiplier
to create hash indices. For instance, the Intel IXP2400 network processor supports three sep-
arate multipliers, one for 48 bit hash operations, one for 64 bit hash operations and one for
128 bit hash operations. The multiplier is programmed through control registers. For the
sake of compatibility and simplicity, our FPL hash construct uses a 64 bit implementation on
commodity PCs and network processors and hence, we expect a 64 bit hash result.

An example of using the hash construct is given below. Assuming we have a hash imple-
mentation on network processors, we need a ‘unique’ identifier in order to count TCP flows.
This construct applies over a byte array starting at the specified offset in an Ethernet frame
(byte 26th) until a specified length long enough to cover IP source/dest addresses and TCP
source ports (12 bytes).

1 R[0] = Hash (2 6 , 12 , 255) ; / / hash over TCP f l o w f i e l d s and s t o r e i n t o a
r e g i s t e r t h e t r u n c a t e d r e s u l t f o r t h e s p e c i f i e d range [0−255]

In practice, a hash result is often used as an index into a table (e.g., a routing or a status
table). As such tables are limited in size, an optional range parameter can be used to truncate
the value efficiently. Although our hash uses a 64 bit implementation, other hashes can be
added by way of external functions, as it will be shown later.

External functions

An important feature of FPL is extensibility and the concept of an ‘external function’ is key to
extensibility, flexibility and speed. External functions are an explicit mechanism to introduce
extended functionality to FFPF and also add to flexibility by implementing ‘call’ semantics.
While they look like filters, the functions may implement anything that is considered useful
(e.g., checksum calculation, pattern matching). They can be written in any of the supported
languages, but it is anticipated that they will often be used to call optimised native code
performing computationally expensive operations.

In FPL, an external function is called using the EXTERN construct, where the parameters
indicate the filter to call, the offset in a shared buffer MBuf where the filter can find its input
data (if any), and the offset at which it should write its output, respectively. For instance,
EXTERN(foo,x,y)will call external function foo, which will read its input from memory
at offset x, and produce output, if any, at offset y. Note that FFPF does not prevent users
from supplying bogus arguments, nor using buggy external functions when written in other
language than FPL. However, for FPL language written filters, the protection comes from

3.1 The FFPF packet language: FPL 37

the FPL-compiler. The compiler checks the use of external functions in a filter. An external
function’s definition prescribes the size of the parameters, so whenever a user’s filter tries
to let the external function read its input from an offset that would make it stray beyond the
bounds of the MBuf memory array, an error is generated. This is one of the advantages of
having a ’trusted’ FPL-compiler (see also Section 3.1.4). In addition, authorisation control
can be used to grant users access only to a set of registered functions.

A small library of external filter functions has been implemented (including implementa-
tions of popular pattern matching algorithms, such as Aho-Corasick and Boyer-Moore). The
implementation will be evaluated in Section 4.4.1.

Shared memory usage

In the FFPF architecture, there are many interfaces related to shared memory, but only two of
them are relevant for the packet filtering language and thus they are described presently.

The first interface involves the data exchange between the FFPF core and each loaded
filter module as illustrated in Figure 3.1. As an example, the results of a particular filter can
be periodically read by a user application.

User−application

FFPF core

fi
lt

er

���
���
���
���
���

���
���
���
���
���

M
B

uf

kernel space

user space

shared memory

Figure 3.1: Shared memory between user applications and FPL filters.

The second interface is used for data exchange between filters with the help of ‘external’
functions. Assume that there are two filters ‘Foo’ and ‘Bar’ already registered within
the FFPF core, and one needs to access the processing results of the other. As shown in
Figure 3.2, the filter ‘Foo’ accesses part of the shared memory of the filter ‘Bar’ when it
issues an external call like:

EXTERN(bar, readIndex, writeIndex).
Another example of MBuf usage as persistent state in FPL is shown in Listing 3.1. The

code describes a filter that keeps track of how many packets were received on each TCP
connection (assuming for simplicity that the hash is unique for each live TCP flow). The
MBuf is shared with the user application for efficient access to end results.

Restricted FOR loops

The FOR loop is a construct used for running repetitively a piece of code such as searching
for a pattern in a certain range of bytes of the current packet. Although FOR loops are useful

38 A Resource Constrained Language for Packet Processing: FPL

fo
o

ba
r

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

M
B

uf

shared memory

EXTERN(bar, ...)

���
���
���

���
���
���

Figure 3.2: Shared memory between filters through external functions.

1 / / c o u n t number o f p a c k e t s i n e v e r y f l o w by k e e p i n g c o u n t e r s i n a hash
t a b l e (assume hash i s un i qu e f o r each f l o w)

2 MEM[4 0 9 5] ;
3 IF (PKT . IP PROTO == PROTO TCP) THEN
4 R[0] = Hash (2 6 , 12 , 4095) ; / / r e g i s t e r = hash over TCP f l o w f i e l d s
5 MEM[R[0]] + + ; / / i n c r e m e n t t h e p k t c o u n t e r a t t h i s p o s i t i o n
6 FI ;

Listing 3.1: Example of FPL code: count TCP flow activity.

in a program, they are also dangerous in our specific domain, packet processing, because of
the limited cycle budget available for the execution of the entire program. The cycle budget
is determined by the wire speed and hence, by the inter-arrival packet time. Therefore, the
higher the wire-speed is, the smaller the cycle budget is.

Some existing packet languages such as SNAP [64] do not permit ANY backward jumps
in the program. In contrast, we allow loops but restrict the number of iterations. FOR loops
can easily be used to write malicious code or belong to buggy code. Because our resources
are strictly limited in terms of processing time, in order to avoid packet loss, the FOR loop
construct is limited to loops with a pre-determined number of iterations.

Users specify both start and end values of the iteration variable, as well as the amount
by which the loop variable should be incremented or decremented after each iteration. The
BREAK instruction, allows one to exit the loop ‘early’. In this case (and also when the loop
finishes), execution continues at the instruction following the ROF construct. FOR loops can
be used to test a small range of bytes in the packet or even to scan the entire packet payload
for the occurrence of a pattern. Although we allow execution of external functions within
FOR loops, we assume that the functions behave correctly regardless of the language was
written. In other words, the FPL-compiler cannot guarantee the ‘correctness’ of functions
written in different languages. Recall, however, that we are able to control which EXTER-
NAL functions a user can call.

However, the FOR loops are ‘restricted’ in the sense that they are bounds-checked at run-
time against a maximum number of allowed iterations (e.g., 1000) provided in a compiler
definition or using a credential scheme as described in Section 3.1.5. In essence, there is an
upper bound on the total number of iterations of all loops in the program. This bound-check
applies also to nested FOR loops, as shown in the example in Listing 3.2. We take a con-
servative approach and assume loops run for the maximum number of iterations. Although

3.1 The FFPF packet language: FPL 39

breaks within loops are allowed and hence a loop may end prematurely, the for-loop bound-
check always takes into account the entire amount of iterations which a loop must execute.
One could say that the compiler can bound-check the FOR loops easily, at compile time.
However, we notice that FOR loops need to be bound-checked at runtime because processing
packets often involves searching for a pattern within the packet payload. In other words, some
loops may run for a variable maximum iterations such as the size of a worm signature, or the
total packet length. In our example shown in Listing 3.2 we show a simple loop which runs
until PKT.IP TOTAL LEN and for illustration purpose we assume that the total IP length is
256 Bytes.

1 REG [2] ;
2 MEM[8] ;
3 R[1] = PKT . IP TOTAL LEN / / e . g . , IP TOTAL LEN i s 256
4 FOR (R[0] = 0 ; R[0]<R [1] ; R[0] + +)
5 M[0] + + ;
6 FOR (R[2] = 8 ; R[2] >0; R[2]−−)
7 M[1] + + ;
8 R[3] = 1 ;
9 ROF;

10 ROF;
11 M[2] + + ;
12 FOR (R[3] = 0 ; R[3] <10; R[3] + +)
13 M[2] + + ;
14 R[5] = 1 ;
15 ROF;

Listing 3.2: FOR loops in FPL.

The bound checks in the FOR loop constructs of the previous FPL example code are il-
lustrated in the ‘translated’ code in Listing 3.4 for a commodity PC architecture (Linux OS).
The checks consists of the helpers (checkLoops() function calls) that are introduced by
the compiler automatically when it detects FOR constructs. The compiler generates a spe-
cific CheckLoops() function that provides, at any moment, the total number of executed
iterations. The CheckLoops() function is specific to every FPL program, depending on
the loops used by the FPL program (nested, simple, etc.). The FPL-compiler makes use of
the Erhart’s polynomials theory in order to implement a generic formula to compute the to-
tal amount of executed loops [65]. For instance, Listing 3.3 shows the implementation of
CheckLoops() function for the example presented in Listing 3.2.

f o r (i =0 ; i <256; i ++)
{

f o r (j =8 ; j >0; j−−)
{

foo () ; / / . . .
}

}
/ / . . .
f o r (k = 0 ; k <10 k ++)
{

b a r () ; / / . . .
}
/∗ ∗∗∗∗∗∗∗∗∗∗∗ Check Loops f o r m u l a ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
CheckLoops = ((i ∗8) + (8− j +1)) + (k +1) ;

40 A Resource Constrained Language for Packet Processing: FPL

Listing 3.3: Checking loops mechanism.

In the tailored C code example illustrated in Listing 3.4, the registers are used through the
g_Registers[] variables, and the shared memory is pointed to by g_MemPublic.lBuffer[]
variables. We notice that the bound checking variable for the for-loops is automatically gen-
erated by the FPL compiler and is hidden to the user. Therefore, the users cannot simply run
infinite loops by changing the loop variable that they see.

1 i n t CheckLoops (void) { re turn g R e g i s t e r s [0] ∗ 8 + 8 − g R e g i s t e r s [2] + 1 +
g R e g i s t e r s [3] + 1 ;}

2 g R e g i s t e r s [1] = GetWord (1) ; / / e . g . , IP TOTAL LEN i s 256
3 f o r (g R e g i s t e r s [0] = 0 ; g R e g i s t e r s [0] < g R e g i s t e r s [1] ; g R e g i s t e r s [0] + +)
4 {
5 g MemPublic . l B u f f e r [1] + + ;
6 f o r (g R e g i s t e r s [2] = 8 ; g R e g i s t e r s [2] > 0 ; g R e g i s t e r s [2]−−)
7 {
8 g MemPublic . l B u f f e r [2] + + ;
9 g R e g i s t e r s [3] = 1 ;

10 i f (checkLoops () > 1000) re turn −1;
11 }
12 i f (checkLoops () > 1000) re turn −1;
13 }
14 g MemPublic . l B u f f e r [2] + + ;
15 f o r (g R e g i s t e r s [3] = 0 ; g R e g i s t e r s [3] < 1 0 ; g R e g i s t e r s [3] + +)
16 {
17 g MemPublic . l B u f f e r [3] + + ;
18 g R e g i s t e r s [5] = 1 ;
19 i f (checkLoops () > 1000) re turn −1;
20 }

Listing 3.4: FOR loops in tailored C code for gcc.

Note that the FPL language hides most of the complexities of the underlying hardware.
For instance, when using network processors, users need not worry about reading data into a
µEngine’s registers before accessing it. Similarly, accessing bytes in memory that is not byte
addressable is handled automatically by the compiler.

In order to see some of the hidden details when compiling a FPL code for a network
processor such as the IXP2400, we illustrate a piece of filter code in both languages: FPL
and MicroC. Listing 3.5 shows a simple example of FPL code and Listing 3.6 shows the
‘translated’ code in MicroC language for Intel IXP2400 network processor.

1 MEM[2] ; / / d e c l a r e s 2 sh ar ed memory l o c a t i o n s
2 IF (PKT . B[2 3] == 17) THEN
3 M[0] + + ; / / c o u n t s t h e UDP p a c k e t s
4 FI ;
5 IF (PKT . B[2 3] == 6) THEN
6 M[1] + + ; / / c o u n t s t h e TCP p a c k e t s
7 FI ;

Listing 3.5: Example of FPL code.

Although the FPL example uses only two persistent memory location in order to count the
TCP and UDP packets, we see in the MicroC equivalent code that for every memory access

3.1 The FFPF packet language: FPL 41

there are a few more programming steps involved. For example, when reading or writing
a shared memory location we need to pre-buffer the data through specific registers (transfer
registers).

Listing 3.6 shows at line 4 the read transfer register declaration and then its usage for
reading a DRAM memory location at line 7. Then, at lines 8-9, the read value is taken into
local variables uiFlowMem[] (e.g., registers or fast local memory) for further computation
as shown in lines 11-18. Similarly a read operation is also needed for a write as illustrated at
line 5 where a write transfer register is declared, then at lines 20-21 the data is pre-buffered in
the write transfer registers, and finally, at line 22 the value is written in the memory location
flow->smem.

1 INLINE i n t f i l t e r i m p l (UINT b u f i n d e x , d e c l s p e c (dram) b u f f e r t ∗ f low)
2 {
3 d e c l s p e c (loca l mem) u 3 2 uiFlowMem [2] ;
4 d e c l s p e c (d r a m r e a d r e g) u 3 2 drMemRead [2] ;
5 d e c l s p e c (d r a m w r i t e r e g) u 3 2 drMemWrite [2] ;
6 SIGNAL PAIR s i g d r a m ;
7 d r a m r e a d (drMemRead , (d e c l s p e c (dram) void ∗) f low−>smem , 1 , s i g d o n e ,

&s i g d r a m) ;
8 uiFlowMem [0] = drMemRead [0] ;
9 uiFlowMem [1] = drMemRead [1] ;

10
11 i f (GetByte (b u f i n d e x , 23) == 17)
12 {
13 uiFlowMem [0] + + ;
14 }
15 i f (GetByte (b u f i n d e x , 23) == 6)
16 {
17 uiFlowMem [1] + + ;
18 }
19
20 drMemWrite [0] = uiFlowMem [0] ;
21 drMemWrite [1] = uiFlowMem [1] ;
22 d r a m w r i t e (drMemWrite , (d e c l s p e c (dram) void ∗) f low−>smem , 1 , s i g d o n e ,

&s i g d r a m) ;
23 re turn 0 ;
24 }

Listing 3.6: Example of MicroC code for IXP2400 network processor.

We also note that in this simple example, in addition to the explained memory issues there
are some specific functions used for access to the data in the packet fields. Such functions as
GetByte, GetWord, GetDWord, are highly optimised for a quick data retrieval from the shared
packet buffer PBuf and aware of specific data alignment. For instance, on the IXP2400, the
DRAM memory locations are aligned on 8 byte chunks. In the example shown in Listing 3.6
at lines 11-18, Getbyte retrieves the packet field value located at a certain byte offset (e.g.,
23 for IP PROTO) in the specified packet index buf_index.

When deemed useful, however, users may choose to have some of the complexity ex-
posed: it is, for instance, wise to declare additional arrays in fast hardware when that is
available, like in the IXP2400’s on-chip local memory instead of using external SRAM or
DRAM.

42 A Resource Constrained Language for Packet Processing: FPL

3.1.3 The FPL-compiler architecture
Traditional compiler construction tools such as lex and yacc focus on the lexical analysis and
parsing phases of compilation. However, they provide little support to semantic analysis and
code generation. Building parse tree data structures and walking them is not terribly difficult,
but it is time-consuming and error-prone [66].

In general, the basic steps in compilation are:

• Convert the program into an abstract syntax tree;

• Perform type-checking and semantic analysis on the tree;

• Rearrange the tree to perform optimisations;

• Convert the tree into the target code.

As observed in the compilation steps above, a large amount of work involves handling
the abstract syntax tree (AST). There exist many implementations of AST manipulation tools
to facilitate working with bison/yacc. We have chosen TreeCC [67] because of its high
integration with bison and its easy to use manner.

program
text input

flex

lexical analysis

bison

syntax analysis

AST
TreeCC

intermediate code
generation

FFPF

kernel module C
framework C code

C code

code object

FIX

MicroEngines IXP
framework

characters ASTtokens

MicroC
code

FFPF_FILTER.o
kernel module

FIX_FILTER.uof

b
a

ck
−

e
n

d
 c

o
m

p
ile

r

e
.g

.,
 g

cc
,

M
ic

ro
C

Figure 3.3: FPL-compiler architecture.

As shown in Figure 3.3, the FPL-compiler architecture consists of several modules each
used for an intermediate processing phase of the input stream as explained below:

• The lexical phase (scanner) groups characters into lexical units or tokens. The input
to the lexical phase is a character stream. The output is a stream of tokens. Regular
expressions are used to define the tokens recognized by a scanner (or lexical analyzer).
The scanner is implemented using flex and only the packet addressing part of the
FPL-lex is shown, as example, in Listing 3.7.

3.1 The FFPF packet language: FPL 43

1 LETTER [a−zA−Z]
2 HEX [a−fA−F0−9]
3 DIGIT [0−9]
4 DIGITS {DIGIT}{DIGIT}∗
5 BYTE ”B” | ” b ”
6 WORD ”W” | ”w”
7 DWORD ”DW” | ”dw”
8 U1 ”U1” | ” u1 ”
9 U4 ”U4” | ” u4 ”

10 U8 ”U8” | ” u8 ”
11 U16 ”U16” | ” u16 ”
12 HI ” HI ” | ” h i ”
13 LO ”LO” | ” l o ”
14 PKT ADDR (” [”{DIGITS}”] ”)
15 PKT SUBFRACTION OF BYTE ((” . ”) ({LO}|{HI } | ({U1}” [” [0−7] ”] ”) |

({U4}” [” [0−1] ”] ”))) ?
16 PKT SUBFRACTION OF WORD ((” . ”) ({LO}|{HI } | ({U1}” [”{DIGITS}”] ”) |

({U4}” [” [0−3] ”] ”) | ({U8}” [” [0−1] ”] ”))) ?
17 PKT SUBFRACTION OF DWORD ((” . ”) ({LO}|{HI } | ({U1}” [”{DIGITS}”] ”) |

({U4}” [”{DIGITS}”] ”) | ({U8}” [” [0−3] ”] ”) | ({U16}” [” [0−1] ”] ”))) ?
18 PKT ADDR BYTE ((” . ”) ({BYTE}{PKT ADDR}{PKT SUBFRACTION OF BYTE}))
19 PKT ADDR WORD ((” . ”) ({WORD}{PKT ADDR}{PKT SUBFRACTION OF WORD}))
20 PKT ADDR DWORD ((” . ”) ({DWORD}{PKT ADDR}{PKT SUBFRACTION OF DWORD}))
21
22 PKT ID PKT({PKT ADDR BYTE}|{PKT ADDR WORD}|{PKT ADDR DWORD})
23 ”R” { re turn L REG ; }
24 ”M” { re turn MEM SHARED; }
25 ”MEM” { re turn DECL MEM; }
26 ”REG” { re turn DECL REG ; }

Listing 3.7: Part of lexical analysis (scanner) for FPL.

• The parser groups tokens into syntactical units. The output of the parser is a parse tree
representation of the program. Context-free grammars are used to define the program
structure recognized by a parser. The parser for FPL is implemented using bison and
a part of it is shown, as example, in Listing 3.8.

1 oexpr : L REG ’ [’ exp r ’] ’ { $$ = l r e g c r e a t e ($3) ; }
2 | MEM SHARED ’ [’ exp r ’] ’ { $$ = m e m s h a r e d c r e a t e ($3) ; }
3 | MEM SCRATCH ’ [’ exp r ’] ’ { $$ = m e m S c r a t c h c r e a t e ($3) ; }
4 | PACKET ’ . ’ OFFSET BYTE ’ [’ exp r ’] ’ { $$ = p k t b c r e a t e ($5) ;}
5 | PACKET ’ . ’ OFFSET WORD ’ [’ exp r ’] ’ { $$ = p k t w c r e a t e ($5) ;}
6 | PACKET ’ . ’ OFFSET DWORD ’ [’ exp r ’] ’ { $$ = p k t d w c r e a t e ($5) ;}
7 s t a t e m e n t :
8 oexpr ASSIGN expr { $$ = a s s i g n T o c r e a t e ($1 , $3) ; }
9 | oexpr ASSIGN PLUS expr { $$ = a s s i g n T o w i t h P l u s c r e a t e ($1 , $3) ; }

10 | PRINT expr { $$ = p r i n t c r e a t e ($2) ; }
11 | exp r { $$ = s e q E x p r c r e a t e ($1) ; }

Listing 3.8: Part of syntax analysis for FPL.

We note that the _create constructs are specific to the TreeCC tool. Each ‘ create’
construct (e.g., lreg create) asks TreeCC to build a node with a specified type (e.g.,
lreg), using the specified parameters ($3), and insert the node into the abstract syntax
tree (AST).

44 A Resource Constrained Language for Packet Processing: FPL

• The contextual analysis phase analyzes the parse tree for context-sensitive information.
The output of the contextual analysis phase is an annotated parse tree. This step is
implemented with the help of the TreeCC tool. An example of a type inferencing is
illustrated in Listing 3.9.

1 /∗ !
2 ∗ \ b r i e f D e f i n e t h e t y p e code t h a t i s a s s o c i a t e d w i t h a node
3 ∗ i n t h e s y n t a x t r e e .
4 ∗ We use ” e r r o r t y p e ” t o i n d i c a t e a f a i l u r e d u r i n g t y p e i n f e r e n c i n g .
5 ∗ /
6 %enum t y p e c o d e =
7 {
8 e r r o r t y p e ,
9 i n t t y p e ,

10 l o c a l r e g t y p e ,
11 loca lmem type ,
12 p k t t y p e
13 }
14 %node p k t t y p e e x p r e s s i o n %a b s t r a c t =
15 {
16 e x p r e s s i o n ∗ exp r ;
17 }
18 %node pk tb p k t t y p e
19 %node pktw p k t t y p e
20 %node pktdw p k t t y p e
21 /∗ !
22 ∗ \ b r i e f D e f i n e t h e ” i n f e r t y p e ” o p e r a t i o n as a non−v i r t u a l .
23 ∗ /
24 %o p e r a t i o n void i n f e r t y p e (e x p r e s s i o n ∗e)
25
26 i n f e r t y p e (b i n a r y) {
27 i n f e r t y p e (e−>expr1) ;
28 i n f e r t y p e (e−>expr2) ;
29 i f (e−>expr1−>t y p e == e r r o r t y p e | | e−>expr2−>t y p e == e r r o r t y p e)
30 {
31 e−>t y p e = e r r o r t y p e ;
32 }
33 e l s e i f (e−>expr1−>t y p e == l o c a l r e g t y p e | | e−>expr2−>t y p e ==

l o c a l r e g t y p e)
34 {
35 e−>t y p e = l o c a l r e g t y p e ;
36 }
37 e l s e i f (e−>expr1−>t y p e == l o c a l m e m t y p e | | e−>expr2−>t y p e ==

l o c a l m e m t y p e)
38 {
39 e−>t y p e = l o c a l m e m t y p e ;
40 }
41 e l s e i f (e−>expr1−>t y p e == p k t t y p e | | e−>expr2−>t y p e == p k t t y p e)
42 {
43 e−>t y p e = p k t t y p e ;
44 }
45 e l s e
46 {
47 e−>t y p e = i n t t y p e ;
48 }
49 }
50 i n f e r t y p e (una ry) {

3.1 The FFPF packet language: FPL 45

51 i n f e r t y p e (e−>exp r) ;
52 e−>t y p e = e−>expr−>t y p e ;
53 }

Listing 3.9: A type inference example used for FPL language.

• The code generator transforms the simplified annotated parse tree into C code using
rules which denote the semantics of the source language. This step is also implemented
with the help of TreeCC tool. An example of a code generator for PKT.B[] construct
is illustrated in Listing 3.10. The example shows also how the code generator chooses
which output format to use such as gcc_k (OS kernel for commodity PCs), MEv2 for
MicroC in IXP network processors.

1 e v a l e x p r (p k t) ,
2 e v a l e x p r (pk tb) ,
3 e v a l e x p r (pktw) ,
4 e v a l e x p r (pktdw) ,
5 {
6 e v a l v a l u e v a l u e ;
7 i f (g i O u t p u t F o r m a t == 1)
8 {
9 v a l u e = e v a l u a t i o n O f E x p r g c c k (e) ;

10 }
11 e l s e i f (g i O u t p u t F o r m a t == 2)
12 {
13 v a l u e = eva lua t ionOfExpr MEv1 (e) ;
14 }
15 e l s e i f (g i O u t p u t F o r m a t == 3)
16 {
17 eva lua t ionOfExpr MEv2 (e) ;
18 }
19 e l s e i f (g i O u t p u t F o r m a t == 4)
20 {
21 p r i n t f (” Usermode−NOT y e t s u p p o r t e d !\ n ”) ;
22 }
23 e l s e
24 {
25 p r i n t f (” O p e r a t o r E v a l u a t i o n : Unknown o u t p u t f o r m a t \n ”) ;
26 }
27 re turn v a l u e ;
28 }
29
30 eva lua t ionOfExpr MEv2 (pk tb)
31 {
32 e v a l v a l u e v a l u e ;
33 i n f e r t y p e (e−>exp r) ;
34 i f (e−>BoundChecking . eType == b o u n d c h e c k p r e)
35 {
36 v a l u e = eva lua t ionOfExpr MEv2 (e−>exp r) ;
37 }
38 e l s e i f (e−>BoundChecking . eType == b o u n d c h e c k p o s t)
39 {
40 s p r i n t f (g szTemp , ” GetByte (b u f i n d e x , %s) ” ,

e−>BoundChecking . szVarName) ;
41 s t r c a t (g s z O u t F i l e S t r e a m , g szTemp) ;

46 A Resource Constrained Language for Packet Processing: FPL

42 }
43 e l s e i f (e−>expr−>t y p e == i n t t y p e)
44 {
45 v a l u e = eva lua t ionOfExpr MEv2 (e−>exp r) ;
46 s p r i n t f (g szTemp , ” GetByte (b u f i n d e x , %l d) ” , v a l u e . i n t v a l u e) ;
47 s t r c a t (g s z O u t F i l e S t r e a m , g szTemp) ;
48 }
49 e l s e i f ((e−>expr−>t y p e == l o c a l m e m t y p e) | | (e−>expr−>t y p e ==

l o c a l r e g t y p e) | | (e−>expr−>t y p e == p k t t y p e))
50 {
51 p r i n t f (” o b s o l e t e c a s e f o r mem reg pkt t y p e i n pk tb\nWork

around : Use an a s s i g n m e n t b e f o r e i f s t a t e m e n t !\ n ”) ;
52 }
53 re turn v a l u e ;
54 }

Listing 3.10: Example of code generator for PKT.B construct in FPL.

3.1.4 The FPL-compiler tool

The FPL source-to-source compiler was designed to support multiple hardware architectures
and hence, it generates code that will be consequently compiled by a back-end compiler
for specific target hardware. Programs can therefore benefit from the advanced optimisers
in the back-end compilers such as Intel µEngine C compiler for IXP devices and gcc for
commodity PCs. As a result, the object code will be heavily optimised even though we did
not write an optimiser ourselves.

Assuming that a filter expression written in FPL needs to run on two different hardware
architectures (e.g., a commodity PC and an IXP network processor), the work-flow is illus-
trated in Figure 3.4 and is described below.

A first step consists of translating the filter into an intermediate FFPF module tailored to
a specific hardware target 1©. This module is a direct translation of FPL code into C code,
including the compiler checks such as language constructs bound-checks, resource restriction
checks, and forms the core of the future filter that FFPF needs to invoke on every packet.
Then, the FPL-compiler passes the C code files to a back-end compiler according to a chosen
hardware target A©, B©.

Choosing a network processor as hardware target, the work-flow follows the branch A©.
In this case, the Intel MicroC compiler takes the translated code of the filter, compiles and
links it to the FFPF on IXP framework (fix) 2©. The result is a code object (e.g., fix.uof)
that has to be loaded on the network processor. Next, the hardware needs to be started 3©.
The management operations (e.g., load/unload, start/stop) on the IXP network processors are
performed with the help of FIX management tools.

When choosing a commodity PC as hardware target, the work-flow takes the branch B©.
The translated code is compiled by the gcc compiler into a FFPF filter module ready to
run in the Linux kernel 4©. Next, the last step is loading the filter kernel module into the
FFPF run-time environment by calling the FFPF framework’s management function ‘Insert
filter’ 8©. The management operations such as loading/releasing of filters into/from the FFPF
runtime are performed with the help of FFPF management tools as also described in detail in
Section 4.1.2.

3.1 The FFPF packet language: FPL 47

filter script

restrictions

translator

FFPF

resource
fix_framework
ffpf_module.c
ffpf_filter.c

1

MicroC

Intel
3

fix.uof
load/unload filter

start/stop hw core

gcc

record
compilation

4

6 7

ffpf_filter.ko

5

credentials

insert_filter

release_filter

8

KeyNote

B

2A

B

A

back−end compiler

FIX management tools

FFPF kernel module

Figure 3.4: User compiles an FPL filter.

The FPL-compiler, in addition to the ‘C translation’, also makes some specific checks for
security reasons. Because our framework allows users to run code in the lowest levels of the
processing hierarchy, we must provide proofs of authorisation of the compiled code before
injecting it into kernel or hardware. The FPL-compiler accomplishes this by using KeyNote
to generate a compilation record 7©, which proves that this module was generated by this
(trusted) FPL-compiler [68]. The proof contains the MD5 of the object code 5© and is signed
by KeyNote for certain user credentials 6© (e.g., userX can load code but only in a specific
order, or only code without external function calls). When loading an FPL filter expression
with a security demand, users provide the object code, as well as the code’s compilation
record. The code loader checks whether the code is indeed the FPL code generated by the
local compiler and the credentials match its security policy, loads it in the kernel’s FFPF
target. The authorisation process is described in the next section.

3.1.5 Authorisation of FPL filters into the run-time environment
It is important to note that the use of FPL filters is not restricted to root users. In our
framework, ordinary users may receive (in the form of credentials) explicit permission to
monitor the network (possibly with restrictions, e.g., only packets with specific addresses).
Whenever a user wants to insert a FPL compiled filter into the FFPF runtime, the FFPF
admission control checks whether the user has the appropriate privileges to insert a filter with
some specific combination of options applied to it.

Credentials and trust management used by our FPL-compiler and our run-time environ-
ment are implemented using the KeyNote [68] package. Our authorisation process provides
fine-grained control that allows for complex policies. For instance, it is possible to specify
such policies as: (1) a call to external function strsearch is permitted for packets arriving

48 A Resource Constrained Language for Packet Processing: FPL

KeyNote−V e r s i o n : 2
Comment : Wi th in t h e a p p l i c a t i o n domain \ f f p , t h e a u t h o r i s e r g r a n t s t h e

l i c e n s e e (s) t h e r i g h t t o use a s e t o f f u n c t i o n s under s p e c i f i c
c o n d i t i o n s (e . g . r e g a r d i n g t h e number o f o c c u r r e n c e s and t h e o r d e r
i n which t h e s e f u n c t i o n s a r e a p p l i e d) . Note : keys and s i g n a t u r e s
a r e a b b r e v i a t e d f o r c l a r i t y .

A u t h o r i z e r : ” r s a−base64 : MIGJAoGBAMbP4gS2x72ZF1PrnN / / VEXfkYMtb=”
L i c e n s e e s : ” r s a−base64 : MIGJAoGBAKmynDiwN1tAKd6sGTHulfuyOoApl=”
C o n d i t i o n s : app domain == ”FFPF” && dev ice name = ” e t h 0 ” &&

@$(”PKT COUNTER . num”) < 2 && @$(”STR SEARCH . num”) < 2 &&
@$(”PKT SAMPLER . num”) > 0 && &$ (”PKT SAMPLER . param . 1 ”) < 0 . 5 &&
@$(”PKT SAMPLER . f i r s t ”) < @$(”STR SEARCH . f i r s t ”) < 2 && −> ” t r u e ” ;

S i g n a t u r e : ” s i g−r s a−sha1−base64 : i3zsmSamFnCs7SegUIPgJ6921In+U=”

Listing 3.11: Example of credentials in Keynote.

on eth0 only if it is preceded by a sampling function, (2) all calls to an external function
drop must be followed by a return statement, and (3) filter x may only be connected to
filter y, etc. These policies can only be checked if an entire chain of filters definition is
available.

For example, one may want to specify that a user is allowed to apply a string search filter,
but no more than one and only if the string search filter is applied after a sampling filter
that grabs no more than 50 % of the packets. The assertions and credentials are processed
using Keynote to check whether there are no conflicts between the user’s credentials and
the filter specifications. An example of the sort of assertions that may be expressed in the
Keynote credentials with respect to this is shown in Listing 3.11. In the credential shown
here, an authoriser grants a licensee (both identified by their public keys) the right to apply
certain filters in a chain, subject to specific conditions. These conditions specify that the chain
of filters is only valid in application domain FFPF, if the device that the chain is created
for is one of eth0, if the chain has fewer than two packet counters, fewer than two string
search operations and at least one sampler (with a specific first parameter), where the sampler
should be applied before the string search (presumably to prevent a computationally intensive
filter like string search from being applied to every packet). The credential is signed by the
authoriser, e.g. the system administrator, or someone to whom the system administrator has
delegated part of his/her powers (via another set of credentials).

The example shows that authorisation control guards against ‘unsafe’ filters, but can also
be used to guard against ‘silly’ mistakes.

Authorisation control is optional. For instance, if the only party using FFPF is the system
administrator, authorisation control may be left out to simplify management. We note that in
the remainder of this thesis we focus on traffic monitoring rather than authorisation issues.

3.2 Evaluation of the FPL-compiler

The FFPF framework provides two distinct packet languages: FPL-1 and FPL (as described
in Section 3.1). The FPL language has several advantages over its predecessor FPL-1. Firstly,
it is compiled to fully optimised native code, rather than byte-code that is executed in an in-

3.2 Evaluation of the FPL-compiler 49

terpreter. Secondly, it is based on a modern memory/registers/ALU model, rather than on
the (slower) stack-based architecture used by FPL-1. Thirdly, FPL allows using of nested
for-loops at the price of a few clock cycles spent on bound-checking. Fourthly, its similar-
ity to traditional imperative programming languages makes FPL much more readable than
its predecessor. The FPL approach was evaluated experimentally by implementing a set of
programs in both FPL-1 and FPL and comparing their execution times. In addition, we also
present the overhead of FPL comparing to the execution times of ‘hand-crafted’ C code of
the same set of programs.

The benchmark consists of running the same filter expression (as illustrated in List-
ing 3.12), for a certain number (e.g., 15) of successive times, measuring the overhead, in
clock-ticks, introduced by the filter check function for each time. The result is the median
value of these 15 measurements and it is shown in Figure 3.5 among other filter expression
processing results.

1 M[2] = 1 0 ; / / 100; 250; 500 − maximum i t e r a t i o n s number
2 M[0] = 0 ;
3 FOR (M[1] = 0 ; M[1]<M[2] ;M[1] + +)
4 IF (PKT . B[M[1]] == 0x65) / / i s t h i s c h a r a c t e r ’A ’?
5 M[0] + + ; / / i n c r e m e n t t h e c o u n t e r
6 FI ;
7 ROF;

Listing 3.12: FPL example.

This filter, in all its three versions (maximum iterations number differs), perform an ex-
tensive computation - searching of a specific character (e.g., ‘A’) in the packet data. When
such a character is found, it is counted. In our benchmark, we made sure that all bytes in the
packet had to be scanned.

Figure 3.5: FPL-1 versus FPL.

It is clear that FPL easily outperforms FPL-1 (note that the scales are logarithmic). This
is no surprise, as FPL-1 uses a handwritten interpreter, while FPL is fully optimised C code.
Especially for more complex processing, such as looking at all bytes in the payload, this
difference in performance is very big.

50 A Resource Constrained Language for Packet Processing: FPL

Figure 3.6 shows the overhead introduced by the FPL compiler for safety reasons such as
bound-checks compared to the execution of straight C code. Note that the scales are linear
and the overhead is about a few cycles which consists of ‘hidden’ if-statements to bound-
check the for-loops execution as illustrated in Section 3.1.2.

Figure 3.6: FPL versus ”C” code.

Assign Hash
FPL-1 1020 1684
FPL 172 392
”C” code 168 388

Table 3.4: Comparison: FPL-1, FPL, and ”C” code.

In Table 3.4 we also show a comparison of FPL-1 and FPL of the performance of applying
a single assignment, and of a hash function. Again, it is clear that FPL is much more efficient,
although it has a few cycles overhead compared to a C code due to the bound-checks on the
input data used by PKT[] or the Hash operators. As a result, we believe that FPL is an
important contribution to the FFPF framework.

3.3 Examples of FPL applications
In this section, we present two practical examples of simple packet processing applications
written in the FPL language: (1) traffic characterisation in histograms and (2) traffic anonymi-
sation.

3.3.1 Traffic characteristics histogram
This application is used for traffic analysis in a human readable form: histograms. The
application does the following two checks on each incoming packet: (1) checks the packet
size and classifies it within a certain range (e.g., 0-128 Bytes, 128-256 Bytes) and (2) checks

3.3 Examples of FPL applications 51

1 MEM[3 5] ;
2 REG [2] ;
3 R[0] = PKT . IP TOTAL LEN ;
4 R[1] = EXTERN(GetPacketType , 0 , 0) ; / / 0−UDP, 1−TCP , 2−ICMP , 3−Other
5 IF (R[0] < 128) THEN M[R [1]] + + ; FI ;
6 IF (R[0]>= 128 && R[0]< 256) THEN M[R[1] + 5] + + ; FI ;
7 IF (R[0]>= 256 && R[0]< 512) THEN M[R[1] + 1 0] + + ; FI ;
8 IF (R[0]>= 512 && R[0]< 768) THEN M[R[1] + 1 5] + + ; FI ;
9 IF (R[0]>= 768 && R[0] <1024) THEN M[R[1] + 2 0] + + ; FI ;

10 IF (R[0] >=1024 && R[0] <1280) THEN M[R[1] + 2 5] + + ; FI ;
11 IF (R[0] >=1280 && R[0] <1512) THEN M[R[1] + 3 0] + + ; FI ;

Listing 3.13: FPL application for traffic characterisation.

the packet protocol and classifies it within one of the following class: UDP, TCP, ICMP,
‘Other’. Then, the application counts the above packet characteristics into proper counters of
a histogram such as illustrated in Figure 3.7.

U
D

P
T

C
P

IC
M

P
O

th
er

U
D

P
T

C
P

IC
M

P
O

th
er

U
D

P
T

C
P

IC
M

P
O

th
er

256 B128 B0 1512 B1280 B

M1 − M5 M6 − M10 M30 − M35

Figure 3.7: Traffic histogram.

The application written in FPL language is shown in Listing 3.13. It uses the MEM buffer
to store persistent data: the counters. We partition the buffer as follows: seven packet size
ranges in which we may have four different packet types. Note that for the sake of code
simplicity we allocated five counters per range though we use only four: 0-UDP, 1-TCP, 2-
ICMP, and 3-Other. We also observe the use of ‘GetPacketType’ external function which is
separately shown in Listing 3.15. Although the ‘GetPacketType’ is small, simple, and could
easily be written within the application, we made it an external function for the purpose of
illustrating code re-usage between two applications: the current histogram and the ‘packet
anonymisation’ as presented in the next section.

3.3.2 Packet anonymisation for further recording

In this application we address the problem of saving on external memory (e.g., hard-disks)
real-time traffic for offline analysis. An important requirement is to provide privacy on the

52 A Resource Constrained Language for Packet Processing: FPL

‘tapped’ traffic. For example, sensitive data such as http payloads that may include private
data must not be stored. The process of hiding the private data from a packet is also called
‘anonymisation’. We propose a simple application that hashes the payload and pushes the IP,
TCP or UDP headers together in a shared memory available for further storage. Note that the
retrieving of the stored packet data from shared memory and storing them on external support
(e.g., hard disks) is left out of scope of this experiment. If the packet is of other type than
TCP or UDP, then it saves the entire IP header.

The application written in FPL language is shown in Listing 3.14.

1 MEM[4] ; / / keep i n d e x e s f o r dumping p a c k e t i n t h e b i g sh are d MEM
2 REG [2] ;
3 R[0] = PKT . IP TOTAL LEN ;
4 R[1] = EXTERN(GetPacketType , 0 , 0) ; / / 0−UDP, 1−TCP , 2−ICMP , 3−Other
5 IF (R[1] == 0) THEN / / UDP p a c k e t
6 M[0] = HASH(2 0 , R [1] , 4096) ; / / Hash from Start UDP t i l l end o f PKT
7 EXTERN(SavePktDataUDP , 0 , 0) ; / / Save t h e UDP hdr + h a s h v a l u e (a t M[0]) ,

s t a r t i n g a t s p e c i f i c o f f s e t (M[1])
8 M[1] + + ;
9 ELSE

10 IF (R[1] == 1) THEN / / TCP p a c k e t
11 M[0] = HASH(2 0 , R [1] , 4096) ; / / Hash from S t a r t TC P t i l l end o f PKT
12 EXTERN(SavePktDataTCP , 0 , 0) ; / / Save t h e TCP hdr + h a s h v a l u e (a t

M[0]) , s t a r t i n g a t s p e c i f i c o f f s e t (M[2])
13 M[2] + + ;
14 ELSE / / IP p a c k e t
15 M[0] = HASH(0 , R [1] , 4096) ; / / Hash from S t a r t I P t i l l end o f PKT
16 EXTERN(SavePktDa ta IP , 0 , 0) ; / / Save t h e I P h d r + h a s h v a l u e (a t M[0]) ,

s t a r t i n g a t s p e c i f i c o f f s e t (M[3])
17 M[3] + + ;
18 FI ;
19 FI ;

Listing 3.14: FPL application for packet anonymisation.

1 MEM[1] ;
2 M[0] = PKT . IP PROTO ;
3 IF (M[0] == UDP) THEN
4 RETURN 0 ;
5 ELSE
6 IF (M[0] == TCP) THEN
7 RETURN 1 ;
8 ELSE
9 IF (M[0] == ICMP) THEN

10 RETURN 2 ;
11 ELSE
12 RETURN 3 ;
13 FI ;
14 FI ;
15 FI ;

Listing 3.15: FPL external function: GetPacketType.

3.4 Summary 53

3.4 Summary
In this chapter we saw the FPL language we use to provide a common user interface for
building traffic processing applications regardless of the hardware support that lies beneath.
In addition to the performance of the compiled code, our FPL language achieves impor-
tant requirements of the main FFPF packet processing framework such as safety, easy pro-
grammable, and hiding hardware specific details.

In the next chapter, we will consider implementations of FPL on specific target platforms.

54 A Resource Constrained Language for Packet Processing: FPL

Chapter 4
FPL Run-time Environments

In this chapter we introduce the run-time extensions made to an existing packet processing
framework, Fairly Fast Packet Filter (FFPF), in order to support the previously introduced
FPL applications onto several hardware architectures in use these days: commodity PCs,
network processors, and FPGAs.

While in the next chapter we will show how we can handle even faster links by dis-
tributing the processing over multiple nodes, this chapter assumes a single node processing
environment.

4.1 FFPF on commodity PCs
The first FFPF implementation was built on commodity PCs using Linux. It consists of
a buffer management system implemented in a kernel module, various APIs for userspace
support (e.g., pcap libraries), a compiler for the FPL language, and a management toolkit for
easy integration of development and debugging tools.

4.1.1 Buffer management
The main purpose of the buffer management system (BMS) is to capture all packets that are
marked as interesting by a low-level processing task (e.g., a kernel FPL filter) and hand a
reference to these packets to the appropriate user applications.

Note that in our packet processing framework, FFPF, there is always one producer (packet
source) and many consumers (filters), which allows us to implement lock-free circular buffers
to store the packets.

As also illustrated in Figure 4.1, Circular buffers in FFPF have two indices to indicate
the current read and write positions. These are known as R and W , respectively. Whenever
W catches up with R, the buffer is full. The way in which the system handles this case
is defined by the buffer management system (BMS). The modular design of FFPF allows
different BMSs to be used. The administrator chooses the BMS at startup time. The optimal
choice depends on the mix of applications that will be executed and their relative importance.

56 FPL Run-time Environments

− filter 1

− filter n

incoming packet

1R

nR

W

Figure 4.1: Circular buffer in FFPF.

At the time of writing, two BMSs have been defined. The first is known as ‘slow reader
preference’ (SRP) and is commonly used in existing systems. The second is known as ‘fast
reader preference’ (FRP) and is a novel way of ensuring that fast readers are not slowed down
by tardy applications.

Buffer management is concerned with how readers and writers synchronise and share
their buffers. SRP corresponds to ‘traditional’ buffer management in which new packets are
dropped if the buffer is full. While convenient, the disadvantage is that one tardy application
that fails to read the (shared) PBuf at a sufficiently high rate, causes packet loss for the entire
group. FRP, in contrast, simply keeps writing regardless of whether the buffer is full. The
trick is that it enables applications to check a posteriori whether the packets they just pro-
cessed have been overwritten. For efficiency, applications in both SRP and FRP may process
their packets in batches (e.g. 1000 packets at a time) in order to minimise context switches.
Details about SRP and FRP are provided in [14].

A high-level overview of the FFPF implementation on commodity PCs is shown in Fig-
ure 4.2. It shows that the central component of FFPF is the Buffer Management System
(BMS). BMS consists of a main buffer (PBuf) shared by all applications that may access it.
BMS also includes several secondary buffers and pointer lists needed to assure a good system
management. For instance, assuming the system has m filters (F1, F2, ...Fm) registered in the
filter list g_listFilters. Each filter may access a packet in the shared PBuf by one of
the following two ways: (1) directly getting the next available packet in PBuf by reading X
up to the global W position, increasing its local R position in PBuf, and eventually marking,
into a local index buffer (IBuf), the packets found interesting for other filters such as higher
level applications, or (2) by getting the next packet pointed by the local IBuf being marked as
interested beforehand by other filters. The latter option is useful when using a chain of filters.

The main purpose of the BMS is to capture all packets that are considered ‘interesting’
and hand a reference to these packets to the appropriate applications. The idea behind FFPF
is simple. Users start applications in user-space (see App.1, App.n in Figure 4.2) that load
filters. A filter is an application oriented on packet processing only and it runs at low levels
such as OS kernels, or even in hardware. An application may use the processing results of one
or more loaded filters by way of a shared memory that is called MBuf and is located inside
each filter. Moreover, an application may use a filter as a ‘pre-processor’ so as to offload part
of its heavy packet processing job onto lower processing levels. In this case, the application
retrieves from its loaded filter indexes to the packets needed for a more exhaustive processing
than the filter was able to perform.

FFPF framework provides the basic receiving functionality. When a packet arrives, FFPF

4.1 FFPF on commodity PCs 57

FmF2
F1

��������
��������
��������
��������

��������
��������
��������
��������

F2

local pkts index

App 1
local pkts index

App 2

local pkts index

App n

F1

R

IBuf

Fm

R

IBuf

mmap

g_listFilters

network devices

userspace

kernel

pa
ck

et

W
PBuf

Figure 4.2: The FFPF implementation on commodity PCs.

pushes it into the main shared packet buffer PBuf and advances the global W pointer with one
slot. When a filter classifies a packet as ‘interesting’ for other filters or user applications, it
returns a non-zero value, a pointer to the packet is placed in the filter’s index buffer IBuf, and
the local R pointer advances one slot. An application may use the filter’s index buffer to find
the packets in which it is interested. In addition, a filter has its own chunk of memory (known
as ‘MEM’) that is shared with the application and which it may use to store results to be read
by the application or temporary values that do not disappear between invocations (persistent
state). All buffers are memory mapped, so no copying between kernel and user-space is
necessary.

4.1.2 The FFPF run-time environment for compiled filter object
The interface between FFPF and the compiled filter object deals with two aspects: insert-
ing/removing of filter and run-time handling of the registered filters. In order to provide such
functionalities, we extended the FFPF framework with a management toolkit. The FFPF
toolkit includes tools such as a ‘loader’ for filter loading, a ‘manager’ for hardware cores, etc.
This toolkit may use different tools or ports of the same tool for different hardware targets.
For instance, the loader on commodity PCs is a simple kernel module loader, while on a net-
work processor, the loader deals with transferring the filter object onto the hardware, loading
and starting the hardware remotely, etc.

Assuming that a filter has been compiled in the filter kernel module as it targets a com-
modity PC, it must be inserted and registered by FFPF. The user can simply inject the filter
module into the kernel by using FFPF loader (e.g., ‘./ffpf_loader filter_nn.ko’),
as shown in Figure 4.3 1©. While doing so, FFPF checks also the module authorisation and

58 FPL Run-time Environments

decides whether the module is going to be accepted or not.

Filter 1
Filter 2

F1
F2

Fnn

Fn

Filter nn
Filter n

13

4

2

g_listFilters

kernel

userspace

remove filter n insert filter nn

CheckFilters()

FFPF Packet
Sourcesnetwork devices

Figure 4.3: FFPF filters interfaces.

In commodity PCs, the FFPF ”packet source” employs a hook registered within Linux 2©,
as also described in the next section. The hook behaves almost as an interrupt handler,
and is invoked at each incoming packet. The hook function gets as parameter a pointer to
the current packet. The packet pointer is passed to each filter registered into the filters list
‘g_listFilters’ 4©. The filter list is maintained by the FFPF core in such way that any
filter registering/unregistering operation goes safely through only one point and thus mutual
exclusion is ensured.

The user can release a packet filter from the filters list by invoking the FFPF unloader on
the specific filter (e.g. ‘./ffpf_loader -u ffpf_filter_n.ko’) as illustrated in
Figure 4.3 3©. When removing the module, FFPF automatically checks whether the specified
filter is registered or not and if so, releases the pointer from ‘g_listFilters’.

4.1.3 FFPF packet sources

Packets enter the FFPF framework via a call to an FFPF function called hook handle packet()
which takes a packet as argument. As this is the only interface between the code responsible
for packet capture and the FFPF packet handling module, it is easy to add new packet sources.
Currently, three sources are implemented.

The first source, known as netfilter, captures packets from a netfilter hook. Netfilter
is an efficient abstraction for packet processing in Linux kernels (from version 2.4 onward).
The second source, known as netif_rx, is a lower level routine that also works with older
kernels. The third packet source, known as ixp, differs from the other two in that the net-

4.2 FFPF on NPs: NIC-FIX 59

work processor device (e.g., IXP1200, IXP2400, IXP2850) is assumed to be dedicated to
monitoring in the FFPF framework which means that part of the processing can be offloaded
to it. As this packet source is a substantial project in and of itself, we will describe its main
characteristics in the next sections.

4.2 FFPF on NPs: NIC-FIX
Packet handling in modern workstations works well for slow, sub-gigabit speeds but fails at
higher rates. While some operating systems fare a little better than others, this statement
is true irrespective of one’s choice of operating system [69]. The problem is caused by a
combination of hardware and software bottlenecks.

Memory and peripheral bus technologies struggle to keep up with backbone link rates.
Even if a workstation does manage to get all packets across the bus in host memory and
from memory in the CPU, inefficient packet handling by the OS still makes it difficult to
process packets at high speeds. The problems are commonly rooted in the overhead of in-
terrupt handling, context switching and packet copying [70]. As it stands, we conclude that
common workstations with current hardware and software configurations are not suitable for
high-speed network monitoring. At the same time, the need for affordable network moni-
tors is growing, e.g., for security, traffic engineering, SLA monitoring, charging, and other
purposes. In this section we present NIC-FIX, an extension of the Fairly Fast Packet Filter
(FFPF) [14] network monitoring architecture on network cards with Intel IXP network pro-
cessors (NP) [47,48]. The extended FFPF architecture can be described as ‘bottom-up’ in that
packets are handled at the lowest processing level and few packets percolate to higher levels,
as also illustrated in Figure 4.4. Moreover, higher levels only take action when prompted to
do so by the lower layers. This is a known approach, e.g., in router design [71].

NIC-FIX extends the FFPF processing hierarchy

In the extended FFPF, NIC-FIX forms the lowest level of the processing hierarchy, as shown
in Figure 4.4. NIC-FIX allows us to deal with common hardware bottlenecks by offloading
packet processing to the network card when possible, thus reducing strain on the memory and
peripheral buses.

user space

kernel space

control processor

core 1 core 2

hostPC

NPU

FFPF

NIC−FIX

Figure 4.4: A processing hierarchy in FFPF.

60 FPL Run-time Environments

The control processor

At the present time, NPs make use of a general CPU, such as ARM or XScale on Intel
IXP, in order to control their complex parallel architecture: hardware cores, buses, different
memory types, etc. We run embedded Linux (a big-endian port of Linux for ARM CPUs)
on the control processor. In addition, we designed and developed a management toolkit that
contains components responsible for control tasks such as initialization, loading and control
of cores, memory mapping of buffers from SDRAM to the host, initialization of different
memory buffers, etc.

The hardware cores

Processing packets at high speed line rates (multi-gigabits/sec) is difficult to accomplish using
general purpose processors because of the growing gap between the link and the memory
access speeds, as also described in Section 1.3.2.

We use Intel IXP network processors. An IXP makes use of multiple hardware cores,
namely (µEngines), in order to provide enough parallelism and, consequently, to be able to
cope with high speeds (multi-gigabits/sec). As also described in Section 2.2, the µEngines
are RISC processors specifically designed for packet processing. For instance, a µEngine has
no floating point and does not run any operating system. µEngines are interconnected to each
other and to the outside world (e.g., memory, Ethernet transceivers) through multiple hard-
ware interfaces that may run in parallel: buses, signals, memories, registers, etc. µEngines
are under the control of a general purpose processor: the control processor.

4.2.1 Mapping packet processing tasks onto the NP hardware

The speed advantage of using NPs as hardware platform for packet processing depends
mostly on the way the processing tasks can run in parallel. Supposing we have an NP archi-
tecture that has built-in multiple hardware cores (see the example of NPs architecture details
in Section 2.2), then we need to map a user application (e.g., packet processing filters) to a
hardware platform in order to benefit from the parallel hardware features as much as possible.

Often, a packet processing application consists of multiple processing tasks (e.g., to count
TCP flow activity, and scan for worms in UDP packets). The NP architecture provides dif-
ferent possibilities for the granularity at which parallelism can be implemented: at core level
(µEngines), or even at thread level (multiple hardware supported threads per core). For the
sake of simplicity, we chose to map one task per hardware core although we could have also
opted for a thread granularity. In other words, we partition the NP at µEngine granularity and
therefore, an application composed of multiple tasks would use multiple µEngines. The idea
of mapping one to one (one task per µEngine) was also used recently in a network device
virtualisation by Kumar et al. [72]. Merging results of individual tasks happens at a higher
level in the processing hierarchy (e.g., the general purpose processor of a host PC).

Our architecture supports three mapping options: (1) one task may process all packets,
(2) different tasks may process the same packet, and (3) different tasks, or a same task mapped
onto several hardware cores, may process different packets (load balance). These aspects are
illustrated in Figures 4.5.a, 4.5.b, and 4.5.c, respectively.

4.2 FFPF on NPs: NIC-FIX 61

As shown in Figure 4.5.a, any packet processing application has, at a minimum, the fol-
lowing two tasks: 1© a receiver (Rx) that retrieves all the incoming packets from the network
interface and stores them into a local shared buffer for further processing; 2© a custom packet
processing task (T) that takes a subset of all available packets in the shared buffer, performs
some packet processing, and stores the processing results in shared buffers to a higher level
module (user’s control application). The task T runs on a µEngine, and may process packets
one by one, using one thread, or it may process multiple packets in parallel using multiple
threads running on the same µEngine (every thread processes one packet).

Disp.

Rx Tx
T1

T2

TxDispatcherRx

T2

T1

Rx T

T3

T4

modified packets

a) one task − all packets

modified packets

b) different tasks − same packet

http/2

http/2
TCP:http, https

c) custom packet distribution

TCP:rest

UDP

Figure 4.5: Mapping packet processing tasks onto NP’s hardware cores.

Figure 4.5.b shows an example when different tasks may process the same packet. For
instance, a simple application that has two tasks (T1, T2), both processing all the received
packets, but T1 does packet processing and then drops the packets (e.g., TCP flow accounting)
and T2 modifies the received packets and then sends them to a transmitter (Tx).

Figure 4.5.c shows an example where different tasks may process different packets: a load
balancing situation, for instance. In other words, this application type requires processing of
different packets in different tasks and hence, the application needs to split the incoming
traffic in sub-streams. Figure 4.5.c illustrates such an example of custom packet distribution.
Supposing that tasks T3 and T4 process only part of the received http traffic (e.g., load balance
the web stream), part of the received traffic (e.g., non-web TCP packets) is sent out, and task
T2 also sends out some of its modified UDP packets. This custom packet distribution over
the processing tasks is implemented by a dispatcher that consists of another packet pro-
cessing task that mainly does light processing: checking of some of the packet header fields
and then enqueue the packet to the proper task according to the programmed classification.

A dispatcher may be embedded in a basic task such as Rx or in a custom processing task
such as T1. Moreover, a dispatcher may be also a separate task, fully programmable by the
user like any other task, interconnected within a processing hierarchy. The latter dispatcher
type helps when re-programming of the dispatcher is required to be done ‘on-the-fly’ by not
affecting the other processing tasks and avoid packet loss.

In the following sections we continue to present our NIC-FIX design and then some

62 FPL Run-time Environments

specific software implementation on the first three Intel network processor generations: the
IXP1200, IXP24xx, and IXP28xx.

4.2.2 NIC-FIX architecture
We use the packet processing at high speeds as introduced by FFPF and presented in Sec-
tion 2.1 (e.g., minimising the packet copy) and exploit the hardware features (e.g., paral-
lelism) of a network processor such as the Intel IXP presented in Section 2.2 in order to
achieve the FFPF stated goals: scalability (in number of applications), flexibility, and high
speeds, but at line rates (multi-gigabits/sec).

Figure 4.6 shows the FFPF design on the IXP NPs. The design has two aspects: the
control and data planes. The data plane involves software running on the NP hardware cores
(µEngines) that perform packet processing. The data plane consists of 4© a buffer man-
agement system, similarly to the FFPF implementation on commodity PCs, and two types of
software tasks: basic tasks such as 1© Rx and 2© Tx for receiving and transmitting of packets,
respectively, and 3© custom tasks (the user application). While the basic tasks are provided
by the NIC-FIX framework, the custom tasks are part of the user applications written in the
FPL language and compiled for IXP hardware.

The control plane uses multiple software modules (e.g., client/server) that run on the
NP 5©, and on a host PC 8© in order to provide low-level functionalities (hardware initialisa-
tion, code upload, etc.) needed by any user application at a high-level.

Packet reception, processing, and transmission

As shown in Figure 4.6, NIC-FIX uses the first µEngine (µE0) for a gigabit receiver 1©. The
receiver stores each incoming packet into a circular buffer in DRAM called PBuf 4© which
is shared across all µEngines. The last µEngine is allocated to the gigabit transmitter 2©.
The transmitter pulls each enqueued packet (using its own index buffer – TBuf) from the
main PBuf and transmits it out to a gigabit port. The intermediate µEngines are ready to
use for custom packet processing in a fully programmable manner (e.g., in a chain or in
parallel), as described earlier in Section 4.2.1. NIC-FIX feeds each processing task with
indexes to the available packets (in PBuf). Next, every packet processing task reads partly or
completely the available packet stored in PBuf, processes it, and classifies it either for further
processing (by enqueuing the packet index into its IBuf or into the IBuf of the next task in a
chain), or for transmission out to a certain port (by enqueuing the packet index into TBuf). A
packet is enqueued in its IBuf when the high-level components of the FFPF framework (e.g.,
kernelspace, userspace filters) are interested in it. As a result, much of the computation can
be offloaded to the hardware accelerated filters.

Buffer management

One of the critical issues in the FFPF framework is data copying. Similar to the FFPF im-
plementation on a commodity PC (see Section 4.1.1), there is a shared circular packet buffer
(PBuf) in NIC-FIX 4©. The purpose of such a novel buffer is to reduce the data copying
needs. PBuf is shared by all µEngines, the XScale core and even higher layers through mem-
ory mapping. Whenever a packet is used by one or more ‘consumers’ (µEngines, XScale,

4.2 FFPF on NPs: NIC-FIX 63

PBuf

µΕ0

GIG
Rx

1
TBuf

Tx
GIG

2

µΕ1
IBuf

Pkt
processing

MBuf

0 1

4

µΕ2
IBuf

Pkt
processing

MBuf

eManagerµ

5ControlCPU

6

7

8

3

Media Switch Fabric

IXPxxxx

user space

kernel spaceFFPF

PCI bus Ethernet

Control App.

Gigabit ports:

Host_PC
BMS

Figure 4.6: NIC-FIX architecture.

etc.), it is just placed in PBuf once. In other words, rather than copying a packet to each
individual consumer, it is copied at most once. Therefore, the buffer has only one writer and
several readers. The writer’s job is quite simple: it increases the write index of PBuf by one
as every packet is saved into the buffer. Each reader has its own index buffer (IBuf). The IBuf
of reader X stores a number of indexes pointing to the corresponding packets in the PBuf in
which X is interested. A reader’s job is to check whether its index is not bigger than the write
index to avoid ‘over-read’ and it stops the processing when the indexes are equal (no more
packets available in PBuf).

A subtle issue concerns the size of the read and write indices, when we need to deal with
the possibility of overflow caused by the continuously increasing index. A 32 bit integer can
index four giga packets. At gigabit link speeds, it takes only a few minutes to overflow the
index. On the other hand, our hardware architecture provides atomic read/write operations
only for the memory that is aligned to 4 Bytes boundaries. Comparing all pros and cons
we still use the 32 bit index. We count indexes modulo 4 giga as a solution for an overflow
problem.

In addition to the shared packet buffer, a filter has its own chunk of memory (known as

64 FPL Run-time Environments

MBuf) that is shared with the application and which it may use to store results to be read
by the application or temporary values that do not disappear between invocations (persistent
state).

Resource management

As illustrated in Figure 4.6, the control path is composed of a client/server application that
interconnects a hostPC with our IXPxxxx system over various media interfaces (e.g., PCI
bus, Ethernet). The control application runs its server on the host PC 7©, and the clients
on the control processor of each connected NP 4©. The control application was designed to
support multiple interfaces such as PCI bus or Ethernet (10/100 Mbps) 5©. In other words,
we can control the IXPxxxx NP in a PCI hosted variant as well as in a remote connection
over the management ethernet port. The client running on the control processor of each NP,
called µeManager, is responsible, in addition to the communication function, for the low-
level control of the hardware such as initialisation, code loading, hardware core start/stop,
etc.

In this section, we presented our NIC-FIX architecture design that currently supports the
first three Intel IXP network processor generations available to date: the IXP1200, IXP2400,
and IXP2850. However, each NP has some specific features that change from one generation
to another. In the following sections, we shortly describe the specific NIC-FIX implementa-
tions on each of the IXP generation.

4.2.3 NIC-FIX on the IXP1200
The IXP1200 runs software in two areas of the network processor: (1) six µEngines with four
hardware threads each, providing 24 parallel threads for packet processing, and (2) the control
processor (a StrongARM core) with chip/board support package for Linux and VxWorks,
drivers, communications and some basic network applications.

As described in the previous section, in NIC-FIX, an FFPF filter is mapped onto a µEngine.
In addition, NIC-FIX uses two µEngines for basic filters (Rx, Tx). Given that the available
number of µEngines on the IXP1200 is six, as a consequence, the IXP1200 can support a
maximum of four filters. A filter uses all four threads, hardware supported by each µEngine,
to process the packets one by one. If the filter determines that the packet is interesting also
for other filters in the processing hierarchy, the µEngine places an index for the packet in the
filter’s IBuf.

As the IXP1200 is considered ‘obsolete’ and no longer supported by Intel, newer IXP
generations are available on the market: IXP2400, IXP2850. Because the newer versions
of the IXP support more µEngines at higher clock-rates, both the number of filters that can
be supported and their speeds increase in the NIC-FIX implementations on the next IXP
generations.

4.2.4 NIC-FIX on the IXP2400
Similar to the first IXP generation, IXP1200, this generation also uses a dual-plane design:
control and data planes. The control plane uses an XScale processor that is ARMv5 com-
pliant, and it is more powerful in both, clock-rates and also instructions set, than that of the

4.3 FFPF on FPGA: NIC-FLEX 65

previous IXP. The data plane is composed of eight µEngines running at higher clock-rates
than those of the IXP1200. Despite the clock speed growing, there are other improvements in
this generation such as a new and fast on-chip memory (localmem), direct signals between
µEngines (e.g., next-neighbour), more memory transfer registers, etc. The FPL compiler was
enhanced to support some of the new generation’s features. For example, the ‘MEM’ syntax
on improved architectures such as the IXP2400 or IXP2850 is implemented on localmem
memory type instead of slower off-chip SRAM like in the IXP1200.

4.2.5 NIC-FIX on the IXP2850
The IXP2850 NP has both planes, XScale core for control plane and µEngines for data plane,
compatible to the IXP2400. Therefore, our FFPF implementation on the IXP2850 uses the
same design discussed before. However, we used a dual-processor development platform
(IXDP2850) and the specific implementation details can be found in this thesis’ case study
(Chapter 8.3.2).

4.3 FFPF on FPGA: NIC-FLEX
We have argued that parallelism can be exploited to deal with processing at high speeds.
As we have shown, a network processor (NP) is a device specifically designed for packet
processing at high speeds by sharing the workload between a number of independent RISC
processors. However, for very demanding applications (e.g., payload scanning for worm
signatures) more power is needed than any one processor can offer. For reasons of cost-
efficiency it is infeasible to develop NPs that can cope with backbone link rates for such
applications. An attractive alternative is to use a reconfigurable platform such as an FPGA
that exploits parallelism at a fine granularity.

Figure 4.7 illustrates the advantages and disadvantages of the most used architectures in
packet processing: 1© commodity PC, 2© network processor (NP), and 3© hardware reconfig-
urable (FPGA). Although the packet processing speed grows when the parallelism increases,
at the same time, the programmability becomes harder.

1

2

3

hi
gh

lo
w

PC

FPGA

NPU

sp
ee

d

pr
og

ra
m

m
ab

ili
ty

ha
rd

ea
sy

Figure 4.7: Speed versus programmability in three architectures used in packet processing.

As illustrated in Figure 4.8.a, in a commodity PC architecture, the incoming packets need

66 FPL Run-time Environments

to be transferred across (slow) buses to the host CPU memory. Then the CPU reads, pro-
cesses, and writes back the packets to the memory. Finally, the processed packets may be
sent out. All these steps make it difficult to process packets (e.g., scan for worms signa-
tures) at high speeds (multi-gigabits/sec) because of the growing gap between the link and
the memory access speeds, as we argued in Section 1.3.2.

We have previously shown how the FFPF monitoring framework handles high speeds
by pushing as much of the work as possible to the lowest levels of the processing stack
(see Figure 4.8.b). The NIC-FIX architecture [73] showed how this monitoring framework
could be extended all the way down to the network card. To support such an extensible
programmable environment, we introduced the special purpose language known as FPL.

PCI bus

(Intel x86)
host_PC heavy packet processing

NIC
multi−gigabits/sec

Network traffic

a) Problem: Traffic Monitoring

at very high speed

PCI bus

multiple hardware cores

host_PC

Network Processor

processing results

Network traffic

PCI bus

FPGA

IP cores

processing results
host_PC

Network traffic

b) Solution1: Using Network processor

c) Solution2: Using reconfigurable hardware

Figure 4.8: Moving to special purpose embedded systems.

In this section, we exploit packet processing parallelism at the level of individual process-
ing units (FPGA cores) to build a monitoring architecture: NIC-FLEX (see Figure 4.8.c). In-
coming traffic is stored in fast off-chip memory, wherefrom it is processed by multiple FPGA
cores in parallel. The processing results are first stored in a very fast local memory and then
passed, on demand, to higher levels (e.g., user space tools). The main contribution of this
section consists of extensions to our FPL language that explicitly facilitates parallelization
of complex packet processing tasks. Also, with NIC-FLEX we extend the FFPF architec-
ture with specific packet processing support to create a flexible and fast filtering platform.
Experiments show NIC-FLEX to be able to handle complex tasks at gigabit line-rate.

NIC-FLEX builds on the idea of extensible system-on-programmable-chips that was ad-
vocated by Lockwood et al. in [74] for firewalling. However, we use it to provide a generic
high-speed packet processing environment by using the Compaan/Laura tool chain [75, 76]
that automatically transforms user code into synthesizable VHDL code that targets a specific
FPGA platform.

4.3 FFPF on FPGA: NIC-FLEX 67

4.3.1 High-level overview

At present, high speed network packet processing solutions need to be based on special pur-
pose hardware such as dedicated ASIC boards or network processors (see Figure 4.8.b). Al-
though faster than commodity hardware (see Figure 4.8.a), solutions based even on these
platforms are surpassed by the advances in reconfigurable hardware systems like FPGAs for
certain applications (e.g., those requiring encryption/decryption).

To exploits this trend we propose the solution shown in Figure 4.8.c, which consists of
mapping the user’s program onto hardware, processing the incoming traffic efficiently, and
then passing the processing results back to the user.

The software architecture is comprised of three main components, as illustrated in Fig-
ure 4.9. The first component 1© is a high level interface to the user and kernel space of
an operating system (e.g., Linux) and is based on the Fairly Fast Packet Filter (FFPF) [14]
framework. The second component 2© is the FPL-compiler that takes a program written in
the FPL packet processing language a© and generates a code object b© for the lowest level of
processing: reconfigurable hardware. The third component 3© is a synthesiser tool that maps
specific processing algorithms (e.g., Aho-Corasick) onto an FPGA platform and makes use of
a tool chain (Compaan/Laura) that automatically transforms sequential code into parallelised
hardware code.

filter_x

3
b

filter script
FPL−3E

FPL

mapping
compiler

1

2

a

PCI bus

obj. code for PowerPC/FPGA

PowerPC

M
A

C

Pkt.Processing:
Filter: IP payload scan for

a set of worm signatures

FFPF

Network traffic
1 Gbps IP cores

Users:
reading the filtering

results

Virtex−II Pro

Intel x86

Figure 4.9: NIC-FLEX packet processing architecture.

4.3.2 Extensions to the FPL language

As our architectural design relies on explicit hardware support, we needed to introduce this
functionality into our framework. With FPL, we adopted a language-based approach, follow-
ing our earlier experiences in this field. We introduced the extensions specifically with the
following observations in mind. First, there is a need for executing tasks (e.g., payload scan-
ning) that existing packet languages like BPF [18] cannot perform. Second, special purpose
devices such as network processors or FPGAs can be quite complex and thus are not easy
to program directly. Third, we should facilitate on-demand extensions, for instance through
hardware assisted functions. Finally, security issues such as user authorisation and resource

68 FPL Run-time Environments

constraints should be handled effectively. The previously introduced version of the FPL lan-
guage [77] addressed many of these concerns. However, it lacked features fundamental to
reconfigurable hardware processing like resource partition and parallel processing.

We will introduce the improved language design with an example. First, a simple program
requiring a high amount of processing power is introduced in Figure 4.10. Then, the same
example is discussed through multiple ‘mapping’ cases by using the FPL language extensions
in Figures 4.11, 4.12.

IF (TCP) THEN
IF (HTTP) THEN

scan (web_attack)

FPGA logic:
FOR (msg_length)

scan (web_attack) core1: PatternSearching_A

core2: PatternSearching_B
from FPL to runtime

Control processor:
IF (TCP) && (HTTP) THEN ’validate’ core1
IF (TCP) && (MAIL) THEN ’validate’ core2

scan (spam)
FOR (msg_length)

ELSE IF (UDP)

ELSE IF (MAIL)

FOR (message_length)

FOR (message_length)
scan (spam)

Figure 4.10: Packet processing example.

As Figure 4.10 shows, the FPL-compiler translates the program into multiple output ob-
jects, one for a control processor (ASIC embedded into the FPGA) and a second one for the
FPGA reconfigurable hardware (logic that contains multiple cores). The FPGA cores consist
of specific heavy computation algorithm implementations (e.g., pattern searching) that are in-
terconnected in such way as to achieve a fast processing path as we show later in this section.
Besides the parallelism built into the logic, we note that the task on the embedded control
processor runs itself in parallel with the FPGA logic. The control code is mostly composed
of nested IF statements used for result validation and, therefore, the processing speed of the
control processor is high enough to keep up with the high speed FPGA data processing.

Note that the requirement to perform complex packet processing at gigabit line rates
means that a task has a very limited time budget to process each incoming packet. When
a task requires a large amount of per-packet processing power (e.g., a full packet scan for a
worm), it becomes infeasible to perform this task on a single processing unit when network
speeds go up. Thus, we take a simple byte-searching algorithm as example, and map it on
the hardware using various techniques for parallel processing environment. For the sake of
simplicity of the explanation, we limit our granularity to three levels of parallelism.

In our simple example, a processing task consists of searching through the whole packet
payload data for a string (e.g., a worm signature) and it is performed by a processing unit
implemented in hardware. When the task overloads the processing unit, then this task can
be distributed across three hardware units in parallel, using one search key per packet, as
shown in Figure 4.11.a, or multiple keys per packet (see Figure 4.11.b), or a combination
of both techniques. In the first configuration, the required number of cycles is reduced with
the number of hardware devices instantiated – three in our example, as the same string is
searched on different parts of the packet. The second approach allows us to search in parallel
three signatures on the same packet at a cycles cost of one. However, when the receiving
rate is higher than the processing abilities given by ‘one packet’ approach, we can process

4.3 FFPF on FPGA: NIC-FLEX 69

multiple packets in parallel (depth-processing), as illustrated in Figure 4.12.

String−key 1

String−key 2

String−key 3

Packet

b) multiple keys / packet

String−key

��
��
��

��
��
��

��
��
��

��
��
��

Packet

a) single key / packet

Figure 4.11: Packet processing techniques.

Packet1

String−key 2

String−key 3

String−key 1

String−key 6

String−key 5

String−key 4

Packet2

Packet3

b) multiple keys / packets

Packet1
Packet2

Packet3

String−key

a) one key / each packet

Figure 4.12: Multi-Packet processing techniques.

The FPGA technology gives us enough flexibility to choose for one or a mix of the above
mentioned approaches. It also provides a long-term platform life as it is easy to extend with
new algorithm implementations (such as IP cores specifically designed for pattern matching,
regular expressions, protocol recognition, etc.). This support may address future issues like
adaptivity to new protocols (e.g., peer-to-peer). The limitation is given only by the hardware
capacity and the compiler abilities to perform such complex mapping from a simple and
‘natural’ programming language such as FPL.

4.3.3 Using system level synthesis tool
The FPGA platform is a highly parallel structure suitable to accommodate algorithms that
can exploit this parallelism. However, most commonly used imperative specification pro-
gramming languages like C, Java or Matlab are hard to compile to parallel FPGA specifi-
cations because the parallelism is hard to extract. In general, specifying an application in a
parallel manner is a difficult task. Therefore, we used the Compaan Compiler [75] that fully
automates the transformation of sequential specification to an input/output equivalent parallel
specification expressed in terms of a so-called Kahn Process Network (KPN). Subsequently,

70 FPL Run-time Environments

the Laura tool [76] takes as its input this KPN specification and generates synthesizable
VHDL code that targets a specific FPGA platform. The Compaan and Laura tools together
realise a fully automated design flow that maps sequential algorithms onto a reconfigurable
platform.

In FPL, we separate control from data intensive tasks (such as pattern matching algo-
rithms). The latter we map on the hardware using the Compaan/Laura tool chain to implement
our computationally intensive cores such as pattern matching algorithms. The former, on the
other hand, can easily be mapped on a control processor of the FPGA such as PowerPC.

The FPL programming language was devised to give the FFPF platform a more expressive
packet processing language than previously available. FPL conceptually uses a register-based
virtual machine, and compiles to fully optimised object code. However, we had to introduce
some extensions to FPL to fully exploit the FPGA features.

EXTERN(name, input, output, hw depth) tells the compiler that the task needs the help
of the specified core ‘name’ to process the current packet according to ‘input’ parameters
and place the processing results in the ‘output’. ‘hw depth’ is an optional parameter for
advanced users that want to ‘force’ the compiler to use a certain amount of hardware units for
parallel packet processing. By default, the compiler estimates, at compile time, the hw depth
parameter according to the incoming traffic rate, the hardware requirements of the processing
algorithm (e.g., a specific pattern matching algorithm) and its performances, and the available
hardware resources.

4.4 Evaluation

In the previous sections, we described the run-time support for several hardware architectures
such as commodity PCs, network processors, and FPGAs. In the following sections, we
present an evaluation of the use of filters written in the FPL language on each of the supported
hardware architectures.

4.4.1 FFPF on commodity PC

The FFPF architecture is arguably more complex than many of its competitors. A possible
consequence of increasing expressiveness may be a decrease in performance of simple tasks.
Although the FFPF architecture was introduced in Section 2.1 and an overview of the perfor-
mance is described in this section, details are presented in [14]. Credits are due to Willem de
Bruijn, a co-author in [14] who conducted the experiments and obtained the results presented
in this section.

To verify FFPF’s applicability in the general case we have directly compared it with the
widely used Linux socket filter (LSF), by running identical queries through (1) libpcap with
Linux’ LSF back-end, and (2) libpcap based on an FFPF implementation. We realise that for
various aspects of filtering faster solutions may exist, but since the number of different ap-
proaches is huge and none would be ‘obvious’ candidates for comparison, we limit ourselves
to the most well-known competitor and compare under equivalent configurations (using the
same BPF interpreter, buffer settings, etc.).

To show their relative efficiency we compare the two packet filters’ CPU utilisation (sys-

4.4 Evaluation 71

tem load) using OProfile1. Since packet filtering takes place at various stages in kernel and
userspace, a global measure such as the system load can convey overall processing costs better
than individual cyclecounters. Results of sub-processes are presented, in clockcycle counts
units, in Table 4.1. Both platforms have been tested with the same front-end, tcpdump
(3.8.3). Use of the BPF interpreter was minimised as much as possible: only a return state-
ment was executed. All tests were conducted on a 1.2 GHz Intel P3 workstation with a 64/66
PCI bus running Linux 2.6.2 with the new network API (NAPI), using FFPF with fast reader
preference option and circular buffers of 1000 slots.

task cycles
1 calling a filter 71
2 single filter stage in flowgrabber 171
3 saving index in IBuf 154
4 storing packet in PBuf 7479

5 waking up user process 624
6 snort’s Aho-Corasick algorithm (match) 1000
7 same but without match 9900
8 FPL filter 185
9 BPF filter 740

Table 4.1: Breakdown of various types of overhead in cycles.

Table 4.1 presents the FFPF framework overhead in the first rows (rows 1− 4), and filter-
ing overhead in the last rows (row 5 − 9). Furthermore, comparing filtering and framework
overhead shows that costs due to FFPF’s complexity contributes only a moderate amount to
overall processing. Finally, we discuss in the next section that the IXP implementation is able
to sustain full gigabit rates for the same simple FPL filter that was used in Table 4.1, while
a few hundred Mbps can still be sustained for complex filters that check every byte in the
packet [73]. As the FPL code on the IXP is used as pre-filtering stage, we are able to sup-
port line rates without being hampered by bottlenecks such as the PCI bus and host memory
latency, which is not true for most existing approaches.

We note that the results presented in this section were obtained in 2003 and 2004. Since
then, the same research group has continued the development of packet processing languages
for IXPs, showing in their Ruler paper [27] that it is possible to push performance of full
packet inspection on IXPs to beyond gigabit rates.

4.4.2 FFPF on NP: NIC-FIX

NIC-FIX was designed to scale with link rates, but as we do not have a 10 Gbps testbed,
we evaluate the architecture with a setup using IXP1200 (details in Section 2.2.2), while
monitoring a gigabit link. We deliberately used an ‘obsolete’ network processor such as
IXP1200 which belongs to the generation of single gigabit link-rate.

1http://oprofile.sourceforge.net

72 FPL Run-time Environments

/ / c o u n t number o f p a c k e t s i n e v e r y f low ,
/ / by k e e p i n g c o u n t e r s i n hash t a b l e (o f s i z e 4095)
IF (PKT . IP PROTO == PROTO TCP) THEN

R[0] = Hash (2 6 , 12 , 4095) ; / / hash over TCP f l o w f i e l d s)
M[R[0]] + + ; / / i n c r e m e n t t h e p k t c o u n t e r a t t h i s p o s i t i o n

FI ;

Listing 4.2: (B) - count TCP flow activity.

On-board processing

An important constraint for monitors is the cycle budget. At 1 Gbps and 100 byte packets, the
budget for four threads processing four different packets is almost 4000 cycles. As an indi-
cation of what this means, Table 4.2 shows the overhead of some operations. Note that these
results include all boilerplate (e.g., transfers from memory into read registers and masking).
Comparing the operations cycle costs against the cycle budget, we can say that a filter may
use, for instance, one hash over the flow fields and 31 words read out of a received packet.

Description Value
R[0] = HASH(26, 12, 255) 200 cycles
R[0] = PKT.B[0] 110 cycles
R[0] = PKT.W[0] 120 cycles

Table 4.2: Approximate overhead of some operators.

To evaluate NIC-FIX, we execute the three filters shown in Listings 4.1, 4.2, 4.3 on
various packet sizes and measure throughput. Only A is a ‘traditional’ filter that checks some
header fields and then classifies the packet. The other two gather information about traffic,
either about the activity in every flow (assuming the hash is unique), or about the occurrence
of a specific byte. Note that the hash function used in B utilises dedicated hardware support.
We implemented three variations of filter C. In C1, the loop does not iterate over the full
packet, just over 35 bytes (creating constant overhead). In C2, we iterate over the full size,
but each iteration reads a new quadword (eight bytes) rather than a byte. C3 is filter C in
Listing 4.3 without modifications. The results are shown in Figure 4.13.

IF (PKT . IP PROTO == PROTO UDP && PKT . IP DEST == X && PKT . UDP DPORT == Y)
THEN RETURN 1 ;
ELSE RETURN 0 ;

FI ;

Listing 4.1: (A) - filter packets.

Figure 4.13 shows that above a packet size of 500 bytes, NIC-FIX can process packets
at line rate for A, B and C1. This means that if the traffic consisted of packets that match
filter A, the prefiltering in NIC-FIX ensures applications like tcpdump would also handle
link rate.

For smaller packets, filters C1 − 3 are not able to process the packets within the cycle
budget. Up to roughly 165.000 packets per second C1 still achieves throughput of well above

4.4 Evaluation 73

IF (PKT . IP PROTO == PROTO UDP) THEN
R[0] = PKT . IP TOTAL LEN ; / / saved p k t s i z e i n r e g i s t e r
FOR (R[1] = 0 ; R[1] < R [0] ; R[1] + +)

IF (PKT . B[R[1]] == 65) THEN / / l o o k f o r char ’A ’
R[2] + + ; / / i n c r e m e n t c o u n t e r i n r e g i s t e r

FI ;
ROF;
M[0] = R [2] ; / / save t o sh a r ed memory

FI ;

Listing 4.3: (C) - count all occurrences of a character in a UDP packet.

900 Mbps. Beyond that, the constant overhead cannot be sustained. C2 and C3 require more
cycles for large packets and, hence, level off sooner. This suggests that simple pre-filters that
do not access every byte in the payload are to be preferred. This is fine, as the system was
intended precisely for that purpose.

Just as for the C filters, throughput also drops for the simple filters A and B when pro-
cessing smaller packets. However, these drops occur for a different reason, namely because
we used a commodity PC with a gigabit PCI card for traffic generator and hence, the PCI bus
limits the throughput (especially for small packets when many interrupts need to be handled).

Figure 4.13: Throughput for different NIC-FIX filters.

4.4.3 FFPF on FPGA: NIC-FLEX

FPL is a source-to-source compiler and generates C target code that can be further handled
by any C compiler. Programs can therefore benefit from the advanced optimisers in the Intel
µEngine C compiler for IXP devices, gcc for commodity PCs, and gcc for the PowerPC
control processor on Xilinx’s FPGAs. As a result, the object code will be heavily optimised
even though we did not write an optimiser ourselves.

74 FPL Run-time Environments

Moreover, the FPL compiler uses a heuristic evaluation of the hardware instances needed
to reach the system goal, where the goal may be to ‘perform a certain algorithm for packets
at a line rate of 1Gbps’. The evaluation is based on the workload given by one hardware
instance to perform the user’s program and a critical point where the performances drop
because of some heavy computation like signature length, or packet size. For example, in
Figure 4.12.b, assuming that the user’s program performs checking of six signatures, but
three of them are known as much longer than the others, the compiler duplicates the hardware
units, accordingly, in order to achieve a well balanced workload of the whole system.

Control processor and FPGA cores

Embedded in modern FPGAs are one or more hard core control processors (e.g., PowerPC
or ARM), on which we may map the control part of our algorithms. The data intensive tasks,
on the other hand, are mapped directly in hardware (as IP cores) using the Compaan/Laura
tool chain. The IP cores communicate with the control processor using a set of registers. For
instance, these registers are used to set some run-time parameters (e.g., the packet length, or
the searched key-strings). In other words, the FPL compiler extracts the affine loops from
FPL into cores with the help of Compaan/Laura tool and uses the rest of the FPL code to
control the former cores.

To study the feasibility of using the Compaan/Laura tool chain in the Networking world
we compiled in hardware a search algorithm. The Matlab program for this algorithm is
shown in Listing 4.4. At line 8, the bytes of the packet (pkt) are compared with the content
of a signature string (sig). If the signature is present in the packet, then the value of the c
variable is equal to the length of the searched string.

1 f o r i = 7 : 1 : PackSize ,
2 c = 0 ;
3 f o r j = 1 : 1 : S t r i n g L e n g t h ,
4 i f s i g (j) = p k t (i) ,
5 c = c + 1 ;
6 end
7 end
8 i f c = S t r i n g L e n g t h ,
9 p r i n t ” Found ! ”

10 end
11 end

Listing 4.4: Simple Search Algorithm.

The program shown in Listing 4.4 has been rewritten to match the requirements of the
Compaan/Laura tool chain. Additionally, we instructed our tool to generate a design that
compares eight characters in parallel. The hardware network of processors is depicted in
Figure 4.14. Each bubble represents a hardware processor and each arch a communication
channel between two processors. The ReadPacket processor feeds our network with packet
bytes from a MAC network interface. The Search processor implements the character-wise
searching, the result of ‘a search’ is evaluated by the Eval processor, which is also our write
interface toward external devices.

Table 4.3 gives the hardware results of the FPGA implementation of the algorithm given
in Listing 4.4. The experiment has been conducted using Synplify and ISE Xilinx 6.2 for the

4.4 Evaluation 75

ND_1
ReadPacket|

ND_3
Search|

ED_2

ND_4
Search|

ED_4

ND_5
Search|

ED_6

ND_6
Search|

ED_8

ND_7
Search|

ED_10

ND_8
Search|

ED_12
ND_9
Search|

ED_14

ND_10
Search|

ED_16

ND_2
ReadSignature|

ED_1

ED_3

ED_5

ED_7

ED_9

ED_11

ED_13

ED_15

ND_11
Eval|

ED_17

ED_18

ED_19

ED_20

ED_21

ED_22

ED_23

ED_24

Figure 4.14: Processor Network of the simple algorithm.

76 FPL Run-time Environments

Virtex II-6000 platform. The hardware is capable of doing an eight character string search
in a variable packet size. The required number of cycles for a variable packet size and eight
characters search string is cycles = 13 + PacketSize.

Packet Length String Length Clocks/Workload Slices Frequency (MHz)
64 8 77 2035 101

Table 4.3: Experimental results.

In our example, the length of the search string is fixed to eight characters. However, the
string size can be changed at compile time while its content may be changed at runtime.
Although the string search algorithm presented above works on only one string and was
shown for simplicity, for searching of multiple strings other algorithms (e.g., Aho-Corasick)
may be implemented.

NIC-FLEX evaluation

Given the pattern matching algorithm result (see Table 4.3) for one search-key per packet, we
extrapolate to other case studies as already illustrated in Figure 4.12. In Figure 4.15 is shown
how the performance of one key per packet approach (1key/1hw) scales up by increasing the
use of hardware units (1key/3hw) in parallel. Note that unlike general purpose processors,
FPGAs allow us to extrapolate performance, due to the predictable nature of the hardware:
we know exactly what will happen in every clock cycle.

Figure 4.15: FPGA vs. NP processing results.

The processing result of a full packet payload pattern search filter performed by a 1Gbps
generation network processor (Intel IXP1200) is also shown in Figure 4.15. Therefore, mak-
ing a comparison between an FPGA implementation and a network processor implementa-
tion, it can be seen that a complex filter (such as a pattern searching algorithm) performed by
a NP is surpassed by even a single IP core implementation.

Note that the relatively small amount of hardware resources used for this implementation
(ca. 6 % for a Virtex II-6000) allows us to map more than one search engine into a FPGA
platform.

4.5 Summary 77

4.5 Summary
In this chapter we saw what techniques we use to provide traffic processing at high speeds by
using tightly coupled parallelism through multi-cores offered by commodity PCs, network
processors, and FPGA chips. However, for higher speeds, we propose in the next chapter to
increase the parallelism that can be exploited beyond a tightly coupled system by means of a
distributed processing environment.

78 FPL Run-time Environments

Chapter 5
Distributed Packet Processing in
Multi-node NET-FFPF

5.1 Introduction
We have shown that parallelism can be exploited to deal with processing at high speeds. A
network processor (NP), for example, is a device specifically designed for packet processing
at high speeds by sharing the workload between a number of independent RISC processors.
However, for very demanding applications (e.g., payload scanning for worm signatures, or
custom video streams processing) at future link rates more power is needed than any one
processor can offer. For reasons of cost-efficiency it is unpractical to develop NPs that can
cope with backbone link rates for such applications. Building a NP that supports only a few
applications at high speeds is not cost-efficient because such a product has a small market.
An attractive alternative is to increase scalability by exploiting parallelism at a coarser gran-
ularity.

We have previously introduced an efficient monitoring framework, Fairly Fast Packet Fil-
ters (FFPF) (in Chapter 2), that can reach high speeds by pushing as much of the workload as
possible to the lowest levels of the processing stack. The NIC-FIX architecture (in Chapter 3)
showed how this monitoring framework could be extended all the way down to the network
card. To support such an extensible programmable environment, we introduced the special
purpose FPL language.

In this chapter, we exploit packet processing parallelism at the level of individual pro-
cessing units (NPs or commodity PCs) to build a heterogeneous distributed monitoring ar-
chitecture: NET-FFPF. Incoming traffic is divided into multiple streams, each of which is
forwarded to a different processing node (Figure 5.1). Simple processing occurs at the higher
levels (the root nodes), while increasingly more complex tasks take place in the lower levels
where more cycles are available per packet. The main contribution of this chapter consists of
an extension to the language introduced previously with a feature of distribution of complex
packet processing tasks. Also, with NET-FFPF we extend the NIC-FIX architecture upwards,
with packet transmission support, to create a distributed filtering platform. Experiments show

80 Distributed Packet Processing in Multi-node NET-FFPF

NET-FFPF to be able to handle complex tasks at gigabit line-rates.

(system overloaded)
heavy traffic processing

NP

fast link

traffic processing

Traffic Splitter traffic processing

a) Problem: Traffic Monitoring
at very high speed

b) Solution: Distributed Traffic Monitoring Architecture

NP

slower links

NP

PC

fast link

Figure 5.1: Moving to distributed traffic monitoring.

NET-FFPF builds on the idea of traffic splitting that was advocated by Charitakis et al.
in [8] and Kruegel et al. in [7] for intrusion detection. However, we use it to provide a
generic high-speed packet processing environment. Charitakis et al. focus on packet header
processing and automatically generate the appropriate code for the splitter (implemented on
a network processor) from high-level snort rules. They show that traffic splitting improves
the packet processing performance even if the splitter and all processing nodes reside on the
same host. The traffic slicer in [7] employs a two-stage approach for intrusion detection
where rules for traffic splitting are formed by modelling the attacks.

The NET-FFPF implementation resembles the slicer in that it also mangles Ethernet
frames to split the traffic. At a more fundamental level, however, NET-FFPF differs from
both of the above approaches in that it allows for processing hierarchies that are arbitrar-
ily deep and heterogeneous, whereby each level performs a part of the total computation.
Moreover, NET-FFPF offers explicit support for such processing at the language level. By
applying the splitter concept in a distributed fashion NET-FFPF can facilitate such diverse
tasks as load balancing, traffic monitoring, firewalling and intrusion detection in a scalable
manner, e.g., in enterprise gateways.

5.2 Architecture
In this section we describe the extensions to the FPL language and compiler with specific
constructs so as to provide code splitting over a distributed processing environment.

5.2.1 High-level overview
At present, high speed network packet processing solutions need to be based on special pur-
pose hardware such as dedicated ASIC boards or network processors (see Figure 5.1a), al-
though faster than commodity hardware, even solutions based on these platforms are not
sustainable in the long run because of a widening gap between growth-rates in networking
(link speed, usage patterns) and computing (cpu, main memory and bus speed), as we have
argued in Section 1.4.

To counter this scalability trend we propose the solution shown in Figure 5.1b, which
consists of splitting the incoming traffic into multiple sub-streams, and then processing these
individually. Processing nodes are organised in a tree-like structure, as shown in Figure 5.2.

5.2 Architecture 81

By distributing these nodes over a number of possibly simple hardware devices, a flexible,
scalable and cost-effective network monitoring platform can be built.

processing node
and/or splitter

network traffic IXP
0

1

2

N

PC

IXP

splitter

end user

Figure 5.2: Distributed system overview.

Each node in the system performs a limited amount of packet processing (e.g., filtering,
sampling) and may split its incoming stream according to some arbitrary criteria into multiple
output streams that are sent to different nodes at lower levels. For example, all TCP traffic
is sent to node N1, all UDP traffic to node N2. As the traffic arrives at node N0 at the full
link rate, there will be no time for complex packet processing on this node, due to the limited
cycle budget. Therefore, at this node we perform only a simple classification of packets into
substreams. Each substream’s packets are forwarded to a dedicated node at the next level in
the tree. In general, we do not restrict classification to the number of processing nodes in the
next level. In other words, it may happen that packets of class X and packets of class Y are
sent to the same node at the next level. It also may be necessary to multicast packets to a
number of nodes. For instance, if all TCP traffic is sent to N1, the traffic will overlap with
both a stream of all HTTP traffic sent to N2 and a stream of SMTP traffic sent to N3. In such
a scenario, packet duplication is needed.

The demultiplexing process continues at the next levels. However, the lower we get in
the hierarchy, the fewer packets we need to process. Therefore, more complex tasks may be
executed here. For instance, we may want to perform signature matching or packet mangling
and checksum recalculation. In principle, all non-leaf nodes function as splitters in their own
rights, distributing their incoming traffic over a number of next level nodes.

Note that a tree-like hierarchy is a natural fit for our distributed processing, but other
organisations are possible. For instance, one may need to re-process a stream and hence, the
traffic must travel forth and back over the tree. We have not explored such configurations in
this thesis.

5.2.2 Distributed Abstract Processing Tree

The introduced networked processing system can be expressed in a distributed abstract pro-
cessing tree (D-APT) as depicted in Figure 5.3. For an easier understanding of the D-APT
functionality, we use the following notations throughout the text. A D-APT is a tree com-
posed of individual APTS, each of which runs on its own dedicated hardware device. An
APT is built up of multiple processing elements (e.g., packet filters) and may be intercon-
nected to other APTS through so-called in-nodes and out-nodes. In-nodes and out-nodes are

82 Distributed Packet Processing in Multi-node NET-FFPF

processing elements that perform, in addition to the user filters, receiving and transmission
tasks, respectively. For example, N0.3, N0.5 are out-nodes, while N1.1, N2.1 are in-nodes.

1.2

1.1
1.3

1.4

1.5

N1

in−node

in−node

2.1
2.2

2.3

N2

in−node

0.2 0.5

0.4
0.1

0.3

N0

0.0

out−node

root

out−node

Figure 5.3: Distributed Abstract Processing Tree.

By ordering the processing nodes, APTS also describe the traffic streams that flow be-
tween them. The incoming stream is decomposed into multiple substreams. Simple process-
ing is performed at the higher levels, on the left, while more complex processing happens in
the lower levels, on the right (see Figure 5.3). The idea is to balance the amount of traffic and
processing for each node.

As an APT represents traffic splitting as well as processing, a stringent requirement is
that processing at any level N continues exactly where it left off at level N − 1. We can
achieve this by explicitly identifying the break-off point, as we will see later.

We note that the performance of the whole distributed monitoring system is determined
by the total number of the processing nodes, the processing power of each node, as well as
the distribution of tasks and traffic over the nodes.

Besides our architecture advantages, we also mention a drawback of using of a ‘dis-
tributed model’ for traffic processing: mapping of existing applications (e.g., intrusion detec-
tion systems) often requires a full redesign in order to parallelise sequential application into
multiple and parallel tasks.

5.2.3 Extensions to the FPL language

With FPL, we adopted a language-based approach, following our earlier experiences in this
field. Recall that we designed FPL specifically with the following observations in mind. First,
there is a need for executing tasks (e.g., payload scanning) that existing packet languages like
BPF [18], Snort [46] or Windmill [23] cannot perform. Second, special purpose devices such
as network processors can be quite complex and thus are not easy to program directly. Third,
we should facilitate on-demand extensions, for instance through hardware assisted functions.
Finally, security issues such as user authorisation and resource constraints should be handled
effectively. The previous version of the FPL language, presented in Chapter 3, addressed
many of these concerns. However, it lacked features fundamental to distributed processing
like packet mangling and retransmission. In other words, in addition to ‘traditional’ traffic
monitoring (e.g., filtering, counting), a distributed traffic monitoring system needs to be able

5.2 Architecture 83

to send possibly modified packets to remote hosts for further processing. Moreover, the archi-
tecture needs to ensure that processing at a remote host continues exactly where the previous
node left off (we refer to this as the break-off point), so we need to add this mechanism to our
framework as well.

We will introduce the language design with an example. First, a program written for a
single machine (N0) is shown in Figure 5.4. Then, the same example is ‘mapped’ onto a
distributed abstract processing tree of tree nodes (N0, N1, N2) by using the new language
extensions in Figure 5.5.

N
0

0.0

0.2

0.1

0.4

0.3IF (TCP) THEN
IF (HTTP) THEN

FOR (message_length)
scan (web_attack)

ELSE IF (MAIL)
scan (spam)

ELSE IF (UDP)

tcp

udp

mail

http

from FPL to APT

scan 1

scan 2

Figure 5.4: Traffic monitoring program mapped onto APT.

Figure 5.4 shows how the full stream is split at the root node N0.0 into two sub-streams:
TCP and UDP. Then, the TCP sub-stream is again split into two smaller sub-streams, http
and mail, by the intermediate node N0.1. The actual processing tasks of scanning for web
attacks and spam, are denoted by N0.3 and N0.4, respectively. On the right side of the figure
we see how the data flows in a simple data flow graph, where edges represent data streams
and vertices represent processing steps.

Let us now assume that the amount of traffic of HTTP and email traffic is too high to
allow both scanning tasks to be collocated at the same node. Really, we want to execute the
same work-flow, but run on multiple nodes. For this purpose, we introduce an explicit SPLIT
language construct that splits incoming traffic and forks of the computation into a SPLIT
block to a node in the next processing level.

Figure 5.5 now gives the same example, written using the SPLIT extension for a dis-
tributed processing environment, taking the hardware depicted in Figure 5.2 as environment.
For the sake of simplicity of explanation, we limit our tree to two levels. The program is
mapped into the D-APT shown in Figure 5.5 by taking into account both the user request
(our program) and a description of the hardware configuration. As Figure 5.6 shows, the FPL-
compiler takes both files, the FPL program and the hardware description, performs mapping
of the program onto the specific distributed system, and as result, it generates a code object
for each processing node. The object files are transferred and loaded remotely with the help
of the FFPF ‘management’ toolkit.

One of the main differences between running on a simple shared memory system and
our distributed processing environment is that sharing state is no longer feasible because
synchronising data across nodes is too costly relative to the high-speed packet processing
task itself. However, we will show how we are able to distribute a small amount of state to
downstream processing nodes in Section 5.3.

84 Distributed Packet Processing in Multi-node NET-FFPF

1.1
N1scan

web−attack

2.1

2.2

N2scan
spam

IF (TCP) THEN

ELSE
TILPS

SPLIT
ELSE IF (MAIL)
TILPS

SPLIT
IF (HTTP) THEN

FOR (message_length)
scan (web_attack)

scan (spam)

SPLIT
ELSE IF (UDP)

SPLIT
3.1

N3

0.1

0.2

0.0

N0 http

rest

mail

from FPL to dAPT

tcp

udp

Figure 5.5: Mapping an APT to a D-APT using FPL’s SPLIT command.

filter script
FPL

mapping
compiler

FPL
scan_web.uof

scan_mail.uof

node_3.ko

splitter.uof

hardware config

obj. code for NP

obj. code for NP

obj. code for NP

code objects

obj. code for linux
kernel

Figure 5.6: User compiles an FPL filter expression for a distributed system.

5.3 Implementation
NET-FFPF builds on FFPF, the monitoring framework designed for efficient packet process-
ing on commodity hardware, such as PCs. As we have seen, FFPF offers support for com-
monly used packet filtering tools (e.g., tcpdump, snort, libpcap) and languages (like BPF),
as well as for special purpose hardware like network processors (NPs) and hardware re-
configurable (FPGAs). However, it is a single-device solution. NET-FFPF extends it with
distributed processing capabilities through language constructs. Currently, we have support
for the following target platforms: (1) IXP1200 network processors, (2) IXP2400 network
processors, (3) IXP2850 network processors, Virtex II-Pro FPGA, and (4) off-the-shelf PCs
running Linux. The execution environment and the FPL language are presented in detail in
the next section.

As described in Section 5.2, the architecture of distributed traffic processing uses two
concepts, as follows: (1) split the application into a distributed system by means of multiple
tasks running on different processing nodes, and (2) interconnect the tasks into a processing
hierarchy by means of receiving and transmitting traffic between processing nodes. There-
fore, we need to extend our FPL language and the processing environment with two features:
splitting of the application into multiple tasks, and transmission of traffic between multiple

5.3 Implementation 85

nodes.
The FPL extensions syntax is summarised in Table 5.1 and described afterwards. For the

full language syntax see the FPL constructs in Section 3.1.2.

transmit to TX(table type, table index) or
TX(table type, table index, origin)

split the code SPLIT; stmts; TILPS or
SPLIT(node index); stmts; TILPS

shared states MEM namespace[size] or
MEM[size]

Table 5.1: FPL language constructs (extensions to the FPL).

In our implementation, we assume Ethernet links and focus on the traffic transmission
at the link layer due to the following reasons: (1) our goal is to process traffic at multi-
gigabit link-rates and we assume that the entire distributed system is located on the same
network, and (2) we avoid having to re-compute a checksum on every packet by software
(e.g., IP-checksum) because the Ethernet cyclic redundancy check (CRC) is automatically
performed by the hardware at each egress point. In the future we may also consider higher
layer protocols such as IP.

TX() construct.

The purpose of this construct is to schedule the current packet for transmission. Amongst the
simplest physical interconnection, such as a direct fiber between two nodes, we can also have
gigabit switches between processing nodes. Therefore, we need to tell the switches what is
the destination of a particular packet. In this respect, the TX() operation involves overwriting
the Ethernet destination address (ETH_DEST) of a packet with an entry from a programmable
MAC table (TX_MAC). By doing so, we let the switches to deliver the packets according to
the ‘mangled’ ETH_DEST field.

The use of the first type of transmission operation, TX(table_type,table_index),
is illustrated in Listing 5.1.

1 TX MAC[3] = {0 0 : 0 0 : E2 : 8D: 6C : F9 , 0 0 : 0 2 : 0 3 : 0 4 : 0 5 : 0 3 , 0 0 : 0 2 : B3 : 5 0 : 1D: 7A} ;
2 / / e x t r a c t e d by t h e c o m p i l e r from t h e c o n f i g u r a t i o n f i l e
3 IF (PKT . IP PROTO == PROTO TCP) / / i f t h e p a c k e t i s TCP
4 THEN TX (Mac , 2) ; / / s c h e d u l e i t t o be fo rwarded t o t h e 3 rd
5 ELSE TX (Mac , 1) ; / / or 2nd MAC a d d r e s s from t h e TX MAC t a b l e
6 FI ;

Listing 5.1: A simple usage of TX(table type, table index).

In this example, the first TX parameter selects a table type (MAC or another field, such
as IP_DEST, in a future implementation) and the second parameter points the index in the
table.

Note that by inserting multiple TX() calls into the same program we can easily implement
packet replication and load-balancing, as shown by the example in the Listing 5.2 and briefly
described as follows. When the received packet is TCP then it is transmitted to two hosts

86 Distributed Packet Processing in Multi-node NET-FFPF

the MAC addresses of which are pointed to by the first and the third entry in the ‘TX MAC‘
table. If the received packet is not TCP, then a persistent state counter is updated, ‘M[0]’,
based on which we have implemented a primitive form of load balancing. For example,
the first non-TCP packet goes to the host pointed to by the first MAC entry and the second
non-TCP packet goes to the host pointed to by the second entry in the ‘TX MAC’ table.

We also note in this example the way the runtime system avoids multiple packet copies,
as generally described in Section 4.2.1 and 4.2.2. When the program decides to transmit a
packet then the runtime will put the packet’s reference (an index only) into the transmission
queue. Next, the transmission task takes each enqueued packet’s reference, updates some
specific fields in the packet (e.g.,ETH_DEST), and then transmits the packet. However, a
packet may be replicated by placing the same packet’s reference for multiple times into the
transmission queue. The transmitter would then transmit all packet’s references regardless
they point to the same packet or not.

1 TX MAC[3] = {0 0 : 0 0 : E2 : 8D: 6C : F9 , 0 0 : 0 2 : 0 3 : 0 4 : 0 5 : 0 3 , 0 0 : 0 2 : B3 : 5 0 : 1D: 7A} ;
2 MEM[1] ;
3 IF (PKT . IP PROTO == PROTO TCP) / / i f p a c k e t i s TCP
4 THEN
5 TX (Mac , 0) ; / / r e p l i c a t e t h e p a c k e t t o t h e 1 s t MAC ADDR
6 TX (Mac , 2) ; / / r e p l i c a t e t h e p a c k e t t o t h e 3 rd MAC ADDR
7 ELSE
8 M[0] + + ;
9 IF (M[0]%2) / / l oad b a l a n c e i t ove r t h e 1 s t and 2nd MAC ADDR

10 THEN TX (Mac , 0) ;
11 ELSE TX (Mac , 1) ;
12 FI ;
13 FI ;

Listing 5.2: Packet replication and load balance using TX().

We also provide a second TX construct when using the optional parameter origin. The
origin is a unique identifier in an FPL program that needs to be mapped on a distributed
environment. The origin helps to locate the current processing point being interrupted by a
TX (the break-off point) on the next processing environment node. In other words, the origin
provides the current node with the out-node of the previous processing level.

Although this TX construct is available to users through a language construct, it is really
meant to be used by the FPL-compiler when it detects SPLIT constructs, as we will see later.

SPLIT() construct.

To explain SPLIT we will step through the example in Figure 5.5. When trying to match the
given FPL filter to a distributed system, the compiler detects the SPLIT construct. SPLIT
tells the compiler that the code following and bounded by the corresponding TILPS construct
can be split off from the main program. The example script is split into subscripts as follows:
one script is run on the splitter node N0, and four more on each processing node N1, N2,
and N3, as shown in Figure 5.7. In other words, we have four FPL source files that are
each compiled into object code by a native compiler (e.g., MicroC compiler for a network
processor) and then integrated into the distributed processing framework with some boiler
plate, as we will see later.

5.3 Implementation 87

The current implementation is based on Ethernet header mangling, implicitly driven by
TX constructs. The destination address of an Ethernet packet (ETH_DEST_ADDR) is over-
written to the device containing the next node in the D-APT. Recall that one of the NET-FFPF
requirements is that processing at level N continues exactly where it had broken off at level
N−1. The way we implemented this in the Ethernet implementation is by using the Ethernet
source address to identify the out-node at level N − 1. However, there is no need to use all
six bytes of the source address for this purpose. For this reason we split the source address
(ETH_SRC_ADDR) into two identifiers: processing state (four bytes) and origin indicator
(two bytes).

The origin indicator specifies the out-node of the previous level (allowing for 64K out-
points), while the 32 bit state field can be used in an application-specific way. In practice,
we use it to allow nodes at level N − 1 to pass a limited amount of information to the next
processing node. For instance, if a node at level N has generated a semi-unique identifier
for the packet (e.g., as a 32bit hash value), we can pass this value to all nodes down in
the processing hierarchy, so they will not have to repeat the expensive hash. As shown in
Figure 5.7, we can now efficiently continue the computation at level N , by using a switch
statement on the origin indicator to jump to the appropriate point to resume. Observe that
a switch statement is only needed if more than one outnode is connected to this in-node.
Also observe that although we have not implemented this, it may be possible to generalise
NET-FFPF beyond subnets by basing the splitter functionality on a tunnelled approach or by
overwriting IP header fields, instead.

SWITCH(srcMAC.origin)
case origin_1: // second TX()

FOR(R[0]; ...)
scan (spam)

case origin_2: // third TX()
R[2] = Hash(12, 8, 0xFF)
M[R[2]]++

// fourth TX()

IF (PKT.IP_DEST_PORT==80)
TX(MAC, destMAC_1, origin_0)

ELSE // rest of tcp traffic
TX(MAC, destMAC_2, origin_2)

IF (PKT.IP_PROTO==PROTO_TCP)

ELSE IF (PKT.IP_DEST_PORT==25)

ELSE IF (PKT.IP_PROTO==PROTO_UDP)
TX(MAC, destMAC_3, origin_3)

TX(MAC, destMAC_2, origin_1)

FOR(R[0]; ...)
scan (web_attack)

// first TX()

�����
�����
�����
�����

��������
��������
��������
��������

Ethernet frame:

IP

srcMAC.state srcMAC.origindestMAC

ETH_DEST_ADDR ETH_SRC_ADDR ETH_TYPE

2N

3N

N0

1N

Figure 5.7: SPLIT in detail.

The compiled example program is executed as follows. The code at the root node (N0)
deals only with selective forwarding. Any packet that matches one of the IF statements has
its Ethernet address fields modified and is then forwarded to the next-level nodes. The other
nodes will only have to process these forwarded packets. Node N2 for instance, receives

88 Distributed Packet Processing in Multi-node NET-FFPF

1 MEM M1[1 0 0] ; / / r e s e r v e 100 B y t e s f o r use i n node 1 (namespace M1)
2 MEM M2[1 5 0] ; / / r e s e r v e 150 B y t e s f o r use i n node 2 (namespace M2)
3 MEM[2] ; / / r e s e r v e 2 B y t e s f o r a g l o b a l ”one−way” sha re d s t a t e
4 IF (PKT . IP PROTO == PROTO UDP) THEN
5 SPLIT ;
6 IF (PKT . IP DEST == 100 && PKT . UDP DPORT == 3100) THEN
7 M1[0] + + ; / / l o c a l c o u n t e r
8 M[0] + + ; / / g l o b a l c o u n t e r
9 FI ;

10 TILPS ;
11 IF (PKT . UDP DPORT == 1434) THEN
12 SPLIT ;
13 FOR(R[0] = 7 ;R[0]<PKT . IP TOTAL LEN ; R[0] + +)
14 IF (PKT .DW[R [0]] == 0 x65676869) THEN M2[1]++ FI
15 ROF;
16 TILPS ;
17 FI ;
18 FI ;

Listing 5.3: State sharing between nodes using namespaces.

two classes of packets forwarded from node N0. As illustrated in Figure 5.7, in each of the
SWITCH blocks and in the Ethernet frame, the classes are identified by the origin indicator
embedded in the ETH_SRC_ADDR field.

Note that by passing the optional argument ‘node index’ to SPLIT, a user can force
packets to be forwarded to a specific node, as in the example that we will show in Section 5.4.
This can be useful when a node has special abilities well-suited to a given task, e.g., hardware-
accelerated hashing.

MEM construct.

This construct instructs the compiler about the user’s wishes regarding state sharing. As
shown in Listing 5.3, the MEM’s parameter identifies a certain namespace used within a
node from the distributed environment and identified by the SPLIT construct.

The namespace usage is introduced in order to help the user to use a common shared
state over the entire processing hierarchy and the individual sharing states within one pro-
cessing node. The common state is limited in size (4 Bytes in our implementation), while
the individual state is theoretically unlimited, but limited by the hardware. Moreover, in
our processing hierarchy model, the traffic data flows from root down in the hierarchy, the
shared state is synchronised only in one way. In order to implement the programming restric-
tions for namespaces, the compiler allows only a 4 bytes limited default namespace (MEM []
without namespace identifier), and one custom namespace usage within a node identified by
SPLIT/TILPS code block (MEMcustomName[]).

Although a shared state between nodes is very limited in size, in our Ethernet implemen-
tation it is possible to transfer a state of maximum 4 Bytes from the root node down in the
processing hierarchy. The MEM[] construct implements the global namespace across the
distributed nodes.

5.4 Evaluation 89

5.4 Evaluation

To evaluate NET-FFPF, we take a complex FPL filter, execute it on various packet sizes and
measure the throughput. For instance, the filter shown in Figure 5.8.a is composed of three
tasks: a simple packet counter (task A), a heavy processing task such as a packet scanner
(tasks B), and a packet counter of flows (task C). This filter is mapped onto a distributed
system composed of three nodes, as shown in Figure 5.8.b. We map the tasks in such a way
that tasks A and C run on one node (Node1) and task B runs on a second node (Node2). In
addition, there is a root node (Node0) that splits the incoming traffic into two flows. The com-
pilation results are the code objects of the splitter, and those of the two sub-filters: tasks A+C,
task B.

IF (PKT.IP_DEST==x && PKT.UDP_DEST_PORT==y) THEN

FI;
M[0]++;

A

FOR (R[1]=34; R[1]<PKT.IP_TOTAL_SIZE−3; R[1]++)

FI;
ROF; B

M[1]++; // take action ... (e.g., count)

PKT.B[R[1]+1] == ’sapphire signature−Byte2’ &&
PKT.B[R[1]+2] == ’sapphire signature−Byte3’) THEN

IF (PKT.B[R[1]+0] == ’sapphire signature−Byte1’ &&

M[R[0]]++; // increment the pkt counter at this position
R[0]=HASH(26, 12, 0x3FF); // hash over TCP flow fields

C

SPLIT;

IF (PKT.IP_PROTO==PROTO_UDP) THEN

SPLIT; // scan for Sapphire worm
IF (PKT.UDP_DEST_PORT==1434) THEN
TILPS;

TILPS;
FI;

FI;

FI;
TILPS;

SPLIT(1);
IF (PKT.IP_PROTO==TCP) THEN

splitter

A,C

B

network traffic

Node0

Node1

Node2

(a) Filter (b) Distributed system

Figure 5.8: Mapping a complex filter on a distributed system.

We note that only A is a traditional per-packet counter. The other two gather per-flow
information. As the hash function used in C utilises dedicated hardware support, we push
(by providing the parameter node_index) the C filter onto the same hardware node as A
filter: Node1. In B, a loop iterates over the whole UDP packet payload. While the filters A
and C are easily performed on an NP even at high speed (1Gbps), the B filter incurs so much
processing that even an IXP1200 network processor cannot handle its stream at such a speed
(see Figure 5.9). As the processing results show, using the above mentioned mapping, we can
process the full packet data up to only ca. 100 Mbps.

Supposing we need to process all filters at gigabit speed, we would let the B filter conse-
quently split to another node and we can successfully process all the packets for a particular
UDP port (assuming the packets related to a specific worm are within 100 Mbps bandwidth).
If more bandwidth is needed, then more processing nodes have to be involved.

90 Distributed Packet Processing in Multi-node NET-FFPF

Figure 5.9: Benchmark result.

1 IF (PKT . IP PROTO==TCP && PKT . IP DEST PORT ==80) THEN
2 R[0] = hash (f l o w f i e l d s , 3) ;
3 SPLIT (R [0]) ; / / t hus , t h e main s t r ea m i s e q u a l l y
4 <scan f o r web− t r a f f i c worms> / / d i s t r i b u t e d a c r o s s o f 3 p r o c e s s i n g nodes

Listing 5.4: An example of load balancing for web-server.

As illustrated in Figure 5.9, just as for the B filter, the throughput also drops for the
simple filters A and C when processing smaller packets. However, these drops occur for a
different reason, namely because we used a commodity PC with a gigabit PCI card for traffic
generator and hence, the PCI bus limits the throughput (especially for small packets when
many interrupts need to be handled).

Demonstrating the simplicity a concise special purpose language like FPL brings, a naive
load balancing program for a web-server is shown in Listing 5.4. A hash over the flow fields
of each incoming packet determines to which node the packet is forwarded. In a handful lines
of code the web traffic is split into three equal substreams. Doing so, the TCP flows are kept
together to the benefit of the processing applications on the distributed nodes and to an easier
retrieval and merging of the processing results from the distributed nodes.

5.5 Summary 91

5.5 Summary
Summarising, this chapter presented the NET-FFPF distributed network processing environ-
ment and its extensions to the FPL programming language, which enable users to process
network traffic at high speeds by distributing tasks over a network of commodity and/or spe-
cial purpose devices such as PCs and network processors. A task is distributed by construct-
ing a processing tree that executes simple tasks such as splitting traffic near the root of the
tree while executing more demanding tasks at the leaves. Explicit language support in FPL
enables us to efficiently map a program to such a tree. The experimental results show that
even on hardware that is now considered obsolete, we can process packets in computationally
expensive applications at rates ranging from 100 Mbps to 1 Gbps.

The next chapter extends NET-FFPF with a control environment that takes care of code
compiling, object code loading, and program instantiation. These control actions perform au-
tomatically as a response to changes in the system’s environment like the increase of specific
traffic (e.g., tcp because of a malicious worm) or availability of new hardware in the system
such as a system upgrade.

92 Distributed Packet Processing in Multi-node NET-FFPF

Chapter 6
Towards Control for Distributed
Traffic Processing: Conductor

6.1 Introduction
The increasing complexity in traffic processing leads to a control problem when using large-
scale, high-throughput distributed systems in dynamic environments. Specifically, running
the applications onto a distributed environment challenged by dynamic and unpredictable
events (e.g., traffic peaks, hardware/software failures) gives the following control problem:
“keep the system stable for any environment change”.

In previous chapters we have seen that although there are specifically designed parallel
architectures for packet processing such as network processors (NPs) [48, 56, 78]. In prac-
tice, however, high-performance applications such as web servers [79] tend to use distributed
architectures in order to cope with scalability and heterogeneity demands. Other distributed
monitoring environment exist, for example DIMAPI, developed in the Lobster project [80].
However, here the focus is not using the distributed system to handle extremely high link-
rates. Rather, DIMAPI is geared towards obtaining measurements from multiple nodes on a
larger network.

The distributed architecture that was introduced in Chapter 5, which aims to process traf-
fic at high link rates, is again shown schematically in Figure 6.1. It consists of heterogeneous
processing nodes (N0, N1, ...) interconnected in a hierarchy. The first nodes of the process-
ing hierarchy perform easy tasks such as splitting the main ‘network traffic’ into substreams,
while the leaf nodes run the effective traffic processing tasks for the particular substreams
(e.g., searching for virus signatures in UDP or TCP traffic in an IDS). Moreover, our archi-
tecture allows traffic processing and splitting tasks running together on the same node; a case
often met in nodes at the intermediate hierarchy levels.

Our model for dealing with high link rates is to split incoming traffic successively until the
stream is sufficiently thinned to make it processable by the end-nodes. While other topologies
are certainly possible, a hierarchical, tree-like configuration is a fairly natural fit for such a
scenario.

94 Towards Control for Distributed Traffic Processing: Conductor

processing node
and/or splitter

network traffic
0

1

2
N

N

N

N
m

Figure 6.1: Distributed Traffic Processing system.

However, when traffic increases beyond a node’s capacity, the system may benefit from
offloading the congested node by re-mapping some of the node’s tasks onto another node.
This re-mapping could consist of either moving, or replicating the overloaded task onto an-
other node. The former would involve re-routing the traffic from its congested node to the
newer node. The latter action would involve splitting of the traffic between those two replica
nodes. In addition to the congestion case caused by the traffic we also want to address the
external environment changes such as a node failure (hardware failure or software crash), or
addition of a new node (e.g., an upgrade). Solving such a failure requires the redistribution
of the affected application’s task(s) onto the new configuration. Therefore, when the environ-
ment changes (e.g., bandwidth increase, system failure, or system upgrade), a control system
is needed that takes coordinated adaptive decisions in order to stabilise the perturbed system.
We want the control system to be automatic and unmanned because it services non-stop sys-
tems that work at high speeds and fast environment changes and hence, fast decisions need
to be taken.

This chapter, presents a first step in solving these problems: Control architecture for Dis-
tributed Traffic Processing systems (CONDUCTOR). In the CONDUCTOR architecture (see
Figure 6.2), the controller monitors the process by means of system workload, and compares
the measured states to a process model. Next, it computes a control decision to correct or
even to prevent undesired system behaviour like hardware failure or congestion, respectively.
Building CONDUCTOR we use control theory guidelines as follows: we first study the pro-
cess behaviour in order to identify the process model in Section 7.1.1, then we design a con-
troller that suits the specific process model in Section 7.1.2, and finally we simulate the entire
control system to evaluate system stability and controller efficiency in various environment
changes in Section 7.2.

The CONDUCTOR builds on three research domains: control theory, resource manage-
ment and network traffic processing. We stress that we have only taken a first step towards
solving this quite complicated problem. More than anything we are interested in exploring
the problem area. As far as we know, we are the first to look at this problem in the field of
distributed traffic processing.

A theoretical design using a hierarchy of controllers that controls a multiprogrammed
parallel system was introduced by Feitelson [81]. Such a control structure, proposed for
the development of operating systems for parallel computers, allows dynamic repartitioning
according to changing job requirements. Although their design goals target the development

6.1 Introduction 95

Controller

Data Data

OUTIN

ReconfigurationMonitoring

Distributed
Traffic Processing

System

Human user

Figure 6.2: CONDUCTOR architecture.

of operating systems that provide dynamic resource partitioning of a parallel computer to
user’s applications, we noticed a few ideas applicable to our distributed traffic processing
systems. The control of resources in a distributed system can be centralised or distributed, or a
combination of the two. We have mentioned earlier that organising our distributed processing
architecture in a tree-like hierarchy (as illustrated in Figure 6.1) seems a ‘natural fit’ for our
problem domain. One way of dealing with control would therefore be to also distribute
the control system in a tree-like hierarchy that mirrors the hierarchy of processing nodes.
Alternatively, considering the relatively small number of nodes, a fully centralised solution
may be a good fit for most practical use-cases.

The use of control theory in software systems is successfully applied in many computer
science fields. The most relevant to our distributed traffic processing system are Varaiya’s
work in traffic control on automated highway systems [82] and Patterson’s work in control
of scalable event processing systems [83]. Although a traffic control on automated highway
systems presents different research problems than the control of our network traffic process-
ing system such as the problem of optimising of some criteria, we meet several common
research questions such as the problem of system stability when the environment changes,
or the problem of laziness when there is always a delay between a decision and the effective
execution of the decision. The control of an event processing system that uses parallelism to
provide scalability, needs to address the following problems, as shown in [83]: (1) provide
flow control within replicated elements, and (2) balance the load in the presence of variable
processing demands and other disturbances. Besides the event processing, our traffic pro-
cessing targets simpler goals: to keep the system stable by offloading the congested nodes
when the environments changes.

In resource management, current trends look for control of intensive computation systems
like web-servers [84], highly-available database farms [85], and grid computing. Despite the
limitation of only three tiers (a web-server, an application server container for web-services,
and a database) of the proposed control of web-servers, we see an adaptive control algorithm
such as proposed in [84] suitable in a centralised control of a distributed traffic processing
system. The adaptivity property comes from the ability of the control system to learn from
past behaviours. We also look at ways to move jobs for load balancing. Some of this approach

96 Towards Control for Distributed Traffic Processing: Conductor

was influenced by work in Grid Computing . For example, the work of Du et al. [86] presents
a dynamic scheduling algorithm for heterogeneous distributed environment that takes into
account a migration cost which is estimated based on statistical data provided by a monitoring
system. Tantawi and Towsley [87] tackle the problem of balancing the load on a distributed
heterogeneous system using queuing models for hosts and networks.

Most research in network traffic control, such as admission control in the presence of
traffic changes, rely on predictors built on traffic models such as Markov, or regression [88],
and therefore, these solutions are dependent on the traffic characteristics. These admission
control systems are measurement based (MBAC [89–92]), experience based (EBAC [93]), or
prediction based [94]. However, since traffic patterns on the network may change rapidly,
we do not have time to understand and model it. Numerous studies show that data traffic
in high-speed networks exhibits self-similarity [95, 96] that cannot be captured by classi-
cal models (e.g., Markov and regression models), hence self-similar models were developed
(e.g., FARIMA, GARMA, MMSE) [97]. The problem with self-similar models is that they
are computationally complex. Moreover, their fitting procedure is very time consuming while
their parameters cannot be estimated using the on-line measurements. Although CONDUC-
TOR does rely on on-line measurements, it measures the system workload rather than traffic
and makes control decisions without any traffic analysis. In our architecture, a system work-
load represents a metric of how much a node is loaded by the processing tasks and is given
in %: 0 % when it is not loaded at all, and 100 % means that it is fully loaded and became
congested.

6.2 Architecture
In CONDUCTOR, as in most distributed systems, the basic ‘processing element’ is simply
called a node. A node is a piece of hardware interconnected to other node(s) and runs multiple
tasks (software components written especially for traffic processing). Our heterogeneous
distributed architecture uses various hardware implementations for nodes (e.g., commodity
PC, and specialised silicon like network processors). It might happen that some nodes have
hardware support for parallel tasks. For instance, a network processor can use its cores for
running multiple tasks in parallel. In this case we can say that each task runs on its ‘core’
(hardware core). However, in the case of a node made of a commodity PC, we say that the
node has only one core, a general purpose CPU, that supports multiple tasks in a time-sharing
architecture.

We illustrate a typical case of task re-mapping in the next section, then we describe the
CONDUCTOR architecture components, followed by the controller synthesis, and end with
the full architecture description.

6.2.1 Task re-mapping
Suppose we have a traffic processing hierarchy as shown in Figure 6.3.a. For the sake of
simplicity, in this section we assume that each node supports only one task and that some
nodes offer more processing power than others (e.g., nodes B and F have three times as
much processing capacity than the others). We will show how we handle truly heterogeneous
configurations later. Nodes A, C, D, E and G are fully loaded, node B is only half-loaded,

6.2 Architecture 97

and node F is empty (fully available for traffic processing tasks). We also have two existing
routes of traffic type ‘TCP’ that are replicated in order to feed the nodes B and E with packets
for processing. Suppose that node E becomes congested. We see that there are two nodes
with available resources, as follows: 100 % on node F (empty) and 50 % on node B (half
loaded). Although, at first glance, one might think that node F is the best option to re-map the
overloaded node’s task because it is 100 % available, we need to analyse carefully the entire
moving effort including other parameters like re-routing of the traffic that is processed by the
overloaded task (see Figure 6.3.b).

A
C

D
G

B

F

A
C

D
G

B

F

overloaded

fully loaded

Legend:

half loaded

empty

new route

existing route

E

a) Overload detection:
current routes.

tcptcp

b) rerouting: (B) or (F)?

tcp
tcp

E

Figure 6.3: Task re-mapping and traffic re-routing.

Notice that we say ‘a node is congested’, and hence is in trouble, when it has at least one
task that gets overloaded. In other words, the ‘troubled’ task cannot keep up the processing
speed with the incoming traffic bandwidth. In our case, a task becomes overloaded when its
workload reaches a programmable threshold expressed, for instance, by a workload W >=
90 %. A programmable threshold allows us to set lower levels than the effective congestion
level 100 % in order to give to the control system enough time for offloading the task before
it becomes effectively congested. The ‘overloading’ threshold is determined by the controller
according to some specific parameters of the system such as the buffer size of the parent and
it is described later in this chapter.

As illustrated in Figure 6.3, when a node gets congested (e.g., node E) one needs to re-
map the node’s task(s) such that it offloads the overloaded task. Because in our example
we assumed that each node supports one task, node E needs to re-map to another healthy
available node (e.g., node F or node B). The task re-mapping from a troubled node (source)
to a healthy node (target) involves the following aspects:

• moving or replicating: offloading a congested node could be done either by moving
the overloaded task to another node, or by replicating the overloaded task onto another
node;

• multiple tasks support in a node: when using special hardware that supports multiple
tasks (e.g., one task per each hardware-core of a network processor), one can re-map
an overloaded task from a congested node onto the same node but on a different core;

• node heterogeneity:

98 Towards Control for Distributed Traffic Processing: Conductor

– is the source node’s task available – in terms of hardware and software compat-
ibility – for the target node? For instance, when using different hardware and
software platforms for nodes then we need to have the task compilable for every
platform;

– will the target node process the troubled task better or worse than the source node?

• state: has the source node local state (e.g., packet counters, hash tables) that needs to be
transferred to the target node? When moving a task together with the state information
we need to apply a specific transfer strategy so that it prevents packet loss or corrupted
processing results;

• graph dependency: has the source node any children dependent on its traffic? If so, do
we move the dependent children together with their parent or do we offload the parent
node by moving another independent task from the troubled node (having no children
dependency) and then replicating locally the troubled task onto the same node.

Besides the main traffic processing role, a node has two other roles: traffic splitting and
workload management, as described in the next sections. Across all these three roles, we
build a control path that allows a supervisor to coordinate the entire distributed system.

6.2.2 Traffic splitting
As shown in Chapter 5, the main goal of traffic splitting is to accommodate the incoming
traffic in a node in order to prevent node congestion and/or keep the node busy in a healthy
state. Sometimes we need to split the traffic multiple times (successively at multiple levels)
in order to reduce it sufficiently for each processing node’s capacity. From a practical point of
view, we build a distributed traffic processing system by exploiting hardware usage at various
levels in a processing hierarchy: high speed packet processing systems (e.g., programmable
routers, network processors) near the root and more application-oriented specialised systems
near the leaves. Although the traffic splitting architecture theoretically can use any network
topology (e.g., star, mesh, B-trees), we have chosen a hierarchical tree-like topology because
it is simple and meets all the requirements mentioned earlier: successively splitting needs and
hardware usage in a distributed fashion.

The basic splitting principle is shown once more in Figure 6.4. As described in Chapter 5,
Node A splits the main network traffic in substreams according to a programmable routing
policy implemented within the FPL program with the help of the SPLIT/TILPS extensions
for the NET-FFPF distributed processing system. In our control architecture, CONDUCTOR

controls the way the traffic flows in the distributed traffic processing by re-programming the
task in each processing node which also splits traffic. Moreover, CONDUCTOR controls the
re-mapping of the tasks on the NET-FFPF as we shall see in the next sections.

B

C
Anetwork traffic

Figure 6.4: Traffic Splitting.

6.2 Architecture 99

Conductor

CONDUCTOR is a software component designed for control of the distributed traffic process-
ing system. Although in principle this control module can be distributed across the exist-
ing distributed processing system, for the sake of simplicity we present in the next sections
a centralised control architecture and hence, CONDUCTOR is located in a supervisor host.
CONDUCTOR controls the system behaviour by handling the tasks (moving or replicating)
across the distributed nodes and routing the traffic accordingly. As mentioned earlier, a task
is a software component that performs processing of certain traffic flow with the support of a
hardware core. In our architecture, a node’s flow of traffic is a subset of the main incoming
traffic stream as split and filtered by all the ancestor nodes in a processing hierarchy. In other
words, a flow is a stream of packets which may have some common characteristics (e.g.,
all packets are UDP), or which may have nothing in common (e.g., they were sampled by a
parent node 1 in 100).

In order to control the distributed system behaviour, CONDUCTOR provides the following
features:

• CONDUCTOR controls the traffic routing based on the programmable routing policy
using any suitable packet criterion (e.g., small versus large packets, certain flow iden-
tifiers, or sampling). For instance, when CONDUCTOR sets a new traffic route on a
certain node (e.g., node A), the split will generally be based on a new SPLIT/TILPS
section in the FPL program. When CONDUCTOR needs to re-route an existing flow
(e.g, from A → B to A → C) then it only rewrites the MAC addresses on node A such
as to point from B to C, as described in Section 5.3.

• CONDUCTOR controls the mapping of tasks onto the distributed nodes by evaluating
each node’s load from the processing hierarchy and, when needed (e.g., a node gets
congested because of an overloaded task), it decides whether to move or replicate a
task from a congested node to another node. To do so, CONDUCTOR chooses, from
the processing hierarchy, a node that has an available core based on a cost function (C)
for moving a task from its node (source) to another node (target). The cost function
returns an evaluation of a task moving effort between two nodes in a traffic processing
hierarchy: C(source → target, flowX).

Summarising in Figure 6.5, from the control theory point of view, CONDUCTOR is the
controller that controls the process – entire distributed traffic processing system – in order to
keep the system stable regardless of the environment changes.

Conductor

N
1

N
m

N
0

Supervisor
controller

process

Figure 6.5: A centralised controller controls the process.

100 Towards Control for Distributed Traffic Processing: Conductor

6.2.3 Traffic processing
As illustrated in Figure 6.6, a Node has multiple processing tasks (T) that process traffic in
parallel and a workload manager (WorkMan) that monitors and controls the tasks.

Conductor Legend:

WorkMan

T

Conductor

control path
data path
processing task

workload manager

controllerT
1

T
3

T
N

T
0

T
2

WorkManSupervisor

Node

O
ut

pu
t t

ra
ff

ic

In
pu

t t
ra

ff
ic

Figure 6.6: Traffic processing in a ‘Node’.

For the purpose of control, in a distributed processing system, each node is monitored
and controlled by a supervisor. Specifically, CONDUCTOR monitors the load on each node
through the interface provided by WorkMan. WorkMan is a software module that offers two
required functionalities for interfacing a node with its supervisor. First, it provides the node’s
status to the supervisor. Second, it controls the tasks of the node. In our context, a node’s
workload is computed by the WorkMan, adjusted to a suitable metric, and passed to the su-
pervisor as a load status L. The details of this computation will be discussed in Section 6.2.4.
When needed, the WorkMan can point the supervisor to a troubled task that congests the
entire node in order to offload it. For instance, a node is congested even though it still has
unused cores.

The workload (of a node Node[i] or a task T[j]) is quantified as follows:

L =

−1 failure
0 unused

1− 100 in use (load value)

The failure status is set by the WorkMan when it detects packet loss because of a certain
task, or is set by the CONDUCTOR when the connection to a certain node went down. The
former case may happen when, despite the control actions to offload the node in time without
any packet loss, the WorkMan detects packet loss in the troubled task. The latter case may
happen when a certain node does not answer to a heart-beat mechanism of the CONDUCTOR

because of a hardware or a serious software problem. The heart-beat mechanism involves a
periodical short message exchange between CONDUCTOR and each node. When CONDUC-
TOR does not receive an answer from a certain node to its heart-beat message within a time
out, then it tries again for another two times. If there is no answer at all from the troubled
node, then CONDUCTOR sets the status of the troubled node to ‘failure’.

Although one node may be composed of heterogeneous hardware sub-components such
as a control processor, µEngines, and eventually a host PC, for the sake of simplicity, we
assume that on a single node all cores are homogeneous. In other words, we address the

6.2 Architecture 101

heterogeneity at the level of the distributed architecture composed of nodes based on different
technologies.

6.2.4 Resource accounting
Supervising nodes requires measuring the workload on a given node’s resources. Although
our measurement problem refers to a specific system – parallel traffic processing – we for-
mulate this problem using general and known principles based on a single producer/multiple
consumers communication buffer.

In Figure 6.7 our producer/consumers problem is drawn. By design, the producer stores
the input traffic in a large shared circular packet buffer (PBuf) and advances the single write
pointer (W) slot by slot as new traffic arrives. At any moment, all tasks may look for new
packets by means of their read pointers (RTaski

) until the last written packet pointed to by
the common write pointer (W) has been processed. However, the ‘producer’ never overwrites
the reader’s buffer space and when PBuf is full, all new arrivals are dropped. Therefore, here
we can measure only a global (per node) packet loss.

R T
2

R T1

: W

: R
Task[i]

Legend:
Producer
write index

Consumers
read index

In
pu

t t
ra

ff
ic d

PBuf
W

Task1 Task2

Figure 6.7: Traffic processing model.

Given a Node architecture as described in the previous section, a workload evaluation
requires detailed measurements of each hardware and software component involved in traffic
processing. For instance, in order to evaluate each task’s workload we need to measure the
processor’s load, the memory size in use, the load on the buses, etc.. Moreover, estimating
the next system state would require modelling the traffic in the controller. Instead, we reduce
the multi-dimensional resource workload measurement problem to a simple load status unit
as a function of the buffer usage percentage expressed by the distance d between the producer
and the slowest consumer, as illustrated in Figure 6.7:

d = W−Rslowest

PBuf Size ∗ 100 [%]

6.2.5 Resource screening
Re-mapping tasks across the distributed nodes also requires choosing a best fit target node
from the processing hierarchy. By design, CONDUCTOR handles the re-mapping of tasks
with the help of a cost function. The cost function returns an evaluation of a task moving
effort between two nodes in a traffic processing hierarchy: C(source → target, f lowX).

In our context, the simplest cost function sounds as follows: “search for a node with an
available core with appropriate capacity that will require its routed traffic to pass the small-
est number of hops from the root node in the processing hierarchy”. However, in a large

102 Towards Control for Distributed Traffic Processing: Conductor

distributed system, one might meet multiple choices for the same number of hops such as
multiple target nodes with an available core. Then, do we re-map the troubled task on the
node with the largest amount of available capacity or one that, capacity-wise, offers the best
fit? Indeed, we may follow any of three strategies: first-fit, best-fit, worst-fit. Therefore, in
practice, the cost function gets more complex as it needs to take into account multiple param-
eters such as capacity of the target node’s core to run the troubled task, link load to support
additional routed traffic, etc.

Notice that the cost function needs to choose an available core that will support the over-
loaded task. In other words, the cost function must know, at offloading time, how well the
overloaded task will run in the available core. The simplest case is to know that the task
will perform at least “better” and not worse. Therefore, we need a profiling mechanism that
estimates the performance of the task on a new core.

Task profiling

Task profiling provides an estimation of how well a task performs in a certain core. Practi-
cally, task profiling consists of starting a task in an available core of a certain type, routing of
some traffic for the purpose of feeding the profiled task, running the task for a short period of
time, recording the task performance for the tested core, and discarding the task processing
results.

Profiling of a task can be done at two moments during the system lifetime: on demand,
or in advance. The former case happens when a task becomes overloaded and it needs to be
offloaded quickly. The latter case is supposed to have the profiling done before the offloading
time. For instance, at system runtime, the controller profiles each running task from the
processing hierarchy onto every different core type that is available. The profiling takes place
on a definite period of time (e.g., 10 seconds) and the supervisor marks the performance of
the profiled task on the specific core on a two dimensional table: task versus core.

We can see that both profiling methods have advantages and disadvantages. On the one
hand, running the profiling on demand is much simpler than the second method because it
runs only when a certain task is overloaded and it profiles only on a few available cores until
it finds the core with appropriate capacity. Besides the advantages, the on-demand profiling
has a major drawback: it takes much and may lead to packet loss during task re-mapping (as
re-mapping may only start when the profiling is done). On the other hand, using in advance
profiling is more complex than the former because we need a scheduler that tracks all the
running tasks and all available cores and performs on-line profiling with as little intervention
in the run-time system as possible. The major advantage is that at any moment, during system
lifetime, the controller has a more or less view over the available cores and their capacity to
run tasks.

A simple example cost function is expressed in Equation 6.1. In our example, the cost
function depends on the existing routes for the relevant traffic flow for the re-mapped task
onto a target node. The resource availability on the target node is a separate decision and may
follow any of the first-fit, best-fit or worst-fit strategies.

C(source → target, f lowX) =
target∑
n=root

Linkn,n+1(flowX), (6.1)

6.3 Summary 103

where:
C(source → target, f lowX) is the cost of moving a task from source node to target

node and that processes traffic flowX . The function returns an integer value,

Linkn,n+1(flowX) =
{

0 if the link already carries the traffic flowX

1 if the link needs to support a new traffic flow ,

the total cost of this sum increases with one unit for every link that needs to support a new
traffic flow along the routing path from root till the target node.

Note however, that this is an example and different cost functions can be plugged in,
or existing ones can be refined according to new topology or future technology. A more
advanced cost function could also quantify, for example, system parameters like local state
to transfer together with the task, whether the troubled task has children in the processing
hierarchy or not, the available bandwidth on each link that needs to support the new traffic
routed for the moved task, etc.

6.2.6 Resource control topologies
Using a bottom-up design, we develop a high-level abstraction of a low-level system. Control
is applied on the top level with the idea that the low level will perform accordingly. Control
of a hierarchical system can be centralised or distributed. One may identify three control
algorithms ranging from a centralised to a fully distributed system as shortly described below.

• In centralised control, a supervisor controls the whole system by administrating the
entire physical distributed topology as well as the load status of each node.

• In federated control, a node has supervisor rights over the nodes beneath it in the pro-
cessing hierarchy.

• In distributed control, there is no supervisor and no control relationships between
nodes. For instance, a failing node may broadcast an ‘S.O.S.’ message to the entire
distributed control network and then listen for answers. Then each node evaluates the
‘S.O.S.’ message request and when it finds enough available resources will reply to the
‘S.O.S.’ owner. In the end, the failed node re-maps its failing task to the best fit node
(in case of multiple ‘S.O.S.’ answers).

In this thesis we will only investigate centralised control (in the next chapter) because it
is the simplest one to be implemented. One could say that if centralised control cannot be
successfully implemented then distributed control will be even harder to be implemented.

6.3 Summary
In this chapter, we saw that distributed systems require, at a minimum, the following three
functions: (1) mapping of the user applications onto a distributed environment (presented in
Chapter 5), (2) distributed processing in the runtime (also presented in Chapter 5), and (3) re-
sult retrieval from the distributed environment (already addressed in the field of distributed

104 Towards Control for Distributed Traffic Processing: Conductor

systems, e.g., by Salton and Callan books [98, 99]). Moreover, when a distributed applica-
tion works in a dynamic environment and assuming that the resources are limited, the system
itself needs to (4) adapt to the environment changes in order to remain stable.

Chapter 7
A Simple Implementation of
Conductor Based on Centralised
Control

The previous chapter presented the CONDUCTOR architecture. As a short summary, the CON-
DUCTOR architecture provides the following features: traffic processing, traffic splitting, and
workload management. As a result, we build CONDUCTOR on the following components that
all interact: the processing node (Node) for traffic processing, the workload manager (Work-
Man) for resource accounting in every node, and the Conductor for system control by means
of traffic routing and task re-mapping. Using these components, for the proof of concept
of adaptive control, we built only the ‘centralised’ topology, which we will describe in this
chapter. We also stress that this is a first attempt in which we deliberately simplified the very
complex problem in order to be able to evaluate the main principle. It should not be seen as
a full or mature solution.

Figure 7.1 depicts the ‘centralised’ case of CONDUCTOR. Given a distributed traffic pro-
cessing system composed of a node hierarchy (Node1.1, Node2.1, etc.), we add a supervisor
that monitors and controls the behaviour of the distributed traffic processing system with the
help of workload managers (WorkMans) plugged in each processing node (WorkMan1.1,
WorkMan2.1, etc.). The supervisor targets two global system goals (stability and perfor-
mance) by the following types of control operations: (1) (re-)mapping of processing tasks
onto the distributed traffic processing hierarchy and (2) (re-)routing of traffic streams. The
first control type involves moving or replicating processing tasks from a congested node to
a more lightly loaded node in order to prevent an effective node failure. The second control
type comes as a need of the first: moving a task in different position in the processing hierar-
chy often requires re-routing of the traffic feeding the task. Both control types work together
in order to assure performance and stability.

Figure 7.1 shows an example of centralised control of a distributed processing architecture
in a hierarchical topology.

106 A Simple Implementation of Conductor Based on Centralised Control

T
0

T
1

T
N

WorkMan

T
0

T
1

T
N

WorkMan

T
0

T
1

T
N

WorkMan

T
0

T
1

T
N

WorkMan

T
0

T
1

T
N

WorkMan

T
0

T
1

T
N

WorkMan

T
1

T
N

T
0

WorkMan

Conductor

In
pu

t t
ra

ff
ic

Node 1.1 Node 2.2

Node 2.3

Node 3.2

Node 3.3

Node 3.1Node 2.1

Figure 7.1: Centralised control of distributed processing architecture.

The distributed traffic processing system works as follows: the main stream (‘input traf-
fic’) is first processed in Node1.1 and primarily involves traffic splitting rather than traffic
processing. Then, the split traffic (sub-streams of the main stream) flows in the next nodes
of the processing hierarchy (Node2.1, Node2.2, Node2.3). Some of these nodes are end-
nodes (e.g., Node2.2) that perform traffic processing only and others are also splitters (e.g.,
Node2.1, Node2.3). When going down in the processing hierarchy we increasingly meet
traffic processing nodes and fewer splitters. We assume that the end-nodes are properly cho-
sen (in terms of hardware capacity for the incoming traffic stream) by the initial mapping
according to the FPL program. For instance, Node2.2 is able to process the traffic split by the
Node1.1 (one step splitting), while Node3.2 and Node3.3 need two splitting steps.

In our example of distributed architecture illustrated in Figure 7.1 we can also see that we
used two types of switches for traffic splitting: stand-alone switches such as the one located
after Node1.1, or built-in switches such as the ones in Node2.1 and Node3.1. Technically
speaking, the former can be a standard Ethernet switch and the latter is a processing node
with multiple output ports available. Supporting both switch types, stand-alone and built-in,
provides flexibility in building a distributed traffic processing system by interconnecting of
the best price/performance nodes.

So far, we have seen how the distributed traffic processing system works and how the

7.1 Centralised control for adaptive processing 107

control is layered on top. A high-level view of CONDUCTOR is as follows. Suppose that
WorkMan2.2 (see Figure 7.1) detects that its node (Node2.2) starts being congested be-
cause of the increasing of the incoming stream. Then, the supervisor identifies which task
is overloaded on Node2.2 and start searching for an available core that could offload the
troubled task (e.g., Task4). Suppose the supervisor finds an available core on Node3.3 that,
according to the profiling data, is suitable for handling the troubled task (Node2.2.Task4).
Then, the supervisor takes care of loading the troubled task’s code onto the chosen core of
Node3.3, of starting the target task and finally of re-routing the corresponding traffic stream
from Node2.2 to Node3.3. An important challenge is to make the transfer as non-disruptive
as possible. Section 7.1 explains in detail how we implemented the transfer so as to minimise
the number of packets being dropped.

7.1 Centralised control for adaptive processing
In general, the problem of control can be described as follows: given a dynamic system, or a
collection of interacting dynamic systems, synthesise a controller so that the system satisfies
some design specifications. In other words, the controller reads/measures the process states
(system workload), it compares them to the process model, and computes a control decision
to correct or prevent undesired system behaviour such as congestion.

The control system is responsible for detecting any overloads, underloads, or hardware
changes (e.g., a dead node) and it tries to redistribute the workload by re-mapping of the
affected tasks over the rest of the distributed system.

In order to synthesise a controller we need to identify the process behaviour, find the
model spaces, design the control loops, choose the best-fit controller types for the specific
design space and finally tune the controller(s) by simulation or real experiments.

7.1.1 Model identification in a distributed traffic processing system
Given a processing node as described in Section 6.2.3, we first need to identify the process
model by investigating its behaviour, then try to synthesise a controller that will control the
real process.

Processing node behaviour

A node’s workload is expressed as a buffer usage level percentage. A workload example in
a processing node is depicted in Figure 7.2. There is a maximum level (MAX) up to where
the system is able to process packets. In other words, when the system hits the MAX level it
means it gets congested and starts dropping packets. The HI level is an intermediate thresh-
old level that is set-up by the supervisor as a reference so as to provide enough provisioning
time for solving the problem of re-mapping of the task. Therefore, HI is estimated at de-
ployment time and depends on the size of the buffers and the estimated core capacity to run
the task in normal environment conditions. As we will see, it will be dynamically adjusted at
runtime. Moreover, when the system workload is below a minimum level (MIN) it means
that the node is underloaded and its task(s) should be moved to other nodes so as to free up
the underloaded node completely. The underloaded node informs its supervisor about its new

108 A Simple Implementation of Conductor Based on Centralised Control

state and the supervisor decides, according to a ‘defragmentation policy’, how and when to
re-map the tasks from the underloaded node so as to efficiently use the resources of the entire
distributed traffic processing system.

TL= loading time
t

MAX: congested system

workload

normal runtime

LO: underloaded system

HI:

TR = re−mapping time

PRE−FAIL

Figure 7.2: Dynamic behaviour in a processing node.

Let us considering the example in Figure 7.2. When the system starts up, it takes a while,
called loading time (TL in Figure 7.2). During the loading time the system is filling all the
hardware cores with tasks and the supervisor is achieving the first stable state. Then we say
that the entire system is stable as long as each node’s workload is steady or slightly fluctuating
up to node’s HI level. However, the workload could go up to the MAX limit because of
changes in the environment. When the workload exceeds the HI reference, the supervisor
throws an exception PRE-FAIL in order to take an early decision for solving the problem
before the node reaches the MAX limit. Next, the system tries to solve the problem by
re-mapping the troubled task from congested node to an available core with an appropriate
capacity. After the re-mapping time, TR, the system comes back to a stable state.

Model spaces

In order to identify the process parameters (TL, TR, etc.), we need to do some practical
experiments. We take two tasks located on different nodes: Node1.Taskx and Node2.Tasky

and work on the following scenario (see Figure 7.3): Taskx gets overloaded in Node1, and
we note traffic re-routing from Taskx to Tasky, and task moving from Node1 to Node2.
Although the experiments use, for the sake of simplicity, tasks with no dependent children,
the measured parameters can be scaled according to the amount of children that would need
to be re-mapped together with their parent.

7.1 Centralised control for adaptive processing 109

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

PBuf PBufWorkMan 2WorkMan 1

IBuf

MBuf

IBuf

MBuf

WorkMan 0

XTask YTask

Node 0

Node 2
Node 1

Conductor
WorkMan

supervisor Input traffic

Figure 7.3: Moving Taskx → Tasky .

The algorithm of a task moving between two nodes tries to solve the following two prob-
lems: (1) transferring of process state and (2) minimise the packet loss. Let us assume that
when the supervisor receives a ‘congestion’ notification from Node1.Taskx, it first prepares
the offloading of the overloaded task. It finds an available core that has the appropriate ca-
pacity to run the troubled task, then it copies and loads the object code onto the core without
starting the task effectively. Next, it re-routes the traffic from Node1 to Node2. Then the
supervisor waits for the ‘ready’ status from Node1 that tells when the shared buffer PBuf is
completely drained. In other words, we keep the Node1.Taskx processing of the remaining
packets in its PBuf while the new incoming traffic is routed to the Node2 and is currently
stored in Node2.PBuf . When the supervisor receives the ‘ready’ status (all packets from
Node1 were processed), it issues a state transfer from Node1.Taskx → Node2.Tasky by
means of an MBuf copy. After the state transfer, the supervisor is ready to start the new
processing task: Node2.Tasky.

We implemented this algorithm on a distributed architecture (see Figure 7.3) composed
of a commodity PC (used as supervisor), a switch, and two different generations of network
processors: IXP2400 and IXP2850. The task used in this experiment consists of a simple
application that counts the UDP packets in a stateful counter and computes a hash over the
first 64 Bytes of the packet. The counter gives us a local state that needs to be transferred
together with the task when it gets overloaded. While this application is not in itself par-
ticularly useful, it is illustrative for real applications, while also providing a simple constant
benchmark. The re-mapping algorithm, in this particular distributed architecture, illustrates
a ‘system upgrade’ case and is described in detail below.

1. The CONDUCTOR calls on WorkMan1 and WorkMan2 to load the same applica-
tion’s code object – ‘UDP packet counter and hash over the first 64 Bytes’ – on their
nodes: Taskx on Node1, Tasky on Node2; then CONDUCTOR starts the Taskx and
keeps the Tasky in standby (not running);

2. Node1 classifies all UDP packets to be of interest to the Taskx: IBuf points to all

110 A Simple Implementation of Conductor Based on Centralised Control

UDP copy packets in PBuf. We have evaluated various sizes for PBuf, as illustrated in
Figure 7.4 and described later in this section;

3. Taskx processes all packets from IBuf and stores the temporary state/results into MBuf.
We used a 1150 Bytes long array for storing a hash table in MBuf. We found that the
size of MBuf does not affect the re-mapping time significantly compared to a stateless
case when the task has no MBuf and hence no need to wait for the drain;

4. A PRE-FAIL event occurs in Node1: the incoming UDP traffic grows, exceeds the
Taskx reference (HI), and the event is detected by WorkMan1 by means of checking
the buffer usage dx. HI was set at 75 % to ensure with high probability that there is
enough time for task re-mapping before the workload would hit the MAX level;

5. WorkMan1 signals the PRE-FAIL event to the CONDUCTOR: WorkMan1.Taskx =
−1 and therefore, the CONDUCTOR signals WorkMan0 to re-route the UDP traffic
from Node1 to Node2;

6. The CONDUCTOR waits for a second event of the troubled node (Node1) that tells
when WorkMan1.Taskx finishes the processing of buffered packets (Taskx.IBuf
becomes empty);

7. When the CONDUCTOR receives the second event, it stops the WorkMan1.Taskx and
issues a state transfer: WorkMan1.Taskx.MBuf → WorkMan2.Tasky.MBuf ;

8. Finally, the CONDUCTOR starts WorkMan2.Tasky.

The goals of this test are threefold. First, we measure the loading time of an application’s
code object (a task) on a node, and then on two nodes (Taskx and Tasky). This loading
time (TL in Figure 7.2) is described below in Step 1. Second, we measure the dead-time
between PRE-FAIL event occurrence (Step 4) and the successful failure addressing (Step 8)
for a single task (no dependent children). This time is depicted in Figure 7.2: TR. Lastly,
we find the best way to address the failure detection: a realistic HI threshold in order to
signal a PRE-FAIL in time for minimising the dead-time introduced by a task movement
and avoiding of packet loss.

Our experiments show that the loading time (TL) measured in Step 1 is roughly 1 second.
This is mainly due to the fact that we use secure file transfer (scp) for loading the application
code remotely. The application’s code object file is about 500KB. Moreover, we found that
TL is not much dependent on the number of nodes in the distributed architecture due to the
simultaneous code loading on all the nodes. The most important limitation is the supervisor’s
bandwidth for the control link.

When handling a PRE-FAIL event, we found that there is a constant detection time of
roughly 1.7ms. It involves one way communication over a TCP connection. Next, when
moving a task between two nodes we found that the re-distributing time (TR) is dependent
on the following attributes:

• feedback communication: we use a dedicated asynchronous TCP connection separate
from the main control connection that is needed to inform the CONDUCTOR on each
node’s status (workload);

7.1 Centralised control for adaptive processing 111

• state transfer: the MBuf stream size in our case is 1150Bytes and it takes 9.7ms to
transfer this state from one node to another;

• draining time: the time needed to process the rest of the packets in PBuf since the route
was changed and which is therefore, dependent on the PBuf size.

Figure 7.4 illustrates the draining and re-distributing (TR) time for different sizes of the
shared packed buffer (PBuf). The ‘simulated drain time’ chart was computed using Intel’s
cycle simulator for the µEngine processing time of each incoming packet. The ‘Drain-
Time’ chart was measured locally, in hardware, inside the troubled node using an interrupt-
based mechanism for reading the sensors (SRAM memory locations written by the process-
ing tasks). The ‘TotalTime’ is the entire re-distributing time since the occurrence of the
PRE-FAIL event until the successful moving of task (Steps 4-8). This time includes the
draining time, the copy of local states (MBuf stream) and the additional transfer events over
the control link (TCP connections).

Figure 7.4: Tasks moving benchmark.

7.1.2 Control design
In the previous sections we identified the process behavior and the process model space and
now we present the control loop design.

The control loop

For the sake of simplicity, we present in Figure 7.5 the block diagram of a control loop ex-
ample using only two nodes. Figure 7.5 shows the controller (CONDUCTOR) located on
a central supervisor, the actuators (WorkManx, WorkMany), and the controlled tasks
(Nodex.Task[], Nodey.Task[]) located on Nodex and Nodey , respectively.

In order to have the supervised system stable regardless of the environment changes,
CONDUCTOR has, by design, two sub-objectives: a continuous analysis and a failure anal-
ysis. As the name suggests, the former is performed continuously (at the highest sampling
capability of the system), while the latter analysis runs only when a failure event was detected
by the first analysis.

112 A Simple Implementation of Conductor Based on Centralised Control

In the continuous analysis, CONDUCTOR performs periodically, at the highest sampling
rate offered by the system, in our case every 100 msec, two actions. First, CONDUCTOR

uses the load status of each node (LNode[x]) to update a local process map. The process
map represents CONDUCTOR’s view of the entire system under its control. Note that if the
number of nodes increases to a point where scalability becomes an issue, we may be forced
to look at a more distributed controller (e.g., a federated one). However, as we assume the
number of nodes not to exceed a few tens, we did not explore the distributed control in this
thesis. Second, CONDUCTOR checks the evolution of each node’s status against a pre-loaded
model and sends requests to the failure analysis when, for instance, an overload or underload
(or even a hardware failure) problem occurs. A PRE-FAIL event is detected through the
evaluation of the model. The model represents a dynamic behaviour of a node as illustrated in
Figure 7.2. The model is loaded and set up at deployment time with the system configuration
and specific parametric data such as LO and HI threshold levels.

L
xNode

sensor

adaptor
L

L
yNode

R

L
Node[].Task[]

Wref

Conductor NodeX

1

2Task

3Task

Task

1

2Task

3Task

Task

Node
Y

* Failure analysis:
cost function

re−routing:

re−mapping:

RoutingTable update

Node[i].Task[x]−>Node[j].Task[y]

N load feedback from ’N’ nodes

Process map: "N distributed Nodes"

C

* Continuous analysis:

XWorkMan

YWorkMan

Figure 7.5: Block diagram of the control loop.

The failure analysis processes each PRE-FAIL event received from the continuous anal-
ysis. The failure analysis searches for an available core on the same node or another node
from the processing hierarchy. When it finds multiple cores available, it chooses the first-
fit based on the cost function as described in Equation 6.1. Once such a solution is found
(e.g., with the smallest cost function), CONDUCTOR re-maps the overloaded task from the
congested node on the chosen node with the help of the nodes’ actuators (WorkMans). This
action involves also updating the routing policies (event R© in Figure 7.5) because moving or
replicating a task between two nodes requires moving or replicating the needed input stream,
respectively.

Another anomaly that the ‘failure analysis’ can detect is the case when a processing task
becomes underloaded; for example, the load status indicates a very low workload value like
less than 5 %. In this case, the CONDUCTOR searches through the process map of the dis-
tributed system for other available processing nodes that could handle the workload of the
underloaded task. When it finds a proper solution, it moves the underloaded task and re-
distributes the traffic so that the underloaded core becomes available. Then it simply marks

7.1 Centralised control for adaptive processing 113

the available core as ‘unused’.
Note that the continuous analysis determines an important characteristic of the control

systems: whether there could be packet loss during the decision time in case of a failure or
whether it can prevent any packet loss. Based on this characteristic, several algorithms are
possible for continuous analysis: (1) AIMD, and (2) prediction. We opted for AIMD which
stands for additive increase, multiplicative decrease and is a dynamic flow control mechanism
used for instance in TCP flow control. Although AIMD will be explained presently, for
completeness, we also present a possible alternative below.

AIMD control algorithm

This algorithm is a simple control algorithm inspired by the TCP flow control model. It tries
to avoid packet loss during node offloading by adjusting the current HI level according to
a previous offload experience so as to provide enough spare time to the system for the next
offload experience. Initially, a default value is computed for each threshold: LO and HI .
The algorithm starts up using the default thresholds values and then it dynamically adjusts
the HI level so as to provide a good tradeoff between early offloading (preventing packet
loss) and late offloading (for higher resource utilisation). The algorithm checks, for each
offloading experience, whether packet loss occurred or not (see Figure 7.6). The HI level is
adjusted according to this answer as follows: when there was no packet loss, the HI level
grows one point (HI = HI + 1). When there was some packet loss, the HI level decreases
according to the formula: HI = α ·HI , where α ∈ [0..1]. The choice of α is also important
because it provides the system’s dynamics: how often the troubled tasks are re-mapped. In
our experiments we found that an α = 0.8 is a good tradeoff value.

αif pkt.drop => HI = HI

LO: underloaded system

MAX: congested system

HI

Legend:

reach HI without pkt loss

reach HI with pkt loss

t

workload

iHI

default if NOT pkt.drop => HI = HI + 1

Figure 7.6: AIMD control behaviour.

114 A Simple Implementation of Conductor Based on Centralised Control

The advantage of this algorithm consists in its simplicity and the disadvantage is the
assumption that packet loss would be acceptable when re-mapping tasks.

Prediction control algorithm

An alternative would be to try and prevent packet loss during task re-mapping by forecasting
the congestion moment. A popular approach, largely used in trend estimation, uses least
squares fit math principles. The efficiency of linear prediction using least squares fit was
shown by [100] for traffic congestion forecast of web-servers. Therefore, an implementation
of this algorithm is beyond the scope of this research and interested readers are referred
to [100].

Summarising, the main job of the controller (CONDUCTOR) is to re-distribute the tasks
over the distributed processing hierarchy such as the entire system is well loaded (not un-
derloaded and nor overloaded). A secondary job consists in re-routing of the traffic when
re-mapping of the tasks. Although the controller performs a continuous analysis over the
load status of the entire distributed system, the jobs run only when the pre-failure event oc-
curs, as shown in Figure 7.2.

7.2 Experiments
In order to analyse the efficiency of the AIMD control algorithm, we first describe a test-
bench composed of heterogeneous processing nodes: commodity PCs and network proces-
sors. Next, we will present the control behaviour in a scenario of an overloaded task. We
will take an example of a simple application as a processing task: pattern matching. In the
end, we evaluate and discuss the controller’s behaviour when the incoming traffic increases
beyond the nodes’ processing ability.

7.2.1 Test-bench
Figure 7.7 shows a distributed traffic processing system composed of heterogeneous nodes:
commodity PCs (x86) and two network processor generations: IXP2400 and IXP2850. The
distributed system uses Node0 to split the incoming traffic between Node1 and Node2. We
assume that Node0 does only traffic splitting, Node1 and Node3 run only packet process-
ing tasks, and Node2 performs both functions: packet processing and splitting. On top of
this heterogeneous distributed traffic processing system we have a supervisor that supports a
CONDUCTOR controller connected to each of the node through a control network illustrated
in Figure 7.7 by dashed lines.

Control scenario

In order to show the controller behaviour in case of environmental changes we make the fol-
lowing assumptions. We assume that a task running on a node gets overloaded because of an
increasing in the incoming traffic. Consequently, the controller decides to offload the trou-
bled task onto another node. In our example illustrated in Figure 7.7, we suppose to have an
overloaded task running on Node1, a commodity PC made of x86 architecture, that needs to

7.2 Experiments 115

WorkMan

Splitter

WorkMan

Task

Node 1: x86

T
1

T
0

WorkMan

T
0

T
1

T
N

WorkMan

Node 2: IXP2850 Node 3: IXP2850

Conductor

supervisor: x86

TrafficGen

In
pu

t t
ra

ff
ic

Node 0: IXP2400

Figure 7.7: An heterogeneous distributed system.

be offloaded onto another node. For the purpose of heterogeneity, we let the controller choose
to offload the overloaded task onto a different architecture node: in this case, it happens to
choose Node2, an IXP2850 network processor.

Note that in a homogeneous case such as offloading a core to another similar core, we
simply need to duplicate the overloaded task onto another available core and then re-distribute
the traffic to the duplicated cores.

The main difference in homogeneous environments, it would seem, is that finding an ap-
propriate target on which to offload may be difficult. Unless the core is shared by multiple
tasks, or multiple cores share common resources (such as a queue), offloading is pointless
and would simply lead to the new core being offloaded. In other words, homogeneous en-
vironments limit the options for offloading. On the other hand, homogeneous environments
are simpler, as there is no need to establish a relative performance for specific task for each
specific core.

7.2.2 Application task: pattern matching

So as to have a task easily overloaded by increasing the input traffic throughput we need a very
resource consuming task. We have chosen a task that is both resource consuming and simple:
a pattern matching for the entire packet payload. For example, we search for the string ‘witty’
in all the udp packets with the destination port higher than 4000, as the witty virus propagates.
We also know that the witty virus places its signature ‘insert.witty’ starting by 146 bytes
offset in the udp payload. Although there are better performing searching algorithms such as
Aho-Corasick, for the sake of simplicity, we use a linear searching as illustrated in the FPL
example given in Listing 7.1.

116 A Simple Implementation of Conductor Based on Centralised Control

MEM[1] ;
REG [2] ;
IF (PKT . IP PROTO == PROTO UDP && PKT . UDP DEST >= 4000) THEN

R[0] = PKT . IP TOTAL LEN−5; / / save p k t s i z e i n r e g i s t e r
FOR (R[1] = 188 ; R[1] < R [0] ; R[1] + +) / / s t a r t s e a r c h i n g from b y t e 165

IF ((PKT . B[R[1] + 0] == 77) &&
(PKT . B[R[1] + 1] == 69) &&
(PKT . B[R[1] + 2] == 74) &&
(PKT . B[R[1] + 3] == 74) &&
(PKT . B[R[1] + 4] == 79))

THEN / / f ound t h e s i g n a t u r e ’ w i t t y ’
M[0] + + ; / / i n c r e m e n t c o u n t e r i n p e r s i s t e n t memory

FI ;
ROF;

FI ;

Listing 7.1: Example of intensive FPL application: searching for witty signature.

7.2.3 Controller behaviour
To evaluate the behaviour of the controller we monitor the application task described above
while we ramp up the input traffic throughput. First, we start the system with the monitored
task mapped on Node1, of the network configuration illustrated in Figure 7.7. Next, the su-
pervisor also detects available cores on Node2 and therefore, it profiles the task on this node.
At the same time, TrafficGen generates increasing traffic throughput from 0 to 1000 Mbps
during 60 seconds, our chosen duration for this experiment. The generated traffic is routed,
according to the control scenario described above, to Node1 which is going to process this
traffic. Finally, the entire control scenario is described and illustrated.

Profiling of the task on one µEngine of IXP2850 node shows that the task may cope
with the workload given of an input of 1Gbps traffic. We note that this higher performance
of IXP2850 compared to the commodity PC is due to features of the parallel processing
architecture such as parallelising of the task on four hardware supported threads and reading
of memory in chunks of eight bytes. See also Section 2.2 for hardware details.

For the purpose of introducing of environment changes in the controlled system, we need
to vary the incoming traffic throughput. In this respect, we ramp up the input rate. Figure 7.8
illustrates the trend of both the generated traffic throughput and the buffer usage measured
in Node1 at every second. The generated traffic throughput is not growing linearly due to a
limitation of our traffic generator using an older generation of network processor: IXP1200.
However, we measured the buffer usage level during a period of 30 seconds in which we see
that the evolution is almost constant for low throughput, up to 200 Mbps at second 19th; then
the buffer usage grows up very fast. Therefore, we assume that the buffer usage trend on
Node1 grows up in an exponential shape and we will illustrate it later, in Figure 7.9, together
with the plot of the buffer usage on Node2 after overload.

Notice that the experiment used ‘homogeneous’ synthetic traffic by means of a UDP
stream of constant packet size. The packet size was 250Bytes. However, when using real
traffic (variable packet sizes) we expect that the buffer usage would present higher dynamics
(oscillations). We could not ‘replay’ a real captured traffic due to lack of a professional traffic
generator that could generate traffic at a variable throughput that is sufficiently high.

7.2 Experiments 117

Figure 7.8: The workload measured on Node1.

Figure 7.9 shows the runtime period of the monitored task on Node1 and Node2 on
the assumption that the distributed system illustrated in Figure 7.7 receives increasing input
traffic. We run the experiment for 60 seconds, because this period is long enough to observe
the re-mapping of the monitored task from a congested node (Node1) to another available
node (Node2).

Figure 7.9 shows that at time 20 secs, the task’s workload running on Node1 reaches
the HI level at 70 %. In other words, the buffer usage on this node reaches the workload
reference. As a consequence, the control system start offloading Node1 by re-mapping the
troubled task to Node2. Due to a re-mapping decision time, the buffer usage level of Node1

still grows up to 85 % until the moment of re-routing of the incoming traffic to Node2. At
this moment, the buffer usage of Node1 starts decreasing on the one hand, and we see an
increase in the buffer usage of Node2 up to 50 % on the other hand. Notice that the buffer
usage on Node2 grows that much (50%) due to a dead-time during which Node2 buffers
the packets without processing them until the re-mapping ends. The re-mapping ends when
both all the buffered packets from Node1 were processed and Node2 starts the new task.
The first is illustrated by the moment when the buffer usage of Node1 became 0, closing the
‘draining’ period. The second happens when the processing results, a 1150 Bytes array, were
successfully transferred from Node1 to Node2. The draining and the results transfer together
take about 30 ms and represents the dead-time. The total measured re-mapping time was less
than 100 ms and is the sum of the controller’s decision time and dead-time. We also notice in
Figure 7.9, on the right axis, that the monitored task runs well on Node1 for a traffic input of
up to about 280 Mbps.

According to our AIMD implementation, the HI level on Node1 increases with one per-
cent after a re-mapping with no packet loss and therefore, a future task which runs Node1

will be offloaded when its workload reaches the newer HI level of 71%. Besides the sim-
plicity of the AIMD algorithm used in our controller, we note some drawbacks, as follows.
The system may loose packets during a re-mapping operation because it does not guarantee

118 A Simple Implementation of Conductor Based on Centralised Control

Task on Node1 Task on Node2

60

50%

70%

100%

buffer usage (%)

1000Mbps

85%

HI in Node1

0

throughput (Mbps)

incoming traffic
pkt.size=250 B

time (secs)

280Mbps

20

re−mapping time

21

buffer usage Node2

buffer usage Node1

Figure 7.9: The control behaviour.

that the system can buffer the entire input traffic during the re-mapping time. When we set a
lower threshold to give enough time for re-mapping then we may have multiple re-mappings
that lead to oscillation and hence an instable system. A smarter system may deal with spikes
that could temporary overload the node but not congest it.

7.3 Summary
In this chapter, we presented a simple control algorithm implemented in a centralised con-
trol topology of the CONDUCTOR architecture described in the previous chapter. We first
identified the model of the distributed traffic processing system by evaluating an experiment
consisting of a task moving between two nodes. Next, we designed a control loop that will
keep the entire distributed processing system stable regardless of external changes in the traf-
fic that may overload tasks. The control loop acts over the distributed system by re-mapping
of the overloaded tasks and re-routing of their processed traffic accordingly. Finally, we im-
plemented a simple control algorithm, additive increase / multiplicative decrease (AIMD),
and ran an experiment which showed the benefit of using heterogeneous distributed systems
for traffic processing. We emphasise again that both the conductor architecture and its evalu-
ation are to be considered preliminary steps towards solving a very complex control problem.
For real-world systems, the cost functions, AIMD implementation and various other aspect of
the system should be improved. Similarly, experiments with moving more tasks at the same
time, and tasks with children are needed. At the same time, we believe that our results show
that offloading while minimising packet loss as performed in CONDUCTOR shows promise.

Chapter 8
Beyond Monitoring: the Token
Based Switch

So far we have focused on a single application domain, that of monitoring. As a result, much
of our attention was devoted to efficient packet reception, processing and gathering of in-
termediate and final results. Besides monitoring there are several other application domains
that need high-speed packet processing. Routing may be the most conspicuous example.
However, in routing we do not have many contributions to make as it is well catered to by
commercial vendors. Instead, we turn to a new type of application domain that aims to pro-
vide certain packets preferential treatment by sending them over fast fibre-optic connections
rather than via the slower, routed Internet. We show that the FFPF framework, with the
FPL language and the transmit capabilities discussed in Chapter 5 is powerful enough to be
deployed in this application domain also.

8.1 Introduction

Grid and other high-performance applications tend to require high bandwidth end-to-end
connections between grid nodes. Often the requirements are for several gigabits per second.
When spanning multiple domains, fibre optic networks owners must cooperate in a coordi-
nated manner in order to provide high-speed end-to-end optical connections. Currently, the
administrators of such connections use paper-based long-term contracts. There exists a de-
mand for a mechanism that dynamically creates these fast end-to-end connections (termed
lightpaths) on behalf of grid applications. The use of lightpaths is also envisaged for appli-
cations that are connected through hybrid networks [101, 102]. A hybrid network contains
routers and switches that accept and forward traffic at layers 1, 2, or 3. In other words, hy-
brid networks consist of traditional (layer 3) routed networks which allow for optical (layer 1
or 2) shortcuts for certain parts of the end-to-end path. Currently, the peering points between
routed networks of the Internet Service Providers (ISPs) by way of the Border Gateway Pro-
tocol (BGP) policies determine statically what traffic bypasses the (slow) routed transit net-

120 Beyond Monitoring: the Token Based Switch

work and which links they will use to do so. However, when considering hybrid networks
interconnected over long distances, we would like the peering points to play a more active/-
dynamic role in determining which traffic should travel over which links, especially since
multiple links often exist in parallel. Therefore, an important role for the peering points is
path selection and admission control for the links.

Figure 8.1 shows a hybrid network composed of three ISPs (ISPA, ISPB , and ISPC)
interconnected both through routed networks (regular Internet) and also through two different
optical links managed by different owners. The connections across the optical links is via the
peering points which we will call PPA, PPB , and PPC , respectively. An example of such a
connection may be a high-bandwidth transatlantic link. We stress that ISPA and ISPC may
be full-blown ISPs offering extra services to their clients, but they could also be small local
ISPs, organisations, departments, research groups, etc.

Users X and Y on the left access servers on the right. We want them to bypass the routed
Internet and use optical shortcuts instead. However, while not precluded by the model, we do
not require each user to have an individual relation with each ISP and shortcut along the path.
Indeed, the link owners should not normally have a notion of which specific IP addresses are
allowed to access the link. Instead, we expect ISP A (say, the organisation, department or
research group) to have a contract with the link owners and decide locally (and possibly at
short timescales) who should get access to the links in domains that are not under its control.
For scalability, the model allows the system to be federated along more levels, where ISPA

contacts the authorisation at the next level, which in turn contacts a server at a higher level
still, etc. In practice, the number of levels is expected to be small (often one).

A flexible way of bypassing the routed Internet is to have ISPA tag traffic from X and
Y with some sort of token to signal to remote domains that they should be pushed across the
optical shortcuts. At the same time, we want to prevent rogue users (e.g., the client of ISPB

indicated in the figure) to tag their packets with similar tokens to gain unauthorised access to
the shortcuts. So we need a good user-network interface.

PP B PP CPP A PP B

routed
networks

user X

PP A point
peering

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Internet

ISP BISP A ISP C

user Y

server 1
(compute)

datastore
server 2

Link owner 2Link owner 1

Legend:

border router
BGP

rogue
user

Figure 8.1: Peering in hybrid networks: end-to-end splicing of optical paths.

In principle, the signalling of peering requests to the peering points PPA, PPB , and PPC

8.1 Introduction 121

can be done either out-of-band, or in-band. In out-of-band signalling there is an explicit con-
trol channel to PPA and PPB , separate from the data channel(s). In an in-band mechanism,
the admission control is based on specific data inserted into the communication channel.

For obtaining authorisation, this case study favours the push model as described in the
Authorisation Authentication Accounting (AAA) framework (RFC 2904) [103]. In the push
model, the client (e.g., ISPA in the figure) contacts an AAA server separate from the datapath
to obtain authorisation for the use of network resources (for instance, the optical shortcuts).
When the client is ready to use the resources, the client pushes the proof of such authorisation
to the service equipment (e.g., network devices). The authorisation is then checked and access
is granted or rejected depending on the outcome. An advantage of the push model is that time
of authorisation is decoupled from time of use.

The push model of authorisation is compatible with either form of signalling. In the token
based switch we opt for in-band signalling for reasons of flexibility resulting from the per-
packet granularity. Specifically, we insert tokens into each packet as proof of authorisation.
Tokens are a simple way to authorise resource usage which may convey different semantics.
For instance, we may specify that only packets with the appropriate token are allowed to use
a pre-established network connection in a specific time-frame and embed these tokens in the
packets of an application distributed over many IP addresses.

However, our tokens differ from common flow identifiers (e.g., ATM VPI/VCI pairs,
MPLS labels, and IPv6 flow labels) in that they cannot be tampered with and that they may
be associated with arbitrary IP addresses. In essence, tokens bind packet attributes to an
issuing attribute authority (e.g., an AAA server in our case). Tokens could be acquired and
subsequently used anonymously. Moreover, a token can bind to different semantics (e.g., a
user, a group of users, or an institute) and decouples time of authorisation from time of use.
In the switch described in this chapter, tokens are used to select shortcuts and different tokens
may cause packets to be switched on different links, but in principle they could also be used
to enforce other QoS-like properties, such as loss priorities.

In this chapter we describe the Token Based Switch which explores an extreme in the
design space of hybrid networks, in which link authorisation/authentication occurs on a per-
packet basis in a switch. In addition, each packet is authenticated individually by means of
cryptographically signed tokens. The token is used in the switching process to determine on
which output port the packet should be forwarded. We realise that this is a radical solution,
as encryption and decryption are known to be computationally expensive and most of the
overhead is incurred for each and every packet. In practice, however, we found that by careful
engineering we are able to sustain multi-gigabit link rates even with a processor that is already
four years old at the time of writing, while increasing latency by approximately 15 micro-
seconds per shortcut.

Per-packet authorisation (as first described in [104]) allows shortcuts in third-party net-
works to be used in a safe manner without having to specify in advance which packets may
use the link. Rather, the user has an agreement with the link owner and determines itself
which packets from its clients qualify. A user in our context will often not be an individual
end user (although this is not precluded by the model), but perhaps an organisation or depart-
ment. At the same time the authorisation makes sure that no unauthorised ‘rogue’ packets
use the link. The solution allows for novel ways of managing critical network resources.

This chapter describes both the design of the Token Based Switch (TBS) and its imple-

122 Beyond Monitoring: the Token Based Switch

mentation on high-speed network processors. TBS introduces a novel and rather extreme
approach to packet switching for handling high-speed link admission control to optical short-
cuts. The main goal of this project was to demonstrate that the TBS is feasible at multi-gigabit
link rates. In addition it has the following goals: (1) path selection with in-band admission
control (specific tokens gives access to shortcut links), (2) external control for negotiating ac-
cess conditions (e.g., to determine which tokens give access to which links), and (3) secured
access control.

The third goal is also important because part of the end-to-end connection may consist
of networks with policy constraints such as those meant for the research application domain
in the LambdaGrid). Moreover, a critical infrastructure needs protection from malicious use
of identifiers (e.g., labels in (G)MPLS, header fields in IPv4, or flowID in IPv6). For these
reasons, our token recognition uses cryptographic functions, for example, to implement the
Hash function based Message Authentication Code (HMAC) (see RFC2104 [105]). An exter-
nal control interface is required to negotiate the conditions that give access to a specific link.
Once an agreement has been reached, the control interface should accept an authorisation key
and its service parameters that will allow packets to access the owner’s link. To operate at
link speeds we push all complex processing to the hardware. In our case we use a dual Intel
IXP2850 with on-board crypto and hashing units.

Several projects address the issue of setting up lightpaths dynamically (e.g., UCLP [106],
DWDM-RAM [107]), and others look at authorisation (e.g., IP Easy-pass [108]). However, to
our knowledge, no solutions exist that support both admission control and path selection for
high speed network links in an in-band fashion for setting up safe, per-packet-authenticated,
optical short-cuts. In addition, our approach makes it possible to set up multiple shortcuts
on behalf of applications that span multiple domains. As a result, a multi-domain end-to-
end connection can be transparently improved in terms of speed and number of hops by
introducing shortcuts.

8.2 Architecture

At present, many techniques can be used to build end-to-end network connections with some
service guarantees. For instance, Differentiated Service (DiffServ) [109] manages the net-
work bandwidth by creating per hop behaviors inside layer-3 routers, while Multi Protocol
Label Switching (MPLS) [110] establishes a path using label switched routers. However, a
more radical approach that is typically adopted for layer-1 switches, uses the concept of a
lightpath [111,112]. In this chapter, a lightpath is defined as an optical uni-directional point-
to-point connection with effective guaranteed bandwidth. It is suitable for very high data
transfer demands such as those found in scientific Grid applications [113]. In order to set up
a lightpath, a control plane separate from the data forwarding plane is used on behalf of such
applications. For multi-domain control, a mechanism is needed that respects local policies
and manages the network domains to set up the end-to-end connection (usually composed of
multiple lightpaths) on demand.

8.2 Architecture 123

8.2.1 High-level overview

To provide higher-level functionality such as trust, authorisation, we layer a service plane
above legacy networks [114]. The service plane bridges domains, establishes trust, and ex-
poses control to credited clients/applications while preventing unauthorised access and re-
source theft. An important component of the service plane is the authentication, authorisa-
tion, and accounting (AAA) subsystem. The AAA server is the entity that receives a request
for resource usage and makes a policy based authorisation decision using information con-
tained within the request, information concerning the resource and possibly information from
the stakeholders. After an authorisation decision has been made it replies to the entity that
sent the request. The AAA server is considered the single authority governing access to the
underlying service equipment. In the next subsections, we explain the parts of the service
plane that pertain to the token based switch.

Push-based authorisation and in-band signalling

As explained in RFC 2904, various models of interaction for requesting an authorisation and
subsequently using the authorisation for gaining access to resources are possible between
AAA clients, AAA server, and the service equipment representing the network resources
(like optical shortcuts). For instance, to request an authorisation the clients can contact either
the AAA Server or the service equipment. In the latter case the service equipment in turn out-
sources the access decision to the AAA server. Access to resources is subsequently enforced
by the service equipment on the basis of the AAA server’s decision. This is known as a pull
model. Alternatively, the AAA client may send a request to the AAA server directly and
receive the AAA server’s decision in the form of a (secure) token. The user must then push
this token to the service equipment to prove authorisation. We refer to this interaction as the
push model.

As explained earlier, our architecture uses in-band signalling and push-based authorisa-
tion. Compared to out-of-band signalling, the in-band model on average incurs more over-
head but less state at the service equipment. An advantage of push-based authorisation is
that it allows temporal separation of the process that obtains an authorisation (which can be
a very complex process) and the process that enforces the authorisation. As mentioned ear-
lier, tokens can be acquired and subsequently used anonymously, and may bind to different
semantics (e.g., a user, a group of users or an institute). We implement the most radical form
of push-based in-band signalling in which every packet is authenticated individually.

Obtaining and using authorisation

For an application to receive an end-to-end connection with pre-allocated bandwidth, the
in-band push model dictates that a token must be inserted in its network data. In order to
obtain tokens, the user or a user organisation may contact the ISP’s local AAA server with
the appropriate request. Normally, users deal only with their local ISP which may be a
commercial ISP or an entity as small as a department, faculty, organisation, etc. The ISP may
determine independently which traffic should use the shortcuts. The ISP is assumed to have
previously obtained authorisation to use optical shortcuts from the operators of optical links
using similar principles as those used between the client and its local ISP. Indeed, there may

124 Beyond Monitoring: the Token Based Switch

be a chain of AAA servers involved in the full authorisation process. Once the authorisation
has been obtained, the ISP can use it as it sees fit. Figure 8.2 shows the architecture used for
setting up a lightpath using token based networking.

AAA

Server 3

4

2

Token

Switch

5

6

User App1

User App2

Token

Builder

ISPA

1

Fibre−optic Link 2

Fibre−optic Link 1

Link Admission Policy
Repository

Peering Point A

BGP Router

To Transit Network

Token Key

Link Access Request

Link Admission Request

to other PP’s

Figure 8.2: Token based networking architecture.

In a nutshell, the process is as follows. On behalf of a subset of its users, ISPA generates
a Link Access Request (LAR) message to use a particular link (from the available links and
its peering point) for a certain period of time 1©. The details of LAR generation based on
user requests are beyond the scope of this chapter. Interested readers are referred to [114].
The LAR is sent to the AAA server of peering point A 2©. The AAA server fetches a policy
from the policy repository that validates the request 3©.

Next, a key (TokenKey) is generated and sent to ISPA and peering point A 4©. ISPA

may use the key to create a token for each packet that should use the link. The token will be
injected in the packets which are then forwarded to the peering point. The entity responsible
for token injection is known as the token builder. On the other side, peering point A uses the
same TokenKey as ISPA to check the incoming token-annotated packets. In other words, for
each received packet, peering point A creates a local token and checks it against the embedded
packet token. The packet is authenticated when both tokens match. An authenticated packet
is then forwarded to its corresponding fibre-optic link 5©. All other packets are transmitted
on a ‘default’ link that is connected to the routed transit network 6©. The entity responsible
for token checking and packet switching is known as the token switch. We show later that we
currently use an IP option field to carry the tokens, but other implementations are possible.
The option field is useful for backward compatibility as it is supported in IPv4 and will be
ignored by normal routers.

When a packet arrives at the token switch, we must find the appropriate key to use for
generating the token locally. Which key to use is identified by fields in the packet itself. For
instance, we may associate a key with an IP source and destination pair, so all traffic be-
tween two machines are handled with the same key. However, other forms of aggregation are
possible. For instance, we may handle all traffic between multiple hosts running a common
application such as machines participating in a Grid experiment, etc. In general, we allow
the key to be selected by means of an aggregation identifier, embedded in the packet. The

8.2 Architecture 125

aggregation identifier is inserted in the packet together with the token by the ISP to signal the
key to use.

Summarising, the TBS architecture offers to the user applications an authenticated ac-
cess control mechanism to critical high-speed links (lightpaths) across multi-domain hybrid
networks. The procedure consists of two phases that are decoupled in time: (1) a high-level
set-up phase (obtaining tokens from an AAA web-service), and (2) a fast datapath consisting
of low-level authorisation checks (per-packet token checks at network edges within a multi-
domain end-to-end connection). In other words, the first phase allows individual users, or
group of users (e.g., a research institution), or even user applications, to request privileged
end-to-end connection across multi-domain networks by contacting only one authority: their
own ISP. The second phase determines how TBS authenticates network traffic (TCP connec-
tions, UDP transmissions, or other protocols) and how it checks the traffic for authorisation
on behalf of their applications. The second phase is also responsible for preventing malicious
use of lightpaths in a multi-domain network. Two network components are involved in the
datapath: the token builder and the token based switch.

8.2.2 Token principles
Compared to other mechanisms (such as certificates), a token is a general type of trusted
and cryptographically protected proof of authorisation with flexible usage policies. A token
created for an IP packet is essentially the result of applying an HMAC algorithm over a
number of packet fields as illustrated in Figure 8.3 and explained below.

An HMAC algorithm is a key-dependent way to create a one-way hash. In order to ensure
the token uniqueness for packets, we should try to include fields that are different in every
packet. Therefore, a part of the packet data will be included together with the packet header
in the HMAC calculation. On the other hand, we must exclude information that changes at
each hop such as IP’s time to live (TTL) field.

An HMAC algorithm proposed to create such a one-way hash (token) is HMAC-SHA1
(RFC 2104). In our implementation we opted for a strong proof of authorisation by means of
HMAC-SHA1. It may be possible to use more lightweight algorithms such as RC5 which is
also used by IP EasyPass [108]. However, we wanted to evaluate the performance that could
be achieved with strong authentication. If anything that using RC5 or similar algorithms
would only make it scale better.

The HMAC-SHA1 algorithm needs a 20 bytes key to encrypt data blocks in chunks of
64 bytes each and provides a unique result of 20 bytes. Therefore, we built the system such
that (1) the AAA server provides a TokenKey of 20 bytes as encryption key, and (ii) we use
this key to encrypt the first 64 bytes of packet data after masking out all information that
is to be excluded. After all, as the first 64 bytes cover most important packet fields (e.g.,
IP headers) for the entire packet, they are well-suited for providing the necessary security
guarantees.

To evaluate the TBS principles, we developed a prototype that stores the token in each
packet’s IP option field (as defined in RFC 791). An IP option can be of variable length and
its field will be ignored by normal routers. In other words, parts of the path may consist of
routers and parts of the path may be established using fast switches. Although some routers
have a slower processing path for the IP option packets than simple IP packets (because higher
level headers will be at different positions in the packet), we noticed that our TBS system

126 Beyond Monitoring: the Token Based Switch

ETH crc

�������
�������
�������
�������

��
��
��
��

����
����
����
����

��
��
��
��

�
�
�
�

hdr_len tot_len ttl hdr_chk
Mask:

ETH crc

Token Key
(20 bytes)

HMAC−SHA1 (20 bytes)
Token

hdr_len=header length
tot_len=total IP length
hdr_chk=IP checksum
ttl = time to live

Legend:

�������
�������
�������

�������
�������
�������

ETH header IP header Dataframe:
Ethernet

ETH header IP header Options
(24 bytes)

Data

to encrypt
Data

(64bytes)

Figure 8.3: Token creation.

works well in high speed, important and pricey sites (e.g., ISPs, grid nodes interconnection
points) where all systems and also routers are updated to the state-of-the-art hardware. This
is exactly the environment to which we want to cater. We stress, however, that the IP option
implementation is for prototyping purposes. More elegant implementations may use a form
of MPLS-like shim headers.

Figure 8.3 shows the process of token creation and insertion in the IP option field. In
our prototype, the HMAC-SHA1 algorithm generates the unique token (20 bytes) that will
be injected into the packet’s IP option field. As an IP option field has a header of two bytes,
and network hardware systems commonly work most efficiently on chunks of four or eight
bytes, we reserve 24 bytes for the IP option field. In other words, we have two bytes available
for the aggregation identifier which enables us to distinguish 64K aggregates and seems suf-
ficient for now. If more are needed, we may consider adding more bytes to the option field.
Alternatively, one may use labels in existing protocols as aggregation identifier (e.g., the IPv6
flow identifiers).

We mention again that some of the first 64 bytes of an Ethernet frame are masked in
order to make the token independent of the IP header fields which change when a token is
inserted (e.g., header length, total length, IP checksum) or when the packet crosses interme-
diate routers (e.g., TTL). The mask also provides flexibility for packet authentication, so that
one could use the (sub)network instead of end node addresses, or limit the token coverage to
the destination IP address only (e.g., by selectively masking the IP source address).

8.3 Implementation details
As mentioned earlier, the Token Based Switch (TBS) performs secure lightpath selection on-
the-fly on a per-packet basis by means of cryptographically-protected authentication. There-
fore, token generation and verification at high speeds is crucial. As the latest generation of
Intel’s IXP Network Processor Units (NPs) includes crypto units in hardware, it provides an

8.3 Implementation details 127

ideal platform for TBS’ packet authentication. The IXP28xx family of network processors
was introduced in 2002 for high-end networking equipment and, while six years old technol-
ogy, it comes equipped with hardware assists that make it an ideal fit for TBS.

On the other hand, NPs are architecturally complex and difficult to program. For in-
stance, programmers have to deal with multiple RISC cores with various types of memories
(both local and shared), small instruction stores, and a single XScale-based control processor.
Therefore, building software applications like the TBS on NPs from scratch is a challenging
task. However, in previous work we have shown how programming can be eased by means
of a robust software framework and special-purpose programming languages [14, 77].

In summary, we use the Intel IXDP2850 dual NP as our hardware platform [48], and
extended the implementation of the Fairly Fast Packet Filter (FFPF) on NPs as our software
framework [14]. In particular, we added specific IXDP2850 features like hardware supported
encryption and dual NPs. As the Intel IXDP2850 kit is expensive network equipment we
decided for prototyping purposes to implement both the token builder and the token switch
on the same machine, running the builder on one NP and the switch on the other. While in
reality the two functionalities would be separated, the setup makes little difference from a
prototype point of view (except that performance is roughly half of what we could achieve if
we used both NPs for one purpose). In the next few sections, we describe our implementation
in more detail.

8.3.1 Hardware platform

The main reason for opting for the IXP2850 NP is that it provides high speed packet handling
(up to 10 Gbps) and on-chip crypto hardware. Figure 8.4 shows the hardware architecture
used in the implementation of the token switch. Our prototype uses the IXDP2850 develop-
ment platform, consisting of dual IXP2850 NPs 1© & 2©, 10×1 Gbps fibre interfaces 3©, a
loopback fabric interface 4© and fast data buses (SPI, CSIX). Each NP has several external
memories (SRAM, DRAM) and its own PCI bus for the control plane (in our setup it con-
nects to a slow 100 Mbps NIC). In addition, each 2850 NP contains on-chip 16 multi-threaded
RISC processors (µEngines) running at 1.4GHz, a fast local memory, lots of registers and two
hardware crypto units for encryption/decryption of commonly used algorithms (e.g., 3DES,
AES, SHA-1, HMAC). The µEngines are highly-specialised processors designed for packet
processing, each running independently from the others from private instruction stores of 8K
instructions. See Chapter 2, Section 2.2.4 for more details.

As illustrated in Figure 8.4, the incoming packets are received by the Ingress NP (via the
SPI bus). These packets can be processed in parallel with the help of µEngines. The packets
are subsequently forwarded to the second NP via the CSIX bus. The second NP can process
these packets and then decide which will be forwarded out of the box (via the SPI bus) and
which outgoing link will be used.

8.3.2 Software framework: FFPF on IXP2850

For clarity, let us briefly recapitulate the key characteristics of Fairly Fast Packet Filter
(FFPF). The FFPF is a flexible software framework designed for high-speed packet process-
ing. FFPF supports both commodity PCs and IXP Network Processors natively and has a

128 Beyond Monitoring: the Token Based Switch

DRAM
DRAM

DRAM

Egress NPU
IXP2850

Ethernet

100 Mbps

SRAM
SRAM

SRAM
SRAM

PCI 64/66

Chip
Interface

Fabric

2

DRAM
DRAM

DRAM

IXP2850
Ingress NPU

Ethernet
100 Mbps

SRAMSRAM
SRAM

SRAM

PCI 64/66

3

10 x 1Gb/s

4

1

CSIXSPI

Figure 8.4: IXDP2850 development platform.

highly modular design. FFPF was designed to meet the following challenges. First, it ex-
ploits the parallelism offered by multiple cores (e.g., the host CPU and the IXP’s µEngines).
Second, it separates data from control, keeping the fast-path as efficient as possible. Third,
FFPF avoids packet copies by way of a ‘smart’ buffer management system. Fourth, the FFPF
framework allows building and linking custom packet processing tasks inside the low-level
hardware (e.g., the µEngines of each NP).

For example, a packet processing application may be built by using the FFPF framework
as follows. First, the application is written in the FPL packet processing language introduced
in Section 3.1, and compiled by the FPL-compiler. Second, the application’s object code
is linked with the FFPF framework. Third, the code is loaded into the hardware with the
help of the FFPF management tools, as explained in Section 4.2. Most of the complexity of
programming low-level hardware (e.g., packet reception and transmission, memory access,
etc.) is hidden behind a friendly programming language.

As mentioned earlier, in the prototype one of the NPs on the IXDP2850 is used for the
implementation of the token builder and the other one for the token switch. In other words,
the token builder and token switch are physically co-located, while logically they are separate.
In reality the token builder and switch may share the same PoP, but they will not normally be
in the same machine. Note that such a configuration makes no difference for the performance
measurements, except that we only use half of our processor for each side.

As illustrated in Figure 8.5, the FFPF implementation on the IXDP2850 consists of the
following software modules: 1© Rx (for receiving packets from gigabit ports), 2© Txcsix (for
forwarding packets to the second NP via the CSIX bus), 3© Rxcsix (for receiving packets
from the first NP), 4© Tx (for transmitting packets to the gigabit ports), 5© hardware sup-
ported extensions for crypto algorithms (e.g., 3DES, AES, SHA1, HMAC) and 6© the Buffer
Management System. The buffer management system consists of a single shared packet
buffer (PBuf), one index buffer (IBuf) for each processing task and one transmit buffer (TBuf)
per NP. All remaining µEngines are available for packet processing tasks. In our case, we
will use them for token building and switching.

8.3 Implementation details 129

0 1 2 3 4 5 6 7 8 9

IBuf µΕ1
IBuf µΕ2

Pkt
processing

Pkt
processing

GIG
0−9

Tx

TBuf

CSIX

Rx

µΕ0

eManagerµ

3 4

PBuf

Crypto 1
Crypto 0 5

IBuf

PBuf

µΕ1
IBuf µΕ2

Pkt
processing

Pkt
processing

TBufµΕ0

eManagerµ

GIG
0−9

Rx

CSIX

Tx
1 2

Crypto 1
Crypto 0

5

Host_PC
UDP client/server

6
6

Ingress NPU

CSIX

XScaleXScale

Egress NPU

100Mbps

Gigabit ports:

Figure 8.5: FFPF implementation on dual IXP2850.

The FFPF implementation on the IXDP2850 works as follows. When a packet arrives on
a gigabit port, the first µEngine of the Ingress NP (Rx) pushes it to the shared buffer PBuf
and updates the write index. The packet processing µEngines (indicated as pkt processing in
the figure) detect when a new packet is available by checking their local read index against the
global write index and starts processing it directly from PBuf. As a result, the current packet
can be pushed to other dependent processing tasks (by pushing its index to the task’s local
buffer IBuf), it can be forwarded out to the Egress NP (by pushing its index in the transmit
buffer (TBuf), or it can be dropped. An IBuf essentially provides a view on the (shared)
incoming stream and may differ from consumer to consumer.

IBuf helps multiple consumers to share packet buffers without copying. In addition, the
indices in the IBufs may contain integer classification results. For instance, if a classifier
function classifies TCP/IP packets according to their destination port, subsequent functions
that process the packets find the port number immediately, i.e., without having to retrieve
the packets from memory. This is useful, as memory access is slow compared to processor
speeds. Moreover, IBuf are stored in SRAM, which is faster, but smaller than the DRAM that
is used to store the packets.

The last µEngine of the Ingress NP (Tx) takes each packet scheduled for transmission
(by its TBuf) and sends it to the Egress NP through a fast local bus (CSIX). Similarly, on
the Egress NP, the data processing works in the same way as in the Ingress NP except that it
receives packets from the internal CSIX bus and sends them out of the box through a specific
gigabit port.

130 Beyond Monitoring: the Token Based Switch

State-of-the-art packet processing systems must handle (receive, process and transmit)
traffic data at very high speeds (gigabits/sec). Therefore, application design is commonly
split in two parts: a control path (control applications using a slow management link), and a
data path (packet processing applications using gigabit links).

Control path

The control path in the FFPF implementation on the IXDP2850 consists of a client/server
connection between a host PC (an x86 running Linux) and each NP control processor (an
XScale running embedded Linux). The system is remotely controlled by a user tool running
on the host. The FFPF framework provides these tools in its ‘management’ toolkit. An FFPF
µeManager that is running on each NP XScale establishes a connection to the host PC and
is responsible for managing its hardware components as follows: (1) it initialises the inter-
nal chipset (e.g., fibre media, fabric chips), (2) it synchronises the internal buses (e.g., SPI,
CSIX), (3) it initialises the µEngines and memory (e.g., buffers), (4) it loads/unloads code
on/from µEngines, (5) it starts/stops requested µEngines and (6) it updates a local shared
memory placed in SRAM and known as KeysTable on request by the host PC. Each entry
in the KeysTable contains a key K and an authorised port Np for each aggregation iden-
tifier. As we do not have a large scale deployment and statespace is not a problem, in the
evaluation our prototype implementation simply uses the source and destination IP address
pair as aggregation identifier.

Data path

The data path is composed of all processing performed for the Token Based Switch on in-
coming packets. As mentioned earlier, the FFPF framework takes care of basic processing
steps like receiving of packets, storing them in a shared buffer, making them available to
processing tasks and packet transmission.

30 1 2 4 5 6 7 8 9

PBuf

Ku
0
1

2

SIP,DIP
KT:SRAM[]

SIP,DIP
0
1

2

Np ...K

KT:SRAM[]

PBuf

0−9
Gig
Rx

Gigabit ports:

Ingress NPU

Rx TokenSwitch

Egress NPU
TokenBuilder

compute IP checksum

TX()

if (token != HMAC(masked 64B)

Tx(port 8)

else
Tx(port Np)

Tx

0−9

Tx

Gig

token =HMAC(masked 64B)

Figure 8.6: Token Based Switch using a dual IXP2850.

8.3 Implementation details 131

1 MEM:SRAM[2] ;
2 MEM[6 4] ;
3 REG[2 0] ;
4 MEMCPY(M[0] , PKT . IP HDR && MEMS[4] , 64) ; / / mask t h e IP header and s t o r e i t

i n a LocalMem a r r a y
5 R[0] = EXTERN(Crypto , HMAC−SHA1 , MEMS[0] , M[0]) ; / / where MEMS[0] i s t h e

key from SRAM t a b l e and M[0] i s t h e s o u r c e f i e l d (masked p a c k e t)
6 PKT . B [1 4] . LO += 6 ; / / 6 b l o c k s o f 4 B y t e s more f o r I P o p t i o n f i e l d i n t o

IP HDR length
7 PKT .W[8] += 2 4 ; / / 24 more b y t e s f o r I P o p t i o n f i e l d i n t o T o t a l I P l e n g t h
8 PKT .W[1 7] = 0x8E18 ; / / I P o p t i o n t y p e as : Hdr (2 b y t e s) : Type : Copy + C o n t r o l +

E x p e r i m e n t a l A c c e s s (1 By t e) + I P o p t i o n L e n g t h (1 B y t e) + Token
(20 b y t e s)

9 MEMCPY(PKT .W[1 8] ,R [0] , 20) ; / / copy t h e e n c r y p t e d t o k e n from R[0] i n t o t h e
p a c k e t ’ s I P o p t i o n f i e l d

10 EXTERN(Checksum , IP) ; / / re−compute t h e IP checksum
11 TX () ;

Listing 8.1: The Token Builder application written in FPL.

8.3.3 Token Based Switch

The TBS application consists of two distinct software modules: the token builder and the
token switch (see also in Figure 8.2). In our prototype, the application modules are imple-
mented on the same hardware development system (IXDP2850) although in reality they are
likely to be situated in different locations. Therefore, our implementation consists of a demo
system as shown in Figure 8.6.

The token builder application module is implemented on two µEngines in the Ingress
NP, while the token switch module is implemented on two µEngines in the Egress NP. Al-
though the mapping can be easily scaled up to more µEngines, we use only two µEngines
per application module because they provide sufficient performance already, as we will see
in Section 8.4, the bottleneck is the limited number of crypto units.

The token builder application implements the token principles as described in Figure 8.3.
The FFPF software framework automatically feeds the token builder module with packet
handles. As described in Listing 8.1, the token builder retrieves the first 64 bytes of the
current packet from the shared PBuf memory into local registers and then applies a custom
mask over these bytes in order to hide unused fields like IP header length, IP total length, etc.
The application also retrieves a proper token key (K) from a local KeysTable by looking up the
aggregation identifier (e.g., a flow identified by the IP source address and/or IP destination
address pair, or other aggregates). Next, an HMAC-SHA1 algorithm is issued over these
64 bytes of data using K (20 bytes) as encryption key. The encryption result (20 bytes)
is then ‘inserted’ into the current packet’s IP option field. This operation involves shifting
packet data to make space for the option field. It also involves re-computing its IP checksum
because of the IP header modification. Once the packet has been modified it is scheduled for
transmission. In this prototype, the ingress NP packets are transmitted out to the egress NP
via a fast bus.

The token switch application implements the token switch machine from the system
architecture (see Figure 8.2 in Section 8.2). The FFPF software framework automatically

132 Beyond Monitoring: the Token Based Switch

1 MEM:SRAM[1 0 2 4] ;
2 MEM[6 4] ;
3 REG[2 0] ;
4 MEMCPY(M[0] , PKT . IP HDR && MEMS[4] , 64) ; / / mask t h e IP header and s t o r e i t

i n a LocalMem a r r a y
5 R[0] = Hash (M[0] , 24 , 0 x400) ; / / g e t an ’ un iq ue ’ i n d e x o f max . 1024
6 R[1] = 0 ;
7 FOR (R[2] = 0 ; R[2] <1024; R[2] + +) / / l o o k f o r t h e e n t r y i n t o t h e KeysTab le
8 IF (MEMS[R [2]] == R [0]) THEN R[1] = 1 ; BREAK; FI ;
9 ROF;

10 IF (R [1]) THEN / / i f an a u t h o r i z e d e n t r y found i n KeysTab le f o r t h i s p k t .
11 R[3] = EXTERN(Crypto , HMAC−SHA1 , MEMS[R [2]] . K, M[0]) ; / / where . K i s t h e

key from SRAM KeysTab le and M[0] i s t h e s o u r c e f i e l d (masked p a c k e t)
12 IF (MEMCMP(R [3] , PKT .W[1 8] , 20) == 0) / / i f t h e t o k e n s match
13 THEN TX(MEMS[R [2]] . A u t h P o r t) ; / / send i t t o t h e a u t h o r i s e d p o r t
14 ELSE TX(9) ; / / send i t t o t h e d e f a u l t p o r t 9
15 FI ;
16 ELSE
17 TX(9) ;
18 FI ;

Listing 8.2: The Token Switch application written in FPL.

feeds the token switch module with packet handles. The token switch checks whether the
current packet has the appropriate IP option field, and extracts the first 64 bytes of the original
packet data and the token key value (y’) from the option field into local registers. Next, it
applies a custom mask over the 64 bytes of data. As illustrated in Listing 8.2, the application
also retrieves a proper token key (K) from its local KeysTable by looking up the aggregation
identifier (for instance, the IP source address and/or destination address pair). If no entry is
found in the KeysTable the packet cannot be authorised and it will be sent out to a default
port (e.g., port 8) for transmission over a (slow) routed connection. Otherwise, an HMAC-
SHA1 algorithm is issued over the 64 bytes of data and using the token key value (20 bytes)
as encryption key. The encryption result (y") is compared to the built-in packet token (y’).
When they match, the packet has been successfully authorised and it will be forwarded to its
authorised port (Np).

8.4 Evaluation
Figure 8.7 shows the system setup used for proving the concepts of token based switch-
ing [104].

The IXDP2850 development system has two IXP2850 NPs (Ingress and Egress) that boot
from a Linux boot server machine. At runtime we use the FFPF software framework for the
control path (running on the Linux server and both embedded Linux NPs). Three other Linux
machines (rembrandt 6, 7 and 8) serve as clients and are each connected via gigabit fibre to an
NP gigabit port. In order to find out the maximum data rate the proposed system can handle,
we evaluate the following scenario:

• An UDP traffic stream was generated (using iperf tool [115]) from Rembrandt6

8.4 Evaluation 133

Egress

Internet

Ingress

6

7

8

Gateway
10/100Mbps switch

rembrandt6

rembrandt7

rembrandt8Intel IXDP2850

Linux

BootServer

Figure 8.7: Token Based Switch demo.

to Rembrandt7;

• A token key was set for authorising traffic between (Rembrandt6 - Rembrandt7) to end
up on port 7 and another token key was set for authorising traffic from (Rembrandt7 -
Rembrandt6) to end up on port 6;

• Unauthorised traffic should go to the default port (e.g., port 8):

• To prove that authorised traffic ends up on port 7, Rembrandt7 was connected to the
IXDP2850 port 7 and tcpdump was listening to the gigabit port;

• To prove that unauthorised traffic ends up on port 8, Rembrandt8 was connected to the
IXDP2850 port 8 and tcpdump was listening to the gigabit port.

The performance of the above described test is shown in Figure 8.8.a. It has two charts:
(1) ‘data received’ which represents the received rate in the IXDP2850 box and (2) ‘success-
fully switched data’ which denotes the rate that the TBS could handle properly using just a
single thread for processing. The ‘data received’ chart is low for small packets because of the
Gigabit PCI card limitation used in the Rembrandt6 PC for traffic generation. So, for small
packets it reflects the limitations of the traffic generator rather than those of the TBS. The
second chart, ‘Successfully switched data’, is lower than the first one for high speeds because
we are using a single threaded implementation. The multi-threaded version coincides exactly
with the ‘data received’ chart and is thefore not visible.

While we cannot predict the real performance for speeds above 1 Gbps without perform-
ing measurements with a high-speed traffic generator, we estimated the outcome by using the
Intel’s cycle accurate IXP simulator running in debug mode. Table 8.1 and Table 8.2 show
the cycle estimation for a 150 bytes packet processed by each software component from the
Data path (Rx Gig, Tx Gig, Rx CSIX, Tx CSIX, TokenBuilder and TokenSwitch). Table 8.1
illustrates the cycles spent for one packet in each software module of the FFPF implementa-
tion on IXP2850. These modules are optimised for multi-threading packet processing (e.g.,
receiving, storing, transmitting). The first row in Table 8.2 contains the cycles spent for one
packet in a single threaded version of the token builder and token switch modules. We note
that these values are high because all subtasks (e.g., encryption, token insertion, checksum

134 Beyond Monitoring: the Token Based Switch

(a) running in hardware

(b) running in cycle accurate simulator

Figure 8.8: Token Based Switch performances

computation) run linearly (no parallelism involved at all) and use only one crypto unit each.
This single threaded version gives the performance shown in Figure 8.8.a. The next rows il-
lustrate various implementations of the multi-threading version. Normally, we should expect
better performance when we increase parallelism (e.g., more threads, or more µEngines) be-
cause of real parallelism and because memory latencies are hidden with multiple threads. On
the other hand, one may also expect more memory contention and synchronisation overhead,
so without real measurements it is impossible to draw accurate conclusions about the perfor-
mance. However, having only two crypto units available per NP limits the performance to the
value of roughly 2000 cycles (the token switch module spends its time mostly on encryption,
while the token builder module does also token insertion in the packet).

Note that our prototype implements each TBS module (token builder and token switch)
on only one NP of the IXDP2850 hardware system. The reason this was done is that we
have only one of these (expensive) IXDP2850 devices available in our lab. In a real setup,
however, each TBS module may use the full dual-NP IXDP2850 for building or checking

8.5 Discussion 135

tokens and therefore the system performance is expected roughly to double compared to our
presented figures, mainly because we would benefit from the availability of four crypto units.

FFPF module Rx Gig Tx CSIX Rx CSIX Tx Gig
µEngine cycles 408 276 504 248

Table 8.1: FFPF on IXP2850 overhead

TBS TokenBuilder TokenSwitch
single threaded 5777 3522
4 threads, 1 µEngine 3133 2150
8 threads, 1 µEngine 3000 2100
4 threads, 2 µEngines 2600 2100
8 threads, 2 µEngines 2500 2000

Table 8.2: TBS overhead

Using the cycle estimation given in Tables 8.1 and 8.2, we express the throughput as a
function of the packet size, number of threads and number of µEngines: rate=f(packet size,
threads, µEngines) without taking into account additional contention.

As illustrated in Figure 8.8.b, the estimated throughput for our multi-threaded version
goes up with roughly 1 Gbps over the single threaded version (Figure 8.8.a). This improve-
ment is due to the increased parallelism (e.g., more threads and more µEngines) that hides
the memory latency and due to the second crypto unit usage.

We also measured the latency introduced by our Token Based Switch system. The to-
ken builder application (the whole Ingress NP chain) takes 13.690 cycles meaning a 9,7µs
processing time (introduced latency), and the TokenSwitch application (the whole Egress
NP chain) takes 8.810 cycles meaning a 6,2µs latency. We mention that a µEngine in the
IXP2850 NP runs at 1400MHz.

8.5 Discussion

In addition to commercial solutions for single domain provider-controlled applications such
as Nortel DRAC, Alcatel BonD, some research is also underway to explore the concept of
user-controlled optical network paths. One of the leading software packages is the User
Controlled Lightpath Provisioning (UCLP) [116]. UCLP currently works in a multi-domain
fashion, where all parties and rules are pre-determined. Truong et al [117] worked on policy-
based admission control for UCLP and implemented fine-grained access control.

Some interesting work in the optical field is also done in Dense Wavelength Division
Multiplexing-RAM [118], where a Grid-based optical (dynamic) bandwidth manager is cre-
ated for a metropolitan area. Our approach is different in the sense that we provide a mecha-
nism to dynamically set up multiple shortcuts across a multi-domain end-to-end connection.
Therefore, an end-to-end connection can be easily improved in terms of speed and hop count
by introducing ‘shortcuts’ based on new user’s agreements.

136 Beyond Monitoring: the Token Based Switch

IP Easy-pass [108] proposed a network-edge resource access control mechanism to pre-
vent unauthorised access to reserved network resources at edge devices (e.g., ISP edge-
routers). IP packets that are special demanding, such as real-time video streams, get an
RC5 encrypted pass appended. Then, at edge-routers, a Linux kernel validates the legitimacy
of the incoming IP packets by simply checking their annotated pass. Unlike our work, the
solution aims at fairly low link rates. While our solution shares the idea of authentication per
packet (token), we use a safer encryption algorithm (HMAC-SHA1) and a separate control
path for key management (provided by AAA servers). In addition, we demonstrate that by
using network processors we are able to cope with multi-gigabit rates.

Most related to our TBS is Dynamic Resource Allocation in GMPLS Optical Networks
(DRAGON) framework [119]. This ongoing work defines a research and experimental frame-
work for high-performance networks required by Grid computing and e-science applications.
The DRAGON framework allows dynamic provisioning of multi-domain network resources
in order to establish deterministic paths in direct response to end-user requests. DRAGON’s
control-plane architecture uses GMPLS as basic building block and AAA servers for authen-
tication, authorisation and accounting mechanism. Thereby, we found a role for our TBS
within the larger DRAGON framework and we currently work together to bring the latest
TBS achievements into DRAGON.

8.5.1 Summary
This chapter presented our implementation of the Token Based Switch application on Intel
IXP2850 network processors, which allows one to select an optical path in hybrid networks.
The admission control process is based on token principles. A token represents the right to
use a pre-established network connection in a specific time frame. Tokens allow separation
of the (slow) authorisation process and the real-time usage of high-speed optical network
links. The experimental results suggest that a TokenSwitch implementation using the latest
Network Processor generation can perform packets authorisation at multi-gigabit speeds.

Chapter 9
Conclusions

The explosion of the Internet in size and amount of traffic makes the administration and
services harder and harder to manage. Moreover, new application demands to cope with the
growth of some of the Internet problems (intrusions, viruses, spam, etc.) require much more
processing per byte of traffic than was needed previously. Earlier, most monitoring tasks may
have been enough to use a commodity PC with regular network cards. Currently, even using
specialised hardware (e.g., network processors) we cannot build one stand-alone, single-CPU
system to support the rising application demands (intrusion detection, virus-scanner, etc.) at
multi-gigabit speeds.

In this thesis the use of both parallel and distributed systems is proposed for traffic pro-
cessing at high speeds. The preceding chapters presented a concept and the implementation
of a distributed processing system, and a control system designed to keep the distributed
traffic processing system stable regardless of environment changes (e.g., traffic peaks).

The research was started with the following major goal: finding a novel traffic processing
architecture that suits the current requirements and scales to future demands. We identified
the following requirements:

1. Building a traffic processing system for intensive applications (e.g., IDS, IPS) that sup-
ports gigabit link rates requires parallel processing so as to cope with the gap between
the link and memory speeds as shown in Section 1.4. For higher link rates, we need to
distribute the workload on a parallel and distributed architecture as introduced in the
Chapters 3 and 5, respectively.

2. In order to build a traffic processing system that is less expensive than a supercomputer,
has a long life-cycle, and supports a large variety of applications, we need to make use
of heterogeneous processing nodes in a distributed system. For instance, we can use
different network processor generations together with old and new commodity PCs.

3. Writing traffic processing applications on parallel and distributed environment is a dif-
ficult task. However, using a high level programming language and compilers for vari-
ous hardware targets increases the user’s productivity and hence, it gives a better time

138 Conclusions

to market factor. In other words, the language and software framework makes the pro-
grammer’s life easier by hiding many low-level programming details of often complex
parallel hardware (multi-cores). Moreover, the framework allows building applications
with fewer bugs related to hardware parallelism or workload distribution.

4. We say that a traffic processing system works in a dynamic environment because the
total bandwidth of the incoming traffic and the availability of processing cores vary
over time. Thus, the system workload also varies even though it runs the same traffic
processing application. When building a robust system, a system that does not fail
when it becomes congested for short periods of time, we must use a control mechanism.
As our system is very dynamic (processes millions of packets per second), we need an
automatic, un-manned, control system to keep the traffic processing stable regardless
of environment changes.

9.1 Summary of contributions
This thesis introduced a language, a compiler, and run-time extensions to an existing traffic
processing system known as Fairly Fast Packet Filter (FFPF). The run-time extensions were
made in respect to support various hardware targets like commodity PCs, network proces-
sors, and FPGAs. These extensions pushes FFPF towards heterogeneous distributed traffic
processing. Then, the thesis showed a (centralised) control that keeps the distributed het-
erogeneous traffic processing system stable regardless of the environment changes (traffic
variations, hardware failure, or hardware upgrade). In the end, it is used to illustrate as a
case study a traffic processing implementation for a specific application domain: per-packet
authentication at multi-gigabit speeds.

Chapter 2 presented briefly the FFPF software framework used and extended for the pro-
totypes built during this research. Then, the state-of-the-art hardware – network processors –
used in the application development of this research were presented in the end of Chapter 2.

Chapter 3 described the extensions added to the FFPF software framework in order to
support the innovative concepts introduced later in the Chapters 5 and 6. First, we designed
a new language, FPL, oriented on development of packet processing applications. Then, we
designed and developed a compiler that supports multiple hardware targets like commodity
PCs, several network processor generations, and a custom FPGA design.

Chapter 4 presented the run-time environments on each supported hardware platform for
the FPL compiled applications.

Chapter 5 presented the NET-FFPF distributed network processing environment and its
extensions to the FPL programming language, which enable users to process network traffic at
high speeds by distributing tasks over a network of commodity and/or special purpose devices
such as PCs and network processors. A task is distributed by constructing a processing tree
that executes simple tasks such as splitting traffic near the root of the tree while executing
more demanding tasks at the less-travelled leaves. Explicit language support in FPL enabled
us to efficiently map a program for such a tree.

Chapter 6 described a control architecture for distributed traffic processing systems. The
control architecture used a control loop that monitors and adjusts each processing node of the
entire distributed system. The stability goal of the control system is achieved by re-mapping

9.2 Further research 139

the application tasks from a congested node to another and also by re-distributing the traffic
across the distributed processing hierarchy according to the new configuration.

Chapter 7 described an implementation of the centralised adaptive control approach ap-
plied to our distributed traffic processing system.

Chapter 8 presented a case study in which the FPL compiler and the extended run-time
version of the FFPF framework described in Chapter 3 are applied to perform specific traffic
processing at multi-gigabit speeds. The presented application, Token Based Switch, authen-
ticates and routes the incoming traffic according to an encrypted message built-in the packet
(a token). This application is a proof of a new networking concept where the data drives
the networks. The application makes use of hardware encryption units available in the latest
network processor generation, the Intel IXP2850.

9.2 Further research
The proposed concept of traffic processing in a distributed way uses two major idea: (1) traffic
splitting, and (2) basic traffic processing. Besides this, a control overlay is needed to keep
the entire distributed system stable when the environment changes. However, in the current
implementation presented in Chapter 6, some simplified assumption were made. We believe
that addressing these assumptions has potential for further improvements.

In our distributed processing environment, as described in Section 5.2, we assumed a
tree-like hierarchy. It would be interesting to look at different topologies, especially those
which would allow to re-process a stream and hence, the traffic must travel forth and back
over the topology.

In Section 7.1.2, our control design used a simple control law inspired by the TCP control
flow algorithm. Although we mentioned the advantages of using predictive algorithms, a
implementation of such advanced control algorithms may provide a more robust system with
a faster response to the environment changes.

Given the current advances in the Storage Area Network (SANs) that support storage over
IP, we think that extending our distributed processing system with support for SAN devices
would positively affect two important issues: buffering during re-mapping and merging and
storing of end-results. Moreover, we could imagine hybrid devices (network processors and
SANs) available on the market not so far in the future.

However, there still are open questions in the field of distributed traffic processing sys-
tems. For example, when migrating existing compact, single-node applications to a dis-
tributed architecture, how can we perform an automatic task partitioning at system deploy-
ment stage? The automatic partitioning may efficiently split the main-application into com-
ponents by means of mapping of specific components on specialised cores. Given several
traffic processing applications running on a distributed system composed of many processing
nodes, how can we implement an efficient mechanism for retrieving of the processing results?

140 Conclusions

Bibliography

[1] George Gilder. Fiber Keeps Its Promise: Get ready. Bandwidth will triple each year
for the next 25. Forbes, April 1997.

[2] Walter Jones and Tom Medrek. Parallelism ups performance. EE Times, October 1999.

[3] Charlie Jenkins. Distributed processing is on top. EE Times, January 2000.

[4] Linley Gwennap. Net processor makers race toward 10-gbit/s goal. EE Times, June
2000.

[5] Nick McKeown. Network Processors and their Memory. Keynote talk at Workshop
on Network Processors and Applications - NP3, February 2004.

[6] Desi Rhoden. The Evolution of DDR. VIA Technology Forum, 2005.

[7] Christopher Kruegel, Fredrik Valeur, Giovanni Vigna, and Richard Kemmerer. Stateful
intrusion detection for high-speed networks. In Proceedings of the IEEE Symposium
on Security and Privacy, 2002.

[8] Charitakis, Anagnostakis, and Markatos. An active traffic splitter architecture for in-
trusion detection. In Proceedings of 11th IEEE/ACM MASCOTS, Orlando, Florida, oct
2003.

[9] Willem de Bruijn, Asia Slowinska, Kees van Reeuwijk, Tomas Hruby, Li Xu, and Her-
bert Bos. SafeCard: a Gigabit IPS on the network card. In Proceedings of 9th Inter-
national Symposium on Recent Advances in Intrusion Detection (RAID’06), Hamburg,
Germany, September 2006.

[10] SNORT group. Snort: The Open Source Network Intrusion Detection System, 2002.
http://www.snort.org.

[11] LIBPCAP group. Tcpdump/libpcap, 2002. http://www.tcpdump.org.

[12] NTOP group. Ntop: web-based passive network monitoring application, 2002.
http://www.ntop.org.

142 Bibliography

[13] Ken Keys, David Moore, Ryan Koga, Edouard Lagache, Michael Tesch, and K. Claffy.
The architecture of CoralReef: an Internet traffic monitoring software suite. In
PAM2001 — A workshop on Passive and Active Measurements. CAIDA, RIPE NCC,
April 2001. http://www.caida.org/tools/measurement/coralreef/.

[14] Herbert Bos, Willem de Bruijn, Mihai Cristea, Trung Nguyen, and Georgios Portoka-
lidis. FFPF: Fairly Fast Packet Filters. In Proceedings of OSDI’04, San Francisco,
CA, December 2004.

[15] Stephen Northcutt and Judy Novak. Network Intrusion Detection: An Analysts’ Hand-
book. Sams, 3rd edition, September 2002.

[16] R. Puri, Kang-Won Lee, K. Ramchandran, and V. Bharghavan. An integrated source
transcoding and congestion control paradigmfor video streaming in the internet. In
IEEE Transactions On Multimedia, volume 3, pages 18–32, March 2001.

[17] Mihai-Lucian Cristea, Leon Gommans, Li Xu, and Herbert Bos. The Token Based
Switch: per-packet access authorisation to optical shortcuts. In Proceedings of IFIP
Networking’07, Atlanta, GA, USA, May 2007.

[18] Steven McCanne and Van Jacobson. The BSD Packet Filter: A new architecture for
user-level packet capture. In Proceedings of the 1993 Winter USENIX conference, San
Diego, Ca., January 1993.

[19] Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B. Moss. Efficient
packet demultiplexing for multiple endpoints and large m essages. In USENIX Winter,
pages 153–165, 1994.

[20] Mary L. Bailey, Burra Gopal, Michael A. Pagels, Larry L. Peterson, and Prasenjit
Sarkar. Pathfinder: A pattern-based packet classifier. In Operating Systems Design
and Implementation, pages 115–123, 1994.

[21] Dawson R. Engler and M. Frans Kaashoek. DPF: Fast, flexible message demultiplex-
ing using dynamic code generation. In SIGCOMM’96, pages 53–59, 1996.

[22] Andrew Begel, Steven McCanne, and Susan L. Graham. BPF+: Exploiting global
data-flow optimization in a generalized packet filter architecture. In SIGCOMM, pages
123–134, 1999.

[23] G. Robert Malan and F. Jahanian. An extensible probe architecture for network pro-
tocol performance measurement. In Computer Communication Review, ACM SIG-
COMM, October 1998.

[24] A. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt. Architecture of a network
monitor. In Proceedings of PAM’03, 2003.

[25] Michael Bellion and Thomas Heinz. HiPAC - high performance packet classification.
Technical report, 2005.

Bibliography 143

[26] Kees van Reeuwijk and Herbert Bos. Ruler: high-speed traffic classification and
rewriting using regular expressions. Technical report, Vrije Universiteit Amsterdam,
July 2006.

[27] Thomas Hruby, Kees van Reeuwijk, and Herbert Bos. Ruler: easy packet matching
and rewriting on network processors. In Symposium on Architectures for Networking
and Communications Systems (ANCS’07), Orlando, FL, USA, December 2007.

[28] V. Jacobson, S. McCanne, and C. Leres. pcap(3) - Packet Capture library. Lawrence
Berkely Laboratory, Berkeley, CA, October 1997.

[29] Tom M. Thomas. Juniper Networks Reference Guide: JUNOS Routing, Configuration,
and Architecture, chapter Juniper Networks Router Architecture. January 2003.

[30] Andy Bavier, Thiemo Voigt, Mike Wawrzoniak, Larry Peterson, and Per Gunningberg.
Silk: Scout paths in the linux kernel, tr 2002-009. Technical report, Department of
Information Technology, Uppsala University, Uppsala, Sweden, February 2002.

[31] Kurt Keutzer Niraj Shah, William Plishker. NP-Click: A programming model for the
Intel IXP1200. In 2nd Workshop on Network Processors (NP-2) at the 9th Interna-
tional Symposium on High Performance Computer Architecture (HPCA-9), Anaheim,
CA, February 2003.

[32] Andrew T. Campbell, Stephen T. Chou, Michael E. Kounavis, Vassilis D. Stachtos,
and John Vicente. NetBind: a binding tool for constructing data paths in network
processor-based routers. In Proceedings of IEEE OPENARCH 2002, June 2002.

[33] Dr. Jeppe Jessen and Amit Dhir. Programmable Network Processor Platform. Techni-
cal report, Xilinx, July 2002.

[34] J. Cleary, S. Donnelly, I. Graham, A. McGregor, and M. Pearson. Design principles
for accurate passive measurement. In Proceedings of PAM, Hamilton, New Zealand,
April 2000.

[35] Nicholas Weaver, Vern Paxson, and Jose M. Gonzalez. The Shunt: An FPGA-Based
Accelerator for Network Intrusion Prevention. In ACM/SIGDA International Sympo-
sium on FPGAs, Monterey, California, USA, February 2007.

[36] David Anto, Jan Koenek, Kateina Minakov, and Vojtch ehk. Packet header matching
in combo6 ipv6 router. Technical Report 1, CESNET, 2003.

[37] Chris Clark, Wenke Lee, David Schimmel, Didier Contis, Mohamed Kone, and Ashley
Thomas. A hardware platform for network intrusion detection and prevention. In The
3rd Workshop on Network Processors and Applications (NP3), Madrid, Spain, Feb
2004.

[38] Ioannis Charitakis, Dionisios Pnevmatikatos, and Evangelos Markatos. Code gen-
eration for packet header intrusion analysis on the ixp1200 network processor. In
SCOPES 7th International Workshop, 2003.

144 Bibliography

[39] Jeffrey C. Mogul. Tcp offload is a dumb idea whose time has come. In HOTOS’03:
Proceedings of the 9th conference on Hot Topics in Operating Systems, pages 5–5,
Berkeley, CA, USA, 2003. USENIX Association.

[40] J. Apisdorf, k claffy, K. Thompson, and R. Wilder. Oc3mon: Flexible, affordable, high
performance statistics collection. In 1996 USENIX LISA X Conference, pages 97–112,,
Chicago, IL, September 1996.

[41] Gianluca Iannaccone, Christophe Diot, Ian Graham, and Nick McKeown. Monitoring
very high speed links. In ACM SIGCOMM Internet Measurement Workshop 2001,
September 2001.

[42] Sriram R. Chelluri, Bryce Mackin, and David Gamba. Fpga-based solutions for
storage-area networks. Technical report, Xilinx Inc., March 2006.

[43] J.C. Mogul, R.F. Rashid, and M.J. Accetta. The packet filter: An efficient mechanism
for user-level network code. In Proceedings of 11th Symposium on Operating System
Principles, pages 39–51, Austin, Tx., November 1987. ACM.

[44] J. van der Merwe, R. Caceres, Y. Chu, and C. Sreenan. Mmdump - a tool for mon-
itoring internet multimedia traffic. ACM Computer Communication Review, 30(4),
October 2000.

[45] Sotiris Ioannidis, Kostas G. Anagnostakis, John Ioannidis, and Angelos D. Keromytis.
xPF: packet filtering for low-cost network monitoring. In Proceedings of the IEEE
Workshop on High-Performance Switching and Routing (HPSR), pages 121–126, May
2002.

[46] M. Roesch. Snort: Lightweight intrusion detection for networks. In Proceedings of
the 1999 USENIX LISA Systems Adminstration Conference, 1999.

[47] Intel Corporation. Intel IXP1200 Network Processor, 2000.
http://developer.intel.com/ixa.

[48] Intel Corporation. Intel IXP2xxx Network Processor, 2005.
http://www.intel.com/design/network/products/npfamily/ixp2xxx.htm.

[49] IETF working group. Internet protocol flow information export.
http://www.ietf.org/html.charters/ipfix-charter.html.

[50] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. The Click mod-
ular router. In Symposium on Operating Systems Principles, pages 217–231, 1999.

[51] Deborah A. Wallach, Dawson R. Engler, and M. Frans Kaashoek. ASHs: Application-
specific handlers for high-performance messaging. In Conference proceedings on Ap-
plications, technologies, architectures, and protocols for computer communications,
pages 40–52. ACM Press, 1996.

[52] Herbert Bos and Bart Samwel. The OKE Corral: Code organisation and reconfigu-
ration at runtime using active linking. In Proceedings of IWAN’2002, Zuerich, Sw.,
December 2002.

Bibliography 145

[53] Kostas G. Anagnostakis, S. Ioannidis, S. Miltchev, and Michael B. Greenwald. Open
packet monitoring on flame: Safety, performance and applications. In Proceedings of
IWAN’02, Zuerich, Switzerland, December 2002.

[54] Herbert Bos and Bart Samwel. Safe kernel programming in the OKE. In Proceedings
of OPENARCH’02, New York, USA, June 2002.

[55] P. Paulin, F. Karim, and P. Bromley. Network processors: a perspective on market
requirements, processor architectures and embedded s/w tools. In DATE ’01: Pro-
ceedings of the conference on Design, automation and test in Europe, pages 420–429,
Piscataway, NJ, USA, 2001. IEEE Press.

[56] IBM Microelectronics. The network processor enabling technology for high-
performance networking, 1999. http://www-3.ibm.com/chips/products/wired.

[57] Bay Microsystems. Network processors: Chesapeake, montego, biscayne, 2007.
http://www.baymicrosystems.com/products/network-processors.html.

[58] LSI Corporation. Former agere systems network processors, 2007.
http://www.lsi.com/networking home/networking products/network processors.

[59] Broadcom Corporation. Communications processors, 2007.
http://www.broadcom.com/products/Enterprise-Networking/Communications-
Processors.

[60] Xelerated. Xelerator x11 network processor, 2007. http://www.xelerated.com.

[61] Ezchip Technologies. Np-2 network processor, 2007.
http://www.ezchip.com/html/in prod.html.

[62] Vitesse Semiconductor. Iq2000 and iq2200 families of network processors, 2002.
http://www.vitesse.com/products.

[63] PLCOpen Standardization in Industrial Control Programming. Iec-61131, 2003.
http://www.plcopen.org/.

[64] Jonathan T. Moore, Jessica Kornblum Moore, and Scott Nettles. Active Networks,
volume 2546, chapter Predictable, Lightweight Management Agents, pages 111–119.
Springer Berlin / Heidelberg, 2002.

[65] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. A compile time based approach
for solving out-of-order communication in Kahn Process Networks. In Proceedings
of IEEE 13th International Conference on Application-specific Systems, Architectures
and Processors, July 17-19 2002.

[66] Rhys Weatherley. Treecc: An aspect-oriented approach to writing compilers. Free
Software Magazine, 2002.

[67] Pty Ltd Southern Storm Software and Inc. Free Software Foundation. Tree compiler-
compiler, 2003. http://www.southern-storm.com.au/treecc.html.

146 Bibliography

[68] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. Secure
Internet Programming: Issues in Distributed and Mobile Object Systems, chapter The
Role of Trust Management in Distributed Systems Security, pages 185–210. Springer-
Verlag Lecture Notes in Computer Science, Berlin, 1999.

[69] Jeffrey B. Rothman and John Buckman. Which OS is fastest for high-performance
network applications? SysAdmin, July 2001.

[70] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an interrupt-
driven kernel. ACM Transactions on Computer Systems, 15(3):217–252, 1997.

[71] Tammo Spalink, Scott Karlin, and Larry Peterson. Evaluating network processors
in IP forwarding. Technical Report TR-626-00, Department of Computer Science,
Princeton University, November 2000.

[72] Sanjay Kumar, Himanshu Raj, Karsten Schwan, and Ivan Ganev. The sidecore ap-
proach to efficient virtualization in multicore systems. In HotOS 2007, San Diego,
USA, May 2007.

[73] Trung Nguyen, Willem de Bruijn, Mihai Cristea, and Herbert Bos. Scalable network
monitors for high-speed links: a bottom-up approach. In Proceedings of IPOM’04,
Beijing, China, 2004.

[74] John W. Lockwood, Christopher Neely, Christopher Zuver, James Moscola, Sarang
Dharmapurikar, and David Lim. An extensible, system-on-programmable-chip,
content-aware Internet firewall. In Field Programmable Logic and Applications (FPL),
page 14B, Lisbon, Portugal, September 2003.

[75] Bart Kienhuis, Edwin Rypkema, and Ed Deprettere. Compaan: Deriving Process Net-
works from Matlab for Embedded Signal Processing Architectures. In Proceedings
of the 8th International Workshop on Hardware/Software Codesign (CODES), San
Diego, USA, May 2000.

[76] Claudiu Zissulescu, Todor Stefanov, Bart Kienhuis, and Ed Deprettere. LAURA: Lei-
den Architecture Research and Exploration Tool. In Proceedings of 13th Int. Con-
ference on Field Programmable Logic and Applications (FPL’03), Lisbon, Portugal,
September 2003.

[77] Mihai Lucian Cristea, Willem de Bruijn, and Herbert Bos. FPL-3: towards language
support for distributed packet processing. In Proceedings of IFIP Networking 2005,
Waterloo, Canada, May 2005.

[78] Intel Coorp. Internet exchange architecture: Programmable network processors for
today’s modular networks. White Paper, 2002.

[79] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial of service
attacks: Characterization and implications for cdns and web sites. In In Proceedings
of the International World Wide Web Conference, IEEE, pages 252–262, May 2002.

Bibliography 147

[80] Panos Trimintzios, Michalis Polychronakis, Antonis Papadogiannakis, Michalis
Foukarakis, Evangelos Markatos, and Arne Oslebo. DiMAPI: An Application Pro-
gramming Interface for Distributed Network Monitoring. In Proceedings of the 10th
IEEE/IFIP Network Operations and Management Symposium (NOMS), Vancouver,
Canada, Apr 2006.

[81] Dror G. Feitelson. Distributed hierarchical control for parallel processing. Computer,
23(5):65–77, 1990.

[82] T. Simsek and P. Varaiya. Communication and control of distributed hybrid systems.
In Proceedings of 41st IEEE Conference on Decision and Control, Las Vegas, USA,
Dec 2002.

[83] Wei Xu, Joseph L. Hellerstein, Bill Kramer, and David Patterson. Control considera-
tions for scalable event processing. In DSOM, pages 233–244, 2005.

[84] X. Li, L. Sha, and X. Zhu. Adaptive control of multi-tiered web applications using
queueing predictor. In Proceedings of the 10th IEEE/IFIP Network Operations and
Management Symposium (NOMS 2006), pages 106–114. IEEE Press, 2006.

[85] Norman Bobroff and Lily Mummert. Design and implementation of a resource man-
ager in a distributed database system. Journal of Network and Systems Management,
13(2):151–174, June 2005.

[86] Cong Du, Xian-He Sun, and Ming Wu. Dynamic scheduling with process migration. In
CCGRID ’07: Proceedings of the Seventh IEEE International Symposium on Cluster
Computing and the Grid, pages 92–99, Washington, DC, USA, 2007. IEEE Computer
Society.

[87] Asser N. Tantawi and Don Towsley. Optimal static load balancing in distributed com-
puter systems. J. ACM, 32(2):445–465, 1985.

[88] G.E. Box, G.M. Jenkins, and G.C. Reinsel. Forecasting and Control, chapter Time
Series Analysis. Prentice-Hall, 3rd edition, 1994.

[89] R. Gibbens and F. Kelly. Measurement-based connection admission control. In Inter-
nationalTeletraffic Congress, Jun 1997.

[90] Sugih Jamin, Scott Shenker, and Peter B. Danzig. Comparison of measurement-based
call admission control algorithms for controlled-load service. In INFOCOM, pages
973–980, 1997.

[91] Jingyu Qiu and Edward W. Knightly. Measurement-based admission control with
aggregate traffic envelopes. IEEE/ACM Transactions on Networking, 9(2):199–210,
2001.

[92] Viktoria Elek, Gunnar Karlsson, and Robert Ronngren. Admission control based on
end-to-end measurements. In INFOCOM, pages 623–630, 2000.

148 Bibliography

[93] Jens Milbrandt, Michael Menth, and Jan Junker. Performance of experience-based
admission control in the presence of traffic changes. In Fifth IFIP Networking Confer-
ence (NETWORKING 2006), Coimbra, Portugal, 5 2006.

[94] M. Ghaderi, J. Capka, and R. Boutaba. Prediction-based admission control for diffserv.
Vehicular Technology Conference, 3:1974–1978, Oct 2003.

[95] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. On the
self-similar nature of Ethernet traffic. In SIGCOMM ’93: Conference proceedings
on Communications architectures, protocols and applications, pages 183–193, New
York, NY, USA, 1993. ACM Press.

[96] Walter Willinger, Murad S. Taqqu, Robert Sherman, and Daniel V. Wilson. Self-
similarity through high-variability: statistical analysis of Ethernet LAN traffic at the
source level. IEEE/ACM Trans. Networking, 5(1):71–86, 1997.

[97] Yi Qiao, Jason Skicewicz, and Peter Dinda. An empirical study of the multiscale
predictability of network traffic. In HPDC ’04: Proceedings of the 13th IEEE Inter-
national Symposium on High Performance Distributed Computing (HPDC’04), pages
66–76, Washington, DC, USA, 2004. IEEE Computer Society.

[98] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., New York, NY, USA, 1986.

[99] Jamie Callan. Advances in information retrieval, chapter 5: Distributed Information
Retrieval, pages 127–150. Kluwer Academic Publishers, 2000.

[100] Yuliy Baryshnikov, Ed G. Coffman, Guillaume Pierre, Dan Rubenstein, Mark
Squillante, and Teddy Yimwadsana. Predictability of web-server traffic con-
gestion. In Proceedings of the Tenth IEEE International Workshop on
Web Content Caching and Distribution, pages 97–103, September 2005.
http://www.globule.org/publi/PWSTC wcw2005.html.

[101] SURFnet builds hybrid optical and packet switch-
ing network. Lightwave Online Article, March 2004.
http://lw.pennnet.com/Articles/Article Display.cfm?Section=OnlineArticles &Sub-
Section=Display&PUBLICATION ID=13&ARTICLE ID=201399.

[102] Linda Winkler and HOPI Design Team. The hybrid optical and
packet infrastructure (HOPI) testbed. Internet2 whitepaper, April 2004.
http://networks.internet2.edu/hopi/hopi-documentation.html.

[103] J. Vollbrecht, P. Calhoun, S. Farrel, Leon Gommans, G. Gross, B. Bruin, Cees de Laat,
M. Holdrege, and D. Spence. RFC2904, AAA Authorization Framework. IETF, 2000.

[104] Leon Gommans, Franco Travostino, John Vollbrecht, Cees de Laat, and Robert Meijer.
Token-based authorization of connection oriented network resources. In Proceedings
of GRIDNETS, San Jose, CA, USA, Oct 2004.

Bibliography 149

[105] M. Bellare, R. Canetti, and H. Krawczyk. RFC2104, HMAC: Keyed-Hashing for
Message Authentication. IETF, 1997.

[106] R. Boutaba, Y. Iraqi, and A. Ghlamallah. User controlled lightpaths architecture de-
sign. Presentation, May 2003.

[107] S. Figueira, S. Naiksatam, and H. Cohen. DWDM-RAM: Enabling Grid Services
with Dynamic Optical Networks. In Proceedings of the SuperComputing Conference
(SC2003), Phoenix, Arizona, Nov 2003.

[108] Haining Wang, Abhijit Bose, Mohamed El-Gendy, and Kang G. Shin. IP Easy-pass: a
light-weight network-edge resource access control. IEEE/ACM Transactions on Net-
working, 13(6):1247–1260, 2005.

[109] S. Blake, D.Black, M. Carlson, E. Davies, Z. Wang, and W. Weis. RFC2475, An
Architecture for Differentiated Services. IETF, 1998.

[110] E. Rosen, A. Viswanathan, and R. Callon. RFC3031, Multiprotocol Label Switching
Architecture. IETF, 2001.

[111] Raouf Boutaba, Wojciech M. Golab, Youssef Iraqi, Tianshu Li, and Bill St. Arnaud.
Grid-Controlled Lightpaths for High Performance Grid Applications. J. Grid Comput.,
1(4):387–394, 2003.

[112] Tom DeFanti, Cees de Laat, Joe Mambretti, Kees Neggers, and Bill St. Arnaud. Trans-
Light: a global-scale LambdaGrid for e-science. Commun. ACM, 46(11):34–41, 2003.

[113] C. de Laat, E. Radius, and S. Wallace. The rationale of current optical networking
initiatives. Future Generation Computer Systems, 19(6):999–1008, Aug 2003.

[114] L. Gommans, F. Dijkstra, C. de Laat, A. Taal, A. Wan, Lavian T., I. Monga, and
F. Travostino. Applications drive secure lightpath creation across heterogeneous do-
mains. IEEE Communications Magazie, 44(3):100–106, March 2006.

[115] Ajay Tirumala et al. Iperf tutorial. http://iperf.sourceforge.net.

[116] J. Wu, S. Campbell, J.M. Savoie, H. Zhang, G.v. Bochmann, and B.St. Arnaud. User-
managed end-to-end lightpath provisioning over ca*net 4. In Proceedings of the Na-
tional Fiber Optic Engineers Conference, Orlando, FL, USA, Sep 2003.

[117] D.L. Truong, O. Cherkaoui, H. ElBiaze, N. Rico, and M. Aboulhamid. A Policy-based
approach for User Controlled Lightpath Provisioning. In Proceedings of NOMS, Seoul,
Korea, Apr 2004.

[118] S. Figueira, S. Naiksatam, and H. Cohen. OMNInet: a Metropolitan 10Gb/s DWDM
Photonic Switched Network Trial. In Proceedings of Optical Fiber Communication,
Los Angeles, USA, Feb 2004.

[119] Tom Lehman, Jerry Sobieski, and Bijan Jabbari. DRAGON: A Framework for Ser-
vice Provisioning in Heterogeneous Grid Networks. IEEE Communications Magazine,
44(3), March 2006.

Samenvatting

In een vereenvoudigde weergave is het Internet te zien als een wereldwijd netwerk dat
bestaat uit knopen (plaatsen van aanvoer waar signalen naar verschillende richtingen wor-
den uitgezonden) die met elkaar verbonden zijn via verbindingen en schakels. Applicaties –
zoals websites of netwerkspellen – die op deze knopen draaien, zijn op een virtuele manier
met elkaar verbonden met behulp van dataverkeer dat door deze fysieke verbindingen en hun
schakels stroomt. Nieuwe computers, nieuwe applicaties zoals videofoons of IPTV en hun
gebruikers, voegen zich dagelijks bij het Internet. Het Internet is een onoverzichtelijke plek
geworden waar goede en slechte dingen gebeuren, omdat er geen controle is over het gehele
Internet. Het is nodig dat iedere gebruiker of corporatie zelf zijn of haar knoop die ver-
bonden is met het Internet, beveiligt. Om de verspreiding van slechte dingen naar bepaalde
computers of een groep van computers (bijvoorbeeld kleine netwerken zoals thuis- of bedrijf-
snetwerken) te voorkomen, is een soort ‘stethoscoop’ nodig die het netwerkverkeer dat onze
privé-domeinen binnenkomt, inspecteert. Een dergelijke stethoscoop voor netwerkverkeer is
een traffic monitoring system.

Een traffic monitoring system inspecteert – naast vele andere taken – het netwerkverkeer
op verboden inhoud zoals viruspatronen of expliciete seksuele inhoud. Wanneer een verbo-
den inhoud ontdekt is, zal het systeem de gebruiker waarschuwen, of het ‘slechte’ verkeer
simpelweg laten verdwijnen. Een traffic monitoring system kan zich bevinden in de schakels
waar de personal computers (pc’s) of de kleine netwerken van computers met het Internet
verbonden zijn.

Voor de beveiliging van pc’s inspecteert een traffic monitoring system het dataverkeer
met een snelheid van tientallen Kbps tot honderd Mbps. Bij het beschermen van een bedrijf-
snetwerk krijgt een traffic monitoring system te maken met hogesnelheidsverkeer van multi-
gigabits/sec. Voor netwerkverbindingen met lage snelheden volstaan goedkope software
oplossingen om het verkeer te inspecteren, zoals firewalls op pc’s. Hoge snelheidsverbindin-
gen vergen echter gespecialiseerde hardware en software.

De huidige hardwareoplossingen voor het verwerken van dataverkeer (zoals netwerkpro-
cessors) bieden controleapplicaties bij extreem hoge snelheden slechts genoeg verwerkingscapaciteit
om een deel van het verkeer te inspecteren. Hierdoor kunnen bijvoorbeeld alleen de headers
van de datapakketten, waaruit netwerkverkeer is opgebouwd, verwerkt worden. Vanwege de
continue vernieuwingen op het gebied van malafide activiteiten of virussen, bijvoorbeeld het

152 Samenvatting

gebruik maken van verschillende delen van de pakketten, zijn echter verwerkingssystemen
nodig die in staat zijn om het gehele pakket met hoge snelheid te verwerken. Een verwerk-
ingssysteem voor dataverkeer dat in staat is om het gehele pakket met multi-gigabitsnelheid
te verwerken, vereist specifieke architecturen om de technologische kloof tussen de verw-
erkingssnelheid van processors (elektronen) en de netwerksnelheid van glasvezel (licht) te
dichten. Hoewel de huidige architecturen al gebruik maken van meerdere processors om
dataverkeer parallel te verwerken, ben ik van mening dat enkel een parallelle benadering niet
genoeg is om een duurzame oplossing te bieden voor de huidige en toekomstige eisen.

Dit onderzoek presenteert een parallelle en gedistribueerde aanpak om netwerkverkeer
met hoge snelheden te verwerken. De voorgestelde architectuur biedt de verwerkingscapaciteit
die vereist is om één of meer dataverkeerverwerkende toepassingen (bijvoorbeeld traffic
monitoring) met hoge snelheden te laten draaien door het verwerken van gehele pakket-
ten met multi-gigabitsnelheden onder gebruikmaking van een parallelle en gedistribueerde
verwerkingsomgeving. Bovendien is de architectuur flexibel en zal aan toekomstige eisen
kunnen voldoen door heterogene verwerkingsknopen te ondersteunen, zoals verschillende
hardwarearchitecturen of verschillende generaties van eenzelfde hardwarearchitectuur. Naast
de verwerkings-, flexibele en duurzame eigenschappen, verschaft de architectuur een ge-
bruiksvriendelijke omgeving door de hulp van een nieuwe programmeertaal, FPL genaamd,
voor verkeersverwerking in een gedistribueerde omgeving.

Om een flexibel en duurzaam verwerkingssysteem te creëren, maakt de architectuur ge-
bruik van twee principes: parallellisme en distributie. Ten eerste wordt parallellisme ge-
bruikt binnen een enkele verwerkingsknoop om op één van de volgende manieren de bin-
nenkomende pakketten parallel te verwerken: meervoudige toepassingen of taken kunnen
hetzelfde pakket parallel verwerken, één toepassing kan meervoudige pakketten parallel ver-
werken, of een combinatie van deze twee mogelijkheden. De implementatie van de voorgestelde
architectuur maakt gebruik van parallellisme in elk van de drie meest gebruikte en onderste-
unde hardwarearchitecturen: pc’s, netwerkprocessors en FPGA’s (Field Programmable Gate
Arrays, herconfigureerbare hardware). In pc’s profiteer ik bijvoorbeeld van time-shared par-
allellisme dat aangeboden wordt door het besturingssysteem. In netwerkprocessors, speciaal
ontworpen hardware met multi-cores en multi-memories, maak ik gebruik van parallellisme
dat door de hardware ondersteund wordt. In FPGA systemen vervaardig ik een op maat
gemaakt parallel ‘apparaat’, door de intensieve verwerkingstaken te draaien op individueel
aangepaste hardwarekernen, terwijl één kern het proces beheert. Ten tweede distribueer ik de
verwerkingsapplicaties van dataverkeer die meer verwerkingscapaciteit eisen dan een enkele
knoop kan bieden.

Wanneer ik een verwerkingsapplicatie van dataverkeer distribueer, krijg ik met de vol-
gende twee aspecten te maken: de verdeling van taken en de verdeling van dataverkeer dat
verwerkt moet worden. Aan de ene kant wordt het splitsen van een dataverkeerapplicatie in
taken – die dan verdeeld worden over de gedistribueerde architectuur – gedaan met behulp van
specifieke constructies in de voorgestelde programmeertaal om datapakketten te verwerken.
De taken worden dan vervolgens vertaald naar een code voor ieder van de beoogde hard-
wareplatformen. Aan de andere kant wordt in de verdeling van dataverkeer voorzien door
een nieuw concept waarbij een verwerkingsknoop in de gedistribueerde architectuur taken
ondersteunt met dataverkeerverwerking als doel, taken met dataverkeerverdeling of routing
als doel, of taken met zowel dataverkeerverwerking als -verdeling tegelijk als doel.

Samenvatting 153

Dit concept van een volledig programmeerbare verwerkingsknoop wordt geı̈mplementeerd
met behulp van dezelfde FPL taal om datapakketten te verwerken. Deze taal biedt toegang tot
het laagste dataniveau: ruwe data van het netwerkverkeer. In de gedistribueerde architectuur
stel ik een hiërarchische topologie voor, waar de eerste knopen in de verwerkingshiërarchie
ook dataverkeerverdeling verrichten naar de volgende knopen en waar de knopen in de laatste
regionen alleen specifieke verkeersverwerking uitvoeren. Met andere woorden, hoe verder er
afgedaald wordt in de verwerkingshiërarchie, hoe minder dataverkeer er herverdeeld hoeft
te worden en daardoor voeren de laatstgenoemde verwerkingsknopen intensievere en meer
gespecialiseerde taken uit om het dataverkeer te verwerken.

Ten slotte heb ik ontdekt dat een dergelijk complex gedistribueerd systeem werkt in een
dynamische omgeving (waarin het binnenkomende verkeer bijvoorbeeld varieert in de loop
van de tijd) en dat het een controlemechanisme nodig heeft om het systeem stabiel te houden
en onbemand te laten draaien. Daarom ontwierp ik een extensie voor de gedistribueerde ar-
chitectuur met beheer als doel. Hoewel er diverse manieren van beheer bestaan (bijvoorbeeld
gecentraliseerd of gedistribueerd), verwezenlijkte ik alleen een gecentraliseerde aanpak van-
wege de kleine schaal (tientallen knopen) van mijn gedistribueerde architectuur voor traffic
monitoring.

Ik ben van mening dat een oplossing voor het probleem van verwerking van dataverkeer
met hoge snelheden moet bestaan uit een parallelle en gedistribueerde aanpak, waarbij ook
gezorgd moet worden voor heterogeniteit, controle en gebruiksgemak.

Acknowledgments

First of all, I am grateful to my parents for the chances to grow according to my talents
and preferences. They taught me the right ideals for life and supported me in all my trials. I
also thank my wife, Violeta, for her understanding. She often had to share me with Science
during leisure times and to miss my presence during many conference stays.

A big contribution to the friendly atmosphere at LIACS was due to the discussions and
work with my colleagues: Claudiu Zissulescu, Alex Turjan, Dmitry Cheresiz, Laurentiu
Nicolae, Ioan Cimpian, Willem de Bruijn, Todor Stefanov. In addition, I mention Lennert
Buytenhek for his invaluable help in Linux world. I also thank to Trung Nguyen and Li Xu
for the collaboration we had during their master projects.

I will always remember the moment I have chosen an academic life being inspired by the
scientific view on systems of Prof. dr. Emil Ceanga. I also thank him for showing me the
first steps in research during my master project.

I am obliged to Associate Prof. dr. Nicu Sebe because he re-oriented my engineering
career to research by introducing me to Herbert’s group.

I am grateful to my friend, Mirona Elena Ciocı̂rlie, for her reviews on this thesis and
advices during our elementary and secondary school period.

My final thank-you is directed to my grandfather, Tătăica, a well-educated peasant who
fought in WWII and had enough resources left to train my thoughts through long discussions
during the summer holidays of my childhood. Looking back in time, I remember that Tătăica
has foreseen that I would be a doctor in science, 25 years before I found the meaning.

Curriculum Vitae

Mihai Cristea was born in Galaţi, România in 1976. After graduating from Mihail Kogăl-
niceanu High School in 1994, he started his studies at the Faculty of Shipbuilding and Elec-
trical Engineering. He received his B.Sc. degree in Automation and Computer Science En-
gineering in 1999 and the M.Sc. degree in Artificial Intelligence in Process Control in 2000
from the ”Dunărea de Jos” University of Galaţi.

After half a year of working in automation engineering at ArcelorMittal steel making
factory in Galaţi he went for software development applied to industrial fields such as marine
engineering to two companies (Romanian and Dutch) for about two years.

In the fall of 2002, Mihai Cristea chose an academic career and joined as a Ph.D. student
the High Performance Computing group of the Computer Science Department of Leiden
University headed by Prof. Dr. H.A.G Wijshoff. The Ph.D. research was part of a joint project
between this group and the group of Dr. Herbert Bos at the Vrije Universiteit, Amsterdam.

