
Model-based specification and design of large-scale embedded signal
processing systems
Lemaitre, J.

Citation
Lemaitre, J. (2008, October 2). Model-based specification and design of large-scale
embedded signal processing systems. Retrieved from https://hdl.handle.net/1887/13126

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13126

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13126

Model-based Specification and
Design of Large-Scale Embedded

Signal Processing Systems

Jérôme Lemaitre

Model-based Specification and
Design of Large-Scale Embedded

Signal Processing Systems

Proefschrift

ter verkrijging van de graad van Doctor aan de
Universiteit Leiden, op gezag van de Rector Magnificus
Prof. mr. P.F. van der Heijden, volgens besluit van het
College voor Promoties te verdedigen op Donderdag 2

Oktober 2008 klokke 16:15 uur

door

Jérôme Lemaitre
geboren te Compiegne Frankrijk

in 1979

Samenstelling promotiecommissie:

promotor Prof.dr. E. Deprettere
referent Dr. M. van Veelen ASML, Veldhoven

overige leden: Prof.dr. M. Boasson Universiteit van Amsterdam
Prof. R. Weber PRISME/LESI, Universiteit van Orléans, Frankrijk
Dr. S. Alliot European Patent Office, Den Haag
Dr. A-J. Boonstra ASTRON, Dwingeloo
Prof.dr. H. Wijshoff

The author was affiliated to NWO at ASTRON.
The work in this thesis was carried out in the MASSIVE project supported by STW.

Model-based Specification and Design of Large-Scale Embedded Signal Processing Systems
Jérôme Lemaitre. -
Thesis Universiteit Leiden. - With index, ref. - With summary in Dutch
ISBN 978-90-9023497-7

Copyright c©2008 by Jérôme Lemaitre.
All rights reserved. No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying, recording or
by any information storage and retrieval system, without permission of the author.
Printed in France.

Contents

Acknowledgments ix

1 Introduction 1

1.1 Large-scale and hierarchical signal processing systems 3

1.1.1 Large scale and distributed system 3

1.1.2 Hierarchical architecture . 4

1.1.3 Hierarchical application . 5

1.2 Problem statement . 6

1.2.1 General problem context . 6

1.2.2 Specific problem statement . 7

1.3 Solution approach . 9

1.3.1 Approach to the general problem . 9

1.3.2 Approach to the specific problem 12

1.4 Research contributions . 12

1.5 Related work . 13

1.6 Thesis outline . 15

2 Application specification 17

2.1 Summary . 17

2.2 Introduction . 18

2.3 Terminology . 19

vi Contents

2.4 Selection of a model to specify the behavior of the signal processing network 21

2.4.1 General requirements and constraints 22

2.4.2 Selection of the KPN model . 22

2.5 Selection of a model to specify the behavior of the control/monitoring network 23

2.5.1 General requirements and constraints 24

2.5.2 Selection of communicating state machines 24

2.6 Superimposing a timing network for the synchronization 25

2.6.1 Superimposing pulse trains . 25

2.6.2 Utilization of the notion of time . 28

2.7 Modeling of the interfacing between the two networks 33

2.7.1 Representation of a process in the signal processing network 34

2.7.2 Functional behavior of a process . 35

2.8 Related work . 38

2.9 Conclusions . 39

3 Architecture specification 41

3.1 Summary . 41

3.2 Introduction . 42

3.3 Definitions . 43

3.4 Representation of platform components . 45

3.4.1 White-box and black-box models 45

3.4.2 Processing units . 47

3.4.3 Communication units . 48

3.4.4 Storage units . 49

3.5 Signal processing architecture model . 49

3.5.1 First-order architecture templates 50

3.5.2 Higher-order architecture template 52

3.6 Control and monitoring architecture model 53

3.6.1 First-order architecture template . 53

3.6.2 Higher-order architecture templates 54

3.7 Interfacing of the two architectures . 54

Contents vii

3.7.1 Interfacing at station level . 54

3.7.2 First-order architecture templates interfacing 56

3.8 Related work . 57

3.9 Conclusions . 58

4 Mapping 59

4.1 Summary . 59

4.2 Introduction . 60

4.3 Transformations . 62

4.3.1 Initialization (re-)structuring transformations 62

4.3.2 Mapping transformations . 65

4.4 Implementation phase . 71

4.4.1 Input to the implementation phase 71

4.4.2 Automatic translation to implementation-level specification 73

4.5 Related work . 74

4.6 Conclusions . 75

5 Case studies 77

5.1 Summary . 77

5.2 Introduction . 78

5.3 Experimental context and setup . 79

5.3.1 Objectives . 79

5.3.2 Setup . 79

5.4 Dedicated mapping of the two networks . 81

5.4.1 Handcrafted design . 81

5.4.2 Semi-automated design . 82

5.4.3 Integration of programmable IP components 85

5.4.4 Conclusions . 88

5.5 Interfacing of the two networks . 89

5.5.1 Standard interfaces . 89

5.5.2 Merging the two architectures . 91

5.5.3 Requirements for future IP-based designs 94

viii Contents

5.6 Related work . 95

5.7 Conclusions . 96

6 Conclusion and future work 99

6.1 Conclusion . 99

6.2 Future work . 101

A An overview of specification-level models of computation 103

A.1 Summary . 103

A.2 Introduction . 103

A.3 State-based and event-triggered models . 104

A.3.1 Finite State Automata . 104

A.3.2 StateCharts . 104

A.3.3 Petri Nets . 106

A.3.4 Process algebras . 106

A.3.5 DE and DDE . 107

A.4 Stream-based and dataflow models . 107

A.4.1 KPN . 107

A.4.2 Dataflow models . 108

A.5 Heterogeneous models . 110

A.5.1 Synchronous/Reactive language . 111

A.5.2 *-charts and El Greco . 111

A.5.3 SDL . 111

A.5.4 CFSM . 112

A.5.5 RPN . 112

A.6 Related work . 113

A.7 Conclusions . 113

Bibliography 114

Curriculum Vitae 123

Samenvatting 125

Acknowledgments

This dissertation is the result of work conducted at the Netherlands Foundation for Radio As-
tronomy (ASTRON) in Dwingeloo and the Leiden Institute of Advanced Computer Science
(LIACS), in the context of the joint MASSIVE project.

At ASTRON, I would like to thank Arnold van Ardenne for giving me the opportunity to start
the PhD on the MASSIVE project. I would like to thank my team-mates on the MASSIVE
project and in the Digital Embedded Signal Processing Group.

My frequent visits at Leiden University allowed me to get to know Bart Kienhuis, Laurentiu
Nicolae, Claudiu Zissulescu, Todor Stefanov and Hristo Nikolov with whom I had interesting
discussions.

I would like to thank the friends who supported me during my stay in the Netherlands. They
are too many to mention, but know how much their presence was appreciated.

Finally, I would like to thank my family for always encouraging me through the years.

Jérôme Lemaitre, Nantes, September 7, 2008

Chapter 1
Introduction

For large-scale signal processing systems such as radio telescopes, converting abstract system-
level specifications (i.e., a specification in terms of application, architecture, and association
between the two) to implementation-level specifications (i.e., a specification that commer-
cially available tools should be able to convert automatically to a real implementation) is an
extremely challenging task.

Making significant steps in the analysis of the content, structure and evolution of the universe
requires increasing the sensitivity of the radio telescopes. There are several ways to increase
the sensitivity of radio telescopes [1], such as increasing the integration time, the bandwidth,
and in particular, the collecting area. For example, the next generation Square Kilometer
Array radio telescope (SKA [2]) requires an increase of two orders of magnitude in sensitivity
with respect to current radio telescopes at meter to centimeter wavelengths. To achieve this
goal will require a telescope with one square kilometer of collecting area - one hundred times
more collecting area than the Very Large Array radio telescope (VLA [3]).

However, relying on traditional parabolic dishes [4] with diameters larger than hundreds of
meters would be too expensive due to mechanical-related issues. Instead, the trend is to
rely on arrays of many small antennas [5], as in the Low Frequency Array radio telescope
(LOFAR [6]), where tens of thousands of antennas are distributed in a collecting area with
a diameter of a few hundreds of kilometers, and where signals are processed with digital
electronics that is also distributed next to the antennas.

Given the large-scale and distributed nature of the radio telescopes that are considered in
this thesis, a massive amount of signals has to be processed and transmitted. This massive
amount has to be reduced before a final sky image is produced. This reduction requires ad-
equately associating advanced signal processing algorithms together with advanced digital
processing and communication technologies to improve the overall performance/cost of the
system. Also, the distributed systems we consider have to be able to swap between several
high-level signal processing functions. For example, the LOFAR radio telescope must be able
to swap at run-time between operation modes that range from spectroscopy to pulsar obser-

2 Introduction

vations, or to searches for transients in two frequency ranges. To integrate the most advanced
algorithms and digital technologies, and to support several signal processing functions, a
structured approach is required when deriving system-level specifications 1 and converting
them to implementation-level specifications 2 (see Figure 1.1).

Figure 1.1: Radio telescope designers translate astronomer requirements and constraints to
a system-level specification that is to be converted to an implementation-level specification,
from where compilation and synthesis tools should take over to obtain automatically a real
implementation.

In this thesis we present an approach to structure the design process from system-level speci-
fication to implementation-level specification for high-throughput, large-scale and distributed
digital signal processing systems, and we focus on the case of phased array radio telescopes.

The remainder of this chapter is organized as follows. In section 1.1 we introduce the
scale and hierarchy of the systems we consider, and the signal processing tasks and con-
trol/monitoring tasks that are executed in these systems. We present our problem statement
in section 1.2 and our solution approach in section 1.3. Then, we summarize our contribu-
tions in section 1.4 and give related work in section 1.5. We give the outline of this thesis in
section 1.6.

1A system-level specification consists of an application specification, an architecture specification, and the map-
ping of the former onto the latter.

2An implementation-level specification is an abstract specification that includes all the information that is re-
quired to be converted automatically to an actual implementation based on commercially available compilation and
synthesis tools. Different parts of the system are implemented using different tools.

1.1 Large-scale and hierarchical signal processing systems 3

1.1 Large-scale and hierarchical signal processing systems

In this section we present the main properties of the systems we consider, with respect to
their scale and hierarchy both from the application and the architecture point of view. We
give an overview of the type of signal processing tasks and control and monitoring tasks that
are executed in the digital parts of these systems.

1.1.1 Large scale and distributed system

Large scale phased array systems connect arrays of sensors to extract some information (e.g.,
position and velocity) about the source of a signal carried by propagating wave phenom-
ena [7] [8]. To observe celestial sources with a sufficient sensitivity in the low frequency
range from 30 MHz to 240 MHz, the LOFAR radio telescope requires approximately 100
arrays, which are distributed in an area that has a diameter of 350 km. Each array is a station.
In Figure 1.2, stations are represented with circles.

Figure 1.2: Distribution of stations in the large-scale LOFAR radio telescope. The data output
by stations is monitored and sent to a central computing facility where a final image is formed.

4 Introduction

Stations are clusters of beamforming antennas, and together also form an array. In the middle
of the collecting area, about 50 stations are concentrated and together constitute a high density
station core of about 2 km of diameter, which provides ultrahigh brightness sensitivity. The
remaining 50 stations are placed on 5 spiral arcs and transmit data to the high density station
core through a wide area fiber network.

Each station includes approximately 100 dual pole low frequency (LF) antennas and 100 tiles
of 16 dual pole high frequency (HF) antennas that receive signals in the 30-80 MHz range
and 120-240 MHz range, respectively [9]. The system can operate either in the low frequency
range or in the high frequency range. The data output by the stations is sent over the wide area
network to a central processing facility (a supercomputer with a processing power equivalent
to 10,000 PCs [10], represented with a pentagon in Figure 1.2) where it is further processed
in order to obtain a sky image. A central control and monitoring facility (represented with
a square in Figure 1.2) monitors the stations output data and sends control messages to the
stations so as to adapt the behavior of the system at run-time depending on the observed
data [11]. Thus, the system can operate in modes that range from imaging and spectroscopy
to pulsar observation or searches for transients, in two frequency ranges.

To focus, we do not cover the design of the front-end stage (i.e., the LF and HF antennas in
the stations), and we do not cover the design of the back-end stage (i.e., the supercomputer).
Instead, we focus on the design of the intermediate data-reduction stage, which essentially
is the digital signal processing and control/monitoring in the stations that all have the same
architecture.

1.1.2 Hierarchical architecture

The intermediate data reduction stage consists of about 100 stations. In each station, LF
and HF antennas are distributed in a relatively small area, say of the size of a football field.
Signals that are received by the antennas are amplified and sent to a digital signal processing
cabinet in the center of the field. These signals are digitized at a sampling rate of 200 million
samples per second, and the input data rate at station level is about 460 Gbps. In the digital
signal processing cabinet, this high throughput data is reduced by processing and combining
signals in components (equivalent to 100 FPGAs [12] [13]) so as to obtain an output data
rate of 2 Gbps at station level. This output data is sent over the wide area network (WAN) to
the high density station core, through a unique bidirectional access point, which is indicated
with a black square in Figure 1.3. In the components, operations on signals are supported by
specialized modules that constitute the lower level of the hierarchy in the architecture.

The control and monitoring facility at the central core is a root for the hierarchical archi-
tecture. It governs the behavior of the stations, by sending control messages that transport
requests to reconfigure processing tasks that are executed locally in all stations (messages
may be different for different stations). In a station, control messages are received through
the single access point, processed in that single access point, and then sent down to the level
of components to re-configure the signal processing tasks. For example, different beamform-
ing weights may be sent to two stations and applied when processing data in components
separately in these two stations.

1.1 Large-scale and hierarchical signal processing systems 5

Figure 1.3: Each station processes high throughput data originating from HF and LF an-
tennas, and communicates with the central control and monitoring facility through a single
access point. Signals are processed in modules that are internal to components.

1.1.3 Hierarchical application

All stations operate in the same mode among a fixed and pre-defined number of modes, and
can swap between these modes together at run-time.

Figure 1.4: Example of levels of hierarchy for one mode of operation. High-level functions
at station level consist of intermediate-level functions that are themselves compositions of
low-level operations and program instructions.

6 Introduction

In each operation mode, signals are processed in a chain of high-level functions such as
filtering, time-frequency transformation and beamforming. See standard books for details
(e.g., [14] [15]).

Figure 1.4 gives an example of a visual representation of the behavior of a station as a chain
of high-level functions that operate on signals originating from all the antennas. High-level
functions consist of a network of intermediate-level functions such as decimation and filter-
ing functions, which operate on signals originating from a few antennas. Intermediate-level
functions are themselves decomposed down to the level of basic operations and program in-
structions that operate on one signal. Signal processing functions are parameterized, and
parameter values can be re-configured at run-time by sending messages in the control and
monitoring network. For example, a filter may be parameterized in terms of number and val-
ues of coefficients, such that different filter characteristics (low-pass, high-pass, etc) can be
applied by re-configuring parameter values.

1.2 Problem statement

In this section we first give a general problem context when aiming at structuring the design
process from system-level specification to implementation-level specification for large scale
and distributed digital signal processing systems. Then we focus on our specific problem
statement, and we give a visual representation of the general problem and specific problem.

1.2.1 General problem context

Our general problem context is to convert system-level specifications in a structured way to an
implementation-level specification, such that decisions taking is an unambiguous process 3.
This is a problem because 1) the systems we consider are large scale and distributed, and 2)
an application has to be portable across several architectures so as to benefit from advanced
technologies and improve the performance/cost of the system.

Scale is a problem since it is not clear a priori how to specify the application, the architecture
and the association between the two, and how to scale designs starting from system-level
specifications. In particular, the association between the application and the architecture can
be simulated very accurately on lower levels of the hierarchy for local (sub-)systems, there-
fore leading to actual performance and cost numbers. However, when scaling the number
of subsystems, simulating the complete system with the same accuracy as in lower hierar-
chical levels is not a realistic option anymore since it would be too demanding in terms of
processing power, and too time-consuming. Thus, we need methods to master the scale and
complexity of the systems we consider, and to take design decisions in a structured way on
all hierarchical levels.

Implementing an application in several architectures is a problem because these architectures
consist of heterogeneous components for processing, storage and communication on all levels

3We want to avoid taking decisions intuitively or based on experience of individuals.

1.2 Problem statement 7

of the hierarchy. Since we rely on commercially available compilation and synthesis tools
to implement different parts of the system, our problem is to know how to structure the
design process such that system-level specifications are converted to implementation-level
specifications that are compatible with these tools.

1.2.2 Specific problem statement

Our particular problem is to interface and synchronize the signal processing part and the
control and monitoring part when the two parts are first considered in isolation.

This is a problem because the two parts are differently structured and behave differently.
In the systems we consider, the signal processing and control and monitoring parts have to
be interfaced and synchronized such that 1) the functional behavior of the dominant signal
processing part is not obstructed by the interfacing with the control and monitoring part, and
2) the system can be scaled without altering the performance/cost of the two parts.

When it comes to real implementations, some completion logic (or glue logic 4) is necessary
to interface subsystems that were developed separately for the two parts early in the devel-
opment phase. Time-consuming and error-prone handcrafted ad-hoc glue logic development
must be avoided so as to facilitate implementations.

Visual representation of the problem

We give a visual representation of the general problem (structuring the design process from
system-level specifications to implementation-level specifications) and specific problem (sep-
arating the signal processing part and control and monitoring part before interfacing and syn-
chronizing the two) in Figure 1.5 for a simple system.

• In this example, the application (functional behavior) consists of three signal process-
ing nodes (P1, P2 and P3). These processing nodes can operate in two modes that are
specified in the control and monitoring nodes C1 and C2. The particular problem is
to specify the behavior of the signal processing part separately from the behavior of
the control and monitoring part, and to interface and synchronize the two parts without
obstructing the behavior of the dominant signal processing part.

• The architecture (non-functional behavior) is a composition of processing units (PU)
that communicate through communication, synchronization and storage infrastructures
(CSSI). The particular problem is to specify the most appropriate composition of
components separately for the signal processing part and for the control and moni-
toring part, and to interface the two compositions without significantly altering their
individual performance/cost when scaling the system.

• The mapping of the application on the architecture consists of associating nodes with
components. For example, P1 may have to be mapped onto PU3 (this is represented

4Glue logic deals with low-level communication protocols and signals between components.

8 Introduction

Figure 1.5: Problem context: how do we derive system-level specifications, and how do we
convert them in a structured way to implementation-level specifications given that our sys-
tems are large scale and distributed? Specific problem: can we separate the signal processing
and control/monitoring parts, which have different fundamental behaviors and structure, and
interface them such that their individual (model) semantics are preserved?

1.3 Solution approach 9

with P1→PU3 in Figure 1.5). The general problem is to map the application onto the
architecture on all levels of the hierarchy. The particular problem is to take decisions
in a consistent way at all levels of the hierarchy when mapping the interfacing between
the signal processing part and the control and monitoring part.

• The last general problem is to make sure that the initial system-level specification,
which is independent of any implementation tool, can be converted to an implementation-
level specification, which commercially available compilation and synthesis tools should
be able to convert automatically to a real implementation. In particular, these tools
should automatically generate glue logic and lead to the expected behavior and perfor-
mance.

1.3 Solution approach

In this section, we first give the approach to the general problem of structuring the design pro-
cess from system-level specification to implementation-level specification, which has been
successfully applied to the signal processing part of the system [16]. Then we give our ap-
proach to the specific problem of separating signal processing and control/monitoring parts,
and the property preserving interfacing and synchronization of the two parts.

1.3.1 Approach to the general problem

To master the complexity of the large scale and distributed systems we consider, we have
to raise the level of abstraction. This implies that we need unambiguous models, such that
we can take design decisions based on models rather than on intuition or ad-hoc details in
the actual systems. Because we have to derive specifications at system-level, we propose to
express our specifications based on models. We propose to do that in a particular way, by
adhering to the separation of concerns principle [17].

At system-level, we separate the model-based specification of the application from the model-
based specification of the architecture, and we provide means to associate these two specifica-
tions together. Although we separate the application model from the architecture model, they
roughly match in the sense that both are specific to our application domain: both rely on ”par-
allel” models. Nevertheless, we can take decisions about the application and the architecture
models separately.

The application is specified in terms of a so-called Model of Computation (MoC [18] 5)
whose semantics capture unambiguously the way data is processed in processing ”nodes”
and communicated between processing ”nodes”.

The architecture is specified in terms of interconnected components that are taken from a
unique library, and that support specialized services for processing, storage, communication,
etc. The library includes information on the performance (e.g., processing delays, power con-
sumption, etc) and cost of the components, and rules to obey when connecting components.

5There are many MoCs. For now, we leave the choice of a particular MoC open.

10 Introduction

Basic components that are used at lower levels of the hierarchy are modeled as white boxes,
whose internal modules are accessible for simulation so as to obtain actual performance and
cost numbers. At higher levels of the hierarchy, components are modeled as black boxes,
whose internal modules are hidden. Black boxes relate output quantities to input quantities
based on simple equations, where parameter values are calibrated using information obtained
from lower levels of the hierarchy.

The main difference between the two models is that the application model is transformative,
i.e., deals with functional behavior, whilst the architecture model is reactive, i.e., deals with
non-functional behavior (timing, resources).

The association of application and architecture models together - called mapping - is based
on iterative transformations that close the matching gap between the two separately defined
models. In this thesis we assume that mapping transformations are available in a library,
and that designers can select which transformation to apply during which iteration. Mapping
transformations improve the model matching in terms of resolution of detail (in the nodes
and communication between nodes on the one hand, and in the components for processing,
storage and communication on the other hand).

After each mapping transformation, functional and non-functional behaviors can be co-analyzed.
When transformations are applied at lower levels of the hierarchy, this analysis phase relies
on simulation of modules that are internal to white boxes, or on prototype implementations.
When transformations are applied at higher levels of the hierarchy, performance/cost infor-
mation is obtained based on simple equations that relate output quantities to input quantities
in black boxes. The result of the analysis phase is sent back to the application and architecture
specifications, which can be updated based on this feedback before possibly applying another
mapping transformation.

Once the matching between the application and the architecture specifications is satisfactory
and includes all the information that is necessary to go to an implementation, the corre-
sponding specifications, which are still abstract, are converted to an implementation-level
specification. During this translation, mapping transformations can still be applied interac-
tively and locally to optimize the performance/cost of parts of the system, without modifying
the input specification. The resulting implementation-level specification still includes rules to
obey when composing components. These rules drive the generation of glue logic that should
be automated by compilation and synthesis tools to integrate actual components, including
HW/SW IP-components that are designed and owned by third parties.

With this approach, we strive for implementations that are correct by construction. This
approach is neither purely top-down nor purely bottom-up. It is a meet in the middle design
approach in the sense that the association of the model-based application and architecture
specifications relies on information about the behavior, performance and cost that is obtained
by simulating or prototyping actual components at lower levels of the hierarchy, and by using
this information in formulae when moving up in the hierarchy.

1.3 Solution approach 11

Figure 1.6: Model-based approach to structure the design process from system-level speci-
fication to implementation-level specification. The application is captured based on models
of computation. The architecture is represented by composing hierarchical library compo-
nents. The application is mapped onto the architecture based on iterative transformations.
The analysis and back-annotation of the functional behavior and performance/cost of the sys-
tem relies on information that is obtained by simulation of real components at lower levels of
the hierarchy, after which analytical models are applied at higher levels of the hierarchy.

12 Introduction

1.3.2 Approach to the specific problem

As shown in Figure 1.6, we separate the modeling of the signal processing and control/monitoring
parts of the system, and we interface them in a way that the semantics of both models are pre-
served.

In the application (step 1 in Figure 1.6), the functional behavior of the signal processing part
is specified based on a stream-based model of computation that is well suited to represent
streaming applications that have a high degree of parallelism, and where tasks have a repet-
itive behavior. The functional behavior of the control and monitoring part is specified based
on a state-based model of computation that is well suited to represent the execution of tasks
in reaction to events. The synchronization problem is addressed by introducing a notion of
time that is known only to the control and monitoring part, and by relating this notion of time
to periodic intervals within which tasks are executed in the signal processing part.

In the architecture (step 2 in Figure 1.6), we compose library components separately in the
signal processing part and in the control and monitoring part. The composition in the signal
processing part sustains intensive computations on and transport of high throughput data with
a high degree of parallelism. The composition in the control and monitoring part permits
transferring sporadic messages and executing sequential tasks in reaction to these messages.
The control and monitoring model has a tree-like structure, whose leave nodes are interfaced
with the computational nodes in the signal processing model of computation.

In the mapping of the application onto the architecture (step 3 in Figure 1.6), mapping trans-
formations that can be chosen by designers at each iteration are restricted by the interfacing
between the signal processing part and the control and monitoring part. For example, a node
in the signal processing part may be split only if there exists a complementary operation in
the control and monitoring part, such that each node in the signal processing part is interfaced
with a complementary leaf-node in the control and monitoring part, and such that the perfor-
mance/cost prediction of the resulting system is satisfactory after the splitting transformation.

During the translation of the output of the analysis phase to an implementation-level specifi-
cation (step 4 in Figure 1.6), mapping transformations (high-level compilation steps) can be
applied locally and automatically to optimize the performance/cost of a part of the system,
without modifying the input specification. When the specification is refined down to the level
of (networks of) multiprocessor systems-on-chip, each part is implemented based on appro-
priate compilation and/or synthesis tools, which integrate (IP-)components and generate glue
logic according to rules that are defined in the library in order to connect (IP-)components
with each other.

1.4 Research contributions

Recall that we do not consider the specification and design of front-end and back-end of the
system. Our focus is on the intermediate digital data-reduction part, i.e., the system’s stations.
The path from requirements and constraints to specification has already been addressed for
the dominant signal processing part of such systems in [16]. However, the inherent con-

1.5 Related work 13

trol and monitoring part has been left out. In this thesis, we adopt the decision that has al-
ready been taken to specify application, architecture, and mapping separately at system level,
and we start from an abstract (model-based) system-level specification, which has somehow
been derived from requirements 6. We address the path from system-level specification to
implementation-level specification. We consider that commercially available compilation and
synthesis tools can convert implementation-level specifications to real implementations 7. We
focus on the issue of modeling the signal processing and control/monitoring parts separately,
and the interfacing of these models.

We bring together three parts of the design specification, namely the model-based application
specification, the model-based architecture specification, and the mapping of the former onto
the latter based on transformations. Our contribution is to relate these parts in the context of
large-scale and distributed digital signal processing systems, and to separate the modeling of
the signal processing part from the modeling of the control and monitoring part. In particular,
we give restrictions for the interfacing and synchronization of the signal processing part and
control and monitoring part.

• The synchronization problem is addressed in the modeling of the application by in-
troducing a time model that is known only to the control and monitoring part, and by
relating this time model to periodic intervals within which tasks are executed in the
signal processing part.

• The interfacing problem is addressed in the modeling of the architecture by using ded-
icated library components to link processing units at the lowest hierarchical levels of
the two parts based on a unique design pattern. With this domain-specific approach,
the interfacing remains uniform when scaling the system.

• On all levels of the hierarchy, the mapping of the application onto the architecture is
restricted by the interfacing between the signal processing part and the control and
monitoring part.

1.5 Related work

The problem of designing (robust) control for large-scale systems has received significant
attention over the past few decades [19]. For example, a mathematical approach has been
proposed in [20] to produce decentralized control structures that are suitable for a large scale
multiprocessor system. This approach is based on linear matrix inequalities (LMI) and allows
to minimize inter-processor communication for a moderate amount of computation. Although
such mathematical frameworks cover the control part of large-scale systems, they do not
address the specific problem of the interfacing with a dominant signal processing part that is
also a multiprocessor system as in the systems we consider.

6In this thesis, we do not deal with the path from user requirements and constraints to high-level system specifi-
cations.

7We evaluate the capacity to go from implementation-level specification to real multiprocessor system-on-chip
implementation (for which tools do exist) in chapter 5.

14 Introduction

The CoSMIC tool [21] supports the Model Driven Architecture [22] approach, which sep-
arates the application from the underlying technology before associating the two based on
mapping transformations. CoSMIC can be used to configure and assemble component mid-
dleware required to deploy distributed and real-time embedded applications, and focuses on
Quality of Service (QoS) issues. In our approach, we take the view that an implementation
can be obtained in a straightforward way based on commercially available tools starting from
an abstract implementation-level specification. Moreover, the systems we consider do not
rely only on instruction set architecture (ISA) components, but also involve more specialized
components that are customized to operate with a high degree of parallelism without any
potentially overwhelming operating system.

In neutrino telescopes such as the deep see Antares [23] or the Antarctic ice shield Ice-
Cube [24], detectors have to cover a volume on the order of 1 km3 or more to detect neutri-
nos with statistical significance. A methodology for designing and evaluating high-speed data
acquisition (sub)systems in such telescopes is presented in [25]. This methodology unifies
the specification of the data-driven application and the multi-processor architecture based on
models of computation in the Ptolemy II [26] framework. However, this methodology does
not study the control flow and the interfacing with the dataflow.

In the latest Large Hadron Collider in CERN, a network is required to transmit data from
the detector front ends to the 1800 computer farm where trigger algorithms run. This net-
work must be robust, have low latency, maximize data throughput, control data flow and
minimize errors. In [27], two complementary approaches are used to simulate networks that
are candidates and to evaluate their performance. The first approach consists of simulating
the hardware performance of a network component at a level of detail where switch fabric
and logic are complex or unavailable and where parametrization is impossible. The data ob-
tained may be input to the second approach, which relies on software simulation based on
parametrization of data queuing, packing and switching, and which allows to reason about
the performance at full scale. However, this approach assumes that the mapping of the appli-
cation that runs in the candidate networks is given.

In [16], an approach is presented to specify large scale array signal processing systems and
to explore the performance and cost of these systems. This approach, which is based on the
separate modeling of the application and architecture before mapping the application onto
the architecture, has been applied to the specific case of large scale radio telescopes, and in
particular during the preliminary design phase of the LOFAR radio telescope. However, the
control and monitoring part has not been considered separately from the signal processing
part. This separate modeling and interfacing of these two parts is one of our contributions.

The Berkeley Emulation Engine (BEE2 [28]) is a scalable FPGA-based computing platform
with a software design methodology. This platform targets a wide range of high-performance
applications, including real-time radio telescope signal processing [29] [30]. The architec-
ture consists of four FPGAs that are connected in a ring topology and that are all interfaced
with another FPGA that is dedicated to control. This regular architecture can be duplicated
and interfaced based on standard protocols so as to rapidly scale systems to thousands of
FPGAs. Customized hardware and software library components are available to implement
control functionalities, signal processing functionalities, and their interfacing starting from
specifications in the Matlab/simulink environment. However, these specifications are limited

1.6 Thesis outline 15

to the SDF model, and the mapping is limited to a manual assignment of library (functional)
components to FPGAs.

In Thales [31], radar and sonar applications are specified using nested loop algorithms and
are mapped onto large scale array signal processing systems. The architecture model may
have different levels of hierarchy. Loops are transformed so as to extract their cores, which
are supposed available from libraries of functions, with each function having possibly several
optimized implementations for different target processors. On the lowest level of abstrac-
tion, mapping is expected to define the role of each actor of the architecture so that appro-
priate compilers can produce executable code and glue components together automatically.
Higher levels represent virtual components which are composite blocks including a local
multi-components architecture. Mapping is human-driven. Commands are proposed to the
user for application partitioning and allocation, insertion of communications, fusion of tasks
and scheduling.

The Metropolis framework [32] offers syntactic and semantic mechanisms to store and com-
municate all the relevant design information, and it can be used to plug in the required al-
gorithms for a given application domain or design flow. Its semantics can be shared across
different models of computation and different layers of abstraction. Architectures are rep-
resented as computation and communication services to the functionality. Metropolis can
analyze statically and dynamically functional designs with models that have no notion of
physical quantities, and mapped designs where the association of functionality to architec-
tural services allows to evaluate the characteristics (such as latency, throughput, power etc)
of an implementation of a particular functionality with a particular platform instance. During
the mapping, synchronization constraints are added to force the functional model to inherit
the concurrency and latency defined by the architecture while forcing the architectural model
to inherit the sequence of calls specified for each functional process [33]. In this manner,
mapping eliminates some of the nondeterminism present in the functional and architectural
models by intersecting their possible behaviors. After mapping, a mapped implementation is
created. The Metropolis framework makes it possible to incorporate external tools that can
take a mapped implementation as an input, and thus addresses the problem of design chain
integration by providing a common semantic infrastructure. The next generation Metro-II
framework will enhance three key features, namely heterogeneous IP import, orthogonaliza-
tion of performance from behavior, and design space exploration [34]. These issues are also
addressed in this thesis for the particular case of large scale and distributed signal processing
systems.

1.6 Thesis outline

In Chapter 2, we present the approach to model the functional behavior of the systems we con-
sider. We select two models of computation, namely communicating Kahn process networks
(KPN [35]) and communicating finite state machines, to specify separately the functional be-
havior of the signal processing part and the functional behavior of the control and monitoring
part, respectively. We give the approach to synchronize these two models based on relations
between a notion of time that is known to the control and monitoring network only, and peri-

16 Introduction

odic intervals within which signal processing tasks are executed. We illustrate the functional
behavior of the interfacing with examples of synchronization and re-configuration.

In Chapter 3, we present the approach to specify the non-functional behavior and related per-
formance and cost of the systems. We specify the signal processing architecture, the control
and monitoring architecture, and the interfacing between the two, in terms of interconnected
components from a unique library. At lower levels of the hierarchy, components have a white
box appearance, and their performance/cost is obtained by simulating the dynamic behav-
ior of their internal modules. At higher levels of the hierarchy, components have a black
box appearance, and their performance/cost is obtained based on simple equations that relate
output quantities to input quantities, and whose parameter values are calibrated with num-
bers obtained at lower levels. The signal processing architecture model supports intensive
computations and transport of high throughput data. The control and monitoring architecture
model supports the transport of control messages that trigger the execution of sequences of
operations in reaction to sporadic events. At the lowest hierarchical levels of the two parts,
processing units are interfaced based on a unique design pattern that uses dedicated library
components.

In Chapter 4, we present the approach to associate the application and architecture specifi-
cations together. We present the mapping transformations we need to improve the matching
between the application and the architecture both in terms of performance and cost, and in
terms of granularity of items. We assume these transformations are available in a library, such
that they can be called iteratively. After each mapping transformation, the functional behavior
and performance/cost of the system are analyzed, and decisions can be taken based on the re-
sult of the analysis. Mapping transformations are constrained by the interfacing between the
signal processing part and the control and monitoring part. From an implementation point of
view, mapping transformations are compilation steps above implementation-level specifica-
tions, which is considered to be the level of abstraction from where implementation becomes
well established based on standard compilation and synthesis tools.

When mapping large and high-throughput signal processing applications onto multi-processor
architectures, parts of these applications are assigned to re-configurable components. Au-
tomating such mappings without delving deep into details implies the (re-)use of IP compo-
nents both in the signal processing part and in the control and monitoring part. In Chapter 5
we present case studies around the integration and porting of IP-components starting from
high-level specifications, and around the interfacing between components in the signal pro-
cessing part and components in the control and monitoring part based on glue logic. These
case studies reveal the weakness of otherwise highly desirable system-level design methods
when evaluated with respect to fast, accurate, and systematic IP integration.

Chapter 2
Application specification

2.1 Summary

In this chapter, we specify the functional behavior of applications that run in large-scale and
distributed digital signal processing systems that maintain a permanent interaction with their
environment, such as stations in phased array radio telescopes. These applications include a
signal processing part, and a control and monitoring part. We specify the functional behav-
ior of these two parts separately, based on models of computation, before we interface the
two models. Model-based specifications are unambiguous and permit structuring the design
process from system-level specifications 1 to implementation-level specifications 2. We use
the operational semantics of Kahn Process Networks (KPN) and communicating Finite State
Machines to specify the way data is simultaneously computed and communicated in the sig-
nal processing part and in the control and monitoring part, respectively. The synchronization
between the two parts is based on relations between a time model that is known only to the
control and monitoring part, and periodic intervals within which tasks are executed in the
signal processing part, such that the interfacing does not alter the behavior of the dominant
signal processing part. We give examples of synchronization, (re)configuration and monitor-
ing, and discuss limitations that result from the synchronization method.

1Remember that a system-level specification consists of an application specification (the scope of this chapter),
an architecture specification, and the mapping of the former onto the latter.

2Remember that we consider implementation-level specifications as the level of abstraction from where commer-
cially available compilation and synthesis tools should take over to obtain a real implementation.

18 Application specification

2.2 Introduction

The functional behavior of an application is typically captured using specification-level mod-
els of computation [36], which represent computation in nodes that communicate in a well-
defined way through channels in a network. The way data is simultaneously processed in
nodes and communicated over channels in the network is specified using the formal semantics
of a model. Modeling of applications is an appealing way to get unambiguous specifications
to structure the design process from specification to implementation. Model-based specifi-
cations hide overwhelming details of the actual system and allow to predict the functional
behavior of the system by reasoning about the models. Semantics can be denotational, op-
erational or axiomatic, depending on the desired level of formalism. Denotational semantics
is an approach to formalizing the semantics of a (computer) system by constructing mathe-
matical objects (called denotations or meanings) which express the semantics of the system.
Operational semantics is a way to give a meaning to computer programs in a mathematically
rigorous way. It describes unambiguously how a valid program is interpreted as a sequence of
computational steps. These sequences then become the meaning of the program. Axiomatic
semantics is an approach based on mathematical logic to prove the correctness of computer
programs.

Applications that will run in future large-scale and distributed embedded signal processing
systems such as the SKA radio telescope [2] will include both a signal processing part, and a
control and monitoring part. These digital systems are reactive in the sense that the two parts
maintain a permanent interaction with their environment [37]: the control and monitoring
part reacts to sporadic events, while the signal processing part reacts to input data streams
by transforming them to output data streams. The behavior of the interfacing between the
two parts must be judiciously and unambiguously specified so as to avoid obstructing the
behavior of the dominant signal processing part. In theory this can be done based on the
formal semantics of models of computation. From a separation of concerns viewpoint we are
interested in specifying the functional behavior of the two parts using the most convenient
models of computation.

In this chapter we use the operational semantics of two models of computation to specify the
way data is simultaneously processed and communicated in both parts. A state-based model
is used to specify the behavior of the control and monitoring part. A stream-based model
is used to specify the behavior of the signal processing part. We reconcile the two parts by
relating the notion of periodic execution cycles in the signal processing part to a notion of
time that is superimposed to the control and monitoring part. This chapter is organized as
follows. We first introduce some terminology to analyze operational semantics in section 2.3.
Then we select a stream-based model to specify the behavior of the signal processing part
in section 2.4, and a state-based model to specify the behavior of the control and monitoring
part in section 2.5. We superimpose a notion of time to the control and monitoring part in sec-
tion 2.6. Then, we give our contribution concerning the interfacing between the stream-based
model and the state-based model in section 2.7 and we discuss limitations that result from the
superimposed synchronization method. Finally we give our related work in section 2.8 and
conclusions in section 2.9.

2.3 Terminology 19

2.3 Terminology

In this section we introduce the terminology that is used in the remainder of the chapter to
discuss the operational semantics of a few stream-based and state-based models of computa-
tion in terms of computation, communication, (a)synchrony, determinism, composition, etc.
An overview of models of computation can be found in Appendix A.

Token, signal, clock

A token is an abstract aggregation of a value-tag pair [18]. The role of tags is to order tokens
in a sequence of tokens called a signal (see Figure 2.1). This ordering relation may be total
or partial. When the order of tokens is total, tags are also called timestamps.

Figure 2.1: A signal is a set of tokens that are value-tag pairs. Tags order tokens.

Process

A process executes a sequential program, i.e., a sequence of reading actions, execution ac-
tions and writing actions. A process has at least one input port or one output port through
which it exchanges tokens with other processes in a network. We say that a process reads (or
consumes) tokens on input ports and writes (or produces) tokens on output ports. As shown
in Figure 2.2, a process has a functional behavior and a token ordering behavior.

Figure 2.2: A process has input and output ports, a functional behavior and a token ordering
behavior.

The functional behavior includes reading of tokens from input ports, executing one or more
tokens mappings in a sequential order, and writing of tokens to output ports. The ordering
behavior specifies the order in which input and output tokens are consumed and produced
from and to input and output ports during the reading and writing phases, respectively, and
assigns a tag to each token that is produced by the process.

20 Application specification

The execution of a program in a process is synchronous when the sequential program waits for
the actions to signal back end of execution. It is asynchronous when the sequential program
continues its execution without waiting for the end-of-execution of the actions.

Communication

Processes communicate in a network by transferring tokens through communication chan-
nels. This communication can be modeled as unicast, broadcast or multicast. A unicast
(point-to-point) transfer involves a single producer and a single consumer. Broadcast and
multicast transfers link a single producer to many receivers. A broadcast transfer sends a
token to all processes in the network, whereas a multicast transfer delivers a token to a group
of processes in a network as depicted in Figure 2.3.

Figure 2.3: Communication between processes in a network. a: unicast, b: broadcast, c:
multicast.

Processes may exchange tokens over channels in a network in a synchronous or asynchronous
way. Synchronous communication occurs when all processes involved in a communication
are present at the same time. There is no intermediate storage between the communicating
processes.

The communication is asynchronous when at least one of the processes involved in a commu-
nication is not available for the communication, or when an arbitrary amount of time elapses
between the desire of communication and the actual communication. There is an intermedi-
ate buffer such as a single-place buffer or an (un-)bounded FIFO, etc (see Appendix A). A
producer process sends a message to a buffer, and the consumer process can take the mes-
sage from there - now or later. This communication can be lossless or lossy. To guarantee
a lossless communication, a form of ’synchronization’ is needed, for example by means of
blocking writes and reads. This additional synchronization does not mean that the model has
become synchronous. It can become synchronous when it is guaranteed that the producer can
send to the intermediate buffer without check, and that the consumer can receive from the
buffer without check as in clocked synchronous circuits.

Concurrency

Communication and concurrency are complementary notions: a process is either interacting
with other processes by communicating with them, or it is processing independently of them.

2.4 Selection of a model to specify the behavior of the signal processing network 21

Processing in a process may occur concurrently, simultaneously with the processing and com-
munication in other processes [38]. Parallel and distributed are two examples of concurrent
execution [36].

Determinism, causality

The behavior of a composition of communicating processes is deterministic if for a given
input signal, the composition has exactly one behavior, independent of the chosen schedule.
Causality relates input tokens (causes) chronologically to output tokens (effects). The tag in
an input token can not be higher than the tag in the resulting output token.

Composition, abstraction, hierarchy

Compositionality is a desired property of any model of computation: it preserves the se-
mantics when combining processes. However, not all models respect this property (see Ap-
pendix A).

Abstraction is inversely related to the resolution of detail. If there is much detail, or high
resolution, the abstraction is said to be low. Levels of abstraction are hierarchically ordered.
A specification at a given abstraction level is described in terms of a set of constituent items
and their inter-relationships, which in turn can be de-composed into their constituent parts at
lower levels of abstraction [39].

Network consistency

Consider a network that consists of a producer process P and a consumer process C. P
sends tokens to C through a communication channel A. Consistency means that the number
of tokens written by P in A is equal to the number of tokens read by C from A. Consistency
may be violated when switching from one set of (valid) parameter values in the functional
behavior (sequential program) of a process to another (valid) set at an arbitrary point in time.
A pair of parameter N and M is a valid pair if 1) the values are within a predefined range
of values [Nmin, Nmax], [Mmin, Mmax], and 2) they satisfy possible relation constraints
(e.g., M ≥ N). More information about parameters validity and network consistency issues
can be found in [40].

2.4 Selection of a model to specify the behavior of the signal
processing network

In this section we first give the main functional requirements and constraints in the signal
processing part in the digital systems we consider. Then we select a stream-based model of
computation that will be used to specify the behavior of this part of the system.

22 Application specification

2.4.1 General requirements and constraints

The elementary function of a radio telescope is to collect signals of celestial sources and
to transform these signals into images and spectra. The application is large, and consists
of large pieces that have to be distributed, and that have to support a few main modes of
operation ranging from all sky monitoring, to pulsar observation, to searches for transients.
These large pieces have to communicate data streams, and they have to be so specified as to
transform input data streams to output data streams [41]. Data streams must not transport
control-related information. Instead, control information must come from the control and
monitoring network, which imposes the mode of operation to the signal processing network.

Moreover, the applications we consider have to be deterministic, and the loss of data is not ac-
ceptable in any mode of operation. Also, it must be possible to refine the abstract large-scale
application specification by decomposing it into smaller pieces at a lower level of abstraction
(recall that levels of abstraction are hierarchically ordered).

The model used to specify the behavior of the signal processing part must be compositional,
such that the properties of sub-systems are preserved when composing a large system. Due
to the complexity of the systems we consider, processes have to run autonomously. Since the
application has to operate on a continuous flow of data, each process must execute and repeat
its main sequential program over and over again (non terminating process) on new input
data. Moreover, it must be possible to refine the main sequential program that is executed
in a process. Also, to preserve the deterministic behavior of the model, we do not allow
interrupts. Communication channels have to be able to support the transferring of streaming
data in a smooth way. Moreover, tokens must not be lost in the signal processing part.

2.4.2 Selection of the KPN model

Given our requirements, it seems natural that the KPN model should be chosen to specify
the functional behavior of the signal processing part. Indeed, the Kahn Process Network
(KPN [35]) model of computation specifies an application as a network of autonomous pro-
cesses that run concurrently and execute sequentially. Kahn processes communicate through
unbounded point-to-point FIFO channels. Kahn processes synchronize locally through a
blocking and destructive read mechanism: a process that tries to read from a FIFO waits
until a token is available on that FIFO. Since each FIFO is read and written by exactly two
processes, the speed of the processes does not affect the sequence of tokens sent through the
FIFOs. This property and the fact that each process is only affected by the input sequences
show that Kahn Process Networks are deterministic [42]. The deterministic property of the
KPN model is appealing to specify the signal processing part of our systems where each
process in a KPN can be viewed as a composition of hierarchically lower processes that are
governed by the same semantics.

The KPN model may be a bit too general to specify the behavior of our application. The
model we use is closer to the Dataflow Process Networks model [43], which is a particu-
lar case of KPN. In Dataflow Process Networks, each process consists of repeated firings of
a dataflow actor. By dividing processes into actor firings, which define how many tokens

2.5 Selection of a model to specify the behavior of the control/monitoring network 23

Figure 2.4: Example of a KPN with two processes, and corresponding sequential pseudo
code using abstract instructions. Processes P1 and P2 execute the functions F1 and F2,
respectively, repetitively. Communication channels are unbounded unidirectional FIFOs.

must be consumed and produced on their input and output ports, respectively, the poten-
tial overhead of context switching incurred in implementations of Kahn process networks is
avoided. Smaller Dataflow Process Networks can be refined to the level of dataflow graphs
that are even more specialized, where operations that are executed in actors are (mathemati-
cal) functions, and where actors are globally scheduled [43]. In particular, Dataflow Process
Networks can be refined down to the level of the Synchronous Dataflow model (SDF [44], see
Appendix A). The SDF model allows taking scheduling and buffer size decisions at compile-
time that can generally not be taken when using the general KPN model.

Figure 2.4 shows a simple example of a KPN and the corresponding pseudo code for two
processes that communicate through two channels. The bodies of the two processes consist
of sequential abstract instructions. Communication is achieved with the Read and Write
abstract instructions. The functions F1 and F2 are called after the Read instruction and
before the Write instruction in the processes P1 and P2, respectively.

2.5 Selection of a model to specify the behavior of the con-
trol/monitoring network

The functional behavior of the control and monitoring network is fundamentally different
from the functional behavior of the signal processing network. In this section we first give
the main functional requirements and constraints in the control and monitoring network. Then
we select a state-based model of computation to specify the behavior of this network.

24 Application specification

2.5.1 General requirements and constraints

The control and monitoring application is also large and distributed. It must be possible to
send events to any station from the central control/monitoring facility. This naturally sug-
gests a tree-like structure in the control and monitoring network. Events have to be executed
with strict timing constraints, in a deterministic way, and must not be lost in the control
and monitoring network. In reaction to these events, parameter values have to be updated
in nodes/actors in the signal processing network, without explicitly interrogating signals in
the signal processing network. When interrogating signals, the control and monitoring part
must do so independently on information contained in the signals themselves (the central
control/monitoring facility is aware of signal characteristics in the signal processing part that
operates in pre-defined modes).

Moreover, compositionality is required in the control and monitoring network. For example,
the root node of the tree may be viewed as a leaf node that executes a single main sequential
program to control and monitor the behavior of the complete signal processing network.

Procedures that are executed in control/monitoring nodes are not repetitive. Instead, the
processing of events is time-triggered. Procedures have to terminate in a time period, and can
start again on the occurrence of another event. Thus, interruptions are not required. Moreover,
all nodes have to be synchronized at regular time intervals such that they can start operating
in the same mode simultaneously.

When nodes communicate, events have to be transferred without postponing the transfer
because the processing of events is time-triggered. Single-place buffers are required to avoid
queuing events in communication channels. Also, protocols such as a handshake protocol
must be available to avoid the loss of events. Events must be read in a destructive way since
they have to be processed only once. Also, since the processing of events is terminating
with strict timing constraints, the number of (sporadic) events that are communicated must
be limited.

2.5.2 Selection of communicating state machines

The functional behavior of the control and monitoring network may be specified with a state-
based event-triggered model. A detailed analysis of these models is given in Appendix A.
Statecharts [45] reduce the visual complexity of traditional Finite State Machines (FSM)
and support hierarchy, concurrency and abstraction. However, by allowing executing actions
in both states and transitions, the effect of a transition may be contradictory to its cause.
Moreover, this formalism is synchronous.

Process algebras (or process calculi) include Calculus of Communicating Systems (CCS [46]),
Communicating Sequential Processes (CSP [47]) and Algebra of Communicating Processes
(ACP [48]). CSP specifies applications as networks of sequential processes. In a communica-
tion, both a producer and a receiver are blocked until a token is transferred. A transfer takes
place when the producer and the receiver are in the same state. This simple communication
mechanism is also known as a rendezvous. In our case, neither the producer nor the consumer
should be blocked during a transfer. Moreover, CSP has a non-deterministic behavior.

2.6 Superimposing a timing network for the synchronization 25

Co-design Finite State Machines (CFSMs [49]) are reactive finite state machines with data-
paths communicating through single-place buffers. Communication in a CFSM network is
asynchronous. A transmitter sends data without waiting for the receiver to be ready [42]
and may overwrite a token in a single-place buffer. Moreover, the CFSM model supports
interrupts, and is non-deterministic.

To specify the behavior of the control and monitoring network, we introduce timed-Communicating
State Machines that communicate through single-place buffers, with a handshake mechanism
to avoid loss of events. We use a a clock network 3 (called timing network) because the ulti-
mate task is to make sure that processes in the signal processing network behave not only in
the way that is required, but also at time that is required.

2.6 Superimposing a timing network for the synchroniza-
tion

In this section we first specify the behavior of the timing network that is superimposed to
the control and monitoring network. Then we give a representation of the processes in the
control and monitoring network, and we specify the timed behavior of this network. We
illustrate this behavior with a simple example and we discuss the limitations resulting from
the superimposing of the timing network.

2.6.1 Superimposing pulse trains

We assume that the high-speed clock that synchronizes the data acquisition from the antennas
in the stations has a period TS , which we will call time unit in the remainder of the chapter.
The timing network sends the time unit TS to modulo counters in the nodes of the control and
monitoring network as depicted in Figure 2.5. Modulo counters generate equidistant pulses.
Every node in the control and monitoring network thus encompasses a dedicated pulse train.
Each pulse increments the node’s clock.

Recall that the control and monitoring network has a tree structure. The node that is the root
for the tree is called Root-Node. Nodes in the lowest level are called Leaf - Node, and are
the only nodes that are interfaced with the processes in the signal processing network. Nodes
that are intermediate to the root node and the leave nodes are called Intermediate-Node.

Thus a leaf node LN is interfaced with a process P in the signal processing network. Pulses
in a leaf node pulse train are TLN time units (TS) apart, where TLN is an integer. We require
that the processing of the while(1) body in a process P in the signal processing network falls
well within the period TLN . The start of each interval TLN coincides with the occurrence of
a pulse that is generated by the modulo counter in the leaf node.

After a synchronization procedure (which is detailed later on), all leave node clocks have a
common starting point, t=0, which is a global synchronization point. Global synchronization

3A clock distribution is practically feasible.

26 Application specification

points occur periodically with period TG. An example is shown in Figure 2.6 for the system
modeled in Figure 2.5.

Figure 2.5: Superimposing of a timing network on top of a tree-like control and monitoring
network. A high-speed clock TS (time unit) is distributed to modulo counters in the network
nodes that increment their internal clock.

The multiplicity M of a leaf node is the number of periods TLN that fall in between two
adjacent global synchronization points. This interval between two global synchronization
points is assigned a value TG that is the least common multiple (lcm) of all multiplicities Mi

of all leave nodes as given in Equation 2.1:

TG = lcm(M1,M2, ..., Mn).TS (2.1)

The period TN of a pulse train that goes with an intermediate node or root node that is
hierarchically higher than the leave nodes or intermediate nodes j to k, respectively, can be
computed with the greatest common divider function (gcd) as given in Equation 2.2:

2.6 Superimposing a timing network for the synchronization 27

TN =
TG

gcd(TNj , ..., TNk
)

(2.2)

When a leaf node, intermediate node or root node receives a pulse, it increments a local
notion of time with an increment corresponding to its own period. With this approach, all
nodes have a local notion of time between global synchronization points, and all nodes are
synchronized at global synchronization points. The notion of time is used to timestamp the
execution of procedures in nodes in the control and monitoring network.

Figure 2.6: Relation between periodic pulse trains in leave nodes in the control and moni-
toring network shown in Figure 2.5. We assume that the execution cycle of a process P in
the signal processing network falls well within the pulse period TLN of the leaf node that is
interfaced to P .

Example 1

Suppose that the system shown in Figure 2.5 has already been synchronized and that each
leaf node is attached to a process such that M1=4, M2=3, M3=2, and M4=5 as depicted in
Figure 2.6. This leads to:

TG = lcm(M1,M2,M3,M4).TS = lcm(4, 3, 2, 5).TS = 60.TS .

Thus, by dividing the time interval that separates two global synchronization points into 60
segments, it is possible to access the beginning of any cycle in any control node. The periods
of the leave nodes may be expressed in function of the time unit TS as follows:

TLN1 = TG
M1

= 60.TS

4 = 15.TS , TLN2 = 20.TS , TLN3 = 30.TS and TLN4 = 12.TS

28 Application specification

A pulse is produced in leaf node LN1 every 15 time units (TS). On the occurrence of such a
pulse, LN1 adds 15 to its local notion of time. Concurrently, all nodes in the control network
increment their own counter with an offset that corresponds to their own period. The periods
of the pulses that go with the two intermediate nodes N1 and N2 can be computed based on
these numbers (N1 is connected with LN1 and LN2, whereas N2 is connected with LN3 and
LN4):

TN1 = TG
gcd(TLN1 ,TLN2) = 60.TS

gcd(15,20) = 60.TS

5 = 12.TS and TN2 = 10.TS

Finally, since the root node is connected with the two intermediate nodes N1 and N1, the
period of the pulses that go with the root node is obtained as follows:

TRN = TG
gcd(TN1 ,TN2) = 60.TS

gcd(12,10) = 60.TS

2 = 30.TS

2.6.2 Utilization of the notion of time

In this subsection we specify the behavior of the timed control and monitoring network. We
first give the structure of the packets (tokens) that are exchanged between nodes. Then we
specify the functional behavior of the nodes. We detail the communication among nodes
using timestamps, and we discuss the limitations that result from the superimposing of the
timing network.

Control packets

In the control and monitoring network, all nodes have a unique identifier such that they can
be addressed individually. The root node governs the execution of procedures in intermediate
nodes and leave nodes. Procedures specify the behavior of the system in all possible operation
modes. The root node may start the procedures by itself or upon request from users [50].
Intermediate nodes and leave nodes also send information back to nodes above in the control
and monitoring network. The exchange of information between nodes is based on tokens that
are called control packets. As shown in Figure 2.7, control packets consist of two parts: 1) a
header, and 2) control data information.

The header contains four elements:

• A destination (ID), which identifies the destination node(s).

• A command (CO), which requests executing a control procedure.

• A timestamp (TM), which indicates the time at which the procedure needs to be exe-
cuted with respect to the time unit TS .

• A priority (PR), which indicates an execution priority order given a timestamp.

Control data information (D1, ..., DN) contains either parameters that come together with the
command that is in the header of the same packet, or monitored data.

2.6 Superimposing a timing network for the synchronization 29

Figure 2.7: Visual representation of a control packet

Intermediate nodes

To enforce the tree structure in the control and monitoring network, each intermediate node
has a single port to its parent node. It is also interfaced with one or more child nodes. It
reads and writes control packets from and to single-place buffers. Moreover, each intermedi-
ate node receives pulses from the timing network through a dedicated port. The pseudo-code
corresponding to the execution of an intermediate node is given on the right-hand side in
Figure 2.8. An intermediate node executes high-level abstract Read, Execute and Write
instructions. The Execute instruction is supported by three lower-level instructions: Switch,
Queue-and-Order and Procedure-Repertoire. We give a visual representation of an in-
termediate node and the corresponding pseudo code in Figure 2.8.

Figure 2.8: Visual representation and pseudo code of an intermediate node.

The abstract Read instruction reads a single-place buffer in a destructive way, with a hand-
shake protocol: when a packet is read from a single-place buffer, the node sends an acknowl-
edge signal back to the node (parent or child) that wrote the control packet in that buffer.

When a control packet is received in an intermediate node, it is first processed by the Switch
instruction. If the ID in the packet does not match the identifier of the node, then the packet
is forwarded to its destination, else it is processed as follows. On the occurrence of the next
pulse, the node increments its local notion of time. Then the Queue-and-Order instruction
orders packets with respect to the timestamps and priorities, and converts the commands
obtained from all packets with identical timestamp into a single macro-command. Thus, a
macro-command corresponds to a sequence of commands that have to be executed in the
same period.

30 Application specification

Before writing a token in a single-place buffer, the abstract Write instruction checks if that
buffer is empty (i.e., it checks if it received an acknowledge signal from the node it commu-
nicates with through that buffer). With this simple handshake mechanism, packets can not be
lost in the control and monitoring network since they can not be overwritten in single-place
buffers.

Figure 2.9: Example of FSM in a Procedure Repertoire. Each state corresponds to the execu-
tion of a macro-command (a sequence of commands).

The macro-command whose timestamp matches the local notion of time is processed by the
Procedure-Repertoire instruction, which executes an FSM. Each state in the FSM corresponds
to the execution of a particular macro-command. Procedures use parameters provided in the
control data information, and generate packets that are sent to child or parent nodes in the
control and monitoring network. Figure 2.9 shows an example of a FSM that consists of two
states (MacroA and MacroB) and the corresponding sequential pseudo-code. Transitions
from one state to the other are triggered by the pulse and by the presence of a macro-command
to be executed during the next period.

Leave nodes

In contrast with an intermediate node, a leaf node has only two ports to below: a com-
mand/parameters output port and a monitoring-data input port. A leaf node is interfaced
with a process in the signal processing network through two single-place buffers: a com-
mand/parameters buffer, and a monitoring-data buffer.

A leaf node executes abstract Read, Execute and Write instructions, which are supported
by three lower-level Switch, Queue-and-Order and Procedure-Repertoire instructions.
A visual representation of a leaf node is shown in Figure 2.10.

The processing of control packets is done as in an intermediate node. A procedure that is
executed in the Procedure-Repertoire (FSM) sends a command/parameters token per period,
possibly empty. On the occurrence of the next pulse, the leaf node writes this token to the
command/parameters single-place buffer. This token does not include a header since it will
be read and processed during the next cycle in the process that is attached to the leaf node.

A leaf node also reads a monitoring-data token per period, from the monitoring-data single-
place buffer. This token is first assigned a header by the Switch instruction. This header
includes the leaf node identifier, the local notion of time, and a monitoring command. Then,
this packet is processed as any other packet. Monitoring procedures are specified in the

2.6 Superimposing a timing network for the synchronization 31

Procedure-Repertoire (FSM) and typically check the state of a process in the signal process-
ing network. Depending on the outcome of this verification, a leaf node may send control
packets to intermediate nodes above in the control and monitoring network. Such packets
will request executing higher-level control procedures.

Figure 2.10: Visual representation and pseudo code of a leaf node.

Communication in the control and monitoring network

Nodes in the control and monitoring network communicate among themselves by exchanging
control packets. Each packet carries a command that is to be processed in a FSM in a node at
a particular time.

When generating packets, nodes have to associate an ID and a timestamp together with a
command in a header. As a consequence, all nodes have to be aware of the identifiers and
local time increments of all nodes they may interact with, in all possible operation modes.
Indeed, timestamps have to be integer multiple of the local time increment of the destination
node, as shown in Figure 2.11 where nodes generate control packets concurrently. Since all
nodes restart counting from t = 0.TS at each global synchronization point, all timestamps
are bounded.

Example 2

Consider the system given in Figure 2.5 and suppose that the current global notion of time
is t = 17.TS during the first global period depicted in Figure 2.6. Suppose that a user sends
parameters u1 and u2 to update a parameter d1 in leaf node LN1 and a parameter d2 in leaf
node LN2. Also, suppose that the functions f and g such that d1 = f(u1) and d2 = g(u2)
are defined locally in the Procedure-Repertoire instruction in intermediate node N1.

32 Application specification

Figure 2.11: Concurrent execution of control packets in nodes of the hierarchical control
network. All k are integers. TM stands for timestamp in a header in a control packet.

Root node is aware of its synchronization with N1 (TN1 = 12.TS , see example 1), and will
convert the request to a control packet at time t = 17.TS . Therefore, the timestamp must be
greater than 17 and a multiple of 12, which is 24. To execute the pre-defined procedure that
will process the functions f and g in N1, the command convert is expected. Thus, root node
will generate the following packet ([header][control data information]):

[ID = N1; CO = convert, TM = 24;PR = 0;][D1 = u1; D2 = u2;]

This packet will be received and queued in N1 between time t = 17.TS and time t = 24.TS .
N1 is aware of its synchronization with LN1 and LN2 (TLN1 = 15.TS and TLN2 = 20.TS).
At time t = 24.TS , N1 will receive a pulse from the timing network and update its local
notion of time before executing the update command. This execution will process functions
f and g sequentially to produce d1 and d2. The timestamps that are required to reach the
beginning of the next periods in LN1 and LN2 are 30 and 40, respectively. If the command
to update a parameter is update, then N1 will generate the two following control packets:

[ID=LN1; CO=update, TM=30; PR=0;][D1=d1]

[ID=LN2; CO=update, TM=40; PR=0;][D1=d2]

Finally, LN1 will update d1 at time t = 30.TS and LN2 will update d2 at time t = 40.TS , on
the occurrence of their dedicated pulse.

2.7 Modeling of the interfacing between the two networks 33

Implied restrictions

Since the number of procedures that can be processed sequentially in a node during a period
is limited, the number of packets that are sent to a node must also be limited. This is the case
in our systems where events are sporadic.

Figure 2.12: Periods may be changed only at global synchronization points in the control
and monitoring network. Nodes may have different local time increments for each mode of
operation.

Moreover, when swapping operation mode, periods and multiplicities may have to be modi-
fied to support different functions in the signal processing network. Such changes can only
occur at global synchronization points, when all nodes are synchronized and restart counting
from t = 0.TS . Indeed, it is then possible to update the local time increments of all nodes
and still re-synchronize all nodes after a fixed number of periods. An example is given in
Figure 2.12 for the network that is shown in Figure 2.5. The multiplicity of the leave nodes
{LN1, LN2, LN3, LN4} changes from {M1,M2,M3,M4} = {4, 3, 2, 5} in the first oper-
ational mode to {M1,M2,M3, M4} = {5, 3, 3, 7} in the second operational mode. Equa-
tion 2.1 leads to TG = 60.TS for the first operational mode and to TG = 105.TS for the
second operational mode. Equation 2.2 leads to different local time increments in the leave
nodes for the two modes of operation. This means that all nodes must be aware of the local
increments for each mode of operation, and for all nodes they interact with.

2.7 Modeling of the interfacing between the two networks

In this section we give our contribution concerning the modeling of the functional behavior
of the interfacing between the control and monitoring network and the signal processing net-

34 Application specification

work. As already shown in Figure 2.5 in the previous section, each process 4 P in the signal
processing network is interfaced with a leaf node LN in the control and monitoring network.
This interfacing relies on the fact that repetitive execution cycles of signal processing tasks
fall well within periodic time intervals TLN in the control and monitoring network.

We first give a visual representation of a process in the signal processing network. Then we
detail procedure that permits synchronizing the start of all execution cycles of all processes
in the signal processing network. Then we detail the functional behavior of the interfacing
between a leaf node and a process that executes cyclically.

2.7.1 Representation of a process in the signal processing network

A process has input ports and output ports through which it exchanges tokens with other
processes in the signal processing network 5. A visual representation of a process is given
on the left-hand side in Figure 2.13, and the pseudo-code corresponding to the execution
of a process is given on the right-hand side. This representation is similar to that of an
object in the Stream Based Function (SBF [51]) model of computation. Nevertheless we
add two ports for the interfacing with a leaf node in the control and monitoring network: a
command/parameters input port and a monitoring-data output port.

Figure 2.13: Representation of a process. A process is interfaced with a leaf node through 2
ports: a command/parameters input port and a monitoring-data output port.

4Recall that a process may be refined as an actor.
5In contrast to control packets, tokens in the signal processing network transport raw data only. Such tokens do

not include a header and control-information

2.7 Modeling of the interfacing between the two networks 35

The process shown in Figure 2.13 can execute the following signal processing functions that
are defined in the Function-Repertoire: the synchronization procedure Fsync, and F1 and
F2, which are sequences of functions {F1A, F1B} and {F2A, F2B , F2C}, respectively. They
can be re-configured and monitored by executing procedures (PConfig1, PMonit1, etc) that
are defined in the Procedure-Repertoire.

Complementarity between functions and procedures

A process executes different abstract Read, Execute and Write instructions to operate on
control/monitoring tokens and signal processing tokens. The CMRead instruction reads
only command/parameters tokens from a single-place buffer in a blocking and destructive
way (recall that a command/parameters token will be there, possibly empty). The SPRead
instruction reads only dataflow tokens from FIFOs in a blocking and destructive way as well.
The SPWrite instruction writes only dataflow tokens in FIFOs, while the CMWrite in-
struction writes only monitoring-data tokens in the other single-place buffer.

Figure 2.14: Example of possible complementary sequences of functions and procedures dur-
ing an execution cycle of the process shown in Figure 2.13. The sequences that are executed
are imposed by the command/parameters token sent by a leaf node.

The abstract Execute instruction is interpreted as a pair of complementary Function-Repertoire
and Procedure-Repertoire instructions. To each sequence of signal processing functions
(such as {F1A, F1B} in Figure 2.13) that is executed during a cycle corresponds a comple-
mentary sequence of procedures (such as {PConfig1, PMonit1} in Figure 2.13) that is exe-
cuted during the same cycle. Figure 2.14 gives an example of possible complementary pairs
during an execution cycle for the process shown in Figure 2.13. When the control/monitoring
token is empty, the same sequence of signal processing functions is repeated, and the com-
plementary procedure is a monitoring procedure.

2.7.2 Functional behavior of a process

In this subsection we give the functional behavior of the processes in the interfacing with
leave nodes. We first give the synchronization procedure. Then we give the behavior of
repetitive execution cycles and re-configuration cycles.

36 Application specification

Synchronization procedure

The purpose of the synchronization procedure is to synchronize the start of all execution cy-
cles in all processes with a global synchronization point (t = 0) in the control and monitoring
network. This procedure consists of 7 steps that are described below, and that are illustrated
in Figure 2.15 with a simple example.

• Each process first executes a Psync procedure that waits for a synchronization token
on the command/parameters port.

• The root node sends a synchronization packet to all leave nodes.

• When a leaf node receives a synchronization packet, it writes a synchronization token
on its command/parameters port.

• When a process receives a synchronization token, the Psync function writes a ready
token on the monitoring-data port to indicate that it is ready to start processing, and
waits for a start token on its input command/parameters port. Complementarily, Fsync

may write tokens to FIFOs if required.

• When a leaf node receives the ready token from the process it is attached to, it sends
a ready packet to the intermediate node above in the control and monitoring network.
Once an intermediate node has received ready packets from all the leave nodes that
are interfaced with it, it sends an ready packet the node above in the control and mon-
itoring network.

• Once the root node has received ready packets from all the intermediate nodes that
are interfaced with it, all processes are in the same state, i.e., waiting for a start token.
Then, the root node sends a start packet to all leave nodes LNi, to be executed at
t = TG-TLNi , i.e., during the period that precedes the synchronization point.

• All leave nodes process the start packet at t = TG-TLNi , and write a start token on
their command/parameters port on the occurrence of the next pulse, i.e., at t = 0. Then,
all processes receive a start token on their command/parameters port simultaneously.
Thus, the two networks are synchronized at t = 0, and all processes start executing
repetitive execution cycles together.

Repetitive execution cycles

At the end of the synchronization procedure, all processes start executing repetitive execution
cycles as follows.

• 1) The CMRead instruction reads a command/parameters token (from the correspond-
ing single-place buffer). If the token is empty, the process jumps to step 2. Else the
token is processed in the Procedure-Repertoire, to swap between signal processing
functions or simply update parameters in a signal processing function in the Function-
Repertoire, without executing that function.

2.7 Modeling of the interfacing between the two networks 37

Figure 2.15: Synchronization procedure: example of a simple system. At the end of the
procedure, all processes and all nodes are synchronized with a global synchronization point
(t = 0).

• 2) The SPRead instruction reads dataflow tokens (from FIFOs) in a blocking and
destructive way and sends these tokens to the Function-Repertoire, where they are
processed in a sequence of signal processing functions. This sequence of functions
produces tokens that are written on the dataflow output ports by the SPWrite instruc-
tion.

• 3) The CMWrite instruction is executed, and writes a monitoring-data token to the
corresponding single-place buffer. Then the process enters another execution cycle by
executing a CMRead instruction (step 1).

Recall that a leaf node LN produces one command/parameters token (possibly empty) for a
process P per period TLN , and that LN expects one monitoring-data token from P before
the end of TLN . This means that the execution of the sequence of signal processing functions
and complementary control/monitoring procedures have to be finished before LN receives
the next pulse. As a consequence, P can not wait indefinitely long for input dataflow tokens.
However, rare unexpected delays may appear in dataflow communication channels. As a
result, leave nodes may not receive monitoring-data tokens before the occurrence of the next
pulse. If such a fault is detected, the signal processing network and the control and monitoring

38 Application specification

network must be re-synchronized. Example 3 gives an example of such a procedure, which
is similar to the synchronization procedure.

Example 3

Consider the system shown in Figure 2.5 and suppose that the Function-Repertoire in P1

contains two signal processing functions that have the same execution time. Suppose that the
procedure executed at t = 30.TS in LN1 in example 2 requests swapping between these two
functions. LN1 will send a swap command token to P1 between t = 30.TS and t = 45.TS

(because TLN1 = 15.TS , see Figure 2.6). At the beginning of a new execution cycle, the
process will consume this command and swap function in the Function-Repertoire.

Now, suppose that P1 did not generate a monitoring-data token in the time interval [0;15]
after a global synchronization point. LN1 generates a control packet to report this fault to the
root node (the timestamp is TM = 30 since it is the closest multiple of TRN = 30.TS after
t = 15.TS):

[ID = RN ;TM = 30;CO = delay; PR = 0][]

When it receives this packet, the root node executes a re-synchronization procedure. It sends
a first packet to all leave nodes such that all processes in the signal processing network enter a
re-synchronization state immediately after the next global synchronization point (t = 0.TS):

[ID = leavenodes; TM = TG− TLN ; CO = synchronize;PR = 0][]

Then it sends another packet to all leave nodes such that all processes in the signal processing
network start processing immediately after the next global synchronization point (t = 30.TS):

[ID = leavenodes; TM = 30− TLN ; CO = start;PR = 0][]

At time t = 30.TS , all processes start executing repetitive execution cycles in the signal
processing network. Thus, it took one global synchronization period to re-synchronize the
two networks. This is acceptable as long as the chance of encountering such synchronization
errors remains low. This is the case in our systems where the dataflow originating from the
antennas is not interrupted.

2.8 Related work

Complete end-to-end low-level simulations failed for the digital processing part of a station
of a radio telescope. In practice, models are implicit or intuitive, and may lead to ambiguous
decisions. We tried to make these models more explicit and structured to help decisions
taking. Also, the current practice assumes from beginning that both the signal processing part
and the control and monitoring part are timed and synchronous. This approach may be too
restrictive in large-scale and distributed systems, where the two parts have to be autonomous.
We specified the signal processing part based on an un-timed model and we synchronized it
with the control/monitoring part that is specified based on a timed model.

In the Parameterized Synchronous Dataflow model (PSDF [52]), the dataflow specification

2.9 Conclusions 39

is separated from the control specification, with the objectives of staying within one model of
computation in such a way that it remains possible to derive schedules. We are dealing with
a large signal processing network and a large control and monitoring network that can not be
interfaced as in [52] because the behavior of the control and monitoring network is sporadic.

In [53], applications are modeled using Process Networks and SBF with non-static parame-
ters. Process can be re-configured only after a complete network cycle. In our systems, pro-
cesses have to be re-configured at run-time. The Reactive Process Networks model (RPN [54])
extends the KPN model with reactive semantics. The RPN model identifies events with func-
tions that transform the configuration of the RPN. However, re-configuring the behavior of
the KPN processes requires interrupting the processing, such that the deterministic behavior
of the processes is not preserved.

The SYRF (Synchronous Reactive Formalism [55]) research project investigates some long
time research tracks ranging from the combination of declarative and imperative formalisms,
integrating synchrony and asynchrony while preserving a clean formal semantics, connecting
with hardware/software co-design, program verification, code distribution and multi-tasking.

2.9 Conclusions

In this chapter we presented our approach to specify the functional behavior of the applica-
tions that run in large-scale and distributed digital signal processing systems, based on models
of computation. We separated the modeling of the signal processing part from the modeling
of the control and monitoring part. The former has been modeled based on a KPN and the
latter has been modeled based communicating finite state machines. The interfacing between
the two models is based on relations between a notion of time that is superimposed on top of
the control and monitoring network only, and periodic intervals within which repetitive tasks
are executed in the signal processing network, such that the functional behavior of the un-
timed dominant signal processing network is not altered by the interfacing with the control
and monitoring network that is timed.

We detailed the functional behavior of the two parts by giving a visual representation of
nodes in both networks so as to conveniently specify the way they concurrently process and
communicate data. Nevertheless, this representation is independent from any architecture.
The modeling of the architecture is addressed in the next chapter.

40 Application specification

Chapter 3
Architecture specification

3.1 Summary

The large-scale and distributed digital systems we consider consist of a signal processing
part and a control and monitoring part. In this chapter we concentrate on the model-based
specification of the architecture of such systems 1. We rely on models at multiple levels of
abstraction and hierarchy to master complexity and hide irrelevant details when appropriate.
Our objective is twofold. On the one hand we want to predict the non-functional behavior and
related performance and cost of the architecture. On the other hand we want to assure that
the architecture can be constructed starting from abstract specifications, and meet computa-
tion and communication performance requirements. We separate the modeling of the signal
processing architecture from the modeling of the control and monitoring architecture so as to
take appropriate decisions concerning their individual computation and communication prop-
erties. The signal processing architecture supports intensive computations on and transport of
high-throughput and parallel data streams. The control and monitoring architecture supports
the execution of sequences of procedures in reaction to sporadic events in a tree-like structure.
The interfacing between the control and monitoring part and the signal processing part occurs
at the lowest level of the hierarchy of the two parts, where signal processing units and con-
trol/monitoring tree leave nodes are interfaced through dedicated point-to-point links. This
approach permits avoiding ad-hoc interfaces between the two parts when scaling the system,
and leads to an architecture model onto which the application model can be mapped.

1Remember that the architecture specification is part of the system-level specification that also includes an appli-
cation specification, and the mapping of the application onto the architecture.

42 Architecture specification

3.2 Introduction

Recall that we strictly adhere to the separation of concerns principle [17] in the sense that we
model the application (functional behavior) separately from the architecture (performance
and cost), and make a distinction between computation and communication in both models.
The only condition we impose on the relation between the two models is that they are specific
to a particular domain of application, and that if the architecture supports parallelism, then
the application should be specified in some parallel language.

In principle, an architecture can be modeled in terms of a mixture of models of computa-
tion that are available for application modeling as given in chapter 2. In general terms, an
architecture consists of a composition of computation components, communication compo-
nents, and storage components, together with data transfer and synchronization primitives
and protocols, as well as software to operate the architecture. Components may be modeled
as ”black boxes” or ”white boxes” or both. A black-box model is a relation between input
quantities and output quantities expressing performance and cost in terms of simple service
equations, which can be used for performance/cost analysis. A white-box model consists of a
composition of executable modules. When specifying a large scale and distributed architec-
ture, both kinds of models are used: white box models at the lower levels where simulation is
feasible, and black-box models at higher levels where simulation is not feasible. Both black-
box and white-box models are abstract, and one of the objectives is to convert them to an
implementation-level of abstraction, from where implementation should become straightfor-
ward based on commercially available tools.

Recently, the so-called platform-based design approach has emerged from the need to re-use
designs, reduce design costs and cope with time-to-market constraints [56] [57]. Intuitively, a
platform defines a family of permissible architectures in terms of building blocks and compo-
sitions of building blocks. In general, a platform is derived from an analysis of an application
domain. Such an application domain concerns the next generation large-scale and distributed
radio-telescopes, such as LOFAR and SKA. These systems support signal processing as well
as control and monitoring functionalities. From a separation of concerns (orthogonality)
viewpoint, we virtually separate signal processing platforms from control/monitoring plat-
forms. With this distinction, we aim at simplifying the system architecture modeling, and
decision making concerning their respective (dataflow-driven or control-driven) computation
and communication properties. Once the two platforms are specified, the superposition and
interfacing of permissible architectures is constrained by the mapping of application specifi-
cations on the architecture specification (see chapter 4).

In this chapter we present our approach to model architectures of large-scale distributed and
hierarchical systems. Section 3.3 gives definitions of platforms, architecture templates, and
architectures. Section 3.4 presents domain-specific platform component models. Sections 3.5
and 3.6 present the modeling of the signal processing part and control/monitoring part, re-
spectively, with a particular emphasis on their computation and communication performance.
The superposition of the two parts is discussed in section 3.7. Finally we give related work
in section 3.8 and draw conclusions in section 3.9.

3.3 Definitions 43

3.3 Definitions

In this section we introduce platforms and platform derivatives in an abstract way as defined
in the platform-based design paradigm, and we model domain-specific platform components
in a way that is tailored to our purpose.

Platform

A platform defines a domain-specific restricted family of admissible architectures. It con-
sists of a library of parameterized components for computation, communication, and storage
together with permissible component interconnection rules, and software to operate the ar-
chitectures. This is illustrated in Figure 3.1. A platform includes means to evaluate, or
information on, the performance and cost of the components in terms of relevant metrics.

Figure 3.1: A platform includes processing, communication and storage units, interconnec-
tion rules, software to operate compositions of components, and information about perfor-
mance and cost of the components.

Components in a platform can be either basic components or compositions of basic com-
ponents. Components can be modeled at various levels of abstraction using models that are
adequate on the given level of abstraction. A component may be hardware, software or a com-
bination of the two. It can be a processing unit, a communication unit or a storage unit. These
units can in turn be modeled as a composition of modules that model component-specific
(dynamic) services ranging from instruction interpretation, to communication interfacing, to
arbitration [58].

Architecture template

An architecture template is a particular parameterized composition of components that is
obtained from a platform. It consists of a set of computational units, and a communica-
tion, synchronization and storage infrastructure as depicted in Figure 3.2. The behavior of a
template is non-functional, and the performance and cost are expressed in terms of relevant
metrics such as throughput, delay, bandwidth, memory usage, power consumption, etc.

Architecture templates can become components in a platform intended to model large-scale
systems as shown in Figure 3.3. It seems natural to call templates that are compositions of
basic components first-order templates. First-order templates are themselves higher-order

44 Architecture specification

Figure 3.2: Example of architecture template. Processing units are interfaced to a commu-
nication, synchronization and storage infrastructure. The template includes software compo-
nents to operate the particular composition and contains information on the performance of
this composition. It is still parameterized.

components. Compositions of first-order templates are, then, higher-order templates. A com-
position also comes with software components that support operations such as data routing
across architecture templates using specific primitives and protocols. Information on the per-
formance of the composition is also available, possibly after simulating the behavior of the
composition on the level of basic components and modules as in [58], or after interpolat-
ing/extrapolating from calibrated information based on formulae at higher levels of abstrac-
tion as in [16].

Composing with architecture templates can be repeated over and over again to model ar-
chitectures of large-scale systems. Because we consider a specific application domain, and
components are parameterized, the number of architecture templates is restricted. Indeed, the
number and type of processing units in a template are parameterized.

Figure 3.3: Composition of architecture templates to model large-scale systems. Architecture
templates are possibly components in a platform intended to model large-scale systems.

Architecture

An architecture is an instance of an architecture template, in which parameters have been
given values. For example, an architecture may consist of two Digital Signal Processors
(DSPs), a shared memory, and a bus connecting the DSPs and the memory.

We are aware of the fact that complex architectures may incur dependability problems [59]
that affect security, availability and integrity constraints. Here we assume that hardware and
software components encompass modules to deal with these aspects. Notice however, that a
secure system is a system that behaves as intended, and that model-based specifications are

3.4 Representation of platform components 45

also intended to mitigate the problem by striving for correctness by construction, if possible.

3.4 Representation of platform components

In this section, we model basic platform components, which include processing units, com-
munication units, and storage units. Because we consider that specifications are on a level of
abstraction above implementation-level specifications (which can be converted to an actual
implementation using commercially available compilation and synthesis tools), we need to
rely on abstract models.

3.4.1 White-box and black-box models

Models of platform components should be tailored to our twofold objective. First, they should
allow to predict the non functional behavior of the system and to give performance/cost num-
bers when moving up in the hierarchy. Second, they should include all the information that
is necessary to go down to the implementation level. We model components with two ap-
pearances. The first one is a white-box appearance that is tailored to the performance/cost
estimation objective at lower levels of the hierarchy. The second one is a black-box ap-
pearance that is tailored to the performance/cost prediction objective at higher levels of the
hierarchy, and to the implementation objective.

A white-box model of a component consists of executable modules that model the dynamic
internal behavior of the component. Modules are needed to obtain fine grained values of the
parameters in terms of processing delays, communication latencies, etc, if not known. Thus,
most parameter values in a white-box component model are typically obtained through cali-
bration as in [16], whilst others need to be derived, possibly in a simulation-based approach
as in [58], because they may be application/data dependent.

A black-box model of a component hides the internals of the component by providing service
relations between input and output quantities in terms of performance and cost metrics (e.g.,
static estimated frequency of usage at run-time) as in [60], where rules provide a closed-
form expression language that allows calculating the output from the input using common
mathematical functions or operations, interpolation or table lookup. Black-box models are
typically used at higher levels of the hierarchy where simulation is not an option. In general,
the abstract specification of an architecture is given as a topology in which components have
a black-box appearance.

Figure 3.4 shows an example of white-box specification and representation (on the left-hand
side) and black-box specification and representation (on the right-hand side) for a component
that has two input ports (P1 and P2) and two output ports (P3 and P4). In the white-box
model, internal modules (M1, ...,M4) and signals (s1, ..., s6) are available and their dynamic
behavior can be simulated to obtain parameter values. In the black-box model, internal sig-
nals and modules are hidden, and each service provides output quantities as (simple, usually
linear) functions of input quantities (q3 = f1(q1, q2) and q4 = f2(q1, q2)).

46 Architecture specification

Figure 3.4: Example of white-box model (left-hand side) and black-box model (right-hand
side) of a component; f1 and f2 are services.

When building a first-order architecture template, white-box models of basic components are
replaced by black-box models. In white-box models, parameter values can be obtained by
relying on calibration and simulation. Then, parameter values can be derived that have a
meaning for the black-box model of the template as a whole. Deriving these values for the
black-box model of the template reduces complexity: from here on, i.e., for higher-order tem-
plates, performance/cost analysis through simulation is no longer possible, because first-order
template components have a black-box appearance and hide executable modules. Instead,
performance/cost parameter values are predicted by propagating input-output quantities and
evaluating their relations as specified in the body of the components. Black-box models of
templates become platform components that are available for high-level architecture speci-
fications, and that can in principle be converted to an implementation using commercially
available compilation and synthesis tools.

As shown in Figure 3.5, we distinguish three types of components (processing, communica-
tion, and storage units). Components can be hardware and/or software components. Inter-
nally to components, one can find (software) services and/or (hardware) units. In the remain-
der of this section we focus on the white-box and black-box modeling and interfacing of these
components. The modeling of first order and higher order architecture templates is dealt with
in section 3.5 for the signal processing part, and in section 3.6 for the control/monitoring part.

3.4 Representation of platform components 47

Figure 3.5: Classification of components.

3.4.2 Processing units

As shown in Figure 3.5, we distinguish three subtypes of processing units: Instruction Set Ar-
chitecture (ISA), Re-configurable Architecture (RA), and Specific Architecture (SA). These
processing units include modules and execute specialized services for processing, storage,
communication, and synchronization 2. White-box models of processing units are parame-
terized as detailed in Table 3.1. The average power consumption parameter value for ISA
(e.g., DSPs and CPUs) is usually higher than in SA (e.g., ASICs) and RA (e.g., FPGAs).
RA and SA processing units can be customized so as to obtain a lower processing delay pa-
rameter value than in ISA by reducing the sharing of internal modules and memories when
processing data streams.

Name Information Unit
NUM-IOP # input/output ports

PROG programmability
RECONFIG re-configurability
NUM-MOD # processing modules
NUM-MEM # storage modules
SIZE-MEM size of storage modules bit

FREQ processing frequency Hz
DELAY processing delay s
POWER average power consumption W
COST cost $

Table 3.1: Parameters of white-box models of processing units.

Parameters of black-box models of processing units are given in Table 3.2. In contrast to
white-box models, services in black-box models are abstract (expressed based on functions)
and do not necessarily have a one-to-one relation with internal modules. For example, the
power consumption parameter can be expressed in function of input quantities.

2A priori, specialized (architecture) services do not math abstract Read, Execute and Write instructions in
the application model. The matching is improved based on mapping transformations as detailed in chapter 4.

48 Architecture specification

Name Information Unit
NUM-IOP # input/output ports

NUM-SERV # services
PROC-FUNC processing service cost function
MEM-FUNC memory service cost function bit
FREQ-FUNC frequency cost function Hz

TRHOU-FUNC throughput cost function tokens/s
POWER-FUNC power consumption cost function W

COST-FUNC cost function $

Table 3.2: Parameters of black-box models of processing units.

3.4.3 Communication units

As shown in Figure 3.5, we distinguish three subtypes of communication units: Point-to-
Point (PP), Shared (SH) and Intermediate (IT) communication units. These communication
units include modules for storage and modules for synchronization. White-box models of
communication units are parameterized as detailed in Table 3.3. A PP (e.g., a FIFO) has a
unique input interface and a unique output interface, and transfers a single type of tokens. A
SH (e.g., a bus) has multiple input interfaces and multiple output interfaces, and may transfer
different types of tokens. A IT (e.g., a crossbar) has multiple input interfaces and multiple
output interfaces, and transfers a singles type of tokens.

Name Information Unit
NUM-INT # interfaces

NUM-MEM # storage modules
SIZE-MEM size of storage modules bit
ARBITER availability of arbiter module
LATENCY latency s

POWER average power consumption W
COST cost $

Table 3.3: Parameters of white-box models of communication units.

Figure 3.6 shows an example where the processing units PU1 and PU2 exchange tokens
with the processing units PU3 and PU4 through the communication unit CU , which has
two interfaces (Int1 and Int2). PU1 and PU2 send/get tokens to/from Int1, and PU3 and
PU4 send/get tokens to/from Int2. The processing units and the communication unit include
modules that control the distribution of tokens.

Black-box models of communication units are service-relation models. The performance in
terms of memory usage, throughput, cost, etc (see Table 3.4) of each service is expressed
based on simple functions.

3.5 Signal processing architecture model 49

Figure 3.6: Example of communication between four processing units through a communi-
cation unit that has two interfaces.

Name Information Unit
NUM-INT # interfaces

NUM-SERV # services
MEM-FUNC memory cost function bit

THROU-FUNC throughput cost function tokens/s
POWER-FUNC power consumption cost function W

COST-FUNC cost function $

Table 3.4: Parameters of black-box models of communication units.

3.4.4 Storage units

Storage units are present as modules in processing units and in communication units. A
white-box model of a storage unit is a service-relation model. It has a fixed number of input
and output ports, which have the same type. A white-box model of a storage unit is param-
eterized in terms of number and size of internal modules, and in terms of latency and power
consumption. Caches are accepted, and controlled by the software to operate the architecture.
In a black-box model of a storage unit, the performance/cost of a memory service is a simple
function of, for example, an access cost and storage capacity.

3.5 Signal processing architecture model

Recall that the signal processing systems we consider consist of three stages: a front-end
stage, a back-end stage and an intermediate data-reduction stage (see Figure 3.7). The front-
end stage includes low frequency (LF) and high frequency (HF) antennas that acquire data in
stations. This data goes through low-noise amplifiers before it is digitized locally next to the
antennas at a high sampling rate. This high-throughput digitized data feeds the intermediate
data-reduction stage, which is also distributed locally next to the antennas in the stations. The
intermediate data-reduction stage consists of approximately 100 stations, which run concur-
rently and must sustain the high throughput of the data that is imposed by the front-end stage.
The nature of computation and communication progressively changes according to the nature
and rate of the data, from single tokens, to vectors of tokens, to large and lower-rate blocks

50 Architecture specification

of tokens. These blocks are then sent through a wide area network to the back-end stage (a
supercomputer).

Figure 3.7: The intermediate data reduction stage processes high throughput data originating
from the antennas before sending it to a supercomputer.

The modeling of the signal processing part of the systems we consider has already been
addressed in [16]. In this section we give a representation of the intermediate data-reduction
stage based on the models that have been introduced in section 3.4. We present two first-order
architecture templates (composition of basic components). Then we present a higher-order
architecture template (composition of first-order templates at station level).

3.5.1 First-order architecture templates

In the intermediate data reduction stage, we distinguish subsystems that are close to the front-
end stage from those that are close to the back-end stage. We give first-order architecture
templates for these two parts.

Front-end architecture templates

Front-end architecture templates (FT) operate on tokens originating from the front-end stage
and are modeled as a composition of library components that are arranged in a Single-
Instruction Multiple-Data topology (SIMD according to Flynn’s taxonomy [61]), which sup-
ports the required degree of parallelism for that part of the system. Processing units are
modeled as SA and RA (ASICs and FPGAs) since both subtypes can receive, operate on and
produce multiple streams with a high degree of parallelism. Intermediate computations are
stored in dedicated storage units that are attached locally to the processing units so as to main-
tain low latencies by avoiding sharing resources. Communication units are modeled as PP

3.5 Signal processing architecture model 51

(FIFOs 3) that transport tokens with low latencies. IT communication units (crossbars) can
be used as long as the required throughput is sustained. Wether this is feasible or not is de-
termined by simulating the behavior of these particular components based on their white-box
models as in [58].

The black-box model of a FT is parameterized in terms of number of input ports and output
ports, and in terms of number of processing units. This allows to achieve the required de-
gree of parallelism. The latency, throughput, power consumption and cost parameters of the
black-box template can be obtained based on interpolation/extrapolation from calibrated in-
formation for each of the internal components. An example of a composition of components
in a FT is given on the left-hand side in Figure 3.8. The Matrix Shuffling Processing (MSP)
architecture, which has been used in the THEA system (Thousand Elements phase Array
telescope [62]) is of that type. The MSP architecture provides processing nodes (processing-
storage unit pairs) that are connected with point to point links in a mesh network.

Figure 3.8: Examples of composition of library components in (a) FT template and (b) BT
template. Processing Units (PU) are interfaced with Storage Units (SU) through Communi-
cation Units (CU).

Back-end architecture templates

Back-end architecture templates (BT) operate on tokens issued from FT templates and send
tokens to the back-end stage. They are modeled as compositions of library components that
are arranged in a Multiple-Instruction Multiple-Data topology (MIMD [61]), such that the
degree of parallelism is lower than in FT templates. Processing units are ISA (such as Dig-
ital Signal Processors) that operate on tokens sequentially. Intermediate computations are
stored in storage units that can be accessed by services executed in different processing units.
Communication services are executed by a communication unit that is modeled either as a
IT (crossbar) or SH (bus). If a bus is chosen, then an arbiter module must be available as
well. This decision is taken by simulating the data-dependent dynamic behavior of these
components.

The black-box model of a BT has a fixed number of input and output ports. It is parameterized
in terms of number of processing units and storage units. An example of composition of

3Asynchronous KPN communication channels in the application model may be implemented by means of syn-
chronized (clocked) FIFOs at lower levels in the architecture model.

52 Architecture specification

library components in a BT is given on the right-hand side in Figure 3.8. The Fast Pipeline
Processing (FP) and Selection Cache Storage Processing (SCSP) architectures in [16] are
of that type. The former is well suited to process blocks of data, and relies on a crossbar
component for communication, whilst the latter is well suited for the storage and re-ordering
of blocks of data, and relies on a bus for communication.

3.5.2 Higher-order architecture template

The signal processing part of a station is modeled as a higher-order architecture template,
which is a composition of black-box models of first-order FTs and BTs. An example is shown
in Figure 3.9. FTs and BTs communicate through library components that are modeled as
PP communication units, which sustain a high-throughput. The High-Speed Link (HSL)
architecture in [16] is of that type. It consists of optical to digital and digital to optical
converters, and a switch, and includes means to multiplex, serialize and de-serialize tokens.

Figure 3.9: Example of a composition of black-box models of FTs and BTs to model the
signal processing architecture of a station in the intermediate data reduction stage. FTs and
BTs exchange communicate through high speed links.

The black-box model of the signal processing part at station level is a (higher-order) compo-
nent that is parameterized in terms of number of input ports, and in terms of number of FTs
and BTs. These parameters permit adapting the degree of parallelism to sustain the through-
put of data that is imposed by the front-end stage. At this level of abstraction, parameter
values can not be obtained by simulation anymore since modules are hidden in the FTs and
BTs. Instead, they are obtained based on constraints propagation and simple equations that
relate output quantities to input quantities in the FTs and BTs.

3.6 Control and monitoring architecture model 53

3.6 Control and monitoring architecture model

Recall that stations send monitoring tokens and receive control tokens to/from a central con-
trol and monitoring facility (see Figure 3.7). In this section we focus on the modeling of the
control and monitoring part of the architecture that controls the intermediate data-reduction
stage. We give the main computation and communication properties of a first-order control
and monitoring architecture template. This leads to a higher-order architecture template to
model the non-functional behavior and performance/cost of the control and monitoring part
at station level.

3.6.1 First-order architecture template

A control and monitoring architecture template (CT) has a single bidirectional access point.
Tokens that are exchanged through this single access point are stored in a storage unit that
is internal to the CT. Control and monitoring procedures, which are not as computationally
intensive as signal processing tasks, are executed sequentially in (re-programmable) process-
ing units that are modeled as ISA. These processing units access specific instructions and
topology-related information, and write and read intermediate computations to/from a local
storage unit through a PP communication unit. The number of processing units is parame-
terized. This permits adapting the performance/cost of the template to the intensity of the
control and monitoring flow.

Figure 3.10: Example of CT template. Tokens that are exchanged with other CTs are stored
in a unique memory that is shared between specialized services executed in processing units
to read and write control/monitoring tokens from/to other CT templates.

All processing units share a global notion of time that is provided by a Real-Time Operating
System (RTOS) module. This notion of time permits scheduling the transmission of tokens.
Processing units communicate among themselves through a communication unit that is mod-
eled as a black-box SH or IT (a bus or a crossbar). An example of CT is represented in
Figure 3.10. The Acquisition Main Control (AMC) architecture in [16] is of that type. It
includes a memory that can be accessed from an ISA processing unit through a crossbar.

54 Architecture specification

3.6.2 Higher-order architecture templates

At station level, the control and monitoring architecture is modeled as a higher-order archi-
tecture template where components are CTs that are arranged in a tree topology. Each CT
in a given hierarchical level communicates with other CTs in the tree through point-to-point
bidirectional links that are modeled with two unidirectional PP (FIFOs), as shown in Fig-
ure 3.11. The software that operates the control and monitoring architecture at station level
permits avoiding contentions in these interfaces.

At station level, the black-box model of the higher-order control and monitoring architecture
has a single bidirectional access point, through which tokens are communicated to initiate the
execution of control and monitoring procedures according to a specific operation mode, and
to report monitoring information. This black box model is parameterized in term of number
of CTs. This allows to adapt the workload of the control and monitoring network to the
control/monitoring flow. The value of this parameter is obtained analytically since modules
are hidden in CTs.

Figure 3.11: Example of control and monitoring architecture model at station level. CTs are
modeled as black boxes and are arranged in a tree topology.

3.7 Interfacing of the two architectures

We separated the modeling of the signal processing architecture and the modeling of the
control and monitoring architecture as their individual non-functional behavior, constraints,
and performance are fundamentally different. In this section we deal with the interfacing of
the two architectures. We first give the interfacing at the level of first-order FTs, BTs and
CTs. Then we give the interfacing on the level of basic components that are internal to these
first-order architecture templates.

3.7.1 Interfacing at station level

We model a station as a composition of first-order signal processing architecture templates
(black-box FTs and BTs), and first-order control and monitoring architecture templates (black-

3.7 Interfacing of the two architectures 55

box CTs) that are arranged in a tree topology. Each template in the signal processing part (FT
or BT) is interfaced with a unique template in the control and monitoring part (CT). This sim-
ple interfacing permits avoiding ad-hoc interfaces, and leads to an architecture that can serve
as a starting point to map the application. The number of links in this one-to-one interfacing
is a parameter that corresponds to the number of processing units that are internal to the FTs
and BTs. Note that links that are dedicated to the communication of tokens in the signal
processing network are kept separated from links that are dedicated to the communication of
tokens in the control and monitoring network, so as to avoid obstructing the high throughput
in the signal processing part with sporadic control/monitoring tokens.

Figure 3.12: Modeling of the interfacing between control and monitoring architecture tem-
plates (CT) and signal processing architecture templates (FT and BT) at station level. The
number of interfaces for a signal processing architecture template corresponds to the number
of processing units that are internal to that template. The resulting architecture can serve as
an input to map the application.

An example is shown in Figure 3.12, where all FTs and BTs include two processing units. The
interfaces are represented with double-sided dotted arrows, and transfer command/parameter
tokens from CTs to FTs (and from CTs to BTs), and monitoring-data tokens from FTs back to
CTs (and from BTs back to CTs). The large number of CTs in such an initial architecture may
be reduced when mapping the application onto the architecture as discussed in chapter 4. The

56 Architecture specification

single entry point of the CT that is a root at station level becomes the station’s single entry
point, through which tokens are exchanged with the central control and monitoring facility.

When duplicating subsystems, the approach to interface the control and monitoring architec-
ture model and the signal processing architecture model remains the same. An example is
shown in Figure 3.13. Note that CTs may have to be added on top of the tree in the control and
monitoring model in order to obtain a single entry point for the complete architecture. This
potential insertion of CTs leads to a minor cost increase, but does not affect the interfacing
between the two parts.

Figure 3.13: Scaling the number of FTs and BTs from system (a) to system (b) leads to a
predictable scaling of the number of CTs. In this example, all signal processing architecture
templates have two interfaces because they include two processing units.

3.7.2 First-order architecture templates interfacing

When interfacing first-order architecture templates of the two parts, the interfacing occurs
only when strictly necessary. Each processing unit in a signal processing template (FT or
BT) is interfaced with a processing unit in a CT through a storage unit that is separated from
the two architectures, such that the two architectures can operate at their own speed. A port
is added in each FT, BT and CT for the interfacing of each processing unit 4. The number of
ports and storage units is a parameter of the interfacing. An example is shown in Figure 3.14,
where the components that constitute the interfacing between the two architectures are rep-
resented in dark grey. In this example, two ports are added to the templates because there
are two processing units in the FT and BT. Notice that the interfacing is not ad-hoc, which
facilitates design scaling.

In the CTs, ports that are dedicated to the interfacing are connected directly to the SH com-

4This interfacing is different from the interfacing in the application model in the sense that several interfaces
between control/monitoring tasks and signal processing tasks may be mapped onto a single communication unit.

3.8 Related work 57

munication unit that is shared between the processing units. The processing units in the CTs
execute services to write command/parameters tokens sequentially and to read monitoring-
data tokens sequentially to/from the storage unit that is dedicated to the interfacing. In the
FTs and BTs, ports that are dedicated to the interfacing are connected to the processing unit
through a communication unit that reads command/parameter tokens and writes monitoring-
data tokens in parallel from/to the storage unit that is dedicated to the interfacing. With this
approach, communication latencies are not significantly altered by the interfacing in the two
networks.

Simulating the dynamic behavior of the interfacing at lower levels of the hierarchy permits
ensuring that requirements are met in the interfacing. Also, it allows to get the actual timing
of the periods in the signal processing network, after which the periods of the pulses that are
superimposed to the control and monitoring network can be computed as detailed in chapter 2.

Figure 3.14: Modeling of the interfacing between signal processing architecture templates
and control and monitoring architecture templates. The number of interfaces corresponds to
the number of processing units that are internal to the signal processing architecture tem-
plates. Resources that constitute the interfacing are represented in dark grey.

3.8 Related work

The Software Communicating Architecture (SCA [63]) is an object-oriented framework that
was established to enhance interoperability, upgradeability and scalability of communication
among heterogeneous Joint Tactical Radio Systems (JTRS) while reducing development and

58 Architecture specification

deployment costs. SCA separates applications from operating environments by defining com-
mon services to support device and application portability. We consider systems that are more
homogeneous such that their non-functional behavior can be modeled and their performance
predicted by composing with components from a unique library.

In [39], an internal/external component interface concept is presented. When viewed from
outside, only the external structure and behavior are available. Implementation details are
hidden inside the package. The internal design and external properties of a component can
be viewed at different levels of abstraction. Also, the principle of a performance model is
presented at the multiprocessor network level. The internal structure of the components is
not usually described in this model, whose primary purpose is to determine sufficiency of the
following selections in meeting the system processing throughput and latency requirements:
the number and type of elements, the size of memories and buffers, the network topology,
network bandwidths and protocols, application partitioning, mapping, scheduling of tasks
onto processor elements.

The Berkeley Emulation Engine (BEE2 [29] and the LOFAR Remote Station Signal Pro-
cessing platform (RSP3 [64]) are FPGA-based hardware architectures that can support radio-
telescope signal processing applications. Both architectures consist of four FPGAs that are
connected in a ring topology and that are interfaced with another FPGA that is dedicated
to control. In RSP3, this FPGA belongs to the ring, whereas in BEE2 it is interfaced with
the four FPGAs via point-to-point channels, such that control and signal processing links are
separated.

3.9 Conclusions

In this chapter we presented our approach to model the architecture of the large-scale and
distributed digital signal processing systems we consider. We modeled the signal processing
architecture separately from the control and monitoring architecture. The former supports
concurrent computations and transport of high-throughput parallel data streams. The latter
supports sequential execution of instructions in reaction to sporadic events. The two architec-
ture models and their interfacing rely on components that are taken from a unique platform.
This platform permits predicting the performance/cost of the two parts based on simulation
of components that are modeled as white boxes on lower levels of the hierarchy, and based
on equations that relate output quantities to input quantities of components that are modeled
as black boxes at higher levels of the hierarchy. The modeling of the interfacing between
the two architectures is based on dedicated point-to-point links between processing units at
the lowest hierarchical level of the two architectures, such that the two parts can still be in-
terfaced in a structured way when scaling the system. This simple interfacing leads to an
architecture model that can serve as an input to map the application model as discussed in the
next chapter.

Chapter 4
Mapping

4.1 Summary

A system-level specification consists of an application specification, an architecture specifi-
cation, and the mapping of the former onto the latter. In this chapter we discuss the mapping
of large-scale and distributed digital signal processing systems. When mapping, our objec-
tive is twofold: we want to implement the systems, and we want to analyze their performance
and cost. Analysis concerns a model-based search for attractive points in the design space
in terms of performance and cost metrics. At lower levels of the hierarchy, the values of
these metrics are obtained from a calibration based on simulation or prototyping of actual
components. At higher levels of the hierarchy, the values are obtained in an analytic way
based on simple equations that relate output quantities to input quantities. Implementation,
on the other hand, is a translating process that takes abstract system-level specifications to a
lower level of abstraction, which we call implementation-level specification, from where im-
plementation should become straightforward. Analysis and implementation should match in
the sense that the output of the analysis phase should be a valid input for the implementation
phase.

In this chapter we assume that mapping transformations are available in a library, and that
they can be called iteratively and in any order (interactively) to associate items in the applica-
tion model together with items in the architecture model on all levels of the hierarchy. These
iterative transformations constitute high-level compilation steps above implementation-level
specifications, which standard tools should be able to convert automatically to implemen-
tations in components. Mapping transformations are restricted by the interfacing between
the signal processing part and the control and monitoring part. Once performance/cost pre-
dictions are satisfactory on all levels of the hierarchy and the last system-level specification
includes all the information that is necessary to go to implementation, this specification is
translated automatically to an implementation-level specification, from where we assume
that different tools can take over to implement different parts of the system.

60 Mapping

4.2 Introduction

Recall that a system consists of an application, an architecture and a (mapping) relation be-
tween the two. We specify the application and the architecture based on models, and sepa-
rately under the assumption that the two specifications are specific to the same application
domain, and that they match in the sense that if the architecture of a large scale and dis-
tributed system has a high degree of parallelism, then the application that is to be mapped
onto it should be specified in some parallel language. Thus, we reason on the properties of
the application (functional behavior) and the architecture (non-functional behavior) in isola-
tion on levels of abstraction and hierarchy. 1

In the application, concurrent processing and communication of tokens between nodes are
specified unambiguously based on the operational semantics of (mathematical) models of
computation. In the architecture, operations on tokens and transport of tokens are supported
by admissible compositions of processing, communication and storage units whose perfor-
mance/cost properties are known. However, the matching between the items in the application
specification and the items in the architecture specification is not complete. The application
and architecture specifications must be transformed so as to improve the matching. Such
transformations are called mapping transformations. As shown in Figure 4.1, when mapping
an application to an architecture, two directions can be taken: analysis, and implementation.
Analysis concerns a model-based and iterative search for attractive points in the design space
in terms of performance and cost metrics. This is called design space exploration 2. Imple-
mentation, on the other hand, is a translating process that takes abstract system-level model-
based specifications to a lower level of abstraction, which we call implementation-level spec-
ification, from where commercially available compilation and synthesis tools should be able
to take over to obtain real implementations.

We would like to keep analysis and implementation concerns separated. However, the analy-
sis phase is part of a design trajectory where the implementation phase is the last phase. In the
analysis phase, parameter values can change in the functional model, non-functional model,
and selected mapping transformations depending on the performance and cost numbers ob-
tained in an exploration cycle (dotted arrows in Figure 4.1). In the implementation phase,
parameter values are fixed, and the models and mapping specifications obtained after the last
iteration of the analysis phase are translated automatically to an implementation-level specifi-
cation, from where commercially available tools can take over. Thus, the final specifications
output by the analysis phase have to be compatible with the input of the implementation
phase.

We restrict ourselves to mapping transformations on abstract levels above the Register Trans-
fer Level (RTL). On the level of basic components that are modeled as white boxes (in the
sense that their internal modules are accessible, see chapter 3), mapping transformations are
selected based on performance and cost numbers that are obtained by simulating [58] or pro-
totyping the behavior of the modules. These numbers are used to calibrate formulae that
relate output quantities to input quantities at higher levels of the hierarchy, where compo-

1In our model-based approach, levels of abstraction are hierarchically ordered.
2In this thesis, the term design-space exploration mainly refers to the performance and cost analysis that is part

of it. Exploration approaches and methods are not considered in detail.

4.2 Introduction 61

nents are modeled as black boxes (in the sense that their internal modules are hidden). Thus,
the mapping approach is neither entirely top-down nor entirely bottom-up, but rather a meet
in the middle approach.

Figure 4.1: Mapping associates a functional model and a non-functional model together based
on transformations that are taken from a library. From an implementation point of view, map-
ping transformations correspond to high-level compilation steps above the level of abstraction
where standard compilers and synthesizers should be able to take over.

As we shall see throughout this chapter, the signal processing network and the control and
monitoring network can only be partly separated when performing mapping, and this implies
that some restrictions will apply that would not be necessary if the two parts were fully
separated. The rest of the chapter is organized as follows. In section 4.3 we consider some
transformations that permit improving the matching between the application an architecture
models during the analysis phase. In section 4.4 we discuss the translation of the system-level
specifications output by the analysis phase to implementation-level specifications during the
implementation phase. We give our related work in section 4.5 and conclude in section 4.6.

62 Mapping

4.3 Transformations

In this section we give the principle of some transformations that improve the matching be-
tween the application and the architecture specifications. Some of these transformations serve
as high-level compilation steps above the level where standard compilers and synthesizers
can take over to obtain the actual implementation. Recall that we assume that these trans-
formations are available in a library and that they can be called in any order, on all levels of
abstraction, which are hierarchically ordered as shown in Figure 4.2.

Figure 4.2: The association between the application and architecture is refined across levels
of abstraction based on mapping transformations that are taken from a library.

We first give the principle of (re-)structuring transformations, which fix a few parameter
values in the initial models based on coarse estimations. The output of the (re-)structuring
transformation serves as an input to the analysis phase. This analysis phase progressively
fixes remaining parameter values. Some mapping transformations operate on the abstract
Read, Execute and Write instructions that are executed in nodes in the control and mon-
itoring part and processes in the signal processing part, in order to improve their matching
with specialized services that are supported by component models. Some of the mapping
transformations are also known in standard compilers, and are used to optimize a system on
a particular level of abstraction.

4.3.1 Initialization (re-)structuring transformations

The application and architecture models have to be manipulated with (re-)structuring trans-
formations to obtain an initial configuration from which the analysis phase can start [65] 3.
These transformations improve the initial matching in terms of quantities related to perfor-

3In [65], (re-)structuring is called (re-)configuration.

4.3 Transformations 63

mance and cost by changing the structure in the functional and non-functional models based
on intuitive (experience-based) estimations of the system.

Note that (re-)structuring transformations can also be applied based on mapping transforma-
tions, where decision taking relies on feedback information that is obtained after exploration
cycles, i.e., after simulating the behavior of the system at lower levels of the hierarchy, or
after analyzing this behavior based on formulae at higher levels.

Application (re-)structuring

The initial structure of the application model may be manipulated so as to improve the match-
ing with the architecture as long as the functional behavior is preserved.

Figure 4.3: Example of initial application (re-)structuring.

Clustering is an example of such manipulation. It aims at reducing the concurrency in the
application model based on coarse estimations so as to meet particular resource constraints
and/or load balancing constraints from the architecture model. The converse manipulation,
i.e., process-splitting, is another example of such manipulation. Theses types of transfor-
mations on a high level of abstraction are addressed in [66], where the transformations are
applied on initial sequential specifications after which parallel specifications are automati-

64 Mapping

cally derived. Figure 4.3 shows an example where the processes P1 and P2, and P3 and P4 in
the signal processing part are clustered in P ′1 and P ′2, respectively. In the control and moni-
toring part, the leave nodes LN1 and LN2, and LN3 and LN4 are clustered in LN ′

1 and LN2,
respectively, and the intermediate nodes N1 and N2 and the root node RN are clustered in
N ′

1.

Architecture (re)-structuring

The architecture is modeled as a composition of parameterized architecture templates, which
are admissible compositions of black-box/white-box components for processing, storage and
communication as introduced in chapter 3. Architecture (re-)structuring aims at choosing
particular initial architecture templates by setting intuitively (based on experience) some pa-
rameter values to meet performance and cost requirements. For example, low latency re-
quirements in terms of communication may lead to the architecture that is shown on top in
Figure 4.4, whereas the architecture that is shown at the bottom may be preferred if the appli-
cation that is to be mapped onto it is likely to exploit complex communication mechanisms.

Figure 4.4: Example of initial architecture re-structuring.

Parameter values that are not fixed by the (re-)structuring transformations will be fixed it-
eratively with mapping transformations in the analysis phase, where decisions will be taken
based on performance/cost information that is obtained analytically rather than based on es-
timations.

4.3 Transformations 65

4.3.2 Mapping transformations

In the previous subsection we discussed the interest of (re-)structuring application and ar-
chitecture specifications to obtain an estimated good match as a starting point to explore the
design space, and to go to implementation-level specifications. In this subsection we give
the principle of a few mapping transformations that may be used to improve the matching
between the application and architecture, both in terms of abstraction of items and in terms
of performance/cost. We assume that these mapping transformations are available in a library
and that they can be called by designers in any order. With respect to our analysis objective,
mapping transformations allow to set parameter values on all levels of the hierarchy based
on predictions returned after each exploration cycle. With respect to our implementation ob-
jective, mapping transformations correspond to high-level compilation steps above the level
of abstraction where we assume that standard compilers and synthesizers can take over to
implement (parts of) the actual system.

We give the principle of four types of mapping transformations (assignment, process split-
ting, instruction refining and instruction re-ordering) and we pay attention to the interfacing
between the signal processing part and the control and monitoring part, which plays a role in
terms of restrictions.

Assignment

The assignment is the first mapping transformation that is applied in the analysis phase. This
transformation permits designers assigning computation and communication components in
the application model to computation and communication components in the architecture
model. Designers assign (networks of) processes to (networks of) architecture templates. We
use the symbol → to represent an assignment. (Networks of) Kahn processes (KPN [35]) are
assigned to (networks of) signal processing architecture templates (ST), and (networks of)
communicating state machine (CSM, as introduced in chapter 2) processes are assigned to
(networks of) control and monitoring architecture templates (CT):

KPN → ST , and CSM → CT

The assignment is restricted by the interfacing between the signal processing part and the
control and monitoring part. If CSM processes communicate with KPN processes in the
application model, then these CSM processes must be mapped onto CTs that are interfaced
with the STs the KPN processes are mapped onto. This simple restriction is checked by
the assignment transformation. Also, a consequence of the assignment transformation is a
binding in terms of abstract Read, Execute and Write instructions. This binding is modeled
by means of traces, which are derived automatically from the assignment. Traces can be
manipulated by other mapping transformations to further improve the matching.

In the example shown in Figure 4.5, two KPNs are assigned to two STs (KPN1 → ST1

and KPN2 → ST2), and the two complementary sets of leave nodes are assigned to the two
complementary CTs (CSM1 → CT1 and CSM2 → CT2). In this example, the assignment
of the nodes above in the control and monitoring network (CSM3 → CT3) is constrained by
the fact that CSM3 is a root for CSM1 and CSM2 and must be interfaced with these two

66 Mapping

sets through single access points (which are represented with black squares in Figure 4.5).

Figure 4.5: Example of assignment of networks of processes and sets of nodes to architecture
templates. The assignment is restricted by the interfacing between the signal processing part
and the control and monitoring part. A consequence of the assignment is a binding in terms
of abstract instructions. This binding is modeled by means of traces.

Process splitting

Process splitting is a mapping transformation that increases the degree of parallelism in a
(network of) process(es). This transformation can be applied when disclosing more details in
hierarchical components at lower levels, or to optimize the performance/cost of a system at a
particular level by exploiting the parallelism that is available in the architecture.

4.3 Transformations 67

Details of this transformation can be found in [67], where any process in the signal processing
network can be split in a parameterized number of processes, in three steps. The first step du-
plicates a process according to a splitting factor that is given by a designer, and re-structures
the code that is executed in each duplicate process, by introducing modulo conditional ex-
pressions. The second step adapts the number of ports in processes that are connected to the
original process and that are affected by the first step. The third step refines the second step
by removing some ports and channels where data will never be communicated.

Figure 4.6: Example of process splitting transformation in the signal processing network.

Figure 4.6 gives an example where process P2 is split in two processes P ′2 and P ′′2 . Modulo
conditional expressions (represented with the symbol %) are added around the body in the
code that is executed in P ′2 and P ′′2 . Communication channels C1 and C3 are duplicated in
{C ′1, C ′′1 } and {C ′3, C ′′3 }, respectively. The feedback channel C2 is duplicated in {C ′2, C ′′2 }
that are local to P ′2 and P ′′2 , and {C21, C

′′
22} that connect P ′2 and P ′′2 .

Splitting a process P with a factor k in the signal processing network implies a comple-
mentary splitting transformation of the leaf node LN that is attached to P , such that each
duplicate process is attached to a dedicated duplicate leaf node in the control and monitoring
network. This splitting transformation also has an impact on the intermediate node above
the duplicate leave nodes, in the sense that procedures that were LN -specific have to be split
into k specific procedures, and that each duplicate leaf node has to be interfaced with that
intermediate node through dedicated communication channels. Note that the periods Tk of
the duplicate leave nodes may be different from the period of the original leaf node. In such
a case, the relation between the periods in the control and monitoring network have to be
updated after a splitting transformation, based on the equations given in chapter 2.

Figure 4.7 shows an example of leaf node splitting for a factor k = 2, to complement the
splitting transformation shown in Figure 4.6. For the sake of clarity, we do not show the

68 Mapping

communication channels in the signal processing network, and we do not show the timing
network that is superimposed to the control and monitoring network. In this example, the
intermediate node N1 needs to send a control packet to LN ′

2 and LN ′′
2 after the transforma-

tion, instead of a single packet to LN2 before the transformation, and both LN ′
2 and LN ′′

2

execute a procedure (ProcLN ′
2 and ProcLN ′′

2 , respectively) instead of a single procedure
(ProcLN2) in LN2 before the transformation.

Figure 4.7: Example of complementary splitting transformation in the control and monitoring
network after a splitting transformation in the signal processing network.

Instruction refining

Recall that we do not permit mapping a process or node in the application model to more than
one component in the architecture model. However, abstract instructions that are executed by
a (network of) process(es) or (set of) node(s) in the application may not match the specialized

4.3 Transformations 69

services of a unique component in the architecture. Abstract instructions that are executed in
a process may have to be refined so as to disclose more details about that process, such that
each refined instruction can be mapped onto a processing unit, storage unit or communication
unit in the architecture model.

Figure 4.8: The Execute instruction in a leaf node or process in the application model can
be refined as a sequence of instructions to improve the matching with the architecture model.

As already discussed in chapter 2, an abstract Execute instruction may be refined as a se-
quence of Switch, Queue-and-Order and Procedure-Repertoire instructions in nodes
in the control and monitoring network, and to complementary Function-Repertoire and
Procedure-Repertoire instructions in processes in the signal processing network. As a
consequence, the bindings in terms of abstract instructions (traces) are modified by this trans-
formation. These new traces can be manipulated by other mapping transformations to further
improve the matching. An example of instruction refining transformation is given in Fig-
ure 4.8 for a leaf node LN that executes a control procedure Proc and for the attached
process P that executes a signal processing function Func.

70 Mapping

Instruction re-ordering

In contrast to the instruction refining transformation, the instruction re-ordering transforma-
tion does not involve disclosing more details about the application or architecture models,
but changes the ordering of instructions at a particular level of abstraction to improve the
performance of a system (load balancing). Instructions are re-ordered by designers based on
experience and assumptions. At lower levels of abstraction, the re-ordering is accepted (or
not) after simulating the behavior of the system or by monitoring the dynamic behavior of a
prototype implementation that provides actual performance/cost numbers. At higher levels,
the re-ordering is accepted (or not) after analyzing the performance/cost numbers that are
returned by simple equations that relate output quantities to input quantities.

Figure 4.9: Example of instruction re-ordering transformation, which allows to optimize the
performance/cost of the (sub)system. The re-ordering is accepted (or rejected) after simula-
tion (at lower levels of the hierarchy) or formulae-based analysis (at higher levels).

In the example shown in Figure 4.9, a network of three processes (P1, P2 and P3) is mapped
onto a simple architecture that consists of the processing units PU1 and PU2 that are in-
terfaced through the communication, synchronization and storage infrastructure CSSI as
follows: {P1, P2} → PU1, and P3 → PU2 (see dotted arrows in Figure 4.9). Before apply-
ing the re-ordering transformation, all processes are executed sequentially in all processing
units as shown on top in Figure 4.9, and the performance/cost of the corresponding system
is known. In this example we change the order among abstract Read, Execute and Write
instructions as shown at the bottom in Figure 4.9. The performance/cost of the corresponding
transformation is obtained through simulation or prototyping (at lower levels of the hierar-
chy) or based on simple equations (at higher levels). If performance/cost results are more
satisfactory than with the previous ordering, the transformation is accepted.

4.4 Implementation phase 71

4.4 Implementation phase

The role of the implementation phase is to translate specifications output by the analysis
phase to implementation-level specifications, i.e., to specifications that commercially avail-
able compilers and synthesizers should be able to convert to an actual implementation. The
analysis phase and implementation phase are related in the sense that simulating the behav-
ior of implementations at lower levels of the hierarchy leads to actual performance and cost
numbers, which are used to calibrate the analytical models at higher levels of the hierarchy.
Thus, the two phases belong to a meet in the middle design approach.

In this section we first give the type of input to the implementation phase. Then we give
the principle to translate such an input (specification) to an implementation-level specifica-
tion, from where implementation should become straightforward based on standard tools. We
evaluate the capacity to go from abstract implementation-level specifications to real imple-
mentation in chapter 5.

4.4.1 Input to the implementation phase

At the input of the implementation phase, the application and architecture models are dif-
ferent from the initial application and architecture models at the input of the analysis phase.
Indeed, the initial specification had to be transformed so as to improve the matching. In the
system-level specification output by the analysis phase, the application and architecture mod-
els match, and predictions in terms of performance/cost are satisfactory. This unambiguous
system-level specification serves as an input to the implementation phase, and consists of
three parts:

• A final abstract application specification in terms of processes that execute sequences
of instructions and that communicate through channels in a network.

• A final abstract architecture specification in terms of interconnected library compo-
nents that have fixed parameter values and that expose specialized services.

• A mapping specification that corresponds to the assignment of each process and chan-
nel in the final application specification to a unique component in the final architecture
specification.

This system-level specification is complete in the sense that it includes all the information that
is necessary to be translated automatically to an implementation-level specification, without
modifying the input specification. This is a major difference with the analysis phase, where
specifications are modified iteratively after each mapping transformation.

In the example shown in Figure 4.10, the application is specified as a network of three pro-
cesses (P1, P2, P3) that execute sequences of abstract Read, Execute and Write instruc-
tions. The architecture specification consists of the processing units PU1 (FPGA) and PU2

(DSP) that communicate through a communication, synchronization and storage infrastruc-
ture (CSSI), which includes a bus, an arbitration unit AU and a storage unit SU (RAM).

72 Mapping

Each process is assigned to a processing unit, and each communication channel is assigned to
a storage unit in CSSI , except channel C2 that is assigned to PU1’s internal memory since
it connects P1 and P2 that are assigned to PU1.

Figure 4.10: During the automatic translation of system-level specifications output by the
analysis phase to implementation-level specification, optimizations are applied locally to
some parts of the system. We assume that implementation-level specifications can be con-
verted to actual implementation based on commercially available compilers and synthesizers
that integrate HW/SW IP-components and generate glue logic between these components.

4.4 Implementation phase 73

4.4.2 Automatic translation to implementation-level specification

A translator converts application traces, which are sequences of abstract Read, Execute and
Write instructions for each process in the application specification, to architecture traces,
which are sequences of specialized services for processing, communication and storage in
the architecture specification. To do so, the translator needs a list of assignments of processes
to components, and a list of specialized services that are supported by each component in
the architecture model. These lists are provided by the mapping specification and component
library, respectively, as shown in Figure 4.10.

Specialized services are implemented using HW/SW library (IP-)components, which are de-
signed and owned by third parties. A specialized service may have different versions since it
may be implemented with different (IP-)components that lead to different performance/cost
tradeoffs. This performance/cost information is included in the library. During the transla-
tion, the selection of a particular service version leads to the selection of the corresponding
(IP-)component in the implementation phase.

The input specification includes all the information that is necessary to be translated automat-
ically to implementation-level specification. Nevertheless, mapping transformations can still
be applied locally during the translation, e.g., to optimize local performance (reduce latencies,
resource usage, etc) by selecting a particular IP-component to implement a service. Note that
such a mapping transformation remains local and does not modify the input specification.

In the example shown in Figure 4.10, traces of abstract Read and Write instructions that are
executed in the process P3 are translated to specialized communication services (GetData,
PutData) that are supported by the processing unit PU2, and the abstract Execute in-
struction is translated to a specialized processing service (F3) that is supported by a SW (IP-
)component. We assume that all IP-components that are used in the resulting implementation-
level specification can be linked by commercially available tools to obtain an actual imple-
mentation.

Implementation

The implementation-level specification output by the translator is to be converted to an actual
implementation. This final step is not done at once for the complete systems we consider
because there is no tool that can deal with the large number of heterogeneous components.
Instead, different parts of the system are implemented separately with the most adequate
tools. Moreover, the implementation is done only at lower levels of the hierarchy (such as
multiprocessor systems-on-chips), where standard tools do exist that can take over and that
lead to close to optimal performance.

The implementation may involve code generation (programming) and compilation when tar-
geting (embedded) processors [68]. It may also involve hardware synthesis. During this
compilation/synthesis step, tools link (or wrap) HW/SW (IP-)components that implement
the required services. For example, SW libraries (DLLs) may be linked when targeting the
DSP that is part of the architecture in Figure 4.10, while RTL IP-components may be linked
when synthesizing for the FPGA. Moreover, this final step inserts glue logic (or completion

74 Mapping

logic) between (IP-)components whose interfaces are not compatible with each other so as to
glue (IP-)components together. At lower levels of the hierarchy, the insertion of glue logic
is done systematically by some tools that include their own (local) mapping transformations.
This glue logic handles signals such as start/stop/reset/enable, read/write addresses, etc, that
are different for different IPs. The systematic integration of IP-components and porting of
IP-based designs across architectures will be investigated in case studies in chapter 5.

4.5 Related work

A complete framework is presented in [69] to design and program embedded multi-processors
systems. This framework includes a task-level interface that permits developing parallel ap-
plication models (with several communication mechanisms) and that can serve to implement
applications on multi-processors architectures. However, this environment does not standard-
ize the description of tasks at a high-level of abstraction.

In the Artemis framework [70], an application is specified as a sequential program, which is
converted to a functionally equivalent KPN specification using Compaan [71]. The mapping
layer supports transformations to refine the application specification between levels of ab-
straction so as to match the level of granularity of the underlying architecture model, and to
perform quantitative performance analysis on levels of abstraction. The final specification is
converted to a system on a chip implementation using Laura [72]. Nevertheless, the problem
of implementing applications in large-scale architectures that require different specialized
tools is not faced.

In Thales [31], signal processing applications are specified using nested loops and are mapped
onto large-scale array signal processing systems. Loops are transformed so as to extract
their cores, which correspond to functions that are available in a library and that can be
implemented in different components. Mapping is human-driven: commands are proposed
to the user for application partitioning and allocation, insertion of communications, fusion of
tasks and scheduling.

The Model-Driven Architecture framework (MDA [22]) permits linking object models to-
gether when building (possibly large-scale and distributed [73]) systems. The MDA design
process starts from a UML-specification [74] of a Platform Independent Model (PIM) that is
marked so as to obtain Platform Specific Models (PSMs) for mapping onto different software
platforms. MDA incorporates automatic mapping transformations into the early stage of soft-
ware development. The systems Modeling Language (SysML [75]) is another UML-based
modeling language for specifying, analyzing, designing, and verifying complex systems that
include hardware and software. SysML provides a semantic foundation for modeling system
requirements, behavior, structure, and integration. Constraints on performance can be cap-
tured and serve as a means to integrate the specification and design models with engineering
analysis models.

4.6 Conclusions 75

4.6 Conclusions

In this chapter we discussed the mapping of the application model onto the architecture model
for the large-scale and distributed digital signal processing systems we consider, with the ob-
jective of analyzing performance/cost and implementing the systems. We presented mapping
transformations that can be taken from a library to iteratively improve the matching between
the two models on all levels of the hierarchy during the analysis phase. The association be-
tween the application and architecture models is restricted by the interfacing between the
signal processing part and the control and monitoring part. The output of the analysis phase
serves as an input to the implementation phase.

In the implementation phase, abstract instructions that are executed in processes in the fi-
nal application specification are translated automatically to specialized services that are sup-
ported by library components in the final architecture specification. During the transla-
tion, mapping transformations (high-level compilation steps) can be applied for local per-
formance/cost optimization, without modifying the input specification. The output of the
translation is an implementation-level specification, which still has to be converted to an
actual implementation based on commercially available tools. These tools implement spe-
cialized services based on (IP-)components. Case studies on the integration and porting of
(IP-)components are reported in the next chapter.

Chapter 5
Case studies

5.1 Summary

As far as the dominant signal processing part of the system is concerned, a down-scaled
version of the digital data-reduction subsystem in a station has been modeled, analyzed and
implemented as described in the previous chapters. Details can be found in [16]. We did
not model and implement the control and monitoring part for the same subsystem because
there was no option to construct the integrated system. Instead, we targeted multiprocessor
systems-on-chip architectures for which implementation tools do exist. We used these tools
and assessed their ability to convert implementation-level specifications to actual implemen-
tations.

We have conducted a number of experiments that are focusing on problems related to 1) the
systematic integration and re-use of IP components, which are designed and owned by third
parties, 2) portability of designs across components, and 3) the interfacing between leave
nodes in the control and monitoring part with processes in the signal processing part. The
first issue is important because integrating IP components in a design causes almost always
difficulties: ad-hoc glue logic is often required to deal with low-level signals and protocols
due to the lack of standardization. The second issue comes from the fact that components
in a library may come in types and versions that may evolve over time. The third issue is
important because the interfacing is one of the main aspects in this thesis.

78 Case studies

5.2 Introduction

When a digital signal processing system is implemented starting from model-based speci-
fications of application and architecture, it is the case that constituent components in both
specifications are pre-defined library components that are to be integrated in the ultimate
implementation. For example, an application process may execute a function f that is taken
from an (application) function library LAP as fAP . The corresponding architecture processor
will take from the (architecture) routine library LAR the routine fAR to execute the function
f . Both fAP and fAR are typically intellectual property (IP) components, which are designed
and owned by third parties.

This IP integration concept is appealing as it should free the designer from detailed low-level
design tasks that can be taken care of by IP design experts. However, this approach implies
that IP components come with interfaces that comply to some standard, and that there is
a unique functional relation between corresponding members in the two libraries LAP and
LAR. Neither of the two assumptions are practically satisfied. Two IPs that are functionally
equivalent may come with different interfaces, which require IP component specific integra-
tion solutions. Similarly, there may be no fAR in the library LAR that is functionally equiv-
alent to an fAP in the library LAP . For example, fAP may be operating on vector-valued
tokens, while fAR operates on scalar-valued tokens without including a vector to scalar con-
version. Moreover, both mismatch issues hinder possible porting of implementations from an
architecture (component) to another architecture (component) that may come from the same
or different manufacturers.

One of the objectives in the path from system-level specification to implementation is to
structure the design process as much as possible. A systematic design approach should allow
to automate the integration of IP components, and should permit obtaining actual perfor-
mance/cost numbers to calibrate the exploration of large-scale systems based on analytical
performance/cost models. However, it may be clear now that there is a tension between the
automation objective and the IP integration problem.

In this chapter we investigate the possibility to go from implementation-level specifications to
real implementation based on standards tools. We evaluate the capacity of different commer-
cial and academic tools to deal with the systematic integration of IP components, porting of
designs across architectures (components), and interfacing between control and monitoring
leave nodes and signal processing processes, based on case studies. The remainder of this
chapter is organized as follows. In section 5.3 we present the experimental context and the
setup we adopted to conduct our case studies. In section 5.4 we present two case studies on
the re-use of IP components and development of glue logic in the dominant signal processing
network only, and one case study on the re-use of IP components in the control and monitor-
ing network only. In section 5.5 we present two case studies on the interfacing between the
signal processing network and the control and monitoring network based on IP components.
Finally we give related work in section 5.6 and conclusions in section 5.7.

5.3 Experimental context and setup 79

5.3 Experimental context and setup

In this section, we give our implementation objectives in terms of performance and cost. Then
we present the experimental setup we adopted to conduct our case studies.

5.3.1 Objectives

An application is to be mapped onto an architecture that is modeled as a composition of li-
brary components. The mapping needs to satisfy a number of performance and cost objectives
that are summarized in Table 5.1. To reduce the architecture cost, we want to maximizing the
throughput in the signal processing network, while minimizing resource usage in the signal
processing network, in the control and monitoring network, and in their interfacing. Shorten-
ing the development time and supporting design scaling reduces the development cost.

Maximize Minimize
Throughput Resource usage
Scalability Development time

Re-usability Manufacturer dependence

Table 5.1: Performance and cost related objectives that must be satisfied when implementing
large scale signal processing systems.

In principle, in the systems we consider, IP integration issues and porting issues are encoun-
tered on all levels of the hierarchy, in the signal processing part, in the control and monitoring
part, and in their interfacing. In this chapter we conduct case studies to investigate different
methods that deal with these issues.

5.3.2 Setup

To focus on the critical interfacing between leave nodes in the control and monitoring net-
work, and processes in the signal processing network, we adopt the experimental setup that
is shown in Figure 5.1. We consider two architectures, onto which we map the two net-
works separately. This setup permits facing the IP integration problem separately for the two
networks, as well as for their interfacing. The mapping can be addressed on levels of the
hierarchy ranging from a composition of components to the level of basic modules that are
internal to the components. Also, the two architectures may be merged, such that parts of
the application may have to be ported from one architecture to another. This permits fac-
ing the porting issue. For example, leave nodes may be ported to the architecture the signal
processing network is mapped onto, such that the interfacing between the two networks also
becomes internal to that architecture.

To avoid too much abstraction, we map each network onto separate architectures that are
based on FPGAs for which IP components and automation tools do exist. We use these tools

80 Case studies

and we assess their ability to convert implementation-level specifications to actual implemen-
tations. In section 5.4, we focus on the separate mapping of the two networks. In a first case
study, we act as a skilled hardware IP designer and we develop our own glue logic to hand-
craft the porting of a design in the signal processing network only. In a second case study, we
address the re-use, scaling and development time issues by relying on tools to semi-automate
the mapping of signal processing applications, still based on hardware IP components. In a
third case study, we focus on the re-use and porting of programmable IP components to map
the control and monitoring network only. In section 5.5, we present two case studies around
the main issue of the interfacing of the two networks. First, we evaluate the interest of an
emerging standard to wrap and interface IP components similarly in the two networks. Then
we quantify the effects of a domain specific interfacing between programmable IP compo-
nents in the control and monitoring network, and hardware IP components in the signal pro-
cessing network, and we focus on design scaling and performance in terms of throughput and
resource usage.

Figure 5.1: Experimental setup to map a partition of the application. The partition includes
the interfacing between the signal processing part and the control and monitoring part.

5.4 Dedicated mapping of the two networks 81

5.4 Dedicated mapping of the two networks

In this section we present two case studies on the mapping of the signal processing network
only, on a dedicated architecture, and a case study on the mapping of the control and mon-
itoring network only, on a dedicated architecture as well. Too avoid too much abstraction,
we consider architectures that are based on an FPGA for which IP components and imple-
mentation tools exist. In the first case study we handcraft the integration and porting of IP
components. In the second case study we focus on the (re-)use, scaling and development time
issue by semi-automating an implementation. The third case study focuses on the integration,
porting and performance of programmable components. Finally we give requirements for
better mapping strategies in our application domain.

5.4.1 Handcrafted design

As an example of a high throughput signal-processing algorithm we implemented a polyphase
filterbank (FB). Roughly speaking, a polyphase filterbank consists of a number of finite im-
pulse response (FIR) filters whose inputs are derived from a decimated stream of signal sam-
ples, and whose outputs are discrete Fourier transformed (DFT 1) as shown in Figure 5.2.

Bank of filters

FIR filter

FIR filter

DFT
x(n)

Decimation

x0(n)

xk(n)

xN-1(n)

X0(m)

Xk(m)

XN-1(m)

Figure 5.2: Functional diagram of a polyphase filterbank.

The implementation must be parallel in order to sustain a high throughput. Therefore, choices
must be made concerning the degree of parallelism. These choices determine the partitioning
of the application. In the FB application, the functions (decimation, filters, and DFT) are
separated in blocks as is shown in Figure 5.2. Inside the filter block, filters are mapped on
a set of N multiply-accumulate modules and memories. The DFT is a higher grain function
that can be integrated as an IP module in the implementation. We propose to map the FB
on an FPGA architecture from a first manufacturer (Stratix from Altera [12]) and to port it
on another FPGA architecture from another manufacturer (Virtex-II Pro from Xilinx [13]).
These two architectures offer distributed local memories and embedded multipliers that can
be seen as low grain IPs.

The interface and granularity of the DFT IP that is used for the FB implementation are dif-
ferent for the two architectures. One implementation relies on a pipeline of 4 DFT IPs that

1The DFT is implemented as a Fast Fourier Transform (FFT), see [14]

82 Case studies

access vectors stored in a buffer, whereas the other implementation relies on a single DFT IP
that receives samples as tokens. Moreover, the input and output data formats are not equiva-
lent for the two IPs. The interfacing with the filters, then, must be dedicated in order to match
this specificity. In the filters, low grains IP (embedded multipliers, digital signal processing
blocks or specific memory blocks) are also different for the two architectures. Thus, some
glue logic (also called completion logic) is required to glue these IP components. The glue
logic deals with local specific signals (start/stop/reset/enable, read/write addresses) to match
IP specific communication and operation protocols.

Target IP cores LE(k) EM Mem(kbits) Speed(MS/s)
Stratix 4, pipe, float 10.5 32x9 bits 200 80

Virtex-II Pro 1, fix 7.5 12x18 bits 200 80

Table 5.2: Polyphase filterbank benchmark on Stratix and Virtex-II Pro.

This local glue logic was handcrafted and had to be modified when porting the IP-based
design from one FPGA to another. The handcrafted design and porting of the FB took ap-
proximately 4 months. About half of the time was spent on validations (including IP verifi-
cation). The rest of the time was mainly spent on (handcrafted) glue logic development. The
results concerning the porting of the FB application from a Stratix EP1S20 to a Virtex-II Pro
XC2VP20 are given in Table 5.2. These results are given in terms of resource usage (logic
elements: LE, embedded multipliers: EM , memory: Mem) and throughput (Million Sam-
ples per second) for 256 filters of 16 taps each, followed by a 256-point FFT. Given the same
throughput requirements, the implementations satisfy the same objectives in terms of size,
memory usage, etc., as defined in Table 5.2. The variations concerning the logic elements
(cells) come from the fact that the 4 pipelined IPs (Stratix) need more cells than the single
IP (Virtex-II Pro). Although handcrafted integration of IP components can lead to optimized
performance in terms of throughput and resource usage, developing IP-specific glue logic is
a time consuming and error prone activity.

5.4.2 Semi-automated design

In the previous subsection we have considered a hand-crafted FPGA implementation of a
high-throughput signal processing application. We paid in particular attention to problems
related to glue logic and portability when it comes to the integration of IP components, and to
their effect on implementation cost in terms of effort and development time. In the last decade
or so, several research groups in academia and industry have been proposing and prototyping
methods and tools for the (semi-)automated mapping of applications into FPGAs. We want
to assess if these methods can convert implementation-level specifications to implementation.
We distinguish approaches that start from a schematic specification from those that start from
a language-based specification. We tried one approach in each category. With the schematic
approach, we again looked at the FB implementation and focused on the development time
and design scaling issues. With the language-based approach, we focused on the use of
mapping transformations (high-level compilation techniques, see chapter 4) to implement a

5.4 Dedicated mapping of the two networks 83

cross correlation function with complex interconnects. We detail these case studies in the
remainder of this subsection.

Schematic approach

One concept followed by the Electronic Design Automation (EDA) industry [76] [77] is
a graphical entry of the functions in a schematic. We experienced the implementation of
the FB on an FPGA starting from a graphical specification in an extension of the Mat-
lab/Simulink [78] environment. This extension is tailored to implement signal processing ap-
plications in an FPGA from a unique manufacturer (DSP Builder from Altera). The approach
consists of specifying a digital signal processing application graphically as a composition
of library components in a single user-friendly development environment that encompasses
simulation, verification and synthesis tools.

The library of IP components can be extended by importing handcrafted IP components such
as the filter function that is part of the FB, and the associated glue logic. An implementation
is specified by drawing point to point connections between ports of these representations.
Note that a similar tool is available for Xilinx FPGAs (e.g., System Generator for DSP [13]),
and that there are also tools that target either Altera or Xilinx from a unique specification
in a similar environment (e.g., Synplify DSP from Simplicity [79]), therefore addressing the
porting issue. We draw here some conclusions concerning this schematic approach.

Positive aspects:

• It allows to combine handcrafted portable glue logic and architecture-dependent IPs.

• It facilitates the integration of manufacturer IPs by providing a user friendly simulation,
verification, synthesis and debugging environment.

Limitations:

• Simulation is bit and cycle accurate on all levels of the hierarchy. This makes it hard
to abstract from low level details when moving up in the hierarchy.

• The functions are connected and parameterized graphically. This is a restriction when
the system must be scaled because new connections must be inserted by hand.

These tools have been used successfully to fast-prototype the FB in a few days. This devel-
opment time is more satisfactory than the handcrafted implementation, and enables obtaining
actual performance and cost numbers rapidly. The performance in terms of throughput and
resource usage is slightly lower than in the handcrafted implementation, because the single
environment hides some compilation and synthesis parameters that were accessible in the
handcrafted implementation. Moreover, these tools are not efficient to specify and verify
applications with asynchronous communication schemes. Some language-based approaches
address this limitation.

84 Case studies

Language-based approach

In language-based approaches such as Compaan [80], dataflow applications are specified in a
language such as Matlab or C. Applications that are specified in Compaan can be converted
to GALS (Globally Synchronous Locally Synchronous) implementations. We used the Com-
paan tool to extract the parallelism of a cross-correlation application, which requires more
complex communication mechanisms than in the previous case studies. Compaan starts from
a specification in the form of a nested loop algorithm in a subset of Matlab, and compiles
specifications written in this language into a Compaan Process Network specification (CPN,
a special case of KPN).

During the compilation step, designers can apply mapping transformations such as process
splitting and channel merging. This allows to obtain different CPN specifications with par-
ticular degrees of parallelism starting from a unique specification. The CPN specifications
can be simulated and analyzed in the Ptolemy II framework [26]. This approach is conve-
nient to explore the mapping of large applications since the verification is done based on
operational semantics rather than based on overwhelming implementation details. Figure 5.3
shows two possible process networks for our cross correlation application. The configuration
on the left-hand side uses three correlator IPs in parallel. The data distribution is relatively
simple for this network. The configuration on the right-hand side needs only one correlator
IP to perform the cross-correlation of the signals X and Y. In this case, the data distribution
is more complex and requires re-ordering of tokens. This operation is done automatically in
Compaan.

Figure 5.3: Re-use of correlator IP for cross-correlation.

The CPN representation output by Compaan can be converted to an FPGA implementation
using Laura [72] or ESPAM [81], where part of the conversion of high-level specifications
to implementation specification is automated. Laura generates the skeleton of the partitioned
application and the glue logic corresponding to the data distribution automatically. Hardware
IP components such as the correlator IP are taken from a library and are integrated by the
designers in nodes where a local controller, which is generated automatically, governs their

5.4 Dedicated mapping of the two networks 85

behavior and their interaction with other nodes via FIFOs, which are also generated auto-
matically. Thus, IP components can be upgraded or scaled independently of each other. The
development time, including the analysis phase, is comparable to that of an implementation
that starts from graphical specifications.

Positive:

• Compaan provides means to transform sequential specifications to a parallel repre-
sentation in a correct by construction manner, and shortens the time to analyze the
partitioning.

• Laura generates the skeleton of the network to encapsulate and separate IPs, and local
controllers to handle asynchronous communication between IPs.

Limitations:

• The local control logic that governs the IPs induces a 35% increase in resource usage
compared to the standalone IPs, and reduces the operating frequency of the IPs to 60%
of their maximum frequency in this case study.

• Inserting IPs in nodes must be repeated (by hand) when scaling the system.

In particular, if the requirements are changed, the controller and FIFOs can be generated
automatically again, but the IPs need to be re-inserted and the integrated design re-verified.
Nevertheless, this approach helps to scale designs in an efficient way by modifying only the
high-level specifications. Indeed, it was possible to scale the correlator IP to build a cross-
correlator simply by modifying the specifications of the Matlab code (entry of Compaan).
Even if the Compaan-Laura tool chain is currently FPGA dependent, porting of applications
across FPGAs from different manufacturers could be supported by this approach in the future.

5.4.3 Integration of programmable IP components

In the previous case studies, we investigated different methods to integrate and port hardware
IP components when mapping the signal processing network. There are also programable IP
components, such as the nios II soft-core from Altera, the microblaze softcore from Xilinx
and the portable soft-core Leon2 [82]. In the remainder of this subsection we first introduce
these soft-cores, and we present our case study on the mapping of the control and monitoring
network based on these IP components.

Soft cores

A soft-core is a general-purpose Reduced Instruction Set Computer (RISC) processor. It is re-
configurable in the sense that some features can be added or removed on a system-by-system
basis to meet performance and cost requirement and constraints. For example, the size of
the embedded memory that stores instructions can be configured, the instruction set can be
customized, and specialized arithmetic and logic units can be instantiated at compile time.

86 Case studies

We first considered the LEON2 [82] software processor, which is a fully synthesizable and
parameterizable VHDL model of a SPARC V8 architecture. This software processor uses a
standard on-chip bus from ARM (AMBA [83]). We ported a LEON2 soft-core across the
two FPGAs we considered during our handcrafted implementation in the first case study.
However, the mapping of a LEON2 soft-core uses 5 times more resources and can hardly
sustain half the throughput compared to a typical implementation of a soft-core that is manu-
facturer dependent. When designing with manufacturer-dependent soft-cores such as nios II
or microblaze, the application is specified in a user friendly environment (SOPC and IDE
for Altera; XPS and EDK for Xilinx), which explicitly separates the hardware specification
from the software specification. Many peripherals are available as library (IP-)components in
these environments, and can be connected to a manufacturer dependent bus (AVALON [12] or
OPB/PLB [13]). We experienced these two design flows to lead to short development times,
and mean performance in terms of resource usage and speed (about 1,000 logic elements and
up to 150MHz per soft-core).

This performance is hardly half the performance that can be achieved with hardware IPs.
To sustain the same throughput as hardware IPs, soft cores must be implemented in parallel
(multiprocessor system on chip - MPSoC). This results in an increase in resource usage and
system cost. Moreover, soft cores execute instructions in a sequential order. However, our
signal processing applications require a high degree of parallelism. Thus, in contrast to [81],
we do not map the signal processing network onto soft cores. Nevertheless, we mapped the
control and monitoring network, where tasks are executed at a lower rate than in the signal
processing network, onto a hierarchical network of soft cores.

Hierarchical network of soft cores

As introduced in chapter 2, processes in the control and monitoring network (root node,
intermediate nodes and leave nodes) are arranged in a tree topology. In our approach to map
this part of the system, root-node is mapped on a PC, and the rest of the system is mapped
on an FPGA as shown in Figure 5.4, where the intermediate-node becomes the single access
point for control and monitoring.

Figure 5.4: Mapping a control and monitoring network onto a network of soft cores.

5.4 Dedicated mapping of the two networks 87

Intermediate nodes and leave nodes are mapped onto soft-cores embedded in an FPGA. The
code that is executed in the soft cores clearly separates generic high-level primitives, which
implement the functional behavior of the nodes in the control and monitoring network, from
specialized services that are supported by soft cores. This is illustrated in Figure 5.5 for the
mapping of an intermediate-node as a simple state machine. The default state is represented in
grey (INIT, lines 11-15) and corresponds to the initialization of the communication channels
in the control and monitoring network. These channels are first checked for the presence of
packets (READ&CHECK). When a packet is received, there are two possibilities (SWITCH):
it is either sent to the appropriate destination node in the control tree (ROUTE), or it is inserted
in a priority queue (QUEUE&ORDER, lines 16-22). Finally, there are again two alternatives
(CHECK): the command that is in the packet on top of the queue must be executed on the
occurrence of the next synchronization pulse (EXECUTE), else the communication channels
are checked again until a new packet enters the node or a new command must be executed.

Figure 5.5: Mapping a node as a FSM onto a soft-core: state diagram and corresponding
architecture-independent pseudo code.

The two leave nodes and the (intermediate) node above in the hierarchical control and mon-
itoring network are mapped onto nios II soft-cores in a Stratix II FPGA [12], and support a
portable real-time kernel (MicroC/OS-II [84]) to handle synchronization pulses as interrupts.
The (intermediate) node also supports a portable light-weight TCP/IP stack [85] to commu-
nicate with the root-node that is mapped on a CPU in a PC. The intermediate node and leave
nodes communicate through communication channels that are mapped onto on-chip dual port
memory as detailed in [86]. We used a middleware library to govern the exchange of control
packets among soft-cores such that this exchange relies on the same instructions at higher
levels of the hierarchy in the control and monitoring network. This middleware required ap-
proximately 1.3MB of external SDRAM for each soft-core. This is acceptable in the systems
we consider since a few GB of memory are typically available to store large snapshots of data
next to the FPGAs.

88 Case studies

With this approach, all soft-cores operate independently of each other and communicate in
a unique manner. This allows to scale the system without inserting new types of interfaces,
and without necessarily modifying the code that is executed in the soft cores. It took approx-
imately 4 months to first prototype and validate the complete system. Note that the validation
was done by probing the signals at run time rather than by simulating the MPSoC implemen-
tation, since the simulation speed was too slow. We draw here some conclusions concerning
this design approach.

Positive aspects:

• The application software is based on function calls that abstract the underlying hard-
ware architecture. This facilitates porting of applications across different architectures.

• The architecture can be configured at compile-time to match specific performance and
cost requirements.

Limitations:

• The verification of the multiprocessor system-on-chip is difficult and time consuming.

• Implementing communication channels between soft-cores is not automated.

5.4.4 Conclusions

The comparisons between the approaches evaluated in this section with respect to the objec-
tives given in Table 5.1 are summarized in Table 5.3. Depending on the chosen approach to
specify the system, different results are obtained. Nevertheless, we were not entirely satisfied
with any of the approaches. Results in terms of throughput and resource usage were satis-
factory only for handcrafted implementations in our case. Scalability and reusability were
considered to be limiting factors when a modification of high-level parameters implied hand-
crafted interfacing of IP-components. It was satisfactory when a skeleton was automatically
generated for the entire application as in Compaan-Laura. We experienced the development
time to be satisfactory when it took less than a week, and limiting when it lasted longer than
a month (as in handcrafted implementations). Concerning the porting objective, we were not
satisfied with any of the design approaches. Indeed we had to use tools that did not support
identical library components, and that slowed down the verification procedures since they
were hardly compatible with each other for the manipulation of test vectors.

For an automated mapping to be feasible, the IP interfaces must be described and charac-
terized in a standard way. This is true on all levels of the hierarchy. Moreover, large scale
systems can not be validated by simulating low level details on all levels of the hierarchy. To
facilitate the comparison of multiple mapping options at higher levels of abstraction, models
of the IP components, and models of their interfacing must be available and compliant to
some standard. In this way, iterative refinement methods will become more transparent and
larger designs could be handled. This is true in the signal processing network, in the control
and monitoring network, and, as we shall see in the next section, in their interfacing.

5.5 Interfacing of the two networks 89

Handcrafted Simulink Compaan-Laura Nios II
Throughput 1 2 3 2

Resource usage 1 1 3 2
Scalability 2 3 1 2

Re-usability 2 3 2 2
Development time 3 1 2 1

Dependence 2 3 2 3

Table 5.3: Design approaches and observations with respect to the criteria given in Table 5.1
(1: satisfactory; 2: can be improved; 3: limitation).

5.5 Interfacing of the two networks

In the previous section we investigated different approaches to integrate IP components and
port applications across architectures when mapping the signal processing network and the
control and monitoring network on separated architectures. A down-scaled version of the
digital data-reduction subsystem in a station has been modeled [16]. We did not model and
implement the control and monitoring part for the same subsystem because there was no
option to construct the integrated system. Instead, we conducted two case studies around the
interfacing between the signal processing network, and the control and monitoring network.
This interfacing is one of the main aspects of this thesis.

In the first case study, we evaluate an emerging standard to interface IP components in a
unified way in the two networks. Then we quantify the effects of a domain specific inter-
facing between programmable IP components in the control and monitoring network, and
hardware IP components in the signal processing network, and we focus on design scaling
and performance in terms of throughput and resource usage. Finally, we give our views on
the interfacing of IPs.

5.5.1 Standard interfaces

We tested the OCP-IP standard [87], which connects IP components based on point to point
communication channels, and which follows a master-slave protocol. For a component to be
both a master and a slave, it must be assigned two communication channels. The OCP-IP
standard is fully compliant with our objective in term of portability. Indeed, it is bus indepen-
dent (and therefore manufacturer independent). Moreover, the OCP standard supports many
interfacing mechanisms, ranging from simple reads/writes to burst, pipeline or concurrent
transfers. On the one hand, this configurability is convenient since it gives freedom to specify
our application from a high-level without being dependent on a unique communication proto-
col on all levels of the hierarchy. On the other hand, as mentioned in [88], the OCP standard
does not support mechanisms for arbitration or address decoding. This can be a limitation
when several components must share a resource such as a memory.

We evaluated OCP using its SystemC [89] libraries. There are two levels of abstractions

90 Case studies

in these libraries: a first one (TL1) corresponding to a functional level and a second one
(TL2) is closer to the hardware implementations. These two levels are compatible. This
allows for progressive mapping refinement when designing from high-level. Therefore we
used TL1 to specify a signal processing application consisting of two concurrent IPs (FIR
filters) as shown in Figure 5.6. Each filter is connected to a dedicated leaf node. In this
case, the two leave nodes are identical and are governed by a single intermediate node. The
intermediate node and the two leave nodes receive the same synchronization pulse, indicating
when specific actions such as the re-configuration of the filter coefficients or the monitoring
of the data can take place. These actions are based on commands (contained in packets)
received asynchronously by the intermediate node.

Figure 5.6: High-level specification of (OCP) interface in SystemC.

As in [90], we co-simulated SystemC and VHDL. Thanks to a particular function provided
by OCP-IP, each OCP communication channel could be monitored separately during this
co-simulation, without altering the behavior of the complete design. Moreover, scaling the
design from one leaf node and filter to two leave nodes and filters was a very simple step.
Indeed, we only had to instantiate one more FIR filter IP, one more node and one more
OCP channel between this node and the intermediate node. Therefore the combination of
SystemC and OCP for the specification of our signal processing applications from a high-level
is efficient with respect to our objectives in term of scalability. However the co-synthesis of
SystemC and VHDL remains an issue when aiming at both high throughput and low resource
usage. We can derive the following conclusions concerning this approach:

5.5 Interfacing of the two networks 91

Positive:

• It facilitates design-scaling by supporting several interfacing schemes and their moni-
toring during simulation.

• It facilitates portability thanks to manufacturer independence.

• It supports refinement across levels of abstraction.

Limitation:

• For this emerging standard, co-synthesis is not mature enough yet to compete with
handcrafted implementations in terms of performance.

This co-synthesis and performance limitation motivated us to investigate a more pragmatic
way of integrating IP components, by interfacing programmable IP components (soft cores)
in the control and monitoring network with hardware IP components in the signal processing
network.

5.5.2 Merging the two architectures

In this case study, we merge the FPGA onto which the control and monitoring network is
mapped using programmable IP components, with the FPGA onto which the signal process-
ing network is mapped using hardware IP components. Thus, the interfacing between the
two networks becomes internal to that FPGA. To anticipate design scaling and design re-use
issues, all hardware IP components are wrapped and connected with the soft cores in a uni-
form way. The two types of IPs are implemented in separated clock domains so as to avoid
obstructing the high speed execution of the hardware IPs when interfacing them with low
speed programmable IPs.

Hardware IP wrapping

Each leaf-node controls and monitors the behavior of a (KPN) process that is mapped on a
wrapped IP component. As detailed in [91], the hardware realization of a wrapper is made of
four components that are shown in Figure 5.7: a Dataflow Read Unit that gets tokens from
dataflow input channels, multiplexes and transmits them to an Execute Unit, which consumes
these tokens, performs computation using an IP in a Function Repertoire and produces output
tokens towards a Dataflow Write Unit. This unit includes a private memory. It demultiplexes
the output tokens and sends them to output dataflow channels. The fourth component is the
Controller that governs the execution of the three other units.

In the interface between a leaf-node and a process, the additional command/parameter port is
connected to a Control Read Unit. The Dataflow Read Unit, Dataflow Write Unit and Func-
tion Repertoire get their own configuration parameters under the supervision of the Con-
troller. The additional monitoring-data port is connected to a Control Write Unit, which

92 Case studies

probes the dataflow in the Dataflow Write Unit, as well as the state of the node in the Con-
troller.

Figure 5.7: Hardware implementation of a process, including everything that is needed for
the interfacing with a leaf node.

The Controller keeps the dataflow processing, control and monitoring processing and syn-
chronization mechanism separated by means of three concurrent FSMs. A first SYNC FSM
synchronizes the execution of commands issued from a leaf-node with the (periodic) execu-
tion of the signal processing function. A second DF FSM controls the dataflow Read and
Write ports in a Stream Based Functions (SBF [51]) dataflow model of computation. A third
IP FSM controls the IP Execute function repertoire in the SBF dataflow model of computa-
tion. Portable and synthesizable HDL code is generated automatically for these three FSMs
from a high-level architecture-independent graphical specification.

Prototype implementation and results

In our prototype implementation, the signal processing network is limited to a single KPN
with two processes as shown in Figure 5.8, and each IP function repertoire contains a unique
re-configurable IP-component. The first process wraps an IP that generates periodic dataflow
patterns (e.g. impulses, ramps or sinewaves) that can be re-configured (e.g. amplitude, fre-
quency) at run-time by the first leaf node. The second process wraps a FIR filter IP whose
taps can be re-configured (e.g. low-pass, band-pass, high-pass characteristics depending on
the operational mode) at run-time from the other leaf node2. These two processes are imple-
mented in a first clock domain.

The two leave nodes and the intermediate node above in the control and monitoring network
are executed in nios II soft cores as discussed in section 5.4. The three soft cores run at the
same frequency and are implemented in a clock domain that is independent from the clock
domain of the signal processing network.

2In this case study, we restrict ourselves to run-time re-configurations that do not change the length of the dataflow
patterns and the number of taps in the filter. We modify the length of the patterns and the number of taps at compile-
time.

5.5 Interfacing of the two networks 93

Figure 5.8: FPGA implementation of a hierarchical control network in soft cores to control
and monitor a test generator IP and a FIR filter IP.

Re-configuring the FIR filter IP coefficients requires converting the new coefficients to the
IP-specific format because coefficients are stored in partial order and distributed in embedded
memory segments. This conversion is done in the Execute state of the leaf-node that controls
the IP as shown in the pseudo-code in Figure 5.8. On the occurrence of a synchronization
pulse in the leaf node, a control packet is processed. If a packet requests re-configuring the
filter, then a program is called (lines 2-4) that converts the configuration data to the IP-specific
sequence. This sequence is sent to the re-configuration channel (lines 10-12) and the control
packet is removed from the queue after its execution (line 6). The leaf node may then send a
command to activate the re-configuration of the process at the beginning of the next execution
cycle.

Figure 5.9: Impact of design-scaling on throughput and resource usage (designs are scaled at
compile-time).

We scaled the number of taps in the FIR IP, i.e., the period of this process, at compile time,
without altering the behavior of the interfacing with the control and monitoring network.

94 Case studies

Figure 5.9 shows the impact of the FIR IP function-scaling on throughput (maximum fre-
quency sustained by the dataflow in the process after synthesis, on the left-hand side) and
resource usage (LUT, on the right-hand side). Results are given for the specific interfacing
between the two networks (control and dataflow; CN-DFN) presented in this section and for
a manufacturer-dependent dataflow only interface (Atlantic [12]). Our interface needs a few
more resources since it includes both dataflow and control. The loss in the throughput is less
than 10% with respect to the manufacturer-dependent interface. Thus, the performance of the
FIR IP is not significantly altered by the interfacing with the leaf-node.

Portable HDL has been generated from high-level graphical specifications in StateCAD [13]
for the three FSMs that are executed in the IP-wrappers. Thus, we avoided time consuming
and error prone HDL handcrafted glue logic development. The interfaces we prototyped per-
mit de-coupling low-speed clock domain(s) in the control and monitoring network (soft-cores
hardly run faster than 150MHz) from the high-speed clock domain(s) in the signal processing
network. We can derive the following remarks concerning the interfacing approach that we
used in this prototype implementation:

Positive:

• The control and monitoring network can be mapped onto soft-cores and interfaced with
IP-wrappers without significantly obstructing the performance of the dominant signal
processing network.

• Dedicated links between soft cores and hardware IPs allow to scale the the IPs in the
dominant signal processing network independently of each other and still get close to
optimal performance.

Limitations:

• The approach is restricted to the interfacing with large hardware IP components, which
use more resources than soft cores, such that the signal processing network remains
dominant.

• The current implementation does not allow to change the periods at run-time in the
signal processing network.

5.5.3 Requirements for future IP-based designs

The comparisons between the approaches evaluated in this section with respect to the criteria
given in Table 5.1 are summarized in Table 5.4. In contrast to the approaches that have been
investigated in section 5.4 for the mapping of the two networks in isolation, none of the
two approaches we evaluated in this section is considered to be limited regarding any of the
objectives.

The standard interface approach relies on high-level synthesis that exploits hardware hetero-
geneity at the cost of gross performances. The interfacing between soft cores and hardware
IPs leads to better performance but is not fully automated yet. It may be interesting to include

5.6 Related work 95

SystemC-OCP soft cores & wrapped IPs
Throughput 2 1

Resource usage 2 2
Scalability 1 1

Re-usability 2 2
Development time 2 2

Dependence 1 2

Table 5.4: Design approaches and observations with respect to the criteria given in Table 5.1.
(1) satisfactory; (2) can be improved; (3) limitation.

models of our specific interfacing approach in a framework. This framework should support
standardization on multiple levels of abstraction, and transformations to semi automate the
mapping of high level application specifications down to the level at which component spe-
cific compilers and synthesizers can implement the system.

5.6 Related work

F. Wagner et al. [88] identified strategies and gave research directions for the integration of
IP components in systems-on-chip altogether with the generation of an OS. The challenges
of co-simulation and co-synthesis of IP-based designs are covered. In our approach we are
interested in mapping our applications onto networks of re-configurable architectures. Auto-
mated task-level mapping of video-audio application on FPGA with systematic data-flow IP
interfacing is covered in [92] at a level of details, which is closer to our work. However the
problem of mapping onto multiple architectures is not addressed.

Organizations such as Virtual Socket Interface Alliance [93] or the Object Management
Group [94] are specifying open interfaces standards for components to be integrated into
sockets. Others, such as the System Design Industrial Council-Telecom (SYDIC-Telecom [95]),
analyze also the design flows in relation with specification languages and formalism analysis
to address the issues of design re-use starting from a system level conceptual level. Voros [96]
contributed to this research by identifying the common basis in all these approaches in par-
ticular the parametrization issue [97] in various aspects of granularity and the encapsulation
of IPs in an object oriented system design. Objects provide for a structural representation of
the information through all abstraction levels.

The objective of El Greco [98] is to provide a path to implementation as embedded software,
synthesizable hardware or both. Applications are specified in the form of dataflow graphs
with Kahn or CSDF-like semantics [99], hierarchical synchronous finite state machines with
Esterel-like imperative semantics [100], or a mixture, arbitrarily nested. In [53], applications
are modeled using Process Networks and Stream-Based Functions (SBF [51]) with non-static
parameters. These applications are also mapped onto an FPGA and get configuration data
from outside. However, the re-configuration is only possible after a complete network cy-
cle. We want to be able to re-configure each individual periodic dataflow process during

96 Case studies

any period at run-time, without stopping the entire signal processing network since the high
throughput dataflow originating from the antennas is permanent in our systems.

Library components are available to implement control functionalities, signal processing
functionalities, and their interfacing in the Berkeley Emulation Engine (BEE2 [29]. This
is also the case for the LOFAR Remote Station Signal Processing platform (RSP3 [64]).
Although the mapping of applications onto these FPGA-based architectures is manual and
starts on a level that is partly dependent on these architectures, a station can be obtained by
duplicating the resulting subsystems.

An approach to dynamically reconfiguring a streaming application in a hierarchical SoC
with a multiprocessor subsystem is presented in [101]. Processing tasks can be reconfig-
ured through inserting reconfiguration tokens in the data streams. We avoid such insertions
by physically separating dataflow and control paths in our implementations. Nevertheless,
combining the generic services offered by the shell described in [101] with a standard task-
level specification as in [69] would lead to optimized SoC implementations and re-usable
IP-components.

5.7 Conclusions

Five case studies have been conducted to focus on systematic integration and re-use of IP
components, portability of designs across components, and interfacing between leave nodes
in the control/monitoring part with processes in the signal processing part. We first im-
plemented a high throughput signal processing application across different FPGA fabrics.
The specified implementation matched our requirements. However, handcrafting completion
logic to glue IP components hindered design scaling, porting of designs, and was too time
consuming and error-prone. We then used two approaches to automate the mapping in the
signal processing network only, starting from abstract graphical and language-based speci-
fications, respectively. Then, we evaluated the use of programmable IPs to implement the
control and monitoring network only. These three approaches helped to shorten the overall
implementation specification time but we encountered many disparities between the tools we
manipulated, especially concerning IP interfacing and (re-)use of glue logic. We derived re-
quirements to improve the mapping of our applications with respect to these issues based on
standard interfaces.

Then we evaluated two approaches to interface the two networks. The first approach is a
bus-independent emerging standard that enables wrapping all IPs in a uniform and system-
atic way from high-level specifications. This facilitated the duplication of IP components in
our applications, but did not lead to satisfactory performance. To address this limitation, we
evaluated a more pragmatic approach in a prototype implementation. In this approach, some
glue logic is generated automatically from graphical representations of FSMs. Control and
monitoring tasks have been implemented in programmable IPs in a first clock domain, and
signal processing tasks have been implemented in hardware IPs in another clock domain. The
interfacing between the two domains relies on point-to-point interfaces between leave nodes
and processes, which keep the clock domains separated, and which permit adding IP com-
ponents without significantly obstructing the performance of the dominant signal processing

5.7 Conclusions 97

network. However, the digital systems we consider consist of many parts, which require dif-
ferent implementation tools. These tools imply different restrictions in terms of compilation
steps and glue logic generation, such that it is currently hard to separate data from control
when targeting a large system from a single implementation-level specification. Bringing a
regular and more homogeneous structure, both at multiprocessor system-on-chip level and at
higher levels of the hierarchy in future tools, would simplify this implementation task.

Chapter 6
Conclusion and future work

6.1 Conclusion

In this thesis we gave an approach to structure the path from abstract system-level specifica-
tions (in terms of application, architecture, and their association together) to implementation-
level specifications (the level of abstraction from where compilation and synthesis tools
should take over to obtain a real implementation). We focused on large-scale and distributed
embedded signal processing systems and considered the particular case of the digital process-
ing part in stations in next generation phased array radio telescopes such as SKA [2]. The
approach consists of expressing system-level specifications in terms of models that provide
a good foundation to take design decisions in a consistent way, therefore avoiding intuitive
decisions. We brought together different approaches that have been proposed by others for
the separate modeling of the application, architecture, and mapping of the former onto the
later for the signal processing part only [16]. We focused on the control and monitoring part
of the system that we separated from the dominant signal processing part. This raised the
specific problem of the interfacing and synchronization of these two parts. We addressed this
problem separately in the application, architecture, and mapping.

In the application specification, we expressed the functional behavior of the system based on
the operational semantics of a model of computation that describes unambiguously the way
data is simultaneously processed in computation nodes and communicated between these
nodes in a network. We specified the behavior of the signal processing part with a transfor-
mative stream-based model of computation, and the behavior of the control and monitoring
part with a reactive state-based model of computation. To synchronize the two models, we re-
lated a timing model that is known only to the control and monitoring part, with the repetitive
behavior of processes in dataflow process networks.

In the architecture specification, we expressed the non-functional behavior of components

100 Conclusion and future work

and their interconnection interfaces that are taken from a library of components, including
permissible interconnection rules. At lower levels of the hierarchy, components are modeled
as white boxes whose internal modules provide simulation means to obtain actual perfor-
mance/cost numbers. At higher levels of the hierarchy, components are modeled as black
boxes whose performance/cost behavior is modeled in terms of analytical relations between
input quantities and output quantities. In these relations, parameter values are calibrated with
information obtained from lower-level white-box model simulations. The composition in the
signal processing part sustains intensive computations on and transport of high throughput
data streams with a high degree of parallelism. The composition in the control and monitoring
part supports the exchange of sporadic messages and the execution of sequential procedures
in reaction to these messages. The two architectures are interfaced through point-to-point
links between processing units at the lowest hierarchical level. This simple interfacing leads
to an architecture model onto which the application model can be mapped.

The transformation-based mapping associates the application model together with the archi-
tecture model, and improves their matching in terms of level of detail and in terms of perfor-
mance/cost on all levels of the hierarchy. We assumed that mapping transformations are avail-
able in a library, and that they can be called iteratively and interactively in any order. After
each mapping transformation, functional and non-functional behaviors of the system are an-
alyzed. Such analysis is the core function of the design space exploration method that should
converge to (pareto)optimal system specifications. The abstract specifications that are sug-
gested by the last iteration in the exploration process are finally converted to implementation-
level specifications. During that conversion, additional transformations (high-level compi-
lation steps) can still be applied automatically to optimize the performance of parts of the
system. We assumed that different parts in the implementation-level specification can be
converted to real implementations based on different commercially available tools.

To assess the capacity to obtain real implementations while dealing with Intellectual Prop-
erty (IP) components integration constraints, we conducted a few experiments using differ-
ent model-based approaches supported by commercially available and academic tools for
multiprocessor systems on chip. The specification of the signal processing part and con-
trol/monitoring part is unified in the application and/or architecture in most approaches.
This does not permit taking decisions separately about the two parts. Moreover, the per-
formance/cost of the candidate mappings is evaluated based on simulation with the same
level of detail on all levels of the hierarchy in most approaches. This is a limitation for large-
scale and distributed systems where analytical models are required to fasten the design-space
exploration process at higher levels of the hierarchy. Mapping transformations are hidden in
compilation steps, and their order is fixed in most approaches. This restricts the number of
mapping alternatives but facilitates the systematic integration of IP components by generating
automatically glue logic between IP components.

A major difference between large-scale embedded systems and relatively small-scale embed-
ded systems (such as a multiprocessor system-on-chip, which can also be extremely com-
plex) is that the former include more levels of hierarchy than the latter. When composing
sub-systems in large-scale systems, assumptions are different from assumptions in SoC (for
example, the signal processing part and control and monitoring part are mixed in a SoC,
whereas they can be separated in large-scale systems). However, when moving up in the

6.2 Future work 101

hierarchy, and to scale the system, it is necessary to bring a regular structure in both types
of systems. At SoC-level, this is achieved by organizing the architecture in a regular, struc-
tured, and homogeneous way at the highest level of abstraction [102] [103]. In the large-scale
systems we consider, this is achieved based on networks of stations.

6.2 Future work

The design approach we presented in this thesis is neither purely top-down nor purely bottom-
up. It is a meet in the middle design approach since the analysis that is part of the mapping
process is calibrated based on simulation or prototyping of actual components. In this ap-
proach, we assume that all components that are involved in a system are available as white-
box/back-box models in a unique library. In practise, of course, new components progres-
sively appear when constructing and scaling a system, and corresponding component models
must be added to the library. This insertion may seem to be a burden during the develop-
ment phase. We argue that facilitating this insertion in existing design space exploration
frameworks for large-scale and distributed embedded signal processing systems such as the
Massive Exploration Tool [104], has a substantial reward in terms of design re-use, design
scaling, and design porting. Means should be provided to automate the mapping of abstract
instructions (which are executed in nodes in the application model) onto specialized services
(which are supported by new components) in such frameworks.

Since we decided to separate the modeling of the signal processing part from the modeling
of the control and monitoring part, we naturally gave two separate architectures, which we
interfaced only at lower hierarchical levels through point-to-point links. This may be viewed
as a restriction if both the signal processing part and the control and monitoring part have
to be mapped on a single architecture. We argue that the approach we presented is powerful
enough to address the mapping of the two parts on a single architecture, by going through
additional cycles in the iterative and interactive analysis phase. We gave a pragmatic approach
to address this situation in a case study. To address this situation automatically in the future,
additional mapping transformations should be provided, and glue logic should be generated
according to (preferably domain-specific) standards.

Given the scale and complexity of future large scale and distributed signal processing systems
such as SKA, identifying hot spots for power consumption and minimizing their impact will
become a major issue. It could be done by raising the level of abstraction (for example, by
associating Globally Asynchronous Locally Synchronous models in the application together
with white-box/black-box models in the architecture) while applying domain-specific design
patterns as advocated in this thesis. Moreover, these systems are likely to be developed by
teams that will be spread all over the globe. Adopting the model-based approach presented
in this thesis will help to structure the design process and to interface these subsystems so as
to reach the next order of magnitude of scale.

Appendix A
An overview of specification-level
models of computation

A.1 Summary

In this Appendix we analyze specification-level models of computation in a way that is ac-
cessible to a broad community. The analysis is not formal but rigorous enough to understand
and compare some fundamental properties of state-based and dataflow-based models of com-
putation in terms of synchrony, concurrency, communication, determinism and composition.
We use operational semantics so as to conveniently analyze computation and communication
details for each individual model.

A.2 Introduction

Models of computation have formal semantics that allow specifying applications unambigu-
ously. These semantics are denotational, operational or axiomatic [42]. In this Appendix we
use operational semantics to analyze the way data is simultaneously computed and communi-
cated in a large set of models of computation. In Section A.3 we analyze state-based models
and event-triggered models that may be used to specify the behavior of the control part of the
large-scale systems we are concerned with. In Section A.4 we analyze stream-based models
and dataflow models that may be used to specify the behavior of the dominant signal pro-
cessing part in these systems. Models that mix state-based and stream-based semantics are
analyzed in Section A.5. We give our related work in Section A.6 and draw conclusions in
Section A.7.

104 An overview of specification-level models of computation

A.3 State-based and event-triggered models

In this Section we analyze the semantics of models of computation that naturally capture
changes in the behavior of control-dominated systems in reaction to events that are produced
by their environment.

A.3.1 Finite State Automata

Figure A.1: Traditional FSM model - elevator controller example. Left: Mealy; Right:
Moore.

Moore and Mealy Finite State Machines (FSM) consist of a set of states, a set of input, a
set of output that are given in function of states and input, and a next-state function. Mealy
FSMs modify output on transitions between states without delay, whereas Moore FSMs mod-
ify output within a state after a delay as depicted on the left-hand-side and right-hand side
in Figure A.1, respectively, for an elevator controller example. These FSMs are intended
for systems with relatively low complexity. They permit modeling deterministic sequential
behaviors and can very well be analyzed. Code can easily be generated from these models.

However, the description and visualization of a system may become untractable with tra-
ditional flat FSM models. Moreover, modeling concurrency is impossible with traditional
FSMs semantics.

A.3.2 StateCharts

Harel [45] proposed the StateCharts, whose semantics rely on events that trigger transitions,
conditions that guard these transitions, and resulting actions. StateCharts allow reducing the
visual complexity of traditional FSMs by supporting three mechanisms (Figure A.2 illustrates
the first two mechanisms).

A.3 State-based and event-triggered models 105

• Depth (hierarchy): being in a state a means that the machine is in one of the states of
another machine enclosed by a. The states of a are called or states.

• Orthogonality (Concurrency): a system can be in one state of several parallel state
machines simultaneously. Such parallel states are called and states.

• Non-determinism/abstraction: states can be abstracted (not fully determined) so as to
allow their future description.

Figure A.2: OR-decomposition (left) and AND-decomposition (right) in StateCharts. OR:
when it is in state U, the machine is either in state S or T; AND: when it is in state U, the
machine is in a state of S and in a state of T. Concurrency is represented with a dotted line.

FSMD

A FSM with Datapath (FSMD [105]) is a combination of two (locally) synchronous FSMs
arranged on top of each other: a datapath FSM and a controller FSM. The datapath FSM
contains a set of functions and internal signals. It implements the functional behavior of the
FSMD. The controller FSM selects a function in the repertoire in the datapath FSM depending
on the values of the signals in the datapath FSM, but does not manipulate input and output
signals. A FSMD has a deterministic behavior. Communication is synchronous in a network
of FSMD, and a single output port may be connected to several input ports. A hierarchical
composition of FSMD preserves determinism if the following four rules are respected: no
variable should be assigned multiple values, no operand should be undefined, there should
not be combinational loops, and all output signals should always be defined.

106 An overview of specification-level models of computation

A.3.3 Petri Nets

A Petri net [106] is a state-transition model [36] that represents discrete systems graphically
with place nodes, transition nodes, and directed arcs connecting places with transitions as
depicted in Figure A.3. Events within signals need not be ordered. The state of a Petri net is
given by the marking of its places, that is a non-negative integer corresponding to the number
of tokens assigned to each place. The execution of a Petri net is given by the firing of the
transitions. A transition can fire only if each of its input places is marked (has at least one
token). When it fires, a transition decrements the marking of the input places and increments
the marking of the output places.

Figure A.3: Petri Net example. Places are connected through transitions in a bipartite graph.

Petri nets are well suited for the representation of causality (places linked by transitions are
said to be in a predecessor/successor relationship) and concurrency. Colored Petri nets extend
Petri nets semantics to accept multiple predecessors and successors in a place. This leads
to a more compact representation. Time has also been introduced in timed Petri nets by
associating timestamps to events. Details of these extensions can be found in [107].

A.3.4 Process algebras

Process algebras (or process calculi) include Calculus of Communicating Systems (CCS [46]),
Communicating Sequential Processes (CSP [47]) and the Algebra of Communicating Pro-
cesses (ACP [48]). It is also a state-transition model [36] that aims at modeling concurrent
systems as a network of independent processes using a small collection of indivisible (or
atomic) primitives. These primitives are combined in operators, for which algebraic laws can
be defined so as to manipulate expressions using equations.

A detailed comparison between CCS and CSP with respect to (non-)determinism, communi-
cation, recursion, abstraction and deadlock is given in [108]. In CCS, a process is considered
to go through a number of states, which are determined by the actions the process is ready to
engage in. Any action a process can perform is regarded as a state transition. In CSP, a pro-
cess is considered to run in an environment that can veto atomic actions during the execution
of this process. In CCS, communication and interleaving are specified with a unique operator,
while CSP has different operators for both. In CCS, communication between two processes
occurs if one of the processes offers an action and the other offers the complementary action.
In CSP, communication between two processes occurs if both of them offer the same action.

A.4 Stream-based and dataflow models 107

Nevertheless these two communication types are often called rendezvous communication in
the literature in the sense that they wait for each other to engage in a particular action.

A.3.5 DE and DDE

Discrete-event (DE) is usually a simulation model. Nevertheless it can also be considered
as a specification-level model [36]. Entities execute concurrently and share a global notion
of time. They communicate by exchanging events that are time-stamped and totally ordered.
Thus, the DE model is timed. After processing an event, an entity produces one or more
events. It assigns future or same timestamp as the one in the processed event so as to enforce
causality. However, events that have the same timestamp may not be ordered in an entity.
Thus, an input may lead to different output. As a consequence, DE is non-deterministic.
To avoid this limitation, an instant may be split into a potentially infinite number of totally
ordered delta-steps [109].

Simulators that support this model typically sort events by timestamps in a global queue.
The experimental Distributed Discrete Event (DDE in Ptolemy II [26]) model extends DE
semantics to order events locally in distributed queues rather than in a global queue. As in
DE, time progresses in the form of timestamps that are associated with events, and successive
events emitted from any entity’s output port must have a timestamp that is greater than or
equal to that of the previous event. The main differences with DE are that 1) DDE implements
a notion of time that is distributed and localized in each entity, and 2) communication is done
through unidirectional bounded FIFO channels.

A.4 Stream-based and dataflow models

In Section A.3 we analyzed state-based models and event-triggered models that are well
suited to specify control-dominated reactive systems. In this Section we analyze models that
are more appropriate to specify the behavior of signal processing-dominated systems that
transform streams into stream. In the signal processing community, a signal is a special
stream in the sense that it is an unbounded sequence of tokens that are separated by regular
intervals.

A.4.1 KPN

In a Kahn Process Network [35], processes are autonomous and execute concurrently. They
communicate point-to-point through unidirectional and unbounded FIFO channels. This
FIFO property implies that the set of tags is totally ordered in each individual signal. How-
ever, a specificity of the KPN model is that the set of all tags is partially ordered (there is no
global scheduler). Thus, a KPN model is globally asynchronous. Each process synchronizes
locally with a blocking read primitive (ordering behavior), where the reading on an empty
port (that has no token) results in a suspension of the process until a token arrives. As a
consequence, a process is not allowed to test an input port for the presence of tokens and then

108 An overview of specification-level models of computation

branch to a point where it will read another port. Thus, a KPN has a deterministic behavior,
i.e, the outcome is independent of the chosen schedule. A composition of processes in a KPN
preserves the semantics of the model.

A dataflow process network [43] is a special case of a KPN [18]. Processes, which are called
actors, have the following firing rules: they consume and produce tokens according to partial
ordering rules using a blocking read primitive and a blocking write primitive, respectively. All
input tokens are evaluated simultaneously. A dataflow process network is a GALS network
of such concurrent actors, which are scheduled statically or dynamically.

A.4.2 Dataflow models

In a dataflow graph, computation is represented with nodes (actors) that exchange data values
through edges (arcs) that represent FIFO queues. Edges thus represent causality between
computations. Actors consume data from their input ports, perform computations (fire) and
produce data on their output ports. Thus, dataflow graphs relate to KPN and dataflow process
networks.

Several models have been proposed that are based on dataflow with restricted semantics in
order to simplify implementations in hardware or software. The computation graph [110]
model is one of the earliest and provided some of the foundations for the SDF model, which
is probably the main dataflow model.

SDF and CSDF

The main objective of the synchronous dataflow model (SDF [44]) is to schedule the firings
statically in order to derive a direct implementation that avoids potential overhead of run-
time multi-tasking (context-switching). A first restriction in SDF is to limit the number of
functions to a single one per actor. A second restriction is to fix at compile-time the number of
tokens that are produced and consumed by each actor, such that the rates of firing of actors are
fixed relative to one another. Multi-rate processing is modeled with uninterrupted sequences
or reads and writes of single tokens. A third restriction is to use a global scheduler. The
SDF model offers many opportunities such as software synthesis and code generation in DSP
systems [111].

In the cyclo-static dataflow model (CSDF [99]), an actor contains more than one function.
Token production and consumption can change from one function to another as long as the
variation is a periodic (or cyclic) pattern. This model allows to derive cyclic schedules at
compile time. This can lead to several benefits over SDF, including decreased buffer sizes.

MD-SDF, SSDF

Extensions of the SDF model have been proposed to adapt to a broader range of applica-
tions while preserving compile-time scheduling properties. In the multi-dimensional dataflow
model (MD-SDF [112]), communication channels carry tokens that may have multiple di-

A.4 Stream-based and dataflow models 109

mensions (as in image processing). This allows to expose parallelism explicitly. In a scalable
synchronous dataflow model (SSDF [113]), each actor can process any integer multiple of
the SDF token production (consumption) on its output (input) ports. This reduces context
switching between actors and may improve implementation performance.

BDF and DDF

The Boolean dataflow model (BDF [114]) adds a port, called conditional port, to the ac-
tors. The number of tokens produced or consumed on a dataflow port is either fixed, or is a
two-valued function (boolean) of a token present on the conditional port. In some cases, a
sequence of executions can be scheduled that returns a network of BDF actors to its original
state (complete cycle). This leads to compile-time schedules, where each firing is annotated
with the run-time conditions under which the firing should occur, as depicted in Figure A.4
for two actors: switch and select. Thus, potentially costly run-time scheduling techniques are
avoided in implementations that rely on BDF.

Figure A.4: Switch (left-hand side) and Select (right-hand side) actors annotated with the
average rate of tokens produced/consumed per firing, as a function of pi, the proportion of
tokens from the boolean stream bi that are True.

Dynamic Dataflow networks (DDF [115]) are Boolean Dataflow networks with one additional
variation: the conditional ports mentioned in the BDF model can read multiple token values
and the actors can fire conditionally based on the conditional ports read, i.e. a control token
may be a vector of integers that indicate how many dataflow tokens must be consumed and
produced.

PSDF and PCSDF

A parameterized synchronous dataflow model (PSDF [52]) allows dynamically determining
the number of tokens that are consumed and produced on the input and output ports of each
actor. As depicted in Figure A.5, a PSDF subsystem consists of an init graph, a subinit graph
and a body graph. The main dataflow (functional) behavior of the actor is implemented in
the body graph, which may accept and produce dataflow tokens. The init and subinit graphs
control the (ordering) behavior of the body graph by configuring its parameters. The init
graph does not participate in the dataflow. It can configure the parameters of the subinit

110 An overview of specification-level models of computation

and body graphs. The subinit graph can only accept dataflow tokens on its input ports, and
configures the parameters of the body graph.

Figure A.5: Structure of a PSDF subsystem.

Intuitively, the execution phase of every PSDF subsystem is preceded by a configuration
phase. The init graph is invoked once at the beginning of each execution of the parent graph
the subsystem belongs to. The parameters of the init graph are set by the init and subinit
graphs of hierarchically higher-level subsystems. The subinit graph is invoked at the begin-
ning of each execution of a subsystem, and the body graph is finally invoked after the subinit
graph. Thus, the locally synchronous semantics of PSDF forbid dataflow to depend on inter-
nal or external subsystem parameters. As a consequence, each PSDF graph always behaves
like a SDF graph in each of its invocation. It is then possible to generate a quasi-static sched-
ule.

The abstract mathematical model presented in [116] is an attempt to formalize PSDF. Param-
eters may be re-configured only at specific execution points called quiescent points, which
are approximations of the set of parameters change context that are derived after analyzing
all possible executions of a model.

The semantics of the Parameterized Cyclo-Static Dataflow model (PCSDF) are similar to that
of PSDF, except that neither the functionality (internal behavior) nor the dataflow (ordering)
behavior are parameterized directly. They vary cyclically, however, and it is precisely this
cyclic pattern that is parameterized in PCSDF [117]. The period of a cycle and the corre-
sponding production/consumption rates can vary before the execution of this cycle, and must
remain constant throughout the execution of the cycle. Clustering PCSDF subsystems is
achieved by extracting a CSDF graph for each individual cycle, and then by clustering this
CSDF graph.

A.5 Heterogeneous models

A specification of a reactive signal processing system should capture both the reaction to
sporadic control events and the reaction to data streams. In this Section we analyze heteroge-
neous models of computation, which combine state-based and stream-based semantics.

A.5 Heterogeneous models 111

A.5.1 Synchronous/Reactive language

The Synchronous/Reactive model of computation (SR) specifies systems as concurrent and
synchronized processes (called modules). Modules communicate by exchanging signals that
carry possibly empty events at each clock tick [109] through non-buffered channels. The
synchronous languages [37] implement this model. Esterel [100] is an imperative language
that uses sequential and concurrent statements to describe hierarchically arranged modules.
Lustre [118] and Signal [119] are dataflow-oriented languages. Most of these languages are
static in the sense that they do not allocate new resources at run-time. Such synchronous
programs can be verified formally at compile-time and compiled into hardware [120].

The SACRES project has been exploring the combination of stream-based semantics in Lus-
tre and state-based semantics in StateCharts to relate the synchronous reaction to the data
flow processing and the asynchronous reaction to events. The SYRF project has resulted in
the development of cross-compilation tools for Lustre, Signal and Esterel (loose integration),
an environment for multi-paradigm modeling (tight integration), and code distribution for
embedded systems [36].

A.5.2 *-charts and El Greco

*-charts [121] (pronounce ”starcharts”) shows how to embed hierarchical FSM within a va-
riety of concurrency models in Ptolemy [26] such as DE, SR and a subset of dataflow called
Heterochronous Dataflow - HDF, which extends the SDF model by allowing changes in to-
kens production/consumption rates only between iterations. As an example, in a FSM-HDF
combination, each state corresponds to an iteration with fixed production/consumption rates,
i.e. to a static schedule. Intuitively, *-charts semantics are so specified that the hierarchy
can be arbitrarily deep and that compositions of concurrency models and FSM can be nested
anywhere within the model. A module that belongs to a specific state in hierarchical FSM
is active if and only if the FSM is in that state. Thus, *-charts do not define a model of
concurrency [122].

The objective of El Greco [98] is to provide a path to implementation as embedded soft-
ware, synthesizable hardware or both. Applications are specified in the form of dataflow
graphs with Kahn or CSDF-like semantics, hierarchical synchronous finite state machines
with Esterel-like semantics, or a mixture, arbitrarily nested. When dataflow graphs are placed
in a control context, the graph execution is fully controllable.

A.5.3 SDL

SDL (Specification and Description Language [123]) is a formal language intended for the
specification, simulation and design of complex interactive applications involving many con-
current activities, such as telecommunication protocols [124]). Each process in the SDL
model is implemented as a two-level hierarchical (extended) Finite State Machine. The or-
dering behavior of a process is modeled by a first FSM that receives and sends tokens whose
tags are partially ordered. The functional behavior is modeled by a second FSM that ex-

112 An overview of specification-level models of computation

ecutes (possibly recursive) procedures whose input and output tokens have totally ordered
tags. Thus, in contrast to FSMD where communication is synchronous, the SDL model is a
GALS model.

Communication in SDL can be done with two basic primitives, by exchanging tokens asyn-
chronously via a unique unbounded FIFO queue per process, or via remote procedures calls.
The network topology and the size of the queues may change at run-time. Implementing such
a behavior may be done by instantiating all processes and pre-sizing queues at compile-time,
or by using a real-time operating system to support dynamic memory allocation and task
allocation [109].

A.5.4 CFSM

The Co-Design FSM model (CFSM) is the backbone of POLIS [49], which is a system de-
veloped for function-architecture co-design with particular emphasis on control-dominated
applications and software development [109]. CFSMs are reactive FSMD that run concur-
rently and communicate through unidirectional single-place (1-deep) buffers. In contrast to
SDL, communication channels are bounded. Events are timestamped and totally ordered
with respect to a global notion of time. Their (local) processing in the functional behavior
of a CFSM is synchronous. Communication in a CFSM network is asynchronous and has
undefined delays. Thus, CFSM is a GALS model. Each input port stores the most recently
received event in a single place buffer and is read exactly once per transition. However, a
CFSM has a non-deterministic behavior because reading and writing events may occur in
nearly any order.

Note that the communication primitive is different from a rendezvous since many processes
can produce and consume asynchronous events concurrently. CFSMs may loose events be-
cause they run independently and communication channels are only 1-deep. Nothing prevents
a producer overwriting an event that has not been consumed.

A.5.5 RPN

The Reactive Process Networks model (RPN [54]) aims at integrating event-triggered aspects
of modeling with dataflow aspects of modeling so as to allow re-configuration of dataflow.
It starts from a KPN model and allows re-configuration only at specific execution points,
between execution cycles of the processes. RPN explicitly separates dataflow ports from
parameters ports and distinguishes dataflow FIFO channels from events FIFO channels. The
structure of a RPN may be modified dynamically by identifying events with functions that
transform the configuration of the RPN. Although it is possible to link functions to events in
object-oriented languages and thus support dynamic network reconfiguration, it is unlikely
that functions are being communicated in an implementation.

A.6 Related work 113

A.6 Related work

It would be wrong not to acknowledge the influence of the FunState (Functions driven by
State machines [122]) model, which explicitly separates control and data, and supports state-
based and stream-based models. A comparison of specification-level models of computation
is given in [18] and [109], which rely on the tagged signal (meta-)model. Our separation
of state-based and stream-based models is inspired by the classifications given in the Artist
roadmap [36] and in [42]. Our contribution is an extension of the analysis and classification
to other models of computation.

A.7 Conclusions

In this Appendix we analyzed the semantics of state-based and stream-based models of com-
putation in a way that is accessible to a broad community. We discussed the interest of their
individual semantics in terms of synchrony, concurrency, communication, determinism and
composition. Our analysis and classification may be biassed since our objective is the model-
ing of large-scale and distributed embedded signal processing systems such as next generation
radio telescopes.

114 An overview of specification-level models of computation

Bibliography

[1] J. D. Bregman. System optimization of multi-beam aperture synthesis arrays for survey
performance. The SKA: an engineering perspective, P.Hall - Springer, 2005.

[2] Square kilometer array radio telescope, www.skatelescope.org.

[3] Very large array, http://www.vla.nrao.edu/.

[4] A. R. Thomson, J. M. Moran, and G. W. Swensson Jr. . Interferometry and Synthesis
in Radio Astronomy. John Wiley & Sons Pub., 1986.

[5] H.R. Butcher. On the horizon: a new generation of radio telescopes. SPIE Astronomi-
cal Telescopes and Instrumentation 2000, 4015 Radio Telescopes, 2000.

[6] Lofar radio telescope, www.lofar.org.

[7] J.H. Justice, N.L. Owsley, J.L. Yen and A.C. Kak. Array Signal Processing. Prentice-
Hall, 1985.

[8] D.E. Dudgeon. Fundamentals of digital array processing. Proceedings IEEE, 65:898–
904, June 1977.

[9] A. Gunst. Lofar architectural design document. LOFAR-ASTRON-ADD-006, February
2007.

[10] IBM BlueGene/L Team. An overview of the bluegene/l supercomputer. 2002.

[11] A. Huijgen. Lofar remote station subsystem requirement specification. Astron internal
document LOFAR-ASTRON-SRS012, 2005.

[12] Altera. website: http://www.altera.com.

[13] Xilinx. website: http://www.xilinx.com.

[14] R. Crochiere and L. Rabiner. Fundamentals of Multirate Signal Processing. Prentice-
Hall, 1983.

116 Bibliography

[15] P. Vaidyanathan. Multirate Systems and Filter Banks. NJ: Prentice-Hall, 1993.

[16] S. Alliot. Architecture exploration for large scale array signal processing systems.
Ph.D dissertation, Leiden University, The Netherlands, December 2003.

[17] I. Somerville. Software Engineering, 6th Edition. Addison Wesley, 2000.

[18] E.A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of com-
putation. IEEE Trans. on Computer-Aided Design of Integrated Circuits ans Systems,
17(12), December 1998.

[19] D.D. Siljak and A.I Zecevic. Large-scale and decentralized systems. Wiley Encyclo-
pedia of Electrical and Electronics Engineering, 1999.

[20] A.I. Zecevic and D.D. Siljak. Control of large-scale systems in a multiprocessor envi-
ronment. Applied Mathematics and Computation, Elsevier Pub., (164), 2005.

[21] D. Schmidt et al. Cosmic: An mda generative tool for distributed real-time and embed-
ded component middleware and applications. OOPSLA 2002 Workshop on Generative
Techniques in the Context of Model Driven Architecture, November 2002.

[22] S.J. Mellor, K. Scott, A. Uhl and D. Weise. MDA Distilled - Principles of Model-
Driven Architecture. Addison-Wesley Publishers, 2004.

[23] The ANTARES Collaboration. Antares - a deep sea telescope for high energy neutri-
nos. Technical Proposal 99-01, 1999.

[24] The IceCube Collaboration. Icecube:a kilometer-scale neutrino observatory. Proposal
to theNational Science Foundation, 1999.

[25] S. Neuendorffer J. Ludvig, J. McCarty and S. R. Sachs. Reprogrammable platforms
for high-speed data acquisition. Design Automation for Embedded Systems, 7(4):341–
364, November 2002.

[26] E. A. Lee J. Buck, S. Ha and D. Messerschmitt. Ptolemy: A framework for simulating
and prototyping heterogeneous systems. Int. Journal of Computer Simulation, 4:155–
182, April 1994.

[27] R. McNulty et al. Simulations and prototyping of the lhcb l1 and hlt triggers. Com-
puting in High Energy Physics and Nuclear Physics 2004, 2004.

[28] Berkeley Emulation Engine’s website. http://bee2.eecs.berkeley.edu/. 2006.

[29] J. Wawrzynek R. Brodersen, C. Cheng and D. Werthimer. Bee2: A multi-purpose
computing platform for radio telescope signal processing applications. International
SKA meeting, July 2004.

[30] A. Parsons et al. Petaop/second fpga signal processing for seti and radio astronomy.
14th Asilomar Conference on Signals, Sysyems and Computers, pages 2031–2035,
October 2006.

Bibliography 117

[31] E. Lenormand and G. Edelin. An industrial perspective : Pragmatic high end signal
processing design environment at thales. Proceedings of the 3rd International Samos
Workshop on Synthesis, Architectures, Modeling, and Simulation, 2003.

[32] H. Hsieh L. Lavagno C. Passerone F. Balarin, Y. Watanabe and A. Sangiovanni-
Vincentelli. Metropolis: An integrated electronic system design environment. Com-
puter Magazine, pages 45–52, April 2003.

[33] A. Sangiovanni-Vincentelli. Quo vadis sld: Reasoning about trends and challenges of
system-level design. Proceedings of the IEEE, 95(3):467–506, March 2007.

[34] A. Davare et al. A next-generation design framework for platform-based design. Conf.
on Using Hardware Design and Verification Languages (DVCon), February 2007.

[35] G. Kahn. The semantics of a simple language for parallel programming. Information
Processing 74: Proceedings of IFIP Congress 74, pages 471–475, August 1974.

[36] B. Bouyssounouse and J. Sifakis (Eds.). Embedded systems design - the artist roadmap
for research and development. Springer Pub., 2005.

[37] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time sys-
tems. Proc. of the IEEE, 79(9):1270–1282, September 1991.

[38] R. Miller. Communication and Concurrency. Prentice Hall, 1989.

[39] VSI Alliance. Vsia system level design model taxonomy document. July 2001.

[40] H. Nikolov and E. Deprettere. Parameterized stream-based functions dataflow model
of computation. Proc. of the 6th Workshop on Optimizations for DSP and Embedded
Systems (ODES2008), April 2008.

[41] W. Lubberhuizen. Epa-rsp firmware functional specification. Internal report LOFAR-
ASTRON-SDD-001, September 2005.

[42] S.A. Edwards. Languages for Digital Embedded Systems. Kluwer Academic Publish-
ers, 1997.

[43] E.A. Lee and T.M. Parks. Dataflow process networks. Proc. of the IEEE, 83(5):773–
799, May 1995.

[44] E.A. Lee and B. Messerschmitt. Synchronous data flow. Proc. of the IEEE, September
1987.

[45] D. Harel. Statecharts, a visual formalism for complex systems. Science of Computer
Programming, (8):231–274, 1987.

[46] R. Milner. A calculus of communicating systems. Springer-Verlag, 1980.

[47] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8), 1978.

[48] J. Bergstra and J. Klop. Acp: A universal axiom system for process specification. CWI
Quarterly, (15):3–23, 1987.

118 Bibliography

[49] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh, B. Tabbara, A. Jurecska,
L. Lavagno, C. Passerone, K. Suzuki, and A. Sangiovanni-Vincentelli. Hardware-
Software Co-Design of Embedded Systems – The POLIS Approach. Kluwer Academic
Publishers, 1997.

[50] E. Lawerman and T. Muller. Mac-cep use cases. Internal report LOFAR-ASTRON-
UCD-005, December 2004.

[51] B. Kienhuis and E. Deprettere. Modelling stream-based applications using the sbf
model of computation. Journal of VLSI Signal Processing-Systems for Signal, Image,
and Video Technology, 34(3):291–300, 2003.

[52] B. Bhattacharya and S. Bhattacharyya. Parameterized dataflow modeling of dsp sys-
tems. Proc. of the Int. Conf. on Acoustics, Speech, and Signal Processing, June 2000.

[53] T. Stefanov H. Nikolov and E. Deprettere. Modeling and fpga implementation of
applications using parameterized process networks with non-static parameters. Proc.
of the Symposium on Field-Programmable Custom Computing Machines (FCCM’05),
April 2005.

[54] M. Geilen and T. Basten. Reactive process networks. Proc. of EMSOFT04, September
2004.

[55] Synchronous reactive formalism project (syrf), http://www.verimag.fr/synchrone/syrf.

[56] A. Sangiovanni-Vincentelli. Defining platform-based design. EEDesign, March 2002.

[57] F. De Bernardinis A. Sangiovanni-Vincentelli, L. Carloni and M. Sgroi. Benefits and
challenges for platform-based design. Proc. of the Intl. Design Automation Conference
(DAC 2004), June 2004.

[58] V. Dobrosav Zivkovic. Architecture exploration... Ph.D dissertation, Leiden Univer-
sity, The Netherlands, to be published.

[59] M. van Veelen. Considerations on modeling for early detection of abnormailities in
locally autonomous distributed systems. Ph.D dissertation, Groningen University, The
Netherlands, March 2007.

[60] A. Caldwell et al. Gtx: The marco gsrc technology extrapolation system. DAC, pages
693–698, 2000.

[61] M.Flynn. Some computer organizations and their effectiveness. IEEE Trans. Comput-
ers, C-21:948, 1972.

[62] S. Alliot, E. Deprettere, and A. Kokkeler. A modular approach for a large scalable
embedded signal processing system. Proceedings Workshop on Embedded Systems,
Progress 2000 second edition, October 2000. http://www.astron.nl/∼alliot.

[63] A. Roman V. Bhanot, D. Paniscotti and B. Trask. Using domain-specific modeling to
develop software defined radio components and applications. OOPSLA Workshop on
Domain-Specific Modeling, October 2005.

Bibliography 119

[64] E. Kooistra. Fpgas for lofar remote station signal processing. FPGAs in Radio Astron-
omy Workshop, February 2007.

[65] Q. Zhu A. Davare and A.L. Sangiovanni-Vincentelli. A platform-based design flow for
kahn process networks. Technical Report UCB/EECS-2006-30, EECS Department,
University of California, Berkeley, March 28 2006.

[66] Bart Kienhuis Todor Stefanov and Ed Deprettere. Algorithmic transformation tech-
niques for efficient exploration of alternative application instances. International sym-
posium on Hardware/software codesign, 2002.

[67] A. Turjan. Compiling nested loops programs to process networks. Ph.D dissertation,
Leiden University, The Netherlands, March 2007.

[68] P. Marwedel and G. Goossens. Code Generation for Embedded Processors. Kluwer
Academic Publishers, 1995.

[69] P. van der Wolf et al. Design and programming of embedded multiprocessors: An
interface-centric approach. CODES+ISS’04, September 2004.

[70] C. Erbas A. D. Pimentel and S. Polstra. A systematic approach to exploring embedded
system architectures at multiple abstraction levels. IEEE Trans. on Computers, 55(2),
February 2006.

[71] B. Kienhuis, E. Rijpkema, and E. Deprettere. Compaan: Deriving process networks
from Matlab for embedded signal processing architectures. 8th International Work-
shop on Hardware/Software Co-Design (CODES’2000), May 2000.

[72] C. Zissulescu, T. Stefanov, B. Kienhuis, and Ed Deprettere. LAURA: Leiden Archi-
tecture Research and Exploration Tool. In Proceedings 13th Int. Conference on Field
Programmable Logic and Applications (FPL’03), Lisbon, Portugal, September 2003.

[73] A. Nechypurenko et al. Applying mda and component middleware to large-scale dis-
tributed systems: A case study. IST 1st European Workshop on Model Driven Archi-
tecture with Emphasis on Industrial Application, March 2004.

[74] Unified modeling language (uml). http://www.uml.org/, 2006.

[75] Systems modeling language (sysml). http://www.sysml.org/specs.htm, 2006.

[76] Mentor Graphics. website: http://www.mentor.com.

[77] Synopsys. website: http://www.synopys.com.

[78] The Mathworks and Altera. Dsp builder user guide. 2002.

[79] Simplicity. website: http://www.simplicity.com.

[80] B. Kienhuis T. Harris, R. Walke and E. Deprettere. Compilation from Matlab to pro-
cess networks realized in FPGA. 35th Asilomar Conf. on Signals, Systems and Com-
puters, November 2001.

120 Bibliography

[81] T. Stefanov H. Nikolov and E. Deprettere. Multi-processor system design with es-
pam. Int. Conf. on HW/SW Codesign and System Synthesis (CODES-ISSS’06), October
2006.

[82] LEON2. website: http://www.gaisler.com, 2004.

[83] ARM AMBA. website: http://www.arm.com.

[84] J. Labrosse. MicroC/OS-II, The Real-Time Kernel, 2nd Edition. CMP Books, 2002.

[85] Opencores. www.opencores.org.

[86] J. Bol and M. Lammertink. Astron technical report: Middleware-based communica-
tion mechanism for a network of software processors in an fpga. Technical report,
Astron, Dwingeloo, The Netherlands, June 2005.

[87] Open Core Protocol International Partnership OCP-IP. website: http://www.ocpip.org,
2004.

[88] F. Wagner et al. Strategies for the integration of harware and software ip components
in embedded systems-on-chip. Integation, the VLSI Journal, 37:223–252, 2004.

[89] StstemC. website: http://www.systemc.org.

[90] M. Bombana and F. Bruschi. Systemc-vhdl co-simulation and synthesis in the hw
domain. in Proc. of Design, Automation and Test in Europe Conference and Exhibition
(DATE’03), 2003.

[91] C. Zissulescu B. Kienhuis S. Derrien, A. Turjan and E. Deprettere. Deriving efficient
control in process networks with compaan/laura. International Journal of Embedded
Systems, 1(7), 2005.

[92] A. Fraboulet and T. Risset. Efficient on-chip communications for data-flow ips. in Intl.
Conference on Application-specific Systems, Architectures and Processors (ASAP’04),
2004.

[93] Virtual Socket Interface Alliance VSI. website: http://www.vsi.org.

[94] The object management group (omg). http://www.omg.org/, 2006.

[95] System Design Industrial Council of European Telecom Industries CSYDIC-Telecom.
website: http://www.sydic.vitamib.com.

[96] N.S. Voros. System Design Reuse, Chapter 3. Kluwer Academic Publishers, 2003.

[97] F. Vahid T. Givaris and J. Henkel. System-level exploration for pareto-optimal config-
urations in parameterized soc. IEEE/ACM ICCCAD, 2001.

[98] J. Buck and R. Vaidyanathan. Heterogeneous modeling and simulation of embedded
systems in el greco. Proc. of the Intl. Workshop on Hardware/Software Codesign
(CODES), May 2000.

Bibliography 121

[99] R. Lauwereins G. Bilsen, M. Engels and J.A. Peperstraete. Cyclo-static data flow.
Proc. ICASSP, 1995.

[100] F. Boussinot and R. De Simone. The esterel language. Proc. of the IEEE, 79(9), 1991.

[101] J. van Eijndhoven K. Walters M. Rutten, E-J. Pol and G. Essink. Dynamic recon-
figuration of streaming graphs on a heterogeneous multiprocessor architecture. SPIE
Electronic Imaging: Embedded processors for Multimedia and Communications II,
5683, January 2005.

[102] P. Stravers and J. Hoogerbrugge. Single-chip multiprocessing for consumer electron-
ics. Domain-Specific Processors: Systems, Architectures, Modeling, and Simulation
(SAMOS 2004), pages 215–234, 2004.

[103] A. Radulescu and K. Goossens. Communication services or networks on chip.
Domain-Specific Processors: Systems, Architectures, Modeling, and Simulation
(SAMOS 2004), pages 193–214, 2004.

[104] M. van Veelen S. Alliot, L. Nicolae and J. Lemaitre. An exploration tool for the large
scale signal processing systems. Progress Symposium, 2003.

[105] S. Shukla P. Schaumont and I. Verbauwhede. Design with race-free hardware seman-
tics. Proc. of the Intl. Conf. on Design and Testin Europe (DATE’06), March 2006.

[106] C.A. Petri. Communication with automata. phD thesis, Darmstadt Inst. of Technology,
1962.

[107] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, 1981.

[108] R.J. Glabbeek. Notes on the methodology of ccs and csp. Proc. of the Intl. Workshop
on Algebra on communicating processes, 1997.

[109] A. Sangiovanni-Vincentelli L. Lavagno and E. Sentovich. Models of computation for
embedded systems design. September 1998.

[110] R. Karp and R. Miller. Properties of a model for parallel computations: Determinacy,
termination, queueing. Appl. Math., 14(6):1390–1411, 1966.

[111] P. K. Murhpy S. Bhattacharyya and E.A. Lee. Software synthesis from dataflow
graphs. Kluwer Academic Publishers, 1996.

[112] E.A. Lee. Representing and exploiting data parallelism using multidimensional
dataflow diagrams. Proc. ICASSP, 1993.

[113] M. Pankert S. Ritz and H. Meyr. Optimum vectorization of scalable synchronous
dataflow graphs. Proc. Int. Conf. on Application-Specific Array Processors, 1993.

[114] J.T. Buck and E.A. Lee. Scheduling dynamic dataflow graphs using the token flow
model. Proc. of the Int’l Conf. on Acoustics, Speech, and Signal Processing, April
1993.

122 Bibliography

[115] J.T. Buck. A dynamic dataflow model suitable for efficient mixed hardware and soft-
ware implementations of dsp applications. Proc. of the IEEE, 1994.

[116] S. Neuendorfer and E.A. Lee. Hierarchical reconfiguration of dataflow models. Conf.
on Formal Methods and Models for Codesign (MEMOCODE’04), June 2004.

[117] S. Puthenpurayil S. Saha and S. Bhattacharyya. Dataflow transformations in high-level
dsp system design. Proc. of the Intl. Symposium on System-on-Chip, November 2006.

[118] P. Raymond N. Halbwachs, P. Caspi and D. Pilaud. The synchronous data flow pro-
gramming language lustre. Proc. of the IEEE, 79(9):1305–1319, May 1991.

[119] A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the signal
language. IEEE Trans. on Automatic Control, 35(5):525–546, May 1990.

[120] G. Berry. A hardware implementation of pure esterel. Proc. of the Intl. Workshop on
Formal Methods in VLSI Design, January 1991.

[121] B. Lee A. Girault and E.A. Lee. Hierarchical finite state machines with multiple con-
currency models. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 18(6), June 1999.

[122] D. Ziegenbein R. Ernst L. Thiele, K. Strehl and J. Teich. Funstate - an internal de-
sign representation for codesign. Proc. of the Intl. Conf. on Computer-Aided Design
(ICCAD99), 1999.

[123] W. Takach and A. Wolf. An automaton model for scheduling constraints in syn-
chronous machines. IEEE Tr. on Computers, 44(1):1–12, January 1995.

[124] CCITT (International Telecommunication Union). Functional specification and de-
scription language (sdl), recommandations z.101-z.104. VI, Fasc. VI.7, 1981.

Curriculum Vitae

Jérôme Lemaitre was born on March 22nd, 1979 in Compiègne, France. In 1997 he received
his Baccalaureate in the scientific branch after which he joined a preparatory class in math-
ematics and physics for one year. This was followed by studies in electronics and optics at
the advanced engineering school, Ecole Supérieure des Procédés Electroniques et Optiques
(ESPEO) in Orléans, France. He completed a post-graduate degree in 2002 at the ESPEO,
majoring in embedded systems. The same year, he joined the Netherlands Foundation for
Radio Astronomy (ASTRON) in Dwingeloo, the Netherlands, where he was first involved in
the implementation of digital filters for the Low Frequency Array radio telescope (LOFAR)
project. After a year, he worked on the specification and implementation of control inter-
faces for signal processing applications onto re-configurable platforms in the context of the
MASSIVE project with Leiden University, which culminated in this thesis.

Samenvatting

Model-based Specification and Design of Large-Scale Embedded Signal Processing
Systems.

Fasegestuurde radiotelescopen zoals de Low Frequency Array (LOFAR) en de Square Kilometer Ar-
ray (SKA) zijn grootschalige en gespreide signaalverwerkingssystemen. In deze systemen worden
signalen verkregen via duizenden antennes voordat zij bij een hoge snelheid worden gedigitaliseerd en
in toenemende mate beperkt door het verwerken van taken in clusters (stations genoemd). Het gedrag
van het signaal dat taken verwerkt die in stations worden uitgevoerd, wordt bestuurd en gecontroleerd
in runtime. Besturingsinformatie wordt gezonden van een centrale locatie en steeds verder gedecen-
traliseerd naar het niveau van gespecialiseerde componenten in stations. Deze componenten voeren
signaalverwerkingstaken uit en zenden controle-informatie terug naar de centrale locatie.

In dit proefschrift concentreren we ons op de specificatie en het ontwerp van dergelijke stations, wat in
feite het digitale signaalverwerkingsgedeelte, het besturings- en controlegedeelte en de synchronisatie
en koppeling van de twee gedeeltes inhoudt. Wij nemen aan dat systeemniveau-specificaties worden
uitgedrukt in termen van applicatie, architectuur en het in kaart brengen van de eerste in de laatste. Wij
zijn van mening dat er een niveau van abstractie is, implementatieniveau-specificatie genaamd, vanwaar
verschillende delen van het systeem kunnen worden omgezet in een echte implementatie gebaseerd
op commercieel beschikbare tools. Onze algemene probleemcontext is de systeemniveau-specificatie
op een gestructureerde manier om te zetten naar een implementatieniveau-specificatie. Het bijzon-
dere probleem dat in deze these wordt behandeld is de koppeling en synchronisatie van het signaal-
verwerkingsgedeelte en het besturings- en controlegedeelte, terwijl de twee gedeeltes eerst gesoleerd
worden beschouwd. Dit is een probleem omdat de twee gedeeltes verschillend zijn gestructureerd
en zich verschillend gedragen. Deze twee gedeeltes moeten gekoppeld en gesynchroniseerd worden
zonder het functionele gedrag van het dominante signaalverwerkingsgedeelte te wijzigen en zonder de
prestatie/kosten van de twee gedeeltes significant te wijzigen tijdens het schalen van het systeem.

Om de complexiteit van de systemen te beheersen gaan wij ervan uit dat we het abstractieniveau moeten
verhogen. Dit houdt in dat we nduidige modellen nodig hebben, zodat we ontwerpbeslissingen kunnen
nemen gebaseerd op modellen eerder dan op intutie of echte implementatiedetails. Omdat wij speci-
ficaties op systeemniveau moeten afleiden, drukken we onze specificaties uit gebaseerd op modellen.
Wij maken de modelgebaseerde specificatie van de applicatie los van de modelgebaseerde specificatie

126 Samenvatting

van de architectuur en verschaffen middelen om deze twee specificaties met elkaar te combineren.

In Hoofdstuk 2 concentreren wij ons op de specificatie van de applicatie. Wij gebruiken modellen
waarvan de semantiek de manier waarop gegevens in knooppunten worden verwerkt en gecommuniceerd
tussen knooppunten in een netwerk nduidige vastleggen. Het functionele gedrag van het signaal-
verwerkingsgedeelte is gebaseerd op een stroomgebaseerd model van berekening dat uitstekend geschikt
is de streamingapplicaties te vertegenwoordigen die een hoog niveau van parallellisme hebben. Het
functionele gedrag van het besturings- en controlegedeelte wordt gespecificeerd op basis van een state-
based model van berekening dat geschikt is de uitvoering van de taken in reactie op gebeurtenissen
te vertegenwoordigen. De twee modellen worden gesynchroniseerd door de introductie van een be-
grip van tijd dat alleen bekend is in het besturings- en controlegedeelte en door dit begrip van tijd
in verband te brengen met periodieke intervallen waarbinnen taken worden uitgevoerd in het signaal-
verwerkingsgedeelte.

In Hoofdstuk 3 concentreren wij ons op de specificatie van de architectuur, in verband met onderling
verbonden componenten die worden genomen van een unieke bibliotheek. Deze componenten on-
dersteunen gespecialiseerde diensten voor verwerking, opslag, communicatie, etc. De bibliotheek
omvat informatie over de prestatie en kosten van de componenten en regels waaraan moet worden
vastgehouden bij het verbinden van de componenten. Componenten die worden gebruikt op lagere
niveaus van de hirarchie worden aangegeven als witte vakjes: hun interne modules zijn toegankelijk
voor simulatie. Op hogere niveaus van de hirarchie, worden componenten weergegeven als zwarte
vakjes: hun interne modules zijn verborgen. Zwarte vakjes geven het verband aan tussen output-
hoeveelheden en inputhoeveelheden gebaseerd op eenvoudige vergelijkingen, waarbij parameterwaar-
den worden gekalibreerd door gebruik te maken van informatie verkregen van lagere niveaus van de
hirarchie. In het signaalverwerkingsgedeelte is de structuur in hoge mate parallel en ondersteunt de
samenstelling intensieve berekeningen over en transport van hoge doorvoergegevens. De samenstelling
van het besturings- en controlegedeelte maakt de overdracht mogelijk van sporadische berichten en het
uitvoeren van opvolgende taken in reactie op deze berichten. Het besturings- en controlemodel heeft
een boomstructuur, waarvan de knooppunten gekoppeld zijn met de berekeningsknooppunten in het
signaalverwerkingsmodel van berekening.

In Hoofdstuk 4 concentreren we ons op het in kaart brengen van de applicatie in de architectuur,
gebaseerd op iteratieve transformaties. We nemen aan dat deze transformaties beschikbaar zijn in een
bibliotheek. Ontwerpers kunnen kiezen welke transformatie ze willen toepassen op elke iteratiecyclus.
Transformaties worden beperkt door de koppeling tussen signaalverwerkingsgedeelte en het besturings-
en controlegedeelte. Vanuit de implementatie gezien zijn mappingtransformaties hoog niveau compi-
latiestappen die lokaal en automatisch kunnen worden toegepast om de prestatie/kosten van een deel
van het systeem te optimaliseren. Een implementatieniveau-specificatie is een specificatie die verfijnd
is naar het niveau van (netwerken van) multiprocessor systems-on-chip (MPSoC). Van dit niveau nemen
we aan dat elk gedeelte wordt gemplementeerd op basis van een geschikte compilatie en/of synthese-
tools die (IP-)componenten integreren en plakken volgens regels die in de bibliotheek zijn vastgesteld.

In Hoofdstuk 5 presenteren wij casestudies rond de integratie en porting van IP-componenten beginnend
van hoog niveau specificaties en rond het koppelen tussen componenten in het signaalverwerkingsgedeelte
en componenten in het besturings- en controlegedeelte. Deze casestudies laten de zwakte zien van in
andere opzichten zeer gewenste systeemniveau ontwerpmethodes bij het evalueren met betrekking tot
snelle, nauwgezette en systematische IP integratie.

ISBN 978-90-9023497-7

