
Synthesis of a parallel data stream processor from data flow process
networks
Zissulescu-Ianculescu, C.

Citation
Zissulescu-Ianculescu, C. (2008, November 13). Synthesis of a parallel data stream
processor from data flow process networks. Retrieved from
https://hdl.handle.net/1887/13262

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13262

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13262

Synthesis of a Parallel Data
Stream Processor from Data Flow

Process Networks

Claudiu Zissulescu-Ianculescu

Synthesis of a Parallel Data Stream Processor from
Data Flow Process Networks

Proefschrift

ter verkrijging van de graad van Doctor aan de Univer-
siteit Leiden, op gezag van de Rector Magnificus prof. mr.
P.F. van der Heijden, volgens besluit van het College voor
Promoties te verdedigen op donderdag 13 November 2008
klokke 16:15 uur

door

Claudiu Zissulescu-Ianculescu

geboren te Bucureşti, România

in 1976

Samenstelling promotiecommissie:

promotor Prof. dr. Ed Deprettere
co-promotor Dr. A.C.J. Kienhuis
referent Dr. Steven Derrien INRIA, France

overige leden Prof. dr. Harry Wijshoff
Prof. dr. Joost Kok
Prof. dr. Kees Goossens Technische Universiteit Delft, NXP Eindhoven
Dr. Laurens Bierens Eonic BV, Delft

Synthesis of a Parallel Data Stream Processor from Data Flow Process Networks
Claudiu Zissulescu-Ianculescu. -
Thesis Universiteit Leiden. - With index, ref. - With summary in Dutch
ISBN/EAN 978-90-9023643-8

Copyright c©2008 by Claudiu Zissulescu-Ianculescu, Leiden, The Netherlands.
All rights reserved. No part of the material protected by this copyright notice may be repro-
duced or utilized in any form or by any means, electronic or mechanical, including photo-
copying, recording or by any information storage and retrieval system, without permission
from the author.
Printed in the Netherlands

soţiei mele Dani

Contents

1 Introduction 1
1.1 COMPAAN Data Flow Process Network . 3
1.2 Problem Definition . 6
1.3 Solution Approach . 7
1.4 Thesis Contribution . 9
1.5 Related Work . 9

1.5.1 Hardware Architecture Implementations that uses the Polyhedral Model 9
1.5.2 Hardware Architecture Implementations that uses the Process Net-

work MoC . 11
1.6 Thesis Outline . 12

2 From COMPAAN Data Flow Process Network to Abstract Architecture 13
2.1 Background . 13
2.2 Topological Mapping . 18
2.3 Semantic Mapping . 19
2.4 Conclusions . 23

3 Control Synthesis 25
3.1 Control Synthesis in Read/Write Control Units 26
3.2 The Look-up Table Controller . 28

3.2.1 Example . 29
3.2.2 Discusion . 30

3.3 The Parameterized Predicate Controller . 30
3.3.1 Example . 32
3.3.2 Discusion . 33

3.4 The Partitioned Parameterized Predicate Controller 34
3.4.1 Example . 36
3.4.2 Discussion . 36

3.5 Conclusions . 37

viii Contents

4 Communication Synthesis 39
4.1 Background . 39

4.1.1 The Order of Producing and Consuming Tokens 40
4.1.2 The Lifetime of a Token . 41
4.1.3 Communication Types: Overview 42

4.2 Communication Channel Template in Abstract Architecture 43
4.2.1 The Channel Template for the Extended Linearization Model Real-

ization . 44
4.2.2 The Extended Linearization Model Modifications in the Read Unit

and Write Unit Controllers . 45
4.3 FPGA Realization . 46

4.3.1 Example . 46
4.4 Conclusions . 48

5 Memory Bound Estimation 49
5.1 Maximum Size of FIFO channels . 49
5.2 Volumes and Lexical Addressing Functions 51
5.3 In-Order Channel Upper-bound Memory Estimation 52
5.4 Self-loops Channel Memory Estimation . 53
5.5 Memory Estimation using Bounding Boxes 57

5.5.1 Background . 57
5.5.2 Deriving the Bounding Boxes . 58

5.6 Conclusions . 62

6 Expression Synthesis 63
6.1 Related Work . 64
6.2 The Approach . 65

6.2.1 High-Level Optimizer . 65
6.2.2 Low-Level Optimizer . 66

6.3 Simplification . 66
6.3.1 Example . 68

6.4 Method of Differences (MoD) . 69
6.5 Predicated Static Single Assignment . 69
6.6 Examples of Implementations of Expressions 73

6.6.1 Example 1 . 73
6.6.2 Example 2 . 74

6.7 Conclusions . 78

7 IP Core Integration 81
7.1 Embedding an IP Core . 82

7.1.1 Handling of Pipeline’s Stalls . 83
7.2 Profiler . 84

7.2.1 Increasing the Pipeline Utilization of a Virtual Processor 87
7.2.2 Case Study . 89
7.2.3 Discussion . 92

7.3 Conclusion . 93

Contents ix

8 Case Studies 95
8.1 Subspace Tracking . 95
8.2 The Matrix-Matrix Multiplication Algorithm 96

8.2.1 Discussion Matrix-Matrix Multiplication Implementation 98
8.3 The QR Factorization Algorithm . 99

8.3.1 Discussion Matrix QR Factorization Implementation 100
8.4 The Matrix SVD Decomposition Algorithm 100

8.4.1 Discussion Matrix SVD Decomposition Implementation 104
8.5 Discussion . 105

9 Conclusions 107

Bibliography 109

Index 117

Acknowledgment 119

Samenvatting 121

Curriculum Vitae 123

Chapter 1
Introduction

An embedded system is an information processing system that is application domain specific
(e.g., signal processing, multimedia, automotive, communications) and tightly coupled to
its environment. Tightly coupled to the environment means that the system must react to
incoming data at a speed that is imposed by the type and properties of that data. For example,
a DVD player has to read, decode and display the movie (the incoming data) at a rate such that
the user can observe a smooth transition between two consecutive frames. Thus, embedded
systems are reactive systems that are very often real-time systems.

The computational requirements of today’s embedded systems are such that a single pro-
cessor can not provide the compute power. Instead, new platforms are emerging that are
able to satisfy the performance needs of tomorrow’s embedded applications. These new plat-
forms are usually multi-processor or multi-core execution platforms consisting of a number
of processing elements and a communication, synchronization and storage infrastructure, all
integrated on a single chip. These systems are called multiprocessor system-on-chip (MP-
SoC). A MPSoC may be homogeneous or heterogeneous. All processing elements in a ho-
mogeneous MPSoC are of the same type, e.g., instruction set architecture (ISA) elements.
On the other hand, the heterogeneous MPSoC systems are composed of processing elements
that are not the same. These elements may be software programmable (ISA), hardware pro-
grammable, or even dedicated. The processing elements may operate autonomously, or may
be co-processing elements. A co-processing element is a processing element that executes
complex ISA instructions in a shorter period than the outsourcing ISA element could.

Moreover, multi-processor execution platforms may be given or may be dedicated. A
given platform is a platform that has properties of its own (e.g., Intel processors, IBM Cell
processor or graphical processor units). A dedicated platform is a platform that can be par-
tially or totally reconfigured. Such a platform is the Field Programmable Gate Array (FPGA).
The FPGA execution platforms are special in that they are not pre-defined (except for fairly
general admissible organizations), but can be application customized without the program-
mer having to deal with the platform specification. FPGAs may consist of embedded CPUs or
DSP blocks, distributed RAMs, specialized input/output blocs, and configurable logic blocs
(CLBs).

To use the parallelism available in FPGA execution platforms, we need to program them

2 Introduction

in such a way that we can exploit distributed control and distributed memory. Distributed con-
trol means that the individual components on a platform can proceed autonomously in time
without considering other components. Distributed memory means that data is not pooled in
a large global memory, but distributed over the platform. Although distributed memory and
control are key requirements to take advantage of the new emerging platforms, we observe
that applications are typically cast in the form of a sequential imperative programming lan-
guage, i.e., a Matlab, a C/C++ or a Java program. A strong point of the imperative model
of computation is that it is easy to reason about a program as only a single thread of control
needs to be considered. Also, the memory space is global, i.e., all data comes from the same
memory source. However, the single memory and the single thread of control are contra-
dictory to the need for distributed control and memory. Therefore, programming these new
platforms is a very tedious, error prone, and time consuming process.

There are two ways in which we can overcome the programming problem. One way is
to require application developers to specify their applications in a parallel programming lan-
guage (textual or graphical). Graphical or visual programming styles have been proposed and
successfully used to specify streaming data signal processing and multimedia applications.
Typical examples of such parallel programming styles rely on dataflow graph and dataflow
process network models of computation (MoC) [1, 2]. In these models, a program consists
of active entities (functions, threads, processes) that communicate point-to-point over FIFO
channels. Application developers are reluctant to provide specifications in terms of these
models for several reasons. Firstly, the models are either not expressive enough or are un-
decidable. Secondly, practical applications can not be specified only in terms of dataflow
models that do not really take dynamic control flow into account.

Sequential imperative
programming

language:
C/C++, Java, Matlab

P2

P1

P3

P4

R
A
M

R
A
M

R
A
M

DSP CPU

R
A
M

Configurable
Logic Blocs

Input/Output
Blocs

Code parallelization
Mapping to
architecture

Parallel descriptionApplication Multi-processor embedded system

Figure 1.1: Mapping of an application to an FPGA execution platform

The other way to overcome the mismatch between a sequential imperative application
specification and a targeted parallel execution platform is to convert (to parallelize) the se-
quential specification to an input-output equivalent parallel specification that is a better match
to a targeted multi-processor execution platform. Then, the parallelized code is mapped onto
the multi-processor execution platform. The action of converting the parallelized code to an
executable code suited for the multi-processor execution platform is sometime called map-
ping [3] and sometime called synthesis [4].

1.1 COMPAAN Data Flow Process Network 3

In this last approach, the programmer (almost) does not need to know about parallel pro-
gramming or parallel architectures in order to exploit inherited parallelism in the application.
This approach is illustrated in Figure 1.1 in which the multi-processor execution platform is
embedded in an FPGA execution platform. Application developers will most likely continue
using sequential imperative languages to specify applications, because these languages are
expressive general purpose languages. Thus, the second approach deserves further investiga-
tion.

Not every sequential imperative language program can be easily - and preferably auto-
matically - converted to an input-output equivalent parallel specification. However, in signal
processing, multimedia, molecular biology, and other related application domains, there are
nested loop programs (NLP) of which many can be converted to input-output equivalent par-
allel specifications. In particular, those that are so called affine nested loop programs can
automatically be converted. The conversion to input-output equivalent parallel specification
of a subset of these nested loop programs has been amply studied and reported in the lit-
erature [5–8]. This subset of the nested loop programs is called static affine nested loop
programs. In this thesis, I focus on the problem of mapping the input-output parallel specifi-
cation of a static affine nested loop programs to FPGA multi-processor execution platforms.

More specifically, we address the problem of synthesizing Process Network specifica-
tions to FPGA multi-processor execution platforms. The process networks we consider are
special cases of Kahn Process Networks [2]. We call them COMPAAN Data Flow Process
Networks (CDFPN) because they are provided by a translator called the COMPAAN compiler
that automatically translates affine nested loop programs to input-output equivalent (COM-
PAAN) process network specifications [5]. COMPAAN Dataflow Process Network is a model
of computation that expresses an application naturally in terms of distributed control and
distributed memory. The CDFPN programs are parallel programs that specify networks of
active entities (threads, processes or actors) that communicate point-to-point over unbounded
communication channels. The inter-process synchronization is done by means of a blocking
read protocol. This protocol states that a process can always write to a channel, but it blocks
when it attempts to read from a channel that is empty.

Our objective is to provide an effective and efficient implementation of CDFPNs in an
FPGA execution platform, where our implementation is close to a one-to-one mapping of
the originating CDFPN. However, in our implementation we do not make use of the embed-
ded CPU blocks, specialized DSP blocks or soft-cores processors. The execution platform
emerges as part of the mapping process resulting in a dedicated multi-processor execution
platform for a given CDFPN specification.

1.1 COMPAAN Data Flow Process Network

COMPAAN Data Flow Process Network is a model of computation well suited to represent ap-
plications from the realm of digital signal processing. In this section, we sketch the behavior
of a CDFPN that is equivalent to an imperative nested loop program.

The CDFPN MoC communication semantics is similar to the Kahn Process Network
(KPN) communication semantics [2]. The KPN MoC is more general than CDFPN MoC,
which is closer to the Dataflow Process Network (DPN) [1], preserving the monotonicity
property [2] (i.e., a CDFPN needs only partial information of the input stream in order to

4 Introduction

produce partial information of the output stream). As in the case of the DPN, the CDFPN
processes map input tokens into output tokens in concordance with a set of firing rules. These
rules dictate precisely what tokens must be available at the input for the process to fire. A
firing consumes input tokens and produces output tokens. In the CDFPN case, the firing
rules are derived by the COMPAAN compiler using the Polyhedral Model [7, 9, 10]. The
construction of the CDFPN firing rules is covered in [3]. Here, the notion of variants is
introduced, representing a set of firing rules. A CDFPN process produces a single scalar
token when it fires.

Listing 1.1: A simple Matlab pro-
gram

f o r i = 1 : 1 : 1 ,
[z (i)] = I n i t () ;

end

fo r i = 1 : 1 : N,
[z (i +1)] = bar (z (i)) ;

end

fo r i =N+1 : 1 : N+1 ,
[] = S ink (z (i)) ;

end

P1 P2 P3
ED 1

ED 2

ED 3

Figure 1.2: The CDFPN Network of
the program listed in Listing 1.1

Consider the CDFPN shown in Figure 1.2. Like with most of the graphically program-
ming environments, the nodes of the graph can be viewed as processes that run concurrently
and exchange data over the arcs of the graph (communication channels). The given CDFPN
consists of three processes, P1, P2, and P3, and three communication channels, ED1, ED2,
and ED3. This graph is referred to as a network and it is the input-output parallel specification
equivalent to the affine nested loop program listed in Listing 1.1. The network communica-
tion channels, ED1, ED2, and ED3, implements the global memory represented by vector
z(j) in a distributed meaner. The network processes contain a subprogram that call a specific
function of the affine nested loop program (i.e. P1 calls Init() , P2 calls bar() and P3
calls Sink()). The network is constructed in such way that no control is shared between
the processes. Hence, the functions from the affine nested loop program are also executed
independently (i.e., no explicit synchronization signal is shared among them).

In a CDFPN, concurrent processes communicate only through one-way communication
channels with unbounded capacity. The interface between a communication channel and a
process is called a port. A port is either an Input Port or an Output Port. An Input Port is
used for a read operation from a communication channel. An Output Port is used for a write
operation to a communication channel. Each channel carries a sequence (a stream) that is
made of atomic data objects called tokens. Each token is written (produced) exactly once,
and read (consumed) possible more than once. Writes to the channels are nonblocking, but
reads are blocking. This means that a process that attempts to read from an empty input
channel stalls until the buffer has sufficient tokens to satisfy the read. Hence, when a process
stalls the function will not evaluate. Each call of the function results in output tokens that
are sent to the appropriate outgoing ports. The order in which a channel is read or written is
given (i.e., schedule).

A process in the CDFPN model is a subprogram. This subprogram is a module wrapper

1.1 COMPAAN Data Flow Process Network 5

�����
�����
�����

void P2::main() {
for (int i = 1 ; i <= N ; i += 1)

if (i -1 == 0) {

// READ
// reads a token from a channel
in_0 = IP1.get();

}
if (i -2 >= 0) {

// reads a token from a channel
in_0 = IP2.get();

out_0 = bar (in_0) ; //EXECUTE

// WRITE

}
} // Process P2

if (-i+N-1 >= 0) {
 //writes a token to a channel
 OP1.put(out_0);
}
if (i-N == 0) {
 //writes a token to a channel
 OP2.put(out_0);
}

}

Input
port IP1

Input
port IP2

Output
port
OP1

Output
port
OP2

Process P1
Process P1

Process P3
Process P3

ED 1

ED 2

ED 3

Figure 1.3: A CDFPN process unveiled

that isolates the computation (the affine nested loop function call) from the communication
(the schedule according to which a channel is read or written). Such a subprogram is given in
Figure 1.3 and shows the implementation of the process P2. The process has four ports: two
input ports (i.e., IP1 and IP2) and two output ports (i.e., OP1 and OP2). We observe that the
tokens written to ED2 via OP1 are read back by the same process via IP2. We refer to this
kind of communication channel as a self-loop.

The schedule according to which a channel is read or written is given by the surrounding
nested for-loop and if-statements. Each input port is guarded by if-statements that control
the read from a communication channel. For example, when the for-loop iterator i is equal
to one, a token from the IP1 input port is read. In all other cases a token from the IP2 input
port is read. The read token is placed in an internal temporary variable in 0 that is used as
an input argument for the function bar. The call of this function produces an output token
stored in variable out 0. Next, this variable is written to one of the output ports. As in the
case of the input ports, the output ports are also guarded by if statements. The if-statement
gives the right order of writing tokens into network channels. For example, when the for-loop
iterator i is equal to N , then the Output Port OP2 is active. In all other cases, the Output Port
OP1 is active.

Process P2 reads either from channel ED1 or from channel ED2, processes the token,
and finally writes the processed token to either channel ED2 or channel ED3, depending on
loop iterator conditions. Hence, we can always distinguish three behavioral parts in any of
our processes: the READ, the EXECUTE, and the WRITE parts. The part that reads tokens
from communication channels via input ports is called the READ part, as shown in Figure 1.3.
Operations on the read tokens take place in the EXECUTE part. In Figure 1.3, the EXECUTE
part evaluates the bar function. The part that writes tokens to communication channels via
output ports is called the WRITE part.

6 Introduction

1.2 Problem Definition

Given an affine nested loop program and its input-output equivalent COMPAAN Data Flow
Process Network specification, how can we implement that specification in an FPGA based
multi-processor execution platform? In fact, this can be done in several ways. Current FPGA
chips are powerful enough to allow heterogeneous architecture implementations. Thus, an ar-
chitecture consisting of hardcore and/or softcore ISA components, configurable components,
dedicated components, point-to-point, bus-based, or cross bar-based communication struc-
tures, and shared or distributed memory components, can be implemented in FPGA chips.
This diversity of options has been investigated in [11]. However, the most efficient way to
implement a CDFPN specification in an FPGA fabric is a dedicated one-to-one mapping of
the former into the latter. Although this seems to be a straightforward approach, it is not so
because the CDFPN processes are threads that read data, evaluate functions, and write data
in a sequential order. When implemented as such, resource utilization and performance will
not, and can not, be optimal.

Execute Unit Write UnitRead Unit

In_0 IP Core Out_0

Controller ControllerController What is the
communication model of a
channel

How is the Write
Unit controller
implemented

What is the capacity
of a communication

channel

Processor P1
Processor P1

Processor P3
Processor P3

How is the Read
Unit controller
implemented

Channel 1

Channel 2

Channel 3

How do we embedd
and controll an IP

core

IP2

IP1

OP2

OP2

Figure 1.4: Process network architecture example: The processor template

Considering the CDFPN example shown in Figure 1.2, then a possible implementation
model and the issues to be addressed are depicted in Figure 1.4. In this model, a process is
mapped to a processor. Each processor is decomposed into a Read Unit, an Execution Unit,
and a Write Unit that operate in a pipelined fashion. The execute unit evaluates one or more
functions that are enclosed in an intellectual property (IP) core. Function input arguments are
delivered by the Read unit that selects the arguments from process input channels. Function
results are delivered to the Write unit that distributes them across process output channels.

The main issue in mapping a CDFPN to an FPGA is how to design an architecture such
that it achieves the maximum data throughput for the given CDFPN. Addressing this issue
requires answering to the following questions:

• What is the actual capacity of a communication channel? The CDFPN MoC specifies
that the intra processes communication is done over unbounded FIFOs, thus, we need
to bound the channels capacities for an implementation. In [7], the communication
channels are bounded to an over-dimensioned value. Hence, we have to determine the

1.3 Solution Approach 7

communication channel capacity so as to avoid memory spilling and network dead-
locks.

• What are the actual communication primitives and protocols? Because the initial nested
loop programs are streaming data based applications that enforce a throughput, the way
in which the communication channel handles reading and writing operations should not
obstruct the flow of data.

• Can the processor be always pipelined? If so, the CDFPN specification has to be
transformed to exploit this option.

• How to embed an IP core in the processor template? The computation in a COMPAAN

Process Network is not fully specified. Functions embedded in a process of a CDFPN
are specified as mathematical functions [out0, out1] = F (in0, in1, in2), i.e., the
implementation code is not included.

• How to implement the Read and Write units without hindering the performances of the
IP core? The Read and Write units implement the blocking read and blocking write
synchronization primitives. At each occurrence of a blocking read or write situation,
the processors stall. Moreover, the Read and Write units have to determine the next
read and write sequence at each clock cycle. Hence, the design of the Read and Write
units is critical in obtaining an implementation that has a maximal data throughput.

1.3 Solution Approach

The problem of mapping a CDFPN to an FPGA is the subject of this thesis, resulting in a
solution approach and an implementation called the LAURA tool. This solution is part of the
COMPAAN/LAURA tool chain shown in Figure 1.5: the synthesis of applications specified as
nested loop programs to an FPGA platform.

The mapping of a CDFPN in an FPGA consists of two parts. The first part is a platform
independent step. In this step, a given CDFPN specification is converted into an Abstract Ar-
chitecture. The Abstract Architecture is a set of hieratical interconnect modules representing
an architecture. Each module isolates computation from communication. We call this plat-
form independent step the PN to Abstract Architecture step, as no information of the actual
targeted platform is taken into account. The second part is a platform dependent part that
synthesizes an actual FPGA-based multi-processor execution organization from the Abstract
Architecture. In this step, the Abstract Architecture is converted onto a Network of Synthesiz-
able Processors. We call this the Architecture Synthesis step as platform specific information
is taken in account. Also, we embed in this step platform specific IP cores that implement
the Execute unit functionality of the synthesized CDFPN processes. The Network of Synthe-
sizable Processors is specified using a hardware description language. In this thesis we limit
ourselves to VHDL output.

The CDFPN specification, the Abstract Architecture, and the Network of Synthesizable
Processors (the FPGA implementation) are topologically identical. However, their semantics
are different. The semantics are related through a number of operations in the PN to Abstract
Architecture and the Architecture Synthesis steps. The PN to Abstract Architecture step
consists of the following operations:

8 Introduction

Compaan

Laura

PN to
Abstract

Architecture

Architecture
Synthesis

IP

Laura in more detail
Matlab

Process Network

Architecture

Process Network

Abstract
Architecture

Architecture

Platform independent

Platform dependent

Figure 1.5: The LAURA flow in the COMPAAN/LAURA tool chain

• Topological Mapping converts the CDFPN to a network of virtual processors. The
resulting network has the same topology as the CDFPN, as we employ one-to-one
mapping in which each process becomes a Virtual Processor and each communication
channel a Dedicated Channel;

• Semantic Mapping decomposes a PN process specification into the components of a
Virtual Processor. These components are the Read Unit, the Write Unit, and the Exe-
cute Unit. The controller is distributed in the Read, Execute and Write units.

The Architecture Synthesis step consists of the following operations:

• Control Synthesis derives the control structure for the Read or Write units;

• Communication Synthesis determines the type and the capacity of a dedicated channel;

• Expression Synthesis translates a linear or pseudo linear expression to a form that is free
of multiplication and integer division operations. The Expression Synthesis operation
is used by the Control Synthesis operation;

• IP Core Integration embeds a functional IP core.

The Network of Synthesizable Processors is captured in the LAURA tool in terms of a
set of both generic and platform specific VHDL templates. In this dissertation, we target
specifically the VIRTEX II/Pro platform from Xilinx, as this platform was available to us.
We use the Xilinx resources (e.g., embedded memories, serial interfaces) to implement the
platform specific VHDL templates. When we embed an IP core in our network, a tailored
processor is made to accommodate the IP core. The resulting processor inherits the execution
model of the IP, the computational resources available, and the clock cycles needed for an
execution.

1.4 Thesis Contribution 9

1.4 Thesis Contribution

In this thesis, we present the LAURA approach that implements our methodology to map PNs
generated by the COMPAAN compiler onto a reconfigurable platform such as an FPGA. The
main contributions are:

• The development of an approach that allows mapping of a Process Network specifica-
tion onto reconfigurable platforms in a systematic and automatic way;

• The introduction of the notions of Abstract Architecture, Virtual Processor and Dedi-
cated Channel to capture and model the Process Network behavior on the FPGA;

• The development of a technique that improves the efficiency of the IP cores embedded
in our architecture;

• The development of a technique that can estimate at compile time the type and capacity
of the dedicated channels;

• The development of a number of techniques that allow us to map a CDFPN efficiently
(in terms of speed and resources) onto an FPGA platform;

• The validation of the present approach with real-life industrial experiments;

• The prototyping of the present approach in software.

A number of experiments have been conducted for applications in the field of image pro-
cessing and signal processing. The experiments show that we are able to fully automatically
derive a FPGA implementation from a given sequential imperative application specification.

1.5 Related Work

Many researchers have addressed the problem of mapping sequential imperative programs
to FPGA execution platforms [12–21]. In the literature, all contributions differ in the way
programs and platforms are constrained. Mapping any sequential imperative program to an
FPGA execution platform is almost equivalent to mapping such programs to homogeneous
multi-processor architectures. Our approach is different as we generate FPGA implementa-
tions using a constrained Process Network MoC that uses the polyhedral model to derive the
firing sequence of each process. In this section, we discuss some approaches that uses the
Process Network MoC or the polyhedral model to generate hardware architectures. These
approaches are discussed in two sections. The first section is dealing with the tools that gen-
erates an FPGA implementation using the polyhedral model. The second section deals with
tools that use PN MoC to describe hardware architectures.

1.5.1 Hardware Architecture Implementations that uses the Polyhedral
Model

The polyhedral model is used in numerous projects to synthesize architectures for multi-
processor FPGA based architectures. The CLooGVHDL [22] project is one of them. Each

10 Introduction

C statement processed by ClooG [23] is synthesized by the VHDL back-end using a sequen-
tial execution model. Thus, only the parallelism within one statement is exploited by the
ClooGVHDL. In [24] Teich and Thile describe a systematic way to design a processor ar-
ray. Although the processor arrays are a good solution to map applications that are data flow
dominated, these processor arrays are not suited for more control dominated applications.
Thus, the control dominated applications require a more complex global controller to be syn-
thesized to. In the Paro compiler [25], the authors extend the work presented in [24] by a
methodology which reduces the hardware cost of the global controller and memory address
generators by avoiding costly multiplication and division operations.

In the Alpha environment [26], a program is described as a system of affine recurrence
equations (SARE). Starting from such a specification, both the synthesis of regular architec-
tures and the compilation to sequential or parallel machines are considered. The rationale
behind writing programs in Alpha rather than in some imperative language is that a function-
al/mathematical specification matches the way people think of an algorithm and that all the
parallelism in the algorithm is naturally preserved. AlpHard [27] is a subset of the Alpha
language that enables the hardware generation of regular architectures, like systolic arrays.

Another example is the Atomium [28] project which consists of a set of tools that oper-
ate at the behavioral level of an application, expressed in C. The output is a transformed C
description, functionally equivalent to the original program, but typically leading to strongly
reduced execution times, memory size, and power consumption. Related to our work is the
part of the Atomium dealing with memory issues when mapping applications onto platforms
with distributed memory architectures. The Memory Architect is a component tool allowing
the designer to explore the effects of timing constraints on the required memory architecture.
This architecture translates the timing constraints into optimized memory architecture con-
straints: for a given set of timing constraints, it generates an optimized set of architectural
constraints and a cost estimate for the resulting architecture.

The high-level synthesis methodology Phideo [29] starts with a specification in the single
assignment form, and converts this description into an instance of a target architecture tem-
plate. An important part of Phideo is the address generation method for memories that are
introduced by the synthesis tool. The address generation in Phideo is a special case of the
address generation present in the COMPAAN Data Flow Process Networks. This is due to a
somewhat more restricted geometry of the iteration domain used in Phideo. The hardware
designed by Phideo is synchronous and a schedule is derived. This represents an important
constraint and therefore the class of applications Phideo accepts as input is restricted to single
assignment perfectly nested loop programs.

The PICO project [30] at HP Labs (later on spun out to a startup called Synfora [31]) is
an effort that aims to automate the mapping of applications onto platforms consisting of a
VLIW processor and custom nonprogrammable accelerators (NPA) connected to a two-level
cache subsystem connected to the system bus. Each accelerator is customized to execute a
compute intensive loop nest that would otherwise have been executed on the VLIW. Different
than in our network representation, an NPA is represented by a fixed size (non-parametric)
array of processing units activated by a global schedule. The NPA is derived by the PICO-
NPA compiler which accepts a perfect loop nest in C and produces, based on a template,
a structural Verilog/VHDL that defines the NPA at the register transfer level together with
the C code that repeatedly invokes the NPA hardware. This code is compiled onto the host
processor along with the remainder of the application.

1.5 Related Work 11

1.5.2 Hardware Architecture Implementations that uses the Process Net-
work MoC

The usage of the Process Network MoC for FPGA implementation is not new. A special
subset of the Process Network MoC called Communicating Sequential Processes (CSP) [32]
has been used by a number of projects for modeling applications. The Stream-C project [33]
lets the user specify coarse grain, process level parallelism. The compiler infers fine grain,
loop level parallelism. Stream-C is also based on the CSP model and allows users to specify
independent parallel processes and their mapping to a multiple FPGA platform. Another
approach is to add constructs and annotations to a subset of a programming language to
specify parallelism and event sensitivity. Examples of this approach include the Handle-C
project at Oxford [34], where the compiler can produce hardware from an input description.
Handle-C is based on Hoare’s CSP model and it is a modified form of C, where the user can
specify concurrent operations and bit-widths of data.

C-HEAP is a top-down design methodology presented in [35] using the Kahn Process
Network (KPN) MoC. It generates instances of an architecture template containing dedicated
hardware components, multiple software programmable processors (e.g., CPUs, DSPs), local
cache memories, a global shared memory, and a communication network. Although the
communication between various processors is made using KPN modeling, their hardware
implementation is a bus oriented architecture. In this architecture, however, problems with
the cache coherence are reported. In our approach we do not use global shared memory and
thus memory contention is avoided.

In [36], the authors present a Kahn Process Network methodology based on the DISY-
DENT platform (DIgital SYstem Design ENvironmenT). The system is described by a set of
communicating Kahn processes. These processes are C POSIX threads representing both
software and hardware tasks. Each thread communicates with the others using channel-
read/channel-write primitives. Systems realization consists of synthesizing hardware tasks
to RTL-VHDL language. However, this methodology is suited for control dominated appli-
cations, requiring low level information to be given by the user.

The use of KPN as a model of computation is also reported in the COSY [37] and
Prophid [38] tools. Prophid is a heterogeneous multi-processor architecture template. This
template distinguishes between control-oriented tasks and high performance media process-
ing tasks. A CPU connected to a central bus is used for control-oriented tasks and possibly
low to medium performance signal-processing tasks. A number of application-specific pro-
cessors implement high performance media processing tasks. These processors are connected
to a reconfigurable high-throughput communication network to meet the high communica-
tion bandwidth requirements. Hardware FIFO buffers are placed between the communica-
tion network and the inputs and outputs of the application-specific processors to efficiently
implement stream-based communication.

The COSY methodology [37] provides a gradual path for communication refinement in a
top-down fashion for a given platform and a communication protocol. The main goal of the
COSY methodology is to perform design space exploration of a system at a high abstraction
level. In order to achieve this, the methodology provides a mechanism for modeling com-
munication interfaces at a high level of abstraction (including the behavior of the selected
protocol) with various parameters, e.g. delay of execution of the protocol itself. The COSY
methodology uses a message passing communication protocol with read and write primitives.

12 Introduction

The architecture generated by us has close ties with the Globally Asynchronous Locally
Synchronous systems [39]. GALS systems contain several independent synchronous blocks
which operate with their own local clocks and communicate asynchronously with each other.
The main feature of these systems is the absence of a global timing reference and the use
of several distinct local clocks (or clock domains), possibly running at different frequencies.
However, we know of no tools that generate GALS systems out of a imperative program like
our proposed COMPAAN/LAURA approach does.

1.6 Thesis Outline

The general outline for the LAURA approach is shown in Figure 1.6.

Process
Network

Topologic
Mapping

Semantic
Mapping

Abstract
Architecture

IP Core
Integration

Control
Synthesis

Communication
Synthesis

Expression
Synthesis

Memory
Estimation

Network of
Synthesizable

Processors
VHDL

IP Core
Library

(Chapter 2)

(Chapter 2)

(Chapter 3)

(Chapter 4)

(Chapter 5)

(Chapter 6)

(Chapter 7)

(Chapter 8)

Figure 1.6: The Laura Flow

In Chapter 2, we present the step of mapping a process network onto an Abstract Archi-
tecture. In Chapter 3, we present our methodology to map the associated control for each
Read and Write unit of the Virtual Processor. We pay attention to constraints such as clock
speed and area in the mapping of those units. In Chapter 4, we analyze the communication be-
havior between processors and propose four channel realizations. In Chapter 5, we present a
methodology to determine at compile time the memory requirements for a particular commu-
nication channel and thus, for the entire network. In Chapter 6, we present our methodology
to synthesize complex expressions which are found in the control units. The topic of IP core
integration is discussed in Chapter 7. Here we present how an IP core is embedded into our
Virtual Processor and how we can determine its utilization in the case of pipelined IP cores
in the presence of self-loops. In the case of a low utilization of the IP pipeline, we propose
a number of transformations that may increase this utilization. In Chapter 8 we present three
software kernels which are used in smart antenna applications. We conclude the thesis in
Chapter 9.

Chapter 2
From COMPAAN Data Flow Process
Network to Abstract Architecture

In this chapter, we deal with the first two operations that are present in the first step of the
LAURA approach, that is called PN to Abstract Architecture, see Figure 2.1. These two
operations are the Topological Mapping and the Semantic Mapping. The Topological Map-
ping translates a CDFPN network topology to an architectural communication network. The
Semantic Mapping structures each process of the network to a form that is suitable for syn-
thesis. The core of this structure is the Read-Execute-Write(REW) synthesis template. The
result specifies the CDFPN model in architectural terms as an Abstract Architecture. Before
we further explain the PN to Abstract Architecture step, we first provide some background
information in Section 2.1 concerning the model of computation used. In Section 2.2, the
Topological Mapping relates the topology of the COMPAAN Data Flow Process Network
(MoC) with the topology of the Abstract Architecture. In Section 2.3, we discuss about the
Semantic Mapping which translates the behavior of the processors in the CDFPN MoC to
the behavior of the processors in the Abstract Architecture. The chapter is concluded in
Section 2.4.

2.1 Background

The model of computation (MoC) that we consider in this thesis is a process network model
which we call it COMPAAN Data Flow Process Network (CDFPN). An CDFPN is a special
case of the Kahn Process Network [1, 2] MoC, sharing many of the characteristics of KPN
MoC (e.g., the communication semantics of CDFPN is the same as for Kahn networks).
A Kahn Process Network (KPN) consists of a set of processes that communicate point-to-
point over unbounded FIFO channels. A process that wants to read from a channel will
block when that channel is empty waiting for data to arrive. Compared to Kahn networks,
a COMPAAN network does not allow a process or a network to be nondeterministic, and the
network is always static (i.e., no additional nodes or arches can be added at run-time). Also,
the hierarchical characteristic of a generic KPN is not kept by CDFPN MoC. However, KPN

14 From COMPAAN Data Flow Process Network to Abstract Architecture

Process Network

Network
generation

Processor
generation

Abstract
Architecture

Semantic
mapping

Topologic
mapping

Figure 2.1: PN to Abstract Architecture step in more detail

has the following favorable characteristics shared also by CDFPN networks:

• The KPN model is deterministic, which means that irrespective of the schedule chosen
to evaluate the network, always the same input/output relation exists;

• The inter-process synchronization is done by a blocking read. This is a very simple
synchronization protocol that can be realized easily and efficiently in FPGAs;

• Processes run autonomously and synchronize via the blocking read. When mapping
processes to an FPGA, you get autonomous islands on the FPGA that are only syn-
chronized via blocking reads;

• As control is completely distributed to the individual processes, there is no global
scheduler present. As a consequence, partitioning a KPN over a number of recon-
figurable components or microprocessors is a simple task;

• As the exchange of data has been distributed over the FIFOs, there is no notion of a
global memory that has to be accessed by multiple processes. Therefore, no resource
contention occurs.

Listing 2.1: Static Affine Nested Loop Program example
f o r i = 1 : 1 : M,

f o r j = 1 : 1 : N,
i f i + j <= T ,

[r (i , j)] = F (. . .) ;
end

end
end

Our model is special in that the processes are static affine nested loop programs (SANLP).
In an SANLP, the loop bounds, condition statements, and variable indexing functions are all

2.1 Background 15

affine or pseudo affine functions of loop iterations and static parameters. A static parameter is
a parameter that is constant during a SANLP execution. An example is shown in Listing 2.1
in which M , N , and T are static parameters, i and j are the index variables of the surrounding
loop. Hence, Z(i, j) and Z(i, i + j) are affine accesses. A function of one or more variables,
i1, i2, . . . , in is affine if it can be expressed as a sum of a constant, plus constant multiples of
the variables, i.e., c0 + c1x1 + c2x2 + . . . + cnxn, where are c0, c1, . . . , cn constants.

In CDFPN networks, the firing rules are derived in a particular manner that respects the
SANLP nature of the COMPAAN sequential imperative input programs:

• A firing rule dictates how the tokens are consumed in one process fire.

• A process interacts with the rest of the network only through their FIFO links. A
CDFPN is input-output equivalent to a SANLP, and can be automatically derived from
that equivalent program by the COMPAAN compiler. Internally, the COMPAAN com-
piler uses a representation of loops so-called the polyhedral program model [7, 9, 10].

It is important to understand what COMPAAN compiler generates a CDFPN from a SANLP
input program. Consider the program shown in Listing 2.2. This program uses the Matlab
programming language as this is the input programming language accepted by the COMPAAN

compiler.

Listing 2.2: SANLP compilation example
f o r j = 1 : 1 : N,

f o r i = 1 : 1 : N,
[x (j , i)] = F1 (. . .) ;
i f i + j <= N,

[] = F2 (x (j , i)) ;
end

end
end

The above program can be represented using the polyhedral program model, where each
statement is guarded by a set of linear equations. A statement is a line of a program without
control (e.g., [] = F2(x(j, i)) from Listing 2.2). A statement is executed for a set of values of
the iteration vector, the vector containing the iterators of surrounding loops (i.e., for statement
containing the function F2(), the iteration vector is (i, j)). The iteration domain is the set of
values of the iteration vector for which the statement is executed. The iteration domain of the
statement containing the function F2() is shown in Figure 2.2.

The program listed in 2.2 is equivalent to the process network presented in Figure 2.3. The
network is made out of two processes called producer and consumer. The producer process
wraps the function call of F1() of given SANLP example and the consumer process wraps
the function call of F2() of given SANLP example. The producer process is characterized by
the C program:

f o r (i n t j1 = 1 ; j1 <= N ; j1+ = 1) {
f o r (i n t i1 = 1 ; i1 <= N ; i1+ = 1) {

out0 = F1() ;
i f (−j1 − i1 + N >= 0) {

OP1 . p u t (out0) ;
}

}
}

16 From COMPAAN Data Flow Process Network to Abstract Architecture

N

1

N1

i

j

Figure 2.2: The graphical representation of the iteration domain of statement containing the
function F2() from Listing 2.2

And the consumer process is characterized by the C program:

f o r (i n t j2 = 1 ; j2 <= N − 1 ; j2+ = 1) {
f o r (i n t i2 = 1 ; i2 <= −j2 + N ; i2+ = 1) {

in0 = IP1 . g e t () ;
F2(in0) ;

}
}

The communication between these two processes is done using an unbounded FIFO
buffer (i.e., ED1). The interface between the FIFO buffer and the producer process is de-
noted by a black point (i.e., OP1). This interface is called the Output Port. An Output Port is
used for a write operation to a FIFO. The interface between the FIFO buffer and the consumer
process is denoted also by a black point (i.e., IP1). This interface is called the Input Port. An
input port is used for a read operation from a FIFO.

F1 F2

Producer Consumer

FIFO buffer

ED1

Output port Input port

OP1
IP1

Figure 2.3: CDFPN network of the SANLP presented in Listing 2.2

The two processes from Figure 2.3 and their relation can be represented by a producer-
consumer pair P/C pair) [40] and an affine mapping.

Definition 2.1 A P/C pair is a tuple < C(p), f, P (p),≺>, where C(p) ⊂ Qn is a parame-
terized polytope, f : Zn → Zm is an affine function, P(p) = f(C(p) ∩ Zn), and ≺ is the
lexicographical order.

2.1 Background 17

Thus,
C(p) = {x ∈ Qn | Ax + Bp ≥ C}, (2.1)

with A, B, and C integral matrices of appropriate dimension, and p static integral parametric
vector. C(p)∩Zn is called the consumer domain. A consumer domain is an iteration domain.

P(p) = f(C(p) ∩ Zn) = {i ∈ Zm | i = Mk + O ∧ k ∈ (C(p) ∩ Zn)}. (2.2)

with M and O integral matrices of appropriate dimension. Usually matrix O is zero and
matrix M is called mapping matrix. P(q) is called the producer domain. A producer domain
is an iteration domain.

In our example, the mapping function f :

f

(
j1
i1

)
=

(
1 0
0 1

) (
j2
i2

)

maps the points (j2, i2) from the consumer domain

C ∩ Z2 = {
(

j2
i2

)
∈ Z2|

⎛
⎜⎜⎜⎜⎝

1 0
−1 0
0 1
0 −1
−1 −1

⎞
⎟⎟⎟⎟⎠

(
j2
i2

)
+

⎛
⎜⎜⎜⎜⎝

0
1
0
1
1

⎞
⎟⎟⎟⎟⎠ [N] ≥

⎛
⎜⎜⎜⎜⎝

1
0
1
0
0

⎞
⎟⎟⎟⎟⎠}

to the points (j1, i1) from the producer domain

P = {
(

j1
i1

)
∈ Z2|

⎛
⎜⎜⎜⎜⎝

1 0
−1 0
0 1
0 −1
−1 −1

⎞
⎟⎟⎟⎟⎠

(
j1
i1

)
+

⎛
⎜⎜⎜⎜⎝

0
1
0
1
1

⎞
⎟⎟⎟⎟⎠ [N] ≥

⎛
⎜⎜⎜⎜⎝

1
0
1
0
0

⎞
⎟⎟⎟⎟⎠}

The lexicographic order ”≺” is the order as defined through the loop nests. The lexico-
graphic order is also referred as the local schedule. Hence, the local schedule of the producer
process is given by the following nested for-loops:

f o r (i n t j1 = 1 ; j1 <= N ; j1+ = 1)
f o r (i n t i1 = 1 ; i1 <= N ; i1+ = 1)

and the local schedule of the consumer process is given by the following nested for-loops:

f o r (i n t j2 = 1 ; j2 <= N − 1 ; j2+ = 1)
f o r (i n t i2 = 1 ; i2 <= −j2 + N ; i2+ = 1)

The understanding of P/C pair is essential as a CDFPN is a collection of these P/C pairs
arranged in a network [7]. In [41], the authors present four types of communication that can
exist in a P/C pair. The four types differ in order and multiplicity. Multiplicity means that a
token that is sent by the producer is read more than once at the consumer side. Order means
that a token sent by the producer is not read by the consumer in the same order as it was
produced. Depending on the order and presence of multiplicity, an arbitrary communication
channel belongs to one of the following four classes:

18 From COMPAAN Data Flow Process Network to Abstract Architecture

In-Order without multiplicity (IOM-) a producer writes data in the channel in the same
order and quantity as the consumer reads from the channel;

In-Order with multiplicity (IOM+) the order in which data is produced is the same as the
order in which data is consumed. However, some data is consumed more than once,
breaking the communication model of a FIFO, where a get operation is destructive. In
this model, the life-time of a token needs to be taken into account;

Out-of-Order without multiplicity(OOM-) a consumer reads data in a different order than
it has been written by the producer;

Out-of-Order with multiplicity(IOM+) a channel has the same characteristics as in the
Out-of-Order case. Additional release logic is added at the consumer side to keep
track of the life-time of tokens, to determine the release moment.

To synthesize a CDFPN to an FPGA multi-processor execution platform, we need a model
that facilitates this synthesis. This model is the Abstract Architecture. It is defined in terms of
concurrent autonomous Virtual Processors (VP) that communicate in a point to point fashion
over bounded channels. In the next sections we show how a CDFPN is mapped into an Ab-
stract Architecture. The mapping to an Abstract Architecture is made using two operations.
The first operation, generates an interconnection network between a number of processors.
The processors are generated by the second operation. In this second operation, we make
use of a predefined processor architecture template. Due to the fact that the first operation
deals with topologies of an architecture, this first operation is called Topological Mapping.
The second operation is called Semantic Mapping. The semantic model of a processor is
defined in this second operation, i.e., how the various components interact with each other;
autonomous processors that communicate over channels using blocking read and blocking
write semantics.

2.2 Topological Mapping

The topological mapping operation creates an architectural interconnection network that has
the same topology as the topology of the given CDFPN MoC. This is due to one-to-one
topological mapping used by our methodology. The architectural interconnection network is
captured by our Abstract Architecture model. The one-to-one mapping ensures that the task
level parallelism (TLP) captured by the CDFPN MoC is propagated to the FPGA level. The
Abstract Architecture naturally fits the CDFPN MoC when:

• The Abstract Architecture communication and synchronization primitives match the
CDFPN MoC communication and synchronization primitives;

• The operational semantics of the Abstract Architecture match the operational semantics
of the CDFPN MoC;

• The data types used in the CDFPN MoC match the data types used in the architecture.

Hence, the Abstract Architecture interconnection network has at least the following im-
plementation characteristics:

2.3 Semantic Mapping 19

• Communication and Synchronization:

– FIFO buffer used to realize the interprocess communication;

– Blocking read synchronization primitive is part of a FIFO behavior. Any virtual
processor implements the read token from FIFO function as an execution block-
ing function.

• Operational semantics. An FPGA multi-processor execution platform provides a large
number of opportunities to create various number of complex operations. These oper-
ation can be realized using the embed CPUs or DSP blocs, distributed block RAMs,
input/output blocs and Configurable Logic Blocs (CLBs).

• An FPGA multi-processor execution platform is optimized to work with scalar data
types rather with packages of data. Hence, in this dissertation, we consider that a
CDFPN token (or datum) is always a scalar.

Additionally, due to the fact that a FIFO buffer is bounded in real life, a new synchro-
nization primitive is introduced. This is the blocking write synchronization primitive. This
protocol states that a virtual processor halts when it attempts to write to a channel that is full.
Thus, a virtual processor can continue its execution whenever there are neither blocking read
nor blocking write situations.

Not all the communication channels of the Abstract Architecture are FIFOs as in the case
of the CDFPN. This is due to a different approach in handling the four types of communi-
cation that exists in CDFPN. These communication types has been introduced in [41] and
enumerated in Section 2.1. This derogation does not change the topology of the Abstract
Architecture in respect to the topology of the COMPAAN generated PN. However, the com-
munication channels may have differen execution behavior than a FIFO (First In First Out)
(e.g., LIFO - Last In First Out - execution behavior, circular buffers).

Our philosophy is to keep a virtual processor of an Abstract Architecture memoryless,
and all the communication related memory is handled by the Abstract Architecture intercon-
nection network. Thus, we clearly separate the computation from communication as a virtual
processor only deals with the computational part of the CDFPN MoC and the Abstract Ar-
chitecture interconnection network with the communication. The different communication
primitives that the Abstract Architecture interconnection network employs are discussed in
Chapter 4. The output ports and the input ports of a CDFPN are instantiated accordingly to
the type of channel used. An example of an abstract interconnection network is the CDFPN
given in Figure 2.3. However, the FIFO buffer is bounded in Abstract Architecture inter-
connection network. We discuss in Chapter 5 how to determine the upper limit of all the
channels types used in an implementation. More complex network examples are given in the
next sections and chapters.

2.3 Semantic Mapping

We showed before how the topology of the Abstract Architecture is generated using the topo-
logical mapping operation. This operation defines the communication channels in terms of
types, bounds and synchronization primitives. Each of these communication channels is con-
nected to a processor. This processor is called Virtual Processor (VP). In this section, we

20 From COMPAAN Data Flow Process Network to Abstract Architecture

show what is the synthesis template of a VP, and how to properly synthesize a VP into an
Abstract Architecture.

Execute Unit Write UnitRead Unit

In Arg IP Core Out Arg

IP_1

IP_2

OP_1

OP_2

Unit
Controller

Unit
Controller

IP Core
Wrapper

Units
Synchronization
Signals

IP Core Control
Signals

Data Path
Switch
Signals

IP_x OP_y

Data Path
Select

Signals

Figure 2.4: The Virtual Processor synthesis template

We start presenting the synthesis template of a VP in Figure 2.4. A virtual processor is
composed of three units: a Read Unit, a Write Unit, and an Execute Unit. The Execute unit is
the computational part of a virtual processor. It has a number of input arguments that provide
to the unit the necessary data for execution and a number of output arguments that are the
result of the computation process. In our model of implementation, the Execute unit fires
when all the input arguments have data and always produces data to all the output arguments
at once. The functionality of the Execute unit is realized using an IP core. The IP core is
taken from an IP library. The control of the execution unit firing and of the embedded IP
core is done by IP core wrapper. The IP core wrapper is discussed in Chapter 7. The Read
unit is responsible for assigning all the input arguments of the Execute unit with valid data.
Since there are more input ports than arguments, the Read unit has to select from which port
to read data. This selection is realized by a selector. The selector is controlled by the local
unit controller. An Input Port is the input interface that connects the virtual processor with a
communication channel. An Input Port is characterized by an iteration domain called Input
Port Domain (IPD). The Output Port is the output interface that connects the virtual processor
with a communication channel. An Output Port is characterized by an iteration domain called
Output Port Domain (OPD). The Write unit is responsible for distributing the results of the
Execute unit to the relevant processors in the network. A write operation can be executed only
when all the output arguments of the execute unit are available for the write unit. Since there
may be more output ports than output arguments, a switch is used for the proper selection of
the Output Port. The switch is controlled by a local unit controller. The local unit controller
selects the proper Output Port accordingly to the current state (i.e., iteration) of the virtual
processor.

A key characteristic of the VP is that it models an overlay of these three units realized
using inter-units synchronization signals. The overlay execution model of a VP is shown in
Figure 2.5, where R is the execution of the Read unit, E is the execution of the Execute unit,
and W is the execution of the Write unit.

The processes in a CDFPN are static affine nested loop programs. These programs are
mapped by semantic mapping operation to a VP. Thus, the Von-Neumann model of execution

2.3 Semantic Mapping 21

RR EE WW

RR EE WW

RR EE WWIte
ra

tio
n

O
rd

er

Execution Order

iteration 0

iteration 1

iteration 2

Figure 2.5: The pipelined model of execution of a virtual processor

of each process is optimized to fit the overlay operation mode of a VP synthesis template.
Moreover, the operations made in Read unit and Write unit are parallelized to exploit the
parallelism of the underlaying FPGA architecture as discussed in Chapter 3. The semantic
mapping operation just fills the data structure of each VP unit with the required information.
The synthesis of each unit is handled latter on in our methodology.

Consider the simple example show in Chapter 1, and reproduced in Listing 2.3. The
CDFPN of this example is shown in Figure 2.6. As shown in the pervious section the example
topology of the Abstract Architecture is the same as the topology of the CDFPN shown in
Figure 2.6.

Listing 2.3: A simple Matlab pro-
gram

f o r i = 1 : 1 : 1 ,
[z (i)] = I n i t () ;

end

fo r i = 1 : 1 : N,
[z (i +1)] = bar (z (i)) ;

end

fo r i =N+1 : 1 : N+1 ,
[] = S ink (z (i)) ;

end

P1 P2 P3
ED 1

ED 2

ED 3

Figure 2.6: The CDFPN Network of
the simple Matlab Program

Let us see how the semantic mapping fills up the VP synthesis template structure for the
virtual processor that corresponds to the bar() function. We observe that the function bar()
is wrapped by the COMPAAN compiler into an equivalent process able to run the autonomous
static affine nested loop program shown at the left of Figure 2.7. This program reveals three
phases: a read phase, an execute phase, and a write phase. The for-loop represents the local
schedule of the process. In the read phase, the argument in 0 of the function bar() is read
from either the Input Port IP1 or the Input Port IP2, depending whether i = 1 or i ≥ 2,
respectively. In the execution phase, the function out 0 = bar(in 0) is evaluated. Finally, in
the write phase, the result out 0 is written to either the Output Port OP1 or the Output Port
OP2, depending on whether (i ≤ N − 1) or (i = N), respectively.

Clearly, the evaluation of the conditions that distinguish between input ports IP1 and
IP2, and output ports OP1 and OP2 can be performed concurrently. In addition to that,

22 From COMPAAN Data Flow Process Network to Abstract Architecture

����
����
����

void P2::main() {
for (int i = 1 ; i <= N ; i += 1)

if (i -1 == 0) {

// READ
// reads a token from a channel
in_0 = IP1.get();

}
if (i -2 >= 0) {

// reads a token from a channel
in_0 = IP2.get();

out_0 = bar (in_0) ; //EXECUTE

// WRITE

} // for i
} // Process P2

if (-i+N-1 >= 0) {
//writes a token to a channel
OP1.write(out_0);

}
if (i-N == 0) {

//writes a token to a channel
OP2.write(out_0);

}

}

IP1

IP2

OP1

OP2

E
xecu

te U
n

it
W

rite U
n

it
R

ead
 U

n
it

in
_0

IP
 C

o
re

ou
t_

0

IP
1

IP
2

O
P

1

O
P

2

U
n

it
C

o
n

tro
ller

U
n

it
C

o
n

tro
ller

IP
 C

o
re

W
rap

p
er

Figure 2.7: Semantic Mapping: The creation of a LAURA Processor

reading in 0 from one of the two input ports, evaluation the function out 0 = bar(in 0), and
writing out 0 to one of the two output ports can be overlapped in time. Hence, the semantic
mapping operation fills up the VP structure as follows:

Read Unit The Read unit structure is filled up with the nested for-loop program that corre-
sponds to the read phase of the mapped process. This program is evaluated at run-time
by the Read unit controller at each firing of the embedded function. The selector of the
Read unit is realized as a function of the number of input ports of the processor, and
the number of input arguments of the embedded function. In our example, the selector
is synthesized as 2-to-1 selector and the Read unit structure is filled with the following
nested for-loop program:

f o r (i n t i = 1 ; i <= N; i ++)
{

i f (i−1 == 0) {
i n 0 = IP1 . g e t () ;

}
i f (i−2 >= 0) {

i n 0 = IP2 . g e t () ;
}

}

Write Unit The Write unit structure is filled up with the nested for-loop program that corre-
sponds to the write phase of the mapped process. This program is evaluated at run-time

2.4 Conclusions 23

by the Read unit controller at each firing of the embedded function as in the case of
the Read Unit. The switch of the Write unit is realized as a function of the number
of output ports of the processor, and the number of output arguments of the embedded
function. In our example, the switch is synthesized as 1-to-2 distributor and the Write
unit structure is filled with the following nested for-loop program:

f o r (i n t i = 1 ; i <= N; i ++)
{

i f (− i +N−1 == 0) {
OP1 . w r i t e (ou t 0) ;

}
i f (i−N == 0) {

OP2 . w r i t e (ou t 0) ;
}

}

Execute Unit The Execute unit embeds an IP core that is extracted from a given IP library.
The Execute unit structure is filled with the required information to identify and embed
an IP core into a VP processor. Such information is the function name (i.e., bar())
and the number of input and output arguments of this function. The number of input
arguments and output arguments of the Execute unit is an exact match of the process
function input and output arguments.

The execution of Read, Execute and Write units is synchronized using the units synchro-
nization signals. The semantic mapping operation is represented graphically in Figure 2.7.

2.4 Conclusions

In this chapter we presented the COMPAAN Data Flow Process Network MoC as it is provided
by the COMPAAN compiler. We observed that CDFPNs are derived from SANLP programs
that can be analyzed using the polyhedral model. We showed how we map a CDFPN into a
synthesis ready structure that we call Abstract Architecture. As a consequence, the polyhedral
model characteristics are propagated downwards to the Abstract Architecture at the FPGA
level. Central to this architecture is the Virtual Processor model. This model is tuned to
take advantage of the inherited polyhedral model of CDFPN. In Chapter 3, we show how we
take advantage of the polyhedral program model to generate local controllers for the Read
and Write units. Optimizations of these local controllers are investigated more in detail in
Chapter 6. The issues of creating a suitable communication structure between the various
VPs is discussed in Chapter 4 and Chapter 5. Adding the computation part to our network is
done via embedding IP cores. The issue of embedding IP cores and how they are interfaced
with the Read unit and Write unit controllers is handled in Chapter 7.

24 From COMPAAN Data Flow Process Network to Abstract Architecture

Chapter 3
Control Synthesis

In the pervious chapter, we considered the conversion of a CDFPN to an Abstract Architec-
ture (AA). Within the Abstract Architecture, we defined the virtual process (VP) that consist
of Read, Write, and Execute units as shown in Figure 3.1. Read and Write units have an
unit controller that selects at a specific iteration the FIFOs to read from and to write to, re-
spectively. In this chapter, we specify these control units as a result of Control Synthesis
operation. We first explain in Section 3.1 what control synthesis is. The control units of the
Read or Write units can be implemented in three different ways, each having its own limita-
tions and rewards. In Section 3.2 we consider the first strategy which is based on the usage of
look-up tables. In Section 3.3, we present the parameterized predicate controller approach.
In Section 3.4, the partitioned controller is discussed.We conclude this chapter in Section 3.5.

Execute Unit Write UnitRead Unit

In Arg IP Core Out Arg

IP_1

IP_2

OP_1

OP_2

Unit
Controller

Unit
Controller

IP Core
Wrapper

Units
Synchronization
Signals

IP Core Control
Signals

Data Path
Switch
Signals

IP_x OP_y

Data Path
Select

Signals

Figure 3.1: The Virtual Processor template

26 Control Synthesis

3.1 Control Synthesis in Read/Write Control Units

The Abstract Architecture’s Virtual Processor template is shown in Figure 3.1. It consists
of a Read unit, an Execute unit, and a Write unit. The Execute unit consists of a function
[{out args}] = F ({in args}) that is implemented in an IP core. The IP core is controlled
by an IP core wrapper. The input arguments in arg for the IP core are delivered by Read unit
that is essentially a select unit. This select unit selects one or more input channels from a set
of input channels. An input channel is only selected if its FIFO contains an input argument
for the function in the Execute unit. Input channel selector is under the control of the Read
unit controller.

The output arguments out args of the IP core are sent to the Write unit that is essentially
a switch unit. It selects one or more output channels from a set of output channels. An
output channel is only selected if an output argument of function in the Execute unit is to
be written to the channels’s FIFO. Output channel selection is under the control of the Write
unit controller. The three units Read unit, Execute unit, and Write unit are synchronized for
correct behavior of the Virtual Processor.

Recall that a port of the Virtual Processor’s Read unit or Write unit is characterized by
a port domain and a lexical ordering. These domains are sub-domains of the Execute unit’s
function domain. The Read unit and Write unit control units take care of the selection of the
appropriate port domains and the order of reading arguments from and writing arguments to
the corresponding channels.

Let us exemplify how an unit controller works by considering the example given in List-
ing 3.1.

Listing 3.1: Nested loop program
f o r i = 1 : 1 : 5 ,

f o r j = i : 1 : 5 ,
a (i + j) = F1 (a (i + j)) ;

end
end

The function F1 has one input argument and one output argument. A data for the input
argument of the function F is read from one of Virtual Processor’s input ports. The Virtual
Processor corresponding to the F1 statement has three input ports (i.e., IP 1, IP2, and IP3).
The iteration domains for each Input Port is show as follows:

IPD1 = {(i, j) ∈ Z2 | i = 1, 1 ≤ j ≤ 5} (3.1)

IPD2 = {(i, j) ∈ Z2 | 2 ≤ i ≤ 5, j = 5} (3.2)

IPD3 = {(i, j) ∈ Z2 | 2 ≤ i ≤ 4, i ≤ j ≤ 4} (3.3)

The Execution unit’s function iteration domain is:

D = {(i, j) ∈ Z2 | 1 ≤ i ≤ 5, i ≤ j ≤ 5}
The lexical order in D is the Ehrhart polynomial [42] rank:

k = −1
2
∗ i2 + (N +

1
2
) ∗ i + j − N, N = 5

3.1 Control Synthesis in Read/Write Control Units 27

The graphical polyhedral representation of these iteration domains is show in Figure 3.2.

j

i

IPD1

IPD3

IPD2

1

1

5

5

Figure 3.2: Polyhedral representation of the Input Port Domains of function F1. The arrows
indicate the execution order

The Read unit port selection mechanism can be represented as follows:

f o r (i n t i = 1 ; i ≤ 5 ; i ++){
f o r (i n t j = 1 ; i ≤ 5 ; j ++) {

i f (i == 1)
{

in0 = IP1 . g e t () ; / / Read from Channel 1
}
i f (2 ≤ i ≤ 5 ∧ j == 5)
{

in0 = IP2 . g e t () ; / / Read from Channel 2
}
i f (2 ≤ i ≤ 4 ∧ i ≤ j ≤ 4)
{

in0 = IP2 . g e t () ; / / Read from Channel 3
}

}
}

Table 3.1 shows an ON/OFF relation between the port domains for all pairs (i, j) =
1 ≤ i ≤ 5, i ≤ j ≤ 5.

The unit controller of Read or Write units is the most critical component in a Virtual
Processor. Its implementation must be fast enough to not obstruct the flow of data. Although
the Read unit and Write unit controllers can be implemented as basic FPGA multiplexors and
de-multiplexors, their operational behavior depends on the way how the Read or Write unit
local controller is implemented. There are three approaches to synthesize a unit controller.
They are:

• Look-up table controller
In this approach the control sequence of an unit controller as depicted in Table 3.1 is
realized using a look-up table. The entry of the look-up table is a current execution

28 Control Synthesis

i j IP1 IP2 IP3

1 1 on off off
1 2 on off off
1 3 on off off
1 4 on off off
1 5 on off off
2 2 off off on
2 3 off off on
2 4 off off on
2 5 off on off
3 3 off off on
3 4 off off on
3 5 off on off
4 4 off off on
4 5 off on off
5 5 off on off

Table 3.1: The activation table for each IPD in relation with the F1 schedule.

iteration of F1 (e.g., < i, j >). The result of the look-up table is the proper selection
of the corresponding IPDs or OPDs.

• Parameterized predicate controller
In this approach the control sequence of an unit controller is evaluated at run-time using
the IPD/OPD mathematical descriptions (e.g.,IPD1 = {(i, j) ∈ Z2 | 1 ≤ j ≤ 5, 1 ≤
i ≤ 1}).

• Partitioned parameterized predicate controller
In this approach the control sequence of an unit controller is evaluated in a similar
manner as in the case of the Parameterized predicate controller. However, we optimize
the synthesis of an unit controller for a fast execution of parts of the control sequences
that depend on the most inner loop index (e.g, for IPD 1 we have 1 ≤ j and j ≤ 5).
The other parts are evaluated using a sequencer.

In the next sections we detail these approaches. We focus on the realization of Input Port
control. The Output Port control is mutatis mutandis the same.

3.2 The Look-up Table Controller

The accepted input of the COMPAAN tool is statical parameterized nested for loop algo-
rithms. The COMPAAN tool fully automates the transformation of the input Matlab code
into CDFPNs, transferring the static characteristic to the network control. Because of this
static characteristic, the sequence of reading/writing data from/to the FIFO channels is data-
independent. The processes in a CDFPN are (possibly endlessly repeating) static sequences
of Read-Execute-Write operations. Hence, a simple approach to implement the local sched-
ule of a Virtual Processor is to use read only memory (ROM) tables to store the IPD/OPD
activation sequences for a process domain iteration. This is equivalent to tracing the execution
of a VP and to store the IPD/OPD sequences in ROM (see Table 3.1).

A trace for an IPD or an OPD is a list that contains the activation sequence of the port.
The length of the list is equal to the number of integral points contained in the iteration
port domain. Domains IPDs and OPDs are subsets of the process iteration domain that are

3.2 The Look-up Table Controller 29

scanned in lexical order. Larger domains generates larger traces. To overcome this problem,
it is possible to apply compression algorithms and perform on-the fly decompression. In the
COMPAAN/LAURA context, we must limit ourselves to very simple compression techniques,
such as Run Length Encoding (RLE), since we want the decompression engine area overhead
to be very limited and not to cause additional delays.

The architecture constrains require a new activation value to be ready within one cycle,
which can be easily achieved with the ROM approach. Each look up table based controller
has a ROM memory and a counter. The counter serves as an address pointer for the ROM
memory. The counter is incremented when all input data is assigned to all Execute unit’s
input arguments.

3.2.1 Example

In Table 3.2, we show the ROM table sizes for a number of parameterized applications. The
applications are: QR which is a matrix decomposition algorithm [43], stereo vision which is
a 1-D motion estimation algorithm [44], and optical flow which is an image restoration algo-
rithm [45]. For each application, we give for a particular processor in the network the size of
the ROM table needed to program the Read and Write units local controller. The processors
shown correspond to the processors with the largest ROM of a benchmarked algorithm. For
each of the processors selected, we change the algorithm’s parameters to observe the memory
footprint. Consider the processor number 4 of the PN representing stereo vision. This pro-
cessor requires a ROM of 459, 016 bytes for a 320 × 200 image (i.e., W = 320, H = 200),
and 1, 941, 576 bytes for a 640 × 400 image (i.e., W = 640, H = 400). If we apply a
simple run-length encoding scheme, we can compress the ROM memory to 401.320 bytes
from 459, 016 bytes for a 320 × 200 image. Suppose we map the node on a Virtex-II 6000
device. This device has a maximum memory of 3, 648K bits available. Hence, implementing
the control table of a single processor would already consume 88% of the available memory
bits on the FPGA, which is totally unacceptable.

Parameters Uncompressed Compressed % of mem
implementation implementation FPGA

N T (bytes) (bytes)
QR 8 16 448 400 0.08

(processor 4 16 64 7680 4160 0.9
out of 5) 64 256 516096 78080 17.12

W H Uncompressed RLE % of mem
Stereo vision 320 200 459016 401320 88.00
(processor 4 640 400 1941576 1698240 372.42

out of 5) 1024 640 5072328 4437264 973.08
W H Uncompressed RLE % of mem

Optical Flow 320 200 944460 14850 3.25
(processor 3 640 480 3808860 29850 6.54

out of 7) 1024 764 9780540 47850 10.4

Table 3.2: Control ROM size for three different applications

30 Control Synthesis

3.2.2 Discusion

The ROM table controller is the best solution to achieve small clock delays for the system,
as no additional computation is needed. However, this approach appears to be impractical for
large iteration domains, since the ROM size grows with the volume of the domain. Therefore,
these ROM tables can quickly exceed the storage capacity of most FPGAs. Hence, the ROM
approach is impracticable for large iteration domains. Whenever the size of the domains is
small then this approach remains feasible and very fast.

3.3 The Parameterized Predicate Controller

Another way to implement the controller of the virtual processor is to evaluate the linear
expressions as they appear in the program of a processor of a CDFPN. Due to the class
of nested-loop programs that we consider, all the iteration domains are bounded by linear
expressions. These linear expressions are in fact predicate. For example, in the program
listed in Listing 3.1 port domain IPD3 is guarded by a number of predicates: i ≤ j, j ≤ 4,
2 ≤ i and i ≤ 4. By evaluating these predicates at run-time, the VP that implements the
IPD3 can select a proper channel to receive data from. A big advantage of this approach is
that the control is still parameterized in the original parameters of the application. We can
therefore change the parameters in FPGA, once per each application instance.

and MUXEs
To output FIFOs

and MUXEs
To input FIFOs

Iterator Part

Evaluation Part

OPD1 OPDnIPD1 IPDn

Loop Indices

Linear Predicate Expressions

Figure 3.3: Two key components of a Parameterized Predicated Controller

As shown in Figure 3.3, a predicate controller consists of two parts : an Iterator Part
and an Evaluation Part. In the iterator part, the predicate controller iterates over the looped
domain. In the evaluation part, the predicate controller evaluates in parallel and at every
iteration, all the linear expressions to determine the output ports or input ports to be selected.
Thus, the iterator part provides the values of the iterators, i and j, that are used in the evalua-
tion part to evaluate the predicates i ≤ j, j ≤ 4, 2 ≤ i and i ≤ 4. A parameterized predicated
controller can be derived in four steps, as described below.

Redundancy Elimination The first step consists in reducing the computational load by ap-
plying a common expression elimination to remove all redundant expressions present
in the predicates associated to the IPDs/OPDs. This is a very effective step, as in the
vast majority of the targeted applications, this optimization can eliminate the computa-
tions involved in the controller up to 80%.

3.3 The Parameterized Predicate Controller 31

Dependency Graph Construction In the second step, a dependency graph is constructed.
This dependency graph is associated with the linear expressions involved in the loops
and IPD/OPD predicates. A dependency graph (G = (N, E)) is a representation of
all data dependencies between all the operations of the linear expressions. Each node
(Ni ∈ N) in the graph represents a linear expression operation (i.e., arithmetic opera-
tion such as addition, multiplication, or logical operation such as logical and or logical
comparator). Additionally, a node can implement a select function which selects be-
tween two inputs. The select node is used to initialize a particular operator. Directed
edges (Ej ∈ E) are used to represent the data flow between the graph nodes. The
graph is directed and acyclic. This graph representation of the computation within the
linear expression unveils the parallelism that exists in such linear expressions. During
this step computations in both the iteration and evaluation parts are combined.

Mapping In the third step, the dependency graph is mapped onto a parallel data-path, by
associating with each operation/node in the graph its hardware equivalent. We map the
data-dependence graph as a pure combinational data-path with only its output being
synchronized through registers. Additionally, a feed-back loop is created to enable the
updating of the state of the loop iterators (e.g., one for-loop depends on the value of a
pervious for-loop).

Bitwidth Selection The last step of this data-path synthesis operation is to determine the
bitwidth of the various operators involved in the data-path. This analysis is crucial
since it allows to drastically improve both area usage and performance figures.

Since the dependency graph associated with the predicate evaluations is always acyclic
(the predicate expressions only depend on the current loop indic values), all the data-path
operator bitwidths can be derived from the original loop indices bitwidth, which themselves
depend on the loop bounds. Thus, if ub(i) is the upper bound for loop index i, then its
bitwidth is given by wi = �log2(ub(i))
. The loop indexes and the program parameters are
the source nodes of the directed graph. A source node is a node with no input edge.

Using this information, we then propagate the bitwidth constraint along the arithmetic
nodes of the dependency graph, using equation 3.4, in which in 1 and in2 represent the graph
node Input Port bitwidths, and f is the operation performed in the node at hand. In our
case, all the arithmetic nodes implements arithmetic operation that operates only on integer
unsigned numbers.

w(f, in1, in2) =

⎧⎪⎪⎨
⎪⎪⎩

max(w(in1), w(in2)) + 1 if f = add
w(in1) + w(in2) if f = mul

w(in1) − w(in2) + 1 if f = div
w(in2) if f = mod

(3.4)

For the logical nodes, the bitwidth is always one as their results is a boolean value. For
the select nodes, the bitwidth is wk = max(w(in1), w(in2)). The bitwidths of all the edges
of the dependency graph are computed by solving the equations in each graph node. The
graph is traversed from its source nodes to its sink nodes. A sink node is a node that has no
output edge.

32 Control Synthesis

3.3.1 Example

We will now take a particular node (i.e., V) of the QR algorithm (see Listing 3.2) as an
example and derive a parameterized predicated controller. Figure 3.4 shows the loop-iterators
k and j and a number of predicates to activate the proper Input Port operation, i.e., read from
a FIFO and Output Port operation, i.e., write to a FIFO. At each iteration of the loop-iterators,
some predicates are evaluated to read the correct data from the correct FIFO. This is given by
the READ part. Next the function V is executed in the EXECUTE part. Finally data is written
to the correct FIFO in the WRITE part.

Listing 3.2: QR algorithm in Matlab
f o r k = 1 : 1 : N,

f o r j = 1 : 1 : T ,
[r (j , j) , t] = V(r (j , j) , x (k , j)) ;
f o r i = j +1 : 1 : K,

[r (j , i) , x (k , i)] = R(r (j , i) , x (k , i) , t) ;
end

end
end

0 void P2 ::main() {
1 for (int j = 1 ; j <= N ; j += 1) {
2 for (int k = 1 ; k <= T ; k += 1) {

3 if (k-2 >= 0) READ
4 in_0 = read(FIFO1); IPD_1
6 if (k-1 == 0)
7 in_0 = read(FIFO2); IPD_2
9 if (j-2 >= 0)
10 in_1 = read(FIFO3); IPD_3
12 if (j-1 == 0)
13 in_1 = read(FIFO4); IPD_4

13 (out_0,out_1,out_1)= EXECUTE
14 V(in_0,in_1) ;

15 if (-k+T-1 >= 0) WRITE
16 write(out_0,FIFO1); OPD_1
17 if (-j+N-1 >= 0)
18 write(out_1,FIFO5); OPD_2
19 if (k-T == 0)
20 write(out_2,FIFO6); OPD_3

21 } // for k
22 } // for j

Figure 3.4: Description of a process take from the PN representation of the QR algorithm,
each read (resp. write) operation is guarded by one or more linear expression, that depend
on the loop parameters and indices

From the algorithm given in Figure 3.4, the linear expressions are extracted from the
loop-iterators as follows:

j = 1 ;
j ≤ N;
j += 1 ;

3.3 The Parameterized Predicate Controller 33

k = 1 ;
k ≤ T ;
k += 1 ;
k − 2 ≥ 0 ;
k − 1 == 0 ;
j − 2 ≥ 0 ;
j − 1 == 0 ;
−k + T − 1 ≥ 0 ;
−j + N − 1 ≥ 0 ;
k − T == 0 ;

After applying common expression elimination, a dependency graph G is constructed. A
node Ni ∈ N, G = (N, E) is a linear expression operation. Each linear expression operation
operates on two input operands. Exception of this rule is made of the selection nodes that
have three inputs: one for control selection and two for selected data.

A linear expression operation has a single output that is either an arithmetic output or a
logical output. The type of output depends on the type of the linear expression operation (i.e.,
either logical or arithmetical operation). The next lines show each node of the dependency
graph G, where out(nx) is the output of a node nx ∈ N .

n1 (jt , 1 , ’+ ’) ;
n2 (jt , 1 , ’−’) ;
n3 (N, 1 , ’−’) ;
n4 (jt , 2 , ’−’) ;
n5 (T , 1 , ’−’) ;
n6 (kt , 1 , ’+ ’) ;
n7 (kt , 2 , ’−’) ;
n8 (kt , 1 , ’−’) ;
n9 (jt , o u t (n5) , ’−’) ;
n10 (jt , o u t (n3) , ’−’) ;
n11 (kt , 1 , ’−’) ;
n12 (o u t (n11) , 0 , ’≥ ’) ;
n13 (o u t (n2) , 0 , ’== ’) ;
n14 (o u t (n10) , 0 , ’== ’) ;
n15 (o u t (n4) , 0 , ’≥ ’) ;
n16 (o u t (n7) , 0 , ’≥ ’) ;
n17 (o u t (n8) , 0 , ’== ’) ;
n18 (o u t (n11) , 0 , ’== ’) ;
n19 (o u t (n21) , o u t (n1) , 1 , ’ s e l e c t ’) ;
n20 (o u t (n12) , o u t (n6) , 1 , ’ s e l e c t ’) ;
n21 (o u t (n9) , 0 , ’≥ ’) ;

The dependency graph of the linear expression of the program given in Figure 3.4 is
constructed as given in Figure 3.5. At the top of the dependency graph are shown four ports.
Two ports for the parameters N and T and two ports for the current loop-iterators k t and
jt. The lower two port correspond to the values of k t+1 and jt+1 which will be feedback
as inputs to the dependency graph after each iteration execution. Each time the dependency
graph is evaluated, a particular switch pattern appears at the IPD and OPD outputs driving
the Read and Write units in the Virtual Processor as shown in Figure 3.1.

3.3.2 Discusion

As opposed to the ROM approach, the parameterized predicate controller implementation
allows us to handle large parameterized iteration domains. Still, we observe two issues. The
first issue relates to the complexity of the domain (size, shape) spanned by the loop-iterators
and on the number of IPDs/OPDs involved in a node. Since all linear expressions have
to be evaluated at every cycle, their evaluation requires more resources as the domain gets

34 Control Synthesis

11

−−−

+1 −1 −1 −2 −1 +1 −2 −1

Mux2Mux1

�� ��� �� �� �� � �� ��

�����

�� �� �� �� �� �� �� ��

���

������������������������

��	��

�������������������� ����

��������� � 	
��� ����������� �	
��� ��

���� ���� ����

Figure 3.5: Dependency graph associated to the loop described in Figure 3.4. Light gray
nodes correspond to operations that depends on the most inner loop index, and therefore need
to be evaluated at each new iteration, dark gray nodes correspond to operations that depends
on the most outer loop index, and therefore only need to be re-evaluated when the inner loop
upper bound is reached.

more complex, and the number of linear expression grows. As a consequence, especially for
irregularly shaped domain, the controller implementation might use a lot of area. The second
issue relates to the fact that we map all predicate evaluations as pure combinational functions.
As a consequence, the controller speed (i.e., the frequency at which the controller can run)
might not be scalable: computational complexity (i.e., its number of terms in the predicate
expressions) usually increases with the number of dimension of the iteration domain. The
resulting controller critical path will therefore be very dependent on the number of dimension
of the domain.

3.4 The Partitioned Parameterized Predicate Controller

In Section 3.3, predicates are evaluated at each and every iteration implying that a large
amount of computation is done each iteration. However, only some predicates need to be
evaluated every iteration. Such predicates are the one that have a data dependency on the
most inner loop. Hence, it is possible to drastically reduce the amount of computations by
restricting the computation to be done whenever is required. To do so, we take advantage of
the fact that expressions that depends on the most inner loop index have to be evaluated at
every cycle. Other linear expressions only need to be re-evaluated when one of their associ-
ated loop index changes value. This happens when one of the outer-loop iterators has reached
its upper-bound. We can employ two techniques to partition the computation in computation
that must be evaluated each cycle and computation that is not evaluated each cycle. These
techniques are:

• Annotating the dependency graph derived in Section 3.3 with information when each
node has to execute;

• Partitioning the dependency graph derived in Section 3.3 in two parts. One part evalu-
ates the predicates that are critical using dedicated logic. The other part evaluates the

3.4 The Partitioned Parameterized Predicate Controller 35

in
de

x
co

m
pu

ta
tio

n
M

os
t i

nn
er

 lo
op

nxt_loop_rdyend_loop

Parallel combinational
evaluation of inner loop index

dependent predicates

To READ Unit To WRITE Unit

D
at

a
R

A
M+1

PC

+1

idx

P
ro

gr
am

 R
O

M

ALU

IPD1 IPDn OPDnOPD1

=

� �����
� �����

� ����	
� ����	

���

	�����

���
	�����

���� ��

	������

	�����

Figure 3.6: Partitioned hardware loop controller architecture

predicates using a more sequential approach like a sequencer.

The technique of annotating the dependency graph is discussed in Chapter 6. It is intended
to be used for handling complex linear expression computation (e.g., with multipliers and
integer division operations). This technique has the same advantages and limitations as the
parameterized controller when we consider hardware resources consumption.

The second technique that partitions the dependency graph leads to a new type of con-
troller called partitioned parameterized predicate controller. The partitioned parameterized
predicate controller takes advantage of the data dependency between loop-iterators and pred-
icates to get a simplified controller that uses less resources. As less expressions have to be
evaluated, fewer resources are needed to realize the controller. In the partitioned parame-
terized predicate controller, the controller is split into two parts: a parallel data-path, and a
sequential controller. The parallel data-path is similar to the one presented in Section 3.3. Its
purpose is to evaluate all expressions depending on the value of the most inner loop-iterator.
The sequential controller, on the other hand, evaluates all the expressions that depend on the
outer loop iterators and parameters (including the most inner loop upper and lower bounds)
and forward its results to the parallel data-path.

In Figure 3.6, the parallel data-path is given in the top part, and the sequential controller is
given in the bottom part. In the sequential controller, a small sequential program is stored in
a Program ROM. This sequential programs computes the values of the outer-loops predicates
in a number of steps using some intermediate values. These intermediate values are stored in
a Data RAM. The final values are forwarded to the parallel data-path. The parallel data-path
evaluates at each cycle the parallel combinational logic, using the forwarded values. The only
value that is re-computed, is the inner loop-iterator iteration. The partitioned parameterized
predicate controller is generated in two steps:

Dependency Graph Partitioning In the first step, we apply again common expression elim-
ination, and construct the data dependence graph as explained previously in Section 3.3.
The main difference is that in this case, we will partition this graph into a set of sub-

36 Control Synthesis

graphs (one for each loop index). Each sub-graph contains all the nodes which have as
input argument the sub-graph corresponding loop index. In case a node has two distinct
loop-iterators as argument, we map the node to the sub-graph that is associated with
the most inner loop-iterator.

Mapping In the next step, we partition the computation between the parallel and sequen-
tial controller. This partitioning uses the sub-graphs obtained in the dependency graph
partitioning. All the nodes of the sub-graph associated with the most inner loop index
are mapped on the parallel controller. All arguments that depend on values calculated
by the sequential controller are mapped on communication ports with the sequential
controller. The remaining sub-graphs are mapped on the sequential controller. We se-
quentially schedule the operations in the remaining sub-graphs, by performing a topo-
logical sort to ensure that data dependence constraints as satisfied. Then we generate
the global sequential schedule by concatenating all these local schedules in a decreas-
ing depth order. Values that need to be communicated to the parallel controller are
mapped on communication ports with the parallel controller.

3.4.1 Example

As an example of how we derive a partitioned parameterized predicated controller, we look
again at the V node of the QR algorithm as given in Figure 3.4. The first step is to obtain
the partitioned dependency graph. The dependency graph shown in Figure 3.5 is therefore
decomposed in three sub-graphs: Gparam, Gj and, Gk, which are respectively associated
with the parameters N and T, and to the two loop indices j and k.

Next we need to map a sub-graph onto the parallel controller or the sequential controller.
Since j is the inner loop iterators, we map Gj onto the parallel controller, where V (Gj) =
{n1, n2, n4, n9, n10, n13, n14, n15, n19, n21}. The two remaining sub-graphs are mapped
onto the sequential controller. This means that the sequences of operations V (G param) =
{n3, n5}, and V (Gk) = {n7, n16, n8, n17, n11, n18, n6, n12, n20} are sequentialized to a
program that runs on the sequential controller as shown in Figure 3.7. The write() instruc-
tion forwards the outer-loops predicate values to the parallel data path using dedicated ports.
The synchronize() instruction is used to synchronize the two components of the partitioned
controller. The synchronization is needed to not overwrite outer-loops predicated values by
the sequential controller.

3.4.2 Discussion

Some problems might appear when the most inner loop domain becomes very small (only a
few iterations). In such a case, the sequential machine might not be able to compute the partial
results needed by the inner-loop parallel datapath fast enough, therefore slowing-down the
controller. In some applications, processors does not need to fire at every cycle either because
they are in a blocking read or blocking write state, or because the IP core cannot start the
execution of a new operation in every cycle. Thus, the impact of the slow computation in the
control sequential machine is then very unlikely to impact the overall network performance.

3.5 Conclusions 37

// parameters
0 k := 1;
1 n3 := N-1;
2 write(n3,port1);
3 n5 := T-1;
4 write(n5,port2);
// k outer loop
5 n7 := (k-2);
6 n16 := n7>=0;
7 write(n16,port3);
8 n8 := (k-1);
9 n17 := n8=0
10 write(n17,port4);
11 n11 := (k-T);

12 n18 := n11=0;
13 write(n18,port5);
14 n6:= k+1;
15 n12 := n11>=0;
16 if n12

n20:=n6;
else

n20:=1;
end if;

17 k :=n20;
// sync with datapath
18 synchronize()
19 jump 3

Figure 3.7: A possible schedule for the sequential controller

Parameters Non partitioned Partitioned Look-up table
N T MHz Area MHz Area MHz Area
8 16 140 29 100 112 150 112

QR factorization 16 64 133 68 85 133 80 1920
64 256 121 89 74 163 N.A. 129024
W H MHz Area MHz Area MHz Area
320 200 97 133 65 120 N.A. 114754

Stereo-vision 640 400 100 148 74 123 N.A. 485394
1024 640 100 153 71 126 N.A. 1268082
W H MHz Area MHz Area MHz Area
320 200 129 97 76 98 N.A. 236115

Optical-flow 640 400 118 110 72 103 N.A. 952215
1024 640 126 113 75 106 N.A. 2445135

Table 3.3: Experimental results for partitioned and non-partitioned parameterized predicate
controller

3.5 Conclusions

To observe the benefits of our approaches with respect to the ROM Table implementation, we
used the same applications as in Table 3.2. For each of them we derived both a partitioned
and a non-partitioned parameterized predicate controller, which was then mapped on a Xilinx
Virtex-2 FPGA. The results, given both in terms of frequency and resource usage (in FPGA
slices) are shown in Table 3.3. From these results, we can make the following remarks.

• The controller resource usage can vary a lot, depending on both the application and on
the domain size (which influences the bitwidth of the operators in the data-path).

• It appears that the fixed area cost overhead caused by the sequential controller used in
the partitioned approach is not negligible, and makes this implementation strategy only
viable for very large and complex domains.

• In all cases, the partitioned controller is slower than its counterpart. This slow-down is
mostly due to the sequential controller.

In general, these two strategies provide interesting results, even for very simple and small
domains, and therefore suggest that the ROM table approach is not really appropriate when-

38 Control Synthesis

ever large iteration domains are involved (as it is the case for most image processing algo-
rithms).

In this chapter we have investigated three different approaches for efficiently deriving the
control part in Virtual Processors. From the experimental results, it turns out that in order
to derive the optimal controller implementation, the characteristics of the application (like
domain size and shape, loop nest dimension, number of function arguments or number of
IPDs/OPDs) have to be taken into consideration. From the different approaches proposed in
this chapter, two of them (ROM and parametric predicate) are automated in the LAURA tool.

Chapter 4
Communication Synthesis

In the conversion from a CDFPN to an Abstract Architecture, we already indicated that each
channel of the Abstract Architecture is classified to one of four communication types. In this
chapter, we investigate the synthesis issues of the four communication types and discuss the
effectiveness of the realizations. We start with analyzing the communication channel types in
Section 4.1. Next, we present in Section 4.2, the synthesis templates for all communication
channel types found in an Abstract Architecture. We end this chapter with a case study
(Section 4.3) and conclusions in Section 4.4.

4.1 Background

A simple instance of a CDFPN is a producer process that communicates with a consumer
process over a FIFO channel. Much of the material used in this section is from [6, 7].

Consider the producer:

f o r j = 1 : 1 : N,
f o r i = j : 1 : N,

[a (j , i)] = FP () ;
end

end

and the consumer

f o r k = 1 : 1 : N,
f o r l = k : 1 : N,

[] = FC (a (k , l)) ;
end

end

The producer is characterized by the domain

P = {
(

j

i

)
∈ Z2|

⎛
⎜⎜⎝

1 0
−1 0
−1 1
0 −1

⎞
⎟⎟⎠

(
j

i

)
+

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ [N] ≥

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠}

40 Communication Synthesis

and an order of the tokens that are produced (for N = 8):

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) etc.

The order of any produced token is given by a rank polynomial [6, 46]:

rP (j, i) = −1
2
∗ j2 + (N +

1
2
) ∗ j + i − N

The consumer is characterized by the domain

C = {
(

k

l

)
∈ Z2|

⎛
⎜⎜⎝

1 0
−1 0
−1 1
0 −1

⎞
⎟⎟⎠

(
j

i

)
+

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ [N] ≥

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠}

and an order of the tokens that are consumed:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) etc.

The order of any consumed token is given by the rank polynomial:

rC(k, l) = −1
2
∗ k2 + (N +

1
2
) ∗ k + l − N

The data dependency relation between the producer and consumer is given by the follow-
ing mapping function f :

f

(
j

i

)
=

(
1 0
0 1

) (
k

l

)

such that rC(k, l) = (rP ◦ f)(k, l). The rank polynomial rP () is called the write polyno-
mial and the rank polynomial rC() is called the read polynomial.

4.1.1 The Order of Producing and Consuming Tokens

Let us consider the sequence of producing and consuming tokens in more detail. In above
example, the producer produces tokens in the same order as the consumer consumes them.
Hence, the communication between the producer and consumer is in-order. In this case, a
simple FIFO communication model is enough to realize the communication requirements
between a producer and a consumer. However, when a consumer has to read tokens in a
different order, a FIFO communication model will not do [6, 41, 46].

Consider a different consumption sequence given by the consumer:

f o r k = 1 : 1 : N,
f o r l = 1 : 1 : k ,

[] = FC (a (l , k)) ;
end

end

The order of the tokens that are consumed is (N = 8):

(1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2) (3, 3) (4, 1) etc.

4.1 Background 41

The mapping function and the reading polynomial are modified to deal with this new
ordering of consumption.

The mapping function f is:

f

(
j

i

)
=

(
0 1
1 0

) (
k

l

)

and

rC(k, l) = −1
2
∗ l2 + (N +

1
2
) ∗ l + k − N

The consumer process has to skip a number of tokens produced by the producer before the
token to be consumed (e.g., to read token (2, 1), the consumer process needs to skip 6 tokens
produced: (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), and (1, 8)). Thus, the FIFO communication
model brakes here due to the out-of-order communication behavior. In such case, we use the
write polynomial and the read polynomial to store and to load a token to/from a memory.
This memory is called the reorder memory [46], and lays between the producer process and
consumer process. We see, latter on in this chapter, what is the implications of such out-of-
order communication for our Abstract Architecture.

4.1.2 The Lifetime of a Token

The order is not the only discrimination factor when we talk about the communication be-
tween a producer process and a consumer process. Usually, a producer process stores (writes)
a token ether in a FIFO or in a reorder memory. The consumer loads (reads) this token from
the FIFO or reorder memory, destroying (or releasing) the respective location. There can be a
problem when a token is used more than once by the consumer process. We say that a token
has a multiplicity [47] when the token has to be reused a number W times.

Consider the consumer:

f o r k = 1 : 1 : N,
f o r m = 1 : 1 : k ,

[] = FC (a (k , k)) ;
end

end

The order of the tokens that are consumed is (N = 8):

(1, 1) (2, 2) (2, 2) (3, 3) (3, 3) (3, 3) (4, 4) (4, 4) etc.

With the mapping function f defined as:

f

(
j

i

)
=

(
1 0
1 0

) (
k

m

)

and read polynomial as

rC(k, m) = −1
2
∗ k2 + (N +

1
2
) ∗ k + k − N

The tokens are consumed in-order from the main diagonal, multiple times by the con-
sumer process.

42 Communication Synthesis

Figure 4.1 graphically shows the producer iteration domain and the consumer iteration
domain. The consumer process consumes in-order multiple times the tokens produced by
the producer process on the diagonal points (white points). The arrows shows the execution
schedule of the producer and consumer processes.

�
�
�
�

Producer
iteration space

Mapping

Consumer
iteration space

Lexicographical
Maximal
Preimage

Lexicographical
minimal

Preimage

1 2 3 4 5 6 7 8 m

1

2

3

4

5

6

7

8

k

1 2 3 4 5 6 7 8 i

1

2

3

4

5

6

7

8

j

Figure 4.1: Lifetime analysis over a P/C pair with multiplicity

The multiplicity of a token is, in fact, expressing the life time of a token. As shown
in [47], there are two ways to determine a memory location containing a token multiplicity
larger than one can be reused:

• the Lexicographical minimal Preimage (LmP) indicates when a token is read from a
channel for the first time;

• the Lexicographical Maximal Preimage (LMP) indicates when a token is read from a
channel for the last time.

In Figure 4.1, we graphically show the lexicographical minimal preimage, and the lexi-
cographical maximal preimage of the consumer iteration domain. Clearly, we can have token
multiplicity also in an out-of-order communication.

4.1.3 Communication Types: Overview

Four types of communication channels [41] can be distinguished as illustrated in Figure 4.2.
They result from the ordering of the iterations in the producer, and the consumer processes
and the multiplicity of a token.

Depending on the order of consuming tokens, and the multiplicity of tokens read, a com-
munication belongs to one of four disjoint classes: In-Order without multiplicity (IOM-),
In-Order with multiplicity (IOM+), Out-of-Order without multiplicity (OOM-), and Out-of-
Order with multiplicity (OOM+). In [41], it is stated that on average the following distribu-
tion can be expected over the various communication types: type IOM- (80%), IOM+ (10%),
OOM- (9%), OOM+ (1%). Types IOM- and IOM+, count for 90% of the communication
channels. They require a FIFO buffer to be realized. In the remaining 10% of the cases, a
more complex communication structure is needed. This communication structure between a

4.2 Communication Channel Template in Abstract Architecture 43

1 2 3 4 5 i

1 2 3 4 5 i

4

1

2

3

i

4

1

2

3

i

4

1

2

3

j

4

1

2

3

j

1 2 3 4 5 i

1 2 3 4 5 i

4

1

2

3

i

4

1

2

3

j

4

1

2

3

i

4

1

2

3

j
Consumer

ConsumerProducer

Producer

Out−of−order without multiplicity (OOM−) :

In−order without multiplicity (IOM−) :

Consumer

Producer Consumer

Producer

In−order with multiplicity (IOM+) :

Out−of−order with multiplicity (OOM+) :

data dependecy

loop schedule

Figure 4.2: The four cases of communication between Producer and Consumer

producer and consumer is extended to include additional memory to store tokens that have
been produced but will be consumed latter on [46]. In this chapter, we investigate different
synthesis templates that are needed to realize these types of communication in FPGAs.

4.2 Communication Channel Template in Abstract Archi-
tecture

To implement a CDFPN, we need to synthesize the four communication types. The topolog-
ical mapping maps a process to a processor (i.e., Virtual Processor). In the In Order commu-
nication case (IOM-), the consumer processor reads tokens from a channel in the same order
as they are written to the channel by the producer processor, it also consumes the read tokens
in this order. Therefore, a FIFO buffer is all what is needed to relate produced and consumed
tokens. Today’s high optimized FIFO implementation buffers [48] require for each read or
write primitive only a single cycle to execute. Actual FIFO buffers have finite capacity, thus
both read and write primitives are blocking, i.e., they halt a processor when no data is avail-
able in a FIFO buffer or when a FIFO buffer is full. To find a finite capacity for the FIFO
buffers is a problem that is addressed in Chapter 5. To find a near minimum finite capacity of
the FIFO buffers is a problem that has been addressed in [49].

In the In Order with Multiplicity communication case (IOM+), the consumer processor
consumes a token that is read from a channel more than once. Because reading from a channel
is destructive, the consumer processor has to store such a token locally. In this case, the
lifetime of a token needs to be taken into account. Only at the end of the lifetime of the
token, the memory location, where the token is saved can be re-used. Lifetime analysis
is based on the lexicographical minimal preimage (LmP), and is implemented as part of
the consumer processor. The communication channel between the producer processor and

44 Communication Synthesis

consumer processor is realized using a FIFO buffer with a finite capacity. However, the FIFO
buffer is modified to have sticky output, i.e., the last token read from the FIFO buffer is
kept at the output port of the FIFO buffer until a new token is read. Thus, the sticky output
implements the memory location that has to save a token with multiplicity. The Read unit of
the Virtual Processor accommodates the LmP control. This control inhibits the reading from
the FIFO buffer when a consumer iteration is out of the LmP domain, and enables the reading
from the FIFO buffer otherwise. Hence, implementing the reading and releasing of tokens
with multiplicity.

In the case of Out of Order communication cases, the producer processor and the con-
sumer processor follow a different order of reading and writing the tokens into a channel.
To obtain a correct implementation execution behavior in the out-of-order case, we need a
mechanism to store and order the produced tokens for the use of the consumer processor.
This mechanism relays on the usage of the reorder memory for temporary storage of tokens.
Once stored, the tokens can be consumed in the correct order. In [50], the authors named this
mechanism the Extended Linearization Model (ELM), and they implemented it as part of the
consumer process. However, instead to make the reorder mechanism part of the consumer
processor, we define a new channel template to implement the ELM as part of an Abstract
Architecture communication channel.

4.2.1 The Channel Template for the Extended Linearization Model Re-
alization

Memory
Controller

Reorder Memory

FIFO A

FIFO B

FIFO C

FIFO D

Read Unit

Unit
Controller

In Arg

Write Unit

Unit
Controller

Out Arg

Figure 4.3: The channel template for the ELM mechanism

The main elements in the ELM are the reorder memory and the memory controller. Be-
cause the tokens can no longer be read directly from a FIFO buffer, as they arrive in the wrong
order, they are delivered by the memory controller to the consumer processor. In Figure 4.3, a
schematic representation is given of the ELM. It shows the Write unit of the producer proces-
sor, the Read unit of the consumer processor, the reorder memory, and the memory controller.
The producer processor communicates with the memory controller via two FIFO buffers (i.e.,
FIFO A, and FIFO B). The consumer processor communicates with the memory controller

4.2 Communication Channel Template in Abstract Architecture 45

via two FIFO buffers (i.e., FIFO D, and FIFO C). The tokens are sent using the FIFO B by the
producer processor to the ELM mechanism. The unit controller of the Write unit is modified
to send a write address via FIFO A. Each token send to the memory controller has associated
an address send via FIFO A by the Write unit controller. The memory controller writes the
token in the reorder memory at the address indicated by the token’s write address.

The tokens are received using the FIFO D by the consumer processor from the ELM
mechanism. The unit controller of the Read unit is modified to send a read address via FIFO
C. The memory controller reads the reorder memory location indicated by the read address
and writes the requested token in the FIFO D. If the token is not yet produced, the reading
token from the reorder memory operation is placed on hold until the token is produced. In
the case of Out of Order with Multiplicity communication type, the read address placed in
the FIFO C is annotated with a boolean value that indicates the release command of the read
reorder memory location. The boolean value is generated in function of the lifetime of a
requested token. Lifetime analysis is based on the lexicographical maximal preimage (LMP),
and implemented as part of the consumer’s Read unit controller. The LMP control indicates
to release a reorder memory location when a consumer iteration point is in the LMP domain.

In general, the capacities of the ELM mechanism FIFO buffers are arbitrarily large given
the fact that the reorder memory is large enough to avoid artificial deadlocks of the network.
If the reorder memory is set to its minimal size, then the FIFO B and FIFO A buffers have
to be sized such that the network deadlock situations are avoided. In practice, the reorder
memory capacity is large enough to avoid the network deadlock situations. This capacity is
determined using the techniques described in Chapter 5. In this case, the ELM mechanism
FIFO buffers capacities are set to their minimal value (i.e., a single location) to minimize
resources consumption.

4.2.2 The Extended Linearization Model Modifications in the Read Unit
and Write Unit Controllers

In the case of an ELM mechanism the Read unit and the Write unit controllers are modified
to accommodate the read generation of the write address and the read address. The write
address is generated by the write function, as well the read address is generated by the read
function, as discussed in Section 4.1. However, these functions implementation in a FPGA
is not really an option in practice, not even when multiplications are avoided by using the
method of differences [51], see also Chapter 6. This is because the complexity of the write
and read functions are directly related to the complexity of the Output Port Domain (OPD)
and Input Port Domain (IPD) polyhedral shape (see Section 4.1). A way to overcome the
problem is by replacing the OPD and IPD polyhedrons with bounding boxes. A bounding
box is a hyper rectangle that enclose a polyhedron. Thus, the write and read functions for
bounding boxes are affine functions. Finding bounding boxes is a minimization problem that
we consider in Chapter 5.

The Read or Write unit controllers are modified to hold these addressing functions. Con-
sider the Parameterized Predicated Controller discussed in Chapter 3. In Figure 4.4, we
graphically show the modifications. In the address evaluation part, the read and write ad-
dresses are evaluated in parallel, using the methodology discussed in Chapter 6. In the LMP
evaluation part, the predicate controller evaluates in parallel all the linear expressions of the
LMP iteration domain to determine if a reorder memory location can be released or not.

46 Communication Synthesis

Evaluation Part

IPD1 IPDn OPD1 OPDn

To input Selector To output Switch

Iterator Part

Address Evaluation Part

Loop indices

W1 addr Wq addr R1addr Rqaddr

To output Out-of -
Order channels

To input Out-of -
Order channels

LMP Evaluation
Part

This part is missing in the
Write units, and when no token

multiplicity is involved

Figure 4.4: The modified Parameterized Predicated Controller

The synthesis of the LMP evaluation part is the same as for the evaluation part of the pa-
rameterized predicated controller. The LMP evaluation part is only present in the Read unit
controllers when token multiplicity is involved (OOM+ communication cases).

4.3 FPGA Realization

The VHDL output of our methodology has been tested on a VirtexII-6000 platform from Xil-
inx. A FIFO channel is implemented using different types of memory, chosen at compile time.
The selection is based on the FIFO buffer capacity. If less than 1024 bits are required, we
use RAM16x1D memories, otherwise we use Xilinx Block RAM (RAMB) memory blocks
which are more suited to large memory bank implementations. If only a single location is
required, we simply instantiate a FIFO channel that uses only a register. In case of the ELM
mechanism implementation, we always use RAMB memories to realize the reorder memory.
The hardware realization of a FIFO buffer is the fastest and most efficient one in terms of
clock cycles per operation, as it requires one clock cycle per read or write operation. In the
case of a ELM mechanism implementation, the write operation requires one to two clock
cycles, depending of the memory estimation model chosen. The read operation requires three
clock cycles to read one scalar token from the channel.

4.3.1 Example

To highlight the different characteristics of the communication channels, we looked at the
QR algorithm [52] as shown in Listing 4.1. This algorithm requires 1 IOM+ and 10 IOM-
channels. However for the experiment, we can also implement these channels using 1 OOM+
and 10 OOM- channels. This allows us to expose the differences in implementation and
performance. In both cases, the lower bounds on the channels are determined at compile time
using the procedure given in Chapter 5.

4.3 FPGA Realization 47

Listing 4.1: QR algorithm in Matlab
f o r k = 1 : 1 : K,

f o r j = 1 : 1 : N,
[r (j , j) , t] = V(r (j , j) , x (k , j)) ;
f o r i = j +1 : 1 : N,

[r (j , i) , x (k , i)] = R(r (j , i) , x (k , i) , t) ;
end

end
end

Software Implementation
Memory locations 154

Memory Size 4928 bits

Reorder
Implementation

Clock Cycles 258
RAMB 11

Memory Size 180224 bits
Slices 1771

Frequency 100 Mhz

FIFO
Implementation

Clock Cycles 128
RAM16x1D 416
Memory Size 6656 bits

Slices 1006
Frequency 100 Mhz

Table 4.1: Experimental results for various hardware channels.

Table 4.1 shows the memory requirements, and FPGA performance figures for the QR
algorithm. We also considered a software implementation of the test case to underline the
difference in memory requirements for different implementation cases. The out-of-order
communication type channels are more inefficient than FIFO channels in terms FPGA mem-
ory usage. The Reorder Memory is realized using only Xilinx Block RAMs (RAMB). For
the 11 channels, 11 RAMB memory blocks are allocated, which represents 180224 bits of
the FPGA memory. For each ELM mechanism implementation, we need to allocate at least
a RAMB block which can accommodate minimum 512 tokens of 32 bit. Hence, it is difficult
to use the memory block efficiently; there can be quite some spill.

On the other hand, for a FIFO channel, we can select between Xilinx Block RAMs or
smaller RAM16x1D memories, depending on the required memory size. In the QR imple-
mentation case, we use 416 RAM16x1D memory blocks for the 10 IOM- channels and 1
IOM+ channel. If we choose to use only out-of-order communication type channels to im-
plement the QR algorithm we need almost twice the number of clock cycles (i.e., 258 cycles)
compared with a FIFO implementation (i.e., 128 cycles). The rather complex protocol of
reading/writing to an ELM mechanism implementation has a heavy influence on the overall
performances of an algorithm. The number of slices used to implement the QR algorithm
using only FIFOs is 1006, when using only ELM mechanism implementation it is 1771. The
out-of-order communication type channel requires twice as many slices due to the address
generators. Both the execution speed and number of slices used show the importance of
proper selection and implementation of a channel communication type.

48 Communication Synthesis

4.4 Conclusions

Four point-to-point communication types are distinguished as part of our methodology to de-
couple the computation from communication [53]. This decoupling allows the IP cores (the
computation part) and the interconnect (the communication part) to be designed separately.
In this chapter, we have shown that for each communication type derived by the COMPAAN

methodology, we can derive efficient communication architectures in FPGAs. Two commu-
nication types use FIFO buffer implementations and two communication types use an ELM
mechanism implementation. From the case study, we shown that a FIFO implementation
is the most optimal implementation of a communication channel from any point of view
(throughput, hardware resources, memory usage).

Our methodology focuses on data-flow algorithms, having communication at the level
of scalars (e.g., bytes or words). The communication topology of the CDFPN is static, and
derived at compile time. To realize the inter-processor communication, we use a point-to-
point communication mechanism. Employing busses and/or complex Networks-on-Chips
(NoCs) [54,55] for the communication is not feasible due to the delays in the routing process
and the usage of large packets instead of scalars in the communication protocol.

Chapter 5
Memory Bound Estimation

When synthesizing a channel, whether it is an in-order communication type channel or an
out-of-order communication type channel, we need to determine a finite channel capacity,
that is large enough to avoid network deadlocks, and small enough to avoid over capacity. In
this chapter, we investigate different strategies to determine the size of all the channels in an
Abstract Architecture. We first introduce the problem in Section 5.1. Next in Section 5.2,
we provide the mathematical background needed to analyze the memory requirements in
an Abstract Architecture. Depending on the channel communication type, we can estimate
the storage capacity in two ways. The first approach is presented in Section 5.3, and is
applicable only to in-order communication type channels. The second approach is presented
in Section 5.5, and is applicable to all communication type channels.

5.1 Maximum Size of FIFO channels

A process network is specified in terms of partial orderings between a producer and a con-
sumer, i.e., the Producer/Consumer pair. To find a bound on a PN channel requires, however,
a total order on the execution of the processes in the network. Many different total orders ex-
ist, leading to different trade-offs in evaluation speed and memory requirement. A total order
for a CDFPN can be obtained by scheduling or by doing a run-time evaluation of a process
network [56]. Nevertheless, we would like to avoid both methods. The scheduling interferes
with the notion of distributed control, and the run-time evaluation is not a compile time anal-
ysis that can be performed as part of our methodology. Also, both the run-time and schedule
approach cannot handle the parameterized nature of the CDFPNs we derive. Instead, we use
compile time allocation schemes. We can do so due to the SANLP characteristic of input pro-
grams that are used to derive the CDFPNs. In [49], the authors determine a lower dimension
for FIFO buffers of their similar process networks.

Consider, the program listed in Listing 5.1 is a simple sequential SANLP in which the
function St1() produces a variable a(j) that is consumed by the function St2(), forming a
P/C pair (as defined in Definition 2.1). A classical memory allocation procedure [57, 58]
would reserve a memory of size N to store results a(j) of St1(). We observe here that the

50 Memory Bound Estimation

variable a(j) is allocated as a vector, and its allocated memory cells are reused during the
execution of the algorithm. Hence, the type of program code listed in Listing 5.1 that reuses
memory locations is referred as sequential code.

Listing 5.1: SANLP example: sequential code
f o r i = 1 : 1 : N,

f o r j = i : 1 : N,
a (j) = S t1 () ;

end

fo r j = i : 1 : N,
. . . = S t2 (a (j)) ;

end
end

The program listed in Listing 5.2. The memory allocation procedure [57, 58] would re-
serve a memory of size N × N to store results a(i, j) of St1(). We observe here that the
variable a(i, j) is allocated as a matrix, and its allocated memory cells are not reused during
the execution of the algorithm. Hence, the type of program code listed in Listing 5.2 that
do not reuse memory locations is referred as single assignment code. Please note that the
type of single assignment code used by us [59] is slightly different than the general accepted
concept of a single assignment code. The difference consist that only the data flow related
variables (e.g., a(i, j)) are using single assignment memory allocation. The control flow
related variables (e.g., i, j) are not converted to a single assignment memory allocation.

Listing 5.2: SANLP example: single assignment code
f o r i = 1 : 1 : N,

f o r j = i : 1 : N,
a (i , j) = S t1 () ;

end

fo r j = i : 1 : N,
. . . = S t2 (a (i , j)) ;

end
end

However, the Output Port Domain for the function St1() has only 1
2 ∗ N ∗ (N + 1)

elements and so has the input-port domain for the function St2(). Clearly, no more than
1
2 ∗ N ∗ (N + 1) tokens have to be exchanged between functions St1() and St2(). As a
consequence, the FIFO size of the communication channel between the two processes in
the corresponding CDFPN can safely be bounded to 1

2 ∗ N ∗ (N + 1). Thus, if an Output
Port Domain contains M points, then the FIFO size of the channel to which this domain
connects need never be larger than M . Counting the number of points in a domain D can
be done by means of the Ehrhart pseudo-polynomial count procedure [42]. Ehrhart counting
pseudo-polynomial expressions may turn out to be complicated when the underlying domain
is not trivial and/or communication of the tokens is out-of-order. To overcome this problem,
domains may be approximated by enclosing them in simple bounding boxes [60].

The programs listed in Listing 5.1 and Listing 5.2 are functional equivalent. As we have
seen, the only difference is the way in that results of function St1() are stored in memory.

5.2 Volumes and Lexical Addressing Functions 51

In the first case, we require N memory locations, and in the second case, we require N × N
memory locations. Moreover, by taking advantage of the SANLP structure of the given
programs, we have seen that the results of function St1() can be stored in 1

2 ∗ N ∗ (N + 1)
memory locations no matter what allocation type we use. In the following sections, we
analyze each of these memory allocation methods, and what are the effects of these methods
over our Abstract Architecture.

5.2 Volumes and Lexical Addressing Functions

A channel is defined as a pair of ports, an Input Port and an Output Port, both being lexically
ordered domains. Given a domain D, we now define two functions as follows:

Definition 5.1 volume(D) : D → Z, is the number of distinct integral points a polyhedral
domain D.

Definition 5.2 lex(D) : Zn → Z, is a lexical ordering of the integral points in a polyhedral
domain D.

In a P/C pair, we can randomly access the communication memory using a read address
(at the consumer side) and a write address (at the producer side). We can generate those
addresses using a write and read functions associated to P/C pair communication memory.
Those functions are obtained by only tacking into account the producer domain (i.e., OPD).

Definition 5.3 The write function, write : Zn → Z is defined as:

write(j) = {lex(j) | j ∈ DP } (5.1)

where DP is the Output Port Domain of a channel, j is an iteration point that belongs to
OPD, and lex() perviously defined.

Definition 5.4 The read function, read : Zn → Z is defined as:

read(i) = {(write ◦ f)(i) | i ∈ DC} (5.2)

where f() is the mapping function of the P/C pair and DC is the consumer domain (i.e.,
IPD), and write() perviously defined.

For the in-order channels write() and the corresponding read() are identical and de-
fined as simple counters. The write() and read() functions are not required for the in-order
communication type channels as the communication memory is linearized to a simple FIFO.
However, for the out-of-order write() is not a simple counter, and its counter part function
read() is more complicated (see Chapter 4). The out-of-order channels are addressing di-
rectly the communication memory, and we require simple functions to do so. We discuss
how to obtain affine functions for these memory addressing functions in Section 5.5.

52 Memory Bound Estimation

5.3 In-Order Channel Upper-bound Memory Estimation

In the COMPAAN Data Flow Process Networks, the FIFOs communication channels are un-
bounded. Actual implementation FIFO sizes are undecidable. In an Abstract Architecture,
on the other hand, channel FIFOs can be given finite upper-bounds which guarantee that the
network will never deadlock. Before dealing with the problem of deciding on the size of a
particular channel FIFO, we take the view that a producer process writes results to a local
memory that can be accessed by the corresponding consumer process. The question, then,
is what the upper bound of the size of the local memory could be. The answer depends on
whether the process is a single assignment code (SAC) or a non-single assignment sequential
program (SEQ).

Listing 5.3: Non-single assignment example code
f o r i = 1 : 1 : 10 ,

f o r j = 1 : 1 : i ,
i f (i + j >= 10)

a (j) = S t1 () ;
. . . = S t2 (a (j)) ;

end
end

end

Listing 5.4: Single assignment example code
f o r i = 1 : 1 : 10 ,

f o r j = 1 : 1 : i ,
i f (i + j >= 10)

a (i , j) = S t1 () ;
. . . = S t2 (a (i , j)) ;

end
end

end

Consider the non-single assignment sequential program listed in Listing 5.3, and the cor-
responding single assignment code program listed in Listing 5.4. In both programs, the func-
tion St1() is defined on the domain D given by:

D = {(i, j) ∈ Z2 | 1 ≤ i ≤ 10 ∧ 1 ≤ j ≤ i ∧ i + j ≥ 10}
The domain is the polygon show in Figure 5.1. The program listed in Listing 5.3 has an

output variable indexing function:

j =
(

0 1
)(

i

j

)

The program listed in Listing 5.3 has an output variable indexing function:

(
i

j

)
=

(
1 0
0 1

) (
i

j

)

5.4 Self-loops Channel Memory Estimation 53

1 5 10

10

5

1

i

j

Ehrhart memory
volume using the

SAC allocation

Ehrhart memory
volume using the

SEQ allocation

Figure 5.1: The graphical representation of the D domain

Thus, for the Output Port of the output variable a of the function St1() can have two
different Output Port Domains. The two Output Port Domains are:

OPDSEQ = {j ∈ Z | 1 ≤ i ≤ 10}
and

OPDSAC = {(i, j) ∈ Z2 | 1 ≤ i ≤ 10 ∧ 1 ≤ j ≤ i ∧ i + j ≥ 10} ≡ D
The OPDSEQ graphical representation is also shown in Figure 5.1.
To find the volume of these domains, we can use the Polyhedron Enumerate() func-

tion of the PolyLib library [61]. This function uses Ehrhart polynomials [42] to count
all the integral points of a polyhedral domain D. Thus, volume(OPDSEQ) = 10 and
volume(OPDSAC) = 35. These volumes represents different memory sizes allocated to
a communication channel. The size of the memory allocated to OPD SEQ is a safe upper-
bound provided that the domain is scheduled in the order given by the sequential program. On
the other hand, the size of the memory allocated to OPD SAC is an upper-bound irrespective
of the domain schedule chosen.

5.4 Self-loops Channel Memory Estimation

In general, we cannot determine the size of the FIFOs in a CDFPN as the processes are only
partially ordered. To determine the size of each FIFO would require to globally schedule the
network. A self-loop is, however, a special case as this kind of communication channel starts,
and ends on the same processor and the writing and reading to/from this channel respects the
internal schedule of the processor. Thus, the IPD and the OPD of the channel are subsets

54 Memory Bound Estimation

of the same iteration domain. We exploit this property to determine the size of the self-loop
channels.

Listing 5.5: SANLP with a self-loop
f o r i = 2 : 1 : 10 ,

[a (i)] = So () ;
end

fo r i = 1 : 1 : 5 ,
f o r j = i : 1 : 5 ,

a (i + j) = F1 (a (i + j)) ;
end

end

Consider the SANLP example shown in Listing 3.1. It is reproduced here in Listing 5.5.
In this example we show also the initialization of the a-array in the first loop. The processor
that implements statement So is feeding the F1 processor via two FIFOs that connect to the
IPD1 and IPD2 domain of the processor. The domains of the processor F1 are as follows:

IPD1 = {(i, j) ∈ Z2 | 1 ≤ i ≤ 1 ∧ 1 ≤ j ≤ 5} (5.3)

IPD2 = {(i, j) ∈ Z2 | 2 ≤ i ≤ 5 ∧ 5 ≤ j ≤ 5} (5.4)

IPD3 = {(i, j) ∈ Z2 | 2 ≤ i ≤ 4 ∧ i ≤ j ≤ 4} (5.5)

OPD = {(i, j) ∈ Z2 | 1 ≤ i ≤ 5 ∧ i ≤ j ≤ 5 ∧ 2 ≤ j − i} (5.6)

ND = {(i, j) ∈ Z2 | 1 ≤ i ≤ 5 ∧ i ≤ j ≤ 5} (5.7)

The Abstract Architecture network of the example given in Listing 5.5 is depicted in
Figure 5.2.

So F1

ED_3

ED_1

ED_2

Figure 5.2: The Abstract Architecture network of the example given in Listing 5.5

The self-loop appears due to a data dependency between the input argument of function
F1 and its output argument. Thus, all data produced by the F1’s OPD is consumed by its
IPD3 (e.g., (i, j) = (1, 3) → (2, 2), (1, 4) → (2, 3), etc.). In this example, the self-loop
FIFO requires a size of three locations as the data produced in iteration (1, 3) is consumed
later in iteration (2, 2). Hence, all data produced in OPD between these two points has to be
stored. The size of this storage gives us the size of the self-loop channel and it is defined as
the maximum amount of tokens stored in the FIFO or, equivalently, the life-time of a token
written to the channel FIFO.

5.4 Self-loops Channel Memory Estimation 55

To detect the FIFO size of a self-loop, we use the Ehrhart theory to count how many
integral points are contained in a polytope. The rank function [46] ranks an iteration point
x that belongs to an iteration domain D. The rank of the iteration point x is the number of
iteration points that, where executed before iteration point x. For simplicity, we consider only
a rank function with one validity domain [6].

A first step is to find how many tokens are produced before the first token is consumed.
We call this period the run-in period. The first token consumed from a self-loop channel
is in the first iteration in the IPD. This iteration is the lexicographic minimum point of the
IPD domain (minlex{IPD}). The point x ∈ OPD that is lexically the first point produced
before the first point in IPD satisfies the following parametric integer linear program (PIP):

subject to: x ∈ OPD

x ≺ minlex{IPD}
objective: maxlex{x},

Let xwr be the unique solution to this program. Then the number of tokens produced in a
run-in period Ntokensrun−in is given by:

Ntokensrun−in = rankOPD(xwr), (5.8)

where rankOPD() is the rank function for the self-loop OPD.
After the run-in period comes the steady period in which tokens are produced as well

as consumed. The steady period extends from min lex{IPD} and maxlex{OPD}. The
number of tokens that has been produced in this period is given by:

Ntokensproduced = rankOPD(maxlex{OPD}) − rankOPD(xwr) (5.9)

and the number of tokens consumed is given by:

Ntokensconsumed = rankIPD(xrd). (5.10)

where rankIPD() is the rank function of the IPD, and xrd is the unique solution to the
following PIP:

subject to: x ∈ IPD

x ≺ maxlex{OPD}
objective: maxlex{x},

Using Equation 5.9 and Equation 5.10, we can compute the absolute number of tokens
produced in the steady period as:

Ntokenssteady = rankOPD(maxlex{OPD})−rankOPD(xwr)−rankIPD(xrd) (5.11)

If Ntokenssteady is negative then we consume more than we produce in the steady pe-
riod. If Ntokenssteady is positive then we produce more than we consume. Otherwise, we
neither consume or produce in the steady period.

56 Memory Bound Estimation

A last period is the run-out period. In this period remaining tokens are consumed without
any production of tokens. Clearly, this period does not have any impact on the determination
of the self-loop FIFO size. Thus, the self-loop FIFO size is equal with the total number of
tokens produced in the run-in and steady periods and not consumed yet. The FIFO size is
given by:

FIFOsize = max(Ntokensrun−in, Ntokensrun−in + Ntokenssteady) (5.12)

The above result FIFO size is valid when the domains IPD and OPD are polyhedral do-
mains.

Self-loop Example

j

i

OPD

IPD

1

1

5

5

minlex{IPD}

maxlex{OPD}

Xwr

Xrd

Figure 5.3: The iteration domain of statement F1, the IPD, and OPD of the self-loop FIFO.
The arrows indicate the lexicographical schedule

Consider the program given in Listing 5.5. The self-loop FIFO OPD and IPD are depicted
in Figure 5.3. minlex{IPD} is given by the point (2, 2). maxlex{OPD} is given by the
point (3, 5). Thus, solving the PIP problems we get xwr = (1, 5) and xrd = (3, 4). The
ranks are as follows:

rankOPD(maxlex{OPD}) = 6
rankOPD(xwr) = 3
rankIPD(xrd) = 5

So, the results of Equation 5.8 and Equation 5.11 are:

5.5 Memory Estimation using Bounding Boxes 57

Ntokensrun−in = 3
Ntokenssteady = −2

Thus, the self-loop FIFO size is given by Equation 5.12 that is FIFOsize = 3.

5.5 Memory Estimation using Bounding Boxes

There are cases when the n-D communication memory between a producer and a consumer
cannot be linearized to a FIFO [41, 46, 62]. In these cases (i.e., the out-of-order cases), the
consumer needs to address the n-D communication memory using the read function (Defi-
nition 5.4), and the producer using the write function (Definition 5.3), respectively. When
linearized, the n-D memory is converted to a FIFO structure, and, hence, the read and write
functions are simple counters. However, for the out-of-order cases, the n-D memory is con-
verted to a 1-D memory that requires special read and write functions to access it. In [46],
the authors proposed to use the rank() function as basis for the read and write functions
(i.e., the lex() function, see Definition 5.2). The rank() function is defined as a summation
of pseudo-polynomial expressions. The complexity of these pseudo-polynomial expressions
depends on the shape of the iteration domain that is ranked. Thus, the complexity of the
synthesized architecture depends on the complexity of these pseudo-polynomial expressions.
We want to limit as much as possible the complexity of the synthesized architecture by lim-
iting the complexity of the read and write functions, and implicit the complexity of the lex()
functions.

The complexity of the lexical function lex() can be reduced by enclosing an arbitrary iter-
ation domainD in a bounding box. The bounding box is a hyper-rectangular shape that can be
converted to a one dimensional array using classical linearization methods given in [57, 58].
Hence, the read and write functions that address this linearized bounding box are affine func-
tions. The complexity of the lexical function depends now only on the number of dimensions
of the bounding box that includes the iteration domain, and not on the shape of the iteration
domain. In this section, we show how we enclose an arbitrary iteration domain in a bounding
box that is a rectangular domain.

5.5.1 Background

Let a rectangular domains be defined as:

D = {x ∈ Zn | l ≤ x ≤ u} (5.13)

where x = (x1, x2, . . . , xn), l = (l1, l2, . . . , ln), and u = (u1, u2, . . . , un).
We can define lex and volume functions for a rectangular domain in terms of a vector w

whose elements wi are defined recursively in terms of li and ui:

wi =
{

1 when i = 1;
wi−1(ui−1 − li−1 + 1) when 1 < i ≤ n + 1.

(5.14)

The lex and volume functions are defined in terms of w:

58 Memory Bound Estimation

lex(v) = (w1 w2 . . . wn)

⎛
⎜⎜⎜⎝

v1 − l1
v2 − l2

...
vn − ln

⎞
⎟⎟⎟⎠ (5.15)

volume(D) = wn+1 (5.16)

where n is the dimension of D, v = (v1, v2, . . . , vn) is the iteration vector of iteration
domain D, and the vector w is known as the doping vector in compiler terminology [57].

Table 5.1 shows rectangular domains of dimensions 1, 2, and 3 with their associated lex
and volume functions.

1-D domain lex(i) = i − Li

volume(i) = (Ui − Li + 1)
2-D domain lex(i, j) = (Uj − Lj + 1)(i − Li) + j − Lj

volume(i, j) = (Uj − Lj + 1)(Ui − Li + 1)
3-D domain lex(i, j, k) = (Uk − Lk + 1)(Uj − Lj + 1)(i − Li)+

(Uk − Lk + 1)(j − Lj) + k − Lk

volume(i, j, k) = (Uk − Lk + 1)(Uj − Lj + 1)(Ui − Li + 1)

Table 5.1: Lexical and volume functions for rectangular domains

Figure 5.4 shows a bounding box for the OPD of the statement ST 1 in the program listed
in Listing 5.4. The OPD iteration domain D is inside of its bounding box DBB. In our
approach, we allocate volume(DBB) memory for the OPD domain D. The wasted memory
is proportional to V olume(DBB) − V olume(D).

For the bounding box DBB , we have:

lex(i, j) = (10 − 1 + 1)(i − 5) + j − 1
volume(i, j) = (10 − 1 + 1)(10 − 5 + 1)

In Listing 5.4 the upper and lower bounds of the iteration vectors are not explicitly given.
Thus, we need a procedure to precisely determine these bounds to minimize the memory
waste. In the next section, we present a methodology to determine a bounding box for any
given iteration domain. Much of the material used in this section is from [63].

5.5.2 Deriving the Bounding Boxes

A bounding box is the smallest rectangular domain DBB which contains D. As we have seen
in Equation 5.15, the lexical function depends on the boundaries l and u. The vectors l and
u of a bounding box can be computed for any given finite iteration domain D. An iteration
domain can be defined in function of its k extremal vertices such as:

D = {x ∈ Zn |
(

λx

λ

)
= Rμ, λ > 0, μ ≥ 0}

5.5 Memory Estimation using Bounding Boxes 59

1 5 10

10

5

1

i

j

The Bounding Box
of domain D

DBB

D

The OPD domain
D

Figure 5.4: The bounding box of the OPD of statement St1 in the program listed in Listing 5.4

where R is a constant integer matrix, x and μ are rational vectors, and λ is an integer
scalar such that λx is an integer vector.

The columns of the R matrix represent the k extremal vertices. To bound a finite iteration
domain, it is sufficient to bound its extremal vertices. The constants l i and ui are defined as
minima and maxima, respectively, of the k values r ij ’s in the ith row of R:

li = min(ri1, ri2, . . . , rik)
ui = max(ri1, ri2, . . . , rik)

Consider an extremal vertex rm = (r1m, r2m, . . . , rnm) be the unique solution of the
following PIP problem:

subject to: x ∈ D
objective: minlex{x},

then li = r1m, where i is the scanning dimension of the polyhedron given by the most
outer loop.

Consequently, the ui constant of the ith dimension is given by the unique solution of the
following PIP problem

subject to: x ∈ D
objective: maxlex{x},

where the extreme vertex rM = (r1M , r2M , . . . , rnM) is the unique solution, and ui =
r1M

60 Memory Bound Estimation

The PIP problems depicted above determine only two extreme vertices. These vertices
determines only two constants li and ui, where i is the most outer loop. Thus, we need to
determine the remanning 2∗(n−1) extreme vertices of the remanning n−1 dimensions. The
remanning extreme vertices can be determined using the same PIP problems on a modified
iteration domain D′ = f(D). The modification consists in permutating the iteration domain
dimensions. This permutation is know in compiler terminology [57] as loop interchange.
Hence,

{v = (i1, i2, . . . , in), v ∈ D} → {v′ = (in, i1, . . . , in−1), v′ ∈ D′}
where v and v′ are the iteration vectors of D and D ′, respectively.
A loop interchange operation is done using an unimodular transformation on an iteration

domain such that all the for loop indexes are at least once in the position of the most outer
loop. An unimodular transformation is defined as:

∃T s.t. det(T) = ±1 ∧D′ = D × T.

The unimodular transformation that do loop interchange is defined as:

T =
[

0 1
In−1 0

]

where In−1 is the identity matrix.
We can define a number of modified domains D ′ as:

D′
i =

{ D, when i = 1;
D′

i−1 × T, when 1 < i ≤ n.

All the necessary extreme vertices for the bounding box are computed as:

ri
M = maxlex{D′

i} (5.17)

ri
m = minlex{D′

i} (5.18)

where ri
M = (r1M , r2M , . . . , rnM) and ri

m = (r1m, r2m, . . . , rnm) are extreme vertices
of domain D.

Hence, the constants li and ui are:

ui = ri
1M (5.19)

li = ri
1m (5.20)

The bounding box DBB is defined in terms of l and u.

DBB = {x ∈ Zn, l ≤ x ≤ u} (5.21)

5.5 Memory Estimation using Bounding Boxes 61

Bounding Box Example

For the example shown in Figure 5.4, we have:

D = {(i, j) ∈ Z2 | 1 ≤ i ≤ 10 ∧ 1 ≤ j ≤ i ∧ i + j ≥ 10}
The matrix transformation T is:

T =
[

0 1
1 0

]

The converted domain D ′ is:

D′ = {(j, i) ∈ Z2 | 1 ≤ j ≤ 10 ∧ 1 ≤ i ≤ j ∧ i + j ≥ 10}

1 5 10

10

5

1

i

j

The domain D

1 5 10

10

5

1

i

j

The domain D'

D D'

Lexmin(5,5)

Lexmax(10,10) Lexmax(10,10)

Lexmin(1,9)

Figure 5.5: Polyhedral representation of the domains D ′ and D. The arrows indicate the
scanning order.

The purpose of the transformation T is to change the way how we scan the initial iteration
domain D to determine the extreme vertices of the iteration domain. This transformation is
shown in Figure 5.5. The PIP problems gives us the unique solutions:

r1
m = (5, 5),

r1
M = (10, 10)

for the domain D. And,

r2
m = (1, 9),

r2
M = (10, 10)

for the domain D′. Thus,

62 Memory Bound Estimation

li = 5
ui = 10
lj = 1
uj = 10

The bounding box is:

DBB = {(i, j) ∈ Z2 | 5 ≤ i ≤ 10 ∧ 1 ≤ j ≤ 10}

5.6 Conclusions

Due to the particularities of our CDFPN networks, we can derive at compile time an upper
bound memory for our Abstract Architecture. In the case of self-loop FIFOs, the memory
estimated is the lower bound memory estimation. Two memory allocation schemes are used
to derive the memory type that we use to estimate an upper bound memory for a channel. The
SAC allocation scheme results in the fastest execution of a CDFPN as the network can run
with maximum parallelism. The SEQ allocation scheme restricts the network parallelism to a
more sequential execution scheme, as explicit checks need to be performed on the validity of
data. The SEQ allocation scheme can be tuned by the user, and changing the total amount of
memory required by the Abstract Architecture. The tuning is realized through using source to
source transformations on an input program. Such transformations are the one that increase
data locality in a sequential application, i.e., loop tiling [64] and loop fusion [65].

Chapter 6
Expression Synthesis

A CDFPN process is mapped to a virtual processor that consists of a Read, an Execute, and
a Write unit as explained in Chapter 2. The Read and Write units execute a control program
that determines at each firing of the Execute unit from where data needs to be read and to
where data needs to be written. The Execute unit embeds an IP core that implements the core
function in the process. The IP Core executes a firing in a particular execution period that
depends on the core’s critical path. This period becomes an important design constraint for
our processor, as the Read and Write units need to perform the next read and write operations
in less than this period. Only then do the Read and Write unit not obstruct the data flow
through the Execute unit. In Figure 6.1, we show an IP Core that executes in 10ns. As a
consequence, the Read and Write units need to prepare for the next firing in less than this
10ns.

Read Execute WriteData In Data Out

TIP=10 ns

TRead < 10 ns TWrite < 10 ns

Figure 6.1: Running an IP core efficiently in a LAURA Processor

The control programs in the Read and Write units are expressed in terms of parameterized
polytopes, IPDs andd OPDs. The parameters are static, that is, values can be set at compile
time. However, an implementation is also parameterized so that the controller does not have
to re-designed when parameter values change [66, 67], see Chapter 3. The IPDs and OPDs
are repeatedly evaluated at run-time. If a particular iteration is within the space defined by
the polytope, it means that data needs to be read or written. A polytope is defined by a set
of affine and pseudo-affine relations. An example of a control program defined as a polytope
is given in Figure 6.2. In it, the variables M and N are parameters, while i, j, and k are

64 Expression Synthesis

iterators.

Control Program =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M − 3 ≥ 0
N − 2 ≥ 0
−j + 3 ∗ M ≥ 0
j − M ≥ 0
2 ∗ i − 1 ≥ 0
i + 2 ≥ 0
−k + N − 1 ≥ 0
k − 1 ≥ 0
−i + 2 ∗ DIV (i + 1, 2)− 1 ≥ 0
2 ∗ DIV (M + 1, 2) − M − 1 ≥ 0

Figure 6.2: Example of a set of relations that define a polytope.

To check wether an iteration point (i, j, k) is enclosed by the polytope relations in the
control program P (given in Figure 6.2) or not, we have to evaluate all the conditions con-
tained by the control program. In software, we implement this evaluation as a cascade of
if-statements. The speed of evaluation of this cascade is low, as the evaluation proceeds
in a sequential manner. Evaluating the polytopes in hardware, however, can be done much
faster, as all expressions can be evaluated in parallel. Nevertheless, in many cases the con-
trol program cannot be evaluated in less than Tread (10ns in Figure 6.1). In this chapter,
we introduce the Expression Compiler that implements a number of techniques to reduce the
evaluation time of polytope expressions. As a consequence, we can evaluate expressions in
the Read and Write units faster than the execution period T IP of the IP Core function.

We start with related work in Section 6.1. Section 6.2 deals with our approach to convert
expressions efficiently to hardware in two steps. In Section 6.3 and Section 6.4, we present
the techniques to simplify expressions. The predicated single assignment form is introduced
in Section 6.5. Experimental results are given in Section 6.6, and we conclude this chapter in
Section 6.7.

6.1 Related Work

A CDFPN network generated by the COMPAAN compiler may be simulated using software
simulators in which all expressions that define a polytope are evaluated in a sequential order.
A hardware implementation for only a very limited set of expressions (no multiplications and
no pseudo linear operators) was proposed in [68]. To allow for an efficient compilation of
expressions to hardware, we investigated a more flexible approach based on two observa-
tions. First, expressions can be evaluated in parallel. Second, even with a parallel evaluation
of expressions, the total evaluation time can take longer than the evaluation time of an IP
block embedded in our network. This is due to the complexity certain operations such as
multiplication and integer division. The elimination of division and modulo operations from
a sequential program has been discussed in [69, 70]. The PICO project [71] employs similar
techniques to avoid MOD and DIV operations. Our target is to generate a custom implemen-
tation, and hence, additional issues have to be taken into account such as mapping, critical

6.2 The Approach 65

path delay, and the footprint of the implementation.

6.2 The Approach

For a fast and efficient implementation of the control program given in Figure 6.2, we simplify
the given inequalities into expressions that use only additions, look up tables (LUT), and
shifts. These new expressions can be executed in a shorter time than the evaluation time
needed by the IP core embedded in the Execute unit. Moreover, the simplified expressions are
represented in a data-structure that allows for further manipulation. We can obtain an even
more optimal implementation in terms of speed and area by using, for example, pipeline,
retiming and multiplexor reduction techniques. For that reason, we have broken down the
transformation of expressions in two steps as shown in Figure 6.3. In the first step, the
input expressions are simplified using high-level optimizations that are platform independent
(i.e. High-Level Optimizer). In the second step, the expressions are manipulated to obtain
better performance by taking advantage of mid and low-level optimizations that are platform
dependent (i.e. Low-Level Optimizer).

Nested for-loops
with

pseudo/affine
expressions

Strength-reduction of MOD
and DIV terms

Strength-reduction using
the Method of Differences

Predicated Static Single
Assignment Compiler

VHDL
representation

High
Level

Optimizer

Low Level
Optimizer

Figure 6.3: The Expression Compiler Flow

6.2.1 High-Level Optimizer

The High-Level Optimizer implements high-level and platform independent optimizations. It
converts an expression in two steps to a simplified structure that allows for further optimiza-

66 Expression Synthesis

tion. These are:

DIV and MOD strength reduction operations are used to reduce the strength of expres-
sions to simpler expressions. Also, expressions that contain DIV terms are converted
to MOD terms as they are simpler to implement.

Method of Differences is used to replace multiplications by additions.

6.2.2 Low-Level Optimizer

The Low-Level Optimizer is a Predicated Static Single Assignment compiler performing mid
and low-level optimizations, such as constant propagation, dead-code elimination, and re-
timing aiming at better performance. The Predicated Static Single Assignment Compiler
compiles the input to a Predicated Static Single Assignment (PSSA) [72] code for a partic-
ular target architecture. We rely on PSSA to take advantage of today’s research in PSSA
compilation techniques [72]. The PSSA form is suitable for optimizations intended for both
micro-processor [73] architectures and reconfigurable architectures [74]. Reconfigurable ar-
chitectures in FPGAs are our architectures of choice. For an FPGA platform target, the de-
sired operations are: the reduction of the number of variables used, multiplexer optimizations,
bit-width, and LUT synthesis for non linear terms. Finally, the resulting PSSA is mapped onto
a hardware description language like VHDL or Verilog by associating a hardware equivalent
to each operation of the PSSA.

6.3 Simplification

A polynomial specification consist of a set of (pseudo-)affine expressions. Terms like MOD
and DIV in pseudo-affine expressions require special compilation techniques for FPGA im-
plementation. The COMPAAN compiler typically generates polytopes that contain DIV terms.
The b ∗ DIV (a, b) form is the most frequently occurring form of a DIV operation. See, for
example, the expressions in Figure 6.2. However, the implementation of a DIV term is more
involved than the implementation of a MOD term, Therefore, we want to avoid DIV terms as
much as possible. Next, an equivalence transformation that converts a DIV term to a MOD
term is given. This transformation has been introduced in [75].

Equivalence 6.1
A DIV term of the form b ∗ DIV (a, b) is equivalent to a MOD term of the form a −

MOD(a, b). �

An observation is that Equivalence 6.1 can easily be extended to handle numbers that
are a multiple of b. In the cases when we cannot rely on the equivalence 6.1, employ modern
software compiler techniques to reduce the cost of integer division [76–78]. These techniques
are based on so-called scaled reciprocals. In general, the techniques transform an integer
division into a multiplication with a constant and a shifts [78].

The bit-width result of a DIV(a,b) term is �log2(a)
 − �log2(b)
+ 1, while the bit-width
result of a MOD(a,b) term is �log2(b)
. Usually, we may assume that b << a, and we can
say that the number of bits needed to represent the MOD term is less then the number of bits

6.3 Simplification 67

needed to represent a DIV term. This reinforces our goal to work with MOD rather than DIV
terms. To further on optimize the MOD terms we can strength reduce them [79] as follows:

Equivalence 6.2

MOD(a ∗ x + b ∗ y, d) = MOD(MOD(a, d) ∗ x + MOD(b, d) ∗ y, d)
MOD(x + y, d) = MOD(MOD(x, d) + MOD(y, d), d)
MOD(x ∗ y, d) = MOD(MOD(x, d) ∗ MOD(y, d), d)

�

where x and y are variables, and a, b, and d are constants.
A special case is when the divider is a power of two constant. In that case, we can apply

Equivalence 6.3.

Equivalence 6.3
If the divider of the MOD operation is positive power of two number, then the modulo

expression can be converted to a bitwise AND operation:

MOD(x, 2n) = x AND (2n − 1)

where (2n − 1) is a string of n ones. �

After applying Equivalence 6.2, we obtain a MOD operation with a known range of r =
[0, (d−1)], r ∈ N. For small dividers, this MOD operation can be implemented using a Look
Up Table (LUT) as described in Optimization 6.4.

Equivalence 6.4
Given a modulo expression in a loop of the following form:

for j = L to U,
exp = MOD(f(j),divider);

end

Where f(j) is an affine function defined as f(j) = f0 + c ∗ j, f0, c, and divider are
constants. Then the loop can be transformed to,

for j = L to U,
if j = L then

exp = MOD(f_0 + c*L, divider);
else

exp = MOD(exp + c, divider);
end if

end

�

68 Expression Synthesis

Observation: If L is a constant, then value exp on the TRUE branch of the if statement is
a constant and can be computed at compile time. Otherwise, Equivalence 6.4 is applied recur-
sively to further reduce the multiplication operation to additions. Equivalence 6.4 compiles
a MOD term into operations that make use of LUTs. These LUTs have always maximum
table length equal to 2 ∗ divider − 1 after applying Equivalence 6.2. The bit-width is equal
to �log2(divider − 1)
. Hence, a LUT implementation for small values of divider is very
well achievable.

for i = 0 to 2*d-1 {
lut[i] = MOD(i,d);

}
return lut;

Figure 6.4: The LUT generator algorithm

To generate the content of the LUT, we make use of the algorithm given in Figure 6.4.
Suppose we want to have the LUT for the MOD term MOD(i + 2, 3). We need a LUT of 5
positions that is filled with {0, 1, 2, 0, 1} and is addressed using the simple expression i+2. If
the divider in a MOD operation becomes large, the LUT approach is no longer possible as the
content doesn’t fit efficiently in a FPGA slice. In that case, we make use of Equivalence 6.5,
which replaces the LUT with a counter.

Equivalence 6.5
Let expk+1 = MOD(expk + c, d) be a MOD operation in a nested for loop. If expk and

c are less than d, then the operation can be written as:

for j = L to U,
a = exp + c;
if a >= d then

a = a - d;
else

a = a + d;
end if
exp = a;

end

�

6.3.1 Example

As an example of the DIV and MOD strength reduction operations, we apply Equivalence 6.1
on the last two expressions in Figure 6.2 that contain DIV terms. The result we get is given
in Figure 6.5. The two complex expressions with the DIV terms have been converted to
expressions that consists of a single MOD term that can be implemented in a single FPGA
basic logic element (i.e., a slice). Since the dividers of both MOD terms are the same (i.e.,
divider = 2), only a single slice is needed in hardware to implement the original complex
expressions. We could even further optimize the expressions by using Equivalence 6.3

6.4 Method of Differences (MoD) 69

{ −i + 2 ∗ DIV (i + 1, 2)− 1 ≥ 0
2 ∗ DIV (M + 1, 2) − M − 1 ≥ 0 ⇒

{
MOD(i + 1, 2) = 0
MOD(M + 1, 2) = 0 ⇒ LUT

Figure 6.5: Complex expressions converted to a single LUT using DIV and MOD strength
reduction operations

6.4 Method of Differences (MoD)

In the Read and the Write units, a lexical schedule is executed. This schedule is captured by
for loops. The for-loops define iteration points for which the polytope needs to be evaluated.
Because of the for-loops, the expressions of a control program are evaluated repeatedly. This
repetitive behavior can be exploited to simplify the evaluation of our expressions by convert-
ing all multiplication operations into repetitive addition operations. This is an important step,
as a multiplication operation takes more FPGA resources and time compared to an addition.

The technique that exploits the repetitive behavior is called the Method of Differences
(MoD) [51], as it is based on using differences of the terms of an expression to calculate the
next value. Although the method of differences can be applied to a polynomial of any degree,
we are dealing with pseudo-affine expressions and thus polynomials of degree one. Terms
such as MOD and DIV still have to be evaluated at run-time.

Listing 6.1: Simple example
f o r (i n t a = 5 ; a <=10; a ++) {

expr = 3∗a + 1 ;
}

Consider the for-loop in the simple example listed in Listing 6.1. Clearly expr(a + 1) =
expr(a) + 3, expr(5) = 16. A MoD version of the simple example from Listing 6.1 is given
in Listing 6.2.

Listing 6.2: A MoD version of the program given in Listing 6.1
f o r (i n t a = 5 ; a <= 10 ; a ++) {

i f (a == 5) {
b = 15

} e l s e {
b = b + 3

}
expr = b + 1 ;

}

6.5 Predicated Static Single Assignment

The Predicated Static Single Assignment (PSSA) [72] form is suitable for mid and low-
level optimizations be it for micro-processors [73] or for reconfigurable platform such as

70 Expression Synthesis

FPGAs [74]. We are primarily interested in optimizations for a FPGA platform. The Static
Single Assignment (SSA) [80, 81] form requires that every variable within a computation is
assigned a value only once, thereby explicitly expressing the data-dependency between oper-
ations. The SSA form helps us in eliminating the anti-dependencies (Write-After-Read) and
output dependencies (Write-after-Write) unveiling the hidden parallelism in the input code.
The Static Single Assignment form is almost equivalent to a Dependency Graph (DG), which
is a very suitable form for hardware implementations. For example, variables for interme-
diate results correspond to nothing more than wires that are required anyway to perform the
computation. Additionally, a number of compiler optimizations are used in conjunction with
SSA to optimize the output circuitry. Such optimizations that are using SSA form are:

Dead Code Elimination removes the code in the source code of a program that is never
used;

Constant Propagation is the process of simplifying constant expressions at compile time;

Sparse Conditional Constant Propagation simultaneously removes dead code and propa-
gates constants throughout a program;

Partial Redundancy Elimination eliminates expressions that are redundant on some but
not necessarily all paths through a program.

By extending SSA with predication, every statement in the original computation is tagged
with a guard that controls whether or not a statement is actually executed. Advanced tech-
niques [74, 82] can be applied on a PSSA to optimize its output for the FPGA platform. The
purpose of predication is to completely eliminate control flow statements (if-then-else,loops).
Using this technique, we practically convert a control flow to a data flow. Converting SSA to
a PSSA form is straitforward. For example, consider the example given in Listing 6.2. The
SSA code is shown in Listing 6.3 using the Shimple format [83, 84].

The major challenge in Listing 6.3 is the synthesis of the φ nodes. In our SSA forms,
we can distinguish between φ nodes accordingly to their behavior. Hence, we get two types
of such nodes. The first type deals with the initialization of working variables inside of a
for-loop (e.g., the φ node of the b 1 variable). We call these nodes reset-φ nodes. The second
type of φ node deals with selection of the right variable according to a condition statement in
the SSA code (e.g., the φ node of the b 4 variable). We call these nodes selection-φ nodes.

To synthesize expressions, we use the architectural structure of a parameterized predi-
cated structure as explained in Chapter 3. Hence, we have an iterator part and an evaluation
part. When we synthesize expressions, the iterator part deals with the for-loop statements.
We use the for-loop statements information, however, we do not synthesize it as it is already
synthesized in the context of the parameterized predicated controller. Thus, we discard from
SSA form all the information related to the for-loop iterators and their updates. E.g. in List-
ing 6.3, the initialization of variables a 1 and a 2 are discarded. All the references to the a 1
variable points now to an input variable generated by the iterator part (i.e. a). At this end, we
can rewrite the SSA code into a PSSA code. For the example listed in 6.3, we get the PSSA
code as given in Listing 6.4. Please note that in our case all the conditions statements are
static (i.e., depends only on the iterator part). This is a consequence of the fact that the com-
piled expressions are part of the static control associated with a static CDFPN network. This
is handy when we convert the φ functions to their if-statements equivalent (multiplexors).

6.5 Predicated Static Single Assignment 71

Listing 6.3: SSA code of the example listed in 6.2
{

b = 10 ;
(0) a = 5 ;

l a b e l 0 :
b 1 = φ (b #0 , b 4 # 3) ;
a 1 = φ (a #0 , a 2 # 3) ;
i f a 1 > 10 goto l a b e l 3 ;

i f a 1 != 5 goto l a b e l 1 ;

b 2 = 15 ;
(1) goto l a b e l 2 ;

l a b e l 1 :
(2) b 3 = b 1 + 3 ;

l a b e l 2 :
b 4 = φ (b 2 #1 , b 3 # 2) ;
expr = b 4 + 1 ;
a 2 = a 1 + 1 ;

(3) goto l a b e l 0 ;

l a b e l 3 :
re turn ;

}

Listing 6.4: PSSA code of the example listed in 6.2
{

b = 15 : i f (t rue) ; / / i n i t i a l v a l u e

b 1 = (a == 5) ? b : b 4 : i f (t rue) ; / / r e s e t i n i t i a l i z a t i o n
b 2 = 15 : i f (t rue) ; / / when t h e i t e r a t o r i s r e l o a d e d
b 3 = b 1 + 3 : i f (t rue) ;
b 4 = (a == 5) ? b 2 : b 3 : i f (t rue) ; / / when t h e i t e r a t o r i s r e l o a d e d
expr = b 4 + 1 : i f (t rue) ;

}

The PSSA code is optimized further on by simplifying the expressions (i.e., constant
propagation). The PSSA predicates are modified such that the guarded expression is executed
only when one of its terms is affected by one of the for-loop iterators. This behavior is very
similar with the sensibility list construction from VHDL language. For our example, the code
is presented in Listing 6.5.

Listing 6.5: The PSSA code with a sensibility list
{

a e v e n t = t rue : i f (t rue) ;
b 1 = (a == 5) ? 15 : b 4 : i f (a e v e n t) ; / / r e s e t i n i t i a l i z a t i o n
b 3 = b 1 + 3 : i f (a e v e n t) ;
b 4 = (a == 5) ? 15 : b 3 : i f (a e v e n t) ; / / when t h e i t e r a t o r i s r e l o a d e d
expr = b 4 + 1 : i f (t rue) ;

}

72 Expression Synthesis

The PSSA form is efficiently used for low level optimizations such as bit-width optimiza-
tion, minimization of the number of multiplexors, and micro pipelining. This analysis is very
useful as it drastically improves both the area usage, and the performance. A data-path op-
erating on 5 bit integers is smaller and faster than an operation on a 16 bit integer. Since the
variables in an expression depend only on the loop indices, the bit-width of all operators can
be derived from the bit-width of the original loop indices. The loop indices depend on the
upper and lower loop bounds. Suppose that U i is the upper bound for loop index i, then its
bit-width is given by wi = �log2(Ui)
. Using this information and the fact that all the oper-
ations in a PSSA tree are additions, we can propagate the bit-width constraint along the DG
structure of the PSSA. Using Equation 6.1, in which variables in 1 and in2 have a particular
bit width, we calculate the required bitwith for the result of the addition.

w(in1, in2) = max(w(in1), w(in2)) + 1 (6.1)

For the final step, i.e., the synthesis of the PSSA form, we generate the circuit using
only multiplexors, add/substraction operations, LUTs, and registers. By definition, all the
if-statements corresponding to selection-φ nodes that are created by the expression synthesis
step only check if an iterator is in its lower bound iteration point or not (see Listing 6.2).
Thus, they can be synthesized as multiplexors. On the other hand, the reset-φ nodes are
used to initialize the corresponding variable registers. If the architecture does not support
register initialization on reset, we can use multiplexors as well. In our architecture, the iterator
part of the parameterized controller can generate boolean signals that are asserted when an
iterator reaches its upper bound. We take advantage of these signals and convert all the
PSSA selection-φ nodes to accommodate this new condition. Hence, we re-time the entire
PSSA to accommodate only upper bounds conditionals instead of lower bounds if statements.
They boolean signals are called end loop x, where x is a nested for-loop iterator name. The
synthesis of the VHDL code is straitforward. We connect the update of an iterator to the clock
of the system and then we generate the FPGA implementation using a software engineering
method called visitor [85]. In our methodology, a loop iterator is updated once per clock
cycle. The VHDL code of the example shown in Listing 6.2 is given in Listing 6.6.

Listing 6.6: VHDL code of the example listed in 6.2
proc e s s (c lk , r s t)

var i ab l e b 1 v : INTEGER range 0 to 1023 ;

begin
i f r s t = ’1 ’ then

b 1 := 15
e l s i f r i s i n g e d g e (c l k) then

i f e n d l o o p a then
b 1 v := 15 ;

e l s e
b 1 v := b 1 + 3 ;

end i f ;
b 1 <= b 1 v ;

end i f ;
end

6.6 Examples of Implementations of Expressions 73

6.6 Examples of Implementations of Expressions

In this section we show typical results obtained with our Expression Compiler, for two ex-
amples. One example (Example 1) concerns only the method of differences. The other
example (Example 2) additionally uses the DIV and MOD strength reduction operations. All
the experiments have been implemented except for the synthesis of the for-loops. We used
the Symplify 7.2 tool for synthesis and the Xilinx ISE 6.2 tool for the mapping on a Xilinx
xc2v40 platform.

6.6.1 Example 1

This example shows what the expression compiler does with the MOD expression MOD(5∗
i, 3). The input code with the expression is shown in Listing 6.7. First, the expression com-
piler applies DIV and MOD strength reduction operations to simplify the expression. Here,
Equivalence 6.4 is called to analyze the True branch of the if-statement. It holds the initial-
ization value for the MOD expression. Because the lower bound of the i for-loop is constant,
f0 + c ∗ L is equal to 10 and the initialization of the MOD expression is MOD(10, 3) = 1.
Next, the expression compiler analyzes the False branch that holds the update part of the orig-
inal MOD expression, i.e., expnew = MOD(expold + 5, 3). This part is strength reduced
further on by Equivalence 6.2 as shown in Listing 6.8. Using the LUT generator presented
in Figure 6.4, the content of the LUT table is initialized to {0, 1, 2, 0, 1}. The PSSA code is
shown in Listing 6.9 and the equivalent VHDL code in Listing 6.10. The resulting RTL view
of the PSSA compilation with our technique is shown in Figure 6.6.

Listing 6.7: Code example with a
modulo-statement
f o r (i = 2 ; i <=10; i ++) {

modT = MOD(5∗ i , 3) ;
}

Listing 6.8: Strength reduced modulo-statement
f o r (i = 2 ; i <=10; i ++) {

i f (i == 2) {
modT = 1 ; / / MOD(1 0 , 3)

} e l s e {
modT = mod3LUT(exp + 2) ;

}
}

Listing 6.9: PSSA representation of example 6.7
{

i e v e n t = t r u e : i f (t r u e) ;

mod0 i 0 = (i == 2) ? 1 : mod0 i : i f (i e v e n t) ; / / R e s e t c o n d i t i o n

mod0 i 1 = mod0 i 0 + 2 : i f (i e v e n t) ;
mod0 i = (i == 2) ? 1 : mod (mod0 i 1 , 3) : i f (i e v e n t) ;

modT = mod0 i : i f (t r u e) ;
}

The FPGA implementation requires only one slice to implement the MOD and its critical
path is 1.5ns (app. 650Mhz). The implementation results depend on the size of the look up
table that has to be compiled in hardware, but for small values of the divider of the MOD, it

74 Expression Synthesis

Listing 6.10: VHDL code of the example listed in 6.7
con s t an t mod3LUT: mod3LUT lut := mod3LUT lut ’ (

0 => i n t 2 s l v (0 , mod3LUT width +1) ,
1 => i n t 2 s l v (1 , mod3LUT width +1) ,
2 => i n t 2 s l v (2 , mod3LUT width +1) ,
3 => i n t 2 s l v (0 , mod3LUT width +1) ,
4 => i n t 2 s l v (1 , mod3LUT width + 1)) ;

proc e s s (c lk , r s t)
var i ab l e modT v : INTEGER range 0 to 1023 ;
var i ab l e mod0 v : INTEGER range 0 to 1023 ;
var i ab l e mod0 i v : INTEGER range 0 to 4 ;

begin
i f r s t = ’1 ’ then

mod0 i v := 1 ;
mod0 i <= mod0 i v ;

e l s i f r i s i n g e d g e (c l k) then
i f e n d l o o p i then

mod0 i v := 1 ;
e l s e

mod0 i v := s l v 2 i n t (mod3LUT(mod0 i +2) , mod3LUT width +1) ;
end i f ;
mod0 i <= mod0 i v ;

end i f ;
end proc e s s ;
modT <= mod0 i ;

is suitable to be compiled using the LUT approach. This example shows that expressions that
seem very complex can be implemented very efficient in today FPGAs.

un1_modt_1

mod0_i_1[0]

0

1

modT[1:0]

R PAT

CLK
rst

modT[1:0][1:0]end_loop_i

[1]

[0]

[1]

1

[1:0]Q[1:0]D[1:0]

Figure 6.6: The RTL view of example 6.7

6.6.2 Example 2

This example shows how the expression compiler deals with the expression 81 ∗ i + 9 ∗ j +
k − 102 that appears in the body of for-loop nest of depth 3 (see Listing 6.11). We want to
map this expression to hardware using the Expression Compiler, as the expression contains
multiplications. Applying the DIV and MOD strength reduction operations will not help in
this case, as pseudo-affine terms are not involved.

The PSSA code that we get for this example is given in Listing 6.13. It shows the same
for-loops as in the original code with the body modified. This PSSA code is equivalent to

6.6 Examples of Implementations of Expressions 75

Listing 6.11: Code example contain-
ing non-trivial linear expression
f o r (i = 2 ; i <=10; i ++) {

f o r (j = 1 ; j<=i −1; j ++) {
f o r (k = i +1 ; k<=11; k++) {

scan = 81∗ i + 9∗ j + k − 102 ;

} / / end k
} / / end j

} / / end i

Listing 6.12: The intermediate code
implementing the lower bound of k-
loop
f o r (i = 2 ; i <=10; i ++) {

f o r (j = 1 ; j<=i −1; j ++) {
k3 = i + 1 ;

} / / end j
} / / end i

Listing 6.13: Strength reduced code of the exam-
ple 6.11

1 f o r (i = 2 ; i <=10; i ++) {
2 i f (i == 2) {
3 k 3 i = 2 ;
4 } e l s e {
5 k 3 i = k 01 + 1 ;
6 }
7 k3 = k 3 i + 1 ;
8 i f (i == 2) {
9 s c a n i = 162 ;

10 } e l s e {
11 s c a n i = s c a n i + 81 ;
12 }
13 f o r (j = 1 ; j<=i −1; j ++) {
14 i f (j == 1) {
15 s c a n j = 9 ;
16 } e l s e {
17 s c a n j = s c a n j + 9 ;
18 }
19 f o r (k = i +1 ; k<=11; k++) {
20 i f (k == 3) {
21 s c an k = 3 ;
22 } e l s e {
23 i f (k == i +1) {
24 s c an k = k3 ;
25 } e l s e {
26 s c an k = s c an k + 1 ;
27 }
28 }
29 scan = s c an k + s c a n j + s c a n i −

102 ;
30 } / / end k
31 } / / end j
32 } / / end i

the code given in Listing 6.11, however all the expressions are expressed in additions only;
all multiplications are removed. The expression compiler also changed the names of the
variables to make the conversion to the PSSA code easier.

The expression is pure affine, and is compiled as discussed in the beginning of this chap-
ter. Only the linear term that contains the k variable is more complex than others due to the
fact that the lower bound of the k-for-loop is an affine expression by its own. The upper
bounds of the loops that are expressed as affine terms are ignored in this step. This is due
to the definition of the MoD method in which upper bounds do not play any role in strength
reducing of an expression.

First, the term 81 ∗ i is compiled. The initial value is equal to the initialization value of
i = 2 multiplied with its first derivative 81.The initialization subtree is shown in Listing 6.13,
lines 8 and 10. The update of this term is shown in lines 10 to 12. The entire subgraph
(lines 8-12) is placed in the scope of the i-for-loop such that the update is done only when the
update of the i variable is done. Next, the j term is compiled (lines 14–18), in scope of the
j for-loop. Finally, the k term is compiled. This compilation is a bit more complex because
the lower bound of the k for-loop is a linear expression on its own (e.g., i + 1). Therefore,
the expression is compiled recursively following the same steps as described above. The
intermediate input code for the compiler is shown in Listing 6.12. The compilation of the
new expression k3 lies between lines 2 and 7. After that, the value of k3 is taken and used

76 Expression Synthesis

in the initialization of the last linear term of the scan expression, see lines 20 to 27. We can
remark that the tree corresponding to the k3 is placed in the right place (e.g. in the scope
of the i-for-loop). The last step consists in adding all the intermediate results in the final
expression at line 29.

Listing 6.14: PSSA representation of example 6.11
{

i e v e n t = e n d l o o p j : i f (t r u e) ;
j e v e n t = end l oop k : i f (t r u e) ;
k e v e n t = t r u e : i f (t r u e) ;

s c a n i 0 = (i == 2) ? 162 : s c a n i : i f (i e v e n t) ; / / Re s e t c o n d i t i o n
k 3 i 0 = (i == 2) ? 2 : k 3 i : i f (i e v e n t) ; / / Re s e t c o n d i t i o n
s c a n j 0 = (j == 1) ? 9 : s c a n j : i f (j e v e n t) ; / / Re s e t c o n d i t i o n
s c an k 0 = (k == i +1) ? k3 : s c an k : i f (k e v e n t) ; / / Re s e t c o n d i t i o n

s c a n i = (i == 2) ? 162 : s c a n i 0 + 81 : i f (i e v e n t) ;
k 3 i = (i == 2) ? 2 : k 3 i 0 + 1 : i f (i e v e n t) ;
s c a n j = (j == 1) ? 9 : s c a n j 0 + 9 : i f (j e v e n t) ;
k3 = k 3 i + 1 : i f (j e v e n t) ;
s c an k 1 = (k == i +1) ? k3 : s c an k 0 + 1 : i f (k e v e n t) ;
s c an k = (k == 3) ? 3 : s c an k 1 : i f (k e v e n t) ;

s can = s c a n i + s c a n j + s c an k − 102 : i f (t r u e) ;
}

After strength reducing the input code, we convert it to its PSSA form as shown in List-
ing 6.14. The PSSA compiler generates the VHDL description as shown in Listing 6.15. The
hardware implementation that corresponds to the output VHDL file is shown in Figure 6.7.

To compare the efficiency of our method we compiled the expression 81∗i+9∗j+k−102
using two other methods as well. The first method, the Constant Multiplier method, uses
Symplify to extract and compile the constant multipliers that are used in the example. The
second method, the Embedded Multipliers method, uses the multipliers which are embedded
in the latest Virtex platforms. In all methods, we used the Symplify� 7.2 tool for synthesis
and the Xilinx ISE 6.2 tool for hardware mapping. The results for the xc2v40 platform are
presented in Table 6.1.

Method Slices Frequency MUL18x18

PSSA compilation 37 250 Mhz 0
Constant Multipliers 14 95 Mhz 0

Embedded Multipliers 15 76 Mhz 2

Table 6.1: Results for the example 6.11

We observe that the PSSA method is the faster. However, the price to be payed is in terms
of resources that are used; more than twice of as for the other two methods. However, the
total amount of slices used for our implementation is relatively small when we consider the
total number of slices which we can find in a typical FPGA (e.g., 256 for xc2v40 to 33792
for xc2v6000). The Embedded Multipliers method is the slowest due to the placement of
the multipliers in the Virtex platform. In this case, the routing of the signals plays a major

6.6 Examples of Implementations of Expressions 77

Listing 6.15: VHDL code of the example listed in 6.11
proc e s s (c lk , r s t)

var i ab l e s c an v : INTEGER range 0 to 1023 ;
var i ab l e k3 v : INTEGER range 0 to 1023 ;
var i ab l e k 3 i v : INTEGER range 2 to 1023 ;
var i ab l e s c a n j v : INTEGER range 9 to 1023 ;
var i ab l e s c an k v : INTEGER range 3 to 1023 ;
var i ab l e s c a n i v : INTEGER range 162 to 1023 ;

begin
i f r s t = ’1 ’ then

s c a n i v := 162 ;
s c a n i <= s c a n i v ;
k 3 i v := 2 ;
k 3 i <= k 3 i v ;
s c a n j v := 9 ;
s c a n j <= s c a n j v ;
s c an k v := 3 ;
s c an k <= sc an k v ;

e l s i f r i s i n g e d g e (c l k) then

i f e n d l o o p j then
i f e n d l o o p i then

s c a n i v := 162 ;
e l s e

s c a n i v := s c a n i + 81 ;
end i f ;
s c a n i <= s c a n i v ;

end i f ;

i f e n d l o o p j then
i f e n d l o o p i then

k 3 i v := 2 ;
e l s e

k 3 i v := k 3 i + 1 ;
end i f ;
k 3 i <= k 3 i v ;

end i f ;

i f end l oop k then
i f e n d l o o p j then

s c a n j v := 9 ;
e l s e

s c a n j v := s c a n j + 9 ;
end i f ;
s c a n j <= s c a n j v ;

end i f ;

i f end l oop k then
k3 v := k 3 i v + 1 ;

end i f ;
i f end l oop k then

s c an k v := k3 v ;
e l s e

s c an k v := s c an k + 1 ;
end i f ;
s c a n k <= sc an k v ;

end i f ;
end proc e s s ;
s can <= s c a n i + s c a n j + scan k −102;

role. The Constant Multipliers method is a pure combinational implementation. It does not
use specific resources in the compilation process and it can be compiled at a greater speed
comparing to the embedded multipliers approach.

78 Expression Synthesis

un1_end_loop_j

un1_end_loop_j_1

un9_k3_i_v[28:32]

+

k3_i_1[4:0]

0

1

un1_scan_i[0:9]

+

un1_scan_j[0:7]

+

k3_i[4:0]

R PAT

un8_scan[23:32]

+

k3_i_v_4[4:0]

0

1

k3_i_v[4:0]

R PAT

scan_i_2[9:0]

0

1

scan_j_2[7:0]

0

1

scan_j[7:0]

R PAT

scan_i[9:0]

R PAT

un1_scan_k[4:0]

0

1 scan_k_1[4:0]

+

scan_k[4:0]

R PAT

CLK

rst

scan[9:0][23:32]

end_loop_i

end_loop_k

end_loop_j

=0

=000

=00

[4:0]

[28:32]

1

[28:32]

[4:0]

00010

[9:0]

[0:9]

[7:0]

[0:7]

[4:0]Q[4:0][4:0] D[4:0]
E

[9:0]

[7:0]

[23:32]

[4:0]

1110011010

[4:0]

[4:0]

[4:0]

[4:0]Q[4:0][4:0] D[4:0]

[0:9]

[9:0]

0010100010

[0:7]

[7:0]

00001001

[7:0]Q[7:0][7:0] D[7:0]

[9:0]Q[9:0][9:0] D[9:0]

[4:0]

[4:0]

[4:0]

[4:0]

[4:0]

1

[4:0]Q[4:0][4:0] D[4:0]

Figure 6.7: The RTL view of the PSSA from Figure 6.11

It is also interesting to see what the Expression Compiler does with the polytope given
in Figure 6.2. Thus, the expression compiler compiles the linear expressions that make up
the polytope and maps them onto a Virtex-II platform using Symplify. However, a large
part of these expressions are simplified because they either are conditions over the program
parameters or are for-loop upper and lower conditions. Hence, the remaining equations are:

Control Program =

⎧⎨
⎩

2 ∗ i − 1 ≥ 0
−i + 2 ∗ DIV (i + 1, 2)− 1 ≥ 0
2 ∗ DIV (M + 1, 2) − M − 1 ≥ 0

The DIV terms are simplified as shown in Figure 6.5 and the term 2∗i−1 is implemented
as a shift plus a decrement operator. We found that we need only 5 slices to implement all the
expressions, which are evaluated at approximately 200 Mhz. As a consequence, we should
be able to integrate IP cores that run at 200 Mhz on a Virtex-II. However, signal routing in an
FPGA negatively affects this number. In practice, we have found that embedding an IP core
in a network synthesized by the LAURA tool has no problem running on a Virtex-II at 100
Mhz.

6.7 Conclusions

We have shown that expressions that are (pseudo-) affine can be converted efficiently to hard-
ware using the Expression Compiler presented in this chapter. The Expression Compiler is
needed in the LAURA methodology to make sure that the evaluation of polytopes in the Read
and Write units happens faster than the evaluation of an IP Core embedded in the Execute
unit. Only then, the dataflow in a CDFPN network is not obstructed by control needed to dis-
tribute the original application. The Expression Compiler first performs high-level optimiza-
tions based on DIV and MOD strength reduction operations and the Method of Differences
technique. This step is followed by platform dependent optimizations using the Predicated

6.7 Conclusions 79

Static Single Assignment (PSSA) code. The PSSA form uses only additions, LUTs and con-
ditional statements, resulting in an area/speed efficient hardware. Furthermore, the research
community has shown that the PSSA form is well fitted to be mapped in reconfigurable hard-
ware [74]. Expression Compiler is a part of the LAURA tool, helping in improving the quality
of the synthesized network of processors. However, low-level optimization are not yet full
implemented in our tool. But given the synthesis techniques as described in [86] the PSSA
code can be further optimized for FPGA platforms.

80 Expression Synthesis

Chapter 7
IP Core Integration

In Figure 7.1, we show a small program, where F () is a function call (a program itself), the
details of which are not relevant here. The reason is that in the implementation of the main
program a certain IP core will late care of the specific fine grain implementation of F (). In
our model of execution, the Execute unit embeds the IP core that implements the functionality
of a particular function F () in a process of a process network that is derived from a given
program.

Read Execute WriteData In Data Out

for i = 1: 1: N,

 [b(i)] = F(a(i));

end

for i = 1: 1: N,

 [b(i)] = F(a(i));

end

The code assumes a
specific execution
model. F() is an
atomic operation.

The Execute unit embeds
an IP core that implements
the functionality of the
function call. The
execution model is
different than in the
software contra part

Figure 7.1: Model of a computation vs. model of execution

This assumption, however, may lead to a mismatch between the non-functional behavior,
e.g., timing, of F () in the original program and the actual implementation . F () in the original
program is assumed to be a function (an atomic operation), while it may be non-atomic in the
implementation. As a consequence, while the throughput in the underlying program depends
on the execution time (latency) of F (), it may be much higher in the implementation when

82 IP Core Integration

the IP core implementing F () is (deeply) pipelined. To deal with this mismatch, we provide a
feedback from the model of execution. This feedback is given by a Profiler, that relates non-
atomic to atomic behavior. This chapter is broken down into two sections. In Section 7.1,
we focus on the integration of an IP core in an Execute unit. In Section 7.2, we deal with the
Profiler.

7.1 Embedding an IP Core

In the initial program a function call is an atomic operation, which may be assumed to have
an instantaneous input-output relation or a certain non-zero execution time (latency). On the
other hand, the corresponding function call in the actual implementation (the IP core) is a
cascade of a number of atomic operations each having a certain latency. The maximum of
these latencies defines the function’s throughput, and their sum defines the function’s latency.
The IP cores that we consider are simple pipelined structures, which can be modelled as shift
registers [87]. The Execute unit of a Virtual Processor represents the interface between an
arbitrary IP core, and the Abstract Architecture.

In Arg Out Arg

Valid Input
Arguments

signal

Valid Output
Arguments
signal

Blocking
Write signal

Read Unit Execute Unit Write Unit

IP Core

IP Core Wrapper

Blocking
Write signal

IP control signals

Figure 7.2: The Execute unit template

Figure 7.2 graphically shows the Execute unit template, and consists of two parts: an IP
core and an IP core wrapper. The IP core implements a specific function call of the initial
sequential program. The IP core wrapper interfaces the execution model of the IP core with
the execution model of the Virtual Processor. The execution model of a Virtual Processor
assumes a pipelined model of execution. The Virtual Processor pipeline can stall when an
input FIFO buffer of the VP is empty (i.e., blocking read synchronization operation). Usually,
the cause of this kind of stall is a data hazard. This type of stall is referred to as a data
hazard stall [87]. In Section 7.2, we discuss how to detect and eliminate the data hazard
stalls. The stalls due to a blocking read situation are detected by the Read unit, and they are
communicated to the sequent units via Valid Input Arguments signal. The pipeline flow of
a VP can be also held (stalled) when a blocking write situation occurs. In this situation an

7.1 Embedding an IP Core 83

output FIFO buffer is full. The stalls due to a blocking write situation are detected by the
Write unit, and they are communicated to the ahead units via Blocking Write signal.

The Execute unit differentiates between these stall situations, and it controls the IP core
execution such that the tokens that are processed at the stall moment by the VP’s pipeline
flow are not damaged or discarded. Also, the Execute unit has to flow the pipelined execution
model of the VP, synchronizing its execution with the Read unit and Write unit execution.
The controlling of the IP core, and the VP internal intra-unit synchronization are handled by
the IP core wrapper. Hence, the Execute unit integrates the IP core execution behavior into
the general Virtual Processor pipelined execution model.

The valid input arguments signal generated by the Read unit indicates that the current
input data ports (In Args) of the IP core hold valid data. This signal is propagated by the
IP core wrapper to its Valid Output Arguments signal output with a fix latency. The latency
is the latency of the embedded IP core. The Valid Output Arguments signal indicates to the
Write unit that the output data ports (Out Args) of the IP core hold valid data that has to be
written to a channel. The embedded IP core can have a run-time variation of its latency, e.g.,
ISA cores. Thus, the asserting of the Valid Output Arguments signal is handled by the IP core
itself via the IP control signals shared between the IP core and IP core wrapper.

A blocking write situation implies a stalling of the entire VP pipeline flow. This situation
is indicated by the Blocking Write signal. This signal is immediately forward by the IP core
wrapper to Read unit, and to embedded IP core via IP control signals. How the Read unit and
the embedded IP core react to this signal is discussed in the next section. At this moment, we
can embed the IP cores that have the following execution models:

Simple Pipelined IP cores These are simple data streaming IP cores, that has the same exe-
cution behavior as a shift register.

Variable latency IP cores These cores are more complicated, usually Instruction Set Ar-
chitectures, and require multiple clock cycles to execute a token. These cores has to
provide an interface to communicate with the IP core wrapper via IP control signals.

7.1.1 Handling of Pipeline’s Stalls

The stall due to a blocking read situation is eliminated by bubbling the VP’s pipeline. In
the bubbling technique, the control logic of the Read unit detects a hazard, and inserts no-
operation (NOP) instructions into the pipeline. The NOP instructions travels through the VP’s
pipeline, flushing it. Hence we avoid artificial network deadlocks to occur in an Abstract
Architecture. These network deadlocks can occur due to the data dependencies between the
token currently processed and the token that the VP wants to read. However, the stall due to a
blocking write situation cannot be eliminated by simply bubbling the VP’s pipeline because
we need to store the tokens that are currently in the VP’s pipe until the VP’s output ports
are free again. The simplest solution is to freeze the VP’s pipeline until the blocking write
situation disappears. The freezing of a pipeline flow is done by simply gating its clock signal
with an enable signal. Hence, when enable is asserted, the pipe is working, and when enable
is not asserted the pipe holds the current state. A second solution is to provide enough storage
capacity to store the tokens that are currently processed by the VP. This storage capacity can
be a FIFO buffer placed between the outputs of the Execute unit and the inputs of the Write

84 IP Core Integration

unit. The token is written into the FIFO buffer by the IP core wrapper, and read form FIFO
buffer whenever there are no blocking write situations.

In Arg Out Arg

Valid Input
Arguments

signal

Valid Output
Arguments signal

Blocking
Write signal

Read Unit Execute Unit Write Unit

IP Core

IP Core Wrapper

Blocking
Write signal

IP control signals

Out Arg

FIFO

EmptyWR

Valid Output
Arguments
signal

RD

Figure 7.3: The solution to eliminate the blocking write stall

This solution is shown in Figure 7.3. The Read unit can either freeze or insert bubbles
in the VP pipeline flow. The IP core wrapper generates and propagates the valid output
arguments signal. The capacity of the FIFO buffer is selected to hold all the tokens that are
processed by the IP core at any time instance, e.g., the FIFO buffer capacity is the equal with
the number of stages of the embedded pipelined IP core.

7.2 Profiler

A CDFPN is an untimed model of computation. Its FPGA implementation is based on a timed
model of execution. An atomic function F () in the CDFPN may be mapped on a pipelined
IP core in the implementation platform. As a consequence, the CDFPN predicted throughput
may be far off the actual implementation throughput. The question, then, is whetter through-
put prediction can be made more accurate. In this section we introduce the profiler, which we
developed to estimate the utilization of embedded IP cores. The profiler analyzes the level
of data parallelism that is mapped by the COMPAAN methodology onto a CDFPN process.
Then, it measure the utilization of IP cores in the presence of the data parallelism, i.e., what
is the ratio between NOP operations and token execution operations. The profiler hints a
user of our methodology to perform certain network transformations as part of the design
space exploration procedure for a particular problem. The amount of data parallelism in an
algorithm is determined through data analysis. In our case, the amount of data parallelism
mapped onto a process, and successively onto a Virtual Processor, can be determined by ana-
lyzing the FIFO capacities of the VP’s self-loops as the self-loops being an effect of the data
analysis performed by the COMPAAN tool.

The Virtual Processor has a pipelined execution model (Read, Execute, and Write stages).
Many times the Execute unit embeds an pipelined IP core that is part of the VP pipeline flow.
Given the Virtual Processor that embeds an IP core, we want to measure the utilization of the
VP’s pipeline flow, and possible to increase throughput of the given VP. A factor that affects

7.2 Profiler 85

the utilization of a VP’s pipeline is the availability of data at an input of the processor. This
is particulary in the case when self-loops are involved.

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1

2

3

4

1 2 3 4

p

i

Compaan
Process

X

Figure 7.4: Self-loop example: arrows indicate data dependency

A particular function in Process X is fired 16 times. The 16 firings and their data de-
pendencies are shown at the left of Figure 7.4. The data dependencies is detected by the
COMPAAN compiler and shown as a self-loop of the Process X, see right part of Figure 7.4.
There are two possible orderings. The first one is the firing order (1, 2, 3, 4, . . ., 15, 16); the
second one is the order (1, 5,9, 13, . . ., 4, 8, 12, 16). For the first of these orders, the 4 firings
in each i-column are independent, and the self-loop capacity is 4, because the 4 independent
firings have to store their outputs until the next 4 independent firings are ready to read those
results. For the second order, the 4 firings in each p-row are all dependency on each other,
and the self-lop capacity is only 1.

Each of the firing orders has its own advantage and disadvantage, depending on the type
of IP core embedded in the Virtual Processor that realizes the Process X. If the IP core is not
pipelined, then the best firing order is the second one as the FPGA synthesis of the process
uses a minimal capacity FIFO buffer implementation for the self-loop. However, when the
embedded IP core is pipelined then the firing order affects in different ways the IP pipeline
utilization.

R E1 E2 W

R E1 E2 W

R E1 E2 W

R E1 E2 W

Read Data 1

Read Data 2

Read Data 3

Read Data 4

Write Data 1

Write Data 2

Write Data 3

Write Data 4

Figure 7.5: The optimal execution of a four stage processor pipeline

Now assume that the IP core that realizes the CDFPN Process X in Figure 7.4 has two
pipeline stages. Thus, the total amount of pipeline stages of the Virtual Processor is rise up
to four. For the first order, the pipeline achieves the maximum throughput because all the
pipeline stages are filled with parallel data, as shown in Figure 7.5. The processor takes data
either from a source (i.e., the first four iterations) or from itself (i.e. the remaining iterations).
In the second example schedule, the pipeline is not fully used because the data generated by
the processor is not yet available at its input due to the pipelining. The IP core is used for
only 25% of its capacity, see Figure 7.6.

86 IP Core Integration

R E1 E2 WRead Data 1

Read Data 5

Read Data 9

R

R

R

R E1 E2 W

R

R

R

R E1 E2 W

(Read Data 5)

(Read Data 5)

(Read Data 5)

(Read Data 9)

(Read Data 9)

(Read Data 9)

Write Data 1

Write Data 5

Write Data 9

(Dummy Data)

(Dummy Data)

(Dummy Data)

(Dummy Data)

(Dummy Data)

(Dummy Data)

Blocking read
situation detected
pipeline stalled, and
bubble launched

Data is written to
the self-loop

Data is read from
the self-loop

Figure 7.6: The broken execution of a four stage processor pipeline

As we can see, the presence of a self-loop influences the pipeline utilization of an Virtual
Processor. The self-loop is the effect of a data dependency between various iteration points
of the process (processor) iteration domain [7]. The order in which an iteration domain is
scanned and the data dependencies can expose the inherent data parallelism. The amount of
data parallelism of a variable is measured as the capacity of the associated self-loop FIFO
buffer. When the scanning of the processor iteration domain coincide with the direction of
the data dependency of a variable, then the capacity of the associated self-loop FIFO buffer
is minimal and equal to one. The maximum capacity of a self-loop FIFO buffer is obtained
when the scanning direction is orthogonal with the data dependency direction. Thus, the
minimum capacity out of all self-loops FIFO buffer capacities of a processor is a key metric
to measure the degree of data parallelism. In Chapter 5, we showed a procedure to determine
the size of a self-loop at compile time.

Knowing the number of independent data and the embedded IP cores pipeline latency,
we can hint the user of our methodology, who may take new design decisions skewing, loop
swapping, and unfolding [70, 88]. Using the procedure to compute the size of the self-loop,
and the given design decisions, we can close our tool chain such that we can perform a de-
sign space exploration of a given algorithm. In Figure 7.7, we show our tool chain flow with
the profile feedback. We take an application written in Matlab and go through the COM-
PAAN/LAURA tool chain. The LAURA tool hints about the utilization of each individual
processor of the Abstract Architecture. In [89], the authors have already shown how we can
modify the Matlab programs to express unrolling and skewing as source to source opera-
tors. These operations are captured in the MATTRANSFORM tool. From MATTRANSFORM

a modified version of the Matlab program is obtained and processed again by the COM-
PAAN/LAURA tool chain.

Nevertheless, quantitative simulation is needed to assess the final usefulness of the MAT-

7.2 Profiler 87

TRANSFORM operations as the information offered by the profiler indicates only the maxi-
mum theoretical utilization of a VP’s pipeline. The profiler does not give any performance
information about the entire Abstract Architecture. However, we can repeat this procedure
(profiler hints + simulation) an arbitrary number of times thereby exploring the design space
for a particular application.

Matlab filesMatlab files

Compaan

Laura

RTL
Simulation

MatTransform

User
in the
loop

D
es

ig
n

 d
ec

is
io

n
s

Simulation results

ProfilerProfiler Laura hints

Design Space
Exploration

Figure 7.7: The modified COMPAAN/LAURA tool chain with feedback

7.2.1 Increasing the Pipeline Utilization of a Virtual Processor

In many cases, the existence of a self-loop buffer may limit the theoretical maximum pipeline
utilization of the Virtual Processor. The self-loop is an effect of the data dependencies that
exists between different iteration points of the iteration processor domain. This data depen-
dency and the scanning order of the iteration processor domain expose the data parallelism
that is mapped onto the processor. This amount of data parallelism available can be mea-
sured by checking the capacities of the self-loops buffers. The theoretical maximum pipeline
utilization of a VP is derived from the amount of the parallel data that can feeded the VP’s
pipeline flow at a given time instance.

Consider a variable Δ that measure the data parallelism mapped onto a processor in the
presence of self-loop buffers, and FIFOsize i the capacity of a VP self-loop buffer, where
i = 1..n the number of self-loop buffers of the VP in discussion. Then:

Δ = min(FIFOsizei), i = 1..n (7.1)

We can analyze now what are the effects of the amount of parallel data Δ over the VP’s
pipeline utilization. We found the following cases:

88 IP Core Integration

• When the amount of parallel data is larger than the number of VP’s pipeline stages. In
this case, we have a theoretical flooding of VP’s pipeline flow with data. Thus, we can
leave it as it is or we can increase the hardware resources to handle this data flooding.
The unrolling operation of the MATTRANSFORM toolbox increases the hardware re-
sources. A proposed unrolling factor is given by Equation 7.2, where Σ is the number
of VP’s pipeline stages.

Funrolling =
⌈

Δ
Σ

⌉
(7.2)

• When the amount of parallel data is smaller than the number of VP’s pipeline stages.
In this case, the VP’s pipeline flow is hindered by possible frequent number of block-
ing read situations when the VP wants to access data from a self-loop buffer. Thus,
the pipeline is stalled, and bubbles are launched, obtaining a lower theoretical maxi-
mum achievable utilization of the VP’s pipeline. To increase the theoretical maximum
achievable utilization of the VP’s pipeline, we can apply different techniques to in-
crease the amount of data parallelism. MATTRANSFORM provides the skewing oper-
ation for this purpose. We propose also to add multiple independent threads that are
capable to be executed by the same Virtual Processor. A merging operation of the
MATTRANSFORM can do this when the two merged processes function calls are point-
ing to the same IP core. An other approach is to add multiple independent threads as
shown in Listing 7.2. The original code is shown in Listing 7.1. This solution is similar
with the C-Slow techniques [90].

Listing 7.1: Example of a single threaded
SANLP algorithm

f o r i = 1 : 1 : N,
[x (i)] = F (x (i −1)) ;

end

Listing 7.2: Source to Source transforma-
tion: adding independent threads of the al-
gorithm shown in Listing 7.1

f o r i = 1 : 1 : N,
f o r j = 1 : 1 : P ,

[x (i , j)] = IP DCT (x (i −1, j)) ;
end

end

where P = Σ − Δ, with Σ and Δ previous defined.

• A special case is when Δ is one, and the embedded IP core latency is also one, resulting
a value for Σ to three. In this case, we have an instance of the classic case of data
hazard [87].

Consider a VP processor with a self-loop buffer. An instance of its execution is pre-
sented in Figure 7.8. In this instance, the processor reads tokens from the self-loop
buffer, and writes tokens to the self-loop buffer. Thus, the token needed for the next
IP core execution is available at its output ports, but not for the Read unit. The Read
unit detects a blocking read situation, stalling the pipeline for two consecutive clock
cycles, reading the token in the third. The bubbling of the pipe avoids the data hazard
situation, however, it keeps the pipeline utilization low. The solution is to use Data-
Forwarding [87] to solve this problem. The self-loop is replaced with a simple wire

7.2 Profiler 89

to route the data strait to the IP core data inputs from its outputs, as shown Figure 7.9.
This technique is very beneficial, as the use of a wire increases the throughput of the
processor requiring hardly any hardware resources.

R E W

R
Data X is not in the self-

loop: Blocking read
situation; pipeline stalled,

and boubble launched

Data X is written to
the self-loop

R

R E W
Data X is read

from the self-loop

Figure 7.8: Data Hazard in Virtual Processor
template

R E W

R E W

R E W

Data Hazard detected and
the output value of
Execute unit is forwarded

Figure 7.9: Data Forwarding in Virtual Pro-
cessor template

7.2.2 Case Study

Consider the Matlab code that is processed by the COMPAAN compiler, as given in List-
ing 7.3. It shows two function calls (bcell and icell) surrounded by parameterized for-loops.
The COMPAAN compiler generates a CDFPN based on the for-loops and the variables passed
on to the function calls. What happens in the bcell and icell is irrelevant to the COM-
PAAN compiler, but not for the LAURA methodology. The network we obtain is shown in
Figure 7.10. Each function call has become a separate process in the COMPAAN/LAURA

methodology and both the bcell and icell processes have self-loops.

Listing 7.3: The algorithm using bcell and icell IP cores
f o r k = 1 : 1 : T ,

f o r j = 1 : 1 :N,
[r (j , j) , r r (j , j) , a , b , d (k)] = b c e l l (r (j , j) , r r (j , j) , x (k , j) , d (k)) ;
f o r i = j + 1 : 1 :N,

[r (j , i) , x (k , i)] = i c e l l (r (j , i) , x (k , i) , a , b) ;
end

end
end

The bcell and icell Virtual Processors are embedding two deeply pipelined IP cores the
bcell IP core (with 55 pipeline stages), and the icell IP core (with 44 pipeline stages), respec-
tively. Let N =7 and T = 21. For the case presented in Figure 7.10, our profiler reports for
the smallest self-loop of icell a size five and for bcell a size 1. Given the deep pipelines of
the icell and bcell IP cores, both of them are underutilized. The bcell theoretical maximum
utilization is 1.75% and for icell is 11.36%. Thus, we need to increase the amount of data
parallelism for bcell and icell Virtual Processors by either using the skewing operation form
MATTRANSFORM or adding multiple independent threads.

90 IP Core Integration

icell
42

bcell
55

x

r
a

b
d rr

x

x

x

r r

r
icell
42

bcell
55

x

a
b

d rr

x

x

x

r r

r

FIFO
Size:5

FIFO
Size:21

FIFO
Size:1

FIFO
Size:7

FIFO
Size:7

Figure 7.10: The CDFPN topology of the algorithm shown in Listing 7.3

First, we choose to explore the design decision of multiple independent threads, and then
we evaluate the design decision of skewing. For each experiment, we derive a VHDL repre-
sentation of the algorithm using the COMPAAN/LAURA tool chain. The VHDL is simulated to
obtain quantitative data. The execution duration(No cycles) for each experiment is measured
in clock cycles.

Each of the icell(Noicell) and bcell(Nobcell) operations contain 11 and 16 floating point
operations, respectively. The average clock speed of our network mapped onto an FPGA
platform is 100Mhz (i.e., VIRTEX-II 6000, Synplify Pro7.2, Xilinx ISE5.2). We use the next
formula to compute how many million floating point operations per second (MFLOPS) can
be achieved in each experiment.

Λ =
Noicell ∗ 11 + Nobcell ∗ 16

Nocycles
∗ 106 (7.3)

QR: Adding More QR Instances

For the original algorithm, the profiler reports that we have to add 57 independent threads to
the bcell IP core and 40 independent threads to the icell IP core. Although the number of
independents threads is large, we can find in practice algorithms that can have a such larger
number of independent threads. In Section 7.2.3, I will give you such algorithm.

We choose to explore the space of independent instances by interleaving 1, 10, 20, 30,
40 and 57 independent threads to be executed using same hardware resources. In this case,
a thread represents a complete instance of the algorithm. The results of this exploration are
given in Figure 7.11. Adding multiple independent threads aim to increase the utilization of
bcell.

We observe that the saturation point is marked by the running of 40 independent threads,
giving us a top performance of the implementation of 1683 MFLOPS. At this point, the
profiler reports 4.54 times more parallel data than the icell can handle. Thus, adding more
independent threads will not improve the performance of the system. Figure 7.11 shows the
reaction of the system (in clock cycles) when multiple independent threads are used to boost
the throughput of the algorithm. We can observe, a small difference between the situation
when we run the algorithm alone or with 20 independent threads. We basically replace the

7.2 Profiler 91

Figure 7.11: Experiments with multiple independent threads

stalling of the VP pipes with processing valid tokens. However, from 30 independent threads,
we observe an increasing number of clock cycles needed to process the workload. The profiler
indicates that after this point the icell is flooded with tokens.

We choose to unfold the icell twice, and four times respectively. This leads us to 1764
MFLOPS and 1767 MFLOPS, respectively. The first transformation gives us an additional
81 MFLOPS, the second one only an additional of 3 MFLOPS. It is obvious that the second
operation is not as successful as the first one.

QR: Skewing

A second approach to increase the data parallelism of an algorithm is by using skewing oper-
ation of MATTRANSFORM. The skew operation fills the VP’s pipelines with parallel data that
belongs to the same thread. The profiler indicates 7 independent data in bcell and 21 in icell
after the skewing operation. Hence, we obtain a theoretical maximum pipeline utilization of
12.28% for bcell IP core, and 47.72% for icell IP core for a single threaded algorithm version.
To achieve a higher throughput for our experiment, we must either increase the dimension of
the input problem or add more independent threads. The total number of independent threads
required to push up the throughput of the design is much smaller than in the case of non
skewed algorithm. This is due to the already presence of the data parallelism in the skewed
program. We choose to explore a number of 2, 4, 6, 7 and 10 independent threads mapped
onto our architecture. The results are shown in Figure 7.12.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Original
alg.

Skewed
alg.

Skewed
+2st

Skewed
+4st

Skewed
+6st

Skewed
+7st

Skewed
+10st

M
F

L
O

P
S

0

2000

4000

6000

8000

10000

12000

14000

Original
alg.

Skewed
alg.

Skewed
+2st

Skewed
+4st

Skewed
+6st

Skewed
+7st

Skewed
+10st

C
yc

le
s

Figure 7.12: Experiments with skewing and multiple independent threads

From Figure 7.12, we can observe the improvement introduced by the skewing operation
versus the original algorithm. Adding now more independent threads aims again to increase

92 IP Core Integration

the utilization of the bcell IP core. However, in this case the number of additional independent
threads added is much smaller than in the non skewed situation. Also in this case, adding
threads flood the icell IP core with data. On the right part of Figure 7.12, we observe that
adding the independent threads does not affect significatively the number of clock cycles
needed by our architecture to complete the task. However, after adding 4 independent threads
the number of cycles starts to increase without a significative improvement in overall system
throughput.

We duplicate the icell Virtual Processor hardware resources (using unrolling in MAT-
TRANSFORM) of our implementation when the architecture handles 4 independent threads.
The profiler reports a 181% utilization for the icell IP core just before unrolling. Performing
the unrolling operation on the icell IP core twice gives us only 6 MFLOPS more throughput
compared with the non-unfolded algorithm. This shows us that the decision was not success-
fully. The reason for this is that the resulted two icell IP cores work in a mutually exclusive
fashion, minimizing the effect of the unrolling operation.

7.2.3 Discussion

Based on the experimental results, skewing operation gives us from the beginning an impor-
tant amount of parallel data. The large presence of parallel data allows us to obtain a higher
computational throughput for our implementation without adding independent threads. It
may be that the skewing operation doesn’t achieve the maximum throughput of the cores
and, therefore, solutions such as adding multiple independent threads may be required. How-
ever, we cannot determine at compile time if this is the case, and we cannot give a accurate
hint to the user that this is the case. In practice, there are a number of algorithms that can
accept adding multiple threads. One of these is JPEG 2000 image compression algorithm
for large images. Instead to process the entire image, we can tile it and feed them to the
JPEG 2000 hardware implementation. The tiles acts as multiple threads for the underling
implementation. Usually, a tiling operation [64] is the basis of finding multiple threads for an
application within the application.

The existence of large amount of data parallelism within the original algorithm helps
the designer in achieving the maximum throughput with a minimum amount of independent
threads added. Adding more independent threads to an architecture improves its throughput
at the expense of additional memory requirements to realize the Abstract Architecture com-
munication buffers. For example the self-loop of the icell IP core on x variable needs 840
locations when we add 40 streams for the non skewed algorithm.

The data parallelism is also relevant for non pipelined cores such as ISA IP cores. In this
case, we can unfold the respective IP core to take advantage of the parallel data. However, this
has a higher implementation cost than using a pipelined IP core which is functional equiva-
lent. The increasing of the cost comes from the implementation overhead introduced by the
Virtual Processor wrapper, and additional communication channels introduced by the newly
generated processors. The overhead introduced by the additional communication channel
may kill the implementation performances as we discuss it in Chapter 8.

In practice, it is more likely that only a small number of independent instances of an
algorithm need to be computed at the same time. Therefore, the skewed version is more
appealing to start with in any design space exploration. The overloading of an IP core with
many streams can be solved either by increasing the clock speed for that particular processor

7.3 Conclusion 93

(i.e., using various clock domains) or by unrolling it. Applying high-level transformations,
as hinted by the LAURA profiler, leads to an increased number of independent streams in
our architecture. Nevertheless, quantitative simulation data is needed to assess their final
usefulness.

7.3 Conclusion

In this chapter we presented a strategy to integrate particular types of IP cores in the Execute
unit of Virtual Processors. The IP core are obtained from an IP library that is connected
to our LAURA tool. The identification name of a function call in the algorithm helps us in
recognition of the IP blocks from the IP library. The IP core wrapper bridges the gap between
the function call execution model and the IP core execution model. However, we can handle
only a small fraction of IP cores that exists. The best supported by our tool are the simple
pipelined data streaming oriented IP cores.

A particular characteristic of the derived networks obtained from running the COMPAAN

and LAURA tools, is the existence of self-loops. These self-loops have a large impact on
the utilization of the IP cores and in the final implementation. This is especially the case
when the IP cores are deeply pipelined. To improve the efficiency, the designer has to make
design decisions like skewing, unrolling, loop swapping and data stripping. To help the
designer in making these decisions, we have implemented the profiler in the LAURA tool.
The profiler uses manipulation of polytopes to compute at compile time the size of self-loops,
as it is described in Chapter 4. This size is indicative for the number of independent data
available in an algorithm. The hints computed by the profiler help to steer design decisions.
Doing this in an iterative manner, a designer can explore options to improve the throughput
of the implementation. To improve the efficiency, the designer has to make transformations.
These transformations can be expressed at the Matlab level using the MATTRANSFORM tool.
Currently, the hints provided by the profiler needs to be manually expressed.

94 IP Core Integration

Chapter 8
Case Studies

In this chapter we present the implementation of Matrix-Matrix multiplication, matrix QR
factorization, and matrix Singular Value Decomposition (SVD) algorithms. These algorithms
appear in an adaptive beam forming application [91]. We begin this chapter with a short
introduction of beam forming (Section 8.1). The Matrix-Matrix multiplication is presented
in Section 8.2. The matrix QR factorization is presented in Section 8.3, and the matrix SVD
decomposition is presented in Section 8.4.

8.1 Subspace Tracking

x1(nT) x2(nT) x3(nT) xi(nT) xN(nT)

s(t) planar wave

Figure 8.1: Planar wave example

Beam forming is technique that utilizes an array of sensor elements to receive a signal
of interest that impinges on the array from a certain direction. Let the 1 × N vector x(nT)
represent the set of output samples xi(nT), i = 1, 2, . . . , N of a linear array of N sensors
at time nT, n = . . . ,−1, 0, 1, Sensor i receives a planar wave signal s(t − τi) from a
far-end source signal s(t). The direction of arrival od s(t) is θ, see Figure 8.1. The objective

96 Case Studies

of the subspace tracking algorithm [92–94] is to detect and track the (slowly varying) angle
θ, and identify s(t).

X

QR

SVD

X

U((n-1)T)

U(nT)

x(nT)

y(nT)

R((n-1)T)

R(nT)

R'(nT)

U'(nT)

s(nT)

Figure 8.2: The Subspace Tracking Algorithm

A high-level flow-graph representation of the algorithm is show in Figure 8.2. In this
flow-graph, U and U′ are unitary matrices, R and R′ are upper triangular matrices, and x and
y are row vectors, all of appropriate dimensions. The black rectangles represent storage. The
operators ×, QR, and SVD represent matrix-vector/matrix multiplication, matrix QR decom-
position, and matrix Singular Value Decomposition (SVD), respectively. In the following
sections, we give algorithms and implementation for the operators ×, QR, and SVD.

8.2 The Matrix-Matrix Multiplication Algorithm

Matrix multiplication is a core operation in many signal and image processing applications.
Given two matrices A = [ai,j] and B = [bj,k] of dimension N ×P and P ×M , respectively,
the entries ci,k in the product matrix C = A × B are given as,

ci,k =
P∑

j=1

ai,jbj,k

A possible algorithm is given in Listing 8.1. The out of the box implementation of the

8.2 The Matrix-Matrix Multiplication Algorithm 97

presented algorithm results in an Abstract Architecture network shown Figure 8.3. The Ab-
stract Architecture has five communication channels of which one is an out-of-order with
multiplicity communication type channel (i.e., ED 4), one is in-order with multiplicity (i.e.
ED 3), and the rest of the channels are in-order communication types channels. The AA
network also shows two processors that are the sources of the matrixes A (i.e., ND 1) and B
(i.e., ND 2). The processor ND 4 wraps the IP core of the MAC function call, and processor
ND 5 is the sink for the matrix C. Where IP core of the MAC function call implements
c = c + a ∗ b operation. The processor ND 3 holds algorithm initialization values of c.

Listing 8.1: Matrix Multiplication algorithm
f o r i =1 : 1 : N,

f o r j =1 : 1 : P ,
f o r k =1 : 1 : M,

c (i , k) = MAC(c (i , k) , a (i , j) , b (j , k)) ;
end

end
end

We want to implement the Matrix Multiplication algorithm using only FIFO channels
as it should lead to a higher throughput realization. To achieve a network without reorder
channels, we need to modify the data flow of the matrix-matrix multiplication algorithm. The
reorder appears when the MAC core access multiple times the b(j, k) entries. Hence, we
have to store the variable b(j, k) locally to avoid the reordering channel between processor
ND 2 and ND 4. This local storage is converted by the COMPAAN compiler to an extra self-
loop channel to the MAC core. The new architecture of the modified algorithm shown in
Listing 8.2 is depicted in Figure 8.4.

Listing 8.2: Matrix Multiplication algorithm without reordering
f o r i =1 : 1 : M,

f o r j =1 : 1 : N,
f o r k =1 : 1 : P ,

[c (i , k) , b (j , k)] = my MAC(c (i , k) , a (i , j) , b (j , k)) ;
end

end
end

The MAC core performs one addition and a multiplication of 32 bits operands, using
the embedded Xilinx multipliers (e.g., for a 32 bit multiplication we use 3 hardware 18x18
multipliers). The my MAC core has the same behavior as the function explained before, but,
additionally, propagates the input b(j, k) to its output to avoid the reorder channel.

In Table 8.1, we give results for three FPGA realizations for the Matrix Multiplication
algorithm. The first two for the variant with the reordering memory, and the last one is
for the version which is using only FIFOs. The difference between the first two variants
is in the usage of the embedded multipliers to realize the read and write addresses for the
reordering memory (i.e., the first version is using the embedded multipliers and the second
one is using the method of differences (MoD)). The fastest implementation, in terms of cycles,
is the third version. The fastest synthesis clock is the MoD version, however the number of
clock cycles required for this implementation to complete a matrix multiplication is high.

98 Case Studies

ND_1
Read_A

ND_4
MAC

ED_3

ND_2
Read_B

ED_4

ND_3
Read_Zero

ED_2

ED_1

ND_5
Pass

ED_5

Figure 8.3: Matrix Multiplication: with
one out-of-order communication type chan-
nel implementation version

ND_1
Read_A

ND_4
my_MAC

ED_3

ND_2
Read_B

ED_5

ND_3
Read_Zero

ED_2

ED_1

ED_4

ND_5
Pass

ED_6

Figure 8.4: Matrix Multiplication: only
FIFO implementation version

With 1 Reorder Channel With 1 Reorder Channel Only FIFOs
and hardware multipliers using MoD

Minimum clock period 10.9 ns (91 Mhz) 10.1 ns (99 Mhz) 13 ns (76 Mhz)
Number of RAM16x1D 128 128 128
Number of Block Rams 1 of 56 1 of 56 2 of 56
Number of Slices 673 690 823
Number of MULT18X18s 5 3 3
Cycles per Workload 5514 5514 1011
Throughput (MOPS) 33.2 35.9 152.2

Table 8.1: FPGA mapping details for the Matrix Multiplication algorithm; M = 10, N =
10, P = 10

Thus, the FIFO implementation has the highest throughput (i.e., 152.2 MOPS). The most
efficient algorithm in terms of slices is the one which is using the embedded multipliers for
the reordering channel implementation. At the opposite side lies the FIFO implementation
which uses 823 slices to implement the Matrix Multiplication algorithm.

8.2.1 Discussion Matrix-Matrix Multiplication Implementation

The Matrix Matrix multiplication algorithm is using a small IP core for real, fix point num-
bers. This core is not larger than three hardware multipliers and some registers associated
to the accumulator part. In this case, the control overhead introduced by our methodology is
large. The overhead is caused by the control needed for the realization of the channels. We
can easily show that this is the case by checking the amount of resources needed for in-order
version and for out-of-order versions. The addition of the additional FIFO adds more than
100 extra slices and an extra memory block for the in-order version.

There is a trade off between the resources consumed for the realization of the communi-
cation and the size of the IP cores embedded in our networks. For example, we can embed a
IP core that implements the MAC function call for complex floating point numbers. In this
case we deal with a coarse grain IP core that is larger than the control overhead. I.e., for
this IP core we need 4 floating point multipliers and 4 floating point adders. A floating-point
single precision (i.e., 32 bit) adder needs 183 slices, and a floating-point single precision
multipliers needs 221 slices. Thus, for a complex floating point IP core that implements the
MAC function call requires 1616 slices compared with approximatively 800 slices needed by
the CDFPN control.

8.3 The QR Factorization Algorithm 99

8.3 The QR Factorization Algorithm

QR decomposition is a matrix computation algorithm commonly used to solve an over-
specified set of linear equations in a least squares sense. QR decomposes a matrix X into
a product of an orthogonal matrix Q and an upper triangular matrix R [95]. QR decompo-
sition uses elementary Givens Rotations method [91] as basic operators. This algorithm is
widely used in signal processing applications [52].

R matrix elements

Rotation angles
X matrix elements

Vectorize

Rotate

Figure 8.5: QR data dependencies

As shown in Figure 8.5, QR employs two operations: Vectorize and Rotate. Vectorize
takes a vector [x r] formed by an element of X and an element of R and rotates it over an
angle t to [0 r′]. The Rotate operation takes a similar vector [x r] and rotates it over an angle
t previously calculated by a Vectorize operation. The Matlab code written as input to the
COMPAAN compiler is shown in Listing 8.3, and describes the Givens rotations calculations.
The initializations and terminations (sources and sinks) are not shown.

Listing 8.3: QR factorization algorithm
f o r k = 1 : 1 : K,

f o r j = 1 : 1 : N,
[r (j , j) , t] = V e c t o r i z e (r (j , j) , x (k , j)) ;
f o r i = j +1 : 1 : N,

[r (j , i) , x (k , i)] = Ro t a t e (r (j , i) , x (k , i) , t) ;
end

end
end

In this algorithm, the iterator j counts down the rows of the R matrix, the iterator i enu-
merates the entities in a row of R, and k counts down the rows of the matrix X . The loop
bounds K and N are constant parameters whose values are the number of QR updates, and
the size of the square matrix R, respectively. The process network produced by the COM-
PAAN compiler for this code consists of five interconnected nodes (see shown Figure 8.6).
The algorithm requires 11 communication channels in which one is of type in-order with
multiplicity (IOM+) (i.e., ED 9) and the rest of the channels are of type in order (IOM-).

Computation nodes are nodes ND 4 and ND 3,the Vectorize node (ND 3) and the Rotate
node (ND 4). The other nodes are data sources (ND 1 and ND 2) and terminators (ND 5).

100 Case Studies

ND_1
Read_Zero

ND_3
Vectorize

ED_2

ND_4
Rotate

ED_6

ND_2
Read_X

ED_4

ED_8

ED_1 ED_9

ND_5
Pass

ED_10

ED_3

ED_5

ED_7

ED_11

Figure 8.6: The QR Process Network

Minimum clock period 9.6 ns (103 Mhz)
Number of RAM16x1D 1024
Number of Slices - QR Control 4713
Number of Slices - IP cores 3442
Number of Slices - Total 8155
Cycles per Workload 12808

Table 8.2: FPGA mapping details for the QR implementation; N = 7, K = 21

The implementation results of the QR algorithm are shown in Table 8.2. The RAMB16x1D
components are used for the implementation of the FIFO channels. We use 4713 slices
for the CDFPN control. The board used is an Annapolis WildCard-II which embeds an
xc2v3000fg676-6 Xilinx device. Additionally, the IP cores of Vectorize and Rotate take an-
other 3442 slices. Thus the total number of slices used for a complete QR implementation
is 8155 slices. The Vectorize and Rotate processors are pipelined and have 55 and 42 stages,
respectively.

8.3.1 Discussion Matrix QR Factorization Implementation

The communication network for the QR algorithm is more complex than the one for the
Matrix Matrix multiplication algorithm. Form Table 8.2, we can observe that the sizes of
the IP cores are in the same range (in terms of resources) as for the control. The result
is a well balanced architecture that allows us to achieve a good synthesis frequency. High
level algorithmic transformations may be applied to reduce the total number of cycles per
workload. For example, the skewing transformation reduces the total number of clock cycles
to 2405 without introducing extra channels or processors.

8.4 The Matrix SVD Decomposition Algorithm

The singular value decomposition (SVD) [95] of a real square matrix A ∈ R n×n is a product
decomposition, consisting of two orthogonal matrices U and V, and a non-negative diagonal

8.4 The Matrix SVD Decomposition Algorithm 101

matrix Σ = diag(σ1, . . . , σn) such that:

A = UΣV T (8.1)

The σi are the singular values of A.
There are several ways to compute the SVD. For parallel implementation, the Jacobi

method [96] is better suited for this task. Luk’s algorithm [96] is based on the classical Jacobi
algorithm and computes the SVD of a symmetric matrix A by a series of Jacobi rotations. A
Jacobi rotation, denoted J(p, q, θ), is an orthogonal matrix which equals the identity matrix
except for the four entries:

Jpp = cos(θ) Jpq = sin(θ)
Jqp = − sin(θ) Jqq = cos(θ) (8.2)

The Jacobi algorithm consists of a sequence of operations of the form:

Ak+1 = J(p, q, θ)T AkJ(p, q, θ) (8.3)

where the angle θ is chosen such that the elements apq and aqp of Ak are annihilated. For
this to be accomplished θ must satisfy:

tan(2θ) =
apq + aqp

aqq − app
(8.4)

For non symmetric matrices, the algorithm is slightly different and is know as Kog-
betliantz’ algorithm [96]. In this algorithm the angle in the left-hand side rotation may be
different from the angle in the right-hand side rotation. Hence, 8.3 becomes 8.5.

Ak+1 = J(p, q, θ1)T AkJ(p, q, θ2) (8.5)

and the angles θ1 and θ2 satisfy:

tan(θ1 + θ2) =
apq + aqp

aqq − app

tan(−θ1 + θ2) =
apq − aqp

aqq + app
(8.6)

The Matlab program that computes the SVD of a matrix M × M matrix A is listed in
Listing 8.4 according to the the odd-even Kogbetliantz algorithm [96]. Function Angle com-
putes the angles θ1 and θ2 for the planar operators R(θ1) and RT (θ2), where R() is a planar
Givens Rotation. The function RotRow rotates the vector (a i,j ai+1,j) to (a′

i,j a′
i+1,j) =

(ai,j ai+1,j)R(θ1), and the function RotColumn rotates the vector
(

ai,j

ai,j+1

)
to

(
a‘i,j

a‘i,j+1

)
=

RT (θ2)
(

ai,j

ai,j+1

)
.

Figure 8.7 shows the corresponding the PN topology. The network encompasses 54 IOM-,
30 OOM-, and 4 IOM+ communication channels. We shown in Section 8.2 that the out-of-
order communication type channels have large latency, stepping down the throughput per-
formance of an architecture. The out-of-order communication type channel appears due to
ordering in which data is produced and consumed. Hence, the dataflow through the archi-
tecture is hindered by the reorder mechanisms. The ideal case is to remove these reorder

102 Case Studies

Listing 8.4: The ODD-EVEN SVD
f o r s t a g e = 1 : 1 : N,

f o r i = 1 : 2 : M−1,
[t h 1 (i) , t h 2 (i)] = Angle (a (i , i) , a (i , i +1) , a (i +1 , i) , a (i +1 , i + 1)) ;

end

fo r i = 1 : 2 : M−1,
f o r j = 1 : 1 : M,

[a (i , j) , a (i +1 , j)] = RotRow (t h1 (i) , a (i , j) , a (i +1 , j)) ;
end

end

fo r i = 1 : 2 : M−1,
f o r j = 1 : 1 : M,

[a (j , i) , a (j , i +1)] = RotColumn (a (j , i) , a (j , i +1) , t h 2 (i)) ;
end

end

fo r i = 2 : 2 : M−2,
[t h 1 (i) , t h 2 (i)] = Angle (a (i , i) , a (i , i +1) , a (i +1 , i) , a (i +1 , i + 1)) ;

end

fo r i = 2 : 2 : M−2,
f o r j = 1 : 1 : M,

[a (i , j) , a (i +1 , j)] = RotRow (t h1 (i) , a (i , j) , a (i +1 , j)) ;
end

end

fo r i = 2 : 2 : M−2,
f o r j = 1 : 1 : M,

[a (j , i) , a (j , i +1)] = RotColumn (a (j , i) , a (j , i +1) , t h 2 (i)) ;
end

end
end

mechanisms and obtaining a streaming architecture that uses only in-order communication
type channels.

The algorithm presented in Listing 8.4 results in an implementation that requires many
reorder mechanisms that regulates the dataflow. These reorder mechanisms are mainly be-
tween the RotRow functions and RotColumn functions. Observe that the RotRow functions
iterates over the elements of the matrix A elements in a row wise order, while the RotColumn
functions iterates over the elements of the matrix A in a column wise order. The RotColumn
functions are using the tokens produced by the RotRow functions. Thus, reorder mechanisms
are required to hold the tokens produced by the RotRow functions (an entire iteration over a
row of matrix A) until the RotColumn functions consumes them. A tiling source-to-source
transformation [64] changes the order in which the RotColumn iterates over the matrix A el-
ements. Listing 8.5 shows the result of the tiling source-to-source transformation applied on
the odd-even SVD algorithm shown in Listing 8.4. This new version of the odd-even SVD
algorithm forces the RotColumn functions to closely flow the order in which the RotRow
functions are iterating over the elements of A matrix. Hence, removing the need of reorder
mechanisms between RotRow functions and RotColumn functions. The tiling operation is
applied to both RotColumn functions by introducing the additional nested for-loop with the
index tj. The tiled odd-even SVD algorithm implementation encompasses 95 communication
channels of which 89 are IOM-, 2 OOM-, 2 IOM+, and 2 OOM+.

8.4 The Matrix SVD Decomposition Algorithm 103

ND_1
ReadMatrix

ND_2
Angle

ED_14

ED_3

ED_7

ED_11

ND_3
RotRow

ED_22

ED_29

ED_15

ND_4
RotColum

ED_42

ED_30

ED_31

ED_32

ED_33

ED_34

ED_35

ED_36

ED_37

ED_38

ED_39

ED_40

ED_41

ED_2

ED_13

ED_18

ED_21

ED_25

ED_28

ND_5
Angle

ED_43

ED_44

ED_45

ED_46

ND_6
RotRow

ED_48

ED_49

ED_50

ED_51

ED_52

ED_53

ED_54

ED_55

ED_56

ED_57

ED_58

ED_59

ND_7
RotColumn

ED_61

ED_63

ED_65

ED_67

ED_69

ED_71

ED_73

ED_75

ND_8
WriteMatrix

ED_82

ED_84

ED_90

ED_92

ED_47

ED_76

ED_5

ED_9

ED_17

ED_20

ED_24

ED_27

ED_60

ED_62

ED_64

ED_66

ED_68

ED_70

ED_72

ED_74

ED_78

ED_80

ED_86

ED_88

ED_1

ED_4

ED_8

ED_12

ED_16

ED_19

ED_23

ED_26

ED_77

ED_79

ED_81

ED_83

ED_89

ED_91

Figure 8.7: The Odd-Even SVD Process Network

104 Case Studies

Listing 8.5: The TILED ODD-EVEN SVD
f o r s t a g e = 1 : 1 : N,

f o r i = 1 : 2 : M−1,
[t h 1 (i) , t h 2 (i)] = Angle (a (i , i) , a (i , i +1) , a (i +1 , i) , a (i +1 , i + 1)) ;

end

fo r i = 1 : 2 : M−1,
f o r j = 1 : 1 : M,

[a (i , j) , a (i +1 , j)] = RotRow (t h1 (i) , a (i , j) , a (i +1 , j)) ;
end

end

fo r t j = 1 : 2 : M−1,
f o r i = 1 : 2 : M−1,

f o r j = t j : 1 : min (M, t j +1) ,
[a (j , i) , a (j , i +1)] = RotColumn (a (j , i) , a (j , i +1) , t h 2 (i)) ;

end
end

end

fo r i = 2 : 2 : M−2,
[t h 1 (i) , t h 2 (i)] = Angle (a (i , i) , a (i , i +1) , a (i +1 , i) , a (i +1 , i + 1)) ;

end

fo r i = 2 : 2 : M−2,
f o r j = 1 : 1 : M,

[a (i , j) , a (i +1 , j)] = RotRow (t h1 (i) , a (i , j) , a (i +1 , j)) ;
end

end

fo r t j = 1 : 2 : M−1,
f o r i = 2 : 2 : M−2,

f o r j = t j : 1 : min (M, t j +1) ,
[a (j , i) , a (j , i +1)] = RotColumn (a (j , i) , a (j , i +1) , t h 2 (i)) ;

end
end

end
end

8.4.1 Discussion Matrix SVD Decomposition Implementation

We run both odd-even SVD algorithm variant implementations for a 10 × 10 matrix. The
implementation results are presented in Table 8.3. The number of cycles needed for one
10 × 10 SVD update is 405 cycles in the case of the original odd-even implementation. The
tiled implementation needs 279 cycles to compute an SVD update. Hence, the tiled algorithm
is 30% faster than the standard version. A significative improvement is obtained also in the
memory requirements for each of the implementations (i.e., 12160 bytes for odd-even SVD
implementation versus 7560 bytes for the tiled version). The memory requirement for an
implementation is the summation of the all channels capacities.

Although the tiled odd-even SVD implementation has more communication channels,
the total number of hardware resources used (slices and RAMB16 memories) is less than in
the case of the odd-even SVD implementation. The low figures for the synthesized clock
frequencies is a result of the heavy communication topology of the CDFPN networks. As
a rule of thumb, the architecture performance decreases in strong relation with the number
of channels of the input PN. This affirmation is also sustained if we check the QR realiza-
tion (Table 8.2) versus the SVD realization. The QR implementation uses almost as many

8.5 Discussion 105

Odd-Even SVD Tiled Odd-Even SVD
implementation implementation

Minimum clock period 17 ns (58 Mhz) 21 (49 Mhz)
Number of Block RAMs 74 72

Number of Slices 9040 4848
Clock Cycles 405 279

Memory Requirements(bytes) 12160 7560
Channels (IOM-/OOM-/OOM+/IOM+) 88 (54/30/-/2) 95 (89/2/2/2)

Table 8.3: Results for SVD algorithm

slices as in the case of the original SVD implementation. However, we obtain a much lower
synthesized clock frequency in the case of SVD implementation. The difference is in the
number of communication channels that QR architecture has (i.e., 11) versus the number of
communication channels the SVD architecture has (i.e., 95).

8.5 Discussion

The Matrix-Matrix multiplication algorithm is edificatory for the usage of our methodology
in implementing algorithms with low-grain IP cores, and a relatively uncomplicated data-
flow. Such algorithms are Discrete Fast Fourier Transformation, Finite Impulse Filters, Con-
volutions cores, etc. These algorithms are more optimal implemented using other synthesis
techniques [21, 30, 31, 34]. The synthesis methodology used by us results in a large amount
of control that is required to handle the distributed nature of our architecture.

An optimal result is achieved for algorithms that embeds IP cores that are more coarse
grained. Such case is the matrix QR factorization algorithm. Also the communication be-
tween these IP cores is more complex, requiring various techniques to increase the IP cores
computational efficiency (see Chapter 7). In particular cases, we can obtain efficient auto-
matical generated implementations [97] that have performance figures close to hand crafted
implementations [52]. We have again coarse grained IP cores in the case of the matrix SVD
decomposition. The large number of communication channels affects the final performance
figures of our implementation. However, there are techniques [7] to merge these channels,
with a potential to simplify the implementation. It is desirable to avoid as much as possible
large number of channels that are out-of-order. In general, such channel stalls the execution
of the processors that are accessing them. Source-to-source transformations such as skewing,
loop swap and tiling [64] optimize the data-flow of an algorithm, removing the need of re-
order mechanisms. In the tiled odd-even SVD implementation, the tiling operation removed a
large amount of out-of-order communication type channels, obtaining improved performance
figures (throughput and resources consumption) relatively to the original implementation of
odd-even SVD algorithm.

As we step up in the level of abstraction of the description of an algorithm, the IP cores
becomes more and more complex. And, therefore, the data-flow is less complicated. Such
example is M-JPEG application explored in [8]. However, when the final architecture per-
formances figures are not an issue, our methodology delivers fast a parallel implementation
mapped onto an FPGA platform.

106 Case Studies

Chapter 9
Conclusions

In this dissertation, we presented a compilation technique that takes applications specified
as COMPAAN Data Flow Process Networks and produces optimized FPGA implementations.
The optimizations performed include usage of IP cores, synthesis of the communication con-
trol, and finding a capacity for the communication memory.

Chapter 2 introduces LAURA’s Virtual Processor and the first step of our methodology
called PN to Abstract Architecture. The PN to Abstract Architecture step constructs an Ab-
stract Architecture out of a COMPAAN Data Flow Process Network MoC using a one-to-one
mapping. The Abstract Architecture is a set of hierarchical interconnect modules represent-
ing an architecture. Each module embeds an IP core that is wrapped by a module wrapper to
isolate the computation from communications.

The construction of the Abstract Architecture consists of a semantic mapping and a topo-
logical mapping. The topological mapping generates the network, while the semantic map-
ping translates a CDFPN process to a Virtual Processor. The synthesis of each communication
channel of the Abstract Architecture is described in Chapter 4. Upper bounds for FIFO capac-
ities in the communication channels of the Abstract Architecture are derived using bounding
box techniques presented in Chapter 5. Self-loop channel FIFO capacities are accurately
estimated using Ehrhart polynomials [42]. The amount of memory estimated by using the
bounding box techniques is dependent on the way of describing the CDFPN as an imperative
program. Hence, source-to source transformations that increase data locality in a sequential
application can diminish the memory requirements for a channel, i.e., loop tiling [64] and
loop fusion [65].

In the PN mapping to Abstract Architecture, each process is mapped to a Virtual Pro-
cessor consisting of a Read, an Execute, and a Write unit. The Read and Write units use
a local controller to execute a particular control program that is derived by the COMPAAN

tool. Because of the inherent complexity of this control, deriving an efficient controller im-
plementation (both in terms of area and speed) is mandatory to obtain a good performance.
We studied three different methodologies for an efficient derivation of the Read and Write
unit control in Chapter 3.

The Abstract Architecture is synthesized to a network of synthesizable processors that
is implemented in an FPGA execution platform. The FPGA implementation of a network

108 Conclusions

of synthesizable processors is a Globally Asynchronous Locally Synchronous (GALS) sys-
tem [39]. GALS systems eliminate the need for careful design and fine-tuning of a global
clock distribution network. Besides energy conservation and global clock distribution, de-
signers are now seriously exploring opportunities for reusing IP cores. To synthesize an
Abstract Architecture to a network of synthesizable processors, a number of techniques are
employed. Chapter 6 shows how expressions that are (pseudo-) affine can be converted effi-
ciently to hardware using the Expression Compiler presented in this chapter. The Expression
Compiler is needed to make sure that the evaluation of polytopes in the Read and Write units
happens faster than the evaluation of an IP Core embedded in the Execute unit. Only then is
the dataflow in a CDFPN network not obstructed by the distributed control. The Expression
Compiler first performs high-level optimizations based on DIV and MOD strength reduc-
tion operations and the Method of Differences technique. This step is followed by platform
dependent optimizations using the Predicated Static Single Assignment (PSSA) code . The
PSSA form uses only additions, LUTs and conditional statements, resulting in an area/speed
efficient hardware.

Our methodology synthesizes only the control of a CDFPN into an Abstract Architecture.
The functionality of a processor is implemented by embedding an IP core. In Chapter 7, an
IP core wrapper is introduced to act as an interface between the synchronous IP core and
the asynchronous network. Hence, we do not generate an implementation for a particular
software function call, but we use IP cores to get the functionality of the sequential function.
We can predict a maximum theoretical throughput of an embedded IP core at compile-time
by using the profiler presented in Chapter 7. The profiler gives hints that may increase the
maximum theoretical throughput of the embedded IP cores. The hints are applied using the
MATTRANSFORM tool box.

Finally, three test cases are used to benchmark the present methodology. We consider
the design of parts of a complex application (Subspace Tracking). The parts we consider are
three key kernels: Matrix-matrix multiplication, matrix SVD decomposition, and matrix QR
factorization. For the Matrix-matrix multiplication kernel, we investigated the control over-
head introduced by the presented methodology in the case of embedding simple IP cores.
At the opposite pole lays the matrix QR factorization that uses complex computational IP
cores. Here, we investigated the control overhead introduced by the present methodology
when we embed non trivial IP cores. The matrix SVD decomposition kernel has a complex
communication network. Here, we investigated the influence of such complex communica-
tion networks on the FPGA implementation. All these case studies and their conclusions are
presented in Chapter 8.

The work presented in this dissertation enables the conversion of a CDFPN model into
an FPGA implementation. The conversion of an imperative program into a CDFPN model
is addressed by Rijpkema et al. [5, 6], and extended by Turjan [98] and Stefanov [8]. The
conversion of the imperative program into a parallel description is prototyped in the COM-
PAAN tool. The conversion of the parallel description of an imperative program into an FPGA
implementation is prototyped in the LAURA tool. Together, the LAURA and COMPAAN tools,
provide a flow to prototype an FPGA implementation of an imperative program. The set of
imperative programs is confined to the class of piece-wise affine nested loop programs. This
restriction still allows to study the kernels of the applications that belong to the domains of
digital signal processing and multimedia.

Bibliography

[1] Edward A. Lee and Thomas M. Parks. Dataflow Process Networks. Proceedings of the
IEEE, 83(5):773–799, May 1995.

[2] Gilles Kahn. The Semantics of a Simple Language for Parallel Programming. In Proc.
of the IFIP Congress 74. North-Holland Publishing Co., 1974.

[3] Bart A.C.J. Kienhuis. Design Space Exploration of Stream-based Dataflow Architec-
tures: Methods and Tools. PhD thesis, Delft University of Technology, The Netherlands,
January 1999.

[4] Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee. Synthesis of embed-
ded software from synchronous dataflow specifications. J. VLSI Signal Process. Syst.,
21(2):151–166, 1999.

[5] Bart Kienhuis, Edwin Rijpkema, and Ed F. Deprettere. Compaan: Deriving Process
Networks from Nested Loop Alogorithms. In Proc. 8th International Workshop on
Hardware/Software Codesign (CODES’2000), San Diego, CA, USA, May 3-5 2000.

[6] Edwin Rijpkema. Modeling Task Level Parallelism in Piece-wise Regular Programs,
2002. PhD thesis, Leiden University, The Netherlands.

[7] Alex Turjan. Compiling Nested Loop Programs to Process Network, 2007. PhD thesis,
Leiden University, The Netherlands.

[8] Todor Stefanov. Converting Weakly Dynamic Programs to Equivalent Process Network
Specifications, 2004. PhD thesis, Leiden University, The Netherlands.

[9] Paul Feautrier. Dataflow Analysis of Scalar and Array References. Int. J. of Parallel
Programming, 20(1):23–53, 1991.

[10] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. The organization of
computations for uniform recurrence equations. J. ACM, 14(3):563–590, 1967.

[11] Hristo Nikolov, Todor Stefanov, and Ed Deprettere. Multi-processor system design
with espam. In CODES+ISSS ’06: Proceedings of the 4th international conference

110 Bibliography

on Hardware/software codesign and system synthesis, pages 211–216, New York, NY,
USA, 2006. ACM.

[12] G. Spivey, S. S. Bhattacharyya, and K. Nakajima. Logic foundry: Rapid prototyp-
ing for FPGA-based DSP systems. EURASIP Journal on Applied Signal Processing,
2003(6):565–579, May 2003.

[13] A. Gerstlauer and D. Gajski. System-level abstraction semantics. In Proc. 15th Int.
Symposium on System Synthesis (ISSS’02), pages 231–236, Kyoto, Japan, October 2-4
2002.

[14] D. Lyonnard et al. Automatic Generation of Application-Specific Architectures for Het-
erogeneous Multiprocessor System-on-Chip. In Proc. 38th Design Automation Confer-
ence (DAC’2001), Las Vegas, USA, June 18-22 2001.

[15] P. Paulin, C. Pilkington, M. Langevin, E. Bemsoudane, D. Lyonnard, O. Benny, B. Lav-
igueur, D. Lo, G Beltrame, V. Gagne, and G Nicolescu. Parallel Programming Mod-
els for a Multiprocessor SoC Platform Applied to Networking and Multimedia. IEEE
Trans. on VLSI Systems, 14(7), July 2006.

[16] A. Jerraya, A. Bouchhima, and F. Petrot. Programming Models and HW-SW Inter-
faces Abstraction for MultiProcessor SoC. In Proc. 43th Design Automation Conference
(DAC’06), San Francisco, USA, July 24-28 2006.

[17] M.J. Rutten et all. A Heterogeneous Multiprocessor Architecture for Flexible Media
Processing. IEEE Design & Test of Computers, 19(4), 2002.

[18] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K.L.M. Bertels, G.K. Kuzmanov, and
E. Moscu Panainte. The molen polymorphic processor. IEEE Transactions on Com-
puters, pages 1363– 1375, November 2004.

[19] F. Balarin, E. Sentovich, M Chiodo, P. Giusto, H. Hsieh, B Tabbara, A. Jurecska,
L. Lavagno, C. Passerone, K. Suzuki, and A. Sangiovanni-Vincentelli. Hardware-
Software Co-design of Embedded Systems – The POLIS approach. Kluwer Academic
Publishers, 1997.

[20] Michael C. Williamson. Synthesis of Parallel Hardware Implementations from Syn-
chronous Dataflow Graph Specifications. PhD thesis, EECS Department, University of
California, Berkeley, 1998.

[21] M Haldar, A Nayak, A Choudhary, and P Banerjee. A System for Synthesizing Opti-
mized FPGA Hardware from MATLAB. In Proc. Int. Conf. on Computer Aided Design,
San Jose, CA, November 2001.

[22] Harald Devos, Kristof Beyls, Mark Christiaens, Jan Van Campenhout, and Dirk
Stroobandt. From loop transformation to hardware generation. In Proceedings of the
17th ProRISC Workshop, pages 249–255, Veldhoven, 11 2006.

[23] C. Bastoul. Code generation in the polyhedral model is easier than you think. In
PACT’13 IEEE International Conference on Parallel Architecture and Compilation
Techniques, pages 7–16, Juan-les-Pins, september 2004.

Bibliography 111

[24] Jurgen Teich and Lothar Thiele. Partitioning of processor arrays: A piecewise regular
approach. Integration, the VLSI journal, 14:297–332, February 1993.

[25] Hritam Dutta, Frank Hannig, Holger Ruckdeschel, and Jürgen Teich. Efficient control
generation for mapping nested loop programs onto processor arrays. J. Syst. Archit.,
53(5-6):300–309, 2007.

[26] Sanjay V. Rajopadhye and Richard Fujimoto. Synthesizing systolic arrays from recur-
rence equations. Parallel Computing, 14(2):163–189, 1990.

[27] Patricia Le Moenner and et al. Generating regular arithmetic circuits with alphard.

[28] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vandecappelle.
Custom Memory Management Methodology. Kluwer Academic Publishers, 1998.

[29] J. L. Van Meerbergen, P. E. R. Lippens, W. F. J. Verhaegh, and A. Van der Werf. Phideo:
high-level synthesis for high throughput applications. J. VLSI Signal Process. Syst., 9(1-
2):89–104, 1995.

[30] Vinod Kathail, Shail Aditya, Robert Schreiber, B. Ramakrishna Rau, Darren C. Cron-
quist, and Mukund Sivaraman. PICO: Automatically Designing Custom Computers.
Computer, 35(9):39–47, 2002.

[31] http://www.synfora.com.

[32] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 26(1):100–106,
1983.

[33] Maya B. Gokhale, Janice M. Stone, Jeff Arnold, and Mirek Kalinowski. Stream-
Oriented FPGA Computing in the Streams-C High Level Language. fccm, 00:49, 2000.

[34] Ian Page. Constructing hardware-software systems from a single description. In Journal
of VLSI Signal Processing, 12(1):87–107, 1996.

[35] Andre Nieuwland, Jeffrey Kang, O. P. Gangwal, R. Sethuraman, N. Busa, K Goosens,
R. P. Llopis, and P. Lippens. C-HEAP: A Heterogeneous Multi-processor Architecture
Template and Scalable and Flexible Protocol for the Design of Embedded Signal Pro-
cessing Systems. Kluwer Academic Publishers, 2002.

[36] M. Diaby, M. Tuna, J.-L. Desbarbieux, and F. Wajsburt. High level synthesis method-
ology from c to fpga used for a network protocol communication. In RSP ’04: Pro-
ceedings of the 15th IEEE International Workshop on Rapid System Prototyping, pages
103–108, Washington, DC, USA, 2004. IEEE Computer Society.

[37] J.-Y. Brunel, W. M. Kruijtzer, H. J. H. N. Kenter, F. Pétrot, L. Pasquier, E. A. de Kock,
and W. J. M. Smits. Cosy communication ip’s. In DAC ’00: Proceedings of the 37th
conference on Design automation, pages 406–409, New York, NY, USA, 2000. ACM.

[38] Prophid: a heterogeneous multi-processor architecture for multimedia. In ICCD ’97:
Proceedings of the 1997 International Conference on Computer Design (ICCD ’97),
page 164, Washington, DC, USA, 1997. IEEE Computer Society.

112 Bibliography

[39] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis,
Dept. of Computer Science, Stanford Univ., 1984.

[40] M Ben-Ari. Principles of Concurrent Programming . Prentice Hall, 1982.

[41] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. An Integer Linear Program-
ming Approach to Classify Communication in Process Networks. In 8th International
Workshop on Software and Compilers for Embedded Systems (SCOPES), Amsterdam,
September 2–3 2004.

[42] Eugène Ehrhart. Polynômes arithmétiques et Méthode des Polyédres en Combinatoire.
Birkhäuser Verlag, Basel, international series of numerical mathematics vol. 35 edition,
1977.

[43] R. L. Walke, R. W. M. Smith, and G. Lightbody. 20GFLOPS QR processor on a Xilinx
Virtex-e FPGA. In proceedings of SPIE advanced signal, 1999.

[44] Kurt Konolige. Small Vision Systems: Hardware and Implementation. In Eighth Inter-
national Symposium on Robotics Research, Hayama, Japan, October 1997.

[45] E. Mémin and T. Risset. On the study of VLSI derivation for optical flow estimation.
International Journal of pattern recognition and Artificial Intelligence (IJPRAI), 2000.

[46] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. A compile time based approach
for solving out-of-order communication in Kahn Process Networks. In Proceedings of
IEEE 13th International Conference on Application-specific Systems, Architectures and
Processors, July 17-19 2002.

[47] Alexandru Turjan and Bart Kienhuis. Storage Management in Process Networks using
the Lexicographically Maximal Preimage. In Proceedings of the IEEE 14th Int. Conf.
on Application-specific Systems, Architectures and Processors (ASAP’03), The Hague,
The Netherlands, June 24-26 2003.

[48] ”www.xilinx.com”. FIFOs Using Virtex-II Block RAM. June 2001.

[49] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. Pngen: a tool for improved
derivation of process networks. EURASIP Journal on Embedded Systems, Special Issue
on Embedded Digital Signal Processing Systems, 2007, 2007.

[50] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. Realizations of the Extended
Linearization Model in the Compaan Tool Chain. In proceedings of the 2nd Samos
workshop, Samos, Greece, August 2002.

[51] Charles Babbage. Passages from the life of a Philosopher. London, 1964.

[52] R.L. Walke, R.W.M. Smith, and G. Lightbody. 20 GFLOPS QR processor on a Xilinx
Virtex-E FPGA. In Proc. SPIE Advanced Signal Processing Algorithms, Architectures,
and Implementations X, pages 300 – 310, 2000.

[53] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. L. Sangiovanni-Vincentelli. System
Level Design: Orthogonalization of Concerns and Platform–Based Design. IEEE Trans.
on CAD, 2000.

Bibliography 113

[54] E. Rijpkema, K. Goossens, A. Radulescu, J. van Meerbergen, P. Wielage, and E. Water-
lander. Trade offs in the design of a router with both guaranteed and best-effort services
for networks on chip, 2003.

[55] Pierre Guerrier and Alain Greiner. A generic architecture for on-chip packet-switched
interconnections. In DATE ’00: Proceedings of the conference on Design, automation
and test in Europe, pages 250–256. ACM Press, 2000.

[56] Tom Parks. Bounded Scheduling of Process Networks. PhD thesis, EECS Department,
University of California, Berkeley, CA, December 1995.

[57] Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley Publishing Co., 1986.

[58] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, Inc., 1997.

[59] Bart Kienhuis. MatParser: An array dataflow analysis compiler. Technical report,
University of California at Berkeley, 2000. UCB/ERL M00/9.

[60] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algorithm
for convex hulls. ACM Transactions on Mathematical Software, 22(4):469–483, 1996.

[61] Philippe Clauss and Vincent Loechner. Polylib. http://icps.u-strabg.fr/Polylib, February
2002.

[62] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. A Hierarchical Classification
Scheme to Derive Interprocess Communication in Process Networks. In Proceedings of
the IEEE 14th Int. Conf. on Application-specific Systems, Architectures and Processors
(ASAP’04), Galveston, Texas, Sept 27-29 2004.

[63] Doran K. Wilde and Sanjay Rajopadhye. Allocating Memory Arrays for Polyhedra.
Technical report, INRIA, 1993. Technical Report Number 2059.

[64] C. Bastoul. Improving Data Locality in Static Control Programs. PhD thesis, University
Paris 6, Pierre et Marie Curie, december 2004.

[65] N. Manjikian and Tarek S. Abdelrahman. Fusion of Loops for Parallelism and Locality.
IEEE Transactions on Parallel and Distributed Systems, 8(2):193–209, 1997.

[66] Steven Derrien, Alexandru Turjan, Claudiu Zissulescu, Bart Kienhuis, and Ed Depret-
tere. Deriving Efficient Control in Process Networks with Compaan/Laura. Interna-
tional Journal of Embedded Systems, 2005. inderscience publishers.

[67] Hristo Nikolov, Todor Stefanov, and Deprettere Ed. Modeling and FPGA implemen-
tation of Applications using Parameterized Process Networks with Non-Static Parame-
ters. In IEEE Symposium on Field-Programmable Custom Computing Machines, 2005.
Submitted for Review.

114 Bibliography

[68] Tim Harriss, Richard Walke, Bart Kienhuis, and Ed. F. Depettere. Compilation from
Matlab to Process Networks Realized in FPGA. In Proceedings of the 35th Asilomar
conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, November 4
– 7 2001.

[69] Jeffrey W. Sheldon, Walter Lee, Benjamin Greenwald, and Saman Amarasinghe.
Strength Reduction of Integer Divison and Modulo Operations. In Languages and Com-
pilers for Parallel Computing, Cumberland Falls, Kentucky, August 2001.

[70] Steven S. Muchnick. Advanced compiler design and implementation. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1997.

[71] Robert Schreiber, Shail Aditya, B. Ramakrishna Rau, Vinod Kathail, Scott Mahlke,
Santosh Abraham, and Greg Snider. High-Level Synthesis of Nonprogrammable Hard-
ware Accelerators. In ASAP ’00: Proceedings of the IEEE International Conference
on Application-Specific Systems, Architectures, and Processors, page 113, Washington,
DC, USA, 2000. IEEE Computer Society.

[72] Lori Carter, Beth Simon, Brad Calder, Larry Carter, and Jeanne Ferrante. Predicated
Static Single Assignment. In IEEE PACT, pages 245–255, 1999.

[73] J.C.H. Park and M. Schlansker. On Predicated Execution. In Technical Report HPL-91-
58. HP Labs, 1991.

[74] Greg Snider, Barry Shackleford, and Richard J. Carter. Attacking the semantic gap be-
tween application programming languages and configurable hardware. In Proceedings
of the 2001 ACM/SIGDA ninth international symposium on Field programmable gate
arrays, pages 115–124. ACM Press, 2001.

[75] Peter Held. Functional Design of Data-Flow Networks, 1996. PhD thesis, Delft Uni-
versity of Technology, The Netherlands.

[76] Ehud Artzy, James A. Hinds, and Harry J. Saal. A Fast Division Technique for Constant
Divisors. Commun. ACM, 19(2):98–101, 1976.

[77] Shuo-Yen Robert Li. Fast Constan Division Routines. IEEE Trans. Computers,
34(9):866–869, 1985.

[78] Daniel J. Magenheimer, Liz Peters, Karl Pettis, and Dan Zuras. Integer Multiplication
and Division on the HP Precision Architecture. IEEE Trans. Computers, 37(8):980–
990, 1988.

[79] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, Berlin, 1975.

[80] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control depen-
dence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

[81] P. Briggs, T. Harvey, and T. Simpson. Static single assignment construction, 1995.

Bibliography 115

[82] Arthur Stoutchinin and Francois de Ferriere. Efficient static single assignment form for
predication. In Proceedings of the 34th annual ACM/IEEE international symposium on
Microarchitecture, pages 172–181. IEEE Computer Society, 2001.

[83] Navindra Umanee. Shimple: An investigation of static single assignment form. Master’s
thesis, McGill University, February 2006.

[84] Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon, and
Phong Co. Soot - a java optimization framework. In Proceedings of CASCON 1999,
pages 125–135, 1999.

[85] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Professional, 1995.

[86] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill
Higher Education, 1994.

[87] John L. Hennessy and David A. Patterson. Computer Architecture; A Quantitative Ap-
proach. Morgan Kaufmann Publishers Inc., 1992.

[88] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler Transformations for
High-Performance Computing. ACM Computing Surveys, 26(4), December 1994.

[89] Todor Stefanov, Bart Kienhuis, and Ed Deprettere. Algorithmic Transformation Tech-
niques for Efficient Exploration of Alternative Application Instances. In Proc. 10th
International Symposium on Hardware/Software Codesign (CODES’02), pages 7–12,
Estes Park, Colorado, USA, May 6-8 2002.

[90] C. Leiserson and J. Saxe. Optimizing Synchronous Systems. Journal of VLSI and
Computer Systems, 1, 1983.

[91] T. J. Shepherd and J. G. McWhirter. Systolic Adaptive Beamforming - Radar Array
Processing. In Springer Series in Information Sciences, volume 25. Springer-Verlang
Berlin, 1993.

[92] P. Pango and B. Champagne. Accurate subspace tracking algorithms based on cross-
space properties, 1997.

[93] G. W. Stewart. An updating algorithm for subspace tracking. Technical report, College
Park, MD, USA, 1990.

[94] A. Kavcic and Bin Yang. A new efficient subspace tracking algorithm based on singular
value decomposition. icassp, 4:485–488, 1994.

[95] Gene H. Golub and Charles F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

[96] Franklin T. Luk. A triangular processor array for computing the singular value decom-
position. Technical report, Ithaca, NY, USA, 1984.

116 Bibliography

[97] Claudiu Zissulescu, Bart Kienhuis, and Ed Deprettere. Increasing pipelined IP core
utilization in Process Networks using Exploration. In Proc. 13th Int. Conference on
Field Programmable Logic and Applications (FPL’04), 2004.

[98] Alexandru Turjan, Bart Kienhuis, and Ed Deprettere. Translating Affine Nested-loop
Programs to Process Networks. In Proc. International Conference on Compilers, Ar-
chitectures, and Synthesis for Embedded Systems (CASES’04), Washington D.C., USA,
September 23-25 2004.

Index

Abstract Architecture, 7, 13, 18
address evaluation part, 45
Architecture Synthesis, 7

blocking read, 3
blocking write, 19
bounding box, 45, 57, 58

Communication Synthesis, 8, 39
consumer domain, 17
Control Synthesis, 8, 25

data hazard, 82
Dedicated Channel, 8
dependency graph, 31

evaluation part, 30
Execute Unit, 8, 20
Expression Synthesis, 8
Extended Linearization Model, 44

firing rules, 4

In-Order with multiplicity, 18, 42
In-Order without multiplicity, 18, 42
input arguments, 20
Input Port, 4, 16, 20
Input Port Domain, 20
IP Core Integration, 8, 81
iteration, 15
iteration domain, 15
iterator part, 30

Lexicographical Maximal Preimage, 42
Lexicographical minimal Preimage, 42

LMP evaluation part, 45
local schedule, 17

memory controller, 44
Method of Differences, 69
multiplicity, 17, 41

Network of Synthesizable Processors, 7

Out-of-Order with multiplicity, 18, 42
Out-of-Order without multiplicity, 18, 42
output arguments, 20
Output Port, 4, 16, 20
Output Port Domain, 20

partitioned parameterized predicate con-
troller, 35

PN to Abstract Architecture, 7, 13
Polyhedral Model, 4
Predicated Static Single Assignment, 66,

69
producer domain, 17
producer-consumer pair, 16

rank, 40, 55
read polynomial, 40
Read Unit, 8, 20
reorder memory, 41, 44
reset-φ, 70

selection-φ, 70
selector, 20
self-loop, 5, 53
Semantic Mapping, 8, 13, 18
sequential code, 50

118 Index

single assignment code, 50
stall, 82
statement, 15
Static Single Assignment, 70
switch, 20

Topological Mapping, 8, 13, 18

variants, 4
Virtual Processor, 8, 19

write polynomial, 40
Write Unit, 8, 20

Acknowledgment

I would like to thank to Alexandru Turjan and Todor Stefanov for pointing out the im-
portance of a VHDL back-end for the COMPAAN compiler. My thoughts also go to the other
members of the LERC group for their kind words and support: Mihai Cristea, Sjoerd Meijer,
Vladimir Zivkovic, Jerome Lemaitre, Sylvain Alliot, and Hristo Nikolov. I am grateful to
Mingyung Ko, Steven Derrien, Shuvra Bhttacharyya and Shlomo Raikin for the interesting
discussions and collaboration. And special thanks to my former professors: Livia Pavelescu,
Timotei Ciobanu, Corneliu Popeea, and Adrian Petrescu.

I would like to thank Sebastian Maneth, Dmitry Cheresiz and Ioan Cimpian for the in-
teresting and sometime surrealist discussions we had. I thank Lucian Limona, Laurentiu
Nicolae, Nicu Sebe, and Viorel Cristea for their support and friendship, and for being next to
me in good times and bad.

To my reviewers, Lucian Limona, Alexandru Turjan and Sven Verdoolaege, sincere thanks
for their valuable comments and suggestions, and to Tom de Vries for the Dutch summary of
my thesis.

Finally, I would like to thank my family and especially my wife, Daniela, for their support
and encouragement. Without them, this dissertation would not have been possible.

Samenvatting

Sinds de jaren tachtig is er een trend om DSP-functionaliteiten toe te voegen aan proces-
soren voor algemeen gebruik. Tegenwoordig overschrijden de prestatie-eisen van moderne
systemen echter vaak het vermogen van deze coprocesoren en zijn er vaak meerdere DSP’s
nodig. Het opdelen van een DSP-berekening in eenheden die naast elkaar op verschillende
hardwarebronnen draaien, is echter een ingewikkeld proces en garandeert op zichzelf geen
versnelling. De parallelle code kan zelfs langzamer draaien dan sequentiële software. Voor
goede prestaties is het nodig om de communicatie tussen hardware-eenheden te optimalis-
eren en de gepartitioneerde berekening efficiënt over de hardware-eenheden te verdelen. Een
mogelijke oplossing voor het laatste probleem is om bestaande multiprocessorarchitecturen
te gebruiken. Deze hebben echter een geheugenhierarchie met meerdere cache-niveaus. Dat
maakt de interprocessorcommunicatie zeer gevoelig voor de plek waar de data is opgesla-
gen. De communicatie voor een DSP-algoritme met slechte datalokaliteit, vertaald naar een
dergelijke architectuur, kan veel cycli kosten.

FPGA-platforms bieden steeds meer een hardwarealternatief voor DSP-ontwerpers. Ze
combineren alle voordelen van DSP’s met bijna de prestatievoordelen van ASIC’s. De kracht
van FPGAs is dat de ontwerper zo veel parallelle bronnen kunnen gebruiken als het FPGA-
platform beschikbaar stelt. De een bepaalde hoeveelheid parallelle bronnen te gebruiken komt
de vereiste prestaties binnen bereik. Bovendien is het mogelijk een specifiek afgestemde
communicatiestructuur te definiëren en daarmee de complexiteit van een moderne proces-
sorgeheugenhierarchie te vermijden.

De DSP-architectuur voor algemene doeleinden is optimaal voor toepassingen die se-
quentieel draaien en een groot globaal geheugen gebruiken. Het FPGA-platform gaat echter
uit van parallelle logica en gedistribueerd geheugen. De voornaamste vraag is daarom hoe
je overstapt van een sequentiële, globale geheugenspecificatie naar een parallelle, gedis-
tribueerde geheugenarchitectuur. Handmatige overzetten is vaak een moeizaam proces waar-
bij gemakkelijk fouten kunnen optreden. We zouden deze overstap dan ook willen automa-
tiseren.

Er zijn twee manieren waarop we het automatiseren kunnen oplossen. Een manier is
om applicatie ontwikkelaars hun applicaties in een parallelle programmeertaal (textueel of
grafisch) te laten ontwikkelen. Grafische of visuele programmeerstijlen zijn voorgesteld en
gebruikt om signaal processing en multimedia applicaties te specificeren. Typische voor-

122 Samenvatting

beelden van zulke parallelle programmeerstijlen zijn gebaseerd op dataflow grafen en dataflow
proces netwerk berekeningsmodellen. In deze modellen bestaat een programma uit actieve
entiteiten (functies, threads, processen) die point-to-point communiceren over FIFO kanalen.
Applicatie ontwikkelaars zijn terughoudend in het specificeren in termen van deze modellen
om verschillende redenen. Allereerst zijn de modellen niet expressief genoeg, of onbeslis-
baar. Ten tweede, praktische applicaties kunnen niet gespecificeerd worden in termen van
dataflow modellen die niet echt rekening houden met dynamische control flow.

De andere manier om de mismatch tussen sequentiële imperatieve applicatie specificatie
en het parallelle executie platform op te lossen, is het converteren (paralleliseren) van de
sequentiële specificatie naar een invoer-uitvoer equivalent parallelle specificatie die beter
aansluit op een multi-processor executie platform. De geparalleliseerde code is dan afgebeeld
op het multi-processor executie platform. Niet elk programma in een sequentiële imperatieve
taal kan makkelijker - of zelfs automatisch - geconverteerd worden naar een invoer-uitvoer
equivalent parallelle specificatie. Echter, in signaalverwerking, multimedia, moleculaire bi-
ologie, en andere gerelateerde applicatie domeinen, zijn er veel programma’s die geconver-
teerd kunnen worden naar een invoer-uitvoer equivalent parallelle specificatie. Deze klasse
van programma’s word nested loop programs (NLP) genoemd. In het bijzonder kunnen de zo-
genaamde affine nested loop programs automatisch geconverteerd worden. Meer specifiek, in
deze thesis behandelen we alleen static affine nested loop programs. We adresseren het prob-
leem van het synthetiseren van Process Network specificaties naar FPGA multi-processor
executie platformen. De proces netwerken die we behandelen zijn speciale gevallen van
Kahn Process Networks. We noemen deze dan ook COMPAAN Data Flow Process Networks
(CDFPN) omdat deze gegenereerd worden door een vertaler genaamd COMPAAN, die au-
tomatisch affine nested loop programma’s vertaald naar invoer-uitvoer equivalent parallelle
specificaties. Ons doel in deze thesis is om een effectieve en efficiënte implementatie van
CDFPNs in een FPGA executie platform te leveren, waarbij onze implementatie bijna een
één-op-één afbeelding van het originele CDFPN is. Het executie platform ontstaat uit het
afbeelden van een gegeven CDFPN specificatie tot een specifiek multi-processor executie
platform op een FPGA. In de afbeelding gebruiken we nog geen embedded CPU blokken,
gespecialiseerde DSP blokken of soft-core processoren, hetgeen een natuurlijk uitbereiding
zou zijn van het werk gepresenteerd in deze thesis.

Curriculum Vitae

Claudiu Zissulescu was born on December 21, 1976 in Bucharest, Romania. In 1995 he re-
ceived his Baccalaureate from the ”Octav Onicescu” High School in Bucharest. In 2000 he
graduated from ”Politehnica” University of Bucharest with a Dipl. Ing. and M.Sc. degree
in Computer Science. In the same year he joined the Leiden Embedded Research Center
(LERC), a part of the Leiden Institute of Advanced Computer Science (LIACS) at Leiden
University, where he was appointed as a research assistant (AIO). During his work within
LERC, Claudiu has carried out research on the mapping of stream-oriented media applica-
tions onto parallel architectures.

Upon completing his research, he joined Chess BV in Haarlem, The Netherlands, where
he worked on the development of a wireless sensor network. In 2008, Claudiu has joined
DSP Innovation Center at NXP Semiconductors where he currently works on the design of
next-generation platforms for wireless communication.

ISBN/EAN 978-90-9023643-8

