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"Yon foaming flood seems motionless as ice;
Its dizzy turbulence eludes the eye"

William Wordsworth, Address to Kilchurn Castle.

Voor mijn ouders
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Chapter 1

Introduction

An aqueous foam consists of gas bubbles dispersed in water which con-
tains a stabilising agent (surfactant). Despite the simplicity of its compo-
sition, the properties of a foam are in general quite complex [1]. The static
structure and the ageing of a foam is reasonably well understood, while
the behaviour of foams under forcing, i.e. the elasticity and the rheology,
has only recently received attention. This is at least partly due to the intro-
duction of the jamming phase diagram [2], which has lead to an upsurge
of experimental and theoretical work in the entire field of soft condensed
matter physics. The rheology of foams, and of emulsions, which are very
closely related to foams but consist of bubbles of an immiscible fluid phase
instead of a gas, is expected to obey this jamming picture and the absence
of solid friction in both systems would allow for a connection between
experiment and simulations.

To investigate foam rheology and connect the bulk behaviour with the
motion of the individual bubbles, we will investigate monolayers of foam
bubbles which float on the surface of a surfactant solution and which allow
for direct imaging of the constituent particles.

However, in order to be able to understand the rheology of foams it is
necessary that we first understand the microscopic origin of the rheologi-
cal properties of individual bubbles. Only then can we try to understand
the collective behaviour of collections of these bubbles. The following
treatment is focussed on foams, but is equally well valid for emulsions,
except for a few details, which are discussed in section 1.4.2.
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1.1. MICROSCOPICS: FOAM FILMS, STABILITY

1.1 Microscopics: Foam films, stability

In this section we discuss the chemical components that make up a foam
and their influence on the various processes that lead to stabilisation and
structural evolution of a foam.

1.1.1 Surfactants and surface tension

Figure 1.1: (a) Surfactant molecules adsorbed at the interface. At the CMC the
surface is maximally covered by surfactant molecules and micelles start to form.
(b) Langmuir adsorption isotherm, relating the surface concentration Γ to the
bulk concentration C [3].

Foam bubbles are generally stabilised against rupture and coalescence
by a special class of molecules called surfactants (surface active agents).
These molecules consist of a hydrophilic (polar) head group and a hy-
drophobic (apolar) tail. When these molecules are dissolved in the water
phase they spontaneously adsorb at the interface. The head group sits in
the water phase and the tail points towards the oil phase (in case of an
emulsion) or the gas phase (in case of a foam). As a result the surfactant
molecules lower the surface tension σ of an interface, which can be under-
stood as follows: a surface energy arises because the water molecules at
the interface are missing bonds. The liquid seeks to minimise the excess
energy associated with these missing bonds and hence minimises its sur-
face area, leading to a surface tension. The surfactants lower the excess
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CHAPTER 1. INTRODUCTION

Figure 1.2: Static and dynamic foam stabilisation: (a) electrostatic and (b) steric
repulsion of the surfactant monolayers provide static foam stabilisation while (c)
dynamic stabilisation against fluctuations is guaranteed by the Marangoni effect,
which is the coupling between surface tension gradients and flow in the liquid.

energy of missing bonds and hence lower the surface tension.

Besides being polar, the headgroup of a surfactant molecule can be
charged or uncharged. Charged surfactants are called ionic surfactants
and either have a negatively (anionic), a positively (cationic), or both neg-
atively and positively (amphoteric) charged head group. A much used
anionic surfactant is Sodium Dodecyl Sulfate (SDS). Uncharged surfac-
tants are called non-ionic surfactants. An often used non-ionic surfactant
of low molecular weight is polyoxyethylene sorbitan monolaurate, which
is better known under its trade name Tween 20. Other important classes
of non-ionic surfactants are the synthetic polymeric surfactants such as
Pluronic and the natural polymeric surfactants (proteins) such as Bovine
Serum Albumin and Casein.

The surface tension σ, the bulk concentration C and the surface con-

3



1.1. MICROSCOPICS: FOAM FILMS, STABILITY

centration Γ are related through the Gibbs-Duhem equation for the sur-
face phase [3]:

dσ = ΓkBTd(lnC). (1.1)

In order to calculate σ(C), a model adsorption isotherm is chosen, such as
the Langmuir adsorption isotherm shown in Fig. 1.1(b) :

Γ(C) = Γmax
KC

1 + KC
, (1.2)

where K is an adsorption constant. Eq. (1.1) can now be integrated to
obtain the dependence of surface tension on bulk concentration.

When increasing the surfactant concentration in the liquid phase (the
bulk concentration C), the surface concentration increases according to
Eq. (1.1) until the bulk concentration reaches the critical micelle concen-
tration (CMC). By further increasing the bulk concentration, the surfac-
tant molecules form micelles which are spherical shapes or bilayers with
the polar heads pointing towards the surrounding liquid and the apolar
tails grouped together and shielded against interaction with the fluid by
the heads, see Fig. 1.1, in order to minimise binding energy. At the CMC,
the chemical potential for surfactants to adsorb at the surface or form mi-
celles is equal and for concentrations above the CMC, the surface con-
centration can only be increased and hence the surface tension can only
be reduced by decrasing the repulsive interaction between the surfactant
molecules, for instance by adding electrolyte such that the molecules pack
closer at the surface.

The Gibbs surface elasticity, which is in fact a two dimensional elastic
modulus (units N/m) and is given by [3]

EG = − dσ

d(lnΓ)
, (1.3)

describes the response of the surface tension to variations in the surface
concentration. A surfactant layer with a high Gibbs elasticity experiences
large changes in surface tension for small variations in surface concen-
tration. Local fluctuations in the surface concentration are energetically
strongly unfavourable and result in large stresses. For such a surfactant
layer, these fluctuations will mainly be damped by the Marangoni effect,
which is the flow of fluid from regions of low surface tension to regions of
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CHAPTER 1. INTRODUCTION

high surface tension as a result of the coupling of the surface stress to the
fluid below through viscosity.

In order to be able to understand how surfactants stabilise foams we
now have to consider the thin soap film between two neighbouring foam
bubbles. The thin film consists of two monolayers of surfactant molecules
with the bulk phase in between. Both in ionic and in non-ionic surfactants,
static stabilisation is achieved by repulsive forces between the surfactant
monolayers. For ionic surfactants the repulsive force is electrostatic and
is caused by the charged groups at the interfaces , whereas for nonionic
surfactants, static stabilisation is achieved by a steric repulsion, which is
due to the overlap of the polymer chains, see Fig. 1.2 (a,b).

Dynamic stabilisation against fluctuations in the film thickness is en-
sured by the Marangoni effect, see Fig. 1.2 (c). If the film locally thins it
curves inwards, its area locally increases and the surface tension becomes
higher at the dimple but the resulting bulk flow towards the dimple re-
stores the equilibrium thickness. A dimple (thicker region) in the film
will by the same mechanism grow further, but the diffusion of surfactant
molecules to the dimple will eventually stop this.

1.1.2 Microscopic nature of foam evolution

When no mechanical forcing is applied, foams evolve due to drainage,
coarsening and coalescence. Drainage is caused by gravity which leads to a
downward flow of the liquid phase, coarsening is caused by gas diffusion
between neighbouring bubbles, while rupture of the flat films may cause
coalescence between bubbles. We will now discuss how these processes
are affected by the constituents of the foam.

Drainage. An increase of viscosity of the liquid phase, for instance by
adding glycerol, can help to decrease the drainage velocity, but the speed
at which a foam drains is mainly affected by the composition of the surfac-
tants at the interfaces. We have introduced the Gibbs elasticity above, and
connected to this we can define a surface elastic modulus as well as a sur-
face viscosity that describe the energy cost of the stretching and shearing
of interfaces. These moduli depend on how easily surfactant molecules
diffuse from the bulk to the interfaces and vice versa, and the interfaces
are either said to be mobile (low EG, ≈ 0 mN/m) or immobile (high EG,
≈ 50 mN/m). A flow of bulk liquid along a soap film couples to the sur-
factant molecules and results in surface tension gradients. If the film is
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1.1. MICROSCOPICS: FOAM FILMS, STABILITY

Figure 1.3: (a) Plug flow of liquid in thin film due to mobile surfactants: the flow
slips with respect to the foam films. (b) Poiseuille flow of liquid in thin film due
to immobile surfactants: the liquid experiences a no-slip boundary condition at
the foam films and energy is dissipated in the shear flow near the interface.

stabilised by mobile surfactants, an uniform surface tension can easily be
restored by diffusion of bulk surfactant molecules to the interface and dif-
fusion on the surface of adsorbed molecules. There is little dissipation at
the interfaces and the liquid exhibits plug flow. Immobile surfactants have
a far lower diffusivity and resist flow, so the liquid flow velocity decreases
steeply close to the interface, resulting in high dissipation and a Poiseuille
flow profile. Foams stabilised by immobile surfactants hence drain much
slower than foams stabilised by mobile surfactants. At the end of the 90’s,
a controversy between foam researchers at Harvard [4] and Trinity Col-
lege [5] in Dublin over the drainage velocity in foams was resolved only
when they realised that the different experimental results might well be
due to the different dishwashing liquids used. Indeed, it turned out that
the American brand Dawn has a lower surface viscosity, which is a quan-
tity that phenomenologically describes the influence of a high Gibb’s elas-
ticity in the film, than its European counterpart Fairy (known as Dreft in
the Netherlands).

Coarsening. The diffusion of water soluble gasses through the thin soap
films separating bubbles leads to coarsening. This is because the capillary
pressure inside the smaller bubbles in a foam is higher than in the larger
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CHAPTER 1. INTRODUCTION

bubbles (see section 1.2.2), so that gas will mainly diffuse from the smaller
to the larger bubbles. As a result, the larger bubbles will grow while the
smaller bubbles shrink. A common choice of gas to slow down the coars-
ening process is C2F6, which is almost insoluble in water. A much more
soluble but frequently used gas is N2, which still performs better than air
and CO2 which easily diffuse through the foam films. Note that diffu-
sion by soluble gases can be halted by the addition of only trace amounts
of insoluble gases: the soluble gasses easily diffuse from the smaller to
the larger bubbles, but since the insoluble gasses remain where they are,
the concentration of insoluble gas in the smaller bubbles increases, which
quickly leads to a balancing diffusion from the larger to the smaller bub-
bles to restore the equilibrium in gas concentration between the bubbles.
This is the same mechanism that drives osmosis in cells.

Coalescence. Bubbles end their existence by rupture or coalescence
with a neighbour. If the films become thin due to drainage, thermal fluctu-
ations will eventually lead to fluctuations in the film thickness that cannot
be restored anymore and will lead to rupture of the films. A way to pro-
mote rupture is by adding anti-foaming agents to the foam. These consist
of oil droplets or solid particles that attach to the thin films and then due
to their wetting properties, lead to a retraction of the foam film and hence
to rupture. Trying to do the laundry with dishwashing soap will, due to
the absence of anti-foaming agents, result in large amounts of foam in and
around your washing machine. However, this could be avoided simply by
adding some cooking oil.

1.2 Mesoscopics: Shape, Forces and Pressures

In the following section, we will consider the various pressures and forces
that are exerted on single bubbles and foam films. We will begin by stating
the rules describing a static foam configuration. Then we discuss how
bubbles are deformed by compression of other bubbles or by drainage of
liquid from the foam, and we discuss the forces that a bubble experiences
when it is moving with respect to another bubble or a solid wall. We
finally discuss the flotation forces that bubbles experience when floating
at an interface, and that hence only apply to two-dimensional foams.
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1.2. MESOSCOPICS: SHAPE, FORCES AND PRESSURES

Figure 1.4: (a) The first and second rule of Plateau illustrated with a dry foam.
Any three soap films meet at 120◦ angles, while three of such vertices meet in a
fourfold node at an angle of 120◦. (b) The same view, but for a wetter foam: the
Plateau borders are decorated with circular segments .

First we need to introduce the bubble volume fraction φ defined as:

φl =
Vg

Vl + Vg
, (1.4)

with Vl and Vg are the volumes of liquid and gas respectively. In foam
research people often use the liquid fraction φl = 1 − φ to characterize
their foam. Note that we will use the volume fraction φ throughout this
work, to facilitate the connection with simulation results and granular ex-
periments. A wet foam contains a high volume fraction of liquid and the
bubbles are only weakly deformed. A typical volume fraction for a com-
mercial three-dimensional foam such as Gilette shaving foam is φ = 0.80.
At φ = 0.64 the foam loses its rigidity (unjams) [6, 7] and for yet lower φ
one speaks of bubbly liquids. A dry foam consists essentially of a network
of thin films and typically φ ≈ 0.99.

For three-dimensional foams, this liquid fraction is a well defined quan-
tity. However, both experimentalists and theorists often retreat to two
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CHAPTER 1. INTRODUCTION

dimensions [8–12] to study foams. The question is whether a two-dim-
ensional liquid fraction can be defined as well. In numerical studies of
two-dimensional foams, where the bubbles are represented by discs, this
is no problem. Experimentally, however, this geometry is only achievable
with Langmuir foams, which are monolayers of molecules that float at
the surface of a liquid and aggregate into two dimensional discs. Due to
the simplicity of production and imaging, physicists often prefer to work
with monolayers of foam bubbles instead. However, these bubbles extend
in three dimensions and since they are more or less spherical, a two-dim-
ensional liquid fraction would strongly depend on the height at which one
decides to make a slice through the bubble layer.

In this thesis we describe work performed with two-dimensional foams.
We will describe the characterisation of φ in quasi two-dimensional foams
in much more detail in chapter 4, and we will also show that in order to
convincingly explain our findings we have to take into account the physics
at the (three dimensional) bubble scale.

1.2.1 Plateau rules

We consider a three dimensional dry foam to establish the geometric rules
at equilibrium, see Fig. 1.4(a) which where first described by Joseph Pla-
teau. The first rule states that exactly three soap films always meet at so-
called Plateau borders at angles of 120◦. The second rule states that four
of these Plateau borders meet at nodes under angles of 109.47◦. These
rules are a direct consequence of the fact that the surface tension of all
films should balance at equilibrium. If we consider a two dimensional
foam, i.e., a collection of lines that are pulled by surface tension, only
Plateau’s first rule applies. For slightly wetter foams, Plateau’s rules still
hold exactly, but the vertices are "decorated" with curved segments that are
dictated by the Laplace pressure across the film. For still wetter foams the
decorations of the vertices start to overlap and Plateau’s rules no longer
apply: for example, fourfold vertices become stable [1].

1.2.2 Capillary and Disjoining pressure

The shape of a liquid-gas interface is governed by the Laplace equation,
which relates the pressure drop across the interface — which is called the
Laplace or capillary pressure — to the surface tension σ and the principal

9



1.2. MESOSCOPICS: SHAPE, FORCES AND PRESSURES

radii of curvature R1 and R2 of the interface:

Figure 1.5: Illustration of surface element under a pressure gradient. If the sur-
face curves the perpendicular component of the force due to surface tension can-
cels the pressure gradient.

Pc = Pgas − Pliq = σ(
1

R1
+

1
R2

). (1.5)

This equation can be understood by considering an infinitesimally small
surface on which surface tension acts and along which a pressure gradient
∆P exerts a force, see Fig. 1.5. The resulting force ∆PRxdθxRydθy can
only be balanced by a surface tension if the surface is curved. In that case
the out of plane component of the force due to surface tension balances the
pressure gradient.The restoring forces due to the surface tension pulling
in the x and y directions are given by:

Fx · σ sin dθx = Rydθy · σ sin dθx ≈ Rydθy · σdθx, (1.6)

Fy · σ sin dθy = Rxdθx · σ sin dθy ≈ Rxdθx · σdθy . (1.7)

Balancing the force due to the pressure gradient with the restoring force
due to surface tension yields:

∆P =
Fx + Fy

RxdθxRydθy
, (1.8)
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CHAPTER 1. INTRODUCTION

and since Rx = R1 and Ry = R2 we arrive at Eq. (1.5). For a spherical
bubble R1 = R2 and the capillary pressure reduces to:

Pc =
2σ

R
. (1.9)

The consequence of Eq. (1.9) is that the gas pressure inside bubbles is
inversely proportional to their size, which leads to diffusion from the
smaller to the larger bubbles. This is the mechanism behind coarsening.
An elegant and rigorous derivation of Eq. (1.5) is given in chapter 2 of [3].
A few additional remarks about the radii of curvature are made in Ap-
pendix 1.A.

One other pressure plays an important role at gas-liquid interfaces,
and to introduce it let us consider a bubble that is pressed against a solid
wall by some external force(See Fig. 1.6(a)). A flattened film results, of
which we will determine the size as a function of force in Section 2.2.1,
and for small deformations the pressure inside the bubble is still deter-
mined by the undeformed radius of the bubble:

Pgas = Pliq + Pc = Pliq +
2σ

R
. (1.10)

At the flattened film the radius of curvature R is infinite and hence the
capillary pressure is zero. There Eq. (1.10) cannot hold and a new force
comes into play once the distance between the bubble and the wall be-
comes sufficiently small. At the film this disjoining pressure Π, which is
a function of the film thickness h, balances the pressure difference across
the surface:

Pgas = Pliq +
2σ

∞ + Π(h). (1.11)

The disjoining pressure results from the attractive and repulsive forces in
the thin film, of which the electrostatic and steric repulsion have already
been mentioned. An overview of surface forces that can contribute to the
disjoining pressure is given in [13]. For aqueous films the disjoining pres-
sure is often a superposition of electrostatic repulsion and a van der Waals
attraction. A typical shape of the Π(h) dependence in this case is shown in
Fig. 1.6(b). For very short distances a short range Born repulsion is added.

From Eq. (1.11) it is clear that at equilibrium Pc = Π(h) so the equi-
librium film thicknesses are given by the roots of this equation. As shown
in Fig. 1.6(b), there are three equilibrium film thicknesses. At point 1, the

11



1.2. MESOSCOPICS: SHAPE, FORCES AND PRESSURES

Figure 1.6: (a) Pressure balance for deformed bubble, pushed against a solid
boundary by buoyancy. At the flattened facet the radius of curvature is ∞ and
Pc needs to be balanced by a disjoining pressure Pi. (b) Disjoining pressure
isotherm. The horizontal line corresponds to equilibrium film thicknesses. Point
1 and 2 represent common and Newton black film thicknesses.

film is called common black film and there it is stabilised by double layer
repulsion. A common black film is defined as being at least thinner than
1/4 of the wavelength of visible light but thicker than 7 nm. Point 2 is
an unstable equilibrium and is never observed in experiment and Point 3
corresponds to the Newton black film, which is stabilised by the short range
Born repulsion. Newton black films are thinner than 7 nm.

1.2.3 Bubble deformation

Bubble deformation by compression

If a bubble is pressed against another bubble or a solid or liquid interface,
at equilibrium (or quasi-equilibrium) the driving force is balanced by the
disjoining pressure in the resulting thin film [14]:

πr2
cΠ = F, (1.12)

where πr2
c is the area of the flat film. Note that at quasi-equilibrium, for a

thinning film, this disjoining pressure can also contain a viscous pressure
contribution. The liquid and gas pressures cancel when integrated over
the bubble surface and do not result in forces. In principle a transver-
sal tension, which is due to the surface tension imbalance at rc (where
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CHAPTER 1. INTRODUCTION

the bubble surface curvature suddenly changes) should be included in
Eq. (1.12). However, this tension is generally considered to be negligibly
small [3, 14].

In Fig. 1.6(a) the bubble is driven upwards by buoyancy and the force
balance reads:

πr2
cΠ = F =

4
3
πR3

0∆ρg, (1.13)

with R0 the bubble radius, ∆ρ the density difference between gas and liq-
uid phase and g the gravitational acceleration.

We will now derive an expression for the force on the bubble in terms
of measurable quantities such as the bubbles radius R0, the surface ten-
sion σ and the radius of the deformed facet rc. From Eq. (1.11) we know
that for small rc, such that the gas pressure remains constant, the dis-
joining pressure Π is balanced by the capillary pressure Pc. We can thus
rewrite Eq. (1.12):

F = πr2
cPc = πr2

c

2σ

R0
. (1.14)

In an experimental situation [15, 16] the interparticle force Fij , which is
the sum of the forces Fi on particle i and Fj on particle j, can hence be
deduced from the size of the flattened film separating the two bubbles
pressing against each other by the above reasoning (See Fig. 1.7):

Fij = Fi + Fj = πr2
cΠ = πr2

c [(Pc)i + (Pc)j ] = πr2
c2σ

Ri + Rj

RiRj
. (1.15)

The compressive force can be related not only to the area of the de-
formed facet, but also to the deformation itself, through a force law. To
extract this force law for the bubbles, we can consider the deformation
δξ [17], where ξ = (R0 − Z)/R0 is a dimensionless measure of compres-
sion (See Fig. 1.8). For small deformations, to linear order in δξ:

r2
c ≈ 2R2

0δξ. (1.16)

We can now insert this in Eq. (1.14) and obtain

F ≈ 4πσR0δξ. (1.17)

To good approximation, the interaction between bubbles can thus be taken
as a repulsive harmonic potential. If a bubble is compressed by many
neighbouring bubbles and the deformed surface area becomes large, this
approximation breaks down and the interbubble interaction becomes stif-
fer than harmonic [17].
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1.2. MESOSCOPICS: SHAPE, FORCES AND PRESSURES

Figure 1.7: Illustration of the relation between force on bubbles and deformed
facet: the exterted forces Fi, Fj are balanced by the disjoining pressure Π, which
can be expressed in terms of the Laplace pressure Pc.

Bubble compressed by buoyancy

If a bubble is trapped under a solid boundary and pushed upwards, and
hence deformed by gravity, we can extract rc by combining Eqs. (1.13) and
(1.14), provided that the bubble radius is smaller than the capillary length
κ−1 =

√
σ
ρg . In this case we find:

rc =

√
2
3

R2
0√
σ
ρg

=

√
2
3

R2
0

κ−1
. (1.18)

However, when the bubble radius is larger than κ−1 the bubbles adopt a
"pancake" shape with the length of the short axis given by 2κ−1. In that
case the contact radius can be found by considering that the bubble vol-
ume is conserved after deformation: 4

3πR3
0 = 2πr2

cκ
−1. Hence:

rc =

√
2
3

R
3/2
0

κ−1/2
. (1.19)

These scalings were measured to hold approximately in [18] but here
we will show they are exact and excellently match experimental data. We
measured the contact radius as a function of R0, by blowing N bubbles
of a certain radius R0. Since the bubbles are not spherical as they float at
an interface, we determine this radius by measuring the amount of space
they occupy in an upright tube of 1x1x20 cm, see Fig. 1.9(b). We then tilt
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Figure 1.8: Pressure balance for deformed bubble: the dimensionless overlap
ξ ≡ (R0 − z)/R0 can be expressed in terms of rc.

the tube by 90 degrees and measure rc by looking at the reflection of a
light source by the flattened facet. We used Dawn as surfactant, for which
we measured σ = 28±1 mN.m−1. The results are plotted in Fig. 1.9(a): the
theoretical expression fits excellently to the data for κ−1 = 1.62±0.02 mm,
which is within error bars to the result κ−1 = 1.64 ± 0.06 mm obtained
from measuring σ.

Finally we remark that if the density difference between the bubble
phase and the liquid phase is small (as can be the case for emulsions),
bubbles remain essentially undeformed. This can easily be seen from
Eq. (1.18): rc scales quadratically with bubble radius.

Bubble deformation by drainage

Liquid mainly drains from the foam via the Plateau borders. As a con-
sequence, due to the decreasing liquid fraction, the foam bubbles deform
and the Plateau border radius of curvature decreases, see Fig. 1.10, re-
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r
c

Figure 1.9: (a) Measured dependence of the radius of the flattened contact nor-
malised by the capillary length versus the undeformed bubble radius normalised
by the capillary length. Solid lines are the theoretical results from Eqs. (1.18) and
(1.19) for κ = 1.62 mm.

sulting in an increase in the capillary pressure. To good approximation,
the gas pressure inside the bubbles remains constant and hence the liq-
uid pressure in the Plateau border must decrease to satisfy the Laplace
equation. The resulting pressure gradient between the foam films and the
Plateau border causes liquid to be sucked from the thin films separating
the bubbles, where the liquid pressure is higher, to the Plateau border
where the pressure is lower, which leads to thinning.

1.2.4 Viscous drag forces

Bubbles that move with respect to other bubbles or a wall experience vis-
cous drag forces due to the resistance to flow of liquid in the thin films
separating the bubble from a neighbour or a wall. This resistance to
flow is linked to the concepts of surface elasticity or viscosity we have
introduced before. The interaction between a moving bubble and a wall
has been extensively studied, both theoretically [19–21] and experimen-
tally [18, 20–22]. The frictional force Fbw turns out to scale as:

Fbw ∝ (Ca)n, (1.20)
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Figure 1.10: Due to drainage of the fluid the Plateau border radius of curvature
decreases. This leads to a decrease in the liquid pressure and as a result, liquid is
sucked from the films, leading to thinning.

with Ca the capillary number, describing the ratio of viscous and surface
tension contributions to the force, given by (Ca) = ηv/σ, with, η the vis-
cosity, v the relative bubble speed and σ the surface tension. The power
law index n depends on the mobility of the surfactants that stabilize the
foam films: for mobile bubble surfaces, i.e for bubble surfaces that have
very low EG, n = 2

3 , whereas for immobile surfaces (where EG is high)
n = 1

2 [20]. The model can be refined further by including the liquid
fraction of the foam in terms of the relative size of the deformed film sep-
arating the bubble and the wall: rc/rPB , where PB denotes Plateau border.
For all practical purposes though, the viscous drag can be assumed to scale
as in Eq. (1.20) with n somewhere between 1

2 and 2
3 .

The viscous friction between bubbles sliding past each other is much
less studied, and is often taken to scale linearly with the velocity differ-
ence between bubbles [10, 23]. A theoretical study of the viscous drag
in dry monodisperse foams under shear yields a viscous drag force that
scales with Ca2/3 [24], hinting that the mechanism of viscous dissipation
between bubbles that slide past one other is the same as for a bubble slip-
ping past a wall. A very recent theoretical analysis of layers of bubbles in
an ordered bcc structure [25], reveals that for immobile foams the viscous
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drag force between bubbles scales as:

Fbb ∝ (Ca)0.5. (1.21)

We will come back to the scaling of the viscous dissipation in much greater
detail in Chapter 2.

1.2.5 Capillary forces on floating bubbles

Bubbles floating at an air/water interface will in general experience lateral
forces due to the fact that neighbouring bubbles deform the water surface.
The origin and functional form of these forces will be discussed in the next
section. The derivation is most easily carried out for solid particles, but is
equally valid for foam bubbles and emulsion droplets. The deformation
of an interface ζ(x, y) in the vicinity of a floating particle is due to the
requirement that the surface tension balances with gravity while simul-
taneously the interfacial tensions balance at the three-phase contact line.
This requires the liquid phase to meet the particle under a certain angle,
which results in a deformation of the surface.

Flotation forces

Two types of lateral capillary forces exist, of which we present an overview
in Fig. 1.11: a capillary flotation force, which is caused by the deformation
of the liquid interface due to the weight (or buoyancy) of a floating body
and a capillary immersion force, which occurs if particles are partially
immersed in a liquid layer and which is due to wetting of the particle.
Both forces are attractive if the contact angles at the particles are of the
same sign, and repulsive if they are of different sign.

Since our particles float at the surface of a deep basin of soapy solution,
for our system the only relevant capillary force is the flotation force. To
calculate this force we follow [3]. In this book the authors provide an ex-
cellent summary of work performed by Kralchevsky and co-workers that
expands and refines the approach first taken by Nicholson [26], which is
called the linear superposition approximation (LSA).

Consider a particle floating at the interface between two immiscible
fluids. The origin is fixed at the particle position. The force due to gravity
(which consists of the particle weight as well as buoyant forces) is bal-
anced by the vertical component of the surface tension integrated over the
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Figure 1.11: Flotation and immersion forces compared. Depending on the con-
tact angle, the forces can either be attractive or repulsive. Foam bubbles will
always attract, as in (a). Figure taken from [3].

three-phase contact (tpc) line, as is shown in Fig. 1.12:

Fg(1) = 2πσr1 sinψ1, (1.22)

where r1 i the radius of the tpc line. Now we bring in particle 2 from infin-
ity (ζ = 0) to a distance L, where it is located at ζ(L) below the horizontal
plane due to the meniscus created by particle 1. The work carried out by
the gravitational force to bring particle 2 from z = 0 down to z = −ζ(L)
is:

∆Wg = −Fg(2)ζ(L) = −2πσr2 sinψ2ζ(L). (1.23)

Introducing the capillary charge Q ≡ r sinψ this can also be written
as:

∆Wg = −2πσQ2ζ(L). (1.24)

Thus, before we can obtain the force on the particle from W we first
have to find an expression for the meniscus deformation around particle
1. This deformation is given by Eq. (1.51) in appendix 1.A:

∇II ·
(

∇IIζ√
1+ | ∇IIζ |2

)
= [P2(ζ)− P1(ζ)]/σ, (1.25)
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Figure 1.12: The force balance for a heavy spherical particle: the force due to
gravity acting on the particle is balanced by the vertical component of the surface
tension integrated over the three-phase contact line.

with

∇II ≡ ex
∂

∂x
+ ey

∂

∂y
. (1.26)

If the buoyant and gravity forces are considerably smaller than the inter-
facial tension force, that is, if the Bond number ρgR2/σ < 1, the surface
deformations around the particle are small [27]. In this case | ∇IIζ |2
becomes negligible and equation 1.51 reduces to:

∇2
IIζ = [P2(ζ)− P1(ζ)]/σ. (1.27)

Now the pressures at both sides of the interface ζ can be expressed in the
following form [27]:

P1(ζ) = P
(0)
1 − ρ1gζ, P2(ζ) = P

(0)
2 − ρ2gζ. (1.28)

Here ρ1 and ρ2 are the densities of the respective fluid phases, and P
(0)
1,2

are the pressures of the respective fluid phases at ζ∞ = 0. Inserting 1.28
in 1.27 we end up with:

∇2
IIζ = κ2ζ, κ2 =

∆ρg

σ
, ∆ρ = ρ1 − ρ2, (1.29)

where qκ is the inverse capillary length encountered before, κ =
√

∆ρg
σ .
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If this equation is written in cylindrical coordinates it reduces to the
modified Bessel equation, whose solution is for small meniscus slope [28]:

ζ(r) = AK0(κr) (1.30)

with K0 a modified Bessel function of zeroth order. The constant A can be
determined [29]: A = r1sinψ1 = Q1 with ψ the three phase contact angle.

Inserting Eq. (1.30) in Eq. (1.24) we end up with

∆Wg = −2πσQ1Q2K0(κL). (1.31)

Now, we know that

F = −d∆Wg

dL
;

dK0

dx
= −K1(x), (1.32)

so the capillary flotation force obeys:

F = −2πσQ1Q2κK1(κL). (1.33)

It is intrinsic to the approximation that the LSA loses its validity for
small inter-particle distances. It has been claimed in [30] that the LSA
considerably underestimates the capillary attraction. However, recent nu-
merical calculations [28] have shown that for small slope angles, the linear
superposition approximation remains valid within 2 % up to particle con-
tact. The authors furthermore show that for many particle systems, the
forces are pair-additive.

Dependence of flotation force on particle size

The linearisation of Eq. (1.51) is only allowed if R2
0κ

2 ¿ 1. This condition
is found by equating Fg with the surface tension force, as described above.
For an air/water interface κ−1 = 2.7 mm. Furthermore it is shown in
section 8.1.2 of [3] that: Q ∝ R3

0, with R0 the droplet radius. Therefore
the R0 dependence for the flotation force is:

F ∝ (R6
0/σ)K1(κL) (1.34)

This means that for bubbles close to each other a decrease of the surface
tension, for instance by adding surfactant, increases the force. On the
other hand the long range force, which is hidden in the Bessel function,
then decreases. It also implies the flotation force becomes smaller than kT
and thus smaller than the Brownian force for R0 < 5-10 µm.
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Figure 1.13: ( (a) T1 process in a 2D foam: the film between bubbles 2 and 4
shrinks to 0, after which the unstable fourfold vertex is resolved by creating a
new film between bubble 1 and 3. (b) T2 process in a 2D foam: a small bubble
located at the vertex of three larger films disappears due to coarsening.

1.3 Macroscopics: structure, rearrangements and rhe-
ology

This section deals with the macroscopic behaviour of a foam under exter-
nally imposed stresses or strains. We will explore connections between the
micro- and mesoscopic concepts introduced before and the macroscopic
behaviour.

1.3.1 Foam structure

If one blows bubbles of one size on the surface of a soapy solution, the
bubbles will, due to the flotation forces discussed above, attract and order
in a hexagonal packing [31]. A foam consisting of same-sized bubbles
is called a monodisperse foam and will order for bubble size variation
(polydispersity) up to 10%. For larger polydispersity, a disordered foam
results.

In the beginning of Section 1.2 we briefly discussed the volume frac-
tion φ. For a two-dimensional hexagonal packing of discs, the jamming or
rigidity loss point is at φ = 0.909 [32]. A disordered disc packing, however,
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jams at φ = 0.842 [33]. Although in real foams bubbles mutually attract
and are three-dimensional objects, we include these numbers here to high-
light the structural differences between ordered and disordered foams.

A three-dimensional disordered foam unjams at φ = 0.64, but a three-
dimensional monodisperse foam will again form crystalline lattices at
much higher volume fractions, depending on the lattice structure, which
can be either FCC or BCC [34].

1.3.2 Structural rearrangements and visco-elastic behaviour

The response of a bubble to deformations and the viscous dissipation be-
tween two bubbles during flow was discussed in section 1.2. How these
forces at the bubble scale translate to the bulk scale is largely unknown
and constitute the focus of this thesis, but as a result of the interplay of
these nonlinear interactions and the disordered flow of the foam, the bulk
response of a foam is highly nontrivial. For small applied strains, bub-
bles want to restore their equilibrium surface area, and foams respond
elastically, i.e.like a solid [1]. If the strain is increased the foam deforms
plastically: it relaxes the stresses through bubble rearrangements [1, 32].
For large and continuously applied strains, the foam flows irreversibly
with bubbles rearranging continuously [35, 36]. The flow of foams is of-
ten measured in oscillatory rheological measurements [7,37,38] and fit to
certain flow models, which we will describe in the following section.

For a dry foam the bubble rearrangements through which a foam flows
are well defined, and two elementary topological processes have been
identified that drive the structural evolution of the foam: the T1 and T2
processes, see Figs. 1.13(a)+(b). A T1 process denotes the neighbour swap-
ping of bubbles and is most easily explained for a two dimensional foam,
see Fig. 1.13(a): the facet between bubbles 2 and 4 shrinks to zero, result-
ing in a fourfold vertex. In such a vertex the surface tensions cannot be
stably oriented; this instability is resolved with the creation of a new facet
between bubble 1 and 3. The T2 process corresponds to the disappearance
of a small bubble located at a vertex due to coarsening, see Fig. 1.13(b),
and is hence not connected to stress induced evolution of the foam. For
wet foams, topological rearrangements seem less well defined, although
attempts have been made to treat wet foams within this picture of topo-
logical rearrangements by simply considering a wet foam as a dry foam,
the vertices of which are decorated with circular arcs [32, 39]. It remains
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an open question whether considering the flow of foams entirely through
T1 processes is a valid tool for realistic, experimental foams.

Elastic, viscous and visco-elastic response

For an elastic medium, the shear stress τ and the shear strain γ are related
through:

τ = Gγ, (1.35)

with G the shear modulus. For a fluid that is sheared between two plates
with a strain rate γ̇ the relation between stress and strain reads:

τ = ηγ̇, (1.36)

with η the viscosity.
As was discussed before, foams exhibit both solid and liquid proper-

ties and are hence said to be visco-elastic materials. The simplest way
to describe this visco-elastic behaviour in terms of a relation between the
strains and the stresses is by simply combining both expressions for the
stresses. The two simplest procedures to do so are due to Kelvin and
Maxwell and are obtained by modeling the elastic response by a spring
with stiffness G and the viscous response by a dashpot, characterized by
η. In the Maxwell model the spring and the dashpot are placed in series
and since the total strain is the sum of the strains on the dashpot and
spring, we can write:

γ = γ1 + γ2 =
τ

G
+

τ

η
· t. (1.37)

The Maxwell model captures the behaviour of a fluid under a step stress,
with an instaneous elastic response plus a permanent creep flow.

The Kelvin model models a different kind of response and can thus be
applied to different systems. In this model, the spring and the dashpot are
placed in parallel and this time the stresses over each element are added
up, resulting in:

τ = τ1 + τ2 = Gγ + ηγ̇. (1.38)

More complex models involve many springs and dash-pots, can deal with
both step stresses and step strains and are used to model more realistic
systems [40–43].
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Rheometry and complex shear modulus

If one is interested in the rheological response of a viscoelastic medium
over a wide range of time scales, sweeping a periodically varying strain
over many decades in frequency yields the desired information, as op-
posed to imposing a step strain or step stress as in the models discussed
above. Imposing a periodically varying strain:

γ = γ0 sinωt (1.39)

yields a stress:
τ = τ0 sin(ωt + δ). (1.40)

The phase shift δ can be understood by considering the response of purely
elastic material, for which δ = 0 , and that of a viscous fluid for which:

τ = ηγ̇ = ηγ0ω cosωt = τ0 sin(ωt +
π

2
), (1.41)

hence δ = π
2 . For a visco-elastic material, the phase-shift will be some-

where between 0 and π
2 and the stress can be written as:

τ = τ0 sin(ωt + δ) = (τ0 cos δ) sin ωt + (τ0 sin δ) cos ωt. (1.42)

This shows that there are two components to the stress, one in phase with
the deformation and one with a phase difference of 90◦. One then defines
the storage and the loss modulus G′ and G′′ as:

G′ = τ0
γ0

cos δ ≡ G0 cos δ, (1.43)

G′′ = G0 sin δ (1.44)

and write the stress as:

τ = γ0(G′ sinωt + G′′ cosωt). (1.45)

The storage modulus G′ is the amplitude of the in-phase component of
the response and is a measure of the energy that is reversibly stored in the
material, hence the elastic energy, while the loss modulus G” is the out-
of-phase component and denotes the viscous dissipation per oscillation.
Writing the strain as γ = γ0 exp(iωt), the complex shear modulus becomes:

G∗ = G′ + iG′′. (1.46)
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Constitutive equations

Rheometrical data are often fit to constitutive equations. For Newtonian
fluids, the constitutive equation is simply Eq. (1.36). However, to account
for the solid-like behaviour, foam rheology is often fit to the Bingham
model [44], which accounts for the experimentally observed fact that be-
low a certain stress, called the yield stress, the foam does not flow but
responds elastically. The Bingham model reads:

τ = τY + µγ̇, (1.47)

with τY the yield stress and µ the consistency. The model has a linear
dependence of the stress with the strain rate, like a Newtonian fluid.

The Herschel-Bulkley model [45]is similar to the Bingham model, but
allows for a non-linear scaling of the viscosity:

τ = τY + µγ̇n. (1.48)

If n > 1 the material exhibits shear-thickening behaviour, that is, it becomes
more viscous the faster its driven. On the other hand, if n < 1, as is the
case for foams [20,46,47], the material is shear-thinning: it flows more eas-
ily for higher driving rates. While the inclusion of a yield stress term in
a constitutive equation describing foam rheology appears to be a natural
way to describe the elastic response of the system, a microscopic justifi-
cation for linear or non-linear scaling of the foam viscosity is at present
lacking.

1.4 Experiments and numerics on foams and emul-
sions

1.4.1 Experiments

The first experiments on foam and emulsion rheology stem from the eight-
ies, and since then physicists have mainly studied the rheology of three-
dimensional foams and emulsions in Taylor-Couette geometries [32, 35,
38, 46, 48–51]. While these measurements have shed light on the highly
non-trivial bulk properties of foams and emulsions, relationships between
bulk rheology and behaviour at the bubble scale remained elusive. Re-
cent results, obtained using novel imaging techniques such as DWS [52]
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x-ray tomography [53] and confocal microscopy [15, 16] start to elucidate
this highly non-trivial connection between local and bulk scale. However,
many questions remain unanswered, and we hope these can be addressed
by performing experiments on two-dimensional foams. An overview of
two-dimensional foam flow experiments is given in chapter 2.

1.4.2 Numerics

The numerical modeling of foam statics and rheology is carried out using
a wide variety of techniques, all of which capture part of the rheological
behaviour. One of the first simulations was carried out with the PLAT
code [33], in which a foam is constructed by creating a Voronoi tessella-
tion and relaxing it to equilibrium, all the while satisfying the Laplace
pressure equation for each bubble. The wetness is varied by repeating this
procedure while replacing the vertices by circular arcs, and finally this
foam of variable wetness is sheared. The strain is increased in small incre-
ments and the foam is allowed to relax to static equilibrium between each
increment. Such a foam is said to be in the quasistatic limit.

The structure of a dry foam can be generated by the surface minimi-
sation routine Surface Evolver, developed by Ken Brakke [54], which is
intrinsically quasistatic and which can be adapted to simulate shear flow
of dry foams. The vertex model [55] is also limited to dry foams, since
it models the Plateau-borders as straight lines, but it includes a linear
viscous dissipation in the foam films. The viscous froth model [56], de-
veloped recently, can be implemented either in the Surface Evolver frame-
work or in the PLAT code to explicitly describe the presence of confining
glass plates through a viscous drag force acting on the entire Plateau bor-
der.

The soft disc or bubble model [23, 57, 58] focusses on wet foam be-
haviour, as it models foam bubbles as spheres that repel each other har-
monically and experience a viscous drag proportional to their velocity dif-
ference when sliding past each other. It predicts a Bingham behaviour for
the rheology and since φ can be varied, it uncovers non-trivial scaling of
the bulk and shear moduli B and G with φ.

Finally, the cellular Potts model [59], in which bubbles are represented
by patches of numbers that obey certain rules involving the numerical
values of neighbouring patches, is well suited to simulate coarsening in
dry foams [60] and has in a few instances been modified to accomodate
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the simulation of shear flow [61].
These simulation techniques can each be used to model only parts of

the foam behaviour encountered in experiment. For instance, the distri-
bution of stress drops in bubble raft experiments has been found to be in
agreement with predictions made in the bubble model [8]. Foams simu-
lated as a collection of vertices — i.e a dry foam — in a Couette geometry
display shearbanding, both in quasistatic [62] simulations and in viscous
froth [11] simulations, similar to the flow behaviour observed in experi-
mental dry foams. In the viscous froth simulation, however, the exerted
rate of strain determines the location of the shearband (and hence of the
T1 events): for infinitely slow shear the T1’s are located at the cylinder
that is not rotated whereas for higher strain rates the T1’s are located close
to the rotating cylinder.

1.4.3 Differences between foams and emulsions

While emulsions and foams share many properties, these systems exhibit
a few differences, which we will now discuss At the smallest scale, the
interfacial rheology of the adsorbed monolayers of soap molecules is dif-
ferent because the fluid inside emulsions droplets can flow, hence dissipat-
ing energy [3], whereas in foams the air inside bubbles does not dissipate
energy.

Furthermore, experimentally three-dimensional emulsions can be ma-
de in such a way that they transmit light by index matching the bulk and
the dispersed liquid [15, 16]. As a result, the three-dimensional structure
can be probed directly with confocal microscopy. In addition, emulsion
droplets can also be density matched with the bulk fluid to eliminate of
the effects of gravity.

The main difference between emulsions and foams is due to the size of
the constituent particles: as a result of the way emulsions are produced,
and to meet stability requirements, emulsion droplets are often in the mi-
crometer size range, resulting in Brownian motion. At that scale emulsion
systems are most directly related to colloidal systems: for instance, they
undergo a glass transition at φ = 0.58 [46]

A phenomenon which occurs in emulsions is flocculation: in absence
of a confining pressure, emulsion droplets still deform and form extended
connected conglomerates called flocs, due to long-range attractive forces,
caused by depletion attractions [63]. Whether such a depletion attraction
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might exist in foams stabilised with surfactant solutions well above the
CMC is an open question. Finally a few remarks about differing jargon
between emulsions and foams: Coarsening is often called Ostwald ripening
in emulsions. Drainage is referred to as creaming.
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Appendix 1.A Laplace equation of capillarity

The shape of a liquid surface is governed by the Laplace equation of cap-
illarity, written here in Cartesian coordinates:

(1 + ζ2
y )ζxx − 2ζxyζxζy + (1 + ζ2

x)ζyy

(1 + ζ2
x + ζ2

y )3/2
= [P2(ζ)− P1(ζ)]/σ, (1.49)

where ζi denotes derivatives with respect to the i-th coordinate, Pj is the
pressure of phase j and σ is the interfacial tension. A very elegant deriva-
tion of (1.49) is given in chapter 2 of [3]. Writing the left hand side of
(1.49) more elegantly we arrive at:

2Hσ = P2(ζ)− P1(ζ) (1.50)

with H given by:

H ≡ ∇II ·
(

∇IIζ√
1+ | ∇IIζ |2

)
, (1.51)

∇II ≡ ex
∂

∂x
+ ey

∂

∂y
. (1.52)

H is a basic quantity in differential geometry called the mean curvature.
This quantity can also be expressed through the principle radii of curva-
ture of the surface R1 and R2:

H = −1
2

(
1

R1
+

1
R2

)
. (1.53)

Inserting this in (1.50) we recover the familiar form of the Laplace equa-
tion:

σ

(
1

R1
+

1
R2

)
= P2(ζ)− P1(ζ). (1.54)
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Chapter 2

Linear shear of two
dimensional foams

In this chapter, we first review recent research on the rheology of two di-
mensional foams. We then describe experiments to unravel the connec-
tion between local and global behaviour in a two-dimensional foam. To
this end we have focused on average velocity profiles in ordered and dis-
ordered two-dimensional foams which are covered by a glass plate, and
which are linearly sheared. We show that the shape of these profiles can be
understood by a model that takes into account viscous dissipation at the
bubble scale. We verify our claims by rheometrical measurements. Our
results strongly suggest that disorder leads to anomalous scaling of the
drag forces: for bidisperse two-dimensional foams, the functional form of
the averaged dissipation between bubbles differs markedly from the dis-
sipation between two bubbles moving with constant speed with respect to
each other.

2.1 Overview of the field

Experimentally, the rheology of three-dimensional foams (and emulsions)
has been studied extensively, mainly in oscillatory strain ( [37] and refer-
ences therein), but recently, the rheology of monolayers of foam bubbles
has received increasing attention [8,9,12]. Three experimental configura-
tions can be encountered in the literature: the bubble raft, see Fig. 2.1(a)
where bubbles float freely at the surface of a soapy solution [31], a liquid-
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Figure 2.1: Various geometries used in (quasi) two-dimensional foam rheology
experiments: (a) freely floating bubble raft, (b) bubble layer confined between
liquid surface and glass plate, (c) Hele-Shaw cell: bubble layer confined between
two glass plates.

glass setup where bubbles are sandwiched between a glass plate and the
surface of the soapy solution [64,65], see Fig. 2.1(b) and the Hele-Shaw cell,
see Fig. 2.1(c), where bubbles are squashed between two glass plates [9].

These configurations have a number of advantages over three-dimensi-
onal systems. First, drainage is absent since the systems extendo only in a
horizontal plane. Second, in contrast to three-dimensional foams, which
are opaque and which one can only probe with diffusive wave scattering
[37] and X-ray tomography [53], the position of all bubbles can be tracked
at all times. By doing so, one can investigate the connections between the
behaviour of the individual bubbles and the global flow.

In what follows we will describe experiments on the rheology of two-
dimensional foams, and therefore we will first discuss recent literature on
the rheological behaviour of the above-mentioned systems.

The determination of the static, elastic properties of two dimensional
foams, such as the scaling of the shear moduli with packing fraction, is
largely an unexplored terrain, even though much theoretical effort has
been devoted to precisely that part of foam physics [1]. Instead, experi-
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mentally, various groups have looked at shear startup and steady flow of
two dimensional foams [8, 9, 12, 66, 67]. The analysis of such experiments
comprises for a large part of a host of different statistical measures such as
the distribution of stress drops [8, 36, 71], statistical properties of bubble
motions such as velocity fluctuations [9, 68] and the spatial distribution
of T1 events [66, 69, 70]. While each experiment was analysed in a differ-
ent way, in all experiments averaged velocity profiles have been measured.
Due to the variation in experimental geometries that have been employed,
connecting results remains difficult, as we will discuss in the next section.

Figure 2.2: (a) Velocity profiles of bubble raft in Couette geometry (outer cylinder
rotating) for 2 different rates of strain: Ω = 5 × 10−3 (¥) and Ω = 8 × 10−4 (•).
Inset zooms in on region of discontinuity. Open symbols are not relevant in our
discussion (Figure reproduced from [68]). (b) Velocity profiles for bi-disperse
foam between two glass plates (inner cylinder rotating): φ = 0.95 (¨), φ = 0.85
(N), φ = 0.80 (•). Profiles are fitted with exp(−r/λ), the inset shows variation of
λ with 1− φ = φl (Figure reproduced from [9].)

Velocity profiles

The flow of foams has been studied in a Taylor-Couette geometry, which
consists of two concentric cylinders with the foam in between, in both the
Hele-Shaw [9] and bubble raft [8, 68] configuration. Lauridsen, Twardos
and Dennin [8,68,71] drove a polydisperse bubble raft by a rotating outer
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cylinder at low strain rates and measured the averaged velocity profile of
the foam and the stress on the inner cylinder as a function of strain rate.
The averaged velocity profile exhibits a discontinuity in the strain rate, see
Fig. 2.2(a): away from the outer (driving) wheel the azimuthal velocity is
constant and equal to the angular velocity of the outer cylinder, until at
some γ̇-dependent critical radius rc the velocity profile discontinuously
starts decaying. The decaying part was well fitted by with a velocity pro-
file expected for a Herschel-Bulkley fluid, for which we repeat the consti-
tutive relation here

τ = τY + µγ̇n, (2.1)

The authors find n = 0.45 for Ω = 8× 10−4 and n = 0.33 for Ω = 5× 10−3

[68]. In this experiment, the packing fraction φ was fixed at 0.9.
Debrégeas, Tabuteau and Di Meglio sheared a bidisperse foam in a

Hele-Shaw cell at low strain rates (within a velocity range in which the
shape of the velocity profiles was found to be independent of the strain
rate). Away from the driving cylinder, the azimuthal velocity was seen to
decay exponentially. The authors also varied the liquid content in the cell,
and hence φ, and observed the localisation length to grow for decreasing
packing fraction, see Fig. 2.2(b).

Although both systems are similar in that the distribution of T1 events
is proportional to the gradient ∂vθ

∂r [62, 68], the differences between the
experiments, such as the discontinuous versus continuous velocity pro-
files, are more pronounced. This is surprising, since both experiments are
performed at low rotation velocity and the experimental setups are very
similar, apart from the upper and lower boundaries.

Recent developments

We try to understand the rheology of foams through measurements of av-
eraged velocity profiles. Some recent papers have guided our thoughts
on this subject. It has long been stated that, if one is measuring at suf-
ficiently low strain rates and the associated timescale is slower than all
kinematic relaxation times, the presence of confining boundaries, such as
in the Hele-Shaw cell, should not matter. In this regime the experiments
were said to be performed in the quasistatic limit [9, 66, 72, 73]. The rate
independence of the velocity profiles at low strain rates was then invoked
as proof that the system was in this limit. In a recent paper, however,
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Figure 2.3: (a) Averaged velocity profiles for linearly sheared bubble raft,
rescaled by driving velocity. (b) averaged velocity profiles for linearly sheared
foam layer between glass plate and liquid, rescaled by driving velocity. Note the
slip with respect to the driving bands. Figures reproduced from [66].

the influence of these boundaries on the shape of velocity profiles in shear
flows of two-dimensional foams has been examined [66]. A mono-disperse
foam at fixed φl was sheared linearly by two counter-propagating con-
veyor belts. The foam layer was either floating freely or confined between
a glass plate and the liquid surface. For both geometries, the resulting ve-
locity profile exhibits rate independence, but its shape is strongly depen-
dent on the boundary: for the bubble raft, the averaged velocity profile
is quasi-linear, see Fig. 2.3(a), resembling plane-Couette flow of Newto-
nian liquids, but the confined foam shows exponentially decaying shear
bands, see Fig. 2.3(b). We have already seen that the flow of bubbles along
a solid boundary (the top plate) leads to dissipation, and this apparently
influences the dynamics of the bubbles.

An analytical model, taking into account this viscous friction with re-
spect to a boundary, is proposed in [10]. The foam is described as a Bing-
ham fluid experiencing a frictional body force which depends linearly on
the velocity, allowing for analytical treatment of the problem. The result-
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ing stress balance reads as follows:

βv =
∂

∂y
(τY tanh(γ/γY ) + ηγ̇), (2.2)

with a strain dependent yield stress τY that saturates at the yield strain.
For large strains (or steady shear) and relatively high strain rates the ve-
locity profiles converge to exponential decay, but for vanishing friction
coefficient (i.e in the case of a bubble raft) the decay length is of the or-
der of the system size and the flow profile closely resembles a Newtonian
flow profile. The exponentially decaying velocity profiles in the case of an
additional wall drag can hence be understood as a result of the balance of
the body force (the wall drag exerted on the foam bubbles) with enhanced
gradients in the local velocities, resulting in gradients in the local strain
rate.

2.2 Linear shear of two dimensional foams

We induce a linear shear flow in a two-dimensional foam. We record aver-
aged velocity profiles and by fitting these profiles to solutions of a drag
force balance model we can investigate the viscous stresses inside the
foam. The scaling with strain rate of these viscous stresses can be com-
pared to the scaling of the local bubble drag, as well as with the global
flow curve, though rheometry.

2.2.1 Experimental details

We create a bidisperse monolayer of foam bubbles of 1.8 and 2.7 mm di-
ameter on the surface of a reservoir of soapy solution, consisting of 80% by
volume demineralized water, 15% glycerol and 5% Blue Dawn dishwash-
ing agent (Proctor & Gamble), by bubbling nitrogen through the solution
via syringe needles of variable aperture. We measure the bath surface ten-
sion σ with the pendant drop method [74] and find σ = 28 mN/m. We
measure the dynamic viscosity η with a Cannon Ubbelohde viscometer
and find η = 1.8 mPa.s.
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Setup

The bubbles are contained inside an aluminum frame (400 x 230 mm)
which can be leveled with the liquid surface and can support the glass
boundary to which the bubbles bridge once it is in place. The glass bound-
ary consists of 3 glass plates with slits to accommodate two PMMA wheels
of radius 195 mm and thickness 9.5 mm. The gap between the liquid sur-
face and the glass plates is fixed at 2.25 ± 0.01 mm, such that the packing
fraction is fixed. We will show in chapter 4, that for this gap the packing
fraction is φ = 0.965 ± 0.005. The wheels, which are grooved to provide
a no-slip boundary for the bubbles, can be lowered into and raised out of
the solution through the slits. The wheels are connected to two Lin En-
gineering stepper motors, each driven by microstepping driver, and are
rotated in opposite directions. As a result, the layer of bubbles is sheared
with a driving velocity v0 = ωr0 in the plane of the bubbles, see Fig. 2.4(b).
At any point along the line where the wheels contact the foam bubbles the
horizontal component of the driving velocity is given by v0 = ωr1 cosφ.
But r1 = r0

cos φ and hence v0 = ω r0
cos φ cosφ = ωr0 and the foam is driven

with this velocity all along the contact line of 230 mm, see Fig. 2.4(b).
No motion is observed due to the vertical component of the radial ve-

locity, although bubbles do leave the system, while being pinned to the
wheels, at the edges of the slits. However, no holes are produced in the two
dimensional foam layer as a result of this, either because at high driving
velocities the bubbles reenter the system before rupturing while traveling
on the wheel, or because at low velocities bubbles from outside the shear-
ing region are pushed inwards due to the bubble surplus at the edges. The
resulting driving velocity gives rise to a global strain rate γ̇ = 2v0/W ,
where W denotes the gap between the wheels, which can be varied be-
tween 5 and 10 cm.

Imaging and Analysis

The velocity profiles are obtained from images which we record by a Focu-
lus BW 432 CCD camera equipped with a Tamron 28-300 telezoom objec-
tive. A typical image is shown in Fig. 2.5. To improve the brightness
and obtain images in which the bubbles are represented by circles (see
Fig. 2.4(c) for an example), the foam is lit laterally by two fluorescent
tubes, each driven by high frequency ballasts to prevent flickering in the
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Figure 2.4: (a) Schematic topview of the experimental setup. W represents
the gap width and the two horizontal lines indicate the edge of the region over
which the velocity profiles are calculated. The red curve depicts one such pro-
file.(b) sideview of shearing wheels. The slits in the glassplate are drawn for
clarity. Explanation of the x independence of vx at the liquid surface. (c) Experi-
mental image of the foam, the scalebar represents 5 mm.

images. The bottom of the reservoir is covered with a black plate to im-
prove contrast. The frame rate is fixed such that the displacement at the
wheels is fixed at 0.15 mm between frames and we take 1000 frames per
run, corresponding to a strain of 3.75 for a 4 cm gap. In the images, 1 pixel
corresponds to approximately 0.1 mm.

We obtain the velocity profiles through particle tracking and a Particle
Image Velocimetry-like technique: for each y-value, we calculate the cross-
correlation (Xn)2 between the corresponding image line Pn(x) of length m
and the same image line Pn+1(x) in the next frame shifted by an amount
τ :

Xn(τ)2 =
m−τ∑

i=0

Pn(i)Pn+1(i + τ). (2.3)
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Figure 2.5: (a) Images of sheared regions for both (a) monodisperse and (b) bidis-
perse foams. Inset shows size distribution and coarsening over the duration of an
experimental run for bidisperse foams.

We can then proceed in two ways. One option is to, for each y-value,
add up all cross-correlations from all frames and calculate the average
displacement ∆x(y) per frame by fitting a parabola to the resulting sum
of cross-correlations and taking the peak value of that parabola:

∆x(y) = max

(
999∑

n=0

(Xn(τ))2
)

. (2.4)

Alternatively, we can fit a parabola to each cross-correlation separately
and obtain the average displacement by averaging the maxima of all indi-
vidual parabolas:

∆x(y) =
999∑

n=0

max
(
(Xn(τ))2

)
. (2.5)
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By comparing to average velocity profiles obtained by particle track-
ing [75], we find that the latter procedure gives the closest match to the
tracking velocity profiles, and we have employed that procedure through-
out. We restrict ourself to the central 60 mm of the shearing region, see
Fig. 2.4(a), to avoid effects caused by the recirculation of the foam at the
edges of the wheels. We thus obtain both spatially (in the x-direction)
and temporally averaged velocity profiles. Note that for disordered foams
the flow is strongly intermittent, with large fluctuations in bubble veloci-
ties and positions. Nevertheless, we obtain smooth reproducible velocity
profiles with the above method.

Figure 2.6: Flow at the liquid surface in the absence of bubbles, as imaged by de-
positing silver powder. Inset: same profile on lin-log scale, showing exponential
decay away from the boundaries.

We check that the drag on the foam bubbles due to flow of the bulk liq-
uid underneath is negligible by measuring the velocity profile of bubbles
floating on a very shallow layer of bulk fluid. In this case the fluid surface
velocity is decreased due to the no-slip boundary condition at the reser-
voirs bottom. This does not alter the profiles. We furthermore measure
the velocity profile of the liquid surface itself at the same fluid level as in
the foam experiments (≈ 3.5 cm) by imaging the flow of silver particles
that were sprinkled on the liquid surface, see Fig. 2.6. We observe an ex-
ponentially decreasing velocity profile at the fluid surface, which implies
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that even if the fluid drag were of the order of the other drags acting on
the bubbles, it would not significantly alter the flow profiles except near
the wheels.

To check whether coarsening occurs we measure the bubble size distri-
bution by measuring the surface area of the rings in the images. We obtain
sharply peaked size distributions, see inset in Fig. 2.5(b), that show about
3 % coarsening over the duration of the runs, which corresponds to about
2 hours.

2.2.2 Results

Disordered foams

We now focus on averaged velocity profiles in disordered two-dimensional
foams. These foams are produced by bubbling a fixed flow rate of nitrogen
through syringe needles of 2 different inner diameters, such that bubbles
of 1.8 ±0.1 and 2.7 ±0.2 mm result. The bubbles are gently mixed with a
spoon until a disordered monolayer results. For gap widths of 5, 7 and 9
cm, we drive the foam at 6 different velocities, spanning 2.5 decades: v0 =
0.026, 0.083, 0.26, 0.83, 2.6 and 8.3 mm/s.

Note that we perform the sweep in driving velocities from fast to slow
and that we preshear the system for one full wheel rotation, to start with
bubbles covering the wheel. This is done to ensure the packing fraction
remains constant during the strain rate sweep; when the entire circumfer-
ence of the wheel is covered with bubbles a balance results between bub-
bles dragged out of the system and injected back in. If we would sweep
from slow to fast driving rates, this balance is not achieved, resulting in
a packing fraction that decreases during the experiment. To fix the pack-
ing fraction, we fix the gap between glass plate and liquid surface at 2.25
± 0.01 mm.

Results are plotted in Fig. 2.7: the profiles exhibit shearbanding, and
for all gap widths the profiles become increasingly shear banded at in-
creasing driving velocities. The slowest runs at W = 5 cm yield essentially
linear velocity profiles. We suggest that this is due to the small gap width,
which results in overlapping shear banded profiles resembling a linear
profile, and we will present a model in section 2.2.3 that supports this
conclusion.. This is further illustrated in Fig. 2.7(d): there we plot the ve-
locity profile for a driving velocity of 0.26 mm/s for all three gap widths
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Figure 2.7: Profiles for a gap width W = 5 (a) 7 (b) and 9(c) cm. From black to
light grey, v0 = 0.026 mm/s, 0.083 mm/s, 0.26 mm/s, 0.83 mm/s, 2.6 mm/s and
8.3 mm/s. For all gap widths we observe that the localisation near the driving
wheels increases for increasing driving velocity. (d) Profiles at 2.6 mm/s for all
three gap widths. Regardless of the gap width all profiles decay at the same rate.
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together, which clearly shows that for all widths, the velocity profiles de-
cay at the same rate. Fig. 2.7(d) thus hints that in this experiment the
driving velocity at the edges, instead of the overall shear, sets the veloc-
ity profiles. Therefore the local response to forcing will provide the key
towards understanding the shape of these profiles. Note finally that the
profiles do not exhibit slip with respect to shearing wheels, except for the
fastest runs.

2.2.3 Model

We now propose a model to account for the shear banding behaviour dis-
cussed above. We ignore the elastic energies in the system and only con-
sider the viscous drags. The relevant drag forces in our system have al-
ready been discussed in section 1.2.4 and we will do so once more: Fbw,
the drag force per bubble sliding past a solid wall, scales as

Fbw = fbw(Ca)2/3 = fbw (ηv/σ)2/3 , (2.6)

with η the bulk viscosity, σ the surface tension and fbw a constant with
dimensions of force. Typically fbw ∝ σrc [18], with rc the radius of the
deformed contact between bubble and wall. We remind the reader that
for bubbles in a soapy solution, the 2/3 scaling with Ca only holds for sur-
factants that are mobile [20], see section 1.2.4. Results from [4] strongly
indicate that this is indeed the case for Dawn, and we will later confirm
that this scaling applies to our system.

The drag force between 2 bubbles sliding past each other has not re-
ceived much attention up to now, although [24] provides indirect evidence
that it scales like Fbw, i.e. Fbb ∝ (η∆Ca)ζ , with ∆Ca ≡ η∆v/σ. In a very
recent paper it is explicitly shown that it scales indeed as (∆Ca)ζ , [25].
The authors find ζ = 0.5, although various physico-chemical peculiari-
ties, as well as the range of Ca one measures in, can alter this exponent.
Note that the physical mechanism leading to this scaling is markedly dif-
ferent from that leading to the nontrivial scaling of the bubble-wall drag:
the viscous drag between a bubble and a wall is due to the variations in
thickness of the thin film separating the two, whereas in this case it is ac-
tually the size of the deformed facet that changes when two bubbles come
into contact and slide past each other.

Taking all of this into consideration, it seems reasonable to assume
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that:
Fbb = fbb (η∆v/σ)ζ , (2.7)

again with fbb ∝ σκc, with κc the radius of the deformed contact between
bubbles.

Figure 2.8: Illustration of drag balance model. The shear region is divided in
lanes labeled i which all experience a drag force de to the top plate and due to
both neighboring lanes. Illustration of the films around which the viscous drag
forces act.

We now assume that at every y-position in the shearing region the av-
erage drag forces per bubble F bw and F bb scale in a similar way with ve-

locity as the individual drag forces. In particular, we will assume that
F bw = fbw(Ca)2/3, but that F bb = fY + fbb(∆Ca)β . We thus leave the

possibility open that the averaged bubble-bubble drag forces scale differ-
ently from the drag froces experienced by single sliding pairs of bubbles.
We divide our shearing region in lanes labeled i and assume that on every
lane the time-averaged top plate drag per bubble F

i
bw balances with the

time-averaged viscous drag per bubble due to the lane to the left (F
i
bb) and

right (F
i+1
bb ), see Fig. 2.8:

F i+1
bb − F i

bw − F i
bb = 0. (2.8)

44



CHAPTER 2. LINEAR SHEAR OF TWO DIMENSIONAL FOAMS

We assume that the averaged drag forces scale similar to the bubble drag
force, but allow for a yield drag term in the interbubble drag, to remain
consistent with rheometrical data presented later on and to reflect the
elastic barrier bubbles have to overcome before they slide past each other,
and write:

F i
bw = fbw(ηvi/σ)2/3 , (2.9)

F i
bb = fY + fbb [(η/σ)(vi − vi−1)]

β , (2.10)

F i+1
bb = fY + fbb [(η/σ)(vi+1 − vi)]

β . (2.11)

Note that assuming similar behaviour between the averaged drag forces
and the local drag forces is a rather strong statement, given that, due to
the intermittent and disordered bubble motion, the instantaneous bubble
velocities are fluctuating and not necessarily pointing in the x-direction.

Inserting the expressions from Eq. (2.11) into Eq. (2.8) and defining
k = fbw/fbb we arrive at:

k
(ηvi

σ

)2/3
=

(η

σ

)β [
(vi+1 − vi)β − (vi − vi−1)β

]
. (2.12)

Note that the yield drag contributions cancel, which is a particular advan-
tage of the linear geometry we work in.

To actually solve Eq. (2.12) numerically, it turns out we need to take
into account the discrete nature of both the bubbles and the pixels in the
images, as the distance in Eq. (2.12) between the vi’s is not arbitrary, but
set by the average bubble diameter 〈d〉. The forward difference on the
bubble scale is

vi+1 − vi = 〈d〉 · ∂v

∂y
|y=yi , (2.13)

in differential form. In the images, however, the velocities are separated
by the pixel size p. One can of course reverse Eq. (2.13) and write

∂v

∂y
|y=yi =

1
p
(vi′+1 − vi′) (2.14)

to end up with the forward difference on the pixel scale. Combining
Eqs. (2.13) and (2.14) and recognising that the full forward difference
of Eq. (2.12) is given by

(vi+1 − vi)β − (vi − vi−1)β = 〈d〉1+β · ∂

∂y

(
∂v

∂y

)β

|y=yi , (2.15)
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we can write Eq. (2.12) in a form that is suited for numerical integration:

k

(〈d〉/p)1+β
·
(ηvi

σ

)2/3
=

(η

σ

)β [
(vi+1 − vi)β − (vi − vi−1)β

]
. (2.16)

2.2.4 Fits

Procedure

We compare all 18 runs to solutions of the model. We focus on the central
part of the data where |v| < 3/4v0 to avoid the considerable edge effects
near the shearing wheels (for instance the bumps in the low-velocity pro-
files in Fig. 2.7(a) and the slip with respect to the wheel in the fast runs).
Since the shape of the velocity profiles is set by the local velocity, we as-
sume this is a valid procedure, and will not affect the shape of the model
solution. We numerically integrate Eq. (2.16) from y = 0, where v = 0,
to the y value for which v = 3/4 · v0, while keeping β and k fixed. The
drag force balance should govern the shape of the velocity profiles for all
driving rates and gap widths and hence, at fixed β, for all profiles we de-
termine the k value that gives the best fit to the data. The k values exhibit
a systematic variation that depends on the value of β one chooses, see
Fig. 2.9(f), and by repeating the procedure for a range of β we determine
the value for which the variation in k is minimized. We subsequently fix k
and β and take these values to hold for all data sets.

Results

We capture the shape of all data sets with high accuracy by fixing k and
β, whose values are k = 3.75 and β = 0.36 ± 0.05 as extracted from
Fig. 2.9(f). The results are plotted in Fig. 2.9, and we see that for these val-
ues all velocity profiles are adequately fitted except for the slowest runs
at W = 5 cm. We attribute this to the observation that edge effects ex-
tend further into the shearing region for small gaps. Note that the model
profiles exhibit linear tails, see Fig. 2.9(e), and that the experimental veloc-
ity profiles in the same figure exhibit approximately the same behaviour.
We can thus conclude that both the experimental and model profiles do
not decay exponentially, in contrast with results found in previous stud-
ies [9, 66].
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Figure 2.9: (a)-(d) Velocity profiles from Fig. 2.7 with model profiles obtained for
k = 3.75 and β = 0.36 ± 0.05. The model profiles fit the experimental data very
well, except for the slowest runs at W = 5 cm gap. (e) Unrescaled velocity profiles
for V0 = 0.026 (black), 0.26 (grey) and 0.26 (light gray) mm/s and corresponding
fits plotted on a log-log scale, to highlight the linear tails, in particular in the fit
profiles. (f) Variance in k over all 18 runs for the bi-disperse foam as a function
of β. A clear minimum at β = 0.36 can be observed.
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2.2.5 Continuum Limit

We can take the continuum limit of Eq. (2.13) which reads:

fbw

(ηv

σ

)2/3
〈d〉−1 =

∂τ

∂y
, (2.17)

The top plate drag can be considered as a body force and the interbubble
drag force as the divergence of a shear stress τ :

τ = τY + fbb

(
η 〈d〉 γ̇

σ

)β

, β = 0.36, (2.18)

where τY is an undetermined yield stress. This is the constitutive equa-
tion for a Herschel-Bulkley fluid [45] encountered before. We can now
associate the averaged bubble drag force scaling at the local level with
the power law scaling of the viscous stress in the Herschel-Bulkley model.
The fact that the yield stress does not play a role for our velocity profiles
can now be understood in two ways: firstly, since it is a constant it van-
ishes after taking the divergence of the shear stress, secondly, even though
we include a yield stress term at the bubble scale, the contributions from
both neighbouring lanes cancel in Eq. (2.12). Note that β = 0.36 is remark-
ably close to the power law index n = 0.40 found for the bulk rheology of
three-dimensional mobile foams [20,47] already discussed in Sec. 2.3 and
to the values n = 0.33 and n = 0.45 found in [71] which were discussed in
section 2.1.

2.3 Rheometrical determination of viscous forces in
two-dimensional foams

To validate the assumptions made for the bubble-wall drag and the result
obtained for the scaling of the local viscous friction inside the foam, in
this section we will investigate the viscous forces that act at the bubble
scale by rheometry. We use an Anton Paar DSR 301 rheometer, which
can be operated in stress controlled mode and, through a feedback loop,
also in strain controlled mode. We use the rheometer in strain controlled
mode to investigate F bw. Moreover, we compare measurements, which

we argue to reflect the actual drag force at the single bubble level F bb,
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with measurements of the averaged viscous drag force on a bubble in a
disordered flow of foam F bb.

2.3.1 Bubble-wall drag

We directly measure the bubble-wall friction with a method that was in-
troduced in [20]. We load a monolayer of bubbles (d = 2.4 ± 0.1 mm)
between two PMMA plates of radius RP = 2 cm. The bubbles are pinned
to the lower plate by means of a hexagonal pattern of indentations of size
O(d), and can slip with respect to the smooth upper plate which is con-
nected to the rheometer head. We measure the torque exerted by the bub-
bles as a function of the angular velocity of the smooth plate.

Figure 2.10: Close-up photograph of the rheometrical tool used to measure the
bubble-wall drag. The radius rc is clearly visible in reflected light and is used to
extract R0.

We convert T (ω) to F bw(Ca) in the following way: each bubble exerts

a wall stress τw = F bw/πR2
0 on the smooth plate. We integrate the contri-

bution to the torque of this wall stress over the plate:

T =
∫ RP

0
τwr2πrdr =

∫ RP

0

F bw

R2
0

2r2dr. (2.19)

If we now assume that F bw ∝ [Ca]α =
[ηωr

σ

]α, we can immediately read of
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from the data that α = 0.67, see Fig. 2.11(a), so inserting this expression
in the integral Eq. (2.19) yields:

T =
2F bwR3.67

p

3.67R2
0

. (2.20)

Since the bubbles are flattened during the measurement, we can only mea-
sure rc by looking at the reflection of the deformed facet, see Fig. 2.10. We
find rc = 1.59 mm. As the bubble radius is smaller than κ−1 we can ex-

press R0 in terms of rc through R2
0 =

√
3
2rcκ

−1 (see chapter 1, section
2.3). Note that this derivation of rc in terms of R0 hinges on the assump-
tion that the bubbles are not too deformed, which is not obvious in the
rheometrical geometry, but for lack of a more precise relation we use it.
We finally rescale the horizontal axis by multiplying ω with ηRp/σ. The
resulting curve is plotted in Fig. 2.11(a).

Figure 2.11: (a) Drag force per bubble exerted on smooth rotated plate as a func-
tion of Ca. The solid line represents 0.0015± 0.0001 · (ηv/σ)2/3. The inset shows
experimental geometry. (b) Drag force per bubble exerted by neighbouring, or-
dered lane of bubbles in a geometry that mimics the ordered sliding of bubble
lanes. The solid line represents 0.022± 0.002 · (η∆v/σ)2/3.
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2.3.2 Bubble-bubble drag

Drag at the bubble scale

To measure the power law scaling of the inter-bubble drag we abandon the
linear geometry for a moment and actually measure the torque exerted by
a foam driven at a strain rate γ̇ in a cylindrical Couette geometry, which
consists of an inner driving wheel, connected to the rheometer head, rotat-
ing inside an outer ring. This is a natural geometry to perform rheometry
in. We will get back to the peculiarities of foam flow in a cylindrical geom-
etry in chapter 3. The rheometrical experiments are performed with bub-
ble rafts, i.e. foams that are not confined by a top plate, as the additional
stresses due to the wall would disturb a clean rheological measurement.

Both boundaries are grooved to ensure a no slip boundary for the
bubbles, of which a monolayer floats in the shearing region. We start
with measuring F bb for the ordered case by keeping the gap between the

cylinders such that exactly two layers of bubbles fit in, see the inset of
Fig. 2.11(b). The inner radius (ri) is 1.25 cm and the outer radius (ro) is
2.5 cm. We deposit 6mm diameter bubbles in the grooves, make sure that
all bubbles are strictly pinned and remain in their groove, and vary the
rotation rate ω of the inner cylinder over 2.5 decades while measuring the
torque averaged over one rotation. The result is plotted in Fig. 2.11(b):
even though the torque fluctuates enormously due to the elastic barrier
the bubbles have to overcome before they can pass a neighbour, the force
per bubble averaged over many such events scales with the dimensionless
velocity difference as a power law with index 2/3, just as the wall drag
scales with bubble velocity. No signs of a yield stress are observed, and
we believe this is due to the fact that all elastic energy that is stored in
the bubble deformation is released after yielding, such that one measures
purely the viscous drag.

We multiply ω by ηri/σ to rescale to the dimensionless velocity differ-
ence and we divide the torque by ri and the number of bubbles pinned at
the inner wheel (i.e 10) to obtain the averaged bubble-bubble drag force
per bubble in the ordered case, and in these rescaled coordinates we have
plotted the results in Fig. 2.11(b).
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Figure 2.12: (a) Torque exerted on the inner wheel by a monodisperse foam in a
Taylor-Couette geometry where the gap is of the order of 6-7 〈d〉, for different
bubble sizes. Fits are to Herschel-Bulkley model, power law indices β from fits
are shown in graph. Inset shows same data with yield torque from fit subtracted,
solid line is power law with index 0.4. Surprisingly, the yield stress increases
with increasing bubble size. (b) Averaged drag force per bubble in a bidisperse,
disordered foam. The foam is sheared in a Couette cell of inner radius 1.25 cm,
outer radius 2.5 cm (hence a gap of 5 bubble diameters) without a top plate, see
inset. We obtain F bb = fY + fbb(∆Ca)β , with the yield threshold fY ≈ 1.2±0.5×
10−5 N, fbb ≈ 5.6± 0.9× 10−4 N and β = 0.40± 0.02 (solid line). Open circles are
the same data with the yield torque obtained from the fit subtracted, which are
well fit by a pure power-law with exponent 0.4 (dashed line).

From local to bulk viscous drag

We observe that the scaling exponent for the viscous drag at the bubble
scale differs markedly from the scaling of the local viscosity inside the
bulk foam as extracted from the velocity profiles, e.g., ζ = 2/3 vs. β =
0.36. We hypothesize this is due to the disordered flow in the foam and
will provide supporting evidence in what follows.

Still loading the cell with monodisperse foams with bubble radii of 1,
3 and 5 mm, we increase ro to 8 cm, such that more layers of bubbles can
fit inside the cell. However, since ri is small, the curvature is high, which
forces the foam to deviate from hexagonal packing during rotations. In
this way we induce disorder through geometry. The resulting measure-
ments, see Fig. 2.12(b), show clear yield stress behaviour and can be ex-
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cellently fit by the Herschel-Bulkley model, yielding for all bubble sizes
β ≈ 0.4, which is markedly lower than the 2/3 found for the drag force
in ordered lanes above, and close to the 0.36 extracted from the velocity
profiles. Surprisingly, the yield stress appears to increase with increasing
bubble radius, contrary to the intuition that the yield stress is set by the
Laplace pressure and should hence scale in inverse proportion to the bub-
ble radius. We attribute this to the deformation of the bubbles through
the capillary flotation force, which is larger for larger bubbles and hence
leads to a relatively larger contact size between the bubbles.

In order to convincingly establish a connection between the rheomet-
rical data and the model, we now return to the geometry used for the
ordered foams (ri = 1.25 cm and ro = 2.5 cm), and measure the torque ex-
erted on the inner wheel by a bidisperse foam with the same bubble sizes as
in the linear shear experiment. We obtain a clear confirmation that indeed
the disorder changes the power law scaling of F bb: we again reproducibly

measure Herschel-Bulkley behaviour with power law index β ≈ 0.40, as
can be seen in Figs. 2.12(b). To convert torques to F bb, we again divide by

the number of bubbles and ri. Since our outer rough boundary forces the
bubble velocity to zero, we can rescale the angular frequency to the di-
mensionless velocity difference η∆v/σ by assuming a linear velocity pro-
file across the gap, decaying from ωri to 0. The gap width is approximately
6〈d〉 and hence we can estimate ∆v. We extract from the rheological mea-
surements an estimate for the ratio k = fbw/fbb ≈ 2.5 ± 0.5. This is close
to the value k = 3.75± 0.5 estimated from the flow profiles.

2.4 Discussion

The drag forces exerted on the bubbles by the top plate, which at first
sight might be seen as obscuring the bulk rheology of the foam, enable us
to back out the effective inter-bubble drag forces and constitutive relation
of foams from the average velocity profiles. To further appreciate this
fact, note that our model yields linear velocity profiles regardless of the
exponent β if the body force due to the wall drag is zero.

By comparing the results obtained from the velocity profiles with the
rheometrical measurements, we note a remarkable difference between the
scaling of the bubble-bubble drag forces at the bubble level, which we
have mimicked by strictly ordered bubble rheology, and the scaling at
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the bulk level, which we have extracted from the velocity profiles and
confirmed by rheometry: we find Fbb ∼ (∆v)2/3 at the bubble level and
F bb ∼ (∆v)0.36 at the bulk level.

One might understand this anomalous scaling as follows: The degree
of disorder does not affect the drag forces at the bubble scale, but it does
modify the bubble motion. For disordered foams, the bubbles exhibit non-
affine and irregular motion — hence they “rub” their neighbouring bub-
bles much more than when their flow is orderly, and consequently the
averaged viscous dissipation is enhanced over what could naively be ex-
pected from the local drag forces [76]. This picture is corroborated by re-
cent simulations on the bubble model [23], where one recovers this “renor-
malisation” of the drag force exponent [77, 78] and rate-dependent flow
profiles [78].

In this vein, one could wonder why the drag with the top plate is not
changed by the disordered motion of the foam bubbles. We have no def-
inite answer, but we have verified, using tracking of the bubble motion,
that the average of the instantenous bubble-plate drag force is very simi-
lar to the drag force calculated from applying the Bretherton result to the
average velocity:

< (~v/|v|)x|v|2/3 >≈ 0.9 < vx >2/3 . (2.21)

On the other hand, the bubble-bubble drag force involves velocity differ-
ences, which therefore are much more broadly distributed, in particular
when ∆v < v — apparently this causes the breakdown of the affine as-
sumption.

Finally, the origin of the edge effects that prevent us from fitting our
full experimental curves with the model profiles, might be due to the fluid
drag near the wheels, as discussed in section 2.2.1. Alternatively the ori-
gin might lie in the absence of a local flow rule near the driving wheels
as reported in [79]. One way to resolve this is accommodating non-local
behaviour in our model, for instance by incorporating drag terms due to
next nearest lanes, similar to the cooperativity length introduced in [79].
Nevertheless, since our model is local in spirit, it has enabled us to back
out valuable information even though we have not been able to use the
full velocity profiles.
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2.5 Ordered foams

A final indication that indeed the disordered flow of the bidisperse foam
is at the root of the anomalous scaling of the bulk viscosity with shear
rate can be given by shearing ordered, monodisperse foams in the linear
geometry, as was done in [66]. In this case the bubbles are expected to
move affinely with the global shear, in which case one would expect the
global viscous drag forces to scale the same as the local one.

Figure 2.13: (a) Velocity profiles for a monodisperse, ordered foam with crystal
axis aligned with the wheels. Gap W = 7 cm and v0 = 0.083 (black), 0.26 (dark
grey) and 0.83 (light grey) mm/s. Solid curves indicate fits to the model with
k = 0.3, α = β = 2/3. (b) Angle of the monodisperse foam with respect to the
shearing direction as a function of strain (time): the foam remains stationary for
considerable strains, after which it rapidly rotates over π/3. Upper inset shows
derivative of main graph to highlight the apparent periodicity of the rotations.
Lower inset shows 2D autocorrelation of foam image with the circle located at
the first order maxima used to determine the rotation.

We shear a monodisperse, ordered foam with bubbles of size 2.7 mm,
produced by blowing nitrogen through one syringe needle at fixed flow
rate, at a gap W of 7 cm at v0 = 0.083, 0.26 and 0.83 mm/s. We recover
the rate independent and strongly shear banded velocity profiles reported
in [66] (see Fig. 2.13). However, it turns out that the orientation of the
hexagonal bubble packing with respect to the shearing direction of the
foam is crucial for reproducibility: the monodisperse foam orients itself
with one of its crystal axes parallel to the shearing boundaries and re-
mains in that state for a considerable time, until it rather rapidly and
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collectively rotates over an angle of π/3 radians until the next crystal
axis is aligned with the wheels. We investigate this by taking the 2D-
autocorrelation of the foam images taken from a run at 10 cm and measur-
ing the pixel intensity along a circle located at the first order maxima, see
inset of Fig. 2.13(b).

By cross correlating the intensity profile of the first image with that
of later images, we obtain Fig. 2.13(b): the foam remains stationary for
considerable strains, after which it quite rapidly rotates over π/3 radians
and remains stationary again. The upper inset of Fig. 2.13(b) displays the
derivative of the angle with time and confirms that stationary periods are
interspersed with bursts, during which the foam rapidly rotates, and to
which one could maybe even contribute a periodicity.

This remarkable phenomenon is, however, avoided by increasing the
aspect ratio of the shearing region. By doing so, the interval between the
rotation events is considerably increased and hence one can safely mea-
sure in the strictly ordered regime, with the bubbles aligned with the
shearing wheels. How this rotation is avoided in [66] we do not know,
but if one looks at the experimental images in that paper, one observes
that the monodisperse domains only extend over 7 — 8 bubbles due to
the presence of defects, thus likely hindering large-scale collective rear-
rangements, while at the same time leaving enough ordered foam at the
shearing boundaries to allow for rate independent shear banding.

As in the case of the bidisperse foams, we fit model profiles to our ex-
perimental data. For our model to yield rate independent velocity pro-
files, the drag forces need to balance in the same ratio for all driving
velocities. This can only be achieved if β = 2/3 since we have already
confirmed with rheometry that α = 2/3. Indeed we find that the exper-
imental profiles are best fit by model profiles if one fixes k = 0.3 and
β = 0.67 ± 0.05, see Fig. 2.13. The value of k is remarkably small. If we
assume that prefactor fbw for the bubble wall drag remains unchanged for
the ordered foam, this means that the bubble-bubble drag prefactor fbb

is much larger compared to its value for a disordered foam. Note how-
ever, that the power law exponent β greatly influences the value of the
drag force: for instance, if ∆v = 0.001 m/s, then (ηv/σ)2/3 = 1.6 × 10−3,
whereas (ηv/σ)0.36 = 3.1×10−2, which is more than an order of magnitude
larger.
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Disorder

We now return to the question how disorder sets the rheological behaviour
in foam flows. We have shown that the average drag between bubbles
scales as v2/3 for monodisperse foams, whereas it scales as v0.36 for bidis-
perse foams. On the other hand, at the bubble level, the drag forces scale
as v2/3 as is evidenced by the rheometrical data presented in 2.11(b). We
speculate that this is closely connected to the non-affine behaviour of the
bubbles [23,76,80]: close to the jamming transition, the shear modulus of
the foam becomes anomalously large due to the fact that bubbles fluctu-
ate much more than can be expected from the affine prediction — which
is that the bubbles follow the imposed shear — and thus dissipation in-
creases.

In our experiment, this results in an anomalous scaling of the bubble-
bubble drag force, which in turn is reflected in the observed rate depen-
dence of the velocity profiles for bidisperse foams. We can thus investigate
when the rate dependence of the velocity profiles first occurs by gradually
increasing the disorder in a monodisperse foam.

To this end we record velocity profiles in a monodisperse foam made
of 2.7 mm size bubbles in which we gradually increase the area fraction
of smaller (1.8 mm) bubbles. After mixing the two species we measure
velocity profiles at v0 = 0.083, 0.26 and 0.83 mm/s. We already observe
the occurrence of rate dependent velocity profiles for small quantities of
defects, indicating that rate independent flows are in fact limited to the
singular case of completely ordered foams. We have not quantified the
amount of disordered motion, but by visual inspection, we already see the
swirling patterns, typical of our 50/50 bidisperse foam, occuring at 2 %
disorder.
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Figure 2.14: Velocity profiles for an ordered foam consisting of 2.7 mm bubbles
for driving velocities v0 = 0.083 mm/s (light gray), v0 = 0.083 mm/s (dark grey)
and v0 = 0.083 mm/s (black) to which defects are added in the form of an in-
creasing area fraction of 1.8 mm bubbles.
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Chapter 3

Rheology of two dimensional
foams in a Taylor-Couette

geometry

To test and expand the applicability of the drag force balance model de-
veloped in the last chapter, we perform experiments on bidisperse mono-
layers of foam bubbles, sheared in a Taylor-Couette geometry. In contrast
to the linear geometry used in the previous chapter, the Couette geometry
allows to study the flow of bubble rafts, i.e., 2D foams not trapped under
a top plate. Also, its curved geometry means that the yielding threshold
included in the expression for F bb should play a role. We record averaged

velocity profiles both with and without a bounding glass plate.
Our main finding is that two-dimensional foam flows in a Couette ge-

ometry with a top plate exhibit rate dependent and strongly shearbanded
flows, whereas bubble raft flows are much less shearbanded and rate in-
dependent. We can fit the flows without a top plate to both a power law
fluid model and solutions to the drag force balance model provided the
local stresses scale with the local strain rate γ̇ as τ = kγ̇0.21. This is cor-
roborated by direct measurements of the local stress-strain rate relation.
In contrast, our drag force model fits poorly to the flows with a top plate
if β = 0.21, but we do not succeed in establishing an optimal value of β in
that case.

Strikingly, the model fits adequately only if we assume that the yield
drag force — of which we should see the effects in the Couette geometry, in
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contrast to the linear geometry — is 0 or at least one order of magnitude
smaller than what was measured in the previous chapter from the bulk
rheometry a two-dimensional foam. This suggests that foams in a Taylor-
Couette geometry still flow if the local stress is considerably below the
globally measured yield stress.

3.1 Introduction

The flow of two dimensional foams has mainly been studied in Taylor-
Couette geometries. For example, Dennin and coworkers have sheared
bubble rafts in a Couette geometry with a fixed inner disc and a rotating
outer cylinder [8, 71]. Debrégeas has confined foam bubbles in a Hele-
Shaw cell and rotated the inner disc, while keeping the outer cylinder
fixed [9]. In both cases, shear banded flow profiles where found. However,
there has been no clear consensus on the cause of the shear bands in these
systems, but clearly both the radial decay of the shear stress in curved ge-
ometries and the presence of a top-plate need to be considered. Cheddadi
et al. [81] claim the wall drag that results from the top plate is not the
main cause of shear banding: instead they attribute the shear banding to
the inhomogeneity of the stresses which decay as 1/r2, see Appendix 3.A
for a derivation. Scheibert et al. [72] instead claim that focusing of the
stresses due to the quadrupolar stress field resulting from a T1 lies at the
root of the shear banding.

Our strategy for disentangling the roles of wall drag and curvature is to
fit flow profiles, obtained for a range of driving rates in Couette geometries
with and without a top plate, to the Herschel-Bulkley-like model which
described the flow in the linear geometry of chapter 2 in detail. Note that
the velocity profiles measured by Gilbreth, Sullivan and Dennin [68] were
also with some success fit to solutions of a Herschel-Bulkley constitutive
equation, which suggests that our previously developed model might be
applicable in the cylindrical geometry as well. An additional hint in that
direction is that the continuum model that was postulated by Janiaud et al.
[10] to describe two-dimensional foam flows with an additional wall drag,
can be applied to the cylindrical geometry [82] and at least qualitatively,
Krishan and Dennin [83] have obtained experimental confirmation of a
few of their predictions.

Apart from the role of wall drag and curvature, an additional impor-
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tant issue is whether the transition from the flowing region to the sta-
tionary region is continuous: most earlier literature finds a discontinuous
transition between a flowing and a non-flowing part in complex fluids:
for instance Dennin and coworkers claim in [71] that the transition is dis-
continuous. Such discontinuous shear bands are also often observed in
polymer systems and have also recently been observed by MRI imaging
of the rheology of three-dimensional foams and emulsions [84, 85]. For
the curved geometry, a discontinuous transition between the flowing and
stationary flow can be seen as a direct consequence of the existence of a
finite yield threshold: a part of the system that experiences local stresses
below the yield stress will not flow and a region that is above the yield
stress will.

For linear geometries as discussed in Chapter 2, the yield stress drops
out and no discontinuity is found — similarly Wang, Krishan and Den-
nin find continuous shear bands in linearly sheared foams [66, 86]. In the
curved geometry the yield stress cannot be ignored and if there were an
appreciable yield stress we would observe this in our fitting procedure.
Moreover, one could expect to see a discontinuity in the experimental ve-
locity profiles providing a clear signature of the presence of a yield stress.

We will measure velocity profiles of two-dimensional foams in a Taylor-
Couette geometry. We can study two cases. First, we add a top glass plate
to study shear localization in a setup that is very similar to the Hele-Shaw
type cell employed by Debrégeas et al. [9]. Second, we will also study
flows without top plate, to investigate possibly discontinuous shear band-
ing in a bubble raft geometry akin to the one employed by Dennin and
coworkers. Surprisingly, we will see that our system, in stead of resolving
these issues, merely raises new ones. First, we find essentially continuous
flow profiles and the corresponding fitted values of the yield stress are at
least an order of magnitude smaller than what was obtained from rheom-
etry. Second, our power law exponent for systems with and without top
plate differ. Third, a close comparison of the local rheology with the global
rheology finds puzzling discrepancies.

61



3.2. EXPERIMENT

Figure 3.1: (a) Schematic top view of Taylor-Couette cell used in this experiment.
The outer cylinder, reservoirs and supports for the glass plate have been milled
into a PMMA block. (b) Side view: the reservoirs and the bounded area are con-
nected to keep the region underneath the glass plate from draining. The motor
is connected to the inner cylinder through the glass plate. (c) Photograph of the
experimental setup.

3.2 Experiment

3.2.1 Setup

Our experimental setup consists of a 500 by 500 by 50 mm square PMMA
block, into which the outer cylinder, a reservoir and supports for a remov-
able glass plate are milled, see Fig. 3.1. The boundary of the reservoir acts
as the outer cylinder (of radius ro = 190 mm) and is grooved with 6 mm
grooves. On the glass plate of 405 by 405 by 12 mm, two handles and a
casing for a stepper motor are fixed by UV curing glue. The stepper motor
(L-5709 Lin engineering) is connected to an inner cylinder of ri = 105 mm
radius through a hole in the glass plate. The inner cylinder is grooved like
the outer cylinder. The region that is filled with bubbles is in direct con-
tact with the reservoirs outside the glass plate. This is to keep the liquid
level underneath the glass plate constant, as fluid that has left the shear-
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ing region due to capillary suction will reenter the system in the outside
reservoirs.

A bidisperse foam is produced by filling the reservoir with the same
soap solution as used previously and immersing syringe needles of two in-
ner diameters, bubbling nitrogen through bothy needles and subsequently
thoroughly mixing the resulting bubbles. The resulting bubble sizes are
as before: d1, d2 = 1.8, 2.7 mm. The glass plate, with the inner driving
wheel attached, is carefully placed on top of the foam and subsequently,
the foam is allowed to equilibrate for a considerable time. Approximately
40 bubble layers are contained within the gap.

3.2.2 Imaging

The foam is lit laterally by 4 fluorescent tubes driven by HF ballasts and
images are recorded by a CCD camera (Foculus FO 432BW), equipped
with a Tamron 280-300 telezoomlens. The bottom of the reservoir is black,
to enhance contrast. The frame rate is fixed such that the angular displace-
ment of the inner cylinder is fixed at 1.12×10−3 rad/frame. We record
only during steady shear, ensuring that the foam has been sheared consid-
erably before starting image acquisition.

We calculate velocity profiles across the gap between inner and outer
wheel by cross correlating arcs of fixed radial distance in subsequent fra-
mes over a large angular region. While this improves statistics, it forces us
to calculate velocity profiles on curved image lines. However, by defining
circular arcs and identifying these with the appropriate pixels, this can
easily be done, see Fig. 3.2. We compute averaged velocities over 2000
frames for the slowest runs with a top plate, 10000 frames for the fastest
runs with a top plate and over 3000 frames for the bubble raft experiment,
to enhance statistics. We check that coarsening, coalescence and ruptur-
ing are absent in the runs with a top plate, whereas we cannot rule out
the latter two phenomena in the bubble raft experiment. There we merely
content ourselves with the absence of holes in our foam during the exper-
iment, which can be achieved by loading the Couette cell with a surplus
of foam far away from the imaging region.
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Figure 3.2: (a) Raw image as obtained by CCD camera. The local curvature is ex-
tracted from the curvature at the inner disc and the outer cylinder, and for every
r we define an arc that we match to pixels in the image. If we plot these arcs as
straight lines we obtain: (b) the image with correction for curvature. We compute
cross correlations between subsequent frames on these straightened image lines.

3.3 Results

We shear the foam, covered with a glass plate at 6 different driving ve-
locities, spanning 2.5 decades. Results are plotted in Fig. 3.3. We have
rescaled the velocity profiles with the velocity at ri to highlight the qual-
itative changes. We have rescaled the radial coordinate with the average
bubble radius 〈d〉, to hightlight the steep decay of the velocity profiles. We
only plot a limited region of r since all velocity profiles are strongly shear
banded. When we thus zoom in, we observe that nevertheless, the shape of
the velocity profiles depends on the exerted rate of strain, as in the linearly
sheared foam: the runs that were recorded at the highest driving velocity
exhibit the most shearbanding. This is in strong contrast with the findings
by Debrégeas et al. [9], were rate independent profiles were found. This is
striking because we operate at essentially the same shear rates and because
having only one bounding plate in stead of two, as for the Hele-Shaw cell
employed in [9] should matter little as regards the bubble-wall drag force.
We do observe approximately exponentially decaying profiles (see inset of
Fig 3.3).

The shear banding cannot a priori be attributed to the bubble-wall
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Figure 3.3: Velocity profiles for two dimensional Taylor-Couette flow of foam
with top plate. We see strongly shear banded velocity profiles that furthermore
exhibit rate dependence: the faster the driving velocity, the more shear banded
the profiles become. Inset highlights approximately exponential decay of velocity
profiles.

drag as another inhomogeneity in the stresses due to the curvature is
present. However, by comparing to the results in the linear geometry we
can venture a guess that in the Couette geometry the rate dependence is
again due to the fact that the bubble-bubble drag and the bubble-wall drag
scale with different exponents. By applying the drag force balance model
to the cylindrical geometry, we will investigate this question in section 3.5.

To be able to perform bubble raft experiments, we place spacers be-
tween the supports and the glass plate. By doing so the bubbles are no
longer confined. If we now lower the inner wheel, we can shear the foam
without drag from the top plate. However, the foam stability is strongly
decreased and bubbles will pop after approximately 11

2 hours. Neverthe-
less, the bubbles are sufficiently stable that we can shear the foam at the
same shear rates as in the experiments with a bounding glass plate, except
for the slowest run. Results are plotted in Fig. 3.4: within experimental
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Figure 3.4: Velocity profiles for two dimensional Taylor-Couette flow of foam
without top plate, the driving velocities are as in Fig. 3.3. We see approximately
rate independent velocity profiles, with a curvature that is solely due to the
curved geometry. We observe no discontinuous transition in the shear rate, as
is evidenced by the log-lin inset, that furthermore highlights exponential decay
near the inner disc.

uncertainty the profiles exhibit rate independent velocity profiles. We ob-
serve that the velocity profiles are still reasonably shear banded, but this
curvature is due to the fact that the stresses decay as 1/r2 in the Couette
geometry, as we will see later on. We furthermore observe no discontinu-
ous transition between a flowing and a static region as was found by Rodts
et al. [84] and Dennin and coworkers [68,71,87] experimentally and Ched-
dadi et al. theoretically [81].

3.4 Model

In this section we attempt to validate the drag force balance model de-
veloped for linear shear of two-dimensional foams by applying it to the
circular case. We will proceed as follows: because the geometry has circu-
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Figure 3.5: (a) Illustration of the model defined in Eq. (3.6): the light grey ar-
rows indicate the velocity profile, while the black arrows indicate the resulting
drag forces on lane i. (b) Schematic explanation of the additional term vi〈d〉/r
in Eqs. (3.3): bubbles in lane i + 1 that have advanced by a distance 〈d〉 will ex-
ert a small inward drag force on bubbles in lane i of magnitude [sinΨ · vi]β with
sinΨ = 〈d〉/r.

lar symmetry, this time instead of balancing drag forces on neighbouring
lanes, we have to balance torques on neighbouring annuli, see Fig. 3.5. To
arrive at the torques acting at lane i, we start with the expressions from
Eq. (2.11) and adapt them to the circular geometry:

F i
bw = fbw(

ηvi

σ
)2/3 , (3.1)

F i
bb = fY + fbb

[η

σ
(vi−1 − vi − vi〈d〉/r)

]β
, (3.2)

F i+1
bb = fY + fbb

[η

σ
(vi − vi+1 − vi〈d〉/r)

]β
. (3.3)

In both bubble drag forces a new term vi〈d〉/r has appeared, and we can
explain these in two ways. Firstly, it turns out to be crucial to ensure that
the continuum limit of the circular drag force balance model agrees with
the Cauchy equilibrium criterion in polar coordinates, see Appendix 3A,
that states that a body force acting in the azimuthal direction is balanced

67



3.4. MODEL

by:

∂τ

∂r
+

2τ

r
, (3.4)

with τ the stress. Furthermore, the strain rate in polar coordinates reads:

γ̇ = r
d

dr

[
vθ(r)

r

]
=

dvθ(r)
dr

− vθ(r)
r

. (3.5)

From Eq. (3.5) we can thus already see the necessity of including a term
vi〈d〉/r.

Secondly, we can construct a tentative picture of the origin of these
forces in the spirit of our drag force balance model. This picture is illus-
trated in Fig. 3.5(b): due to the curvature, bubbles that have advanced in
the θ-direction by a distance 〈d〉 in lane i + 1 will exert a drag force in the
inward radial direction, because these bubbles provide a steric hindrance
for the bubbles in the i-th lane to move straight on. Similarly, bubbles that
lag behind by a distance 〈d〉 will push the bubble in lane i outward. The
radial component of the associated bubble velocity is given by v〈d〉/r, thus
giving rise to that additional term.

In the circular geometry we balance torques, and hence we balance the
force per bubble times the number of bubbles N i ≡ 2πr/〈d〉 on rings of
circumference 2πr and width 〈d〉, the average bubble diameter. The force
balance then reads:

N i−12π(r − 〈d〉/2)F i
bb −N i2πrF i

bw −N i+12π(r + 〈d〉/2)F i+1
bb = 0. (3.6)

The torque due to the bubble-bubble drag forces is evaluated a distance
〈d〉/2 from the center of bubble lane i. While this is indeed where this drag
force acts, we did not need to specify this in the linear geometry. Again
however, it turns out that specifying this distance is crucial to match the
continuum limit to Eq. (3.4).

Since the resulting relative velocity vectors deviate by an angle
Ψ = arcsin(〈d〉/r) from the θ-direction, a factor sin(90±ψ) =

√
1− (〈d〉/r)2

≈ 1− 1
2(〈d〉/r)2 should be added in the viscous part of the bubble-bubble

drags, but this is of higher order in 〈d〉/r and we ignore it. The resulting
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expression can be written as:

(2πr)2fbw

[ηvi

σ

] 2
3

= [2π(r − 〈d〉
2

)]2
(

fY + fbb

[
η

σ
(vi−1 − vi(1 +

〈d〉
r

))
]β

)

−[2π(r +
〈d〉
2

)]2
(

fY + fbb

[
η

σ
(vi(1− 〈d〉

r
)− vi+1)

]β
)

(3.7)

We can rewrite this as follows:

k(
ηvi

σ
)2/3 =

(
1− 〈d〉

2r

)2 [
η

σ
(vi−1 − vi(1 +

〈d〉
r

))
]β

−
(

1 +
〈d〉
2r

)2 [
η

σ
(vi(1− 〈d〉

r
)− vi+1)

]β

− 2fY 〈d〉
fbbr

, (3.8)

with k = fbw
fbb

. We can take the units of length in which we measure -
which is the average bubble diameter 〈d〉 and which we measure in units
of the pixel length p - into account explicitly by making the substitution
fbb → f∗bb with f∗bb = fbb/(〈d〉/p)1+β , which is the scale factor on the left
hand side of Eq. (2.16).

3.4.1 Continuum limit

We have already stated that it is crucial to check if our numerical model
is physically correct by comparing the continuum limit to Eq. (3.4). If we
neglect quadratic terms in 〈d〉/r we find from Eq. (3.7) (note that
lim
〈d〉↓0

〈d〉vi−1−vi

〈d〉 = −∂v(r)
∂r ):

k(ηvi/σ)2/3 = 〈d〉 ∂

∂r

(
η〈d〉
σ

(
∂v(r)
∂r

− v

r
)
)β

+
2〈d〉
r

[〈(
η〈d〉
σ

(
∂v(r)
∂r

+
v

r
)
)β

〉
+

fY

fbb

]
. (3.9)

From Eq. (3.9), we can immediately deduce that the continuum limit
of our model indeed satisfies both Eqs. (3.4) and (3.5) and that

τ =
(

η〈d〉
σ

γ̇

)β

+
fY

fbb
. (3.10)
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Figure 3.6: (a)+(b)+(c): Data from Fig. 3.3. (a)+(b): Solid lines are solutions to the
drag force balance model defined in Eq. (3.8), with k =0 since top plate drag is
absent, β =0.36 and fY = 0 (a) or fY = 1.2× 10−5 N (b). Clearly, for β = 0.36 the
fits are far off (a), whereas setting fY to the value found in Fig. 2.12(b) results in
a small rate dependence which is in fact more pronounced for fits with β = 0.20.
(c) Solid lines are model profiles with β = 0.20 and fY = 0. Inset shows data on
a lin-log scale: both the model and the experimental profiles curve downwards,
since they have to obey v(ro) = 0.

Eq. (3.5) shows the necessity of introducing the terms vid/r in the drag
forces F bb: it accounts for the curvature term in the ensuing continuum

version of the model.

3.5 Fits

3.5.1 Flows without a top plate

We match solutions of our curved drag force balance model Eq. (3.8) to
the experimental velocity profiles in the following way. For the case with-
out a top plate, fbw = 0 and hence the constant k = 0. Thus our model
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simplifies, and only contains two fit parameters: the exponent β, and the
yield force fY . Surprisingly, when we take for beta the value obtained
from the linear geometry and rheology, β = 0.36, we have not been able
to obtain a convincing fit, see Fig. 3.6(a). Moreover, using in addition
the estimate of fY from rheology, see Fig. 2.12(b), makes the fits even
worse, see Fig. 3.6(b), as it introduces a small rate dependence. However,
a good fit to the model can be obtained by taking β = 0.20 ± 0.02 and fY

at least one order of magnitude smaller than the value from Fig. 2.12(b)
→ fY ≤ 1.2 × 10−6. The yield drag then essentially has no influence on
the shape of the model fits and we could as well set it zero.

We show the data, fit to solutions of the model with β = 0.20, k = 0
and fY = 1.2× 10−6 N in Fig. 3.6: the model solutions fit reasonably well
to the data and correctly capture the rate-independence for the bubble raft
experiment.

3.5.2 Flows with a top plate

Figure 3.7: (a) Same data as in Fig. 3.4. Solid lines are solutions to the drag force
balance model defined in Eq. (3.8), with k =15.5 β =0.20 and fY = 0 N. (b) Again
data from Fig. 3.4. Solid lines are solutions to the drag force balance model, with
k =5.5 β =0.36 and fY = 0 N. The quality of the fit is markedly improved.

For the case with a top plate, we have in principle three fit parameters.
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To extract the optimal value of β we look for a minimum in the spread
of k over all six runs while setting fY = 0 — setting fY = 1.2 × 10−5

yields poor fits. For every 0.30 < β < 0.60 there seems to a rather good fit
to all the profiles if k is tuned properly, and only at β < 0.30 the spread
in k-values increases significantly. For β = 0.20 the model profiles fit
downright poorly, Fig. 3.7. We also show fits to the data with k =5.5 and β
=0.36 to highlight the fact that we can reproduce the correct trend in rate
dependence and obtain rather good fits in the range 0.30 < β < 0.60.

3.6 Local rheology and power-law fluids

As discussed above, the value of the yield drag force fY we extracted
from our fits is anomalously small compared to the value found from bulk
rheometry. This could be either due to the yield stress being much lower
locally than what is measured in bulk rheometry [88], consistent with the
idea of a static and dynamic yield stress. Another option is that a local
stress strain relation is not satisfied throughout the gap, placing severe re-
strictions on the validity of comparing the experimental velocity profiles
with the model profiles. Finally, the yield stress could simply not play a
role in these foam flows. Another issue is the conflicting value of the β
extracted from our fits and β as established in chapter 2: the bubble raft
experimental profiles are best fit with a β = 0.20 ± 0.02 which is much
lower than β = 0.36 found in chapter 2.

We will investigate these issues in two ways. The first is by fitting the
velocity profiles obtained in the freely flowing bubble raft to the analyt-
ical prediction for velocity profiles of power law fluids (hence without a
yield stress) in a Couette geometry, to see if a yield stress is needed to fit
the velocity profiles. We will then present additional measurements ob-
tained by simultaneously imaging the velocity profiles and measuring the
bulk rheometrical response of a two dimensional bubble raft in a Taylor-
Couette geometry. This allows us to investigate the local rheology of the
foam in the spirit of [79] and connect bulk rheometry with local measure-
ments as well as our model solutions.
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Figure 3.8: Velocity profiles for foam without top plate with analytical solution
to Eq. (3.11). Note the reasonable agreement, even though this model does not
consider a yield stress.

3.6.1 Fit to a power-law fluid model

If the yield stress is assumed to be absent, one can analytically solve the
following equation for the stresses in the system:

τ(r) =
T

rir2
= k

(
η〈d〉
σ

)β

γ̇β ≡ C

(
r

d

dr

vθ(r)
r

)β

. (3.11)

The solution to this differential equation is given in Appendix B. We can
vary β and obtain an optimal match with the experimental velocity pro-
files obtained in the shear cell without top plate for β = 0.20. The analyt-
ical velocity profile adequately fits the data and the value of β is in good
agreement with the exponent found previously by fitting the model pro-
files to the experimental data. This strongly indicates that the yield stress
has a negligibly low influence on the shape of the velocity profiles and
that we can essentially understand the shape of the experimental velocity
profiles to stem from the power-law fluid nature of the two dimensional
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foam, without accounting for the yield stress. The question remains, how-
ever, why we do no observe a yield stress and what sets the anomalously
low exponent.

3.6.2 Rheometry: an anomalous local flow rule

We can try to see if a local flow rule describes the foam rheology
throughout the system, as this would validate fitting a local drag force bal-
ance model to the experimental profiles as well as show possible non-local
effects that might influence the flow in this system. To this end, we shear a
bidisperse monolayer of foam bubbles in an Anton Paar DSR 301 rheome-
ter. We again employ a Taylor-Couette geometry, but this time we can
measure torques on the inner cylinder which is connected to the rheome-
ter head (lower inset of Fig. 3.9). We impose five different strain rates,
spanning two decades in total and measure the resulting average torque,
while simultaneously imaging the bubble motion from which we can cal-
culate the averaged velocity profiles. The radii of the inner disc and the
outer ring are ri = 0.025 m and ro = 0.07 m. The resulting velocity pro-
files are displayed in Fig. 3.9: within experimental uncertainty the profiles
are rate independent, as well as strongly localized. Again we observe no
discontinuity in the local strain rate.

We fit solutions of the drag force balance model to the velocity profiles
and we obtain optimal fits for β = 0.20 ± 0.02 and fY = 0 (red curves in
Fig. 3.9). Clearly, these fits do not extend over the whole velocity profile
and we will shortly see this is due to the absence of a local flow rule near
the inner disc.

We will now calculate local stresses and strain rates throughout the
gap of our Couette cell, with a method that was utilised in [79, 85, 89].
From the Cauchy equilibrium condition we know that the stresses in the
system are given by (see Appendix 3.A for details):

τ(r) = τ(ri)r2
i /r2. (3.12)

Furthermore, we can take the appropriate derivative, Eq. (3.5), of the ve-
locity profile:

γ̇ = r
d

dr

[
vθ(r)

r

]
(3.13)

to obtain the local strain rate γ̇(r). We then have for each r-coordinate
a value of the local stress and the local strain rate and we can thus plot
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Figure 3.9: Averaged velocity profiles plotted on log-lin scale from a bubble raft
sheared in Taylor-Couette geometry with inner disc driven by rheometer head.
Solid lines: fits to drag force balance model with β = 0.20 ± 0.02 and fY = 0.
Upper inset shows same plot on linear scale to highlight the part of the profile
where one can fit. Blue curve: Velocity profile for power-law fluid (analytical
solution Eq. (3.11)) with β = 0.22. Lower inset: schematic picture of the setup.

the local stress as a function of the local strain rate, which is displayed in
Fig. 3.10. The local rheology of the experimental velocity profiles is given
by the five scatter plots ranging from black to light blue.

If there truly were a local flow rule then al these profiles would col-
lapse onto one master curve. However, we can clearly see from Fig. 3.10
that all profiles start to deviate from the flow curve at a point — labeled
by a yellow square in Fig. 3.10 — close to the inner cylinder, where the
local stresses are high.

A direct consequence is that fitting the velocity profiles with our lo-
cal drag force balance model at a radial distance that is closer to the in-
ner cylinder than this divergence point is useless. If we, however, restrict
ourselves to the parts of the velocity profiles where the local flow rule is
obeyed we can excellently fit our experimental data (see Fig. 3.9).
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Figure 3.10: (b) Local stress-strain relation extracted from velocity profiles in
Fig. 3.9: The local strain rate can be calculated from the velocity profiles and
the stress is known from the measured torque. Scattered data: local stress-strain
relation for experimental profiles. Red solid lines: Model profiles from Fig. 3.9.
Yellow squares: maximal value of the local rate at which a local flow rule — and
hence the fit — holds. Blue dots: bulk rheometrical measurements. Solid blue
line: Herschel-Bulkley fit through bulk data points: 0.42 + 0.7γ̇0.36. Black line:
power law with slope 0.21.

The red lines in Fig. 3.10 denote the local stress- strain rate behaviour
of the model profiles and not surprisingly, since these profiles are es-
sentially solutions to a power-law constitutive equation (Eq. (3.9), with
fY = 0) they nicely collapse and scale as γ̇0.21

l as shown by the solid black
line.

The blue squares denote the measured torque at the inner disc for the
corresponding velocity profiles plus two additional data points at high
shear rate to facilitate fitting a Herschel-Bulkley expression (solid blue
line). We cannot image at sufficiently high frame rates to record the flow
at these high shear rates and thus we have no information on the local
rheology there.
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3.7 Discussion

Three things strike the eye in Fig. 3.10: i) Both experimental profiles and
the model solutions exhibit a local flow rule that reads τ ∝ γ̇0.21, in clear
contradiction with the previously found exponent β = 0.36. Nevertheless,
this value 0.21 is in good agreement with the exponent extracted from
fitting an analytical power-law fluid model to the experimental velocity
profile. It is also consistent with the optimal fits of the model profiles in
both Fig. 3.6(c) and Fig. 3.9.

ii) By plotting the bulk stress and strain rate as measured by rheome-
try and the corresponding Herschel-Bulkley fit we see that, in the tails of
the velocity profile, the foam still flows well below the global yield stress.
This confirms the finding that the optimal fits from the drag force balance
model were obtained at fY at least one order of magnitude lower than the
value as found in bulk rheometry: the global extrapolated yield stress in
Fig. 3.10 is far above the local stresses, in fact we do not observe a yield
plateau for our range of local strain rates.

iii) Due to the large stress and strain rate gradients near the inner
disc, one apparently only measures the non-local flow behaviour with
the rheometer and one can thus measure a different rheology with the
rheometer — τ = τY + kγ̇0.36 — than what actually governs the local flow,
which reads τ = kγ̇0.21. This finding is in clear contrast with [85] where,
for wide-gap Couette rheometers the local and global flow behaviour obey
exactly the same constitutive equation. However, the large local strain
rates near the inner disc in our experiment might give rise to a non-local
rheology in the spirit of Goyon et al. [79], where rearrangements in the
shearing zone lead to cooperative flows in the shear bands.

Since measuring an exponent β = 0.36 seems to be a result of non-
typical rheology close to the inner disc, it is an open question why a local
strain rate scaling with β = 0.36 describes linear shear flow of two-dim-
ensional foams bounded by a glass plate so well. We hypothesise it might
have to do with the type of flow in the foam: optical inspection of foam
regions where the local strain rate is very low, evidence qualitatively dif-
ferent behaviour between the bubble raft flow and the liquid-glass flow. A
qualitative difference in the fluctuations might well be at the root of this
behaviour, and we will present a simple optical technique that seems to
support this explanation in chapter 5. This would also explain the poor
fit with β = 0.20 of the rate dependent runs in Fig. 3.6(b).
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3.8 Conclusion

We have measured velocity profiles in a two-dimensional foam monolayer,
undergoing cylindrical (Taylor-Couette) shear. We have adapted our drag
force balance model to the circular geometry and have obtained model fits
that adequately fit the experimental data for the foam without a top plate,
with a bubble-bubble drag force exponent β = 0.20, much smaller than
was measured in the linear geometry. Also, the yield stress required to
obtain good fits is either zero or at least one order of magnitude smaller
than the value previously obtained from two-dimensional rheometry. In
order to elucidate the role of the yield stress and non-locality on our foam
flow we have performed additional rheometry and velocimetry on foams
in a smaller Taylor-Couette geometry. From these measurements we can
extract the local stress-strain rate relation throughout our sample and we
observe a local flow rule τ ∝ γ̇0.20±0.02 , from which deviations occur close
to the inner cylinder that place a bound on the range of the velocity pro-
files to which we can fit our model. Furthermore, the foam appears to flow
at stresses well below the yield stress.

Fitting the analytical expression for velocity profiles for power-law flu-
ids (hence without a yield stress) to the experimental profiles yields a
power-law index 0.21, in good agreement with the directly measured local
stress-strain rate relation.
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Appendices

3.A Stress and strain rate in polar coordinates

Figure 3.11: Infinitesimal element used to derive Cauchy equilibrium in polar
coordinates.

A consideration of the stresses and strains in the Couette experiment is
best performed in polar coordinates (r, θ), which are related to Cartesian
coordinates through

r =
√

x2 + y2 , θ = arctan(y/x), (3.14)

x = r cos(θ) , y = r sin(θ) (3.15)

3.A.1 Stress equilibrium

We will here follow the excellent geometrical derivation of the Cauchy
equilibrium condition for the stresses and strain(rate) in polar coordinates
found in [90]. Consider a infinitesimally small element with vertices lo-
cated at (r, θ), (r, θ + dθ), (r + dr, θ + dθ) and (r + dr, θ) (see Fig. 3.11). We
can then find the Cauchy equilibrium conditions by looking at the radial
and the tangential force balance at P separately.

The radial force on side 1 is τrr,1(r + dr)dθ and similarly the radial
force on side 3 is −τrr,3rdθ. The normal force on side 2 has a component
along the radial direction of −τθθ,2dr sin(dθ/2) ' −τθθ,2drdθ/2 as does the
normal force on side 4: −τθθ,4drdθ/2. The shear stresses result in a force
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(τrθ,2 − τrθ,4)dr. If we sum up these forces and include a body force R we
obtain the equation of equilibrium in the radial direction:

τrr,1(r + dr)dθ − τrr,3rdθ − τθθ,2drdθ/2− τθθ,4drdθ/2
+ (τrθ,2 − τrθ,4)dr + Rrdθdr = 0. (3.16)

If we divide this by drdθ we find:

τrr,1(r + dr)− τrr,3r

dr
− τθθ,2 + τθθ,4

2
+

τrθ,2 − τrθ,4

dθ
+ Rr = 0. (3.17)

By taking the limit dr, dθ ↓ 0 we find the equilibrium condition for the
radial stresses:

∂(rτrr)
∂r

+ τθθ +
∂τrθ

∂θ
+ rR = 0. (3.18)

Dividing by r yields the normally encountered expression:

∂τrr

∂r
+

1
r

∂τrθ

∂θ
+

τrr − τθθ

r
+ R = 0. (3.19)

For the tangential stress balance we can perform the exact same analysis
and we find the balance to read:

(τθθ,2− τθθ,4)dr +(τrθ,4− τrθ,2)drdθ +(τrθ,1(r + dr)− τrθ,1r)dθ = 0. (3.20)

By taking the limit dr, dθ ↓ 0 we find the tangential stress balance, which
reads:

1
r

∂τθθ

∂θ
+

∂τrθ

∂r
+ 2

τrθ

r
= 0. (3.21)

3.A.2 Strain and strain rate

While the expression for the strain rate can be obtained by straightfor-
ward coordinate substitution [91], one can again consider an infinitesimal
element that is deformed by an amount w in the radial direction and u in
the tangential direction. A detailed derivation is given in [90]. We will
restrict ourselves to stating the results. The shear strain γrθ is given by:

γrθ =
∂w

r∂θ
+

∂u

∂r
− u

r
. (3.22)

Due to the rotational symmetry, the first term is 0. If we take the time-
derivative we find the shear strain rate:

γ̇rθ =
∂v

∂r
− v

r
= r

∂

∂r

[v

r

]
. (3.23)
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3.B Velocity profiles for a power-law or a Herschel-
Bulkley fluid in a curvilinear geometry

In a Taylor-Couette Geometry with inner and outer radii ri and ro, Eq.
(3.21) dictates the balance of stresses in the tangential direction. Since the
flow has rotational symmetry, all the terms in Eq. (3.19) equal 0 and in the
tangential stress balance, 1

r
∂τθθ
∂θ = 0. Eq. (3.21) then reads:

∂τrθ

∂r
+ 2

τrθ

r
= 0. (3.24)

The solution to this differential equation is given by

τ(r) = τ(ri)r2
i /r2. (3.25)

For a power-law fluid, the stresses are balanced by the local strain rate
[68]:

τ(r) =
τ(ri)r2

i

r2
= kγ̇β = k

[
r

∂

∂r

(v

r

)]β

. (3.26)

This simplifies to:
(τ(ri)r2

i )
1/β

r2/β+1
=

∂

∂r

[v

r

]
. (3.27)

Which can be directly integrated, yielding:

v(r)
r

=
β

−2
(τ(ri)r2

i )
1/β

r2/β
+ C (3.28)

The integration constant C can be evaluated by requiring that v(r)/r = 0
at r = r0. Thus we end up with:

v(r) =
β

2
(τ(ri)r2

i )
1/βr

[
1

r
2/β
o

− 1
r2/β

]
(3.29)

We can of course add a yield stress term to the right hand side of Eq. (3.26),
to model a Herschel-Bulkley fluid. However, an analytical solution is then
no longer available, and one then needs to resort to numerical integration.
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Chapter 4

Packing fraction and Jamming

The experiments described in Chapters 2 and 3 have been performed at
a fixed gap between the liquid surface and the glass plate. However, by
increasing or decreasing this gap we can vary the packing density of the
foam [61, 92]. While the precise relation between the gap and the pack-
ing density is nontrivial we can understand the main trend as follows:
it is energetically favorable for the bubbles to contact both the glass top
plate and the fluid phase. Hence, increasing the gap stretches the bub-
bles vertically, and more bubbles can be packed per unit area. The change
in bubble shape is such that the size of the contacts between bubbles in-
creases, and the liquid fraction in horizontal cross sections decreases —
effectively, the liquid fraction goes down, and seen from above, the foam
looks ’dry’. Similarly, decreasing the gap leads to pancake shaped, circular
bubbles [18] and the foam becomes ‘wet’. Clearly, there are limits to the
range of available liquid fractions, as the bubbles form multilayers as the
gap is increased too much.

As we will explain below, we will quantify the wetness of the foam by
an effective packing fraction φ, which essentially can be thought of as the
2D packing fraction of the gas bubbles seen in the midplane between fluid
surface and top plate. Hence, the dry limit corresponds to φ ≈ 1, while
the wet limit corresponds to φ ≈ 0.84 [23, 33, 93]. In practice, our data is
limited to the range 0.855 . φ . 0.975.

In this chapter, in section 4.1, we first establish how to extract the pack-
ing fraction φ from the experimental images, and also define an algorithm
that determines whether neighboring bubbles are in contact or not. We
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then compare the scaling of the contact number Z with packing fraction φ,
and find, for the first time for a system of frictionless deformable spherical
entities, that our data agrees well with the square-root scaling established
in the seminal papers of Durian [23] and O’Hern et al. [6].

In section 4.2, we probe the role of the packing density for the flow
of foams in the linear shear cell. Clearly, varying the gap, which implies
stretching the bubbles, varying their contact area and varying φ, should
have a significant impact on the shape of the velocity profile, since the
size of the deformed facets between neighboring bubbles influences the
magnitude of their drag forces. By varying the driving rate in the shear cell
for a range of packing fractions, we establish that the exponent governing
the averaged bubble-bubble drag forces (β) is independent of φ, while the
proportionality factor k, which measures the ratio of the pre-factors fbb

and fbw, see chapter 2, varies strongly with liquid fraction. We will argue
that the main variation in k will be due to variations of the bubble-bubble
interactions, characterized by fbb.

In section 4.3, we explore the use of our foam to study aspects of scal-
ing near the jamming transition of frictionless deformable spherical enti-
ties. We first study the distribution of free area per bubble by means of a
Voronoi area distribution in our foam, we then estimate the inter-bubble
contact force distributions and finally present preliminary measurements
on the variation of the static shear modulus G with packing fraction φ.

4.1 Varying and measuring φ

In order to vary φ, we vary the gap width between the glass plate and the
bulk solution between 3 and 0.2 mm. We do this by adding or retracting
fluid from the reservoir. To have a homogeneous gap between the liquid
surface and the glass plate, we place additional supports under the glass
plate to prevent sagging of the top plate during the runs. We monitor the
gap width with a Mitutoyo digital depth gauge. If the gap becomes smaller
than 0.2 mm the bubbles unjam [92]. This might be due to the fact that
the gap is then of the size of the Plateau borders that connect the flat film
between the bubble and the glass plate and the flat film between neigh-
bouring bubbles, and hence the latter vanishes. If the gap becomes larger
than 3 mm the foam buckles and develops a three dimensional structure.

If we stay between these limits the system we study is jammed and
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Figure 4.1: (a). Images as used in chapter 2 and 3: lateral lighting reflects off
the Plateau border and which bubbles do actually touch is unclear. (b) Images
obtained by lighting slanted from below. Contacts are now clearly visible.

quasi two-dimensional. However, determining a liquid fraction is not triv-
ial, since various horizontal cuts through the bubble layer will yield differ-
ent values. Various measures can be employed. First of all, one could try
to relate the liquid fraction to the gap between the liquid surface and the
glass plate. This distance, however, does not unambiguously set φ in our
experiment: we observe a large hysteresis effect, i.e., increasing or decreas-
ing the gap to a certain value does not yield the same packing fraction φ.
We speculate this is due to the fact that the bubbles are not confined in
the lateral direction i.e., the bubbles are not contained by side-walls. As
a result, φ actually depends on both the gap distance and an ill defined
confining pressure, which itself may be history dependent.

Another measure that has been derived in [61] relates the measured
length of the deformed facets of the bubbles just before a T1 event to φ. In
our experiments, though, we have found no well defined cut-off for such
T1-events. It is not clear how the occurrence of T1-events can precisely
be defined, since there is no obvious separation of the deformation scales
during and outside of a T1-event.

4.1.1 Direct measure of φ from experimental images

In view of the difficulties outlined above, we measure φ by direct imag-
ing as the two dimensional area fraction that is occupied by bubbles in
our system. The lighting is crucial here, since clearly we image a highly
nonlinear medium, and the observed bubble shape is a complex function
of its true three dimensional shape. In the previous chapters, the bubbles
were lit laterally. As a result, light was reflected towards the camera at the
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Figure 4.2: From left to right (1) Raw image. (2) Raw image with bubble areas
superposed. Note the good agreement. (3) Only bubble areas in white.

Figure 4.3: left-hand image: contacts as determined from Delaunay triangulation
for a dry foam φ = 0.965, right-hand image: contacts as determined for a wet
foam, φ = 0.875.
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point were the Plateau border was under an angle of 45◦ with the verti-
cal, see Fig. 4.1(a), resulting in rings that are smaller than the maximum
lateral bubble cross-section. By switching to lighting the bubbles slanted
from below we can visualise the full bubble diameter, see Fig. 4.1(b).

The procedure to extract φ from the images is illustrated in Fig. 4.2.
We first binarise the images, after which both the bubble centers and the
interstices appear bright. We remove the interstices by morphological op-
erations. We then invert the binarised image and fill up the remaining
bubble contours with a dilated version of the bubble centers. We check
that the resulting bright disc optimally matches the original bubble con-
tour, see Fig. 4.2. We then calculate the ratio of white pixels over the total
number of pixels and hence obtain a reasonable estimate of φ.

We find that in the linear shear cell the accessible range in φ is 0.86 .
φ . 0.97. It should be noted that for the runs performed at fixed wetness,
discussed in the previous chapters, we find φ = 0.965±0.005, in reasonable
agreement with previous reports on the maximum φ that can be obtained
in our type of setup [61].

4.1.2 The contact number Z and its scaling with φ

We can perform a consistency check on our measurements of φ by looking
at the corresponding averaged number of contacts per bubble Z. By com-
paring to theoretical results, we can check whether the measured values
of Z and φ correlate as expected and hence we have another indication of
φ.

We extract Z from the images as follows. Starting from experimental
images such as Fig. 4.3(a), we first locate the center of mass of the bub-
bles. We then perform a Delaunay triangulation on the resulting grid of
points. All grid points are thus connected to all their nearest neighbours.
However, not all neighbours are actually in contact. To remove the false
contacts we measure the pixel intensity in the corresponding "φ-plot", see
Fig. 4.2(c), along the vectors connecting any two bubbles, see Fig. 4.4. We
then count the number of contacting bubbles for bubble and calculate the
average over a large number of bubbles and images. Examples for a wet
and a dry foam are depicted in Fig. 4.3: the left picture is of a dry foam, for
which the gap between the glass plate and the liquid is large, the bubbles
are strongly deformed and stretched, while the right picture is of a wet
foam, for which the gap between liquid and glass plate is small, the bub-
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Figure 4.4: Plot of graph used to extract φ with Delaunay triangulation over-
plotted. To calculate Z, vectors that connect two bubbles that do not touch are
removed by looking for a dip in the pixel intensity along the vector.

bles barely touch and are marginally stretched in the vertical direction.
We have checked whether the measurements of φ and Z are consistent

by comparing these to prior theoretical predictions of the scaling behavior
of Z with φ. Simulations of frictionless two-dimensional systems [6, 23]
show that Z tends to Zc = 4 if φ approaches φc = 0.842 at the jamming
point J . Away from this critical point these authors find:

Z − Zc = Z0 (φ− φc)
1/2 . (4.1)

This implies that if we know Z we can infer the packing fraction φ. We
can also directly obtain a value of Z0 since for very compressed foams
(φ → 1, ∆φ ≡ φ − φc → 0.158), Z approaches 6. This gives us Z0 = 5.06.
Note that in the numerical simulations of O’Hern et al. Z0 = 3 [6].

We extract both φ and Z from the following experimental runs. We
shear a bidisperse monolayer of foam in the linear geometry from chapter
2 at a fixed driving velocity v0 = 0.26 mm/s. We perform a scan in φ for a
gap width W of 5 cm and a scan in φ for a gap width of 7 cm. We obtain
3000 images per packing fraction, and to obtain statistically independent
packings, we only analyze every 100th image, thus averaging both φ and
z over 30 images, each containing approximately 500 bubbles.

The result is plotted in Fig. 4.5: for both widths the data points follow
the same trend and if we overplot the numerical prediction from Eq. (4.1)
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Figure 4.5: Z−Zc as a function of φ−φc, both averaged over 60 frames for a 5 cm
gap (triangles) and a 7 cm gap (squares). Solid red line: Z − Zc = Z0(φ − φc)0.5

with Z0 = 5.06. Inset shows same plot on log-log scale. Open circle shows value
used to calculate Z0.

with φc = 0.842 and Z0 = 5.06 we obtain a reasonable match with the
experimental datapoints. Note that we are not the first to have performed
such an analysis. In fact Majmudar et al. [94] found the same scaling
to hold in a frictional granular but their comparison to frictionless disc
simulations seems inappropriate, whereas in our case the comparison is
entirely valid. Moreover, the value of Z0 the authors find in order to fit the
data is anomalously high.

4.2 Scaling of the effective viscosity with φ

4.2.1 φ-dependence of β

Now that we can obtain good estimates of the packing fraction φ, we are
in a position to investigate the variation of the flow behavior with φ, and
in particular the functional dependence of the proportionality constant
k on φ. In chapter 2 our drag force balance model yielded a k that sets
the relative influence of the bubble-wall drag with respect to the bubble-
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Figure 4.6: Velocity profiles from runs performed at a gap width W = 5 cm.
For all runs, v0 = 0.26 mm/s. Note that some profiles overlap and are thus hid-
den from view. The closer the density approaches the jamming point, the more
shearbanded the velocity profiles become.

bubble drag and is given by k ∝ rc/κc with rc the radius of the flattened
contact between the bubble and the wall and κc the radius of the flattened
contact between neighbouring bubbles. Note that actual relation might
well read k ∝ rn

c /κm
c , with n, m power law indices, but in principe the

functional dependence of k on the two radii should assume a similar ratio.

While rc is set by the buoyancy and hence does not vary strongly with
the gap distance between glass plate and liquid surface — only becoming
slightly smaller as the bubbles get stretched at large gaps — κc is strongly
dependent on the gap size and hence on the packing fraction of the foam.
We thus speculate that k will decrease with increasing φ as the size of the
deformed facets between bubbles increases.

In order to extract k as a function of φ we extract averaged velocity pro-
files from runs at different wetness and fixed driving velocity. In Fig. 4.6
we plot velocity profiles obtained for a gap width W = 5 cm at a driving
velocity v0 = 0.26 mm/s and 0.855 ≤ φ ≤ 0.975. As φ is lowered, the
profiles become more and more shearbanded, as expected.
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Figure 4.7: (a) variance in k values for all six runs performed at φ = 0.905 (grey
squares) and φ = 0.925 (light grey squares). The variance at φ = 0.965 (black
squares) is data from Fig. 2.9(f). A clear minimum can be observed around β =
0.38.

We would like to fit solutions of the linear drag force balance model
defined in Eq. (2.8) while keeping α and β fixed. The microscopic expo-
nent α which governs the flow a bubble past a wall appears to be indepen-
dent of the particularities of the foam flow (see section 2.4 and [95, 96]).
On the other hand, it is not at all obvious that β, which governs the aver-
aged bubble-bubble drag forces, does not depend on φ. As we have seen
in chapter 2, β is set by the disorder in the system and the non-affine bub-
ble motion that occurs in conjunction with that. Simulations [80] have
shown that this non-affine behaviour strongly depends on φ, and there-
fore the averaged viscous drag could scale differently between different
liquid fractions.

To see if this indeed occurs we perform a scan over the same six shear
rates as employed in chapter 2 for a bidisperse foam at a gap width W =
7 cm, while first fixing φ = 0.905 ± 0.005 and then φ = 0.925 ± 0.005. We
look for a minimum of the variance in k over the six velocity profiles as
a function of β (see green and blue squares in Fig. 4.7). We subsequently
fix this β and observe that the model fits best to all six runs performed at
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φ = 0.905 for α = 2/3, β = 0.38 ± 0.05 (see Fig. 4.7) and k = 7.5, whereas
the model best matches the runs performed at φ = 0.925 for α = 2/3, β =
0.39 ± 0.05 (see Fig. 4.7) and k = 5.8, thus strongly indicating that within
our range of accessible liquid fractions β seems to be a constant while k
varies. For comparison, we include the variance for the runs described in
chapter 2, that were plotted in Fig. 2.9(f).

Figure 4.8: Velocity profiles from Fig. 4.6. Fits are solutions to linear drag force
balance model with α = 0.67 and β = 0.36 fixed. k is extracted from the fits and
plotted in Fig. 4.9 as a function of φ− φc.

4.2.2 Scaling of k with φ

We measure velocity profiles at gap widths W = 5 cm, see Fig. 4.6, and
W = 7 cm and fixed v0 = 0.26 mm/s (the 3rd slowest driving velocity),
for liquid fractions varying between φ = 0.855 and φ = 0.975. To these
profiles we fit solutions of our drag force balance model with α = 0.67
and β = 0.36 fixed while varying k, see Fig. 4.8. The best fit yields k
and we plot it as a function of φ − φc, with φc the theoretically predicted
and experimentally measured value of the unjamming packing fraction:
φc = 0.842 [33, 93, 97]. The result can be seen in Fig. 4.9.
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Figure 4.9: (b) Scaling of k with ∆φ ≡ φ − φc. Triangles: data obtained from
fits depicted in Fig. 4.8 where W = 5 cm. Squares: data for gap of 7 cm. Large
squares correspond to runs at v0 =0.26 mm/s from Fig. 4.7. Solid line: 0.45/∆φ.
Inset: same data on log-log scale.

The large squares represent the k-value extracted from the strain rate
sweeps detailed in Fig. 4.7. The blue squares represent k-values found by
fitting the model to the runs performed at a gap of 7 cm, whereas the black
triangles are from the 5 cm gap run. We remind the reader that these runs
have also provided the ∆Z(∆φ)-scaling in Fig. 4.5 where the color coding
is the same.

In Fig. 4.8 we observe increasingly shearbanded velocity profiles as we
approach φc. This trend is reflected in the increase of k as we approach
φc. This implies that the deformed contact radius κc between bubbles
becomes smaller and smaller. Note that this trend is opposite to what was
observed by Debrégeas et al. in [9]: there the authors find that the velocity
profiles become less shearbanded with increasing liquid fraction (see inset
of Fig. 2.2). We cannot explain this result and conclude it to be one of the
many mysteries surrounding that work.

As a guide to the eye we have plotted k ∝ ∆φ−1, and we will now try
to relate the measured scaling of k with a simple argument for which we
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need to include a prediction from recent work by Denkov et al. [25].
In chapter 1 we have discussed the relation between the dimensionless

overlap δξ and the deformed contact κc. From Eq. (1.16) we recall that the
size of κc should depend on the deformation δξ as:

κc ∝ (δξ)1/2. (4.2)

Furthermore, in simulations of two-dimensional frictionless discs [6, 80]
it was found that

δξ ∝ ∆φ. (4.3)

Assuming that rc does not vary much with φ, simple substitution thus
gives us

k ∝ 1/(∆φ)1/2. (4.4)

The scaling we measure does not agree with this simple prediction. The
inset of Fig. 4.9 clearly shows the scaling of k with φ − φc is steeper than
expected from the simple calculation presented above. However, the as-
sumption that the bubble-bubble drag scales linearly with κc has been
shown to be false in a recent paper by Denkov an coworkers. In fact, the
authors show that the viscous dissipation inside foams scales as κ2

c instead.
Inserting this in the above equations yields:

k ∝ 1/(∆φ), (4.5)

which is fully consistent with our experimental results.
Note that in the above we have only focussed on the radius of the de-

formed facets. A proper analysis would include the size of the Plateau
border around the contact, which is where the dissipation also occurs
[21, 22]. For instance, in [96] the bubble-wall drag force scales as F bw ∝
Ca0.64φ−0.26

l and a proper treatment would entail such analysis, even
though the functional dependence on the Plateau border size is always
weak. Moreover, the Plateau border size itself does not vary by large
amounts in the region of φ we measure in. Moreover, in all of these works,
the functional dependence of the drag force with φ is smooth around φc

and hence will not influence the critical scaling at that point.
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4.3 Measures of jamming: Voronoi area distribution,
p(f) and shear modulus

In 1998, Liu and Nagel [2] introduced the jamming phase diagram in an
attempt to describe jamming in a wide variety of materials that, while
having a wildly dissimilar appearance, share similar behaviour under, for
instance, an applied force. Foams (shaving foam), pastes (peanut butter),
emulsions (mayonnaise) and granulates (sugar) can all carry a finite load
like a solid, but will flow like a liquid once enough stress is applied. All
of these systems consist of elementary building blocks (grains, droplets,
bubbles) that are closely packed and jammed at rest and have to overcome
steric hindrance and hence deform elastically before they can flow, giving
rise to the combination of solid-like and liquid like behaviour.

The jamming diagram has led to an upsurge of scientific interest and
in a short time, much theoretical progress has been made - in particular,
simulation studies on soft two-dimensional frictionless discs at zero stress,
zero temperature and varying packing density φ, close to "Point J" (see
Fig. 4.10), have yielded much insight [6, 80, 98]. "Point J" corresponds to
a critical packing fraction φc where systems unjam because the density of
particles becomes too low for the system to bear a finite load.

If someone familiar with this recent work on the jamming transition
in the (Σ, φ)-plane were to glance through this thesis, he or she should
have to conclude that disordered two-dimensional foams seem to be the
ideal candidate to experimentally probe the proposed behaviour [6,80,93]
around the jamming transition in frictionless systems. Foam bubbles obey
a Hookean interaction law upon compression, do not exhibit solid friction
upon sliding and, if appropriately confined by a glass plate, the packing
fraction can be varied over a considerable range.

In order to substantiate this idea we will present some highly explorato-
ry and preliminary data on a few measures that are connected to the jam-
ming framework. We will first apply a particular Voronoi tessellation
called the navigation map to our experimental images to extract the dis-
tribution of free area per bubble in the spirit of Aste et al. [99]. Then,
with help from this navigation map, we extract the distribution of contact
forces p(f) in the foam and investigate its scaling with φ and we conclude
with the first preliminary measurements of the scaling of the static shear
modulus G with φ.
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Figure 4.10: The jamming phase diagram as proposed in [6]: if the tempera-
ture T , the applied stress Σ and the inverse particle density 1/φ are sufficiently
small, the system is jammed. Note that all foam experiments are performed in
the (Σ, φ)-plane.

4.3.1 Voronoi area distribution

Granular thermodynamics

The thermodynamical description of granular materials, as introduced by
Edwards and Oakeshott [100] tries to translate the concepts underpin-
ning equilibrium thermodynamics to conglomerates of a-thermal particles
such as grains. To this end the granular entropy is introduced as

S = ln Ω(V ), (4.6)

with Ω(V ) the number of microstates that can be classified under a coarse-
grained volume V . Note that it is assumed that all states are equally acces-
sible. In this framework, for granular systems the volume thus takes the
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role of energy and the global volume VT of the granular packing is given.
The granular temperature βgr is then, as in equilibrium thermodynamics,
defined through

βgr =
∂S

∂V
. (4.7)

In thermal systems, β = 1/kBT . In granular systems β is related in a
similar way to a compactivity χ: βgr = 1/χ.

The granular analogue of the Maxwell-Boltzmann distibution that de-
scribes the distribution of free volumes V in a p(V ) can be found by search-
ing for the functional form of the probability distribution function which
maximizes the entropy. Such maximization must be done under the con-
dition that the average occupied volume is equal to V̄ . This yields:

p(V ) =
Ω(V )eV/χ

∑
V ′ Ω(V ′)eV ′/χ

. (4.8)

Aste and Di Matteo [101] find an analytical expression for Ω(V ) under
the assumption that the system consists of elementary cells each weighted
according to p(v) = 1

χe−(v−vmin)/χ with the compactivity χ = 〈v〉 − vmin

an intensive thermodynamic parameter accounting for the exchange of
volume between the elementary cell and the surrounding volume ’reser-
voir’. The elementary space partitions that can be measured, such as De-
launay and Voronoi tesselations are assemblies of m such elementary cells,
such that χ = 〈V 〉−Vmin

m . The aggregate probability distribution function
f(V, m) reads:

f(V, m) =
mm

(m− 1)!
(V − Vmin)m−1

(〈V 〉 − Vmin)m
exp

(
m

V − Vmin

〈V 〉 − Vmin

)
. (4.9)

This prediction has successfully been compared to free volume distri-
butions that have been experimentally measured in monodisperse pack-
ings of frictional spheres in air and in solvent [99]. In these experiments
the packing density has been varied been random loose packing (rlp) (φ ≈
0.55) and random close packing (rcp) φ ≈ 0.64.

Experiment: Voronoi area distribution

For our two-dimensional foam system we will calculate the free area prob-
ability distribution p(A). This procedure has been carried out for bidis-
perse two dimensional packings of hard discs by Lechenault et. al [102],
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and for each species they observe a distribution similar to similar to Eq.
(4.9) — here the discs are essentially undeformed and the density lies be-
low random close packing. In contrast, we will investigate free area dis-
tributions in bi-disperse foams approaching φrcp ( = 0.842 in foams) from
the high density, jammed side. That is, we will extract p(A) from the set of
runs we have discussed before with φ varying between 0.855 and 0.975.

Figure 4.11: (a) Standard Voronoi tessellation of the bubble centers: For neigh-
bours that differ in size Voronoi cell perimeters intersect bubbles. (b) The naviga-
tion map tessellation respects the bubble edges and follows the curvature of the
contacts.

We measure the probability distribution of free areas p(A) by calculat-
ing the Voronoi area distribution of the grid of points that represent the
centers of mass of the bubbles. For a given grid of points, the Voronoi tes-
sellation yields cells in which all points are closer to a certain grid point
than to any other grid point [103]. The Voronoi cell perimeters are thus
perpendicular bisections of the vectors connecting a grid point and its
nearest neighbours, see Fig. 4.11(a). As a result, for a bidisperse pack-
ing, the Voronoi cell edges do in general not respect the bubble perimeter
and thus the Voronoi cell does not represent the free area per bubble. For
hard spherical objects one can get around this problem by weighting the
grid points according to the sphere radius (Voronoi-Laguerre tessellation),
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however, in our experiment, the bubbles are not only bidisperse, but in
general also deformed and the flattened contacts can be curved.

Figure 4.12: Distribution of Voronoi area for packings between φ = 0.875 and
φ = 0.975. The average Voronoi area 〈A〉 (black squares) and Amin (red dots)
are plotted as a function of φ in the inset. The vertical dashed line indicates the
minimal free Voronoi area for the small bubbles at φ = 0.965 which is given by
Amin = π

4 (1.8)2/0.965 = 2.63 mm2.

To fully take the effects of both deformations and bidispersity into ac-
count, we calculate what is called the navigation map [103, 104]. To this
end, we take the Delaunay triangulation — which is the dual represen-
tation of the Voronoi tesselation — of the grid of bubble centers. Each
triangle is divided in 4 areas: three areas each represent the part of a bub-
ble that is inside the triangle and the fourth area corresponds to the in-
terstice. We can illustrate this with a hexagonally ordered, monodisperse
foam: in this case the Delaunay triangles connect three bubbles at angles
of 60◦ and the interstice is exactly in the center of the triangle. For all
pixels in the interstice we calculate whether they are closest to any point
on the perimeter of one of the three bubble areas. The result is shown in
Fig. 4.11(b): we obtain free areas per bubble that respect the bubble edges
and follow the curvature of the contacts.

We calculate p(A) from the experimental data at a gap width W = 5
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Figure 4.13: (a) Voronoi area distributions for small bubbles at various φ (see
inset) centered around 〈V 〉 and rescaled by the variance 〈V 〉 − Vmin. Dashed
line shows a solution to Eq. (4.9), highlighting the qualitative differences. (b)
Voronoi area distributions for large bubbles centered around 〈V 〉 and rescaled by
the variance 〈V 〉 − Vmin.

cm that also yielded φ and Z as well as the velocity profiles that were
used to establish the scaling of k vs φ. We state the details: we have per-
formed a scan over φ at fixed driving velocity v0 = 0.26 mm/s. We have
obtained 3000 images per packing fraction, and we calculate p(A) over a
central region of every 100th frame. We subsequently average the indi-
vidual p(A) distributions to improve statistics. We have measured p(A)
for 0.855 ≤ φ ≤ 0.975. We obtain bimodal distributions, which we can
split according to the size of the bubbles inside the Voronoi areas. Distri-
butions for the smaller bubbles are shown in Fig. 4.12: for increasing φ
the average of the distribution shifts to smaller values (see black squares
in inset of Fig. 4.12). From these distributions we can also extract Amin

(red circles in inset of Fig. 4.12). We check that the value of Amin that we
extract makes sense by calculating its value for φ = 0.965 in the following
way: from the size histograms presented in Chapter 2, we know that at
that packing fraction, the average small bubble diameter equals 1.8 mm.
The miminal free area for such a bubble (in a hexagonal packing of same
sized bubbles) equals Amin = π

4 (1.8)2/0.975 = 2.63 mm2, in good agree-
ment with the value extracted at ∆φ = 0.12 (see inset of Fig. 4.12).
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Figure 4.14: (a) Voronoi area distributions for small and large bubbles at φ =
0.864 and φ = 0.855 (see inset) centered around 〈V 〉 and rescaled by the variance
〈V 〉 − Vmin. Solid black line is solution to Astes prediction Eq. (4.9) with m =
17. (b) The cumulative sum C(A) for all small bubble distributions evidences
a sudden crossover to the Aste prediction: for the two lowest φ-values, C(A)
resembles the predicted C(A,m = 17) .

We rescale the distributions by (A−〈A〉)/(〈A〉−Amin) that is, we cen-
ter the distributions around the average of the distribution and rescale the
width by a free parameter 〈A〉 − Amin which is the variance of the distri-
bution and which can be identified with the granular temperature χ. We
plot all rescaled distributions, except those obtained for φ = 0.864 and
φ = 0.855 in Fig. 4.13: the left figure (a) shows the collapse of Voronoi
area distributions for the small bubbles and the right figure (b) shows
the collapse for the large bubbles. Note that the collapse is optimized by
variable values of Amin which are estimated from the unscaled distribu-
tions, see Fig. 4.12. The distribution of the small bubbles appears to be
slightly skewed with exponential tails, while the distribution of the large
bubbles appears to be symmetrical around 〈A〉. In this case it is hard to
tell whether the tails are exponential or Gaussian. A striking result is thus
that the distributions for small and large bubbles do not have the same
shape. Furthermore, by comparing the distributions to the Aste predic-
tion f(V, m) were we replace V with A, see dashed line in Fig. 4.13(a)), we
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see that both rescaled distributions have a markedly different shape than
the analytical prediction.

The Voronoi area distributions of the runs that were performed closest
to the jamming transition (φ = 0.864 and φ = 0.855) do not collapse on
the master curves presented in Fig. 4.13. We instead plot the distributions
for both the large bubbles and the small bubbles together in Fig. 4.14(a).
We can observe a reasonable collapse and by overplotting the solution to
Eq. (4.9) with m = 17 we see that close to φc the distributions appear to
cross over to the shape predicted by this equation.

This is also evidenced in Fig. 4.14(b): here we plot the cumulative dis-
tribution C(A) defined as:

C(A) ≡
∫ A

Amin

p(A′)dA′. (4.10)

We compare the distibutions C(A) for small bubbles, obtained at various
φ, to the C(A,m = 17) predicted by Aste et al. [99, 101] that we obtained
by fitting to the data in Fig. 4.14(a). We see that the shape of p(A) is the
same for all runs except for the runs performed at φ = 0.864 and φ = 0.855.
We further see that it quite suddenly crosses over to the shape predicted
by Eq. (4.9) for these two runs closest to φc, indicating that one recovers
the Aste prediction close to φc.

Discussion

We have thus seen that for densely packed two-dimensional foams the
Voronoi area distributions p(A) do not comply with the theoretical pre-
diction by Aste et al., but that as one nears the unjamming density φc, the
distributions do seem to cross over to this behaviour. This might be under-
stood by considering the fact that the Aste distribution is well-defined and
tested in hard granular materials at densities between φrlp and φrcp and for
two-dimensional foams (and frictionless systems in general) φrcp = φJ ,
such that we approach the region of densities in which Eq. (4.9) applies
upon lowering the packing density of the foam.

Note however, that the value m = 17 that yields an acceptable agree-
ment between f(A, m) and p(A) is remarkably high, when one interprets
this value to be associated with the average number of nearby bubbles that
border the free area per bubble, which is 6 for a two-dimensional packing.
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4.3.2 The force distribution p(f)

In disordered systems the distribution of particle forces is often strongly
heterogeneous. In granular systems in particular, forces are typically trans-
mitted along force chains [15,105], which implies that part of the particles
bear a very large load while another part hardly participates in transmit-
ting forces. As a result, the distribution of contact forces p(f) in such
systems is generally broad, with frequent occurrence of very large inter-
particle forces.

Both theoretical and experimental investigations ( [106] and references
therein) generally yield force distributions that exhibit a peak around the
average force in the system and a broad tail that is either exponential or
Gaussian. In a recent Letter, [106], Tighe and coworkers show that if the
proper constraints are taken into account, a Gaussian tail emerges, and
it should be noted that the limited statistics available to experimentalists
often impede a clear-cut distinction between a Gaussian or an exponential
tail. O’Hern et al. [6] also argue that the way one averages over force distri-
butions obtained from distinct packings influences the observed shape of
the tail. In the same paper, these authors also identify the appearance of a
peak in the force distribution with jamming, implying that for unjammed
systems p(f) decreases monotonously.

Extracting p(f) from experimental images

We obtain p(f)’s for foams at varying φ from the navigation map Voro-
noi tessellations discussed in the preceding section. Since the tiles in this
tessellation respect the bubble edges and follow their curvature, we can
overlay the Voronoi cell edges with the images that have yielded φ, see
Fig. 4.2. In this way we can extract the size of the deformed contacts be-
tween touching bubbles i and j which is 2κc, as can be seen in Fig. 4.15.
This contact size is related to the elastic force fij through the relation
Eq. (1.7):

fij = fi + fj = πκ2
c2σ

Ri + Rj

RiRj
, (4.11)

with κc the radius of the deformed contact and Ri,j the radii of bubbles i
and j respectively. Note that this relation is valid when deformations are
small. Whether it breaks down for larger deformation we do not know,
but simulations by Lacasse et al. [17] on the interaction law in three-
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Figure 4.15: Illustration of the procedure used to extract p(f): the Voronoi cell
boundaries are plotted together with the φ plots. Where bubbles overlap, the cell
boundaries are bright. The size of this contact is proportional to

√
fij .

dimensional emulsions provide good hopes that we can assume an inter-
action like Eq. (4.11) to hold for our two-dimensional foam. Note that
since κ2

c ∝ ξ with ξ the overlap, this is the linear harmonic interaction we
discussed before.

We use the same experimental images as in the previous section, and
hence obtain force distributions at 8 different values of φ. For each φ we
compute p(f) over 30 frames. In Fig. 4.16 we show the normalised dis-
tributions for each φ. As φ decreases towards φc, we see the peak in p(f)
move towards F = 0, in accordance with the conjecture that the disap-
pearance of the peak in p(f) signals the jamming transition.

We cannot clearly distinguish the shape of the tails of p(f) over more
than two decades, be we do observe a trend in that the distributions seem
to exhibit exponential tails near jamming, but become more and more
Gaussian the more compressed the system becomes.

Averaging over distinct packings

Note that we have computed the averaged p(f) by simply summing the
distributions for each frame. In [98] O’Hern and coworkers argue that
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Figure 4.16: Force distribution functions obtained by averaging those of 30 dif-
ferent realisations. For decreasing φ the peak moves towards f = 0 and the shape
of the tails appears to cross over from Gaussian to exponential.

the way one calculates the average force distribution from a set of dis-
tributions obtained for distinct particle configurations greatly influences
the shape of the tails. These authors show that if one simply takes the his-
togram of all forces from all configurations and then normalises the forces
by the force 〈〈f〉〉 which is the average over all these forces, exponential
tails will be seen. Note that this is not the same as the procedure we have
followed to calculate the p(f)’s in Fig. 4.16. The alternative procedure that
is analysed in [98] is to normalise the forces for each packing by their av-
erage 〈f〉 and then perform the summation, in which case one will observe
Gaussian tails.

We plot force distributions for different φ obtained in the latter way in
Fig. 4.17. We do not see a qualitative difference in the trend that the shape
of the tails follow between Fig. 4.16 and Fig. 4.17. We do, however, see
that the relative contribution of the large forces grows for packings which
are closer to φc in accordance with [6, 16, 98].

105



4.3. MEASURES OF JAMMING

Figure 4.17: Force distribution functions obtained by averaging those of 30 dif-
ferent realisations that have each been rescaled by their average force 〈f〉. For
decreasing φ the relative contribution of large forces increases and the shape of
the tails appears to cross over from Gaussian to exponential.

Discussion

We have performed highly exploratory measurements on the shape of the
force distribution p(f) as a function of the distance to jamming. Despite
limited statistics, we see globally the same trends as previous authors, e.g.,
the cross-over from Gaussian to exponential tails and a broadening of the
distribution upon approaching φc. A signature of the precision with which
we can measure is to check whether the forces on each bubble are in bal-
ance. We find that the error in the force balance per bubble is typically
30% of the sum of all forces on the bubble, which is rather high. This
might be due to the fact that slight displacements of the Voronoi cell edges
with respect to the bubbles results in a large overestimation of the contact
forces due to the circular shape of the bubbles. Also note that the im-
ages we analyse are from a sheared foam which means that force balance
is not necessarily satisfied. The strong shearbanding in the system, how-
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ever, means that the region of interest is hardly flowing, implying that the
system is at least close to force balance.

4.3.3 The shear modulus G

The nature of the phase boundaries separating the jammed and the flow-
ing phase is one of the more crucial questions the jamming phase diagram
has generated. The simulations [6, 80] have focused on the transition at
point "J" (see Fig. 4.10), located at φc on the density axis, and have evi-
denced surprising behaviour at this point: the average number of contacts
between particles jumps abruptly while the bulk and shear elastic mod-
uli B and G vanish smoothly with critical exponents. Surprisingly, the
elastic moduli scale differently: B scales as (φ − φc)α−2, while G scales as
((φ − φc)α−3/2, where the exponent α depends on the interaction poten-
tial between particles. Irrespective of this interaction potential, the ratio
G/K scales as Z − Zc. As a result, jammed systems become much softer
to a shear deformation than to a compression, the closer they are to φc .
Furthermore, a length scale ξ related to correlated, vortical motions of the
particles, is expected to diverge [6, 80].

In this section, we propose experiments on two-dimensional foams to
establish the critical scaling of B and G with ∆φ ≡ φ − φc. We will show
preliminary data on the shear modulus G to show this techniques’ tremen-
dous promise.

We measure the mechanical response of foams at point J in the follow-
ing way: we trap a monolayer of bubbles in a Taylor-Couette geometry,
consisting of two concentric cylinders, see Fig. 4.18(a). We further cover
the bubbles with a glass plate, to precisely vary φ. The foam is driven by
the Anton Paar DSR-301 rheometer which can measure and exert the ex-
tremely small stresses and rotations associated with the regime in which
foams responds elastically. By using a grooved inner cylinder we shear the
foam and hence measure G, see Fig. 4.18(a(i)) while by attaching a differ-
ent and novel geometry, we will measure the response under compression
and hence B, see Fig. 4.18(a(ii)).

The bubbles experience additional viscous drags with the glass plates,
but we apply very small step strains (γ= 0.01 %) with the rheometer and
only measure the stress after the viscous stresses have relaxed and the re-
sulting signal reflects the elastic response (see Fig. 4.18(b)). One can easily
extract the elastic moduli from this signal and by repeating the measure-
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Figure 4.18: Schematic picture of the proposed experiments: a monolayer of
foam bubbles is loaded in a Couette geometry with top plate and step strains
are exerted by the inner cylinder, which is connected to a rheometer head: (i)
setup to measure shear modulus G. (ii) setup to measure bulk modulus B. (b)
Preliminary measurements of the shear response of a twodimensional foam to
step strains: After a viscous transient (see inset), the stress signal reflects only
the elastic stress and the slope of the straight line is the shear modulus G.

ments at varying packing fractions and different geometries we can estab-
lish the scaling of G and B with φ. By looking at the elastic response of the
foam to deformations we stay inside the jammed region of the jamming
phase diagram at all times and essentially measure along the zero stress,
zero temperature axis, see Fig. 4.10.

In Fig. 4.19 we plot the measured stress as a function of time, while
applying a small step strain every 4 seconds. We clearly see the viscous
transient and the subsequent elastic signal, and while have not been able
to exactly measure the density φ we have monotonously increased the gap
between the fluid and the glass plate and thus we have monotonously in-
creased φ. Fig. 4.19 shows the response of the foam at varying φ: the shear
modulus G increases monotonically with φ. Clearly these measurements
have to be expanded and performed in a quantitative manner to establish
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Figure 4.19: (a) A monolayer of foam bubbles is loaded in a Couette geometry
and step strains are exerted by the inner cylinder, which is connected to a rheome-
ter head, at varying φ denoted by arrow. The shear response of a two dimensional
foam to step strains becomes increasingly strong and hence G increases when φ
increases.

critical scaling of the shear modulus G, but nevertheless, these prelimi-
nary runs show the huge potential of confined foams to investigate the
linear response of soft disc systems near jamming.

4.4 Conclusion

In this chapter, we have discussed a multitude of phenomena that strongly
depend on the density φ of sheared or static two-dimensional foams. In
particular, we have for the first time experimentally established scaling of
the inverse foam consistency k and the contact number Z with ∆φ, and
we have observed the predicted shift towards zero of the peak of p(f) as
we approached φc. Also, we have obtained the first indications that G
indeed vanishes at point J, even though we cannot establish the scaling
yet. In contrast, we have observed peculiar distributions of the Voronoi
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area distributions that appeared to be independent of φ, except close to the
transition, where a sudden crossover towards the prediction for a hard-
sphere systems was observed.

Clearly these findings open all sorts of exciting inroads into the be-
haviour of foams as a function of the bubble density, and many could be
put on a firm footing with simply more statistics and a closer approach of
φc.
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Chapter 5

Outlook

In this final concluding chapter we briefly will set our findings in perspec-
tive, focussing on some open issues and outlining emerging avenues for
the study of the dynamics of foams as well as other complex, disordered
materials. First, we will present a tentative explanation for the observed
differences in interbubble drag force exponent β in chapters 2 and 3. Sec-
ond, we will briefly discuss how major open questions concerning jam-
ming might be answered by experiments on foams, and suggest to explore
analogies between granular media and foams.

5.1 Viscous drag, fluctuations an kymographs

In this thesis we have focussed on the averaged stresses and strainrates —
even though, clearly, disorder and fluctuations are crucial in setting the
values of the averaged stresses. While the drag force between bubbles and
the glass plate appears to scale robustly with the bubble velocity raised
to a fixed exponent α, and while this behaviour has also been understood
theoretically, it is the scaling exponent of the interbubble drag forces that
appears to vary from one experimental geometry to the other and which
theorists have only recently begun to investigate.

By tracking of bubble positions and velocities in foams it was recently
revealed [75] that the globally measured viscous stresses (which are di-
rectly related to the interbubble drags) and the fluctuations in the foams
are intimately related. Performing such analysis for all different geome-
tries is beyond the scope of this thesis, we therefore aim instead to gain
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Figure 5.1: Kymographs (space-time plots) of the fluctuating foam flow at differ-
ent local strain rates and in various experimental geometries. Solid lines indicate
the average velocities at the corresponding positions in the experiments.
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insight in the nature of fluctuations in our various experimental geome-
tries by more simple qualitative methods.

We do this by drawing kymographs — which is a fancy word for space-
time plots. To this end we select experimental runs where v0 ≈ 0.8 mm/s.
in the linear geometry with a glass plate, the Couette geometry with and
without glass plate (with inner radius ri = 10.5 cm) and the Couette
rheometry geometry (ri = 2 cm). We determine where in each geome-
try the local strain rate γ̇l equals 0.05 s−1, 0.0164 s−1 and 0.005 s−1 and
we draw the space-time plot of the corresponding image lines from 1000
frames.

The kymographs are plotted in Fig. 5.1 and are ordered along the
columns by γ̇l and along the rows by from top to bottom: the linear ge-
ometry, the Couette geometry with a top plate, the large Couette geometry
without a top plate and the small rheometrical Couette geometry without
top plate. We observe strong jittery fluctuations for the open geometries,
whereas the fluctuations for the bounded geometries seem more smooth
and slow, c.f. row 1 and 2 with row 3 and 4.

We thus seem to observe qualitatively different fluctuations depending
on whether the foams are confined by a glass plate or not. This difference
might give rise to the different scaling of β between the two geometries
and a next step would be to quantify this notion by particle tracking.

Note further that the fluctuations in the instantaneous velocities and
hence in the local strain rates are really large. The same holds for the
average stresses one can measure by rheometry. While relating both highly
noisy and strongly averaged quantities has basically been the focus of this
thesis, investigating the local dynamics of these foams by bubble tracking
will yield additional and deeper understanding of foam rheology.

5.2 Foam as a granular material: jamming and flow

In this section we speculate on possible experiments that can be performed
with foam in the context of the jamming phase diagram. Also, we will sug-
gest to translate key granular experiments to those with foams. In the last
chapter we have already discussed a variety of experiments with which we
have taken first steps towards probing the jamming transition with foam
bubbles. We have extracted static measures such as p(f) and p(A) and G,
which we can directly compare to theory.
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Another measure that we could extract from our foam data is a length-
scale ξ. There are two definitions, one for static and one for flowing pack-
ings. For static packings this lengthscale probes the spatial extension of
force fluctuations [107], while for flowing packings it is associated with
the spatial extension of correlated motion [97, 108, 109] in other words,
with the size of the so-called dynamical heterogeneities. Since we can re-
solve the force network as well as the fluctuations in bubble motions both
measures could in principle be extracted from experimental data, and we
will certainly attempt this in the near future.

In two-dimensional foam systems, a further challenge lies in under-
standing the oscillatory rheology. Could the scaling of the visco-elastic
moduli G′, G′′ for instance be related to the dynamics at the bubble scale?
Would one observe the large scale rearrangements associated with shear
reversal and shear start-up [72, 110]?

Finally, another promising route is to redo granular experiments, but
then with foam bubbles. Recently, gravity-driven flow of bubbles in ei-
ther silo’s [111] and rotating drums [112] has been investigated and re-
sults similar to the granular case have been obtained. One experiment that
would also be feasible is that of investigating chute flows [113] in three-
dimensional bubble systems, to investigate the formation of shearbands,
the interface between flowing and stationary regions and the existence of a
critical tilt angle. Such experiments could strengthen the ties between two
fascinating macroscopic and strictly athermal examples of soft matter.
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Summary

Foams are aggregates of air bubbles that are surrounded by a thin layer
of liquid. They are intrinsically unstable, but adding a surfactant like
dishwashing fluid or soap to the fluid can prolong the lifetime of bubbles
up to hours. Individual foam bubbles obey rather simple interaction laws:
foam bubbles are elastic, that is, if they are deformed they will bounce
back and if a foam bubble is sliding past another object it will feel a drag
force. Furthermore, foam bubbles are often macroscopic (between 0.1 mm
and 1 cm) meaning that they will not jiggle around at room temperature.

Despite the simplicity of its constituents a foam behaves in a compli-
cated manner. Consider the collection of bubbles which constitute a col-
umn of shaving cream, for example. This conglomerate can carry its own
weight like a solid and will bounce back when gently poked, while it will
flow like a liquid once sufficiently strong forcing is applied. The threshold
stress that leads to flow is often referred to as the yield stress. Furthermore,
the faster one drives the foam, the less the foam will resist the flow, which
is called shear-thinning. This behaviour is common to a larger class of ma-
terials such as sandpiles, emulsions (mayonnaise), pastes (peanut butter)
and colloidal systems (toothpaste) which are all disordered packings of
many particles.

The big challenge in the field of disordered materials is to relate the
properties of the individual particles to the behavior of the material as a
whole. In order to do this one needs to simultaneously measure the global
behaviour and the motion and state of all the individual particles. How-
ever, the white colour of most of the materials mentioned above signals the
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fact that these media strongly scatter light, and thus one cannot directly
look inside.

In this thesis, we have gained insight in the connection between the
local and global behaviour in foams by retreating to two dimensions. In
chapter 2, we describe an experiment in which we induce flow in a single
disordered layer of foam bubbles bound between the surface of a soapy
solution and a glass plate. We obtain the averaged velocity profiles as
a function of the applied shear rate and in addition we obtain informa-
tion on the local flow behaviour by very careful measurements of the re-
lation between forces and deformations in foam with a rheometer. We
find that by only considering that the viscous drag forces on the bubbles
need to balance — the drag forces result from the bubble sliding past an-
other bubble or sliding past the confining glass plate — we can explain
the observed shape of the velocity profiles. From the force balance we can
deduce an expression for the average drag force between bubbles which
we can compare to direct measurements with the rheometer. Surprisingly,
we find that the average local drag force between neighbouring bubbles
in a disordered, flowing foam is different from the actual local drag force
between two bubbles that move past each other in an orderly fashion, as
in the rheometer. We attribute the difference to the erratic flow that occurs
in the disordered foam, which on average enhances the amount of drag a
bubble experiences during flow. We substantiate this picture further by
shearing an ordered, crystalline foam. In that case we see that our drag
force balance model fits the date provided the local drag force between
bubbles is indeed the same as the one we measured using rheomtry.

In chapter 3 we continue in the same vein, but this time we shear two-
dimensional disordered foam layers in a circular geometry called a Cou-
ette cell. In this geometry, the foams are contained inside two concentric
circles and the inner disc is rotating. In the linear geometry used in chap-
ter 2 the effect of a yield stress in the foam cannot be observed. However,
in a Couette geometry its signature should in principle be visible, due to
the curvature in this system. Moreover, the Couette geometry allows for
runs both with and without the glass top plate, and we have investigated
the effect of the glass plate in further detail.

We again record average velocity profiles and by adapting our drag
force balance model to the curved coordinates we extract the behaviour
of the bubble-bubble drag force by fitting the model to the data. When
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the foam is not confined by the glass plate, it appears to be a lot more
shear thinning than when it is confined. We speculate that the presence
of the glass plate alters the fluctuations in a disordered foam, much as the
disorder itself did in chapter 2, and we suggest to measure the influence
of the glass plate on the fluctuations by particle tracking. In both cases
we observe no signature of a yield stress, in fact, if we image the veloc-
ity profiles while simultaneously measuring the global force-deformation
rate with a rheometer, we find that locally, the foam does not cease to flow
while globally the foam appears to be below the yield stress.

In chapter 4 we change gears and explore the applicability of foams to
experimentally probe the nature of the jamming transition. The jamming
framework was introduced to unify different classes of disordered mate-
rials that exhibit a transition between fluid-like and solid-like behaviour
which is termed the jamming transition. Foams can be made to lose their
solid-like behaviour by applying a stress larger than the yield stress or by
lowering the packing density of foam bubbles. In order to vary this pack-
ing fraction, we vary the gap between glass plate and liquid surface (this
gap was constant in chapters 2 and 3). In chapter 4 we thus explore the
jamming transition as a function of density.

We first describe techniques we have developed to characterise the
bubble density in our experimental geometry and then investigate the
foam viscosity as a function of the distance to the transition. Finally, we
explore mechanical and statistical measures that probe the physical nature
of the jamming transition and we find promising indications that foams
are indeed eminently suited to probe the jamming framework.
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Samenvatting

Schuim is een agglomeraat van luchtbellen die omringd zijn door een dun
laagje vloeistof. Deze bellen zijn van nature instabiel, maar het toevoe-
gen van een oppervlakte-actieve stof zoals afwasmiddel of zeep aan de
vloeistof kan de levensduur van bellen verlengen tot uren. Individuele
schuimbellen houden zich aan redelijk eenvoudige interactiewetten; zo
zijn schuimbellen elastisch, dat wil zeggen als ze vervormd worden zullen
ze willen terugveren teneinde hun evenwichtsvorm te hervinden, en als
schuimbellen langs een ander object glijden zullen ze een wrijvingskracht
ervaren. Verder zijn schuimbellen over het algemeen macroscopisch (0.1 -
10 mm) en dus zullen ze bij kamertemperatuur geen thermische beweging
laten zien.

Ondanks het eenvoudige gedrag van zijn bouwstenen vertoont een
schuim complex gedrag: Beschouw bijvoorbeeld de collectie van bellen
die een klodder scheerschuim is. Dit conglomeraat kan zijn eigen gewicht
dragen en zal terugveren als je er met een vinger tegenaan duwt, ter-
wijl het zal stromen als een vloeistof wanneer voldoende kracht wordt
uitgeoefend. De kritieke spanning die tot stroming leidt wordt vaak de
yield stress (=lett. bezwijkspanning) genoemd. Verder is het zo, dat des te
sneller je een schuim aandrijft, des te minder weerstand tegen stroming
het schuim zal uitoefenen, wat ook wel shear-thinning gedrag genoemd
wordt. Dit gedrag komt algemeen voor in een ruime klasse van materi-
alen zoals zandhopen, emulsies (mayonaise), pasta’s (pindakaas) en colloï-
dale systemen (tandpasta) die allemaal bestaan uit wanordelijke pakkin-
gen van vele deeltjes.
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De grote uitdaging in het veld van de wanordelijke materialen waar-
toe schuim behoort is om de eigenschappen van de individuele deeltjes
te relateren aan het gedrag van het materiaal als geheel. Teneinde dit te
kunnen doen zou je tegelijk het globale gedrag en de beweging en toe-
stand van alle individuele deeltjes moeten meten. Echter, de witte kleur
van de meeste van deze materialen geeft al aan dat deze media licht sterk
verstrooien, en dus kan je niet zomaar binnenin kijken.

In dit proefschrift hebben we ons inzicht aangaande de connectie tus-
sen lokaal en globaal gedrag in schuim vergroot door ons te beperken tot
twee dimensies. In hoofdstuk 2 beschrijven we een experiment waarin we
een lineaire afschuifstroming (shear flow) veroorzaken in een enkele laag
schuimbellen die opgesloten zit tussen de oppervlakte van een vloeistof
die bestaat uit een oplossing van afwasmiddel in water en een glasplaat.
We meten gemiddelde snelheidsprofielen als functie van de uitgeoefende
afschuifsnelheid (de shear rate) en daarbovenop verkrijgen we informatie
over het lokale stromingsgedrag uit heel gevoelige metingen van de relatie
tussen spanning (stress) en deformatie (strain) met een reometer. We ont-
dekken dat we de waargenomen vorm van de snelheidsprofielen kunnen
verklaren door alleen maar aan te nemen dat de visceuze wrijvingskrach-
ten die de bellen voelen, moeten balanceren. Deze wrijvingskrachten zijn
het gevolg van het glijden van de bellen ten opzichte van de glasplaat
en ten opzichte van andere bellen. Uit de krachtenbalans die we opstellen
kunnen we een uitdrukking voor de de gemiddelde wrijvingskracht tussen
schuivende bellen afleiden die we kunnen vergelijken met directe metin-
gen die we hebben gedaan met de reometer.

Verassend genoeg vinden we dat de gemiddelde lokale wrijvingskracht
tussen naburige bellen in een wanordelijk, stromend schuim verschilt van
de werkelijke lokale wrijvingskracht tussen bellen die op een nette, or-
delijke manier langs elkaar heen bewegen en die we kunnen meten met
de reometer.

We schrijven het verschil tussen de twee toe aan de wanordelijke stro-
ming die optreedt in het wanordelijke schuim en die de gemiddelde hoe-
veelheid wrijving op een schuimbel tijdens stroming doet toenemen. We
kunnen deze interpretatie versterken door een schuifstroming op een geor-
dend schuim uit te oefenen, en in dat geval leiden we uit onze wrijvings-
krachtenbalans af dat de lokale wrijving tussen bellen in het experiment
inderdaad dezelfde is als die in de reometer.
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In hoofdstuk 3 gaan we voort op de ingeslagen weg, maar ditmaal
brengen we een afschuiving aan op wanordelijke, tweedimensionale bel-
lenlagen in een circulaire geometrie, genaamd de Couette cel. In deze
geometrie bevindt het schuim zich tussen twee concentrische cylinders,
waarvan de binnenste ronddraait. Deze geometrie maakt het mogelijk ex-
perimenten te doen waarbij het schuim wel of niet bedekt is met een glas-
plaat zodat we het effect van de wrijvingskracht uitgeoefend door de glas-
plaat verder kunnen onderzoeken. Verder zouden we de effecten van de
yield stress, die in de lineaire geometrie onzichtbaar waren in deze cylin-
drische opstelling moeten kunnen zien.

We meten wederom gemiddelde snelheidsprofielen en door ons wrij-
vingskrachtmodel aan te passen aan het gekromde coördinatenstelsel kun-
nen we weer het gedrag van de wrijvingskracht tussen bellen afleiden.
We vinden dat het schuim zich veel meer shearthinning gedraagt als het
niet is afgesloten met de glasplaat dan wanneer het dat wel is, en we
speculeren dat de aanwezigheid van de glasplaat de fluctuaties in het
schuim verandert, op dezelfde manier als de wanorde dat deed in hoofd-
stuk 2. Verrassend genoeg zien we in beide configuraties geen effecten van
een yieldstress. Het is zelfs zo dat we, door tegelijkertijd snelheidsprofie-
len en de globale stress-strain-relatie te meten, vinden dat het schuim
lokaal nog steeds stroomt wanneer het globaal gezien beneden de yield
stress zou moeten zijn.

In hoofdstuk 4 verleggen we de aandacht en richten we ons op de
toepasbaarheid van schuimsystemen in het onderzoeken van de fysische
aard van de jamming-overgang. Het jamming-fasediagram is recent gein-
troduceerd met als doel het gedrag van verschillende klassen van mate-
rialen die een overgang tussen vast en vloeibaar gedrag laten zien, onder
één noemer te vangen. We hebben al gezien dat schuim zijn elastische
gedrag kan verliezen door een spanning groter dan de yield stress uit te
oefenen. Een alternatieve route is echter het verlagen van de dichtheid
van de schuimbellen. We kunnen deze dichtheid variëren door de afstand
tussen het vloeistofoppervlak en de glasplaat — die in hoofdstuk 2 en 3
constant was — te vergroten of te verkleinen. Op deze manier kunnen
we dus de jamming-overgang als functie van de dichtheid verkennen in
schuim.

We beschrijven eerst technieken die we ontwikkeld hebben om de bel-
lendichtheid in ons experiment te karakteriseren, waarna we de viscositeit
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van het schuim als functie van de afstand tot de jamming-overgang on-
derzoeken. Tenslotte verkennen we mechanische en statistische maten
die inzicht verschaffen in het fysische wezen van de jamming-overgang.
We vinden veelbelovende aanwijzingen dat schuim inderdaad uitstekend
geschikt is om het deze overgang te gaan begrijpen.
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