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Abstract. Let X/S be a hyperelliptic curve of genus g over the spectrum of a discrete
valuation ring. Two fundamental numerical invariants are attached to X/S: the valuation d
of the hyperelliptic discriminant of X/S, and the valuation δ of the Mumford discriminant of
X/S (equivalently, the Artin conductor). For a residue field of characteristic 0 as well as for
X/S semistable the invariants d and δ are known to satisfy certain inequalities. We prove an
exact formula relating d and δ with intersection theoretic data determined by the distribution
of Weierstrass points over the special fiber, in the semistable case. We also prove an exact
formula for the stable Faltings height of an arbitrary curve over a number field, involving
local contributions associated to its Weierstrass points.

1. Introduction

Let R be a discrete valuation ring with perfect residue field k. Let C be a smooth
proper geometrically connected curve of genus g ≥ 1 over K = Fr(R) and let
ρ : X → S be the minimal regular model of C over S = Spec R. Let ωX/S be the
relative dualising sheaf of X/S. The Mumford isomorphism [25, Theorem 5.10]:

det Rρ∗
(
ω⊗2

X/S

)
⊗ K

∼−→ (
det Rρ∗ωX/S

)⊗13 ⊗ K ,

which is well-defined up to a sign, gives a canonical rational section � of:

(
det Rρ∗ωX/S

)⊗13 ⊗ det Rρ∗
(
ω⊗2

X/S

)⊗−1
,

and a basic numerical invariant attached to X/S, namely the valuation δX/S =
ordv(�) of �. Here and in the rest of this paper we fix the convention that the
valuation of a discrete valuation ring is normalised in the sense that its value group
is Z. It turns out that δX/S is non-negative and that actually δX/S = −ArtX/S , where
ArtX/S is the Artin conductor of X/S [29, Theorem 1]. If X/S is semistable one
can view � as the pullback, under the period map S → Mg , of the tautological
section corresponding to the boundary divisor of the algebraic stack Mg of stable
curves of genus g. In particular if X/S is semistable δX/S is equal to the number of
singular points in the geometric special fiber of X/S.
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If C is elliptic or hyperelliptic, one has a second basic invariant attached to
X/S, namely dX/S = ordv(�) where � in H0(S, (det Rρ∗ωX/S)

⊗8g+4) is the
hyperelliptic discriminant associated to a hyperelliptic equation for C/K (cf. end
of section 3.1). Both δX/S and dX/S are zero if X/S is smooth. For C elliptic a
result of Tate-Ogg [28] states the equality dX/S = δX/S of both invariants. It fol-
lows from examples in [27] that in a number of cases with g = 2 and with k not of
characteristic 2,3 or 5, one has an equality dX/S = 2δX/S . However, as is shown in
[33] there are exceptions to this rule, indicating that one should add a non-negative
‘error term’ ε so that the formula dX/S = 2δX/S + ε is true in general. Ueno in fact
compiled a table containing values of dX/S and δX/S for k not of characteristic 2, 3
or 5 based on the complete classification of degenerate fiber types [26] in genus
two, showing precisely what the exceptions are. A more conceptual approach to
the comparison of dX/S and δX/S in genus two was given subsequently by Saito
[30] and Liu [18]. We state the result of Liu. Assume that k is algebraically closed,
and let π : X → X ′ be the contraction of those irreducible components � of the
special fiber of X/S for which degωX/S|� = 0. The hyperelliptic involution σ of
X/S extends uniquely as an automorphism of X ′ over S. Let Z = X ′/〈σ 〉; this is
a normal surface over S, with generic fiber isomorphic to P

1
K . The following then

holds: let Z̃ → Z be the minimal desingularisation of Z . Let n be the number of
irreducible components of the special fiber of Z̃ . Then n is odd and:

dX/S = 2δX/S + n − 1 .

For arbitrary hyperelliptic C , Matsusaka [20, Theorem 4.0.4] has shown the inequal-
ities:

gδX/S ≤ dX/S ≤ g2δX/S

for g even and:

gδX/S ≤ dX/S ≤ (g2 + 1)δX/S

for g odd, in the case where k has characteristic 0. In particular dX/S is non-nega-
tive. These inequalities still hold for arbitrary k, provided one restricts to semistable
hyperelliptic curves (for definitions see Sect. 3.1). In this case the inequalities fol-
low from a well-known identity due, in increasing order of generality, to Cornalba-
Harris [5], Kausz [14], Maugeais [21] and Yamaki [35].

Our aim in this paper is to prove an exact formula relating dX/S and δX/S

in arbitrary genus to intersection theoretic data associated to the distribution of
Weierstrass points over the special fiber of X/S. At present we only have a result
for semistable hyperelliptic curves, a circumstance due the point that we have to
assume that all Weierstrass points on the generic fiber are rational. We hope that
this restriction is in the end only of a technical nature and can be circumvented by
methods as in e.g. [34, Sect. 3].

Here is our set-up. Let F be the closure in X of the Weierstrass points on C .
For P a section of X/S we let 
P be the vertical Q-Cartier divisor on X uniquely
determined by the following conditions: the divisor (2g − 2)P − ωX/S +
P has
intersection number 0 with each component � of the geometric special fiber of
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X/S, and P∗
P is the trivial divisor on S. It is known (cf. [19, Section 9.1.3]) that
one has an intersection product Divs X × DivX → Z where DivX is the group of
Cartier divisors on X , and Divs X ⊂ DivX is the subgroup of Cartier divisors with
support in the special fiber. In particular, one has the intersection number (D, ωX/S)

for D supported in the special fiber. Also, one has the self-intersection 
2
P of 
P

in Q. It is non-positive [19, Theorem 9.1.23].

Theorem 1.1. Let R be a discrete valuation ring with perfect residue field and with
2 non-zero in R. Let C be a hyperelliptic curve of genus g ≥ 2 with semistable
reduction over K = Fr(R) and let X/S be the minimal regular model of C over
S = Spec R. Assume that all Weierstrass points of C are rational over K . Then the
integers dX/S and δX/S satisfy the following relation:

(3g − 1)dX/S = −1

2

∑
P∈F(R)


2
P + (2g − 1)(g + 1)δX/S + 4(E, ωX/S).

Here E is the vertical part of the divisor of the Wronskian on an R-basis of
H0(X, ωX/S).

The divisor E will be explained in more detail in Sect. 2. In Sect. 3.4 we will give
an explicit formula for E . The divisor 
P can be effectively calculated by solv-
ing a system of linear equations with rational coefficients. The assumption on the
rationality of all Weierstrass points already almost guarantees that C has semistable
reduction over K (cf. for a precise statement the beginning of Section 4 of [14] and
Sect. 3.4 below). Our theorem has the following global counterpart.

Corollary 1.2. Let S be a smooth proper connected curve over an algebraically
closed field k such that 2 is invertible in k. Let ρ : X → S be a semistable hyper-
elliptic curve of genus g ≥ 2 with X regular. Assume that all Weierstrass points of
the generic fiber of X/S are rational over the function field of S. Then:

(3g − 1)(8g + 4) deg det Rρ∗ωX/S = −1

2

∑
P∈F(S)


2
P + (2g − 1)(g + 1)

×
∑
℘∈|S|

δ℘ + 4(E, ωX/S),

where for each closed point ℘ of S, δ℘ denotes the number of singular points in the
fiber of X/S at℘. The divisor E is defined by taking locally over S the vertical part
of the divisor of the Wronskian on a basis of the locally free OS-module ρ∗ωX/S.
The divisor 
P is vertical as well and is defined as in the local case.

The proof of Theorem 1.1 will consist of a delicate sequence of specialisation and
generalisation arguments. The basic point will be a comparison of the line bundles
associated to d and δ on the moduli stack of stable hyperelliptic curves.

A part of what we have to say about Wronskians and Weierstrass points in
families carries over to the more general case of an arbitrary semistable curve over,
say, a Dedekind scheme. In Sect. 4 we discuss this point in an Arakelov context.
We obtain a remarkable closed formula for the stable Faltings height of a curve
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over a number field, as well as a lower bound for the self-intersection of its relative
dualising sheaf. Such lower bounds are of interest in view of an effective version
of the Bogomolov conjecture [32].

In this paper, all schemes are assumed locally noetherian and all morphisms of
schemes are of finite type. A morphism ρ : X → S is called a prestable curve of
genus g if ρ is proper and flat and the geometric fibers of ρ are connected, reduced,
nodal curves of arithmetic genus g. We call a prestable curve semistable (resp.
stable) if every smooth rational component of a geometric fiber meets the other
components of that fiber in at least 2 (resp. 3) points.

2. Weierstrass points

We begin by recalling from [1, Section 3] and [34, Section 2] a basic construction
related to Weierstrass points in families. Let X, S be regular locally noetherian
schemes and let ρ : X → S be a prestable curve of genus g ≥ 1. Let ω = ωX/S be
the relative dualising sheaf of X/S and let λ be the determinant line bundle det ρ∗ω
on S. Then we claim that the line bundle ω⊗g(g+1)/2 ⊗ρ∗λ−1 on X has a canonical
global section Wr . We proceed as follows. Let Xsm be the open subset of X where
ρ is smooth. Let x be a closed point on Xsm and suppose it maps to a closed point s
of S. Let t be a fiber coordinate on an open neighbourhood U of x in Xsm . Denote
by ∂ i for i ≥ 0 the ÔS,s-linear selfmap of ÔX,x = ÔS,s[[t]] given by sending tn

to
(n

i

)
tn−i . If OS,s is of characteristic 0 then ∂ i is just the map sending f to 1

i !
di f
dt i .

For ( f1, . . . , fg) in Og
X,x we let:

Wr( f1, . . . , fg) = det
(
∂ i−1 f j

)
1≤i, j≤g

,

i.e. the Wronskian of ( f1, . . . , fg). Now let (η1, . . . , ηg) be a basis of ρ∗ω around
s on S (recall that ρ∗ω is locally free of rank g), and write ηi = fi · dt with fi in
OX,x . If we then put Wr(η1, . . . , ηg) = Wr( f1, . . . , fg) · (dt)⊗g(g+1)/2 it can be
checked that Wr(η1, . . . , ηg) is independent of the chosen parameter t and defines
a section of ω⊗g(g+1)/2 locally around x . If (η′

1, . . . , η
′
g) is another basis of ρ∗ω

around s connected to (η1, . . . , ηg) via an invertible linear transformation (ai j ) then
one easily verifies that Wr(η′

1, . . . , η
′
g) = det(ai j )Wr(η1, . . . , ηg). This implies

that if we take Wr(η1, . . . , ηg) · (η1 ∧ . . . ∧ ηg)
−1 we obtain a local section of

ω⊗g(g+1)/2 ⊗ ρ∗λ−1 that is independent of the choice of a basis. As we can glue
these local sections over Xsm , and extend uniquely over X , we obtain a canoni-
cal section Wr of ω⊗g(g+1)/2 ⊗ ρ∗λ−1 as required. We call Wr the Wronskian of
X/S. For X/S smooth the construction of the Wronskian commutes with étale base
change. If S = Spec k where k is a field and Wr is not identically zero we call the
divisor div Wr of Wr the divisor of Weierstrass points of X/S. In general, if the
Wronskian is not identically zero, we call the closure in X of the Weierstrass points
of the general fibers of X/S the Weierstrass divisor of X/S and denote it by W . We
can then write div Wr = W + E for some effective divisor E on X where we call E
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the residual divisor of X/S. Both W and E can be viewed as Cartier divisors on X .
The next theorem slightly generalises Lemma 3.3 of [1] and Theorem 2.10 of [34].

Proposition 2.1. (Arakelov) Let ρ : X → S be a prestable curve of genus g ≥ 1
with X, S regular locally noetherian schemes. Let Wr be the Wronskian of X/S. If
Wr is not identically zero there exists a canonical isomorphism:

ω
⊗g(g+1)/2
X/S ⊗ ρ∗(det ρ∗ωX/S)

−1 ∼−→ OX (W + E)

of line bundles on X with W the Weierstrass divisor of X/S and with E the residual
divisor of X/S. E has support in the union of the non-smooth fibers of X/S and the
fibers of positive characteristic p with p < 2g − 1. For X/S smooth the formation
of the isomorphism commutes with any étale surjective base change.

Proof. All statements are immediate from our discussion, except perhaps for the
point that for X/S smooth, the divisor E may have support in the fibers of positive
characteristic p with p < 2g−1. For this we may assume that S = Spec k with k an
algebraically closed field. Let p be the characteristic of k. We would like to prove
that if Wr is zero, then p is positive with p < 2g − 1. Let x be a closed point of X ,
and let G(x) = {a1 < a2 < · · · } be the set of natural numbers a such that there is
an η in H0(X, ω) with a zero of exact order a − 1 at x . Then G(x) gives rise to a
filtration with simple quotients of the g-dimensional k-vector space H0(X, ω), so
that G(x) consists of g elements. Sinceω has no base points we have a1 = 1. On the
other hand we have ag ≤ 2g−1. Moreover there is a local parameter t around x and
a basis ( f1dt, . . . , fgdt) of H0(X, ω) such that fi = (unit) · tai −1 for i = 1, . . . , g.
This implies that there is an element A in the image of Z in OX,x such that:

A · Wr( f1, . . . , fg) =

∣∣∣∣∣∣∣∣∣

ta1−1 (a1−1)ta1−2 . . . (a1−1) · · · (a1−g+1)ta1−g

ta2−1 (a2−1)ta2−2 . . . (a2−1) · · · (a2−g+1)ta2−g

...
...

...

tag−1 (ag−1)tag−2 . . . (ag−1) · · · (ag−g+1)tag−g

∣∣∣∣∣∣∣∣∣
· (unit)

=

∣∣∣∣∣∣∣∣∣

1 (a1 − 1) . . . (a1 − 1) · · · (a1 − g + 1)
1 (a2 − 1) . . . (a2 − 1) · · · (a2 − g + 1)
...

...
...

1 (ag − 1) . . . (ag − 1) · · · (ag − g + 1)

∣∣∣∣∣∣∣∣∣
· (unit) · tw

=
∏

1≤i< j≤g

(ai − a j ) · (unit) · tw

where w = ∑g
i=1(ai − i). Thus if Wr( f1dt, . . . , fgdt) is zero, so is

∏
1≤i< j≤g

(ai − a j ), whence k of positive characteristic p with p < 2g − 1. 
�
The divisor W is in general not finite over S, nor is the decomposition of div Wr
as W + E in general well-behaved under base change (cf. [34, Remark 2.11]). The
situation is better if dim S = 1 or if X/S is a semistable hyperelliptic curve (for
which see the next section).
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3. Hyperelliptic curves

3.1. Preliminaries

We begin by defining precisely what we mean by a smooth hyperelliptic curve over
a base scheme S. A detailed account can be found in [17]. Let k be an algebraically
closed field, and let X/k be a proper smooth curve. We call X/k hyperelliptic if the
genus g of X is ≥ 2 and there is an involution σ in Autk(X) such that X/〈σ 〉 ∼= P

1.
Such an automorphism is then unique. If S is a locally noetherian scheme and
ρ : X → S is a smooth proper curve we say that X/S is hyperelliptic if there exists
an involution σ in AutS(X) such that the restriction of σ to each geometric fiber
of ρ gives that fiber the structure of a hyperelliptic curve (cf. [17, Definition 5.4
and Theorem 5.5]). We note that the involution σ is uniquely determined since the
automorphism scheme AutS(X) is unramified over S ([9, Theorem 1.11]). We call
σ the hyperelliptic involution of X/S. If X/S is a smooth hyperelliptic curve, we
denote by F = FX/S the fixed point subscheme of X under the action of the group
〈σ 〉. By [17, Proposition 6.3] the scheme F is the closed subscheme associated to
an effective Cartier divisor on X relative to S. The divisor F is finite and flat over
S of degree 2g + 2, and its formation commutes with arbitrary base change.

Lemma 3.2. Assume that S is a regular locally noetherian scheme, and that X/S
is a smooth hyperelliptic curve of genus g. Then X is regular, the Wronskian Wr of
X/S is not identically zero, the residual divisor E of X/S is empty, and the equality
of Cartier divisors W = g(g − 1)/2 · F holds.

Proof. That X is regular follows from [19, Theorem 4.3.36]. For the rest it suf-
fices to consider the case S = Spec k with k an algebraically closed field. Then an
affine part of X/S can be given by an equation y2 + ay = b with a, b in k[x]. The
hyperelliptic involution σ is given by y �→ −y − a. As X/〈σ 〉 has genus 0, the
quotient map X → X/〈σ 〉 is separable. This implies that 2y + a is not identically
zero, and that a basis of the regular differentials is given by xi dx/(2y + a) for
i = 0, . . . , g − 1. A computation yields:

Wr

(
dx

2y + a
, . . . ,

xg−1dx

2y + a

)
= (2y + a)g(g−1)/2

(
dx

2y + a

)⊗g(g+1)/2

,

which is not identically zero. It follows that E is empty and finally, since F is
locally given by the vanishing of 2y + a, the equality W = g(g − 1)/2 · F . 
�
If ρ : X → S is an arbitrary proper flat curve with S locally noetherian, we call
X/S hyperelliptic if there exists an involution σ in AutS(X) and an open dense
subset U of S such that the restriction of ρ to X ×S U is a smooth hyperelliptic
curve with the restriction of σ to X ×S U as hyperelliptic involution. We remark
that if S is a connected regular noetherian scheme of dimension 1 and X is the
regular minimal or stable model of its generic fiber, then X/S is hyperelliptic if
and only if its generic fiber is hyperelliptic. Indeed, a hyperelliptic involution of
the generic fiber extends by the valuative criterion of properness, and according
to [17, Proposition 5.14] the smooth fibers of ρ are then organised in a smooth
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hyperelliptic curve over an open dense subset of S. We denote by F the closure in
X of the fixed point subscheme on the smooth fibers of X/S.

Let S again be arbitrary. Let ρ : X → S be hyperelliptic of genus g ≥ 2, and
assume X to be regular. Let ωX/S be the relative dualising sheaf of X/S. The line

bundle
(
det ρ∗ωX/S

)⊗8g+4 on S has then a canonical non-zero global section �,
called the hyperelliptic discriminant of X/S [14, Section 2]. For S = Spec R with
R a discrete valuation ring with 2 non-zero in R it can be defined as follows. Let
K = Fr(R), and let y2 = f (x) with f in K [x] monic separable of degree 2g + 2
be an equation for X K . Then we put:

� =
(

2−(4g+4) · D( f )
)g ·

(
dx

y
∧ · · · ∧ xg−1dx

y

)⊗8g+4

,

where D( f ) is the discriminant of f in K . The section � is independent
of the choice of f and hence defines a non-zero canonical element of
H0(X K ,�

1
X K
)⊗8g+4. It can then be viewed as a rational section of(

det ρ∗ωX/S
)⊗8g+4 over S. The integer dX/S is defined to be the valuation ordv(�)

of � at the closed point v of S. The construction of � generalises over arbitrary
locally noetherian base schemes [21, Proposition 2.7]. For X/S smooth the section
� is nowhere vanishing on S.

3.3. Proof of Theorem 1.1

The proof of Theorem 1.1 goes by a number of specialisation and generalisation
arguments. Whenever ρ : X → S is a semistable curve, we just write ω for its
relative dualising sheaf ωX/S and λ for its determinant line bundle det Rρ∗ω. The
formation of bothω and λ commutes with arbitrary base change. When dealing with
the tensor product of line bundles, we will often mix additive and multiplicative
notation; we hope that this does not lead to confusion.

We start with an arbitrary generically smooth semistable curve ρ : X → S
of genus g ≥ 2 with S locally noetherian. We consider the line bundle
Q = 〈(2g − 1)(g + 1)ω − 4ρ∗λ, ω〉 on S; here 〈L ,M〉 denotes the Deligne sym-
bol of two line bundles L ,M on X [8, Sections 6 and 7] [24, Section 5.4]. The
Deligne symbol is a biadditive functorial pairing from the category of line bundles
on X to the category of line bundles on S. For L = ρ∗N and for M flat over S

one has 〈L ,M〉 = 〈ρ∗N ,M〉 ∼−→ N⊗d canonically, where d is the degree of M
in the fibers of ρ. In our case we obtain a canonical isomorphism of line bundles
Q

∼−→ (2g − 1)(g + 1)〈ω,ω〉 − (8g − 8)λ on S. According to [23, Théorème
2.1] we also have a canonical isomorphism of line bundles 〈ω,ω〉 ∼−→ 12λ− δ on
S, where δ is the line bundle on S given by the boundary divisor on the moduli
stack of stable curves of genus g or, equivalently, the zero divisor of the sec-
tion � coming from the Mumford isomorphism over the locus of S where ρ is
smooth. A combination of these two isomorphisms yields a canonical isomor-
phism Q

∼−→ (3g − 1)(8g + 4)λ − (2g − 1)(g + 1)δ of line bundles on S. Note



280 R. de Jong

that all isomorphisms are compatible with any base change preserving the generic
smoothness of ρ.

Next we impose on ρ the condition that it is hyperelliptic, and on S the con-
dition that it is both reduced and irreducible, and that it has a non-empty open
subscheme U which is both regular and a scheme over Z[1/2]. We claim that under
these assumptions the line bundle Q⊗2 has a canonical non-zero rational section ξ ,
having the property that its valuation ordv(ξ) at the closed point v of the spectrum
S of a discrete valuation ring equals ordv(ξ) = −∑

P∈F(S) 

2
P + 8(E, ω), if all

Weierstrass points on the generic fiber of X/S are rational, and X is the regular
minimal model of its generic fiber. As S is reduced and irreducible, it suffices to
construct ξ over the non-empty open subscheme U . By shrinking U if necessary,
we may assume that ρ is smooth over U . Hence we reduce to the case that ρ is
smooth over S and that S is regular and a scheme over Z[1/2]. In this case X itself
is regular by Lemma 3.2 and the fixed point subscheme F of X over S is finite
étale of degree 2g + 2 over S by [17, Corollary 6.8]. After a faithfully flat base
change we can assume that F is the disjoint union of 2g + 2 sections of S. By
faithfully flat descent we may assume that this is then already the case. Thus, let
P be a section of F over S. By [7, Lemma 6.2] we have a unique isomorphism
ω

∼−→ (2g − 2)OX (P)⊗ ρ∗〈P, P〉⊗−(2g−1) of line bundles on X that induces, by
pulling back along P , the canonical adjunction isomorphism 〈P, ω〉 ∼−→ 〈P, P〉⊗−1

(cf. [22, Théorème 6.11]). The formation of this isomorphism commutes with arbi-
trary base change. Pairing the isomorphism withω and using adjunction one obtains
a canonical isomorphism 〈ω,ω〉 ∼−→ 4g(g − 1)〈P, ω〉 of line bundles on S. Taking
the sum over all P we obtain, using that W = g(g − 1)/2 · F by Lemma 3.2, a
canonical isomorphism 〈4W − (g + 1)ω, ω〉⊗2 ∼−→ OS of line bundles on S. With
Lemma 2.1 we get, as E is empty in the present case by Lemma 3.2, a canonical
isomorphism Q⊗2 = 〈(2g−1)(g+1)ω−4ρ∗λ, ω〉⊗2 ∼−→ OS . We get ξ by taking
the section of Q⊗2 that corresponds to the canonical section 1 of OS under this
isomorphism.

Now assume that S is the spectrum of a discrete valuation ring, that all Wei-
erstrass points on the generic fiber of X/S are rational, and that X is the reg-
ular minimal model of its generic fiber. It follows from the construction of ξ
above that for each P ∈ F(S) we have a canonical trivialising section sP of
the line bundle ω − (2g − 2)OX (P) + ρ∗〈P, P〉⊗2g−1 restricted to the generic
fiber of X/S. This section extends uniquely to a rational section sP of this
same line bundle over X . Let’s denote by 
′

P its divisor. Then 
′
P is sup-

ported on the special fiber of X/S and we have P∗
′
P trivial on S since the

pullback of our line bundle along P is 〈P, P ⊗ ω〉 which is canonically triv-
ial by adjunction. It follows easily that 
′

P is equal to 
P . Thus we have

a canonical isomorphism ω − (2g − 2)OX (P) + ρ∗〈P, P〉⊗2g−1 ∼−→ OX (
P )

of line bundles on X . Pairing with ω yields a canonical isomorphism
−4g(g − 1)〈P, ω〉 + 〈ω,ω〉 ∼−→ 〈
P , ω〉 of line bundles on S. On the other
hand, pairing with 
P yields the isomorphism 〈
P , ω〉 ∼−→ 〈
P ,
P 〉. Combin-
ing we find an isomorphism −4g(g − 1)〈P, ω〉 + 〈ω,ω〉 ∼−→ 〈
P ,
P 〉 and sum-
ming over P ∈ F(S) and adding 8〈E, ω〉 on both sides gives the isomorphism
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〈4W − (g + 1)ω + 4E, ω〉⊗2 ∼−→ − ∑
P∈F(S)〈
P ,
P 〉 + 8〈E, ω〉. Using

Lemma 2.1 we find a canonical isomorphism Q⊗2 = 〈(2g − 1)(g + 1)
ω − 4ρ∗λ, ω〉⊗2 ∼−→ − ∑

P∈F(S)〈
P ,
P 〉 + 8〈E, ω〉. The line bundle on the
right hand side has a canonical non-zero rational section ξ ′ whose valuation at the
closed point v of S equals ordv(ξ ′) = −∑

P∈F(S) 

2
P + 8(E, ω). It follows from

the constructions that ξ in Q⊗2 corresponds to ξ ′, and thus we find the required
formula for ξ .

The proof of Theorem 1.1 will be done if we could also prove the formula
ordv(ξ) = (6g−2)ordv(�)−(4g−2)(g+1)ordv(�) for the valuation at v of ξ . For
this, recall the canonical isomorphism Q

∼−→ (3g−1)(8g+4)λ− (2g−1)(g+1)δ
of line bundles on S that we obtained from Mumford’s isomorphism. View�⊗3g−1

as a rational section of the right hand side of this isomorphism. We will be done
once we prove that under the square of the isomorphism Q

∼−→ (3g − 1)(8g + 4)
λ − (2g − 1)(g + 1)δ, the rational section ξ is identified with �⊗6g−2, up to a
sign. In order to accomplish this, we first prove that for each stable hyperelliptic
curve ρ : X → S with S locally noetherian, reduced and irreducible and having
the property that it contains a non-empty open subscheme U that is regular and
defined over Z[1/2], the sections ξ and�⊗6g−2 are identified, up to a sign. For this
it suffices to consider the algebraic stack Ig classifying stable hyperelliptic curves
of genus g studied in e.g. [5, Section 4b] (over C) and [35, Section 1] (over Z).
It is a suitable compactification of the algebraic stack Ig of smooth hyperelliptic
curves of genus g. The stack Ig has smooth and geometrically irreducible fibers
over Spec Z (cf. [15, Theorem 3]) and is in particular itself reduced and irreducible.
The same holds then for Ig and it is clear that the latter contains a non-empty open
substack which is regular and defined over Z[1/2] (just take Ig ⊗ Z[1/2]). For
any stable hyperelliptic curve ρ : X → S of genus g with S locally noetherian,
reduced and irreducible and having a non-empty regular open subscheme defined
over Z[1/2], we obtain the sections ξ and �⊗6g−2 over S by pullback from Ig

under the period map S → Ig .
Now note that both ξ and �⊗6g−2 are supported on the boundary of Ig in Ig .

Letting φ be the square of the canonical isomorphism Q
∼−→ (3g − 1)(8g + 4)λ−

(2g − 1)(g + 1)δ over Ig we find that φ(ξ)⊗�⊗−(6g−2) is a rational function on
Ig , regular invertible on Ig . By [7, Proposition 7.3], the function φ(ξ)⊗�⊗−(6g−2)

equals ±1. Thus the sections ξ and �⊗6g−2 are identified, up to a sign, as
required.

The proof will now be finished by making the transition, in the case that S is the
spectrum of a discrete valuation ring, from a stable model X/S to its associated regu-
lar minimal model X ′/S with structure morphism ρ′. Letω′ be the relative dualising
sheaf of X ′/S, and write λ′ = det ρ∗ω′ and Q′ = 〈(2g −1)(g +1)ω′ −4ρ′∗λ′, ω′〉.
Let ξ ′ be the canonical rational section of Q′⊗2, and let �′ be the canon-
ical rational section of λ′⊗8g+4. Finally let π : X ′ → X be the canonical
map contracting the (−2)-curves in the special fiber. We know that for X/S
the sections ξ of Q⊗2 = 〈(2g − 1)(g + 1)ω − 4ρ∗λ, ω〉 and �⊗6g−2 of
(6g−2)(8g+4)λ− (4g−2)(g+1)δ correspond, up to a sign. We have a canonical
isomorphism π∗ω ∼−→ω′ and for any pair of line bundles L ,M on X a canonical
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isomorphism 〈π∗L , π∗M〉 ∼−→ 〈L ,M〉 [24, Section 5.4]. Thus we find a canonical
isomorphism Q

∼−→ Q′, and one verifies that ξ and ξ ′ are identified in this way.
Also we have a canonical isomorphism λ

∼−→ λ′, yielding an identification of �
and �′. We conclude that ξ ′ and �′⊗6g−2 are identified as well.

3.4. Effective computations

In this section we indicate how, for a semistable hyperelliptic curve X over a dis-
crete valuation ring R in which 2 is a unit, the residual divisor E can be effectively
calculated. We base our discussion on Section 4 of I. Kausz’s article [14]. Another
approach can be found in [34, Sect. 4]. We assume that all Weierstrass points on the
generic fiber are rational. This implies (cf. [14, Lemma 4.1]) that the generic fiber
of X/R has an equation y2 = A f (x)with A a unit in R and f (x) = ∏2g+2

i=1 (x −ai )

for certain pairwise distinct ai ∈ R. At the expense of making a small finite exten-
sion of R we assume that the v(ai − a j ) are even for all i �= j , and that the number
of distinct images of the ai in R/m is at least 3. Here v is the normalised discrete
valuation of R, and m is the maximal ideal of R.

Assume that X is the minimal regular model of its generic fiber. We
can describe X/R in a combinatorial way. We start by constructing a finite
tree T = (V, E) from the above data. For non-negative integers n denote by
rn : {a1, . . . , a2g+2} → R/mn the natural map sending ai to its residue class mod-
ulo mn . The vertices of T are then the elements of the set V = �n≥0Vn where
Vn = {V ∈ R/mn : #r−1

n (V ) ≥ 2}. The set E of edges of T consists of the pairs
(V, V ′) where V ∈ Vn and V ′ ∈ Vn+1 for some n ≥ 0 and V ′ �→ V under the
canonical map Vn+1 → Vn . It follows that V has a canonical partial ordering and
that there is a unique minimal element V0 with respect to this ordering. Moreover,
T is canonically isomorphic to the dual graph of the special fiber of the prestable
curve Y ′/R of genus 0 that is obtained by taking the smooth curve P

1
R and then

successively blowing up the closed points of the special fiber where the sections Pi

given by the ai meet, until the strict transform of
∑

i Pi in Y ′ becomes regular.
We can construct X from Y ′. For every V ∈ V put n(V ) = n if V ∈ Vn , and

put ϕ(V ) = #r−1
n (V ). Next define C(V ) to be 1 if both n and ϕ(V ) are odd, and 0

otherwise. This gives rise to an effective divisor C = ∑2g+2
i=1 Pi +∑

V ∈V C(V ) · V
on Y ′ which has the properties that C is regular and that the class of C is divisible
by 2 in the Picard group of Y ′. By standard constructions we obtain an R-scheme
X ′ and a finite flat morphism π ′ : X ′ → Y ′ of degree 2 such that X ′ is regular
and π ′ is branched exactly along C . In fact X ′/R is prestable with generic fiber
isomorphic to the generic fiber of X . For V an irreducible component of the special
fiber of Y ′, set Ṽ = π ′∗V = X ′ ×Y ′ V . If C(V ) = 1 then Ṽ = 2L with L an excep-
tional smooth rational curve. If C(V ) = 0 then Ṽ is reduced and Ṽ → V is finite
of degree 2, ramified over precisely the (V,C) intersection points of C with V .
Upon contracting all exceptional smooth rational curves in the special fiber of X ′
we find the regular semistable model X/R, up to R-isomorphism. Likewise, one
can contract all components V on Y ′ with C(V ) = 1. We denote the resulting
model by Y , and we have a canonical map π : X → Y of R-schemes.
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Proposition 3.5. Let X be a hyperelliptic semistable curve of genus g ≥ 2 over a
discrete valuation ring R in which 2 is a unit. Assume that X is regular. Suppose
that the generic fiber of X/R is given by an equation y2 = A · f (x) with A ∈ R∗
and f (x) = ∏2g+2

i=1 (x − ai ) for certain distinct ai ∈ R. Assume that v(ai − a j ) is
even for i �= j , and that the number of distinct images of the ai in R/m is at least 3.
Let T = (V, E) be the tree associated to the ai as above, and let e be the integer:

e = 1

2

∑
V>V0 : ϕ(V ) even

ϕ(V )

2

(
ϕ(V )

2
− 1

)
+ 1

2

∑
V>V0 : ϕ(V ) odd

(
ϕ(V )− 1

2

)2

.

Here the sums run over V in the vertex set V . Then for the residual divisor E of
X/R one has the formula:

E =
∑
V ∈V

C(V )=0

⎛
⎝e − g

2

n(V )∑
i=1

ϕ(Vi )+ g(g + 1)

2
n(V )

⎞
⎠ · Ṽ ,

where for each given V in V we denote by V0, V1, . . . , Vn = V the vertices of the
unique linear subgraph of T that connects V and V0.

Proof. The divisor E is the vertical part of the divisor of the Wronskian
Wr(ω0, . . . , ωg−1) on an R-basis (ω0, . . . , ωg−1) of H0(X, ω). According to

[14, Proposition 5.5] there are ei ∈ Z with
∑g−1

i=0 ei = e and b j ∈ {a1, . . . , a2g+2}
such that for:

ωi = tei

⎛
⎝

i∏
j=1

(x − b j )

⎞
⎠ dx

y
, i = 0, . . . , g − 1

the tuple (ω0, . . . , ωg−1) is an R-basis of H0(X, ω). Here t is a generator of the
maximal ideal m of R. Putting hi (x) = ∏i

j=1(x − b j ) for i = 0, . . . , g − 1 a
computation shows that:

Wr(ω0, . . . , ωg−1) = y−gteWr(h0, . . . , hg−1)(dx)⊗g(g+1)/2

= yg(g−1)/2teWr(h0, . . . , hg−1)

(
dx

y

)⊗g(g+1)/2

= yg(g−1)/2te
(

dx

y

)⊗g(g+1)/2

.

From this we compute div Wr(ω0, . . . , ωg−1). Let divvert y be the vertical part of
the divisor of y on X , and let P∞ be the section of Y corresponding to the point at
infinity of the generic fiber of Y . According to Lemma 5.2 of [14] we have:

div

(
dx

y

)
= (g − 1)π∗ P∞ − divvert y +

∑
V ∈V

C(V )=0

n(V ) · Ṽ ,
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where π : X → Y is the canonical map. It follows that:

div Wr(ω0, . . . , ωg−1) = eF + g(g − 1)

2
div y + g(g − 1)(g + 1)

2
π∗ P∞

−g(g + 1)

2
divvert y + g(g + 1)

2

∑
V ∈V

C(V )=0

n(V ) · Ṽ

with F the special fiber of X . Noting that:

g(g − 1)

2
div y = g(g − 1)

2
divvert y + W − g(g − 1)(g + 1)

2
π∗ P∞

we derive:

div Wr(ω0, . . . , ωg−1) = eF + W − gdivvert y + g(g + 1)

2

∑
V ∈V

C(V )=0

n(V ) · Ṽ .

Clearly for each V in V with C(V ) = 0 we have vṼ (y) = 1
2

∑2g+2
i=1 vṼ (x − ai ).

The valuation vṼ (x − ai ) can be seen to be equal to min(n(V ), v(a − ai )) where
a is a representative of V (cf. [14, Proof of Lemma 5.1]). A counting argument
shows that

∑2g+2
i=1 min(n(V ), v(a − ai )) = ∑n(V )

i=1 ϕ(Vi ) if V0, V1, . . . , Vn = V
are the vertices of the unique linear subgraph of T that connects V and V0. Thus
we obtain vṼ (y) = ∑n(V )

i=1 ϕ(Vi ) for each V with C(V ) = 0 and we arrive at:

div Wr(ω0, . . . , ωg−1) = W +
∑
V ∈V

C(V )=0

⎛
⎝e − g

2

n(V )∑
i=1

ϕ(Vi )+ g(g + 1)

2
n(V )

⎞
⎠ · Ṽ .

The formula follows. 
�
Apparently, the number e can be interpreted as the multiplicity in E of the irre-
ducible component of the special fiber of X/R that maps to V0 in Y/R. We note
however that the component V0 may depend on the particular equation chosen for
the generic fiber of X/R.

3.6. Example

In this section we verify Theorem 1.1 for a concrete case with g = 2. Let k be
an algebraically closed field with 2 ∈ k∗, and let X ′

k be a stable curve of genus 2
over k consisting of an elliptic curve A with a one-noded rational curve B attached
to it. Let Xk → X ′

k be the modification of X ′
k obtained by partially normalising

X ′
k at the node ν of B, and attaching a projective line D at the two points in the

preimage of ν. The semi-stable curve obtained in this way has type I2 − I0 − 1 in
the classification of Namikawa-Ueno [26]. Its intersection matrix is:
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A B D

A −1 1 0

B 1 −3 2

D 0 2 −2

and for the arithmetic genera pa(C) resp. the intersections (C, ω) with ω we have:

C pa(C) (C, ω)

A 1 1

B 0 1

D 0 0

Assume that Xk is the special fiber of a semistable hyperelliptic curve X/S with S
the spectrum of a discrete valuation ring R with residue field k and with X regular.
Assume that the Weierstrass points P1, . . . , P6 of the generic fiber are rational, and
that their closures in X are distributed over the special fiber as follows: P1, P2, P3
intersect A, P4 intersects B, and P5, P6 intersect D. The surface X is then the mini-
mal regular model of a genus 2 curve given by an equation y2 = (x−a1) · · · (x−a6)

with a1, . . . , a6 ∈ R giving rise to a linear tree V0 − V1 − V2 − V3 with V0 repre-
sented by a1, . . . , a6, V1, V2 represented by a4, a5, a6 and V3 represented by a5, a6.
Thus ϕ(V1) = ϕ(V2) = 3 and ϕ(V3) = 2. The correspondence with the Pi is via
Pi ↔ ai , the component A corresponds to V0, the component B corresponds to
V2 and the component D corresponds to V3. The vertex V1 has C(V ) equal to 1.
We compute e = 1 and Proposition 3.5 gives E = A + B + 2D which is indeed
effective.

Next, solving the equation (2P −ω+
,C) = 0 for C = A, B, D and demand-
ing that (
, P) = 0 one finds 
P and hence 
2

P for all P ∈ F(S). The results are
in the following table:

P 
P 
2
P

P1, P2, P3 −B − D −1

P4 −A −1

P5, P6 −2A − B −3

The formula in Theorem 1.1 reads in our case:

5dX/S = −1

2

∑
P∈F(R)


2
P + 9δX/S + 4(E, ωX/S) .

From E = A + B + 2D we obtain (E, ωX/S) = 2. From the tables we further read
off that −∑

P∈F(S) 

2
P = 10. Our description of the special fiber gives δX/S = 3.

Finally, one has dX/S = 8 by either [14, Theorem 3.1] or [33, Table 5] (but note
that in the latter reference, the hyperelliptic discriminant is a section of λ⊗10, not
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of λ⊗20 as in our set-up, so that to get the values for our d, the values for d given
in the table in [33] should be multiplied by 2). The formula checks.

4. Weierstrass points on arithmetic surfaces

In this section we consider Arakelov versions of several of the isomorphisms con-
sidered earlier, associated with Weierstrass points. Let S be a connected Dedekind
scheme with generic residue characteristic equal to 0 and let ρ : X → S be a semi-
stable curve of genus g ≥ 1. Assume that X is the regular minimal model of its
generic fiber. Under these assumptions, the Wronskian Wr of X/S is not identically
zero and we have a Weierstrass divisor W flat over S and a residual divisor E sup-
ported in the non-smooth fibers of X/S and in the fibers of positive characteristic p
with p < 2g−1. Ifω is the relative dualising sheaf of ρ and λ = det ρ∗ω as before,
we have a canonical isomorphism OX (W + E)

∼−→ g(g + 1)/2 · ω − ρ∗λ of line
bundles on X (cf. Proposition 2.1). Multiplying both sides by 4, then subtracting
(g + 1)ω from both sides and then pairing with ω we obtain from this a canonical
isomorphism 〈4W − (g + 1)ω + 4E, ω〉 ∼−→ 〈(2g − 1)(g + 1)ω − 4ρ∗λ, ω〉. The
latter line bundle was called Q in the proof of Theorem 1.1. In that proof, we applied
the Mumford isomorphism 〈ω,ω〉 ∼−→ 12λ− δ to obtain a canonical isomorphism
Q

∼−→ (3g − 1)(8g + 4)λ− (2g − 1)(g + 1)δ. Combining both isomorphisms we
end up with a canonical isomorphism:

ν : (3g − 1)(8g + 4)λ
∼−→ 〈4W − (g + 1)ω + 4E, ω〉 + (2g − 1)(g + 1)δ

of line bundles on S. Now remark that in the Faltings-Deligne version of Arake-
lov theory of arithmetic surfaces the line bundles under consideration on X come
equipped with certain canonical hermitian metrics (cf. [11, Sect. 2]), and like-
wise for the line bundles under consideration on S (cf. [11, Sects. 3 and 4] and
[8, Sect. 6]). In particular, if S = Spec C the isomorphism ν has a certain norm.
Our first result is that this norm is closely related to an invariant T introduced in
[6]. If X is a compact connected Riemann surface of genus g ≥ 1, then T (X ) is
given by:

T (X ) =
(

‖ϑ‖(P1 + · · · + Pg − Pg+1)∏g
k=1 ‖ϑ‖(gPk − Pg+1)1/g

)2g−2

·

·
(∏

k �=l ‖ϑ‖(gPk − Pl)
1/g

‖J‖(P1, . . . , Pg)2

)
·

∏
R∈W

g∏
k=1

‖ϑ‖(gPk − R)(g−1)/g4
,

where P1, . . . , Pg+1 are generic points on X , W is the divisor div Wr of Weierstrass
points on X , ‖ϑ‖ is the normalised theta function on Picg−1(X ) of [11, p. 401], and
‖J‖ is a normalised jacobian determinant involving theta functions on Symg(X )
introduced in [12].

Proposition 4.1. The norm of ν for X a smooth proper curve of genus g ≥ 1 over
S = Spec C is equal to:

(2π)−4g(2g−1)(g+1) · T (X (C))8g2
.
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Proof. We reconstruct the isomorphism ν again from the isomorphism OX (W )
∼−→ g(g + 1)/2 · ω − ρ∗λ and the Mumford isomorphism 〈ω,ω〉 ∼−→ 12λ − δ,

keeping track of the norms at each step (note that the residual divisor E now van-
ishes). According to [23, Théorème 2.2] the norm of the Mumford isomorphism
is equal to (2π)4ge−δ(X (C)) where δ(X (C)) is the Faltings delta-invariant of X (C)

[11, p. 402]. The inverse norm of the isomorphism OX (W )
∼−→ g(g+1)/2·ω−ρ∗λ

was called R(X (C)) in [6] (cf. Definition 5.3 of that paper), and it follows from
[6, Theorem 4.4] and its proof that R, T and δ are related via:

R(X (C))g−1 = T (X (C))g
2 · e−(2g−1)(g+1)δ(X (C))/8

(the reader is warned that the formula in Theorem 4.4 of loc. cit. contains a mis-
print: the g3 occurring in the exponent should be g2). From the isomorphism
OX (W )

∼−→ g(g + 1)/2 · ω − ρ∗λ we get by multiplying both sides by 4, by
subtracting (g + 1)ω from both sides and by pairing with ω the isomorphism
〈4W − (g + 1)ω, ω〉 ∼−→ 〈(2g − 1)(g + 1)ω − 4ρ∗λ, ω〉 which thus has norm
R(X (C))−(8g−8). Composing through with the isomorphism:

〈(2g − 1)(g + 1)ω − 4ρ∗λ, ω〉 ∼−→ (3g − 1)(8g + 4)λ− (2g − 1)(g + 1)δ

which has norm
(
(2π)4ge−δ(X (C)))(2g−1)(g+1)

we find the isomorphism:

〈4W − (g + 1)ω, ω〉 ∼−→ (3g − 1)(8g + 4)λ− (2g − 1)(g + 1)δ

having norm:

R(X (C))−(8g−8) ·
(
(2π)4ge−δ(X (C)))(2g−1)(g+1)=(2π)4g(2g−1)(g+1) ·T (X (C))−8g2

.

The norm of ν is the inverse of this. 
�
Example 4.2. Let X be a hyperelliptic curve of genus g ≥ 2 over S = Spec C.
It follows from the proof of Theorem 1.1 that the square of the line bundle
Q = 〈4W−(g+1)ω, ω〉on S is canonically isomorphic to the trivial line bundle OS .
By going through a sequence of arguments analogous to those in the proof of Propo-
sition 2 of [3] it can be verified that the isomorphism Q⊗2 ∼−→ OS is in fact an isom-
etry. This implies that the canonical section ξ of Q⊗2 has unit norm. According to
[16, Section 3] and [7, p. 11] the norm of� satisfies ‖�‖n = (2π)4g2r‖�g‖(X (C))g
where n = ( 2g

g+1

)
and r = (2g+1

g+1

)
and where ‖�g‖(X (C)) is the Petersson norm

of the modular discriminant of X . With Proposition 4.1 we obtain the formula

T (X (C)) = (2π)−2g · ‖�g‖(X (C))−
3g−1
8ng for the T -invariant of X (C).

Proposition 4.1 can be applied to give an explicit formula for the stable Faltings
height h(X K ) of a smooth proper geometrically connected curve X K of genus
g ≥ 2 over a number field K that has semistable reduction over K . Let X be the
regular minimal model of X K over S = Spec OK and let ω = ωX/S be the relative
dualising sheaf of X/S. For P a section of X/S denote as before by
P the vertical
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Q-divisor on X such that ((2g − 2)P − ω +
P , �) = 0 for all irreducible com-
ponents � of the geometric fibers of X/S and such that P∗
P is trivial. Denote by
h(P) the Néron-Tate height of the divisor class of (2g − 2)P − ω in the jacobian
of X K . The stable Faltings height of X K is defined via [K : Q]hF (X K ) = d̂eg λ,
the latter being the Arakelov degree of λ = det Rρ∗ω equipped with its canonical
hermitian structure at the complex embeddings of K (cf. [10, Sect. 3]).

Theorem 4.3. Assume that the Weierstrass points on the generic fiber of X/S are
rational over K . For ℘ a closed point of S let δ℘ be the number of singular points
in the geometric fiber at ℘. The formula:

(3g − 1)(8g + 4)[K : Q]hF (X K )

= 2[K : Q]
g(g − 1)

∑
P∈W (S)

h(P)− 1

g(g − 1)

∑
P∈W (S)


2
P

+ (2g − 1)(g + 1)
∑
℘∈|S|

δ℘ log N℘ + 4(E, ωX/S)

− 4g(2g − 1)(g + 1)[K : Q] log(2π)+ 8g2
∑

σ : K→C

log T (Xσ )

holds. Here for each complex embedding σ of K we denote by Xσ the Riemann
surface corresponding to the complex curve X ×σ C. The intersection numbers
2

P
and (E, ωX/S) should be taken in the Arakelov sense, that is, their local contribu-
tions at each closed point ℘ of S should be counted with weight log N℘. In the
summations over P ∈ W (S) the Weierstrass points should be counted with their
multiplicity in W .

Proof. We start with the canonical isomorphism:

ν : (3g − 1)(8g + 4)λ
∼−→ 〈4W − (g + 1)ω + 4E, ω〉 + (2g − 1)(g + 1)δ

of line bundles on S described at the beginning of this section. The norm of this
isomorphism is provided by Proposition 4.1. Taking Arakelov degrees on left and
right hand side we then find:

(3g − 1)(8g + 4) d̂eg λ = 4(W, ω)− (g + 1)(ω, ω)

+ (2g − 1)(g + 1)
∑
℘∈|S|

δ℘ log N℘ + 4(E, ω)

− 4g(2g − 1)(g + 1)[K : Q] log(2π)

+ 8g2
∑

σ : K→C

log T (Xσ )

where the intersection numbers are Arakelov intersection numbers [11, Sect. 2].
According to [31, Section 1.1] we can write, for any section P of X/S:

−2[K : Q]h(P) = −4g(g − 1)(P, ω)+ (ω, ω)−
2
P .
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Thus, taking the sum over P running through W (S) and dividing by g(g − 1) we
find the equality:

4(W, ω)− (g + 1)(ω, ω) = 2[K : Q]
g(g − 1)

∑
P∈W (S)

h(P)− 1

g(g − 1)

∑
P∈W (S)


2
P .

The required formula follows. 
�
Upon decomposing the terms h(P), 
2

P and (E, ω) as sums of local contributions
one may use the formula in Theorem 4.3 to arrive at a provisory definition of a
‘valuation of the discriminant’ d℘ for X/S at each closed point ℘ of S. It might
be worthwhile to study this ‘valuation of the discriminant’ further especially in
the light of the fact that, as λ is ample on the moduli stack Mg(C) of complex
curves of genus g ≥ 3, no positive tensor power λ⊗N of λ has a nowhere vanishing
global section on Mg(C). Specialising X/S to a hyperelliptic curve of genus g,
one obtains the valuation of the hyperelliptic discriminant (up to the factor 3g − 1)
as follows from Theorem 1.1. An interesting discussion of the line bundle λ⊗8g+4

on Mg(C) can be found in [13].
Most of the terms in our formula for hF (X K ) can be easily bounded from

below. Indeed, if P is any section of X/S then h(P) ≥ 0 and −
2
P ≥ 0. Also

(E, ω) ≥ 0 since E is effective and vertical and the fibers of X/S do not contain
any exceptional curves. By passing, for an arbitary curve X K over a number field
K , to a finite extension L of K such that X K acquires semistable reduction over L
and has all its Weierstrass points rational over L , we obtain the following corollary.

Corollary 4.4. Let X K be a smooth proper geometrically connected curve of genus
g ≥ 2 over a number field K . Then its Faltings stable height hF (X K ) satisfies the
inequality:

(3g − 1)(8g + 4)hF (X K ) ≥ −4g(2g − 1)(g + 1) log(2π)

+ (2g − 1)(g + 1)
1

[K : Q]
∑
℘∈|S|

δ℘ log N℘

+ 8g2 1

[K : Q]
∑

σ : K→C

log T (Xσ ) .

Here again for each complex embedding σ of K we denote by Xσ the Riemann
surface corresponding to the complex curve X K ×σ C.

It is perhaps interesting to point out a similarity with an inequality due to Bost
[2, Theorem IV], saying that the lower bound:

(8g + 4)hF (X K ) ≥ g · 1

[K : Q]

⎛
⎝ ∑
℘∈|S|

δ℘ log N℘ +
∑

σ : K→C

ψ(Xσ )

⎞
⎠

holds, with a function ψ : Mg(C) → R which is continuous and which satisfies
the following logarithmic bound around the boundary. If X0 is a stable complex
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curve, if ρ : X → � is its universal deformation with � an open neighbourhood
of 0 in C

3g−3, and if δ is a local equation for the reduced normal crossings divisor
� in� given by the singular fibers of ρ, then ψ(Xt ) ≥ − log |δ(t)| + o(log |δ(t)|)
as t ∈ �\� goes to 0. The ‘slope’ g/(8g + 4) featuring in this result is much
better than the ‘slope’ (2g − 1)(g + 1)/(3g − 1)(8g + 4) of our lower bound. On
the other hand the analytic contributions in our lower bound have the advantage
of being more readily calculable in concrete cases, using only evaluations of theta
functions and their derivatives. An asymptotic analysis of the function log T near
the boundary of Mg(C)was carried out in the author’s thesis, showing that, similar
to Bost’s result, T can be seen as the inverse of a distance to the boundary.

An application of the Noether formula for arithmetic surfaces [23, Théorème
2.5] yields a lower bound for the self-intersection of the relative dualising sheaf.

Corollary 4.5. Let X K be a smooth proper geometrically connected curve of genus
g ≥ 2 over a number field K . Let e(X K ) be the normalised self-intersection of the
relative dualising sheaf of X K . Then the inequality:

(3g−1)(8g+4)e(X K )≥− 48g(2g−1)(g+1) log(2π)+ 8g − 8

[K : Q]
∑
s∈|S|

δ℘ log N℘

+ 1

[K : Q]
∑

σ : K→C

(
96g2 log T (Xσ )

−(3g − 1)(8g + 4)δ(Xσ )
)

holds.

Trying to obtain explicit lower bounds for e(X K ) is interesting in the light of an
effective version of the Bogomolov conjecture [32]. Lower bounds of a similar
type appear in [4, Section 3.3.2], which uses more general Weierstrass points. In a
recent preprint [36] Zhang has obtained explicit lower bounds for e(X K ) assuming
that a certain conjecture of Grothendieck-Gillet-Soulé on the non-negativity of the
height of Gross-Schoen cycles is true.
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