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Spin quantum jumps in a singly charged quantum dot
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Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands

�Received 27 March 2009; published 18 August 2009�

We model the population and coherence dynamics of a singly charged quantum dot driven by a constant
optical field. Using a separation of time scales we predict the occurrence of quantum jumps in the spin state of
the excess electron or hole. Our analysis extends the description of intermittent fluorescence from a three-level
to a four-level description; the former is common in atomic systems, the later occurs in many solid-state
systems. The statistics of the quantum jumps as function of the intensity of the driving field provide detailed
information on physical processes that limit the ground-state coherence of these systems and their use as a
solid-state quantum bit. In particular it enables a discrimination of coherent spin coupling, induced by the
nuclear magnetic field, from incoherent spin flips; the coherent coupling can gradually be suppressed by
increasing the pump intensity due to the quantum Zeno effect.

DOI: 10.1103/PhysRevA.80.023812 PACS number�s�: 42.50.Lc, 73.21.La

I. INTRODUCTION

The spin of a single charge confined to an optically active
quantum dot can be considered as a solid-state quantum bit
�1–3�. It is an attractive candidate because most spin relax-
ation is quenched in quantum dots �4� and the coherence
between its two ground states is long lived; lifetimes in ex-
cess of 1 �s are expected �5�, relative to the sub 1 ns time
scale for optical interactions with the spin. The spin state is
optically addressed by addition of an exciton, resulting in the
transfer to a short-lived charged exciton �=trion� state �6,7�.
Optical readout can be efficient by embedding the quantum
dot in a high-finesse microcavity �8–13�. It has been shown
that a single quantum dot can change the cavity reflectivity
from 0 to 50% �7�, while theory predicts that this value can
even reach 100% for realistic devices �14�. Alternative opti-
cal readout techniques, which are based on the Faraday or
Kerr effect and thus intrinsically spin selective, are generally
less efficient �15,16�.

Based on the analysis presented in this paper, we predict
the occurrence of sudden jumps between well defined, ap-
proximately stationary, spin states of the quantum dot. This
prediction is a generalization of the quantum jumps that are
known to occur in three-level systems. The latter jumps were
originally proposed by Dehmelt �17�, who described them in
terms of “electron shelving” from a strong optical �cycling�
transition to a weakly interacting level and explained how
the statistics of the intermittent fluorescence can be used to
analyze weak transitions in single-atom spectroscopy. Cook
and Kimble �18� predicted that under continuous incoherent
excitation the observed fluorescence should randomly switch
“on” and “off,” giving a random telegraph signal. The first
experiments on trapped atoms were performed in the 1980’s
by Wineland et al. �19�, Bergquist et al. �20�, and Kimble et
al. �21�. Blinking statistics in single semiconductor nano-
crystal quantum dots have been observed by Shimizu �22�.
An excellent review of the theoretical aspects of the quantum
jump approach has been written by Plenio and Knight �23�.

In this article we will analyze the optically driven dynam-
ics of a singly charged self-assembled quantum dot modeled
as a four-level system. Such systems can potentially exhibit a

wide range of intriguing dynamical processes, such as coher-
ent population trapping, electromagnetically induced trans-
parency, and lasing without inversion �see, e.g., ref �24� and
references therein�. In our quantum dot system, most
quantum-interference effects are effectively removed by the
relatively fast spontaneous decay from the two upper levels
to the two lower levels. This fast decay allows for a separa-
tion of time scales between the various dynamical processes
and a description in terms of effective populations and jump
rates.

The optical transition in quantum dots differs in a crucial
way from that in free atoms. The quantum dot has a natural
quantization axis, set by its growth direction and pancake
shape, whereas the free atom is rotationally symmetric. The
resulting energy separation between the heavy-hole �m
= �

3
2 � and light-hole �m= �

1
2 � states allows one to experi-

mentally single out the optical transition to the heavy-hole
exciton states, thus creating a natural preference for the spin
basis. The spontaneous emission from this transition aimed
dominantly toward the quantization axis and is circularly po-
larized in this direction. Other processes that are included in
the model are coherent coupling between the electron or hole
spin levels due to interaction with the nuclei of the semicon-
ductor host material �25�, spontaneous spin flips due to in-
teraction with the phonon bath, and coherent coupling be-
tween ground and excited states due to the driving optical
field �26�. The field-induced coupling is assumed to be con-
stant and described by two fixed Rabi frequencies �+ and �−
for the right-handed and left-handed circularly polarized
light. This relatively simple and clean case with constant
coupling rate will be analyzed in detail. The outline of a
refined model that includes the back action of the electron
spin on the nuclear spin and the intracavity field will be
given in Sec. V.

The paper is organized as follows. Section II introduces
the key parameters that describe the dynamics of a general
four-level system. Section III discusses the separation of
time scales, both from a general point of view and applied to
our four-level system, and provides a relatively simple ex-
pression for the quantum jump rates due to incoherent spin
flips. Section IV deals with the more intriguing quantum
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jumps due to coherent spin coupling. Section V discussed the
experimental possibilities and the outline of a refined model.
Section VI contains the concluding discussion.

II. INTRODUCING THE FOUR-LEVEL SYSTEM

Figure 1 shows the energy levels in the proposed four-
level model of the singly charged quantum dot and the rel-
evant coupling and decay rates. We choose to describe the
dynamics of a negatively charged quantum dot, but the re-
sults apply equally well to positively charged devices. The
two lower or ground-state levels �1 and 3� contain a single
electron pointing either up �↑ � or down �↓ �. The two upper
or excited-state levels �2 and 4� are the two charged exciton
�=trion� states, comprising an electron pair �spin neutrality
imposed by the Pauli principle� and an additional heavy hole;
these levels are denoted as �↑↓⇑� and �↑↓⇓�. A possible fre-
quency splitting between the two ground states, caused by
the “out-of-plane” component of the �nuclear� magnetic
field, i.e., the component parallel to the growth direction, is
denoted as �3��31��3−�1. This nuclear magnetic field
varies slowly on a typical time scale of micro to millisec-
onds, depending on temperature, external field and material
composition �27�. In our model we will treat it as a quasi-
static field, i.e., as if the fluctuations are frozen in time �28�.
Fluctuations that do occur and are integrated over experi-
mentally will show up as an additional decoherence, being
the “pure dephasing” or T2

� component of the total decoher-
ence time T2 �27�. The two other frequency splittings are
defined with respect to the optical frequency �0 of the optical
pump as �2��21−�0 and �4��41−�0. These splittings de-

pend on the circular anisotropy; linear anisotropies, due to
mechanical strain and crystal-field effects, are described by a
coherent coupling between the spin levels. The exciton fine
structure splitting observed in neutral quantum dots with
asymmetric shapes �29� is absent in singly charged quantum
dots �30�. The populations and coherences in the four-level
system are contained in a 4�4 density matrix ��t�. The evo-
lution of this matrix is described in a rotating basis with the
two upper states rotating at a frequency �0 with respect to
the two ground states. Before doing so, we will present the
relevant interactions, which we separate in four coupling
channels and six decay channels. A crucial aspect of our
analysis will be the distinction between “spin-conserving
transitions,” which occur either from levels 1↔2 or 3↔4,
and “spin-changing transitions,” which occur either from
levels 1↔3 or 2↔4.

We distinguish four coherent interactions, indicated by
closed loops in Fig. 1. The optical field creates a coherent
coupling between ground and excited states of equal hand-
edness. Optical excitation with right handed circularly polar-
ized light results in a coherent coupling of the spin-up states
�1 and 2� at a frequency �1↔2��+; excitation with left
handed circularly polarized light results in a coherent cou-
pling of the spin-down state �3 and 4� at a frequency �3↔4
��−. A possible “in-plane” �nuclear� magnetic field, or any
other linear anisotropy, will induce a coherent coupling be-
tween spin states of opposite handedness. The two ground
states are connected via a coherent coupling frequency
�1↔3��g; the two excited states are connected via a cou-
pling frequency �2↔4��e. These rates can differ on ac-
count of the different g factors for electrons and holes. The
evolution induced by the mentioned coherent coupling fre-
quencies and frequency splittings can be summarized in a
single Hamiltonian

H = −
�

2�
0 �+ �g 0

�+ 2�2 0 �e

�g 0 2�3 �−

0 �e �− 2�4

	 . �1�

We distinguish six incoherent interactions, indicated by
straight arrows in Fig. 1. Spontaneous emission of photons
results in population decay from the two excited states �2 and
4� to the associated ground states �1 and 3� at rates 	2→1
=	4→3�	0; these decay rates can possibly be enhanced with
respect to their free-space value by the Purcell effect �7�. The
ground states �1 and 3� are connected via two complemen-
tary decay processes at rates 	1→3=	3→1�	g; the two ex-
cited states are connected via similar rates 	2→4=	4→2�	e.
These incoherent spin flips are induced by interaction with
the phonon bath. All six incoherent processes can be de-
scribed by a jump evolution and are associated with quantum
noise on account of the �quantum� fluctuation-dissipation
theorem.

The full 4�4 density matrix evolves as

d

dt
� = L� , �2�

where L is the Liouville superoperator. This superoperator
naturally separates into one contribution from each coupling

W+G0 G0

Ge

Gg

We

Wg

4,… ]

1,…] 3,…]
d3

d4
2,… ]

d2

W

FIG. 1. Energy levels and internal dynamics in our four-level
system comprising two ground-state levels �1 and 3� of a single
electron in a quantum dot and the two excited singly charged exci-
ton �=trion� levels X− �2 and 4�. Possible frequency detunings are
indicated as �2, �3, and �4. The two “spin-up” levels �1 and 2� on
the left-hand size are coupled by right-handed circularly polarized
light; the two “spin-down” levels �3 and 4� require light with a
left-handed polarization. Spontaneous decay from the trion levels to
the ground states occurs at a rate 	0. Different spin states are
coupled by coherent and incoherent processes. The coherent cou-
pling frequencies are denoted by �g and �e for the two ground-
state and excited-state levels, respectively. The incoherent spin flip
process is assumed to be symmetric and denoted by population
decay rates 	g and 	e. A similar level scheme is applicable to posi-
tively charged quantum dots and many other symmetric four-level
systems.
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or decay channel. Coherent coupling between two levels
i↔ j leads to a Rabi oscillation between the populations �ii
and � j j and coherence �ij �=� ji

� � of these levels. This evolu-
tion, which would be reversible if it was the only coupling
process, is described by a superoperator of the form
Lcoh,i↔j�= �1 / i���Hi↔j ,��. Incoherent population decay
from level j to i is an irreversible process associated with a
coupling to a large reservoir �often denoted as the “bath”�; it
results in a one-way exponential decay that can be described
by the Liouville superoperator Linc,j→i. The two mentioned
superoperators have the mathematical form

Lcoh,i↔j = i
�ij

2
��j�
i�� + �i�
j�� − ��j�
i� − ��i�
j�� , �3�

Linc,j→i =
	 j→i

2
�2�i�
j���j�
i� − ��j�
j� − �j�
j��� , �4�

where �ij is a Rabi frequency and 	 j→i is an incoherent
population decay rate. The full superoperator L is a simple
sum over ten terms associated with the four coupling chan-
nels and six decay channels that are selected. Although we
find our choice a natural one, other authors might prefer to
start from different level dynamics �31�. The analysis dis-
cussed below can be applied to any of these models.

III. SEPARATION OF TIME SCALES

A. General framework

The dynamics of the four-level system can be described
by an approximate evolution equation, that is based on a
separation of time scales, as discussed in ref �32�. The vari-
ous terms in the superoperator L are separated in large and
small terms, corresponding to rapid and slow evolution. The
coupling between the spin-up states 1 and 2 and the coupling
between the spin-down states 3 and 4 are generally strong
compared to the coupling between the two ground states 1
and 3 and the coupling between the two excited states 2 and
4. In the scheme of Fig. 1, the vertical transitions are the
strong ones, while the horizontal transitions are weak. More-
over, the Rabi frequencies �e and �g are linear in the cou-
pling matrix elements, whereas the rates 	e and 	g are qua-
dratic in these couplings �this is part of Fermi’s golden rule�.
Therefore, it is consistent to treat �e and �g as first-order
terms in a smallness parameter, and 	e and 	g as second
order. This implies that we separate the Liouville operator as
L=L0+L1+L2. The zeroth-order operator term L0 contains
the matrix elements �i, 	0 and ��, while the Rabi frequen-
cies �g and �e contribute to the first-order operator L1. The
second-order operator L2 contains the remaining matrix ele-
ments 	g and 	e.

The basis idea of the separation of time scales is that on
the rapid time scale, L0 drives the system to a quasisteady
state. This happens before the slow terms, described by L1
and L2, have had time to cause any change. Since in the
present case the operator L0 does not couple the spin-up
states �1 and 2� to the spin-down states �3 and 4�, or vice
versa, the parameters determining the quasisteady state are

the population n+�t� of the spin-up states and n−�t� of the
spin-down states. On the long time scale, the operators L1
and L2 mix the spin-up states and the spin-down states, so
that the populations n+ and n− can change. This causes a
slow evolution of the system through the subspace of steady
states with respect to L0.

The equation for the slow evolution is obtained when we
present the operator P that projects any density matrix on the
space of the quasisteady states. This space is the eigenspace
of L0 with eigenvalue zero. This implies that L0 gives zero
when acting on the projected part P� for any density matrix,
making L0P=0. Moreover, the rapid evolution can only
cause changes within this eigenspace, so that also PL0=0.
As a result, the evolution of P� occurs exclusively on the
slow time scale, determined by L1 and L2. The complemen-
tary projection operator is Q=1−P, and both operators obey
the defining property of a projection operator P2=P, Q2

=Q. The Liouville Eq. �2� can be separated into the exact
equations

d

dt
P� = P�L1 + L2�P� + P�L1 + L2�Q� , �5�

d

dt
Q� = Q�L1 + L2�P� + QLQ� . �6�

In order to arrive at an equation for P� alone, we eliminate
Q� by formally solving Eq. �6� and substituting the result in
Eq. �5�. By restricting the result to second order, this gives
the result

d

dt
P� = P�L1 + L2�P� + PL1�

0




d� exp�L0��QL1P��t� .

�7�

In the present system, this expression can be used to calcu-
late the slow spin dynamics.

B. Application to our four-level system

The described separation of time scales is an ideal tool to
simplify the dynamics of the four-level system depicted in
Fig. 1, as it allows to separate the dominant �fast� evolution
from the weaker �and slower� components. For this separa-
tion we assume all spin-changing rates to be relatively small
in comparison with the spontaneous lifetime of the excited
state, i.e., �	g ,	e ,�g ,�e
�	0. On top of that we distinguish
the weak-pumping limit ���− ,�+
�	0� from the regime of
moderate to strong optical excitation. In the weak-pumping
limit the two upper levels are barely excited and the level
dynamics is dominated by the interaction between the two
ground states; this limit is discussed briefly in Sec. IV C.
Most of our discussion, however, will focus on the regime of
moderate to strong optical excitation.

For moderate to strong optical fields, the cycling dynam-
ics in the two optical transitions will quickly exceed any spin
transition rate. This regime enables the separation of time
scales discussed in Sec. III A, where the fast dynamics asso-
ciated with the optical transitions is combined in the operator
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L0. As the optical transitions are spin conserving, the total
spin-up population n+=�11+�22 and the total spin-down
population n−=�33+�44 are both invariant under operation
of L0. The projection operator P associated with L0 thus
projects the density matrix in the two spin subspaces, making

P��t� = n+�t��̄+ + n−�t��̄−. �8�

The submatrices

�̄� = ��1 − 
�� c�

c�
� 
�

� , �9�

describe the steady-state distributions within the two optical
transitions, where


� =
��

2

	0
2 + 2��

2 + �2���2 , �10�

c� =
− 2�� − i	0

	0
2 + 2��

2 + �2���2 , �11�

are the excited-state fraction and �complex� coherence, re-
spectively. The frequency detunings are �+=�2 and �−��4
−�3, respectively.

We solve for the dynamics of the spin populations n+�t�
and n−�t� by substituting the P projection specified by Eqs.
�8� and �9� in the general Eq. �7�. This substitution results in
a generic expression of the form

d

dt
n+�t� = − R+→−n+�t� + R−→+n−�t� = −

d

dt
n−�t� . �12�

Explicit expressions for the jump rates R+→− from the spin
up to the spin-down manifold and the jump rate R−→+ for the
reverse process can be calculated through substitution of L0,
L1, and L2 in the appropriate expressions. This is the most
difficult part of the calculation; it will be discussed in the
next subsections.

Equation �12� can be interpreted in terms of two popula-
tion operators with eigenvalues n�= �0,1
 and quantum
jumps between two spin manifold. The jumps occur naturally
and are driven by the internal population dynamics and quan-
tum noise. Alternatively, one could stress the importance of
quantum state projection through observation �23�. In this
description, the optical cycling transitions within each mani-
fold creates quantum entanglement between the atomic spin
state and the handedness of the optical emission, thus allow-
ing one to extract information on the spin state by �projec-
tive� measurements on the optical field. This situation is
similar to that found in intermittent fluorescence, where the
optical measurement enables one to decide whether the
atomic population is located in the optically active manifold
or in the dark “shelving” state �17,21�.

C. Two contributions to the jump rates

Essential ingredients in our analysis is the separation of
the 4�4 density matrix � into four blocks of 2�2 elements
that combine kets and bras with the same spin combinations,

making the action of the superoperators L1 and L2 on these
blocks quite different. The operator L1, associated with co-
herent coupling at Rabi frequencies �g and �e, only trans-
fers elements from the diagonal blocks to the off-diagonal
blocks of � and vice versa. The operator L2, associated with
incoherent spin flips at rates 	g and 	e, mixes elements
within each block and only transfers elements between the
diagonal blocks. As a result of this blocklike operation the
term PL1P�=0 in Eq. �7�. Furthermore, the quantum jump
rates separate as R=Rinc+Rcoh, where Rinc and Rcoh are the
“incoherent” and “coherent” contributions associated with
L2 and L1, respectively. The incoherent contribution to the
jump rates are easily calculated as

Rinc,+→− = �1 − 
+�	g + 
+	e, �13�

Rinc,−→+ = �1 − 
−�	g + 
−	e. �14�

They are the averages of the spin flip rates between the
ground and excited state, weighted over the relative excited-
state populations 
�. A calculation of the coherent contribu-
tions Rcoh takes more effort and will be dealt with in the next
section.

IV. JUMP RATE DUE TO COHERENT SPIN COUPLING

A. General remarks

A calculation of the jump rate induced by coherent spin
coupling requires some serious bookkeeping, for which we
use the computer program Mathematica. We again benefit
from the blocklike operation of the superoperators, which
allows to evaluate the complicated second term in Eq. �7� in
three steps. Starting from the diagonal matrix P� on the
right-hand site, �i� the operation L1 transfers coherence to the
off-diagonal blocks, �ii� the integral operation modifies the
off-diagonal elements, and �iii� the final operation PL1
brings these elements back to the on-diagonal blocks where
they contribute to the evolution of the spin populations n+
and n−. The most complicated part in this calculation is the
integral operation in step �ii�, which involves the inversion of
the 4�4 matrix that describes the dynamics in the 2�2
off-diagonal block. Unfortunately, the resulting general ex-
pressions are quite lengthy and some results will thus be
presented only in numerical form. To keep the equations
short we will discuss the following special case: �i� a
frequency-degenerate system ��2=�3=�4=0� under various
forms of excitation, �ii� the same system in the weak-
pumping limit, and �iii� a detuned system with �3�0 and
�2 ,�4�	0.

B. Jump rate in a frequency-degenerate system

We will first consider a frequency-degenerate system ��2
=�3=�4=0�. Applying the three-step procedure mentioned
above, we find the following expression for the coherent
jump rate from the two spin-up to the two spin-down levels
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Rcoh,+→−

=
2	0

5�g
2 + 	0

3��+
2 + �−

2��g
2 + 2	0�+

2��−�g + �+�e�2

�	0
2 + 2�+

2��2	0
2��+

2 + �−
2� + ��+

2 − �−
2�2�

,

�15�

where we naturally assumed �	g ,	e
�	0. The jump rate
Rcoh,−→+ for the reverse process is described by a similar
expression that only differs in its spin labels, which are now
swapped by the transformation +↔−.

Figure 2 shows three typical examples of the dependence
of the jump rates on the optical intensity of linearly polarized
light, expressed as �+

2 =�−
2 =�0

2. This figure highlights the
pronounced difference between the power dependence of the
jump rates due to the coherent and incoherent spin-changing
processes. The solid curve shows how the “incoherent” jump
rate Rinc changes gradually from its weak-pumping value of
	g to its strong pumping value �	g+	e� /2 on account of the
increased excited-state populations. The dashed �blue� and
dashed-dotted �black� curves show the power dependence of
the “coherent” jump rate Rcoh for two different values of the
coherent coupling frequencies �g=�e. Under linearly polar-
ized excitation the jump rate of Eq. �15� reduces to

Rcoh,+→− = Rcoh,−→+ = � 	0

2�0
2�� �1 + ���g

2 + �2��g + �e�2

�1 + 2��
� ,

�16�

where ����0 /	0�2� I / Isat measures the degree of satura-
tion. This jump rate diverges in the weak-pumping limit and
decreases to a limiting value ��g+�e�2 / �2	0� for strong
pumping.

Figure 3 shows a typical example of the power depen-
dence of the jump rates Rcoh under excitation with right-
handed circularly polarized light ��−=0�. Optical excitation
with circularly polarized light leads to an unbalance between
the two jump rates

Rcoh,+→− =
	0

1 + 2�+
2/	0

2��g
2

�+
2 +

�+
2�e

2

	0
2�	0

2 + �+
2/2�� , �17�

Rcoh,−→+ =
�g

2

�+
2 	0. �18�

This unbalance is clearly visible in Fig. 4, which was calcu-
lated for an intrinsically “balanced” system with equal
ground- and excited-state spin dynamics at �g=�e=0.1	0
and 	g=	e=0.01	0. The difference between the two jump
rates can be more pronounced in an “unbalanced” system.
The mentioned difference will result in optical pumping from
one spin manifold to the other and in an unbalance of the
steady-state spin population �n̄+� n̄−�, as determined by the
balance R+→−n̄+=R−→+n̄− with R=Rcoh+Rinc.

C. Weak-pumping limit and the quantum Zeno effect

The weak-pumping limit ��− ,�+�	0� of Eq. �15� sim-
plifies to

Rcoh,+→− � � �g
2

�+
2 + �−

2�	0, �19�

if we also assume that �e /�g� ��+ /	0�2. This jump rate
diverges at zero pumping. The corresponding monotone de-
crease at increased pumping is a manifestation of the quan-
tum Zeno effect �33�; it shows how repeated inspection of a
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FIG. 2. �Color online� Calculated jump rates R−→+=R+→− as
function of the optical intensity of linearly polarized light, ex-
pressed as �+

2 =�−
2 =�0

2. The solid curve shows how the jump rate
Rinc due to incoherent spin flips changes gradually from its “ground-
state” value of 	g to an average value of �	g+	e� /2 for saturated
excitation �parameters: 	g=0.01, 	e=0.05�. The two dashed curves
shows the jump rate due to coherent spin coupling for �g=�e

=0.01 �dashed �blue� curve� and �g=�e=0.1 �dashed-dotted
�black� curve�. All units are normalized to the spontaneous emission
rate 	0. Note the pronounced decrease in Rcoh at larger pump rates
and the divergence for �0→0; this divergence can be removed by
including other decay processes in the description �see Fig. 4�.
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FIG. 3. �Color online� Demonstration of spin-selective jump
rates Rcoh for circularly polarized excitation. The jump rates due to
coherent spin coupling are calculated as function of the intensity of
right-handed circularly polarized light, expressed as �+

2 ��−=0�.
The two curves show the jump rate Rcoh,+→− from the spin up to the
spin-down manifold �solid �red� curve� and the jump rate Rcoh,−→+

for the reverse jumps �dashed �blue� curve� for �g=�e=0.1, 	g

=	e=0.01, and �3=0. All units are normalized to 	0. The resulting
unbalance in spin population depends on the ratio of the two de-
picted jump rates Rcoh and the jump rate Rinc associated with inco-
herent spin flips.
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quantum state and the resulting state projection slow down
the naturally oscillatory evolution associated with coherent
coupling. Repeated inspection goes unnoticed for the inco-
herent spin flip process, as the exponential decay associated
with this process starts off linearly, whereas the coherent
evolution starts off quadratically in time.

The divergence of the coherent spin jump in the weak-
pumping limit is caused by a similar divergence in the life-
time of the ground-state coherence �13 under L0 evolution
only. This divergence can be tentatively removed by incor-
porating the ground-state spin flip process at a rate 	g into

the description. We do this by modifying the exponent in the
integrand of Eq. �7� from exp�L0�� to exp�L0+L2��. This
inclusion modifies Eq. �19� into the more physical form

Rcoh,+→− �
�g

2

2	g�
, �20�

where the total decay rate of the ground-state coherence

	g� = 	g +
�+

2 + �−
2

2	0
�21�

combines the natural incoherent spin flip rate 	g with an
extra pump-induced decoherence rate 	extra= ��−

2

+�+
2� / �2	0�. For three-level systems, a similar extension

with part of the slow dynamics changes the general expres-
sions for the jump rate in three-level systems derived by
Nienhuis �32� into the more specific expressions discussed
by Kimble et al. �21�.

D. Jump rate at frequency detuning

Finally, we extend our four-level model to the general
case by including the frequency detunings �2, �3, and �4 �see
Fig. 1�. These detunings are easily incorporated in the super-
operator L0 and the associated steady-state distributions �+
and �− given by Eqs. �9�–�11�. Substitution of the modified
L0 and the original L1 and L2 in the generic Eq. �7� again
yields expressions for the “coherent” jump rates Rcoh. As the
resulting expressions are too lengthy to display we will con-
centrate on the case of limited optical detuning ��2 ,�4
�	0�. We will, however, take the full evolution of the
ground-state coherence into account, including both the spin
flip rate 	g and a possible ground-state detuning �3�0 in the
evolution exp�L0+L2��. This results in an extension of Eq.
�15� to

Rcoh,+→− = Re� 2	0
5�g

2 + 	0
3��+

2 + �−
2��g

2 + 2	0�+
2��−�g + �+�e�2

�	0
2 + 2�+

2��2	0
2��+

2 + �−
2 + 2	0�	g + i�3
� + ��+

2 − �−
2�2�

� , �22�

Note how the spin flip rate 	g and the ground-state detuning
�3 have comparable effects; they both modify the built up of
ground-state coherence that is the first step toward a coher-
ently driven spin change. These effects are only visible at
relatively weak-pumping ��+

2 +�−
2 �2	0

�	g
2+�3

2�.
Figure 4 shows how the divergence in the calculated jump

rate is removed both for a finite spin flip rate 	g and a finite
ground-state detuning �3. The depicted curves are based on
Eq. �22�. In the weak-pumping limit, this equation predicts a
limiting jump rate Rcoh,+→−�Re�	g

2 / �2�	g+ i�3��
. For the
frequency-degenerate system ��3=0�, this limit is 	g

2 / �2	g�;
for the frequency-detuned system this limiting value is lower.
At sufficiently large frequency detuning ��3�	g� the jump
rate even becomes practically zero in the weak-pumping

limit, when none of the other interactions is strong enough to
overcome the dominant frequency splitting �3.

V. EXPERIMENTAL POSSIBILITIES

Quantum jumps in the spin state should be observable as
jumps in any spin-dependent observable, such as the mea-
sured Faraday �15� of Kerr effect �16�, or the �polarization of
the� spontaneous emission �4�. Most of these observables,
however, provide only a weak measurement of the spin state.
At a typical Faraday rotation angle of less than 1 mrad �15�
more than 106 photons are needed to measure the spin state
with sufficient certainty, making it practically impossible to
observe the predicted quantum jumps by Faraday rotation.
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FIG. 4. �Color online� Calculated jump rates R−→+=R+→− due
to coherent spin coupling as function of the optical intensity of
linearly polarized light, expressed as �+

2 =�−
2 =�0

2. The dashed
�blue� curve is just a zoom in of a similar result depicted in Fig. 2
for �g=�e=0.01. The other three curves show how the divergence
at low pump rate can be removed by inclusion of other decay pro-
cesses in the description �see text�. We have included only spin flips
�solid �red� curve with 	g=0.01, �3=0�, only frequency detuning
�dot-dashed �black� curve with 	g=0, �3=0.01�, and both �dotted
�pink� curve with 	g=�3=0.01�. All units are normalized to 	0.
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We propose to search for spin quantum jumps by monitoring
the corresponding changes in the reflectivity of an encom-
passing optical cavity. As this reflectivity can potentially
change from 0 to 100% upon a spin flip �14�, this measure-
ment can be very efficient. It thereby presents a strong quan-
tum measurement that projects the spin system onto an
eigenstate. Changes in the cavity reflectivity from 0 to 50%
due to the presence or absence of an optical transition have
already been observed experimentally for a single InAs
quantum dot in a high-finesse GaAs/AlGaAs cavity �7�.
Similar systems should allow for an almost direct measure-
ment of the spin state through the simple observation of the
presence or absence of reflected photons of a specific polar-
ization.

Whatever the inspection technique, one will generally try
to extract the jump dynamics from a statistical analysis of the
time dependence of the spin-sensitive inspection channels
I+�t� and I−�t�. For the proposed reflectivity measurement �7�
these inspection channels are just the reflected intensities of
the two circular polarizations. Typical quantities to measure
are correlation functions such as

C����t� � 
I��t�I��t + �t��t �23�

where the brackets 
 �t denote averaging over time. These
correlation functions obey the same time evolution as the
associated populations �23�; they generally decay exponen-
tially at precisely the jump rates that we want to determine
�34�. The modulation contrast of these correlation functions
is linked to the criterium of strong versus weak measure-
ments mentioned above.

We now give an outline of a refined model that includes
that back action of the electron spin on the intracavity field
and the nuclear spins. As a result of the backaction of the
spin state on the intracavity optical field, this intracavity field
will also perform jumps even if the injected field is constant.
One approach to deal with this complication is to analyze the
jump dynamics for two different but fixed states of the int-
racavity field, each one being associated with a different spin
state of the quantum dot. If the cavity operates in the Purcell
regime, the strong ac Stark shift will push the intracavity
mode with the matched handedness out of resonance, thereby
forcing the intracavity field to be circularly polarized in the
handedness that has least interaction with the occupied spin
state. This handedness is expected to switch abruptly �within
the optical lifetime of the cavity� upon a quantum jump of

the spin state. A second and more rigorous approach to in-
clude the backaction from the spin state on the intracavity
field could be based on a rederivation of the state-selectivity
reflectivity discussed in Ref. �14�, but now for a four-level
atomic system instead of the two-level system analyzed in
that paper. This quantum-mechanical treatment would be a
generalization of the so-called Maxwell-Bloch equations; it
should result in an input-output formalism for the optical
field operators in and outside a filled cavity �35�. For optical
cavities with extremely large finesses, such that the cavity
loss rate ��	0, other intriguing phenomena such as lasing
of a single quantum dot have been predicted �36�.

A second type of backaction involves the possibility of
optical pumping of the nuclear spins through repetitive cy-
cling in the spin-polarized optical transitions. This back ac-
tion of the electron spins on the nuclear magnetic field has
been observed experimentally in several studies �37,38�. The
relevant time scale of this back action is much slower than
that of the quantum jumps, as many electron cycles are
needed before the nuclear magnetic field is seriously af-
fected. Possible changes in the nuclear magnetic field can
thus be included in a quasistatic way, where the field-related
coupling parameters �g, �e, and �3 vary slowly in time.
Whether such an approach is relevant and necessary will
depend on future experiments.

VI. CONCLUDING DISCUSSION

We have presented a relatively simple model to describe
the dynamics of a general four-level system. Using a separa-
tion of time scales between the fast spin-conserving optical
transitions and slower spin-changing transitions, we predict
the occurrence of sudden quantum jumps between spin-up
and spin-down states under optical inspection. A natural in-
terpretation of these jumps is as follows: the optical interac-
tion first creates quantum entanglement between the atomic
spin state and the optical polarization or emission direction
of the interacting photon; a consecutive measurement on the
photon will then project both the photon state and the spin
state onto an eigenstate of the measurement operator. We
distinguished between quantum jump due to incoherent spin
flips and coherent spin coupling, derived expressions for
both phenomena, and discussed the physical consequences.
One example thereof is the quantum zero effect, where re-
petitive measurements and projection are predicted to reduce
the jump rate associated with coherent spin coupling.
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