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Abstract

Background: Chromosome structure, DNA metabolic processes and cell type identity can all be affected by changing the
positions of nucleosomes along chromosomal DNA, a reaction that is catalysed by SNF2-type ATP-driven chromatin
remodelers. Recently it was suggested that in vivo, more than 50% of the nucleosome positions can be predicted simply by
DNA sequence, especially within promoter regions. This seemingly contrasts with remodeler induced nucleosome mobility.
The ability of remodeling enzymes to mobilise nucleosomes over short DNA distances is well documented. However, the
nucleosome translocation processivity along DNA remains elusive. Furthermore, it is unknown what determines the initial
direction of movement and how new nucleosome positions are adopted.

Methodology/Principal Findings: We have used AFM imaging and high resolution PAGE of mononucleosomes on 600 and
2500 bp DNA molecules to analyze ATP-dependent nucleosome repositioning by native and recombinant SNF2-type
enzymes. We report that the underlying DNA sequence can control the initial direction of translocation, translocation
distance, as well as the new positions adopted by nucleosomes upon enzymatic mobilization. Within a strong nucleosomal
positioning sequence both recombinant Drosophila Mi-2 (CHD-type) and native RSC from yeast (SWI/SNF-type) repositioned
the nucleosome at 10 bp intervals, which are intrinsic to the positioning sequence. Furthermore, RSC-catalyzed nucleosome
translocation was noticeably more efficient when beyond the influence of this sequence. Interestingly, under limiting ATP
conditions RSC preferred to position the nucleosome with 20 bp intervals within the positioning sequence, suggesting that
native RSC preferentially translocates nucleosomes with 15 to 25 bp DNA steps.

Conclusions/Significance: Nucleosome repositioning thus appears to be influenced by both remodeler intrinsic and DNA
sequence specific properties that interplay to define ATPase-catalyzed repositioning. Here we propose a successive three-
step framework consisting of initiation, translocation and release steps to describe SNF2-type enzyme mediated
nucleosome translocation along DNA. This conceptual framework helps resolve the apparent paradox between the high
abundance of ATP-dependent remodelers per nucleus and the relative success of sequence-based predictions of
nucleosome positioning in vivo.
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Introduction

Nucleosomal DNA is strongly bound to the histone octamer and

is in this way occluded from most DNA binding proteins, including

RNA and DNA polymerase machineries. Hyperacetylation of

histone tails can by itself decrease nucleosomal DNA occlusion by

about seven fold [1]. A second mechanism to increase nucleosomal

DNA accessibility involves mechanical remodeling and is per-

formed by evolutionary conserved SNF2 enzymes that belong to

the SFII superfamily of nucleic acid-stimulated ATPases [2]. The

SNF2 ATPases can be classified according to their protein

domains. SWI/SNF-type complexes, such as the yeast RSC

complex, harbour bromodomains that can bind acetylated lysines

[3–5]. They have been implicated in transcription initiation [6], as

well as elongation [7,8] and permit cellular identity determination,

including mammalian embryonic stem cell identity maintenance

and differentiation [9,10]. SWI/SNF subtype complexes have also

been implicated in chromosome transmission [11–14] and DNA

repair [15–20], underlining their roles as tumour suppressors and

implying that catalyzed exposure and subsequent restoration of

nucleosomal DNA by SWI/SNF complexes are central to many

eukaryotic chromosome based processes [21]. On the other hand,
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CHD-type SNF2 remodelers, like Mi-2, bear chromodomains that

can bind methylated histone lysines [22,23], although this has not

been demonstrated for Drosophila’s Mi-2 chromodomains, which

have been postulated to bind DNA [24]. Mi-2 can associate with

histone deacetylase activity and plays important roles in

transcriptional repression during cell growth and differentiation

[25]. Mi-2 is targeted to chromatin via protein-protein interac-

tions. These include Mi-2 binding to methylated DNA binding

domain (MBD) containing proteins, directly contacting sequence

specific transcriptional repressors and interacting with the SUMO

moiety of SUMOylated transcription factors [26–30].

Although different SNF2 remodeler sub-types are involved in

diverse chromosomal processes, they share the ability to remodel

nucleosomal chromatin [31]. ATP hydrolysis cycles by nucleo-

some remodelers are in the 10 to 100 milliseconds range and can

be induced by DNA, histones, or combinations thereof, depending

on the ATPase and associated subunits [32]. To date, biochemical

and structural insights have converged on a universal model on the

mechanism of nucleosome repositioning [33–36]. First, the

remodeler binds to two or more locations on the (extra-

)nucleosomal DNA and histone octamer, after which the ATPase

translocates linker DNA into the nucleosome, by forming a small

DNA loop or by inducing DNA twist or a combination thereof,

which then propagates over the surface of the histone octamer

resulting in the repositioning of the nucleosome [37]. We refer to

nucleosome repositioning as the displacement of the histone

octamer relative to the DNA. The exact binding locations of

remodelers, whether DNA loops or twist are involved, whether the

remodeler pushes or pulls the histone octamer and what

parameters determine the new position of the nucleosome are

aspects of this model that are still under debate and may vary

among the different SNF2 remodeler sub-types.

To what extent the remodeling mechanism and resulting

nucleosome repositioning are influenced by the underlying DNA

sequence is also not clearly resolved. Recent work has provided

compelling evidence to suggest that DNA sequence can dictate the

new positions adopted by histone octamers upon enzymatic

remodeling [38–41]. However, among remodelers striking differences

have been observed concerning their preference of nucleosome

repositioning on short stretches of DNA containing nucleosome

positioning elements. In some cases the nucleosome was repositioned

to the DNA end (recombinant ISWI) or over the DNA end (RSC,

SWI/SNF); other remodelers preferred a more central position

(CHD1, Mi-2, multi-subunit ISWI) [38,39,41–44]. To what extent

DNA ends and/or DNA sequence per se influenced the catalyzed

nucleosome repositioning was not fully resolved by these studies.

In the present study, a better understanding of the mechanism

and kinetics of nucleosome repositioning was obtained by a single

nucleosome assembled on the 601 nucleosome positioning

sequence [45] flanked by relatively long DNA arms. In this way,

nucleosome translocation away from its start position was not

influenced by the immediate presence of DNA ends, which gave us

the opportunity to separate DNA end effects from DNA sequence

effects. Furthermore, the issue of remodeler specificity of

nucleosome repositioning was addressed by comparing two

different SNF2-type enzymes; native RSC complex from S.

cerevisiae and recombinant Mi-2 ATPase from D. melanogaster. We

employed single molecule imaging by AFM as well as high

resolution native poly-acrylamide gel electrophoresis (PAGE) to

resolve and quantify the mechanism and kinetics of catalyzed

nucleosome translocation. Both SNF2-type remodelers are

strongly influenced by the 601 sequence with respect to initial

translocation direction, processivity and final octamer positioning.

Unlike recombinant Mi-2, native RSC efficiently translocated

histone octamers beyond the influence of the 601 sequence, at the

same time repositioning nucleosomes over a larger distance when

beyond the influence of this sequence. Overall, the outcome of

remodeling appears to be strongly influenced by underlying DNA

sequence, revealing an interplay between remodeler intrinsic and

DNA specific properties to control ATPase induced nucleosome

dynamics.

Results

RSC-DNA complexes conceal large stretches of DNA
Before describing the kinetics of RSC-nucleosome remodeling, we

first characterized the structures of RSC, RSC-DNA and RSC-

nucleosome complexes to assess the reaction stoichiometry and to get a

broad overview of the reaction mechanism. These complexes were

visualized with tapping mode Atomic Force Microscopy (AFM). We

incubated 1 nM RSC with 21 nM 1 kbp linear DNA without ATP.

Individual RSC complexes could clearly be resolved, containing a

central cavity, surrounded by at least three globular subunits

(Figure 1A). This central cavity appears large enough to accommodate

a nucleosome, as shown in Figure 1A and as recently shown by others

[35,36]. The average volume of the RSC complexes attached to either

the surface or the DNA measured 14496325 nm3 (N = 20), in

excellent agreement with the expected 1450 nm3 of a single complex,

based on the molecular weight of this 17-subunit complex of

1.197 MDa (www.yeastgenome.org) and an average protein volume

of 0.73 cm3/g [46]. Though the dimensions of nanometer sized

features in AFM images are always affected by tip-convolution [47]

and adhesion artefacts [48] it would seem that these effects cancel in

this case. RSC was not homogeneously distributed over the DNA. In

48 out of 100 RSC-DNA complexes only one extruding DNA end

could be resolved, suggesting a substantial affinity for DNA ends. This

result could be reproduced both with and without glutaraldehyde

fixation, showing that fixation has no influence on the observed end

preference of RSC binding. However, we cannot exclude the

enrichment of RSC-DNA end complexes by deposition biases. The

large size of the RSC-DNA complex did not allow verification by

independent experimental approaches. Such a bias was investigated

and excluded though for EcoRI-DNA complexes [49]. Note that ATP

was lacking in these experiments, ruling out active DNA translocation

by RSC towards the ends.

The geometry of DNA-bound RSC was often the same, with two

lobes of RSC aligned on the DNA (Figure 1B, Figure S1). This

suggests these lobes are involved in DNA binding. The DNA

footprint of RSC was further analysed by comparing the contour

length of DNA-RSC complexes with that of bare DNA (Figure 1B).

The average contour length of 1 kbp DNA measured 322617 nm

(N = 106), which is in good agreement with the expected length of

0.34 nm per bp. Upon binding of RSC to a central position on the

DNA, the contour length reduced to 251635 nm (N = 52). Because

the trajectory of the DNA in the RSC complex is obscured, we

assumed the shortest distance between the entry and the exit point

of the complex. The contour length of end-bound DNA-RSC

complexes was 269651 nm (N = 48), also substantially smaller than

that of bare DNA (Figure S1). The DNA length that RSC conceals,

i.e. 53–71 nm or 156–209 bp, roughly matches half the circumfer-

ence of RSC, which has a diameter of approximately 40 nm.

Together with the absence of free DNA loops this suggests that

DNA is strongly bent and wrapped in or around the RSC complex.

AFM characterization of RSC nucleosome complexes in
the presence and absence of ATP

We studied the interaction of RSC with nucleosomes using a

single nucleosome reconstituted on a 601 nucleosomal positioning

DNA Directs Nucleosome Sliding
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element flanked by two relatively long DNA arms of 236 and

252 bp. Typically 85–90% of the mononucleosomal substrate

contained a nucleosome at the centrally positioned 601 sequence,

10–15% was bare DNA, and in some reconstitutions ,5%

featured a nucleosome at one of the DNA ends. Bearing in mind

the RSC footprint on bare DNA, these long DNA arms allowed us

to discriminate to what part of the nucleosomal substrate RSC is

bound. We characterized the RSC-nucleosome interaction by

designating eight substrate-complex categories and compared

these categories in the presence or absence of ATP or ATPcS, a

non-hydrolysable analogue of ATP (Figure 2A). The presence of a

nucleosome inside the RSC cavity could not be resolved,

preventing unambiguous structural interpretation of the complex-

es in categories 4 and 5. Consistent with the large RSC footprint

on bare DNA, the DNA contour length in some RSC nucleosome

complexes, especially category 5, was visibly shorter than that of

the bare substrate.

In the absence of ATP, 72% of the RSC- bound complexes had

RSC attached to DNA, and RSC could be clearly distinguished

from the nucleosome (Figure 2B, ‘no ATP’, categories 2, 3 and 6).

In the presence of ATPcS the majority (76%) of the RSC-substrate

complexes was also distinctively bound to DNA (Figure 2B,

‘ATPcS’, categories 2, 3 and 6). Although categories 2, 3 and 6

make up 18% and 40% of all detected molecules, respectively, this

result suggests that on these substrates it is bare DNA, not the

nucleosome that is the preferential binding site for RSC.

Furthermore, as with the RSC bare DNA complexes discussed

above, most of the mononucleosomal substrates had RSC

positioned at one of the DNA ends (categories 2, 5 and 6).

Efficient repositioning of nucleosomes by RSC was dependent

on ATP hydrolysis, as observed by a large increase in end-

positioned nucleosomes at the expense of centrally positioned

nucleosomes (Figure 2B, compare categories 1–3 with 6 and 7).

RSC did not appear to remove histone octamers from the DNA,

because the amount of bare DNA did not increase after addition of

RSC with or without ATPcS or ATP (Figure 2B, category 8).

Moreover, without ATP 25% of the substrate was bound to RSC

(Figure 2B, ‘no ATP’, categories 2 to 6). By adding ATPcS the

fraction of RSC-bound substrate doubled to 52%, whereas with

ATP 32% of the substrate was RSC-bound (Figure 2B, ‘ATPcS’

and ‘ATP’, categories 2 to 6), suggesting ATPcS induces a more

stable RSC substrate interaction than with or without ATP.

Furthermore, we observed an increase in nucleosome-bound RSC

complexes upon addition of ATP, from 28% without ATP and

23% with ATPcS to 50% with ATP (Figure 2B, categories 4 and

5), suggesting that ATP hydrolysis enhances RSC-nucleosome

interaction.

RSC pushes nucleosomes over hundreds of base pairs
The remodeling potency of RSC is further demonstrated by its

ability to reposition a single nucleosome over at least 1200 bp

(Figure 3). The accumulation of nucleosomes at the DNA end

indicates that RSC does not move nucleosomes away from the

DNA end. Careful tracing of the DNA contour revealed that DNA

in remodeled nucleosomal templates appeared on average 13 nm,

or 38 bp, longer than that in centrally positioned nucleosomes

(197626 nm (N = 49) vs. 184626 nm (N = 62), Figure S2). We

observed a 5% decrease in nucleosome volume (420681 nm3 vs

402694 nm3). This indicates that no histone proteins were lost as

H2A-H2B dimer dissociation results in a much larger volume loss

[50,51]. It has been reported before that RSC, like SWI/SNF,

positions nucleosomes slightly over the DNA end [38,43,52,53].

The fact that RSC is apparently not able to translocate the

nucleosomes from the DNA ends suggests that RSC needs free

Figure 1. RSC structure and DNA interaction.A) AFM images of
typical RSC complexes and one next to a nucleosome. Image height is
100 nm, z range is 4 nm. B) Histograms of the contour lengths of 1 kbp
bare DNA (top, N = 106) and 1 kbp DNA with RSC bound internally
(bottom, N = 52) with corresponding AFM images. Scale bar of AFM
images is 100 nm, z-range 4 nm. White arrows indicate the two lobes of
RSC that align along DNA.
doi:10.1371/journal.pone.0006345.g001

DNA Directs Nucleosome Sliding

PLoS ONE | www.plosone.org 3 July 2009 | Volume 4 | Issue 7 | e6345



DNA upstream of the nucleosome translocation direction and thus

‘pushes’ nucleosomes rather than ‘pulling’ them.

Notably, in the several hundreds of RSC-DNA and RSC-

nucleosome complexes that we imaged we observed no DNA

looping, in contrast to the results of others [54] and contrary to

what we measured using a type I restriction enzyme [55]. It is only

when the ratio RSC:DNA molecules was increased significantly

that we detected DNA loops that protruded from aggregates of

multiple RSC complexes (data not shown). The shape and

dimensions of the RSC-DNA complexes that we visualized here,

together with pronounced remodeling activity, indicate therefore

that the formation of large DNA loops is not required for

nucleosome remodeling by single RSC complexes. Rather, our

results are consistent with the hypothesis that DNA segments, in

the order of perhaps several tens of bp long are being translocated

over the surface of RSC-bound nucleosomes.

RSC repositions nucleosomes in multiple turnovers
Quantifying the position of the nucleosomes before and after

30 min of remodeling by RSC revealed the progression of

nucleosome translocation along the DNA arms (Figure 3). To

avoid inaccurate assessment of the nucleosome position only the

substrates without RSC were considered. Figure 3A shows the

relative nucleosome position along 240 bp arms. In the absence of

ATP all nucleosomes were centrally located. The relatively large

width of the central position distribution should be attributed to

the limited accuracy of the tracing, which is in the same order as

the bin size of 48 bp. In the presence of ATP about 50% of the

nucleosomes were translocated to the DNA ends (Figure 3A).

Importantly, approximately 10% of the nucleosomes was found in

between the start position and DNA end, demonstrating that RSC

does not necessarily slide the nucleosomes in one run to the DNA

end but instead may dissociate from the nucleosome and rebind in

multiple turnovers before reaching an end. Apparently, the ratio

between the translocation velocity and the dissociation rate, i.e. the

nucleosome translocation processivity, is thus smaller than the

240 bp length of the DNA arms.

Nucleosomes are moderately trapped in the 601
positioning element

The limited nucleosome translocation processivity that we observed

on the substrate with 240 bp arms (240/240 bp substrate) predicts that

translocation efficiency over longer distances should decrease dramat-

ically. Not only is the fraction of nucleosomes that are shifted to the

DNA end in one run expected to decrease exponentially with arm

length, in each subsequent interaction with RSC half of the

nucleosomes would be shifted back in the reverse direction, rendering

overall translocation reactions over long distances extremely inefficient.

Figure 2. Structural analysis of RSC-mononucleosome interaction. RSC was offered a centrally positioned nucleosome with 240 bp arms
(ratio RSC: mononucleosome 1:3) for K hour64 mM ATP(cS). A) AFM images of the 8 designated categories of RSC-DNA-nucleosome interactions, i.e.
1) nucleosome internally bound; 2) nucleosome internally bound and RSC end bound; 3) RSC and nucleosome internally and separately bound, 4) RSC
internally bound; 5) RSC end bound; 6) RSC and nucleosome bound to opposite DNA ends; 7) end bound nucleosomes; 8) bare DNA. Images are
2006200 nm, z-range 4 nm. B) Quantification of the 8 RSC-substrate categories when remodeling without ATP, with 4 mM ATPcS, and with 4 mM
ATP. The eight categories are expressed as the fraction of total analyzed molecules. White bars indicate result without RSC and ATP. Black bars
indicate result with RSC6ATP(cS). No ATP: N = 133 for white bars, N = 139 for black bars. ATPcS: N = 36 for white bars, N = 73 for black bars. ATP:
N = 133 for white bars, N = 289 for black bars.
doi:10.1371/journal.pone.0006345.g002

DNA Directs Nucleosome Sliding
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To test this hypothesis, a single nucleosome with five times longer DNA

arms was reconstituted and tested for remodeling efficiency under

identical reaction conditions (Figure 3B and C). Although the fraction

of nucleosomes trapped on a DNA end decreased from 50% on the

240/240 bp substrate to 10% on the 1200/1200 bp substrate, this

decrease is fivefold less than expected based on the processivity on the

240 bp arms. Importantly, a small but significant fraction of 0.06% of

the nucleosomes (N = 6 vs. N = 0 for substrates prior to remodeling)

were found between the nucleosome start position and a DNA end.

Nevertheless, the majority of nucleosomes located on the 1200/

1200 bp mononcleosomes remained at or in the vicinity of the initial

nucleosome position. Taken together, these results suggest that the

processivity of nucleosome translocation is higher outside the 601

element than within it.

To observe the RSC induced nucleosome repositioning with a

higher resolution and better statistics than with AFM, we

performed time course and enzyme titration experiments using

native PAGE. With this technique the band shift relative to naked

DNA increases with the distance of the nucleosome from the DNA

ends (Figure 4). Nucleosomes were reconstituted on radioactively

end-labelled DNA templates harbouring a 601 element with DNA

arms of 205 and 309 bp. Consistent with our AFM results,

reconstitution yielded between 85–90% of the DNA template with

a nucleosome at the 601 sequence and on average 10% bare

DNA. Titration of RSC resulted in an increased amount of end

positioned nucleosomes with increasing RSC concentration

(Figure 4A). The fraction of bare DNA remained constant,

reproducing the data obtained by AFM and showing that histone

octamers were not displaced from the DNA under these reaction

conditions. Time course experiments revealed that detectable

levels of end-nucleosomes were obtained after 10 minutes using

5 nM RSC (Figure 4B), and after 30 minutes when 1 nM RSC

was used (data not shown). Because the initial nucleosome was

positioned slightly off centre, we could also resolve how fast

nucleosomes were mobilized from the starting positing, resulting in

bands above and below the starting position (Figure 4A and B).

Consistent with the AFM data, only little radioactive signal was

detected between the bands corresponding to the starting and the

end positioned nucleosome at any RSC concentration or time

point. Together, these results indicate that nucleosomes are

moderately trapped in the 601 element, resulting in a larger band

width surrounding the initial nucleosome, but are efficiently

translocated over larger distances once they escape this region.

In keeping with previous affinity measurements for RSC and

SWI/SNF [56–58], classical kinetic analysis of the RSC titration

using Michaelis-Menten kinetics (Figure 4C) revealed KM values of

0.5 and 2 nM and Vmax values of 15 to 50 femtomoles per hour,

for the disappearance of the initial nucleosome and the increase of

the end nucleosome, respectively (Figure 4C). These observations

reinforce the notion that the nucleosome processivity along the

length of DNA templates we studied here is not constant.

Nucleosomes are repositioned with 10 bp intervals
within the 601 positioning element

Careful inspection of the gels in Figure 4 revealed a subtle band

pattern around the 601 positioning sequence that was not resolved

by AFM. In the absence of ATP this band pattern was not

observed, confirming that they are products of ATP-dependent

remodeling (Figure 4A). However, the band distribution around

the slightly off-centred nucleosome was too compressed to

unambiguously quantify individual bands. Furthermore, its

quasi-central position did not allow us to determine the direction

of nucleosome translocation. We therefore produced a nucleosome

with one short (87 bp) and one long (422 bp) DNA arm. Using this

substrate a clear ladder of nucleosome positions could be resolved

after remodeling (Figure 5). One of the bands that appeared after

RSC remodeling, ran faster through the gel than the end-

positioned nucleosomes that were a side product in this

reconstitution, confirming that RSC pushes nucleosomes over

the DNA end (Figure 5). Titration of ATP had no effect on the

position of the bands, it only changed the number of bands of the

nucleosome ladder, demonstrating ATP concentration indepen-

dence of the catalyzed nucleosome ‘step size’.

Figure 3. Quantification of remodeled nucleosome position.
The nucleosome position was determined relative to the normalized DNA
contour length. The histograms show the relative nucleosome displace-
ment when remodeling without (top) or with (bottom) ATP. We could
not discriminate to which DNA arm each nucleosome was translocated.
The relative nucleosome displacement is 0 for the DNA center from
where the nucleosome translocation is initiated and 1 for the DNA end. A)
Mononucleosome with 240 bp arms with (N = 124) or without (N = 112)
ATP. Bin size 48 bp. B) Mononucleosome with 1200 bp arms with
(N = 204) or without (N = 194) ATP. Bin size 120 bp. C) AFM image of
mononucleosomes with 1200 bp arms of which one with RSC bound to a
DNA end. Scale bare is 100 nm, z-range 4 nm.
doi:10.1371/journal.pone.0006345.g003

DNA Directs Nucleosome Sliding

PLoS ONE | www.plosone.org 5 July 2009 | Volume 4 | Issue 7 | e6345



Is this observed band pattern characteristic for RSC or is it a

general feature of ATP-dependent remodelers? To answer this

question we compared the reaction products of RSC to those of

Drosophila Mi-2. Figure 5 shows that RSC and Mi-2 induce seven

identical preferred nucleosome positions; three on the short DNA

arm and four on the long DNA arm. We therefore conclude that

the obtained nucleosome positioning pattern is neither remodeler

specific nor ATP concentration-dependent.

To quantify the periodicity of nucleosome remodeling we

reconstituted nucleosomes that were positioned 0, 10, 12 and

17 bp towards the DNA centre, and subjected these to remodeling

Figure 4. RSC titration and time course on centrally positioned
nucleosomes. A) Native 4% acrylamide gel with 0–10 nM RSC titration
on 7.7 nM nucleosomes with a 204 and a 309 bp arm for 1 hour with or
without 1 mM ATP. B) Native 4% acrylamide gel with 1 mM ATP and
5 nM RSC on 7.7 nM nucleosomes with a 204 and 309 bp arm at time
points indicated in minutes. C) Lineweaver-Burk plot from the RSC
titration.
doi:10.1371/journal.pone.0006345.g004

Figure 5. Stepwise nucleosome remodeling on off-centre
nucleosomes. Native 4% acrylamide gel with 5 nM RSC or 10 nM
Mi-2 on 11.5 nM nucleosomes with a 87 and a 422 bp arm for 1 hour
and a 0–100 mM ATP titration (RSC) or 1 mM ATP (Mi-2) (Upper panel).
The graph in the lower panel shows the relative signal intensity of two
acrylamide gel lanes, one with RSC remodeled mononucleosomes
(3 mM ATP) and one with Mi-2 remodeled mononucleosomes (1 mM
ATP).
doi:10.1371/journal.pone.0006345.g005

DNA Directs Nucleosome Sliding
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by Mi-2. Figure 6 demonstrates that the periodicity of the

remodeling induced nucleosome ladder is 10/11 bp.

Surprisingly, it appeared that under limiting ATP conditions

(Figure 5) RSC had a pronounced preference to reposition

nucleosomes by 20 bp rather than 10 bp relative to the

nucleosome’s initial position. This implies that RSC favours

catalyzing single 15–25 bp nucleosomal over approximately 10 bp

steps.

Finally, one conspicuous difference between Mi-2 and RSC is

that native RSC complex appeared to be more processive than

recombinant Mi-2 since RSC moved nucleosomes further away

from the nucleosome’s starting position than Mi-2, even when Mi-

2 was supplied with sufficient ATP (Figure 5 and compare

Figure 7B and S3).

Monte Carlo simulations substantiate limited
nucleosome processivity in the 601 sequence

To obtain more insight on the nucleosome processivity of

remodelers, we used a Monte Carlo simulation to reproduce

nucleosome translocation by RSC and Mi-2 and thereby capture

the essential ingredients of remodeling kinetics. We modelled

catalyzed nucleosome remodeling with a Markov chain of events

as sketched in Figure 7A. The Markov chain closely follows the

sequence of structures deduced from AFM images captured during

remodeling, shown in Figure 2. In this model, upon binding to a

nucleosomal substrate the remodeling enzyme has an equal

probability to translocates along the DNA in either direction.

When bound, enzymes progress in a single direction with a fixed

step size of 10 bp until they release from the substrate. After each

step the remodeler has a finite probability, as defined by the

processivity, to continue with a next step or to dissociate from the

substrate. The processivity is defined as the ratio between the

forward and off rate. In our model the translocation distance

follows a Poisson distribution, consistent with a dissociation

probability that is independent of the number of translocation

steps taken before.

The binding affinity, step size, forward rate and dissociation rate

of remodelers are likely different on DNA and on a nucleosome. In

the original model these parameters were implemented separately.

We also included the binding preference of RSC for bare DNA, as

observed with AFM. However, good agreement with experimental

data was only obtained when the processivity of RSC on bare

DNA was either very low or exceeded the length of the DNA

arms, making the outcome independent of the initial remodeler

binding position. Therefore, we simplified our model by assuming

that the remodeler binds directly to the nucleosome. From there, it

translocates the nucleosome in either direction with 10 bp

intervals. Nucleosomes were fixed once positioned at a DNA

end in the case of RSC while they were reflected from the DNA

ends for Mi-2. The results of the simulations are displayed in a

format resembling a PAGE experiment as well as band density

Figure 6. Step size of nucleosome repositioning within the 601 sequence. Native 4% acrylamide gel with 10 nM Mi-2 on 11.5 nM
mononucleosomes with a 75 and a 434 bp arm for 1 hour and 1 mM ATP (left panel). The graphs in the right panel show the relative signal intensity
of the acrylamide gel lanes remodeled with Mi-2 (upper 4 graphs) and the not remodeled lanes (lower graph), whereby a relative signal intensity of 1
corresponds to the highest peak in the graph. All lanes in all graphs have been aligned using the well peak and bare DNA peak as references. The
dotted lines indicate the peaks of the well, the bare DNA and the 0 bp, 10 bp, 12, bp and 17 bp mononucleosomes.
doi:10.1371/journal.pone.0006345.g006
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Figure 7. Markov chain model of nucleosome translocation. A) Markov chain model showing remodelers (R) upon binding can translocate
nucleosomes in either direction along DNA with a fixed step size and Poisson distributed step number before releasing from the substrate. B) Native
4% acrylamide gel of a time course of 5 nM RSC on 11.5 nM mononucleosomes with a 87 and a 422 bp arm and 1 mM ATP and Monte-Carlo
simulations assuming RSC is not able to reposition the nucleosome from DNA ends, that it initially binds the nucleosome and translocates it with
10 bp steps with a processivity of two (middle panel) or eight (right panel) steps. The lower panel reveals graphs of the relative signal intensity of the
acrylamide gel (lower left panel) and the Monte-Carlo simulations (lower middle and right panels), whereby a relative signal intensity of 1
corresponds to the highest peak in the graph.
doi:10.1371/journal.pone.0006345.g007
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scans, allowing direct visual comparison with our experimental

data (Figure 7B, Figure S3).

Given the above constraints the only remaining free parameters

in our Monte Carlo simulation are the processivity of nucleosome

translocation and the number of turnovers per substrate. For Mi-2

the best agreement with experimental data was obtained with a

nucleosomal processivity of one 10 bp step and a Mi-2 reaction

rate of 1 turnover per nucleosome per 3 minutes (Figure S3). The

good resemblance with our experimental data demonstrates that

our model can indeed capture the most important features of the

reaction mechanism and suggests that recombinant Mi-2 releases

from the substrate after each 10 bp step.

The PAGE results obtained with RSC could not be reproduced

using a single value for the processivity. We therefore reproduced

the kinetics of the nucleosome within the positioning sequence

separate from the kinetics of the nucleosome outside the 601

sequence. We obtained the closest resemblance to the decline of

the initial nucleosome and the nucleosome ladder pattern with a

processivity of two 10 bp steps per nucleosome and one turnover

every 12 minutes (Figure 7B). However, with a 20 bp nucleosomal

processivity we were not able to mimic the kinetics of the

accumulation of end nucleosomes. It therefore seems that a

processivity of 20 bp only applies to the region surrounding the

nucleosomal starting position. A processivity of 80 bp per

nucleosome and one turnover every 12 minutes resembled the

increase in end nucleosomes for both the central and off centre

nucleosome substrates, but now the characteristic 601 nucleosome

band pattern was absent (Figure 7B, compare Figure 4A and S4).

Taken together the simulations imply that within the influence of

the 601 sequence RSC has a lower nucleosomal translocation

processivity than outside the influence of this sequence, where it is

more than 80 bp per remodeling event. Thus, Monte Carlo

simulations confirm that for an accurate description of the

processivity of nucleosome repositioning it is imperative to take

the underlying DNA sequence into account.

DNA sequence determines the nucleosome translocation
direction

Like previous studies [38,39,42–44,51,59] we used a strong

nucleosome positioning sequence to create a homogenous

substrate to describe ATP-dependent nucleosome translocation.

However, our data show that the positioning sequence itself affects

the nucleosomal translocation processivity. Close inspection of the

intensity of the nucleosome band pattern in Figure 5 also reveals

that both remodelers prefer to slide nucleosomes towards the

shortest DNA arm. To determine whether this directional

preference is driven by the DNA sequence or the proximity of a

DNA end, we inverted the lengths of the flanking arms without

changing the orientation of the 601 sequence (Figure 8A). Both

remodelers preferred to move the nucleosomes in the same

direction with respect to the 601 sequence (Figure 8A and data not

shown). This demonstrates that the initial direction of catalyzed

nucleosome translocation is determined by the underlying 601

DNA sequence rather than the length of the two flanking DNA

arms, ruling out DNA-end proximity effects as the underlying

cause of this observation.

DNA sequence controls nucleosome destination
To learn more about the influence of the 601 sequence on the

10 bp nucleosome remodeling pattern, we inserted 89 or 94 bp

DNA fragments in either orientation into the PmlI site located

50 bp from the dyad at the side of preferred nucleosome sliding

(Figure 8B). The only difference between both inserts is that the

94 bp insert has five extra deoxyguanosines at one end. The inserts

did not affect reconstitution specificity as approximately 90% of

the nucleosomes were positioned at the original 601 dyad position

(Figure 8B). With one exception, the overall step size of the ladder

pattern and the nucleosome sliding direction preference were also

not changed by the inserts, which reveals the strong influence of

the 601 dyad position and its flanking 50 bp on these

characteristics of nucleosome repositioning. However, the intensity

of the bands in the ladder pattern changed subtly upon insertion of

either DNA insert orientations. Furthermore, in the insert

orientation with the 5 extra nucleotides positioned 50 bp from

the 601 dyad (Figure 8B, blue arrow), the fifth remodeling step was

larger for the 94 bp insert than for the 89 bp insert. This

difference was not observed for the inserts with the 5 extra

nucleotides positioned 139 bp from the 601 dyad (red arrow).

These results suggest that DNA sequence variations as small as

5 bp can influence the destination of a catalytically translocated

nucleosome.

Discussion

To date, detailed enzymatic nucleosome mobilization assays

have largely employed mobilization over short distances (36–

180 bp) from one positioning element to another or towards a

nearby end of the DNA molecule [38,39,41–44]. While these

assays demonstrate nucleosome movement away from the initial

position as such, they cannot resolve nucleosome translocation

processivity and separate the effect of underlying DNA sequences

and nearby DNA ends. Studies involving nucleosome remodeling

on DNA minicircles were able to show that SWI/SNF moves

nucleosomes to more favourable positions on the DNA [40,60].

However, also with DNA minicircles no conclusions can be drawn

concerning the nucleosome translocation processivity and the lack

of time courses, enzyme titrations and ATP titrations in these

studies made it impossible to draw conclusions on the direction-

ality and sequential steps of catalysed nucleosome repositioning. In

this study we have used nucleosomes with DNA extensions of 240–

1200 bp together with single molecule AFM and high resolution

PAGE. This resulted in an in depth step analysis of ATP-

dependent nucleosome repositioning. To assess the generality of

our results we compared representative enzymes of two subfamilies

of ATP-dependent nucleosome remodeling enzymes including a

well known transcription repressor (Mi-2, CHD-type Chromodo-

main) [25] and an activator (RSC, SWI/SNF-type Bromodomain)

[7,61]. This has allowed us to reveal unexpected properties of

SNF2 enzyme-catalyzed nucleosome movement, such as the

capacity of DNA sequence to influence nucleosome translocation

direction, translocation processivity and final destination.

Influence of DNA ends on nucleosome translocation
The major advantage of using mononucleosomes with long DNA

arms over substrates with DNA arms that protrude only several tens

of bp from the nucleosome is that DNA end effects can be separated

from DNA sequence induced positioning effects. Though deposition

biases cannot be excluded, our AFM imaging suggests that RSC has

a higher affinity for DNA ends than for regular DNA and

nucleosomes. This affinity for DNA ends may be related to the

involvement of RSC in DNA double strand break repair pathways

[12,18,62] as it is predicted to direct RSC to double strand breaks.

This also implies that the RSC complex first binds to and

translocates over DNA before engaging in nucleosome remodeling.

Nevertheless, we found no evidence that DNA end binding of RSC

influences the initial direction of nucleosome translocation. It is

therefore likely that under our experimental conditions transloca-

tion of the nucleosome itself rather than the binding to and
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translocation of RSC over bare DNA was rate limiting. A clear

separation between RSC translocation on bare DNA and of a

nucleosome may be the key to resolve the discrepancy between

recent single-molecule experiments concerning the translocation

velocity on DNA and nucleosomal DNA [37,54,63,64].

Another DNA end effect apparent from both our AFM and

PAGE analyses was that histone octamers were pushed some tens of

bp over the end by RSC, a finding that is consistent with previous

work on RSC and SWI/SNF [38,43,52,53]. This was not the case

when Mi-2 was used. The accumulation of mobilized nucleosomes

at DNA ends suggests that RSC and SWI/SNF cannot efficiently

reposition nucleosomes from there, indicating the requirement of

bare DNA upstream of the nucleosome translocation direction and

consistent with a reaction mechanism in which binding to bare

DNA would precede nucleosome repositioning. Finally, a mecha-

nism whereby nucleosomes are ‘pushed’ rather than ‘pulled’ may

also explain how RSC and SWI/SNF force adjacent nucleosomes

into overlapping positions [51,65].

DNA sequence-directed nucleosome translocation
The effect of the DNA sequence on ATP dependent

nucleosome translocation processivity was clearly demonstrated

by the strong artificial 601 nucleosome phasing sequence, which

severely constrained the translocation processivity of both

Figure 8. DNA sequence directed initial translocation direction. Native 4% acrylamide gel with or without 5 nM RSC on 11.5 nM
mononucleosomes for 1 hour and 100 mM ATP. A) Comparison of initial mononucleosome migration directionality using a 601 nucleosome with
reversed left and right arm lengths. The red arrows indicate the preferred direction of initial nucleosome translocation. B) Comparison of
mononucleosomes with a 89 or 94 bp insert of pBluescript DNA inserted in either orientation (blue and red arrow) at the PmlI site located 50 bp from
the middle of the 601 positioning element. The extra 5 deoxyguanosines of the 94 bp insert are positioned at the side of the arrowhead. The black
arrowheads indicate the position of the fifth band from the nucleosome starting position. C) Graph of the relative signal intensity of the acrylamide
gel lanes containing remodeled nucleosomes with DNA inserts (coloured lines) and without insert with the initial nucleosome translocation direction
towards the long DNA arm (black line).
doi:10.1371/journal.pone.0006345.g008
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remodelers [45]. Using Mi-2, few nucleosomes ‘escaped’ the 601

sequence, whereas with RSC, the processivity was several fold

lower within its influence than beyond. This indicates that both

DNA sequence and intrinsic enzyme properties must be taken into

account to describe the mechanism of catalyzed nucleosome

translocation. This seemingly contrasts with Partensky et al. [41]

who argue that yeast RSC and human ISWI containing ACF

complexes are as efficient in repositioning nucleosomes away from

the initial position on DNAs with widely divergent octamer

affinities and nucleosome breathing dynamics. However, their

results could also be interpreted as unwrapping of DNA from the

histone octamer, rather than nucleosome repositioning. The rather

short DNA fragments used in their study with the initial

nucleosome positioned at the DNA end may have influenced the

results, as we show here that DNA ends affect RSC remodeling.

Another prominent 601 sequence-related feature that we

observed for both remodelers was a 10 bp periodicity of the

reaction products. Schwanbeck et al. [44] also observed two 10 bp

steps of the ISWI-type NURF complex on the 601 sequence with

47 bp linker DNA and they report these steps as remodeler

specific. This synthetic DNA sequence displays a 10 bp periodicity

of the dinucleotides TA, TT and AA together with an out of phase

10 bp periodicity of the dinucleotide GC [66] resulting in a free

energy which is approximately 3 kbT less than the naturally

occurring 5S rDNA or MMTV nucleosome phasing sequences

[45,67,68]. Though the nucleosome affinity of natural positioning

sequences is less strong than the artificial 601 sequence, they also

display a 10 bp periodicity [66,69,70]. We therefore argue that

natural positioning sequences may influence SNF2 enzyme

reactions in a similar way as the 601 phasing sequence does.

We revealed that the newly adopted nucleosome positions after

enzymatic remodeling are influenced by the underlying DNA

sequence by inserting DNA fragments into the 601 positioning

element. Partensky et al. [41] obtained a similar result when

inserting a DNA fragment just next to the 601 sequence. These

changes in are likely due to the local changes in the thermody-

namic landscape of the DNA sequence [38,71].

Shundrovsky et al. [72] suggested that catalyzed sliding of

nucleosomes from the 601 position is direction independent.

However, a striking DNA sequence-dependent effect we report

here is that the 601 mononucleosome is asymmetric in that both

remodelers displayed pronounced preference for translocation of

the nucleosome into the direction of the PmlI site of the 601

sequence, independent of the lengths of the flanking DNA arms.

Such DNA sequence mediated nucleosome anisotropy may be

important for specific nucleosomes located strategically within

chromosomes, such as those flanking nucleosome free regions

since it would contribute information as to the direction that a

nucleosome will preferentially slide towards in vivo, which may

have far-reaching regulatory consequences.

SNF2-dependent nucleosome translocation
Having separated the effects of DNA sequence and DNA ends

on catalyzed nucleosome repositioning, the question remains as to

what distinguishes the reaction mechanisms of different remode-

lers with specialized functions in chromatin maintenance. The first

obvious difference was that native RSC proved to be a more

processive enzyme than recombinant Mi-2. Whereas the kinetics

of Mi-2 within the 601 sequence was consistent with a

repositioning of 10 bp per turnover, RSC displayed a processivity

consistent with approximately 20 bp within the 601 sequence,

which increased to over 80 bp per turnover beyond the influence

of the 601 sequence. This difference could be due to differences in

enzyme complexity. Indeed, it has been shown that recombinant

Sth1p, the ATPase of RSC, is less active than native RSC complex

[73]. When in a protein complex, subunits with DNA or histone

binding sites are likely to increase processivity by increasing the

translocation velocity or lowering dissociation constants, as

exemplified by the large DNA footprint and the putative

encapsulation of the nucleosome in the central cavity of the

RSC complex.

Unlike Mi-2, RSC displayed a preferred nucleosomal step size

of two times 10 bp within the 601 sequence under limiting ATP

conditions. This result suggests that RSC has a default

nucleosomal translocation step size between 15 and 25 bp. The

fact that limiting ATP concentration affected processivity rather

than step-size is consistent with a ‘DNA pumping’ or ‘loop

diffusion’ model, but does not exclude the involvement of twist

[33,34,37], and could be taken to suggest that a single DNA

translocation event may be performed upon as few as one ATPase

cycle, following a swivelling motion of a part of the ATPase,

similar to what has been proposed for SFII superfamily DNA

helicases [74].

Conclusions
Aside from the differences between the remodelers tested, we

show here that the DNA sequence is a key factor in defining the

extent and direction of ATP-dependent nucleosome translocation.

DNA sequence therefore controls catalyzed nucleosome reposi-

tioning in vitro. Strongly positioned nucleosomes may depend on

ATP-dependent chromatin remodelers to be displaced in vivo,

perhaps with the assistance of sequence specific DNA binding

factors [75,76] and/or histone chaperones [77]. This would free

up nucleosomal DNA to enable the initiation of processes such as

transcription, replication, repair or recombination. A high

nucleosome translocation processivity beyond the influence of

strong positioning elements, such as that displayed here by RSC

outside the 601 sequence, may help processive DNA metabolic

processes, including elongation by RNA polymerase [7] and

perhaps even migration through chromatin of replication forks or

Holliday junctions.

Overall, the present combination of biochemical and biophys-

ical analyses shows that SNF2-type ATP-dependent nucleosome

remodelers allow control of their reactions by DNA sequence. This

may explain the apparent paradox between the need for a high

abundance of ATP-dependent remodelers per nucleus, ,1 per 12

nucleosomes in yeast [31,78,79], and the high success rate of

sequence based predictions achieved for nucleosome positioning in

vivo [70]. Here we propose a three-step framework to describe

SNF2 enzyme mediated nucleosome sliding that consists of an

initiation step that defines the direction of migration, followed by

one or more translocation steps whose length and number depend

on the particular SNF2 enzyme recruited combined to the

properties of the underlying DNA sequence, and a third step that

releases the nucleosome at DNA sequences that are energetically

favourable.

Materials and Methods

Remodeler isolation
Native RSC complex was isolated from a yeast strain via C-

terminal tagged Npl6p using the Tandem Affinity Purification

protocol essentially as described by Puig et al. [80] and further

modified by Campsteijn et al. [14], 400 mM KAc was used instead

of 150 mM NaCl. The integrity of the RSC complex was

confirmed by silver staining the complex on a denaturing

polyacrylamide gel (Figure S5). Recombinant Drosophila Mi-2

was isolated as described previously [42].
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DNA and nucleosomal substrate
DNA fragments were prepared by PCR or restriction enzyme

digestion using the pGEM-3Z vector containing a single 601

positioning element (kind gift of J. Widom). Mononucleosomes

were generated by salt dialysis [81]. The 1 kbp bare DNA

fragment without nucleosomal positioning element was obtained

from Eurogentec. The centrally positioned nucleosomes in our

AFM experiments were generated with 635 bp and 2550 bp long

DNA (PCR) and recombinant Xenopus leavis octamers [82]. The

nucleosomes used in our PAGE experiments were generated with

purified Gallus gallus erythrocyte histone octamers [81], 656 bp

long DNA for centrally positioned nucleosomes (601 pGEM-3Z,

PvuII digestion) and 660 bp DNA for off-centre nucleosomes

(PCR). Primer sequences are available on request.

AFM
Remodeling reactions were performed in 100 mM NaAc,

10 mM MgAc, 10 mM Hepes pH 8 and 4 mM ATP for 30 min

at room temperature. To image RSC-DNA complexes the

remodeling reaction was 10 times diluted with deposition buffer

(10 mM Hepes-KOH pH 8, 10 mM MgCl2) of which 5 ml was

deposited on freshly cleaved mica. To image RSC-mono-

nucleosome complexes the remodeling reaction was fixed with

0.1% glutaraldehyde for 15 minutes at room temperature. Next,

5 ml of the reaction was deposited on a poly-l-lysine coated mica

surface. Before deposition the 1200/1200 bp nucleosomes were

five times diluted with deposition buffer. Deposited samples were

flushed with ultrapure water, dried with nitrogen gas and imaged

using a Nanoscope IV (Digital Instruments) operated in tapping

mode AFM.

Determination of DNA contour length and position of
protein complexes

The contour length of a DNA molecule was determined by

tracing the DNA from end to end. Internally bound RSC

complexes were traced by linking the DNA entry and exit points in

a straight line through the complex. The position of the RSC

complex was then determined in the centre of the straight line.

Internally bound nucleosomes were traced with a straight line

from the DNA entry point to the nucleosome centre, followed by a

straight line from the nucleosome centre to the DNA exit point.

For end positioned RSC complexes and nucleosomes the trace

follows a straight line from the DNA entry point through the

centre of the protein complex to the complex end. A Gaussian fit

was applied to all histograms of DNA contour lengths. The error

in all other histograms was calculated using the square root of the

number of molecules.

Native acrylamide gel electrophoresis
Remodeling reactions were performed in 50 mM KAc, 2.5 mM

MgAc, 2 mM Hepes pH 7.8, 100 ng/ml BSA and 1 mM DTT at

room temperature. The reactions were stopped by adding 1 mg

native chicken erythrocyte oligonucleosomes per reaction. Glyc-

erol was added to a final concentration of 9% and the samples

were loaded on a 4% acrylamide gel (19:1 acrylamide:bisacryla-

mide in 1x TBE buffer) and run at 4uC at 50 V for 8-16 hours.

Monte Carlo modelling of nucleosome translocation
The Markov chain model of nucleosome translocation shown in

Figure 7A was simulated in a Monte Carlo program written in

LabView. For each simulation the substrate length and nucleo-

some position were set according to the experimental setup. From

a pool of 104 nucleosomes in successive iterations a single

nucleosome was selected randomly and shifted over the DNA in

either direction with equal chance. The nucleosome translocation

distance depends on the step size and processivity and is defined by

an exponential distribution. Accordingly, for each turnover a

translocation distance was generated following Poisson statistics. In

the case of RSC remodeling all nucleosomes that reached the

DNA end were trapped. At exponentially increasing iteration

intervals the position distribution of the entire pool of nucleosome

positions was calculated. To allow for comparison with PAGE

experiments the nucleosome position distribution was folded

around the central position, plotted on an exponential scale and

convoluted with a point spread function representing the band

shape observed in the PAGE experiments. With a constant step

size of 10 bp, the processivity and average number of turnovers

per molecule were adjusted to match the experimental outcome.

Supporting Information

Figure S1 Bare DNA with end-bound RSC. The left panel

shows the histogram of the contour length of 1 kbp DNA with

RSC bound to its end (N = 48). The right panel shows an AFM

image of a DNA molecule with RSC bound to its end. Scale bar is

100 nm, z-range is 4 nm. White arrows indicate the 2 small lobes

of RSC.

Found at: doi:10.1371/journal.pone.0006345.s001 (0.87 MB TIF)

Figure S2 Nucleosomes at the DNA end. The top panel shows

the histogram of the DNA contour length of internally positioned

nucleosomes (category 1, N = 49). The middle panel shows the

histogram from the contour length of nucleosomes from the same

remodeling reaction that were repositioned to the DNA end

(category 7, N = 62). The bottom panel shows an AFM image of

nucleosomes with 240 bp arms, one internally bound and one

bound to the DNA end. Scale bar is 100 nm, z-range 4 nm.

Found at: doi:10.1371/journal.pone.0006345.s002 (1.11 MB TIF)

Figure S3 Mi-2 time course on off-centre nucleosomes, with

simulation. Native 4% acrylamide gel of a time course of 5 nM

Mi-2 on 11.5 nM mononucleosomes with a 75 and 434 bp arm

and 1 mM ATP and Monte-Carlo simulation assuming Mi-2

initially binds at the nucleosome, translocates it with a 10 bp step

size and reflects the nucleosome from the DNA end (upper panel).

The graphs in the lower panel show the relative signal intensity of

the lanes of the acrylamide gel and Monte-Carlo simulation in the

upper panel, whereby a relative signal intensity of 1 corresponds to

the highest peak in the graph.

Found at: doi:10.1371/journal.pone.0006345.s003 (4.60 MB TIF)

Figure S4 Simulation of centrally positioned nucleosome

remodeling by RSC. Native 4% acrylamide gel with 0–10 nM

RSC titration on 7.7 nM nucleosomes with a 204 and a 309 bp

arm for 1 hour with 1 mM ATP (reappearance of Figure 4A) and

Monte-Carlo simulation assuming RSC binds at the nucleosome,

translocates with a 10 bp step size, 80 bp processivity and is not

able to reposition the nucleosome from the DNA end (upper

panel). The graphs in the lower panel show the relative signal

intensity of the lanes of the acrylamide gel and Monte-Carlo

simulation in the upper panel, whereby a relative signal intensity of

1 corresponds to the highest peak in the graph.

Found at: doi:10.1371/journal.pone.0006345.s004 (2.61 MB TIF)

Figure S5 Silver stained native RSC complex. Silver staining of

10% polyacrylamide gel with 0.1% SDS on which 0.1 pmol

tandem affinity purified RSC was run.

Found at: doi:10.1371/journal.pone.0006345.s005 (0.83 MB TIF)
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