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Flow in linearly sheared two-dimensional foams: From bubble to bulk scale

Gijs Katgert, Andrzej Latka, Matthias E. Möbius, and Martin van Hecke
Kamerlingh Onnes Laboratory, Universiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands

�Received 31 March 2009; published 30 June 2009�

We probe the flow of two-dimensional �2D� foams, consisting of a monolayer of bubbles sandwiched
between a liquid bath and glass plate, as a function of driving rate, packing fraction, and degree of disorder.
First, we find that bidisperse, disordered foams exhibit strongly rate-dependent and inhomogeneous �shear-
banded� velocity profiles, while monodisperse ordered foams are also shear banded but essentially rate inde-
pendent. Second, we adapt a simple model �E. Janiaud, D. Weaire, and S. Hutzler, Phys. Rev. Lett. 97, 038302

�2006�� based on balancing the averaged drag forces between the bubbles and the top plate F̄bw and the

averaged bubble-bubble drag forces F̄bb by assuming that F̄bw�v2/3 and F̄bb���yv��, where v and ��yv�
denote average bubble velocities and gradients. This model captures the observed rate-dependent flows for
��0.36, and the rate independent flows for ��0.67. Third, we perform independent rheological measure-

ments of F̄bw and F̄bb, both for ordered and disordered systems, and find these to be fully consistent with the
forms assumed in the simple model. Disorder thus leads to a modified effective exponent �. Fourth, we vary
the packing fraction � of the foam over a substantial range and find that the flow profiles become increasingly
shear banded when the foam is made wetter. Surprisingly, the model describes flow profiles and rate depen-
dence over the whole range of packing fractions with the same power-law exponents—only a dimensionless
number k that measures the ratio of the prefactors of the viscous drag laws is seen to vary with packing
fraction. We find that k���−�c�−1, where �c�0.84 corresponds to the 2D jamming density, and suggest that
this scaling follows from the geometry of the deformed facets between bubbles in contact. Overall, our work
shows that the presence of disorder qualitatively changes the effective bubble-bubble drag forces and suggests
a route to rationalize aspects of the ubiquitous Herschel-Bulkley �power-law� rheology observed in a wide
range of disordered materials.

DOI: 10.1103/PhysRevE.79.066318 PACS number�s�: 47.15.gm, 47.57.Bc, 83.50.Lh

I. INTRODUCTION

Foams, which are dispersions of densely packed gas
bubbles in a liquid, exhibit an intricate mix of elastic, plastic,
and viscous behavior reminiscents of the mechanics of other
disordered materials such as colloidal suspensions, granular
media, and emulsions �1–6�. When left unperturbed, foams
jam into a metastable state where surface tension provides
the restoring force underlying their elastic response for small
strains �1,4,7�. Under continuous driving the foam starts to
flow, and the viscous dissipation that arises in the thin fluid
films that surround the gas bubbles becomes important. Mac-
roscopically, the steady-state rheology of foams exhibits
shear thinning, and the stress � as function of strain rate �̇ is
generally nonlinear, often taking a Herschel-Bulkley form:
�=�Y +c1�̇�, where �Y denotes the yield stress and where the
viscous stress �V��−�Y scales nontrivially with the strain
rate �̇ �1,3,8–14�. In addition, in many situations, the flow is
inhomogeneous and localizes in a shear band, which is lo-
cated near one of the solid boundaries �1,12,14–16�.

In an earlier paper �14� we experimentally probed the
flow of disordered, bidisperse two-dimensional �2D� foams
which are trapped between the fluid phase and a top plate.
The 2D nature allows for direct imaging of the bubble dy-
namics and of the shear-banded flow profiles in this system.
Combining measurements of the flow profiles with rheologi-
cal measurements, we established that the viscous interac-
tions between neighboring bubbles scale differently with ve-
locity gradients than the effective viscous interactions at the
global scale. We captured the rate-dependent shear banding

near the moving boundaries exhibited by our system in a
nonlinear drag force balance model. Here we expand on
these findings, discuss results for the effect of varying the
wetness of the foam, and provide extensive additional evi-
dence to support our main conclusions.

To understand the rheology and shear band formation in
our system, three ingredients need to be described and com-
bined appropriately: �i� interactions with the top plate, �ii�
local bubble interactions, and �iii� disorder.

A. Top plate

In recent years, a variety of studies has addressed the
formation of shear bands in �quasi-�two-dimensional foams,
consisting of a single layer of macroscopic bubbles. Such
single layers can be made by freely floating the bubbles on
the surface of a surfactant solution �“bubble raft”�
�12,17,18�, by trapping them between a top glass plate and
the surfactant solution �“liquid-glass”� �14,18–21�, or by
trapping them between two parallel glass plates �Hele-Shaw
cell� �15�.

In a seminal paper by Debrégeas et al. �15�, a bidisperse
foam in Hele-Shaw Couette cell was sheared and narrow
shear-banded flow profiles where obtained �15�. While ini-
tially it was believed that for slow flows, the effect of the
viscous drag forces exerted by the confining glass plates
would be negligible �1,22�, these drag forces have turned out
to be crucial. First, Couette experiments found broad shear
bands, which are well captured by a continuum description
�12�. Second, in experiments where a monodisperse foam
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was linearly sheared with and without confining glass plate
on top �18�, one observes smooth velocity profiles for the
bubble raft but highly shear-banded flows for the liquid-glass
geometry. The precise connection between the drag forces
due to the confining plates and the occurrence of shear band-
ing in confined foams is still a subject of debate �22,23�.

A simple continuum model that balances the top plate
drags and the interbubble drags �modeled with a Bingham
constitutive relation� captures both the rate independence and
exponentially localized shear bands seen in the linear liquid-
glass cell �14,24�—here we will build on and extend this
model to capture the experimentally observed nonlinear rate-
dependent rheology of disordered foams.

B. Local interactions

At the microscopic level, bubble interactions are a com-
bination of elastic repulsion, typically harmonic for small
deformations �25–27�, and nonlinear viscous drag forces
�13,14,28–32�. Such drag forces arise when two bubbles
slide past each other or when a bubble slides past a solid
boundary. The viscous drag forces originate in the thin films
that surround foam bubbles and have recently received re-
newed attention �13,28–32�. Already for a single bubble slid-
ing past a solid wall, Bretherton showed that the drag force
scales nonlinearly with the bubble velocity �13,31,33�, and
by analogy one would expect the drag forces arising between
sliding bubbles to be nonlinear also—indeed Denkov et al.
�32� recently suggested that a similar scaling applies to the
viscous drag force between bubbles.

Here we measure the viscous drag forces between bubbles
directly by rheological experiments where two rows of or-
dered bubbles are sheared past each other.

C. Disorder

Foam flows are disordered and intermittent at the multi-
bubble scale �5,7,13,14,24,34,35�. For such disordered sys-
tems, the affine approach, where one simply scales up local
elastic or viscous interactions, often fails to describe the
macroscopic behavior—this is by now well established for
shear deformations in granular and foamlike systems
�36–38�, and a similar picture is emerging from simulations
of the flow of viscous particles �34,39–42�. In the present
work we present strong experimental evidence for the failure
of the affine approach to describe �interbubble� viscous drag
forces in flowing systems.

II. OUTLINE

In this paper, we describe an experiment in which we
have linearly sheared a 2D foam, and we disentangle the
roles of the top plate, the local bubble interactions, and the
disorder, as well as the role of the wetness of the foam.

In Sec. III we describe our experimental setup. In Sec. IV
we present experimental results for flow profiles for a range
of strain rates and transverse widths of our system. We find
that the flow depends crucially on the applied strain rate �̇a:
disordered bidisperse foams exhibit rate-dependent flow pro-
files, which become increasingly shear banded for large �̇a.

We capture our findings in a model in which the time-

averaged drag forces between bubble and top plate, F̄bw, and

between neighboring bubbles F̄bb are balanced. While the
continuum limit of our model is similar in spirit to �24�, the
crucial new ingredient is nonlinear scaling laws for the wall
drag and the bulk stress—these nonlinear scalings are essen-
tial for capturing the observed rate dependence.

In Sec. V, we probe the scaling of both bubble-wall and
bubble-bubble drag forces by independent rheological mea-
surements. When measuring the bubble-bubble drag forces
we directly probe the role of disorder by comparing the rhe-
ology of small ordered and larger disordered bubble rafts. We
find the averaged drag forces in the disordered foam to scale
differently from the local drag forces between individual
bubbles, which we have measured at high resolution and
analyze in a novel way.

In contrast, for monodisperse ordered foams the local, av-
eraged, and top-plate drag forces all scale similarly, causing
rate-independent flows similar to those seen by Wang et al.
�18�, and we discuss these in Sec. VI.

In Sec. VII we further probe the connection between the
viscous interbubble drag forces at the bubble scale and the
bulk viscous forces by performing additional linear shear
experiments over a range of packing �air� fractions �. We
find that the contribution of averaged bubble-bubble drag
forces vanishes algebraically as �−�c when the packing
fraction is decreased toward a critical value �c, which we
identify with the �un�jamming density, �c�0.84. We relate
the vanishing of the averaged bubble-bubble drag forces at
�c to the vanishing overlap between bubbles at unjamming.

The simple elastic interaction �typically harmonic for
small deformations �25–27�� and the absence of solid friction
make static packings of foam bubbles eminently suited to
compare to simulations of the popular soft frictionless sphere
model �37,43,44�. Our work illustrates the great potential of
foams to elucidate the flow behavior of simple systems near
jamming �39–42�.

III. EXPERIMENTAL DETAILS

In this section we describe in detail an experimental setup
to induce linear shear flow in two-dimensional foams. We
also detail the analysis techniques used to extract velocity
profiles and discuss measurements which show that coarsen-
ing and fluid drag can be neglected.

A. Setup

We create foam bubbles on the surface of a reservoir of
soapy solution �of depth 3.5 cm�, consisting of 80% by vol-
ume demineralized water, 15% glycerol, and 5% Blue Dawn
dishwashing agent �Proctor & Gamble� and by bubbling ni-
trogen through the solution via syringe needles of variable
aperture. We measure the bath surface tension � with the
pendant drop method �45� and find �=28�1 mN /m. We
measure the dynamic viscosity � with a Cannon Ubbelohde
viscometer and find �=1.8�0.1 mPa s.

Figure 1 shows our experimental setup: the bubbles are
contained inside an aluminum frame �400�230 mm� which
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is leveled with the liquid surface and which supports glass
top plates to which the bubbles bridge once they are in place.
The top plates consist of three adjacent glass plates with slits
to accommodate two polymethyl methacrylate �PMMA�
wheels of radius 195 mm and thickness 9.5 mm that drive
the flow. The vertical gap between the liquid surface and the
glass plates can be varied to control the packing fraction of
bubbles �.

The wheels, which are grooved to provide a no-slip
boundary for the bubbles, can be lowered into and raised out
of the bath through the slits. The wheels are connected to two
Lin Engineering stepper motors, each driven by microstep-
ping driver, and are rotated in opposite directions. At any
point along the line where the wheels contact the foam
bubbles the horizontal component of the driving velocity is a
constant �see Fig. 1�b��.

We obtain our data from the central 60 mm of the shear-
ing region—marked by the horizontal lines in Fig. 1�a�—to
avoid effects caused by the recirculation of the foam at the
edges of the wheels. In this central part no motion is ob-
served due to the vertical component of the radial velocity.
At the edges of the slits, bubbles do leave the system while
being pinned to the wheels. This does not result in holes in
the foam layer, either because at high driving velocities the
bubbles reenter the system before rupturing while traveling
on the wheel or because at low velocities bubbles from out-
side the shearing region are pushed inwards due to the
bubble surplus at the edges. The resulting driving velocity
gives rise to a global strain rate �̇=2v0 /W, where W denotes
the gap between the wheels, which we vary between 5 and
10 cm.

B. Imaging and analysis

We wish to characterize the average flow in the x direc-
tion as a function of the transverse coordinate y. The average
velocity profiles are obtained from a series of images which
we record with an 8 bit Foculus BW 432 charge coupled
device �CCD� camera �1280�1024 pixels� equipped with a
Tamron 28–300 telezoom objective. In the images, 1 pixel
corresponds to approximately 0.1 mm. To optimize the
brightness and obtain images in which the bubbles appear as
circles, the foam is lit laterally by two fluorescent tubes, each
driven by high-frequency ballasts to prevent flickering in the
images. The bottom of the reservoir is covered with a black
plate to improve contrast. Typical images are shown in Fig.
2.

The frame rate is fixed such that the displacement at the
wheels is fixed at 0.15 mm between frames. Since the flow is
strongly intermittent, with large fluctuations in the bubble
displacements, we take 1000 frames per run, corresponding
to a strain of four for a 5 cm gap, as we are interested in
averaged velocity profiles. We preshear the system before
taking data so that a steady state is reached.

We obtain the velocity profiles both through particle
tracking and a particle image velocimetrylike technique,
where for each y value, we calculate the cross correlation
�Cn�2 between the corresponding image line in the Pn�x� of
length m and the same image line Pn+1�x� in the next frame
shifted by an amount �:

�Cn����2 = �
i=0

m−�

Pn�i�Pn+1�i + �� . �1�

We can then proceed in two ways. The first method is to
add up all cross correlations from all frames for each y value
and calculate the average displacement 	x per frame by fit-
ting a parabola pn��� to the resulting sum of cross correla-
tions and taking the peak value of that parabola:

FIG. 1. �Color online� �a� Schematic top view of the experimen-
tal setup. W represents the gap width and the two horizontal lines
indicate the edge of the region over which the velocity profiles are
calculated. The solid �red� curve depicts one such profile. �b� Side
view of the shearing wheels. The slits in the glass plate are drawn
for clarity. That the in-plane component of the motion of the bound-
ary is constant can be seen as follows: by trivial geometry, we

obtain that v0=
r1 cos �; but since r1=
r0

cos � , at any point along the
along the contact line of 230 mm, the layer of bubbles is sheared

with a driving velocity v0=

r0

cos �cos �=
r0. �c� Experimental im-
age of part of the foam, the scale bar represents 5 mm.

FIG. 2. �Color online� Images of sheared regions for both �a�
monodisperse and �b� bidisperse foams. Shear is indicated by the
arrows. The highlighted area is where data analysis is performed on.
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	x�y� = max	�
n=0

999

pn���
 . �2�

In the second method we fit a parabola to each cross corre-
lation separately and obtain the average displacement by av-
eraging the maxima of all individual parabolas:

	x�y� = �max�pn����� . �3�

By comparing to average velocity profiles obtained by
particle tracking �35�, we find that the latter procedure gives
the closest match to the tracking velocity profiles, and we
have employed this procedure throughout. We thus obtain
both spatially �in the x direction� and temporally averaged
velocity profiles. Despite the intermittent character of the
flow, we obtain smooth reproducible velocity profiles.

C. Coarsening and fluid drag

To characterize the amount of coarsening we measure the
bubble size distribution by measuring the surface area of the
bubbles in the images. We obtain well defined size distribu-
tions which show little coarsening over the duration of the
runs, which corresponds to about 2 h �Fig. 3�a��.

We have checked that the drag on the foam bubbles due to
flow of the bulk liquid underneath is negligible by measuring
the velocity profile of bubbles floating on a very shallow
layer of bulk fluid. In this case the fluid surface velocity is
decreased due to the no-slip boundary condition at the reser-
voirs’ bottom. We do not, within experimental uncertainty,
observe a change in the experimental velocity profiles in this
geometry.

We furthermore measure the velocity profile of the liquid
surface itself at the same fluid level as in the foam experi-
ments by imaging the flow of silver particles that were
sprinkled on the liquid surface �see Fig. 3�b��. We observe a
steeply decreasing velocity profile at the fluid surface, which
implies that even if the fluid drag were of the order of the
other drags acting on the bubbles it would not significantly
alter the flow profiles except near the wheels.

We thus conclude that the bubble size distribution is es-
sentially constant during an experimental time frame and that

the dominant drag forces are those between bubbles and top
plate and those between contacting bubbles.

IV. LINEAR SHEAR OF TWO-DIMENSIONAL FOAMS

In this section we explore the rate-dependent shear flows
in our system experimentally. By fitting our experimental
data to a nonlinear drag force balance model, we deduce the
dependence of the averaged bubble-bubble and bubble-wall
drag forces as function of the local strain rate and velocity.

A. Flow of disordered foams

We measure averaged velocity profiles in disordered two-
dimensional foams. These foams are produced by bubbling a
fixed flow rate of nitrogen through syringe needles of two
different inner diameters, such that bubbles of 1.8�0.1 and
2.7�0.2 mm result �at 59–41 number ratio�. The bubbles
are gently mixed with a spoon until a disordered monolayer
results. For gap widths of 5, 7, and 9 cm, we drive the foam
at 6 different velocities, spanning 2.5 decades: v0=0.026,
0.083, 0.26, 0.83, 2.6, and 8.3 mm/s.

Note that we perform the sweep in driving velocities from
fast to slow and that we preshear the system for one full
wheel rotation to start with bubbles covering the wheel �46�
and ensure that we have reached a steady state. To fix the
packing fraction, we fix the gap between glass plate and
liquid surface at 2.25�0.01 mm. We have measured �see
Sec. VII� that for this gap the packing fraction is �
=0.965�0.005.

Results are plotted in Figs. 4�a�–4�c�: the profiles exhibit
shear banding, and for all gap widths the profiles become
increasingly shear banded at increasing driving velocities.
The slowest runs at W=5 cm yield essentially linear velocity
profiles. We suggest that these shapes are due to the small
gap width, which results in overlapping shear-banded pro-
files resembling a linear profile, and in what follows, we will
present a model that supports this conclusion.

In Fig. 4�d� we plot velocity profiles for a driving velocity
of 0.26 mm/s for all three gap widths together, which clearly
show that for all widths, the velocity profiles decay similarly.

FIG. 3. �a� Size distribution and coarsening over the duration of an experimental run for bidisperse foams. �b� Flow at the liquid surface
in the absence of bubbles, as imaged by depositing silver powder. Inset: same profile on lin-log scale, showing exponential decay away from
the boundaries.
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Figure 4�d� thus suggests that in this experiment the driving
velocity at the edges, instead of the overall shear, sets the
velocity profiles, and that the local response to forcing will
provide the key toward understanding the shape of these pro-
files. Note finally that the profiles do not exhibit significant
slip with respect to shearing wheels, except for the fastest
runs, where the slip is less than 20%.

B. Model

We now propose a discrete version of a model introduced
in �24� to account for the shear banding behavior discussed
above by considering the balance of the averaged viscous
drag forces.

1. Drag forces on individual bubbles

The drag force on a single bubble that slides past a solid
wall was first investigated by Bretherton �33� and has re-
cently received renewed attention �13,28–31,47�. The crucial
finding is that Fbw, the drag force per bubble sliding past a
solid wall, scales as

Fbw = fbw�Ca�2/3 = fbw��v/��2/3, �4�

with � is the bulk viscosity, � is the surface tension, and fbw
is a constant with dimensions of force and Ca is the capillary
number. Typically fbw��rc, with rc as the radius of the de-
formed contact between bubble and wall �47�. For bubbles in
a soapy solution, the 2/3 scaling with Ca only holds for sur-
factants that are mobile �13�. Results from �48� strongly in-
dicate that this is indeed the case for our surfactant Dawn, as
we will confirm below.

The drag force between two bubbles sliding past each
other, Fbb, has not received much attention up to now al-
though �49� provides indirect evidence that it scales like
Fbb� ��	Ca��, with 	Ca��	v /�. In a very recent Letter it
is explicitly shown that, for ordered bubble motion Fbb scales
indeed as �	Ca�� �32�. The authors find �=0.5 although vari-
ous physicochemical peculiarities, as well as the range of Ca
one measures in, can alter this exponent.

Taking all of this into consideration, it seems reasonable
to assume that

Fbb = fbb��	v/���. �5�

While the dissipation leading to Fbw occurs at the perimeter
of the flattened facet �13�—hence the prefactor fbw��rc
− fbb scales ��c

2 /R0, where c is the radius of the deformed
contact between bubbles and R0 is the bubble radius, thus
reflecting the different physical mechanism behind this scal-
ing �32�.

2. Stress balance

We divide our shearing region in lanes labeled i and as-
sume that on every lane the time-averaged top-plate drag per

bubble F̄bw
i balances with the time-averaged viscous drag per

bubble due to the lane to the left �F̄bb
i � and right �F̄bb

i+1� �see
Fig. 5�:

F̄bb
i+1 − F̄bw

i − F̄bb
i = 0 �6�

v/
v

v/
v

FIG. 4. �Color online� ��a�–�c��
Flow profiles for a gap width �a�
W=5, �b� 7, and �c� 9 cm. From
black to light gray, v0=0.026,
0.083, 0.26, 0.83, 2.6, and 8.3
mm/s. For all gap widths we ob-
serve that the localization near the
driving wheels increases for in-
creasing driving velocity. For clar-
ity the profiles are each offset ver-
tically by 0.5�v /v0. Solid �red�
lines: fits to the drag force balance
model of Sec. IV B. �d� Profiles at
2.6 mm/s for all three gap widths.
Regardless of the gap width all
profiles decay at the same rate. �e�
Examples of profiles and fits on a
log-log plot, highlighting the lin-
ear tails of the profiles. v0=0.026,
0.26, 2.6 mm/s, and W=5 cm. �f�
As explained in Sec. IV C 1, the
minimum in � is found by calcu-
lating the variance ��k2� /k2 of k
over all 18 profiles depicted in
�a�–�c�. The minimum in the vari-
ance is seen at �=0.36, see Sec.
IV C.
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We assume that the averaged drag forces scale similarly to
the local drag forces. For the averaged bubble-wall forces we
assume

F̄bw
i = fbw��vi/��2/3, �7�

while for the averaged bubble-bubble drag forces we assume

F̄bb
i = fY + fbb���/���vi − vi−1���, �8�

F̄bb
i+1 = fY + fbb���/���vi+1 − vi���. �9�

Here fbw and fbb are material parameters with dimension of
force, which will be measured by rheometry in Sec. V below.
Finally, fY represents a yield force in the interbubble drag to
remain consistent with rheometrical data presented later on
and to reflect the elastic barrier bubbles have to overcome
before they slide past each other. Note that the velocities vi

denote the averaged velocities in the x direction—the crucial
assumption is that the relation between the averaged drag
forces and the averaged velocities is simple and can be ex-
pressed by a single power law.

We do not know if and how the conjectured forms for the
averaged forces can be derived from the nonaveraged forces
Eqs. �4� and �5� since due to the intermittent and disordered
bubble motion, the instantaneous bubble velocities are fluc-
tuating and not necessarily pointing in the x direction. For
example, there is no a priori reason for the exponents � and
� to be equal and in fact our data strongly indicate that they
are not. The best justification for Eqs. �7�–�9� is a
posteriori—the resulting model describes the data well. Note
that the bars in Eqs. �7�–�9� express an average over disorder
in the sense that these quantities are measured in highly dis-
ordered intermittent flows.

Inserting the expressions from Eqs. �7�–�9� into Eq. �6�
and defining k= fbw / fbb we arrive at

k	�vi

�

2/3

= 	�

�

�

��vi+1 − vi�� − �vi − vi−1��� . �10�

Note that the yield drag contributions fY cancel, which is a
particular advantage of the linear geometry we work in. The
model predicts flow profiles for arbitrary width and driving
rate once the parameters � and k are fixed.

C. Fits

1. Procedure

We compare all 18 runs to solutions of the model. We
focus on the central part of the data where �v��3 /4v0 to
avoid the edge effects near the shearing wheels �for instance
the bumps in the low-velocity profiles in Fig. 4�a� and the
slip with respect to the wheel in the fast runs�. We numeri-
cally integrate Eq. �10� from y=0, where v=0, to the y value
for which v= �3 /4�v0, while keeping � and k fixed. The drag
force balance should govern the shape of the velocity profiles
for all driving rates and gap widths. Therefore we determine
for fixed � the k values that fit the flow profiles best. The k
values exhibit a systematic variation that depends on the
value of �. We quantify this variation by computing the rela-
tive variance ��k2� /k2, and by repeating the procedure for a
range of �, we obtain a plot of the variance as a function of
� �see Fig. 4�f��. From this graph, we determine the value for
which the variance is minimized as �=0.36�0.05.

2. Results

Fixing now k=3.75 and �=0.36, we capture the shape of
all data sets with high accuracy. The resulting model profiles
are plotted in Figs. 4�a�–4�c�, and we see that for these val-
ues all velocity profiles are adequately fitted except for the
slowest runs at W=5 cm. We attribute these deviations for
small W to the observation that edge effects extend further
into the shearing region for small gaps.

Note that the model profiles exhibit linear tails �see Fig.
4�e�� and that the experimental velocity profiles exhibit ap-
proximately the same behavior. We conclude that both our
experimental and model profiles do not decay exponentially,
in contrast with results found in previous studies �15,18� and
the predictions in �24�.

D. Continuum limit

The continuum limit of Eq. �10� can be written as

fbw	�v
�

2/3

�d�−1 =
��

�y
, �11�

� = �Y + fbb	��d��̇
�


�

, � = 0.36. �12�

Hence, the top plate drag can be considered as a body force
and the interbubble drag force as the divergence of a shear
stress �, where �Y is an undetermined yield stress. Equation
�12� is the constitutive equation for a Herschel-Bulkley fluid
�50�, and we can now associate the averaged bubble drag
force scaling at the local level with the power-law scaling of

FIG. 5. �Color online� Illustration of drag balance model. The
shear region is divided in lanes labeled i which all experience drag
forces due to the top plate and due to both neighboring lanes. ��b�
and �c�� Illustration of the films around which the viscous drag
forces act.
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the viscous stress in the Herschel-Bulkley model.
Note that �=0.36 is similar to the power-law index n

=0.40 found for the bulk rheology of three-dimensional mo-
bile foams �3,13� and to the values n=0.33 and n=0.45
found for two-dimensional bubble rafts in a Taylor-Couette
geometry in �16�.

The fact that the yield stress does not play a role for our
velocity profiles can now be understood in two ways: at the
continuum level, since it is a constant it vanishes after taking
the divergence of the shear stress, at the bubble level, even
though we include a yield force in Eqs. �7� and �8�, the
contributions from both neighboring lanes cancel in Eq. �10�.
Finally, notice that the continuum equations can easily be
solved in terms of hypergeometric functions �51�.

V. RHEOMETRICAL DETERMINATION OF VISCOUS
FORCES IN TWO-DIMENSIONAL FOAMS

In this section we will investigate the viscous forces that
act at the bubble scale by rheometry and test and validate the
assumptions for the scaling of the bubble-wall drag and the
viscous friction inside the foam expressed in Eqs. �4� and
�5�. We use an Anton Paar DSR 301 stress controlled rheom-
eter, which can also operate in strain controlled mode. We
use the rheometer in strain controlled mode to investigate
Fbw. Moreover, we compare measurements, which reflect the
actual drag force at the single bubble level �Fbb�, with mea-
surements of the averaged viscous drag force on a bubble in

a disordered flow of foam �F̄bb�.

A. Bubble-wall drag

We directly measure the bubble-wall friction for foam
bubbles produced from the soap solution presented above
with a method that was introduced in �13�. We load a mono-

layer of bubbles between two PMMA plates of radius RP
=2 cm. The bubbles are pinned to the lower plate by means
of a hexagonal pattern of indentations of size O�d�, and can
slip with respect to the smooth upper plate which is con-
nected to the rheometer head, see lower inset of Fig. 6�a�. We
measure the torque T exerted by the bubbles as a function of
the angular velocity 
 of the smooth plate.

We convert T�
� to Fbw�Ca� in the following way: each
bubble exerts a wall stress �w=Fbw /�R0

2 on the smooth plate.
We integrate the contribution to the torque of this wall stress
over the plate:

T = �
0

RP

�wr2�rdr = �
0

RP Fbw

R0
2 2r2dr . �13�

If we now assume that Fbw� �Ca��= � �
r
� ��, we can immedi-

ately read of from the data that �=0.67 �see Fig. 6�a��, so
inserting this expression in the integral Eq. �13� yields:

T =
2FbwRp

3.67

3.67R0
2 . �14�

Since the bubbles are flattened during the measurement, we
can only measure R0 through the flattened facet rc by looking
at the reflection of the deformed facet, see the upper inset of
Fig. 6�a�. We find rc=1.59�0.05 mm. As the bubble radius
is smaller than −1 we can express R0 in terms of rc through
R0

2=3
2rc

−1 �47�. Note that this derivation of rc in terms of
R0 hinges on the assumption that the bubbles are not too
deformed, which is not obvious in the rheometrical geom-
etry, but for lack of a more precise relation we use it. We
finally rescale the horizontal axis by multiplying 
 with
�Rp /�. The resulting curve is plotted in Fig. 6�a�: over our
measurement range �more than three decades� Fbw� �Ca�2/3.

FIG. 6. �Color online� �a� Drag force per bubble exerted on smooth rotated plate as a function of Ca probed by the total drag force of a
pinned layer of bubbles on a rotating top plate. The solid line represents Fbw= �0.0015�0.0001���v /��2/3. The upper inset shows a close-up
photograph of the rheometrical tool used to measure the bubble-wall drag: the reflection of the flattened facets of radius rc used to extract
R0 can be seen clearly. The lower inset shows a side view of the experimental geometry. �b� Raw torque for ordered and commensurate lanes
of bubbles sliding past each other. Notice the huge fluctuations with respect to the mean indicated by the horizontal line. The average of the
raw data corresponds to the data point in �c� indicated by the arrow. �c� Torque averaged over an integer number of rearrangements as a
function of 	Ca for the commensurate case �40 bubbles on inner wheel and 40 bubbles on outer wheel� ���, incommensurate case 41/40
���, and incommensurate case 44/40 ���. Dashed lines indicate �=0.67, respectively, �=0.75. Upper inset shows a schematic picture of the
rheometrical geometry, lower inset shows a histogram of the extracted values of the exponent �. The width of the bin indicates the error in
�.
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B. Bubble-bubble drag

1. Drag at the bubble scale

To measure the power-law scaling of the interbubble drag
we measure the torque exerted by a foam driven at a strain
rate �̇ in a cylindrical Couette geometry, which consists of an
inner driving wheel connected to the rheometer head rotating
inside an outer ring. The rheometrical experiments are per-
formed with bubble rafts, i.e., foams that are not confined by
a top plate, as the additional stresses due to the wall would
disturb a clean rheological measurement.

Both boundaries are grooved to ensure a no slip boundary
for the bubbles, of which a monolayer floats in the shearing
region. We start with measuring F̄bb for the ordered case by
keeping the gap between the cylinders such that exactly two
layers of bubbles fit in, see the upper inset of Fig. 6�c�. The
inner radius �ri� is 2.5 cm, and the outer radius �ro� is 3.0 cm.
We deposit bubbles of 2.2 mm diameter in the grooves, make
sure that all bubbles are strictly pinned and remain in their
groove, and vary the rotation rate 
 of the inner cylinder
over 3 decades while measuring the torque averaged over an
integer number of rearrangement events �see Fig. 6�c��.

We multiply 
 by �ri /� to rescale the dimensionless ve-
locity difference and we divide the torque by ri and the num-
ber of bubbles pinned at the inner wheel �e.g., 40� to obtain
the averaged bubble-bubble drag force per bubble in the or-
dered case.

We use three different inner wheels: one with 40 grooves,
a second with 41 grooves, and a third with 44 grooves. Since
the number of grooves in the outer ring is fixed at 40, this
allows us to investigate the differences between commensu-
rate and incommensurate numbers of bubbles in the grooves.

For the commensurate case, the result is plotted in Fig.
6�b�: all bubbles rearrange simultaneously and thus the sig-
nal reflects the torque exerted on a single bubble amplified
by a factor of 40. The elastic barrier that bubbles have to
cross before rearranging is clearly visible in the signal. As a
result, the torque oscillates tremendously. Nevertheless, the
force per bubble averaged over many such events scales with
the dimensionless velocity difference as a power law with
index 0.7 �see Fig. 6�c��. This value is remarkably close to
the exponent found for the bubble-wall drag. For these or-
dered lanes, no signs of a yield plateau are observed in the
time averaged signal, and we believe this is due to the fact
that all elastic energy that is stored in the bubble deformation
is released after yielding so that one measures purely the
viscous drag.

For the incommensurate runs, the raw signal looks more
complex, as rearrangements do not occur simultaneously for
all 41 or 44 bubbles. The resulting power-law exponents for
the averaged bubble-bubble drag forces are, however, close
to the one observed for the commensurate case. In fact, if we
repeat the measurements for both commensurate and incom-
mensurate bubble numbers a multitude of times and fit Ca� to
the averaged Fbb, we find a distribution of � values around
�=0.73, see lower inset of Fig. 6�c�. The binsize is similar to
the errorbar on each individual measurement.

2. From local to bulk viscous drag

We observe that the scaling exponent for the viscous drag
at the bubble scale, �, differs markedly from the scaling ex-

ponent � of the drag forces inside the bulk foam as extracted
from the velocity profiles, e.g., ��0.70 vs �=0.36. We hy-
pothesize this is due to the disordered flow in the foam and
will provide rheological evidence in what follows.

To perform rheological measurements of the average
bubble-bubble drag forces, we employ a Couette cell which
has an outer ring of radius r0=7 cm, such that more layers
of bubbles can fit inside the cell. We first will perform mea-
surements on disordered packings of monodisperse bubbles
of three different sizes �1, 3, or 5 mm�. We observe that the
foam deviates substantially from hexagonal packing during
flow because the inner radius ri=2.5 cm is small, and the
curvature is large. We thus induce disorder through geom-
etry.

The resulting measurements show clear yield stress be-
havior and can be excellently fit by the Herschel-Bulkley
model, yielding for all bubble sizes ��0.4, which is mark-
edly lower than the 0.70 found for the drag force in ordered
lanes above, and close to the 0.36 extracted from the velocity
profiles �see Figs. 7�a� and 7�b��. The observed stress plateau
at low strain rates increases with increasing bubble radius,
contrary to the intuition that the yield stress is set by the
Laplace pressure and should hence scale inversely to the
bubble radius. We tentatively attribute this to the deformation
of the bubbles through capillary effects, which are larger for
larger bubbles and hence lead to a relatively larger contact
size between the bubbles.

In order to further establish a connection between the
rheometrical data and the model, we now turn to a geometry
with a large inner wheel to increase the measured signal �ri
=5 cm and ro=7 cm� and measure the torque exerted on the
inner wheel by a bidisperse foam with the same bubble sizes
as in the linear shear experiment. We obtain a clear confir-
mation that indeed the disorder changes the power-law scal-

ing of F̄bb: we again reproducibly measure Herschel-Bulkley
behavior with power-law index ��0.40, as can be seen in
Figs. 7�c�.

To convert torques to F̄bb, we divide the torque by the
number of bubbles and ri. Since our outer rough boundary
forces the bubble velocity to zero, we can rescale the angular
frequency to the dimensionless velocity difference �	v /�
by assuming a linear velocity profile across the gap, decay-
ing from 
ri to 0. The gap width is approximately 9�d� and
hence we can estimate 	v. We extract from the rheological
measurements an estimate for the ratio k= fbw / fbb
�5.5�0.5. This is remarkably close to the value k
=3.75�0.5 extracted from the velocity profiles, given the
crude estimates used in converting torques to bubble-bubble
drag forces in the rheometrical data—we have oversimplified
the shape of the velocity profile in the disordered Couette
rheometry, which is neither linear, nor rate independent.

C. Interpretation

The drag forces exerted on the bubbles by the top plate,
which at first sight might be seen as obscuring the bulk rhe-
ology of the foam, enable us to back out the effective inter-
bubble drag forces and constitutive relation of foams from
the average velocity profiles. To further appreciate this fact,
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note that the model yields linear velocity profiles regardless
of the exponent � if the body force due to the wall drag is
zero. This is consistent with earlier measurements by Wang
et al. �18�, where essentially linear flow profiles were found
for bubble rafts, i.e., in absence of a top plate.

By comparing the results obtained from the velocity pro-
files with the rheometrical measurements, we note a remark-
able difference between the scaling of the bubble-bubble
drag forces at the bubble level, which we have mimicked by
strictly ordered bubble rheology, and the scaling of the aver-
aged forces at the bulk level, which we have extracted from
the velocity profiles and confirmed by rheometry: we find

Fbb��	v�0.70 at the bubble level and F̄bb��	v�0.36 at the
bulk level.

We speculate that this is closely connected to the non-
affine behavior of the bubbles �5,34,43�: close to the jam-
ming transition, the effective viscosity of the foam becomes
anomalously large due to the fact that bubble motion is much
more complicated than if the bubble motion would have been
affine, i.e., where the bubbles follow the imposed shear �34�.
This picture is corroborated by recent simulations on the
bubble model �5�, where one recovers this “renormalization”
of the drag force exponent �39,41,42�. The precise micro-
scopic mechanism, though, is far from understood.

One may wonder why the modification of the exponent of
the drag force law is strong for the interbubble forces but
weak or essentially absent for the bubble-wall drag forces.
We have no definite answer although we are fairly confident
that the bubble-wall drag forces indeed are not modified. We
base this assertion on explorations of the bubble trajectories
described below.

If we assume the Bretherton expression �Eq. �4��, to be
the correct expression that gives the instantaneous bubble-
wall drag force as a function of the instantaneous bubble
velocity, our claim is that the averaged bubble-wall drag
forces scale similar to the individual bubble-wall drag force:

��v�/�v��x�v�2/3� � �vx�2/3. �15�

Hence we claim that the time averaged bubble wall drag
force is proportional to �vx�2/3, which is the expression we

employ in our model to estimate F̄bw. In other words, we can
interchange the order of taking time averages and “raising to
the power 2/3.”

To check this, we have performed accurate bubble track-
ing and calculated and compared �Fbx����v� / �v��x�v�2/3� and
�vx�2/3 �35,52�. In Figs. 8�a� and 8�b� we show examples of
distributions of both �Fbx� and �vx�2/3, based on short and
long time velocity estimates at a fixed position in the cell.
For long times these distributions are narrower and have less
weight around zero. For the examples shown in Figs. 8�a�
and 8�b�, the averages of the dimensionless velocity distribu-
tions equal �vx /v0��0.125, independent of the time averag-
ing interval. Hence, �vx /v0�2/3�0.248. The averages of the
distributions of �vx /v0�2/3, taken over different time intervals,
depend now on this time interval and approximate
�vx /v0�2/3�0.248 better the longer than the time interval is:
we find ��vx /v0�2/3�0.46s�0.205 while ��vx /v0�2/3�23.15s
=0.245. Since the drag force model deals with �long� time
averages, the improvement of the agreement with time is
encouraging.

The connection between �Fbx� and �vx�2/3 can be probed in
more detail by plotting �Fbx� as function �vx�� for a range of
strain rates and estimating for which value of � these two
quantities are proportional. The data in Fig. 8�c� show that
for short times, a value of ��0.80, significantly different
from 2/3, leads to the best correlation, while for longer times
�Fig. 8�d��, the best value is ��0.72. Therefore, the longer
the time interval, the closer � approaches 2/3. The underlying
reason is that for increasing time intervals, the distribution of
vx /v0 becomes narrower and narrower and peaked away
from zero, and thus we indeed can interchange the order of
taking time averages and raising to the power 2/3.

FIG. 7. �Color online� �a� Torque exerted on the inner wheel by a monodisperse foam in a Taylor-Couette geometry with ri=25 mm and
ro=70 mm for different bubble sizes as indicated. Fits are to a Herschel-Bulkley model, and power-law indices � from these fits are shown
in the graph as well. Surprisingly, the yield stress increases with increasing bubble size, see text. �b� Same data as in �a� with the yield torque
from the fit subtracted. The solid line is a power law with index 0.4. �c� Averaged drag force per bubble in a bidisperse disordered foam. The
foam is sheared in a Couette cell of inner radius 5 cm and outer radius 7 cm �hence a gap of 9 bubble diameters� without a top plate, see

inset. We obtain F̄bb= fY + fbb�	Ca��, with the yield threshold fY �2.2�0.5�10−6 N, fbb�2.5�0.9�10−4 N, and �=0.40�0.02 �solid
line�. Open circles are the same data with the yield torque obtained from the fit subtracted, which are well fit by a pure power-law with
exponent 0.4 �dashed line�.
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The bubble-bubble drag forces, on the other hand, involve
velocity differences, and even at long times we expect their
probability distribution to have significant weight around
	v=0. The situation is then qualitatively similar to that
shown in Fig. 8 for short times, and a change from local to
global exponent appears reasonable. Unfortunately, testing
this explicitly in our data for the bubble trajectories has
proven to be prohibitively difficult, not only because velocity
differences are smaller and noisier than velocities but also
since bubble contacts are very hard to establish unambigu-
ously. The precise mechanism responsible for the renormal-
ization that leads to the exponent ��0.4 remains therefore
open.

Finally, the origin of the edge effects that prevent us from
fitting our full experimental curves with the model profiles
might be due to the fluid drag near the wheels that was dis-
cussed in Sec. III C. Alternatively the origin might lie in the
absence of a local flow rule near the driving wheels as re-
ported in �53�. One way to resolve this is accommodating
nonlocal behavior in the drag force balance model, for in-
stance by incorporating drag terms due to next nearest lanes,
similar to the cooperativity length introduced in �53�. We
have not pursued this avenue.

VI. ORDERED FOAMS

We have postulated that the disordered bubble motion un-
derlies the anomalous relation between the local bubble-
bubble drag forces and the global viscous stresses. To cor-
roborate this conjecture, we shear ordered monodisperse
foams in the linear geometry, similar to what was done in
�18�. In this case the bubbles are expected to move affinely
with the global shear, in which case one would expect the
global viscous drag forces to scale the same as the local ones.

We shear a monodisperse ordered foam with bubbles of
size 2.7 mm, produced by blowing nitrogen through one sy-
ringe needle at fixed flow rate, at a gap W of 7 cm at v0
=0.083, 0.26, and 0.83 mm/s. We recover the rate indepen-
dent and strongly shear-banded velocity profiles reported in
�18� �see Fig. 9�. As in the case of the bidisperse foams, we
fit model profiles to our experimental data. For the model to
yield rate independent velocity profiles, the drag forces need
to balance in the same ratio for all driving velocities. This
can only be achieved if �=2 /3 since we have already con-
firmed with rheometry that the exponent governing bubble-
wall drag is 2/3. Indeed we find that the experimental profiles
are best fit by model profiles if one fixes k=0.3 and �
=0.67�0.05 �54�, see Fig. 9.

Disorder

In our experiment, the complex bubble motion is closely
connected to the anomalous scaling of the bubble-bubble
drag force, which in turn is reflected in the observed rate
dependence of the velocity profiles. We can thus investigate
for which levels of disorder the rate dependence of the ve-
locity profiles occurs by gradually increasing the disorder,
starting from a monodisperse foam.

FIG. 8. �Color online� Dimensionless velocity distributions
measured for W=7 cm, v0=0.25 mm /s, and for a y-position 19
mm away from the center of the gap. Here the averaged velocity
equals 3.1�10−2 mm /s and the local strain rate equals 5.6
�10−3 s−1. �a� Distribution of vx /v0 for a short time interval �	t
=0.46 s, black squares� and longer time interval �	t=23.15 s, red
circles�. For the averages of the dimensionless velocity distributions
we find �vx /v0��0.125 independent of the time averaging interval.
�b� Distribution of �vx /v0�2/3 for a short time interval �	t=0.46 s,
squares� and longer time interval �	t=23.15 s, circles�. The aver-
ages of the scaled dimensionless velocity distributions equal
��vx /v0�2/3�0.46s�0.205 and ��vx /v0�2/3�23.15s=0.245. The signifi-
cance of this is that �vx /v0�2/3�0.248, which is significantly better
approximated by the longer time average. �c� Comparison of
�vx /v0�� and �vx /v0�2/3 along the flow profile for 	t=0.46 s and for
four values of � as indicated. The best linear relation is obtained for
��0.80. Dotted vertical line indicates the averages shown in panel
�b�. �d� Same as �c�, now for 	t=23.15 s. The best linear relation is
obtained for ��0.72.

FIG. 9. �Color online� �a� Velocity profiles for a monodisperse,
ordered foam with the crystal axis aligned with the wheels. Gap
W=7 cm and v0=0.083 �black�, 0.26 �dark gray� and 0.83 �light
gray� mm/s. Solid �red� curves indicate fits to the model Eq. �10�
with k=0.3, �=2 /3. ��a� and �b�� Velocity profiles for an ordered
foam consisting of 2.7 mm bubbles for same driving velocities as
main panel, to which defects are added in the form of an increasing
area fraction of 1.8 mm bubbles as indicated.
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To this end we record velocity profiles in a monodisperse
foam made of 2.7 mm size bubbles in which we gradually
increase the area fraction of smaller �1.8 mm� bubbles. After
mixing the two species we measure velocity profiles at v0
=0.083, 0.26, and 0.83 mm/s. We already observe the occur-
rence of rate-dependent velocity profiles for small quantities
of defects, see inset �a� and �b� of Fig. 9, and by visual
inspection, we already see the swirling patterns, typical of
our 41/59 bidisperse foam occurring at 2% disorder. These
findings indicate that rate independent flows are in fact lim-
ited to a narrow region close to the almost singular case of
completely ordered foams.

VII. ROLE OF THE PACKING FRACTION

In this section we will discuss linear shear experiments
where we will vary both the packing fractions �or wetness� of
our foam � as well as the applied strain rate to investigate
the flow behavior of these foams as a function of density. In
particular, we will closely approach the jamming transition
located at �c�0.84. This allows us to test the drag force
balance model over a wide range of experimental situations.
Our main findings are that, first, the scaling exponent � ap-
pears to be independent of �, and, second, that the prefactor
k in our model �Eq. �10�� varies as 1 / ��−�c�, where �c
�0.84.

A. Varying and measuring �

In order to vary �, we vary the vertical gap between the
glass plates and the bulk solution between 3 and 0.2 mm. We
do this by adding or retracting fluid from the reservoir. For
large gaps the bubbles get stretched in the vertical direction
and share large deformed facets—the foam effectively be-
comes dry. For small gaps the bubbles acquire a pancakelike
shape, close to purely disk like in the horizontal plane, with
only small facets between neighboring bubbles—the foam
effectively becomes wet.

To create a homogeneous gap between the liquid surface
and the glass plate, we place additional supports under the
glass plate to prevent sagging of the top plate during the
runs. We monitor the gap width with a Mitutoyo digital depth
gauge. If the gap becomes smaller than 0.2 mm the bubbles
unjam �55,56�.

We find that in the linear shear cell the accessible range in
� is 0.86���0.97. If we stay between these limits the
system we study is jammed and quasi-two-dimensional. It
should be noted that for the runs performed at fixed wetness,
discussed in the previous sections, we find �
=0.965�0.005, in reasonable agreement with previous re-
ports on the maximum � that can be obtained in our type of
setup �57�.

The concept of packing fraction is problematic for a
monolayer of three-dimensional bubbles �58�. We choose our
lighting of the bubbles such that the contacts between adja-
cent bubbles are optimally resolved. In other words, we im-
age a slice from the packing where the bubbles are the broad-
est and calculate a 2D packing fraction from this slice. We
then extract � through image analysis as illustrated in Fig.

10. We first binarize the images, after which both the bubble
centers and the interstices appear bright. We remove the in-
terstices by morphological operations. We then invert the bi-
narized image and fill up the remaining bubble contours. We
have checked that the resulting bright disk optimally matches
the original bubble contour, see Fig. 10. We then calculate
the ratio of white pixels over the total number of pixels and
hence obtain a reasonable estimate of �.

Now that we have obtained estimates of the packing frac-
tion �, we can probe the role of the wetness in setting the
flow. We first, in Sec. VII B, briefly discuss a local probe of
the nonaffine motion, which shows that the bubble motion
becomes increasingly nonaffine when the wetness is in-
creased. We then investigate the variation in the flow behav-
ior with �, using our model �Eq. �10��. We first establish, in
Sec. VII C, that the exponent � does not vary with
�—surprising, give the varying degree of nonaffinity. We
then find, in Sec. VII D, that the force prefactor k varies
strongly with � and vanishes at �c�0.84 as 1 / ��−�c�.

B. Local measure of the nonaffine bubble motion:
P(�)

A crucial feature of deformations found in simulations of
packings of frictionless disks near jamming is the strongly
nonaffine nature of the particle �bubble� motion �5,34,36,43�.
Recently, a simple local probe of this affinity was introduced
by Ellenbroek et al. �43� who performed simulations of soft
frictionless disks. Defining the displacements of contacting
particles i and j as u� i and u� j and the vector that connects the
centers of particles i and j as r�ij, the relative displacement
angle � was defined as the angle between r�ij and u� i−u� j. In
other words, �=0° corresponds to particles moving away
from each other, �=180° corresponds to particles moving
closer, and �=90° corresponds to particles sliding past one
another.

The probability distribution P��� was found, for shear
deformations in particular, to be well fitted by a �periodically
extended� Lorentzian peaked around 90° �43,59�. The width
of the peak scales with distance to jamming—at jamming,
P��� approaches a delta function peaked at �=90°.

Of course, in our experiment we have flow, and we cannot
determine deformations in linear response. Moreover, our

FIG. 10. Image manipulations leading to a definition of �. Left:
raw image. Center: raw image with reconstructed bubble areas su-
perposed. Note the good agreement. Right: final binarized image
from which packing fraction is deduced.
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system is not homogeneous. Nevertheless, as a coarse mea-
sure of the degree of nonaffine bubble motion, which we
claim underlies the anomalous scaling exponent � in disor-
dered systems, we have calculated P��� focusing on finite
time displacement fields �v0=0.216 mm /s, W=5 cm, and
	t=0.46 s�.

In Fig. 11 we show P��� averaged over the regions 0
�y�W /3 and 2W /3�y�W where most of the flow takes
place, and averaged in the x direction over 50 mm in the
center of the cell. We limit ourselves to this region, because,
in particular for the wet runs, there is hardly any flow in the
center region of the cell and the peaks in P��� are less pro-
nounced in this region. We find that, analogous to what is
found in simulations �43�, the distributions become increas-
ingly peaked around �=90° for increasing wetness. More-
over, the distributions are well fit by the same Lorentzian fit
that also captures the numerical displacement fields well
�59�.

Hence, this simple measure of nonaffine motion strongly
indicates that the degree of nonaffinity increases for wetter
foams. We believe that this is the first experimental measure-
ment of this distribution that shows the proximity of the
jamming transition. Detailed studies of the role of the local
strain rate or the time interval over which displacements are
measured are deferred to later work.

C. Variation in the exponent � with �

We now investigate the validity of applying the drag force
balance model with a fixed �=0.36 for varying �. The mi-
croscopic exponent 2/3 which governs the flow of a bubble
past a wall appears to be independent of the particularities of
the foam flow �29,60�. On the other hand, it is not at all
obvious that �, which governs the averaged bubble-bubble
drag forces, does not depend on �. As we have seen, � is set
by the disorder in the system and the nonaffine bubble mo-
tion that occurs in conjunction with that, and as we have
shown in the previous section, the degree of nonaffinity var-
ies substantially with �.

To see if � indeed depends on the foam density we per-
form two additional scans over the same six shear rates as
employed in Sec. III for a bidisperse foam at a gap width
W=7 cm, while first fixing �=0.905�0.005 and then �
=0.925�0.005. We look for a minimum of the variance in k
over the six velocity profiles as a function of � �see gray and
light gray squares in Fig. 12�. We observe that the model fits
best to all six runs performed at �=0.905 for �=2 /3, �
=0.38�0.05 �see Fig. 12�, and k=7.5, whereas the model
best matches the runs performed at �=0.925 for �=2 /3, �
=0.39�0.05 �see Fig. 12�, and k=5.8, thus strongly indicat-
ing that within our range of accessible liquid fractions �
seems to be constant. For comparison, we include the vari-
ance for the runs described in Sec. IV B that was plotted in
Fig. 4�f�. Remarkably, � remains a constant with varying �
while the degree of nonaffinity varies. While we do not pre-
tend to understand this, we do remark that � and P��� es-
sentially encode different routes toward jamming and thus
toward increasing nonaffinity: � is renormalized by the in-
creasing nonaffinity as one lowers the strain rate �̇ toward
jamming, while P��� monitors nonaffinity as a function of
density.

D. Scaling of the force prefactor k with �

Now that we have established that � is independent of �,
we will probe the variation in k with �. We measure aver-
aged velocity profiles at gap widths W=5 cm and W
=7 cm and fixed v0=0.26 mm /s �the third slowest driving
velocity� for packing fractions varying between �=0.855
and �=0.975. The velocity profiles for W=5 cm are plotted
in Fig. 13 and are seen to become increasingly shear banded
as we approach �c �61�. This trend is reflected in the increase
in k as we approach �c. We obtain k by fitting solutions of
our drag force balance model with �=0.67 and �=0.36 to
these profiles. The resulting fits are shown as solid �red� lines
in Fig. 13 and fit the data well.

FIG. 11. �Color online� Displacement angle distributions P���
for runs for which v0=0.26 mm /s, W=5 cm, and 	t=0.46 s av-
eraged over the shear-banded region �0�y�W /3 and 2W /3�y
�W� for the range of packing fractions as indicated.

FIG. 12. �Color online� �a� Variance in k values for all six runs
performed at �=0.905 �gray squares� and �=0.925 �light gray
squares�. The variance at �=0.965 �black squares� is the data from
Fig. 4�f�. A clear minimum can be observed around �=0.38.
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In Fig. 14 we plot k as a function of �−�c, with �c the
theoretically predicted and experimentally measured value of
the unjamming packing fraction: �c=0.842 �39,62,63�. In
good approximation we obtain that

k � 1/�� − �c� . �16�

We can tentatively explain the observed scaling of k with a
simple argument based on the sizes of the facets in the foam.
At fixed �, the drag force balance model yields a value of k
that sets the relative influence of the bubble-wall drag with
respect to the bubble-bubble drag and which we have con-
jectured to be given by k� fbw / fbb. As we have already dis-
cussed, fbw��rc with rc as the radius of the flattened contact
between the bubble and the wall and fbb��c

2 /R0, with c as

the radius of the flattened contact between neighboring
bubbles. Thus we expect

k � rc/c
2. �17�

While rc is set by the buoyancy and hence does not vary
strongly with the gap distance between glass plate and liquid
surface, only becoming slightly smaller as the bubbles get
stretched at large gaps, c is strongly dependent on the gap
size and hence on the packing fraction of the foam.

The size of c should depend on the deformation �also
called the overlap� �� as �25�

c � ����1/2. �18�

Similar to simulations of two-dimensional frictionless disks
�37,43� we can relate the overlap �� to the packing fraction
�:

�� � 	� . �19�

Simple substitution of this result into Eq. �17� yields

k � rc/c
2 � 1/�� = 1/�	�� , �20�

which is fully consistent with our experimental results, see
the solid line in Fig. 12.

Note that in the above we have only focused on the radius
of the deformed facets. A proper analysis would include the
size of the Plateau border around the contact, which is where
the dissipation also occurs �28,31�. For instance, in �60� the
bubble-wall drag force scales as Fbw�Ca0.64�l

−0.26 and a
proper treatment would entail such analysis even though the
functional dependence on the Plateau border size is always
weak. Moreover, in all of these works, the functional depen-
dence of the drag force with � is smooth around �c and
hence will not influence the observed scaling around that
point.

VIII. DISCUSSION AND CONCLUSION

We have measured velocity profiles in linearly sheared
quasi-two-dimensional foams in the liquid-glass configura-
tion. We find that bidisperse disordered foams exhibit
strongly rate-dependent and inhomogeneous �shear-banded�
velocity profiles, while monodisperse ordered foams are also
shear banded but essentially rate independent. We capture
these findings in a simple model that balances the viscous
drag forces in our system. The scaling forms for these drag
forces are verified by independent rheological measurements.
Finally, we apply our model to velocity profiles obtained for
foams at varying packing fraction and measure and describe
the scaling of the inverse foam consistency with packing
fraction.

This work raises several questions. First, can the differ-
ence between the local bubble-bubble drag force scaling and
the global �averaged� bubble-bubble drag force scaling be
understood theoretically? This difference in scaling expo-
nents appears similar to the change from local drag forces to
global rheological laws observed in simulations of �variants�
of the bubble model �5,39,40,42,64�, but a precise connec-
tion is lacking at present. Closely connected, is our scenario

FIG. 13. �Color online� Velocity profiles in linearly sheared
foam at fixed driving rate �v0=0.26 mm /s�, for � varying between
0.855���0.975 at W=7 cm. Solid �red� lines are solutions to
linear drag force balance model with �=0.67 and �=0.36 fixed. k is
extracted from the fits and plotted in Fig. 14 as a function of �
−�c.

FIG. 14. �Color online� Scaling of k with 	���−�c. �Black�
triangles: data obtained from fits depicted in Fig. 13 where W
=5 cm. �Blue� small squares: data for gap of 7 cm. Large squares
correspond to runs at v0=0.26 mm /s from Fig. 12. Solid line:
0.45 /	�. Inset: same data on log-log scale.
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an example of a general route by which aspects of the ubiq-
uitous Herschel-Bulkley �power-law� rheology observed for
a wide range of disordered materials can be rationalized?

Second, how robust are our experimental results? For ex-
ample, would similar flows in Hele-Shaw cells behave dif-
ferently as suggested by the results of Debrégeas �15�? We
also wonder if the drag force balance model is able to cap-
ture shear-banded flows in Couette geometries, where the
curvature plays an important role, in particular since the
foam has a finite flow threshold �65�. Third, can similar phe-
nomena and models as described here be extended to three-
dimensional flows of foams and emulsions—where flows in

the latter can be captured by confocal imaging and MRI
�26,53,66,67�? Fourth, how should our local models be com-
pared to the nonlocal effects recently discussed for emulsion
flows �53,66�?

ACKNOWLEDGMENTS

The authors wish to thank Jeroen Mesman for technical
assistance. G.K. kindly acknowledges Nikolai Denkov for
illuminating discussions. G.K. and M.M. acknowledge sup-
port from physics foundation FOM, and M.v.H. acknowl-
edges support from NWO/VIDI.

�1� R. Höhler and S. Cohen-Addad, J. Phys.: Condens. Matter 17,
R1041 �2005�.

�2� T. G. Mason, J. Bibette, and D. A. Weitz, J. Colloid Interface
Sci. 179, 439 �1996�; W. Losert, L. Bocquet, T. C. Lubensky,
and J. P. Gollub, Phys. Rev. Lett. 85, 1428 �2000�; P. Coussot,
J. S. Raynaud, F. Bertrand, P. Moucheront, J. P. Guilbaud, H.
T. Huynh, S. Jarny, and D. Lesueur, ibid. 88, 218301 �2002�;
R. Besseling, E. R. Weeks, A. B. Schofield, and W. C. K.
Poon, ibid. 99, 028301 �2007�.

�3� L. Bécu, S. Manneville, and A. Colin, Phys. Rev. Lett. 96,
138302 �2006�.

�4� A. M. Kraynik, Annu. Rev. Fluid Mech. 20, 325 �1988�.
�5� D. J. Durian, Phys. Rev. Lett. 75, 4780 �1995�.
�6� C. Gilbreth, S. Sullivan, and M. Dennin, Phys. Rev. E 74,

051406 �2006�.
�7� D. Weaire and S. Hutzler, The Physics of Foams �Clarendon

Press, Oxford, 1999�.
�8� R. G. Larson, Structure and Rheology of Complex Fluids �Ox-

ford University Press, New York, 1998�.
�9� S. A. Khan, C. A. Schnepper and R. C. Armstrong, J. Rheol.

32, 69 �1988�.
�10� H. M. Princen and A. D. Kiss, J. Colloid Interface Sci. 128,

176 �1989�.
�11� A. D. Gopal and D. J. Durian, Phys. Rev. Lett. 91, 188303

�2003�.
�12� J. Lauridsen, M. Twardos, and M. Dennin, Phys. Rev. Lett. 89,

098303 �2002�.
�13� N. D. Denkov, V. Subraminian, D. Gurovich, and A. Lips,

Colloids Surf., A 263, 129 �2005�.
�14� G. Katgert, M. E. Möbius, and M. van Hecke, Phys. Rev. Lett.

101, 058301 �2008�.
�15� G. Debrégeas, H. Tabuteau, and J.-M. di Meglio, Phys. Rev.

Lett. 87, 178305 �2001�.
�16� J. Lauridsen, G. Chanan, and M. Dennin, Phys. Rev. Lett. 93,

018303 �2004�.
�17� L. Bragg and J. F. Nye, Proc. R. Soc. London, Ser. A 190, 474

�1947�.
�18� Y. Wang, K. Krishan, and M. Dennin, Phys. Rev. E 73, 031401

�2006�.
�19� C. S. Smith, Metal Interfaces �American Society for Metals,

Cleveland, OH, 1952�.
�20� M. F. Vaz and M. A. Fortes, J. Phys.: Condens. Matter 9, 8921

�1997�.

�21� B. Dollet, F. Elias, C. Quilliet, C. Raufaste, M. Aubouy, and F.
Graner, Phys. Rev. E 71, 031403 �2005�.

�22� A. Kabla, J. Scheibert, and G. Debrégeas, J. Fluid Mech. 587,
45 �2007�.

�23� I. Cheddadi, P. Saramito, C. Raufaste, P. Marmottant, and F.
Graner, Eur. Phys. J. E 27, 123 �2008�.

�24� E. Janiaud, D. Weaire, and S. Hutzler, Phys. Rev. Lett. 97,
038302 �2006�.

�25� Martin-D. Lacasse, G. S. Grest, D. Levine, T. G. Mason, and
D. A. Weitz, Phys. Rev. Lett. 76, 3448 �1996�.

�26� J. Brujić, S. F. Edwards, I. Hopkinson, and H. A. Makse,
Physica A 327, 201 �2003�.

�27� S. Zhou, Q. Long, D. Wang, and A. D. Dinsmore, Science
312, 1631 �2006�.

�28� N. D. Denkov, S. Tcholakova, K. Golemanov, V. Subramanian,
and A. Lips, Colloids Surf., A 282-283, 329 �2006�.

�29� I. Cantat, N. Kern, and R. Delannay, Europhys. Lett. 65, 726
�2004�.

�30� A. Saugey, W. Drenckhan, and D. Weaire, Phys. Fluids 18,
053101 �2006�.

�31� E. Terriac, J. Etrillard, and I. Cantat, Europhys. Lett. 74, 909
�2006�.

�32� N. D. Denkov, S. Tcholakova, K. Golemanov, K. P. Anantha-
padmanabhan, and A. Lips, Phys. Rev. Lett. 100, 138301
�2008�.

�33� F. P. Bretherton, J. Fluid Mech 10, 166 �1961�.
�34� A. J. Liu, S. Ramaswamy, T. G. Mason, H. Gang, and D. A.

Weitz, Phys. Rev. Lett. 76, 3017 �1996�.
�35� M. E. Mobius, G. Katgert and M. van Hecke, arXiv-

:.soft:0811.0534.
�36� H. A. Makse, N. Gland, D. L. Johnson, and L. M. Schwartz,

Phys. Rev. Lett. 83, 5070 �1999�.
�37� C. S. O‘Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys.

Rev. E 68, 011306 �2003�.
�38� W. G. Ellenbroek, Z. Zeravcic, W. van Saarloos and M. van

Hecke, �unpublished�.
�39� P. Olsson and S. Teitel, Phys. Rev. Lett. 99, 178001 �2007�.
�40� T. Hatano, J. Phys. Soc. Jpn. 77, 123002 �2008�.
�41� V. J. Langlois, S. Hutzler, and D. Weaire, Phys. Rev. E 78,

021401 �2008�.
�42� J. Remmers, E. Woldhuis, B. P. Tighe, M. van Hecke and W.

van Saarloos, �unpublished�.
�43� W. G. Ellenbroek, E. Somfai, M. van Hecke, and W. van Saar-

KATGERT et al. PHYSICAL REVIEW E 79, 066318 �2009�

066318-14



loos, Phys. Rev. Lett. 97, 258001 �2006�.
�44� H. A. Makse, D. L. Johnson, and L. M. Schwartz, Phys. Rev.

Lett. 84, 4160 �2000�.
�45� J. M. Andreas, E. A. Hauser, and W. R. Tucker, J. Phys. Chem.

42, 1001 �1938�.
�46� This is done to ensure the packing fraction remains constant

during the strain rate sweep; when the entire circumference of
the wheel is covered with bubbles a balance results between
bubbles dragged out of the system and injected back in. If we
would sweep from slow to fast driving rates, this balance is not
achieved, resulting in a packing fraction that decreases during
the experiment.

�47� P. Aussillous and D. Quéré, Europhys. Lett. 59, 370 �2002�.
�48� S. A. Koehler, S. Hilgenfeldt, and H. A. Stone, Phys. Rev. Lett.

82, 4232 �1999�.
�49� D. A. Reinelt and A. M. Kraynik, J. Colloid Interface Sci. 132,

491 �1989�.
�50� W. H. Herschel and R. Bulkley, Kolloid-Zeitschrift 39, 291

�1926�.
�51� B. P. Tighe, �private communications�; D. Weaire, S. Hutzler,

V. J. Langlois, and R. J. Clancy, Philos. Mag. Lett. 88, 387
�2008�.

�52� One subtlety one encounters is that from the tracking we can
only estimate the velocity from ratios of displacements and
time intervals, and for the experimentally accessible time
scales, the statistics of the velocities thus obtained have been
found to depend on the time interval �see �35��.

�53� J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, and L. Bocquet,
Nature �London� 454, 84 �2008�.

�54� The value of k is remarkably small. If we assume that prefactor
fbw for the bubble wall drag remains unchanged for the ordered
foam, this means that the bubble-bubble drag prefactor fbb is
much larger compared to its value for a disordered foam. Note
however, that the power-law exponent � greatly influences the
value of the drag force: for instance, if 	v=0.001 m /s, then
��v /��2/3=1.6�10−3, whereas ��v /��0.36=3.1�10−2, which
is more than an order of magnitude larger.

�55� S. J. Cox and E. Janiaud, Philos. Mag. Lett. 88, 693 �2008�.
�56� This might be due to the fact that the gap is then of the size of

the plateau borders that connect the flat film between the
bubble and the glass plate and the flat film between neighbor-
ing bubbles, and hence the latter vanishes. If the gap becomes
larger than 3 mm the foam buckles and develops a three-
dimensional structure.

�57� C. Raufaste, B. Dollet, S. Cox, Y. Jiang, and F. Graner, Eur.
Phys. J. E 23, 217 �2007�.

�58� One could try to relate the liquid fraction to the gap between
the liquid surface and the glass plate. This distance, however,
does not unambiguously set � in our experiment: we observe a
large hysteresis effect, i.e., increasing or decreasing the gap to
a certain value does not yield the same packing fraction �.
This probably due to the open boundary conditions in the hori-
zontal plane. Another measure that has been derived in �57�
relates the measured length of the deformed facets of the
bubbles just before a T1 event to �. In our experiments,
though, it is not clear how the occurrence of T1 events can
precisely be defined since there is no obvious separation of the
deformation scales during and outside of a T1 event.

�59� W. G. Ellenbroek, M. van Hecke and W. van Saarloos, �unpub-
lished�.

�60� C. Raufaste, A. Foulon, and B. Dollet, Phys. Fluids 21,
053102 �2009�.; http://tel.archives-ouver-tes.fr/docs/00/19/32/
48/PDF/TheseRaufaste.pdf

�61� Note that this trend is opposite to what was observed by De-
brégeas et al. in �15�: there the authors find that the velocity
profiles become less shear banded with increasing liquid frac-
tion. We cannot explain this result and conclude it to be one of
the many open questions surrounding that work.

�62� F. Bolton and D. Weaire, Phys. Rev. Lett. 65, 3449 �1990�.
�63� F. Lechenault, O. Dauchot, G. Biroli, and J.-P. Bouchaud, EPL

83, 46003 �2008�.
�64� N. Xu and C. S. O’Hern, Phys. Rev. E 73, 061303 �2006�.
�65� M. Dennin, J. Phys.: Condens. Matter 20, 283103 �2008�.
�66� G. Ovarlez, S. Rodts, A. Ragouilliaux, P. Coussot, J. Goyon,

and A. Colin, Phys. Rev. E 78, 036307 �2008�.
�67� S. Rodts, J. C. Baudez, and P. Coussot, Europhys. Lett. 69,

636 �2005�.

FLOW IN LINEARLY SHEARED TWO-DIMENSIONAL… PHYSICAL REVIEW E 79, 066318 �2009�

066318-15


