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Near-field correlations in the two-photon field
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In experiments with spontaneous parametric down conversion the near-field plane is usually defined as the
output facet of the generating crystal. Experimentally, however, the spatial correlations are accessed via an
imaging system and observed in a region around the image of the output facet. We show that the imaged
two-photon field has a very rich transverse and longitudinal structure, which is determined by the phase-
matching conditions. We observe many intriguing three-dimensional structures that demonstrate the presence
of spatial antibunching, an extreme localization of twin photons, and spatial correlations that resemble Bessel
beams in propagation. We link these observations with previous results in second harmonic generation and
predict the presence of fourth-order phase singularities. Both experiments and theory are presented, yielding
further insight into the nature of the two-photon field.
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I. INTRODUCTION

Observations of multifold photon count statistics have
played a major role in both classical and quantum optics
since the seminal paper of Hanbury Brown and Twiss �1�. A
prominent example of a field that displays intriguing higher-
order correlations is the two-photon field generated by spon-
taneous parametric down conversion �SPDC� �2,3�. In this
process a laser beam pumps a dielectric nonlinear crystal,
generating highly correlated pairs of down-converted pho-
tons. These so-called “twin photons” or “biphotons” have
been employed in several landmark experiments on funda-
mental concepts of quantum mechanics, such as violation of
Bell’s inequalities �4,5�, quantum teleportation �6�, quantum
criptography �7�, and a realization of the EPR paradox using
momentum and position entangled photons �8�. SPDC light
still stands out as the most versatile sources of entangled
photon pairs.

Having a wide range of applications, full knowledge of
the spatial properties of the two-photon field generated by
SPDC is highly desirable. The quantum aspects of the spatial
correlations are revealed not in the lowest-order correlation
function, associated with the “one-photon” spatial coherence,
but in the next higher order, which can be probed in the
laboratory by performing two-photon coincidence measure-
ments. These nonclassical correlations are a signature of the
spatial �mode� entanglement, which makes SPDC interesting
for the field of quantum information.

The complete wave-function of the two-photon field gen-
erated by SPDC is well known from theory �8–11�. It con-
tains two essential ingredients, being the shape of the pump
beam and the phase-matching conditions associated with the
crystal geometry. The angular representation of this two-
photon field has been studied extensively. Its contains a sub-
structure that includes the full spatial information of the
pump beam �12� and that shows up only in the fourth-order
field correlations, but not in the second-order ones. As such,

these angular correlations have formed the basis of many
quantum experiments with entangled photon pairs. On the
other hand, the spatial representation of the generated two-
photon field has been hardly studied and many intriguing
aspects of this field have gone unnoticed up to now. These
spatial aspects, which we will denote as “near-field correla-
tions” or “fine structure” of the two-photon field, form the
heart of this paper. They are associated with the phase
matching of the SPDC process �9,13,14�. Their theoretical
description requires one to go beyond the Gaussian approxi-
mation of phase matching �15�, or the delta-type approxima-
tion applicable to thin crystals, but use the proper phase-
matching condition instead �8–11�.

Experimentally, the near-field correlations are measured
by imaging the output facet of the generating crystal on the
detection plane. For instance, a single plane measurement at
perfect phase matching has been used in a realization of the
Einstein-Podolsky-Rosen paradox �8�. This measurement
was then interpreted as an image of the relative birthplace of
down-converted photons. One must realize, however, that
SPDC is a coherent process in which light generated at all
transverse planes inside the crystal contributes to the mea-
sured field in the image plane. In other words, an image of
the output facet of the crystal does not simply provide infor-
mation about the relative birthplace of the photon pairs, but
is a consequence of a fourth-order interference effect. As we
will show, the symmetry of the process is such that an “im-
age” of the input facet of the crystal provides exactly the
same transverse correlations as one from the output facet.
However, strong differences arise if one images the center of
the crystal. Contrary to what is usually believed, the trans-
verse and longitudinal correlations in the vicinity of the im-
age plane are nontrivial and reveal a very rich structure.

In this paper we will show experimentally how the finite
thickness of the crystal results in a rich set of spatial corre-
lations in the image plane of the crystal. The complete spatial
dependence, both in transverse and longitudinal coordinates,
is presented. Operation under phase mismatch leads to many
intriguing effects and will be extensively discussed. A few
results were already introduced by us in Ref. �16�. Here we
will present the theoretical framework, new experimental re-
sults, and discussions about many physical consequences of
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the near-field strucutre. Among them, the presence of spatial
antibunching, the observation of extreme localization of twin
photons, a link with previous results in second harmonic
generation, the observation of correlations that resemble
Bessel beams in propagation, and the prediction of fourth-
order phase singularities. Section II contains the theoretical
basis of our work, Sec. III lists the experimental results, and
Sec. IV the conclusions and discussion of future perspec-
tives.

II. THEORY

Spatially entangled photon pairs can be generated by the
nonlinear optical process of spontaneous parametric down
conversion, where a single pump photon “splits” into two
lower-energy photons, which are traditionally called signal
and idler. We can think of the crystal as being a thick and
extended source of very many elementary “radiators.” The
SPDC light behaves as a low-coherence light source as long
as the emitted photons are detected individually �17–19�.
Most interesting effects are only revealed when one looks at
the correlations between the positions of the detected pho-
tons. From the quantum theory of optical coherence the
probability of detecting twofold delayed coincidences, for
light in a arbitrary quantum state �, is given by the fourth-
order correlation function

��4��r1,t1;r2,t2� = ���Ê−�r1,t1�Ê−�r2,t2�Ê+�r2,t2�Ê+�r1,t1���� ,

�1�

where ri and ti are the position and detection time of a pho-
ton in detector i=1,2. If � represents light in a two-photon
state, as it happens in SPDC, the correlation function can be
further decomposed as

��4��r1,t1;r2,t2� = ���r1,t1;r2,t2��2, �2�

where the two-photon probability amplitude

��r1,t1;r2,t2� = �0�Ê+�r1,t1�Ê+�r2,t2���� �3�

is sometimes referred to as the wave function of the state.
From now on we will restrict ourselves to coincidence
detection in a single z plane at t1� t2 and denote
��r1 , t1 ;r2 , t2�=A��1 ,�2 ;z� as the SPDC probability ampli-
tude. Throughout the paper we use a cylindrical coordinate
system with the z axis coinciding with the pump beam axis
and with r= �� ,z� being the position vector, with transverse �
and longitudinal z components. A crucial element in our dis-
cussion is the assumption that the pump laser is relatively
wide as compared to the near-field correlations under study.
The two-photon field will then depend dominantly on the
difference coordinate �−=�1−�2 in the near field, making
A��1 ,�2 ;z��V��1−�2 ;z� �see Secs. II A and II B for de-
tails�. The thin-crystal limit consists on approximating
V��− ;z� by a � function. This article discusses specifically
how the fine-structure function V��− ;z� looks like beyond
this � limit.

The near field is usually defined in optics as the field
distribution at the source. For a thick �=longitudinally ex-

tended� source this concept is ill defined and, as we will
show later, the results depend strongly on which z plane of
our thick source is imaged. Whatever the imaging geometry,
photon pairs emitted from all planes within the crystal will
always contribute coherently to the two-photon field in the
image plane. Throughout the article we will use the term
“near field” to denote the field in a certain z plane around the
image plane of the center of the generating crystal, which we
define as z=0. In contrast, the far field is defined as the
amplitude distribution in a very distant transverse z plane.
The transition from the near field to the far field can be done
by either propagating the generated field or by performing a
�fractional� Fourier transformation �20–23�.

In the next subsections we will present two different mod-
els to calculate the amplitude function V��− ;z�. The first ap-
proach �Sec. II A� starts from the angular spectrum of the
generated field, which is then Fourier transformed to the spa-
tial domain. The detection process is included afterwards.
The second approach �Sec. II B� is formulated directly in
spatial coordinates and treats the generation and detection
processes on equal footing. While the first approach can be
easily compared to results already presented in the literature,
the second approach is less common and permits more in-
sight into the nature of the two-photon field. Naturally, both
approaches lead to the same predictions.

The main differences between our approach and other
equations presented in the literature �24–26� are the follow-
ing. First, we treat the transverse plane in two dimensions.
Assuming a one-dimensional system does lead to loss of
generality in our case. Second, we use a generalized “Kly-
shko picture” in order to account for the non-thin-crystal
assumption. And third, the detection geometry must be in-
cluded in the description in order to obtain the correct work-
ing equations.

A. Analysis based on the angular spectrum

The momentum representation of the two-photon field
generated by SPDC is �2,12�,

Ã�qs,qi� = Ẽ�qs + qi�sinc	1

2
�kzL
 , �4�

where Ẽ�q� is the angular spectrum of the pump beam and
sinc� 1

2�kzL� is the phase-matching function, with
sinc�x�=sin�x� /x, and crystal thickness L. Phase matching
plays a crucial role in all nonlinear optical process. The con-
version efficiency is maximum if the interacting optical
waves retain a fixed phase relation over the full length of the
nonlinear crystal. This is expressed mathematically by the
dependence of the “sinc” function on the longitudinal
wave-vector mismatch �kz=kp,z−ks,z−ki,z, where the indices
refers to the pump �p�, signal �s�, and idler �i� photons,
respectively.

We will concentrate now on our particular case of SPDC
emission. We consider noncritical type I phase matching,
where all polarizations are equal and all beams propagate
close to a principal crystal axis in a periodically poled crys-
tal. These crystals offer the advantage of having a high con-
version efficiency, when compared to bulk crystals. Addi-
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tionally, the photon pairs do not suffer Poyinting vector walk
off. With regard to the generated wave function, i.e., the
spatial correlations, SPDC light produced in a periodically
polled crystal behave exactly the same as in a bulk crystal
�27,28�. A second-order Taylor expansion of the quasi-wave-
vector mismatch �kz in the considered geometry yields �29�

1
2�kzL �

L

8nk0
��qs − qi�2 + 	np − n

np

�qs + qi�2� + ��T,�� ,

�5�

where k0=2� /	0 is the vacuum wave vector of the generated
light, np and n are the refractive indices at the pump and
generated wavelength, respectively, and qs,i are the trans-
verse components of the signal and idler wave vectors ks,i;
the angular dependence of np and n has been neglected. In
our further analysis we will neglect the minor dependence of
the phase mismatch on the sum momentum because �i� typi-
cally the ratio �np−n� /np
1, being 0.058 for our periodi-
cally poled KTP, and �ii� the spread in the sum momentum
qs+qi, as set by the pump divergence, is generally much
smaller than the spread in the difference momentum qs−qi,
anyhow.

Under the conditions stated above, the angular spectrum
of the generated two-photon field thus factorizes in the spe-
cial form �11,12�

Ã�qs,qi� = Ẽp�qs + qi�Ṽ�qs − qi� , �6�

where the phase-matching function Ṽ�qs−qi�=sinc� 1
2�kzL�

depends only on the difference momentum. This function
also contains the collinear phase mismatch � as an adjustable
parameter that depends on the crystal temperature T and a
possible frequency detuning �
�0 from frequency degen-
eracy as �27�

��T,�� = ��T − T0� − �2. �7�

The two-photon field in real-space coordinates A��s ,�i ;z�
can be obtained from a Fourier transformation that links the
transverse momentum q with the transverse position � for
both signal and idler photons. Based on Eq. �6�, it is straight-
forward to show that the spatial representation of the two-
photon field can also be factorized as

A��s,�i;z� = Ep��+;z�V��−;z� . �8�

The factor Ep��+ ;z� quantifies the well-known observation
that the two-photon field retains a “copy of the pump
profile” �12� in its dependence on the average coordinate
�+ 1

2 ��s+�i�. The factor V��− ;z� quantifies the fine struc-
ture in the two-photon field via its dependence on the differ-
ence coordinate �−��s−�i�. Note that Eq. �8� describes the
total two-photon field as observed around an image plane of
the generating crystal. In the z=0 image plane, associated
with the center of the crystal, Eq. �6� contains no extra phase
factors. For points in the vicinity of this plane �at z�0� the
angular spectrum must be multiplied by the free space propa-
gator exp�−i�q�2z / �2k�� for both the signal and idler photons.

Experimentally, the fine structure described by the func-
tion V��− ,z� can be most easily observed if it exists on a
scale much smaller than the pump profile, making

A��s ,�i ;z�=Ep��+ ;z�V��− ;z��V��− ;z�. This condition is
satisfied in the near field if the pump laser is sufficiently well
collimated, i.e., if the Rayleigh range of the pump laser is
much larger than the thickness of the crystal. Based on Eqs.

�4� and �5� we write Ṽ�qs−qi�=sinc��L /8nk0��qs−qi�2+��,
which after Fourier transformation yields

V��−;z� � �
−�

+�

dq sinc	L�q�2

2nk0
+ �
exp�− i

�q�2

k0
z − iq · �−� .

�9�

We experimentally measure the fine structure in the gen-
erated two-photon field with two-photon counting modules
that are coupled to moveable single-mode fibers. Mathemati-
cally, this detection geometry is described by a projection of
the two-photon amplitude onto the mode profiles of the two
detectors. This yields the projected amplitude

Vproj��s − �i;z� � �
−�

+�� d�s�d�i�V��s� − �i�;z��s
���s�

− �s;z��i
���i� − �i;z� , �10�

where � j�� j ;z� is the mode profile of either detector mode
�j= �s , i�� and � j is now the adjustable displacement of this
detector. The integration over the transverse coordinates can
be taken in any z plane because the propagation of the
two-photon field is described by the product of the
same single-mode propagators that determine the propaga-
tion of the detector modes. The coincidence count rate
Rcc� �Vproj��s−�i ;z��2. This function is rotationally symmet-
ric, as it depends only on ��s−�i�, and possesses mirror
symmetry with respect to the z=0 plane, since Vproj��− ;z�
=Vproj

� ��− ;−z�. Further simplifications of Eq. �10� will be
provided in the Appendix A, which includes an analytical
expression for the on-axis correlations at perfect phase
matching ��=0�.

Although the above discussion started from noncritical
type I phase-matching conditions, it also applies to general
type I phase matching, where the beams are not necessarily
aligned with the crystal axes, and even works partially for
general type II phase matching. The argument goes as fol-
lows. For any type of phase matching, we can always rewrite
the general Eq. �4� in the form

Ã�qs,qi� = Ẽ�qs + qi�V̂�qs + qi,qs − qi� , �11�

where the new phase-matching function V̂ now depends both
on the sum and difference coordinate. As essential ingredi-
ent, we again assume that the pump profile is sufficiently

wide in real space in order to make Ẽ�qs+qi� compact
enough in momentum space to dominate over a possible de-

pendence of V̂ on qs+qi. This allows us to approximate

Ã�qs ,qi�� V̂�0 ,qs−qi� Ṽ�qs−qi�, although the precise ex-

pression for Ṽ depends on the type of phase matching �see
Appendix of Ref. �30��. For general type I phase matching

we again obtain Ṽ�qs−qi�=sinc��L /8nk0��qs−qi�2+��, but
the assumption “sufficiently wide pump,” now also requires
that the pump beam is wider than the transverse walk off
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between the pump beam and SPDC beams on top of the
original requirement zn�L. For type II SPDC, the walk off
between the �orthogonally polarized� signal and idler pho-
tons introduces an extra linear form in the phase-matching

function, which now becomes Ṽ�qs−qi�=sinc��L /8nk0��qs
−qi�2+��qs,y −qi,y�+��. After Fourier transformation, the
spatial correlation observable in the fine-structure function
V��− ;z� are found to have lost their rotation symmetry; the
correlations in the x direction, i.e., orthogonal to the walk off
direction, are as before but the correlations in the y direction
are naturally stretched by the transverse walk off in that di-
rection.

B. Analysis based on volume integral over detection modes

In this subsection we will present an alternative approach
to calculate the projected field Aproject��s ,�i ;z� directly in
real space, without the detour via its angular spectrum. This
approach is based on a three-dimensional integration over
the production sites of photon pairs within the generating
crystal.

In SPDC, the probability amplitude for the pump photon
to split into two lower-energy photons is proportional to the
complex electric field at the generating site. As the photon
pairs are always emitted “from the same point,” one can
write �31�

Asource�rs�,ri�� � Ep�rs����rs� − ri�� , �12�

where Ep�rs�� is the electric field profile of the pump beam.
The probability amplitude of finding two photons at posi-
tions rs and ri outside the crystal is obtained by summation
over all possible generating sites and propagation to the ob-
servation points. This leads to the following integral:

Agen��s,�i;z� = �
crystal

d��dz�Ep���,z��

�h��s,z;��,z��h��i,z;��,z�� , �13�

where h�� ,z ;�� ,z�� is the Green’s function that describes the
propagation of the field from the plane z to the plane z�.
Equation �13� can be considered as a generalization of the
result presented in Ref. �31�, the major difference being the
inclusion of the z integration to account for the finite crystal
thickness. Since our crystal is a longitudinally extended
source and the propagators h�� ,z ;�� ,z�� links the field be-
tween any two planes, Eq. �13� basically integrates the con-
tributions of all different generating planes to the observation
plane. This generalization is sufficient to explain all results
presented in this paper.

In our experimental scheme the down-converted beams
are detected by single-mode optical fibers. One can then use
both propagators h to propagate the well-defined detection
modes back to the crystal, instead of using the forward
propagation of the generated two-photon field toward the
detectors. We will denominate this point of view as the
“double Klyshko picture,” in analogy with the Klyshko pic-
ture of SPDC where only one beam is propagated backward
from the detector to the generating crystal, where it is effec-
tively “reflected” toward the other detector. The double Kly-

shko picture considerably simplifies the description since the
Gaussian profiles of the detection modes can be easily propa-
gated.

For a crystal of thickness L in the z direction and infinite
width in the transverse directions we may thus write the pro-
jected two-photon field as

Aproj��s,�i;z� � �
−L/2

+L/2

dz��
−�

+�

d��Ep���;z��

��s
���� − �s;z� − z��i

���� − �i;z� − z� ,

�14�

where �s and �i again denote the transverse displacement of
the detection modes. In the “double Klyshko picture” we can
also consider z as the position of the detection modes foci
inside the crystal, as shown in the inset of Fig. 1. The mode
profile of each fundamental Gaussian detecting modes is

���;z� �
exp�ikz�
z − izn

exp�i
k���2

2�z − izn��
=

exp�i�kz − �Gouy�z���
�z2 + zn

2
exp�−

���2

w�z�2�exp�i
k���2

2R�z�� ,

�15�

FIG. 1. �Color online� Experimental setup for observing the
near-field correlations in the two-photon field. A PPKTP crystal is
pumped by a laser beam operating at 413.1 nm, generating photon
pairs by SPDC. A f =50 mm lens creates a 13� magnified image of
the near field in a intermediate plane. The two-photon field is then
separated at a beam splitter, projected onto two single-mode optical
fibers by objective lenses, and detected by photon counters and
coincidence electronics. Interference filters are used to block the
pump wavelength after the crystal and to select photons close to
frequency degeneracy in front of the detectors �spectral width 5 nm
at 826 nm�. The transverse correlations within the photon pairs are
measured by moving detector 1 horizontally; the longitudinal cor-
relations are obtained by adjusting the crystal z position with a
translation stage. The inset shows how the detection modes would
behave inside the crystal if back propagated through the imaging
system. The detection waist of 7 �m was chosen to provide an
optimal tradeoff between resolution and detection efficiency.
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where zn= 1
2nk0wd

2 is the Rayleigh range, �Gouy�z�
=arctan�z /zn� is the Gouy phase, w�z�=wd

�1+z2 /zn
2 is the

beam diameter, and R�z�=z+zn
2 /z is the radius of curvature

of the detection mode. Upon entering a dielectric medium,
the Gaussian detection mode retains its waist wd but is
stretched in the longitudinal direction; this effect has been
accounted for by introducing zn and k=nk0.

Finally, we substitute the mode profiles of Eq. �15� in Eq.
�14� and consider a very wide pump beam. A Gaussian inte-
gration over the transverse coordinates allows us to express
the projected field in terms of a single integral over the thick-
ness of the crystal

Vproj��s − �i;z� � �
−L/2−nz

+L/2−nz

dz�
exp�− i�kz

0z��
z� − izn

�exp	 ik

z� − izn

��s − �i�2

4

 , �16�

where �kz
0 is the on-axis phase mismatch �qs=qi=0�. If we

use compact detection modes, the projected two-photon field
in Eq. �16� will closely resemble the generated field. It
should be stressed, however, that both fields contain contri-
bution from all points inside the crystal. The main result in
this section, in the form of Eq. �16�, is mathematically
equivalent to Eq. �10�, despite their differing functional
forms. One can use either one to calculate the theoretical fine
structure; the answers should be the same. The explicit
equivalence between the two approaches is presented in Ap-
pendix B.

III. EXPERIMENT

A. Experimental setup

The experimental setup used for our experiments is de-
picted in Fig. 1. We aim at obtaining high resolution images
of the near-field correlations present in the two-photon field.
This is realized experimentally by using two tightly focused
detection modes that can be laterally displaced with respect
to each other and by mounting the crystal on a translation
stage that permits adjusting its longitudinal position. In the
inset of Fig. 1 we illustrate how the back-propagated Gauss-
ian detection modes look like if focused in a certain plane
inside the crystal. The waist width wd=7 �m was chosen to
provide an optimal tradeoff between the desired resolution
and detection efficiency.

The idea behind this setup is similar to the strategy used
in confocal microscopy or two-photon microscopy, namely,
to eliminate most of the out-of-focus light in order to achieve
high lateral and longitudinal resolution. The major difference
is that the incoherent nature of the confocal imaging assures
that mostly one plane is visualized. In our case both the
generation and detection process are coherent, which means
that there is a precise phase relationship between light emit-
ted from all different planes. This leads to interesting fourth-
order interference effects, to be described below.

Spatially entangled photon pairs are generated by pump-
ing a 5.06-mm-thick periodically polled KTiOPO4 crystal
�PPKTP� with a 180 mW krypton-ion laser beam operating

at 413.1 nm. The crystal is positioned close to the focus of a
f =50 mm lens and is mounted on a translation stage. The
laser beam is blocked by a coated GaP wafer, while the
down-converted photons are transmitted and then separated
by a beam splitter. The detection stages comprise objective
lenses and computer-controlled actuators that permit posi-
tioning and scanning the detectors in the transverse plane.
Single counts are registered by two single photon counting
modules; coincidence counts are obtained from a fast AND

gate with a time window of 1.4 ns. Narrow band interference
filters �spectral width 5 nm at 826 nm� placed in front of the
detectors assure “quasimonochromatic” operation.

The effect of the on-axis phase mismatch � is investigated
by setting the temperature of the crystal. Based on the tem-
perature dependence of the refractive indexes at the pump
and SPDC wavelengths, the derivative d� /dT�1.04 K−1

was calculated and checked experimentally �27�.
The imaging system is set up as follows. The focusing

lens of f =50 mm produces a M =13� magnification of the
SPDC generated light onto an intermediate image plane. The
two objective lenses �f =11 mm� then image desired regions
of the intermediate image plane onto the input tips of two
optical fibers with a demagnification factor of 1 /28�. In
order to adjust the proper width of the detection modes we
back propagate a diode laser, operating at the same wave-
length of the down-converted modes, through the same
single-mode optical fibers used for detection. Adjusting the
position of the objective lenses we minimize the detection
modes width at the image plane to �wd�image=85 �m, as
checked with a beam profiler CCD camera. This corresponds
to wd�7 �m inside the crystal.

The spatial reconstruction of the fourth-order correlation
function Vproj��− ;z� is obtained by combining a longitudinal
translation of the crystal with transverse scans of the detec-
tion stages. By moving the nonlinear crystal toward or away
from the lens we can image different slices in the vicinity of
the crystal. For each imaged plane we measure the transverse
dependence of the coincidence count rate by fixing one de-
tector mode centered at �=0 and scanning the other one in
the horizontal direction. Since the near-field correlations de-
pend only on the difference coordinate ��s−�i�, we are effec-
tively reconstructing Vproj��− ;z�. Two remarks are important:
due to the magnification factor, moving one detector stage by
M� causes the detection mode inside the crystal to move by
�, as sketched in Fig. 1. Furthermore, refractive effects
stretch the Gaussian detection mode longitudinally; there-
fore, in order to move the focus from the front facet to the
back facet, the crystal needs to be displaced only by a distant
L /n. All the presented experimental data are scaled to ac-
count for both magnification and refractive effects, i.e., the
transverse displacement of the detector stage has been di-
vided by M =13� and the longitudinal displacement of the
crystal has been multiplied by n �n=1.843 for PPKTP at
826.2 nm and T�60 °C�. All count rates are corrected for
accidental counts.

B. Results and discussion

Our goal is to verify experimentally the main features
present in the near-field correlations of the two-photon field,
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including the full spatial dependence in both transverse and
longitudinal coordinates as well as the behavior under phase
mismatch. We can calculate the theoretical predictions either
from Eq. �16� or Eq. �A3� presented in the Appendix A.

Figure 2 gives an overview of three complete character-
izations. The experimental results for �=2.0, �=0.0, and
�=−1.4 are displayed in Figs. 2�a�–2�c�, respectively. Fig-
ures 2�d�–2�f� show the corresponding theoretical predic-
tions. Note that the theoretical curves do not contain any fit
parameters, being based only on well-known parameters,
such as L, k0, wd, and �. The qualitative agreement between
theory and experiments is evident. The theoretical coinci-
dence counts are displayed in arbitrary units, since the theory
only provides a proportionality; the fact that the proportion-
ality factor is �104 is just a coincidence. The relative scaling
between plots taken at different temperatures is well defined
and agrees with the experimental data.

The obtained three-dimensional results are intriguing. For
�=2.0 we observe the presence of two very sharp peaks with
a low “crater” in between. The distance between the two
peaks in the experimental data is 5.3�0.1 mm, while theory
predicts a value equal to L=5.06 mm. Even for perfect
phase-matching ��=0�, we observe considerably higher
counts when the detection modes are focused at either of the
crystal facets. The observation of this “surface effect” is lim-
ited to observations with compact detection modes
�wd�7 �m in our setup�. For a detection mode width of
wd=10 �m the peaks should be hardly visible, being absent
for wd=12 �m �and �=0�. The effect of the increased de-
tection mode width is to smooth the detected fine structure
Vproj��− ;z�.

We can interpret these results as follows. Suppose we had
a nonmagnified imaging scheme �M =1�. The plane
z=2.5 mm corresponds to an image of the output facet of the
crystal and can indeed be interpreted as a “copy” of the field
in that position. Although the measured correlations in the
other planes �z�2.5 mm� exist in the vicinity of the image
plane, they can no longer be interpreted as an image of the

field correlations inside the crystal. The reason is that if one
tries to image regions inside the source, light emitted be-
tween these regions and the output facet will also contribute,
albeit in a “defocused” way. With our measurement we can
only describe how the correlations behave in the accessible
region around the image plane.

All the peculiar structures shown in Fig. 2 are only
present in the fourth-order correlation �=coincidences
counts� as no interference effect is observed in the single
counts. We confirm this statement by plotting in Fig. 3 the
single counts measured by the scanning detector for �=0
�perfect phase matching�. The single counts behave in the
same way for all � values considered in this work. In the
remaining Figs. 4–9 we will discuss in details some specific
features of the near-field correlations.

Figure 4 shows how the coincidence rate �Vproj�0 ;0��2,
recorded on axis ��−=0� and at z=0, varies with phase
matching. This figure thus shows the relative scaling be-
tween the scans performed at different phase mismatches.
Note that Fig. 4 is not symmetric with respect to �=0 and
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FIG. 2. �Color online� Full spatial dependence of the near-field correlations for different phase mismatches. Figures �a�, �b�, and �c� show
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peaks at �=−2.0 rather than at �=0.0. Equation �16� predicts
that the asymmetry of the curve is basically determined by
the size of the detection modes. In the limit wd→0
�or zn→0� the theoretical curve is highly asymmetric, while
the curve becomes approximately symmetric under �↔−�

for large wd, when the Rayleigh range zn= 1
2kwd

2 of the detec-
tion modes becomes much larger than the crystal thickness.
This can be understood physically by noticing that for a very
large detection width all the down-converted light is col-
lected; one then effectively measures the overall SPDC effi-
ciency as a function of the phase mismatch, recovering the
standard “sinc” curve.

Figure 5 shows the dependence of the on-axis �−=0 co-
incidence rate on the longitudinal position z of the detection

FIG. 4. �Color online� Dependence of the coincidence count rate
on the phase mismatch �. When both detection modes are centered
��s=�i=0� and focused at the center of the crystal �z=0�. The phase
mismatch can be adjusted by changing the temperature of the crys-
tal. The open circles are experimental; the continuous �red� curve
the theoretical result. No curve fitting was performed. The asymme-
try of the curve depends sensitively on the width of the detection
mode �see text�. For our experimental realization, the coincidence
count rate at �=0.0 is only 39% of its maximum value, which is
achieved at �=−2.0.
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FIG. 7. �Color online� Transverse correlations for �=−8.2 and
z=0. This curve demonstrates that it is possible to achieve very
narrow central peaks by adjusting the phase mismatch �; the central
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foci. The experimental z scans of �Vproj�0 ;z��2 are measured
for �=2.0, �=−1.4, �=−8.7, and �=−11.0. All results are in
accord with our expectations �not shown� apart from a small
asymmetry in the signal observed when the detected foci are
positioned either at the facet closest to the lens �z=−L /2� or
at the far facet �z=+L /2�. We attribute the observed asym-
metry to spherical aberration in the focused detection modes,

induced by their transition through the air-crystal interface;
this aberration would make the waist of the detector modes
somewhat larger when it is positioned at the far facet as
compared to the near facet of the generating crystal.

Figure 5 shows that the phase mismatch has a dramatic
effect on the axial correlations. The range within which the
coincidence counts are appreciable is bounded by the crystal
thickness L=5.06 mm, but its precise shape follows from
Eq. �16�, which for �−=0 translates into

�Vproj�0;z��2 � ��
−L/2−z

+L/2−z

dz�
exp�− i�kzz��

�z� − izn� �2

. �17�

Equation �17� is identical to a classical formula �32� for the
intensity of second harmonic generation �SHG� in a medium
pumped by a tightly focused Gaussian beam. The shapes
presented in Fig. 5 are indeed similar to those obtained in the
context of SHG �32,33�. We have thus shown that the strong
dependence of the longitudinal �z� correlations with phase
mismatch is also present in the two-photon correlation mea-
surements in SPDC. Theoretical studies for axial correlations
have been performed before by Nasr et al. �25�. They also
concluded that strong axial correlations are only found in a
region around the image plane bounded by the thickness of
the crystal L �divided by the refractive index�. However,
their exact predictions differs from ours due to an assump-
tion that the system could be treated in only one dimension.
This point is further discussed in Appendix A, where we also
obtain an analytical expression for the axial correlations at
perfect phase matching.

Figure 6 shows the transverse correlations at �=−2.0 as
measured and calculated for three different z planes: �a�
za=0, �b� zb=0.3L /2, and �c� zc=L /2. That is, the detection
modes are focused at the center of the crystal, at an interme-
diate plane, and at the facet, respectively. These curves are
examples of how we can find a rich set of non-bell-shaped
transverse correlations in the near field that are not yet dis-
cussed in the literature. Notice how the transverse profile of
the coincidence rate changes with the focusing plane. If one
focus the detection modes at either crystal surface there is a
maximum probability of finding the two photons “together”
at �=0. If the detection modes are focused in the center �z
=0�, this probability drops to practically zero, i.e., the two
photons are spatially antibunched �34,35�. This observation
of antibunching is sufficient to reveal the quantum nature of
the correlations �as long as the field is also homogeneous,
which is the case�. We have discussed this aspect in �16�.

We can also interpret Fig. 6 imagining, once again, a
scheme with unit magnification. There is a plane before
z�0 where the photon pairs are found predominantly to-
gether in the same transverse position. In the plane z=0 this
situation is reversed, and the photons are antibunched, i.e.,
there is a zero probably of finding them at the same position.
The symmetry z↔−z assures that for z�0 the photons will
be once again bunched. The transition of an axial valley to an
axial peak in near-field imaging also appears in the context
of Fresnel diffraction. It is solely due to free space propaga-
tion of the field. The two-photon field propagate in a similar
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longer than if it were a Gaussian beam. The white dashed
curve shows how a Gaussian beam with the same waist
�FWHM=10 �m� would diffract; at 	=826.2 nm the Rayleigh
range of this beam is z0=274 �m. The persistence of the narrow
structure in the measured coincidence rate is maintained by inter-
ference with light from the many side peaks; a similar phenomenon
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fashion, but instead of a zero in intensity there is a zero in
coincidences counts.

Figure 7 shows how the central peak for transverse corre-
lations can get very narrow in certain configurations. We
show the results obtained for a transverse scan at z=0 and
�=−8.2. The full width at half maximum �FWHM� of this
peak is only 10 �m as indicated. Quite surprisingly, this
narrow width can maintain itself without being diffracted
over a z range as long as the crystal thickness L. To stress
this point we show in Fig. 8 a false color plot of the mea-
sured fourth-order correlation over the full z range. The
white dashed curves indicate how a Gaussian beam with the
same FWHM at its waist would diffract; the Rayleigh range
of this beam is z0=274 �m at 	=826.2 nm. We can see that
the fourth-order correlation pattern retains its narrow width
for much longer than the corresponding Gaussian beam.
These correlations are also less “diffractive” as compared to
a Gaussian beam with the de Broglie wavelength of the bi-
photon 	 /2=413.1 nm. This behavior is a consequence of
the many side peaks that can be clearly identified. In this
respect, it resembles the propagation characteristics of
Bessel-like beams.

Recently, the possibility of achieving extreme biphoton
spatial localization in the near field by resolving the photon
pairs temporally, and vice versa, was theoretically proposed
�36�. Figure 7 experimentally proves that high spatial local-
ization can also be achieved by controlling the phase-
matching conditions. For thinner crystals and smaller values
of �, peaks as narrow as 4 �m can be produced.

Next we compare the narrow-ranged correlations dis-
cussed above with those obtained at the most common ex-
perimental setting �=0 �perfect phase matching�. Figure 9�a�
shows the experimental and theoretical results for a trans-
verse scan at z=0. A 20� magnified plot is also shown in
order to highlight the superiority of the correct theoretical
expression over Gaussian approximations. The FWHM of
this curve is 32 �m, thus being about 3� larger than the
curve taken at �=−8.2. and presented in Fig. 7.

Our theoretical formulation also provides the phase struc-
ture of the “wave function” in the near field. Figure 9�b�
shows a density plot of the theoretical phase surfaces ob-
tained directly from the complex-valued amplitude
Vproj��− ;z�. The phase is unwrapped in such a way that all
phase jumps are related to phase singularities. These phase
singularities are associated with the points where we expect a
zero for the two-photon correlation. These singularities are
thus not of the standard type, related to zeros of field inten-
sities, but are related to zeros of the fourth-order correlation
function. It has been shown recently that an optical vortex
can be transferred from the pump beam to the biphoton cor-
relation �37�. Here we argue that those “fourth-order phase
singularities” also arise due to phase matching.

A word of caution. Some authors consider the near-field
imaging as an imaging of the birthplace of the photon pairs
�8�. As we have seen, this statement is not very accurate. The
physical origin of the observed correlations is always inter-
ference of photon pairs generated at all possible sites in the
crystal. There is a coherent superposition of localized emis-
sions from all these sites. The combined effect of all produc-
tion events, propagated to the observation plane, leads to the

measured fourth-order interference patterns. The collinear
phase mismatch � is a crucial component in the description
since it changes the relative phase of photon pairs generated
at different “slices” in the crystal. This strongly modifies the
propagation and, therefore, the resulting interference. The
presence in Fig. 2 of either photon bunching or antibunching,
which is not in contradiction with the assumption of �a su-
perposition of� localized emissions, illustrates very well the
point.

Finally we would like to discuss the implications of our
results to measurements of the dimensionality of the spatial
entanglement. Recently Howell et al. proposed and imple-
mented a realization of the Einstein-Podolsky-Rosen �EPR�
paradox, i.e., the violation of a separability criterion in the
position-momentum domain, using entangled photon pairs
�8�. One of their key measurements is similar to the one
presented in Fig. 9�a�. At that time the existence of a richer
structure in the near field was not yet known. We can now
revisit their experiment and pose new questions. To obtain
the same results the authors could have chosen to image
either the back or front facet of the crystal, but not the center.
Strangely enough, we find that the violation of the separabil-
ity criterion depends on which plane is being imaged. The
reason is that this criterion depends only on field intensities,
while entanglement may also exist in the phase structure,
which, as we illustrated, is not trivial. We provide in this way
experimental support to proposed entanglement migration
between amplitude and phase �38�. Additionally, the exis-
tence of more complex non-bell-shaped transverse profiles at
��0, like the ones presented in Fig. 6, indicates that a larger
number of modes is necessary to perform a Schmidt decom-
position �10� and, consequently, a higher degree of spatial
entanglement for nonperfect phase matching is to be ex-
pected. We have recently observed this phenomenon �39�.

IV. CONCLUSION

In this work we have explored the near-field correlations
in the two-photon field generated by spontaneous parametric
down conversion. Two different theoretical approaches were
presented, each one leading to a different integral represen-
tation of the field. Numerical simulations can be performed
using either formula, both providing the same predictions. In
order to experimentally access the correlations in the near
field a new regime of operation was introduced, in which the
width of the detection modes is determined by an optimal
trade off between resolution and detection efficiency. The
detection modes should be small enough to obtain sufficient
spatial resolution, but large enough not to loose too many
coincidence counts.

The phase-matching condition, imposed by the finite
thickness of the crystal, leads to some remarkable features.
Among them we highlighted the observation of intriguing
three-dimensional structures, the presence of spatial anti-
bunching, a link with previous results in second harmonic
generation, the observation of correlations that resemble
Bessel beams in propagation, and the prediction of fourth-
order phase singularities. Furthermore, the operation under
phase mismatch reveals a rich set of non-bell-shaped spatial
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correlations. We have already obtained evidence that this
higher complexity leads to a higher degree of spatial en-
tanglement �39�.
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APPENDIX A

In this appendix we will present an analytical result for
the on-axis correlation V��−=0;z� for perfect phase-
matching ��=0�. Our starting point is Eq. �10�. We substitute
Eq. �9� for V��− ;z� and consider Gaussian shaped detection
modes

� j�� j − � j�� � exp�−
�� j − � j��

2

wd
2 � , �A1�

where wd is the width of the detection mode in the focused z
plane. After integrating over the transverse coordinates �s�
and �i� we obtain

Vproj��−;z� � �
−�

+�

dq sinc	L�q�2

2nk0
+ �


�exp�−
�q�2wd

2

2
− i

�q�2

k0
z − iq · �−� . �A2�

This equation is rotationally symmetric and can be integrated
over the azimuthal angle to yield

Vproj��−;z� � �
0

+�

dy sinc	 L

2nk0
y + �
J0��y�−�

�exp�− 	wd
2

2
+ i

z

k0

y� , �A3�

where �−��−�, y= �q�2, and J0 is the 0th order Bessel func-
tion. Most of our numerical simulations were performed us-
ing this equation.

Next we consider the axial correlations ��−=0� for perfect
phase matching ��=0�. In this case, Eq. �A3� has an analyti-
cal solution, the square of which is the coincidence counting
rate

Rcc�0;z� � �Vproj�0;z��2 � �arctan�L

n

1

k0wd
2 + 2iz

��2

.

�A4�

Equation �A4� shows how the ratio Rcc�0;L /2n� /Rcc�0;0�
between the coincidence rates observed with both detection
foci positioned either at the facets or in the center depends
sensitively on the size of the detection modes. For our ex-
periments this width is wd=7 �m, which leads to a ratio
Rcc�0;L /2n� /Rcc�0;0�=1.25, both theoretically and experi-
mentally. For smaller wd this ratio is expected to increase,
leading to a divergence for wd→0.

This result differs from the theoretical predictions pre-
sented in �25�. The reason is that the authors of Ref. �25�
assume that the system can be treated one-dimensionally
without loss of generality. The integrated sinc function
present in Eq. �A2�, however, behaves quite differently if its
argument is a one-dimensional or bidimensional vector.
Equation �A4� is the correct expression for a realistic three-
dimensional system.

APPENDIX B

In this appendix we will show explicitly the equivalence
between the key Eq. �10�, similar to Eqs. �A2� and �16�. We
start with Eq. �A2� and write the “sinc” function as

sinc	L�q�2

2nk0
+

L

2
�kz

0
 =
1

L
�

−L/2

+L/2

exp	 i�q�2

nk0
z� + i�kz

0z�
dz�,

�B1�

where we used the definition of the collinear phase mismatch
�= L

2 �kz
0. Next we make a change of variables z�=nz−z�. We

now recognize the original integral in q as the Fourier trans-
form of a complex Gaussian function. It can be immediately
evaluated

�
−�

+�

� ¯ �dq = exp	 i

4

k�−
2

z� − izn

 i�k

z� − izn
, �B2�

where zn= 1
2nk0wd

2. We can thus recover Eq. �16�, which reads

V��−;z� � �
−L/2−nz

+L/2−nz

dz�
exp�− i�kz

0z��
z� − izn

exp	 i

4

k�−
2

z� − izn

 .

�B3�
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