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Abstract

In this paper we consider a two-dimensional lattice gas under Kawasaki dynamics, i.e., particles hop
around randomly subject to hard-core repulsion and nearest-neighbor attraction. We show that, at fixed
temperature and in the limit as the particle density tends to zero, such a gas evolves in a way that is close
to an ideal gas, where particles have no interaction. In particular, we prove three theorems showing that
particle trajectories are non-superdiffusive and have a diffusive spread-out property. We also consider the
situation where the temperature and the particle density tend to zero simultaneously and focus on three
regimes corresponding to the stable, the metastable and the unstable gas, respectively.

Our results are formulated in the more general context of systems of “Quasi-Random Walks”, of which
we show that the low-density lattice gas under Kawasaki dynamics is an example. We are able to deal with a
large class of initial conditions having no anomalous concentration of particles and with time horizons that
are much larger than the typical particle collision time. The results will be used in two forthcoming papers,
dealing with metastable behavior of the two-dimensional lattice gas in large volumes at low temperature
and low density.
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1. Introduction

1.1. Ideal gas approximation

In this paper we consider a two-dimensional lattice gas at low density evolving under
Kawasaki dynamics: particles hop around randomly subject to hard-core repulsion and nearest-
neighbor attraction. More precisely, we consider a square box Λ ⊂ Z2 with periodic boundary
conditions, and a Markov process (ηt )t≥0 on {0, 1}Λ given by the standard Metropolis algorithm

η→ η′ with rate exp[−β{0 ∨ [H(η′)− H(η)]}] (1.1)

with Hamiltonian

H(η) := −U
∑

{x,y}∈Λ∗
η(x)η(y), (1.2)

where β ≥ 0 is the inverse temperature,−U ≤ 0 is the binding energy, Λ∗ is the set of unordered
pairs of nearest-neighbor sites in Λ, and η′ is any configuration obtainable from η via an exchange
of occupation numbers between a pair of sites in Λ∗.

Our goal is to prove an ideal gas approximation, i.e., we want to show that the dynamics
is well approximated by a process of Independent Random Walks (IRWs). Indeed, if the lattice
gas is sufficiently rarefied, then each particle spends most of its time moving like a random
walk. When two particles are occupying nearest-neighbor sites, the binding energy inhibits their
random walk motion, and these pauses are long when the temperature is low. However, if the time
intervals in which a particle is interacting with the other particles are short compared to the time
intervals in which it is free, then we may hope to represent the interaction as a small perturbation
of a free random walk motion. We prove that this is indeed the case in the low-density limit
ρ ↓ 0, for any U ≥ 0 and any β ≥ 0. Note that the case U = 0, corresponding to the simple
exclusion process, is included.

More difficult is the situation when β →∞ and ρ ↓ 0 simultaneously, linked as ρ := e−β∆

with ∆ > 0 an activity parameter. The reason is that low temperature corresponds to strong
interaction, so that the ideal gas approximation is far from trivial. This is also the more interesting
situation from a physical point of view. Indeed, it is easy to see that e−2Uβ is the density of the
saturated gas at the condensation point. For densities smaller than this, namely, ∆ ∈ (2U,∞),
we have a stable gas so rarefied that it behaves like an ideal gas up to very large times. If we
increase the density further, picking ∆ ∈ (U, 2U ), avoiding however the appearance of droplets
of the liquid phase, then we get a metastable gas. This regime, which is the most interesting
and which motivated the present paper, will be addressed in Gaudillière, den Hollander, Nardi,
Olivieri and Scoppola [8,9], two forthcoming papers that rely on the results presented below. In
this regime we still have a rarefied gas, and we will prove that it behaves like an ideal gas up to
relatively large times. If we increase the density still further, picking ∆ ∈ (0,U ), then we get
an unstable gas, which behaves like a rarefied gas only up to short times. The heuristics of these
three regimes will be discussed in Section 1.2.

The main focus of the present paper is to address the more interesting and challenging
regime where β → ∞ with particle density ρ = e−∆β before the formation of large clusters.
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At exponentially small density we have a non-trivial dynamics in an exponentially large volume
only. Consequently, we will assume that our Markov process (ηt )t≥0 takes values in {0, 1}Λβ

with Λβ ⊂ Z2 a square box with periodic boundary conditions and volume

|Λβ | = eΘβ for some Θ > ∆. (1.3)

The ideal gas is represented by a process of IRWs. We need a process of Quasi-Random Walks
(QRWs) to describe the “ideal gas approximation”. By a process of QRWs we denote a process
of N labelled particles that can be coupled to a process of N IRWs in such a way that the two
processes follow the same paths outside rare time intervals, called pause intervals, in which the
paths of the QRW-process remain confined to small regions. We will show that the low-density
Kawasaki dynamics with labelled particles is a QRW-process. Moreover, we will generalize to
QRWs the following three well-known properties valid for a system of N continuous-time IRW
trajectories observed over a time T ,

ζi : t ∈ [0, T ] 7→ ζi (t), i ∈ {1, . . . , N }, T ≥ 2. (1.4)

For proofs of these properties, see e.g. Jain and Pruitt [12] and Révèsz [15].
THREE PROPERTIES OF IRW. Uniformly in N and T , the following properties hold:

(i) Non-superdiffusivity:

∀i ∈ {1, . . . , N },∀δ > 0:

lim
β→∞

1
β

ln P
(
∃t ∈ [0, T ) : ‖ζi (t)− ζi (0)‖2 >

√
T eδβ

)
= −∞. (1.5)

(ii) Spread-out property, upper bound:

∀I ⊂ {1, . . . , N },∀(zi )i∈I ∈ (Z2)I
: P (∀i ∈ I : ζi (T ) = zi ) ≤

(
cst
T

)|I |
. (1.6)

(iii) Spread-out property, lower bound:

∀I ⊂ {1, . . . , N },∀(zi )i∈I ∈ (Z2)I :

(
∀i ∈ I : 0 ≤ ‖zi − ζi (0)‖2 ≤

√
T
)
⇒ P (∀i ∈ I : ζi (T ) = zi ) ≥

(
cst
T

)|I |
,(

∀i ∈ I : 0 < ‖zi − ζi (0)‖2 ≤
√

T
)

⇒ P
(
∀i ∈ I :

⌊
τzi (ζi )

⌋
= T

)
≥

(
cst

T ln2 T

)|I |
,

(1.7)

with

τzi (ζi ) := inf {t > 0: ζi (t) = zi } . (1.8)

(Throughout the paper, ‘cst ’ will denote a positive constant independent of the model
parameters, the value of which may change from line to line.)

Remark. The statements in (1.4)–(1.8) are partially redundant because the independence of
the trajectories of IRWs trivially implies factorization. However, in our generalization of these
properties to QRWs, whose trajectories are not independent, the factorization is an essential
ingredient of the statements.
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While the non-superdiffusivity will be proven for all particles, the spread-out property will be
proven for “non-sleeping” particles only, i.e., those particles for which the pause intervals are not
too long. Note that on the time scale 1/ρ = e∆β we may expect the gas to behave like a gas of
IRWs, because 1/

√
ρ is the average distance between particles. We will, however, show that the

ideal gas approximation extends well beyond this time scale.
The main difficulty in analyzing the metastable behavior for Kawasaki dynamics at low

density and low temperature is the description of the interaction between the droplets and the
gas. As part of the nucleation process, droplets grow and shrink by exchanging particles with the
gas that surrounds them, as is typical for a conservative dynamics. It was precisely for the need
to control this droplet–gas interaction why the notion of QRWs was introduced in den Hollander,
Olivieri and Scoppola [11].

Two models played an important role in earlier work:

(1) The local model: In den Hollander, Olivieri and Scoppola [11], a model of Kawasaki
dynamics on a finite box Λ0 with open boundary was considered. Particles move according to
Kawasaki dynamics inside Λ0, and are created and annihilated at the boundary ∂Λ0, at rates
e−∆β and 1, respectively. The “open boundary” replaces a gas reservoir surrounding Λ0,
with density ρ = e−∆β . For this local model, the metastable behavior for β → ∞ (and Λ0
fixed) was described in full detail in Gaudillière, Olivieri and Scoppola [10] and in Bovier,
den Hollander and Nardi [2]. In this model there is no effect of the droplets in Λ0 on the gas
outside Λ0.

(2) The local interaction model: In den Hollander, Olivieri and Scoppola [11], an extension of
the local model was considered in which the gas reservoir consists of IRWs. The total number
of particles was fixed and it was shown that, for β → ∞, this model is well approximated
by the local model as far as its metastable behavior is concerned. Note that in the local
interaction model even though the gas outside Λ0 is an “ideal gas”, it influences the Kawasaki
gas inside Λ0, and vice versa. This mutual influence was described by means of QRWs: the
gas particles perform random walks, interspersed with pause intervals during which they
interact with the other particles, and interspersed with jumps corresponding to the difference
between the positions of the particle at the end and at the beginning of a pause interval. Due
to the fact that Λ0 is finite, the jumps are small w.r.t. the displacement of the random walks
on time scales that are exponentially large in β. Moreover, the number of pause intervals is
controlled by the rare returns of the random walk to Λ0. These two ingredients – few pause
intervals and small jumps – were sufficient to control the dynamics.

As we will show, the QRW-approximation continues to hold for Kawasaki dynamics in an
exponentially large box. As long as the clusters are small, we may expect the jumps in the QRWs
to be small: at most of the order of the size of the clusters. The crucial obstacle in approximating
the gas particles by QRWs is the fact that the interaction acts everywhere. Therefore we need to
replace the control on the rare returns of a random walk to a fixed finite box by a control on the
number of particle–particle and particle–cluster collisions. This will be achieved with the help of
non-collision estimates developed in Gaudillière [7], which is our main tool in the present paper.

Related literature. Our approach is different from that followed by Kipnis and Varadhan [13]
to analyze the trajectory of a tagged particle in reversible interacting particle systems. Using
martingale arguments, they proved that in infinite volume at any density and starting from
equilibrium, if X (t) denotes the position at time t of the tagged particle, then the process
(
√
εX (t/ε))t≥0 converges to a rescaled Brownian motion (Dself B(t))t≥0 in the limit as ε ↓ 0.
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This is an invariance principle, where “cumulative chaos” leads to Gaussian behavior. Our
approach is complementary, because we use the low-density limit to view Kawasaki dynamics as
a small perturbation of an IRW-process and prove large deviation and local occupation bounds,
and this perturbation also works away from equilibrium. This will lead us to introduce a time
scale beyond which our results no longer apply. This time scale will be much longer than the
typical particle inter-collision time (collision time), namely, it will be of the order of the minimum
of 1/ρ2, the square of the typical particle collision time, and the time of the first anomalous
concentration of particles.

We mention two other papers where a coupling between the one-dimensional simple exclusion
process (for which Dself = 0; see [1]) and an IRW-process was constructed. In Ferrari, Galves
and Presutti [5] and in De Masi, Ianiro, Pellegrinotti and Presutti [3], Chapter 3, a hierarchy
on the particles is introduced, which leads to a coupling with strong symmetry properties. This
hierarchy is used to prove non-superdiffusivity. Unfortunately, in higher dimensions and as soon
as U > 0, these symmetry properties are lost.

Higher dimension. Our analysis will be restricted to the two-dimensional lattice and our proofs
will be based on a lower bound for the two-dimensional non-collision probability of random
walks in the presence of obstacles. Since this lower bound works as well in dimension three or
higher, the results in the present paper carry over to higher dimension. A legitimate question is the
following. Would it be possible to obtain a better ideal gas approximation in higher dimension
based on a better estimate for the non-collision probability? We believe that the answer is no.
Even though the random walk is transient in dimension three and higher, the number of collisions
undergone by a particle on time scale 1/ρ is still of order 1. For a QRW with such a frequency
of pause intervals, properties like the non-superdiffusivity property cannot hold beyond the time
horizon 1/ρ2, the square of the typical particle collision time.

1.2. Three regimes

We have to compare the average particle collision time 1/ρ with the pauses caused by the
binding energy. We distinguish three cases.

(1) If ∆ > 2U (stable gas), then the pauses are typically much shorter than e∆β . On this time
scale the gas will essentially behave like a gas of IRWs, i.e., the probabilities at time T to
find a given set of particles in a given set of sites are similar to those for IRWs. We will be
able to prove that this is true up to time scale e2∆β , provided the gas starts from equilibrium,

and up to time scale e
3
2 ∆β ∧ e(2∆−2U )β for a much wider class of starting configurations,

namely, those that exclude anomalous concentrations of particles.
(2) If ∆ < U (unstable gas), then the pauses are typically much longer than e∆β . For this case

we will only have very weak results, limited to time scale e∆β .
(3) If U < ∆ < 2U (metastable gas), then typically some pauses are much shorter than e∆β

while others are much longer. For D ∈ (U,∆), as close to U as we want, we will say that a
particle “falls asleep” when it makes a pause longer than eDβ . We will say that non-sleeping
particles are active and we will be able to obtain results for active particles up to time scale
e2∆β , provided the system starts from a “metastable equilibrium” and Θ is not too large.

In what follows we will deal with these three regimes simultaneously. To that end, we
introduce a constant D ∈ (0,∆), as close to 0, U , 2U as we want in the unstable, metastable and
stable regimes, respectively. The different regimes will be discussed separately in Section 6 only.
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1.3. Outline

In Section 2 we build the Kawasaki dynamics as a dynamics of labelled particles η̂ coupled
to an IRW-process ζ and we introduce the main notions necessary to build up the definition of a
QRW-process. Our main results are stated in Section 3. In Section 4 the non-superdiffusivity and
the spread-out property are proved for QRWs. In Section 5 we prove that the low-density limit of
Kawasaki dynamics with labelled particles is a QRW-process and prove some stronger estimates
for the lower bound of the spread-out property as well. In Section 6 these results are applied to
the three different regimes of Section 1.2. Some of the proofs in this paper do not rely on the
notion of QRW-process, and therefore are placed in Appendices A and B.

2. Building QRWs

In Section 2.1 we introduce some basic notation. In Section 2.2 we construct the Kawasaki
dynamics in a way that will be needed for the proofs of our main results formulated in Section 3.
In Section 2.3 we introduce free, active and sleeping particles. In Section 2.4 we introduce the
notion of Quasi-Random Walk on which most of the present paper is built.

2.1. Notation

1. Apart from the parameters that define the dynamics (U , ∆, Θ , β), we need three further
parameters: D ∈ (0,∆) (see Section 1.2), α > 0 small, and β 7→ λ(β), a slowly increasing
unbounded function that satisfies

λ(β) ln λ(β) = o(lnβ), (2.1)

e.g. λ(β) =
√

lnβ. Given α > 0, we define a reference time almost of order e∆β

Tα := e(∆−α)β , (2.2)

and we assume that α is small enough so that Tα > eDβ .
2. We denote by N the total number of particles in Λβ :

N := ρ|Λβ | = e(Θ−∆)β . (2.3)

We call X N the subset of {0, 1}Λβ in which (ηt )t≥0 evolves:

X N :=

η ∈ {0, 1}Λβ :
∑

x∈Λβ

η(x) = N

 . (2.4)

We will frequently identify a configuration η ∈ X N with its support supp(η) = {x ∈ Z2: η(x)
= 1}.

3. For Λ ⊂ Λβ , we write Λ @ Λβ if Λ is a square box, i.e., there are a, b, c ∈ R such that

Λ = ([a, a + c] × [b, b + c]) ∩ Λβ . (2.5)

For Λ ⊂ Λβ and η ∈ {0, 1}Λβ , we denote by η|Λ the restriction of η to Λ, and put

|η|Λ| :=
∑
x∈Λ

η(x). (2.6)
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We denote by Tα,λ the first time of anomalous concentration:

Tα,λ := inf
{

t ≥ 0: |ηt |Λ| ≥
λ(β)

4
for some Λ @ Λβ with |Λ| ≤ e(∆−

α
4 )β
}
. (2.7)

4. For p ≥ 1, the p-norm on R2 is

‖ · ‖p: (x, y) ∈ R2
7→

{(
|x |p + |y|p

)1/p if p <∞,
|x | ∨ |y| if p = ∞.

(2.8)

We denote by Bp(z, r), z ∈ R2, r > 0, the open ball with center z and radius r in the p-norm.
The closure of A ⊂ R2 is denoted by A.

5. For η ∈ X , we denote by ηcl the clusterized part of η:

ηcl
:=
{
z ∈ η: ‖z − z′‖1 = 1 for some z′ ∈ η

}
. (2.9)

We call clusters of η the connected components of the graph drawn on ηcl obtained by connecting
nearest-neighbor sites. For A ⊂ Z2, we denote by ∂A its external border, i.e.,

∂A :=
{

z ∈ Z2
\ A: ‖z − z′‖1 = 1 for some z′ ∈ A

}
. (2.10)

For r > 0, we put

[A]r :=
⋃
z∈A

B∞(z, r) ∩ Z2. (2.11)

We say that A is a rectangle on Z2 if there are a, b, c, d ∈ R such that

A = [a, b] × [c, d] ∩ Z2. (2.12)

We write RC(A), called the circumscribed rectangle of A, to denote the intersection of all the
rectangles on Z2 containing A.

6. The hitting time of A for a generic random process ξ0 is denoted by

τA(ξ0) := inf {t ≥ 0: ξ0(t) ∈ A} . (2.13)

7. A function β 7→ f (β) is called superexponentially small (SES) if

lim
β→∞

1
β

ln f (β) = −∞. (2.14)

If (A j (β)) j∈J is a family of events, we say that “A j occurs with probability 1− SES uniformly
in j” when there is an SES-function f independent of j such that

P(A j (β)
c) = 1− P(A j (β)) ≤ f (β) ∀ j ∈ J, β > 0. (2.15)

For example, by Brownian approximation and scaling, for ζ0 a simple random walk in continuous
time and δ > 0 we have

P
(
∃t ∈ [0,m + 1]: ‖ζ0(t)− ζ0(0)‖2 > eδβ

√
m
)
≤ SES uniformly in m ∈ N. (2.16)

Note that, in general, the dependence on β of P(A j (β)) will be deeper than in this simple
example: for the process (ηt )t≥0, β is a parameter of the dynamics itself.
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2.2. Kawasaki dynamics

Kawasaki dynamics is naturally defined as a “dynamics of configurations”, in the sense that
it describes the evolution of a set of occupied sites rather than of individual particles occupying
these sites. We will construct a process η̂ = (η̂1, . . . , η̂N ) with state space

X̂ N :=

{
(z1, . . . , zN ) ∈ ΛN

β : zi 6= z j ∀i, j ∈ {1, . . . , N }, i 6= j
}

(2.17)

that describes the trajectories η̂i : t 7→ η̂i (t) of N labelled particles such that the Kawasaki
dynamics is defined by setting

(ηt )t≥0 := (U(η̂(t)))t≥0 (2.18)

with U the natural unlabelling application that sends X̂ N onto X N . We will couple η̂ with an
IRW-process ζ = (ζ1, . . . , ζN ) on ΛN

β by starting from ζ and building η̂ out of ζ via random
labels.

Given N Poisson processes θ1, . . . , θN of intensity 1 and N families

(e1,k)k∈N, (e2,k)k∈N, . . . , (eN ,k)k∈N (2.19)

of independent unit random vectors equally distributed in the four directions (north, south, east,
west), all mutually independent, we define a process ζ = (ζ1, . . . , ζN ) of N IRWs starting from
z = (z1, . . . , zN ) ∈ ΛN

β by putting

ζi (t) := zi +

θi (t)∑
k=1

ei,k, i ∈ {1, . . . , N }, t ≥ 0. (2.20)

Suppose that ζ(0) = z ∈ X̂ N (recall (2.17)). To build a Kawasaki dynamics with labelled
particles η̂ = (η̂1, . . . , η̂N ) starting from z, we introduce N families

(U1,k)k∈N, (U2,k)k∈N, . . . , (UN ,k)k∈N (2.21)

of independent marks, uniformly distributed in [0, 1], mutually independent and independent of
the families in (2.19), and apply the following three-step updating rule each time the process ζ
changes position, i.e., at each t with ζ(t−) 6= ζ(t):

1. Define a first candidate η̂′ for the new configuration:

η̂′ := η̂(t−)+ ζ(t)− ζ(t−) ∈ ΛN
β . (2.22)

2. Test η̂′ to define a second candidate η̂′′ as follows:
• If η̂′ 6∈ X̂ N , then η̂′′ := η̂(t−).
• If η̂′ ∈ X̂ N and for some i ∈ {1, . . . , N }

exp
[
−β

(
H(U(η̂′))− H(U(η̂(t−)))

)]
≥ Ui,θi (t) and θi (t) 6= θi (t−), (2.23)

then η̂′′ := η̂′.
• If η̂′ ∈ X̂ N and for all i ∈ {1, . . . , N }

exp
[
−β

(
H(U(η̂′))− H(U(η̂(t−)))

)]
< Ui,θi (t) or θi (t) = θi (t−), (2.24)

then η̂′′ := η̂(t−).
3. Define η̂(t) as the configuration obtained from η̂′′ by an appropriate local permutation of the

positions of the particles (so that U(η̂(t)) = U(η̂′′)).
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Two permutation rules are often considered in the literature:

• η̂(t) := η̂′′ (no permutation at all);
• if the first candidate did not violate the exclusion (i.e., if η̂′ ∈ X̂ N ), then η̂(t) := η̂′′, while if
η̂′ 6∈ X̂ N , then η̂(t) is obtained from η̂′′ = η̂(t−) by exchanging the position of the particles
responsible for the violation of the exclusion.

The latter rule is often used when the dynamics is built from Poisson processes associated with
bonds rather than sites. In De Masi, Ianiro, Pellegrinotti and Presutti [3] standard permutation
rules are combined on the basis of particle hierarchy. All these permutation rules satisfy a local
permutation hypothesis according to the following definitions:

Definition 2.2.1. Associate with each η̂ ∈ X̂ N the cluster partition on {1, . . . , N } induced by the
following equivalence relation: two particles labelled i and j are equivalent when i = j or when
they are in the same cluster of U(η̂)cl .

Local Permutation Hypothesis: The permutation performed respects the cluster partition
of η̂(t−).

In the next section we will introduce a new permutation rule for further application to
metastability. In the following we will work under the general assumption that our Local
Permutation Hypothesis is satisfied.

It is easy to see that the process defined by

(ηt )t≥0 :=
(

U(η̂(t))
)

t≥0 (2.25)

evolves according to the rules defined in (1.1) and (1.2). This process is reversible with respect
to the canonical Gibbs measure defined by

νN (η) :=
e−βH(η)1X N (η)

Z N
, η ∈ X , (2.26)

where Z N is the normalizing partition sum.

2.3. Free, active and sleeping particles

Definition 2.3.1. We say that a particle i ∈ {1, . . . , N } is free at time t0 ≥ 0 if there exists a
trajectory starting from η̂(t0),

η̂ : t ∈ [t0, t0 + T ] 7−→ η̂(t) ∈ X̂ N , (2.27)

that respects the rules of the dynamics and satisfies

(i) ‖η̂i (t0 + T )− η̂i (t0)‖2 > T 1/2
α ,

(ii) ∀t ∈ [t0, t0 + T ]: U(η̂(t))cl
= U(η̂(t0))cl .

Remark. Here, T 1/2
α plays the role of a reference distance that is almost of the order of the

typical inter-particle distance. Note that the definition of a free particle only depends on the
moves that are allowed by the dynamics, and that T has no role to play other than that of being
positive in order to make (i) possible. Whether or not a particle is free depends on the present
configuration only. For t < Tα,λ (i.e., prior to the first anomalous concentration; recall (2.7)) the
clusterized part of ηt consists of small islands (the clusters of ηt ) surrounded by a sea (the single
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Fig. 1. Each particle is represented by a unit square. Particles 1–5 and 16 are free, particles 6–9, 10 and 11–15 are not
free, while the other particles are clusterized.

connected component of Λβ \ ηcl
t that wraps around the torus). If these islands are frozen, then

the free particles are those that can travel anywhere in the sea without attaching themselves (this
is a consequence of our Local Permutation Hypothesis), possibly in a cooperative way only (we
look at the existence of a trajectory of the whole process η̂ on X̂ N and not at the trajectory of a
single particle on Λβ ). If we denote by η f

t the set of sites occupied by the free particles, then we

have η f
t ⊂ ηt \ η

cl
t , in some cases with strict inclusion (see Fig. 1).

We can now define active and sleeping particles. Unlike for free particles, here we do need to
know the history of the particle.

Definition 2.3.2. For t > eDβ , we say that a particle is sleeping at time t if it never was free
between times t − eDβ and t . We call a non-sleeping particle active. By convention, we say that
prior to time eDβ all particles are active. With each particle i we associate, at any time t , its
wake-up time

wi (t) := inf{s ∈ [0, t): particle i is active during the whole time interval [s, t]}. (2.28)

By convention, for a sleeping particle at time t we put wi (t) = inf∅ = ∞.

As announced in Section 1, we will derive a spread-out property for active particles only.
Consequently, the fewer sleeping particles there are, the stronger are our results. That is why we
introduce a last example of local permutation rule, intended to minimize their number. At each
time t , we define a hierarchy on the particles in all the clusters C of ηt : the later the particles lose
their freedom, the higher they are in the hierarchy.

Special permutation rule: If some particles were in some cluster C at time t− and were free in
η̂′′ at time t−, then η̂(t) is obtained from η̂′′ by exchanging randomly their positions with those
of the higher particles in the hierarchy of C at time t−.
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2.4. Random walk with pauses and QRWs

We define a new process Z = (Z1, . . . , Z N ) on ΛN
β , coupled to η̂ and ζ . To do so, we start

from Z(0) := η̂(0) = ζ(0) and apply the following rule each time the process ζ changes position:

∀i ∈ {1, . . . , N } : Zi (t) :=

{
Zi (t−)+ ζi (t)− ζi (t−) if i was free at time t−,
Zi (t−) if i was not free at time t−.

(2.29)

Then Z is a process of “random walks with pauses” according to the following definition.

Definition 2.4.1. A process Z = (Z1, . . . , Z N ) on ΛN
β is called a random walk with pauses

(RWP) associated with the stopping times

0 = σi,0 = τi,0 ≤ σi,1 ≤ τi,1 ≤ σi,2 ≤ τi,2 ≤ · · · , i ∈ {1, . . . , N }, (2.30)

if, for any i ∈ {1, . . . , N }, Zi is constant on all time intervals [σi,k, τi,k], k ∈ N0, and if the
process Z̃ = (Z̃1, . . . , Z̃ N ) obtained by cutting off, for each i , these pause intervals, i.e.,

Z̃i (s) := Zi

(
s +

∑
k< ji (s)

(τi,k − σi,k)

)

with ji (s) := inf

{
j ∈ N: s +

∑
k< j

(τi,k − σi,k) ≤ σi, j

}
, (2.31)

is an IRW-process by law.

Indeed, for fixed i ∈ {1, . . . , N }, define by induction the sequence of stopping times

0 = σi,0 = τi,0 ≤ σi,1 ≤ τi,1 ≤ σi,2 ≤ τi,2 ≤ · · · (2.32)

with

∀k ∈ N:
{
σi,k := inf{t > τi,k−1: i is not free at time t},
τi,k := inf{t > σi,k : i is free at time t}.

(2.33)

Then Zi is a Markov process that does not move during the time intervals [σi,k, τi,k], k ∈ N0
(these are the pause intervals), and outside these time intervals moves exactly like a simple
random walk in continuous time. Z̃ is an IRW-process as a consequence of the independence
of the Poisson processes θ1, . . . , θN and the increments (ei,k)i∈{1,...,N },k∈N in (2.19). Note that,
for the same reasons, Z − ζ is a process of random walks with pauses during the time intervals
[τi,k, σi,k+1], k ∈ N0. Note also that during any of these time intervals η̂i , Zi and ζi evolve
jointly, i.e., the pair differences are constant.

Apart from the length of these pauses – for which we introduced the distinction between active
and sleeping particles – we need to control two quantities to prove our ideal gas approximation:

• The number of pauses of the processes Zi prior to time T .
• The distance between the processes η̂ and Z .

The smaller these are, the closer are η̂ and ζ . This is the idea that leads us to introduce the
notion of Quasi-Random Walks.

Definition 2.4.2. We say that a process ξ = (ξ1, . . . , ξN ) on ΛN
β is a Quasi-Random Walk

process with parameter α > 0 up to stopping time T , written as QRW(α, T ), if there exists
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a coupling between ξ and an RWP-process Z associated with the stopping times

0 = σi,0 = τi,0 ≤ σi,1 ≤ τi,1 ≤ σi,2 ≤ τi,2 ≤ · · · , i ∈ {1, . . . , N }, (2.34)

such that: ξ(0) = Z(0), for any i ∈ {1, . . . , N }, ξi and Zi evolve jointly (ξi − Zi is constant)
outside the pause intervals [σi,k, τi,k], k ∈ N0, and for any t0 ≥ 0 the following events occur with
probability 1− SES uniformly in i and t0:

Fi (t0) :=
{∣∣{k ∈ N: σi,k ∈ [t0 ∧ T , (t0 + Tα) ∧ T ]

}∣∣ ≤ l(β)
}
,

Gi (t0) :=
{
∀ k ∈ N,∀ t ≥ t0: σi,k ∈ [t0 ∧ T , (t0 + Tα) ∧ T ]
⇒

∥∥ξ(t ∧ τi,k ∧ T )− ξ(t ∧ σi,k ∧ T )
∥∥

2 ≤ l(β)
}
,

(2.35)

for some β 7→ l(β) satisfying

lim
β→∞

1
β

ln l(β) = 0. (2.36)

Remarks. 1. In other words, ξ is a QRW(α, T )-process if “up to time T ” it can be coupled to
an RWP-process Z (Definition 2.4.1) with few pause intervals on time scale Tα and such that
in each of these pause intervals ξ has a small variation. More precisely, both the number of
pause intervals and the variation of ξ are bounded by the same quantity l(β), which by (2.36)
is exponentially negligible. Outside these pause intervals ξ behaves like an IRW-process. We
use the expression “up to time T ” because the QRW-property does not imply anything about
the process after time T . If t0 ≥ T , then the events described in (2.35) are trivially verified.
The parameter α determines the reference time Tα , which has to be thought of as a time
smaller than but close to 1/ρ (recall (2.2)).

2. Any RWP-process is a QRW(α,∞)-process provided the pauses are few. For example, a
system of random walks in a random environment with local traps, where the particles get
stuck during random times, is a QRW(α,∞)-process as soon as the traps are sufficiently
sparse (typically with density ≤ e−∆β ).

3. The first RWP-process Z we constructed at the beginning of this section was also coupled
to an IRW-process ζ = (ζ1, . . . , ζN ) such that ζ(0) = Z(0) and, for any i ∈ {1, . . . , N }, ζi
evolves jointly with Zi (and η̂i ) outside the pause intervals [σi,k, τi,k], k ∈ N0. It is easy to
show that any RWP-process Z can be coupled to an IRW-process ζ with such properties. This
implies, in particular, that Z − ζ is an RWP-process with pauses during the time intervals
[τi,k, σi,k+1], k ∈ N0. In the following we will assume that a generic QRW(α, T )-process ξ
is not only coupled to an RWP-process Z associated with the stopping times

0 = σi,0 = τi,0 ≤ σi,1 ≤ τi,1 ≤ σi,2 ≤ τi,2 ≤ · · · , i ∈ {1, . . . , N }, (2.37)

but also to such an IRW-process ζ . In addition, for any QRW(α, T )-process ξ there is a
natural generalization of the concepts of free, active and sleeping particles. We say that particle
i is free outside the pause intervals of the coupled process Zi , and define sleeping and active
particles as in Definition 2.3.2.

3. Main results

In Section 3.1 we state that Kawasaki dynamics is a QRW-process. In Section 3.2 we
formulate some consequences of the QRW-property. In Section 3.3 we formulate a lower bound
for the spread-out property of Kawasaki dynamics that is stronger than the one implied by the
QRW-property. Proofs are given in Sections 4 and 5.
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3.1. Kawasaki dynamics as a QRW-process

Theorem 3.1.1. For any increasing unbounded function λ satisfying (2.1) and any α ∈ (0,∆),
η̂ is a QRW(α, Tα,λ)-process. Moreover, the associated function l can be taken to be

l(β) := (∆β)cst λ(β)8 . (3.1)

Remark. As will become clear from the proof of Theorem 3.1.1 in Section 5.2, the role of the
random time Tα,λ is crucial. The fact that the QRW-property holds only up to this time is not a
technical restriction: we are describing the Kawasaki dynamics prior to anomalous concentration
and we may expect that its behavior changes beyond Tα,λ, for instance when the dynamics has
grown a large cluster. In Section 6 we will give estimates on Tα,λ in the three regimes mentioned
in Section 1.2 (stable, metastable and unstable). In particular, we will see that in the stable regime
the QRW-property itself in some sense preserves the absence of anomalous concentration. This is
because an IRW-process produces anomalous concentration with a small probability, and hence
so does a QRW-process in the stable regime.

3.2. Consequences of the QRW-property

We can now generalize the non-superdiffusivity and the spread-out property stated in
(1.4)–(1.8) to general QRW-processes. To that end, we introduce a standard behavior event Ω (δ)

of probability 1− SES and we prove both with respect to P(δ), the conditional probability given
Ω (δ) defined by

P(δ)(·) := P(·|Ω (δ)). (3.2)

We recall that a generic QRW-process ξ is assumed to be coupled to an RWP-process Z , but also
to an IRW-process ζ (third remark after Definition 2.4.2).

Definition 3.2.1 (Standard Behavior Event). For δ > 0, let

Ω (δ)
:=

N⋂
i=1

(
Tα⋂

k=1

Fi (kTα) ∩ Gi (kTα)

)
∩

 T 2
α⋂

m=1

J 1
i,m ∩ J 2

i,m

 , (3.3)

where Fi (t0) and Gi (t0) are defined in Definition 2.4.2 and

J 1
i,m :=

{
∀t ∈ [0,m + 1]: ‖Zi (t)− Zi (0)‖2 ≤ e

δ
10β
√

m
}
,

J 2
i,m :=

∀t ∈ [0,m + 1]: ‖(Zi − ζi )(t)− (Zi − ζi )(0)‖2

≤ e
δ

10β

√ ∑
σi,k≤m

T ∧ τi,k ∧ m − T ∧ σi,k

 .
(3.4)

In other words, Ω (δ) is the event that excludes: (1) a number of pauses larger than l = l(β)
for any particle in any time interval [kTα, (k+ 1)Tα] before time T ; (2) trajectories longer than l
for any unfree particle before time T ; (3) superdiffusive behavior for the RWP-processes Z and
Z − ζ . (Since, for any i , Zi − ζi takes its pauses when Zi does not, the sum that appears in the
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definition of J 2
i,m is the difference between m and the total length of the pause intervals of Zi −ζi

up to time m.)

Proposition 3.2.2. For any δ > 0, P(Ω (δ)) ≥ 1− SES uniformly in η̂(0).

Proof. Note that Ω (δ) is the intersection of an exponential number of events each of which
occurring with probability 1 − SES uniformly in i , k and m. As far as the events Fi (kTα) and
Gi (kTα) are concerned, this is a consequence of Definition 2.4.2. Since Z and Z − ζ are RWP-
processes, the events J 1

i,m and J 2
i,m occur with probability 1 − SES, uniformly in i and m, as a

consequence of the obvious extension of (2.16) to RWP-processes. �

Theorems 3.2.3–3.2.5 below are our main results for QRW-processes and will be proven in
Section 4.

Theorem 3.2.3 (Non-Superdiffusivity). Let ξ be a QRW(α, T )-process and δ > 0. Then there
exists a β0 > 0 such that, for all T = T (β) ∈ [2, T 2

α ] and all i ∈ {1, . . . , N },

∀β > β0: P(δ)
(

T > T and ∃t ∈ [0, T ): ‖ξi (t)− ξi (0)‖2 > eδβ
√

T
)
= 0. (3.5)

Consequently,

P
(

T > T and ∃t ∈ [0, T ): ‖ξi (t)− ξi (0)‖2 > eδβ
√

T
)
≤ SES (3.6)

uniformly in η̂(0), i ∈ {1, . . . , N } and T = T (β) ∈ [2, T 2
α ].

Theorem 3.2.4 (Spread-out Property, Upper Bound). Let ξ be a QRW(α, T )-process and δ > 0.
Then there exists a β0 > 0 such that, for all T = T (β) ∈ [2, T 2

α ] and all I ⊂ {1, . . . , N }, if
(Λi )i∈I is a family of square boxes contained in Λβ such that

∀i ∈ I : |Λi | ≥

⌈
T

Tα

⌉(⌈
T

Tα

⌉
∨ eDβ

)
, (3.7)

then

∀β > β0: P(δ) (T > T and ∀i ∈ I : ξi (T ) ∈ Λi and wi (T ) = 0) ≤
∏
i∈I

(
|Λi |eδβ

T

)
.

(3.8)

Theorem 3.2.5 (Spread-out Property, Lower Bound). Let ξ be a QRW(α, T )-process, δ > 0,
and I a finite subset of N. Then there exists a β0 > 0 such that the following holds for any
T = T (β) ∈ [2, T 2

α ] and any family (Λi )i∈I of square boxes contained in Λβ :

(i) If

∀i ∈ I : |Λi | ≥ eδβ
⌈

T

Tα

⌉(⌈
T

Tα

⌉
∨ eDβ

)
and Λi ⊂ B2

(
ξi (0),

√
T
)
, (3.9)

then

∀β > β0: P(δ) (T ≥ T or ∀i ∈ I : ξi (T ) ∈ Λi or wi (T ) > 0)

≥

∏
i∈I

(
cst |Λi |

T

)
. (3.10)
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(ii) If, in addition,

ε := sup
i∈I

4|Λi |

T
≤ 1 and ∀i ∈ I : ξi (0) 6∈ [Λi ]√

|Λi |
, (3.11)

then

∀β > β0: P(δ)
(

T + εT ≥ T
or ∀i ∈ I : τΛi (ξi ) ∈ [T, T + εT ] or wi (T + εT ) > 0

)
≥

∏
i∈I

(
|Λi |

T eδβ

)
. (3.12)

Remarks. 1. Theorem 3.2.5 generalizes the spread-out property in (1.7) for particles that are
active during the whole time interval [0, T ], i.e., particles for which wi (T ) = 0. For an active
particle at time T withwi (T ) > 0, by time translation, we get the same estimate with 1

T−wi (T )
replacing T .

2. Since we control the number of pause intervals and the behavior of the QRW(α, T )-process
during these intervals on the reference scale Tα only, we need to distinguish two cases: (1)
T ≤ Tα; (2) T > Tα . In case (1), condition (3.7) reads (∀i ∈ I : |Λi | ≥ eDβ) and we have a
result “at resolution 1 : eDβ”: instead of considering the probability to be at a site z at time
T we consider the probability to be in a square box with volume of order eDβ at time T . In
case (2), we have a result at lower resolution. Similar considerations hold in both cases for the
interpretation of condition (3.9).

3. In (3.12) the quantity εT plays the role of a temporal indetermination on τΛi (ξi ). This
temporal indetermination is of order supi∈I |Λi |: the temporal and spatial resolutions are of
the same order.

4. In Theorem 3.2.4, |I |may grow with β, while β0 is independent of I . In Theorem 3.2.5, |I | is
a finite number independent of β, while β0 depends on I . If we would be able to prove (3.10)
and (3.12) for any set of indices I such that |I | is an increasing unbounded function of β, then
we would have SES lower bounds for a conditional probability given an event of probability
1 − SES: estimates with a limited relevance. This is not the case for the SES upper bounds
given for such sets I in Theorem 3.2.4. We will make use of these bounds in Section 6.

3.3. Stronger lower bounds for Kawasaki dynamics

As far as Kawasaki dynamics is concerned, for further application to the study of metastability
we need some lower bounds to get a spread-out property at higher resolution—typically at a
resolution of order 1 : 1 or 1 : λ. In Section 5 we will prove the following.

Theorem 3.3.1. Let I be a finite subset of N, η̂(0) ∈ X̂ N such that Tα,λ > 0, T = eCβ

for some C > 0 different from U and 2U, and (zi )i∈I ∈ (Λβ)|I | such that, for all i in I ,
‖zi − η̂i (0)‖2 ≤ 1

2

√
T .

(i) If T ≤ Tα , all the particles with label i ∈ I are free at time t = 0 and

∀i ∈ I : inf
1≤ j≤N

‖zi − η̂ j (0)‖1 > 13λ and inf
j∈I, j 6=i

‖zi − z j‖1 > 11, (3.13)

then, for any δ > 0,

P
(
∀i ∈ I :

⌊
τ{zi }(η̂i )

⌋
= bT c

)
≥

(
1

T eδβ

)|I |
− SES (3.14)

uniformly in η̂(0), T and (zi )i∈I .
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(ii) If T ≤ Tα , T > eDβ and (3.13) is satisfied, then, for any δ > 0,

P
(
∀i ∈ I :

⌊
τ{zi }(η̂i )

⌋
= bT c or wi (T ) > 0

)
≥

(
1

T eδβ

)|I |
− SES (3.15)

uniformly in η̂(0), T and (zi )i∈I .
(iii) If Tα < T < T 2

α (T
−1/2
α ∧ e−Dβ) and

∀i ∈ I : inf
1≤ j≤N

‖zi − η̂ j (0)‖1 > 17λ and inf
j∈I, j 6=i

‖zi − z j‖1 > 9λ, (3.16)

then, for any δ > 0,

P
(
T > Tα,λ or ∀i ∈ I :

⌊
τ[zi ]4λ(η̂i )

⌋
= bT c or wi (T ) > 0

)
≥

(
1

T eδβ

)|I |
− SES (3.17)

uniformly in η̂(0), T and (zi )i∈I .

Remark. The condition C 6= U, 2U is not actually necessary. In order to remove it, some of the
estimates in Section 5.3 (e.g. the last estimate of Lemma 5.3.2) would need to be derived at a
higher order of precision. We will not insist on this point.

4. Consequences of QRW-property: Proofs

In Sections 4.1–4.3 we prove Theorems 3.2.3–3.2.5, respectively.

4.1. Non-superdiffusivity

Proof of Theorem 3.2.3. Fix δ > 0 and i ∈ {1, . . . , N }. By (3.3), on Ω (δ), Zi will not have more
than dT/Tαel pauses up to time T ∧ T , and during each of these pauses the distance between Zi
and ξi will not increase by more than `. Consequently (recall that T ≤ T 2

α )

sup
t≤T∧T

‖ξi (t)− Zi (t)‖2 ≤

⌈
T

Tα

⌉
l2
≤ e

δ
10β
√

T on Ω (δ) (4.1)

for all β ≥ β1(l, δ). In addition,

sup
t≤T
‖Zi (t)− Zi (0)‖2 ≤ e

δ
10β
√

T on Ω (δ). (4.2)

Consequently (by the triangular inequality),

P(δ)
(
∃t ∈ [0, T ]: ‖ξi (t)− ξi (0)‖2 > eδβ

√
T
)
= 0 (4.3)

for all β ≥ β0(l, δ). �

4.2. Spread-out property, upper bound

Proof of Theorem 3.2.4. On Ω (δ), for any i ∈ I , ‖ξi − Zi‖2 can be estimated from the above as
in Section 4.1, to get

sup
t≤T∧T

‖ξi (t)− Zi (t)‖2 ≤

⌈
T

Tα

⌉
l2
≤ e

δ
9β
√
|Λi | on Ω (δ) (4.4)
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for all β ≥ β1(l, δ). In addition, if i never falls asleep during the whole time interval [0, T ∧ T ],
then, by using that

Ω (δ)
⊂

N⋂
i=1

T 2
α⋂

m=1

J 2
i,m, (4.5)

we also get

sup
t≤T∧T

‖Zi (t)− ζi (t)‖2 ≤ e
δ

10β

√⌈
T

Tα

⌉
leDβ ≤ e

δ
9β
√
|Λi | on Ω (δ) (4.6)

for all β ≥ β2(l, δ) > β1(l, δ). Consequently (by the triangular inequality),

ξi (T ) ∈ Λi ⇒ ζi (T ) ∈ [Λi ]
e
δ
8 β
√
|Λi |

(4.7)

for all β ≥ β3(l, δ) > β2(l, δ). If we choose β3 large enough so that also∣∣∣∣[Λi ]
e
δ
8 β
√
|Λi |

∣∣∣∣ ≤ |Λi |e
δ
2β and P(Ω (δ)) ≥

1
2
, (4.8)

then it follows, for all β ≥ β3(l, δ) and by the spread-out property for the IRW-process, that

P(δ) (T > T and ∀i ∈ I : ξi (T ) ∈ Λi and wi (T ) = 0)

≤ 2P
(
Ω (δ)
∩ {T > T and ∀i ∈ I : ξi (T ) ∈ Λi and wi (T ) = 0}

)
≤ 2P

(
∀i ∈ I : ζi (T ) ∈ [Λi ]

e
δ
8 β
√
|Λi |

)

≤

∏
i∈I

(
cst
|Λi |e

δ
2β

T

)
, (4.9)

so that we get (3.8) for some β0 ≥ β3 large enough to make eδβ an upper bound for the factors
cst e

δ
2β of the latter product. �

4.3. Spread-out property, lower bound

Proof of Theorem 3.2.5. Let

q :=
1
8

inf
i∈I

√
|Λi |, (4.10)

and observe that⌈
T

Tα

⌉
l2c + e

δ
10β

√⌈
T

Tα

⌉
leDβ ≤ q (4.11)

for all β ≥ β1(l, δ), so that, as in Section 4.2, for the particles i ∈ I that never fall asleep during
the whole time interval [0, T ∧ T ],

sup
t≤T∧T

‖ξi (t)− ζi (t)‖2 ≤ q on Ω (δ). (4.12)



754 A. Gaudillière et al. / Stochastic Processes and their Applications 119 (2009) 737–774

(i) For i ∈ I , let Λ′i be the largest square box in Λβ such that[
Λ′i
]

q ⊂ [Λi ] . (4.13)

On the one hand, we have, for all β ≥ β1,

P
(
∀i ∈ I : ζi (T ) ∈ Λ′i

)
≤ P(δ) (T ≤ T or ∀i ∈ I : ξi (T ) ∈ Λi or wi (T ) > 0)

+ (1− P(Ω (δ))). (4.14)

On the other hand, by the spread-out property for the IRW-process, we have

P
(
∀i ∈ I : ζi (T ) ∈ Λ′i

)
≥

∏
i∈I

cst |Λ′i |
T
≥

∏
i∈I

cst
(
|Λi | − 4q

√
|Λi |

)
T

≥

∏
i∈I

cst |Λi |

T
. (4.15)

Since |I | is finite, does not depend on β, and T ≤ T 2
α , the latter product is not SES. Consequently,

1− P(Ω (δ)) ≤
1
2

P
(
∀i ∈ I : ζi (T ) ∈ Λ′i

)
(4.16)

for all β ≥ β2(l, δ) > β1(l, δ) that depend on the law of ξ only. This proves (3.10) for all
β0 ≥ β2.

(ii) Assume now that ξi (0) 6∈ [Λi ]√
|Λi |

for all i ∈ I and define, for any i ∈ I ,

Λ′′i := [Λi ]q . (4.17)

On the one hand, by Brownian approximation and scaling, we have

P
(
∀i ∈ I : τΛ′′i (ζi ) ∈ [T, T + |Λi |e−

δ
20β ]

)
≥

∏
i∈I

cst |Λi |

T eδ10β . (4.18)

On the other hand, for all β ≥ β3(l, δ) that depend on the law of ξ only, we can show as
previously that

P
(
∀i ∈ I : τΛ′′i (ζi ) ∈ [T, T + |Λi |e−

δ
20β ]

)
≤ P(δ)

(
T ≤ T or ∀i ∈ I : wi (T ) > 0 or

{
τΛi (ξi ) > T

Λi ⊂ B2

(
ξi (T ), 2

√
|Λi |

) )

+
1
2

P
(
∀i ∈ I : τΛ′′i (ζi ) ∈ [T, T + |Λi |e−

δ
20β ]

)
. (4.19)

Since

|Λi | ≥ eδβ
⌈

T

Tα

⌉(⌈
T

Tα

⌉
∨ eDβ

)
∀i ∈ I, (4.20)

we also have

|Λi | ≥ eδβ
⌈
εT

Tα

⌉(⌈
εT

Tα

⌉
∨ eDβ

)
∀i ∈ I, (4.21)

provided that

ε := sup
i∈I

4|Λi |

T
≤ 1. (4.22)
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We may now conclude the proof by using (4.18) and (4.19), the Markov property at time T , and
(3.10) with εT instead of T . �

5. Back to Kawasaki dynamics

In Section 5.1 we state a key result from Gaudillière [7] for the non-collision probability of
a random walk with obstacles. In Section 5.2 we prove Theorem 3.1.1. In Section 5.3 we prove
Theorem 3.3.1.

5.1. Preliminaries

Let R be the collection of all finite sets of rectangles on Z2. We begin by defining a family
of transformations (gr )r≥0 on R grouping into single rectangles those rectangles that have a
distance smaller than r between them. To do so, with r ≥ 0 and

S =
{

R1, R2, . . . , R|S|
}
∈ R (5.1)

we associate a graph G = (V, E) with vertex set

V :=
{
1, 2, . . . , |S|

}
(5.2)

and edge set

E :=

{
{i, j} ⊂ V : i 6= j and inf

s∈Ri
inf

s′∈R j
‖s − s′‖∞ ≤ r

}
. (5.3)

Calling C the set of the connected components of G, we define

ḡr : S ∈ R 7−→
{

RC

(⋃
i∈c

Ri

)}
c∈C

∈ R, (5.4)

where RC denotes the circumscribed rectangle, and gr (S) ∈ R is defined as the limit set of the
iterates of S under ḡr (which clearly exists because |S| is finite). Note that gr (S) = S means that
‖R − R′‖∞ > r for all R, R′ ∈ S that are distinct.

We associate with S ∈ R its perimeter

prm(S) :=
∑
R∈S

|∂R| (5.5)

and we use the notation

S := supp S :=
⋃
R∈S

R ⊂ Z2. (5.6)

For S ∈ R, n ∈ N and ζ = (ζ1, . . . , ζn) an IRW-process on (Z2)n , we define the first collision
time

Tc := inf
{

t ≥ 0 : ∃R ∈ S, ∃(i, j) ∈ {1, . . . , n}2, inf
s∈R
‖ζi (t)− s‖1 = 1

or ‖ζi (t)− ζ j (t)‖1 = 1
}
. (5.7)
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Proposition 5.1.1 (Gaudillière [7]). There exists a constant c0 ∈ (0,∞) such that, for all n ≥ 2
and p ≥ 2 the following holds. If S ∈ R is such that{

g3(S) = S,
prm(S) ≤ p,

(5.8)

and ζ(0) ∈ (Z2)n is such that inf
i 6= j
‖ζi (0)− ζ j (0)‖1 > 1,

inf
i

inf
s∈S
‖ζi (0)− s‖∞ > 3,

(5.9)

then, for the IRW-process on (Z2)n that starts from ζ(0),

∀T ≥ T0, P (Tc > T ) ≥
1

(ln T )ν
(5.10)

with {
ν := c0n4 p2 ln p,
T0 := exp{ν2

}.
(5.11)

We will need two other results derived in [7], namely, the estimate

∀S ∈ R,∀r ≥ 0 : prm(gr (S)) ≤ prm(S)+ 4r(|S| − |gr (S)|), (5.12)

and the following corollary of Proposition 5.1.1:

Proposition 5.1.2. There is a constant c′0 ∈ (0,∞) such that, if n ≥ 2, S ∈ R, ζ an IRW-process
on (Z2)n verifying (5.8) and (5.9) for some p ≥ 2, and z ∈ (Z2)n and T > 0 satisfy

inf
i 6= j
‖zi − z j‖1 > 1,

inf
i

inf
s∈S
‖zi − s‖∞ > 3,

sup
i
‖zi − ζi (0)‖2 ≤

√
T ,

T ≥ c′0T0,

(5.13)

with (ν, T0) defined in (5.11), then

P (Tc > T and ∀i ∈ {1, . . . , n}, ζi (T ) = zi ) ≥
Ln,p(T )

T n , (5.14)

where Ln,p is the slowly varying function defined as

Ln,p(T ) = exp{−c′0n4 p3ν2(ln ln T )2}, T > 1. (5.15)

5.2. QRW-property

Proof of Theorem 3.1.1. We give the proof by showing that the RWP-process Z constructed in
Section 2.4 fits with Definition 2.4.2. If η̂(0) is such that Tα,λ = 0, then there is nothing to prove.
We therefore assume Tα,λ > 0.
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We associate with each particle i a ball centered at its initial position with radius

r := e
α
4 β
√

Tα, (5.16)

and we call B0 their union:

B0 :=

N⋃
i=1

B2
(
η̂i (0), r

)
. (5.17)

Since r is much larger than the diffusive distance associated with time Tα , this suggests a partition
of {1, . . . , N } into clouds of potentially interacting particles on time scale Tα . We say that two
particles are in the same cloud when they belong to the same connected component of B0. We call
τe the first time when one of the particles leaves B0 (B0 is fixed and does not change with time)
and observe that before τe each cloud evolves independently of the others. With these definitions
we can divide the proof into 4 steps:

1. We estimate from the above the number of particles in each cloud using Tα,λ > 0.
2. Given i ∈ {1, . . . , N }, for any s ≤ Tα and conditionally on {s < τe}, we estimate from below

the probability that in the cloud to which i belongs and during the time interval [s, Tα ∧ τe]

no particle loses its freedom. After Step 1, this can be done by using the estimates on the
non-collision probability (Proposition 5.1.1).

3. We deduce from the previous estimates that, with

T := Tα ∧ τe, (5.18)

η̂ is a QRW(α, T )-process associated with the function l defined in (3.1).
4. We use the non-superdiffusivity of the QRW-process (Theorem 3.2.3) to get first that η̂ is a

QRW(α, Tα)-process and second that it is a QRW(α, Tα,λ)-process associated with the same
function l.

Step 1. We divide Λβ into |Λβ |/V square cells of volume

V := e(∆−
α
4 )β . (5.19)

It follows from Tα,λ > 0 that no cell contains more than λ/4 particles at time t = 0. Since
√

V

r
= e

α
8 β , (5.20)

no connected component of B0 can move from one side to the opposite side in any domino made
of two contiguous cells (for β large enough). Consequently, each of these connected components
is contained in a union of four cells, and each cloud contains at most λ particles.

Step 2. Given i ∈ {1, . . . , N } and s ≤ Tα , we call C0 the family of the clusters of η̂(s) that
contain (at time s) some particle of the cloud (defined at time t = 0) to which i belongs. We
define (recall (2.11) and the definition of gr after (5.4))

S0 := {RC(c)}c∈C0
∈ R,

S := g5
(
S0

)
∈ R,[

S
]

1 := {[R]1}R∈S ∈ R.
(5.21)

We note that g3(
[
S
]

1) =
[
S
]

1, and that at time s the gas surrounding [S]1 is made of free particles
only.
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Definition 5.2.1 (Enrichment and Collision Times). Given S ∈ R, we say that the gas
surrounding [S]1 is enriched each time a particle arrives into ∂S from S, and we say that a
collision occurs each time two particles collide outside [S]1 or one particle arrives in ∂ [S]1 from
Λβ \ ([S]1 ∪ ∂ [S]1).

For the system restricted to the cloud to which i belongs (recall that before time τe each
cloud evolves independently of the other ones) we call A(s) the sequence of the following events
defined on the time interval [s, Tα ∧ (τe ∨ s)]:

A1: All the free particles inside [[S]1]3 (if any) leave [[S]1]3 without collision before ηcl

changes. (Note that, after A1 is completed, S contains all the unfree particles and ∂ [S]1,
like [S]1 \ S, does not contain particles.)

A2: The gas surrounding [S]1 evolves without collision up to the first of the following three
stopping times: the next enrichment time, τe ∨ s and Tα .

A3: After each enrichment, the particle responsible for the enrichment moves outside [[S]1]3
without collision and before η|S changes. Subsequently, the gas surrounding [S]1 evolves
without collision up to the next enrichment, and so on, up to time Tα ∧ (τe ∨ s).

Note that A(s) implies that there is no loss of freedom of particles in the cloud to which i belongs
in the time interval [s, Tα ∧ (τe ∨ s)].

To estimate P(A(s)|s < τe) from below, we need some estimates on |∂[S]1|. Since there are
not more than λ particles in the cloud, we have

prm
(
S0

)
≤ 4λ and

∣∣S0

∣∣ ≤ λ, (5.22)

so that, via (5.12),

prm(S) ≤ 24λ and
∣∣S∣∣ ≤ λ. (5.23)

Moreover,

|∂[S]1 | ≤ prm
(
S
)
+ 8

∣∣S∣∣ ≤ 32λ. (5.24)

It is then easy to get

P (A1|s < τe) ≥

(
1

4λ

)cst λ

. (5.25)

Then, using the strong Markov property at the time when the last free particle inside [[S]1]3
leaves it together with Proposition 5.1.1:

P ( A1 ∩ A2| s < τe) ≥

(
1

4λ

)cst λ ( 1
ln Tα

)cst λ6 ln λ

(5.26)

as soon as

Tα = e(∆−α)β ≥ exp
{

cst (λ6 ln λ)2
}
, (5.27)

i.e., β is larger than some β0 that depends on ∆, α and λ only.
Finally, if A(s) occurs, then no particle that exits S can come back. Consequently, there cannot

be more than λ enrichments and we find, using repeatedly the strong Markov property at the
successive enrichment times, that

P (A(s)| s < τe) ≥

[(
1

4λ

)cst λ ( 1
ln Tα

)cst λ6 ln λ
]λ
≥

(
1

ln Tα

)cst λ7 ln λ

. (5.28)
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Step 3. We denote by (τm)m≥1 the increasing sequence of stopping times when a particle loses
its freedom in the cloud i it belongs to. By the strong Markov property and the previous estimate,
we have, for β ≥ β0 and any a,

P (|{m ≥ 1 : τm ≤ T }| ≥ a) ≤

[
1−

(
1

ln Tα

)cst λ7 ln λ
]a

. (5.29)

We also have (recall the definition of σi,k , τi,k in Section 2.4)∣∣{k ∈ N : σi,k ∈ [0, T ]
}∣∣ ≤ 1+ |{m ≥ 1 : τm ≤ T }| , (5.30)

and it is easy to see that, under our Local Permutation Hypothesis (see Section 2.2), for all k ∈ N
and t ≥ 0,∣∣η̂i (t ∧ τi,k ∧ T )− η̂i (t ∧ σi,k ∧ T )

∣∣ ≤ 24λ (1+ |{m ≥ 1 : τm ≤ T }|) . (5.31)

(Define Sm at time τm like S at time s, observe that any unfree particle is contained in Sm up to
time τm+1 ∧ T , and recall that |∂Sm | ≤ 24λ if τm ≤ τe.) Finally, we choose

a :=
(ln Tα)λ

8
− 1

24λ
(5.32)

in (5.29) to get that η̂ is a QRW(α, T )-process for which the function l in Definition 2.4.2 can
be taken as in (3.1). Note that if (2.1) holds, then (2.36) follows.

Step 4. By Theorem 3.2.3, the particles are non-superdiffusive on time scale Tα and up to time
T . This gives

P (Tα = Tα ∧ τe) = 1− SES (5.33)

and implies that η̂ is a QRW(α, Tα)-process associated with the same function l.
To prove that η̂ is a QRW(α, Tα,λ)-process associated with the RWP-process Z , it suffices to

prove that, for any i ∈ {1, . . . , N } and t0 ≥ 0, and conditionally on {Tα,λ > t0}, the inequalities
that appear in Definition 2.4.2 hold with probability 1 − SES uniformly in i and t0. Since, on
the one hand, η and Z are Markov processes and, on the other hand, Z − Z(t0) + η̂(t0) and Z
have the same pause intervals and evolve jointly, this is a direct consequence of the fact that η̂ is
a QRW(α, Tα)-process. �

As a byproduct of this proof we get the following.

Proposition 5.2.2. If λ satisfies (2.1), α < ∆, and η̂(0) is such that Tα,λ > 0, then η̂ is a
QRW(α, Tα)-process.

5.3. Stronger lower bounds for the spread-out property

In this section we prove Theorem 3.3.1 using as a key estimate Proposition 5.1.2. Like in
Section 5.2, this estimate cannot be applied directly because of the gas enrichment phenomenon.
There we dealt with this difficulty by observing that, in the absence of collisions in the gas
surrounding some

[
S
]

1 ∈ R, there are at most λ effective enrichments in each cloud of potentially
interacting particles. Here, however, we need more information. To get this, we extend to the
present situation a few easy results on the local Kawasaki model in den Hollander, Olivieri and
Scoppola [11] coming from the standard cycle and cycle-path theory introduced by Freidlin and
Wentzell [6] (see also Olivieri and Vares [14]). We need to extend this theory because it only
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applies to a finite state space, while in the present situation we have a state space with cardinality
of order λ2κλ, with κ > 0 and λ our growing unbounded function of β. However, since λ is only
slowly growing, the situation we face is not so qualitatively different from the standard one. In
addition, we do not generalize the full theory to our context: we only give the definitions and
prove the lemmas that we need in order to complete the proof of Theorem 3.3.1. The further
study of metastability will require a much more complete analysis of cycles and cycle paths.
This will be the object of the forthcoming paper, Gaudillière, den Hollander, Nardi, Olivieri and
Scoppola [8].

For S ∈ R such that g5(S) = S, we define the associated local Hamiltonian HS by
(recall (1.2))

HS(η) =
∑
R∈S

H(η|R)+∆|η|R∪∂R |, ∀ η ∈ X = {0, 1}Λβ . (5.34)

Definition 5.3.1. Given S ∈ R with g5(S) = S and k ∈ {0, 1, 2} such that kU < ∆, we say that
a configuration η ∈ X is kU -reducible if there is a sequence of configurations η = η0, η1, . . . , ηn
in X , each of them obtained from the previous one by a displacement of a single particle to a
nearest-neighbor vacant site, such that{

HS(ηn) < HS(η),

sup
j

HS(η j ) ≤ HS(η)+ kU. (5.35)

We say that a labelled configuration η̂ is kU -reducible when U(η̂) is (recall (2.18)).

Remark. If 2U < ∆, then the only 2U -irreducible configurations are the configurations without
particles inside S. Indeed, any cluster carries at least four particles that can only be separated at
cost 2U .

Lemma 5.3.2. Let λ = λ(β) satisfy (2.1), κ > 0, S ∈ R such that g5(S) = S and prm(S) ≤ λκ ,
and let the initial labelled configuration η̂(0) be such that at time t = 0 there are no particles
inside ∂ [S]1, no particles inside [S]1 \ S, and not more than λ particles inside S. Let τc be the
first collision time for the gas surrounding [S]1 and τ+ its first enrichment time.

(1) If η̂(0) is kU-reducible, then, for any δ > 0,

P
(
∃t ≤ e(kU+δ)β , η̂(t) is kU-irreducible or τ+ = t

∣∣∣ τc > e(kU+δ)β
∧ τ+

)
≥ 1− SES (5.36)

uniformly in S and η̂(0).
(2) If η̂(0) is kU-irreducible, then, for any δ > δ′ > 0,

P
(
τ+ ≤ e((k+1)U−δ)β

∣∣∣ τc > e((k+1)U−δ)β
∧ τ+

)
≤ e−δ

′β
+ SES (5.37)

uniformly in S and η̂(0).

Proof. See Appendix A. �

We are now ready to prove (i), (ii) and (iii) of Theorem 3.3.1.
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Proof of Theorem 3.3.1. Proof of (i). Let η̂(0), I , T and (zi )i∈I satisfy the required hypotheses.
We define the clouds of potentially interacting particles on time scale Tα as in Section 5.2. By
Theorem 3.2.3 and Proposition 5.2.2, with probability 1 − SES and uniformly in η̂(0) and I ,
each cloud evolves independently of the others up to time Tα . Consequently, it suffices to prove
the result when all the particles i ∈ I belong to the same cloud. We have seen in Section 5.2 that
each cloud contains at most λ particles and we can now restrict ourselves to considering a single
cloud of n ≤ λ particles.

We call S0 the set of the circumscribed rectangles of the clusters of the initial configuration,
and we define

S′ := g5(S0),

S := S′ ∪ {{zi } : i ∈ I } .
(5.38)

As in (5.23),

prm(S′) ≤ 24λ, (5.39)

and it follows from (3.13) that g5(S) = S. In addition, for β large enough, we have

|I | ≤ λ and |S′| ≤ λ, (5.40)

and so

prm(S) ≤ 24λ+ 4λ = 28λ,

|∂ [S]1 | ≤ 28λ+ 8(λ+ λ) = 44λ.
(5.41)

For the largest k ∈ {0, 1, 2} that satisfies kU < C , we call τr the first time when η̂ is not
kU -reducible with respect to S, and we consider, for the system restricted to the cloud to which
each i ∈ I belongs, the sequence of events A1, A2, A3 defined on the time interval [0, Tα ∧ τr ]

as in Section 5.2 replacing (τe ∨ s) with τr . As Section 5.2, the probability of this sequence of
events can be estimated from below by a non-exponentially small quantity p1:

p1 ≥

(
1

ln Tα

)cst λ7 ln λ

. (5.42)

By Lemma 5.3.2, we make only an SES-error by assuming that the time between each of the
enrichments in this sequence of events and τr ∧ Tα or the successive enrichment is smaller than
e(kU+δ0/2)β , with δ0 > 0 such that

kU + δ0 < C. (5.43)

Since in such a sequence of events there cannot be more than λ enrichments, we get, in particular,
for δ > 0 and β large enough,

P
(
τr < e(kU+δ0)β and τr < τc

)
≥ e−

δ
3β (5.44)

with τc the first collision time in the gas surrounding [S]1 for the system restricted to the cloud
we consider.

We next choose |I | distinct and non-nearest-neighbor sites (z′i )i∈I such that

∀i ∈ I, inf
s∈[S]1

‖z′i − s‖∞ = inf
s∈[{zi }]1

‖z′i − s‖∞ = 4. (5.45)
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Condition (3.13) ensures that we can find such a family (z′i )i∈I . We claim that

P
(
τc ≥ T − 4 and ∀i ∈ I, η̂i (T − 4) = z′i

)
≥

e−
δ
2β

T |I |
. (5.46)

To prove this estimate, we distinguish two cases: k = 2 and k = 0, 1.
k = 2: At time τr , S does not contain particles. The estimate is then a consequence of the

Markov property applied at time τr , the estimate (5.44), and Proposition 5.1.2.
k = 0, 1: There exists a δ1 > 0 such that (k + 1)U − δ1 = C . For all i ∈ I , the probability

that η̂i (T − 4) = z′i , without collision or enrichment for the gas surrounding [S]1 between times
τr and T − 4, can be estimated from below by Proposition 5.1.2 and Lemma 5.3.2. Once again
(5.46) follows from the Markov property applied at time τr .

Finally, using the Markov property at time T − 4 and “driving by hand” the particles after
time T − 4, we obtain

P
(
∀i ∈ I,

⌊
τ{zi }(η̂i )

⌋
= bT c

)
≥

e−δβ

T |I |
(5.47)

for the restricted system. �

Proof of (ii). We can follow the proof of (i) up to (5.46), which we change into

P
(
τc ≥ T − 4,∀i ∈ I : η̂i (T − 4) = z′i or wi (T − 4) > 0

)
≥

e−
2δ
3 β

T |I |
. (5.48)

k = 2: We still have (5.46), which implies (5.48).
k = 0, 1: The previous arguments no longer give (5.46), because there can be some particles

i ∈ I in S at time τr . The arguments now give

P
(
τc ≥ T − 4,∀i ∈ I : η̂i (T − 4) = z′i or η̂i (t) ∈ S ∀t ∈ [0, T − 4]

)
≥

e−
δ
2β

T |I |
. (5.49)

However, a particle i that is confined to S up to time T − 4 > e(D+δ2)β for δ2 > 0 and β
large enough falls asleep before time T − 4 with probability 1 − SES. This can be seen as an
application of Theorem 3.2.4: assume that wi (T − 4) = 0, choose a square box Λi of volume
eDβ that contains the connected component of S to which i remains confined, divide the time
interval [0, e(D+δ2)β ] into eδ2β/2 intervals of length e(D+δ2/2)β , and apply the proposition eδ2β/2

times with δ = δ2/3. Consequently, we get (5.48) for β large enough, and we again conclude
with the Markov property applied at time T − 4. �

Proof of (iii). Let η̂(0), I , T and (zi )i∈I satisfy the required hypotheses. We will work on two
time scales: Tα , which allows for “high resolution estimates” (because on this time scale the
cloud of potentially interacting particles contains a small number of particles), and T , for which
we can use the lower resolution estimates. We will use different tools to deal with different time
scales. The proof will be divided into five steps: the first two steps are relevant only for starting
configurations in which the initial positions η̂i (0) of some particles i ∈ I are “close” to their
associated targets [zi ]4λ.

Step 1. We begin by estimating from below the probability that none of the particles i ∈ I enters
[zi ]4λ before time Tα . To do so, we consider the clouds of potentially interacting particles on
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time scale Tα , we call, for i ∈ I , S′′0,i the set of the circumscribed rectangles of the clusters of
η̂(0) made of particles contained in the cloud to which i belongs, and we define

S′0,i := g5(S
′′

0,i ),

S0,i := S′0,i ∪
{[

z j
]

4λ : j ∈ I
}
.

(5.50)

Observe that, as previously, prm(S′0,i ) ≤ 24λ and note that, by (3.16), g5(S0,i ) = S0,i . In
addition, |S′0,i | ≤ λ and |I | ≤ λ, so that

prm(S0,i ) ≤ 24λ+ λ× 33λ ≤ 34λ2 (5.51)

and

|∂
[
S0,i

]
1 | ≤ 34λ2

+ 8(λ+ λ) ≤ 35λ2 (5.52)

for β large enough.
Let τc,0,i be the collision time associated with

[
S0,i

]
1 for the system restricted to the cloud

that contains i . Using the fact that, with probability 1− SES, the various clouds do not interact
with each other up to time Tα , following the arguments that led to (5.28) or (5.42), and taking
into account (5.52), we conclude that, for any δ > 0,

P
(
∀i ∈ I : τ[zi ]4λ(η̂i ) > Tα

)
≥

∏
i

P
(
τc,0,i > Tα

)
− SES

≥

∏
i

(
1

ln Tα

)cst λ9 ln λ

− SES

≥ (e−δβ)|I | − SES (5.53)

uniformly in η̂(0), T and (zi )i∈I .

Step 2. We deduce from this last estimate a lower bound for the probability that τ1, the first time
when all the particles i ∈ I that never fell asleep are outside [zi ]3e−δβ

√
Tα satisfies

τ1 ≤ Tα ∧ inf
{
τ[zi ]4λ(η̂i ) : i ∈ I, wi (Tα) > 0

}
. (5.54)

To do so, we assume without loss of generality that e−2δβTα is larger than eDβ and we divide
the time interval [0, Tα] into eδβ/2 subintervals of length e−δβ/2Tα . By Theorem 3.2.4 applied at
the end of each of these subintervals, a particle i that does not fall asleep during the time interval
[0, Tα] is in [zi ]3e−δβ

√
Tα with a probability smaller than e−δβ , so that, by the Markov property

applied at the end of each of the subintervals,

P
(
∀i ∈ I, wi (Tα) > 0 or τ1 < τ[zi ]4λ(η̂i ) ∧ Tα

)
≥ P

(
∀i ∈ I, τ[zi ]4λ(η̂i ) > Tα

)
−
(
|I |e−δβ

)eδβ/2
≥ (e−δβ)|I | − SES. (5.55)

Using the non-superdiffusivity property (Theorems 3.1.1 and 3.2.3) and the fact that ‖zi −

η̂i (0)‖2 ≤ 1
2

√
T , we have also the stronger result

P

∀i ∈ I :
wi (Tα) > 0 or τ1 < τ[zi ]4λ(η̂i ) ∧ Tα

and [zi ]e−δβ
√

T α
⊂ B2

(
η̂i (τ1),

3
4

√
T

) ≥ (e−δβ)|I | − SES (5.56)

uniformly in η̂(0), T and (zi )i∈I .
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Step 3. We next give a lower bound for the probability that all the particles i ∈ I that never fell
asleep are in [zi ]e−δβ/2

√
T α

at some time T2 smaller than τ[zi ]4λ and contained during the time

interval [T − 2e−δβ/2Tα, T − e−δβ/2Tα], provided that Tα,λ > T . To do so, we will use the
Markov property at time τ1 and Theorem 3.2.5 with

δ′ := δ,

T ′ := T − e−δβ/2Tα − 16e−2δβTα − τ1,

(Λ′i ) :=
(

[zi ]e−δβ
√

T α

)
,

(5.57)

instead of δ, T and (Λi ). Conditionally on

A :=

{
∀i ∈ I : [zi ]e−δβ

√
T α
⊂ B2

(
η̂i (τ1),

3
4

√
T

)}
(5.58)

and for δ small enough, the hypotheses (3.9) and (3.11) are easily verified at time τ1 instead of
0, and we get, with θτ1 denoting the usual shift in the trajectories of the Markov process,

P

(
T − e−δβ/2Tα > Tα,λ or ∀i ∈ I :

wi (T − e−δβ/2Tα) > 0 or

τ1 + τΛ′i
(η̂i ) ◦ θτ1 ∈

[
T ′ + τ1, T − e−δβ/2Tα

] ∣∣∣∣∣ A

)

≥

(
4Tα

e3δβT

)|I |
− SES (5.59)

uniformly in η̂(0), T and (zi )i∈I . We then define τ2 as the first time after time τ1 when one of
the particles i ∈ I that never fall asleep reaches [zi ]e−δβ

√
T α

, and we use the non-superdiffusivity
property to get

P

τ2 > Tα,λ or ∀i ∈ I :

wi (τ2) > 0 or
τ2 ∈

[
T − 2e−δβ/2Tα, T − e−δβ/2Tα

]
τ2 < τ1 + τ[zi ]4λ(η̂i ) ◦ θτ1

η̂i (τ2) ∈ [zi ]e−δβ/2
√

T α

∣∣∣∣∣∣∣∣∣ A


≥

(
4Tα

e3δβT

)|I |
− SES. (5.60)

Together with (5.56) and the Markov property at time τ1, this gives

P

τ2 > Tα,λ or ∀i ∈ I :

wi (τ2) > 0 or
τ2 ∈

[
T − 2e−δβ/2Tα, T − e−δβ/2Tα

]
τ2 < τ[zi ]4λ(η̂i )

η̂i (τ2) ∈ [zi ]e−δβ/2
√

T α


≥

(
4Tα

e4δβT

)|I |
− SES (5.61)

uniformly in η̂(0), T and (zi )i∈I . This means that, with a probability of order e−4δβTα/T , at time
τ2 the particles i that never fell asleep are at a diffusive distance (on a time scale of order Tα) of
their targets [zi ]4λ, have never reached these targets before, and still have ahead a time of order
Tα until time T .
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Step 4. We will be working once again on time scale Tα . We define at time τ2 the clouds
of potentially interacting particles on time scale Tα , we call, for i ∈ I , S′′2,i the set of the
circumscribed rectangles of the clusters of η̂(τ2) made of particles contained in the cloud to
which i belongs, and we set

S′2,i := S′′2,i ∪
{[

z j
]

4λ : j ∈ I
}
,

S2,i := g5(S
′

0,i ).
(5.62)

Here, the union with the targets is made before applying the operator g5, which is different from
what was done previously, for example, in Step 1. Provided Tα,λ > τ2, we have

|S2,i | ≤ 2λ and prm(S′2,i ) ≤ 4λ+ λ× 33λ ≤ 34λ2, (5.63)

so that, by (5.12),

prm(S2,i ) ≤ 34λ2
+ 4× 5× 2λ ≤ 35λ2 (5.64)

and

|∂
[
S2,i

]
1 | ≤ 35λ2

+ 8× 2λ ≤ 36λ2 (5.65)

for β large enough. We can then choose |I | sites (z′i )i∈I such that
inf
i∈I

inf
s∈S2,i
‖z′i − s‖∞ > 3,

inf
i 6= j
‖z′i − z′j‖1 > 1,

sup
i∈I
‖zi − z′i‖∞ ≤ 19λ2,

(5.66)

use the Markov property at time τ2, and follow the arguments that led to (5.46) and (5.48), to get

P

T − 19λ2 > Tα,λ or ∀i ∈ I :
wi (T − 19λ2) > 0 or{

T − 19λ2 < τ[zi ]4λ(η̂i )

η̂i (T − 19λ2) = z′i


≥

(
1

e5δβT

)|I |
− SES (5.67)

uniformly in η̂(0), T and (zi )i∈I .

Step 5. Finally, consider the clouds of potentially interacting particles defined at time T3 := T −
19λ2, call, for i ∈ I , S′3,i the set of the circumscribed rectangles of the clusters made of particles
that are in the cloud containing i , and define S3,i := g5(S′3,i ). Since prm(S3,i ) ≤ 24λ (provided
Tα,λ > T3) and |∂ [zi ]4λ | ≥ 32λ, the rectangles in S3,i cannot cover [zi ]4λ. Consequently, the
particles i in z′i at time T3 can bypass these separated rectangles to reach their targets [zi ]4λ at
time T with a non-exponentially small probability. Together with (5.67) and the Markov property
at time T3, this implies that, uniformly in η̂(0), T and (zi )i∈I ,

P
(
T > Tα,λ or ∀i ∈ I :

⌊
τ[zi ]4λ(η̂i )

⌋
= bT c or wi (T ) > 0

)
≥

(
1

e6δβT

)|I |
− SES (5.68)

concluding the proof. �
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6. Application to the three regimes

Both the stable and the unstable regimes can be seen as limit cases of the metastable regime.
Indeed, in the metastable regime U < ∆ < 2U small clusters (say, squares representing droplets
of liquid) in a low-density background (rarefied gas) have a tendency to shrink and disappear
whereas the large clusters have a tendency to grow. This behavior defines a critical droplet size
`c = dU/(2U−∆)e, giving rise to interesting phenomena. The cases of the unstable gas (∆ < U )
and the stable gas (∆ > 2U ) correspond to the limiting cases where `c = 1 and `c = ∞,
respectively.

Both the unstable and the metastable regimes have a “stable equilibrium”, given by a
single large droplet of liquid (with an equilibrium Wulff shape) in a sea of vapor (see
Dobrushin, Kotecký and Shlosman [4]). Indeed, if the total number of particles is fixed (i.e., an
equilibrium given by the canonical ensemble), then for values of the thermodynamic parameters
corresponding to the coexistence of the two phases there is a segregation phenomenon. On the
other hand, in the stable regime ∆ > 2U (corresponding to a non-vanishing magnetic field in
the spin-language), the equilibrium is given by a weakly correlated gaseous phase. At first sight,
a paradoxical behavior occurs. The larger the inverse temperature β (which means the stronger
the attractive interaction), the more uncorrelated the unique equilibrium phase. It is not difficult,
however, to understand the reason behind this behavior. Large β implies that a good description
of our system at equilibrium can be given in terms of an ensemble of very rarefied contours (in
the spirit of low-temperature expansions). It is clear that in the metastable regime, even though
initially we have a very rarefied gas, during the evolution we have to face the problem of strong
attractive interaction because β is large. In the regime ∆ < U , on the other hand, no kind
of quasi-stationary situation can be established and we expect that the system goes fast to the
segregated situation.

The absence of superdiffusivity for Kawasaki dynamics has been established up to time
Tα,λ ∧ T 2

α in Theorems 3.1.1 and 3.2.3. As far as the spread-out estimates are concerned,
Theorems 3.2.4, 3.2.5 and 3.3.1 can be applied only to active particles up to time Tα,λ. Indeed,
we derived upper (lower) estimates of intersections (unions) of events involving anomalous
concentration, activity and localization of particles. Since activity is a notion that depends on
the parameter D, which assumes different values in the three different regimes (as explained in
Section 1.2), we need to discuss the applicability and the consequences of our results in each of
these regimes. This is done in Sections 6.1–6.3.

6.1. Stable gas

When ∆ > 2U we choose D ∈ (2U,∆). The simple exclusion process (U = 0) is part of
this regime.

Proposition 6.1.1. For t > 0, let A(t) be the event that all particles are active up to time t. Then

P(A(t) or Tα,λ < t) = 1− SES. (6.1)

Proof. By Definition 2.3.2, prior to time eDβ all particles are active. Assume now that some
particle i loses its freedom at some time t < Tα,λ. Then it suffices to show that i will recover its
freedom with probability 1− SES before time t + eDβ . By the Markov property, we can restrict
ourselves to the special case t = 0. By Proposition 5.2.2, which states that η̂ is a QRW(α, Tα)-
process, and by the non-superdiffusivity property, we can further restrict ourselves to considering
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the system reduced to the cloud of potentially interacting particles on time scale Tα to which i
belongs.

Pick δ, δ0 > 0 such that D − (2U + δ0) = δ, set tn := ne(2U+δ0)β and 0 ≤ n ≤ eδβ − 1.
Consider, at any time tn , the set S′n of the circumscribed rectangles of the clusters of the cloud,
define Sn := g5(S′n), let τr,n be the first time after time tn when Sn does not contain any particles,
i.e., the first time after time tn when η is not 2U -reducible with respect to Sn , and denote by τc,n
the associated collision time. Then, by (5.44) (established uniformly in the initial configuration
for the special case tn = t0 = 0, but valid for any tn by the Markov property), we have

P
(
τr,n < tn + e(2U+δ0)β and τr,n < τc,n

)
≥ e−δβ/3, (6.2)

and so, by the Markov property applied at t0, t1, t2, . . . , we obtain

P
(

i is not free on the whole time interval [0, eDβ
]

)
≤

(
1− e−δβ/3

)eδβ

= SES. �(6.3)

Proposition 6.1.1 implies that, in the stable regime, our spread-out estimates can be stated
in a stronger version: the intersection with {wi (T ) = 0} can be removed from the statement
of Theorem 3.2.4 and the unions with {wi (T ) > 0} can be removed from the statements of
Theorems 3.2.5 and 3.3.1.

Next, applying the spread-out estimates, we can control the first time of anomalous
concentration that limits our time horizon. We denote by X N (α, λ) the set of configurations
without α-anomalous concentration, so that Tα,λ is the hitting time of the complement of
X N (α, λ).

Proposition 6.1.2. If η̂(0) ∈ X N (
α
5 , λ), then

P
(

Tα,λ ≥ T 2
α (T

−1/2
α ∧ e−Dβ)

)
= 1− SES. (6.4)

Proof. Note that η̂(0) ∈ Xn(
α
5 , λ) implies that |U(η̂(0))|Λ|| < λ

4 for any box Λ with |Λ| <
e(∆−

α
20 )β , and that Tα,λ > T α

5 ,λ
> 0. Consequently,

P
(

Tα,λ < T α
19

)
= SES, (6.5)

since such an event implies that there is at least one particle with superdiffusive behavior before
Tα,λ.

For larger T such that

T ≤ T 2
α (T

−1/2
α ∧ e−Dβ), (6.6)

the event {bTα,λc = bT c} has probability SES. This follows from the upper bound in the
spread-out property in Theorem 3.2.4 applied to a single box |Λ| = e(∆−

α
4 )β . Indeed, the event

{bTα,λc = bT c} implies that with probability 1− SES at time T − 1 there are λ
4 particles in the

box [Λ]λ. On the one hand, the n particles that have a non- SES probability to be in [Λ]λ at time
T − 1 are contained in a box [Λ]√T eδβ , for δ arbitrarily small, and so they are at most

n ≤
λ

4

⌈
T eδβ

e(∆−
α
20 )β

⌉
, (6.7)
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since η̂(0) ∈ Xn(
α
5 , λ). On the other hand, the probability p that λ4 given particles are all in [Λ]λ

at time T − 1 is estimated, via Theorem 3.2.4 for T > Tα
5

, by

p ≤

(
|Λ|eδβ

T

) λ
4

, (6.8)

since T ≤ T 2
α (T

−1/2
α ∧ e−Dβ) implies that condition (3.7) is satisfied for |Λ| = e(∆−

α
4 )β . We

have (
n
λ
4

)(
|Λ|eδβ

T

) λ
4

≤

(
λ

4

⌈
T eδβ

e(∆−
α
20 )β

⌉
|Λ|eδβ

T

) λ
4

= SES, (6.9)

and so we conclude that

P
(

Tα/5 ≤ Tα,λ ≤ T 2
α (T

−1/2
α ∧ e−Dβ)

)
= SES, (6.10)

since Λβ is only exponentially large in β. Together with (6.5) and the fact that Tα
5
< T α

19
, this

completes the proof. �

Finally, if the starting configuration is chosen according to the equilibrium measure νN defined
in (2.26), then the first time of anomalous concentration is larger than any exponential in β:

Proposition 6.1.3. For all C > 0,

PνN (Tα,λ ≥ eCβ) = 1− SES. (6.11)

Proof. See Appendix B. �

There are interesting problems for the stable gas regime that are not in the range of
applications of our results. An example is the evolution of configurations with anomalous
concentration, such as the evaporation of a large droplet.

6.2. Unstable gas

When ∆ < U we choose D ∈ (0,U ). This is the regime in which the density is so high
that the condensation starts immediately and all the clusterized particles fall asleep. We expect
to see in a time e(∆+δ)β an anomalous concentration, after which our claims are empty. Actually,
our estimates only describe the gas in this initial transient period, i.e., in the short time of
initial condensation. However, we note that starting from any configuration without anomalous
concentration (i.e., such that Tα,λ > 0) our spread-out estimates hold up to time Tα (for active
particles), and so does the non-superdiffusivity property, by Proposition 5.2.2.

6.3. Metastable gas

When U < ∆ < 2U we choose D ∈ (U,∆). This is the more interesting regime where
active and sleeping particles are both present. In this case a situation with a homogeneous and
rarefied but supersaturated vapor (i.e., with density larger than the value exp(−2Uβ) at the
condensation point) can be established representing an apparent equilibrium. It is easy to see
that µR, the Gibbs measure conditioned on a suitable set of configurations R without large
clusters, is quasi-stationary, in the sense that at times much prior to the exiting time of R the
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corresponding averages of key observables are almost invariant (see Olivieri and Vares [14],
Theorem 6.28). Consequently, the central problem when U < ∆ < 2U is describing starting
from an initial configuration distributed according to µR, the escape from metastability, i.e.,
the first exit from R. In particular, in order to get a good upper bound on the escape time, we
have to construct a suitable escape event. This will involve a nucleation pattern corresponding to
the appearance of a 2 × 2 droplet, which subsequently grows along a sequence of quasi-square
droplets. The construction of this escape event is based on the notion of QRWs, in particular, on
their properties as given in Theorems 3.2.3–3.2.5 and 3.3.1. This will be done in the forthcoming
papers, Gaudillière, den Hollander, Nardi, Olivieri and Scoppola [8,9], combining the analysis
of the sleeping particles developed for the local interaction model in den Hollander, Olivieri and
Scoppola [11] with the estimates obtained in the present paper for the active particles of the gas.

In Section 2.3 we introduced the special permutation rule in order to minimize the number of
sleeping particles: once again, the fewer they are, the stronger are our results. As far as the first
time of anomalous concentration is concerned, we will prove an a priori estimate analogous to
(6.11): starting from µR it will be possible to exclude any anomalous concentration up to the
escape time from metastability, which is much larger than T 2

α .
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Appendix A. Freidlin–Wentzell theory for a slowly growing state space

Proof of Lemma 5.3.2. We observe that up to time τ+ ∧ τc the evolution of the system inside S
is independent of its evolution outside S. We distinguish between the cases k = 0, 1, 2.
• CASE k = 0.
If η̂(0) is 0-reducible, then there is a sequence of configurations U(η̂) = η0, η1,. . . ,ηn in X ,

each of them obtained from the previous one by a displacement of a single particle to a nearest-
neighbor vacant site, such that{

HS(ηn) < HS(η),

sup
j

HS(η j ) ≤ HS(η). (A.1)

Without loss of generality we may assume that HS(η j+1) ≤ HS(η j ) for all j < n. This implies
that the number of particles inside S does not increase along this sequence. We may further
assume that ηn is the first configuration along this sequence where a 0-irreducible configuration
is reached or the gas surrounding [S]1 is enriched. This implies that the number of particles inside
S is a constant a ≤ λ from η0 to ηn . Finally, we may assume that n is smaller than or equal to
the total number of configurations with a ≤ λ particles inside S, so that, using the isoperimetric
inequality, we get

n ≤

(
|S|

a

)
≤

(
λ2κ

a

)
≤

(
λ2κ

λ

)
≤ λ2κλ. (A.2)
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Under these assumptions, the probability that the conditioned process restricted to S follows this
sequence in a time e

δ
2β is larger than or equal to (recall (2.1))

exp
{
−cst λ2κλ

}
≥ e−

δ
4β − SES (A.3)

uniformly in S and η̂(0). We now divide the time interval [0, eδβ ] into e
δ
2β intervals of length

e
δ
2β . By the Markov property, we get

P
(
∀t ≤ eδβ , η̂(t) is 0-reducible and τ+ 6= t

∣∣ τc > eδβ ∧ τ+
)

≤

(
1− e−

δ
4β
)e

δ
2 β

+ SES ≤ SES (A.4)

uniformly in S and η̂(0).
If η̂(0) is 0-irreducible and τ+ > 0, then, conditionally on {τc ≥ τ+}, the system has to

perform a move inside S of cost at least U to enrich the gas surrounding [S]1. Since, up to time
τc, the particles inside S cannot be more than λ, this move occurs within a time e(U−δ)β with
probability larger than or equal to

λe−δβ ≤ e−δ
′β
+ SES (A.5)

uniformly in S and η̂(0).
Before proceeding with the proof for the cases k = 1 and k = 2, we define the U -cycles

associated with S and prove some of their properties.

Definition A.0.1. Let S ∈ R be such that g5(S) = S. Suppose that C is a set of configurations
satisfying:

(i) each η in C is 0-irreducible;
(ii) with positive probability C can be completely visited by the process U(η̂) without it going

outside C ;
(iii) there is a configuration η′ 6∈ C that can be obtained from some configuration in C by a

displacement at cost U of a single particle inside S to a nearest-neighbor site;
(iv) any set of configurations that contains C and satisfies (i)–(iii) is equal to C .

Then we say that C is a U -cycle with exit η′.

Remark. We will not actually need the maximality property (iv). We added it here to recover,
in our special case, the analogue of the cycles for the local model of den Hollander, Olivieri and
Scoppola [11].

Lemma A.0.2. Let S ∈ R be such that g5(S) = S and prm(S) ≤ λκ , and let C be a U-cycle
with exit η′. Then, for any η̂(0) in C such that there are no particles inside ∂ [S]1, no particles
inside [S]1 \ S, and not more than λ particles inside S at time t = 0, and for any δ > 0,

P
(
η|S(τ ) = η

′
|S, τ ≤ e(U+δ)β

∣∣∣ τc ≥ e(U+δ)β ∧ τ+
)

≥ exp
{
−cst λ2κλ ln λ

}
− SES (A.6)

uniformly in η̂(0), S, C and η′, with τ the exit time from C.
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Proof. On the one hand, conditionally on {τc ≥ e(U+δ)β ∧ τ+}, the probability of the event
{τ ≤ e

δ
2β} is larger than or equal to(

cst
4λ

)λ2κλ

e−Uβ
≥ e−(U+

δ
3 )β − SES (A.7)

uniformly in η̂(0) S, C and η′. Hence, dividing the time interval [0, e(U+δ)β ] into e(U+
δ
2 )β

intervals of length e
δ
2β and using the Markov property, we get

P
(
τ > e(U+δ)β

∣∣∣ τc > e(U+δ)β ∧ τ+
)
≤

(
1− e−(U+

δ
3 )β
)e(U+

δ
2 )β

≤ SES. (A.8)

On the other hand, conditionally on {τc ≥ τ+}, the probability of the event {η|S(τ ) = η′|S} is
larger than or equal to∑

j≥0

(
1− λe−Uβ

) j
(

cst
4λ

)λ2κλ

e−Uβ
≥ exp

{
−cst λ2κλ ln λ

}
− SES (A.9)

uniformly in η̂(0), S, C and η′. �

We are now ready to conclude the proof of Lemma 5.3.2 for the cases k = 1 and k = 2.
• CASE k = 1. If η̂(0) is U -reducible, then it is easy to see that there exists a sequence of not

more than λ2κλ U -cycles and configurations such that:

(1) HS does not increase between two successive configurations;
(2) each cycle C is preceded by a configuration it contains and followed by an exit configuration

η;
(3) the sequence ends in a configuration ηn that is the first along this sequence where a U -

irreducible configuration is reached or the gas surrounding [S]1 is enriched.

Using Lemma A.0.2, we can estimate the probability that the conditioned process restricted
to S follows this sequence in time e(U+

δ
2 )β from below by (recall (2.1))

exp
{
−cst λ4κλ ln λ

}
≥ e−

δ
4β − SES (A.10)

uniformly in S and η̂(0). After dividing the time interval [0, e(U+δ)β ] into e
δ
2β intervals of length

e(U+
δ
2 )β and using the Markov property, we get

P
(
∀t ≤ e(U+δ)β , η̂(t) is U -reducible and τ+ 6= t

∣∣∣ τc > e(U+δ)β ∧ τ+
)

≤

(
1− e

δ
4β
)e

δ
2 β

≤ SES (A.11)

uniformly in S and η̂(0).
If η̂(0) is U -irreducible, then, conditionally on {τc ≥ τ+}, to enrich the gas surrounding [S]1

the system has to perform a move inside S of cost at least 2U , or (by the result for the case k = 0)
two moves of cost U in a time smaller than eδ

′′β for a given δ′′ > 0. Since, up to time τc, the
particles inside S cannot be more than λ, this occurs within time e(2U−δ)β with probability less
than or equal to

λe−(δ−δ
′′)β
≤ e−δ

′β
+ SES (A.12)

uniformly in S and η̂(0), provided we choose δ′′ such that δ − δ′′ > δ′.
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• CASE k = 2. Using the fact that any cluster carries at least four particles that can only
be separated at cost 2U , the first probability estimate is once again obtained after dividing the
time interval [0, e(2U+δ)β

] into e(2U+ δ2 )β intervals of length e
δ
2β and using the Markov property.

The second probability estimate is obvious: the gas cannot be enriched if there are no particles
inside S. �

Appendix B. An estimate on the canonical Gibbs measure

Proof of Proposition 6.1.3. Since νN is the invariant measure of the dynamics, and Λβ is only
exponentially large in β, it is enough to prove that

νN (η ∈ X N : |η|Λ| = a) ≤ SES (B.1)

uniformly in a ≥ λ and for Λ a square box of volume |Λ| = e(∆−
α
4 )β .

Pick any such a and Λ. For any η ∈ X = {0, 1}Λβ and x in η, we let cc(x) be the connected
component of x in η, i.e., either the cluster of η that contains x if x ∈ ηcl or the singleton {x} if
x ∈ η \ ηcl . Let

A(η) := {x ∈ η : cc(x) ∩ Λ 6= ∅} . (B.2)

We will show that, uniformly in a and Λ,

νN (η ∈ X N : |A(η)| = a) ≤ SES, (B.3)

which implies (B.1).
To prove (B.3), define

Z N :=
∑
|η|=N

exp {−βH(η)} ,

Zout :=
∑

|η|=N−a

exp {−βH(η)} 1{|A|=0}(η),

Zin :=
∑
|η|=a

exp {−βH(η)}1{|A|=a}(η).

(B.4)

Then, clearly,

νN (η ∈ X N : |A(η)| = a) ≤
Zout Zin

Z N
(B.5)

and

Z N ≥
Zout (N − a)!

(
|Λβ | − (N − a)

)
× · · · ×

(
|Λβ | − (N − a)− (a − 1)

)
N !

≥ Zout

(
|Λβ | − N

N

)a

, (B.6)

i.e.,

Z N ≥ Zout

(
1− e−∆β

e−∆β

)a

. (B.7)

Next, we derive an upper bound on Zin by making the following observations:
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• given a positive integer ni , any cluster of ni particles that intersects Λ is covered by a tree
with one leaf in Λ and with ni vertices that are connected by edges linking nearest-neighbor
occupied sites;
• a random walker on such a tree can visit the whole tree, starting from that leaf, in at most

3ni − 3 steps;
• there are 43(ni−1) random walks of length 3ni − 3 on Z2 that start from a given point;
• a single cluster η of volume ni has an energy −2U |η| + U

2 |∂η| ≥ −2U (ni − 1);

• there are
(

a−1
k−1

)
ways of writing a − k as a sum of k integers.

In view of these observations, we choose U ′ such that 2U < ∆− α
4 < 2U ′ < ∆, so that, for

β large enough,

Zin ≤

a∑
k=1

∑
n1+···+nk=a
n1,...,nk≥1

|Λ|k
∏

i

43(ni−1) exp{2U (ni − 1)β}

≤

a∑
k=1

∑
n1+···+nk=a−k

n1,...,nk≥0

exp
{

k
(
∆−

α

4

)
β + (a − k)

(
3 ln 4
β
+ 2U

)
β

}

≤

a∑
k=1

(
a − 1
k − 1

)
exp

{(
∆−

α

4

)
aβ
}

≤ 2(a−1) exp
{(

∆−
α

4

)
aβ
}

≤ exp
{
2U ′aβ

}
. (B.8)

Together with (B.5) and (B.7), this last estimate gives

νN (η ∈ X N : |A(η)| = a) ≤

(
exp{(2U ′ −∆)β}

1− e−∆β

)λ
= SES (B.9)

and concludes the proof. �
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