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Introduction and scope of the thesis
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Complement research is currently experiencing a renaissance. The discovery of the 

role of complement in diseases such as the hemolytic uremic syndrome and age related 

macular degeneration have lead to a new appreciation of the role of complement 

in human disease and will have an important impact on the management of these 

patients [1-4]. The role of the innate immune system and specifi cally complement is 

also increasingly being recognized in transplantation medicine which has traditionally 

been dominated by research into the role of the adaptive immune system. Animal 

studies have demonstrated that complement plays an important role in the initial 

ischemia-reperfusion injury [5]. The fi nding that transplanted organs from C3-defi cient 

mice are protected against acute rejection has lead to a whole new area of research 

into the role of complement in the regulation of the adaptive immune response [6-8]. 

The detection of the complement split product C4d in transplant biopsies has lead 

to an appreciation of the role of humoral rejection and points towards complement-

mediated damage pathways in allograft rejection [9].

Complement activation involves three pathways. This thesis focuses on the lectin and 

alternative pathways and their possible role in kidney transplantation and chronic 

renal disease. 

 The pathways of complement activation and their role in renal disease are 

reviewed in chapter 2. The lectin pathway of complement activation is initiated by 

binding of its recognition molecules mannose-binding lectin (MBL) and the fi colins to 

carbohydrate structures on a wide variety of microorganisms or on injured tissue. 

MBL is a multimeric C-type lectin consisting of collagenous tails similar to C1q. 

Circulating MBL levels are determined by frequently occurring polymorphisms (SNPs) 

of the MBL gene (mbl2). These SNPs are locatied in codon 54 (B genotype), codon 57 

(C genotype), and codon 52 (D genotype) of the fi rst exon of the MBL gene, which 

encodes the collagenous region of the MBL molecule [10-12]. The presence of these 

SNPs interferes with the polymerization of the MBL molecule resulting in low levels 

of functional MBL [13;14]. Furthermore, polymorphisms in the promoter region lead 

to reduced circulating MBL levels [15]. The resulting low MBL levels are associated 

with an increased risk for infectious complications in situations of impaired adaptive 

immunity such as early infancy and immunosupression [16-18]. Next to its interaction 

with microorganisms MBL may also interact with immunoglobulins [19;20] and altered 

host tissue for example in the setting of ischemia/reperfusion damage [21]. MBL is 

deposited in mouse and human kidneys in the setting of ischemia/reperfusion injury 

[22] and mice defi cient for both MBL-A and MBL-C are partially protected against 

renal ischemia-reperfusion injury [23].
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In view of the role of MBL in ischemia-reperfusion injury and the interaction of MBL 

with immunoglobulins it seemed conceivable that MBL contributes to tissue damage 

in the setting of solid organ transplantation. We questioned whether recipient MBL 

participates in organ damage in the setting of human renal allograft transplantation. 

In chapter 3 we fi rst studied the relationship between MBL levels and outcome after 

deceased donor kidney transplantation. MBL levels were measured in serum samples 

obtained directly before transplantation and related to outcome parameters including 

delayed graft function, rejection, and patient and graft survival.

 MBL has also been shown to contribute to micro and macro-vascular damage in 

both type 1 and type 2 diabetes [24-26]. With the harmful effects of MBL in diabetes in 

mind we were specifi cally interested in the role of MBL after simultaneous pancreas-

kidney transplantation. This type of transplantation is characterized by a high rate 

of infectious complications, rejection and cardiovascular morbidity. In chapter 4 we 

studied the association of MBL levels and MBL genotypes causing these low MBL levels 

with organ and patient survival after simultaneous pancreas kidney transplantation. 

 Since MBL recognizes microorganisms and is thought to be an important component 

of the innate immune response we studied the role of MBL in infectious complications 

after transplantation. In chapter 5 the thesis reports our fi ndings concerning the role 

of MBL in infectious complications after simultaneous pancreas kidney transplantation 

and demonstrates a particular role for MBL in the protection against urosepsis. 

The alternative pathway is constantly activated at a low rate by spontaneous 

hydrolysis of C3 which leads to the association with factor B and formation of the 

alternative pathway C3 convertase C3(H2O)Bb. The C3 convertase cleaves additional 

C3b. If surfaces favoring alternative pathway activation such as bacterial walls are 

present C3b is protected against inactivation by factor I and H and more C3bBb is 

formed which is a highly effi cient C3 convertase, particularly upon its stabilization 

by properdin (see chapter 2). However, recent work has reemphasized that properdin 

may not only bind to C3bBb once it has been formed on a bacterial surface but it 

may actually play a role in the initiation of the alternative pathway by the means of 

its pattern recognition capacity. This concept was originally suggested by Pillemer in 

1954 [27] and has now been rediscovered 50 years later [28].

 The clearance of apoptotic cells plays an important role in the initiation of the 

immune response in both transplantation and autoimmunity. Both MBL and C1q 

recognize apoptotic cells and contribute to their clearance [29;30]. We questioned 

whether properdin interacts with apoptotic cells and whether this interaction leads 
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to activation of the alternative pathway of complement. In chapter 6 this thesis 

describes our studies on the interaction of properdin with apoptotic cells and its 

contribution to the immune regulation by phagocytic cells. 

 In chapter 7 we further focus on the capacity of properdin to target alternative 

pathway activation to cellular surfaces. Complement activation on tubular cells is 

thought to be an important mediator of damage in proteinuric renal disease [31]. 

However, until now it was not clear how tubular cells activate complement molecules 

which are present in proteinuric urine. We show that properdin binds to the apical 

surface of viable tubular cells leading to activation of the alternative pathway of 

complement. This interaction between tubules and properdin may be a crucial step in 

the initiation of tubulo-interstitial damage in proteinuric renal diseases. Complement 

molecules entering the tubular lumen in proteinuric states will be targeted to the 

brush border by properdin resulting in activation of the alternative pathway with 

production of the anaphylatoxins C3a and C5a and the membrane attack complex.

Finally, in chapter 8 the fi ndings presented in this thesis are critically discussed and 

the possible implications for transplantation and the understanding of progressive 

renal disease are presented. 
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Introduction

The renewed appreciation of the role of the complement system as a mediator and 

marker of renal damage has led to numerous novel investigations in the fi eld of 

complement and renal disease. The aims of the present review are to recapitulate 

the pathways of complement activation with an emphasis on the more recently 

described lectin pathway of complement activation, to discuss some of the new data 

on the role of complement in renal disease and to briefl y provide information about 

new diagnostic techniques in the fi eld of complement.

Pathways of complement activation

The complement system is not only an important component of the innate immune 

system but also plays an essential role in the initiation and control of the adaptive 

immune response. The three pathways of complement activation converge at the 

level of C3. Activation of C3 leads to the formation of the membrane attack complex 

(MAC) on complement-activating surfaces (Figure 1).

 The classical pathway of complement activation is initiated via binding of its 

recognition molecule C1q to immune complexes or charged molecules. This leads to a 

conformational change resulting in activation of the C1q-associated serine proteases 

C1r and C1s. Activated C1s cleaves both C4 and C2 which associate to form the 

classical pathway C3 convertase, the C4b2a enzyme complex. Next to activation by 

IgG and IgM immune complexes, C1q may also be activated by apoptotic and necrotic 

cells and by acute phase proteins such as CRP [1].

 The lectin pathway of complement utilizes the same C3 convertase as the classical 

pathway. It is initiated by binding of mannose-binding lectin (MBL) or fi colins which 

recognize patterns of carbohydrate ligands that are found on the surface a wide variety 

of microorganisms [2]. MBL consists of up to six trimeric subunits and its structure 

resembles a bouquet-like shape similar to that of C1q. The plasma concentrations 

can vary up to 1000-fold. This variation is largely explained by single nucleotide 

polymorphisms within exon 1 of the MBL-2 gene. Polymorphisms of the promoter 

region contribute further to the variation in MBL levels.

 Binding of MBL to its ligands results in the activation of the associated serine 

protease MASP-2 and subsequent cleavage of C4 and C2 leading to the formation of 

C4b2a. 
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Figure 1. Overview of the three pathways of complement activation

The alternative pathway depends on spontaneous hydrolyzation of C3 in plasma 

leading to the formation C3(H2O). This molecule binds to factor B and subsequent 

activation by factor D results in the formation of C3(H2O)Bb. This complex cleaves 

additional C3 to C3a and C3b constantly and at a low rate. In the presence of an 

activating surface (e.g. a bacterial wall) C3b is protected from inactivation by 

regulatory proteins like factor I and H and the more active alternative pathway C3 

convertase C3bBb is formed, which is further stabilized by properdin. 

 The common terminal pathway is similar for the classical, lectin and alternative 

pathways. The incorporation of C3b in the C3 convertases results in the formation 

of C3bBbC3b for the alternative pathway and C4b2a3b for the classical and lectin 

pathway. These C5 convertases initiate the formation of the membrane attack 

complex by cleavage of C5 to C5a and C5b. C5b forms a trimolecular complex with 

C6 and C7. After insertion in a cell membrane C8 and multiple molecules of C9 bind 

and the pore-forming MAC is assembled. In sublytic doses insertion of MAC in the cell 

membrane may lead to cell activation [3] and enhancement of the innate immune 



Chapter 2

18

responses. 

Next to the production of MAC with resulting lysis or activation of cells, complement 

activation can also lead to the production of the chemo attractive anaphylatoxins 

C3a and C5a. Complement split products such as C3b and C4b associate with immune 

complexes increasing their solubility and facilitating their clearance. Both MBL and 

C1q may bind to apoptotic cells and aid in their clearance [4-6[. 

Role of complement in renal disease

Glomerulonephritis
Complement may play both a benefi cial as well as a harmful role in renal disease. 

Complement deposition is detected in kidney biopsies obtained from patients 

with various forms of renal disease. Except for type II membranoproliferative 

glomerulonephritis complement deposition is usually accompanied by the deposition 

of immunoglobulins. In the following section we will discus some of the new data 

on the role of complement in lupus nephritis and IgA nephropathy as examples for 

glomerular disease

Lupus nephritis
The deposition of IgG, IgM IgA, C3, C4 together with C1q is the hallmark of lupus 

nephritis and is referred to as the full house pattern of immune deposition. The 

complement deposition in kidneys with lupus nephritis and the marked reduction of 

complement levels in most of these patients suggest an important role for classical 

pathway-mediated damage in lupus nephritis. The manipulation of the complement 

system in various mouse models has shed light on the complex role of complement in 

this disease. The disruption of both the C1q or the C4 gene in mice with a 129 x C57BL/6 

genetic background leads to the spontaneous development of glomerulonephritis with 

the production of autoantibodies and accumulation of apoptotic cells [7;8]. In line 

with these fi ndings inherited defi ciencies of C1q and C4 are strongly associated with 

the development of SLE in humans. Interestingly C1q defi ciency did not signifi cantly 

infl uence the development of glomerulonephritis in the spontaneously lupus developing 

MLR/lpr mice [9]. If on the other hand lupus prone NZB/W mice were treated with 

an anti-C5 antibody the development of glomerulonephritis could be prevented [10]. 

Similar protective results were obtained when MLR/lpr mice were treated with the 

soluble rodent complement inhibitor rCrry-Ig [11]. Considering the data obtained 
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both from humans and the animal models it seems that the benefi cial role of the 

early components of the classical pathway in opsonisation and clearance of apoptotic 

cells and immune complexes override the possible damaging role mediated by 

downstream complement activation products. These considerations have important 

implications for the possible role of therapeutic interventions in the complement 

system. Complement inhibition further downstream may inhibit the production of 

the powerful anaphylatoxin C5a and MAC without impairing the protective role of the 

upstream components of the complement pathway.

 Antibodies directed against C1q are detectable in 30 to 40% of SLE patients [12]. 

These antibodies correlate with the presence of active lupus nephritis with a sensitivity 

of 87% and a specifi city of 92% [13]. The generation of homologous mouse anti-mouse 

C1q antibodies has provided a tool to study whether these antibodies actually play a 

role in the pathogenesis of lupus nephritis. Administration of these antibodies alone 

led to deposition of C1q in kidneys of naive mice with granulocyte infl ux without 

clinical expression of renal disease such as albuminuria. However, when mice were pre-

treated with a subnephritiogenic dose of rabbit anti-GBM antibodies, administration 

of mouse anti-C1q antibodies resulted in increased deposition of immunoglobulins 

and complement as well as marked renal damage [14]. Application of this model to 

mice genetically defi cient for C4, C3 or all three Fc-γ receptors demonstrated that 

anti-C1q-mediated renal damage was dependent on both complement activation and 

the contribution of Fc-γ receptors.

IgA-nephropathy
Deposition of predominantly polymeric IgA of the IgA1-subclass is the hallmark of 

IgA nephropathy. Co deposition of C3 is usually detected in renal biopsies. This is 

thought to result from alternative pathway activation since IgA does not activate the 

classical pathway of complement. But as C4 deposition is detected in 30% of biopsies 

from kidneys with IgA nephropathy [15] complement activation via the MBL pathway 

has been suggested. Indeed co-deposition of IgA with MBL has been demonstrated in 

biopsies from patients with IgA nephropathy [16]. In line with these fi ndings our group 

has shown that MBL binds to IgA resulting in complement activation [17].

Ischemia Reperfusion damage
Several studies have underscored the role of complement in ischemia reperfusion 

damage. Zhou et al. studied mice defi cient for C3, C4, C5 or C6 in a kidney ischemia 

reperfusion model [18]. C3, C5 and C6 defi ciency was associated with marked 
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protection from ischemia/reperfusion damage, whereas C4-defi cient mice were 

not protected. These fi ndings suggest an important role of C5b-9 activated by the 

alternative pathway in ischemia/reperfusion damage. Classical pathway activation 

did not seem to play a role in this model. This concept has been supported by a study 

showing protection from renal ischemia reperfusion damage in mice defi cient for 

factor B [19]. The same group has demonstrated C3b deposition without evidence 

of C4b deposition in human kidneys with acute tubular necrosis [(20], showing that 

the alternative pathway may also be the dominant route of complement activation 

in ischemia reperfusion damage of the human kidney. Complement may also cause 

damage due to the formation of chemotactic molecules such as C5a [21].

 An important role of MBL has recently been demonstrated in ischemia reperfusion 

damage of the heart and intestine [22;23]. Mice defi cient for MBL-A and MBL-C were 

protected from cardiac and gastrointestinal ischemia/reperfusion injury whereas 

C1q-defi cient mice were not protected. MBL deposition has been detected in mouse 

and human kidneys with ischemia reperfusion damage [24] and a possible contribution 

of MBL to ischemia reperfusion injury of the kidney has recently been proposed in a 

study using mice defi cient for MBL A and C [25].

Kidney Transplantation
The introduction of C4d staining in biopsies obtained from renal transplants has led to 

a new appreciation of the role of humoral rejection in renal transplantation. C4d binds 

covalently to basement membranes and therefore may remain detectable for weeks. 

The presence of C4d in the peritubular capillaries indicates humoral rejection as 

shown by the strong correlation with panel-reactive [26] or donor-specifi c antibodies 

[27]. Staining for C4d has been shown to predict poorer graft survival in several studies 

[28;29]. These fi ndings have resulted in the addition of antibody-mediated rejection 

to the Banff ‘97 classifi cation of renal allograft rejection [30]. Numerous treatment 

modalities including intravenous immunoglobulins, plasmapheresis and anti-CD 20 

have been tried successfully in patients with humoral rejection. No randomized trials 

are available at this moment. Next to the obvious clinical implications of a timely 

diagnosis of humoral rejection the detection of C4d in as many as 30% of kidney 

transplant biopsies has triggered an increased interest in the role of complement in 

mediating renal damage in rejection. The presence of C4d in renal biopsies suggests 

complement activation by the classical pathway. However, the lectin pathway may 

also interact with immunoglobulins as has been shown for IgM and IgA [17;31]. With 

these fi ndings in mind our group questioned whether MBL levels infl uence outcome 
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in kidney transplantation. Indeed, higher pre-transplant MBL levels were associated 

with poorer graft survival [32]. The superior graft survival in patients with low MBL 

levels was explained by a lower rate of treatment-resistant rejection. These fi ndings 

suggest that MBL plays an unfavorable role in renal transplantation.

 Rejection and damage to renal allografts may not only be infl uenced by circulating 

complement, but also by complement produced locally in the kidney. Pratt et. al 

studied the role of locally produced C3 in a mouse kidney transplantation model 

[33]. Whereas graft survival was not infl uenced when kidney donors were C3 

defi cient, survival was markedly improved if the transplanted organ was obtained 

from C3-defi cient mice. Possibly locally produced C3 functions as a costimulator in 

the interaction between antigen presenting cells (APCs) and T-cells. This concept 

is supported by the recent report, that APCs lacking the complement inhibitor DAF 

(decay-accelerating factor) led to enhanced T-cell responses when compared with 

wild type APCs [34].

Atypical Hemolytic Uremic Syndrome
Recent data suggest an important role for complement in atypical hemolytic uremic 

syndrome (HUS). Mutations in the complement regulatory protein factor H have been 

described in patients with sporadic and familial HUS in several studies [35-37]. The 

described mutations interfere with the capacity of factor H to control alternative 

pathway activation on cellular surfaces. Determination of factor H serum levels is 

not suffi cient to detect factor H mutations since mutant, dysfunctional factor H may 

circulate at normal concentrations [38]. A functional assay for factor H mutations has 

been described, which may facilitate screening for factor H mutations in patients 

with HUS [39]. More recently mutations of the complement regulators factor I and 

MCP have been proposed as predisposing factors in patients with atypical HUS [40-

42]. Screening for these mutations may provide important information for risk 

assessment since these patients have a high incidence of disease recurrence after 

renal transplantation.

Progression of chronic renal disease
As complement molecules are detectable in urine from patients with non-selective 

proteinuria it has been suggested, that these components contribute to the 

tubulointerstitial damage in proteinuric renal disease [43]. Urinary C5b-9 excretion 

has been described in both animal models of membranous nephropathy and humans 

with this disease [44;45]. Interestingly high levels of C5b-9 excretion have also been 
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detected in patients with diabetic nephropathy whereas low levels were detected in 

the relatively benign condition of minimal change disease [46].

 Use of the C6-defi cient PVG rat in various models of proteinuria-associated 

interstitial damage has provided strong evidence for a harmful role of complement 

in the progression of renal disease. Complement-suffi cient animals developed 

more severe tubulointerstitial damage than C6-defi cient rats [47] in the puromycin 

model of proteinuric renal damage. A similar protective role of C6-defi ciency was 

demonstrated in the remnant kidney model. Once complement has entered the tubuli 

in the setting of unselective proteinuria it may be activated on the tubular brush 

border by the high local ammonia concentrations [48].

Diabetic Nephropathy
As mentioned above high concentrations of C5b-9 are also found in the urine obtained 

from patients with diabetic nephropathy [46]. MAC deposition has been described 

in kidneys [49], nerves [50] and retinas [51] from patients with diabetes mellitus. 

Inactivation of the complement regulatory protein CD 59 by glycation has been 

suggested as a possible mechanism underlying complement activation in diabetes 

[52]. A role for lectin pathway mediated damage in diabetic nephropathy is suggested 

by the association between high levels of MBL and microalbuminuria in diabetic 

subjects ([53;54].

 Taken together these studies strongly suggest a role for complement in the 

amplifi cation of vascular and tissue injury in diabetes.

Measurement of complement pathway activity: methods and
indications

Circulating complement can be measured by both functional assays and the 

measurement of antigen concentrations [55]. Functional assays of the complement 

pathway include the CH50 to assess the classical pathway and the AP50 to assess 

the alternative pathway. The CH50 determines the capacity of patient serum to lyse 

sheep erythrocytes coated with rabbit antibodies. It is a useful initial screening tool 

for the classical pathway, since an intact functional capacity of all 9 components 

of the classical pathway is required for a normal result. The AP50 measures lysis of 

unsensitized rabbit erythrocytes. Recently a simple and standardized ELISA based 

assay of all three pathways of complement activation including the lectin pathway 
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has been developed [56] and shown to be valuable for the detection of primary and 

secondary complement defi ciencies.

 C4 and C3 levels are usually measured by radial immunodiffusion or nephelometry 

using poyclonal antibodies. Decreased levels of circulating C3 and C4 can be detected 

in several renal diseases and may help to narrow the differential diagnosis. Renal 

immune complex diseases associated with hypocomplementemia include SLE, MPGN 

(all three types), cryoglobulinemia, post-streptococcal glomerulonephritis and 

glomerulonephritis associated with chronic infection (e.g. endocarditis or abdominal 

abcesses). In post-streptococcal glomerulonephritis and MPGN type II C3 is usually 

decreased more than C4 while a proportionate reduction in both C3 and C4 is generally 

detected in the classical pathway mediated complement consumption of SLE and 

cryoglobulinemia.

 We recommend the determination of both the classical pathway activity and 

alternative pathway activity next to C3 and C4 levels for the initial screening of 

patients with a suspected complement defi ciency. The combination of these 

determinations will help to identify the nature of complement consumption and to 

detect rare inherited complement defi ciencies (e.g. C1q or C4 defi ciency in SLE). 

In the setting of an unexplained propensity for infections or an increased risk for 

infections [57], measurement of the lectin pathway may be appropriate. 

 In situations of increased complement catabolism in which complement depletion 

is not detected due to the replenishment by increased synthesis, complement 

turnover may de detected by the measurement of complement activation products 

such as C3a, C3d or C5a. Determination of factor H and I levels and function can be 

useful in atypical HUS.

 To monitor patients with SLE serial determination of either C3 or C4 levels is 

suffi cient. It is not clear whether one of both determinations is preferable above the 

other. Following either C3 or C4 may be helpful to monitor the response to treatment 

and to detect changes in activity. The interpretation of complement levels should 

always be done with consideration of the clinical context [58]. The addition of an 

anti-C1q antibody assay may help to predict the presence of nephritis in patients 

with SLE [13;59;60]. 
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Inhibitors of complement activation in the treatment of renal disease

Following the increasing knowledge about the role of complement in the 

pathophysiology of various diseases, numerous options for therapeutic manipulation of 

the complement system have been proposed [61]. Therapeutic complement inhibition 

may be approached at various levels of the complement cascade. Inhibition at the 

initiation level may allow specifi c regulation of one of the three pathways without 

interfering with the protective function of the other pathways. An intervention at 

the level of C3 inhibits the entire complement system with the possibility of high 

effi cacy but the drawback of an increased risk of infections. Inhibition at the level of 

C5b-9 would prevent MAC mediated tissue damage without preventing complement-

mediated clearance of immune complexes and apoptotic cells. Additionally the 

anaphylatoxins C3a and C5a could be inhibited directly.

 Many of these possible approaches have been tested in animal models of renal 

disease. The rodent C3 convertase inhibitor Crry has similarity with the human 

complement receptor 1 (CR-1). Both the overexpression of Crry and the application of 

recombinant Crry confer protection in a mouse model of anti-GBM glomerulonephritis 

[62;63]. Administration of soluble Crry to MLR/lpr mice resulted in a marked reduction 

in renal damage in this model of SLE [11]. A soluble form of human CR1 (sCR1) was 

protective in glomerular disease in rats [64]. Treatment with a membrane-binding 

complement regulator based on CR1 resulted in amelioration of ischemia/reperfusion 

damage and rejection in a rat model of kidney transplantation [65]. A pharmaceutical 

preparation of sCR1 (TP-10; Avant Immunotherapeutics Inc., Needham, MA) has been 

developed but has not been tested in human renal disease.

 Anti-C5 antibodies have been demonstrated to ameliorate lupus like disease in 

mice [10] and pharmaceutical C5-inhibitors have been developed for use in humans. 

Results from ongoing trials with the fully humanized C5-inhibitor Eculizumab (Alexion 

Pharaceuticals, Cheshire, CT) in patients with membranous glomerulonephritis are 

being awaited. The effi cacy of this antibody has been documented in paroxysmal 

nocturnal hemoglobinuria [66;67]. 
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Concluding Remarks

The complement system contributes to renal damage in many of the disease entities 

encountered by the nephrologist. Sound understanding of the complement system 

will aid the nephrologist in understanding the pathophysiology of renal disease 

and provide support in making the correct diagnosis. Monitoring complement may 

offer guidance in therapeutic decisions if interpreted with prudence in the clinical 

context. Whether therapeutic interventions in the complement system will result 

in meaningful improvements for our patients remains to be established. A skeptical 

position is justifi ed in view of the large discrepancy between the huge volume of 

laboratory results and the meager progress in terms of clinical implication.
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Summary

The mannose-binding lectin (MBL) pathway of complement is activated by pattern 

recognition. Genetic MBL variants are frequent and are associated with low MBL 

serum levels. We hypothesized that higher MBL levels may be associated with more 

complement-mediated damage resulting in inferior graft survival.

 Pretransplant serum samples collected from 266 consecutive deceased donor kidney 

transplant recipients were analyzed for MBL concentration by ELISA. Subsequently 

the cohort was analyzed for transplant-related outcome.

 There was no signifi cant difference in the incidence of delayed graft function in 

recipients with a low MBL level (≤ 400 ng/ml) compared to those with a higher MBL 

level (> 400 ng/ml) (37.1 vs. 34.9%). At 10-years, the death censored graft survival 

was 89.9% in patients with an MBL level below 400 ng/ml compared with 78.8% in 

patients with a higher MBL level (P < 0.02). Multivariate analysis including traditional 

risk factors for graft loss showed an independent risk of 2.7 (95% CI 1.2-6.3) for 

death censored graft loss if pretransplant MBL levels were above 400 ng/ml. This 

difference was almost entirely explained by rejection-associated graft loss (2.4 vs. 

12,4%, P < 0,01).

 In our cohort higher MBL levels seem to be associated with a more severe form of 

rejection leading to treatment failure and graft loss. If these data can be confi rmed 

pretransplant MBL levels may provide additional information for risk stratifi cation 

prior to kidney transplantation.
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Introduction

Recently the interest in the role of the innate immune system in organ transplantation 

has increased. Within the innate immune system complement is thought to be one of 

the major infl ammatory mediators particularly in the setting of ischemia/reperfusion 

injury [1;2]. In a mouse model of acute kidney rejection, disruption of the gene 

encoding for the complement component C3 in the transplanted kidney led to marked 

improvement of organ survival. In human transplantation a role for complement 

activation has been established by showing the presence of the complement split 

product C4d as a marker of acute humoral rejection [3;4] and its association with 

chronic transplant glomerulopathy [5]. 

 Next to activation of the complement system via the classical or alternative 

pathway, the lectin complement pathway may play a role in renal transplantation. 

The collectin mannose-binding lectin (MBL) binds via its carbohydrate recognition 

domain to saccharides such as D-mannose, L-fucose and N-acetylglucosamine [6] on 

various microorganisms. This interaction leads to the activation of the MBL-associated 

serine proteases (MASP) and cleavage of C4 and C2 followed by formation of the C3 

convertase C4b2a. In addition to activating the lectin complement pathway, MBL can 

mediate phagocytosis of opsonized organisms.

 The serum MBL concentration shows a large inter-individual variation due to 

common mutations in the structural as well as the regulatory part of the MBL gene. 

Several studies have related MBL defi ciency with an increased rate of infection in 

early childhood [7] and other conditions characterized by disturbed host defense 

[8;9]. Experimental data have shown that the lectin complement pathway contributes 

to activation of the complement cascade in the context of ischemia/reperfusion 

damage. Endothelial cells exposed to oxidative stress activate the lectin complement 

pathway in vitro [10]. A recent publication indicates that MBL also binds to both 

late apoptotic and necrotic cells [11]. In vivo studies show that inhibition of MBL 

with monoclonal antibodies leads to reduction of damage in a rat model of cardiac 

ischemia/reperfusion injury [12]. 

 We hypothesize that MBL binding to injured tissue may lead to additional 

infl ammation, thereby aggravating tissue damage and potentiating antigen 

presentation. Based on this hypothesis and the recent fi ndings concerning the role of 

complement in ischemia/reperfusion damage and rejection we questioned whether 

higher recipient MBL levels might be associated with inferior outcome in the setting 

of kidney transplantation.
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Methods

Study population
Pretransplant sera of 266 consecutive deceased donor kidney transplant recipients 

routinely collected at our institution from January 1990 to December 1994 were 

utilized for this study. Thirty-one recipients of the total number of kidney transplants 

performed during this period were excluded due to missing serum samples. 

Pretransplantation sera were routinely collected since 1989 and stored at –80°C. 

They had not been subjected to freeze/thaw cycles before analysis in our study. Sera 

from MBL-genotyped healthy controls (n = 70) [13] were used for comparison.

 Data analysis was done using the Leiden Kidney Transplantation Database. This 

database contains donor variables (gender, age at time of death), recipient variables 

(age at time of transplantation, gender, panel reactive antibodies, CMV status), 

transplantation related factors (human leukocyte antigen-A [HLA-A], -B, and –DR 

mismatches; cold ischemia time; warm ischemia time), and post-transplantation 

features including immunosuppressive regimen, delayed graft function, rejection 

history, rejection treatment, dipstick proteinuria and serum creatinine values. Graft 

histology was evaluated retrospectively according to the Banff '97 classifi cation [14]. 

After transplantation patients were followed until death, reinitiation of dialysis or 

December 2002. Delayed graft function was defi ned as the need for dialysis for more 

than 7 days post transplantation. Rejection-associated graft loss was defi ned as 

histologically proven acute rejection with ongoing functional deterioration despite 

antithymocyte treatment or chronic rejection leading to the reinitiation of dialysis 

treatment. Acute rejection episodes were treated according to a standard protocol 

consisting of methylprednisolone 1 g intravenously for three consecutive days; a 10d 

course of antithymocyte globulin at a dose 5mg/kg guided by absolute lymphocyte 

counts; or again methylprednisolone for the fi rst, second (or steroid-resistant), or 

third rejection episode, respectively. An MBL concentration of 400 ng/ml was chosen 

as a cut-off to defi ne individuals with normal and low MBL levels respectively. The 

higher and lower MBL groups were analyzed for differences in known predictors of 

transplantation outcome, such as the incidence of delayed graft function or acute 

rejection. Patients who lost their grafts within 3 months after transplantation were 

excluded from analysis for patient and graft survival.
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ELISA
Serum MBL levels were assessed by sandwich ELISA as described previously [15]. In 

short 96-well ELISA plates (Greiner, Germany) were coated with 3E7 (mouse IgG1 

anti-MBL at 2.5 μg/ml). After blocking residual binding sites with PBS containing 1% 

BSA and washing, serum samples were diluted 1/50 and 1/250 and incubated. Dig-

conjugated 3E7 was added as detecting antibody. After washing detection of binding 

of Dig-conjugated antibodies was performed using HRP-conjugated rabbit anti-Dig 

Abs (Fab, from Boehringer Mannheim). Enzyme activity was detected using 2,2'-azino-

bis(3-ethybenzthiazoline-6-sufonic acid)(Sigma). The optical density (OD at 415nm) 

was measured using a microplate biokinetics reader (EL312e; Biotek Instruments, 

Winooski, VT). A calibration line was produced using human serum from a healthy 

donor with a known concentration of MBL.

Statistical analysis
Categorical characteristics among MBL-groups were compared using cross-tables 

with calculation of the exact p-values. Continuous variables were analyzed using 

the Student t-test, when test assumptions were met, and otherwise with the Mann-

Whitney test. Patient and graft survival was estimated using the Kaplan-Meier product-

limit method and the curves were compared with the Log-Rank test. For analysis of 

differences in survival among MBL-groups, at individual time points, z-scores were 

calculated and p-values estimated using the standard normal distribution (Z-test).

 To identify risk factors for graft loss and to adjust for potential confounding factors 

Cox Proprotional Hazards Regression was used.

 P-values < 0.05 were considered to be statistically signifi cant. All analyses were 

performed with SPSS Statistical Software Package (Version 10.07; SPSS, Inc., Chicago, 

Ill.).

Results

Follow up data were available for all transplanted patients. The mean MBL 

concentration of the 266 available sera was 1112 ng/ml (median 691 ng/ml; IQR 270-

1697). These results were very similar to the levels we measured in healthy donors 

with a mean MBL level of 1054 ng/ml (median 679 ng/ml) [13]. The distributions 

of both the transplant recipients and the healthy donors are shown in fi gure 1. For 

analysis the patients were divided into groups with MBL levels below 400 ng/ml and 
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above 400 ng/ml. Using this cut-off 97 kidney recipients (36.5%) had a low MBL-level, 

which is comparable to our group of healthy donors (35.7% below 400 ng/ml) and to 

the frequency of variant alleles as defi ned in other populations [16]. In our genotyped 

control population 75% of those with an MBL level below 400 ng/ml have a variant 

MBL genotype (A/O or O/O) whereas 89% of those with an MBL level above 400 ng/ml 

have the wildtype MBL genotype (A/A) [13], showing a close association between MBL 

variant alleles and MBL levels below 400 ng/ml (P = 0.0001).
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Figure 1. MBL concentration in pre-transplant sera and healthy controls. Horizontal solid 

lines indicate the median. The dashed line indicates the cutoff level used in the present 

study (400 ng/ml).

Between the two MBL groups there were no signifi cant differences in recipient or 

donor age, years on dialysis, cold ischemia time, CMV serotype or sex distribution 

(Table 1). There was no difference in the distribution of the dialysis modality prior 

to transplantation.

The normal and low MBL groups were also compared for transplantation outcome. 

No signifi cant difference in the incidence of delayed graft function (37.1% vs. 34.9%) 

or the incidence of fi rst acute rejection episodes was found between the groups, 

illustrated in fi gure 2. Equally there was no difference if vascular and interstitial 

rejection or severity of rejection were analyzed separately (data not shown).
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Table 1. Characteristics of study population according to MBL levels a

Acceptor MBL-level (ng/ml)

MBL < 400 MBL 400 P-value

n 82 153

Recipient age (yrs) 45 46.51 0.40

Donor age (yrs) 40.05 37.37 0.20

Hemodialysis (%) 48.1 48.3 0.98

Years on dialysis 4.78 3.8 0.09

CIT (h) 28.28 29.44 0.54

CMV sero-positive 59.3 48.4 0.11

Female (%) 41.5 32 0.10

a MBL, mannose-binding lectin; CIT, cold ischemia time; CMV, cytomegalovirus
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Figure 2. Cumulative incidence of fi rst acute rejection according to MBL level.

For survival analysis all grafts that functioned for less than 3 months were excluded. 

This was done to exclude graft loss due to technical complications. At 3 months mean 

creatinine levels were the same in both the higher and lower MBL groups (168.8 

μmol/l vs. 166.6 μmol/l, P = 0.82). There was a non-signifi cant tendency towards 
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better patient survival in the group with a lower MBL level (P = 0.103) (fi gure 3). 

However overall graft survival was superior in acceptors with a low MBL level as 

shown in fi gure 4A (log-rank, P = 0.017). A similar difference was found when graft 

survival was censored for patient death with a functioning graft (log-rank, P = 0.028), 

(fi gure 3B). The 5-year death censored graft survival was 93.3% and 87.3% in the 

lower and the higher MBL group, respectively (P = 0.067). The 10-year death censored 

graft survival was 89.8% in the lower MBL group and 78.8% in the higher MBL group 

(P = 0.018).
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Figure 3. Patient survival according to MBL level. 

As shown in table 2 the risk for death censored graft loss was signifi cantly increased 

if the donor age was above 50 years (RR = 2.08; 95% CI, 1.1-4.04) or if acute rejection 

occurred (RR 4.18, 95% CI, 1.6-10.8). Neither HLA mismatches, a negative acceptor 

CMV serology nor cold ischemia time were signifi cant risk factors for graft loss in 

our well-matched cohort. An MBL level above 400 ng/ml was associated with a 2.5 

fold relative risk for death-censored graft loss (95% CI 1.1-1.57). When adjusted for 

other risk factors in a multivariate model, an MBL level above 400 ng/ml was shown 

to be an independent risk factor for graft loss. If the pre-transplantation MBL level 

was entered as a continuous parameter every 100 ng/ml concentration increase was 

associated with a RR of 1.03 (95% CI, 1.001-1.052). In the multivariate model the 

MBL level also proved to be an independent risk factor if analyzed as a continuous 

parameter (P = 0.009).
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Table 2. Risk factors of death censored graft lossa

Univariate Multivariate

RR 95% CI RR 95% CI

MBL> 400 ng/ml 2.50 1.1-5.7 2.76 1.2-6.32

Donor age >50 yr 2.08 1.1-4.04 2.23 1.14-4.3

Acute Rejection 4.18 1.6-10.8 4.26 1.64-11.00

CIT 1.03 0.98-1.08

Acceptor CMV neg. 0.34 0.6-2.49

HLA A-B ≥ 1mm 1.124 0.82-1.53

HLA DR ≥1 mm 1.90 0.96-3.8

a RR, relative risk; CI, confi dence interval; CIT, cold ischemia time; HLA, human leukocyte antigen; 

mm, mismatch

To study the mechanism underlying MBL associated graft loss, we analyzed the 

reasons for graft loss in the low and high MBL groups (table 3). The excess graft loss 

in patients with a MBL above 400 ng/ml was almost entirely explained by an increased 

incidence of rejection associated graft loss (P = 0.01).

 There was no difference in the need of a fi rst or second treatment for acute 

rejection between both groups, whereas 22.9% of the kidney recipients with a MBL-

level above 400 ng/ml did not adequately respond to antithymocyte treatment and 

thus recieved 3 or more courses of rejection treatment compared with 12.2% of the 

recipients with an MBL-level below 400 ng/ml (P = 0.03). (Data not shown)

Table 3. Reason for graft loss later than 3 months after transplantation according to MBL 

levels a

Acceptor MBL-level (ng/ml)

MBL < 400 MBL  400 P-value

n 82 153

No graft loss 58 84 0.02

Rejection associated graft loss 2 19 0.01

Recurrent disease 2 4 0.98

Death with functioning graft 17 40 0.42

Other 3 5 0.97
a MBL, mannose-binding lectin
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Discussion

In the present study we analyzed the interaction between pre-transplantation MBL 

levels and outcome after deceased donor kidney transplantation. This is the fi rst 

report showing that higher MBL levels are signifi cantly associated with increased 

overall and death-censored graft loss. This difference was almost entirely explained 

by rejection-associated graft loss and coincided with a greater need for additional 

treatment for acute rejection after a course of antithymocyte globulin in the group 

with higher MBL-levels. The relative risk for graft loss with a pre-transplantation MBL 

levels above 400 ng/ml was comparable with the effect of receiving a graft from a 

donor over 50 years of age. Higher MBL levels were not associated with an increased 

incidence of delayed graft function or fi rst acute rejection episodes.

 The serum MBL concentrations in our study population were comparable with 

the levels found in other populations [13;17;18]. The inter-individual differences in 

MBL levels are largely explained by polymorphisms within the promoter region and 

in exon 1 of the MBL2 gene. As a consequence the variation of MBL levels within 

individuals are small. Levels are only increased two to three-fold during acute 

phase responses in the critically ill and changes in MBL levels do not correlate with 

changes in C-reactive protein (CRP) during treatment on an intensive care unit [17]. 

In addition strong acute phase reactions in our transplant recipients are very unlikely 

since patients with evidence of acute infections or active infl ammatory disease are 

not accepted for transplantation. With this in mind, it can be assumed that the MBL 

levels measured in pretransplantation samples reliably represent the mean MBL level 

in these individuals.

 A single study has evaluated MBL levels in patients with advanced renal failure 

and hemodialysis treatment [19]. This study found signifi cantly increased MBL 

levels in Japanese patients approaching end stage renal failure (4343 ng/ml) and 

on hemodialysis treatment (8879 ng/ml) as compared with normal individuals (1452 

ng/ml). All except one patient in our cohort were undergoing renal replacement 

treatment prior to transplantation. The MBL levels in our patients were similar to 

those found in normal controls. The reason for this difference is unclear. Since MBL is 

too large in size to be cleared by glomerular fi ltration in the non-proteinuric kidney, 

renal insuffi ciency by itself would not explain accumulation of MBL.

 Genotyping our kidney acceptors for MBL mutations would have allowed classifying 

patients independently of external factors infl uencing MBL levels and would have 

made the use of a somewhat arbitrary MBL cut-off level unnecessary. Unfortunately 
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DNA was not available for MBL-genotyping of our recipients. On the other hand, 

although largely genetically determined, MBL levels can vary considerably within one 

genotype and the actual phenotype probably is functionally more important than 

the genotype. A comparison with healthy MBL-genotyped donors revealed a close 

association between MBL variant alleles and MBL serum concentrations below 400 ng/

ml. Furthermore recent data from our group indicate that serum MBL levels closely 

correlate with MBL pathway function [13].

 MBL may infl uence the outcome of a kidney transplant by various mechanisms. 

The complement system is known to contribute to organ damage in the setting of 

ischemia/reperfusion [1;2;20]. Inhibition of the lectin complement pathway with 

an antibody directed against MBL reduces C3 deposition and organ damage in a rat 

model for myocardial ischemia/reperfusion injury [12]. A recent study has shown MBL 

to be co-deposited with C6 in both a murine model of ischemia/reperfusion injury 

and human transplant kidneys after reperfusion [21]. We did not fi nd an association 

of the MBL levels with delayed graft function as a marker for ischemia/reperfusion 

damage. This does not exclude that MBL contributes to more subtle forms of ischemia/

reperfusion damage than overt acute tubular damage. 

 Next to ischemia/reperfusion injury the complement system is also involved in 

the context of acute and chronic rejection. Inhibition of complement activation by 

administering a membrane-binding complement regulator based on complement 

receptor type 1 resulted in amelioration of ischemia/reperfusion damage in a rat 

model of kidney transplantation. This intervention also led to a reduction of acute and 

chronic rejection [22]. Transplantation of kidneys obtained from C3 knockout mice 

leads to marked improvement of graft survival when compared with kidneys obtained 

from wild type mice [23]. In our study higher MBL levels seem to be associated with 

more severe and possibly treatment-resistant forms of rejection Damage resulting 

from acute rejection may be enhanced in the presence of high circulating levels of 

MBL by interaction of MBL with damaged tissue. MBL can bind to necrotic and late 

apoptotic cells, resulting in enhanced phagocytosis of these cells by macrophages 

and dendritic cells [11;24;25]. Phagocytosis of necrotic cells may induce dendritic 

cell maturation and macrophage activation [26-28]. It is conceivable that high MBL 

levels may increase immune reactivity and cell damage via binding to damaged tissue 

and enhancing activation of antigen presenting cells. The observation that higher MBL 

levels are associated with more treatment-resistant forms of rejection necessitating 

additional courses of rejection treatment after application of antithymocyte globulin 

may point to a higher prevalence of humoral rejection in high MBL individuals. 
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Initially the interest in the lectin complement pathway was directed towards benefi cial 

effects in the setting of infectious diseases. The high frequency of polymorphisms in 

the MBL gene however points towards a possible advantageous effect of low MBL 

levels [29]. This concept is strengthened by recent data. In a mouse model of acute 

septic peritonitis MBL-A defi cient mice had enhanced survival [30]. MBL mutations 

associated with low MBL serum levels may protect against the development of 

ulcerative colitis in humans [31]. In type 1 diabetics high MBL genotypes have been 

associated with an increased frequency of diabetic nephropathy [32]. In the same 

population the presence of cardiovascular disease was associated with higher MBL 

levels. The lectin complement pathway has also been linked to renal damage in IgA 

nephropathy and Henoch-Schonlein purpura [15,33,34].

 In conclusion our study suggests that higher MBL levels are associated with 

poorer graft survival due to rejection-associated graft loss in deceased donor 

kidney transplantation. Obviously this observation will need confi rmation in other 

transplantation cohorts. At this point of time we can only speculate about the 

mechanisms responsible for this deleterious effect of MBL. Further studies into the 

role of MBL in ischemia/reperfusion injury of the kidney and the interaction of the 

complement system with cellular immune mechanisms may help to understand this 

interesting fi nding. In addition to the potential pathophysiological implications of 

these fi ndings our data suggest that determining MBL levels prior to transplantation 

may serve as a prognostic marker in kidney transplantation.
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Summary

Simultaneous pancreas-kidney transplantation (SPKT) is the treatment of choice for 

type 1 diabetics with renal failure. However, this procedure is characterized by a 

high rate of post-operative infections, acute rejection episodes and cardiovascular 

mortality. The lectin pathway of complement activation contributes to cardiovascular 

disease in diabetes and may play an important role in infl ammatory damage after 

organ transplantation. We therefore studied how mannose-binding lectin (MBL), 

a major recognition molecule of the lectin pathway of complement activation, 

infl uences outcome after SPKT.

 MBL serum levels were determined in 99 and MBL genotypes were determined in 

97 consecutive patients who received a SPKT from 1990 through 2000, and related to 

patient and graft survival. 

 At 12 years, cumulative death-censored kidney graft survival was 87.5% in patients 

with an MBL level below 400 ng/ml and 74.8% in the group with MBL levels above 400 

ng/ml (p = 0.021). Pancreas graft survival was signifi cantly better in patients with low 

MBL-levels (p = 0.016). MBL levels above 400 ng/ml were associated with a hazard 

ratio of 6.28 for patient death (95% CI 1.8-20.3 p = 0.003). Accordingly, survival was 

signifi cantly better in recipients with MBL gene polymorphisms associated with low 

MBL levels. 

 Our fi ndings identify MBL as a potential risk factor for graft and patient survival 

in SPKT. We hypothesize that MBL contributes to the pathogenesis of infl ammation-

induced vascular damage both in the transplanted organs as well as in the recipient’s 

native blood vessels.
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Introduction

Simultaneous pancreas-kidney transplantation (SPKT) is the preferred treatment 

option for patients with long standing type 1 diabetes and end-stage renal failure. The 

major arguments favoring SPKT in these patients rather than renal transplantation 

alone include improved quality of life, prevention of recurrent diabetic nephropathy, 

and stabilization of diabetic neuropathy and retinopathy. Recent studies demonstrated 

that SPKT, compared to kidney transplantation alone, leads to improved allograft 

survival [1] and improved patient survival [2;3]. In spite of these benefi ts, mortality 

after SPKT transplantation remains high with 10 year patient survival rates of less 

than 70% [2;4]. 

 The complement system contributes to tissue damage at various stages of the 

transplantation process. An important role in ischemia/reperfusion injury and acute 

rejection has been demonstrated in various animal models [5;6]. Recently, the F/F 

and F/S donor allotypes of the C3 complement molecule have been associated with 

better long term outcome after kidney transplantation [7]. 

 Mannose-binding lectin (MBL) is the major recognition molecule of the 

lectin pathway of complement activation. In host defense wildtype MBL binds 

to carbohydrate moieties leading to complement deposition, opsonisation and 

elimination of pathogens. Single nucleotide polymorphisms (SNPs) in the structural 

as well as regulatory parts of the MBL gene lead to large interindividual variations in 

the concentration of functional MBL in serum [8]. 

 Various studies showed an association of low serum MBL levels and MBL SNPs with 

decreased host defense against various infectious agents. This is especially apparent 

in situations of impaired adaptive immunity such as early childhood or prolonged 

immunosuppression [9-12]. 

 However, wildtype MBL may also interact with tissue and lead to complement- 

mediated enhancement of damage in various non-infectious infl ammatory settings. 

In ischemia/reperfusion damage MBL may contribute to tissue injury by binding to 

host cells exhibiting a modifi ed surface [13;14]. Recently, high MBL levels have been 

related to an increased risk of vascular disease and diabetic nephropathy in both 

patients with type 1 and type 2 diabetes [15-17].

 Our group has shown that low pre-transplantation MBL levels are associated with 

better graft survival after deceased donor kidney transplantation [18]. In view of the 

role of MBL in diabetes and transplantation, we hypothesize that MBL could be major 

determinant of outcome in SPKT which is characterized by a high rate of infectious 

complications, acute graft rejection and cardiovascular mortality.
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Methods

Study Population
Between January 1990 and December 2000, 114 SPKTs were performed in the 

Leiden University Medical Center. All patients had diabetes mellitus type 1. Pre-

transplantation serum was available from 99 and DNA was available from 97 of these 

consecutive recipients. Both pre-transplant serum and DNA was available from 87 

of these patients. Pre-transplantation sera were routinely obtained at the time of 

admission for transplantation and stored in aliquots at -80°C. All measurements 

of MBL were performed in sera that had been frozen and thawed only once. All 

included patients were regularly followed at our center. None of the 99 patients 

were lost to follow up. The study was performed according to the guidelines of the 

ethics committee of the Leiden University Medical Center and patient anonymity was 

maintained.

 The following clinical data were collected using the Leiden Transplant Database: 

donor variables including gender and age at time point of death, recipient variables 

(age at time of transplantation, gender, panel-reactive antibodies, CMV status, 

duration of diabetes and dialysis treatment, smoking status and cholesterol levels), 

transplantation-related factors (human leukocyte antigen-A [HLA-A], -B, and –DR 

mismatches; cold ischemia time), and post-transplantation features including 

immunosuppressive regimen, occurrence of delayed graft function, acute rejection 

history, rejection treatment, status of both the kidney and pancreas allograft, cause 

of allograft loss, vital status and cause of death. Rejection was defi ned as either 

biopsy proven rejection or clinical rejection of the kidney with a favorable response 

to anti-rejection treatment. Since pancreas rejection is diffi cult to diagnose and 

isolated rejection of the pancreas is a rare event this was not analyzed separately in 

this study. After transplantation, patients were followed until death or until January 

1st 2006. Until May 1995 standard maintenance immunosuppression consisted of 

prednisone, cyclosporine and azathioprine. All recipients transplanted after May 1995 

received prednisolone, cyclosporine and mycophenolate mofetil. Eighteen patients 

received induction treatment with OKT-3 between 1991 and 1994. From 1999 onwards, 

induction treatment was reinitiated and consisted of either polyclonal antithymocyte 

globulin (ATG-Fresenius) or Daclizumab (n = 19). Acute rejection episodes were treated 

according to a standard protocol consisting of methylprednisolone 1 g intravenously 

for three consecutive days; a 10 day course of antithymocyte globulin at a dose of 5 

mg/kg guided by absolute lymphocyte counts; or again methylprednisolone for the 

fi rst, second (or steroid-resistant), or third rejection episode, respectively. 
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ELISA
Serum MBL levels were assessed by sandwich ELISA as described previously (18). In 

brief 96-well ELISA plates (Greiner, Frickenhausen, Germany) were coated with the 

monoclonal antibody 3E7 (mouse IgG1 anti-MBL at 2.5 μg/ml), kindly provided by 

Dr. T. Fujita (Fuhushima, Japan). Serum samples were diluted 1/50 and 1/500 and 

incubated in the coated wells. MBL was detected with Dig-conjugated 3E7. Detection 

of binding of Dig-conjugated antibodies was performed using HRP-conjugated sheep 

anti-Dig Abs (Fab fragments, Roche, Mannheim, Germany). Enzyme activity was 

detected using 2,2'-azino-bis(3-ethybenzthiazoline-6-sufonic acid) (Sigma Chemical 

Co., St. Louis, MO)). The optical density was measured at 415 nm using a microplate 

biokinetics reader (EL312e; Biotek Instruments, Winooski, VT). A calibration line was 

produced using human serum from a healthy donor with a known concentration of 

MBL. Earlier studies indicated that this assay primarily detects wildtype MBL in serum 

and plasma and that there is a direct association with the MBL genotype and with 

MBL function [19].

Genotyping
DNA from 97 SPKT recipients was isolated routinely from blood. MBL single nucleotide 

polymorphisms (SNPs) at codons 52, 54 and 57 of the mbl2 gene were typed by high 

resolution DNA melting analysis [20]. The detailed methodology will be published 

separately (A. Roos and R.H. Vossen et al., manuscript in preparation). The MBL 

genotype of only wildtype allele carriers is designated as A/A and the presence of 1 

or 2 variant allele(s) (B, C, or D) is designated as A/O or O/O. In the survival analysis 

carriers of A/O and O/O MBL genotype were considered as one group.

Statistical analysis
Categorical characteristics were compared using cross-tables with calculation of 

the exact p-values. Interval variables were analyzed using the Independent-Samples 

T-test when assumptions for parametric testing were met. Otherwise the Mann-

Whitney U test was used. Patient and graft survival was estimated using the Kaplan-

Meier product-limit method and the curves were compared with the Log-Rank test. 

For both pancreas and renal allograft survival the analysis was censored for patient 

death. Organs lost due to technical failure or thrombosis within one week after 

transplantation were excluded from survival analysis.

 Cox Proportional Hazards Regression was used to identify possible confounders 

infl uencing baseline MBL levels. In the multivariate model, MBL was adjusted for 
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recipient age, sex and baseline CRP level. MBL was tested both as a dichotomous 

(MBL below or above 400 ng/ml) and a continuous factor (after log transformation). 

P-values < 0.05 were considered to be signifi cant. Data analysis was performed with 

SPSS Statistical Software Package (Version 11.0.1; SPSS, Inc., Chicago, Ill.).

Results

The mean MBL concentration in the 99 available sera obtained directly prior to 

transplantation was 1053 ng/l. The median concentration was 694 ng/ml. A cut-off 

of 400 ng/ml was used to discriminate between high and low MBL levels. This cut-off 

correlates with the presence of single nucleotide polymorphisms (SNPs) in the fi rst 

exon of the MBL gene in both a control population [19] and the recipients studied 

here (Figure 1). The median MBL concentration in SPKT recipients with only wild-type 

MBL alleles (A/A) was 1493 ng/ml (n = 54). In recipients with the A/O (n = 29) or O/O 

(n = 4) genotypes the median MBL concentrations were 245 ng/ml and 166 ng/ml, 

respectively. Of the patients with an MBL level above 400 ng/ml, 89.3% had only wild-

type MBL alleles (A/A) whereas 90% of the patients with an MBL level below 400 ng/

ml had at least one of the exon 1 MBL polymorphisms (A/O or O/O). To assess whether 

pre-transplant MBL levels are representative for the levels after transplantation we 

determined the MBL concentrations one year after SPKT in 30 patients and compared 

them with the levels measured in the pre-transplant sample. We found a high intra-

individual correlation of MBL levels over time (r = 0.87, P < 0.0001).

 Thirty-four (34.3%) SPKT recipients had a low MBL level and 65 (65.6%) recipients had 

high MBL levels. Table 1 shows the characteristics of the high and low MBL recipients. 

No signifi cant difference between both groups concerning demographic and clinical 

characteristics including donor and recipient age, CMV status and sex distribution was 

noted. Both groups had a comparable proportion of patients undergoing SPKT before 

initiation of dialysis treatment. Both the high and low MBL-groups had a comparable 

proportion of patients receiving triple immunosuppression including mycophenolate 

mofetil. The proportion of patients with at least one signifi cant coronary stenosis 

was 27.3% in the low MBL-group and 22.3% in the high MBL-group (p = 0.58). Of note, 

there was no difference in the baseline CRP levels between the two MBL groups. The 

majority of patients required treatment for acute rejection, 88.2% and 86.2% in the 

low and high MBL groups, respectively (p = 0.99). Likewise the number of rejection 

treatments per patient was comparable in both groups (1.85 vs. 1.68, p = 0.49).
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Figure 1. Pre-transplantation MBL levels stratifi ed according to MBL genotype. The 

dashed line represents the cut-off level of 400 ng/ml. MBL levels are represented on a 

log scale.

Analysis for death-censored graft survival revealed a signifi cant survival advantage 

for both the renal and pancreas allografts in favor of the low MBL recipients. At 

12 years after transplantation, cumulative death-censored pancreas graft survival 

was 100% in the low MBL-group vs 82% in the high MBL-group (p = 0.016 by the log-

rank test with grafts lost within 1 week excluded) (Figure 2A). Death-censored renal 

allograft survival at 12 years after transplantation was 87.5% in patients with an MBL 

level below 400 ng/ml and 74,8% in patients with an MBL level above 400 ng/ml (p = 

0.021 by the log-rank test) (Figure 2B). 
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Figure 2. Unadjusted Kaplan-Meier survival curves according to pre-transplantation MBL-

level. (A) Death-censored survival of pancreas allografts, (B) death-censored survival of 

kidney allografts

Subsequently, the MBL status was related to patient survival. Twelve years after 

transplantation cumulative patient survival was 86.9% in the low MBL group and 49.1% 

in the high MBL group (p = 0.001 by the log rank test) (Figure 3A). To examine whether 
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the inferior patient survival in high MBL recipients was a mere consequence of graft 

loss we repeated the survival analysis after excluding the patients who lost either the 

kidney or pancreas allograft. In the group with functioning allografts patient survival 

remained inferior in those with MBL levels above 400ng/ml (p = 0.02). 

Table 1. Characteristics of study population according to MBL levelsa

Acceptor MBL levela (ng/ml)

MBL  400 MBL > 400 P-value

n 34 65

Recipient age (yrs) 39.9 ± 7.8 40.8 ± 6.8 0.89

Female recipient (%) 32.4 38.5 0.55

Years diabetes 27.1 ± 6.2 26.2 ± 6.3 0.65

Active smoking (%) 32.4 19.7 0.17

Signifi cant stenosis in Pre-tx CAG (%) 27.3 22.2 0.58

Baseline CRP (mg/l) 4.3 ±6.4 4.45 ± 7.4 0.96

Baseline cholesterol (mmol/l) 5.11 ±1.2 5.27 ± 1.3 0.57

Pre-emptive SPKT (%) 44.1 35.4 0.40

CMV sero-positive (%) 41.2 35.9 0.61

Donor age (yrs) 33.0 ± 9.1 29.8 ± 11.8 0.17

Cold ischemia time (hrs) 14.8 ± 2.9 15.2± 3.9 0.59

Rejection episodes 1.85 ± 0.9 1.69 ± 1.13 0.49

HLA DR mismatches 1.32 ± 0.64 1.29 ± 0.63 0.81

Mycophenolate (%) 47.1 47.6 0.98

a MBL, mannose-binding lectin; CIT, cold ischemia time; CMV, cytomegalovirus; tx, transplantation; 

CAG, coronary angiogram,CRP, C-reactive protein, where appropriate values are given as mean 

± s.d.

To confi rm these fi ndings we also analyzed recipient survival according to the MBL 

genotype. Superior survival was found in patients with a variant MBL genotype when 

compared with recipients with only wildtype MBL alleles (p = 0.026) (Figure 3B).
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Figure 3. Unadjusted Kaplan-Meier survival curves of patient survival and cardiovascular 

survival according to MBL status. (A) Patient survival according to pre-transplantation 

MBL level, (B) Patient survival according to recipient MBL genotype, (A/A= wildtype MBL 

genotype; A/O or O/O= variant MBL genotype)

We analyzed various characteristics in relation to patient survival (Table 2). An MBL 

level above 400 ng/ml was associated with a strongly increased mortality (HR 6.28; 

95% CI 1.89-20.87, p = 0.003). Accordingly, the presence of wild-type MBL alleles 
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was associated with an increased risk of patient death (HR 3.6; 95% CI 1.22-10.6, p 

= 0.02). MBL was also signifi cantly associated with an increased risk of patient death 

when analyzed as a continuous parameter (p = 0.013). MBL remained signifi cantly 

associated with patient death when entered into a multivariate model adjusted for 

recipient age, sex and baseline CRP using the Cox regression method (Table 2). 

 The reasons for patient death in the high and low MBL groups are shown in table 

3. The excess mortality in patients with an MBL level above 400 ng/ml was explained 

to a large extent by a higher cardiovascular mortality in this group. No signifi cant 

difference in infection-related deaths between the low and high MBL-groups was 

observed.

Table 2. Risk factors for patient deatha.

univariate multivariateb

HR 95% CI P-value HR 95% CI P-value

MBL> 400 ng/ml 6.28 1.89-20.87 0.003 4.44 1.3-15.1 0.017

Log MBL ng/ml 2.75 1.24-6.11 0.013 2.56 1.04-6.3 0.04

MBL genotype A/A 3.6 1.22-10.06 0.02

Signifi cant coronary stenosis at 
baseline

2.00 0.92-4.30 0.077

Male recipient 0.61 0.29-1.26 0.18

Recipient age > 40 yr 1.52 0.73-3.19 0.27

Smoking 0.96 0.49-2.01 0.96

Baseline cholesterol > 5 mmol/l 0.99 0.47-2.09 0.99

Years diabetes 0.99 0.93-1.06 0.8

CRP 1.03 0.98-1.07 0.25

MMF vs. Aza 0.53 0.22-1.31 0.17

Pre-emptive transplantation 1.25 0.58-2.73 0.57

a HR, hazard ratio; MBL, mannose-binding lectin; CI, confi dence interval; CRP, c-reactive proteine, 

MMF, mycophenolate mofetil; Aza, Azathioprine bFor the multivariate analysis MBL was adjusted for 

recipient sex, age and CRP
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Table 3. Reason for death according to MBL levelsa

Recipient MBL-level

MBL  400 ng/ml MBL > 400 ng/ml

n % n % P-value

34 - 65 - -

All causes 3 8.8 26 40 0.001

Cardiovascular 0 0 11 16.9 0.014

Malignancy 1 2.9 4 6.2 0.66

Infection 0 0 3 4.6 0.55

Other 1 2.9 4 6.2 0.66

Undetermined 1 2.9 4 6.2 0.66

a MBL, mannose-binding lectin

Discussion

Our study demonstrates superior graft and patient survival after SPKT in recipients with 

low MBL levels. A high MBL level was associated with an increased incidence of death-

censored loss of both the renal and the pancreatic allograft. Furthermore, a high-MBL 

status was associated with markedly increased mortality, and we demonstrate that 

this high MBL-status is genetically determined.

 These fi ndings corroborate our recent report demonstrating an association of 

MBL levels above 400 ng/ml with poorer graft survival after deceased donor kidney 

transplantation [18]. Our earlier study on the role of MBL in kidney transplantation 

showed a non-signifi cant trend towards poorer patient survival in renal allograft 

recipients with a high MBL level. This difference between the two studies may be 

explained by the higher risk profi le in the type 1 diabetic population receiving SPKT 

compared with the general population of kidney allograft recipients. In addition the 

harmful effect of MBL in cardiovascular mortality may be enhanced in the diabetic 

population.

 Reports on the cardiovascular effects of MBL defi ciency in the general population 

have been inconclusive. The predictive value of MBL levels for myocardial infarction 

was studied in the population-based Reykjavik study [21]. In this population MBL levels 
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above 1000 ng/ml were associated with a lower odds ratio for myocardial infarction. 

Interestingly no data on mortality were reported. In the Strong Heart Study cohort, 

native Americans with coronary heart disease had an increased frequency of variant 

MBL genotypes when compared with a matched cohort without coronary heart disease 

[22]. Contrary to these fi ndings, but in agreement with our current data, a recent 

study in 964 apparently healthy men did show an association of elevated MBL levels 

with coronary heart disease [23].

 So how can we explain the adverse effect of high MBL levels on graft and patient 

survival in our study? The fi nding of superior graft survival after SKPT confi rms our 

earlier report demonstrating superior allograft survival in recipients with low MBL 

levels after deceased donor renal transplantation [18]. Like in the current SPKT cohort 

the incidence of acute rejection was similar in the high and low MBL groups, but graft 

loss due to rejection occurred much more frequently in recipients with high MBL 

levels. We hypothesize that MBL contributes to tissue damage in various infl ammatory 

settings including graft rejection. Models of ischemia/reperfusion damage in heart, 

intestine and kidney have shown that MBL A & C-defi cient mice are protected from 

ischemia/reperfusion injury as compared to wild type animals [13;24;25]. In line with 

these fi ndings MBL deposition has been detected in human kidneys with ischemia/

reperfusion damage [26], indicating that wildtype MBL may contribute to local 

complement activation and enhanced infl ammation in tissue damage. Next to the 

interaction of MBL with apoptotic and necrotic cells [27], MBL-mediated damage 

may also be related to its antibody-binding capacities [28-30]. A recent study has 

failed to show an association between MBL levels and patient or graft survival after 

kidney transplantation [31]. In comparison with our studies it has to be noted that 

the analysis was performed using the median MBL level or the third quartile as cut-off 

values which may not be ideal for detecting MBL-mediated effects.

 In addition to the effect of MBL on graft survival, we also observed a strong 

association of high MBL levels with inferior patient survival which was independent 

of graft survival. Earlier studies have pointed towards a detrimental role of MBL in 

patients with diabetes. High levels of MBL have been associated with an increased 

frequency of cardiovascular disease and proteinuria in patients with type 1 diabetes 

mellitus [15;16]. Similarly, high MBL levels have also been related to increased 

mortality in type 2 diabetics [17]. It may well be that MBL exerts a specifi c harmful 

effect in the diabetic milieu and the increased mortality in high-MBL subjects may 

be related to microvascular damage obtained prior to the pancreas transplantation. 

Additionally, the unfavorable effect of MBL observed in the context of ischemia/
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reperfusion damage may also contribute to tissue damage and mortality following 

cardiovascular events.

 Since intraindividual MBL-levels are highly stable over time [21] we are convinced 

that serum MBL levels measured prior to transplantation adequately represent 

the exposition to MBL. Moreover, our MBL assay strongly correlates with both the 

functional activity of the lectin pathway [19] and the presence of SNPs of the MBL 

gene. In fact, measurement of MBL levels in serum may be a more powerful and 

convenient method of detecting MBL-mediated effects than genotyping since not all 

intraindividual variations in MBL levels are explained by the known polymorphisms of 

exon 1 and other parts of the MBL gene.

 Recently low MBL levels have been related to an increased incidence of clinically 

important infections after liver transplantation [12]. However, no association between 

MBL-defi ciency and infection-related mortality was detected in our cohort. Low 

infection-related mortality after SPKT has been reported before [32]. Thus, although 

we cannot exclude that MBL defi ciency is associated with an increased incidence of 

infections after SPKT this did not contribute to graft survival or patient mortality in 

our cohort. 

 We conclude that MBL levels are a powerful predictor of graft and patient 

survival after SPKT. If these fi ndings can be confi rmed in other study populations, 

determination of MBL levels and/or MBL genotyping may aid risk stratifi cation prior 

to SPKT. Whether these fi ndings eventually lead to new therapeutic approaches will 

depend on the elucidation of the underlying pathophysiological mechanisms.
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Summary

Mannose-binding lectin (MBL) is a recognition molecule of the lectin pathway of 

complement activation and its serum levels are largely determined by frequently 

occurring polymorphisms of the MBL gene. We questioned whether MBL defi ciency 

infl uences infectious complications after simultaneous pancreas-kidney transplantation 

(SPKT).

 Infectious complications in the fi rst year after transplantation were scored 

retrospectively in 152 consecutive SPKT patients who received their transplant at our 

center between 1990 and 2005. Pre-transplant serum MBL levels were determined by ELISA.

Every 500 ng/mL increase in baseline MBL was associated with an odds ratio of 0.83 (P 

= 0.045) for urinary tract infections and an odds ratio of 0.68 (P = 0.029) for urosepsis. 

Urosepsis was signifi cantly more common in patients with low baseline MBL (< 400 

ng/mL) compared to higher MBL levels (22.7% vs. 8.3%, P = 0.015). No signifi cant 

infl uence of MBL on the occurrence of wound infections and cytomegalovirus disease 

could be demonstrated. 

 With the current study we show that high levels of serum MBL are associated with 

protection against urinary tract infections and more specifi cally against urosepsis after 

SPKT. These data indicate an important role for the lectin pathway of complement 

activation in antimicrobial defense in these transplant recipients.
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Introduction

Simultaneous pancreas-kidney transplantation (SPKT) offers the opportunity to correct 

both renal failure and the underlying metabolic disease in type 1 diabetics with severe 

diabetic nephropathy. Technical success rates have improved and SPKT has become 

a routine procedure in many transplant centers. Nevertheless, this procedure is still 

characterized by a high rate of rejection [1] and infectious complications [2] when 

compared to kidney transplantation alone.

 The complement system plays an important role in solid organ transplantation in 

both ischemia/reperfusion injury and rejection-mediated damage [3;4]. Mannose-

binding lectin (MBL) is a major initiation molecule of the lectin pathway of complement 

activation and its levels are largely determined by polymorphisms within exon 1 

and the promoter region of the MBL-2 gene. MBL binds to carbohydrate moieties of 

pathogens and damaged host tissue which leads to opsonisation and activation of the 

complement cascade. We recently reported a strong association of high MBL levels 

with mortality and graft loss in SPKT recipients [5], a fi nding possibly explained by 

a contribution of the lectin pathway to tissue damage occurring during ischemia/

reperfusion injury. Experimental data have demonstrated an important role of the 

lectin pathway in ischemia/reperfusion damage of the heart and kidney [6;7]. On the 

other hand, the lectin pathway may be of particular importance in host defense in 

the immune compromised host. Various studies have linked low serum levels of MBL 

and MBL SNPs to increased infectious complications in various settings of impaired 

immunity including cystic fi brosis and early childhood [8;9]. Medical interventions 

associated with states of impaired adaptive immunity such as stem cell transplantation 

and chemotherapy have also been associated with increased infection rates in the 

presence of low MBL levels [10;11]. We recently showed that the transplantation of 

livers with variant MBL genotypes results in low MBL levels in the recipient and an 

signifi cantly increased rate of severe infections [12].

 Taken together, MBL defi ciency can have dual effects, dependent on the clinical 

situation. In our recent publication on the role of MBL in SPKT [5], we showed that a 

low-MBL status is clinically benefi cial, since it is associated with lower mortality and 

less graft loss. In line with the well-established role of MBL in host defense, we now 

report that a low-MBL status of the recipient is strongly associated with an increased 

susceptibility to infections in this highly infection-prone cohort of immunosuppressed 

patients. In particular, results indicate an association of low MBL levels with an 

increased risk for urinary tract infections after SPKT.
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Materials and Methods

From January 1990 until July 2005, 183 simultaneous pancreas/kidney transplantations 

were performed in the Leiden University Medical Center. Ten recipients were excluded 

because they lost their pancreas allograft within one week after transplantation due 

to arterial thrombosis. A pre-transplant serum sample was available from 152 of the 

173 remaining patients. In 144 of these patients exocrine pancreatic juices were 

drained via the bladder and primary enteric drainage was used in 8 patients.

 Data analysis was performed using the Leiden Transplant Database containing 

donor variables (gender, date of birth and death, cytomegalovirus (CMV) status, 

transplantation date), recipient variables (gender, age at time of transplantation, 

CMV status) and post-transplantation features (immune suppression, rejection history, 

rejection treatment and graft loss). This information was collected routinely for all 

transplant patients. After transplantation, patients were followed until death or July 

2006.

 The study was performed according to the guidelines of the ethics committee of 

the Leiden University Medical Center and patient anonymity was maintained.

Antibiotic prophylaxis
As viral prophylaxis high dose acyclovir (57 patients), valaciclovir (12 patients) or 

ganciclovir (44 patients) was given during the fi rst year after transplantation. CMV 

prophylaxis was given indiscriminately to all patients irrespective of their CMV status 

until December 2002. From 2003 onwards CMV prophylaxis was discontinued and a 

pre-emptive treatment protocol was introduced. From 1995 onwards, cotrimoxazol 

was given as a prophylaxis for both urinary tract infections and Pneumocystis 

pneumonia (PCP) (100 patients). As prophylaxis for Candida spp. stomatitis and 

vaginitis, amfotericine B fl uid and miconazol cream were given up to 1 year after 

transplantation, respectively.

Immunosuppression
All patients transplanted before August 1996 received an immunosuppressive regimen 

consisting of triple therapy including prednisone, cyclosporin and azathioprine 

(32.2%). From August 1996 on, azathioprine was replaced by mycophenolate mofetil 

(MMF, 67.8%). Eighteen patients received induction treatment with OKT-3 between 

1991 and 1994. From 1999 onwards induction treatment was reinitiated and consisted 

of either polyclonal antithymocyte globulin (ATG-Fresenius) or daclizumab.
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Infections
All clinically signifi cant infections (site, pathogen, antibiotic treatment) were scored 

retrospectively with a follow-up of one year after transplantation using Center for 

Disease Control and Prevention (CDC) criteria [13]. Infection was defi ned as a positive 

culture from the site expected to be the focus of infection followed by subsequent 

appropriate antibiotic therapy. 

 Criteria for the most frequent infections are briefl y described. Urinary tract 

infections (UTI) were divided into cystitis, pyelonephritis and urosepsis. Cystitis was 

defi ned as a positive urine culture (> 104 cfu/ml) and pyuria with or without other 

symptoms. Pyelonephritis was defi ned as a positive urine culture, pyuria and fever 

(>38.5°C). If blood culture was also positive, the infection was scored as urosepsis. 

Wound infections (surgical site infections) were divided in superfi cial and deep 

(i.e., intra-abdominal) infections and defi ned as positive tissue or drain cultures. 

Furthermore, superfi cial wound infection was defi ned as involvement of skin or 

subcutaneous tissue around the incision and deep wound infection by involvement 

of intra-abdominal tissue with or without fever. The diagnosis CMV disease was made 

after laboratory documentation of CMV replication (positive pp65) in the presence 

of clinical symptoms (fever >38.5° with respiratory, hepatic, hematological, gastro-

intestinal, central nervous system, renal, or musculoskeletal fi ndings that could 

not be attributed to another cause) followed by starting or adjustment of antiviral 

treatment [2].

ELISA
Serum MBL concentrations were assessed by sandwich ELISA as described previously 

[14]. In short, 96-well ELISA plates were coated with 3E7 (mouse IgG1 anti-MBL at 

5 μg/mL). After blocking residual binding sites with PBS containing 1% BSA, serum 

samples were diluted 1:50 and 1:500 in PBT (PBS containing 1% BSA and 0.05% Tween 

20) and incubated. Dig-conjugated 3E7 was added as second antibody. Detection 

of MBL binding was performed by adding Fab anti-Dig-HRP (Fab fragments, Roche, 

Mannheim, Germany) followed by enzyme activity detection with ABTS (Sigma 

Chemical Co., St. Louis, MO). Optical density was measured at 415 nm using a micro 

plate biokinetics reader (EL312e, Biotek Instruments, Winooski, VT). A calibration 

line was obtained using a serial dilution of human serum with a known concentration 

of MBL.
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Statistical analysis
Logistic regression analysis was used to test the infl uence of MBL on the different 

infectious parameters. MBL concentrations < 400 ng/mL were classifi ed as low MBL, 

whereas MBL > 400 ng/mL were considered normal/high MBL levels. Categorical 

characteristics among the different MBL groups were compared using cross tables 

with calculations of exact p-values using the Pearson Chi-Square test or with the 

Fisher’s Exact test. Continuous variables were analyzed using the Student’s t-test, 

when test assumptions were met, and otherwise with the Mann-Whitney test. To 

identify independent risk factors for infectious complications multivariate binary 

logistic regression analysis was performed. The forced entry method was applied.

 P-values of < 0.05 were considered to be statistically signifi cant. All analyses were 

performed with SPSS Statistical Software Package (version 12.01, SPSS Inc.).

Results

Patient characteristics of the 152 selected patients are summarized in table 1. Their 

mean age was 40.8 years and 62% were male. One year patient survival was 95.3% 

and death censored pancreas and kidney allograft survival were 92.8% and 96.1%, 

respectively. 

Infectious complications after SPKT
We recorded 529 clinically relevant infections during the fi rst year after transplantation 

and 138 SPKT recipients (90.8%) experienced at least one infection. The majority, 

118 patients (78%) were treated for cystitis, 34 (22%) had at least one episode of 

pyelonephritis and 20 episodes of urosepsis were recorded in 19 patients (13%). 

Wound infections were registered in 48 patients (32%) and 46 patients were treated 

for CMV infection (30%). The distribution of infectious episodes during the fi rst year 

after SPKT is shown in table 2. Women experienced signifi cantly more urinary tract 

infections than men (4.4 vs 2.9 episodes per patient, P = 0.001). Escherichia coli was 

the most frequent cause of urinary tract infections (33%) followed by Enterococcus 

faecalis (20%) and coagulase negative staphylococci (15%). In 7 cases of bacteremia 

no defi nite focus could be identifi ed.
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Table 1. Patient characteristics

Mean / N Range / %

Sex

Male 94 61.8

Female 58 38.2

Age (years) 40.8a 24-58

MBL level pre-Tx (ng/mL)† 904† 28-5153

CMV status*

D+/R+ 30 19.7

D+/R- 36 23.7

D-/R+ 29 19.1

D-/R- 57 37.5

Prophylaxis

Cotrimoxazol 98 64.5

Viral 113 74.3

Immunosuppression

Azathioprine 49 32.2

Mycophenolate Mofetil 103 67.8

Enteric pancreas drainage 8 5.1

Rejections per patient 1.39a 0-4

Pancreas failure#,° 11 7.2

Kidney failure#,° 9 5.9

Patient survival° 145 95.3

† Non-Gaussian distribution, median is given, * IgG serology, ▪ Immunosuppression consisted of triple 

therapy with prednison, cyclosporin A and either azathioprine or mycophenolate mofetil # Death 

censored, ° Organ faillure and patient survival in 1st year after transplantation, N, number; MBL, 

mannose-binding lectin; D, donor; R, recipient; +, positive; -, negative

Of the 8 patients with primary enteric drainage, 2 suffered from urinary tract 

infections, of which one developed urosepsis. Two patients developed CMV disease 

and 3 had a wound infection. Four of these 8 patients had no infections in the fi rst 

year after transplantation.
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Table 2. Localization of infections

Infections % Patients %

Urinary tract 
infections

362 68 129 85

Cystitis 306 58 118 78

Pyelonefritis 36 7 34 22

Urosepsis 20 4 19 13

Wound infection 64 12 48 32

CMV 55 10 46 30

Other 47 9 43 28

Total 529 100 139 91

CMV, cytomegalovirus disease

MBL and Infections
The median MBL level in the study population was 904 ng/ml (range 24-5153). We 

fi rst examined the infl uence of MBL on infectious complications in steps of 500 ng/

ml (table 3). For every 500 ng/mL increase in baseline MBL an odds ratio of 0.84 (P 

= 0.045) for urinary tract infections, of 0.68 (P= 0.029) for urosepsis and of 0.70 (P = 

0.016) for all episodes of bacteremia was detected. With this analysis no signifi cant 

infl uence of increasing MBL levels could be detected for the development of cystitis, 

pyelonephritis, wound infection, or CMV disease.

 Figure 1 shows the pre-transplantation MBL concentrations of the patients without 

UTI (median 1634 ng/mL), with cystitis (median 810 ng/mL), and with urosepsis 

(median 373 ng/mL). Differences in median baseline MBL were signifi cant between 

groups (no UTI vs. cystitis, P = 0.013, no UTI vs. urosepsis, P = 0.001).

A cut-off of 400 ng/ml was used to differentiate between high and low MBL levels. 

This cut-off level had been established in earlier studies and strongly correlates with 

the presence of MBL polymorphisms [15;16]. Furthermore, in a receiver operator 

characteristics analysis a cut-off level around 400 ng/ml was determined to have 

the best possible signifi cance and specifi city for predicting infectious complications. 

Twenty-nine % of the SPKT cohort had MBL levels below this cut-off. Table 3 shows 

the characteristics and infectious complications in the high and low MBL recipients. 

The sex and age distribution was similar in both groups. The high and low MBL groups 

had the same incidence of acute rejection (68.5% vs. 68.2%., P = 0.556). UTI (95.5% 
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vs. 80.6%, P = 0.023), cystitis (88.6% vs. 73.1%, P = 0.038) and urosepsis (22.7% vs. 

8.3%, P = 0.015) were signifi cantly more common in patients with low baseline MBL 

compared to the high MBL group. Episodes of pyelonephritis were also more frequent 

in the low MBL group, but this difference did not reach statistical signifi cance (P 

= 0.074). The total number of UTI per patient was signifi cantly higher in the low 

MBL group (2.93 vs. 2.16, P = 0.036). Although infectious complications were more 

common in patients with low baseline MBL, MBL was not associated with increased 

infection-related mortality. Only 4 patients in the entire cohort died of infections 

during the fi rst year after transplantation.

Table 3. Change in Risk of Infectious Complications with increasing baseline MBL levels

P-value Odds ratio 95% Confi dence interval

lower upper

UTI 0.045 0.84 0.70 1.00

Cystitis 0.243 0.91 0.78 1.07

Pyelonephritis 0.507 0.94 0.79 1.13

Urosepsis 0.029 0.68 0.49 0.96

Bacteraemia 0.016 0.70 0.52 0.94

Wound infection 0.204 0.90 0.76 1.06

CMV 0.517 0.95 0.81 1.11

All infections 0.044 0.81 0.66 0.99

Signifi cant p-values are bold and underlined. Odds ratio = change in Odds ratio every 500 ng/mL MBL. 

UTI, urinary tract infection; CMV, cytomegalovirus disease

Multivariate analysis of risk factors for development of urosepsis, including sex, age, 

immunosuppression, PCP prophylaxiswith co-trimoxazol, initial method of exocrine 

pancreatic drainage and MBL level, indicated that MBL was the only signifi cant risk 

factor (table 5a). A baseline MBL level below 400 ng/mL was associated with an odds 

ratio of 3.58 for developing urosepsis (P = 0.016). Interestingly the introduction of 

cotrimoxazol prophylaxis did not reduce the risk of urosepsis in our cohort. When 

multivariate analysis was performed primary enteric drainage was associated with 

an odds ratio of 0.11 for cystitis (P = 0.014). Male recipients had an odds ratio of 0.4 

(P = 0.059) for experiencing cystitis and baseline MBL levels below 400 ug/ml were 

associated with an odds ratio of 2.78 (P = 0.064) (table 5b). Cotrimoxazol prophylaxis 

did not have a benefi cial effect on the prevention of cystitis.
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Figure 1. MBL levels in patients without urinary tract infections, with cystitis and 

with urosepsis. The dotted line indicates the cut-off level of 400 ng/mL and the solid 

lines indicate the median. MBL levels are represented in a log scale. Pre-Tx MBL, pre-

transplantation mannose-binding lectin concentration; UTI, urinary tract infection.
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Table 4. Patient characteristics according to MBL level

Pre-tx MBL (ng/mL)

<400 >400 p-value

N 44 108

Male (%) 63.6 61.1 0.771

Recipient age (years) 41.2 40.6 0.630

Donor age (years) 32.1 30.0 0.269

UTI (%) 95.5 80.6 0.023

Cystitis (%) 88.6 73.1 0.038

Pyelonephritis (%) 31.8 18.5 0.074

Urosepsis (%) 22.7 8.3 0.015

N of UTI per patient 2.93 2.16 0.036

Bacteraemia (%) 25.0 13.0 0.069

CMV (%) 36.4 27.8 0.296

Wound infection (%) 29.5 32.4 0.731

Deep(%) 20.5 23.1 0.718

Superfi cial(%) 9.1 7.9 0.713

Primair enteric drainage (%) 2.3 6.5 0.439

Signifi cant p-values are bold and underlined. N, number; Pre-tx MBL, pre-transplantation mannose-

binding lectin concentration; UTI, urinary tract infection; CMV, cytomegalovirus disease
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Table 5. Multivariate analysis of risk factors for experiencing urosepsis (A) and cystitis 

(B)

P-value Odds ratio 95% Con  dence interval

lower upper

A) Urosepsis

Male 0.398 1.63 0.53 5.04

Patient age 0.605 0.98 0.92 1.05

Azathioprine 0.910 1.09 0.26 4.46

Cotrimoxazol prophylaxis 0.636 0.72 0.18 2.82

Enteric pancreas drainage 0.829 1.30 0.12 14.46

MBL <400 ng/mL 0.016 3.58 1.27 10.04

B) Cystitis

Male 0.059 0.40 0.16 1.03

Patient age 0.487 1.02 0.96 1.08

Azathioprine 0.289 1.88 0.59 6.00

Cotrimoxazol prophylaxis 0.750 1.19 0.40 3.54

Enteric pancreas drainage 0.014 0.11 0.02 0.64

MBL <400 ng/mL 0.064 2.78 0.94 8.18

Signifi cant p-values are bold and underlined. MBL, mannose-binding lectin

Discussion

Our previous study on the role of the lectin pathway in SPKT showed that low MBL 

levels were associated with superior organ and graft survival [5]. We wondered 

whether this survival advantage was associated with the disadvantage of more 

infectious complications. In the current study, we now show that low MBL levels 

indeed are associated with an increased risk of infections after SPKT. Transplant 

recipients with MBL levels below 400 ng/ml had a higher risk of bacterial cystitis and 

more episodes of urosepsis as compared to patients with MBL levels above 400 ng/

ml. In the multivariate analysis MBL defi ciency was the only identifi able risk factor 

for urosepsis.
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The innate immune system is of particular importance in patients with a suppressed 

adaptive immune system. MBL binds to a broad range of microorganisms [17], including 

Staphylococcus aureus, certain E. coli strains and Candida species. Binding of MBL 

may lead to activation of the lectin pathway of complement activation and enhanced 

phagocytosis [18). Although MBL defi ciency does not seem to be a major risk factor 

for infections in the general population [19], immunosuppressed patients depend 

more on the lectin pathway for antimicrobial defense as has been shown in patients 

treated with chemotherapy [10] or hematopoietic stem cell transplantation [11]. 

 Solid organ transplantation is associated with an especially high risk for infectious 

complications. Liver transplantation is an example of this high risk of infections, 

resulting in signifi cant morbidity and mortality. We recently reported that MBL 

defi ciency after liver transplantation is associated with a high risk of clinically 

signifi cant infections consisting of sepsis, peritonitis and pneumonia [12]. Similar 

to liver transplantation, SPKT is also associated with a high rate of infectious 

complications [2]. In our study population 138 patients (90.8%) suffered from at least 

one clinical signifi cant infection in their fi rst year after transplantation, in spite of 

the given antibiotic prophylaxis. Especially UTI are a major problem, since 85% of the 

patients experienced at least one episode and 59% experienced recurrent UTI. This 

high rate of UTI is probably related to pre-existing bladder dysfunction, the use of 

catheters and in particular the metabolic and anatomic consequences of the exocrine 

drainage of the pancreas to the bladder next to the intense immunosuppression. 

Although only 8 patients in our cohort had primary enteric drainage of the pancreas, 

a signifi cant protective effect against cystitis was detected when compared with 

primary bladder drainage.

 Interestingly, low MBL levels were not only associated with urosepsis but also with 

an increased occurrence of uncomplicated cystitis. We are not aware of any studies 

examining the role of MBL in cystitis. At this point we do not know whether MBL 

enters the urinary tract via the kidney or whether it is possibly produced by urothelial 

cells. In a preliminary study we were able to detect low levels of MBL in urine during 

urinary tract infections in transplant recipients (unpublished observations).

 Different cut-off values for serum MBL levels have been used in several studies 

to defi ne MBL-defi ciency. However it is likely that the physiologically relevant MBL 

level resulting in clinical manifestations differs in different diseases. Genotyping 

has also been used. The drawback of this classifi cation is that individuals with 

identical genotypes for all known variants may differ up to 10-fold in MBL levels 

[20]. From analysis with different cut-off levels of MBL, it appeared that 400 ng/



Chapter 5

78

mL was the most optimal cut-off level in our patient group of SPKT patients. This 

cut-off was found earlier to clearly distinguish between wildtype MBL individuals 

and those with a polymorphism [16]. On the other hand we did also fi nd a continuous 

effect when MBL was studied in steps of 500 ng/ml. This indicates that higher MBL 

levels are associated with increasing antibacterial protection, most likely also in a 

range of MBL concentrations that are subject to regulation of expression by promoter 

polymorphisms, rather than associated with genetically-based defi ciency.

 A recent study demonstrated that MBL levels determined under baseline conditions 

are highly predictive of MBL levels during the acute phase response after surgery [21], 

justifying the use of pre-transplant sera in our study. Due to lack of international 

standardization it must be noted that the used cut-off level of 400 ng/ml refers to 

our well established in house ELISA [16] and the cut-off levels may be somewhat 

different in other test systems using other MBL-detecting antibodies. 

 Our study demonstrates increased susceptibility to urinary tract infections 

after SPKT in patients with low MBL levels (<400 ng/mL) compared to patients 

with high MBL levels. A recently published study investigated MBL polymorphisms 

in non-transplanted females with pyelonephritis due to Escherichia coli [22]. MBL 

polymorphisms associated with low levels of MBL were not more frequent in women 

with pyelonephritis when compared with a control population and were not associated 

with an increased risk of bacteremia. The discrepancies between our study and these 

fi ndings are possibly explained by the specifi c importance of MBL in the setting of 

immunosuppression after SPKT and by the lack of sensitivity when using genotyping 

instead of determination of MBL concentrations to identify low MBL individuals. 

Cereva et al. studied MBL2, MBL-associated serine protease-2 (MASP2) and Toll-

like receptor 4 (TLR4) gene mutations in a cohort of 33 SPKT recipients and 203 

recipients of kidney transplants alone [23]. The presence of gene mutations was not 

associated with increased bacterial infections in this cohort. Again, the discrepancy 

with our fi ndings may be explained by the use of genotyping instead of phenotypic 

characterization. Additionally, only small proportion of the patients in this study had 

a combined pancreas-kidney transplantation. MBL related effects may have been 

missed in this patient group with its specifi c risk of infectious complications.

 We did not detect an effect of MBL on other types of infections, including wound 

infections and CMV (re)activation. Manuel et al. reported an increased risk for the 

development of CMV infections in a small group of high risk renal transplant recipients 

with MBL levels below 500 ng/ml [22]. The difference between the two studies may 

be explained by the patient selection, different prophylactic and immunosuppressive 

protocols and different methods of CMV detection (e.g. pp65 versus PCR).
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Conclusion

Although MBL defi ciency is favorable for patient and graft survival following SPKT, we 

now show that MBL defi ciency is associated with urinary tract infections and more 

specifi cally with an increased incidence of urosepsis after SPKT. These data indicate 

an important role of the innate immune system in antimicrobial defense in immune 

compromised transplant recipients. If confi rmed, pre-transplant MBL levels may 

support risk stratifi cation prior to SPKT and guide decisions concerning the method of 

exocrine pancreatic drainage and antimicrobial prophylaxis.
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Summary 

Cells that undergo apoptosis or necrosis are promptly removed by phagocytes. Soluble 

opsonins such as complement can opsonize dying cells, thereby promoting their 

removal by phagocytes and modulating the immune response. The pivotal role of 

the complement system in the handling of dying cell has been demonstrated for the 

classical pathway (via C1q) and lectin pathway (via MBL and fi colin). Here we report 

that the only known naturally occurring positive regulator of complement, properdin, 

binds predominantly to late apoptotic and necrotic cells, but not to early apoptotic 

cells. This binding occurs independent of C3b, which is additional to the standard 

model wherein properdin binds to pre-existing clusters of C3b on targets and stabilizes 

the convertase C3bBb. By binding to late apoptotic or necrotic cells, properdin serves 

as a focal point for local amplifi cation of alternative pathway complement activation. 

Furthermore, properdin exhibits a strong interaction with DNA that is exposed on 

late stage of dying cells. Our data indicate that direct recognition of dying cells by 

properdin is essential to drive alternative pathway complement activation.
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Introduction

Under steady-state conditions, cells that undergo apoptosis and necrosis can be safely 

and silently eliminated by professional phagocytes, i.e. immature dendritic cells (DCs) 

and macrophages (Mφ) [1-3]. Apoptotic cells are a rich source of autoantigens, which 

are involved in the induction of self-tolerance and autoimmunity [4]. Compelling 

evidence has emerged that abnormal clearance of apoptotic cells is associated with 

development of the autoimmune disease systemic lupus erythematosus (SLE) [5;6]. 

 Soluble factors from the innate immune system such as complement or pentraxins 

can opsonize apoptotic cells, thereby promoting their removal by phagocytes [6-8]. 

In humans, homozygous defi ciency of any of the early components of the classical 

pathway of complement activation (C1q, C1r, C1s, C4, and C2) predisposes to the 

development of SLE [9], suggesting that complement is involved in removal of dying 

cells and the immune regulation associated with this process. Complement-mediated 

clearance of apoptotic cells has been well documented both in vitro [10] and in 

vivo [11]. Nevertheless, the role of the complement system in the handling of dying 

cells has been mostly linked to the classical pathway (via C1q) and lectin pathway 

(via MBL and fi colin) [10-14]. It was suggested that the main product of complement 

activation, iC3b, facilitates the removal of dead material and mediates peripheral 

tolerance [10;15;16].

 The alternative pathway of complement is thought to be activated following 

hydrolysis of C3, generation of C3b and formation of a positive feedback loop to 

mount a rapid local response [17]. The alternative pathway was initially recognized to 

amplify complement activation triggered by classical pathway. Properdin, discovered 

in 1954 [18], is the only known naturally occurring positive regulator of complement 

activation [19]. It was originally shown that properdin binds to C3b and increases the 

stability of the alternative pathway convertases at least 10-fold on target surfaces 

and immune complexes [20]. It has been recently suggested that properdin could 

bind directly to microbial targets [21], which is consistent with a proposal made more 

than 50 years ago [18]. 

 In the present study, we investigated whether properdin, like C1q and MBL, 

contributes to the recognition and opsonization of dying cells. We found that 

properdin binds predominantly to late apoptotic and necrotic cells independent 

of C3b, but not to early apoptotic cells, leading to alternative pathway-mediated 

complement activation. DNA was identifi ed as one of the ligands on dying cells to 

which properdin binds. This accounts for a C3b independent mechanism of properdin-

initiated complement activation on dying cells. 
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Material and methods 

Induction of apoptosis and necrosis
Jurkat cells were cultured in RPMI culture medium. Early or late apoptosis was 

induced in Jurkat cells by exposure to ultra violet (UV)-C light (Philips TUV lamp, 

predominantly 254 nm) at a dose of 50 J/m2, followed by 3 or 30 hours culture in RPMI 

serum-free medium, respectively. Necrosis was induced by treating cells at 56°C for 

0.5 h or 5 cycles of freeze-thaw from -80°C to 36°C. Both apoptosis and necrosis were 

confi rmed by double staining with fl uorescein isothiocyanate (FITC)-labeled annexin 

V and propidium iodide (PI, VPS Diagnostics, Hoeven, the Netherlands) according to 

established methods [22]. In addition, light microscopy and fl uorescent microscopy 

(Leica DC300F, Leica, Rijswijk, the Netherlands) were performed to detect the 

morphology and Hoechst nuclear staining of these cells, respectively. Alternatively, 

human umbilical cord endothelial cells (HUVEC), U937 cell (monocytic cell lines), and 

Epstein-Barr virus-transformed B lymphoblastoid cell lines (EBV-LCLs) were used for 

the induction of necrosis.

 In some experiments, splenocytes were obtained from C3 knockout (C3-/-) [23] 

or C57BL/6 wild type (WT) mice (Harlan). Splenocytes was rendered necrotic by 

incubating them at 56°C, as described above.

Phagocytosis assay
Phagocytosis of early apoptotic, late apoptotic and necrotic cells was assessed by 

using a protocol described previously [24]. Briefl y, a subset of macrophages (Mφ2) 

were generated from CD14+ monocytes in RPMI culture medium (RPMI 1640 containing 

10% heat-inactivated FCS, 90 U/ml penicillin and 90 μg/ml streptomycin) (all from 

Gibco/Life technologies, Breda, the Netherlands) in the presence of 5 ng/ml M-CSF 

(R&D systems / ITK Diagnostics, Uithoorn, the Netherlands) for 6 days. Jurkat cells 

were used as the target for phagocytosis. Prior to the induction of apoptosis or 

necrosis, Jurkat cells were fl uorescently labeled with carboxyfl uorescein diacetate 

succinamidyl ester (CFSE, Molecular Probes, Leiden, the Netherlands). Labeled 

early, late apoptotic or necrotic cells (1 × 105) were investigated with or without 

opsonization using normal human serum (NHS). Dying cells were co-cultured with Mφ2 

in 1:1 ratio at 37°C for 0.5 h in 100 μl RPMI culture medium in round-bottom glass 

tubes. As a control, co-culture was performed at 4°C to detect the binding of dying 

cells to phagocytes. Mφ2 were stained with a PE-conjugated mAb against CD11b (BD 

Biosciences, San Jose, CA) and uptake was analyzed by a two-color fl ow cytometry. 
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The percentage of CD11b-positive cells that stained positive for CFSE was used as a 

measure for the percentage of Mφ2 that ingested and/or bound apoptotic cells.

Isolation of properdin, C1q and MBL, C3 and C3b
Properdin was isolated from pooled human serum from volunteer donors. Serum 

was fi rst precipitated by dialysis against 5 mM EDTA (pH 6.0). The precipitate was 

dissolved in Veronal-buffered saline (2×VBS, 1.8 mM Na-5,5-diethylbarbital, 0.2 mM 

5,5-diethylbarbituric acid, 145 mM NaCl), and then dialyzed against 0.01 M NaAc 

containing 2 mM EDTA (pH 6.0) and applied to a Sulphopropyl C50 column. Properdin 

was eluted with a linear salt gradient. Properdin-containing fractions, as determined 

by ELISA, were pooled, concentrated, and subsequently applied to a Sephacryl S-300 

gel fi ltration column (Pharmacia Biotech, Uppsala, Sweden). Fractions containing 

properdin were dialyzed against PBS, 2 mM EDTA and further purifi ed using human 

IgG coupled to a Biogel A5 (Bio-Rad, Hercules, CA) to remove contaminating C1q. 

Purity of the properdin preparation was determined by analysis on 10% SDS-PAGE gel. 

A single 220-kD band was observed. C1q and MBL were purifi ed from pooled human 

plasma obtained from healthy donors as described previously [25;26]. C3 was purifi ed 

from serum using different steps of chromatography, whereas C3b was generated by 

brief trypsin cleavage (60 seconds) of purifi ed C3 followed by direct inactivation. The 

purity of C3 and C3b was determined by SDS-PAGE gel.

Serum
C4-depleted serum (C4ds) was used as a complement source lacking both classical 

and lectin pathway activity, and was prepared as following: Blood was obtained by 

venapuncture, allowed to clot at room temperature for 1 hour and then centrifuged. 

The serum was brought to a NaCl concentration of 0.3M by addition of NaCl and then 

mixed with an immunoabsorbent of rabbit IgG anti-human C4. Coupling of rabbit 

IgG anti-C4 to Sepharose was performed according to manufacturers’ instructions 

(Amarsham Biosciences, Roosendaal, the Netherlands). Following absorption by 

gentle mixing for 30 minutes at 4oC, the mixture was centrifuged at 1000g and the 

supernatant aliquotted and frozen at -80oC. The C4 depleted serum had no detectable 

complement activity at a dilution of 1/5 in a hemolytic test using sheep erythrocytes 

sensitized with rabbit anti-SRBC, while the starting serum induced 1 unit of C-activity 

at a dilution of 1/240. Additionally, C4 hemolytic activity could be restored in 1/25 

diluted C4-defi cient serum with 10 ug/ml purifi ed C4.
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Properdin-depleted serum (Pds) was obtained by immune absorption using Biogel-

coupled monoclonal Ab against human properdin (a gift of Statens Serum Institut, 

Copenhagen, Denmark). Pds showed normal classical and lectin pathway activities in 

hemolytic assays.

 C3 defi cient serum was (C3-def) obtained from a patient who was defi cient for 

C3 while containing normal properdin concentration (17.5 ug/ml). In C3-def, the C3 

level was below detection limit as measured by ELISA (data not shown). 

 Normal human sera from 9 healthy donors were used as C3 full sera as confi rmed 

by C3 ELISA. The properdin concentration in those C3 full sera was ranging from 10.4 

to 25.1 ug/ml. 

Binding assay for properdin, C1q and MBL
Binding of properdin to viable, early apoptotic, late apoptotic or necrotic cells was 

investigated by incubating cells with up to 40 μg/ml human purifi ed properdin at 

37oC for 1 h in serum-free RPMI culture medium. We used serum-free medium as 

a standard buffer to exclude a possible contribution of serum constituents, unless 

specifi cally indicated. Then cells were extensively washed and incubated with a 

rabbit-anti-human properdin polyclonal Ab (generated by immunizing rabbit with 

purifi ed properdin), and detected with phycoerythrin (PE)-conjugated goat F(ab)2 

anti-rabbit Ig (Southern Biotechnology Associates, Birmingham, US). The cells were 

analyzed by fl ow cytometry. Data from 104 events were acquired. Alternatively, C3 

defi cient serum or C3 full serum was used as a source of properdin to detect binding 

of properdin. These sera were diluted in serum-free RPMI medium as 40%. In some 

experiments, purifi ed C3 or C3b was used to detect its binding to properdin which has 

been pre-bound on necrotic cells. 

 Binding of C1q (30 μg/ml) and MBL (10 μg/ml) were performed in the same way 

as properdin binding and detected with a monoclonal antibody (mAb) directed 

against C1q (mAb 2204) or MBL (clone 3E7), respectively. Binding was visualized 

with phycoerythrin (PE)-conjugated goat F(ab)2 anti-mouse Ig (DAKO, Glossstrup, 

Denmark). 

 In some experiments, cells were pre-incubated with C1q or7 MBL, followed by 

incubation of properdin and vice versa. 

 To detect the binding of properdin to DNA, double stranded DNA (dsDNA) from 

calf thymus (Sigma-Aldrich), single stranded DNA (ssDNA, Isogen, Maarssen, the 

Netherlands) or human albumin (Sigma-Aldrich) were coated in PBS on microtiter 

plates overnight, and then blocked with 2%BSA before adding purifi ed properdin. 



Properdin-binding to apoptotic and necrotic cells

89

After washing, bound properdin was detected with Dig-labelled rabbit-anti-human 

properdin. Bound antibody was developed with anti-Dig-HRP (Roche Diagnostics 

GmbH, Mannheim, Germany), and measured for absorbance at OD 451 nm. 

 To confi rm that DNA is exposed on late apoptotic cells and necrotic cells, a 

monoclonal mouse anti-human dsDNA Ab (ImmunoTools, Friesoythe, Germany) was 

used to detect DNA and its binding assessed with a PE-conjugated goat F(ab)2 anti-

mouse Ig. For double staining, late apoptotic cells and necrotic cells were opsonized 

with properdin at 37oC for 1 h in serum-free RPMI culture medium. Cells were then 

incubated with a rabbit-anti-human properdin Ab and a mouse anti-human dsDNA Ab, 

and developed by PE-conjugated goat F(ab)2 anti-rabbit Ig and FITC- conjugated goat 

F(ab)2 anti-mouse Ig (BD Biosciences). For confocal microscopy analysis, primary Abs 

were visualized by Alexa 568 or Alexa 488-labelled secondary Abs. Above cells were 

followed by a Hoechst nuclear staining prior to fi xation by 1% paraformaldyde, and 

then mounted onto the slides for analysis by a confocal laser scanning microscope 

LSM 510 (Carl Zeiss AG), as described previously [24]. Images were visualized using a 

63 × /1.40 numeric aperture oil objective, and were processed using Zeiss LSM Image 

Examiner software. 

Complement activation by dying cells
Activation of complement by dying cells was assessed as follows: early, late apoptotic 

or necrotic cells were pre-incubated with or without properdin (20 ug/ml) at 37oC 

for 1 h in serum-free RPMI culture medium, washed extensively and then exposed 

to different dilutions of Pds, C4ds or NHS for 0.5 h at 37oC. Deposition of C3, C4 

and C5b-9 on the cell surfaces were detected by fl ow cytometry using mAbs against 

C3 (RFK22, [27]), C4 (anti-C4-4 [28]) and C5b-9 (AE11, kindly provided by Dr. T.E. 

Mollnes, Nordland Central Hospital, Bodø, Norway), respectively. 

Statistical analysis
Statistical analysis was performed by one sample t test using GraphPad Prism (GraphPad 

software, San Diego, CA). Differences were considered statistically signifi cant when p 

values were less than 0.05.
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Results 

Complement-mediated phagocytosis of late apoptotic and necrotic cells
Relatively pure populations of viable (90-98%), early apoptotic (40-70%), late 

apoptotic (90-100%) and necrotic cells (100%) were obtained, based on the annexin V 

and PI staining (Figure 1A). The difference between late apoptotic cells and necrotic 

cells was confi rmed by light microscopy and Hoechst nuclear staining (Figure 1B), 

demonstrating that late apoptotic cells showed blebbing on the cell surfaces and 

nuclear segmentation, whereas necrotic cells showed condensed nuclei. 

 In agreement with our earlier fi ndings, M-CSF-driven anti-infl ammatory Mφ2 

preferentially recognized and ingested early apoptotic cells, as compared to the 

ingestion of late apoptotic and necrotic cells [24] (Figure 1C). However, opsonization 

of early apoptotic cells with normal human serum (NHS) did not enhance their uptake 

by Mφ2 (Figure 1C, D), while opsonization of late apoptotic and necrotic cells with NHS 

signifi cantly increased their uptake by Mφ2 (p < 0.01) (Figure 1C, D). Enhancement 

of phagocytosis by NHS was also restricted to late apoptotic and necrotic cells when 

using monocyte-derived dendritic cells and GM-CSF-driven Mφ1 (data not shown). 

We next questioned whether the observed enhanced phagocytosis is associated with 

complement deposition on the dying cells. Indeed, NHS-exposed late apoptotic and 

necrotic cells, but not early apoptotic cells, displayed strong deposition of C3 by fl ow 

cytometry (Figure 1E). Therefore we assessed the pathways involved in the activation 

of complement on these cells.

Properdin binds to late apoptotic and necrotic cells
We investigated whether properdin, the only naturally occurring positive complement 

regulator, can bind directly to dying cells that are at different stages of cell death. 

Similar to C1q, and MBL, properdin showed a predominant interaction with late 

apoptotic cells and necrotic cells over early apoptotic or viable cells (Figure 2A, 

B). Properdin was shown to bind to both late apoptotic and necrotic cells in a dose-

dependent manner (Figure 2C). To rule out the possibility that the observed binding 

of properdin is cell type or method specifi c, different cell lines and methods for 

induction of necrosis were used. Properdin was shown to bind to necrotic HUVEC, 

U937, HK-2 and EBV-LCL cells, and also to Jurkat cells that were rendered necrotic by 

5 cycles of freeze-thawing (data not shown), suggesting that binding of properdin to 

necrotic cells is a universal phenomenon and irrespective of specifi c cell types.
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Binding of properdin to dying cells can occur independent of C3
It has been established for a long time that properdin can bind to pre-existing clusters 

of surface-bound C3b [29], thereby stabilizing the C3b-dependent C3 convertase C3bBb 

[20]. However, the experiments presented above were performed in the absence of 

serum, suggesting that binding of properdin to dying cells occurs independent of 

C3b. This seems to be consistent with a recent publication showing that properdin 

binds directly to bacterial targets [30]. To exclude the possibility for endogenous 

generation of C3b by dying Jurkat cells, we investigated whether properdin could 

bind to necrotic splenocytes derived from C3 knockout (C3-/-) mice. Properdin was 

shown to bind to necrotic splenocytes of C3-/-mice to a similar extent as binding to 

necrotic cells from WT mice (Figure 3A). Properdin did not bind to viable splenocytes 

derived from either C3-/- or WT mice (Figure 3A). 

 In addition, to confi rm C3 independence, we also used C3 defi cient serum in EDTA 

containing medium (obtained from a C3 defi cient patients with a normal concentration 

of properdin) as a source of properdin to opsonize necrotic cells. We found similar 

binding of properdin to necrotic cells in C3 defi cient serum as compared to C3 full 

serum (NHS) and purifi ed properdin (Figure 3B), although the extent of the binding 

is low since the concentration of properdin in these sera was around 7ug/ml. In the 

absence of EDTA, C3 full sera showed much higher binding of properdin, indicating 

that complement activation amplifi es the properdin binding. Together these data 

suggest that binding of properdin to dying cells can occur independently of C3. 

 We next investigated whether purifi ed C3 or C3b can bind to properdin bound 

on the surface of dying cells. We fi rst opsonized necrotic cells with properdin to 

allow suffi cient binding of properdin on the surface of necrotic cells. Next increasing 

concentrations of C3 and C3b were added, and binding was detected with a monoclonal 

antibody recognizing both C3 and C3b. Under these conditions, C3 or C3b did not 

bind to non-opsonized necrotic cells, showing specifi city for the interaction with 

properdin (data not shown). Binding to properdin was almost exclusive for C3b, and 

only minor interaction with intact C3 was seen at the highest concentration (Figure 

3C). Although preparations were pure as based on SDS-PAGE analysis (data not shown), 

small contamination with C3b cannot be excluded. Together, these data show that 

properdin binds C3b instead of intact C3 and suggest that local generation of C3b is a 

prerequisite for the focal properdin-driven complement activation / amplifi cation.
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Figure 1. Complement-mediated phagocytosis of dying cells. (A) Early or late 

apoptosis was induced in Jurkat cells by exposure to ultra violet (UV)-C light at a dose 

of 50 J/m2, followed by 3 or 30 hours culture in RPMI serum-free medium, respectively. 

Necrosis was induced by treating cells at 56°C for 0.5 h. Cells were stained with annexin 

V and PI by fl ow cytometry. (B) Late apoptotic cells and necrotic cells are scored by 

light microscopy or fl uorescent microscopy for hoechst staining on cytospins of these 

cells. Magnifi cation, 200×. (C) CFSE-labeled early apoptotic, late apoptotic or necrotic 

cells (1 × 105) were fi rst opsonized with or without normal human serum (NHS), then co-

cultured with Mφ2 in 1:1 ratio at 37°C for 0.5 h. Mφ2 were stained with a PE-conjugated 

mAb against CD11b and uptake was analyzed by a two-color fl ow cytometry. CD11b+CFSE+ 

cells were used as a measure for the percentage of Mφ2 that ingested apoptotic cells. 

(D) Relative phagocytosis was calculated as uptake of NHS-opsonized dying cells versus 

non-opsonized cells. Data are mean ±SEM of 3 independent experiments. *, p < 0.01, one 

sample paired t test. (E) C3 deposition (fi lled histogram) after NHS opsonization on early, 

late apoptotic and necrotic cells was detected by fl ow cytometry. Open histograms are the 

matched isotype controls (see page 154 for color image B).
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To test the physiological relevance of properdin binding to dying cells, we used sera 

from nine healthy donors (properdin concentration ranges from 10.4 to 25.1 ug/ml). 

All sera tested showed predominant binding to late apoptotic cells and necrotic cells, 

but not to early apoptotic or viable Jurkat cells (Figure 3D). 

Properdin is a focal point for ampli  cation of alternative pathway complement 
on dying cells 
To investigate whether binding of properdin to dying cells might act as a focal point for 

local amplifi cation of the complement system, we analyzed complement activation 

on necrotic cells using properdin-depleted serum (Pds). Cells pre-incubated with 

purifi ed properdin alone, as expected, did not show C3 and C5b-9 deposition (Figure 

4A). In Pds, a reduced C3 deposition was observed, which is accompanied with a 

lack of deposition of the membrane attack complex C5b-9 (Figure 4A). Necrotic 

cells that had been pre-exposed to properdin, washed extensively, and subsequently 

incubated with Pds, displayed signifi cantly increased C3 and C5b-9 deposition (Figure 

4A), suggesting that properdin is essential for local amplifi cation of the complement 

cascade on necrotic cells.

 To prove that cell-bound properdin can activate complement independently of 

the classical and lectin pathways, we used C4-depleted serum (C4ds) as a source 

of complement, since C4 is a crucial factor for both pathways. Exposure of both 

late apoptotic cells (Figure 4B) and necrotic cells (Figure 4C) that had been pre-

incubated with properdin to C4ds signifi cantly induced the deposition of C5b-9 in a 

dose-dependent manner, as compared with those without properdin. There was no C4 

deposition neither on late apoptotic (Figure 4B) nor on necrotic cells (Figure 4C) after 

opsonization of C4ds, confi rming that C4 had been effectively depleted in our C4ds 

preparation. When a fi xed amount (30%) of C4ds was used, the increase of C5b-9 on the 

cell surface was dose dependently affected by the amount of properdin (Figure 4D). 

Overall, this shows that properdin is a rate limiting factor that mediates complement 

activation at the surface of late apoptotic and necrotic cells via alternative pathway 

activation.
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Figure 3. Binding of properdin to dying cells is independent of C3b. (A) Splenocytes 

from C3-/- or WT mice were fi rst rendered necrotic by heating or kept viable, and measured 

for properdin binding. Fold increase of MFI was shown. Data shown are mean ±SEM of 4 

independent experiments. (B) Necrotic cells were opsonized with C3 full serum (normal 

human serum from a healthy donor, properdin concentration was 16 ug/ml), or C3 defi cient 

serum (obtained from a patient who was defi cient for C3, properdin concentration was 

17.5 ug/ml) for 1 hour at 37°C in the presence or absence of 10 mM EDTA. 40% of the 

serum (diluted in serum-free RPMI medium) was used, thus the fi nal concentration of 
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properdin presented in the opsonization was 6.4 ug/ml (C3-full serum) and 7 ug/ml (C3-def 

serum), respectively. As a control, purifi ed properdin (10 ug/ml) was used for the binding 

assay. Binding of properdin was detected with a polyclonal rabbit anti-human properdin 

antibody and developed by a goat anti-rabbit Ab. Fold induction of MFI in fl ow cytometry 

is shown. Data are mean ±SD of two experiments. (C) Necrotic cells were fi rst opsonized 

with properdin (30ug/ml) for 1 hour at 37°C to allow suffi cient binding of properdin on 

the surface of necrotic cells. Next increasing concentrations of C3 and C3b were added 

(up to 50 ug/ml), and detected with a monoclonal antibody (RFK22) recognizing both C3 

and C3b. Fold induction of MFI in fl ow cytometry is shown. Data are representative of 

three independent experiments. (D) Sera from 9 healthy donors (properdin concentration 

ranges from 10.4 to 25.1 ug/ml), diluted as 40% in RPMI serum-free medium, were used to 

opsonize viable, early apoptotic, late apoptotic or necrotic cells. Properdin binding (MFI 

fold induction) is shown. 

Properdin does not compete with binding of C1q and MBL to necrotic cells
We showed previously that C1q and MBL share binding ligands on apoptotic cells [31]. 

Since properdin was shown to bind to late apoptotic and necrotic cells in a similar 

pattern as C1q and MBL (Figure 1A), we hypothesized that properdin may bind to a 

similar structure on dying cells. Necrotic cells were pre-incubated with properdin, 

followed by incubation with increasing concentrations of C1q. A dose-dependent 

binding of C1q was observed, but pre-incubation with properdin did not inhibit the 

binding of C1q to the cells (Figure 5A). In a reverse way, pre-incubation of necrotic 

cells with C1q did not decrease properdin binding either (Figure 5B). Similarly, pre-

incubation of necrotic cells with properdin did not interfere with MBL binding and 

vice versa (Figure 5C). Therefore, our data suggest that properdin binds to a yet 

unknown ligand, which is different from the one to which C1q and MBL bind. 

Properdin binds to DNA
One of the autoantigens exposed on apoptotic cells and necrotic cells is DNA [4;32]. 

Based on the fi nding that properdin specifi cally binds to late apoptotic and necrotic 

cells, we hypothesized that properdin might bind to DNA exposed on the surface 

of dying cells. Properdin showed a strong binding to both dsDNA and ssDNA at 

concentrations of 1 μg/ml and higher on microtiter plates (Figure 6A). Furthermore, 

pre-incubation of properdin with calf thymus dsDNA dose-dependently inhibited 

binding of properdin to necrotic cells (Figure 6B), suggesting a strong interaction 

between DNA and properdin. 
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Figure 4. Properdin activates complement via alternative pathway. (A) Necrotic Jurkat 

cells were pre-incubated with or without properdin (20 μg/ml), and then washed extensively 

before adding 30% properdin-depleted serum (Pds). Data shown are C3 and C5b-9 deposition 
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on the cells. (B) Late apoptotic and (C) necrotic cells were pre-incubated with or without 

properdin, and then washed extensively before adding increasing concentration of C4-

depleted serum (C4ds). C5b-9 and C4 deposition on the cells were measured. (D) Necrotic 

cells were pre-incubated with increasing concentration of properdin, and then washed 

extensively before adding 30% C4ds. Cells were measured for C5b-9 formation. Data are 

representative of 2 independent experiments.
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Figure 5. Properdin does not compete for binding with C1q and MBL. (A) Necrotic cells 

were pre-incubated with properdin (40 μg/ml) and followed by incubation with increasing 

concentrations of C1q (up to 60 μg/ml). C1q binding was measured. Data shown are 

mean ±SEM of 2 independent experiments. (B) Necrotic cells were pre-incubated with 

properdin (40 μg/ml) or C1q (30 μg/ml), then followed by incubation with C1q (10 μg/

ml), or properdin (20 μg/ml), respectively. C1q and properdin binding were measured by 

fl ow cytometry. (C) Competition between properdin and MBL (10 μg/ml) was investigated 

as described in (B). 
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Figure 6. Properdin binds to DNA.(A) Different concentration of dsDNA and single strand 

DNA (ssDNA) or human albumin were coated on microtiter plates overnight, and then 

blocked with 2%BSA before adding properdin. After washing, plates were incubated with 

Dig-labelled rabbit-anti-human properdin. Signal was developed by anti-Dig-HRP, and 

measured for absorbance at OD 451 nm. (B) Properdin was pre-incubated with increasing 

concentrations of calf thymus double strand DNA (dsDNA), and then incubated with 

necrotic cells. Data shown are properdin binding to the cells (MFI). (C) Necrotic cells 

were incubated with a mouse anti-human dsDNA Ab, and developed by PE-conjugated goat 
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F(ab)2 anti-mouse Ig. For double staining, cells were fi rst opsonized with properdin (40 

ug/ml) at 37oC for 1 h in serum-free RPMI culture medium, followed by incubation with 

a rabbit-anti-human properdin Ab and a mouse anti-human dsDNA Ab, and developed by 

PE-conjugated goat F(ab)2 anti-rabbit Ig and FITC-conjugated goat F(ab)2 anti-mouse Ig 

(BD Biosciences). (D) Confocal laser scanning microscopy (LSM 510, Carl Zeiss AG), was 

performed on properdin-opsonized necrotic cells that were stained for properdin, DNA 

and Hoechst. Green: DNA; Red: properdin; Blue: Hoechst; Yellow: DNA co-localizes with 

properdin; DIC: differential interference contrast. Magnifi cation, 400× (see page 155 for 

color image D).

We confi rmed that DNA is indeed exposed on late apoptotic cells and necrotic cells 

using a monoclonal anti-dsDNA antibody as detected by fl ow cytometry (Figure 6C, 

7A). Necrotic cells that were pre-incubated with properdin showed double positivity 

for both properdin binding and anti-DNA (Figure 6C). The binding of properdin to 

DNA on necrotic cells was further confi rmed by confocal microscopy showing that 

properdin and DNA are co-localized on necrotic cells (Figure 6D). As a control, 

properdin-opsonized viable cells were negative for either properdin binding or DNA 

(date not shown). 

 Interestingly, different from necrotic cells, cells made late apoptotic were not 

all recognized by properdin (Figure 2A), which prompted us to further dissect these 

cell populations in detail. To better analyze the data, we divided these cells into 

two populations based on the forward and side scatter characteristics, namely R1 

and R2 (Figure 7A). Cells in R2 are Annexin V+PI-, characteristics of early apoptotic 

cells (Figure 7A)., and as expected these cells did not bind properdin and did not 

expose DNA (Figure 7B). Cells in R1 are all Annexin V+PI+, indicative for late apoptotic 

cells (Figure 7A). Within the R1 population, part of the cells were both negative for 

properdin binding and DNA, and binding of properdin is related to the degree that DNA 

is exposed on these dying cells (Figure 7B). This suggests that during reorganization 

of dying cells, including blebbing, ligands for properdin are not equally distributed 

over the cellular fragments. Such unequal distribution of late apoptotic cells was 

not only applied to binding of properdin, but also to complement activation after 

NHS opsonization as measured for C3 and C5b-9 deposition on these cells (Figure 

7C). Confocal microscopy confi rmed that properdin was co-localized exclusively with 

fragmented DNA exposed on these cells (Figure 7D). 
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Figure 7. Properdin binds to a subpopulation of late apoptotic cells. (A) Jurkat cells 

made late apoptotic by culturing cells for 30 h after UV irradiation were stained with 

Annexin V and PI by fl ow cytometry. Cells were divided into R1 (late apoptotic cells) and 

R2 (early apoptotic cells). (B) Double staining of properdin and DNA to late apoptotic cells 

that were pre-opsonized with properdin was shown based on different gate on R1 or R2 

region. (C) Histogram of properdin binding to late apoptotic cells was shown based on 

gate R1 and R2. C3 and C5b-9 depositions are shown on these cells after opsonization with 

NHS. (D) Confocal microscopy was performed on properdin-opsonized late apoptotic cells 
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that were stained for properdin, DNA and Hoechst. Green: DNA; Red: properdin; Blue: 

Hoechst; Yellow: DNA co-localizes with properdin; DIC: differential interference contrast. 

Magnifi cation, 400× (see page 158 for color image D).

Discussion

We describe here that properdin specifi cally binds to late apoptotic or necrotic cells, 

but not to early apoptotic cells. Furthermore, DNA exposed on dying cells is one of 

the ligands to which properdin binds. We provide evidence that binding of properdin 

to late apoptotic cells and necrotic cells can occur independent of C3b, and serves as 

a focal point for the local amplifi cation of the alternative pathway of complement.

 In the past, studies on complement-mediated clearance of dying cells have mainly 

focused on the classical pathway [10-12]. Properdin is a positive regulator of the 

alternative pathway, which has been shown to bind to C3b and to stabilize the labile 

C3b-dependent C3 convertase C3bBb [19;20]. Two models have been proposed for 

the role of properdin in alternative pathway activation of complement. The fi rst 

model suggests that properdin binds to a pre-formed C3bBb resulting in stabilization 

of the alternative pathway of C3 convertase [20]. The other model suggests that 

properdin fi rst binds to a surface ligand via one of its subunits and then promotes 

the assembly C3bBb at the ligand-binding sites of its adjoining subunits [33]. Very 

recently, it has been shown that properdin can bind directly to bacterial surfaces 

(34). Our data showed that properdin binds to late apoptotic and necrotic cells prior 

to C3 deposition on the cell surface. Evidence that binding of properdin to dying 

cells can occur independent of C3b was further supported by experiments showing 

that properdin binds strongly to necrotic splenocytes derived from C3-/- mice (Figure 

3A), and by experiments using C3 defi cient serum (Figure 3B). We further showed 

that properdin pre-bound on necrotic cells binds to purifi ed C3b instead of intact C3. 

Thus, we suggest that properdin binds to dying cells fi rst in the absence of C3, and 

following the generation of C3b serves as a focal point for local amplifi cation and 

boost of the properdin-driven complement activation cascade. 

 Our data suggest that DNA is one of the targets for properdin on dying cells. During 

apoptosis, DNAse cleaves DNA into nucleosomal units [35]. Indeed, DNA has been 

shown to be one of the major autoantigens exposed on apoptotic cell surfaces [4;36]. 

Using a monoclonal anti-DNA antibody, we demonstrate that both late apoptotic cells 

and necrotic cells expose DNA. Confocal images indicate that properdin and DNA are 
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co-localized on late apoptotic cells or necrotic cells. Interestingly, it seems that only 

the DNA recognized by anti-DNA Abs was accessible for properdin. It is likely that 

during apoptosis, DNAse digested small fragments of DNA, which are targeted by 

properdin, while properdin does not bind to the complete nucleosomal units of DNA. 

In pathological situations, DNA is considered as one of the immunologically active 

autoantigens [37], that can stimulate immune cells via Toll-like receptors [38;39]. 

In autoimmune lupus, DNA is one of the major immunogens to trigger autoantibody 

production [40]. Our fi nding that properdin binds to DNA opens the possibility that 

properdin may interfere with unwanted immune activation when DNA is exposed on 

dying cells during a large scale cell death. 

 Several other serum components have been suggested to interact with DNA, 

including C1q [41], MBL [42], serum amyloid-P component (SAP)[43], and C4b-binding 

protein (C4BP) [44]. We showed that properdin does not compete with the binding of 

C1q and MBL to dying cells, suggesting that C1q and MBL interacts with DNA structures 

different from the ones that properdin recognizes. It has been suggested that properdin 

binds to sulfatide (sulfated glycosphingolipids) and weakly to phosphatidylserine (PS) 

[45]. However, it is not likely that PS exposed on the surface of dying cells is a major 

ligand, since properdin does not bind to early apoptotic cells although these cells do 

express PS. Whether sulfatide or other phospholipids are one of the additional ligands 

on dying cells for properdin recognition is currently under investigation.

 Involvement of properdin in the handling of dying cells was initially suggested 

by Kemper et al. reporting that properdin binds to early and late apoptotic cells 

[46]. Here we demonstrate that properdin binds predominantly to late apoptotic 

and necrotic cells, but not to early apoptotic cells. A similar restriction has been 

demonstrated for the binding of C1q, MBL (reviewed in [8]), Ficolin [14], natural 

IgM [47] and pentraxin family members SAP [48) and PTX3 [49]. Therefore, soluble 

opsonins especially seem to contribute to a safe clearance of late apoptotic and 

necrotic material. Together with our previous fi ndings that early apoptotic cells are 

preferentially cleared by anti-infl ammatory macrophages [24], we suggest that a 

hierarchy exists in the clearance mechanism of dying cells. Uptake of early apoptotic 

cells by local macrophages with anti-infl ammatory properties is an initial step; 

whereas complement-mediated processes via all three pathways are a rather late 

event [9], most likely ensuring a safe clearance when an overload of apoptosis or 

defects in phagocytic capacity occur, thereby preventing a break of tolerance [50-

52].
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In humans, individuals defi cient for properdin are prone to lethal pyonenic (particular 

neisserial) infections [53;54]. Mice defi cient for properdin provided evidence that 

properdin is essential in driving LPS-mediated alternative complement activation [55]. 

No reports have shown that defi ciency for properdin predisposes to the development of 

SLE, whereas in humans homozygous defi ciency of any of the early components of the 

classical pathway of complement activation (C1q, C1r, C1s, C4, and C2) predisposes 

to the development of SLE [9]. Although many of other opsonins such as MBL, CRP and 

PTX3 also bind to dying cells and help their clearance, defi ciency of these opsonins do 

not lead to the development of autoimmunity ]8]. This might indicate a differential 

role for opsonins in the handling of dying cells, including augmentation of phagocytosis 

and /or a role in immune regulation. Among those opsonins, C1q is the strongest 

genetic factor that is linked to the development of SLE. Next to promoting clearance 

[13], C1q has been suggested to modulate dendritic cell function by imprinting these 

cells with tolerogenic properties [56]. Based on this, it is attempting to speculate 

that properdin might also have a dual function: 1.) amplifying complement activation 

on dying cells to promote complement-mediated clearance; 2.) immunomodulating 

properties, which deserve to be studied in detail.

 In conclusion, we provide evidence that properdin binds specifi cally to late 

apoptotic and necrotic cells via ligands such as DNA, and acts as a focal point for 

the local amplifi cation of alternative pathway complement activation. This process 

occurs independently of C3b. We propose here that properdin is a rate limiting factor 

and focal point for local alternative pathway complement activation on late stages 

of dying cells, thereby supporting a safe clearance.
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Summary

Activation of fi ltered complement products on the brush border of the tubular epithelium 

is thought to be a key factor underlying proteinuria-induced tubulointerstitial injury. 

However, the mechanism of tubular complement activation is still unclear. Recent 

studies on mechanisms of complement activation indicate a key role for properdin 

in the initiation of alternative pathway. We hypothesized that properdin serves as a 

focal point for complement activation on the tubulus.

 We observed a strong staining for properdin on the luminal surface of the tubules 

in kidney biopsies from patients with proteinuric renal disease. In vitro experiments 

revealed dose-dependent binding of properdin to PTEC whereas no signifi cant binding 

to endothelial cells was detected. Exposure of PTEC with normal human serum as a 

source of complement resulted in complement activation with deposition of C3 and 

generation of C5b-9. These effects were virtually absent with properdin defi cient 

serum. Pre-incubation of PTEC with properdin before addition of properdin-depleted 

serum fully restored complement activation on the cells, strongly suggesting a key 

role for properdin in the activation of complement at the tubular surface.

 In proteinuric renal disease, fi ltered properdin may bind to PTEC and act as a 

focal point for alternative pathway activation. We propose that this contribution 

of properdin is pivotal in tubular complement activation and subsequent damage. 

Interference with properdin binding to tubular cells may provide an option for the 

treatment of proteinuric renal disease.
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Introduction

Worldwide, the number of patients suffering from chronic kidney disease (CKD) is 

increasing dramatically [1]. The two most important factors contributing to the global 

rise in CKD are ageing of the population and the epidemic of type 2 diabetes mellitus 

[2]. It has been well established now that in chronic kidney disease, regardless of 

the aetiology, proteinuria is a strong and independent predictor for the progression 

of chronic renal failure to end-stage renal disease (ESRD) [3;4]. Anti-proteinuric 

treatment is associated with preservation of renal function [5;6]. 

 Several pathophysiologic mechanisms have been proposed to account for 

proteinuria-induced tubulointerstitial injury. These include lysosomal rupture due to 

reabsorbed proteins, oxidative damage induced by transferrin reabsorption, and the 

stimulatory effects of various plasma proteins on the expression of proinfl ammatory 

and profi brotic mediators in renal tubular epithelial cells [7-9]. There is accumulating 

evidence for complement activation as a powerful mechanism underlying the 

progression of proteinuric renal disease. 

 In the setting of proteinuria, plasma complement components may enter the 

tubular lumen [10]. If these complement components are then locally activated this 

would lead to cell activation and resulting tubular damage and interstitial fi brosis 

[11;12]. Indeed, proximal tubular epithelial cells (PTEC) activate serum complement 

in vitro via the alternative pathway [13-15]. Also in vivo, both in human chronic 

proteinuric disease and in experimental models, evidence of complement activation 

can be detected on the apical surface of the renal tubules [14;16;17]. The protective 

effect of C6 defi ciency in the puromycin model of nephrotic syndrome, as well as in 

the remnant kidney model, provides further evidence for the role of complement in 

mediating tubulointerstitial injury [16;18]. Targeting complement inhibitory molecules 

to the proximal tubules in a rat model of proteinuric kidney disease protects against 

renal dysfunction [19]. 

 However, the exact mechanism of the unique complement activating property of 

the proximal tubules has not yet been elucidated. Previous studies reported a role for 

local ammonium (NH4) in initiating alternative complement pathway activity [20;21]. 

We hypothesize that besides ammonium, other mechanisms might be involved in 

triggering tubular complement activation. 

 The alternative pathway of complement is triggered by spontaneous hydrolysis of 

C3, which generates C3a and C3b. Cleavage of C3 results in the formation of a positive 

feedback loop to produce a rapid local response [22]. Properdin, discovered in 1954 
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by Pillemer et al. [23], is the only known positive regulator of the complement system 

and consists of dimers, trimers and tetramers arranged in a head-to-tail orientation 

[24;25]. Properdin binds to C3b and enhances complement activation by stabilizing 

the alternative pathway C3 convertase [26]. Lately, there has been renewed interest 

in properdin. It was shown that target-bound properdin may serve as a focal point 

for amplifi cation of C3 activation. Each subunit in the oligomer provides a ligand-

binding site and the unoccupied ligand-binding sites can assemble the alternative 

pathway convertase on target surfaces [27;28]. It has recently been re-emphasized 

that properdin may act as a focal point in the activation of the alternative pathway of 

complement [27-30]. It was suggested already in 1954 that properdin might interact 

directly with cell surfaces [23;31].

In this study, we show that properdin binds to viable tubular epithelial cells and via 

this mechanism initiates complement activation. 

Materials and Methods

Immunohistochemical staining
Frozen 4 μm tissue sections were used to determine the presence of properdin 

in cortical tissue of human kidneys. After the sections were fi xed with acetone, 

endogenous peroxidase activity was blocked with 0.1% H2O2 and 0.1% NaN3 for 30 min 

at room temperature (RT). Then the slides were washed and subsequently blocked 

with phosphate-buffered saline (PBS), 1% bovine serum albumin (BSA) and 5% heat-

inactivated normal human serum for 45 min at RT. Next, sections were incubated with 

a polyclonal rabbit anti-human properdin antibody (Laboratory of Nephrology, Leiden, 

the Netherlands) in PBS, 1% BSA and 1% normal human serum in a humid atmosphere 

overnight at RT. After washing with PBS, antibody binding was detected with 

horseradish peroxidase (HRP)-labeled goat anti-rabbit Ig (DAKO, Glostrup, Denmark) 

in PBS, 1% BSA and 1% normal human serum (60 min RT) followed by washing with 

PBS, incubation with Tyramide-fl uorescein isothiocyanate in tyramide buffer (NEN™ 

Life Science Products, Boston, MA, USA; 20 min RT), washing with PBS, incubation 

with HRP-conjugated rabbit anti-fl uorescein isothiocyanate (DAKO) for 60 min at RT, 

washing with PBS and development with DAB (Sigma, St Louis, MO, USA). Sections 

were counterstained with hematoxylin (Merck, Darmstadt, Germany) and mounted 

with imsol (Klinipath, Duiven, The Netherlands).
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Cell culture
The immortalized renal proximal tubular epithelial cell-line HK-2 was kindly provided 

by M. Ryan, University College Dublin, Ireland [32]. Cells were grown in serum-

free DMEM/HAMF12 (Bio-Whittaker, Walkersville, MD) supplemented with 100 U/

ml penicillin, 100 μg/ml streptomycin (Invitrogen, Breda, the Netherlands), insulin 

(5 μg/ml), transferrin (5 μg/ml), selenium (5 ng/ml), tri-iodothyronine (40 pg/ml), 

epidermal growth factor (10 ng/ml), hydrocortisone (36 ng/ml, all purchased from 

Sigma). Primary human proximal tubular epithelial cells (PTEC) were isolated from 

pre-transplant biopsies or from kidneys not suitable for transplantation and cultured 

as described earlier [33]. HUVEC were isolated from umbilical cords as described 

previously [34]. Cells were cultured on a matrix of fi bronectin in M199 medium 

containing 20% heat-inactivated FCS, 100 U/ml penicillin, 100 ug/ml streptomycin, 

50 ug/ml Bovine Pituitary Extract (all from Invitrogen) and 10 U/ml heparin (LEO 

Pharma B.V., Breda, the Netherlands). The cell lines ECRF-24, Jurkat, HL-60 and U937 

were cultured as described earlier [35;36].

Isolation of properdin
Properdin was isolated from pooled human donor serum. First, a precipitation step 

was performed by dialyzing the serum against water containing 5 mM EDTA, pH 6.0. 

The resulting precipitate was dissolved in Veronal-buffered saline (2x VBS, 1.8 mM Na-

5,5-diethylbarbital, 0.2 mM 5,5-diethylbarbituric acid, 145 mM NaCl), dialyzed against 

0.01 M NaAc containing 2mM EDTA, pH 6.0 and applied to a Sulphopropyl Sephadex 

C50 cation exchange colomn (Pharmacia Biotech, Uppsala, Sweden). Properdin was 

eluted from the column with a linear salt gradient. Properdin-containing fractions, 

as determined by enzyme-linked immunosorbent assay (ELISA), were pooled, 

concentrated, and subsequently applied to a Sephacryl S-300 gel fi ltration column 

(Pharmacia), after which properdin-containing fractions were pooled. In order to 

remove contaminating C1q from the preparation, the properdin-pool was dialyzed 

against PBS, 2 mM EDTA and further purifi ed using human IgG coupled to a Biogel A5 

column (Bio-Rad, Hercules, CA). Purity of the properdin preparation was confi rmed by 

analysis on 10% non-reducing SDS-PAGE gel. A single band of 220 kDa was observed.

Serum preparation
Normal human serum was depleted of properdin by immune adsorption using Biogel-

coupled anti-human properdin monoclonal antibodies (a gift of State Serum Institute, 

Copenhagen, Denmark). The properdin-depleted serum showed normal classical and 
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lectin pathway activity in hemolytic assay. C4-depleted serum, which lacks both 

classical and lectin pathway activity, was prepared by affi nity adsorption using goat 

anti-human C4 IgG coupled to CNBr-activated Sepharose 4 Fast Flow (Amersham 

Bioscience Europe, Roosendaal, the Netherlands). After C4 depletion, the serum was 

free of C4 antigen and classical pathway hemolytic activity could be restored fully by 

purifi ed hemolytically active C4.

FACS analysis
Deposition of complement on cells was determined by fl ow cytometry. Properdin 

binding to the cells was visualized using a polyclonal rabbit anti-human properdin 

antibody followed by RPE-conjugated goat anti-rabbit IgG (Southern Biotechnology 

Associates, Birmingham, US). Deposition of C3, C5b-9, C1q, and MBL on the cells was 

detected using a mouse monoclonal anti-human C3 antibody (RFK22, Laboratory of 

Nephrology, Leiden, the Netherlands), anti-human C5b-9 (mAb AE11, kindly provided 

by Dr. T.E. Mollnes, Nordland Central Hospital, Bodo, Norway), anti-human C1q (mAb 

2204, kindly provided by Dr. C.E. Hack, Sanquin Research, Amsterdam) and anti-

human MBL (mAb 3E7, kindly provided by Dr. T. Fujita, Medical University School of 

Medicine, Fukushima, Japan) respectively, followed by RPE-conjugated polyclonal 

goat anti-mouse Ig (DAKO). All antibody incubations were performed on ice for 30 

min. Cell surface staining was assessed using a FACScalibur fl ow cytometer (Becton 

Dickinson, Mountain View, CA). Propidium iodide (1μg/ml, Molecular Probes, Leiden, 

the Netherlands) was used for exclusion of dead cells. 

Properdin binding and complement activation assays
For FACS experiments, cells were grown to confl uence in 48-well tissue culture 

plates. HK-2 cells and HUVEC were exposed to 20% normal human serum diluted 

in serum-free DMEM/HAMF12 for 2 h at 37°C. C3, C5b-9, C1q, MBL and properdin 

were assessed on the cell surface by FACS analysis. Alternative pathway mediated 

complement activation by HK-2 was tested by incubating the cells with 20% normal 

human serum in the presence of 5 mM Mg EGTA. Properdin binding to HK-2, primary 

PTEC, HUVEC, ECRF-24, U937, HL-60 and Jurkat was assessed by incubating the 

cells with purifi ed human properdin (20 μg/ml) diluted in serum-free DMEM/HAMF12 

for 1 h at 37°C. Dose-dependent properdin binding to HK-2 and HUVEC was tested 

by incubating the cells with increasing concentrations of human properdin (10 to 

40 μg/ml). The functional consequences of properdin binding were determined by 

incubating the cells with 5% properdin-depleted, normal human serum or C4-depleted 



Properdin mediates tubular complement activation

117

human serum as a complement source, diluted in serum-free DMEM/HAMF12 culture 

medium, for 2 h at 37°C after pre-incubation with properdin. Following properdin 

and/or serum incubation, the cells were washed twice in PBS, harvested by scraping 

and resuspended in FACS-buffer (1% BSA and 0.02% sodium azide in PBS) for FACS 

staining.

Results

Properdin is present on the tubular brush border in proteinuric kidneys
The presence of properdin on the brush border of the proximal tubules was 

determined in renal biopsies of three patients with membranous nephropathy and in 

pretransplant renal biopsies of three living related kidney donors. Properdin could 

be detected along the brush border of the tubules in diseased kidneys, whereas 

properdin was absent in the tubules of healthy kidney tissue (Figure 1). Since the 

presence of properdin on the tubular brush border of proteinuric kidneys does not 

distinguish where in the cascade of complement activation properdin comes in, we 

proceeded to in vitro studies to determine whether properdin is an initiating factor 

in tubular complement activation.

Complement activation by HK-2 cells
Incubation of Human Kidney-2 (HK-2) cells with normal human serum resulted in 

fi xation of complement products on the cell surface. C3, C5b-9 and properdin, 

but not C1q and mannan-binding lectin (MBL) could be detected (Figure 2a). The 

complement system was activated on the cell surface via the alternative pathway 

since deposition of C3 and C5b-9 was unaffected by Mg EGTA, which interferes with 

the classical and lectin pathway of complement by chelating calcium (Figure 2b). 

In contrast, complement fi xation was completely blocked by EDTA, which inhibits 

all three pathways of complement activation. C3 and C5b-9 deposition was also 

detected on HK-2 cells after exposure to C4-depleted human serum, which excludes 

involvement of the classical or lectin pathway (Figure 2c). To assure that complement 

activation was localized to the apical surface, serum incubations were performed on 

cells that were grown to confl uence in a tissue culture plate. Human umbilical vein 

endothelial cells (HUVEC) were used as a control. No complement deposition was 

observed on these cells after treatment with normal human serum. 
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Figure 1. Properdin staining on the tubular brush border in proteinuric kidneys. 

Cryosections of (A and B) a renal biopsy of a patient with membranous nephropathy and 

(C and D) a pretransplant biopsy of a healthy donor were stained immunohistochemically 

for properdin. (A and C) Original magnifi cations were either × 100 or (B and D) × 250. 

Pictures are representative for three patients with membranous nephropathy and three 

healthy kidneys donors (see page 159 for color image).

Binding of properdin to HK-2 cells
We then questioned whether properdin could bind to tubular cells prior to the 

activation of complement and the deposition of its known ligand C3b. In order to 

study binding of properdin to the cell surface, confl uent cells in a tissue culture 

plate were incubated with purifi ed human properdin at a concentration of 20 μg/ml. 

Properdin binding was analysed by fl ow cytometry. Only cells which were negative 

for propidium iodide staining were analysed in order to exclude properdin binding to 

dead cells. As shown in Figure 3a, strong binding of properdin to viable HK-2 cells was 

detected, whereas no signifi cant binding was shown on HUVEC. As a negative control, 

the fl uorescence intensity of cells incubated with detection antibody only, i.e., 

without pre-incubation with properdin, is shown. Properdin binds to viable HK-2 cells 

in a dose-dependent manner (Figure 3b). The cell lines HL-60, U937 (monocytes), 
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Jurkat (T-cell leukaemia) and ECRF-24 (immortalized HUVEC) were all negative for 

properdin binding (Figure 3c).
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Figure 2. Complement activation by HK-2 cells. (A) HK-2 cells were incubated with 20% 

normal human serum (NHS). C3, C5b-9, C1q, mannan-binding lectin (MBL) and properdin 

binding (fi lled histograms) were assessed on the cells using the mAbs RFK22, AE11, 2204, 

3E7 and a polyclonal rabbit anti-properdin antibody, respectively. Open histograms show 

staining on cells that were not exposed to serum. (B) C3 deposition was assessed on HK-2 

cells after incubation with 20% human serum in the presence or absence of 5mM Mg EGTA 

or 10 mM EDTA. Results are expressed as the mean fl uorescence intensity, MFI. (C) C3 and 

C5b-9 deposition on HK-2 cells after exposure to 20% C4-depleted human serum.
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Figure 3. Properdin binding to HK-2 cells. (A) HK-2 cells and human umbilical vein 

endothelial cells (HUVEC) were incubated with 20 μg/ml purifi ed human properdin. 

Binding of properdin (fi lled histograms) was detected with a polyclonal rabbit anti-human 

properdin antibody followed by goat anti-rabbit conjugated with PE. As a negative control, 

staining with both primary and secondary antibody was performed on cells that were not 

exposed to properdin (open histograms). (B) Dose-dependent binding of properdin to HK-2 

and HUVEC is shown as the mean fl uorescence intensity (MFI). Data are representative for 

two individual experiments. (C) Binding of properdin (shown as the mean fl uorescence 

intensity, MFI) to the cell lines Jurkat, HL-60, U937, ECRF-24, HUVEC and HK-2. Data are 

expressed as the mean ± SD of three independent experiments.
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cells and human umbilical vein 

endothelial cells (HUVEC) were 

pre-incubated with properdin (P, 20 

μg/ml), washed and subsequently 

exposed to 5% properdin-depleted 

human serum (Pds). (a) C3 and (b) 

C5b-9 deposition (shown as the 

mean fl uorescence intensity, MFI) 

was detected on the cells using the 

mAbs RFK22 and AE11, respectively. 

The results are expressed as the 

mean ± SD of three independent 

experiments.

Properdin binding is a focal point for alternative pathway activation on HK-2 
cells
Next, we investigated whether properdin, after binding to the tubular surface, acts 

as a focal point for local amplifi cation of the alternative pathway of complement. 

To demonstrate properdin-dependent complement activation, deposition of C3 and 

C5b-9 was assessed on HK-2 cells and HUVEC incubated with properdin-defi cient 

normal human serum, with and without pre-incubation of the cells with purifi ed 

properdin. HK-2 cells incubated with properdin-depleted serum show a strongly 

reduced C3 deposition compared to cells exposed to normal human serum. This is 

accompanied by a strong reduction of C5b-9 deposition. Complement activation was 

restored completely on cells that had been pre-incubated with properdin, prior to 

exposure to properdin-defi cient serum (Figure 4a and b). HUVEC showed no signifi cant 
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complement activation, both with and without pre-incubation with purifi ed properdin. 

This indicates that properdin, bound to the cellular surface of HK-2, initiates and 

targets the amplifi cation of the complement cascade to the surface of tubular cells. 

 To confi rm that complement activation on HK-2 is properdin-dependent, cells 

were pre-exposed to different concentrations of purifi ed properdin, ranging from 2,5 

to 40 μg/ml, before incubation with 5% normal human serum. Properdin was shown to 

increase the deposition of both C3 and C5b-9 on HK-2 in a dose-dependent way (Figure 

5a). Similar dose-dependent effects were detected when increasing concentrations 

of properdin were added prior to incubation with C4-depleted human serum (Figure 

5b). 
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Figure 5. Dose-dependent effect of 

properdin on complement deposition. 

HK-2 cells were pre-incubated with 

increasing concentrations of human 

properdin. After extensive washing, 

cells were exposed to (A) 5% normal 

human serum or (B) 5% C4-depleted 

human serum. Complement deposition 

(expressed as the mean fl uorescence 

intensity, MFI) was assessed by fl ow 

cytometry using mAbs RFK22 and 

AE11 for staining of C3 and C5b-9, 

respectively. Results represent one out 

of two experiments.
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Properdin binding and complement activation on PTEC
In order to test whether the PTEC cell line HK-2 is representative for primary PTEC 

lines, properdin binding and properdin-dependent complement activation was 

assessed on primary PTEC cultures. As shown in Figure 6a, properdin binding on PTEC 

is comparable to HK-2 (Figure 3a). The six tested PTEC cell lines showed variability in 

properdin binding (Figure 6b). None of the three HUVEC cell lines showed signifi cant 

binding of properdin. However, the extent of properdin binding to PTEC was strongly 

correlated with the level of C3 deposition on these cells, r = 0.96 / p = 0.002 (Figure 

6c).
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Figure 6. Properdin-mediated complement 

 xation on primary PTEC. (A) Primary proximal 

tubular epithelial cell (PTEC) lines were analysed 

for properdin binding (fi lled histogram) by fl ow 

cytometry after incubation with 20 μg/ml 

purifi ed human properdin. The open histogram 

shows staining on cells that were not incubated 

with properdin. (B) Binding of properdin to 

different PTEC and human umbilical vein 

endothelial cell (HUVEC) lines. Properdin binding 

is expressed as the mean fl uorescence intensity 

(MFI). The background fl uorescence (primary 

and secondary antibody without properdin 

pre-incubation) is subtracted for each cell line 

individually. (C) Properdin binding and resulting 

properdin-dependent complement activation 

was tested by incubating the cells with 5% 

properdin-depleted human serum (Pds) after 

pre-exposure to 20 μg/ml purifi ed properdin. 

Properdin binding and C3 deposition is shown 

as the mean fl uorescence intensity (MFI). The 

association between properdin binding and 

the level of C3 deposition was analysed by 

calculating the Pearson correlation coeffi cient.
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Discussion

In the present study, we show that properdin binds to the surface of viable PTEC. 

Properdin binding serves as a focal point for local amplifi cation of the alternative 

pathway of complement on PTEC and explains the complement activating capacity 

of these cells. 

 It has been known for a long time that the apical surface of human proximal 

tubular epithelial cells activates the complement system in vitro and in vivo via 

the alternative pathway [13;14]. In patients suffering from chronic proteinuric renal 

disease, deposition of complement along the tubular brush border is accompanied 

by tubulointerstitial injury and progressive loss of renal function. Experimental 

models of non-selective proteinuria provide further evidence for the role of tubular 

complement activation in mediating tubulointerstitial injury [17;19]. C6 defi ciency 

protects kidney function in the remnant kidney model as well as in the puromycin-

induced model of nephrotic syndrome [16;18]. 

 Although in physiological conditions complement components are not fi ltered 

through the glomerular barrier, several studies demonstrated the presence of 

complement activation products (CAP) in the urine of patients with nephrotic 

syndrome due to a variety of causes [10;37-39]. These studies showed a positive 

correlation between tubular C3 fi xation and the excretion of complement components 

as well as complement activation products (including iC3b, Bb and C5b-9) in the 

urine. Interestingly, the level of urinary CAP excretion was signifi cantly decreased 

after two weeks of oral sodiumbicarbonate administration [38;40]. The protective 

effect of bicarbonate was suggested to be due to lowering of the tubular ammonium 

concentration but may also be explained by a direct effect of increasing the urinary 

pH [41].

 Despite extensive research, the mechanism of complement activation on the 

tubular brush border has not yet been fully elucidated. It was suggested that local 

ammonium reacts biochemically with the thioester of C3 and thereby acts as a 

C3 activator [20;21]. However, the addition of ammonium to serum only resulted 

in 15% increase in lysis of rabbit erythrocytes. This weak effect of ammonium on 

complement activation was only present in the lower concentration range. At 

higher concentrations, ammonium inhibited the alternative pathway. Recently, the 

activation of complement in proximal tubule cells was studied using proteinuric urine 

[41]. Increasing concentrations of ammonium resulted in an inhibition of complement 

activation. Ammonium excretion obviously does not fully explain the propensity of 

the renal tubule cells to activate the complement system. 
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Others have suggested that the lack of complement regulatory molecules on the apical 

surface of PTEC may explain the capacity of these cells to activate complement. 

Indeed, CD46 (membrane cofactor protein, MCP) only seems to be expressed on the 

basolateral surface of PTEC and CD55 (decay accelerating factor, DAF) could not be 

detected at all [42;43]. On the other hand CD59 is expressed abundantly on PTEC and 

surface expression of both CD46 and CD55 were detected on a PTEC cell line [44].

 We suggest that the unique properdin binding capacity of PTEC critically controls 

the tubular complement activation in proteinuric states. In 1974, Sato et al. described 

that the damaging effect of intraluminally perfused normal rat serum on the rat 

kidney proximal tubule could be abolished by pre-incubating the serum with a brush 

border membrane fraction [45]. Possibly the effect of pre-inbcubation with the brush 

border membrane fraction is explained by its capacity to absorb properdin.

 It was recently re-emphasized that properdin, the only known naturally occurring 

positive regulator of complement, can act as a focal point for alternative pathway 

amplifi cation [27;28], thereby directing complement activation to the cell surface of 

apoptotic and necrotic cells [29;46]. Several decades before, Pillemer et al. suggested 

that properdin might also interact directly with target surfaces [23;31]. Likewise, we 

hypothesized that properdin might be the activator of the alternative pathway on the 

tubular brush border by interacting with molecules present on the cell membrane.

 At the moment, the ligand on PTEC that mediates the interaction with properdin 

has not yet been identifi ed. Properdin has been shown to bind to surface-bound C3b 

via one of its subunits followed by the assembly of the alternative pathway convertase 

at the ligand-binding sites of the adjoining subunits [27]. At the moment we can 

not fully exclude that properdin binds to PTEC via cell-bound C3b that is derived 

from endogenously produced and activated C3. Although C3b is undetectable by fl ow 

cytometry on PTEC, it might be present below the detection limit. On the other hand, 

it seems unlikely that signifi cant amounts of C3b are present on quiescent cells. 

Recent data suggest that properdin also binds to the glycosphingolipid sulfatide [47]. 

The presence of sulfatide on the brush border of the tubules has been demonstrated 

in the rat kidney [48]. It is likely that these molecules are also expressed on the 

tubules in the human kidney, where they may mediate properdin binding to PTEC. 

 The mechanism by which a sublytic dose of C5b-9 on PTEC leads to tubular 

damage and subsequent tubulointerstitial fi brosis is thought to be via activation 

of proinfl ammatory and fi brogenic pathways [4]. Insertion of C5b-9 into the cell 

membrane of PTEC results in the production of proinfl ammatory cytokines and 

collagen synthesis. Interestingly, PTEC have been shown to synthesize a functional 
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alternative pathway of complement, which is capable of activating the cells [49]. This 

intratubular complement activation is tightly regulated and probably plays a role in 

protecting the kidney from urinary tract infections. Since the apical tubular surface 

does not come into contact with high concentrations of plasma proteins in normal 

physiology, protection against circulating complement is of less importance compared 

to circulating cells and the endothelium. However, in proteinuric renal disease, the 

tubules are exposed to fi ltered complement components. In these circumstances, 

the complement activating capacity of PTEC is harmful, especially since the apical 

surface has virtually no protection against complement attack [42].

 Our data show that properdin binding to the brush border is the rate-limiting 

step in tubular complement activation. Targeting the interaction between properdin 

and the tubular brush border might be a therapeutic approach for controlling 

tubulointerstitial injury, thereby preventing progressive loss of kidney function in 

patients with chronic proteinuric renal disease. 
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Multiple threats to the transplanted kidney

The renal transplant is exposed to numerous potentially harmful insults throughout 

its life. To start with, a transplanted kidney carries the disease burden of its donor 

which may limit the potential performance of the organ even before the process of 

transplantation has been initiated. Donor age, pre-existing cardiovascular disease 

and the acute disease prior to donation in the case of deceased donor kidney may 

all lead to structural damage impairing the future performance of the kidney. 

The transplant procedure itself is characterized by ischemia/reperfusion damage. 

Depending on the duration of the ischemia and the general condition of the organ, 

this insult may result in delayed graft function, an increased risk of rejection and 

poorer long term allograft survival. Next to the direct biochemical consequences 

of hypoxia and the generation of free radicals during the reperfusion period, organ 

damage during ischemia-reperfusion is also caused by infl ammatory processes with 

the infl ux of immune cells, cytokine release and complement activation.

 The next threat to the allograft is rejection due to allorecognition. Both cellular 

and humoral rejection remain important threats to the allograft and take their toll in 

terms of graft survival. Once the transplanted organ has survived the early phase after 

transplantation, acute rejection becomes less of a threat and drug toxicity will become 

an important issue. The use of calcineurin inhibitors has dramatically improved organ 

survival in the fi rst year after transplantation but long term survival has improved 

less. This is partially explained by the harmful effect of this class of drugs but the 

increasing use of marginal donors with poorer quality of the transplanted organs 

may also play a role. The increasing interstitial and vascular damage now coined as 

chronic allograft dysfunction has multiple immune and non-immune mediated causes 

including chronic cellular and humoral rejection and drug toxicity [1].

 Other threats to organ survival are infectious complications that have evolved 

as a consequence of the highly effi cient prevention of acute rejection. BK-virus 

nephropathy is now a major problem after renal transplantation [2].

 A further important issue after transplantation is recurrence of the original renal 

disease. Recurrence of the atypical hemolytic uremic syndrome, focal segmental 

glomerulosclerosis and membranoproliferative glomerulonephritis is associated with 

poor allograft survival. IgA nephropathy also recurs frequently but usually does not 

lead to loss of the allograft. In the setting of chronic allograft dysfunction or the 

recurrence of the underlying renal disease proteinuria may be present and contribute 

to progressive loss of function.
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Death of the recipient is a further major cause for the loss of renal allografts. Post 

transplant malignancy and cardiovascular disease are the major causes of mortality 

after renal transplantation [3].

 Potentially, the complement system may contribute to the damage to the 

transplanted kidney during all the processes described above. In fact considerable 

evidence has accumulated that complement plays a role at various stages of the 

transplantation process. In the following the general evidence for a role of complement 

in transplantation will be briefl y reviewed followed by a summary and discussion of 

the evidence provided by the present thesis.

The role of complement in damage processes in renal transplantation
A considerable body of evidence points towards the role of complement in ischemia-

reperfusion damage. In the case of the kidney, activation of the alternative pathway 

seems to be pivotal for the contribution of the complement system [4]. However, 

in myocardial and intestinal ischemia a clear role for the lectin pathway has been 

established [5;6]. Both in vitro [7] and in vivo [8] studies provide evidence for a 

role of natural IgM in the activation of the lectin pathway in ischemia-reperfusion 

damage. Preliminary data have also linked the lectin pathway to ischemia-reperfusion 

in the kidney. MBL can be detected in mouse and human kidneys exposed to ischemia-

reperfusion [9] and MBL A and C defi cient mice are partially protected against renal 

damage in a model of renal ischemia-reperfusion[10]. Various complement-inhibitory 

interventions have been used in animal models of renal ischemia-reperfusion. Both 

the administration of a C5 blocking antibody in mice and the renal perfusion with 

a complement regulator derived from CR1 in rats lead to decreased infl ammation 

and clearly improved function in kidneys exposed to ischemia-reperfusion damage 

[11;12].

 The paper by Pratt et al. reporting that mouse kidneys defi cient for C3 are protected 

against rejection in a transplantation model has lead to a whole new area of research 

investigating the role of complement in regulating the adaptive immune response 

[13]. It is now clear that complement produced locally by antigen presenting cells, 

the renal epithelium and T-cells contributes to the generation of the adaptive immune 

response. Triggering of both the C3a and C5a receptor seems to be essential for this 

complement mediated costimulatory signal [14;15]. First, epidemiological data now 

support the concept that C3 contributes to damage in human kidney transplantation. 

In humans the C3 gene exists as two allotypes, F (fast) and S (slow). If recipients with 

the S/S allotype receive a kidney with the F allotype, either homo- or heterozygous, 



Chapter 8

134

allograft survival is signifi cantly better than in recipients receiving kidneys which are 

homozygous for the S allotype [16]. At the moment the C3 polymorphisms have not 

been linked to clear functional consequences making a comprehensive explanation of 

these fi ndings diffi cult.

Role of MBL
Allograft survival
The lectin pathway of complement activation may contribute to the fate of the 

transplanted organs at various stages of the transplant process. In view of the 

known interactions of MBL with apoptotic cells and immunoglobulins we questioned 

whether MBL would have an impact on organ survival after kidney transplantation. 

We hypothesized that MBL would contribute to ischemia/reperfusion damage and 

rejection-mediated damage after transplantation. Chapter 3 reports on the role of 

MBL in allograft survival after deceased donor kidney transplantation [17]. Serum 

MBL levels were determined in pre-transplant serum samples obtained from 266 

consecutive patients who received a renal transplant between 1990 and 1994 at 

our center. Patients were stratifi ed according to their MBL level. We chose an MBL 

level of 400 ng/ml since this cutoff correlated best with the presence of a variant 

MBL genotype in a healthy control population. Recipients with low MBL levels had a 

signifi cantly superior graft survival compared to those with an MBL level above 400 ng/

ml. We did not fi nd an effect of MBL levels on the occurrence of delayed graft function 

or acute rejection. However, the excess graft loss was explained by more severe 

and treatment-resistant rejection. From this epidemiological study we concluded 

that MBL does not contribute to the initiation of rejection but possibly contributes 

to the damage caused by the rejection. MBL may bind to damaged tissue in the 

context of rejection by interacting with either apoptotic cells or immunoglobulins. As 

mentioned above IgM may be specifi cally interesting in this context. At this point of 

time we do not have stainings with convincing deposition of MBL in biopsies showing 

rejection of human kidneys. However, we did fi nd strong interstitial and glomerular 

deposition of MBL in the Fisher to Lewis rat model of chronic rejection (Figure 1). 

Next to MBL, co-deposition of IgG, IgM, C4 and C3 was detected, indicating that MBL 

deposition in this model might be triggered by immunoglobulins. In this context a 

recent paper studying C4 deposition in a model of humoral rejection of the heart 

is highly interesting [18]. C4 deposition was found to be related to the presence of 

both complement activating IgG2 and non-complement activating IgG1 antibodies. 

The marked reduction of complement deposition in an MBL-free system indicated 
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a role for the lectin pathway in C4 deposition during humoral allograft rejection. 

Since neither immunoglobulins, C1q or MBL is detected in human transplant biopsies 

showing C4 deposition the precise pathways contributing to the cleavage of C4 remain 

to be elucidated. In our opinion the lectin pathway of complement activation has to 

be taken into account. 

Figure 1. MBL A staining in the Fisher to Lewis model of chronic rejection. Kidneys 

obtained from Fischer rats were transplanted into Lewis rats (chronic rejection group, 

top row) and Lewis kidneys were transplanted into Fisher rats (control group, bottom 

row). Kidneys harvested at time points zero and after 30 and 60 days were stained for the 

presence of MBL A (see page 159 for color image).

Chapter 4 questioned which role MBL would have in simultaneous pancreas-kidney 

transplantation (SPKT). We thought it would be interesting to study this group 

next to the recipients of kidney transplants alone for the following reasons. 1. The 

type 1 diabetic population receiving a SPKT is characterized by a high burden of 

cardiovascular morbidity. A number of studies now point towards a role of the lectin 

pathway in cardiovascular morbidity and mortality. Specifi cally in the case of diabetes 

MBL seems to have a detrimental role in cardiovascular outcome. Studies performed 

in Danish type 1 diabetics demonstrated an association of high MBL levels with an 

increased incidence of cardiovascular disease and proteinuria [19;20]. In a cohort of 

subjects with type 2 diabetes followed for over 15 years MBL levels above 1000 were 

associated with increased mortality.
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In our cohort of 99 patients who received a SPKT between 1990 and 2000 we were 

able to confi rm our earlier studies demonstrating an association of MBL levels below 

400 ng/ml with superior survival of the transplanted kidney. The fi rst new result in 

this study was the fi nding that pancreas allograft survival was also better in the group 

with low MBL levels. However, the most striking result was the much higher risk of 

death in the group with MBL levels above 400 ng/ml when compared with the patients 

with lower MBL levels. We also were able to confi rm this association with MBL by 

genotyping the recipients for the MBL gene polymorphisms associated with low levels. 

Kidney recipients with an MBL genotype associated with low levels had a relative risk 

for death of 3.6 compared to the recipients with variant MBL genotypes. As expected, 

the difference in survival was largely explained by a higher cardiovascular mortality 

in the group with a high MBL.

 As mentioned above, various earlier studies have pointed towards a deleterious 

role of MBL in diabetes mellitus. However the exact mechanism of a contribution of 

MBL to cardiovascular damage remains unclear. One possibility is that MBL may not 

actually cause atherosclerotic disease but once an ischemic event occurs MBL may 

lead to enhanced damage to the affected organ. In line with this concept we recently 

described that patients with very low MBL levels undergoing cardiac surgery with the 

use of the heart/lung machine were protected against the development of multi-

organ failure [21].

However, in an Icelandic cohort low MBL levels were associated with an increased risk 

of myocardial infarction [22]. Interestingly no data in the mortality of these patients 

was presented. So, possibly MBL does not lead to an increase in the frequency of 

cardiovascular events but high levels may be associated with more tissue damage and 

result in higher mortality. Again, the recently described interaction of MBL with IgM 

may be of interest in an attempt to explain our fi nding of reduced survival of high 

MBL recipients. Natural antibodies may interact with apoptotic cells in the setting of 

ischemia-reperfusion and may thus lead to MBL binding. However, natural antibodies 

have also been shown to bind to oxidized lipoproteins pointing towards a role of these 

antibodies in the pathogenesis of atherosclerosis [23]. We speculate that MBL may 

interact with these antibodies in the atherosclerotic plaque, leading to complement 

activation and infl ammation. 

 A further interesting option may be the interaction of MBL with glycosylated 

proteins in diabetes. Enzymatic glycosylation of proteins via the hexosamine pathway 

is aberrant in diabetes mellitus [24]. Possibly these changed glycosylation patterns 

in the diabetic milieu allow the recognition of cell surface molecules by MBL and 
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subsequent activation of the lectin pathway. At this point of time no data on the 

interaction of MBL with aberrantly glycosylated proteins in diabetes are available. 

Infectious complications after transplantation
After having described the role of MBL in allograft and patient survival after 

transplantation the question about the role of MBL in the protection against infectious 

complications after transplantation arose. Since the immunosuppressive regimes 

after transplantation are largely directed against adaptive immunity it would seem 

logical to expect an important role for the adaptive immune system in the protection 

against infections. As described in chapter one a role for the lectin pathway in the 

protection against infections has specifi cally been found in situations in which the 

adaptive immune system is impaired [25-27]. Bouwman et al. showed that MBL is 

protective against infectious complications after liver transplantation [28]. In our 

study on the role of MBL in infectious complications after simultaneous pancreas-

kidney transplantation the transplantations performed between 1990 and 2005 at 

our center were scored for clinically signifi cant infections in the fi rst year after 

transplantation. In chapter 5 we show that patients with high MBL levels at baseline 

experience less episodes of cystitis and urosepsis compared with patients with MBL 

levels above 400 ng/ml. Low MBL levels were the only identifi able risk factor for 

urosepsis in this cohort. Interestingly we did not fi nd an association of MBL with 

wound infections or CMV infections. We had originally expected a role for MBL in 

wound infections since MBL has been shown to interact with Staphylococcus aureus, 

the major organism causing post-operative wound infections. 

 The urinary tract infections in our cohort consisted of infections with Escherichia 

coli, Entrococcus faecalis and Klebsiella species. We were not able to link the 

protective role of MBL to a specifi c organism. Possibly the subgroups were too small 

to detect specifi c organisms associated with MBL defi ciency. Although infections and 

specifi cally urinary tract infections were very frequent, infection related mortality 

was very low in our cohort. So even if low MBL levels are associated with more 

infections after SPKT it seems clear that a low MBL status is preferable in view of 

the markedly better allograft and patient survival. To date we can not explain how 

MBL protects against urinary tract infections. From numerous studies it is clear that 

the kidney is a major site of complement synthesis [29;30]. It makes sense that the 

kidney should be able to generate protective complement molecules since urinary 

tract infections are one of the most frequent bacterial infections in humans and the 

renal epithelium comes into contact with ascending bacteria at an early phase of the 
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infection. However, it has been suggested that uropathogenic bacteria evade killing 

by the complement system and in fact make use of opsonisation by complement to 

invade renal cells via CD46 [31]. Currently no data exists that demonstrate local MBL 

production by the kidney in humans. Of interest is our observation of detectable 

levels of MBL in the urine during proteinuria and urinary tract infections (unpublished 

data).

A role for the alternative pathway

Chapters 6 and 7 in the present thesis investigate the rediscovered role of properdin 

as a pattern recognition molecule. Properdin is classically associated with its capacity 

to stabilize preformed C3 convertases. Recent papers have pointed towards the 

capacity of properdin to bind to pathogenic surfaces. The ligand for C3 on these 

surfaces may be pre-formed C3b but properdin also interacts with poorly defi ned 

non-complement ligands on e.g. bacteria [32-34]. In view of the important role 

of MBL and C1q in the recognition and clearance of apoptotic cells [35], we fi rst 

questioned whether properdin could bind to apoptotic cells and whether this binding 

would lead to activation of the alternative pathway. In chapter 6 we show that 

properdin binds to late apoptotic and necrotic Jurkat cells leading to activation of 

the alternative pathway [36]. By using splenocytes obtained from C3-defi cient mice 

we were able to show that properdin can bind to a cellular surface independently of 

prior C3 activation and deposition of C3b. We also demonstrated that DNA which is 

expressed on the surface of apoptotic blebs is one of the ligands for properdin. These 

fi ndings further establish a role for properdin as a pattern recognition molecule that 

contributes to the clearance of apoptotic cells. The exact quantitative importance 

of properdin-mediated clearance of apoptotic cells is not clear at the moment. C1q 

defi ciency is strongly linked to the development of systemic lupus erythematosus 

[37]. No such link has been described for individuals with properdin defi ciency who 

are susceptible for meningococcal infections. We speculate that properdin recognizes 

apoptotic renal cells in the setting of ischemia/reperfusion or rejection. Whether 

this interaction results in safe clearance of these damaged cells or contributes to the 

amplifi cation of the infl ammatory process is currently not clear.

 In chapter 7 the role of properdin in the activation of complement in the setting 

of tubular injury is described. Proteinuria is thought to contribute to progressive 

renal damage in numerous forms of proteinuric renal disease. Similarly to diseases 
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of the native kidneys proteinuria has also been established as a powerful predictor 

of graft loss in the setting of kidney transplantation [38]. The strong association 

between proteinuria and outcome suggests a causal relationship and activation 

of complement in the tubules may explain the harmful effect of proteinuria [39]. 

We show that properdin binds to tubular cells in the absence of other complement 

molecules and acts as a focal point for the subsequent activation of the alternative 

pathway. This binding of properdin is specifi c for the tubulus and was not detected 

on endothelial or circulating cells. We hypothesize that properdin fi ltered together 

with other complement molecules in proteinuric states binds to the proximal tubulus 

and then leads to activation of the alternative pathway with subsequent activation of 

tubular cells by sublytic membrane attack complex and the anaphylatoxins C3a and 

C5a. These fi ndings may have important implications for renoprotective strategies in 

a large array of proteinuric renal diseases including proteinuria in the transplanted 

allograft.

Open questions and future plans

The studies in chapter 3 and 4 show an association between low MBL levels and 

superior allograft survival after kidney transplantation alone and combined pancreas 

kidney transplantation. In chapter 4 we were also able to confi rm these results 

with genotyping excluding a role of an acute phase reaction in our fi ndings. Like 

in all epidemiological studies it will be essential to confi rm these fi ndings in other 

populations before MBL levels can be used as a prognostic tool in clinical practice. We 

certainly hope that other groups will fi nd our studies interesting enough and attempt 

to repeat them in other populations.

 In studies investigating the association of MBL with outcome the method of MBL 

determination is a continuous matter of debate and a number of authors prefer 

genotyping since the genotype is not infl uenced by acute phase reactions of storage 

of the sample. However, currently we are only partially able to predict MBL levels by 

genotyping and the inter-individual variation of MBL concentrations within a group of 

individuals with the same genotype is substantial. Relying in the determination of the 

genotype only may result in missing some MBL-mediated effects since an important 

part of the variation is not recognized. Furthermore, it has been found that intra-

individual MBL levels are highly stable over time [22] and that baseline levels strongly 

correlate with the levels induced by an acute phase reaction [40].
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The used cutoff levels for MBL vary strongly between studies. This may partially be 

caused by differences in the biological effects that have been studied. Differences in 

the employed assays may also explain this lack of consensus. Greater standardization 

of MBL assays is highly desirable.

 At this point of time we can only speculate about the mechanisms of MBL-mediated 

damage in the context of renal transplantation. Further pathophysiological studies 

are necessary to explain our epidemiological fi ndings. Interesting approaches include 

studies on the interaction of MBL with IgM and aberrantly glycoslylated proteins.

 As discussed in chapter two mutations of the complement regulators factor H and 

I play an important role in the hemolytic uremic syndrome and age-related macular 

degeneration. It will be interesting to study the role of these complement regulators 

in kidney transplantation. 

 Further research on the role of complement in proteinuria-mediated damage to 

the kidney may be very important in fi nding new strategies in the prevention of 

renal failure. It would be helpful if studies using urine from patients with proteinuria 

could establish a link between the urinary concentration of complement activation 

products and renal prognosis.

 Next steps are to defi ne the role of properdin in animal models of proteinuric 

renal disease. Identifi cation of the ligand for MBL on the tubulus cell may allow 

the development of strategies to specifi cally inhibit tubular complement activation 

without blocking the entire alternative pathway. 



Summary and general discussion

141

Reference List

Joosten SA, Sijpkens YW, van Kooten C, Paul LC. Chronic renal allograft rejection: pathophysiologic 1. 

considerations. Kidney Int 2005; 68(1):1-13.

Bohl DL, Brennan DC. BK virus nephropathy and kidney transplantation. 2. Clin J Am Soc Nephrol 

2007; 2 Suppl 1:S36-S46.

de Mattos AM, Prather J, Olyaei AJ, Shibagaki Y, Keith DS, Mori M et al. Cardiovascular events 3. 

following renal transplantation: role of traditional and transplant-specifi c risk factors. Kidney 

Int 2006; 70(4):757-764.

Zhou W, Farrar CA, Abe K, Pratt JR, Marsh JE, Wang Y et al. Predominant role for C5b-9 in renal 4. 

ischemia/reperfusion injury. J Clin Invest 2000; 105(10):1363-1371.

Hart ML, Ceonzo KA, Shaffer LA, Takahashi K, Rother RP, Reenstra WR et al. Gastrointestinal 5. 

ischemia-reperfusion injury is lectin complement pathway dependent without involving C1q. J 

Immunol 2005; 174(10):6373-6380.

Walsh MC, Bourcier T, Takahashi K, Shi L, Busche MN, Rother RP et al. Mannose-Binding Lectin 6. 

Is a Regulator of Infl ammation That Accompanies Myocardial Ischemia and Reperfusion Injury. J 

Immunol 2005; 175(1):541-546.

McMullen ME, Hart ML, Walsh MC, Buras J, Takahashi K, Stahl GL. Mannose-binding lectin binds 7. 

IgM to activate the lectin complement pathway in vitro and in vivo. Immunobiology 2006; 

211(10):759-766.

Zhang M, Takahashi K, Alicot EM, Vorup-Jensen T, Kessler B, Thiel S et al. Activation of the 8. 

lectin pathway by natural IgM in a model of ischemia/reperfusion injury. J Immunol 2006; 

177(7):4727-4734.

de Vries B, Walter SJ, Peutz-Kootstra CJ, Wolfs TG, van Heurn LW, Buurman WA. The mannose-9. 

binding lectin-pathway is involved in complement activation in the course of renal ischemia-

reperfusion injury. Am J Pathol 2004; 165(5):1677-1688.

Moller-Kristensen M, Wang W, Ruseva M, Thiel S, Nielsen S, Takahashi K et al. Mannan-binding 10. 

lectin recognizes structures on ischaemic reperfused mouse kidneys and is implicated in tissue 

injury. Scand J Immunol 2005; 61(5):426-434.

de Vries B, Matthijsen RA, Wolfs TG, van Bijnen AA, Heeringa P, Buurman WA. Inhibition of 11. 

complement factor C5 protects against renal ischemia-reperfusion injury: inhibition of late 

apoptosis and infl ammation. Transplantation 2003; 75(3):375-382.

Patel H, Smith RA, Sacks SH, Zhou W. Therapeutic strategy with a membrane-localizing 12. 

complement regulator to increase the number of usable donor organs after prolonged cold 

storage. J Am Soc Nephrol 2006; 17(4):1102-1111.

Pratt JR, Basheer SA, Sacks SH. Local synthesis of complement component C3 regulates acute 13. 

renal transplant rejection. Nat Med 2002; 8(6):582-587.

Liu J, Lin F, Strainic MG, An F, Miller RH, Altuntas CZ et al. IFN-{gamma} and IL-17 Production 14. 

in Experimental Autoimmune Encephalomyelitis Depends on Local APC-T Cell Complement 

Production. J Immunol 2008; 180(9):5882-5889.

Strainic MG, Liu J, Huang D, An F, Lalli PN, Muqim N et al. Locally produced complement 15. 

fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. 

Immunity 2008; 28(3):425-435.



Chapter 8

142

Brown KM, Kondeatis E, Vaughan RW, Kon SP, Farmer CK, Taylor JD et al. Infl uence of donor C3 16. 

allotype on late renal-transplantation outcome. N Engl J Med 2006; 354(19):2014-2023.

Berger SP, Roos A, Mallat MJ, Fujita T, de Fijter JW, Daha MR. Association between mannose-17. 

binding lectin levels and graft survival in kidney transplantation. Am J Transplant 2005; 

5(6):1361-1366.

Murata K, Fox-Talbot K, Qian Z, Takahashi K, Stahl GL, Baldwin WM, III et al. Synergistic deposition 18. 

of C4d by complement-activating and non-activating antibodies in cardiac transplants. Am J 

Transplant 2007; 7(11):2605-2614.

Hansen TK, Tarnow L, Thiel S, Steffensen R, Stehouwer CD, Schalkwijk CG et al. Association 19. 

between mannose-binding lectin and vascular complications in type 1 diabetes. Diabetes 2004; 

53(6):1570-1576.

Hovind P, Hansen TK, Tarnow L, Thiel S, Steffensen R, Flyvbjerg A et al. Mannose-binding lectin 20. 

as a predictor of microalbuminuria in type 1 diabetes: an inception cohort study. Diabetes 2005; 

54(5):1523-1527.

Bilgin YM, Brand A, Berger SP, Daha MR, Roos A. Mannose-binding lectin is involved in multiple 21. 

organ dysfunction syndrome after cardiac surgery: effects of blood transfusions. Transfusion 

2008; 48(4):601-608.

Saevarsdottir S, Oskarsson OO, Aspelund T, Eiriksdottir G, Vikingsdottir T, Gudnason V et al. 22. 

Mannan binding lectin as an adjunct to risk assessment for myocardial infarction in individuals 

with enhanced risk. J Exp Med 2005; 201(1):117-125.

Shaw PX, Goodyear CS, Chang MK, Witztum JL, Silverman GJ. The autoreactivity of anti-23. 

phosphorylcholine antibodies for atherosclerosis-associated neo-antigens and apoptotic cells. J 

Immunol 2003; 170(12):6151-6157.

Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: current status. 24. 

Am J Physiol Endocrinol Metab 2006; 290(1):E1-E8.

Mullighan CG, Heatley S, Doherty K, Szabo F, Grigg A, Hughes TP et al. Mannose-binding lectin 25. 

gene polymorphisms are associated with major infection following allogeneic hemopoietic stem 

cell transplantation. Blood 2002; 99(10):3524-3529.

Peterslund NA, Koch C, Jensenius JC, Thiel S. Association between defi ciency of mannose-26. 

binding lectin and severe infections after chemotherapy. Lancet 2001; 358(9282):637-638.

Koch A, Melbye M, Sorensen P, Homoe P, Madsen HO, Molbak K et al. Acute respiratory tract 27. 

infections and mannose-binding lectin insuffi ciency during early childhood. JAMA 2001; 

285(10):1316-1321.

Bouwman LH, Roos A, Terpstra OT, de Knijff P, van Hoek B, Verspaget HW et al. Mannose binding 28. 

lectin gene polymorphisms confer a major risk for severe infections after liver transplantation. 

Gastroenterology 2005; 129(2):408-414.

Seelen MA, Brooimans RA, van der Woude FJ, van Es LA, Daha MR. IFN-gamma mediates 29. 

stimulation of complement C4 biosynthesis in human proximal tubular epithelial cells. Kidney 

Int 1993; 44(1):50-57.

van den Dobbelsteen ME, Verhasselt V, Kaashoek JG, Timmerman JJ, Schroeijers WE, Verweij CL 30. 

et al. Regulation of C3 and factor H synthesis of human glomerular mesangial cells by IL-1 and 

interferon-gamma. Clin Exp Immunol 1994; 95(1):173-180.



Summary and general discussion

143

Springall T, Sheerin NS, Abe K, Holers VM, Wan H, Sacks SH. Epithelial secretion of C3 promotes 31. 

colonization of the upper urinary tract by Escherichia coli. Nat Med 2001; 7(7):801-806.

Hourcade DE. The role of properdin in the assembly of the alternative pathway C3 convertases 32. 

of complement. J Biol Chem 2006; 281(4):2128-2132.

Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE. Properdin can initiate complement activation 33. 

by binding specifi c target surfaces and providing a platform for de novo convertase assembly. J 

Immunol 2007; 179(4):2600-2608.

Kimura Y, Miwa T, Zhou L, Song WC. Activator-specifi c requirement of properdin in the initiation 34. 

and amplifi cation of the alternative pathway complement. Blood 2007.

Nauta AJ, Castellano G, Xu W, Woltman AM, Borrias MC, Daha MR et al. Opsonization with 35. 

C1q and mannose-binding lectin targets apoptotic cells to dendritic cells. J Immunol 2004; 

173(5):3044-3050.

Xu W, Berger SP, Trouw LA, de Boer HC, Schlagwein N, Mutsaers C et al. Properdin binds to 36. 

late apoptotic and necrotic cells independently of c3b and regulates alternative pathway 

complement activation. J Immunol 2008; 180(11):7613-7621.

Cook HT, Botto M. Mechanisms of Disease: the complement system and the pathogenesis of 37. 

systemic lupus erythematosus. Nat Clin Pract Rheumatol 2006; 2(6):330-337.

Halimi JM, Buchler M, Al Najjar A, Laouad I, Chatelet V, Marliere JF et al. Urinary albumin 38. 

excretion and the risk of graft loss and death in proteinuric and non-proteinuric renal transplant 

recipients. Am J Transplant 2007; 7(3):618-625.

Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage? 39. J Am Soc 

Nephrol 2006; 17(11):2974-2984.

Van Till JW, Boermeester MA, Modderman PW, Van Sandick JW, Hart MH, Gisbertz SS et al. 40. 

Variable mannose-binding lectin expression during postoperative acute-phase response. Surg 

Infect (Larchmt ) 2006; 7(5):443-452.





Nederlandse Samenvatting

145

Nederlandse Samenvatting

Het afweersysteem bestaat uit een aangeboren en een verworven deel. Traditioneel 

wordt in het transplantatieveld veel aandacht aan het verworven deel van het 

immuunsysteem besteed. Hierbij wordt gedacht dat B- en T-cellen het getransplanteerde 

weefsel als vreemd herkennen en een specifi eke afweerreactie tegen dit als vreemd 

herkende weefsel veroorzaken. De geneesmiddelen die gebruikt worden om afstoting 

te voorkomen en te behandelen richten zich dan ook voornamelijk op het verworven 

afweersysteem.

 In de afgelopen jaren is er een toenemende belangstelling voor de rol van het 

aangeboren afweersysteem in de transplantatiegeneeskunde ontstaan. Hierbij is 

duidelijk geworden dat het aangeboren afweersysteem een belangrijke rol in de 

aansturing van het verworven afweersysteem speelt. Het aangeboren afweersysteem 

speelt niet alleen een rol bij de herkenning van vreemde organismen maar kan ook 

schade herkennen. Het aangeboren afweersysteem bestaat uit cellen en eiwitten die 

in staat zijn patronen op micro-organismen en beschadigde cellen te herkennen en 

deze structuren snel op te ruimen. In de context van niertransplantatie speelt het 

aangeboren afweersysteem een rol bij de initiële schade door zuurstoftekort (ischemie 

en reperfusie), de initiatie en controle van afstotingsreacties, de chronische schade 

bij een chronische allograft nefropathie en bij de terugkeer van de oorspronkelijke 

ziekte. Reeds voor de transplantatie kan het aangeboren afweersysteem een rol spelen 

bij het ontstaan van chronische schade in de ontvanger en het te transplanteren 

orgaan. Naast deze beschadigende rol heeft het aangeboren afweersysteem een 

belangrijke rol in de bescherming tegen infecties in een situatie waar het verworven 

deel van het afweersysteem onderdrukt wordt.

 Het complementsysteem is een belangrijk onderdeel van het aangeboren 

afweersysteem. Het bestaat uit ongeveer 30 moleculen die middels drie verschillende 

routes geactiveerd worden. De drie routes worden elk door de interactie van eigen 

herkenningsmoleculen met oppervlaktepatronen geactiveerd. Deze patronen kunnen 

bijvoorbeeld op de oppervlakte van micro-organismen, op immuuncomplexen of op 

dode (≈ apoptotische) cellen aanwezig zijn. Hoofdstuk twee van dit proefschrift geeft 

een overzicht over de drie activeringsroutes en hun rol in de nefrologie.

 In dit proefschrift concentreren wij ons op de betekenis van de lectine en 

alternatieve route bij niertransplantatie.

 Activering van de lectineroute wordt door binding van de herkenningsmoleculen 

mannosebindend lectine (MBL) en fi coline aan suikergroepen op het oppervlak 
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van micro-organismen en beschadigde cellen veroorzaakt. Een gebrek aan het 

herkenningsmolecuul MBL door frequent voorkomende polymorfi smen van het MBL 

gen resulteert in een verhoogde gevoeligheid voor infecties in situaties waarin het 

verworven afweersysteem gestoord is. Typische voorbeelden zijn patiënten die 

chemotherapie of een stamceltransplantatie ondergaan. Uit verschillende lijnen van 

onderzoek is gebleken dat MBL niet alleen een beschermende rol speelt maar ook 

aan weefselschade kan bijdragen. De lectineroute speelt bijvoorbeeld een rol bij de 

weefselschade door ischemie en reperfusie. In epidemiologische studies is gebleken 

dat patiënten met diabetes mellitus type 1 en een hoog MBL meer nierschade en 

cardiovasculaire ziekte hebben dan patiënten met een laag MBL.

 Gezien deze schadelijke rol van MBL vroegen wij ons af of MBL aan de beschadiging 

van een getransplanteerde nier bijdraagt. In hoofdstuk drie wordt beschreven dat 

hoge MBL-spiegels bij ontvangers van een niertransplantatie geassocieerd zijn met 

een slechtere overleving van het getransplanteerde orgaan. In deze studie hebben 

wij in een groep van getransplanteerde patiënten de MBL spiegels voor transplantatie 

bepaald en de overleving van het getransplanteerde orgaan in ontvangers met een 

laag of hoog MBL vergeleken. Ontvangers met een hoog MBL hadden een duidelijk 

verhoogd risico om de getransplanteerde nier te verliezen vergeleken met de 

ontvangers met een laag MBL. Het bleek dat het orgaanverlies bij patiënten met een 

hoog MBL door moeilijk behandelbare afstoting veroorzaakt werd.

 In hoofdstuk 4 wordt de rol van MBL bij patiënten met een gecombineerde nier-

pancreas transplantatie beschreven. Deze patiëntengroep wordt door bijzonder veel 

cardiovasculaire complicaties, afstoting en infectieuze problemen gekenmerkt. Ook 

in deze groep was een laag MBL met een betere overleving van de getransplanteerde 

nier geassocieerd. Nieuw was dat ook de overleving van de getransplanteerde 

pancreas in patiënten met een laag MBL beter was dan bij patiënten met een hoog 

MBL. Bijzonder indrukwekkend was de bevinding dat ontvangers met een hoog MBL 

een duidelijk hogere sterfte hadden. Deze verhoogde sterfte werd ook bij patiënten 

met een MBL-genotype gevonden dat met een hoog MBL geassocieerd is. Omdat wij 

onze bevindingen middels een genotypering voor de belangrijkste MBL genvarianten 

konden bevestigen, kunnen wij een artefact door een acute fase response of door 

bewaren van het serum uitsluiten. De verhoogde sterfte in de groep met een hoog 

MBL werd vooral door een verhoogde cardiovasculaire sterfte verklaard. 

 Het lijkt dat MBL niet zozeer een verhoogde incidentie van schadelijke 

gebeurtenissen veroorzaakt maar eerder de schade en de gevolgen verhoogt.
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Nadat wij de betere overleving bij ontvangers met een laag MBL gevonden hadden 

vroegen wij ons af in hoeverre een laag MBL met een toegenomen risico op infecties 

gepaard gaat. Tenslotte is in de literatuur overtuigend aangetoond dat MBL een 

beschermende rol speelt tegen infecties bij patiënten met een gestoorde verworven 

immuniteit. Om dit te onderzoeken hebben wij bij patiënten die tussen 1990 en 

2005 een nier-pancreas transplantatie hebben ondergaan alle relevante infecties in 

het eerste jaar na de transplantatie gescoord en de MBL waardes in het serum in 

een direct voor de transplantatie afgenomen monster bepaald. De patiënten met 

een MBL-spiegel onder 400 ng/ml maakten meer episodes van blaasontsteking door 

vergeleken met de patiënten met een MBL spiegel boven 400 ng/ml. Ook was een lage 

MBL spiegel bij de ontvanger geassocieerd met een verhoogde incidentie van door 

urineweginfectie veroorzaakte sepsis. Er werd geen samenhang tussen MBL en het 

voorkomen van wondinfecties en cytomegalievirusinfecties gevonden.

 Het blijkt dus dat lage MBL spiegels gunstig zijn voor de overleving van 

het getransplanteerde orgaan en in het geval van een gecombineerde nier-

pancreastransplantatie ook voor de overleving van de patiënt. Dit voordeel van een 

lage MBL spiegel gaat wel gepaard met een verhoogd risico op infecties. Gelukkig 

zijn de meeste na een transplantatie voorkomende infecties goed te behandelen en 

overlijden maar weinig patiënten hieraan. 

 De klaring van apoptotische cellen speelt een belangrijke rol in de initiatie van de 

afweerreactie bij transplantatie en autoimmuunziekten. De complementmoleculen 

MBL en C1q herkennen apoptotische cellen en dragen aan de klaring van deze cellen bij. 

Pas recent werd de rol van properdine als patroonherkenningsmolecuul herontdekt. 

In hoofdstuk 6 beschrijft dit proefschrift dat properdine aan laat- apoptotische cellen 

en necrotische cellen bindt. De binding van properdine vertoont een patroon dat 

vergelijkbaar is met dat van MBL en C1q en is onafhankelijk van de aanwezigheid van 

geactiveerd C3 (C3b). DNA dat op de oppervlakte van apoptotische en necrotische 

cellen aanwezig is, is een potentiële ligand voor properdine op deze cellen. 

  

In hoofdstuk 7 beschrijven wij de interactie van properdine met niertubuluscellen. 

Complementactivatie ter hoogte van de niertubuli wordt gezien als belangrijke 

oorzaak voor chronische schade bij nierziekten die gepaard gaan met een verhoogde 

eiwituitscheiding in de urine. Eerdere studies hebben aangetoond dat complement op 

de oppervlakte van tubuluscellen geactiveerd wordt. Tot nu was het mechanisme van 

deze complementactivatie onduidelijk. Wij laten zien dat properdine aan levende 

gekweekte tubuluscellen bindt. Deze binding is essentieel voor de complementactivatie 
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op de oppervlakte van het tubulus. Indien het lukt het bindende molecuul voor 

properdine op de tubuluscellen te identifi ceren is het misschien mogelijk op een 

specifi eke manier proteïnurie-gemedieerde nierschade te voorkomen. 

 In het onderzoek beschreven in dit proefschrift wordt met epidemiologische 

en experimentele methodes een belangrijke rol voor het complementsysteem in 

de context van niertransplantatie beschreven. De bevindingen betreffende de rol 

van MBL kunnen een rol spelen bij de risicostratifi catie en beslisvorming rondom 

het transplantatieproces. Ook wijzen onze gegevens op mogelijke risico’s van MBL 

suppletie. De interactie van properdine met tubuluscellen biedt een mogelijke nieuwe 

toegang tot de ontwikkeling van progressie remmende therapieën voor proteϊnurische 

nierziekten.
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In tegenstelling tot velen heb ik het promotietraject niet als zwaar of belastend er-

varen. Ik voel ook geen opluchting maar misschien eerder verlies nu ik deze woorden 

kan schrijven. De onderzoeksprojecten in dit proefschrift hebben mij veel plezier 

gegeven en ook zonder promotietraject had ik deze studies zo willen doen. 

Vanzelfsprekend ben ik velen die mij welwillend geholpen hebben tot dank verschul-

digd. Allereerst wil ik de talrijke medewerkers van het lab nierziekten bedanken die 

mij de afgelopen jaren geholpen hebben. De gedrevenheid en expertise op het lab 
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Maria Essers.
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groot. 
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sultaat van onze samenwerking en hoop op wetenschappelijk gebied nog veel van je 

te horen.

Hilde, de tijd op het lab was voor jou niet altijd makkelijk en niet alle editors deelden 

mijn enthousiasme over ons werk. Maar onze samenwerking heeft wel iets achterge-

laten en ik hoop dat je tevreden met het resultaat bent.

Ik dank alle stafl eden en de fellows van de afdeling nierziekten voor de samenwerk-

ing en de secretaresses voor alle ondersteuning.

Tanja, jouw directe betrokkenheid bij dit proefschrift was beperkt. Jouw betrok-

kenheid bij mijn leven is onmeetbaar. Jij bent mijn kompas, mijn vuurtoren, mijn 

landvast en de moeder van mijn fantastische kinderen. 
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Color figures

Chapter 6, figure 1. Complement-mediated phagocytosis of dying cells. Late apoptotic 

cells and necrotic cells are scored by light microscopy or fluorescent microscopy for 

hoechst staining on cytospins of these cells. Magnification, 200× (see page 92 for complete 

image).

Chapter 6, figure 6. Properdin binds to DNA. Confocal laser scanning microscopy (LSM 

510, Carl Zeiss AG), was performed on properdin-opsonized necrotic cells that were stained 

for properdin, DNA and Hoechst. Green: DNA; Red: properdin; Blue: Hoechst; Yellow: DNA 

co-localizes with properdin; DIC: differential interference contrast. Magnification, 400× 

(see page 100 for complete image).
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Chapter 6, figure 7. 

Properdin binds to a 

subpopulation of 

late apoptotic cells. 

Confocal microscopy 

was performed on 

properdin-opsonized 

late apoptotic cells 

that were stained for 

properdin, DNA and 

Hoechst. 

Green: DNA; 

Red: properdin; 

Blue: Hoechst; 

Yellow: DNA co-local-

izes with properdin; 

DIC: differential 

interference con-

trast. 

Magnification, 400× 

(see page 102 for 

complete image).
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Chapter 7, figure 1. Properdin staining on the tubular brush border in proteinuric 

kidneys. See page 160 for explanation.

Chapter 8, figure 1. MBL A staining in the Fisher to Lewis model of chronic rejection. 

See page 160 for explanation.
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Chapter 7, figure 1. Properdin staining on the tubular brush border in proteinuric kidneys. 

Cryosections of (A and B) a renal biopsy of a patient with membranous nephropathy and (C 

and D) a pretransplant biopsy of a healthy donor were stained immunohistochemically for 

properdin. (A and C) Original magnifications were either × 100 or (B and D) × 250. Pictures 

are representative for three patients with membranous nephropathy and three healthy 

kidneys donors (see page 118 for gray image).

Chapter 8, figure 1. MBL A staining in the Fisher to Lewis model of chronic rejection. 

Kidneys obtained from Fischer rats were transplanted into Lewis rats (chronic rejection 

group, top row) and Lewis kidneys were transplanted into Fisher rats (control group, 

bottom row). Kidneys harvested at time points zero and after 30 and 60 days were stained 

for the presence of MBL A (see page 118 for gray image).


