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1. Genetics 

 

Genetics, the science of genes, heredity and variation of organisms, is one of the 

pillars of modern biology. Pioneering experiments of inheritance with pea plants 

were performed by Gregor Mendel between 1856 and 1863. He discovered that 

certain traits, like the color of seeds and the shape of pods, could be inherited in 

a dominant heterozygous and recessive fashion. Initially, Mendel’s work received 

little attention; only after the rediscovery of the Mendelian inheritance, by Hugo 

de Vries and Carl Correns in 1900, his laws of inheritance became a basis for the 

understanding of genetics. Subsequently, the central role of DNA in inheritance 

was established in 1944, when DNA was shown to be the biochemical material 

responsible for transfer of genetic information in organisms. 

 

2. Cytogenetics 

 

2.1 Chromosomes 

 

Karyotyping of human cells was developed in the 1950’s, stimulated by the 

publication of Tjio and Levan in 1956 [1], who showed convincingly that human 

cells contain 46 chromosomes. The first constitutional genetic abnormality was 

found by Lejeune in 1959 [2]. He saw that the nuclei of patients with Down 

syndrome contained an extra small chromosome, which he linked to this 

syndrome. From that moment onwards, cytogenetic testing was boosted and 

became an important screening tool in clinical genetics. However, with no 

banding techniques yet available and no consensus on nomenclature, it was a 

difficult task. Based on morphological data, in the 1960’s researchers could only 

classify the chromosomes into seven groups. It became clear that in congenital 

and prenatal disorders as well as in malignancies numerical and structural 

chromosome alterations are often present. Next to numerical chromosome 

alterations, called aneusomy, unbalanced translocations were detected causing 

an abnormal phenotype [3] and also deletions of chromosomes were found in 

patients with constitutional abnormalities [4,5]. This led to the conclusion that 

numerical chromosomal alterations and structural aberrations could be 

responsible for clinical phenotypes and encouraged the hunt for other 

alterations, a process that is still ongoing.  
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2.2 Chromosome banding 

 

In 1968 Caspersson et al. [6] described banding of plant chromosomes with 

quinacrine dihydrochloride, quickly followed by the first banded human 

karyotype by the same group in 1970 [7]. After the development of this so-called 

fluorescent Q banding, several other banding techniques were developed 

independently of each other, including C-banding and G-banding [8]. They are 

based on staining with Giemsa dye and have the advantage of giving a non-

fluorescent permanent staining of the chromosomes. G-banding, especially 

trypsin mediated G-banding, is nowadays one of the most widely used techniques 

for karyotyping. The technique does not require a fluorescence microscope and 

slides can be stored after staining for reevaluation. 

Chromosome banding facilitated the recognition of individual chromosomes, as 

they could be identified more simply and more precisely. This led to the 

conclusion that the classification of chromosomes would have to change 

completely from the seven chromosome groups into a much more detailed system 

of naming chromosomes and their individual bands. 

Leading researchers in human cytogenetics agreed upon a system of 

nomenclature, which was documented in the report of the Paris Conference 

(1971) [9]. This provided a basis for the description of structural and numerical 

rearrangements and variants. In time, a growing number of researchers and 

cytogeneticists joined the field of human genetics and the increasing amount of 

data generated resulted in updates of the nomenclature report, correcting errors 

and solving problems raised by increase of resolution using prometaphase 

chromosomes. Eventually this resulted in the publication of “An International 

System for Human Cytogenetic Nomenclature” (ISCN) in 1985 [10]. Continuous 

refining work, new findings and insights into for instance tumor cytogenetics 

were followed up with further updates in 1995 and 2005. The current version of 

the book also gives guidelines in nomenclature dealing with molecular 

cytogenetic techniques. 

Discovery of chromosome banding has been the most important tool in 

cytogenetics for decades and allowed a serious leap forward in the diagnosis of 

genetic alterations. It is being used in the field of constitutional genetics in 

patients with mental retardation or developmental delay, growth retardation, 

congenital abnormalities and dysmorphisms, infertility and recurrent 

miscarriages [11]. The recognition of distinct chromosomal bands allowed 

scientists to discriminate between chromosomes and to make firm conclusions 

about trisomies, monosomies, deletions, duplications, inversions and 

translocations. The cause of syndromes could be pinpointed or better defined 

[12] and inherited traits resulting from balanced carriers were found.  

To facilitate karyotyping, automated systems have been developed [13]. 

Complete systems combine automated metaphase finding and ranking of 

recorded images with segmentation and karyotyping of the chromosomes, after 
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which the user can check and, if needed, correct the resulting karyogram. 

Simpler systems lack the possibility of metaphase finding. In routine diagnostic 

laboratories where substantial numbers of cases are screened, these systems 

have become standard equipment during the last two decades. 

 

2.3 Limitations of chromosome banding 

 

Banding technologies also have their downsides. They heavily depend on the 

accumulated experience and the subjective interpretation of the cytogeneticist. 

Moreover, it is a time consuming technique and success relies heavily on the 

quality of the cytogenetic preparations, mainly concerning the compactness and 

spreading of the metaphase chromosomes, as this influences the resolution. In 

general the resolution limit is estimated to be around 5 to 10 megabases (Mb). 

Another important issue is the fact that there is a limit in resolving complex 

karyotypes, leaving cryptic alterations undetected and markers unidentified in 

constitutional cytogenetics. To overcome a part of these limitations, novel 

genetic screening approaches have been developed. 

 

3. Molecular Cytogenetics 

 

3.1 Fluorescence in situ Hybridization 

 

In the late 1960s methods for specific detection of RNA-DNA [14] and DNA-DNA 

hybrids [15] became available. These in situ hybridization techniques were at 

first performed using radioactive labeled probes. A series of technical 

improvements in labeling chemistry, microscopy and imaging lead in the 1980s to 

the development of fluorescence in situ hybridization (FISH) using fluorescently 

labeled probes [16,17]. FISH is a tool that enables the microscopic detection of 

specific genetic regions within a morphologically intact cell. The technique 

requires labeling of a DNA molecule with a fluorochrome or a hapten to which 

fluorescently labeled antibodies are developed. For this purpose several labeling 

techniques are available nowadays. In general they can be divided into enzymatic 

or chemical labeling strategies. Initially, enzymatic incorporation of biotinylated 

[18] or digoxigenin-bound [19] nucleotides was the favoured method. These 

haptens are subsequently visualized with fluorescently labeled avidin or 

antibodies. Nowadays, fluorescent nucleotides are used directly in the enzymatic 

labeling procedure, eliminating the need for secondary detection reagents [20]. 

Both interphase nuclei and metaphase spreads can serve as targets for a variety 

of fluorescently labeled probes. With the development of this technique, 

together with the diversity of specific DNA probes, FISH became an important 

additional tool for the cytogenetic diagnostic field. Structural alterations could 

be better mapped and sub-microscopic resolution alterations could be detected 

[21].
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3.2 Labeling strategies 

 

Early chemical labeling approaches used DNA binding molecules such as 

acetylaminofluorene and mercury. Mercurated nucleic acids were subsequently 

detected with sulphydryl containing ligand carrying a hapten for indirect 

detection or a fluorochrome for direct detection [17]. Acetylaminofluorene binds 

to DNA covalently and acts directly as a hapten for immunocytochemical 

detection [22]. These techniques are not used anymore. Nowadays, chemical 

labeling is achieved using cis-platin labeling, also known as Universal Linkage 

System (ULS). In an aqueous solution at high temperatures the cis-platin 

molecule, to which a fluorochrome or hapten is coupled, predominantly binds 

coordinatively to the guanine-bases of DNA molecules [23]. A very diverse range 

of molecules can be coupled to these cis-platin molecules, for instance haptens, 

like biotin, dinitrophenol or digoxygenin, enzymes such as horseradish peroxidase 

as well as fluorescent dyes covering the spectrum of light.  

Enzymatic labeling of DNA fragments has become the method of choice in most 

labs, for instance nick translation. Here the probe DNA is nicked with DNase I, 

and the resulting gaps are repaired using DNA polymerase I in the presence of a 

mix of labeled and unlabeled nucleotides [24]. Another enzymatic labeling 

reaction is random primed labeling, in which the probe DNA is denatured and 

random hexamers or octamers are allowed to anneal to the DNA. Using the 

Klenow fragment, a part of the DNA polymerase I enzyme, the random primers 

are extended in an isothermal reaction with a mix of labeled and unlabeled 

nucleotides [25]. Another enzymatic labeling strategy is to perform locus-specific 

polymerase chain reaction (PCR) or degenerate oligonucleotide primed (DOP)-

PCR in the presence of a hapten or fluorochrome labeled nucleotide mix. 

 

3.3 Types of probes 

 

Broadly speaking, a chromosome consists of a centromere, telomeres and other 

repeat regions, with in between specific sequence. The total chromosomal DNA 

or parts of it can be used as a probe for FISH. A whole chromosome paint (WCP) 

or a partial chromosome paint (PCP) can for instance confirm a translocation 

found by G-banding. These probes are usually generated by flow sorting or 

microdissection of chromosomes that are subsequently randomly amplified using 

a polymerase chain reaction with random oligonucleotides (DOP-PCR) [26]. 

Usually, for chromosome ploidy determination alpha-satellite DNA specific for 

the centromeric region of chromosomes is used as a probe. These regions contain 

repetitive DNA which in most cases is unique for the chromosome to be 

investigated. Only the chromosomes 1/5/19, 13/21 and 14/22 cannot be 

distinguished using these probes, since these chromosome groups have highly 

homologous centromeric repeats. Instead, chromosome-specific sequences close 

to the centromere are selected, to minimize the chance of not detecting small 
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marker chromosomes. For the hybridization of these euchromatic probes, unlike 

for centromeric probes, cohybridization of unlabeled C0t-1 is generally needed to 

suppress hybridization of repetitive sequences that are randomly present in all 

euchromatic DNA. 

For diagnostic purposes an increasing number of commercially available, smaller 

sized, targeted probes have become available. Usually they consist of bacterial 

artificial chromosome (BAC) or cosmid vectors, containing a large insert (35-50 

kb for cosmids and 100-200 kb for BACs) of specific human genomic DNA. These 

types of clones are used for locus-specific FISH and for detection and 

characterization of different chromosomal aberrations such as microdeletions, 

duplications and inter and intrachromosomal rearrangements such as inversions, 

insertions and translocations. 

 

3.4 Types of FISH 

 

Interphase FISH is a good screening tool for prenatal testing for the most common 

aneusomies like trisomy 13, 18 or 21 and aneusomies of the sex chromosomes, 

such as these aneusomies together form the vast majority of cases in clinical 

cytogenetics [27]. These whole chromosome imbalances are in general a result of 

nondisjunction in meiosis in one of the parents and can result in moderate to 

severe congenital abnormalities and delayed mental development. The 

development of the interphase FISH technique was a major improvement in 

prenatal screening of aneusomies, since it reduces the time from a laborious 7 to 

14 days test with cell culture and G-banding to a rapid 24 hour test [28].  

Interphase FISH can also be used for pre-implantation genetic diagnosis 

approaches prior to in vitro fertilization, both for aneusomy screening and for 

inheritance screening of the unbalanced results of balanced translocation carriers 

[29,30]. But because of the technical challenge of handling one or two cells, 

ethical issues and ongoing discussion with respect to governmental regulations, 

this procedure is not common practice in cytogenetic laboratories. 

FISH on metaphase spreads is a powerful addition to conventional karyotyping. It 

can provide locus-specific information about alterations such as translocations, 

inversions, deletions and duplications. It is important to note that prior 

information is needed about the involved chromosomes to be able to perform 

these detections, except for multicolor FISH approaches that are discussed 

below. Metaphase FISH using whole chromosome paints can confirm 

translocations found with G-banding.  

Locus-specific large insert clones can be used as a probe in metaphase and 

sometimes interphase FISH to genetically confirm suspected diagnoses in 

constitutional genetics. An example of this is the detection of a microdeletion 

syndrome like the Williams-Beuren syndrome [31], in which a part of 7q11.23 is 

deleted. Another application is the detection of cryptic imbalances of 

chromosome ends using probes specific for the gene-rich subtelomeric regions. 
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These chromosome imbalances are estimated to account for ~5-10% of all 

unexplained mental retardation [32]. 

Metaphase chromosomes can also be used for reverse chromosome painting. With 

this technique, an unidentified marker chromosome is isolated using either flow 

sorting [33] or microdissection [34]. The isolated DNA material is amplified, for 

instance by DOP-PCR, after which the amplified material is fluorescently labeled 

and hybridized to normal metaphase chromosomes. Marker chromosomes of 

unknown origin can be typed quickly this way, but there are some disadvantages 

using this approach. Both isolation techniques are highly specialized, and need 

specific knowledge and specialized equipment. When reverse painting on 

metaphase spreads is used to map breakpoints, the resolution is determined by 

the compactness of the chromosomes as in conventional karyotyping. Also, if a 

marker chromosome consists of heterochromatic DNA sequence or of the satellite 

DNA of acrocentric chromosomes, this technique will not give a conclusive 

answer about the origin of the marker chromosome [35]. 

For certain complex rearrangements, in which G-banding analysis is insufficient 

to determine the karyotypes, multicolor FISH approaches have been developed. 

Combinations of probes and fluorochromes were used to allow more detection 

possibilities with the available fluorescent dyes and filters to separate the 

fluorescence signal. This so-called combinatorial labeling allows the distinction 

of 2n-1 targets with n fluorescent dyes [36]. 

Whole genome screening techniques require the differential labeling of all human 

chromosome paints with combinations of different fluorochromes. The main 

approaches are multicolor FISH, spectral karyotyping (SKY), and “combinatorial 

binary ratio labeling” (COBRA), resulting in 24 color FISH [37-39]. Subsequently 

the multiplicity of FISH was even further increased by introducing an extra 

fluorochrome to distinguish between the p and q arms of an individual 

chromosome [40]. In pre- and postnatal screening these multicolor approaches 

can facilitate the characterization of for instance unidentified or complex marker 

chromosomes [41,42].  

A disadvantage of genome wide multicolor FISH and FISH of WCPs is that these 

techniques are incapable of detecting small intrachromosomal deletions, 

duplications, and paracentric inversions [43]. A second disadvantage is that, 

similar to G-banding, a limited spatial resolution of maximally about 3-5 Mb is 

achieved. While multicolor FISH, multicolor telomeric FISH [44] and multicolor 

centromeric FISH [45] can be used as whole genome scanning tools, 

implementation is difficult and not wide-spread because specialized equipment 

and analysis skills are needed and the throughput is low. 
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3.5 Comparative Genomic Hybridization (CGH) 

 

In the early 1990s a genome wide analysis method was developed based on the 

quantitative in situ comparison of the genome content of a test sample to a 

reference sample [46]. Using this technique, whole genomic DNA of a test sample 

and a normal control sample is differentially labeled with haptens or with 

fluorochrome labeled nucleotides. The two labeled samples are cohybridized to 

metaphase chromosomes of a normal human control, in the presence of C0t-1 

DNA. The amounts of hybridized products relate linearly to the concentrations 

originally present in the samples, when hybridization equilibrium conditions are 

reached. Images of the metaphases are then analyzed and karyotyped using 4',6-

diamidino-2-phenylindole (DAPI) counterstaining, followed by the computational 

measurement of the ratio of the fluorescence intensities along the whole 

chromosomes. A fluorescence ratio of 2:2 (=1) between the test sample and the 

reference sample reflects a normal copy number and is seen as a mixed color. 

The amount of 2 in the ratio calculation represents the copy number of a given 

locus or chromosome in a somatic cell. A gain or loss of a particular (part of a) 

chromosome will result in a 3:2 or a 1:2 readily detectable color ratio, compared 

to regions with equal copy number [47]. 

A main advantage of this genome wide screening technique is that there is no 

requirement for mitotic cells, which makes the technique very valuable for 

obtaining genotype information of certain tumors that are too complex to 

karyotype or too difficult to grow in vitro [48,49], and from paraffin-embedded 

tissue sections [50,51]. Furthermore a priori genetic information is not needed. 

The resolution of this technique depends mainly on the length of the normal 

metaphase chromosomes used to hybridize the samples to, and consequently 

resembles the resolution of G-banding studies at a limit of around 5 to 10 Mb for 

low copy gains or losses.  

In constitutional cytogenetics, the value of this technique was appreciated as an 

addition to conventional karyotyping. Prenatal and postnatal cases with unsolved 

chromosomal aberrations as unbalanced translocations, insertions or markers of 

unknown origin could be correctly identified using a single CGH experiment 

[52,53]. It is noteworthy, however, that balanced rearrangements can not be 

detected using CGH. 

 

3.6 Other molecular tools 

 

In the field of clinical genetics obviously more molecular tools than discussed so 

far have been used in the past and are still being used in part. Examples are PCR 

and sequencing for mutation analysis and Southern blotting for copy number 

analysis, for instance in the fragile X syndrome [54]. Since these tools are mostly 

applied in region specific analysis, they will not be discussed further here. 
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4. Diagnosis of patients with mental retardation 

 

On average, about 1-3% of the human population has a developmental delay or 

mental retardation, with or without dysmorphic features [55]. Mental retardation 

is a neurological disorder which is noted by for instance developmental delay of 

motor function and speech in infants, slow learning skills, decreased skills of 

interaction with other people and a low intellectual capability. The cause of 

mental retardation is highly variable, it can be congenital or acquired through 

malnutrition, poisoning, infectious disease or trauma. Congenital forms of mental 

retardation can have a genetic, metabolic or environmental cause and can 

present with or without congenital abnormalities or dysmorphic features.  

A phenotypic investigation of patients with idiopathic congenital mental 

retardation by pediatricians and dysmorphologists is often the first step in the 

elucidation of the cause. Generally, in about 40-60% of the investigated patients 

an etiological diagnosis could be made [55], depending on study-inclusion 

selection criteria. The importance of detailed clinical examination is illustrated 

by Van Karnebeek et al. [56] and Shevell et al. [57], who state that in around 60% 

of cases physical examination, including dysmorphological and neurological 

examination, was essential for achieving the diagnosis of the patient. 

The most common form of inherited mental retardation is called fragile X 

syndrome [58]. The syndrome has a broad spectrum of developmental delay 

including forms of autism and is reported with and without congenital 

abnormalities. Because of the high variance and relative high frequency, patients 

with an idiopathic mental retardation are usually screened for fragile X 

syndrome. Prior to the finding of the molecular cause of the fragile X syndrome 

phenotype it was noted that most patients showed a fragile site on chromosome 

Xq27, when cells were cultured under folic acid stress conditions [59]. This type 

of culture was used as a diagnostic tool but proved to be unreliable [59]. In 1991 

genetic instability of a trinucleotide repeat was detected at the site of the 

fragile X breakpoint [60]. It was noted that the amount of repeats played a 

critical role in the expression of the downstream gene. The common number of 

this repeat is between 6 to 44 copies, but when the number of repeats exceeds 

200 in an individual, the downstream FMR1 is transcriptionally silenced causing 

fragile X syndrome. In general, patients with fragile X syndrome have inherited 

the expansion of repeats from the mother with an instable intermediate status of 

repeats called premutation. For unknown reasons, inheritance from males with a 

premutation generally results in offspring with lower copy number of this repeat, 

whereas inheritance from females often results in expansion of the trinucleotide 

repeat [61]. 

Recurrent reports of patients with phenotypes comparable to each other has led 

to the identification of several distinct syndromes such as Down syndrome [62], 

Cri-du-Chat syndrome [63], Edwards syndrome [5], Cornelia de Lange syndrome 

[64] and Sotos Syndrome [65]. Since the first identification of chromosomal 
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involvement in Down syndrome 50 years ago [2], many different genetic 

alterations have become known to play a role in embryonic and mental 

development. This knowledge sheds light on the spectrum of mental retardation 

and one may now conclude that the underlying genetics of mental retardation is 

extremely heterogeneous. With the emerging cytogenetic studies of patients with 

mental retardation and congenital abnormalities, genotype/phenotype 

correlations could be made for many syndromes, thereby proving the genetic 

cause of the syndrome.  

As an example, Cri-du-Chat syndrome was found to have a partial deletion of 

chromosome 5p [63] and the Edwards syndrome was caused by a trisomy of 

chromosome 18 [5]. The correlation in the Sotos syndrome was harder to detect. 

In 2002 a Japanese group isolated the causal gene from the breakpoint of 

patients with Sotos syndrome and chromosomal translocations [66]. In the 

Cornelia de Lange syndrome (CDLS) it took even longer to find the genetic cause. 

In several reports of cytogenetic investigations of CDLS, chromosomal 

translocations and imbalances were found [67,68]. But heterogeneity in the 

phenotype caused confusion whether the described alterations were the main 

cause for CDLS [69]. Based on balanced translocations in CDLS patients Tonkin et 

al. [70] found the involvement of a gene called NIPBL and demonstrated 

mutations in this gene in more than half of their patients. Involvements of other 

genes in the same protein complex are now recognized to cause an X-linked [71] 

and a milder form of the CDL syndrome [72]. 

 

5. Development of new screening tools 

 

5.1 Array Comparative Genomic Hybridization (Array-CGH) 

 

In the last decade of the previous century researchers realized that improvement 

of the resolution of CGH could be established by using thousands or millions of 

DNA fragments each specific to a unique location of the genome immobilized on 

a glass surface as a target, instead of metaphase chromosomes. This technique 

was initially called matrix comparative genomic hybridization [73], nowadays the 

name microarray based or array comparative genomic hybridization (array-CGH) 

is generally used [74]. 

The basis of this technique was partly the Human Genome Project, a collective 

effort to sequence the whole human genome. As a spin-off large BAC and PAC 

clone libraries became available that contained well characterized and mapped 

human genomic DNA fragments of about 100 to 150 kb, covering nearly the whole 

genome. Selected clones were used for spotting on microscope slides. The 

hybridization principle of these printed array slides was comparable to classical 

chromosome based CGH hybridizations (Figure 1). 

In the first protocols, the target DNA to be printed was isolated from bacterial 

cultures and after cleanup under the right conditions directly spotted on the 
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array slides [73,74]. To generate enough material to comfortably print these 

arrays, linker adapter PCR [75] or degenerate oligonucleotide primed PCR (DOP-

PCR) protocols were used [26,76] and were optimized [77]. In the latter paper 

Fiegler et al. suggested an underestimation of the fluorescence ratio of single 

copy changes that was seen in previous array-CGH publications was not mainly 

due to the incomplete suppression of repeat sequences, but was for a large part 

caused by the contamination of bacterial genomic sequence in the spotted 

clones. To overcome this problem, they designed degenerate oligonucleotide 

primers different from the commonly used 6MW DOP primer [26], which the help 

of the knowledge of the sequence from the human genome project. 

 
 

Figure 1. The principle of array-CGH 

 

These DOP-PCR primers preferentially amplify human genomic DNA over 

Escherichia coli (E. coli) DNA because the primers have an averaged frequency of 



Chapter 1 

19 

matches per kilobase of 0.58 based on the human genomic reference sequence, 

compared to an average of 0.03 in E. coli DNA. As a comparison, the original 6MW 

primer has an averaged frequency of matches per kilobase of 0.65 and 0.40 for 

human and E. coli DNA, respectively. Using this approach the DOP-PCR generates 

less background and produces a more evenly represented product. 

The first reports on array-CGH described a targeted array as a proof of principle 

[73,74]. Later, whole genome arrays were developed that covered the genome 

with a resolution of about one clone per megabase of euchromatin DNA, resulting 

in about 2400-3500 different clones per array [75,77], often printed in duplicate 

or triplicate. This development led to an increase of resolution of about 10 times 

compared to the conventional CGH technique, entering sub-microscopic 

detection levels of copy number changes in a genome wide fashion.  

Imaging and analysis of the arrays was at first done with a CCD camera and ratios 

were manually calculated and presented in spreadsheet programs. Nowadays, 

scanning and analysis of arrays is almost fully automated. Hybridized arrays are 

mostly scanned using a laser scanner and the resulting images are then processed 

using commercial software. These software packages perform background 

corrections, remove outlier spots, normalize the data, calculate ratio values and 

display the data in comprehensive graphs. In general the ratio data is displayed 

as a 2log value, to better distinguish deletions from normal values.  

In theory the resolution of array-CGH is unlimited, depending on the spacing of 

the used clones and their size. When the array-CGH technique was proven to 

work satisfactorily, several institutes developed large clone insert arrays tiling 

the whole euchromatic part of the genome [78-80]. Due to the performance of 

needle or inkjet printing techniques available, all these clones could be printed 

on one glass slide, but not in duplicate or triplicate. Consequently a second 

hybridization experiment is often needed to corroborate these results [79,80]. 

Spotted or immobilized oligonucleotides provide some advantages for the 

detection of copy number changes. They avoid the need for bacterial cultures 

and isolation of DNA and/or PCR amplification of large insert clones. Large 

oligonucleotide libraries are spotted and hybridized in a way comparable to other 

types of array-CGH [81], yielding similar results. 

Commercial platforms for copy number analysis are now available, using 

oligonucleotides, photo-lithographically synthesized on the chips [82,83]. One 

type is the SNP-based genotype array platform that can be used for allelotyping 

and copy number analysis in the same experiment. An advantage of the system is 

the ability to detect copy number neutral alterations as uniparental disomy or 

copy number neutral homozygosity. A disadvantage of this platform is the lack of 

an internal quality control as a cohybridized reference sample, because these 

genotyping arrays are single color experiments. Other oligonucleotide platforms 

are hybridized using a similar test/reference principle as CGH and array-CGH. 

Results produced with these platforms need somewhat more statistical analysis 

compared to data produced with large insert clone arrays, such as binning of 
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data points and a moving average to reduce false positive calls. With ongoing 

technical improvement and advances in statistics, oligonucleotide platforms are 

increasingly robust. 

Targeted arrays have been specially designed for specific regions in the genome. 

For instance, in constitutional genetics several institutes that investigate the role 

of the X chromosome in mental retardation developed targeted tiling path arrays 

for chromosome X [84-86]. This X-linked mental retardation is of interest to 

researchers, since there is a clear overrepresentation of males in mental 

retardation of 30 to 40% suggesting involvement of the X chromosome in many 

cases. 

 

5.2 Paired-end mapping 

 

In 2005 a DNA sequencing method was introduced [87], which allowed large-scale 

whole genome analysis of genomic DNA samples to screen for copy number 

alterations. The method is called paired-end mapping, in which genomic DNA was 

fragmented into pieces of about 3 kb. From these fragments the two ends were 

sequenced and mapped back on the reference sequence [88]. If the distance 

between the matches on the reference sequence was within certain cutoff 

values, no alteration was detected. If the distance between the matches in the 

reference genome was bigger than the high cutoff value, the analyzed sample 

had a deletion between the sequenced ends. When the distance was smaller than 

the low cutoff value, an insertion was detected in the tested genome. This 

approach allows detection of inversions as well, if the two matches mapped in 

different relative orientations on the reference genome. This feature offers a big 

advantage over array based whole genome screening, since these platforms 

cannot detect inversions. In the report of Korbel et al. the whole genome was 

covered 2.1 fold for one sample and 4.3 fold for a second sample, so on average 

every fragment was analyzed at least two times. Similar techniques are expected 

to play a role in whole genome analysis in the near future. 

 

5.3 Target specific screening tools 

 

In order to confirm the alterations found using whole genome screening tools as 

described before, and to investigate targeted regions for suspected specific copy 

number alterations as microdeletions and microduplications, several techniques 

have been used and developed. Although FISH has been the method of choice in 

many cytogenetic labs, different molecular techniques have been developed and 

standardized providing some advantages over FISH. Mostly, these techniques are 

based on quantitative amplification of DNA. Quantitative real-time polymerase 

chain reaction (qPCR) is based on the amplification of genomic DNA sequences 

with fluorescently labeled primers in a quantitative manner and the amplification 

is monitored in real-time. The number of cycles to reach a certain fluorescence 
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level in a test locus and a reference locus in one sample is used to estimate a 

relative copy number [89]. 

Two other quantitative techniques called multiplex amplifiable probe 

hybridization (MAPH) and multiplex ligation dependent probe amplification 

(MLPA) are based on quantitative amplification of DNA fragments matching to 

genomic DNA. These fragments contain sequences 5’ and 3’ unrelated to human 

DNA, which are recognized with a universal primer pair. For MAPH, the fragments 

to be amplified are cloned parts of exons, for instance. They are hybridized to 

genomic DNA of a test sample which is cross-linked to a membrane. After a 

stringent wash only the hybridized fragments are available for quantitative PCR 

with the universal primer pair [90-92]. In MLPA the fragments to be amplified are 

generated using two probes adjacently annealed onto genomic test DNA of 

interest, followed by ligation to each other. Multiple probes recognizing different 

regions can be combined in one ligation reaction and only the ligation products 

can be used for amplification with universal primers [93]. Quantitative readout of 

the multiple fragments both for MAPH and MLPA is generally done with 

fluorochromes bound to the universal primers and a capillary sequencer. 

Compared to FISH these techniques have the advantage that they can be 

performed using multiple probes to screen for multiple regions per sample (up to 

60 regions with dual color MLPA [93]) on multiple samples per experiment.  

Recent developments include efforts to analyze parts of the genome with high-

throughput resequencing [87,94]. These sequencing methods are based on 

random sequencing short stretches of a pool of fragments representing specific 

parts of the genome and aligning those sequences back to the reference 

sequence. Different groups have applied this next generation sequencing to 

enriched DNA targets. Specifically designed oligonucleotide microarrays have 

been used to capture parts of the genome, such as genes and locus specific 

regions [95,96]. The yielded DNA was used for massive parallel sequencing and it 

proved to be feasible for mutation screening. For copy number analysis based on 

quantitative analysis of sequence reads per region, which in theory is possible, 

the current capture methods are not uniform enough [97]. Nevertheless, this 

type of detailed region-specific copy number analysis may play a role in the 

future. 

 

6. Applications of Array-CGH in constitutional genetics 

 

The development of the genome wide array-CGH technique opened new 

possibilities for genetic screening in constitutional genetics. In individuals with 

idiopathic mental retardation with or without congenital abnormalities often the 

causal genetic diagnosis remained unclear if the karyotype revealed no 

alterations in the G-banding resolution. Several feasibility studies showed the 

additional value of array-CGH to conventional cytogenetics [79,98-103], through 

gain of resolution and robustness. In a research setting this technique has a 
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proven detection rate of genetic alterations of 10 to 15%, depending on the 

selection criteria. Alterations found are mainly interstitial deletions or 

duplications not detected by classical cytogenetic screening [104].  The deletions 

and duplications appeared to be scattered over the genome with very little 

overlap, proving the heterogeneous nature of genetic causes for mental 

retardation. However, despite this heterogeneity the genetic cause for CHARGE 

syndrome could be unveiled because of detailed investigation of recurrent 

genetic alteration data in combination with a precise phenotypic description. 

Two unrelated patients with a similar phenotype described as CHARGE syndrome 

were found to have an overlapping microdeletion on chromosome 8q12. In 

subsequent investigations of patients with the same syndrome but showing no 

microdeletion, mutations in a gene called CHD7, located in the same genetic 

region, were found in almost 60% of cases [105]. 

To investigate the involvement of regions flanked by large segmental duplications 

in recurrent genomic disorders, Sharp et al. [106] designed an array containing 

2007 BAC clones concentrated around 130 identified sites which have a unique 

sequence flanked by segmental duplications. It was shown previously that these 

regions may be involved in recurrent rearrangements because of large 

homologies between the flanking segmental duplications, causing non-allelic 

homologous recombination [107]. They found 16 pathogenic rearrangements of 

regions flanked by segmental duplication when applying this array to investigate 

290 patients with mental retardation, including 4 patients with a similar deletion 

on 17q21.31. A similar deletion was also found by three other groups [108-110]. 

This microdeletion of about 600 kb in size causes a comparable phenotype with a 

moderate developmental delay, severe hypotonia, amiable behavior and 

characteristic facial features with a long face, a bulbous nasal tip and a broad 

chin. The genomic region of 17q21.31 contains at the site of the microdeletion a 

common 900 kb inversion polymorphism which is present in about 20% of the 

European, Icelandic and Middle Eastern population [111]. A direct consequence 

of this inversion polymorphism is the appearance of a directly oriented segmental 

duplication, causing this lineage to be subject to non-allelic homologous 

recombination. In the non-inverted lineage these repeats are reverse oriented 

which prevents recombination. As a result of the relative high frequency of 

inversion polymorphism carriers, this microdeletion is among the most common 

causes of a microdeletion syndrome with an estimated prevalence of around 1 in 

13,000 to 1 in 20,000 [109] and an estimated frequency of around 1% in patients 

with mental retardation [112]. Finding the reciprocal duplication of this region is 

a relatively logical consequence of the presumed non-allelic homologous 

recombination mechanism [113]. 

Clinical studies of large numbers of patients using arrays specifically designed for 

certain genomic regions have been performed as well [114,115]. These 

specifically designed arrays contain probes for known microdeletion and 

subtelomeric regions, aiming to detect deletions and duplications which are 
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clinically relevant. In contrast, high resolution arrays covering the whole 

genome, as previously described, can also detect alterations of unknown clinical 

consequence. The concept of not including detection of regions of unknown 

clinical consequence gives a clearer diagnosis in testing of patients with 

idiopathic mental retardation and also in patients with an atypical appearance of 

a syndrome linked to a known genetic rearrangement. This approach is very 

useful to confirm suspected genetic alterations as well, but the obvious 

disadvantage is that unsuspected disease-causing genetic alterations remain 

undetected. 

 

7. Genetic variation 

 

The assumption that the genome of two unrelated individuals is 99.9% identical 

still leaves room for millions of different base pairs. Genetic variation can either 

be the cause of a disease, a predisposition to a disease, a defense against a 

disease or a normal variation. It may comprise variation at the nucleotide level, 

variation of repeat rich elements interspersed throughout the genome, copy 

number variations (CNVs) of for example segmental duplications or structural 

variations. Whether a detected variation is normal or predisposing to disease can 

be difficult to assess, since predispositions might be multifactorial, or they might 

have a low penetrance or a combination of both. Some variations of the genome 

which are not disease-causing at all for the individual itself like a Robertsonian 

translocation or most reciprocal translocations, can not be seen as normal 

variation, since there is a high chance that these balanced structural aberrations 

can have serious consequences for the next generation. In contrast, for instance 

the balanced inversion at chromosome 17q21.31 described earlier, from which 

about 20% of the European population is a carrier, is considered a normal variant. 

Although it predisposes to microdeletion or microduplication in the 17q21.31 

region [109,110], the risk for the recombination event is in the same range as in 

other microdeletion/microduplication syndromes and is thus negligible. 

 

7.1 Heteromorphisms 

 

Already prior to chromosome banding, investigators recognized chromosome 

variations between individuals, called heteromorphisms. At the time of the first 

conference on standardization in human cytogenetics in 1960 [116] the 

considerable variation in the length of the Y chromosome was already noted. 

Morphological variations present near the centromere of several chromosomes as 

well as in the short arms of D- and G-group chromosomes were found later. 

Through large studies on newborns it was concluded that these variations 

probably were normal heteromorphisms [117]. The first heteromorphism that was 

linked to a specific trait was a change in condensation of the part of the 

chromosome directly below the centromere of chromosome 1. It was noted in 
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three different families that the Duffy blood group type segregated with the 

chromosome 1 with relatively uncoiled chromatids in the paracentric region, 

leading to the conclusion that the gene for the Duffy blood group was probably 

located on this chromosome in the vicinity of this paracentric region [118]. 

In general, these microscopically visible heteromorphisms usually involve the 

heterochromatic regions and satellites of chromosomes. Less frequently, 

euchromatic variants are also reported [119]. These variants may have hidden 

phenotypic consequences which are not always directly evident. 

 

7.2 Single Nucleotide Polymorphisms 

 

At the beginning of this century, it was generally believed that the biggest part 

of genetic variation between two individuals was based on single nucleotide 

polymorphisms (SNPs) [120]. Only recently submicroscopic copy number variation 

was proven to be a major contributor to genetic variation. It was estimated that 

there are at least 10 million SNPs in the human population, an average of 1 SNP 

every 300 base pairs. In 2001 an international SNP map working group had 

mapped 1.42 million SNPs [121] and in 2005 approximately 1.3 million SNPs were 

truly genotyped [122] in the HapMap collection. This is a collection of genomic 

DNA samples from four different populations: 30 parent-offspring trios of the 

Yoruba population of Nigeria, 30 trios of European descent from Utah, 45 

unrelated Han Chinese from Beijing, China, and 45 unrelated Japanese from 

Tokyo, Japan. The International HapMap study is an extension of the Human 

Genome Project. The latter project generated the human reference sequence, 

giving information for the non-variant part of the genome, while the 

International HapMap study aims for cataloguing the nucleotides that can vary 

between individuals. More recently the consortium released an updated version 

of the map in which 3.1 million SNPs were mapped [123]. 

 

7.3 Copy Number Variation (CNV) 

 

Initially the frequency of larger genomic variations between individuals was 

expected to be low and generally disease-causing. Using novel emerging array-

CGH techniques and SNP array platforms, submicroscopic variation of genomic 

fragments was detected [88,106,124-132]. The detected amount of variation 

causing no obvious phenotype was much larger than expected [133]. It was found 

that a considerable part of copy number variation was associated with the 5% of 

the genome that is present in segmental duplications in the genome. Not only 

were these CNV regions proposed to be involved in disease causing 

rearrangements through non-allelic homologous recombination [134], they were 

also associated with large scale normal variation [124,125] since many of these 

copy number variable regions contain genes with a variable expression that 

contributes to normal phenotypic variation [135,136]. 
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These findings stressed the importance of extensively investigating the human 

genome in several different populations to assess if a reported CNV could be 

benign or disease causing. Several groups studied genetic variations in HapMap 

samples or normal healthy men and women, with different platforms and 

techniques. To profit most from this data and to share all this information on 

variation with the rest of the research community, all data was collected in the 

Database of Genomic Variants (http://projects.tcag.ca/variation) [125]. Still 

growing, it has become a valuable tool to evaluate if a found CNV is assumed to 

be harmless or could be possibly causing a disease. Nevertheless care must be 

taken when using this database to filter out benign CNVs from disease-causing, 

even if the CNV was inherited from a phenotypically normal parent. A CNV could 

theoretically be disease-causing in one individual and be benign in another, for 

instance because of reduced penetrance, variation of expression of the 

unaffected allele through a different genetic background or because of a 

recessive trait.  

 

8. Scope of this thesis 

 

Modern cytogenetics has experienced rapid technical changes and improvements 

since first determining the correct number of chromosomes in humans. This 

resulted in new methods for improvement of analysis of chromosomal alterations 

of which many have been described in the introduction of this thesis. 

Particularly, the last decade has had a big impact on the concept of cytogenetics 

with the introduction of whole genome molecular screening techniques. Chapter 

2 of this thesis describes the implementation of array-CGH and its effect on the 

diagnosis of structural chromosome rearrangements. In chapter 3 the additional 

value of array-CGH to routine G-banding of patients with mental retardation and 

congenital abnormalities is described. A significant increase in the frequency of 

both inherited and de novo copy number variations in a group of 81 patients was 

found, in which no structural chromosome rearrangements were visible with 

conventional G-banding. This chapter and additional research combining array-

CGH and MLPA, as described in chapter 4, have led to the insight that the current 

standard of routine whole genome screening with mainly G-banding needs to be 

reconsidered. What particular techniques will be adopted within diagnostics will 

depend on cost, quality and speed of the analysis procedure. 

Chapter 5 of this thesis underlines the additional value of array-CGH to banding 

and FISH studies. It reveals the true complexity of a chromosome rearrangement 

that initially was thought to be a balanced three-way translocation. The 

mechanism of formation of a complex marker ring chromosome is explained in 

chapter 6. It was unraveled with array-CGH, combined with various other 

molecular techniques as FISH, MLPA and oligo array-CGH. With this investigation 

a novel translocation mechanism was shown to be involved in the formation of a 

ring chromosome. 



Introduction 

26 

In chapter 7, the molecular and clinical characterization of a new 

microduplication 3q29 syndrome is described, showing that copy number 

variation of this region may cause a heterogeneous phenotype. Extensive 

documentation of disease association with copy number variation will be 

important to accurately distinguish normal variation from variation causing 

disease, as illustrated in chapter 8. It describes a case with a homozygous 

deletion of a normal variation locus causing hearing loss. Both chapter 7 and 8 

also show the importance of international collaboration on collecting trusted 

copy number variation data in databases that will be accessible to the entire 

community. 

In chapter 9 the future impact of the molecular techniques in clinical cytogenetic 

research and diagnostics is discussed.  
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ABSTRACT 

 

Array-based comparative genomic hybridization allows high-resolution 

screening of copy number abnormalities in the genome, and becomes an 

increasingly important tool to detect deletions and duplications in tumor and 

post-natal cytogenetics. Here we illustrate that genomic arrays can also 

provide novel clues regarding the structural basis of chromosome 

rearrangement, including instability and mechanisms of formation of ring 

chromosomes. We also showed that array results might impact the recurrence 

risks for relatives of affected individuals. Our data indicate that chromosome 

rearrangements frequently involve more breaks than current cytogenetic 

models assume. 
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INTRODUCTION 

 

Chromosome replication errors resulting in exchange, duplication, or deletion of 

genetic material occur sporadically in both meiosis and mitosis, and may have 

implications for fertility, somatic, and cancer phenotypes. In routine clinical 

cytogenetics, structural chromosome alterations are interpreted as resulting 

from a minimum number of chromosomal breaks, followed by relocation and 

reunion of the chromosome segments, such that one chromosome break is 

required for a terminal deletion, two for interstitial deletions and reciprocal 

translocations, three for three-way translocations, and so on. Although these 

assumptions have been applied for decades, cytogeneticists have been aware 

that the actual number of chromosome breaks involved may be larger than 

assumed in these models, and a considerable amount of investigation has been 

done to determine the DNA bases of chromosome rearrangements [Park et al., 

[2002]; Stankiewicz et al., [2003]]. In fact, for a number of cases of terminal 

deletions, which were investigated at higher resolution, it was demonstrated that 

more than a break was involved in the origin of the rearrangement. These 

rearrangements were found to have been mis-classified as terminal deletions, 

and in fact represent either interstitial deletions or (half)-cryptic translocations 

[review in Kaiser-Rogers and Rao, [1999]]. 

One event that has been particularly intriguing, and has been investigated in 

some more detail in humans during the last two decades, is the formation of ring 

chromosomes. 

Ring chromosomes are thought to originate from single breakages in both arms of 

a chromosome with subsequent fusion of the ends, and loss of the acentric 

segments. Molecular cytogenetic studies, however, have suggested that 

additional mechanisms for ring formation should exist, including transverse mis-

division of the centromere [Callen et al., [1991b]] telomere fusion with no 

detectable loss of genetic material [Pezzolo et al., [1993]; Speevak et al., 

[2003]], and breakdown and rearrangement of a haploid complement shortly 

after fertilization in a triploid zygote [Beverstock et al., [2003]]. 

These analyses of chromosome rearrangements relied mostly on fluorescence in 

situ hybridization (FISH) data, which is an ideal methodology for investigating the 

presence or absence and approximate location of a limited number of 

chromosome targets, but is normally too focused to provide high-resolution 

information over extensive chromosome regions. In the last few years, 

comparative genomic hybridization to arrays (array CGH) has been incorporated 

into the repertoire of techniques yielding chromosome information [Solinas Toldo 

et al., [1997]; Pinkel et al., [1998]; Albertson et al., [2000]; Fiegler et al., 

[2003]]. It provides simultaneous information about copy number variation over a 

large number of loci and at greatly improved resolution (given by the spacing of 

the clones) compared to its precursor technique, chromosome CGH (10-20 Mb) 

[Kallioniemi et al., [1992]]. Array CGH has been proven particularly useful in the 
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study of tumors [Albertson and Pinkel, [2003]; Veltman et al., [2003]]. We 

describe here the use of genomic arrays combined with FISH analyses for re-

evaluating chromosome rearrangements present in four human cell strains 

derived from karyotypically abnormal patients, including two ring chromosomes. 

This work illustrates that the interpretation based on G-banding often 

underestimate the complexity and number of breaks of the chromosomes. 

 

PATIENTS, MATERIALS, AND METHODS 

 

Cell Strains and Controls 

 

Four fibroblast cell strains containing structural rearrangements as determined 

by G-banding karyotype were selected for this study, three of them from the 

fibroblast cell repository of the Department of Medical Genetics Utrecht 

(University Medical Hospital, Utrecht, the Netherlands), and one from a patient 

with Rett syndrome previously reported by us [Rosenberg et al., [2001]]. These 

cell strains were selected for presenting unbalances of different chromosome 

regions to allow verification of our CGH array protocols. The karyotype of the 

cell strains as originally defined with G-banding, and following verification with 

array CGH data are presented in Table I. 

As reference for our array hybridizations, we used commercially available male 

or female DNAs (Promega, Leiden, the Netherlands) that represent DNA pools 

derived from at least seven same-gender individuals.  

 
Table I. Summary of the Patients Investigated, and Their Cytogenetic Findings Before and After 

Molecular Cytogenetic Studies 

Patient Phenotype G-banding karyotype Karyotype after array CGH and FISH 

Patient A Mental retardation and dysmorphisms 46,XX,del(11)(q14q21) 46,XX,del(11)(q14.3q22.3) 

Patient B Multiple congential abnormalities (newborn) 46,XY,i(8)(q10) 46,XY,der(8)(qter�q21.3::p23.2�q ter)a 

Patient C Rett syndrome 46,X,r(?) 46,X,r(X)(p10q21.1) 

Patient D Fetus (5th month pregnancy) presenting 

   at US oligohydramnion, nuchal belb, and 

   no detectable kidneys 

46,XX,r(13) 46,XX,r(13)(::p11� 

    q12.3~q14.13::q22.2~q32.2�31.1::)b 

a Later on, the mother was found to carry an inversion and, therefore, the rearranged chromosome was described 

as rec(8)dup(8q)inv(8)(p23.1q21.2)mat. 
b This patient presents ring instability, as evidenced by the CGH array and FISH results. Therefore, the patient is a 

mosaic in which the r(13) presents interstitial deletions of variable size. 

 

Patient A 

 

This patient was born in 1974, and was referred for cytogenetic evaluation at the 

age of 8 years, because of mental retardation and dysmorphisms. Clinical 

examination at this age revealed a height at 10th centile and an occipito-frontal 

circumference (OFC) at the 50th centile. She had an apparent hypertelorism, 

upturned nose, ptosis, protruding ears, uvula bifida, a cleft of the soft palate, 

lumbal hyperlordosis, pedes plano valgi, bilateral sandal gaps, and borderline 
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mental retardation. Also at this time, the following limited information about the 

patient clinical history was obtained. At birth, her weight was reported to be 

2,000-2,500 g, and she was hospitalized after few days because of feeding 

problems. Her medical history revealed continuous feeding problems, 

consultation of an opthalmologist because of ptosis, and hearing problems, 

probably related to middle ear infections for which ear tubes were inserted. The 

mother of the proband had a history of drug-addiction and prostitution. 

Chromosome analysis in lymphocytes and fibroblasts of the patient revealed a 

46,XX,del(11)(q14-21) karyotype (Fig. 1). 

 

Patient B 

 

The proband was the 4th child of healthy parents. He was born after an 

uneventful pregnancy of 37 weeks with a birth weight of 2,210 g and an OFC of 

31 cm. He had a broad nasal bridge, periorbital fullness, retrognathia, webbing 

of the neck, hypospadias, prominent heels, overriding 2nd toes, and mild 

syndactyly of 2nd and 3rd toes of both feet. On further investigations, he 

appeared to have a tetralogy of Fallot, cysts in the left kidney, a somewhat small 

cerebellum, and a small corpus callosum. The G-banding karyotype of the 

lymphocytes at that time was interpreted as 46,XY,i(8)(q10) (Fig. 2) and the 

karyotypes of the parents were regarded as being normal. Due to the bad 

prognosis, treatment was withdrawn and the patient died at 11 days of age. 

Cultured fibroblasts from a post mortem skin biopsy confirmed the karyotype as 

observed in lymphocytes. 

 

Figure 1. Deletion of chromosome 11 on patient A: The 

karyotype of the patient after G-banding analyses had 

been described as 46,XX,del(11)(q14-21), and an image 

of the del (11) (right) and its normal homolog (left) is 

shown on the insert. The array CGH profile shows the 

log2 ratios of the clones (test/reference DNAs) plotted 

according to their positions on chromosome 11 (from 

pter to qter). These results allowed to redefine the 

breakpoints on del(11) as q14.3-q22.3. 

Figure 2. Analyses of the rearranged chromosome 8 

from patient B. The insert shows the G-banding image 

of the rearranged chromosome 8 (right), originally 

interpreted as an isochromosome, and its normal 

homolog (left). The array profile displays the log2 

ratios of the clones plotted according to their position 

on chromosome 8 (from pter to qter), and shows an 8p 

terminal deletion (p23.2-pter) and 8q terminal 

duplication (q21.3-qter). 
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Patient C 

 

The propositus is the 2nd child of healthy non-consanguineous parents. Her sister 

and half-brother are normal. The patient was born after an uneventful 

pregnancy, with a weight of 3,500 g and length of 50 cm. At the age of 3 months, 

convulsions occurred, and were found to be associated with periods of 

hypoglycemia without hyperinsulinemia. Extensive screening for inborn errors of 

metabolism and endocrine disturbances did not reveal any consistent 

abnormality. The subsequent course was characterized by severe motor and 

mental retardation, the development of epilepsy, and failure to thrive. Her 

height from 2 years onwards was at or below the 5th centile. At the age of 5 

years the patient was referred for syndrome evaluation and genetic counseling. 

On the basis of psychomotor regression 

after a period of normal development, 

severe mental retardation, growth 

deceleration, loss of purposeful hand 

skills with appearance of stereotypical 

hand movements, epilepsy, and 

microcephaly, the diagnosis of Rett 

syndrome was made. G-banding 

karyotype showed a 46, X,r(?) 

karyotype (Fig. 3). The ring was later 

shown by molecular cytogenetic 

methods to be X-derived, and being 

always inactive [Rosenberg et al., 

[2001]]. 

 

 

Patient D 

 

This case was a fetus of a mother in her 5th pregnancy. Her first pregnancy 

resulted in the birth of a son with a single umbilical artery and a small kidney 

that in other respects appeared to be healthy. The subsequent three pregnancies 

ended in a spontaneous early abortion. 

The present pregnancy was uneventful until 14 weeks of pregnancy. At that time, 

the fetus appeared to be normal with a normal amount of amniotic fluid. At 18 

weeks of pregnancy ultrasound revealed severe oligohydramnion, nuchal bleb, 

and no detectable kidneys. For further diagnostic evaluation amniocentesis was 

performed. Cytogenetic analysis of cultured amniocytes revealed a 46,XX, r(13) 

karyotype. The breakpoints of the ring 13 were not determined. The pregnancy 

was terminated at 22 weeks. Weight of the fetus was 250 g, length 25.5 cm, and 

placental weight 90 g. She had a nuchal bleb and low set ears. Post mortem 

examination was mentioned, but results were not available in medical records. 

Figure 3. Ring(X) in a Rett syndrome patient. The insert 

shows a G-band image of the r(X) (right) and its normal 

homolog (left) in a patient with Rett syndrome. The 

array CGH profile shows the mapping of the ring 

chromosome. No Xp sequence was detected on the ring, 

indicating that the breakpoint was very near or at the 

centromere. The DNA of the patient was hybridized 

against a normal 46,XY DNA, and the under-represented 

sequences are regions of X/Y homology. 
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CGH Arrays 

 

Slides containing 3,500 BACs were produced in the Leiden University Medical 

Center. The particular BAC set used to produce these arrays is distributed to 

academic institutions by the Welcome Trust Sanger Institute (UK) at no cost, and 

contains targets spaced at 1 Mb density over the full genome, a set of 

subtelomeric sequences for each chromosome arm, and a few hundred probes 

selected for their involvement in oncogenesis. Information regarding the full set 

is available in the Cytoview window of the Sanger Center mapping database site, 

Ensembl (http://www.ensembl.org/). BAC DNAs were isolated from the clones, 

using the Wizard SV 96 Plasmid DNA Purification System (Promega, Leiden, the 

Netherlands) in combination with the Biomek 2000 Laboratory Automation 

Workstation (Leiden Genomic Technology Center facilities, LGTC, the 

Netherlands). This DNA purification kit is designed to isolate DNA from plasmids 

and results in small amounts of DNA (100 ng DNA from 1ml culture) when used for 

BAC isolation. However, in our experience, this system was easier to implement 

using robotics than usual protocols for BAC DNA isolation. The resulting DNA had 

low levels of contamination from the host E. coli, and was suitable for DNA 

amplification and subsequent array production. Amplification of the DNA, 

spotting on the slides and hybridization procedures were based on protocols 

optimized by the group of Dr. N. Carter (Sanger Institute, UK), and presented in a 

workshop supported by the Welcome Trust [Carter et al., [2002]]. This set of 

BACs and protocols are described in detail [Fiegler et al., [2003]]. In parallel to 

the production of amplified DNAs for spotting on the arrays, we also produced 

DNA aliquots of every BAC for FISH. The FISH probes were produced to confirm 

rearrangements detected by the micro-array analysis, to determine the 

structural organization of the rearrangements, and visualize rearrangements in 

their balanced form (in normal carriers). 

Slides hybridized with Cy3- and Cy5-dCTPs (Amersham Bioscience, Roosendaal, 

the Netherlands) labeled DNAs were scanned either with an Agilent DNA 

microarray scanner (Agilent Technologies, Amstelveen, the Netherlands) or a 

GenePix Personal 4100A scanner (Axon Instruments, Westburg BV, Leusden, the 

Netherlands). The spot intensities were measured by GenePix Pro 4.1 software. 

Within this software, spots in which the reference DNA intensity was either below 

five times the average of the background or presented more than 3% saturated 

pixels were excluded from further analyses. The test/reference ratios were 

normalized for the median of the ratios of all features. The triplicates of the 

features were averaged in a homemade routine developed in Microsoft Excel 

2000, and spots outside the 20% confidence interval of the average of the 

replicate were excluded. Only those targets presenting at least two spots within 

20% confidence interval of their average were used. Unbalances of the targets 

were determined based on log2 ratios of the average of their replicates, and we 

considered sequences as amplified or deleted when outside the ±0.3 range. 
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Fluorescence In Situ Hybridization (FISH) 

 

Based on array results, BACs representing chromosome regions with different 

copy numbers in the same chromosome were selected to confirm by FISH, the 

array findings. BAC DNAs were directly labeled with FITC-, Cy3-, or Cy5-

conjugated dUTPs by nick translation, and hybridized according to standard 

protocols. 
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Figure 4. Ring chromosome on patient D. A: The array profile of chromosome 13 shows a primary deletion on the 

long arm (q31.1-qter). The presumptive deletion on 13p cannot be detected on arrays because of the repetitive 

nature of its sequences. The interstitial region presents a deletion of variable size and copy number (secondary 

deletion), and the arrows indicate the probes that were used for FISH to investigate the proximal and distal 

breakpoints. The FISH results for the green, red, and blue probe combinations on the proximal breakpoint are shown 

in (B-C), while the results for the distal probe set are displayed on (D-E). In each image, the normal chromosome 13 

and the ring chromosome (white arrow) are shown. Note the different configurations of the ring 13 in each of the 

investigated breakpoints. 

 

RESULTS 

 

Table I and Figures 1-4 summarize the karyotype of the cell strains as originally 

defined with G-banding, and following verification with array CGH and FISH data. 

Patient A had been diagnosed as carrying a deletion of chromosome 11, which 

comprised mostly band q14. The results of the genomic array showed that the 

size of the interstitial deletion was 15 MB (between clones RP11-268B20 and 

RP11-569A20), and revealed that the breakpoints map more distal than originally 

estimated by G-banding (q14.3-22.3). Figure 1 shows a G-banding image of the 

rearranged chromosome 11 and its normal homolog, and the corresponding array 

CGH profile of chromosome 11. 
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Based on G-banding analyses, the karyotype from patient B carried a rearranged 

chromosome 8, which was interpreted as an isochromosome 8. CGH-array 

hybridization, however, has shown that chromosome 8 presented balanced, 

deleted, and amplified segments, which was incompatible with the diagnosis of 

an isochromosome. FISH results using probes located within regions of distinct 

copy numbers on chromosome 8 (data not shown) confirmed the array findings, 

and also revealed the structure of the der(8). Based on these results, the 

karyotype of the patient was described as 46,XY,der(8)(qter?q21.3::p23.2?qter. 

Figure 2 shows the array CGH profile of chromosome 8 in this patient, and the 

insert shows a G-banded image of the der(8) and its normal homolog (right and 

left, respectively). The families of patients carrying isochromosomes have no 

increased risk of recurrence, but the rearrangement presented by this patient 

might have originated from a pericentric inversion in one of the parents. The 

parents had been previously analyzed and no abnormality were detected. 

However, after we re-initiated this study, the karyotype of the mother was re-

examined, and she was found to carry an inv(8)(p23.1;q21.2), which is 

morphologically similar to a normal chromosome 8. 

Patient C has been previously reported by us to carry a r(X) [Rosenberg et al., 

[2001]]. Our array CGH results show that the r(X) is formed by a continuous 

segment of chromosome, with no suggestion of ring mosaicism or instability. 

However, every target from Xp represented on our array was found to be absent 

on the ring, indicating that the breakpoint was at or very near to (<600 kb) the 

centromere. A G-banded image of the r(X) and its homolog, and the 

correspondent array CGH profile are shown in Figure 3. 

Patient D was reported to carry a r(13), with unknown breakpoints. The array 

CGH profile from chromosome 13 on patient D evidenced a terminal deletion on 

13q. Because of its repetitive nature, no probes were available for the short arm 

of chromosome 13, but it is reasonable to assume that terminal deletions on both 

arms followed by fusion of the chromosome ends, were the primary events that 

originated the ring structure. The areas immediately adjacent to the breakpoints 

showed normal copy number as expected, but the ring presented, in addition, an 

interstitial deletion, which is here designated as secondary deletion because it 

did not originate the ring structure (Fig. 4A). The interstitial deletion showed a 

gradient in copy number varying from deleted to balanced, suggesting that the 

patient presents a mosaicism for the r(13), with variable sizes of the secondary 

deletion. 

We selected three probes representing different copy numbers for each of the 

breakpoint regions of the interstitial deletion, and these two probe sets were 

separately hybridized by FISH to metaphase spreads from patient D. The arrows 

on Figure 4A represent the position and labeling colors of the six selected probes, 

and FISH images from the proximal and distal breakpoint regions are presented in 

Figure 4B-C and 4D-E, respectively. 
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DISCUSSION 

 

We used genomic arrays combined with FISH analyses for re-evaluating the 

chromosome rearrangements present in four human cell strains derived from 

karyotypically abnormal individuals. In each of these cases, the results of the 

new investigation corrected or complemented the original karyotype description. 

The array CGH results from patient A confirmed the presence of the interstitial 

deletion, but demonstrated that the breakpoints mapped distal to the locations 

estimated by G-banding. It is not surprising that the determination of the 

breakpoints by G-banding visual assessment carries a degree of imprecision, and 

for most families of patients with cytogenetically detectable abnormalities, the 

precise mapping of the structurally rearranged chromosomes has little impact. 

For diagnosis of the patient, determination of the carrier status of relatives, and 

eventual pre-natal diagnosis, it is mostly the presence or absence of the 

rearrangement in relatives and fetus that determines the recurrence risk, rather 

than its precise structure. Patient B, however, is an exception: the karyotype of 

the patient as originally defined by G-banding reported the presence of an i(8), 

which does not suggest increased risk of chromosomal abnormalities among 

relatives. Array CGH results revealed that the rearranged chromosome 8 was not 

an isochromosome but instead, presented terminal deletion and duplication of 

the short and long arms, respectively. Rearrangements presenting both terminal 

deletion and duplication, such as the one present in our patient, can be 

originated from crossing-overs within pericentric inversion regions. If such 

inversion is present in one of the parents, an increased recurrence risk for other 

relatives exists. In fact, after we re-initiated this study, the karyotype of the 

mother and her brother were re-examined, and both of them were found to carry 

an inv(8)(p23.1q21.2). 

Patient C was diagnosed with Rett syndrome, and has been earlier reported by us 

to carry an r(X) [Rosenberg et al., [2001]]. The CGH array data showed that every 

sequence from Xp represented in our array was deleted on the r(X), indicating 

that the breakpoint was at, or very close (<600 kb) to the centromere. Most rings 

are thought to originate from terminal deletions and subsequent fusion of both 

arms of a chromosome. However, Callen et al. [Callen et al., [1991a]] reported 

that some rings lack specific satellite DNA sequences from one side of the 

centromere, and proposed that these rings originated from a transverse mis-

division of the centromere combined with a U-type exchange of one of the 

chromosome arms. It is possible that some centromere mis-division caused the 

(peri) centromeric break in our ring. However, the transverse mis-division of the 

centromere proposed by the authors should first originate a chromosome in 

which every sequence will either be deleted or duplicated, such as in an 

isochromosome, and will then be further deleted by the U-type exchange. The 

array results from this patient do not suggest that any sequence on the ring is 
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present in more than one copy and, therefore, is unlikely to have been formed by 

the proposed mechanism. 

The ring from chromosome 13 on patient D was found by array CGH to present an 

interstitial (secondary) deletion, in addition to the terminal deletions that 

originated the ring structure. This interstitial deletion shows a gradient in copy 

number (Fig. 4a), which we demonstrated by FISH to reflect a mosaicism of 

different configurations of the ring (Figs. 4B-E). This pattern suggests that the 

internal deletion became gradually larger, probably associated to instability of 

the ring. Ring instability is thought to result from sister chromatid exchanges 

that, because of the ring structure, may result in interlocking and dicentric rings, 

which break and rearrange during segregation [review in Kaiser-Rogers and Rao, 

[1999]]. 

We illustrate here that the complementation of the G-banding karyotype with 

array data can provide insights on the structure of rearranged chromosomes, and 

may sometimes impact genetic counseling. Array CGH provides a new base to 

understand and visualize the mechanisms of chromosome rearrangements. 
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ABSTRACT 

 
Background: The underlying causes of mental retardation remain unknown in about 

half the cases. Recent array-CGH studies demonstrated cryptic imbalances in about 

25% of patients previously thought to be chromosomally normal. 

Objective and methods: Array-CGH with approximately 3500 large insert clones spaced 

at ~1 Mb intervals was used to investigate DNA copy number changes in 81 mentally 

impaired individuals. 

Results: Imbalances never observed in control chromosomes were detected in 20 

patients (25%): seven were de novo, nine were inherited, and four could not have 

their origin determined. Six other alterations detected by array were disregarded 

because they were shown by FISH either to hybridise to both homologues similarly in a 

presumptive deletion (one case) or to involve clones that hybridised to multiple sites 

(five cases). All de novo imbalances were assumed to be causally related to the 

abnormal phenotypes. Among the others, a causal relation between the 

rearrangements and an aberrant phenotype could be inferred in six cases, including 

two imbalances of the X chromosome, where the associated clinical features 

segregated as X linked recessive traits. 

Conclusions: In all, 13 of 81 patients (16%) were found to have chromosomal 

imbalances probably related to their clinical features. The clinical significance of the 

seven remaining imbalances remains unclear. The limited ability to differentiate 

between inherited copy number variations which cause abnormal phenotypes and rare 

variants unrelated to clinical alterations currently constitutes a limitation in the use of 

CGH-microarray for guiding genetic counselling. 
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Since karyotyping became a routine technique in clinical genetics, mental 

impairment, with or without other abnormalities, has often been found to be 

associated with chromosome rearrangements. However, in the majority of the 

patients, the G banded karyotype is normal, and in about half of them no obvious 

cause for the impairment is found (reviewed by Flint and Knight1). More recently, 

cryptic chromosome rearrangements have been reported in patients with an 

apparently normal karyotype and an unexplained abnormal phenotype. The best 

characterised rearrangements are the recurrent microdeletion syndromes, such 

as the Miller-Dieker lissencephaly (MIM 247200) and DiGeorge syndrome (MIM 

188400). In addition, subtelomeric imbalances of variable sizes cause mental 

retardation in 5–7% of these cytogenetically "normal" cases.1–3 In the last few 

years, genomic array (array-CGH) analysis has become available,4,5 and appears 

to be a robust tool for detecting genomic imbalances in patients, with a much 

higher resolution than permitted by cytogenetic analyses based on chromosome 

banding (4–10 Mb). 

Two recent studies using array-CGH with markers spaced on average at 1 Mb 

intervals across the genome have shown that about 25% of the patients with 

mental impairment associated with dysmorphisms and an apparently normal 

karyotype carried deletions or duplications below the level of resolution of 

classical cytogenetics.6,7 About half the reported cases were de novo, and it is a 

reasonable assumption that the abnormal phenotype is causally associated with 

these imbalances. In the inherited cases, however, neither study succeeded in 

distinguishing between a true pathological or a chance association between copy 

number changes and abnormal phenotypes. 

The precise contribution of microrearrangements to abnormal phenotypes has 

not been yet established, and in the ~1 Mb arrays used in these studies, 

imbalances smaller than 1 Mb would often be missed. Whatever the precise 

figure is, it appears large enough (>5%) to affect genetic counselling. The 

identification of imbalances in such families can lead to the detection of carriers 

and to prenatal diagnosis being offered. 

Here, we report an array-CGH investigation of 81 patients with mental 

impairment accompanied by facial dysmorphisms and other congenital 

abnormalities. The significance of these findings and implication for genetic 

counselling are discussed. 

 

METHODS 

 

Patients 

We studied 81 patients with mild to severe mental retardation associated with 

cranial/facial dysmorphisms and at least one additional dysmorphic feature, 

suggestive of the presence of a chromosomal abnormality. The karyotypes of all 

patients were considered normal after routine G-banding (~550 bands) and the 
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cause of the abnormal phenotypes could not be determined. Family history and 

consanguinity were not taken into account as exclusion criteria. 

The patients were ascertained in two genetic centres: (1) 61 patients from the 

Department of Human and Clinical Genetics, Leiden University Medical Centre, 

the Netherlands (KGCL-LUMC); (2) 20 patients from the Department of Genetics 

and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Brazil 

(LGH-USP). This service is the largest reference centre for fragile-X syndrome 

diagnosis in Brazil, and receives an overrepresentation of male patients. As a 

result, 18 of the 20 patients were male. In all these patients, fragile-X syndrome 

had been ruled out on molecular and clinical grounds. 

 

Comparative genomic hybridisation microarrays 

The array-CGH procedures were carried out as previously described.8 Briefly, 

slides containing triplicates of ~3500 large insert clones spaced at ~1 Mb density 

over the full genome were produced in the Leiden University Medical Centre. The 

large insert clones set used to produce these arrays was provided by the 

Wellcome Trust Sanger Institute (UK), and information regarding the full set is 

available at the Sanger Institute mapping database site, Ensembl 

(http://www.ensembl.org/). Insert clones were isolated from the bacteria, using 

the Wizard SV 96 plasmid DNA purification system (Promega, Leiden, 

Netherlands) in combination with the Biomek 2000 laboratory automation 

workstation (Leiden Genomic Technology Centre (LGTC), Netherlands). DNA 

amplification, spotting on the slides, and hybridisation procedures were based on 

protocols previously described.9,10 We used commercially available male and 

female genomic DNAs (Promega), which represent pools derived from at least 

seven same-sex individuals as reference samples. Test and reference DNA 

samples were labelled with Cy3- and Cy5-dCTPs (Amersham Bioscience, 

Roosendaal, Netherlands), respectively. After hybridisation, the slides were 

scanned with a GenePix Personal 4100A scanner, and the spot intensities 

measured using GenePix Pro 4.1 software (Axon Instruments, Westburg BV, 

Leusden, Netherlands). Further analyses were carried out using Microsoft Excel 

2000. Spots outside the 20% confidence interval of the average of the replicates 

were excluded from the analyses. Target imbalances were determined of the 

basis of log2 ratios of the average of their replicates, and sequences were 

considered as amplified or deleted when outside the ±0.33 range. 

We defined as abnormal a copy number change that we had not previously 

detected in around 100 normal control observations for each chromosome pair. 

The control data compiled chromosome information from DNA hybridisations of 

the following: 

 

a. Normal to normal individuals. 

b. Normal individuals to individuals previously diagnosed by G-band karyotype to 

carry partial or complete monosomies or trisomies. 
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c. Normal individuals to individuals having a clear chromosome alteration 

detected by array (a minimum of five altered consecutive clones). 

d. Normal individual to the parents of patients in item c. 

 

We excluded from the analyses the abnormal chromosomes detected by G-

banding or CGH arrays in patients, as well as the corresponding chromosomes in 

their parents, irrespective of their carrier status. The imbalances detected by G-

banding were also used to verify the ability of the arrays to ascertain copy 

number changes and to detect clones mapped to wrong chromosomes. On the 

basis of this set of normal chromosomes, we determined the average 

hybridisation ratio for each clone, and excluded from the analyses the 3% clones 

with an SD >0.073, totalling 110 clones. The remaining ones had an average SD of 

0.039. In the hybridisations between normal to normal individuals, or normal to 

individuals carrying chromosomal alterations (items a and b above), we did not 

observe changes in the profiles using dye swap (inverted combination of 

fluorochromes for test and reference DNAs). Based on these results, we only 

undertook more than one hybridisation per individual in those experiments in 

which more than 3% of the clones were excluded owing to low intensities of the 

spots or a noisy background. The threshold of 0.33 for duplications and deletions 

was empirically chosen because it represented the lowest combined false 

positive and negative rates in control hybridisation testing of normal DNA and 

DNA from autosomal trisomies/monosomies. 

 

Fluorescence in situ hybridisation 

Fluorescence in situ hybridisation (FISH) experiments were carried out by 

standard techniques to validate the presence of deletions and duplications 

identified by microarray analyses. When an alteration was confirmed by FISH, 

hybridisations using the same probes were done to investigate whether the 

parents carried the rearrangement present in the child, either in balanced or 

unbalanced form. Aliquots of the same amplified DNAs used to spot the arrays 

were employed as probes for the FISH experiments. Clones mapping to the 

unbalanced chromosome regions were hybridised to metaphases derived from 

patients’ blood lymphocytes. In cases of duplication, interphase nuclei were also 

analysed. At least 25 cells were analysed per hybridisation. A region was 

considered as duplicated when, in interphase nuclei, the corresponding clone 

produced three FISH signals accompanied by two signals in a different colour 

from a non-duplicated adjacent clone, used as a control. We considered a 

chromosome region to be partially deleted when the FISH signal from the 

corresponding clone on one of the chromosomes was consistently less intense 

(<=25% intensity) than on its homologue. 

 



Chapter 3 

53 

Multiplex amplifiable probe hybridisation 

A study of genomic imbalances by multiplex amplifiable probe hybridisation 

(MAPH) technique11 in 188 patients with mental retardation has recently been 

reported12: 162 loci were screened, comprising chromosome regions known to be 

involved in mental retardation (subtelomeric/pericentromeric regions and the 

genes involved in microdeletion syndromes), as well as interstitial genes 

randomly spaced throughout the genome. Although the MAPH patient sample 

partially overlapped the patients reported here (48 of the Dutch patients), 

importantly, the two studies were carried out independently and in parallel, and 

the MAPH results were unknown to those performing array-CGH. Patients 1, 2, 8, 

18, and 20 listed in table 2 were part of the overlapping sample. 

 
Table 1. Distribution of patients according to type and inheritance of imbalance 

Imbalances De novo Inherited Unknown 
Number of 

patients 

Interstitial 4 7 3 14 

   Deletions 3 5 1 9 

   Duplications 1 2 1 4 

   Deletion/duplication 0 0 1 1 

Terminal 3 2 1 6 

   Deletions 2 0 1 3 

   Duplications 1 1 0 1 

   Deletion/duplication 0 1 0 1 

Total number of patients 7 9 4 20 

 

 

RESULTS 

 

In this array-CGH analysis, imbalances not previously observed in our control 

samples were detected in 20 patients: six had duplications, 12 had deletions, and 

two carried both deleted and duplicated chromosome segments. Six other 

imbalances detected on arrays were not included among the imbalances because 

either (a) a presumptively deleted clone yielded two FISH signals of apparently 

similar intensities at the expected location on both homologues (one case), or (b) 

a BAC, supposedly in altered copy number, yielded multiple sites of FISH 

hybridisation in normal individual metaphases (five cases). It is unclear why we 

obtained disagreement between array-CGH and FISH results in the deletion case 

(a), but it emphasises that false positive results may occur in our test. On the 

other hand, clones that are known to hybridise to multiple sites are excluded 

from our array. 
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Table 2. Summary of copy number changes, associated clinical findings, and inheritance 

Patient 
(institution) 
and inheritance Array-CGH imbalances Confirmation Clinical summary 

Maximum size of 
imbalances 

De novo         

1 (LUMC) Deletion of 5 clones at 
1pter-1p36.31 (GS-232-B23 
to RP11-49J3) 

Confirmed by FISH Female, MR, epilepsy, facial 
dysmorphism, shortening of metacarpals 
and metatarsals, hirsutism 

7.2 Mb 

2 (LUMC) Deletion of 18 clones at 
18q22.3qter (RP11-45A1 to 
GS- 75-F20) 

Confirmed by FISH Female, MR, short stature, hearing loss, 
congenital heart defect (total 
anomalous pulmonary venous return), 
mild facial dysmorphisms, narrow and 
long fingers 

8.3 Mb 

3 (LUMC) Deletion of 12 clones at 
3p24.3-p24.1 (RP11-27J5 to 
RP11-103N21) 

Confirmed by FISH Female, mild MR, facial dysmorphism, 
club feet, triphalangeal thumbs, mild 
anaemia 

10.7 Mb 

4 (LUMC) Deletion of 2 clones at 
13q32.3 (RP11-118F16 to 
RP11-564N10) 

Confirmed by FISH Male, MR, tall stature, corpus callosum 
agenesis, hearing loss, facial 
dysmorphism 

3.2 Mb 

5 (USP) Deletion of 7 clones at 
17p11.2 (RP11-524F11 to 
RP11-121A13) 

Confirmed by FISH Female, MR, behavioural problems 
including self aggression, hyperactivity, 
sleep disturbances, decreased pain 
sensitivity; midface hypoplasia, upward 
slanting of palpebral fissures (diagnosis: 
Smith-Magenis syndrome, OMIN 1822900) 

5.7 Mb 

6 (LUMC) Duplication of a single clone 
at 17pter-p13.3 (GS-68-F18) 

Confirmed by interphase FISH Female, mild MR, facial dysmorphisms 0.8 Mb 

7 (LUMC) Duplication of a single clone 
at 6p12.3 (RP3-442L6) 

Confirmed by interphase FISH Female, mild MR, hypotonia, joint 
hyperlaxity, facial dysmorphism, 
strabismus 

1.7 Mb 

Inherited         

8 (LUMC) Deletion of 4 clones at 
6q27qter (RP11-351J23 to 
GS-57-H24). Duplication of 
13 clones at 20q13.31qter 
(RP11-46O6 to bB152O15) 

Confirmed by FISH 
[t(6,20)(q27;q13.31)mat] 

Male, MR, hypotonia, microcephaly, 
brain anomalies, mild facial 
dysmorphisms 

4.7 Mb deleted; 
7.5 Mb duplicated 

9 (LUMC) Duplication of 2 clones at 
3q29-qter (GS- 196F4 and 
GS -56H22) 

Confirmed by interphase FISH; 
paternal 

Female, moderate MR, facial 
dysmorphism, ataxia 

0.4 Mb 

10 (LUMC) Partial deletion of a single 
clone at 15q15.3 (RP11-
263I19) 

Confirmed by FISH; paternal Female, mild MR, hypotonia, facial 
dysmorphism, cloudy cornea 

0.9 Mb 

11 (LUMC) Deletion of a single clone at 
15q13.1 (RP11-408F10) 

Confirmed by FISH; maternal 
Female, mild MR, short stature, 
microcephaly, minor facial 
dysmorphism, premature breast 
development 

2.2 Mb  

12 (USP) Deletion of a single clone at 
10q21.1 (RP11-430K23) 

Confirmed by FISH; maternal 
(mother with learning difficulties 
and similar dysmorphisms as the 
patient) 

Male, mild MR, hyperactivity, facial 
dysmorphism, prominent ears, long 
digits, hyperextensibility of joints 

2.5 Mb 

13 (USP) Duplication of a single clone 
at Xq28 (RP5-1087L19) 

Confirmed by MAPH; maternal; two 
affected first cousins born to 
maternal aunts; duplication also 
present in the investigated cousin 

Male, MR, hypoplasia of cerebellar 
vermis, Dandy-Walker anomaly, large 
prominent ears, high-arched palate, 
abdominal obesity, flat feet. 

1.3 Mb 

14 (USP) Partial deletion of a single 
clone at Xp11.23 (RP1-
54B20) 

Confirmed by FISH; maternal; 
similarly affected males referred in 
the maternal family 

Male, severe MR, short stature, 
microcephaly, prominent ears, deep set 
eyes, short filtrum, early onset puberty 

1.8 Mb 

15 (LUMC) Partial homozygous deletion 
of a single clone at 2p12 
(RP11-89C12) 

Confirmed by FISH; first cousin; 
heterozygous father and 
homozygous mother 

Female, MR, microcephaly, cleft palate, 
congenital cataract, microphthalmia; 
equally affected sibling carries same 
homozygous deletion 

1.0 M b 

16 (LUMC) Duplication of a single clone 
at 8p11.1 (CTD-2115H11) 

Confirmed by FISH; maternal  Male, mild MR, short stature, facial 
dysmorphisms 

1.3 Mb 

Unknown         

17 (LUMC) Deletion of 6 clones at 
6pter-p25.2 (GS-62-L11 to 
RP11-15N12) 

Confirmed by FISH; mother not a 
carrier* 

Male, mild MR, hearing loss, iris 
dysplasia, eccentric pupil, hypertelorism 

5 Mb 

18 (USP) Deletion of a single clone at 
16p11.2 (RP11-74E23) 

Confirmed by FISH; mother not a 
carrier* 

Female, mild MR, severe speech delay, 
facial dysmorphism 

1 Mb 

19 (USP) Duplication of a single clone 
at 22q11.21 (XX-91c) 

Confirmed by MAPH and array-CGH 
tile-path of chromosome 22; mother 
not a carrier* 

Male, mild MR, turricephaly, convergent 
strabismus, myopia, high and narrow 
palate, large upper first incisors 

3.9 Mb 

20 (LUMC) Deletion of a single clone at 
22q11.21 (XX-p273a17); 
duplication of a single clone 
at 22q11.21 (XX-91c); 
deletion of 5 clones at 
22q12.1 (CTA-390B3 to 
RP11-329J17) 

Confirmed by MAPH and array- CGH 
tile path of chromosome 22** 

Male, mild MR, hearing loss, 
microcephaly, cataract, cleft palate, 
double set of teeth 

1.1 Mb deleted; 
3.9 Mb duplicated; 
3.9 Mb deleted 

 
*Father deceased or unavailable. 
**Parents deceased. 
LUMC, Leiden University Medical Centre; MR, mental retardation; USP, University of Saõ Paulo. 



Chapter 3 

55 

 
Figure 1  Examples of duplications and deletions ascertained by array-CGH and confirmed by FISH. Unbalanced and control insert clones 

are represented in red and green colours, respectively, in the array profiles and corresponding ideograms. The black arrows show large 

insert clones which are also found altered in normal controls. (A) Chromosome 6 array-CGH profile from patient 7, showing a 

duplication of a single clone at 6p12.3 (RP3-442L6). (B) Three interphase-FISH signals of the duplicated PAC RP3-442L6 (red) and two 

signals of the adjacent non-duplicated BAC RP11-334H12 (green) confirm this duplication. (C) Deletion of a single clone at 15q13.1 

(RP11-408F10) in patient 11. (D) FISH to a metaphase showing the presence of two chromosomes 15 (whole-chromosome 15 library in 

blue), but a single signal for BAC RP11-408F10 (red). BAC, bacterial artificial chromosome; CGH, comparative genomic hybridisation; 

FISH, fluorescence in situ hybridisation. 

 

Table 1 shows the distribution of the copy number changes according to the type 

and inheritance of the imbalances, and table 2 presents the copy number 

changes, clinical data, and family analysis. 

Fourteen of the imbalances were interstitial and six were terminal. Deletions and 

duplications were confirmed by FISH; case 13 was confirmed by MAPH, and for 

chromosome 22 (cases 19 and 20) an array of overlapping sequencing tile path 

clones13 allowed us to delineate the duplication and deletions (Kriek et al, 

unpublished data). Figure 1 shows examples of array-CGH deletions and 

duplications, and FISH confirmation. Among the 16 patients whose parents were 

available for examination, seven carried de novo imbalances and nine had 

inherited rearrangements. Among the rearrangements, one patient (case 15) had 

a homozygous deletion inherited from heterozygous father and homozygous 

mother (fig 2). 
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Figure 2  Chromosome 2 imbalances in the family of patient 15. Chromosome 2 array-CGH profiles of the proband (A) and his mother (B) 

show a deletion of BAC RP11-89C12 (red arrow) at 2p12. The log2 ratios around –1.0 indicate that the deletion is homozygous. (C) 

Chromosome 2 array-CGH profile of the father shows a deletion of the same BAC (red arrow) in a ratio compatible with heterozygosity. 

(D) FISH using BAC RP11-89C12 (red) to the father’s metaphase shows that the signal on one chromosome 2 (whole chromosome library 

in green) is less than one quarter the size and intensity of the homologue. BAC, bacterial artificial chromosome; CGH, comparative 

genomic hybridisation; FISH, fluorescence in situ hybridisation. 

 

DISCUSSION 

 

We used array-CGH to investigate DNA copy number imbalances in 81 individuals 

presenting with mental retardation, dysmorphic features, and an apparently 

normal karyotypes, and detected unique alterations in 25% of these. In addition, 

33 clones contained in our array (>0.1%) exhibited copy number alterations 

detected at least once in the control analysis, and were considered as normal 

variants. These genomic imbalances might well represent some of the large scale 

copy number variations of DNA segments recently described in humans and 

mice.14–16 

 

More than half the imbalances comprised one clone or less (partial deletions). 

The two largest alterations (patients 2 and 3) encompassed between 8 and 11 Mb 

and, after CGH-array results were known, they could retrospectively be 

visualised on G-banded chromosomes. The frequency of imbalances detected in 

our study is similar to the 24–25% found in previous array-CGH studies of mentally 

impaired individuals.6,7 However, the patients in ours and in the two previous 
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array-CGH studies were selected not to be solely representative of undiagnosed 

mental retardation, but rather to include patients whose dysmorphic features in 

conjunction with mental retardation were suggestive of chromosomal 

abnormalities. It is well known that the frequency of chromosomal abnormalities 

is increased when mental retardation is associated with congenital abnormalities 

or dysmorphic features. While these studies prove the value of array-CGH for 

uncovering cryptic rearrangements, further studies in categorised samples of 

mentally retarded individuals will be required to establish the frequency of 

imbalances which have a pathological consequence giving rise to mental 

retardation, and to differentiate them from rare variants picked up 

serendipitously in the screening. Among the 20 chromosome rearrangements that 

we detected, six (7.4%) were subtelomeric and 14 (17.3%) were interstitial. 

Similarly to the two previous studies with array-CGH, the frequency of cryptic 

interstitial rearrangements was two to three times greater than the frequency of 

terminal imbalances. 

When patients carry de novo imbalances, either interstitial or terminal, it is 

reasonable to assume that the copy number change is the cause of the 

phenotype. On the other hand, inherited subtelomeric and interstitial 

rearrangements have different implications for genetic counselling. Inherited 

subtelomeric rearrangements result from the segregation of a balanced 

translocation in one of the normal parents,1 and their detection allows genetic 

counselling and prenatal diagnoses to be provided. In contrast, inherited 

interstitial rearrangements detected by array-CGH seem to be equally 

imbalanced in a normal parent, and no carriers of balanced interstitial 

rearrangements were detected in ours or in the previous array-CGH studies. 

Therefore, these inherited interstitial rearrangements pose a new situation in 

genetic counselling, because the normal parent apparently carries the same 

imbalance as the affected child. We observed various different situations that 

suggest that rare inherited copy number variations can either affect the 

phenotype or represent "normal" variants. The X chromosome imbalances 

(patients 13 and 14) were associated with clinical features showing an X linked 

pattern of inheritance—that is, other affected males were related to the 

probands by their phenotypically normal mothers. An intriguing case is that of 

patient 15: he and his equally affected sibling are homozygous for a partial 

deletion of one clone at 2p12. Their clinically normal parents are first degree 

cousins, and the father is heterozygous for the same deletion, while the mother 

is homozygous (fig 2). This deletion therefore appears as a rare variant 

segregating in the family, and the abnormal phenotype of the children is likely to 

be caused by homozygosity for another recessive mutation. Furthermore, this 

family is of Turkish descent, and the frequency of the deletion in this population 

is unknown. 

In four cases (patients 17 to 20), one or both parents could not be investigated 

for the presence of imbalances. In patient 17, although the de novo status could 
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not be proved, the patient had the typical features of the deletion 6pter 

syndrome,17,18 thus indicating that the deletion was causative. Among the 

infrequent DNA segment imbalances found in our patients, there was a single 

map location overlap—namely, the duplication of cosmid XX-91c on chromosome 

22 which is present in patients 19 and 20 (table 2). The tilling path analysis of 

chromosome 22 in patient 19 showed that this duplication encompasses ~1.7 Mb, 

and overlaps the often deleted region in the DiGeorge/velocardiofacial syndrome 

(DG/VCFS). Two recent papers reported on patients with duplication of this 

region, suggesting that dup22q11.2 is an emerging syndrome19,20; the learning 

abilities of the carriers ranged from normal to severely impaired, and associated 

clinical features were extremely variable, including normal individuals 

ascertained through affected relatives. Our patient had only mild mental 

retardation and some unspecific dysmorphic features, which may be present in 

different syndromes, including patients with dup22q11. As the frequency of the 

duplication 22q11.2 is significantly increased among mentally retarded patients, 

we considered that the alteration in our patient was probably causative of his 

phenotype. Patient 20 carries two deletions on chromosome 22 in addition to this 

recurrent duplication. Furthermore, this patient had specific congenital 

abnormalities, some of which do not seem to be associated with the dup22q11.2 

syndrome, and might be caused by at least one of the deletions (Kriek M et al, 

unpublished data). Unfortunately, further investigation could not be undertaken 

because not all the parents of these two patients were available. 

Thus, among the 20 rearrangements detected in our patients (table 2), we were 

able to identify 13 as causative of the abnormal phenotypes: those which were 

de novo (patients 1–7), the imbalanced rearrangement inherited from a balanced 

parent (patient 8), the two familial X chromosome alterations (patients 13 and 

14), the deletion 6pter (patient 18), the dup22q (patient 19), and the 

rearrangements of chromosome 22 in patient 20, which were too large and 

complex not to be the probable cause of the phenotype. In fact, the 

rearrangements involving two or more clones were all de novo (mean (SD) 

maximum average size, 5.4 (3.6) Mb), while the rearrangements present in 

normal carriers tended to be smaller (maximum average size 1.6 (0.8) Mb). It is 

not itself surprising that rearrangements involving large segments of DNA have a 

smaller probability of being present in normal carriers. 

Among the 13 cases with copy number imbalances considered causative of the 

phenotype, five were terminal and eight were interstitial, showing a similar 

contribution of these rearrangements to mental retardation associated with 

other clinical features. However, in patients who inherited an apparently 

identical interstitial imbalance from their parents, we cannot disregard the 

possibility that imprinting, incomplete penetrance, and loss of heterozygosity for 

a detrimental recessive gene contribute to the different effect in parents and 

affected children, as has been reported for dup22q11.2.19,20 
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The frequent occurrence of rare genomic imbalances in affected children and 

their normal parent represents a complicating factor in the interpretation of 

array-CGH results. Among our patients we found inherited imbalances that were 

appeared clearly associated with a pathological effect, while others most 

probably represented genomic variants not contributing to the abnormal 

phenotype. Recent initiatives such as those of the Sanger Institute 

(www.sanger.ac.uk/PostGenomics/decipher/) and the European Cytogeneticists 

Association (http://www.ecaruca.net/) to create platforms for compiling 

molecular cytogenetic data from clinical genetic studies will hopefully provide a 

base for understanding the role of different DNA copy number variations in 

genetic diseases. Collecting and understanding larger sets of data will improve 

our ability to determine which copy number variations contribute to abnormal 

phenotypes, and eventually result in a more consistent application of CGH-

microarray for genetic counselling. 
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To the Editor: 

 

Developmental delay (DD) affects ~3% of the general population and the 

underlying cause remains unknown in about half of the cases. G-banded 

karyotyping is the most common approach for the detection of genomic 

alterations, however, despite its indisputable success, this tool has limited 

resolution, usually being unable to detect genomic changes ~3–5 Mb. It is known 

that micro alterations that escape detection by classical cytogenetics contribute 

substantially to the etiology of DD [Flint et al., 1995; Vissers et al., 2003]. This 

limitation has been partly overcome by fluorescence in situ hybridization (FISH) 

with a resolution of 5–500 kb, however, it has a limited possibility for 

multiplexing, for example, in most of the routine practice only 2–3 regions can be 

analyzed simultaneously. Therefore, candidate probes (especially for 

microdeletion syndromes) need to be selected a priori for FISH investigation, 

based on the patient’s phenotype. 

Recent technological developments, such as array-based comparative genomic 

hybridization (array-CGH) [Pinkel et al., 1998; Antonarakis, 2001; Snijders et al., 

2001] and Multiplex Ligation-dependent Probe Amplification (MLPA) [Schouten et 

al., 2002], are efficient methods for screening for copy number imbalances in 

multiple genomic regions simultaneously. MLPA especially has already found its 

way into the diagnostic laboratories for several indications (e.g., BRCAI gene and 

NFI gene screening); however, the standard of practice for the assessment of 
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developmental delay does not currently include MLPA and array-CGH testing. In 

this article, it is argued that both techniques are extremely valuable tools for the 

diagnostic setting in DD patients, and the implementation of both techniques 

should be considered. 

Data regarding the robustness of both techniques have been provided previously 

[Price et al., 2005; Rooms et al., 2005]. In the case of array- CGH, thousands of 

sites can be simultaneously investigated in one patient, allowing partial or total 

coverage of the genome. The number of targets that can be screened by MLPA is 

limited to <60 loci per assay, however, 96 samples can be simultaneously tested 

at a cost less than one array-CGH hybridization. As MLPA analysis requires 

relatively little hands-on time (Table I), it is more suitable for the initial 

screening of large patient numbers. 

To assess their value in clinical diagnosis, we have independently tested 58 

developmentally delayed (DD) patients using both array-CGH and MLPA. This 

study was reviewed and approved by the Institutional Review Board of the Leiden 

University Medical Center, conforming to Dutch law and the World Medical 

Association Declaration of Helsinki. The patients had, in addition to DD, either 

dysmorphic features or congenital malformations or both (DD ‘‘plus’’ patients). 

All patients had a normal karyotype and, where tested (the vast majority of the 

patients), had tested negative for Fragile X syndrome. The array-CGH results 

were partly reported elsewhere [Rosenberg et al., 2006] without the comparative 

analysis with MLPA. 

The array used in the study contained ~3,500 large genomic insert clones spaced 

at ~1Mb intervals over the genome, meaning that the resolution of the arrays 

used is 0.3–3 Mb. Array-CGH testing was performed as described by [Knijnenburg 

et al., 2005]. The clones were provided by the Wellcome Trust Sanger Institute 

(UK), and information regarding the full set is available at the Ensemble web 

site. 

The MLPA probe design and assay was performed as described previously [White 

et al., 2004]. It included a set of synthetic probes designed for 71 regions known 

to be frequently altered in DD patients (probe sequences are available on 

request). This set targets 42 chromosome ends (except for the p-arms of the 

acrocentric chromosomes), five pericentromeric regions on the q-arm of 

acrocentric chromosomes (the regions tested included the first gene-specific 

unique sequence near the centromere on the q-arm) and 24 probes (Table II) 

containing microdeletion syndrome-related sequences. The size of the probes 

used was between 75 and 125 bp, and the number of sites investigated by MLPA 

corresponds to ~2% (71/3,500) of all regions tested by array-CGH. 

Seventeen alterations were detected by array-CGH analysis, of which 14 were 

verified using either FISH or MLPA (14/58=24%). (The MLPA probes were 

specifically designed for confirming these alterations. They were not part of the 

screening set.) As far as was tested the remaining three changes could not be 

confirmed using FISH or MLPA. 
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MLPA analysis identified eight alterations, all of which were confirmed by FISH, 

MAPH or sequencing (8/58=14%). Table III provides an overview of the alterations 

found. The eight alterations found solely by array-CGH were all located in 

regions not covered by MLPA probes. In contrast, the two alterations detected by 

MLPA only were too small to be detected by array-CGH analysis. One of these 

alterations was a point mutation near the ligation site of the MLPA probe, which 

disturbed the ligation and appeared as a deletion. The point mutation (that was 

never reported before) has been proven by bi-directional sequencing. It is a 

silent mutation, and it was also present in one of the parents. Therefore, it was 

considered to be a single nucleotide polymorphism (SNP). Although all MLPA 

probes have been designed outside the sequences containing known SNPs, 

theoretically, a low frequency SNP could be present at or near the ligation site. 

Therefore, it is necessary to confirm copy number variations by a second MLPA 

probe covering an adjacent sequence or by sequencing. 

Of the eight alterations detected by MLPA, we considered six to be probably 

causative as the phenotype of the patients agreed with the clinical features 

described in literature for those chromosome alterations. All these 

rearrangements were also detected by array-CGH. In two of these six cases, 

however, we could not confirm that the rearrangement was de novo. Two of the 

eight alterations detected by MLPA are likely to be polymorphic variants, as they 

are also present in unaffected family members. 
 

TABLE I. A Comparison of the Man-Hours and Material Required for Both Karyotyping and MLPA 

Analysis 

 Karyotyping MLPA 

Number of samples performed per week 12 5x96 wells plate 

Total time before result per sample 32–40 hr 8 hra 

Materials needed Cell culture, reagents DNA reagents, probe set 

 

This table shows that MLPA is suitable for the screening of copy number variations in a large number of patients 

within relatively short time. Compared to karyotyping, this technique is much faster and requires less hands-on 

time. As it is also possible to analyze a part of a fragment run or use a DNA sequencer with less throughput capacity, 

it is not necessary to wait for 96 patient samples requiring MLPA testing. 
aRecently, it was shown that MLPA analysis can be performed within 8 hr (Kalf et al. in preparation). 

 

Nine of the fourteen confirmed rearrangements detected by array-CGH are 

probably pathogenic, four alterations might be polymorphic variants as they are 

present in unaffected family members. The clinical consequences of the 

remaining alteration are currently unknown, because the patients’ parents were 

unavailable for testing. This latest FISH confirmed array-CGH finding which was 

not detected by MLPA, was located near the chromosome end of the long arm of 

chromosome 10. The corresponding ‘‘subtelomeric’’ MLPA probe in our study 

mapped proximal to the altered BAC. 
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Based on the data on the human 

genome variation database, the 

region involved might be 

polymorphic. Moreover, the 

clinical features of the patient 

do not resemble those 

corresponding with previously 

described 10q chromosome end 

alterations [Waggoner et al., 

1999]. The sizes of the reported 

alterations, however, are larger 

than the one obtained in this 

study. 

The comparison between the 

screening results for detecting 

copy number variations using the 

different approaches shows the 

reliability and specific strengths 

of both techniques. In summary, 

using a2% of the loci tested by 

array-CGH, MLPA detected 50% 

(8/16) of all alterations. Three 

potentially pathogenic 

alterations were not detected 

using MLPA, as they were 

localized outside the regions 

tested. 

Based on the outcome of this 

parallel screening and costs 

considerations, we suggest the 

following strategy for diagnostic 

purposes: when a patient 

presents with DD of unclear 

etiology and the G-banding karyotype is normal, the first screening will use MLPA 

for the commonly altered regions in DD patients (currently, chromosome ends 

and microdeletion syndrome-related regions). Subsequently, when MLPA is 

negative and the patient’s phenotype is suggestive of a chromosome abnormality, 

array-CGH follows. 

Alternatively, the order of testing could be reversed. MLPA using subtelomeric 

probes is capable of detecting trisomies as well as the vast majority of the 

unbalanced translocations, both of which comprise a substantial part of the 

alterations diagnosed using cytogenetic tools. Table I shows that MLPA requires 

TABLE II. Overview of the Microdeletion Syndrome 

Related Probes Used by MLPA Screening 

Disorder Chromosome 

band 

Gene 

Alagille syndrome 20p12.2 JAG1 

Angelman syndrome 15q12 UBE3A 

Cat eye syndrome 22q11.1 CECR2 

DiGeorge syndrome 22q11.2 DGCR2 

DiGeorge syndrome 22q11.2 HIRA 

DiGeorge syndrome 22q11.2 TBX1 

DiGeorge syndrome 22q11.2 UFD1L 

DiGeorge syndrome 

like region 

10p14 CUGBP2 

Extostosis 8q24 EXT1 

Jacobsen syndrome 11q25 HNT 

Miller–Dieker 

syndrome 

17p13.3 LIS 1 

Mowat–Wilson 

syndrome 

2q22 SIP1 

Prader–Willi syndrome 15q12 SNRPN 

RETT syndrome Xq28 MECP2 

Rubinstein–Taybi 

syndrome 

16p13,3 CBP 

Smith–Magenis 

syndrome 

17p11.2 RAI1 

Smith–Magenis 

syndrome 

17p11.2 COPS3 

Smith–Magenis 

syndrome 

17p11.2 DRG2 

Sotos syndrome 5q35 NSD1 

Trichorhinophalangeal 

syndrome 

8q23.3 TRPS1 

William–Beuren 

syndrome 

7q11.23 ELN 

William–Beuren 

syndrome 

7q11.23 FKBP6 

Wolf–Hirschhorn 

syndrome 

4p16.2 MSX1 

X-linked 

hydrocephalus 

Xq28 L1CAM 
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less manpower (hence is cheaper) and is considerably faster compared to 

karyotyping, and thus, it seems more effective to use MLPA as an initial screening 

tool. In addition to the time- and cost-effectiveness, MLPA has a much higher 

resolution for detecting copy number variations compared to karyotyping, and 

therefore, this technique is capable of detecting copy number variations that 

remain undiagnosed using this cytogenetic tool. Applying MLPA testing first will 

even be more effective when a MLPA probe set encompassing the most frequent 

microdeletion related regions is added. In a diagnostic setting, it is preferable to 

have at least two MLPA probes per regions of interest (instead of one as was used 

in this study) to limit false positive and false negative results as much as 

possible. Implementing microdeletion syndromerelated regions and two probes 

per region will increase the costs related to MLPA screening, however, this will 

also reduce the necessity of performing FISH for the detection of microdeletion 

syndromes, and the need for additional confirmation tests (with the exception of 

sequencing, see above). 

It is obvious that balanced translocations and inversions will not be detected 

using this or other molecular techniques (unless they are specifically designed to 

detect breakpoints). Also, for a proportion of the samples with a positive 

outcome using the initial MLPA screening, subsequent karyotyping is essential for 

localization of these structural rearrangements. These include, for example, 

aneusomies for which Robertsonian translocations have to be excluded. Based on 

these arguments, karyotyping will maintain its essential role in a diagnostic 

process, however it will only be implemented for selected samples. 
 

TABLE III. Copy Number Variations Detected by Two Techniques Independently 
 Only by a-CGH Only by MLPA By a-CGH and MLPA Total 

Altered  11   2   6  19 

Confirmed  8a   2b   6  16 

 
De 

novo 

Present 

in 

parents 

Unknown 
De 

novo 

Present 

in 

parents 

Unknown 
De 

novo 

Present 

in 

parents 

Unknown  

Deletion 2 3 1c 0 1d 0 2c 0 1c,e 10 

Duplication 1 1 0 0 1d 0 1c 0 0 4 

del./dup. 0 0 0 0 0 0 0 0 1d,e 1 

UT 0 0 0 0 0 0 1c 0 0 1 

Confirmed 

total 
3 4 1 0 2 0 4 0 2 16 

 

An overview of the results obtained by screening of 58 DD patients using array-CGH and MLPA. All rearrangements 

were not detected by routine karyotyping. 

UT, unbalanced translocation. 
aThese regions were not covered by MLPA analysis. 
bThese alterations were too small to be detected by array-CGH. 
cAlterations localized at the chromosome ends. 
dAlterations present in regions related to micro-deletion syndromes. 
e(One of) the patient’s parents were (was) unavailable for testing. The phenotype of the patient, however, 

resembles that described in literature. Therefore, this alteration is thought to be pathogenic.  
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After MLPA testing, additional array-CGH can be performed for patients with a 

clinical phenotype suggestive for chromosomal alterations. Although this will 

increase the cost, it will also increase the number of copy number variations 

detected. 

Array-based techniques are evolving rapidly. Several reports have described the 

results of testing developmentally delayed patients tested using a 3,000-clone 

array [Vissers et al., 2003; Tyson et al., 2005; Menten et al., 2006; Rosenberg et 

al., 2006; Shaw-Smith et al., 2006]. In addition, de Vries et al. used an array with 

32,000 clones for the detection of copy number variations. Recently, SNPbased 

arrays have successfully been used to detect genome-wide copy number 

variations [Friedman et al., 2006]. These type of arrays have an even higher 

resolution than the array used in de Vries et al. Future comparative studies will 

help to determine which array platform is the most appropriate to implement. 

 

 
 

FIG. 1. This flow chart summarizes the alternative diagnostic approach for screening developmentally delayed 

patient samples. In this approach, karyotyping will only be requested for a selected group of samples: (1) Samples 

that had tested negative for MLPA (and array-based tool in the case of DD ‘‘plus’’ patients). (2) Samples for which 

information about the location of the structural rearrangement is essential for clinical practice. These include 

aneusomies for which a Robertsonian translocation should be excluded (acrocentric chromosomes (#)), unbalanced 

translocations and some of the alterations detected by array-CGH. Chr. end abn.: chromosome end abnormality, DD 

‘‘plus’’ patients are patients with dysmorphic features and/or congenital malformations in addition to DD. These 

patients are suggestive for chromosomal imbalances.  
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In short, the alternative diagnostic approach would include MLPA for DD samples, 

with subsequent array-based testing (for DD ‘‘plus’’ patients that had tested 

negative for MLPA). Karyotyping could then be used to locate structural 

rearrangements for selected cases and for samples that showed no alteration 

using MLPA (and array-CGH) (Fig. 1). In this way, the screening of DD samples will 

be more effective in relation to the probability of finding a disease-causing 

rearrangement, which will improve the basis for counseling. 
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Abstract 

 

Balanced complex chromosome rearrangements (CCR) are extremely rare in 

humans. They are usually ascertained either by abnormal phenotype or 

reproductive failure in carriers. These abnormalities are attributed to 

disruption of genes at the breakpoints, position effect or cryptic imbalances 

in the genome. However, little is known about possible imbalances at the 

junction points. We report here a patient with a CCR involving three 

chromosomes (2;10;11) and eight breakpoints. The patient presented with 

behavioural problems as the sole phenotypic abnormality. The 

rearrangement, which is apparently balanced in G-banding and multicolour 

FISH, was shown by genomic array analysis to include a deletion of 0.15–1.5 

Mb associated with one of the breakpoints. To explain the formation of this 

rearrangement through the smallest possible number of breakage-and-reunion 

events, one has to assume that the breaks have not occurred simultaneously, 

but in a temporal order within the span of a single cell division. We 

demonstrate that array comparative genomic hybridisation (CGH) is a useful 

complementary tool to cytogenetic analysis for detecting and mapping cryptic 

imbalances associated with chromosome rearrangement. 
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Introduction 

 

Complex chromosome rearrangement (CCR) is a general term designating any 

structural rearrangement involving more than two breakpoints and/or 

chromosomes (Pai et al. 1980). Individuals with balanced CCRs are most often 

ascertained through fertility problems, recurrent miscarriages, or by congenital 

anomalies in newborn offspring. These individuals are otherwise normal, and 

their problems are a direct consequence of either meiotic failure or imbalanced 

chromosome segregation. However, some carriers of apparently balanced 

complex translocations present phenotypic abnormalities and/or mental 

retardation (Batanian and Eswara 1998; Batista et al. 1994; Joyce et al. 1999; 

Phelan et al. 1998). The abnormal phenotype in these cases is thought to 

originate from disruption of genes or cryptic imbalances in the genome (Batista 

et al. 1994). While disruption of genes at breakpoints is well documented and has 

been instrumental in the mapping of several disease genes, such as, DMD, NF1 

and mesomelic dysplasia (Ledbetter et al. 1989; Spitz et al. 2002; Zatz et al. 

1981), cryptic deletions or duplications in the genome in apparently balanced 

translocations have only sporadically been demonstrated (Borg et al. 2002; 

Kumar et al. 1998). 

Here we report a 5-year-old patient who exhibited behavioural changes and delay 

in speech development as the only phenotypic abnormalities, and was found to 

carry an apparently balanced CCR on the basis of Giemsa banding and multicolour 

FISH. The rearrangement, which involved three chromosomes and at least eight 

breakpoints, was studied at high resolution by multicolour FISH and genomic 

array, and a cryptic imbalance was detected. 

 

Clinical description 

 

The patient is a Caucasian 5-year-old male, the first child from healthy and non-

consanguineous parents. Pregnancy was unremarkable and the Apgar score at 

birth was 8/9. At 19 months of age, delayed speech, hyperactivity and attention 

deficit were noted, and he underwent a neurological evaluation. Results of EEG, 

audiogram and screening for inborn metabolic errors were all in the normal 

range. 

At 5 years of age, he was referred for genetic and cytogenetic evaluation. His 

intelligence was apparently normal (IQ evaluation was denied), but hyperactivity 

and attention deficit were noted. The child is still under treatment for 

psychological and speech difficulties. However, because the child is raised in a 

tri-lingual environment, the significance of the speech delay is difficult to 

evaluate.
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Materials and methods 

 

Molecular and classical cytogenetic studies  

Peripheral blood lymphocytes from the patient and his parents were cultured for 

72 h according to standard procedures. Cytogenetic analysis was performed on 

GTG-banded chromosomes, and 25 cells from the patient and 20 cells of each 

parent were fully analysed. 

Metaphases of the patient were 

analysed by the combinatorial binary 

ratio labelling (COBRA-FISH approach; 

Tanke et al. 1999), allowing the 

identification of each arm by a 

different colour combination. Labelling, 

hybridisation and immunostaining were 

performed as previously described 

(Tanke et al. 1999). For chromosomes 

that were found by multicolour FISH to 

be rearranged, libraries labelled with 

single fluorochromes were hybridised to 

metaphases of the patient to confirm 

the identity of the rearranged 

chromosome segments. 

 

Array comparative genomic 

hybridisation (CGH) 

Slides containing triplicates of ~3,500 

BAC/PAC DNA targets spaced at ~1 Mb 

intervals were produced in the Leiden 

University Medical Center. The BAC set 

used to produce these arrays was 

received from the Wellcome Trust 

Sanger Institute (UK), and information 

regarding the full set is available at the 

Sanger Center mapping database site, 

Ensembl (http://www.ensembl.org/). 

Protocols for BAC DNA preparation and 

amplification, spotting on the slides and 

hybridisation were previously described 

(Knijnenburg et al. 2005), and based on 

protocols optimised by the group of Dr. 

N. Carter (Carter et al. 2002; Fiegler et 

al. 2003; Tanke et al. 1999). Slides 

were scanned with a GenePix Personal 

Fig. 1a–e Rearranged chromosomes and their normal 
homologues present in the patient carrying a complex 
chromosome rearrangement. a G-banding image shows a 
three-way translocation (2;10;11) and an insertion of 2p 
in der(2)(q); b 24-colour hybridisation confirms the 
exchange of material between (2;10;11), and identifies 
an additional weak signal on der(2)(q). c Painting with a 
chromosome 10 library shows that the small insertion on 
2q is derived from chromosome 10. d Hybridisation with 
chromosomearm paintings for chromosome 10 and 2 
shows that the material from 10q into der(2)(q) maps 
proximal to 2p material. e Chromosome 2 painting 
hybridised together with three BAC probes on 2p. The 
three signals are present on the normal chromosome 2. 
The other green and blue signals map to der(2)(q) and 
der(11), respectively (see map in Fig. 2). The red-
labelled BAC is deleted and does not present other 
signals on 2p material. Note that the red-labelled BAC 

also presents a secondary signal on 11qter 
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4100A scanner, and the spot intensities measured by the GenePix Pro 4.1 

software (Axon Instruments, Westburg BV, Leusden, The Netherlands). Further 

analyses were performed using a home-made routine developed in Microsoft 

Excel 2000, and spots outside the 20% confidence interval of the average of the 

replicates were excluded from the analyses. Unbalances of the targets were 

determined based on log 2 ratios of the average of their replicates, and we 

considered sequences as amplified or deleted when outside the ±0.3 range.  
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Fig. 2 Array CGH profile of chromosome 2. The graphic shows the log 2 values of the array CGH test/reference ratios 

for BACs in chromosome 2. The arrow shows the deleted BAC on 2p  
 

Results 

 

G-banding analyses revealed a CCR, which involved a three-way translocation 

t(2;10;11)(q23;q22;q23), plus an additional intrachromosomal rearrangement 

involving the translocated chromosome 2 and resulting in the insertion of 

segment 2p11.2-p15 into 2q22 (Fig. 1a). Karyotypic analysis of the parents was 

normal. 

Multicolour FISH analyses confirmed the insertion of 2p material into the long 

arm of chromosome 2, and revealed that the exchange between chromosomes 2, 

10 and 11 was more complex than a straight three-way translocation: in addition 

to the previously detected segment of 11q on the der (2) long arm, a small 

insertion of 10q material was also present (Fig. 1b–d). 

Array CGH results revealed a cryptic deletion on 2p involving BAC RP11-335E8, 

whose localisation was cytogenetically compatible with the proximal breakpoint 

of the insertion (Fig. 2). To confirm this deletion and investigate how it related 

to the rearrangement, we hybridised both the deleted and its two flanking 

probes to metaphase spreads of the patient. One signal of each one of the three 

probes localised to the proximal short arm of the normal chromosome 2. In 

accordance with the array results, RP11-335E8 did not produce any other signal 

on 2p material. However, RP11-335E8 produced secondary signals on 11qter, 

which is typically seen in normal controls (data not shown): in the cells of this 
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patient, one of these secondary signals localised to the normal chromosome 11, 

and the other to the terminal region of der(2) (red-labelled, Fig. 1e). The two 

flanking probes hybridised also to the long arms of der(2), (RP11-1P9, green-

labelled, proximal BAC) and der(11) (blue-labelled, distal BAC: RP11-535E19), 

respectively (Fig. 1e). Accordingly, the karyotype of the patient is currently 

regarded to be as follows (Mitelman 1995): 46,XY,der(2)(2pter � 2p15::2p11 � 

2q22::10q22 � 10q23::2p13 � 2p15::11q23 � 11qter),der(10)(10pter � 

10q22::2q22 � 2qter),der(11)(11pter � 11q23::2p12 � 2p12::10q23 � 10qter. 

Figure 3 shows a map of the rearranged region on chromosome 2p, the location 

of the FISH probes on chromosome 2, and indicates to which of the derivatives 

these probes map.  

A representation of the rearranged chromosomes, and a proposed sequence of 

events invoking the minimum number of exchanges leading to this karyotype 

within a single cell cycle, are depicted in Fig. 4. 

 

 
 
Fig. 3 Scheme of the rearranged region on 2p. The figure is a representation of the 2p region containing the deleted 

BAC and the breakpoint between der(2) and der(11). The figure shows the BACs present on the array, the additional 

BACs investigated by FISH, the maximum possible size of the deletion, and the genes that might be absent  
 

Discussion 

 

Initially, the complex rearrangement described here was interpreted as 

balanced, and derived from a three-way translocation between chromosomes 2, 

10 and 11, and an insertion from the short into the long arm of der(2). However, 

48-colour chromosome arm painting revealed that the rearrangement was far 

more complex than originally estimated, involving a larger number of breaks. 

Furthermore, array CGH analyses showed a cryptic deletion associated with one 

of the breakpoints. Given the ~1 Mb resolution of the array used, the occurrence 

of further imbalances of small size cannot be excluded. Until recently, the 

detection of imbalances associated with apparently balanced chromosome 

rearrangements depended on sequencing across the breakpoints, and have only 

sporadically been described (Borg et al. 2002; Kumar et al. 1998). The 
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combination of array CGH and FISH, as described here, enormously facilitates 

such analysis. 

It is unclear how the phenotype of our patient relates to his chromosome 

rearrangements, but it is likely that either the 2p deletion, or one of the many 

breakpoints, or a combination of these, had a role in this. None of the 

breakpoints present in our patient are compatible with gene locations believed 

to be involved in attention deficit-hyperactivity disorder (ADHD), except maybe 

ADRA2 (10q25.2) (http://www.ensembl. org/), which is relatively close to the 

cytogenetically estimated breakpoints on 10q (10q22 and 10q23). The BAC on 2p 

that is deleted in our patient does not contain any identified gene, but the 

surrounding area that might also be deleted (in between the two adjacent BACs) 

includes a number of genes (http://www.ensembl. org/). We showed by FISH 

that the majority of them map to the der(2) (Fig. 3), and only few of them map 

to the possibly deleted area, namely NM_032181, MRPL19 and C2orf3. NM_032181 

is a gene of unknown function, but C2orf3 is known to be a regulator involved in 

transcription repression (Johnson et al. 1992), while MRPL19 codes for the 60S 

ribosomal mitochondrial protein L19 (http://www.ensembl.org/). Although the 

phenotypic effect of hemizygosity for these genes is unknown, the gene functions 

are broad enough to consider their possible involvement in the abnormal 

phenotype of the patient. 

 

 
 

Fig. 4a–d Proposed model for the formation of this complex chromosome rearrangement. The proposed sequence of 

events invokes a minimum number of exchanges leading to the reported rearrangement. a–d Each of the steps in 

temporal order, from the normal karyotype (a) to the observed configuration of the rearranged chromosomes after 

G-banding, multicolour FISH and array CGH analysis (d). For the present model, we have to assume that the 

recombination events have occurred in a chronological order within the span of a single cell division  
 

The sequence of events that gave rise to the CCR in our patient is not easy to 

determine. We propose a chronological sequence in Fig. 3 that basically involves 

two translocations and one insertion, which appears to be the minimum number 

of events required for such rearrangement. It is reasonable to conceive that a 

‘‘catastrophic’’ event simultaneously producing multiple chromosome breakages 

gave rise to this and other CCRs. A complication of our model for the present 
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rearrangement, is that the events proposed must have occurred sequentially; i.e. 

first, a translocation, followed by an insertion, and finally by another 

translocation, in which a segment would be lost in the breakpoint region. In 

cancer, complex chromosome rearrangements are assumed to result from 

alterations accumulated during many cell divisions. However, we found no 

evidence of the presence of different clones containing precursor karyotypes in 

our patient, suggesting that his CCR originated either at gametogenesis or at 

fertilisation. Because of the absence of detectable mosaicism, we are forced to 

assume that the recombination events have probably occurred in a temporal 

order within the span of a single cell division. 

The present study illustrates that array CGH, combined with other molecular 

cytogenetic methodologies, will not only improve the description of rearranged 

chromosomes, but also challenge our interpretation of their mechanisms of 

origin. 
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Abstract 

 

Ring chromosomes are rare cytogenetic findings and are associated at phenotypic level 

with mental retardation and congenital abnormalities. Features specific for ring 

chromosome syndromes often overlap with the features of terminal deletions for the 

corresponding chromosomes. 

Here we report a case of a ring chromosome 14 which was identified by conventional 

cytogenetics and shown to have a terminal deletion and an additional inverted 

duplication with a triplication by using large insert clone and oligo array-Comparative 

Genomic Hybridization (array-CGH), FISH and Multiplex Ligation-dependent Probe 

Amplification (MLPA). 

The combination of an inverted duplication with a terminal deletion in a ring 

chromosome is of special interest for the described syndromes of chromosome 14. The 

presented findings might explain partly overlapping clinical features described in 

terminal deletion, duplication and ring chromosome 14 cases, since these 

rearrangements can be easily overlooked when performing GTG-banding only. 

Furthermore, we suggest that ring chromosome formation can act as an alternative 

chromosome rescue next to telomere healing and capture, particularly for acrocentric 

chromosomes. 

To our knowledge this is the first time an inverted duplication with a terminal deletion 

in a ring chromosome is identified and characterized using high resolution molecular 

karyotyping. Systematic evaluation of ring chromosomes by array-CGH might be 

especially useful in distinguishing cases with a duplication/deletion from those with a 

deletion only. 
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Introduction 

 

Ring chromosomes are uncommon findings in pre- and postnatal cytogenetics. 

Inheritance of ring chromosomes has been reported1-3 but the majority of ring 

chromosomes are de novo. They have been reported for all human chromosomes 

and are known to cause multiple congenital anomalies and mental retardation. 

Ring chromosomes are generally believed to result from distal breakage of the 

short and long arm of a chromosome and rejoining of the ends.4 There are also 

reports with no apparent deletion of the telomeric ends, thus resulting in 

complete ring chromosomes.5 Patients with ring chromosomes often exhibit a 

general overlap in phenotype, which has coined the term “ring syndrome”.6 

Growth failure with no or minor anomalies is found to be the major abnormality 

in patients with complete ring chromosomes and is thought to be the result of 

cell death during development. Indeed, sister chromatid exchange during the cell 

cycle may cause mechanical interference of the cell division because of 

disruption, breakage, entangling or doubling of rings, resulting in aneuploidy and 

possible death of the daughter cells. In a study of 207 patients carrying a ring 

chromosome,6 one fifth showed to be affected with this general ring syndrome. 

When both telomeric ends and coding sequences are deleted, the phenotype of 

the patient is in general more severe, often with specific characteristics related 

to the chromosome involved. 

Here we report the characterization of a ring chromosome 14 containing a 

terminal deletion and an inverted duplication with a triplication by using 

molecular cytogenetic tools such as array-CGH, MLPA and FISH. The existence of 

a duplication with a terminal deletion in a ring chromosome similar to other 

duplication/deletion cases7,8 might have clinical consequences in patients with 

ring chromosome 14 syndrome. This finding might explain the overlapping clinical 

features in patients with a ring chromosome 14 compared to patients with a 

terminal duplication of chromosome 14, since existing duplications in ring 

chromosomes can be easily overlooked at the cytogenetic level. Accordingly the 

large overlap in clinical features between published patients with a distal 

duplication and those with a distal deletion suggests that some duplication 

patients have an accompanying distal deletion, similar to the patient discussed in 

Chen et al.9  

Here we show the importance of using combined molecular cytogenetic 

techniques in the characterization of chromosomal alterations, in particular in 

patients with ring chromosomes.  

 

Case report 

 

The proband is an 8-year-old girl of healthy, non-consanguineous parents. She has 

two sisters and two brothers, all normal. Ultrasound examination at 34 weeks of 

gestation showed generalized growth retardation and one umbilical artery. Birth 
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was at 37 weeks, birth weight was 1970 gram (p30), head circumference was 

30.5 cm (<p3).  

Examination at 4 months revealed craniofacial dysmorphisms namely 

hypertelorism, upturned nose, broad nasal bridge, malformed helices and mild 

micrognathia. A single palmar crease bilaterally and abnormally implanted toes 

were noted. At 9 months a patent ductus arteriosus was surgically closed. At 

present she is severely developmentally delayed. She is microcephalic (<p3), has 

short stature (<p3) and low weight (<p3). Growth hormone (GH) and Insulin-like 

Growth Factor 1 (IGF1) levels were normal. She suffers from recurrent upper and 

lower airway infections, eczema, scoliosis and retinitis pigmentosa. She has 

hypogammaglobulinemia (IgG/M and A) and normal numbers of peripheral B 

lymphocytes. She has sleeping difficulties, poor feeding and seizures. Informed 

consent was obtained from parents and patient according to routine LUMC 

procedure. 

 

Materials and methods 

 

Conventional cytogenetic analysis on GTG-banded chromosomes from cultured 

lymphocytes of the patient and the parents was performed according to standard 

techniques. From the proband and the parents 100 and 50 cells were analyzed 

respectively. 

Fluorescence in situ hybridization (FISH) was performed according to standard 

protocols on metaphase chromosomes or interphase nuclei of the proband, using 

Cy5-ULS or D-Green-ULS labeled Whole Chromosome Painting probe (WCP) #14 

(Kreatech biotechnology, Amsterdam, the Netherlands), half-YAC clone yRM2006 

and Vysis® LSI® IGH/CCND1 combined probe (for 11q13 and 14q32.33, 

respectively) (Abbott Molecular, Hoofddorp, the Netherlands). Three BAC clones 

that mapped at 14q32.12 and two at 14q32.33, namely RP11-258D14, RP11-

489D22, RP11-371E8, RP11-73M18 and RP11-417P24 respectively (table 1), 

labeled with Cy3-dUTP (GE Healthcare, Diegem, Belgium) or FITC-dUTP (Roche 

diagnostics, Almere, the Netherlands) were used for further confirmations. 

Array-CGH was performed using ~1.0 Mb spaced whole genome large insert clone 

arrays, which were made available by the Wellcome Trust Sanger Institute 

(http://www.sanger.ac.uk). The clones were grown, amplified and spotted as 

previously described.10,11 Genomic DNA of the patient was isolated using standard 

techniques, and 500 ng was labeled with Cy3-dCTP (GE Healthcare, Diegem, 

Belgium) using the BioPrime® DNA Labeling System (Invitrogen, Breda, the 

Netherlands). As a reference DNA, 500 ng female human genomic DNA (Promega, 

Leiden, the Netherlands) was labeled using Cy5-dCTP. Hybridization and slide 

washing was performed without prehybridization on a HS400 hybridization station 

(Tecan, Giessen, the Netherlands). The arrays were scanned with a GenePix 

4100A scanner (Axon Instruments, Union City, CA) and the images were processed 

using GenePix Pro 4.1 software. Final analysis of the intensity ratios of the 
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hybridized DNA was done using Microsoft Excel according to published 

standards.10  

For further high resolution analysis of duplications and deletions, oligo array-CGH 

was performed using the Agilent Human Genome CGH Microarray Kit 244K 

(Agilent, Amstelveen, the Netherlands) according to the manufacturer’s 

instructions following protocol version 4.0. Data analysis was performed with the 

CGH Analytics 3.4 software platform (Agilent, Amstelveen, the Netherlands). 

MLPA was performed as described by White et al.12 The selected probes were 

ordered from Invitrogen (Breda, the Netherlands), sequences are available as 

online supplementary data. Quantitative readout was done using the ABI 3730 

DNA analyzer (Applied Biosystems, 

Nieuwerkerk a/d IJssel, the 

Netherlands). The accompanying 

Genescan 3.5 software was used for 

peak analysis and further downstream 

normalization and calculations were 

performed in Microsoft Excel as 

described before12. 

Quantitative fluorescent polymerase 

chain reaction (QF-PCR) was performed 

using polymorphic short tandem repeat 

(STR) markers for allelotyping. Markers 

were chosen to cover the distal part of 

chromosome 14q, from 14q24.2 to 

14qter.9  
 

 

Table 1: Genomic location of BAC clones used in confirmatory FISH and genomic location of oligos 

around the breakpoints found with oligo array-CGH. 

BAC clone Locus Regiona Involvement 

RP11-258D14 14q32.12 92079320-92288476 in proximal side of triplication 

RP11-489D22 14q32.12 92428426-92630687 in distal side of triplication 

RP11-371E8 14q32.13 92565641-92758891 in proximal side of duplication 

RP11-73M18 14q32.33 103217347-103382885 in distal side of duplication 

RP11-417P24 14q32.33 105267358-105437117 in proximal side of deletion 

Oligo Locus Regiona Involvement 

A_14_P101212 14q32.12 91679319-91679378 in proximal side of triplication 

A_16_P02972545 14q32.12 92360710-92360769 in distal side of triplication 

A_14_P109278 14q32.12 92371629-92371688 in proximal side of duplication 

A_16_P02989318 14q32.33 103716114-103716166 in distal side of duplication 

A_16_P02989342 14q32.33 103727207-103727260 in proximal side of deletion 
 

aaccording to Ensembl v42 database, http://www.ensembl.org/homo_sapiens/index.html 

 

Figure 1: The ring chromosome 14 of the patient and its 
normal homolog. (a) GTG-banded images (b). FISH 
applied to a metaphase cell with BAC RP11-73M18 (red), 
BAC RP11-371E8 (green) and whole chromosome paint 
for chromosome 14 (blue), showing the inverted 

duplication in the ring chromosome. 
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Results 

 

Cytogenetic analysis resulted in a ring chromosome 14 in 95 of the 100 analyzed 

cells from the patient (figure 1a) while the remaining 5 cells showed a complex 

rearrangement involving endoreduplication of the ring chromosome. Both parents 

presented a normal karyotype. FISH using the yRM2006 probe demonstrated the 

absence of the subtelomeric region of 14q in the ring chromosome. In a later 

stage, when the proband presented with recurrent infections, the deletion was 

shown to encompass the IgH gene using the LSI® IGH/CCND1 combined probe, 

which is located at 14q32.33 at about 1 Mb from the telomere (data not shown). 

Array-CGH was performed to further map the deletion. The result revealed an 

additional duplication of 14q32.12 to 14q32.32 (figure 2) next to the already 

detected deletion of 14q32.33 to 14qter. The size of the duplication was found to 

be 10.8 to 13.5 Mb, from BAC clone RP11-73M18 to RP11-371E8, whereas the size 

of the deletion was 1.1 to 3.0 Mb, from BAC clone RP11-417P24 to CTC-820M16. 

These findings were confirmed by FISH, whereby the duplicated clones were 

chosen most proximal (RP11-73M18) and distal (RP11-371E8) to the centromere. 

The FISH showed the duplication to be inverted (figure 1b). BAC clone RP11-

417P24, located within the deleted area, was used to confirm the deletion (not 

shown). FISH using the same BAC probe sets showed no alteration (gain, loss or 

inversion) in any of the parents. 

 

 
 

Analysis with polymorphic markers that map to the deletion, duplication and a 

normal part of the chromosome, proved the duplication to be intrachromosomal. 

The marker analysis showed a duplication of one allele of markers D14S557 and 

D14S543 (Table 2). Parental analysis revealed that the ring chromosome is of 

paternal origin. 

Additional high resolution oligo array-CGH confirmed the previous findings, the 

size of the amplified region was estimated to be 11.344 Mb and the size of the 

deletion was estimated to be 2.641 Mb. The genomic locations of the oligos

Figure 2: Array-CGH log2 

ratio plot of chromosome 

14 of the proband at about 

1 Mb resolution, showing a 

distal duplication and a 

terminal deletion of 

chromosome 14 material. 

The dotted horizontal line 

at -0.3 and 0.3 represents 

the threshold line for 

deletions and duplications, 

respectively. 
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Table 2: Location of short tandem repeat (STR) markers and genotypic results in the proband and her 

parents. 

Markers Locus Regiona mother father proband 

D14S620 14q24.2 72401116-72401231 114,114 114,118 114,118 

D14S739 14q31.1 81336367-81336556 184,184 176,184 176,184 

D14S616 14q31.3 84263655-84263874 211,215 223,223 211,223 

D14S128 14q31.3 85450372-85450704 336,363 332,344 332,336 

D14S617 14q32.12 91272543-91272683 139,161 161,165 139,165 

D14S557 14q32.32 102189847-102190162 304,320 275,287 287,287,304 

D14S543 14q32.33 103658598-103658852 244,252 241,249 249,249,252 
a according to Ensembl v42 database, http://www.ensembl.org/homo_sapiens/index.html 

 

around the breakpoint are found in table 1. Interestingly, this assay revealed a 

triplicated 681 kb region in the proximal duplication region, belonging to band 

14q32.12 (figure 3). A confirmatory MLPA test using probes designed for all 

altered regions (triplicated, duplicated, deleted and normal) proved the 

presence of all alterations, including the triplication of the region in band 

14q32.12 (figure 4) and it showed that the parents of the proband have a normal 

copy number for all tested regions. FISH using BAC’s RP11-258D14 and RP11-

489D22 showed that the triplicated region is located within the ring, at the distal 

side of the rearranged q-arm (not shown). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

 

Using the combination of FISH and array-CGH in genetic analysis has 

demonstrated that seemingly simple rearrangements are often more complex 

than defined by GTG-banding.10,13,14 After conventional cytogenetic screening 

(figure 1a) the karyotype of the proband was described as 46,XX,r(14)(p12q32). 

To further map the breakpoint, array-CGH was performed with a resolution of 

about 1 Mb (figure 2). Next to the expected deletion of band 14q32.33 an 

additional duplication of 14q32.12 to 14q32.32 was revealed. FISH using the first 

Figure 3: A combined display 

of the oligo array-CGH (open 

circles) and the ± 1 Mb 

resolution large insert clone 

array-CGH (closed circles), 

log2 ratio plots of the 

chromosome 14q32.11-qter 

region of both experiments 

on the proband are shown. 

The oligo array shows a 

triplication, a duplication 

and a deletion of the distal 

region of chromosome 14. 

The clones of the 1 Mb array 

fall just adjacent to the 

triplication. 
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and the last duplicated BAC clone confirmed this finding and showed the 

duplication to be inverted (figure 1b), which originated from one paternal 

chromosome based on STR-allelotyping (table 1). 

An inverted duplication associated with a terminal deletion was first described 

for distal chromosome 8p,7,8 followed by 1q,15 4q,16 15q,17 and, more recently, 

also for chromosome 14q.9 A mechanism for the formation of inverted 

duplications associated with terminal deletions has been described both for 

intrachromosomal duplications, based on normal parental chromosomes18 and for 

intra- and interchromosomal duplications based on a parental inversion carrier.19 

These proposed mechanisms assume that an intrachromosomal U-type 

recombination during meiosis I, or a loop formation combined with one or two 

recombination events between homologous alleles, has occurred. The 

consequential recombinant dicentric chromosome would be deleted beyond the 

distal recombination site. At meiosis II, the two linked chromatids can segregate 

to the opposite poles resulting in a breakage between the two centromeres. If 

this breakage occurs asymmetrically, the two resulting recombinant products are 

a derivative with an inverted duplication and a deleted 14q derivative.   

When chromosomal rearrangements take place, either constitutional or 

tumorigenic, broken chromosome ends need to be stabilized to prevent end-to-

end fusions and exonucleolytic degradation. Telomere healing can be 

accomplished by addition of human telomeric tandem repeat sequence to broken 

chromosome ends20 or by telomere capture, which in fact is actually 

subtelomeric translocation to the broken chromosome end, resulting in an extra 

duplicated subtelomeric region. This latter mechanism is proven in melanoma 

and other cancer cell lines and in irradiated lymphoblastoid and fibroblast cells.21 

Examples of constitutional telomere capture are less common and is only 

reported a few times.22,23 Among the several inverted duplication/deletion 

events reported,7-9,15-19,23 in a single case the broken chromosome was proven to 

be repaired with telomere capture.23  

On the contrary, in our case the healing of the broken end may have been 

mediated by ring formation. In an acrocentric chromosome, an additional break 

involving the short arm probably does not lead to an additional loss of coding 

sequence and consequently to impaired cell proliferation. The fact that ring 

chromosome formation in 47% of the reported cases6 involves acrocentric 

chromosomes, supports this notion. 

If the recombination were based on non allelic homologous recombination 

(NAHR), then a fragment with a normal copy number would still be present 

between two recombined low copy repeats, between the duplicated and the 

deleted region at 14q32.32-14q32.33. Since, neither the 1 Mb BAC array nor the 

STR-allelotyping was conclusive to locate a possible fragment with a normal copy 

number between the duplicated and deleted region, an oligo array was 

performed. The 244k Agilent oligo array platform was chosen because between 

the distal duplicated and proximal deleted BAC clones there were 271 oligo 
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reporters available, while for example in the 500k SNP based chips from 

Affymetrix 120 SNP elements were present with an uneven coverage of the region 

of interest, including some gaps of 150 kb. 
 

Table 3: Comparison of the clinical features in published cases with distal chromosome 14 alterations 

and the presented case. 

  Van Karnebeek et al.25 Chen et al. 9a Our proband 

  Linear 14q deletions Ring 14 deletions 14q duplications Inv dup/del Inv dup/del 

  q32-distal  (in %) q32-distal (in %)  q31-qter  (in %)  case ring case 

No. of cases 12  20  9    

Gender (males) 3  8  5    

Mental retardation 11/11 100 20/20 100 7/7 100 + + 

Seizures 1/10 10 19/20 95    + 

Hypotonia 8/12 67 11/19 58 5/9 56 + + 

Prenatal growth retardation 5/12 42 7/16 44    + 

Postnatal growth retardation 5/12 42 9/17 53 7/8 88 + + 

Microcephaly 4/12 33 14/18 78 6/9 67 + + 

Dolichocephaly 3/8 38 5/12 42     

High forehead 10/10 100 7/12 58     

Prominent forehead 7/10 70 9/12 75     

Hypertelorism 3/10 30 7/15 47 7/9 78 + + 

Strabismus 3/9 33 4/15 27 1/7 14 - - 

Blepharophimosis 6/10 60 10/13 77 0/7 0 + + 

Ptosis 4/11 36 2/14 14 0/7 0 - - 

Downslanting palpebral fissures 6/11 55 8/13 62 7/9 78 + - 

Epi-/telecanthi 8/12 67 12/17 71 2/9 22 + - 

Broad/flat nasal bridge 10/11 91 10/13 77    + 

Anteverted nares 2/9 22 5/12 42    + 

Dysmorphic nose     6/9 67 + + 

Short bulbous nose 5/10 50 6/11 55    - 

Long philtrum 4/9 44 4/11 36    - 

Broad philtrum 8/10 80 8/11 73    - 

Thin upper lip 6/8 75 5/11 45     

Small, fish shaped mouth 6/10 60 6/13 46    - 

Highly arched palate 9/10 90 7/13 54   - - 

Abnormal dentition 2/6 33 2/10 20     

Low set ears 3/9 33 7/8 88    - 

Malformed helices 5/8 63 3/8 38 7/9 78 + + 

Micrognathia 6/11 55 5/12 42 8/9 89 - + 

Pointed chin 4/10 40 1/12 8    - 

Short neck 1/6 17 7/14 50     

Webbed neck 2/6 33 1/11 9    - 

Congenital heart defect 3/9 33 1/15 7 6/9 67 + + 

Single palmar crease 6/7 86 1/15 7    + 

Brachydactyly 0/3 0 3/9 33    - 

Clinodactyly 2/7 29 1/8 13 7/9 78 + - 

Tapering fingers/arachnodactyly 2/5 40 2/9 22     

Retinitis pigmentosa 0/5 0 8/16 50    + 

Scoliosis        + 
a and references herein. 

 

Despite the fact that the oligo array did not detect a region of normal copy 

number between the duplicated and the deleted fragment, the region of the 

distal breakpoint could be narrowed down to ~11 kb. 

There was no evidence for the presence of LCR’s in this interval (Ensembl, 

release 42), but this region does encompass a 2.8 kb chained self alignment 

fragment having homology within its own region. Possibly this region can cause 

hairpin or loop formation and can mediate recombination or a double strand 

break, eventually leading to the U-type of translocation. 
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Moreover, the oligo array showed an extra copy number gain of the first 600 kb 

of the duplicated region (figure 3), at 14q32.12, which was confirmed with MLPA 

(figure 4). Based on FISH results with a BAC probe from this region, it was found 

that the extra 600 kb fragment is inserted at the distal side of the chromosome, 

the part that is fused to the p-arm side of the centromere. In complex 

chromosome rearrangements, often more breaks are found than actually needed 

to explain the rearrangements on cytogenetic level.10,13,14 The extra amplification 

of this fragment at the distal side of the chromosome is probably a secondary 

event, following the inverted duplication and the distal break of the dicentric 

chromosome, illustrating the struggle to rescue the chromosome. The finding of 

this additional triplication stresses the importance of introducing high resolution 

techniques in investigating genetic aberrations in patients.  

Due to the large overlap in the clinical features of cases with rearrangements 

within the distal region of chromosome 14 (table 3), ring chromosome 14, 14q 

deletion, and chromosome 14 distal duplication syndromes should be discussed 

together. 

 

 
 

 

 

 

 

 

 

 

 

 

 

The ring chromosome 14 syndrome was delineated by Schmidt et al.,24 and it was 

further described by van Karnebeek et al.25 A distal duplication of chromosome 

14 results in a variable clinical picture that is mainly depending on the size of the 

duplication.9,26 Main features that are found in distal duplications of 14q31�qter 

are mental and growth retardation, microcephaly, hypertelorism, abnormal ears, 

micrognathia and congenital heart defects. In the case of Chen et al., an 

additional terminal deletion was demonstrated using FISH, next to the 

duplication. The small terminal deletion, which in itself can lead to a severe 

phenotype,25 or an additional duplication in a ring chromosome, is sometimes 

only detectable by molecular techniques such as FISH and array-CGH. It 

emphasizes the significance of high resolution molecular karyotyping for the 

establishment of accurate phenotype/genotype correlations. 
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Figure 4: Log 2 ratio plot of the 
confirmatory MLPA. The 
proband (closed circles) shows 
triplication, duplication and 
deletion of the expected 
probes. Both parents show no 
copy number change in the 
tested regions. Three control 
probes were tested in duplo 
(control probe 1-6) and are 
located in the EXT1 gene on 
chromosome 8q24.11, in the 
CREBBP gene on 16p13.3 and in 
the p300 gene on chromosome 
22q13.2. 
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Supplementary information accompanies the paper on European Journal of Human Genetics website 

(http://www.nature.com/ejhg) 
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ABSTRACT 
Microdeletions of 3q29 have previously been reported, but the postulated 
reciprocal microduplication has only recently been observed. Here, cases 
from four families, two ascertained in Toronto (Canada) and one each from 
Edinburgh (UK) and Leiden (Netherlands), carrying microduplications of 3q29 
are presented. These families have been characterized by cytogenetic and 
molecular techniques, and all individuals have been further characterized 
with genome-wide, high density single nucleotide polymorphism (SNP) arrays 
run at a single centre (The Centre for Applied Genomics, Toronto). In addition 
to polymorphic copy-number variants (CNV), all carry duplications of 3q29 
ranging in size from 1.9 to 2.4 Mbp, encompassing multiple genes and 
defining a minimum region of overlap of about 1.6 Mbp bounded by clusters of 
segmental duplications that is remarkably similar in location to previously 
reported 3q29 microdeletions. 
Consistent with other reports, the phenotype is variable, although 
developmental delay and significant ophthalmological findings were 
recurrent, suggesting that dosage sensitivity of genes located within 3q29 is 
important for eye and CNS development. We also consider CNVs found 
elsewhere in the genome for their contribution to the phenotype. We 
conclude by providing preliminary guidelines for management and 
anticipatory care of families with this microduplication, thereby establishing a 
standard for CNV reporting. 
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INTRODUCTION 
 
Contiguous gene syndromes involving small chromosomal duplications are 
typically less frequently reported in comparison to their microdeletion 
counterparts. Although these rearrangements can both arise from a common 
mechanism involving non allelic homologous recombination with regionspecific 
low copy repeats (Lupski 2004), microduplication syndromes are usually less 
commonly recognized, possibly due to ascertainment bias, milder and more 
variable phenotype, and technical limitations of cytogenetics and fluorescent in 
situ hybridization (FISH). Well characterized chromosomal regions shown to 
involve these reciprocal duplication and deletion events include duplication of 
17p11.2 causing a phenotype associated with moderate mental retardation and 
behavioural disturbances (Potocki et al. 2000), with the reciprocal microdeletion 
resulting in Smith-Magenis syndrome; microduplication of 22q11.2 (Ensenauer et 
al. 2003) having a somewhat variable phenotype with cardiac malformation and 
features similar to the classical microdeletion 22q11.2 syndrome; 
microduplication of 15q11-q13 characterized by developmental delay and autism, 
reciprocal to deletions causing Prader-Willi/Angelman syndromes (Dimitropoulos 
and Schultz 2007), and microduplication of 7q11.23, which has been related to 
severe expressive language delay (Somerville et al. 2005; Orellana et al. 2008; 
Torneiro et al. 2008; Merritt and Lindor 2008), while the corresponding deletion 
causes Williams-Beuren syndrome (Osborne et al. 1996). Most recently, copy 
number variations (CNVs) in the form of microdeletions and microduplications of 
chromosome 16p11.2 have also been observed in autism spectrum disorder 
(Kumar et al. 2008; Marshall et al. 2008; Weiss et al. 2008). 
With the use of microarray-based techniques, increasing numbers of novel copy 
number variants are being discovered both in apparently healthy control 
individuals (Redon et al. 2006; Pinto et al. 2007), and in patients with genetic 
disorders such as autism (Autism Genome Project Consortium 2007; Sebat et al. 
2007; Marshall et al. 2008) and schizophrenia (Walsh et al. 2008; Xu et al. 2008). 
Improved resolution of these microarray platforms is resulting in greater power 
to detect ever smaller events, well below the level of resolution of conventional 
cytogenetic examination (Feuk et al. 2006; Carter 2007). 
A microdeletion syndrome on chromosome 3q29 was originally described in six 
patients (Willatt et al. 2005). The common phenotypic features included a long 
narrow face, short philtrum, high nasal bridge, developmental and significant 
speech delay. The microdeletion was approximately 1.5 Mb in length and was 
between identical low copy repeat sequences on either side of the deletion 
breakpoints. This suggests that this region is susceptible to nonallelic homologous 
recombination, which could result in reciprocal exchange events at chromosome 
3q29. Two recent reports describe the apparent reciprocal microduplication 
event: the first, in the heterozygous state in five individuals of a three-
generation pedigree (Lisi et al. 2008), and the second including 19 cases, five of 
which appear to be the reciprocal event with the remainder overlapping this 
region (Ballif et al. 2008). Here, we describe index cases from four pedigrees 
(Case 1 apparently de novo, Case 2 a mother-child inheritance, Case 3 a nuclear 
family with multiple members carrying the duplication, and Case 4 an adopted 
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child from whom information about the biological parents is unavailable). These 
cases all have microduplication of chromosome 3q29, validated by fluorescent in 
situ hybridization (FISH), array-CGH, MLPA and/or high-resolution DNA SNP 
microarrays. Regardless of the initial discovery and validation techniques, we 
have also analyzed these individuals with genome-wide Affymetrix 500k SNP 
arrays in order to provide fine-map duplication breakpoints and ascertain other 
CNV events in their genomes. The clinical phenotypes of these patients are 
described in detail. Of interest, two have significant ophthalmological findings 
and developmental delay was frequent, suggesting that dosage sensitivity of 
genes located within 3q29 might be important for eye and cognitive 
development. 
 
CLINICAL REPORT 
 
Case 1 (Toronto): 
This patient is a 23 month old girl (Figure 1a), who was born to healthy, non-
consanguineous parents. The family history was negative for congenital 
anomalies (See pedigree, Figure 2a). The pregnancy was complicated by 
hyperemesis for the first five months and hypertension for the last two weeks. 
There were no known teratogenic exposures. Fetal ultrasounds at 9 and 20 weeks 
of gestation were reportedly normal. The patient was born at 36 weeks gestation 
via spontaneous vaginal delivery. Labour and delivery were uncomplicated with 
no neonatal resuscitation required. Apgars were nine at one and five minutes. 
The birth weight was 2,580g (50th-75th centile), length was 50 cm (90th centile), 
and head circumference was 31.5 cm (25th centile). Multiple congenital 
anomalies noted at birth included a large anterior fontanel, a high forehead with 
bitemporal narrowing, a downslanting right palpebral fissure, simple low-set 
ears, a broad nasal root and slitlike nares, a deeply grooved philtrum, thin upper 
lip and short neck with redundant nuchal skin (Figure 1a). She had a U-shaped 
cleft of the secondary palate. Extensive ophthalmologic abnormalities included 
bilateral microphthalmia, a right iris coloboma, right corneal clouding consistent 
with a Peter’s anomaly, and a cataract of the left eye. There was a 2 cm 
umbilical hernia. The anus was simple and anteriorly displaced. An abdominal 
ultrasound revealed a cyst of unknown etiology located at the right crest of the 
diaphragm. Examination of the extremities revealed partial 2-3 toe syndactyly 
bilaterally, sandle-gap bilaterally, and camptodactyly of the toes. A skeletal 
survey in the newborn period revealed bilateral proximal radial-ulnar synostosis. 
MRI of the brain at birth revealed absence of the inferior cerebellar vermis with 
an enlarged cisterna magna, consistent with a Dandy-Walker variant. There were 
also multiple small cystic changes of the periventricular white matter within the 
frontal horns of the lateral ventricles. An echocardiogram at birth was reported 
as normal; however re-evaluation at approximately one month of age for a 
persistent murmur revealed an 8 mm secundum atrial septal defect with left to 
right shunting, which has remained asymptomatic since birth.  
Abdominal ultrasound at 5 weeks of age further defined her abdominal cyst as 
arising from the stomach wall and wrapping around the inferior vena cava. The 
cyst was resected and she had an unsuccessful attempt at umbilical hernia 
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repair. She has had severe gastroesophageal disease and feeding difficulties since 
birth, requiring multiple high dose antireflux medications. Conductive hearing 
loss was detected at 6 months of age and required the insertion of myringotomy 
tubes. She underwent a right corneal transplant and left cataract excision at 4 
months of age. With the use of a contact lens in the left eye, her visual acuity 
was 20/190 in the left eye and 20/960 in the right eye. A 2.7x2.8 cm 
subcutaneous mass was noted on the posterior right thigh. CT scan of the mass 
suggested that it was likely a hemangioma. No medical intervention was 
required. Growth parameters at 8 months of age revealed weight less than the 
3rd centile, length at the 25th centile, and head circumference just below the 
50th centile. Her physical features, including microphthalmia, were similar to 
her newborn exam. There was central hypotonia. At 18 months of age, the 
patient’s first tooth erupted. Tooth shape was normal. A repeat attempt at 
surgical repair of the umbilical hernia and her extensive diastasis recti was 
successful at 20 months of age. 
Developmental concerns were noted in the first year of life as she had significant 
hypotonia and visual impairment. She was smiling at 3 months of age, reaching 
and grasping at 8 months of age. She began rolling over at eight months. 
Following her surgery at 20 months, she began to sit independently, crawl and 
stand with support. She had a formal communication assessment at 15 months of 
age which indicated that her receptive language abilities were in the 7-9 month 
old range, and her expressive skills were in the 5 month old range. She was 
babbling at 23 months but did not yet have specific words. She receives 
occupational therapy, speech therapy, and is enrolled in an infant development 
program. 
 
Case 2 (Edinburgh): 
This girl was the first child of non-consanguineous parents. She was born by 
spontaneous vaginal delivery weighing 3,080g (12th percentile) at 41 weeks of 
gestation. An increased nuchal translucency was noted during the pregnancy but 
no invasive testing or detailed ultrasound examination was carried out. She was 
noted to be hypotonic soon after birth and was admitted to the neonatal 
intensive care unit. A cardiac ultrasound demonstrated an atrioventricular septal 
defect. She was thought to have facial dysmorphism compatible with a diagnosis 
of Down syndrome but chromosome analysis revealed a 46,XX apparently normal 
female karyotype. At this point she was reviewed by a clinical geneticist (DRF) 
who noted significant craniofacial dysmorphisms including upslanting palpebral 
fissures, large anterior fontanelle, brachycephaly, hypoplastic supraorbital ridges 
and a depressed nasal root (Figure 1b). Her eye examination was remarkable with 
a left sided iris “coloboma” caused by segmental aniridia with no evidence of an 
optic fissure closure defect. Her occipito-frontal cirumference at 1 week of age 
was 34cm (25th percentile). She had minor digital dysmorphisms with 5th finger 
clinodactyly and mild syndactyly of the 2nd and 3rd toes on the left foot. She had 
unusual buttock folds. At this point she had further investigations including FISH 
for deletion 22q11.2 and Smith-Magenis syndrome, a full skeletal survey, a 
diasiallotransferrin assay for congenital disorders of glycosylation, and 
quantitative plasma amino acid urinary organic acids analysis, all of which were 
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normal. She had an emergency admission for four different infective episodes 
during the first five months of life: bronchiolitis, adenovirus pneumonia, 
pneumococcal conjunctivitis and Clostridium difficile. At the age of seven months 
she had an elective repair of her AVSD and a secundum atrial septal defect. She 
had a prolonged recovery in intensive care and required continuous inotropic 
support for 38 days following the operation. 
  

 
 
Figure 1. Clinical presentation photographs. Consent for publication was obtained in all cases. a) Case 1, 
ascertained in Toronto, Canada (newborn, left panel; at age 23 months, right panel). b) Case 2, ascertained in 
Edinburgh, UK. Detail of left eye abnormalities shown (lower panel). c) Case 3, ascertained in Leiden, The 
Netherlands. d) Case 4, ascertained in Toronto, Canada, at age 11 (top panels). Details of ears are shown (bottom 
panels). 

 
She had a Griffiths assessment at the age of 10 months and 24 days which showed 
global developmental delay with a developmental age equivelance for locomotor 
2.75 mo., personal & social 3.5 mo., hearing & language 6.5 mo., eye and hand 
coordination 4.5 mo. and performance 3.5 mo. She was noted to have a mild 
ataxia and a brain MRI at the age of 4.3 years showed a small cerebellar vermis. 
When last reviewed at the age of 8,6 years her height was -3.3SD, weight 21st 
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percentile and OFC -3.2 SD. She is a very pleasant and friendly girl who was in 
good general health. She remains hypotonic and mildly ataxic. She speaks in 
sentences and has no behavioural problems. She attends a special educational 
establishment where she is making progress with all aspects of her development 
but she has significant global cognitive impairment. 
The proband’s mother and 19-year-old maternal half-sister were both healthy 
(See pedigree, Figure 2b). The mother had a subsequent pregnancy that resulted 
in a termination for multiple fetal anomalies identified on antenatal ultrasound 
scanning. An autopsy on this fetus showed esophageal atresia with a 
tracheoesophageal fistula, a ventricular septal defect, truncus arteriosis, 
bilateral renal agenesis, bilateral radial aplasia, bilateral postaxial polydactyly of 
the feet and bilateral syndactyly of the 2nd/3rd and 3rd/4th toes. The mother’s 
full sister, who is healthy, had a child who died as a result of a complex cardiac 
defect. The proband’s maternal half uncle had been well until the age of 45 
years when he was diagnosed with renal cell carcinoma. 
  

 
Figure 2. Pedigrees of cases. a) Case 1. b) Case 2. c) Case 3. d) Case 4. 
 
Case 3 (Leiden): 
This 16 year old girl was born at term with normal birth weight (Figure 1c). There 
were no neonatal feeding problems or hypotonia. Motor development was slightly 
retarded. She was able to walk at two years of age. There was a more severe 
delay in speech development. At 10 years of age her vocabulary covered 40 
words. MRI at 12 years of age showed no brain abnormalities. At 16 years of age 
the girl was not toilet-trained. When walking she would easily stumble over. She 
was obese and had a small, narrow forehead, straight eyebrows, narrow 
palpebral fissures, hypotelorism, open mouth appearance, crowding of the teeth 
and low posterior hairline. There was profound mental retardation. 
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Both brothers of this girl attended special schools because of learning difficulties 
(See pedigree, Figure 2c). The father of the girl lives in an institution. His IQ is 
64. He is unable to read or write. He has straight eyebrows, deep set eyes and 
narrow palpebral fissures. 
 
Case 4 (Toronto): 
The proband is an adopted male who was thirty years of age at the time of last 
examination. He was the product of first pregnancy for a then 16 year old 
mother, who gave him up for adoption soon after birth. He was born at full term 
via vaginal delivery in breech presentation with a birth weight of 2,150 g (below 
3rd centile). He was noted at birth to have micrognathia, significant limb 
reduction defects of four extremities, congenital right hip dislocation, grade 1 
hypospadias and left cryptorchidism. At 17 months of age his weight was 5.4 kg 
(well below the 3rd centile), head circumference 45.5 cm (-2 SD); he had mild 
dysmorphisms described as a hypoplastic mandible with overbite as well as mild 
developmental and significant speech delay. Cardiac evaluation revealed a grade 
2/6 systolic murmur, but his EKG was normal. His hearing was tested at two years 
of age and was low-normal, with very mild conductive hearing loss in the left 
ear. ENT evaluation at 4 years of age (Figure 1d) revealed a narrow, high vaulted 
palate with submucous cleft palate and very mild tongue coordination 
difficulties. He was assessed by ophthalmology at eight years of age and was 
found to have slight nystagmus, visual acuity of 20/20 and no structural eye 
defects. At age 11 (Figure 1d), he was assessed by the craniofacial service 
because of severe class II malocclusion and underwent extensive orthodontic 
treatment and surgery including LeFort 1 to intrude the maxilla, mandibular 
sagittal split advancement and vertical reduction with advancement genioplasty. 
At 15 years of age he had left inguinal exploration that revealed an atrophic 
testis that was removed. 
The patient has mild developmental delay and learning disabilities. His 
milestones were delayed and he did not sit by himself until 2 years of age. At 34 
months of age he was performing at the level of a 20 month old, with prominent 
speech delay. The patient received therapy and was able to attend regular school 
with additional help due to learning disabilities affecting his reading 
comprehension. He finished high school, obtained a college degree, and now 
lives independently and works in customer care services. 
At last examination at 30 years of age his head circumference was 58 cm (+2SD); 
his features include a broad nasal bridge, high arched palate; ears that are 
normally placed but have simple, pointed pinnae with a thin upper border. He 
has increased adipose tissue and has developed multiple stria in the torso and 
abdomen. His extremities show significant transverse reduction defects. His most 
well developed limb is his upper right arm which includes a normal humeral arm 
segment and a partly developed forearm that extends 20 cm below the elbow 
and ends on a blind stump. The left arm and both legs consist only of proximal 
segments. All extremities have dermatoglyphic patterns at the tips, suggesting at 
least partial development of the hands and feet. However, no digits or 
metacarpals are appreciated. 
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Table 1: Comparison of clinical features in four patients with duplication of 3q29 
Clinical Feature Case 1 

(Toronto; 23 months) 
Case 2 

(Edinburgh;8 years) 
Case 3 

(Leiden;16 years) 
Case 4 

(Toronto;30 years) 

Birth Weight 2,850g 
(50th -75th centile) 

3,080g 
(12th centile) 

3,200g 
(25th centile) 

2,150g 
(<3rd centile) 

Microcephaly - + not reported - 
Generalized Obesity - - + + 
Ocular anomalies + + not reported - 
Palpebral fissure 
anomalies 

+ + + - 

Cleft Palate + - - + 
Dental anomalies + - + + 
Conductive hearing loss + - not reported + 
Structural brain anomaly + + - - 
Developmental delay + + + + 
Hypotonia + + - - 
Congenital Heart Disease + + - - 
Muskuloskeletal anomalies + - not reported + 

 
MATERIALS AND METHODS 
 
Case 1 (Toronto): PHA-stimulated lymphocytes from peripheral blood were 
cultured for 72 hours with thymidine synchronization. GTG-banding analysis was 
performed on peripheral blood lymphocytes using standard cytogenetic 
techniques. G-banded karyotypes at 500 band resolution were prepared for the 
patient and both of her parents. The de novo change in our patient was further 
evaluated using fluorescent in situ hybridization (FISH). FISH was performed on 
cultured lymphocytes using the following probes: a chromosome 3q subtelomeric 
probe (Oncor, Gaithersburg, MD), and BAC clones RP11-159K3 and RP11-962B7, 
directly labeled with Spectrum Orange and Spectrum Green, respectively (Figures 
3 and 4). Hybridized metaphase spreads were analyzed using a Zeiss Axioplan 2 
epifluorescence microscope. Images were captured by an Axiocam MRm Camera 
(Imaging Associates, Bicester, UK) and analyzed using an imaging system with 
MetaSystems Isis Software version 5.1.110 (Boston, MA). 
 
Case 2 (Edinburgh): The 3q29 duplication in the proband was initially discovered 
with the BlueGnome CytoChip V1.1 1Mb BAC-CGH array (BlueGnome Ltd., 
Cambridge, UK), which has contig coverage of microdeletion regions. BAC array-
CGH was performed on the proband and both parents where genomic DNA from 
each case was labeled by random priming. Hybridization and washes were 
performed on an HS 400TM Pro hybridization station (Tecan Ltd., UK). Each 
subarray was prehybridized for 45 minutes at 37° C with 1.5 µg of herring sperm 
DNA (Sigma-Aldrich, UK) in 75 µl of hybridization buffer (50% formamide, 7% 
dextran sulphate, 2x saline sodium citrate (SSC), 10mM Tris-HCl pH 7.5, & 0.1% 
(v/v) Tween 20). Test and reference samples were mixed, co-precipitated, and 
resuspended in a 75 µl hybridization solution that also contained 2.5 µg/µl Cot-1 
DNA (Invitrogen), denatured at 75° C for 15 minutes, incubated for two hours at 
37° C to block repetitive sequences, and hybridized for 21 hours. Post-
hybridization washes were performed using 3 wash cycles in each of 
PBS/0.05%Tween at 37° C, 0.1x SSC at 54 °C, 1x PBS at 37° C, and a final wash in 
PBS/0.05%Tween at 23° C. Slides were dried using high purity nitrogen. Arrays 
were scanned using a GenePix Pro 5.0 array scanner (Axon Instruments, UK) and 
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analysed using BlueFuse for Microarrays analysis software version 3.4 (BlueGnome 
Ltd, UK). 
The proband, an unaffected sister (age 19) and mother, as well as an uncle who 
has renal cancer at the age of 49 and a maternal aunt and her child who died 
with complex congenital heart disease were also assayed by MLPA. Confirmatory 
MLPA was performed using both P036B and P070 human telomere assays (MRC 
Holland, Netherlands), which contain two independent probes for the 3q29 
region. The P036B probe is situated in the BDH gene on 3q. The proximal probe 
sequence was GCCACCGGGAGGAACTGGGCCAT and the distal probe sequence 
TCTAACACCCGTTGCTACCATGCTGGCCACCCGCCTCTCCAGA. The second probe on 
3q, P070, is located in KIAA0226 and has a proximal probe sequence 5’-
CTCTTTCTCCAGGTCACTGCGCTGGAGGACAG and distal probe sequence 5’-
ATGTGCCGTCTTGTCCTGCCTGTTTCACATCAGCATAGGATCA. MLPA products were 
processed using an ABI 3100 Genetic Analyzer with ABI GeneScan™ ROX500™ size 
standard. Quantitative data analysis was obtained using the SoftGenetics® Gene 
Marker® v1.4 software. 
 
Case 3 (Leiden): Conventional cytogenetic analysis on GTG-banded chromosomes 
from cultured lymphocytes of the index case was performed according to 
standard techniques. Array-CGH was performed on all five family members using 
the ~1.0 Mb spaced whole genome large insert clone arrays, for which the clones 
were kindly made available by the Wellcome Trust Sanger Institute 
(http://www.sanger.ac.uk). The clones were grown, PCR amplified and spotted 
as previously described (Knijnenburg et al. 2005; Fiegler et al., 2003). Genomic 
DNA of the patient was isolated using standard techniques, and 500 ng was 
labeled with Cy3-dCTP (GE Healthcare, Diegem, Belgium) using the BioPrime® 
DNA Labeling System (Invitrogen, Breda, the Netherlands). As a reference DNA, 
500 ng female human genomic DNA (Promega, Leiden, the Netherlands) was 
labeled using Cy5-dCTP. Hybridization and slide washing was performed without 
prehybridization on an HS400 hybridization station (Tecan, Giessen, the 
Netherlands). Arrays were scanned with a GenePix 4100A scanner (Axon 
Instruments, Union City, CA) and images were processed with GenePix Pro 4.1 
software. Final analysis of the intensity ratios of the hybridized DNA was as 
previously described (Knijnenburg et al. 2005).  
Confirmatory MLPA was performed on the index case as described (White et al. 
2004). The selected probes were located in the NCBP2 gene. The proximal 
sequence was 5’- GGCCGCGGGAATTCGATTGGTGATGTTCTTCAGCAAATTCAA-
CAGGCCAAAGGAGTGTTT and the distal sequence was 5’-GTCACTGACA-
GAGCTCTCACCACTCACACTAGTGAATTCGCGGC. 
Quantitative readout was performed with an ABI 3730 DNA analyzer. The 
accompanying Genescan 3.5 software was used for peak analysis and further 
downstream normalization and calculations were performed as described (White 
et al. 2004). Two-colour interphase FISH confirmation of the duplication in the 
proband was performed with clones CTC-196F4 at 3q29, partly overlapping the 
DLG1 gene (as in Willatt et al. 2005), and 3p subtelomeric clone GS-1186B18 as a 
control. 
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Case 4 (Toronto): Routine cytogenetic workup was as for Case 1, above. The 
initial karyotype report of 46, XY was followed up with chromosomal microarray 
analysis (Kleberg cytogenetics Laboratory, Baylor College of Medicine, Houston 
TX USA; CMV version 5.0). 
 
Table 2. CNVs Detected in Patient Families With Affymetrix 500k Microarrays 

Cytoband 
Estimated 
Size (bp) 

Type Status In Children(1) Gene(s) involved 

Family of Case 1 

Proband 

3q29 2,399,433 gain de novo multiple genes; overlapping with 3q29 microdeletion 
syndrome (Willatt et al. 2005) 

6q16.1 60,058 loss inherited (paternal)(2) no genes; overlaps known CNVs 

8p23.1 407,187 gain inherited (maternal) FAM86B1, DEFB130, LOC44005; region of segmental 
duplications and known CNVs 

Mother 

8p23.1 202,167 gain - no known genes; numerous cDNAs; region of segmental 
duplications and known CNVs 

10q11.1-q11.21 906,591 gain - ZNF33B, BMS1L and numerous cDNAs; region of segmental 
duplications and known CNVs 

11q22.1 626,031 loss - cDNA AK128111; overlaps known CNVs 

15q11.2 1,908,357 loss - OR4N2, OR4M4, POTE15, LOC283755 and multiple cDNAs 

22q11.23 211,233 gain - LRP5L and multiple cDNAs; region of segmental 
duplications and known CNVs 

Father 

6q16.1 60,058 loss - no genes; overlaps known CNVs 

10q11.22 124,801 gain - no genes; region of segmental duplications and known CNVs 

14q11.2 153,147 gain - OR4N2, OR4K2, OR4K5, OR4K1 (odorant receptor gene 
cluster) 

Family of Case 2 

Mother 

3q29 2,086,988 gain - multiple genes; overlapping with 3q29 microdeletion 
syndrome (Willatt et al. 2005) 

7q11.23 428,467 gain - POMZP3, UPK3B, cDNA BC043544, intron of cDNA BC013192 

14q21.1 357,718 loss - cDNA BX248273; encompasses small CNV 

Proband 

3q29 2,086,988 gain inherited (maternal)(2) multiple genes; overlapping with 3q29 microdeletion 
syndrome (Willatt et al. 2005) 

7q11.23 422,126 gain inherited (maternal)(2) POMZP3, most of UPK3B, cDNA BC043544, intron of cDNA 
BC013192 

14q11.2 219,459 gain unknown OR4Q3, OR4M1, OR4N2, OR4K2, OR4K5, OR4K1 (odorant 
receptor cluster) 

14q21.1 368,345 loss inherited (maternal)(2) cDNA BX248273; encompasses small CNV 

15q11.2 1,662,281 gain unknown OR4N2, OR4M4, POTE15, LOC283755 and multiple cDNAs 

17q21.31 183,068 gain unknown 5' end of KIAA1267, and cDNAs BC018467 and BC000924 

Family of Case 3 

Proband 

3q29 1,893,889 gain inherited (paternal) multiple genes; overlapping with 3q29 microdeletion 
syndrome (Willatt et al. 2005) 

8p23.1-p23.2 176,963 gain inherited (paternal) 5' end of MCPH1, and cDNAs including AK025595 

15q11.2 1,378,020 loss de novo(3) OR4N2, OR4M4, POTE15, LOC283755 and multiple cDNAs 

19q13.42 456,306 gain inherited (maternal) cDNA BX248273; encompasses small CNV 

Mother 

12q24.31 114,901 gain - 3' ends of P2RX7 and CAMKK2, and all of P2RX4 

19q13.42 996,692 gain - multiple genes 

Father 

3q29 1,893,889 gain - multiple genes; overlapping with 3q29 microdeletion 
syndrome (Willatt et al. 2005) 

4q24 556,763 gain - TACR3 

8p23.1-p23.2 224,359 gain - 5' end of MCPH1, and cDNAs including AK025595 

10q11.22 848,700 gain - SYT15, GPRIN2, PPYR1, ANXA8L1 

14q11.2 222,787 gain - OR4Q3, OR4M1, OR4N2, OR4K2, OR4K5, OR4K1 (odorant 
receptor gene cluster) 
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Table 2. Continued from previous page. 

Cytoband 
Estimated 
Size (bp) 

Type Status In Children(1) Gene(s) involved 

Family of Case 3 

Brother 1     

1q31.3 142,667 loss inherited (paternal)(4) CFHR3, CFHR1 and 5' end of CFHR4 

     

3q29 1,893,889 gain inherited (paternal) multiple genes; overlapping with 3q29 microdeletion syndrome 
(Willatt et al. 2005) 

8p23.1-p23.2 221,809 gain inherited (paternal) 5' end of MCPH1, and cDNAs including AK025595 

10q11.22 1,087,629 gain inherited (paternal) GPRIN2, PPYR1, ANXA8L1, ANXA8, and multiple other cDNAs 

12q24.31 79,614 gain inherited (maternal) 3' ends of P2RX7 and CAMKK2, all of P2RX4 

14q11.2 229,920 gain inherited (paternal) OR4Q3, OR4M1, OR4N2, OR4K2, OR4K5, OR4K1 (odorant 
receptor gene cluster) 

15q11.2 1,662,281 gain de novo(3) OR4N2, OR4M4, POTE15, LOC283755 and multiple cDNAs 

19q13.42 857,878 gain inherited (maternal) multiple genes 

Brother 2     

3q29 1,893,889 gain inherited (paternal) multiple genes; overlapping with 3q29 microdeletion syndrome 
(Willatt et al. 2005) 

4q24 831,405 gain inherited (paternal) TACR3 

8p23.1-p23.2 198,636 gain inherited (paternal) 5' end of MCPH1, and cDNAs including AK025595 

10q11.22 848,700 gain inherited (paternal) SYT15, GPRIN2, PPYR1, ANXA8L1 

15q11.2 1,662,281 gain de novo(3) OR4N2, OR4M4, POTE15, LOC283755 and multiple cDNAs 

19q13.42 541,228 gain inherited (maternal) multiple genes 

Case 4 

2q27.3 81,134 loss unknown multiple cDNAs; encompassed by known CNV 

3q29 2,041,109 gain unknown multiple genes; overlapping with 3q29 microdeletion syndrome 
(Willatt et al. 2005) 

6q24.2-q24.3 2,637,073 gain unknown 3’ end of UTRN, EPM2A, GRM1, RAB32, FLJ44955, FBX030, 
SHPRH, various cDNAs; encompasses several small CNVs 

14q11.2 249,343 loss unknown OR4N2, OR4K2, OR4K5, OR4K1, OR4K13, OR4K14, OR4K15 
(odorant receptor gene cluster; encompasses known CNV and 
segmental duplications) 

Xp11.23 67,327 loss unknown ZNF630, SSX6; encompasses known CNV and segmental 
duplications 

(1) Parental origin is inferred assuming Mendelian inheritance of CNV events. In Case 2, these are apparently 
maternal; however, the father’s sample was not available for analysis. (2) Parental origin of losses in Case 1 and 
Case 2 were confirmed by examination of SNP genotypes in these regions. (3) The 15q11.2 region is very complex 
and apparently de novo events may actually be inherited; in particular, the loss in Case 3 contains multiple 
heterozygous SNPs and is therefore not a simple hemizygous deletion. (4) SNP genotypes are consistent with 
paternal inheritance of the 1q31.3 loss in this individual. The corresponding CNV in the father was identified by only 
one algorithm and thus is not reported. 

 
Affymetrix Genome-Wide SNP Array and Copy Number Analyses 
For CNV analysis, we adhered to recommended guidelines (Scherer et al. 2007). 
In order to maximize consistency between samples collected at the three sites 
(Toronto, Leiden and Edinburgh), all samples were characterized with the 
Affymetrix 500k array set at The Centre for Applied Genomics in Toronto. Each 
sample was genotyped with the GeneChip® Human Mapping NspI and StyI Arrays 
(Affymetrix, Inc., Santa Clara, CA) according to the manufacturer’s instructions 
and as described previously (Kennedy et al. 2003). For copy number 
determination, we used three approaches: DNA Chip Analyzer (dChip) (Li and 
Wong 2001; Lin et al. 2004; www.dchip.org), CNAG (Nannya et al. 2005) and 
GEMCA (Komura et al. 2006). The first two algorithms were applied separately to 
each 250k array, and GEMCA was applied to combined 500k array data. 
CNVs were scored if they were detected in the same individual either a) on both 
arrays, or b) by two of the algorithms. In our hands, these criteria result in high 
confidence CNV calls that are >95% likely to be confirmed by an independent 
technology such as qPCR (Pinto et al. 2007; Marshall et al. 2008). In the cases of 
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copy number losses, SNP genotypes were examined in order to determine parent 
of origin. 
 
RESULTS 
 
All phenotype and CNV data are entered in the Database of Chromosomal 
Imbalance and Phenotype in Humans using Ensembl Resources (DECIPHER; 
http://decipher.sanger.ac.uk/). 
 
Case 1 (Toronto): A subtle cytogenetically detectable difference at 3q29 was 
detected at a G-band resolution of 500 bands in Case 1. This alteration was not 
observed in her parents’ chromosomes at the same resolution (data not shown). 
The chromosomal difference was determined to be interstitial as the 
chromosome 3q subtelomeric probe revealed two normal signals in the correct 
position in this patient (Figure 3c). Further investigation using the Affymetrix 
250K NspI Array revealed a 2.4 Mb duplication of 3q29 (Figure 4; Table 2). The 
duplication was determined to be de novo, as neither parent revealed a CNV at 
this locus. 
 

 
 
Figure 3. Confirmatory studies of duplications. a) FISH confirmation in Case 1, showing duplication of BAC probes 
RP11-962B7 (green) and RP11-159K3 (red). b) FISH in case 1. Cohybridization of RP11-962B7 and RP11-159K3, 
demonstrating a tandem, directly oriented duplication. c) FISH in Case 1, showing two copies of the 3q subtelomeric 
probe (green). d) FISH confirmation in Case 3, showing duplication of probe CTC-196F4 (red) but not of control 
probe GS-1186B18 (green). e) MLPA confirmation in Case 3 and family members. The MLPA probe in the NCBP2 gene 
shows a 3:2 ratio in the proband, the father and both brothers, while the control probes located elsewhere in the 
genome show a normal 2:2 ratio. The mother shows no duplication of the NCBP2 MLPA probe. 

 
The patient also had a 60 kb loss at 6q16.1 and a 407 kb gain at 8p23.1 (Table 2). 
The 6q16.1 locus contains no known genes and overlaps numerous known 
segmental duplications and CNVs, and the 8p23.1 region is a locus of known copy-
number polymorphisms and segmental duplications in the vicinity of the beta-
defensin gene DEFB130. This CNV overlaps with the proximal end of the region of 



Chapter 7 

107 

8p23.1 duplication reported by Barber et al. 2007 (see Discussion). Interphase 
FISH analysis of the 3q29 region using BAC clone probes RP11-159K3 and RP11-
962B7 revealed three signals for each probe, confirming the duplication (Figure 
3a). Clone RP11-962B7 is located approximately in the middle of the region 
identified as a duplication by microarray, while clone RP11-159K3 is located 
approximately 600 kb distal to RP11-962B7, also within the duplicated region in 
this patient (Figure 3). Co-hybridization of the two BAC clone probes suggested 
that the structure of the rearrangement was a tandem, direct duplication (Figure 
3b). The parents of this patient had the normal two signals for each probe, 
confirming that the duplication occurred de novo in our patient (data not 
shown). These same FISH probes were hybridized to metaphase spreads which 
confirmed their localization to 3q29 only, in both the patient and her parents 
(data not shown). 
In order to rule out non-paternity (and thus the possibility that the 3q29 
microduplication was in fact inherited, rather than de novo), we used PedCheck 
(O’Connell and Weeks 1998) to detect markers incompatible with the pedigree. 
Of the 262,264 SNPs on the NspI array, 271 autosomal and 20 X chromosome SNPs 
were inconsistent either between either the father or mother and the proband. 
Of the autosomal SNPs, 117 were inconsistent between mother and child, 115 
between father and child, and 39 were consistent between the child and each 
parent separately, but not as a pair. Since the proportion of incompatible 
markers is low (~0.1%), the pedigree is consistent with the SNP data. Moreover, 
the rates of inconsistency between mother and child (43.2%: 117/271) versus 
father and child (42.4%: 115/271) are nearly identical, indicating that these are 
due to random genotyping errors and ruling out non-paternity in this family. 
 
Case 2 (Edinburgh): High resolution SNP array analysis confirmed a duplication 
at 3q29 of 2.08 Mbp in size in the proband as detected originally using a 1 Mb BAC 
array platform. Notably, the distal boundary was identical to that of Case 1, 
although the proximal breakpoint was slightly farther distal, accounting for the 
difference in size (2.08 Mbp vs. 2.4 Mbp in Case 1; see Figure 4). However, the 
unaffected mother and a maternal half-sister carry the apparently identical 
duplication, as does a maternal halfuncle who has renal cancer at the age of 45. 
No imbalance of the 3q29 region was evident in the proband’s father as seen by 
BAC array-CGH or MLPA. The mother and proband were evaluated with 
Affymetrix 500k SNP arrays and their duplications were found to be identical in 
extent (Table 2). Unfortunately there was no material from the subsequent 
affected fetus of this mother to test for the duplication. A maternal aunt, and 
her child who died with complex congenital heart disease, do not have the 
duplication (as assayed by MLPA; data not shown; see pedigree, Figure 2b) and 
thus this heart disease in the extended family does not appear related to the 
3q29 duplication. CNVs detected in the proband (at 7q11.23, 14q11.2, 14q21.1, 
15q11.2 and 17q21.31) and mother (7q11.23 and 14q21.1) are previously 
reported polymorphic CNVs found in apparently healthy individuals (Table 2) and 
are thus unlikely to contribute to the phenotype seen in this patient. The ~360 kb 
loss at 14q21.1 and 420-430 kb gain at 14q21.1 are also present in the proband’s 
unaffected mother. 
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Figure 4. Microduplication region at 3q29. Scale at the top is in millions of base pairs (NCBI Build 35). The duplicated 
regions in four cases are shown (blue bars). The approximate location of the duplication described previously is 
shown (Lisi et al. 2008). The region of recurrent 3q29 microdeletion described in Willatt et al. 2005 is also indicated 
(hatched bar); this corresponds to the duplication reported in Ballif et al. 2008. Feature tracks from the Database of 
Genomic Variants are shown below: known genes (arrow indicating direction of transcription), segmental 
duplications (SD), SNPs on the Affymetrix 500k array set (red triangles: NspI array; green triangles: StyI array) and 
previously reported copy number variants (CNVs; orange bars). Locations of BAC clones used for FISH mapping (Case 
1) or duplicated on BAC-CGH array (Cases 3, 4) are also indicated. Duplicated probe CTC-196F4 in Case 3 is located 
within BAC clone RP5-1061C18 (shown here; see also Willatt et al. 2005). 

 
Case 3 (Leiden): BAC-CGH analysis confirmed that the proband, her father and 
two affected brothers carry duplications of BAC clones RP11-252K11 and RP11-
114F20 (data not shown; see Figure 4). SNP microarray analysis demonstrated an 
identical 1.9 Mbp duplication at 3q29 in these individuals (Table 2). The proximal 
boundary was identical to that of Case 1, and the distal boundary was somewhat 
more proximal (Figure 4). Other CNVs detected in this family include loci at 
1q31.3, 4q24, 7q11.23, 10q11.22, 12q24.31, 14q11.2, 14q21.1, 15q11.2, 
17q21.31, 19q13.42, all of which overlap known CNVs found in apparently healthy 
individuals (Table 2). An apparent de novo loss at 15q11.2 in the proband was not 
supported by examination of genotype data, as 16 SNPs in this region were 
heterozygous (data not shown); as this is in a complex region including multiple 
similar odorant receptor genes, this CNV may be a false positive, or may 
represent a loss to two copies as compared with higher copy number in other 
members of this family. One additional CNV in this family, at 8p23.1-p23.2, is 
also in a region of known CNVs and is proximal to the microduplication 8p23.1 
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region described by Barber et al. 2008 (see Discussion). The duplication in the 
proband was confirmed by two-colour interphase FISH (Figure 3d). The MLPA 
probe in the NCBP2 gene also confirmed the duplication (3:2 ratio as compared 
with control), the father and both brothers, while control probes located 
elsewhere in the genome show a normal 2:2 ratio. The mother showed no 
duplication of the NCBP2 MLPA probe (Figure 3e). 
 
Case 4 (Toronto): BAC-CGH array analysis revealed a gain in copy number of two 
clones (RP11-447L10 and RP11-432D10; Figure 4) located at cytogenetic band 
3q29, with no other sites of copy number change detected. Microarray analysis 
demonstrated a duplication of 2.0 Mbp at 3q29 (Table 2). The proximal boundary 
was similar to those of Cases 1 and 3, and the distal boundary just slightly distal 
to that of Case 3 but still within a cluster of segmental duplications (Figure 4). 
Other CNVs detected in this individual that are also seen in healthy individuals 
were at 2q27.3, 14q11.2 and Xp11.23 (Table 2). One additional large (2.6 Mbp) 
CNV at 6q24.2-q24.3 encompasses several small known CNVs but also results in a 
previously unreported copy number gain of a number of known genes including 
Utrophin (UTRN), the Lafora progressive myoclonus epilepsy gene EPM2A, a 
metabotropic glutamate receptor (GRM1), Ras oncogene family member RAB32, 
two genes apparently involved in protein ubiquitination (SHPRH and FBXO30) and 
an expressed repetitive element (FLJ44955). 
 
DISCUSSION 
 
Duplication 3q syndrome (dup3q) has been described in the literature, consisting 
of dysmorphic features including microcephaly, low-set ears, downturned corners 
of the mouth, bushy eyebrows and long eyelashes, along with eye, palate, renal 
and cardiac anomalies (Steinbach et al. 1981, Aqua et al. 1995). The phenotype 
has been said to partially overlap that of Brachmann de Lange/Cornelia de Lange 
syndrome (OMIM#122470). Many groups have described the cytogenetic critical 
region associated with the 3q duplication syndrome as involving 3q26 (Aqua et al. 
1995, Rizzu et al. 1997, Faas et al. 2002); however Battaglia et al. (2006) 
suggested that it was 3q29. The four index patients which we have presented do 
not have a phenotype consistent with Brachman de Lange syndrome, suggesting 
that 3q29 is unlikely to be involved in the previously described “Duplication 3q 
syndrome”. 
Prior to the past year, there were few cases described with pure duplications of 
chromosome 3q. Faas et al., in 2002, described three patients with 
cytogenetically visible chromosome 3q duplications that extended to include 
3q29. The duplications in these patients included more proximal cytogenetic 
bands in addition to 3q29, whereas our reported cases had small duplications 
localized within 3q29; however, features common to both groups included 
mental retardation and ocular anomalies. 
As molecular cytogenetic techniques have advanced over the recent years, we 
have been able to better detect and more precisely define microdeletions and 
microduplications in this region. The presence of microdeletions (Willatt et al. 
2005) and the abundance of segmental duplications in this region (in particular at 
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approximately 196.6 Mbp and 199 Mbp) suggested that the reciprocal 
microduplications might exist, and two recent reports (Lisi et al. 2008; Ballif et 
al. 2008) and the cases reported here support this hypothesis. 
As demonstrated by our cases, there appears to be a variable clinical phenotype 
associated with this duplication (see Table 1), characterized by ocular and 
cardiac anomalies, hypotonia, developmental and speech delay. However, the 
phenotype is variable with reduced penetrance; the mother and maternal half 
sister of Case 2 are unaffected, and the two brothers of Case 3 have milder 
phenotypes. Case 4 demonstrates the wide spectrum of 
 
Table 3. Genes in minimal region of 3q29 duplication 

Gene Function Known Syndromes/Diseases MIM 

BDH1 3-hydroxybutyrate dehydrogenase, type 1; 
interconversion of acetoacetate and (R)-3-
hydroxybutyrate during fatty acid catabolism 

none - 

C3orf43 unknown none - 

C3orf34 unknown none - 

DLG1 homologue of Drosophila tumour suppressor gene; 
putative lymphocytespecific TSG 

homologous to X linked mental 
retardation gene DLG3 (Willatt et 

al. 2005); eye anomalies in 
knockout mouse (Nguyen et al. 

2003) 

601014 

FLJ25996 unknown none - 

LRRC33 leucine rich repeat containing 33 none - 

MFI2 melanoma cell surface glycoprotein; similar to 
transferring 

none 155750 

MGC33212 TCTEX1D2, Tctex1 domain containing 2 none - 

NCBP2 nuclear cap-binding protein 2 none 605133 

OSTA organic solute transporter alpha subunit; basolateral 
bile acid and steroid transporter 

none - 

PAK2 p21 activated kinase homologous to X linked mental 
retardation gene PAK3 (Willatt et al. 2005) 

605022  

PCYT1A phosphate cytidylyltransferase 1, choline, alpha 
isoform; phosphatidyl choline synthesis 

none (essential for survival in 
cultured cells) 

123695 

PIGX phosphatidyl inositol glycan, class X; synthesis of 
glycosylphosphatidylinositol in the endoplasmic 
reticulum 

none 610276 

PIGZ phosphatidyl inositol glycan, class Z; synthesis of 
glycosylphosphatidylinositol 

none 611671 

RNF168 ring finger protein 168 none - 

SENP5 SUMO1/sentrin specific peptidase 5; required for 
mitosis and/or cytokinesis 

none - 

TFRC transferrin receptor 1 cellular receptor for New World 
hemorrhagic fever arenaviruses; 

knockout results in severe 
anemia and neurologic 

abnormalities in mouse mode 

190010 

TM4SF19 transmembrane 4 L six family member 19 none - 

WDR53 WD repeat domain 53 none - 

ZDHHC19 homologue of palmitoyltransferase of NRAS and 
HRAS (ZDHHC9) 

homologous to ZDHHC9 causing X 
linked mental retardation with 

Marfanoid habitus 

- 

 
phenotypic differences, although it is possible that his tetramelia may be 
unrelated to the duplication (see below). The previously reported family (Lisi et 
al. 2008) also included individuals with some similar features, notably frequent 
developmental delay and some with palpebral fissure anomalies. The cases 
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reported by Ballif et al. (2008) had duplications varying in size from 0.2 to 2.4 
Mb, but only five of these had the apparent reciprocal duplication of the 
previously reported deletion (Willat et al. 2005). Of these, clinical information 
was reported for three, with mild to moderate developmental delay as the only 
common feature, and craniosynostosis, high palate, seizures and a ventricular 
septal defect occurring in two cases each (Ballif et al. 2008). 
Notably, the duplication events in all four of the families presented here overlap, 
and those of Cases 2, 3 and 4 each share one of the boundaries of Case 1, the 
largest of the duplications. Together, these define a minimum critical region of 
approximately 1.58 Mbp in size, encompassing the region from the TFRC to BDH1 
genes. The proximal and distal ends of this minimal region correspond to clusters 
of segmental duplications (Figure 4), indicating a possible recombination-
mediated mechanism for the formation of these duplications. The region is 
similar in size to the 3q29 microdeletions previously reported (Willatt et al. 
2005), which extend from BAC clone RP11-252K11 (proximal end at 197.40 Mbp) 
to RP11-535N19 (distal end at 198.81 Mbp) (see Figure 4), further supporting the 
hypothesis that these are reciprocal products of a deletion/duplication event 
mediated by non-allelic homologous recombination at segmental duplications 
(Lupski 2004; Ballif et al. 2008; Lisi et al. 2008). This region contains 20 known 
genes (Table 3). 
DLG1 seems to be a good candidate for the ocular aspects of the dup(3)(q29) 
phenotype (microphthalmia in Case 1, partial aniridia in Case 2). DLG1 is 
expressed in the developing lens and retinal pigment epithelium, and a DLG1 
gene-trap homozygous mouse has overgrowth of the lens epithelium as one part 
of the phenotype (Nguyen et al. 2003). With regards to developmental delay, 
Willatt et al. 2005 in their description of microdeletions of 3q29 in this region 
(see Figure 3) point out that two of the genes in this region, PAK2 and DLG1, are 
homologues of the X-linked mental retardation genes PAK3 and DLG3. We also 
note that this region contains the ZDHHC19 gene, a homologue of the ZDHHC9 
palmitoyltransferase, mutations of which have been shown to cause X linked 
mental retardation with Marfanoid habitus (OMIM 300646). Importantly, all of 
these are increased in copy number in the 3q29 duplication patients described 
here, whereas they are reduced to haploidy in 3q29 microdeletion patients. 
Possibly, these or other genes in the region are sensitive to both increases and 
decreases in gene dosage, either of which might disrupt normal development. 
The other CNVs detected in these patients overlap previously reported 
polymorphic CNVs present in the general population (reflected by their presence 
in the Database of Genomic Variants; Iafrate et al. 2004), with two exceptions. 
The most obvious potentially pathogenic CNV is at 8p23.1 in Case 1, overlapping 
the proximal end of the region seen in 8p23.1 duplication syndrome patients 
(Barber et al. 2008). This patient shares some clinical features with the patients 
of Barber et al., notably a high forehead, cardiac malformations, low-set ears 
and partial 2/3 toe syndactyly. The Family 1 proband of Barber et al. also had a 
high arched palate which could be compared to the cleft palate of our Case 1. 
We cannot rule out that some of these features seen in our Case 1 may be due to 
the overlap of the 8p23.1 CNV with the proximal end of the 8p23.1 
microduplication region; however, there is a relatively small region of overlap 
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(407 kb of ~3.75 Mb total) containing only the beta-defensin gene DEFB130 and 
two genes of unknown function (FAM86B1, and LOC440053 which has homology to 
zinc finger protein genes). Furthermore, our Case 1 and Case 2 probands share 
common anomalies and phenotypic features, and Case 2 was not found to have a 
8p23.1 CNV, suggesting that their similarities are more likely a result of their 
common 3q29 duplication. In contrast, the 8p23.1-p23.2 CNV seen in the family 
of our Case 3 is distinct, being located distal to this microduplication region. 
Although Barber et al. ran a custom Agilent 44k genome-wide oligonucleotide 
CGH array on their patients (http://www.ngrl.org.uk/Wessex/array.htm), they 
report no results indicating whether changes in the 3q29 region (or anywhere 
else in the genome other than 8p23.1) were observed. 
The second potentially pathogenic CNV is the gain at 6q24.2-q24.3 seen in Case 
4. This 2.6 Mbp region might contribute to the tetramelia seen only in this 
patient, possibly due to the involvement of the Utrophin/Dystrophin-like protein 
(UTRN) gene, or the putative protein-ubiquitin ligases SHPRH and FBXO30. 
However, there is currently no experimental evidence that gains of activity or 
genomic copy number of these or the other genes in this region (GRM1, EPM2A, 
RAB32 and FLJ44955) can affect limb development, although extensive work 
characterizing UTRN knockouts has been performed. Given its role in normal 
muscle development, further characterization of overexpression of Utrophin in 
limb development may shed some light on this patient’s phenotype. 
In summary, we have described four new cases with 3q29 duplications, with a 
minimum region of overlap of 1.6 Mbp corresponding in location to the previously 
reported 3q29 microdeletions. The phenotype in these families reveals variable 
expressivity and reduced penetrance. Global developmental delay was the most 
consistent feature in our cases and two other studies (Lisi et al., 2008; Ballif et 
al., 2008). Other features common to some of the patients included ocular 
anomalies, congenital heart defects, structural brain anomalies and hypotonia. 
Further phenotypic characterization of these patients, in combination with 
improved molecular understanding of the 3q29 duplicated region, will better 
delineate potential dosage sensitive genes in this genomic interval and their 
possible roles in cognitive and ocular development. 
 
Management and Anticipatory Care 
Management guidelines for duplication of chromosome 3q29 have not been 
previously published. Our recommendations are based on the phenotypes 
described in our newly reported cases and those of the cases recently described 
by Lisi et al. and Ballif et al. in 2008. Importantly, as we discuss in this paper, 
the CNV content at other sites should also be considered in performing genotype 
and phenotype correlations. 
 
Infancy and initial diagnosis: 
a) Ophthalmologic evaluation 
b) Echocardiogram 
c) Brain imaging 
d) Developmental assessment by 6 months of age, and continuing every 1-3 

years as needed 
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e) Hearing evaluation 
f) Skeletal survey 
g) Early intervention services 
h) Offer cytogenetic/molecular testing to parents to determine if the 

duplication of 3q29 is de novo or familial. Refer parents for genetic 
counseling if contemplating future pregnancies. 

i) Family support 
 
Childhood: 
a) Ongoing developmental services and therapy. Individualized educational 

plan if appropriate. Children will likely benefit from speech therapy, 
occupational therapy, and physical therapy. 

b) Referral to paediatric dentistry 
c) Encourage physical activity and balanced diet, given reported obesity in 

some children/adults with duplication 3q29 
 
Adolescence and Adulthood: 
a) Annual medical examination as per standard medical practice 
b) Ongoing developmental services, individualized educational plan, and 

counseling regarding work placement appropriate for level of 
development. 

c) Education regarding sexual development and recurrence risk in offspring 
if appropriate for level of development 

 
These recommendations will be updated as we learn more about the natural 
history and variable phenotype of this condition, as well as the impact of CNVs at 
different sites in the genome. 
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ABSTRACT 
 
Background: 
International databases with information on copy number variation of the human 
genome are an important reference for laboratories working with high resolution 
whole genome screening platforms. Genomic deletions or duplications which have 
been detected in the healthy population and thus marked as normal copy number 
variants (CNVs) can be filtered out using these databases when searching for 
pathogenic copy number changes in patients. However, a potential pitfall of this 
strategy is that reported normal CNVs often do not elicit further investigation, and 
thus may remain unrecognized when they are present in a (pathogenic) homozygous 
state. The impact on disease of CNVs in the homozygous state may thus remain 
undetected and underestimated.  
Methods and results: 
In a patient with syndromic hearing loss, array comparative genomic hybridization 
(array-CGH) and multiple ligation-dependent probe amplification (MLPA) revealed a 
homozygous deletion on 15q15.3 of a normal variation region, inherited from 
hemizygous carrier parents. The deletion is about 90 kilobases and contains four genes 
including the STRC gene, which is involved in autosomal recessive deafness (DFNB16). 
By screening healthy control individuals we estimated the frequency of hemizygous 
deletion carriers to be about 1.6% 
Conclusion: 
A homozygous deletion of a CNV region causing syndromic hearing loss was 
characterized by a panel of molecular tools. Together with the estimated frequency of 
the hemizygous deletion these results underline the potential clinical relevance of the 
15q15.3 locus for patients with (syndromic) hearing impairment. This example shows 
the importance of not automatically eliminating registered CNVs from further analysis. 
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INTRODUCTION 
 
Since the implementation of techniques for the detection of copy number 
variations of the human genome, such as array comparative genomic 
hybridization (array-CGH), single nucleotide polymorphism (SNP-) or oligo-arrays 
and paired-end mapping, it has become evident that copy number variations 
(CNVs) contribute for a large part to the total genetic variation.[1-12] The 
majority of this data is being pooled now in databases such as the Database of 
Genomic Variants (DGV, http://projects.tcag.ca/variation/).[8,13] Many of these 
CNV regions harbor genes. Wong et al.[2] found that 1673 RefSeq-genes 
overlapped 546 of 800 found CNVs. In the study of Redon et al.[1] 2908 RefSeq-
genes were found in a total of 1447 CNV regions. The function of the genes 
located in CNV regions are often not related to primary development, but are in 
general more related to sensory perception.[1,2] In this way, they probably 
contribute to normal population variation. 
The increased resolution of genome wide molecular karyotyping tools has led to 
the daunting task of classifying CNVs as pathogenic or non-pathogenic in the 
clinical setting. To facilitate the interpretation of detected copy number 
alterations, genome browsers and linked databases such as the DECIPHER 
database (http://www.sanger.ac.uk/PostGenomics/decipher/)[14] and the DGV 
database are widely used. The DGV database is often used as a reference 
template to quickly filter benign variants out of the substantial amount of CNVs 
found in screening patients. Similarly, the inheritance status of CNVs is used to 
determine whether they may be pathogenic, based on the assumption that copy 
number alterations inherited from a healthy parent are less likely to be disease-
related or have phenotypic consequences.[15] However, this procedure of 
selection must be done prudently, as important information may be too easily 
disregarded. 
In the recently described deafness-infertility syndrome (DIS) [MIM #611102] 
hearing loss and infertility are caused by a recessive contiguous gene deletion on 
chromosome 15q15.3.[16,17] The region consists of a segmental duplication, with 
four known active genes in the proximal region: the cation channel CATSPER2 
gene [MIM *607249], which has a function in sperm motility[16], STRC, coding for 
stereocilin [MIM *606440], which is expressed in the sensory areas of the inner 
ear[18], the inositol phosphate kinase HISPPD2A [MIM *610979] and creatine 
mitochondrial kinase-1A (CKMT1A). Homozygous mutations in STRC have been 
described in non-syndromic autosomal recessive sensorineural hearing loss linked 
to the DFNB16 locus [MIM #603720].[16,18] Only CKMT1A has a functional 
homologue in the duplicated region, named CKMT1B, while all others are 
pseudogenes with inactivating mutations. Recombination of the segmental 
duplication on 15q15.3, possibly mediated by non-allelic homologous 
recombination (NAHR), may lead to loss or gain of the repeats. 
By using different molecular genetic screening tools we ascertained a patient 
with a homozygous deletion of the proximal repeat region of 15q15.3, containing 
the active genes. Detailed characterization of the deletion proved that the 
deletion was inherited from non-consanguineous parents who appear to be 
heterozygous carriers. To further assess the nature and frequency of the 
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rearrangements in this area, a control panel from the normal hearing population, 
a panel of patients with sensorineural hearing loss and the HapMap samples with 
reported variation in this region and their available family members (according to 
the DGV) were tested with the multiplex ligation dependent probe amplification 
(MLPA) set developed for this genomic segmental duplication region on 
chromosome 15q15.3. The HapMap[19] samples are a set of cell lines from 
healthy volunteers from various ethnic backgrounds, used to study human 
variation. Here we prove that a reported normal variant can have serious 
phenotypic consequences in a recessive fashion which emphasizes the need for 
careful interpretation of copy number variation data. 
 
METHODS 
 
The patient described here is a 10-year-old boy from non-consanguineous, 
healthy parents. He has slowly progressive bilateral sensorineural hearing loss, 
disharmonious mental retardation (IQ 56), short stature and dysmorphic features. 
Dysmorphic features include small palpebral fissures, synophrys, a high nasal 
bridge, brachydactyly and puffy hands and feet. The audiogram of the patient at 
the age of 7 years shows a moderate hearing impairment of all frequencies (fig 
1). Informed consent was obtained from the parents and the proband. 

 
Figure 1. Audiogram of the proband showing moderate bilateral hearing loss. 

 
Routine GTG-banding of cultured lymphocytes was performed using standard 
cytogenetic analysis. DNA was isolated from whole blood using standard isolation 
techniques. Routine amplification and sequencing for gap junction protein, beta-
2 (GJB2) [MIM *121011] coding mutations was performed as described 
previously.[20] 
Array-CGH was performed using ~1.0Mb spaced whole genome large insert clone 
arrays, which were made available by the Wellcome Trust Sanger Institute, 
according to published methods.[21-23]  
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A HumanHap300-duo BeadChip SNP-array experiment (Illumina B.V., Eindhoven, 
the Netherlands) was performed according to procedures as suggested by the 
manufacturer. The SNP array, consisting of 317,000 oligonucleotide probes, was 
analyzed with the BeadStudio v3.0 software provided. 
MLPA probes were designed to delineate the deletion further, because the 
coverage of the SNP platform in this 15q15.3 region was poor. MLPA was used to 
confirm the results, determine the extent of the deletions, and further analyze 
this region in other patient groups. Despite the fact that there is over 98% 
homology between the segmental duplicons, for probe design it was possible to 
distinguish between the proximal and distal repeat by using the small regions of 
non-homology or paralogous sequence variants (PSVs), known from the reference 
sequence. This resulted in a set of 23 probes specific for the active proximal and 
the inactive (containing pseudogenes) distal region, with a resolution of 
approximately 10 kb, located between 41.63 Mb and 41.83 Mb on chromosome 
15q15.3. Three probes were localized within the active STRC gene. Probes were 
ordered from Operon (Cologne, Germany). The sequences are available in the 
online supplemental table 1. MLPA was performed as described previously,[24] 
with the adaptation that the ligation was performed at an annealing temperature 
of 60°C.  
Long-range PCR and sequencing reactions were used characterize the breakpoints 
of the maternally and paternally derived deletions in the patient. PCR primers 
were designed at PSVs region according to the reference sequence, between the 
location of the MLPA probes that showed a normal ratio and a homozygous 
deletion. Theoretically, fragments from both the distal and the proximal repeat 
could be amplified with these primers. PCR and subsequent sequencing was 
performed with the PCR primers on the patient and both parents. The sequences 
were aligned to the human reference sequence, NCBI Build 36.1, using the online 
BLAT tool of the UCSC genome browser (http://genome.ucsc.edu/).[25] 
 
RESULTS 
 
Routine GTG-banding revealed a normal male karyotype (46,XY). Routine 
screening for mutations in GJB2, the most common pathogenic gene in hearing 
loss, revealed no mutations in the coding sequence. 
Analysis of genomic DNA of the patient on ~1Mb spaced large clone insert array-
CGH revealed two single clone deletions on chromosome 15. One deletion was 
found in band 15q26.2, involving bacterial artificial chromosome (BAC) clone 
RP11-315L6. When mapping this clone back to a genome browser and the DGV, 
this clone localized to a complete gene desert region which is described to be 
involved in normal variation. The other deletion found on chromosome 15 
involved BAC clone RP11-263I19 (fig 2A) located at 15q15.3. Although this BAC 
clone is located in an area also previously reported to be involved in normal 
variation[1,9,10,12], this region has also been described to be involved in 
sensorineural hearing loss[18] as well as the recently published deafness-
infertility syndrome.[16,17]  
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Figure 2. Micro-array profiles. (A) Large-insert clone array-CGH profile of the proband of chromosome 15 showing 
the deletion of BAC RP11-263I19 located around 41.7 Mb and BAC RP11-315L6 around 95.6 Mb (indicated by the 
black arrows). (B) SNP array profile of chromosome 15q15.3 of the proband showing the deletion of SNPs rs2927071 
and rs8042868 corresponding to RP11-263I19 region. 

 
To further characterize this deletion, a HumanHap300-duo BeadChip SNP-array 
experiment was performed. The results ruled out any unknown consanguinity of 
the parents or uniparental disomy in the patient, since the SNP profiles did not 
show large blocks of homozygous alleles in the patient. The hybridization showed 
a homozygous loss of SNPs rs2927071, rs8042868 and rs8038068, which were all 
located in a stretch of 25 kb, inside the proximal repeat sequence containing the 
four active genes (fig 2B). The deletion at 15q26.2 was also detected on the 
Illumina platform and was in size and location exactly comparable to the 
reported copy number variant (CNV) reported by Redon et al.[1] 
Because of poor coverage of the SNP platform in this particular area, MLPA 
probes were designed to delineate the deletion further. The proband showed a 
homozygous deletion from 41.66 to 41.74 Mb. The deletions on both alleles 
involve the majority of the proximal repeat region, deleting or disrupting the 
active genes. The deletion size was at least 80 kb and a matching heterozygous 
deletion was found in both parents (fig 3). 
Figure 4 shows the sequencing result of a conclusive PSV between the MLPA 
probes where breakpoints on the paternal and maternal allele had to have taken 
place. This sequencing result revealed proof of one heterozygous call in the 
patient and proved that the sequence of the maternally derived allele in the 
patient only consisted of the distal repeat and the paternally derived allele only 
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of the proximal repeat (fig 4). Sequencing of other regions containing PSVs with 
regards to breakpoint mapping was inconclusive. 
To assess the frequency and the type of alteration of this locus, the developed 
MLPA set was tested on a panel of 64 normal hearing persons and 20 in-house 
control samples. Also with the same MLPA panel, a group of 45 patients with non-
syndromic sensorineural hearing loss was screened for genetic alterations. This 
group of patients was proven by sequencing to have no mutation in the GJB2 
gene.[20] The MLPA test revealed that none of these samples had a contiguous 
deletion the size of the duplicon region. One sample in the patient group and two 
in the control group were found to have a duplication of the proximal repeat 
part, with a size comparable to the size of the deletion of the patient described 
herein, and the previously published consanguineous families.[16,17] 
 

 
 
Figure 3. MLPA results on the proband and both parents. The upper panel shows the involved region using the UCSC 
browser, in which the involved genes and the two large duplicon blocks are displayed. The lower panel shows the 
ratio profiles of normalized MLPA data. Each data point represents a specific MLPA probe that discriminates 
between the proximal and distal repeat region. The homozygous deletion in the proband of the largest part of the 
proximal duplicon and the beginning of the distal duplicon is indicated by the closed triangles. The parents both 
show the heterozygous deletion in the region. 

 
To confirm alterations involving this region reported in the DGV, 21 samples of 
the HapMap collection were tested with the developed MLPA set. Of these 
samples, 10 were reported with either a gain or a loss in the 15q15.3 region[1,10] 
and the remainder 11 were the closest family members, if they were available. 
Two additional samples with a duplication as reported in the DGV were 
unavailable for analysis. Six of the 10 available samples were described as having 
a deletion size of at least one duplicon. All six deletions were confirmed and they 
could be narrowed down to the contiguous deletion of the size of one duplicon. 



Chapter 8 

125 

In all six cases the deletion involved the largest part of the proximal duplicon, 
deleting or disrupting the active genes on that allele. The four other samples had 
the smaller alterations reported,[10] as discussed below. All MLPA data is 
available in the online supplemental table 2. 
 
DISCUSSION 
 
In this study we describe the detailed molecular characterization of a 
homozygous deletion of a seemingly normal variation locus at 15q15.3, inherited 
from non-consanguineous parents. Using array-CGH, a deletion at chromosome 
15q15.3 containing a 100 kb tandem segmental duplication region was found. 
SNP-array analysis ruled out possible consanguinity of the parents and showed 
the deletion to be homozygous. The rearrangement deletes the proximal repeat 
sequence at chromosome 15q15.3 on both alleles. It is important to note that 
only three SNP were located in this area, so current standard diagnostic reporting 
algorithms will not detect the deletion. This might result in false negative calls 
for the involvement of this region in diagnostic settings. 
Homozygous deletion of the 15q15.3 region has been reported in the DIS 
syndrome. However, mental retardation and/or structural congenital 
abnormalities were not reported in those cases. [16,17] The clinical overlap with 
our patient is thus the hearing loss and potentially the infertility. The more 
severe phenotype in our patient may represent one end of a broader phenotypic 
spectrum associated with homozygous deletion of 15q15.3, as was noted before 
in other syndromes.[26,27] Alternatively, the mental retardation and dysmorphic 
features are unrelated, or only partially related to his 15q15.3 homozygous 
deletion.   
MLPA testing characterized the homozygous deletion in detail. Based on the 
assumption that the deletions are mediated by NAHR during meiosis a deletion of 
a full repeat-size is expected, which is about 90 kb (fig 3) and fits the MLPA 
results. The MLPA probe at 41.75 Mb shows a heterozygous deletion ratio for the 
patient and the father and a normal ratio for the mother. Consequently, the 
distal breakpoint of the father is located slightly more telomeric than in the 
mother and assuming NAHR as the responsible recombination mechanism, the 
proximal breakpoint in the father should also be more telomeric (fig 4). 
The results also show that the father of the described proband has two copies of 
the region detected by two MLPA probes around 41.67 Mb, while the proband did 
not inherit any of these two copies (fig 3). These probes are located in a non-
coding area. Likely the father has two copies of this region on the non-
transmitted, intact allele. Similar copy number variation was also observed by 
the MLPA test performed on control samples and HapMap samples. Some more 
small CNVs in the most proximal part of the proximal duplicon is noted 
throughout the sample sets, involving MLPA probes in intronic regions in and 
around the HISPPD2A gene. These variations might represent smaller genomic 
changes similar to the four small alterations in the HapMap cases described by 
Perry and colleagues.[10] Currently, there are no cost effective methods to 
screen for structural variants smaller than ~3 kb in a genome wide approach.[11] 
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The relevance of the non-contiguous variations found in intronic regions with the 
developed MLPA set is thus unclear. 
In order to estimate the frequency of this deletion we tested the genomic DNA of 
45 persons with non-syndromic sensorineural hearing loss and 75 control persons. 
Neither heterozygous nor homozygous deletions were found. Interestingly, one 
sample in the patient group and two samples in the control group were found 
with a duplication of the proximal repeat part, with a size comparable to the 
observed deletion. This leads to the conclusion that having an extra copy of the 
four active genes does not present a phenotype and also supports the theory of 
NAHR as the main mechanism of recombination of this repeat region. 
 

 
 
Figure 4. Sequence results of the paralogous sequence variant at base pair 41652116 of chromosome 15 in the 
proband and both parents. Sequence graphs show an equal ratio in the proband between the PSVs on both alleles, 
while the mother shows a 2:1 ratio for the C-allele and the father shows a 2:1 ratio for the T-allele (black arrows). 
The schematic drawing next to the sequence results show the inheritance of the different alleles that result in the 
ratio values of the PSV. The bright yellow bar is the proximal duplicon, the dark yellow bar is the distal duplicon and 
the arrowheads are the primers used to amplify the sequenced fragment. It also shows that in the maternal allele 
NAHR should have taken place proximal to the PSV, while in the paternal allele NAHR should have taken place distal 
to the PSV. 

 
The investigated region on chromosome 15q15.3 was identified to be involved in 
normal variation (both gain and loss) in separate studies. [1,9,10,12] In the 
HapMap collection[19] that is analyzed in a part of these studies, 12 samples had 
a CNV reported at this location. Eight of these samples had a CNV of a continuous 
region greater than 30 kb in size, which indicates a full a deletion or duplication. 
This was confirmed with our MLPA test in the six available samples with the 
bigger alteration. Of these samples with alterations the size of a duplicon, 4 
HapMap samples showed inheritance of the 15q15.3 CNV with either paternal or 
maternal transmission, while the remaining cases were individual samples. With 
regard to ethnic distribution, the 15q15.3 CNVs were present in the CEPH 
population, the Yoruban population from Nigeria and the Chinese and Japanese 
population. In our study we confirmed all these CNVs by using the targeted MLPA 
set. The existence of these deletions in different ethnic populations supports 
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that the presence of this variation is not restricted to one region or one founder 
family.  
Pooling all in-house whole genome screened samples (n=300), locus specific data 
(n=109) and normal variation data published in the literature and summarized in 
the DGV database (n=320), a hemizygous deletion frequency of ~1.6% and a 
duplication frequency of ~0.7% (n=729) is found for this genomic region. This 
proves that the involvement of a normal variation locus with a hemizygous 
deletion frequency of 1.6% and a serious phenotype in the homozygous state is of 
importance for genetic testing. The presented data show that potentially 
important information may be missed when disregarding CNVs based on 
inheritance status and reported involvement in normal variation. 
The fact that both pathogenic point mutations in the STRC gene[18] and 
homozygous deletions of the 15q53.3 region[16,17] have been reported to be 
associated with hearing loss, emphasizes the importance of considering the 
chromosome 15q15.3 locus in screening for the genetic cause of hearing loss.  
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Before the introduction of genome wide molecular screening techniques, 

structural alterations in chromosomes have been found mainly by G-banding, 

allowing the detection of aneusomies and structural alterations of at least 5-10 

Mb in size. They have been commonly identified based on the principle of 

“phenotype first”, in which patients with the same phenotype have been found 

to have similar structural or numerical chromosomal alterations. Cryptic 

alterations were occasionally revealed by the detection of a patient with a 

balanced translocation in a patient group with similar phenotypic characteristics 

and no apparent visible structural alterations. The translocation breakpoints in 

the index case could then pinpoint the region causative for the phenotype and 

the patient group could subsequently be screened for involvement of this genetic 

region with FISH or mutation detection by sequencing. 

With the introduction of molecular techniques for whole genome analysis a new 

era has started in clinical cytogenetics. Array-CGH, SNP arrays and massive 

parallel sequencing provide information on unbalanced structural chromosomal 

alterations in much higher resolution and with more precision than conventional 

banding methods. Massive parallel sequencing techniques as paired-end mapping 

even detect balanced translocations and inversions and SNP arrays can detect 

copy number neutral alterations as uniparental disomies. 

These new tools are needed to unravel the causal defects in patients with 

idiopathic developmental delay with or without congenital abnormalities. It was 

already known that the causes for developmental delay could be very diverse, 

from large chromosomal or numerical alterations to single gene deletions, 

disruptions or mutations and even to environmental factors or metabolic disease. 

Nevertheless, the development of array-CGH proved to be of significant value in 

the diagnostics of mental retardation in terms of resolution and accuracy of the 

detection of the abnormality. An example for this is shown in chapter 2, where 

several cell lines of patients with chromosomal alterations were investigated. In 

one case, G-banding revealed an aberrant chromosome 8 that was judged to be 

an isochromosome 8q.  After array-CGH analysis the marker chromosome was 

found to have a partial 8p deletion together with a partial 8q duplication, 

instead of an isochromosome 8q. Subsequently, the mother was found to be 

carrier of a pericentric inversion of chromosome 8. A second case was identified 

with a ring chromosome X, while G-banding was unable to resolve the origin of 

the ring chromosome. In a third case array-CGH showed the capacity to detect 

different sub-lineages in a ring chromosome 13 cell line, showing the instability 

of this particular ring chromosome. This instability was proven with FISH. 

A separate example of the power and additional value of array-CGH is given in 

chapter 5. Here, a patient with a complex rearrangement as detected with G-

banding, was thought to originate from a balanced three way translocation and a 

separate insertion. Detailed investigation using array-CGH and FISH revealed 

eight breakpoints with an additional deletion in one breakpoint region. This and 

other publications [1-4] proved that a significant portion of complex 
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rearrangements that appear balanced with G-banding have additional 

rearrangements or deletions not detected using classical cytogenetics. 

Several cases of ring chromosomes have also shown to be more complex when 

detailed array analysis was performed after conventional G-banding. Chapter 6 

describes a ring chromosome 14 which next to a terminal deletion also has an 

inverted duplication and a triplication. These additional alterations were not 

seen initially nor retrospectively using cytogenetic G-banding investigation. 

Based on this chapter and the publication of Rossi et al. [5], one can conclude 

that screening with high resolution molecular techniques is needed for correct 

interpretation of acrocentric ring chromosomes. 

When patients with idiopathic mental retardation are studied using array-CGH, 

providing a 10-fold better resolution than G-banding, 10-15% more causal genetic 

alterations are detected, as shown in this thesis in chapter 3 and other published 

studies [6]. These figures match the percentages that were estimated at the 

start of the project to establish array-CGH within our laboratory. The results also 

emphasized that the alterations found by array-CGH provide superior resolution 

and are mostly heterogeneous, which limits the possibilities for targeted 

screening for unknown genetic factors [7].  

Nevertheless, many recurrent deletions and duplications are detected by array-

CGH. They are often found to be flanked by repetitive sequences, by which the 

formation of these alterations is mediated. Non-allelic homologous 

recombination is described as the main responsible mechanism. During meiosis 

misalignment takes place between the two repeats and subsequent 

recombination causes deletion or duplication of the unique sequence between 

the repeats. The finding of such recurrent deletions and duplications resulted in 

the identification of the underlying genetic cause of several different syndromes. 

This is sometimes called “genotype-first” type of research, whereby contrary to 

the phenotype-first studies the genetic alteration of a patient with idiopathic 

mental retardation is elucidated first, after which the patient can be categorized 

in relation to other patients with similar genetic alterations. Often the 

phenotypic characteristics of these patients are retrospectively comparable, but 

for example because of heterogeneity in the phenotype, it proves to be a 

difficult task for clinical geneticists to diagnose the right syndrome, without a 

priori whole genome screening results [8]. 

In chapter 7 an example of a recurrent duplication is described, which is 

mediated by the recombination of flanking duplicons. This report describes a 

genetic alteration with a rather variable phenotype. The fact that this recurrent 

duplication is not found in unrelated normal individuals supports the conclusion 

that it represents the causal alteration. The variation seen in the phenotype may 

possibly be explained by other unknown genetic or environmental factors. 

In the latter case, as well as in many other individuals with mental retardation, 

epigenetic factors may also play a role in the origin of the retardation. For 

instance imprinting is known to play a role in the causality of Prader-Willi 
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syndrome, Angelman syndrome and Beckwith-Wiedemann syndrome, in which in 

some cases the expression of a gene is influenced by uniparental disomy of the 

involved chromosome. In Angelman syndrome a fraction of patients was found 

with a paternal imprinting pattern on the maternal allele affecting the 

expression of the involved gene [9]. Probably more syndromes of mental 

retardation are caused by differences or defects in hypo- or hypermethylation of 

promoter regions or genes involved in development or of aberrant methylation or 

acetylation of histones, thereby influencing underlying gene expression. 

High resolution whole genome molecular screening such as array-CGH results in 

the detection of many sub-microscopic copy number variations. Chapter 8 shows 

clearly that in a homozygous state normal copy number variations may have 

phenotypic impact and it is rather likely that more regions currently reported as 

normal variation may have a similar influence. Also one can expect that some 

regions of variation can be tolerated in a person without consequence, while in 

another individual the same region causes a phenotype because of a different 

genetic background. With more detailed investigations and further 

documentations it is expected that so-called polygenic causes for disease will 

become a more frequent finding. 

To maximally benefit from data on copy number variation it is very important 

that international arrangements are made for the documentation of the data. 

The Hospital of Sick Children in Toronto, Canada, started to host a database 

called the Database of Genomic Variants (DGV) [10,11]. This database contains 

data of structural variation in normal individuals or cell lines, generated with 

microarray platforms and mass sequencing techniques. Free accessibility for the 

whole community is offered allowing everybody to profit from the wealth of 

information that arises from individual experiments. Nevertheless care must be 

taken to only implement data of a high quality standard, so that the information 

collected from the database can be interpreted correctly. The database should 

also be maintained properly, according to the latest results and insights, since 

new data could shed different light on the influence of structural variation to 

disease. Two other databases, a European one named the “European 

Cytogeneticists Association Register of Unbalanced Chromosome Aberrations” or 

ECARUCA [12], and an international database called the “DatabasE of 

Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources” or 

DECIPHER [13], register chromosomal imbalances that are presumably linked to a 

phenotype. Registered geneticists and cytogeneticists are able to upload 

molecular data on reported copy number variations, combined with the 

phenotypic patient information. These databases are by necessity partly 

restricted to the registered professionals to protect private patient information. 

Worldwide submitted data can serve as a reference in explaining found copy 

number data in a single patient. Also for these databases control and quality 

assurance of submitted data is a prerequisite. The collaboration that resulted in 
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the publication of chapter 7 was based on contacts initiated through the 

DECIPHER platform. 

Molecular genetic techniques for whole genome screening have proven to be 

highly valuable in research settings. In chapter 4 a different strategy for routine 

screening of developmentally delayed patients is proposed, in which routine 

screening with MLPA precedes array-CGH and conventional G-banding. This 

approach may result in a more cost effective screening of patients.  

The use of array-CGH in the studies presented in this thesis has been successful. 

In chapter 3 an increase of 16% of the genetic alterations found in a patient 

group with mental retardation with or without congenital anomalies was found 

using array-CGH. This percentage was comparable to percentages found in other 

studies of array-CGH screening in mental retardation patients. Moreover, the 

introduction of the technique created a number of possibilities for follow-up 

research and interesting research questions, resulting in detailed molecular 

characterization of several genetic alterations as presented in this thesis.  

The field of genetics is developing very rapidly, with techniques such as paired-

end mapping and mass-sequencing being introduced recently. Therefore, it is far 

from clear what the gold standard will be for cytogenetic laboratories in the near 

future. However, as this thesis and many other publications prove, it is certain 

that the field of cytogenetic screening with mainly G-banding and FISH needs to 

change dramatically. The latest developments make new diagnostic approaches 

possible to maximize the yield of genomic information in a cost-efficient way. On 

the other hand, the era of classical chromosome investigation is not over yet. 

Correct interpretation and confirmation of the molecular genetic data as well as 

the detection of Robertsonian and reciprocal translocations and inheritance 

patterns continue to require chromosome analysis by microscopy. 
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Summary 
 

In the past decades it gradually became clear that genetics play a significant role 

in idiopathic mental retardation. The search for genetic alterations responsible 

for idiopathic mental retardation has been dominated by cytogenetic screening 

methods as chromosome banding. Many genetic alterations, such as trisomies, 

partial trisomies or monosomies and balanced or unbalanced translocations were 

detected. However, as the detection limit of classical cytogenetic screening is 

about 5-10 megabases, this limitation has precluded the finding of a positive 

genetic cause in a large portion of cases. 

In order to detect smaller genetic alterations genome-wide a new technique was 

developed, called array comparative genomic hybridization (array-CGH). This 

molecular genetic technique is based on the comparison of two differentially 

fluorescently labeled genomic DNA samples (typically a test or patient sample 

and a reference sample of a normal individual), hybridized to an array of 

immobilized DNA fragments representing specific locations on the genome. The 

resolution of this array-CGH technique depends on the spacing of spotted DNA 

fragments and the length of each spotted probe. 

In chapter 1 array-CGH is introduced and placed into the spectrum of other 

cytogenetic and molecular screening techniques currently used. Chapter 2 to 8 of 

this thesis describe the development and use of an array-CGH platform in the 

field of molecular and cytogenetics, built up using large insert clones with a 

spatial resolution of about 1 Megabase throughout the whole euchromatic 

genome. Added functionality of array-CGH compared to conventional banding 

techniques is shown in chapter 2. Chromosomal imbalances could be detected 

more accurately and even be revised in primary cell lines from patients with 

known abberations. 

In a consecutive study array-CGH was compared to current techniques with 

respect to detection of potential pathogenic genetic alterations. Array-CGH 

detected 16% more confirmed potential pathogenic genetic alterations in 

idiopathic mental retardation as shown in chapter 3. This percentage is in 

concordance with other published studies. 

The advantages described above may change the approach that is currently used 

for postnatal genetic testing. While conventional chromosome banding has been 

the method of choice for screening for years, in chapter 4 a fundamental new 

approach is proposed that used a panel of molecular techniques as MLPA and 

array-CGH as the first step in screening for genetic alterations. This robust, cost-

effective and high-throughput procedure may lead to a faster and more precise 

elucidation of chromosomal imbalances.  

The following chapters then explain in a detailed way that array-CGH including 

high resolution oligo array-CGH, are useful tools to elucidate chromosome 

imbalances in detail and a convenient step towards characterize alterations down 

to a single base. This type of studies not only detects genetic alterations, but 
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also contributes to the common knowledge of the understanding of how 

chromosome rearrangements take place. They may result in better genotype to 

phenotype correlation of patients and can pinpoint the influence of a given gene 

or genetic region to a specific disease. These chapters also show that it is highly 

important to establish and maintain international collaborations within the field 

of genetics to share data on copy number variation, in order to distinguish 

disease related changes and normal variation. 

Chapter 5 and chapter 6 describe examples of complex chromosomal imbalances 

that are elucidated in detail using array-CGH. In chapter 5 a seemingly balanced 

complex translocation involving three chromosomes and eight breakpoints was 

additionally found to contain a cryptic deletion. Chapter 6 shows a complex ring 

chromosome with an additional duplication and triplication, which initially was 

concluded to only have a simple subtelomeric deletion with standard 

microscopical evaluation. This chapter proves that in order to obtain a correct 

genotype to phenotype correlation detailed screening using G-banding analysis in 

combination with high resolution molecular techniques is necessary. 

In chapter 7 a microduplication of chromosome 3q29 found in four different 

families is described. It is shown that this specific chromosomal rearrangement 

has a reduced penetrance and a variable phenotype. To conclude causality of a 

copy number variation like this duplication it is important to document case 

reports and families with uncommon variation in broadly accessible databases. 

The phenotypic influence of a copy number variation can then be recognized 

earlier. On the other hand it remains a challenge to correctly interpret the data 

on copy number variation that is recorded in these databases, as is shown in 

chapter 8. Here, a deletion of chromosome 15q15.3 which is described as a 

normal copy number variant is proven to be causing hearing loss in a syndromic 

patient in a homozygous state. 

Now or in the near future array-CGH techniques will generally be implemented in 

diagnostic laboratories to support or partially replace the classical cytogenetics. 

They have proven to be a very valuable addition to the diagnostics of clinical 

genetics, but in order to correctly interpret structural alterations metaphase 

chromosome analysis remains an important technique. Nevertheless, the field of 

genetics proves to be highly innovative as next generation sequencing techniques 

are already on the doorstep to take over array comparative genomics. These next 

generation sequence techniques will be able to sequence the whole genome of a 

patient in search of causal alterations and will result in superior resolution over 

the previous techniques. It proves that the development within the field of 

diagnostics has certainly not come to an end. 
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Samenvatting 
 
Sinds de jaren vijftig van de afgelopen eeuw is het duidelijk geworden dat 
genetica een belangrijke rol speelt bij mentale retardatie. De zoektocht naar 
genetische afwijkingen die mentale retardatie veroorzaken, is gedomineerd door 
cytogenetische technieken als chromosoombandering. Hoewel vele genetische 
afwijkingen zoals trisomieën, gedeeltelijke trisomieën of monosomieën en 
(on)gebalanceerde translocaties zijn gevonden, is bij een significant deel van de 
gevallen geen genetische afwijking gedetecteerd, omdat de ondergrens van 
detectie bij chromosoombandering rond 5 tot 10 megabasen ligt. 
Om kleinere genetische afwijkingen op te sporen is een nieuwe techniek 
ontwikkeld genaamd “array comparative genomic hybridization” (array-CGH). 
Deze moleculair-genetische techniek is gebaseerd op het vergelijken van twee 
genomische DNA monsters, die een verschillend fluorescerend label bevatten 
(meestal een patiëntmonster en een referentiemonster van een normaal 
persoon). Beide gelabelde monsters worden tegelijkertijd gehybridiseerd op een 
array van geïmmobiliseerde DNA fragmenten die specifieke stukken van het 
genoom vertegenwoordigen. De resolutie van deze array-CGH techniek hangt af 
van de mate van representatie van het hele genoom en de lengte van de 
geïmmobiliseerde DNA fragmenten. 
In hoofdstuk 1 van dit proefschrift wordt array-CGH geïntroduceerd en besproken 
in de context van de algemeen gangbare cytogenetische en moleculaire 
technieken. Hoofdstukken 2 tot en met 8 beschrijven de ontwikkeling en het 
gebruik van een array-CGH platform in de moleculaire en cytogenetica. De 
desbetreffende array bestond uit DNA fragmenten van gemiddeld 100 kilobasen 
en een spatiële resolutie van ongeveer 1 megabase. De toegevoegde waarde van 
array-CGH ten opzichte van de conventionele banderingstechnieken wordt 
getoond in hoofdstuk 2. Chromosomale afwijkingen in primaire cellijnen van 
patiënten met bekende afwijkingen konden nauwkeuriger worden vastgesteld en 
zelfs worden verbeterd. 
In een daaropvolgende studie is array-CGH vergeleken met technieken die op dit 
moment gebruikt worden voor de detectie van potentiële pathogene genetische 
afwijkingen. Met array-CGH konden 16% meer afwijkingen aangetoond worden in 
patiënten met mentale retardatie, welke ook bevestigd zijn met andere 
technieken. Deze resultaten zijn weergegeven in hoofdstuk 3 en het gevonden 
percentage is in overeenstemming met andere gepubliceerde studies. 
De voordelen van array-CGH kunnen de huidige werkwijze in de postnatale 
diagnostiek volledig veranderen. Terwijl conventionele chromosoombandering de 
standaard is sinds vele jaren, wordt er in hoofdstuk 4 een nieuwe aanpak binnen 
de postnatale cytogenetica voorgesteld waarbij moleculair-genetische 
technieken als MLPA en array-CGH worden gebruikt als eerste stap in het 
onderzoek naar genetische afwijkingen. Deze robuuste, relatief goedkope en 
snelle procedure kan leiden tot een preciezere en snellere detectie van 
chromosoomafwijkingen. 



Samenvatting 

140 

De volgende hoofdstukken zetten op een gedetailleerde manier uiteen dat array-
CGH een nuttige techniek is om chromosoomafwijkingen in detail aan te tonen en 
het nauwkeurig karakteriseren van afwijkingen mogelijk maakt. Dit type 
onderzoek toont genetische afwijkingen niet alleen aan, maar draagt ook bij tot 
de algemene kennis over hoe chromosoomafwijkingen ontstaan. Mogelijk 
resulteren deze studies in een beter inzicht tussen de korrelatie tussen het 
genotype en het fenotype van patiënten en kunnen ze de invloed van een gen of 
genetisch gebied binnen een bepaald ziektebeeld vaststellen. Deze hoofdstukken 
laten ook zien dat het van wezenlijk belang is dat internationale 
samenwerkingsverbanden gecreëerd en onderhouden worden waarbinnen data 
over genetische variatie gedeeld worden. Immers alleen op deze manier kan 
beoordeeld worden of genetische variaties ziekteveroorzakend dan wel normaal 
zijn. 
Hoofdstuk 5 en 6 beschrijven complexe chromosoomafwijkingen die tot in detail 
geanalyseerd zijn met array-CGH. In hoofdstuk 5 is bij een schijnbaar 
gebalanceerde complexe driewegtranslocatie met extra insertie een 
submicroscopische deletie vastgesteld. Hoofdstuk 6 beschrijft een complex 
ringchromosoom met een deletie, duplicatie en triplicatie, waarbij met G-
bandering en FISH in eerste instantie alleen de ringstructuur met een terminale 
deletie gevonden werd. Dit hoofdstuk laat zien dat voor een correcte korrelatie 
tussen genotype en fenotype G-bandering gecombineerd moet worden met een 
moleculair-genetische techniek met hoge resolutie. 
In hoofdstuk 7 is een microduplicatie 3q29 beschreven die gevonden werd in vier 
verschillende families. Dit hoofdstuk toont aan dat deze specifieke 
chromosoomafwijking een causale maar een variabele en soms verminderde 
invloed heeft op het fenotype. Om te kunnen bewijzen dat een genetische 
afwijking een causale invloed heeft, is het van belang te komen tot een 
algemeen toegankelijke databank, waarin “case reports” en families met 
ongewone variatie staan geregistreerd. De interpretatie van dit soort data blijft 
een uitdaging, zoals blijkt uit hoofdstuk 8. Een deletie die herhaaldelijk 
gerapporteerd werd als een normale variatie bleek in homozygote vorm toch een 
causaal effect te hebben in een patiënt met syndromaal gehoorsverlies. 
Op dit moment worden in diagnostische laboratoria array-CGH technieken 
geïmplementeerd als ondersteuning of deels ter vervanging van klassieke 
cytogenetische technieken. Er is immers aangetoond dat deze een waardevolle 
aanvulling op de huidige diagnostiek zijn. Echter, om structurele 
chromosoomafwijkingen correct te kunnen typeren blijft chromosoombandering 
een belangrijke techniek. 
De genetica bewijst een uiterst innovatief vakgebied te zijn, want nieuwe 
generatie sequencingtechnieken staan op het punt array-CGH te vervangen. Deze 
nieuwste technieken zullen het mogelijk maken het genoom van een patiënt 
volledig te sequencen om genetische afwijkingen op te sporen en hebben 
zodoende een superieure resolutie in vergelijking tot voorgaande techieken. Het 
is dus evident dat de ontwikkeling van de diagnostiek allerminst ten einde is met 
de introductie van de array-CGH. 
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