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Introduction 

Charles Darwin’s observations on bending of Avena coleoptiles towards the 

light at the end of the 19
th
 century led him to conclude that some compound 

synthesized in the apical part of the coleoptile is transported to the lower part to 

regulate its directional growth (Darwin, 1880). Years later these initial findings 

led to isolation of the plant hormone auxin and its characterization as the 

compound indole-3-acetic acid (IAA) (Went, 1937). Since its discovery, many 

aspects of auxin biology have been extensively studied, from its biosynthesis 

and metabolism to its transport-driven asymmetric distribution and the 

elucidation of molecular components of downstream signaling. Based on these 

studies we know now that auxin plays a central role in diverse developmental 

processes throughout a plant’s life cycle, by regulating cell division, growth and 

differentiation. The physiological effects of auxin are wide and complex. 

Application of exogenous auxin to plant cells leads to immediate responses, 

such as an increase in intracellular calcium levels, cell wall acidification, and 

changes in membrane potentials and enzyme activities, which are followed by 

changes in gene expression. In the context of the whole plant these changes 

regulate patterning processes, apical dominance, and root growth, and mediate 

lateral root- and fruit initiation, among others (Delker et al., 2008; Benjamins 

and Scheres, 2008). In this chapter we shortly review the current knowledge on 

auxin transport, auxin response and protein ubiquitination. 

 

Auxin transport 

Using radioactively labeled auxin, it was observed that IAA is transported from 

cell to cell in a unidirectional manner. In the 1970s different hypotheses about 

the mechanism converged into the chemiosmotic model for polar auxin 

transport (PAT). This model postulates that due to the relatively acidic 

extracellular pH (5.5), a portion of the free IAA in the apoplast is in its 

protonated form (IAAH) that can pass the plasma membrane by import carriers, 

or freely by diffusion. In the more basic cytoplasmic environment (pH 7.0) auxin 

ionizes to form the anion IAA
-
 that cannot freely pass the plasma membrane, 

and becomes trapped inside the cell. The only way these IAA
-
 anions can exit 
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the cell is by auxin efflux carriers, and polar placement of such carriers in the 

plasma membrane will give directionality to the transport (Rubery and 

Sheldrake, 1973; Raven, 1975). In the past decade, the molecular elements in 

this model have been identified. The AUX1/LAX family of auxin permeases 

were shown to act as auxin import carriers (Swarup et al., 2004; Yang et al., 

2006) that were first predicted and later shown to be important enhancers of 

PAT (Kramer, 2004; Swarup et al., 2008; Bainbridge et al., 2008). On the other 

hand, PIN FORMED (PIN) proteins were identified along with several ABC 

transporter-like phosphoglycoproteins (PGPs) to act as the auxin efflux carriers 

(Petrasek et al., 2006; Bandyopadhyay et al., 2007; Mravec et al., 2008). The 

PIN proteins were named after mutants of the PIN FORMED/PIN1 gene, which 

form pin-like inflorescence that develop only few or no flowers or other lateral 

organs (Okada et al., 1991). The Arabidopsis PIN protein family comprises 8 

members, six of which contain two transmembrane domain regions intervened 

by a large central hydrophilic loop (HL). The role of the HL-containing proteins 

PIN1, PIN2, PIN3, PIN4 and PIN7 in plant development has been well 

established, and apart from their specific function there is also considerable 

functional redundancy between the corresponding genes (Tanaka et al., 2006; 

Vieten et al., 2007). All five proteins show tissue-specific polar distribution at the 

plasma membrane (Tanaka et al., 2006) that dictates of the direction of auxin 

flow through their asymmetric subcellular localization (Wisniewska et al., 

2006a). The function of PIN6 is still elusive, and also for PIN5 and PIN8 that 

lack a large HL no function has been reported. 

Of all the Arabidopsis pin loss-of-function mutants, pin1 is most severely 

affected in development with the needle-like inflorescences as most striking 

phenotype (Okada et al, 1991). This already indicated a crucial role for PIN1 in 

shoot development, and more detailed analysis has shown that PIN1-driven 

auxin transport in the epidermis of the shoot apical meristem generates auxin 

maxima  that are responsible for the initiation of new organs and thus for 

phyllotactic patterning (Reinhardt et al., 2003; Heisler et al. 2005). An extensive 

screen for pin-formed mutants has revealed two allelic groups with a similar 

phenotype, and besides new pin1 alleles the screen identified pinoid (pid) 
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mutants that all carry mutations in a gene coding for a protein serine-threonine 

kinase (Bennett et al., 1995; Christensen et al., 2000; Benjamins et al., 2001). 

In pid loss-of-function plants PIN1 proteins were found at the basal, instead of 

apical, side of epidermal cells in the shoot meristem, explaining the defective 

organogenesis leading to the pin-formed phenotype (Friml et al., 2004). The 

fact that in PID overexpressing roots PIN1, PIN2 and PIN4 were found at the 

apical side of cells, confirmed that PID is a central regulator of PIN polarity and 

auxin transport (Friml et al., 2004). Recently, the PID kinase has been shown to 

directly phosphorylate the HL of PIN proteins, and to act antagonistically with 

the PP2A protein phosphatases on the phosphorylation status of PIN proteins 

(Michniewicz et al., 2007). The current model defines that PID regulates polar 

auxin transport by controlling PIN localization, and thereby determines the 

direction of auxin flow (Benjamins et al., 2001; Friml et al., 2004). The role of 

calcium as a second messenger in modulating auxin responses and PAT is well 

established. Evidence that calcium is one of the early signals in auxin response 

came from experiments on maize coleoptile cells (Gehring et al., 1990; Felle et 

al., 1991), parsley cells, maize and pea roots (Gehring et al., 1990). A rapid 

increase in the cytosolic calcium concentration is detected within minutes after 

auxin application. Early studies on sunflower stem sections showed that PAT 

was abolished by the presence of calcium chelators and restored by application 

of calcium solutions, which suggested an important role for calcium in the 

regulation of PAT (la Fuente and Leopold, 1973). A molecular link connecting 

calcium and PAT was found by the identification of the calcium-binding proteins 

PINOID BINDING PROTEIN1 (PBP1) and TOUCH3 (TCH3) as interacting 

proteins of PID (Benjamins et al., 2003). Neither of the calcium-binding proteins 

is a phospho-target of PID but both regulate PID kinase activity. TCH3 is a 

negative regulator of PID activity, whereas PBP1 positively regulates the kinase 

in vitro (Benjamins et al., 2003; Robert-Boisivon, 2008). TCH3 is a Calmodulin-

like protein with six EF-hand domains encoded by a touch-responsive gene 

while PBP1 is a small protein with a single EF-hand (Braam and Davis, 1990; 

Sistrunk et al., 1994). PBP1 was also named KRP2 (for KIC-related protein2), 

as it is part of a small protein family that includes KIC (KCBP-interacting 
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Calcium binding protein) and the close PBP1 homolog PBP1H/KRP1 (Reddy et 

al., 2004). PID belongs in the AGC3 clade of the AGCVIII (cAMP-dependent 

protein kinase A, cGMP-dependent protein kinase G and phospholipid-

dependent protein kinase C) kinase family together with three other members: 

WAG1 (WAVY ROOT GROWTH1), WAG2 and AGC3-4 (Galvan-Ampudia and 

Offringa, 2007). Functional analysis of WAG1 and WAG2 has indicated that 

these kinases play roles in root growth. The enhanced root growth sensitivity of 

wag1wag2 loss-of-function seedlings to the PAT inhibitor NPA (Santner and 

Watson, 2006), together with the fact that WAG kinases, like PID, are 

membrane-associated suggests that they may also be involved in the regulation 

of polar targeting of PIN proteins (Galvan-Ampudia and Offringa, 2007). In fact 

WAG1 and WAG2 are able to phosphorylate PINs in vitro more efficiently than 

PID in some cases (Galvan-Ampudia, C.; unpublished). Many components 

have been identified regulating auxin transport and polarity maintenance in 

plants, from the auxin efflux carriers PINs and PGPs (Wisniewska et al., 2006b; 

Mravec et al., 2008), influx facilitators like AUX1 (Swarup et al., 2001) to 

regulators of PIN polarity through phosphorylation/dephosphorylation like PID, 

WAGs, D6PK and RCN1 (Friml et al., 2004; Michniewicz et al., 2007; Galvan-

Ampudia and Offringa, 2007; Zourelidou et al., 2009) or cycling/stability 

processes regulated by GNOM, COP9 and the 26S proteasome (Geldner et al., 

2003; Abas et al., 2006; Laxmi et al., 2008). A complete understanding of 

phosphorylation- and cycling-dependent polarity maintenance explaining the 

way these processes proceed and interact in planta is still lacking The 

components discussed above are responsible for transporting auxin to the cells 

were it activates the responses essential for plant development. The way auxin 

is perceived by plant cells will be discussed below. 

 

Perception: auxin-responsive gene expression 

The polar transport-generated auxin maxima and gradients are instructive for 

plant cell growth and differentiation. At the cellular level, auxin concentrations 

are translated into a gene expression response by the complex and dynamic 

interaction between two large families of transcriptional regulators: the Auxin 
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Response Factors (ARFs) and the labile Aux/IAA proteins (Guilfoyle et al., 

1998b; Ulmasov et al., 1999; Tiwari et al., 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Mechanism of auxin perception by the SCF
TIR1

 E3 ubiquitin ligase in Arabidopsis 

thaliana. Aux/IAA proteins are labeled for proteolysis by ubiquitination. This process is mediated by 

the ubiquitin activating enzyme E1, the ubiquitin conjugating enzyme E2 and the ubiquitin ligase E3. 

Under low auxin concentrations Aux/IAAs proteins heterodimerize with the ARF transcription 

factors, thereby repressing auxin-inducible gene expression trough association with the co-

repressor TPL. Auxin binding to TIR1 stimulates its interaction with the domain II of Aux/IAAs which 

leads to their proteasomal degradation, presumably preceded by Aux/IAA ubiquitination, releasing 

ARF-dependent transcription. PID-dependent phosphorylation of BDL/IAA12 close to domains I and 

II might impair TIR1 binding and/or TPL association. The CSN complex can cleave the RUB 

modifier from CUL1, thus facilitating CAND1 binding to CUL1 and SCF disassembly. PID interacts 

with the CSN8 subunit of COP9 and phosphorylates CSN7 in vitro. Conjugation of RUB to CUL1 by 

the AXR1-ECR1 and RCE1 enzymes might free CUL1 from CAND1, promoting re-assembly of the 

active complex. DBD, DNA-binding domain; Ub, ubiquitin; IAA, indole-3-acetic acid. For other 

abbreviations see text. 
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ARF proteins bind to specific sequences in the promoters of auxin-responsive 

genes through their N-terminal DNA-binding domain, and either activate or 

repress transcription. At the C-terminus they share the conserved domains III 

and IV with the Aux/IAA proteins, through which they homo- or heterodimerize 

with other ARFs or with the Aux/IAA proteins (Figure 1) (Guilfoyle et al., 1998a; 

Guilfoyle et al., 1998b). Several lines of evidence indicate that Aux/IAA proteins 

do not bind DNA directly, but function as transcriptional repressors by 

heterodimerizing with activating ARFs (Ulmasov et al., 1997; Kim et al., 1997; 

Guilfoyle et al., 1998a). Most Aux/IAA proteins are short-lived and degradation 

of Aux/IAA proteins is essential for auxin signaling. Their half-lives and 

abundance are dramatically reduced by auxin as a primary response and this 

process can be blocked by treatment with proteasome inhibitors (Worley et al., 

2000; Ramos et al., 2001). Aux/IAA proteins act as transcriptional repressors 

through the EAR motif present in the conserved domain I (Tiwari et al., 2004) 

that was shown to mediate the interaction of BDL/IAA12 with the co-repressor 

TOPLESS (Szemenyei et al., 2008). This interaction seems to be essential for 

the repressive activity of BDL/IAA12, as the tlp-1 mutation is able to rescue the 

rootless bdl phenotype. BDL/IAA12 is known to interact and inhibit the activity of 

the MP/AFR5 transcriptional activator (Hamann et al., 2002). A translational 

fusion of TOPLESS with domains III and IV of BDL/IAA12 resulted in bdl/mp-

like phenotypes (Szemenyei et al., 2008). These results indicate that one of the 

functions of BDL/IAA12 is to bridge the ARF-TLP interaction, which is disrupted 

upon BDL/IAA12 degradation (Figure 1). 

It is clear now that transcriptional and developmental responses to auxin are 

sensitive to the levels of Aux/IAA proteins (Worley et al., 2000; Ramos et al., 

2001; Zenser et al., 2003; Dreher et al., 2006). Several Arabidopsis mutants 

displaying diminished auxin responses were found to have gain-of-function 

mutations in Aux/IAA genes (Figure 2). Strikingly, all these mutations affect 

specific sites in domain II, and lead to extended protein half-life and presumably 

much greater abundance of the respective Aux/IAA proteins (Worley et al., 

2000; Ouellet et al., 2001). The conserved domain II of Aux/IAA proteins 

contains a 13 amino acid sequence that functions as a transferable degradation 
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signal, and it is necessary and sufficient to define Aux/IAA protein stability 

(Ramos et al., 2001). This motif was defined as QVVGWPPVRSYRK, 

underlined residues indicate those conserved among all the domain II-

containing Arabidopsis Aux/IAAs.  

 

             

Aux/IAA gene Domain II mutations References 

AXR2/IAA7 
arx2-1 

PAKAQVVGWPPVRN 
                 S 

 
Nagpal et al., 2000 

AXR3/IAA17 
axr3-1 
axr3-3 
axr3-101 

PAKAQVVGWPPVRS 
                          L 
                            G 
                 E 

 
 
Rouse et al., 1998 
Okushima et al., unpub. 

SHY2/IAA3 
shy2-1, -2 
shy2-3 
shy2-6 

PPRKAIVGWPPVRS 
                     S 
                E 
                        L 

 
 
Tian and Reed, 1999 
Fukaki et al., unpub 

SLR1/IAA14 
slr1-1, -4 
slr-2 
slr-3 

PPAKAVVGWPPVRN 
                         S 
                       S 
                       A    

 
Fukaki et al., 2002 
 
Fukaki et at. unpub 

IAA28 
iaa28-1 

VEVAPVVGWPPVRS 
                       L         

 
Rogg et al., 2001 

MSG2/IAA19 
msg2-1 
msg2-2 
msg2-3 
msg2-4 

PAAKASVGWPPVCS 
                         S 
                 R 
                         L 
                       L  

 
 
 
 
Tatematsu et al., 2004 

BDL/IAA12 
bdl 

PPRSSVVGWPPIGL 
                       S 

 
Hamann et al., 2002 

IAA13 
iaa13 

PPRSSVVGWPPIGL 
                       S 

 
Weijers et al., 2005 

IAA18 
crane-1 
crane-2 

TAPGPVVGWPPVRS 
                 R 
                 E 

 
 
Uehara et al. 2008 

SHY1/IAA6 
shy1-1 

PVVKSAVGWPPVCS 
                              R 

 
Reed, 2001 

ARX5/IAA1 
iaa1-GR 
axr5-1 

PPAKTQIVGWPPVR 
                        L 
                          S 

 
Park et al., 2002 
Yang et al., 2004 

  

Figure 2: Amino acid substitutions in domain II that stabilize Aux/IAA proteins 

 

This domain interacts with the F-box-protein TIR1 and the interaction is 

promoted by auxin in a concentration-dependent manner leading to Aux/IAA 

proteasomal degradation (Gray et al., 2001; Dharmasiri et al., 2003). For a long 

time it was thought that the degron was modified upon auxin treatment. 

Recently, however it was uncovered that TIR1 binds auxin and this enhances 

the interaction with the Aux/IAA proteins (Figure 1). The Aux/IAA proteins bind 
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TIR1 in the absence of auxin, but with low affinity (Kepinski and Leyser, 2005; 

Dharmasiri et al., 2005a). Crystallographic studies showed that the auxin 

molecule acts as “molecular glue” between TIR1 and its substrate, binding both 

proteins and facilitating hydrophobic packing between TIR1 and its substrate 

(Tan et al., 2007). The conserved central GWPPV motif is the hallmark of the 

Aux/IAA degron. Two amino acids in the motif, tryptophan and the second 

proline, interact with the surrounding hydrophobic wall of the TIR1 pocket and 

stack against the auxin molecule lying underneath, packing against the auxin 

indole ring and the auxin side chain, respectively. In the structure, the glycine 

residue is located at a critical position, where flexibility of the peptide is required 

for the N-terminal region of the substrate peptide to take a sharp turn and 

continue interacting with TIR1, indicating that the integrity and hydrophobicity of 

domain II is crucial for TIR1 recognition. Aux/IAA domain II mutants were 

identified with these core amino acids changed into the acidic residue glutamic 

acid (Tian and Reed, 1999; Uehara et al., 2008; Ploense et al., 2009), indicating 

that the acidic modification (i.e. phosphorylation) of domain II is a plausible 

mechanism for reducing TIR1-Aux/IAA interaction (Figure 2). 

TIR1 is the first true auxin receptor described, acting alongside other members 

of the AFB (Auxin F-box protein) family to form SCF
TIR1/AFB

 complexes that 

control auxin-dependent degradation of Aux/IAA proteins (Dharmasiri et al., 

2005b). The dependence on SCF
TIR1

 and the 26S proteasome suggests that 

Aux/IAA proteins are degraded via the ubiquitin-dependent pathway, although 

direct evidence for this post-translational modification is lacking. Ubiquitin 

dependency of proteasomal degradation will be discussed in more detail below. 

  

 

Proteasomal degradation and ubiquitination.  

Much of cellular physiology, growth, and development are controlled by the 

selective removal of regulatory proteins. Like all macromolecular components of 

an organism, the proteome is in a dynamic state of synthesis and degradation. 

In eukaryotic organisms, ubiquitin conjugation to target proteins and 
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subsequent degradation by the proteasome plays an important role in diverse 

cellular processes.  

Ubiquitin is a highly conserved 76 amino acid (~9 kDa) protein that is 

abundantly expressed in all eukaryotic cells. Protein ubiquitination is a multistep 

process, involving at least three types of enzymes and generally results in the 

covalent attachment of poly-ubiquitin chains to target proteins. A prominent role 

of poly-ubiquitin chains is that they label proteins for degradation by the 

proteasome (Figure 1). As a first step in the ubiquitination process, an ubiquitin-

activating enzyme (also known as E1) forms a thiol-ester bond with the 

carboxy-terminal glycine of ubiquitin in an ATP-dependent process. Then, a 

ubiquitin-conjugating enzyme or ubiquitin-carrier enzyme (UBC, also known as 

E2) accepts ubiquitin from the E1 by a trans-thiolation reaction, again involving 

the glycine at the carboxy-terminus of ubiquitin. Finally, an ubiquitin protein 

ligase (E3) catalyses the transfer of ubiquitin from the E2 enzyme to the ε-

amino group of a lysine residue on the substrate (Glickman and Ciechanover, 

2002). Chains containing at least four glycine-76 to lysine- 48 isopeptide-linked 

ubiquitins are necessary for efficient binding to the component S5a/Rpn10 of 

the proteasome (Baboshina and Haas, 1996; Thrower et al., 2000). The 

quaternary structure of ubiquitin polymers and the exact spatial relationship 

between each ubiquitin molecule is also critical for their ability to target 

substrates for degradation by the proteasome. 

The 26S proteasome is a 2.5-MDa ATP-dependent proteolytic complex that 

mostly degrades ubiquitin conjugates (Voges et al., 1999). It contains 32 

principal subunits arranged into two subcomplexes, the 20S core protease (CP) 

and the 19S regulatory particle (RP). The 20S core subunit bears a broad 

spectrum ATP- and Ub-independent protease activity. The active sites of the 

CP are very sensitive to the proteasome inhibitors MG115, MG132, lactacystin, 

and epoxomycin (Yang et al., 2004). The 19S RP associates with one or both 

ends of the CP and confers both ATP-dependence and specificity for Lys48-

linked polyubiquitin chains to the particle. ATP-ase and de-ubiquitinase (DUB) 

activities associated to 19S RP subunits are responsible for protein unfolding 

and directing the unfolded de-ubiquitinated polypeptides into the lumen of the 
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CP for breakdown. Posttranslational modification of proteins by covalent 

attachment of ubiquitin is a reversible process and the processed ubiquitins are 

recycled to be re-used by the cell. All known deubiquitinating enzymes (DUBs) 

are cysteine proteases that specifically hydrolyze the amide bond immediately 

after the COOH-terminal residue. Based on their molecular size, sequence 

homology, and active site residues, DUBs are categorized as UCHs (ubiquitin 

COOH-terminal hydrolases) or UBPs (ubiquitin-specific proteases) (Nijman et 

al., 2005). UCHs are generally small enzymes (20–30 kDa) that remove short or 

flexible peptide chains from the COOH terminus of ubiquitin. UBPs on the other 

hand belong to a larger and a more diverse group of enzymes and have a 

larger molecular mass, typically in the range of ~100 kDa. UBPs can cleave the 

isopeptide bond linking Ub-Ub or Ub-protein. Despite the common active site 

residues, the UBP and UCH families do not share sequence homologies with 

one another or with cysteine proteases (D'Andrea and Pellman, 1998; Chung 

and Baek, 1999). DUBs play several roles, both in maintaining the levels of free 

ubiquitin and in regulating the stability of Ub-conjugated proteins (Nijman et al., 

2005), including Aux/IAAs in Arabidopsis (Yang et al., 2007).  

Ubiquitin was first identified as a covalently attached signal  to proteins targeted 

for degradation (Hershko et al., 1982). Polyubiquitin chains linked via Lys-48 

are the principal signals recognized and degraded by the proteasome. It has, 

however, now been realized that ubiquitination not only regulates intracellular 

proteolysis, but also diverse processes such as transcription, receptor-mediated 

signal transduction and endocytotic sorting (Mukhopadhyay and Riezman, 

2007). Ubiquitination on Lys-63 of ubiquitin appears to play a role in a variety of 

processes not involving proteolysis including endocytosis of cell surface 

receptors (Hicke, 1999), post-replicative DNA repair (Spence et al., 1995), 

stress response (Arnason and Ellison, 1994), mitochondrial DNA inheritance 

(Fisk and Yaffe, 1999), ribosomal function (Spence et al., 2000), and activation 

of the IκBα signaling complex (Wang et al., 2001). Mono-ubiquitination also 

plays important non-proteolytic roles  such as endocytosis (Terrell et al., 1998) 

and control of gene transcription (Pham and Sauer, 2000). 
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The necessity of ubiquitin modification as a signal for proteasomal degradation 

was challenged by the discovery of ornithine decarboxylase (ODC) which is 

degraded via an ubiquitin-independent process (Figure 3). ODC is a rate-

limiting enzyme in polyamine biosynthesis and accumulation of polyamines 

stimulates the synthesis of the antizyme protein. Antizyme in turn was found to 

negatively regulate ODC by binding, which is sufficient to trigger ODC 

degradation by the 26S proteasome (Coffino, 2001). Non-ubiquitinated ODC 

monomers are degraded by 20S proteasomes in a process regulated by 

NAD(P)H Quinone Oxidoreductase1 (NQO1) (Asher et al., 2005a). The REGγ 

alternative lid complex of the proteasome was shown to mediate the ubiquitin-

independent degradation of the mammalian cell cycle regulator p21
CIP21

 (Chen 

et al., 2007). Moreover, the tumor suppressor proteins p53 and p73 are 

degraded by the proteasome in an ubiquitination-independent manner, and 

association with the 20S proteasome gatekeeper NQO1 blocks this degradation 

(Asher et al., 2005b). The regulation of inherently unstable proteins like ODC, 

p53 and p73 was proposed to follow a “degradation by default” mechanism 

(Asher et al., 2006) where degradation occurs unless specific intervention with 

NQO1 or homodimerization, in the case of ODC, prevents it. What is clear from 

these examples from the animal research field is that proteasomes have 

diverse ways for target recognition (Figure 3). 

Considering the amount of examples of different ubiquitin modifications and the 

downstream effects of these processes, it is now clear that ubiquitination is 

much more than a proteasomal targeting signal. How it mediates responses to 

DNA damage, facilitates endosomal transport, and increases the efficiency of 

translation are all open questions. The genome of Arabidopsis encodes more 

than 1400 (or >5% of the proteome) ubiquitin pathway components, illustrating 

the importance of the ubiquitin pathway in the regulatory plasticity of plants 

(Lechner et al., 2006). 
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Figure 3: Schematic representation of ubiquitin-dependent and -independent pathways of 

proteasomal degradation. Proteins containing Lys-48 linked poly-ubiquitin chains are recognized 

by the 19S regulatory particle (RP) of 26S proteasomes and degraded in the proteolytically active 

20S core particle (CP). Examples of Arabidopsis proteins experimentally demonstrated to be 

ubiquitinated are shown together with the presumably Ub-modified JAZ and EIN3 proteins. Classical 

examples of mammalian ubiquitinated proteins degraded by the 26S proteasome are shown. Some 

unstable proteins are degraded via ubiquitin-independent processes in mammals. Binding of 

antizyme (AZ) to ODC disrupts ODC homodimers and induces ubiquitin-independent 26S 

proteasomal degradation of ODC. Free ODC monomers are also degraded by 20S proteasomes 

without ubiquitination. NQO1 functions as a gatekeeper of 20S proteasomes and interacts with p53, 

p73 and ODC in a NADH-dependent manner to protect them from 20S proteasomal degradation. 

The REGγ complex acts as an alternative lid of 20S proteasomes and controls the degradation of 

p21
cip

 and other lysine-less proteins. Both 20S and 26S degradation pathways are inhibited by 20S 

CP proteasome inhibitors like MG132. 

 

CULLIN1 containing (SCF) E3 ligases and hormone responses in plants 

Ubiquitin is a widespread cellular signal and, as described above, ubiquitin 

conjugation is achieved through an ATP-dependent reaction cascade involving 

the sequential action of three enzymes, E1, E2s, and E3s. E1 activates 
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ubiquitin, E2s catalyze covalent attachment of ubiquitin to target proteins which 

are recognized by associated E3s. As the final enzyme in the cascade, the E3s 

or Ubiquitin-protein ligases are responsible for recognizing the substrate and 

facilitating Ub transfer, determining the specificity of the response. Different 

types of E3s have been identified that differ according to their subunit 

organization and/or mechanism of Ub transfer (Deshaies, 1999). One important 

E3 type comprises the SCF complexes which are composed of four major 

subunits: CULLIN 1 (CUL1), SUPPRESSOR OF KINETOCHORE PROTEIN 1 

(SKP1), RING-BOX 1 (RBX1)/REGULATOR OF CULLINS 1 (ROC1) and an F-

box protein (Figure 1). Structure–function studies in yeast and mammals have 

demonstrated that CUL1 functions as a scaffold in assembling the different 

subunits of the complex. CUL1 interacts at its carboxyl terminus with the RING-

domain protein RBX1 (forming the core catalytic domain) and, at its amino 

terminus, with the adaptor protein SKP1, which links to one of multiple F-box 

proteins. F-box proteins, in addition to the loosely conserved F-box motif that 

binds to SKP1, usually carry one of a variety of typical protein–protein 

interaction domains that confer substrate recognition specificity to the SCF 

complexes. The large number of F-box proteins in plant genomes, nearly 700 in 

Arabidopsis (Gagne et al., 2002), is thought to allow for the specific 

ubiquitination of a large number of functionally and structurally diverse 

substrates.  

Besides the role of the SCF
TIR1/AFB

 E3 ligases in auxin responses, SCF 

complexes also regulate other phytohormone signaling pathways, including 

those for jasmonate, gibberellin and ethylene. The jasmonate perception 

mechanism involves the F-box protein, COI1. Since its discovery, the coi1 

mutant was regarded as the strongest jasmonate-insensitive mutant (Feys et 

al., 1994; Xie et al., 1998). The F-box protein COI1 was shown to assemble into 

an active SCF complex (Devoto et al., 2002; Xu et al., 2002) but its targets 

remained unknown until the discovery of JAZ repressors. JAZ (Jasmonate-ZIM 

domain) proteins represent a family of labile proteins which are postulated to 

negatively regulate the expression of jasmonate-responsive genes via their 

interaction with the activator MYC2. (Chini et al., 2007). Their stability is 
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regulated by SCF
COI1

 and the 26S proteasome (Thines et al., 2007; Chini et al., 

2007). Jasmonate-Isoleucine (JA-Ile) was shown to stimulate the interaction of 

certain members of the JAZ family with COI1 in vitro and in yeast (Thines et al., 

2007; Melotto et al., 2008). This is postulated to lead to JAZ proteasomal 

degradation supposedly via ubiquitination. COI1 is the closest relative to the 

TIR1/AFB clade of F-box proteins and their mechanism of action is very similar 

since COI1 (or the COI1-JAZ complexes) was found to be the receptor for 

Jasmonate-Isoleucine/Coronatine analogous to TIR1 for auxin (Spartz and 

Gray, 2008; Katsir et al., 2008a; Katsir et al., 2008b). The gibberellin (GA) 

signaling pathway is regulated in Arabidopsis by the F-box proteins SLEEPY1 

(SLY1) and SNEEZY (SNE) (McGinnis et al., 2003; Strader et al., 2004) and in 

rice by the F-box protein GID2 (Sasaki et al., 2003). Like TIR1 and COI1, these 

F-box proteins are involved in the degradation of negative regulators, which in 

the case of GA responses are the DELLA proteins which belong to the GRAS 

superfamily of putative transcriptional regulators. DELLA proteins directly or 

indirectly repress the expression of GA-induced genes (Feng et al., 2008; 

Daviere et al., 2008).  In Arabidopsis, the gibberellin molecule is recognized by 

the soluble receptor GID1. The interaction leads to a conformational change in 

the GID1 protein that traps the GA molecule inside a receptor pocket forming a 

closing lid. This induced modification allows DELLA proteins to interact with the 

upper surface of the lid, and it is hypothesized that this interaction may cause a 

change in the shape of the DELLA protein that allows it to associate with the 

ubiquitin ligase SCF
SLY/SNE

. Thus, GA functions as an allosteric activator of 

GID1, causing structural changes that allow the receptor to associate with 

DELLA proteins but GA does not interact directly with DELLAs (Murase et al., 

2008; Shimada et al., 2008).This is significantly different from the TIR1-Aux/IAA 

and COI1-JAZ interaction, where the signaling molecule does not induce 

conformational changes but rather acts as a molecular glue, in the case of 

TIR1, between F-box protein and the repressor. SCF-dependent degradation of 

transcriptional regulators is emerging as a common feature in plant 

developmental and adaptive responses with several examples described of 

interactors for the many Arabidopsis F-box proteins. Despite the emerging 
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importance of SCF complexes and protein degradation in plants the 

demonstration that the interacting partners of SCF complexes are actually 

ubiquitinated is missing for the vast majority of these targets. 

 

Regulation of SCF E3 ubiquitin ligases by RUB: a role for the COP9 

signalosome. 

Given their importance in cellular functions, it is not surprising that SCF 

assembly and activity are highly regulated. So far, three proteins or protein 

complexes have been implicated in SCF regulation. These are the ubiquitin-

related protein RUB/Nedd8 (for Related to Ubiquitin1 or Neural precursor cell 

expressed developmentally down-regulated 8), the COP9 signalosome (CSN), 

and CAND1 (for Cullin Associated Neddylation Dissociated1) (Figure 1). RUB 

conjugation to CUL1 is achieved by the activity of the ECR1 and AXR1/RCE1 

complexes (del Pozo et al., 2002) and phenotypes of different mutants indicate 

that rather than working as an on/off switch, the RUB cycling is essential for the 

assembly of SCF complexes in cooperation with CAND1 (Chuang et al., 2004). 

CAND1 binds de-rubylated CUL1 and inhibits CUL1/RBX1 binding to SKP1 

(Figure 1), thus preventing the formation of an active SCF complex (Feng et al., 

2004). Reducing the amount of CAND1 in cells leads to an increase in the 

number of complexes containing CUL1 and SKP1. The regulation of SCF E3 

ubiquitin ligases is dependent on the activity of the COP9 (CSN) signalosome 

that cleaves RUB from the CUL1 subunit of SCF (Cope et al., 2002b) releasing 

CAND1 from the CUL1/RBX1 complex allowing the formation of new SCF 

complexes (Zhang et al., 2008). Based on these results, it has been proposed 

that CAND1, the RUB conjugation pathway, and the CSN together regulate a 

cycle of SCF assembly and disassembly (Cope and Deshaies, 2003; Pintard et 

al., 2003; Parry and Estelle, 2006). One of the strongest auxin-resistant mutants 

is axr1, which is unable to conjugate RUB to CUL1 impairing the activity of the 

SCF
TIR1

 (del Pozo et al., 2002). Modification of SCF
TIR1

 by RUB has been 

implicated as a central step in the response to the plant hormone auxin. 

The COP9 signalosome (CSN) is a large nuclear-enriched multiprotein complex 

identified in genetic screens for constitutive 
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photomorphogenic/deetiolated/fusca (cop/det/fus) mutants in Arabidopsis. The 

COP9 signalosome consists of eight subunits, and shows intriguing structural 

and sequence homology to the 19S regulatory particle (RP) of the proteasome. 

A mutation in a single CSN subunit can destabilize the entire complex 

(Schwechheimer et al., 2002; Serino et al., 2003). All strong cop/det/fus 

mutations lead to seedling lethality shortly after germination, indicating that 

besides controlling light-dependent processes the integrity of the CSN complex 

is central to plant development (Kwok et al., 1996). CSN-dependent RUB de-

conjugation from CUL1 is accomplished by the CSN5 subunit which bears a 

metalloprotease activity necessary for RUB cleavage (Cope et al., 2002a). CSN 

and SCF complexes are known to physically interact and it was shown that 

CSN5 reduction-of-function lines display a phenotype similar to that of the axr1 

mutant and slower degradation rates of Aux/IAA proteins (Schwechheimer et 

al., 2001).  Besides auxin, SCF-CSN processes are tightly connected to many 

cellular and developmental responses such as light, jasmonate, gibberellins, 

ethylene, floral organ formation, circadian rhythms, shoot branching and many 

others (Chamovitz et al., 1996; Karniol and Chamovitz, 2000; Feng et al., 2003; 

Wang et al., 2003; Guo and Ecker, 2003; Han et al., 2004; Cheng et al., 2004; 

Stirnberg et al., 2007). Considering the wide repertoire of SCF complexes that 

can be formed by the Arabidopsis proteome, the CSN is emerging as central 

regulator of E3 ubiquitin ligases in plant biology. 

  

Thesis outline 

Auxin biology is among the oldest fields of experimental plant research. 

Nowadays, auxin is one of the most extensively studied plant hormone. Most of 

its effects on regulating cell division, growth and differentiation are dependent 

on its transport driven asymmetric distribution. At the cellular level, the 

molecular components of downstream signaling still demand further 

investigation. Auxin action was found to be dependent on dynamic gradients 

generated by PIN efflux carriers’ asymmetric distribution. Only recently, the F-

box protein TIR1 was identified as a receptor for auxin and the link between 

synthesis, transport, perception and effects of auxin gained a molecular 
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framework to be explored. Being part of a SCF E3 ubiquitin ligase complex, the 

TIR1 receptor uses the ubiquitin system to control levels of auxin-dependent 

gene responses via degradation of the Aux/IAA transcriptional repressors. 

Chapter 2 uses an Arabidopsis protoplast system to show the ubiquitination of 

the SHY2/IAA3 and BDL/IAA12 proteins by the SCF
TIR1

 E3 ubiquitin ligase 

complex. The mechanism of auxin perception based on auxin-induced Aux/IAA 

binding to the SCF
TIR1

 receptor was based on the supposition that this 

interaction would lead to Aux/IAA ubiquitination followed by 26S proteasomal 

degradation.  Our results confirm that Aux/IAAs are ubiquitinated and the 

process is stimulated by TIR1 overexpression, whose protein levels determine 

the sensitivity of cells towards auxin and leads to Aux/IAA degradation even in 

the absence of auxin treatment. It is known that Aux/IAAs display differential 

activities on auxin-responsive gene expression and our experiments indicate 

that BDL/IAA12 acts as a stronger and less stable protein than SHY2/IAA3. It is 

likely that these differences observed might be linked to differential affinity of 

these proteins to the TIR1 receptor which reinforces our hypothesis on 

phosphorylation-dependent regulation of the BDL protein (Chapter 4). 

Our concern on demonstrating the ubiquitination of Aux/IAAs was stimulated 

after the findings described on Chapter 3 with the characterization of a calcium 

binding protein PBP1, first identified as an interactor of the serine-threonine 

kinase PINOID, a regulator of auxin transport. When expressed in Arabidopsis 

cell suspensions protoplasts, PBP1 was found to be highly unstable protein that 

is poly-ubiquitinated and degraded by the proteasome. Mutation of all the 

lysines on the PBP1 primary sequence abolishes ubiquitin attachment but does 

not affect the proteasomal degradation of the protein. All known biochemical 

functions are maintained in the lysine-less versions of PBP1. We believe that 

PBP1 is controlled by ubiquitin-independent proteasomal degradation 

confirming observations from the animal field that not all targets of proteasomal 

degradation are necessarily ubiquitinated proteins.  

Chapter 4 describes the Aux/IAA protein BODENLOS (BDL/IAA12) as a 

putative in vivo phosphorylation target. From in vitro an in vivo studies there 

was indication that the two proteins could interact during plant development. In 
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vitro phosphorylation assays identified a PRSS motif as the site of phosphate 

modification by PID. Mutation of the two Serines on PRSS to PRKA abolishes in 

vitro phosphorylation of BDL/IAA12 by PID and analysis of transgenic plants 

carrying a phosphorylation-insensitive version of the gain-of-function bdl protein 

indicated that the phosphorylation site identified is essential for the function of 

the bdl protein in planta. Although the identified site seems to be important on 

the regulation of the BDL protein, the contribution of PID to the process is still 

hypothetical and the in vivo phosphorylation of this site still remains to be 

shown. 

Chapter 5 describes the identification of CSN subunit CSN8/COP9 as an 

interacting partner of the PINOID kinase. PID phosphorylates the neighboring 

subunit CSN7/COP15 in vitro but further analysis showed that this 

phosphorylation is not relevant for CSN activity in planta. On the other hand, 

PID is ubiquitinated in vivo and overexpression of CSN8 induces PID nuclear 

localization and enhances its ubiquitination. Is discussed the possibility of PID 

to act as a CSN-associated kinase regulated by ubiquitination and that this 

interaction would control the association of PID with phosphorylation targets 

also controlled via ubiquitination such as BDL/IAA12 and PIN2. 

The results presented on this thesis illustrate the wide spectrum of cellular 

processes in plants regulated though protein ubiquitination and proteasomal 

degradation. The confirmation of the TIR1-Aux/IAA model to be ubiquitin-

dependent contrasts with the PBP1 ubiquitin-independent degradation and rises 

the discussion of how many proteasome targets are ubiquitinated. The large 

representation of F-box proteins in the Arabidopsis proteome and the many 

processes regulated by ubiquitin modification will demand careful interpretation 

of experimental results. The well-established TIR1 recognition of Aux/IAAs has 

to be challenged with other members of the diverse Aux/IAA family to assess 

the particularities of each protein as well as for the other TIR1/AFB proteins. 

Regulation of polar auxin transport through ubiquitin- and COP9-related 

processes seem to involve PINs and PID via a integrated mechanism using 

both phosphorylation and ubiquitination as targeting signals. During a long time 
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PID functions were analyzed based on the effects it has on its targets and now 

the regulators of PID, such as CSN, open field for a new exploration.   
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Summary 

 

The plant hormone auxin (indole-3-acetic acid or IAA) regulates plant 

development by inducing rapid cellular responses and changes in gene 

expression. Auxin promotes the degradation of Aux/IAA transcriptional 

repressors, thereby allowing auxin response factors (ARFs) to activate the 

transcription of auxin-responsive genes. Auxin enhances binding of Aux/IAA 

proteins to the receptor TIR1, which is an F-box protein that is part of the E3 

ubiquitin ligase complex SCF
TIR1

. Binding of Aux/IAA proteins leads to 

degradation via the 26S proteasome, but evidence for SCF
TIR1

-mediated poly-

ubiquitination of Aux/IAA proteins is lacking. 

 Here we used an Arabidopsis cell suspension-based protoplast system 

to find evidence for SCF
TIR1

-mediated ubiquitination of the Aux/IAA proteins 

SHY2/IAA3 and BDL/IAA12. Each of these proteins showed a distinct 

abundance and repressor activity when expressed in this cell system. 

Moreover, the amount of endogenous TIR1 protein appeared to be rate-limiting 

for a proper auxin response measured by the co-transfected DR5::GUS reporter 

construct. Co-transfection with 35S::TIR1 led to auxin-dependent degradation, 

and excess of 35S::TIR1 even led to degradation of Aux/IAAs in the absence of 

auxin treatment. Expression of the mutant tir1-1 protein or the related F-box 

protein COI1, which is involved in jasmonate signaling, had no effect on 

Aux/IAA degradation. Our results show that SHY2/IAA3 and BDL/IAA12 are 

poly-ubiquitinated and degraded in response to increased auxin or TIR1 levels. 

In conclusion, our data provide experimental support for the model that SCF
TIR1

-

dependent poly-ubiquitination of Aux/IAA proteins marks these proteins for 

degradation by the 26S proteasome, leading to activation of auxin-responsive 

gene expression. 
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Introduction 

 

The plant hormone auxin (indole-3-acetic acid or IAA) plays an essential role in 

a large variety of developmental processes throughout a plant’s life cycle. Auxin 

is transported in a polar cell-to-cell manner, and this transport directs cell 

division and growth by generating dynamic auxin gradients in tissues and 

organs. At the cellular level, auxin concentrations are translated into a gene 

expression response by the complex and dynamic interaction between two 

major families of transcriptional regulators: the Auxin Response Factors (ARFs) 

and the labile Aux/IAA proteins (Guilfoyle et al., 1998; Ulmasov et al., 1999; 

Tiwari et al., 2001). ARF proteins bind to specific sequences in the promoters of 

auxin-responsive genes through their N-terminal DNA-binding domain, and 

either activate or repress transcription. At the C-terminus they share the 

conserved domains III and IV with the Aux/IAA proteins, through which they 

homo- or heterodimerize with other ARFs or with the Aux/IAA proteins 

(Guilfoyle et al., 1998) . 

Aux/IAA proteins are short-lived transcriptional regulators that repress 

transcription controlled by auxin-responsive elements (AuxREs) by 

heterodimerizing with ARFs. The repressor activity of these proteins is located 

in the N-terminal domain I, whereas their stability is regulated by the central 

domain II. Auxin binds to the receptor TIR1 or the related Auxin signalling F-Box 

(AFB) proteins that are part of the E3 ubiquitin ligase complexes SCF
TIR1/AFB

. 

Auxin enhances the affinity of TIR/AFB for domain II of Aux/IAAs (Gray et al., 

2001; Kepinski and Leyser, 2005; Dharmasiri et al., 2005a; Dharmasiri et al., 

2005b; Tan et al., 2007).  Mutations in either the Aux/IAA domain II or in one of 

the SCF components lead to auxin-resistant phenotypes that are mostly due to 

the stabilization of the Aux/IAA repressors (Worley et al., 2000; Ouellet et al., 

2001). Moreover, treatment of plants with proteasome inhibitors leads to the 

accumulation of these proteins, indicating that Aux/IAA protein levels are 

controlled by the 26S proteasome (Gray et al., 2001; Ramos et al., 2001; Tian 

et al., 2003). Taken together, this information leads to a model in which auxin-

enhanced binding of TIR1/AFB to domain II of the Aux/IAAs results in 
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ubiquitination of these proteins, which marks them for degradation by the 26S 

proteasome. However, there is no direct experimental evidence for the 

SCF
TIR1/AFB

-mediated ubiquitination of Aux/IAA proteins. Recent proteome-wide 

screens using a multi-dimensional protein identification technology were not 

able to detect Aux/IAAs among the ubiquitinated proteins in Arabidopsis (Maor 

et al., 2007; Manzano et al., 2008), suggesting that more direct methods may 

be necessary to detect the ubiquitinated Aux/IAAs. 

 Although implicated in a large variety of cellular responses, protein 

ubiquitination of plant transcriptional regulators has been demonstrated for only 

a few targets, including SLENDER RICE1 (SLR1) by SCF
GID2

 in gibberellin 

responses (Sasaki et al., 2003), LONG HYPOCOTYL IN FAR RED (HRF1), 

LONG AFTER FAR-RED LIGHT1 (LAF1) and LONG HYPOCOTYL 5 (HY5) by 

CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) during 

photomorphogenesis (Xie et al., 2002; Saijo et al., 2003; Jang et al., 2005), and 

LEAFY (LFY) by SCF
UFO

 (Chae et al., 2008) in floral development. Targeted 

proteolysis by SCF-mediated ubiquitination has been implied for the 

transcription factor ETHYLENE INSENSITIVE3 (EIN3) by SCF
EBF1/EBF2

 in 

ethylene signaling (Potuschak et al., 2003; Guo and Ecker, 2003), for 

JASMONATE-ZIM-DOMAIN (JAZ) repressors by SCF
COI1

 in jasmonate 

signaling (Thines et al., 2007; Chini et al., 2007), and for many other proteins in 

diverse processes, but experimental evidence for ubiquitination of these 

proteins and for the specificity of the SCF-ligases for their targets is lacking. 

SHORT HYPOCOTYL 2 (SHY2/IAA3) and BODENLOS (BDL/IAA12) are 

distantly related Aux/IAA proteins that regulate auxin responses in different 

stages of a plant’s life cycle. Both have been shown to interact with TIR1 and to 

be stabilized by treatment with proteasome inhibitors. The mutant proteins 

shy2-2 and bdl carry the same Proline to Serine mutations in their domain II, 

leading to stabilized products show no or only residual interaction with 

TIR1/AFB (Tian et al., 2003; Dharmasiri et al., 2005b). BDL/IAA12 has been 

described as an interactor/regulator of the ARF MONOPTEROS (MP/ARF5) 

acting on embryo patterning (Hamann et al., 2002). SHY2/IAA3 is also able to 

interact with MP/ARF5 and to inhibit its activity, but the expression patterns of 
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these two proteins do not overlap in planta. Recent studies have connected 

SHY2/IAA3 action to modulation of NON-PHOTOTROPHIC HYPOCOTYL4 

(NPH4/ARF7)- and ARF19-regulated hypocotyl growth (Weijers et al., 2005).  

Aux/IAAs are short-lived proteins with hardly detectable endogenous levels 

(Abel et al., 1994; Ramos et al., 2001; Tian et al., 2003). This instability and 

rareness makes the study of their targeted degradation difficult to perform in 

planta. For a long time now, plant cell protoplasts have been used to assess 

hormone responses due to their amenability for transformation and their 

responsiveness to diverse stimuli (Abel and Theologis, 1998; Sheen, 2001). 

Much of the information gathered on the mechanisms of regulation of Aux/IAA 

stability has been performed using transiently transformed protoplasts (Tiwari et 

al., 2001; Ramos et al., 2001; Tiwari et al., 2004), and other important 

components of the auxin signaling pathway have been functionally 

characterized in this system including  ARFs, SCF
TIR1

 and RAC GTPases 

(Guilfoyle et al., 1998; Tao et al., 2005; Wang et al., 2005). 

In this study, we used Arabidopsis cell suspension protoplasts to demonstrate 

that auxin-enhanced TIR1-mediated ubiquitination of SHY2/IAA3 and 

BDL/IAA12 marks these proteins for degradation and leads to auxin-responsive 

gene expression. Our results show that auxin sensitivity of Arabidopsis 

protoplasts is strictly connected to the relative abundance of the TIR1 protein 

and Aux/IAA proteins, and that an excess of TIR1 leads to depletion of 

Aux/IAAs even in the absence of exogenous auxin. The mutant protein tir1-1 

and the related F-box protein COI1, which is involved in jasmonate signaling, 

had no effect on Aux/IAA stability or ubiquitination, corroborating the specificity 

and importance of TIR1 in the process. 
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EXPERIMENTAL  PROCEDURES 

 

Protoplast isolation and transformation 

Arabidopsis thaliana Col-0 cell suspension cultures were used for protoplast 

preparations. Culture maintenance, protoplast isolation and transfections were 

performed as previously described (Schirawski et al., 2000) with minor 

modifications. Four-to-six days old cultures were diluted 5-fold in auxin-free Cell 

Medium (30 g /L saccharose, 3.2 g/L Gamborg’s 

B5 basal medium with mineral organics, adjusted to pH 5.8 with KOH and 

sterilized by autoclaving), incubated overnight and used for protoplast isolation 

in auxin-free solutions. Transfected cells were kept at 25
o
C in the dark for 16 

hours before treatments. Where necessary, additional DNA of plasmid pART7 

(Gleave, 1992) was added, to equalize the amount of DNA for each 

transformation. 

 

DNA constructs  

For the auxin-responsive GUS assays, a DR5::GUS reporter construct with 7 

copies of the DR5 sequence cloned in the plasmid GusXX-47 (Pasquali et al., 

1994) was used. A plasmid carrying the Renilla reniformis luciferase (LUC) 

gene under the control of the CaMV 35S promoter was co-transfected as a 

control for transformation efficiency (De Sutter et al., 2005). All effector 

plasmids are based on pART7 carrying the CaMV 35S promoter and OCS 

terminator. GATEWAY
®
 (Invitrogen, www.invitrogen.com) destination cassettes 

derived from pEarleyGate 201 and 202 (Earley et al., 2006) were transferred 

into pART7 to generate plasmids pART7-HA and pART7-FLAG  for the 

expression of respectively N-terminally HA- or FLAG- tagged proteins in plant 

cells. 

N-terminally HA-tagged cDNAs of SHY2/IAA3 and shy2-2 (P69→S) were 

cloned from pACT2-SHY2 and pACT2-shy2-2 (kindly provided by Jason Reed, 

(University of North Carlolina, Chapel Hill, North Carolina) using XhoI/XbaI sites 

into pART7, generating 35S::HA-SHY2/IAA3 and 35S::HA-shy2-2. The 

BDL/IAA12 cDNA was excised with BamHI/XbaI from pET16H-BDL (Weijers et 
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al., 2006) and introduced into  pENTR 3C (Invitrogen), and the resulting entry 

clone was used to create 35S::HA-BDL/IAA12  via LR recombination in pART7-

HA (C.S Galvan-Ampudia and Offringa, unpublished) to generate 35S::HA-

BDL/IAA12. The bodenlos (P75→S) mutation (Hamann et al., 2002) was 

introduced in this plasmid using the Quickchange Site-directed Mutagenesis kit 

(Stratagene) resulting in 35S::HA:bdl. 

The entry clone for TIR1myc (Gray et al., 1999) was used for generating the 

tir1-1(G147→D) mutation by Quickchange site-directed mutagenesis. The 

deletions of the F-box motif in TIR1 and tir1-1, which removes the first 50 amino 

acids from the original sequence substituting I50 for an alternative M as a start 

codon, were generated via PCR with primers: 5’-

GAATTCATGGGGAACTGCTACGCCGTGAG-3’ and 5’-

GCGGATCCCTAAAACCTCATTGTTGAGTC-3’.The COI1 cDNA was amplified 

from a leaf cDNA library with the primers 5’-

CGAGCTCAAAATGGAGGATCCTGATATCAAG-3’and 5’-

GGGGTACCGACTGACTCTATGTAATCTCC-3’ and cloned into pENTR2B. 

Entry clones were used in an LR reaction with pART7-FLAG, generating 

35S::FLAG-GFP, 35S::FLAG-TIR1myc, 35S::FLAG-tir1-1myc and 35S::FLAG-

COI1.  

 

GUS and LUC assays 

In the DR5::GUS transactivation assays 10
6
 protoplasts were transfected with 

10 µg of the DR5::GUS reporter construct and 2 µg of 35S:Rluc (p2rL7 (De 

Sutter et al., 2005)) for experimental normalization. The DNA amounts of the 

effector constructs varied per experiment and are indicated in the figure 

legends. All transformations contained 10 µg of 35S::FLAG-GFP as a control for 

transformation efficiency, and were split in 2 portions containing 5 x 10
5
 

protoplasts in a total volume of 2.5 mL of protoplast medium. After 16 h the 

samples were treated for 4 h either with 1 µM IAA or the same volume of the 

solvent DMSO. Treated cells were collected by centrifugation at 80 g for 1 

minute and the pellets were frozen in liquid nitrogen for GUS (van der Fits and 

Memelink, 1997) and LUC measurements (Dyer et al., 2000). Triplicate 
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transfections were assayed and mean GUS/LUC relative activities were 

analyzed by One-way ANOVA using SPSS 15.0 software. 

 

Immunoblotting and Immunoprecipitation 

For the Aux/IAA degradation/ubiquitination assays, 10
6 

protoplasts were 

transfected with 20 µg 35S::HA-Aux/IAA construct and 10 µg of 35S::FLAG-

GFP. Depending on the experiment, plasmids encoding FLAG-tagged 

TIR1myc, tir1-1myc or COI1 were co-transfected in the amounts indicated in the 

figure legends. Treated protoplasts were resuspended by vortexing in cold 

Extraction Buffer (PBS, 1x Roche Complete Protease Inhibitor Cocktail) 

containing 1% Triton X-100, and the lysate was cleared by centrifugation at 

20.000 g for 10 min. Total protein was quantified by Bradford assay (Bio-Rad) 

and 20 µg was mixed with sample buffer and separated on 15% SDS-PAGE 

minigels. PAGE-separated proteins were blotted onto nitrocellulose 

membranes, blocked with nonfat dry milk and incubated with the HRP-

conjugated antibodies anti-HA High Affinity 3F10 (Roche) and anti-FLAG M2 

(Sigma). For detection of ubiquitinated proteins, 10
6 

transformed cells were 

resuspended in 100 µL Extraction Buffer containing 1% Triton X-100, 5 mM 

EDTA, 10 mM OPA (1,10-Phenanthroline monohydrate, Sigma), and 10 µM 

MG132 (Sigma). The lysate was cleared by centrifugation at 20.000 g for 10 

min, and 5 µL was Western-analyzed as 5 % input control. The remaining total 

extract was diluted to a final volume of 900 µL with Extraction Buffer without 

Triton X-100 to bring the Triton concentration to 0.1%. This extract was then 

mixed with 40 µL of Anti-HA Affinity Matrix (Roche) and incubated for 2 h at 

4
o
C. The matrix was pelleted and washed 3x in Extraction Buffer, mixed with 

sample buffer, and the eluted proteins were separated on 12 % SDS-PAGE 

minigels. PVDF membranes containing transferred proteins were blocked with 

Qiagen Blocking Reagent and probed with 1000-fold diluted HRP-Anti-Ub P4D1 

antibodies (Santa Cruz). After chemiluminescent detection (LumiGLO, Cell 

Signalling) the blots were stripped and reprobed with anti-HA High Affinity 3F10 

antibodies (Roche). When necessary, quantification of the signal was 
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performed on scanned x-ray films using a BioRad™ GS-800 calibrated 

densitometer. 

RESULTS AND DISCUSSION 

 

Aux/IAAs repress auxin-responsive gene expression in Arabidopsis cell 

suspension protoplasts. 

Leaf protoplasts have extensively been used to study auxin signaling and the 

regulation of auxin-responsive gene expression by ARF and Aux/IAA proteins 

(Ulmasov et al., 1997; Kovtun et al., 1998; Abel and Theologis, 1998; Ulmasov 

et al., 1999). For our experiments we obtained protoplasts from Arabidopsis cell 

suspension cultures because of their continuous availability, the easy isolation 

procedure, and the high transformation efficiencies obtained. To establish the 

experimental conditions under which the repressive effect of Aux/IAA proteins 

on auxin-responsive gene expression could be detected in these cells, we 

transfected the auxin-responsive reporter construct DR5::GUS alone or in the 

presence of plasmids encoding HA-tagged Aux/IAA proteins. BDL/IAA12 or 

SHY2/IAA3 were selected for our studies, because they are well-characterized, 

but distantly related, and they are involved in different developmental processes 

and therefore representative for the other Aux/IAAs (Tian and Reed, 1999; Tian 

et al., 2002; Tian et al., 2003; Weijers et al., 2005).  

In order to identify working parameters for assaying transcriptional responses to 

auxin in protoplasts, we transfected one million cells with 10 µg of the auxin-

responsive DR5::GUS reporter plasmid alone. GUS expression was induced by 

auxin in a concentration-dependent manner (Figure 1a), and a maximum 

response was obtained with 1 µM IAA. Co-transfection with 1 µg of the 

35S::HA-BDL/IAA12 effector plasmid led to a significant reduction of this 

response, and when 5 or 10 µg effector plasmid was cotransfected the 

repression of the DR5 promoter was saturated in that its activity remained at 

30%, even when the cells were treated with 1 or 10 µM IAA (Figure 1a). Similar 

results were obtained with NAA (data not shown). Based on these results 

(Figure 1a), a reporter:effector plasmid ratio of 10 : 1 (in µg) and an auxin 

concentration of 1 µM IAA were used to study the repression activity on the 
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DR5 promoter. SHY2/IAA3 and BDL/IAA12 both showed repression activity on 

the DR5 promoter. The transfected amount of BDL/IAA12 plasmid resulted in a 

stronger repression than transfection with the same amount of SHY2/IAA3 

plasmid. The auxin response was almost completely repressed by the stabilized 

mutant versions shy2-2 and bdl (Figure 1b). 

 

 

Figure 1.  Auxin-responsive DR5::GUS reporter gene expression in Arabidopsis protoplasts 

is repressed by the Aux/IAA proteins BDL/IAA12 and SHY2/IAA3.  
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(a) Relative GUS/LUC activity (arbitrary units) in transfected Arabidopsis protoplasts treated for 8 

hours with increasing concentrations of auxin (IAA). The numbers on the X-axis indicate the reporter 

(DR5::GUS) to effector (35S::HA-BDL/IAA12) ratio in µg plasmid DNA per transformation.   

(b) Effect of co-transfecting Aux/IAA effector plasmids expressing SHY2/IAA3, BDL/IAA12 or the 

stabilized mutant proteins shy2-2 or bdl on the activity of the DR5::GUS reporter. Reporter and 

effector plasmids were co-transformed in a reporter to effector ratio of 10:1 µg plasmid DNA. 

Protoplasts were treated for 8 hours with DMSO or 1 µM IAA. Letters indicate significantly different 

groups based on One-way ANOVA (p<0.05). 

 

Cellular auxin and TIR1 levels are interdependent parameters in Aux/IAA 

degradation  

Although clearly active in the repression of transcription, the transiently 

expressed Aux/IAA proteins in the previous experiments could not be detected 

on Western blots (data not shown). To be able to correlate the level of 

transcriptional inhibition caused by the HA-tagged Aux/IAA proteins with the 

degree of protein turn over, we designed a different experimental set-up. 

Protoplasts were transfected with 20 µg of the effector plasmids 35S::HA-

SHY2/IAA3 or 35S::HA-BDL/IAA12 and after auxin treatment total protein 

extracts were analyzed on Western blots using antibodies against the HA-

epitope. HA-BDL/IAA12 and HA-SHY2/IAA3 were clearly detectable, but under 

these conditions, the latter failed to show a clear enhanced turn over after auxin 

treatment (Figure 2a, left panel). In fact, IAA3 protein levels increased during 

incubation, indicating that the de novo production was higher than the turn over 

rate. It is interesting to note that although the HA-SHY2/IAA3 protein was more 

abundant in figure 2a, BDL/IAA12 had higher repression activity in the DR5 

promoter assays in figure 1b. The facts that excessive amounts of repressor 

construct led to saturated repression of the DR5 promoter, which could not be 

overcome by the addition of higher auxin concentrations (Figure 1a), and that 

the increased amount of SHY2/IAA3 protein failed to be degraded following 

auxin treatment (Figure 2a, left panel), led us to hypothesize that some 

component of the auxin-responsive protein degradation machinery in 

protoplasts was rate-limiting. To test if the amount of auxin receptor TIR1 was 

rate-limiting, we co-transfected the cells with 20 µg Aux/IAA effector construct 

and increasing amounts of 35S::FLAG-TIR1-c-Myc. Co-transfection of 4 µg 



Auxin-induced, SCF
TIR1

-mediated poly-ubiquitination marks AUX/IAA proteins for degradation 

 

 55 

TIR1 plasmid led to enhanced auxin-dependent turn over of  SHY2/IAA3 

(Figure 2a, IAA3/TIR panels). When 10 or 20 µg of the TIR1 plasmid was 

added, the basal levels of SHY2/IAA3 became very low while at 20 µg the effect 

of auxin could not be visualized due to detection limitations (Figure 2a, IAA3 / 

TIR 20 µg panel). The stability of the mutant HA-shy2-2 protein was not affected 

by auxin without co-transfected TIR1, but with high TIR1 amounts even the turn 

over of the stabilized HA-shy2-2 started to become evident (Figure 2a shy2-2 / 

TIR1 panels). For shy2-2 it has been reported that the mutant protein retains 

part of its TIR1 binding activity in the presence of auxin (Tian et al., 2003). This 

may explain the enhanced turn over of the shy2-2 protein in the presence of 

additional TIR1 and exogenous auxin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Auxin-induced TIR1-dependent degradation of Aux/IAA proteins leads to auxin-

responsive gene expression in Arabidopsis protoplasts.  

(a) Western blot detection of transiently expressed HA-BDL/IAA12, HA-SHY2/IAA3, HA-bdl and HA-

shy2-2 in Arabidopsis protoplasts co-transfected with control plasmid 35S::FLAG-GFP and 

increasing amounts of plasmid 35S::FLAG-TIR1c-myc. One million transfected protoplasts were 

were split in two halves and each was treated either with 0.1% DMSO (-) or 1 µM NAA (+) and 

samples were harvested on the indicated time points (in hours).  The labels on top indicate the 

Aux/IAA construct and the TIR1 plasmid amount. The panels indicated with “α-HA” represent the 
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detection of HA-tagged Aux/IAA with anti-HA antibodies and “α-FLAG input” indicates detection of 

FLAG-GFP with anti-FLAG antibodies. Numbers on the bottom of each lane indicate the HA versus 

FLAG signal density ratio relative to time point zero in each transformation. 

 (b, c) Correlation between auxin-responsive DR5::GUS expression and TIR1-dependent Aux/IAA 

degradation. Protoplasts were transfected with 10 µg DR5::GUS, 10 µg 35S::RLuc, 10 µg 

35S::FLAG-GFP and where indicated with 20 µg 35S::HA-Aux/IAA effector plasmid. The graph in 

(b) shows relative GUS/LUC activity (in arbitrary units) in protoplasts after 4 hours treatment with 

DMSO or 1 µM NAA, in the absence (No TIR1) or presence of 10 µg 35S::FLAG-TIR1-c-Myc (TIR1 

added). Letters indicate significantly different groups based on One-way ANOVA (p<0.05). (c) 

Western blot analysis showing the level of HA-tagged Aux/IAA protein in the NAA-treated samples 

in (b). Addition of 35S::TIR1 is indicated (-/+). Detection of the FLAG-GFP control (α-FLAG) is used 

to demonstrate comparable transformation efficiencies and loading.  

 

TIR1-dependent Aux/IAA degradation coincides with auxin-responsive 

gene expression 

To correlate the TIR1-dependent turn over of Aux/IAAs with auxin-responsive 

gene expression, we repeated the DR5::GUS trans-activation experiments, but 

now using 20 µg of effector plasmid, and measuring both GUS activity and 

protein levels. Again, in these experiments the BDL/IAA12 protein showed 

equal or even stronger repression activity on DR5::GUS expression as 

SHY2/IAA3 (Figure 2b), whereas it accumulated to a much lower level than 

SHY2/IAA3 (Figure 2c). In the absence of additional TIR1, auxin treatment led 

to a weak activation of the DR5 promoter (Figure 2b, “No TIR1” panel and 

Figure 2c). Co-transfection of 10 µg TIR1 plasmid enhanced the 

responsiveness of the DR5 element (Figure 2b, “TIR1 added” panel) and this 

effect correlated with an increased turn over of the Aux/IAA repressors (Figure 

2c). TIR1 alone resulted in an increase of GUS activity in DMSO-treated cells 

without co-transfected Aux/IAAs (Figure 2b, first bar in “TIR1 added” panel). 

This effect is probably due to the degradation of the endogenous pool of 

Aux/IAAs. As expected, the levels of the mutant shy2-2 and bdl proteins were 

less sensitive to overexpression of TIR1. The slight increase in DR5::GUS 

activity observed after auxin treatment in the samples co-transfected with shy2-

2 and TIR1 might reflect the residual binding of the mutant shy2-2 protein to 

TIR1 (Tian et al., 2003) and its enhanced turn over rate at higher TIR1 levels 
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(compare to Figure 2a, shy2-2 / TIR1 20 µg panel). Additionally, comparative 

analysis of BDL/IAA12 and SHY2/IAA3 indicated that optimized ARF and 

Aux/IAA interaction pairs are active in specific auxin-regulated developmental 

processes (Weijers et al., 2005). It is therefore likely that the specific ARFs that 

are responsible for the activation of the DR5 element in cell suspension 

protoplasts interact more efficiently with BDL/IAA12 or endogenous Aux/IAAs 

than with SHY2/IAA3. This may also explain the stronger repressor activity of 

BDL/IAA12. 

The observation that excessive amounts of TIR1 led to reduction of detectable 

Aux/IAAs even in the absence of auxin treatment is in agreement with the effect 

of overexpressing TIR1 in plants, which mimics auxin treatment and causes 

auxin hypersensitivity (Gray et al., 1999). It also corroborates the finding that in 

in vitro pull-down experiments Aux/IAA proteins do interact with TIR1 in the 

absence of auxin, albeit at low efficiency (Dharmasiri et al., 2003; Kepinski and 

Leyser, 2005; Dharmasiri et al., 2005a; Dharmasiri et al., 2005b; Tan et al., 

2007), and that Aux/IAA degradation and auxin-responsive gene expression are 

severely affected in the tir afb2 afb3 triple mutant (Dharmasiri et al., 2005b). All 

these data indicate that TIR1 and AFB protein levels are important determinants 

in the cellular auxin responsiveness.  

 

TIR1 differentially regulates SHY2/IAA3 and BDL/IAA12 abundance  

Interestingly, there is a clear and significant difference in abundance and 

repressor activity of the two wild type Aux/IAA proteins, with BDL/IAA12 being 

the stronger but less abundant repressor (Figure 2b). To assess the roles of 

auxin and TIR1 in this different behavior of the two Aux/IAA proteins, we tested 

the auxin-induced degradation of SHY2/IAA3 and BDL/IAA12 with increasing 

TIR1 levels (Figure 3a). HA-BDL/IAA12 levels were auxin-sensitive when cells 

were transfected with 20 µg of 35S::HA-BDL/IAA12 effector plasmid alone. The 

observed variation between experiments in the effect of auxin treatment on 

IAA12 turn over (compare Figures 2a and 3b) possibly relates to differences in 

endogenous TIR1 levels. In the same experiment, auxin treatment did not lead 

to a clear reduction in HA-SHY2/IAA3 levels, corroborating our observation that 
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SHY2/IAA3 has a longer half-life than BDL/IAA12 (Figure 2b). Co-transfection 

of the effector plasmids with increasing amounts of 35S::FLAG-TIR1-c-Myc 

made the levels of both proteins more sensitive to auxin treatment (Figure 3a). 

As a control, effector plasmids were also transfected with plasmids expressing 

mutant versions of TIR1 (tir1-1 [G147→D]), ∆F-TIR1 lacking the F-box, or ∆F-

tir1-1 carrying both mutations (Figure 3b), or the related F-box protein COI1, 

which is involved in jasmonate signaling (Figure 3c). Neither the mutant 

versions of TIR1 (Figure 3b) nor COI1 (Figure 3c) affected the abundance of 

the Aux/IAA proteins (compare to 20/10 HA-IAA/TIR1 treatments in Figure 3a), 

corroborating the specificity of TIR1 in Aux/IAA degradation.  

In these experiments TIR1, tir1-1 and COI1 were not detectable by Western blot 

analysis of total protein extracts using the anti-FLAG antibody, even though 

their expression was driven by the strong 35S promoter. This observation 

suggests that TIR1 and COI1 themselves are short-lived proteins, which is in 

line with the observation that several F-box proteins, including TIR1 and COI1, 

are targets for ubiquitination (Maor et al., 2007; Jurado et al., 2008; Stuttmann 

et al., 2009). To demonstrate that the F-box proteins were expressed to similar 

levels in our model system, we transfected 5 times more cells than usual (5 x 

10
6
) and immunoprecipitated the FLAG-tagged F-box proteins from total cell 

extracts. Western blot analysis of the concentrated eluates showed that the 

FLAG-tagged versions of TIR1, tir1-1 and COI1 were expressed at similar 

levels (Figure 3d). As expected, transfection with 2 times more plasmid led to 

the production of more TIR1 protein (Figure 3e). Treatment with MG132 for four 

hours did not lead to elevated TIR1 levels nor to the appearance of additional 

modified bands (Figure 3e), which is in contrast to the conclusion by Stuttmann 

and coworkers (2009) that the protein is a target of the 26S proteasome. 

TIR1 was shown to act as an auxin receptor together with other F-box family 

members ABF1, ABF2 and ABF3 (Kepinski and Leyser, 2005; Dharmasiri et al., 

2005a; Dharmasiri et al., 2005b). Interestingly, a tir1 afb1 afb2 afb3 quadruple 

loss-of-function mutant shows a variable phenotype, but several of these 

mutant plants are able to flower and set seed, suggesting further functional 

redundancy. We have not tested the effect of AFB1, AFB2 or AFB3 in our 



Auxin-induced, SCF
TIR1

-mediated poly-ubiquitination marks AUX/IAA proteins for degradation 

 

 59 

system, but it is likely that they will show similar effects as TIR1 overexpression, 

since they were found to physically interact with GST-tagged BDL/IAA12 in an 

auxin-dependent manner in pull-down assays, and the BDL/IAA12 protein was 

stabilized in the tir1-1 afb2 afb3 triple mutant (Dharmasiri et al., 2005b). 

The related F-box proteins AFB5 and AFB4 have not been studied in detail yet, 

but the specific resistance of afb5 mutants to picolinate auxin analogs indicates 

that AFB5 is involved in the response pathway to these herbicides (Walsh et al., 

2006). COI1 is the closest relative of the TIR/AFB auxin receptors in the F-box 

family tree. The similarity in sequence and the ability of different proteins from 

this clade to associate with the same SCF components (Gray et al., 1999; Xu et 

al., 2002) raised the possibility that there is cross-recognition of targets among 

related F-box proteins and that COI1 may also be actively involved in Aux/IAA 

protein degradation. The results in Figure 3c clearly show that the presence of 

overexpressed FLAG-COI1 did not affect the stability of either SHY2/IAA3 or 

BDL/IAA12. Based on our results, we conclude that COI1 is not involved in the 

process of Aux/IAA proteolysis. 

 

SCF
TIR1

-mediated ubiquitination marks Aux/IAA proteins for degradation 

The previous experiments demonstrated that the cell suspension protoplast 

system reproduces the in planta action of Aux/IAA proteins and the receptor F 

box protein TIR1 in auxin responses. The same system was used to establish 

whether auxin- and TIR1-enhanced degradation of Aux/IAA proteins is 

connected to SCF
TIR1

-mediated ubiquitination. A plasmid encoding HA-tagged 

versions of BDL/IAA12 or SHY2/IAA3 together with a plasmid carrying TIR1 or 

its mutant version tir1-1 were transfected into cells. Transformations of one 

million protoplasts were performed in triplicate and one of the samples was pre-

treated for 1 h with 50 µM of the proteasome inhibitor MG132. Samples were 

subsequently treated for one additional hour with either DMSO or 1 µM NAA. 

Five percent of the protein input was analyzed by Western blotting using anti-

HA antibodies, and the remaining sample was immunoprecipitated with anti-HA 

antibodies conjugated to agarose beads. The recovered proteins were analyzed 

by Western blotting using anti-Ubiquitin and anti-HA antibodies.  
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Figure 3. TIR1-dependent degradation of transiently expressed SHY2/IAA3 and BDL/IAA12 in 

Arabidopsis protoplasts.  

 (a) Western blot analysis of total extracts from protoplasts co-transfected with increasing amounts 

of 35S::FLAG-TIR1-c-Myc, 35S::FLAG-GFP control plasmid and 35S::HA-SHY2/IAA3 (upper panel) 

or 35S::HA-BDL/IAA12 (lower panel). Transfected protoplasts were either untreated (0), or treated 

for 1 hour with DMSO (-) or 1 µM NAA (+). The numbers on top indicate the 35S::HA-AuxIAA to 

35S::FLAG-TIR1-c-Myc plasmid ratio in µg DNA. Blots were probed with anti-HA or anti-FLAG 

antibodies. 

(b) As in (a), following co-transfection with 10 µg 35S::FLAG-tir1-1-c-Myc, 35S::FLAG-∆F-TIR1-c-

Myc or 35S::FLAG-∆F-tir1-1-c-Myc. 

(c) As in (a) , following co-transfection with 10 µg 35S::FLAG-COI1.  

(d) Western blot detection of FLAG-tagged TIR1, tir1-1 and COI1 immunoprecipitated using anti-

FLAG antibodies from pooled extracts from five transformations of 10
6
 protoplasts with 20 µg DNA 

of 35S::FLAG-TIR1-c-Myc, 35S::FLAG-tir1-1-c-Myc or 35S::FLAG-COI1, respectively. The position 

of the FLAG-tagged TIR1-c-Myc and tir1-1-c-Myc proteins (79 kDa) is indicated by an arrowhead, 

the position of FLAG-COI1 (70 kDa) with a star. The lane marked UNT contained protein from 

untransformed protoplasts. An unspecific band recognized by the anti-FLAG antibody in all samples 

(circle) shows equal loading.  

(e) Increasing amounts of 35S:FLAG-TIR1myc plasmid leads to higher expression of the 

recombinant protein and TIR1 is not stabilized by inhibition of the 26S proteasome. Anti-FLAG 

western blot of FLAG-immunoprecipitated samples from one million protoplasts transfected with 1 

µg of 35S:FLAG GFP and 10 or 20 µg of 35S:FLAG-TIR1myc as indicated over each lane. One 

sample transfected with 10 µg was treated for 4 h with 10 µM MG132. Total protein was 

immunoprecipitated with anti-FLAG affinity matrix and analyzed by western blot. FLAG TIR1 and 

FLAG GFP bands are indicated. 

 

 The relative amounts of Aux/IAA proteins recovered by 

immunoprecipitation correlated well with those present in the input extracts 

(Figure 4, α-HA: 5% input versus IP-HA). Samples from protoplasts that were 

treated with auxin and MG132 showed additional anti-HA reactive bands 

migrating slower than the unmodified SHY2/IAA3 and BDL/IAA12 monomers 

(Figure 4a and b, IP-HA α-HA, +/+ lanes). Anti-Ubiquitin antibodies detected 

bands of sizes larger than 40 kDa (IP-HA α-Ub panels) that overlapped with the 

additional bands detected with anti-HA antibodies (marked with black arrow 

heads), and thus represent poly-ubiquitinated versions of Aux/IAA proteins. The 

combined auxin and MG132 treatment enhanced the amount of detectable 

ubiquitinated Aux/IAA proteins. Interestingly, when TIR1 was co-expressed, 
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auxin treatment resulted in an increase of the ubiquitinated signal for both HA-

SHY/IAA3 and HA-BDL/IAA12 (Fig 4a and b, +/+ lanes), corroborating our 

previous observation that SCF
TIR1

-directed degradation of Aux/IAA proteins is 

dependent on a fine balance between auxin and TIR1 levels (Figure 3a and b). 

As expected, the co-expression of the mutant tir1-1 protein had no effect on the 

turn over rate or the ubiquitination level of SHY2/IAA3 (Figure 4a, tir1-1 lanes).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Aux/IAA proteins are poly-ubiquitinated and degraded in an auxin- and TIR1-

dependent manner.   

(a-b) Western blot analysis of anti-HA immunoprecipitations (IP-HA) or total extracts (5% input) from 

Arabidopsis protoplasts transfected with: 

(a) 35S::FLAG-GFP and 35S::HA-SHY2/IAA3 with either 10 µg of 35S::FLAG-TIR1-c-Myc (TIR1) or 

35S::FLAG-tir1-1-c-Myc (tir1-1). 

 (b) 35S::HA-BDL/IAA12 and 35S::FLAG-GFP co-transfected with 10 µg 35S::FLAG-TIR1-c-Myc.  

Each transformation was performed in triplicate. One sample was treated for 1 h with 0.1% DMSO (-

/-), the second sample for 1 h with 1 µM NAA (+/-), and the third replicate was pre-treated for 1 h 

with 50 µM MG132 followed by 1 h treatment with 1 µM NAA (+/+). Five percent of the total protein 

extract of each transfection was analysed as input (5% input). The remaining sample was used in 

an immunoprecipitation with anti-HA antibodies conjugated to agarose beads and these samples 
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(IP-HA) were first probed with anti-Ubiquitin antibodies (α-Ub) to detect ubiquinated proteins, and 

subsequently with anti-HA antibodies (α-HA) to detect HA-tagged proteins. The bands 

corresponding to unmodified HA-IAA3 and HA-IAA12 monomers are indicated. The poly-

ubiquitinated forms of IAA12 and IAA3, visible as higher molecular size bands/smears in the α-Ub 

and α-HA blots, are indicated by Poly-Ub. Arrow heads mark the bands overlapping in the α-Ub and 

α-HA blots. The arrow indicates the position of a putative homo-dimer of the HA-tagged Aux/IAA 

proteins. 

 

As the goal of this experiment was to detect the rare ubiquitinated Aux/IAAs 

forms,  significantly higher protein amounts were loaded on gel, and this 

prevented us to observe the auxin-induced turn over of Aux/IAA proteins in the 

absence of cotransfected 35S::FLAG-TIR1-c-Myc. 

One constant observation in the Western blots with anti-HA antibodies was the 

presence of two distinct bands: one at ~30 kDa corresponding to the size of 

unmodified Aux/IAA monomers (indicated in Figure 4 on the left of each panel 

by HA IAA3 or HA IAA12) and a fainter band around 60 kDa size (Figure 4, 

indicated by arrows, α-HA panels). This band was not detected with the anti-Ub 

antibodies, and although we can not exclude other pos-translational 

modifications such as phosphorylation or sumoylation, based on the size shift 

we believe this band to represent Aux/IAA homo-dimers. The 60kDa band was 

also detected even when protein samples were prepared and gel separated 

under strong denaturing conditions (boiled in Laemmli loading buffer prior to 

Urea-SDS-PAGE, data not shown), suggesting a covalent coupling, or a 

denaturation-resistant association of the Aux/IAA proteins. One possibility is 

that the dimers are stabilized by intermolecular disulfide bonds, which is a 

common mechanism in redox control of transcription factor activity (Benezra, 

1994; Zheng et al., 1998; Mou et al., 2003). However, the fact that the band is 

not dissolved by the thiol reducing agent 2-mercaptoethanol in the Leammli 

buffer suggests that the Aux/IAA dimers are stabilized by another mechanism. 

The 60 kDa band putatively representing Aux/IAA homodimers almost 

disappeared in TIR1 co-transfected samples, suggesting that an additional 

consequence of Aux/IAA degradation is the dissolution of Aux/IAA dimers. 

Hypothetically, the dimerized forms might be more accessible for interaction 



Chapter 2 

 64 

with SCF-
TIR1

 than the DNA-ARFs associated ones and hence be more easily 

degraded. 

 

Repressor  poly-ubiquitination: a paradigm for plant hormone signaling 

pathways 

Our results indicate that auxin-responsive gene expression in Arabidopsis 

protoplasts depends on a fine tuning of the intracellular concentrations of 

different elements that participate in the auxin perception pathway. Auxin 

sensitivity and Aux/IAA stability are directly correlated with intracellular levels of 

TIR1. Previous reports showed that auxin responses in seedlings are enhanced 

by TIR1 overexpression (Gray et al., 1999) and repressed by TIR1/AFB loss-of-

function (Dharmasiri et al., 2005b). In addition, our experiments directly 

correlate the TIR1-enhanced auxin response with the increased turn over of 

Aux/IAA proteins, and suggest that TIR1, when present at sufficiently high 

levels, sensitizes the protoplast cells to endogenous auxin levels and can 

mediate Aux/IAA degradation without the need for exogenous auxin application. 

We demonstrate that the SHY2/IAA3 and BDL/IAA12 proteins behave 

differently in protoplasts, the latter being less stable but more active in the 

repression of the auxin response in this system. The simplest explanation is 

that IAA12 is a more efficient repressor than IAA3, but we can not rule out that 

the effect is indirect through the efficient interaction of overexpressed IAA12 

with the SCF
TIR1/AFB 

complexes, which sequesters these complexes and thereby 

stabilizes endogenous Aux/IAAs. 

 It is well established that several plant hormonal signaling pathways act 

through proteasomal degradation of transcriptional repressors, and that the 

hormones show similar roles in enhancing the association of SCF E3 ligase 

complexes with their targets (e.g. auxin/TIR1/Aux/IAA, JA-Ile/COI1/JAZ and 

GA/GID/DELLA.) (Kepinski and Leyser, 2005; Dharmasiri et al., 2005a; Griffiths 

et al., 2006; Thines et al., 2007). Our data provide experimental support for the 

model that hormone-responsive gene expression is mediated by hormone-

enhanced poly-ubiquitination and subsequent proteolytic degradation of 

repressor proteins by the 26S proteasome. 
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Summary 

In order to regulate physiological functions, eukaryotic cells have developed 

many control mechanisms for fine-tuning the levels of intracellular proteins. 

Generally, targeted protein degradation occurs through the specific recognition 

by the proteasome of proteins that have been marked with ubiquitin chains. 

Protein labeling with ubiquitin is however emerging as a much more complex 

signal not only targeting proteins for degradation, but also with roles in the 

control of subcellular trafficking of proteins. The Arabidopsis calcium binding 

protein PINOID BINDING PROTEIN 1 (PBP1) was originally identified as an 

interactor of the PINOID (PID) kinase, which was shown to control its activity in 

vitro and subcellular localization in vivo. Using an Arabidopsis cell suspension 

protoplast system we show that PBP1 is a highly unstable, poly-ubiquitinated 

protein that can be stabilized by inhibition of proteasomal degradation. Co-

expression of PID did not affect PBP1 poly-ubiquitination. Surprisingly, 

substitution of all the lysines in PBP1 blocked poly-ubiquitination, but did not 

affect its proteasomal degradation. The mutant protein retained all tested wild 

type functions, such as its interaction with PID, and its subcellular localization. 

Translational fusions of the lysine-less PBP1 with YELLOW FLUORESCENT 

PROTEIN (YFP) were ubiquitinated, which indicates that the PBP1 sequence 

contains a cis-acting motif that is recognized as an ubiquitination signal but not 

as a degron, since the YFP fusions were not unstable. PBP1 is the first 

example of a plant protein that is degraded by the proteasome in an 

ubiquitination-independent pathway. Although the functions of PBP1 

ubiquitination remain to be elucidated, our results show that its proteasomal 

degradation is not dependent on ubiquitination . 
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INTRODUCTION 

In order to regulate physiological functions, eukaryotic cells have developed 

many control mechanisms for fine-tuning the levels of intracellular proteins. One 

of these involves post-translational modification by ubiquitination. Ubiquitin (Ub) 

is a highly conserved 76 amino acid protein that is present in all eukaryotic 

cells. It is conjugated to cellular proteins through a conserved mechanism 

involving Ub activating (E1), -conjugating (E2) and -ligating (E3) enzymes. This 

process, termed ubiquitination, couples the C-terminal glycine residue of Ub to 

a target lysine residue of the protein substrate, forming an isopeptide bond 

(Glickman and Ciechanover, 2002). Protein ubiquitination controls many basic 

cellular processes, such as cell division, signal transduction and DNA repair, by 

regulating the activity, subcellular localization, and proteasome-mediated 

degradation of proteins (Pickart and Fushman, 2004). The ubiquitin protein itself 

contains 7 lysine residues that serve as ubiquitin-linking sites. The 19S 

regulatory lid of the 26S proteasome recognizes proteins containing a Lys-48 

Ub polymer as substrates for degradation by the 20S catalytic core (Baboshina 

and Haas, 1996; Thrower et al., 2000). Proteins that are polyubiquitinated at 

Lys-48 are usually unstable and treatment of cells with proteasome inhibitors 

blocks their degradation enriching the pool of Ub-modified molecules (Lee and 

Goldberg, 1998). Other ubiquitin conjugations such as mono-ubiquitination, or 

polymers attached at Lys-11 or Lys-63 are believed to regulate processes such 

as sub-cellular localization and/or protein activity (Weissman, 2001). About 5% 

of the Arabidopsis proteome comprises elements of the ubiquitination pathway 

with a high representation of Ubiquitin Ligases. In plants ubiquitinaiton plays a 

key role in signal transduction of several phytohormones (Gray et al., 1999; Xu 

et al., 2002; Guo and Ecker, 2003; Gomi et al., 2004; Jang et al., 2005; Dos 

Santos et al., 2009) and although all these processes seem to involve the 

activity of specific ubiquitin ligases, the ubiquitination signal itself has been 

neglected in scientific studies. Ubiquitin was first discovered as a degradation 

signal with the best studied examples including mammalian proteins such as 

the Cdk-inhibitor p27Kip1 which is ubiquitinated by SCF
SKP2

 (Tsvetkov et al., 

1999), Sic1 which is ubiquitinated by SCF
Cdc4

 (Petroski and Deshaies, 2003), β-
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catenin and Ikβ which are ubiquitinated by SCF
β-TrCP

 (Winston et al., 1999) and 

p53 which can be ubiquitinated by several E3 ligases (Scheffner et al., 1993; 

Fang et al., 2000; Xia et al., 2009). Proteasomal p53 degradation occurs via 

both ubiquitin-dependent and independent ways (Asher and Shaul, 2006), 

indicating that proteasomal degradation does not necessarily occur via an 

ubiquitinated intermediate. The removal of the ubiquitin attachment sites by 

mutation of lysines in a target protein has been shown as an efficient way to 

assess the relevance of the ubiquitin signal for many unstable proteins 

degraded independently of ubiquitination, such as p21cip1 (Sheaff et al., 2000) 

and KLF5 (Chen et al., 2007a) revealing the existence, at least in mammalian 

cells of both ubiquitin-dependent and independent degradation pathways.   

Previously, we identified a single EF-hand calcium-binding protein as an 

interacting protein of the Arabidopsis thaliana AGC kinase PINOID (PID), and 

named it PINOID BINDING PROTEIN 1 (PBP1). PBP1 binds to PID in a 

calcium-dependent manner and positively regulates PID activity in vitro, while 

inhibiting the auxin-induced calcium-dependent sequestration of PID from the 

plasma membrane in vivo. (Benjamins et al., 2003; Robert-Boisivon, 2008). In 

our further study on the role of PBP1 as regulator in PID signaling, we tested 

the biochemical properties of PBP1 by expressing the protein in Arabidopsis 

cell suspension protoplasts. Here we provide evidence that PBP1 is an unstable 

protein that is poly-ubiquitinated However, PBP1 degradation by the 

proteasome is an ubiquitination-independent process. Our results indicate that 

poly-ubiquitination is not an obligatory signal for PBP1 proteasomal degradation 

suggesting that plant proteasomes also have diverse mechanisms for 

recognizing their targets.  

 

MATERIAL AND METHODS 

 

Molecular cloning and constructs 

Molecular cloning was performed following standard procedures. The HA-PBP1 

coding region was amplified by PCR from pET16H-PBP1 (Benjamins et al., 

2003) using primers HAadd PBP1 HindIII 5’-
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GGAAGCTTGATGTACCCATACGATGTTCCAGATTACGCTATGGCATCTCC

TAAAT-CCTC-3’ and PBP1XbaIR 5’-

GGTCTAGATCAATGCCGGTAAAACTCTTCC-3’ (HA-tag in bold and restriction 

sites underlined), and the HindIII and XbaI sites in the primers were used to 

clone the fragment into pART7 (Gleave, 1992), to obtain p35S::HA-PBP1. 

p35S::HA-PBP1(-K) was obtained by cloning a synthetic HindIII/BamHI 

fragment containing the HA-PBP1 coding region with the lysine  K5, K29, K41, 

K49 and K51 codons replaced by the arginine codon (AGA) via Gene Synthesis 

(http://www.baseclear.com/) into pART7. To generate His-HA-PBP1(-K), the 

synthetic HA-PBP1(-K) coding region was ligated as a BamHI/HindIII fragment 

in frame to the His-tag coding region of pET16b (Promega, 

www.promega.com). To create C-terminal YFP-HA fusions, both HA-PBP1 and 

HA-PBP1(-K) were PCR amplified with attB Gateway™ (Invitrogen, 

www.invitrogen.com) primers attB1FHA 5’-GGGGACAA-

GTTTGTACAAAAAAGCAGGCTTAATGTACCCATACGATGTTCCA-3’ and 

attB2PBP1R 5’-

GGGGACCACTTTGTACAAGAAAGCTGGGTCATGCCGGTAAAACTCTTCCT

C-3’, removing the original stop codon. Each of the attB PCR fragments was 

cloned into pDONR207 via BP recombination following the manufacturer’s 

instructions, and the resulting entry clones were recombined via an LR reaction 

into pART7-YFP-HA (C. Galvan Ampudia, unpublished) to generate 

p35S::PBP1-YFP-HA and p35S::PBP1(-K)-YFP-HA. For construction of the 

p35S::5xHis-Ub vector, the cDNA of human ubiquitin was PCR amplified from 

His6-Ub (Stad et al., 2001) using primers 5’HisUb 5’-

GGAATTCATGCATCATCATCATCAT-3’ and 3’Ub 5’-

CCCTTACCCACCTCTGAGACGGAGGACC-3’  and cloned as a blunt fragment 

into pART7 cut with SmaI. Plasmids p35S::PID-FLAG (Michniewicz et al., 2007) 

p35S::FLAG-GFP, p35S::GFP (Dos Santos et al., 2009) p35S::PID-CFP  

(C.Galvan-Ampudia, unpublished) were also constructed in pART7. 

 

Protoplast isolation and transformation 
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Four to six days old Arabidopsis thaliana Col-0 cell suspension cultures were 

diluted 5-fold in auxin-free Cell Medium and incubated at 25°C with shaking 

(150 rpm) overnight and used for protoplast isolation and transfection, 

performed as previously described (Schirawski et al., 2000) with minor 

modifications (Dos Santos et al., 2009). Transfections were performed with 10
6
 

cells and 20 µg of the test plasmid DNA. Amounts of the other plasmids are 

indicated in the figure legends.  After transfection the cells were incubated at 

25ºC in darkness for at least 16h prior to treatments or observation using 

confocal laser scanning microscopy. Cells were incubated for 1h with 0.1% 

DMSO (-) or 50 µM MG132 (+) where indicated. 

 

Western blot analysis and immunoprecipitation 

Total protein was extracted from pelleted transfected protoplasts with 50 µL 

cold Extraction Buffer (Tris Buffered Saline,TBS, 1% Triton X-100, 1x Roche 

Complete Protease Inhibitor Cocktail), and centrifuged for 10 minutes at 20.000 

g at 4°C. The 40 µL extract was mixed with 10 µL 5X Laemmli sample buffer 

and boiled for 5 minutes. Proteins were separated on a 15% SDS-PAGE gel, 

blotted into a PVDF membrane using semi-dry electrotransfer (BioRad), 

blocked for 1h with 5 % low-fat dry milk in TBST (TBS, 0.05% Tween20) and 

probed with HRP-conjugated anti-HA antibodies (1/2000, Roche) for 16h at 

4°C. Detection was performed using LumiGLO Detection reagent (Cell 

Signalling) following the manufacturer’s instructions. 

For immunoprecipitation, cells were extracted in 500 µL of Extraction Buffer, 

centrifuged and 50 µL was analysed as 10% input. The remaining volume was 

mixed end-over-end with 50 µL 50% slurry of anti-HA agarose beads (Roche) 

for 2 h at 4°C, washed 4x and mixed with 50 µL 2X Laemmli sample buffer for 

SDS-PAGE and subsequent western blot analysis (see above) using anti-HA 

antibodies (1/2000, Roche) and P4D1 anti-UB antibodies (1/400, Santa Cruz). 

 

Purification of ubiquitinated proteins via Ni-NTA affinity chromatography 

In addition to the indicated test constructs, the protoplasts were co-transfected 

with 20 µg of the p35S:His-Ub plasmid and 16h after transfection the cells were 
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treated with 50 µM MG132 for 1h, harvested by centrifugation and frozen in 

liquid nitrogen. Pellets containing 10
6
 harvested cells were resuspended in 100 

µL cold Extraction Buffer (TBS, 1% Triton 100-X, 1x Roche Complete Protease 

Inhibitor Cocktail, 10 mM N-Ethylmaleimide NEM), vortexed and centrifuged 10 

min at 20.000 g at 4
o
C. Ten microliters of the supernatant was mixed with an 

equal volume of 2x Laemmli sample buffer, and used as INPUT for Western 

analysis. The remaining 90 µL was mixed with 910 µL of Buffer A (6 M 

guanidinium-HCl, 0.1 M Na2HPO4/NaH2PO4 pH 8.0, 10 mM imidazole) and 

used for Ni-affinity chromatography, using Ni-NTA agarose beads (Qiagen) as 

previously described (Campanero and Flemington, 1997). The eluted proteins 

were analyzed by western blotting as described above. 

 

In vitro pull down experiments 

Crude extracts of E.coli cells expressing recombinant proteins were used for in 

vitro GST pull down experiments of His-PBP1 and His-HA-PBP1(-K) with GST 

alone and GST-PID and GST-WAG2 (C. Gavlan-Ampudia, unpublished) as 

described (Benjamins et al., 2003).  

 

Microscopy 

For imaging of transfected protoplasts a Leica DM IRBE confocal laser 

scanning microscope was used with a 63X water objective, digital zoom and 

51% laser intensity. The fluorescence was visualized with an Argon laser for 

excitation at 514 nm (YFP) and 457 nm (CFP) with 522-532 nm and 471-481 

nm band pass emission filters, respectively. Image processing was performed 

with ImageJ (http://rsb.info.nih.gov/ij/). 

 

RESULTS 

 

PBP1 is degraded by the proteasome in a ubiquitination-independent 

manner 

PBP1 was first identified in Arabidopsis as an interactor of the PID kinase 

(Benjamins et al., 2003). PBP1 was also named KRP2 (for KIC-related protein 
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2) and contains one calcium binding EF-hand motif in common with other 

related members of a small protein family that includes KIC (KCBP-interacting 

Calcium binding protein) and the close PBP1 homolog PBP1H/KRP1 (Reddy et 

al., 2004). The alignment of the three proteins (Figure 1A) shows the high 

degree of similarity between PBP1 and PBP1H. From the 5 lysines present in 

the primary PBP1 sequence only one is conserved in all members and another 

two are present in KIC. 

As part of our analysis of the biochemical properties of PBP1 in relation to its 

interaction with PID, we transfected Arabidopsis thaliana cell suspension 

protoplasts with plasmid 35S::HA-PBP1. Total protein was extracted from the 

transfected cells and analyzed by Western blot with a specific antibody against 

the HA-tag (Figure 1B). The very weak signal observed in untreated cells is 

significantly enhanced when cells were treated for 1h with the proteasome 

inhibitor MG132, suggesting that PBP1 is a target for degradation by the 

proteasome. In addition to the stronger signal representing the full length 

protein (~16 kDa), a ladder of discrete larger molecular mass bands becomes 

apparent following MG132 treatment. Immunoprecipitation (IP) with anti-HA and 

detection with either anti-HA or anti-Ub antibodies shows that these larger 

molecular mass bands represent ubiquitinated versions of PBP1 (Figure 1C).  

Ubiquitin attachment occurs on lysine residues. PBP1 is a relatively small 

protein with only 5 lysine residues, To confirm that the additional bands 

observed are due to lysine ubiquitination, we generated a construct encoding a 

PBP1 variant in which all five lysine residues were substituted by arginines 

(Figure 1A, arrows). Transfection of the resulting 35S::HA-PBP1-K construct 

into protoplasts shows that PBP1-K is still an unstable protein stabilized by 

MG132 treatment (Figure 2A), but without showing additional higher molecular 

weight bands representing ubiquitinated forms. These observations indicate 

that ubiquitination of PBP1 is not a signal for its degradation by the proteasome. 

PBP1 ubiquitination may serve some function other than signaling proteolysis. 

Regardless, the example of PBP1 illustrates that observation of poly-

ubiquitination and proteasome sensitivity in vivo forms insufficient evidence to 
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conclude that proteasomal degradation of a protein must proceed through an 

ubiquitinated intermediate. 

 

 

Figure 1: PBP1 is degraded by the proteasome in a ubiquitination-independent manner. (A) 

Alignment of PBP1, PBP1H and KIC. The lysine (K) residues are indicated by black arrows. The 

position of the EF-hand calcium binding pocket is indicated with a line. (B) Arabidopsis protoplasts 

transfected with either 35S::HA-PBP1 (WT) or 35S:HA-PBP1-K (-K) together with 5 µg 35S::FLAG-

GFP. Sixteen hours after transfection, cells were incubated for 1h with 0.1% DMSO (-) or 50 µM 

MG132 (+). Total protein extracts (20 µg) were analyzed on western blots using anti-HA (α-HA) or 

anti-FLAG (α-FLAG) antibodies. (C) Western blot of protein extracts from protoplasts transfected as 

in B, using anti-HA (α-HA) or anti-Ub (α-Ub) antibodies. Ten percent of the total extract was 

analyzed as INPUT. The rest was used for immunoprecipitation with anti-HA affinity matrix (IP-HA) 

prior to Western blot analysis. UNT indicates untrasfected control. The position of the poly-

ubiquitinated HA-PBP1 is indicated on the right. The asterisk indicates the position of the full length 

HA-PBP1 protein. Numbers on the left indicate the molecular mass of marker proteins in kDa.   

 

Ubiquitination of PBP1 does not change its functional properties 

The interaction of calcium-binding proteins with Ca
2+

 results in a reduced 

mobility, and therefore these proteins show a double band on a protein gel (Ling 
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and Zielinski, 1993). Proteins extracted from protoplasts expressing HA-PBP1 

also show a double band recognized by anti-HA antibodies (Figure 1C), and 

interestingly, we found both free and calcium-bound PBP1 to be ubiquitinated, 

since similar double bands were identified with anti-Ub antibodies. Moreover, 

PBP1-K retains its ability to bind calcium, since a double band could still be 

observed (Figure 1C). In order to analyze if ubiquitination of PBP1 is essential 

for its functionality, we tested binding of PBP1 and PBP1-K to PID, and to 

another AGC3 kinase, WAG2 (Galvan Robert and Offringa, in prep) in an in 

vitro pull-down assay. GST-PID or GST-WAG2 containing glutathione beads 

were used to pull down His-PBP1 or His-PBP1-K from total E.coli protein 

extracts. After several washes, the beads were analyzed for bound proteins on 

a Western blot using anti-His antibodies. Both the wild type and the -K version 

of PBP1 were found to bind PID and WAG2 with similar affinities (Figure 2A).  

 

Figure 2: Ubiquitination of PBP1 does not alter its functional properties. (A) In vitro pulldown 

of His-PBP1 (WT) and His-HA-PBP1(-K) with GST, GST:PID or GST:WAG2 bound to glutathione 

agarose beads. W-His indicates a western blot of the eluates probed with anti-His antibodies. A 

coomassie stained SDS-PAGE gel of the same samples ran in parallel is depicted below. The 

asterisks indicate the GST:PID and GST:WAG2 bands. Molecular mass of marker proteins is 

indicated on the left in kDa. (B, C) Confocal laser scanning microscopy images of Arabidopsis 

protoplasts transfected with 35S::PID:CFP (B, upper panel), 35S::GFP (C, upper image), 

35S::PBP1:YFP-HA (C, middle image) or 35S::PBP1-K:YFP-HA (C, lower image), or co-transfected 

with 35S::PID:CFP and 35S::PBP1:YFP-HA (B middle panel) or with 35S::PID:CFP and 35S::PBP1-
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K:YFP-HA (B, lower panel). In the latter two panels the YFP and CFP signal are shown separately 

in the left and right images, respectively. 

 

To further test the interaction between PBP1-K and PID in vivo, we co-

expressed these proteins as respectively YFP and CFP fusions in Arabidopsis 

protoplasts. Previously, it was observed that PBP1:YFP co-transfection induces 

the membrane-associated PID:CFP to localize in the cytoplasm (Galvan, 

Robert, Offringa, in prep). Both the wild type and the -K version of PBP1 are 

able to sequester PID to the cytoplasm (Figure 2B), indicating that they both are 

able to bind PID in vivo. Our results indicate that the lysine-less PBP1 still 

retains the tested functional properties of the wild type protein, and that PBP1 

ubiquitination is not essential for the protein to bind calcium or PID.  

 

PID and PBP1 are both ubiquitinated and do not affect each other’s poly-

ubiquitination 

We also tested whether the co-expression of PID would affect the ubiquitination 

status of PBP1 using the modified His-tagged ubiquitin (His-Ub) method for 

detection of protein ubiquitination (Campanero and Flemington, 1997) which 

allows identification of in vivo ubiquitinated proteins via Nickel-affinity 

purification. While this assay clearly showed that PID does not have any effect 

on the ubiquitination of HA-PBP1 (Figure 3, Ni-NTA α-HA panel), we found the 

PID kinase to be poly-ubiquitinated in Arabidopsis protoplasts (Figure 3, Ni-NTA 

α-FLAG panel). A single band representing the full length PID-FLAG was 

detected with the anti-FLAG antibody in the absence of cotransfected His-Ub, 

indicating basal binding of the abundantly expressed PID-FLAG protein to the 

Ni-NTA beads during affinity purification. However, only in cells co-expressing 

His-Ub, an additional smear of slower migrating FLAG tagged protein was 

detected, representing poly-ubiquitinated PID-FLAG proteins. Co-transfection 

with 35S::HA-PBP1 does not affect the ubiquitination of PID-FLAG (last lane Ni-

NTA α-FLAG panel). These results indicate that PID is ubiquitinated in vivo 

independently of the co-expression of PBP1, and that co-expression of PID 

does not affect the ubiquitination of PBP1.  
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Figure 3: PID and PBP1 are ubiquitinated proteins that do not affect each other’s poly-

ubiquitination..(A) Western blot analysis of total protein extracts from transfected protoplasts 

before (INPUT) and after Ni-NTA (Ni-NTA) affinity purification, using anti-HA (upper panels) or anti-

FLAG (lower panels) antibodies. Protoplasts were transfected with 20 µg of plasmid DNA of either 

35S::HA-PBP1 (WT) or 35S:HA-PBP1-K (-K) and 35S::PID-FLAG (PID-FLAG) or 35S::5xHis-Ub (H-

Ub) where indicated. In all samples 5 µg 35S::FLAG-GFP was cotransfected as an internal 

standard. Sixteen hours after transfection, cells were incubated for 1h with 50 µM MG132 and 

harvested in liquid nitrogen. Ten percent of the total extract was analyzed as INPUT and the 

remaining sample was used to affinity-purify His-Ub tagged proteins with Ni-NTA agarose beads. 

Poly-ubiquitinated HA-PBP1 and PID-FLAG are indicated. The black dot indicates the full length 

HA-PBP1, the arrow PID-FLAG, and the asterisk FLAG-GFP. 

 

 

PBP1 contains a transferable ubiquitination signal 

The HA-PBP1 fusion protein is very unstable in protoplasts and is significantly 

stabilized following treatment with the proteasome inhibitor MG132 (Figure 1A 

and B). However, when the HA-PBP1-YFP-HA fusion protein was expressed in 

protoplasts, the fluorescent signal was very strong (Figure 2B and C), and the 
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fusion protein was produced at high levels without MG132 treatment (Figure 

4A). Substitution of the lysines in PBP1 for arginines prevented ubiquitination of 

HA-PBP1, but did not affect its tested physiological properties, or those of HA-

PBP1-YFP-HA (Figure 2B and C). When we used the His-Ub method to 

analyze the ubiquitination of the PBP1-YFP-HA fusion protein, both HA-PBP1-

YFP-HA and HA-PBP1(-K)-YFP-HA appeared as multiple bands before affinity 

purification (INPUT), with a different pattern of high molecular mass bands in 

the two samples. Interestingly, after Ni-NTA purification, the HA-PBP1(-K)-YFP-

HA version was also recovered in the ubiquitinated pool. These results indicate 

that one or more of the lysines present in the YFP portion of this fusion protein 

now serve as substrates for ubiquitination, and that the PBP1(-K) protein can 

still interact with a E3 ubiquitin ligase and cause ubiquitination of a fused 

polypeptide. The FLAG-GFP present in all samples was not recovered in the 

His-Ub tagged fraction, which indicates that GFP (which differs in only one 

amino acid from YFP) is not ubiquitinated itself. The different patterns of bands 

observed in the input of the anti-HA blot indicates that different ubiquitin chains 

are attached to the different proteins due to the difference in the number of Ub 

attachment sites. These observations suggest that PBP1 contains a 

transferable ubiquitination signal that can lead to ubiquitination of a lysine-

containing amino acid sequence present in cis. However, the ubiquitination 

signal does not function as a degron, since it does not lead an unstable fusion 

protein.  

 

DISCUSSION 

The paradigm in targeted protein degradation is that substrates of the 

eukaryotic 26S proteasome are ubiquitinated as a prelude to their destruction, 

and that the primary function of these poly-ubiquitin chains is substrate 

recognition by the 19S regulatory lid of the proteasome. Several plant proteins 

were shown to be recruited by E3 ubiquitin ligases, and to be substrates for 

proteasomal degradation (Gray et al., 2001; Gomi et al., 2004; Thines et al., 

2007). For some proteins poly-ubiquitination has been demonstrated (Xie et al., 

2002; Saijo et al., 2003; Sasaki et al., 2003; Jang et al., 2005; Dos Santos et 
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al., 2009), and in addition recent high throughput MS analyses have identified 

multiple plant proteins that are labeled by poly-ubiquitin chains (Maor et al., 

2007; Manzano et al., 2008). However, many of these studies lack a detailed 

analysis of the actual function of the poly-ubiquitin chains. 

 

 

Figure 4: PBP1 contains a transferable ubiquitination signal that does not function as a 

degron. (A) PBP1 has increased stability when fused to YFP-HA. The arrow indicates the position 

of HA-PBP1 (WT) and the dot indicates the position of the full length HA-PBP1-YFP-HA (WTY). (B) 

HA-PBP1(-K) is ubiquitinated when fused to YFP-HA. Arabidopsis protoplasts were transfected 

with, 35S::HA-PBP1-YFP-HA (WTY)  or 35S::HA-PBP1(-K)-YFP-HA (-KY), and p35S::5xHis-Ub (H-

Ub) was co-transfected where indicated. Five micrograms of the plasmid 35S:FLAG-GFP was 

added to all transfections as an efficiency control. Western blot analysis of total protein extracts 

before (INPUT) and after affinity purification (Ni-NTA) was performed with anti-HA (upper panels) or 

anti-FLAG (lower panels) antibodies. The black dot indicates the position of the full length HA-PBP-

YFP-HA and the asterisk that of FLAG-GFP.  

 

Here we show that the Arabidopsis calcium-binding protein PBP1 is an unstable 

protein exhibiting proteasome-sensitive turnover and ubiquitination in vivo. 

However, after substituting the lysines for arginines PBP1 remains unstable and 

its degradation is proteasome-dependent even though it cannot be 

ubiquitinated. Therefore, PBP1-ubiquitin conjugates are not obligatory 

intermediates in proteasome-dependent PBP1 turnover. These data do not 

exclude the possibility that its turnover may be mediated by ubiquitination in 

some physiological contexts. Alternatively, PBP1 ubiquitination may serve some 
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function other than signaling proteolysis. Regardless, this example illustrates 

that observing poly-ubiquitination and proteasome-mediated degradation in vivo 

are insufficient to conclude that protein turnover must proceed through a 

ubiquitinated intermediate. 

Currently, the concept of a linear relationship between ubiquitination and 

proteasomal degradation knows many exceptions involving other mechanisms 

than ubiquitination to target proteins to the proteasome (Asher and Shaul, 

2005). The ubiquitin-proteasome pathway can be regulated at the level of 

ubiquitination or at the level of proteasome activity (Glickman and Ciechanover, 

2002). Ubiquitination is emerging as an additional regulatory step for the 

different way proteasomes use to recognize its targets. The proteasome can 

assume ubiquitin independent recognition of targets via alternative lid 

configurations such as the REGγ complex (Chen et al., 2007b) showing that 

proteasome recognition is also a variable and dynamic process. 

Nonubiquitinated proteins have been reported to be directly recognized by the 

proteasome in a “degradation by default” mechanism (Asher et al., 2006), via 

which the degradation occurs unless specific intervention prevents it. The 

existence of this mechanism suggests that the 20S catalytic core of 

proteasomes is able to recognize and degrade nonubiquitinated proteins. 

Examples of proteins degraded via this alternative proteasome pathway are 

ODC (Ornithine Decarboxylase) (Murakami et al., 1992), p21cip1 (Chen et al., 

2007b) and p53/p73 (Asher et al., 2005) for mammalian cells.  

To our knowledge, PBP1 is the first plant protein shown to be degraded via a 

proteasomal ubiquitin-independent process. The presence of ubiquitinated 

PBP1 suggests that it is a substrate for an E3 ubiquitin ligase. An interesting 

possibility is that PBP1 may be recruited to the proteasome by being bound to a 

protein that is itself targeted to the proteasome following ubiquitination. In this 

case proteasome inhibition may indirectly stabilize PBP1 by affecting the 

stability of this other protein. Our results indicate that PID is also ubiquitinated, 

but we have no indications that PID affects the stability or ubiquitination state of 

PBP1. 
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The observation that PID is ubiquitinated in vivo indicates that the control of 

protein abundance is an additional step of regulation for the activity of this 

kinase, which is known to phosphorylate proteins that are themselves 

ubiquitinated and targeted to the 26S proteasome such as PIN2 (Abas et al., 

2006) and BDL (Chapters 2 and 4). Furthermore, the ubiquitination of PID may 

be regulated through its association with the CSN complex (Chapter 5), 

something that has been observed for other proteasome targets.  
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Summary 

The protein serine/threonine kinase PINOID (PID) is a signaling component in 

the control of polar auxin transport (PAT), as it determines the apico-basal 

polarity of many members of the PIN family of auxin efflux carriers. The polar 

transport of auxin results in differential distribution of this hormone, and the 

cellular auxin concentrations are subsequently translated into a primary gene 

expression response by the complex and cell-specific interactions between ARF 

transcription factors and labile Aux/IAA repressors. The abundance of Aux/IAA 

repressors is controlled by auxin-induced, ubiquitination by the E3 ligase 

SCF
TIR1

. We identified the labile auxin response repressor BODENLOS 

(BDL/IAA12) as in vitro phosphorylation target of PID. The observation that PID-

mediated phosphorylation possibly occurs in the PRSS motif close to the 

SCF
TIR1

-interacting domain II of BDL/IAA12 suggests that this event plays a role 

in the stability of this repressor protein. Blockage of the identified 

phosphorylation site has minor negative effects on the repressor activity of the 

BDL protein in protoplasts and in planta, but plants carrying a phosphorylation 

insensitive version of the gain-of-function bdl protein fail to reproduce the 

bodenlos phenotype. Additionally, the phosphorylation-insensitive bdl protein is 

much less stable and has a more restricted tissue distribution in the root tip. 

This indicates that the control of BDL via phosphorylation might be an important 

mechanism regulating Arabidopsis root development. Although the mechanisms 

and roles of PID-mediated regulation of BDL require further elucidation, our 

data suggest that the PID protein kinase provides a direct link between auxin 

transport and signaling. 
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INTRODUCTION 

 

The plant hormone auxin affects gene expression through the action of two 

types of transcriptional regulators: the Auxin Response Factors (ARFs) and the 

Aux/IAA transcriptional repressor proteins. ARFs bind with their amino(N)-

terminal DNA-binding domain to promoters containing Auxin Responsive 

(AuxRE) elements, and can either activate or repress transcription, depending 

on the structure of their middle region {Tiwari, 2003 69 /id}. Aux/IAA proteins 

are short-lived nuclear proteins that function as repressors of auxin-responsive 

gene expression. Aux/IAA proteins form a family of twenty-nine members in 

Arabidopsis that mostly share four conserved domains (Liscum and Reed, 

2002). From N- to carboxy(C)-terminus, domain I has been shown to have 

transcription repression activity (Tiwari et al., 2004) and to interact through an 

EAR motif with the transcriptional co-repressor TOPLESS (TPL) (Shemenyei et 

al., 2008), domain II is involved in destabilization of Aux/IAA proteins (Ramos et 

al., 2001), and domains III and IV allow Aux/IAA proteins to dimerize with ARFs 

or with other Aux/IAA proteins (Ulmasov et al., 1999). Domain II of Aux/IAAs 

interacts with the auxin receptors TRANSPORT INHIBITOR RESISTANT 1/ 

AUXIN SIGNALING F BOX (TIR1/AFB), which are part of a Skp1/cullin/F-box 

protein (SCF) E3 ubiquitin ligase complex (Gray et al., 2001; Kepinski and 

Leyser, 2005; Dharmasiri et al., 2005a). Auxin stabilizes this interaction, leading 

to the proteasomal degradation of Aux/IAAs, which subsequently allows ARFs 

to initiate transcription. Screening for auxin-insensitive mutants in Arabidopsis 

has identified specific mutations in domain II of Aux/IAAs that disrupt the 

interaction with the TIR1 protein family, thereby abolishing their auxin-induced 

degradation. Such gain-of-function mutations lead to reduced auxin response 

and related semi-dominant phenotypes, such as the lack of a primary root 

meristem, reduced hypocotyl growth and curled cotyledon phenotypes that are 

typical for the bodenlos (bdl) mutant (Hamann et al., 1999). The bdl mutant 

seedling phenotypes imply that the BDL/IAA12 protein is involved in auxin-

mediated apical-basal patterning of the Arabidopsis embryo. BDL/IAA12 

physically interacts with MONOPTEROS/AUXIN RESPONSE FACTOR5 
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(MP/ARF5) to control its activity (Hamann et al., 2002). Consistent with this, 

both bdl mutants and mp/arf5 loss-of-function alleles display reduced 

vasculature and form a “basal peg” instead of a root and a hypocotyl. The 

function of MP-BDL in embryo patterning is to control an auxin-responsive gene 

expression response in specific embryonic cells. The polarization of the embryo 

occurs after the first cell division of the zygote that already responds to auxin 

transported in a polar manner due to the action of the auxin efflux carriers PIN1 

and PIN7 (Friml et al., 2003). The polar localization of these two proteins was 

shown to be controlled by the serine/threonine (Ser/Thr) kinase PINOID (PID) 

(Friml et al., 2004) Loss of pid function causes an apical-to-basal shift in PIN 

polarity, correlating with defects in embryo and shoot organogenesis (Friml et 

al., 2004). PID is known to phosphorylate PIN proteins controlling their polarity 

inside the cells (Michniewicz et al., 2007). Up to date, no other PID 

phosphorylation targets are known besides PIN proteins. Here we identify a 

synergistic effect between the bdl and pid mutants, and show that BODENLOS 

(BDL/IAA12) is a phosphorylation target of PID in in vitro assays. Mapping of 

the phosphorylation site identified the PRXS motif in between the TPL 

interacting domain I and the TIR1/ABF-interacting domain II of BDL/IAA12 as 

target for phospho-modification. Our results indicate a phosphorylation-

dependent control of the stability and activity of the BDL/IAA12 and IAA13 

repressor proteins, implying that the role of PID in plant development, besides 

regulating auxin transport, extends to the regulation of auxin-responsive gene 

expression. 

 

 

 

MATERIAL AND METHODS 

 

DNA cloning and constructs 

For the auxin-responsive GUS assays, a DR5::GUS reporter construct with 7 

copies of the DR5 sequence cloned in the plasmid GusXX-47 (Pasquali et al., 

1994) was used. A plasmid carrying the Renilla reniformis luciferase (LUC) 
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gene under the control of the CaMV 35S promoter was co-transfected as a 

control for transformation efficiency (De Sutter et al., 2005). All effector 

plasmids used for protoplast transfections are based on pART7 carrying the 

CaMV 35S promoter and the OCS transcription terminator (Gleave, 1992). 

GATEWAY® (www.invitrogen.com) destination cassettes derived from 

pEarleyGate 201 and 202 (Earley et al., 2006) were transferred into pART7 to 

generate plasmids pART7::HA and pART7::FLAG for the expression of 

respectively N-terminal HA- or FLAG-tagged proteins in plant cells.  

A cDNA encoding SHY2/IAA3 with an N-terminal HA tag was cloned from 

pACT2::SHY2 using XhoI/XbaI sites into pART7, generating 35S::HA-

SHY2/IAA3. The BDL/IAA12 cDNA was excised with BamHI/XbaI from 

pETH16-BDL (Weijers et al., 2006), introduced into pENTR 3C, and introduced 

into pART7-HA via LR recombination to create 35S::HA-BDL. The mutations 

resulting in the Ser67-Ser68 (SS) to Lys67-Ala68 (KA), the Ser67-Ser68 (SS) to 

Asp67-Asp68 (DD) and the bodenlos (P75S) (Hamann et al., 2002) substitutions 

were introduced in this plasmid using the Quickchange Site-directed 

Mutagenesis kit (Stratagene) with primer pairs BDL SS>KA F2 5’- 

GCCATCCTACCACTTGAGCTTTACGAGGAGGAGAAGCTCCTTGGT-3’ and 

BDL SS>KA R2 5’-

ACCAAGGAGCTTCTCCTCCTCGTAAAGCTCAAGTGGTAGGATGGC-3’ for 

the SS>KA mutation, bodenlosmtF 5’- 

GTCAAGTGGTAGGATGGTCACCAATTGGGTTAC-3’ and bodenlosmtR 5’-

GTAACCCAATTGGTGACCATCCTACCACTTGAC-3’ for the bdl mutation, 

IAA12SS>DDF 5’-

GGAGCTTCTCCTCCTCGTGATGATCAAGTGGTAGGATGGCC-3’ and  

IAA12SS>DDR 5’- 

GGCCATCCTACCACTTGATCATCACGAGGAGGAGAAGCTCC-3’ for the 

SS>DD mutation in 35S::HA-BDL, bdlSS>DDF 5’- 

GGAGCTTCTCCTCCTCGTGATGATCAAGTGGTAGGATGG-3’ and 

bdlSS>DDR 5’- CCATCCTACCACTTGATCATCACGAGGAGGAGAAGCTCC-

3’ for the SS>DD mutation in35S::HA-BDL, resulting in respectively 35S::HA-

BDL KA, 35S::HA-bdl, 35S::HA-bdl KA, 35S::HA-BDL DD,  and 35S::HA-bdl 



A phosphorylation site for the PINOID kinase is important for BDL/IAA12 stability and activity 

 99 

DD. The 35S::PID-FLAG construct was described previously (Michniewicz et 

al., 2007). An entry clone for GFP was made by cloning the GFP cDNA from 

pTH2 (Chiu et al., 1996) as a BamHI/NotI fragment into pENTR 3C (Invitrogen). 

This clone was used for generating pART7::FLAG-GFP and pART7::HA-GFP 

via LR recombination. 

BDL N-terminal YFP- fusion was created into pEarleyGate 104 via LR 

recombination with pENTR 3C::BDL. The YFP-BDL cassette was PCR 

amplified with primers BDLYFP ClaI F 5’- 

CCATCGATATGGGCAAGGGCGAGGAGCTGT-3’ and BDLYFP XbaI R 5’- 

GCTCTAGAAATAGGGTTGTTTCTTTGTC-3’, the resulting fragment was cut 

with ClaI and XbaI  and ligated into ClaI/XbaI sites of pART7. The mutations 

leading to the bodenlos (P75S) and the SS>KA substitutions were introduced 

into the resulting plasmid  35S::YFP-BDL as described above, resulting in 

35S::YFP-bdl , 35S::YFP-bdl KA and 35S::YFP-BDL KA.  

The construct BDL::3xGFP-BDL (Weijers et al., 2006) in pGreen0229 was used 

to create BDL::3xGFP-BDL KA and BDL::3xGFP-bdl KA with the primers 

BDLSS>KA F 5’- 

ATCTTCCTCTCACCAAGGAGCTTCTCCTCCTCGTTCAAGGTTCGTCCTTTTT

CTTA-3’ and BDLSS>KA R 5’- 

AGAAAAAGGACGAACGCTTTACGAGGAGGAGAAGC-3’ as described above. 

Constructs for production of recombinant protein in His-BDL (Weijers et al., 

2006) His-PBP1, GST-PID (Benjamins et al., 2003) in E.Coli were previously 

described.   

 

Plant lines, plant growth and transformation and molecular analysis 

The pid-En197 and pid-14 (SALK_049736) alleles and the bdl mutant have 

been described before (Hamann et al., 1999; Christensen et al., 2000; 

Benjamins et al., 2001). Seeds were surface sterilized with 1% commercial 

chlorine solution, and germinated on MA medium at 21
o
C and a 16 hours 

photoperiod. Plantlets were transferred to soil and grown at 20
o
C, 70% relative 

humidity and 16 hours photoperiod. The BDL::3xGFP-BDL and BDL::3xGFP-bdl 

lines were previously described (Weijers et al., 2006) and kindly donated by 
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Dolf Weijers (Wageningen University). For generation of the BDL::3xGFP-BDL 

KA and BDL::3xGFP-bdl KA lines, Arabidopsis thaliana ecotype Columbia (Col) 

was transformed by the floral dip method (Clough and Bent, 1998). Primary 

transformants were selected on medium supplemented with 30 mg/L 

phosphinotricin (PPT), with 50 mg/L nystatin and 100 mg/L timentin to inhibit 

growth of Agrobacterium. For further analysis, single locus insertion lines were 

selected by germination on 20 mg/L PPT. Resistant seedlings were checked for 

transgene expression by epifluorescence microscopy, by western blot- or by 

RT-PCR analysis.  

For western blot analysis, around ten 5 day-old plants were frozen in liquid 

nitrogen, ground and extracted in 0.1 mL cold extraction buffer (Phosphate 

Buffered Saline, PBS; 1x Roche Complete Protease Inhibitor Cocktail, 1 mM 

PMSF, 1% Triton X-100). The lysate was cleared by centrifugation at 20.000 g 

for 10 min. Total protein was quantified by Bradford assay (Bio-Rad) and 80 µL 

of the extract was mixed with 20 µL 5X Laemmli protein sample buffer and 

boiled for 5 minuntes. A volume corresponding to 20 µg of total protein was 

separated on 8 % SDS-PAGE minigels. PAGE-separated proteins were semi-

dry blotted onto PVDF membranes, which were subsequently blocked with 

nonfat dry milk and incubated overnight with 5000-fold diluted anti-GFP rabbit 

antibody (Invitrogen, A-11122) at 4
o
C. Membranes were washed and incubated 

for 1h at 4
o
C with 10.000-fold diluted goat anti-rabbit IgG antibodies conjugated 

to HRP (Promega, W4011). Detection of the HRP-conjugated antibody was 

performed with the LumiGLO Detection Kit (Cell Signalling). Loading was 

monitored by staining the membrane with Sypro Ruby (BioRad). 

For RT-PCR analysis, total RNA was extracted from one-week old seedlings 

with the Invisorb Spin Plant RNA kit (Invitek). RT-PCRs were performed as 

described in (Weijers et al., 2001) using 2 µg of total RNA for the RT reaction 

and transgene-specific primers GFPBDLRT 5’- 

AGCTGTACAAGAGATCCATGCGTGG-3’ and BDLRTR 5’- 

AACAGGGTTGTTTCTTTGTCTATCC-3’ for detection of the 3xGFP-BDL 

mRNA, or ROC (At4g38740) specific primers 3.3F 5’- 
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CCACAGGCTTCGTCGGCTTTC-3’ and 5.2R 5’-

GAACGGAACAGGCGGTGAGTC-3’ as an internal control.  

 

Root length measurements 

Sterile seeds were spread with 0.1 % agarose onto MA solid medium (1.5% 

agar) containing 0, 10
-8
 and 10

-7
 M of IAA. Seeds were vernalized in the dark for 

2 to 4 days at 4
o
C and transferred to 21

o
C, 16h light with plates placed vertically 

to allow root elongation over the medium surface. Plates were scanned after 13 

days and root lengths were measured using ImageJ (http://rsb.info.nih.gov/ij/). 

Average lengths of 15 primary roots were scored from three individual plates. 

Average groups were compared by One-Way ANOVA followed by Student’s T 

test (p<0.05) using SPSS 15.0. 

 

In vitro pull down experiments 

GST-tagged PID or the GST-tag alone were used in pull down assays with 

histidine (His)-tagged BDL and PBP1 (H-proteins). E. coli strain 

BL21(DE3)pLysS containing one of the constructs was grown in 50 ml LC 

cultures supplemented with antibiotics at 37ºC to OD600 0.8. The cultures were 

then induced for 4 hours with 1 mM IPTG at 30ºC, after which cells were 

harvested by centrifugation (10 min. at 2.000 g in tabletop centrifuge) and 

frozen overnight at -20ºC. Precipitated cells were re-suspended in 2 ml 

Extraction Buffer (EB: 1x PBS, 2 mM EDTA, 2 mM DTT, supplemented with 0.1 

mM of the protease inhibitors Phenylmethanesulfonyl Fluoride (PMSF), 

Leupeptin and Aprotinin, all obtained from Sigma) for the GST-tagged proteins 

or in 2 ml Binding Buffer (BB: 50 mM Tris-HCl pH 6.8, 100 mM NaCl, 10 mM 

CaCl2, supplemented with 0.1 mM PMSF, 0.1 mM, Leupeptin and 0.1 mM 

Aprotinin) for the His-tagged proteins and sonicated for 2 min on ice. From this 

point on, all steps were performed at 4ºC. Eppendorf tubes containing the 

sonicated cells were centrifugated at full speed (20.000 g) for 20 min, and the 

supernatants were transferred to fresh 2 ml tubes. Supernatants containing H-

proteins were left on ice, while 100 µl pre-equilibrated Glutathione Sepharose 

resin (pre-equilibration performed with three washes of 10 resin volumes of 1x 



Chapter 4 

 102 

PBS followed by three washes of 10 resin volumes of 1x BB at 500 g for 5 min) 

was added to the GST-fusion protein containing supernatants. Resin 

suspensions were incubated with gentle agitation for 1 hour, subsequently 

centrifuged at 500 g for 3 min., and the precipitated resin was washed 3 times 

with 20 resin volumes EB. In between the washes, the resin was centrifuged for 

5 min at 500 g.  Next, the H-protein containing supernatants (approximately 2 

ml per protein) were added to GST-fusion proteins bound to beads, and the 

mixtures were incubated with gentle agitation for 1 hour. After incubation, the 

mixtures were centrifugated at 500 g for 3 min, the supernatants were 

discarded and the beads were subsequently washed 3 times with 20 volumes 

EB.  Elution was performed by mixing 100 µL 2X Laemmli protein loading buffer 

to the beads, followed by denaturation by 5 min incubation at 95ºC. Proteins 

were subsequently separated on a 12% polyacrylamide gel prior to transfer to 

an Immobilon
TM

-P Polyvinylidene Fluoride PVDF (Sigma) membrane. Western 

blots were hybridized with horse radish peroxidase (HRP)-conjugated anti-

pentahistidine antibodies (Qiagen), and detection followed the protocol 

described for the Phototope-HRP Western Blot Detection Kit (New England 

Biolabs). 

 

 

In vitro phosphorylation assays  

All proteins used in in vitro phosphorylation assays were His-tagged for 

purification from several (usually five) aliquots of 50 ml cultures of E. coli. strain 

BL21, which were grown, induced, pelleted and frozen as described above for 

the in vitro pull down experiments. Each aliquot of frozen cell pellet was 

resuspended in 2 ml Lysis Buffer (25 mM Tris-HCl pH 8.0; 500 mM NaCl; 20 

mM Imidazole; 0.1% Tween-20; supplemented with 0.1 mM of the protease 

inhibitors PMSF, Leupeptin and Aprotinin) and subsequently sonicated for 2 min 

on ice. From this point on, all steps were performed at 4ºC. Sonicated cells 

were pelleted in an Eppendorf centrifuge at full speed (20.000 g) for 20 min, the 

pellets were discarded, and supernatants from all aliquots of the same construct 

were transferred to a 15 ml tube containing 100 µl of pre-equilibrated Ni-NTA 
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resin (pre-equilibration performed with three washes of 10 resin volumes of 

Lysis Buffer at 500 g for 5 min). Mixtures were incubated with gentle agitation 

for 1 hour. After incubation, mixtures were centrifuged at 500 g for 3 min, the 

supernatant was discarded and the resin subsequently washed 3 times with 20 

resin volumes of Lysis Buffer, once with 20 resin volumes of Wash Buffer 1 (25 

mM Tris.Cl pH 8.0; 500  mM NaCl; 40 mM Imidazole; 0.05% Tween-20) and 

once with 20 resin volumes of Wash Buffer 2 (25 mM Tris-HCl pH 8.0; 600 mM 

NaCl; 80 mM Imidazole). In between the washes, the resin was centrifuged for 

5 min at 500 g. After the washing steps, 20 volumes of Elution Buffer (25 mM 

Tris.HCl pH 8.0; 500 mM NaCl; 500 mM Imidazole) were added to the resin and 

the suspension was incubated for 15 min with gentle agitation. The resin was 

centrifuged for 3 min at 500 g, and the supernatant containing the desired 

protein was diluted a 1000-fold in Tris Buffer (25 mM Tris.HCl pH7.5; 1 mM 

DTT) and concentrated to a workable volume (usually 50 µl) using Vivaspin 

microconcentrators (10 kDa cut off, maximum capacity 600 µl, manufacturer: 

Vivascience). Glycerol was added as preservative to a final concentration of 

10% and samples were stored at -80ºC. 

Approximately 1 µg of each purified His-tagged protein (PID and substrates) 

and 1 µg MBP (Sigma #M1891) in maximal volumes of 10 µl were added to 20 

µl kinase reaction mix, containing 1x kinase buffer (25 mM Tris-HCl pH 7.5; 1 

mM DTT; 5 mM MgCl2) and 1 x ATP solution (100 µM MgCl2/ATP; 1 µCi γ-
32

P- 

ATP). Reactions were incubated at 30ºC for 30 min and stopped by the addition 

of 5 µl of 5 x protein loading buffer (310 mM Tris-HCl pH 6.8; 10 % SDS; 50% 

Glycerol; 750 mM β-Mercaptoethanol; 0.125% Bromophenol Blue) and 5 min 

boiling. Reactions were subsequently separated on 12.5% acrylamide gels, 

which were subsequently washed 3 times for 30 min with kinase gel wash 

buffer (5% TCA – Trichoroacetic Acid; 1% Na2H2P2O7), coomassie stained, 

destained, dried and exposed to X-ray films for 24 to 48 hours at -80ºC using 

intensifier screens. 

For the peptide assays, 1 µg of purified PID was incubated with 4 nmol of 9
mer

 

biotinylated peptides (Pepscan) in a phosphorylation reaction as described 

above. Reaction processing, spotting and washing of the SAM
2
 Biotin Capture 
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Membrane (Promega) were performed as described in the corresponding 

protocol. Following washing, the membranes were wrapped in plastic film and 

exposed to X-ray films for 24 to 48 hours at -80
o
C using intensifier screens. The 

phosphorylation intensities of each peptide were determined by densitometry 

analysis of the autoradiographs using the ImageQuant software (Molecular 

Dynamics). 

 

Protoplast isolation and transfection 

Protoplasts were isolated from Arabidopsis thaliana Col-0 cell suspension 

cultures and plasmid DNA was introduced by PEG-mediated transfection as 

described (Schirawski et al., 2000; Dos Santos Maraschin et al., 2009) In the 

DR5::GUS transactivation assays 10
6
 protoplasts were transfected with 10 µg of 

the DR5::GUS reporter construct and 2 µg of 35S:Rluc (De Sutter et al., 2005) 

for experimental normalization. The DNA amounts of the effector constructs 

varied per experiment and are indicated in the figure legends. All 

transformations contained 10 µg of 35S::FLAG-GFP as a control for 

transformation efficiency, and were split in 2 portions containing 5 x 10
5
 

protoplasts in a total volume of 2.5 mL of protoplast medium. After 16 h the 

samples were treated for 4 h either with 1 µM IAA or the same volume of the 

solvent DMSO. Treated cells were collected by centrifugation at 80 g for 1 

minute and the pellets were frozen in liquid nitrogen for GUS (van der Fits and 

Memelink, 1997) and LUC measurements (Dyer et al., 2000). Triplicate 

transfections were assayed and mean GUS/LUC relative activities were 

analyzed by One-way ANOVA using SPSS 15.0 software.  

For the Aux/IAA degradation assays, 10
6 

protoplasts were transfected with 20 

µg 35S::HA-Aux/IAA construct and 10 µg of 35S::FLAG-GFP. Treated 

protoplasts were resuspended by vortexing in cold Extraction Buffer (PBS, 1x 

Roche Complete Protease Inhibitor Cocktail containing 1% Triton X-100). The 

lysate was cleared by centrifugation at 20.000 g at 4
o
C for 10 min. Total protein 

was quantified by Bradford assay (Bio-Rad) and 20 µg was mixed with protein 

sample buffer and separated on 10% SDS-PAGE minigels. PAGE-separated 

proteins were blotted onto nitrocellulose membranes, blocked with nonfat dry 
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milk and incubated with the HRP-conjugated antibodies anti-HA High Affinity 

3F10 (Roche) and anti-FLAG M2 (Sigma). Detection of the HRP-conjugated 

antibody signal was performed with LumiGLO Detection Kit (Cell Signalling). 

 

Microscopy 

For imaging of transfected protoplasts and intracellular localization of 3xGFP-

BDL in roots a Leica DM IRBE confocal laser scanning microscope equipped 

with Argon laser line of 488 nm (excitation) and a band pass emission filter of 

500-550 nm was used with a 63X water objective, digital zoom and 51% laser 

intensity. Expression of the 3xGFP-BDL fusions in roots was imaged using a 

Leica MZ16FA stereomicroscope equipped with a GFP filter set and a DFC 

420C camera. Image processing was performed with ImageJ 

(http://rsb.info.nih.gov/ij/). 

 

 

RESULTS  

 

Genetic interaction between PID and BDL 

Previously, the possibility has been entertained that PID may be involved in 

regulating the stability of Aux/IAA proteins (Reed, 2001). Since PID is 

expressed in the embryo and is essential for proper embryonic patterning 

(Christensen et al., 2000; Benjamins et al., 2001), we decided to test whether 

PID could affect the stability of the embryonic Aux/IAA protein BODENLOS 

(BDL)/IAA12. F2 seedlings from a cross between the pid-14 or pid-En197 loss-

of-function alleles and the bdl gain-of-function mutant, displayed a range of 

phenotypes, varying from wild type and typical pid and bdl seedlings to 

seedlings that lack cotyledons (no-cot), or no-cot seedlings that even lack a 

primary root (Figure 1A to 1D). As the latter seedlings phenocopied the 

previously identified gurke mutants (Chamovitz et al., 1996), their phenotype 

was referred to as gurke-like. The frequency of no-cot or gurke-like seedlings 

matched the expected numbers for respectively BDL/bdl pid/pid and bdl/bdl 

pid/pid progeny (Table 1). Few seedlings of the no-cot and gurke-like class 
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were able to develop past this early seedling stage, but the resulting plantlets 

formed a rosette of twisted leaves with a disorganized phyllotaxis, and 

developed early pin-like inflorescences (Figure 1E). The no-cot phenotype was 

also observed in pid-pin1 double mutants (Furutani et al., 2004), and since we 

know now that PID regulates PIN polar targeting (Friml et al., 2004) by 

phosphorylating the PIN hydrophilic loop, our data suggested that a similar 

functional interaction may exist between PID and BDL. 

 

 

 

 

 

 

 

 

 

Figure 1: The bdl gain-of-function mutation enhances the cotyledon defects caused by the 

pid loss-of-function mutation. (A-E) The phenotypes of the pid (A) and bdl (B) parental lines and 

the synergistic lack of cotyledons (no-cot) (C) and gurke-like (D) phenotypes observed in the pid x 

bdl F2 population. No-cot and gurke-like seedlings that grow beyond the seedling stage develop a 

 Total kan
s
 
ξ
 tricot

†,
* bdl* no-cot.* gurke-l* 

Observed number of 
seedlings (%) 

198 
(100) 

50 (25)  6 (3)
 
 

17 
(8.5)

 
 

13 (6)
 
 4 (2)

 
 

Expected number of 
seedlings (%) 

198 
(100) 

50 (25) 6 (3) 
25 

(12.5) 
12 (6) 6 (3) 

ξ Number of kanamycin sensitive seedlings. Seeds were germinated on MA medium containing 25 
µg/ml of kanamycin, to select for the T-DNA insertion causing the pid loss-of-function mutation. 
† The three cotyledon phenotype of this pid mutant allele shows a penetrance of 50%, indicating that it 
is a complete loss-of-function allele (Bennett et al., 1995; Christensen et al., 2000). 
*The expected number of kanamycin resistant three cotyledon, bdl, no-cotyledon  and “gurke-like” 
seedlings, based on 1:16 (BDL/BDL pid/pid), 1:8 (bdl/bdl PID/pid), 1:8 (BDL/bdl pid/pid) and 1:16 
(bdl/bdl pid/pid) segregation ratios, respectively, and a 50% penetrance of the phenotypic changes 
induced by the homozygous pid mutation. The numbers between brackets indicate percentages. The 

observed numbers did not significantly differ from the expected ones in the X
2
 test (X

2
=3.69, p<0.05).  

Table 1. Segregation analysis of phenotypes observed in a pid x bdl F2 population 
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rosette with curled leaves in a disorganized phyllotactic pattern and form an early pin-like 

inflorescence (E). White bars represent 2 mm. 

 

PID phosphorylates BDL at a PRSS motif, but does not interact with BDL 

in vitro 

To find more evidence for the putative functional interaction between PID and 

BDL, we tested whether PID could phosphorylate BDL or could bind to it. An in 

vitro protein pull-down assay showing that His-tagged BDL (Figure 2A, lanes 1 

to 3) is not pulled down with GST-PID (lane 1) nor with GST alone (lane 2), 

whereas His-tagged PBP1 (lanes 4 to 6) is specifically pulled down with GST-

tagged PID (lane 4) and not with GST alone (lane 5) Although we did not 

observe a clear interaction between the two proteins in in vitro pull down 

assays, we found that PID was able to phosphorylate BDL in an in vitro 

phosphorylation reaction (Figure 2B). By using the NetPhos software, putative 

phosphorylation sites were mapped in the BDL protein (Figure 2C). Biotinylated 

nine amino acid peptides corresponding to these sites were synthesized, and 

subsequently used in in vitro phosphorylation reactions. The peptides with the 

amino acid sequences MRGVSELEV (Peptide 1), PPRSSQVVG (Peptide 5) 

and LKDVSMKVN (Peptide 6) in BDL were strongly phosphorylated by PID 

(Figure 2D), and phosphorylation of peptide 9 was rather variable. Closer 

inspection of the amino acid sequences of the consistently phosphorylated 

peptides revealed that peptide 5 comprises the PRXS motif that is also present 

in the three major PID target sites identified in PIN1 (Huang, F., Zago, M.K. and 

Offringa, R., in preparation). An alignment of the 27 family members of the 

Arabidopsis Aux/IAA family shows that the serine pair in the PRXS motif is only 

found in BDL/IAA12 and IAA13 (Figure 2E). The functional redundancy 

between these two proteins (Weijers et al., 2005) suggests that they might be 

regulated similarly. In order to determine the significance of the PRSS motif in 

the phosphorylation of BDL/IAA12, we mutated the coding region so that the 

two serine residues were substituted by a lysine and an alanine (KA), the 

sequence that is common to 9 members of the Aux/IAA family, in order to 

destroy the putative PID recognition site. This mutation abolished the in vitro 
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phosphorylation of BDL/IAA12 by PID (Figure 2B). These observations indicate 

that, even without showing a detectable physical interaction, BDL is 

phosphorylated by PID in vitro at the serines of the PRSS motif. 

 

The PRSS motif in BDL/IAA12 affects its transcriptional repressor activity 

and stability 

In order to evaluate the in vivo significance of the BDL/IAA12 phosphorylation 

by PID, we tested the transcriptional repression activity of the Aux/IAA protein 

on the synthetic auxin-responsive DR5 promoter in Arabidopsis cell suspension 

protoplasts. In this system, expression of the DR5::GUS reporter was highly 

induced after four hours treatment with 1 µM IAA (Figure 3A). Co-transformation 

of the reporter with the 35S::HA-BDL/IAA12 construct resulted in a 50% 

reduction in the IAA-induced reporter gene activity, while co-transfection with 

35S::HA-bdl, encoding the dominant mutant bodenlos (P75S), completely 

abolished this auxin response. The 35S::HA-SHY2/IAA3 construct only had a 

limited repressive effect on auxin-induced DR5::GUS expression. Co-

transfection of 35S::PID-FLAG reduced the overall response of the DR5 

promoter regardless of the co-transfected construct, which probably is a result 

of the positive effect of PID on auxin efflux (Benjamins et al., 2001; Lee and 

Cho, 2006), and which makes this experiment less informative. The KA 

mutation in BDL resulted in a small but statistically significant reduction in its 

repressive activity (Figure 3B). Additionally, substitution of the two serines by 

aspartic acid (DD) to mimic phosphorylation resulted in a slightly stronger 

repression of the DR5::GUS reporter (Figure 3B), although this was not 

statistically significant.  

The fact that the identified phosphorylation site is close to the domain II 

consensus QVVGWPP, makes it tempting to speculate that phosphorylation at 

this site affects the interaction of the protein with the TIR1/AFB auxin receptors 

and hence, its stability. To address the effect of these mutations on the stability 

of the Aux/IAA proteins we transfected Arabidopsis protoplasts with the same 

HA-tagged constructs and analyzed the protein abundance after auxin 
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treatment (Figure 3C). The relative abundance of the HA-tagged proteins 

expressed in protoplasts indicated that  

 

Figure 2: PID phosphorylates BDL in vitro without tightly binding to it. 

(A) An in vitro protein pull-down assay showing that His-tagged BDL (lanes 1 to 3) pulled down with 

GST-PID (lane 1) or with GST alone (lane 2), as a positive control His-tagged PBP1 (lanes 4 to 6) is 

specifically pulled down with GST-tagged PID (lane 4) and not with GST alone (lane 5). Total 

protein extracts (1% of input) of E. coli cells expressing His-BDL (lane 3) or His-PBP1 (lane 6) are 

loaded as controls. The top panel shows immunodetection of His-tagged proteins, and the 

coomassie-stained gel is shown in the bottom panel. (B) Autoradiograph of an in vitro 

phosphorylation reaction with His-tagged PID, BDL and BDL KA. MBP is present in all samples as a 

positive control. Arrows indicate the position of the indicated protein on gel. (C) BDL protein 

sequence with conserved domains I, II, III and IV shaded, all putative phosphorylation residues 

identified by NetPhos within nine amino acids peptides indicated in bold, and the peptides used in in 

vitro phosphorylation assays underlined. The highly conserved portion of domain II is in italics. (D) 
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Relative radioactive labeling intensities of ten BDL-derived peptides by PID in in vitro 

phosphorylation reactions. The BDL-derived peptides that show a reproducible high phosphorylation 

by PID are indicated with a star. (E) Alignment of the conserved part of domain II of the 27 

Arabidopsis Aux/IAAs. Gray shading shows conserved residues. Putative phosphorylation sites at 

position 5 are shaded in black and the PRSS motif that is unique for BDL/IAA12 and IAA13 is 

boxed. 

 

their repressive activity was mostly related to the stability of the proteins. The 

presence of the SS�KA mutation in BDL/IAA12 resulted in a less stable 

protein, which explains why it works as a milder repressor. Interestingly, the 

overexpression of PID did not affect the stability of BDL nor of the KA variant 

suggesting that the in vivo phosphorylation had no effect on the stability of the 

wild type BDL protein. The DD mutant showed slightly stronger repression of 

the DR5::GUS reporter (Figure 3B) and an enhancement of protein stability, 

indicating that phosphorylation of the two serines in the wild type protein might 

fine tune the abundance of the protein via the auxin/TIR1 degradation pathway. 

These observations indicate that lack of phosphorylation at the PRSS motif on 

BDL reduces its stability and, hence, its transcriptional repression activity in 

protoplasts. 
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Figure 3: The PRSS motif in BDL/IAA12 affects its transcriptional repressor activity and 

stability. 

(A) Repression of the DR5::GUS reporter gene. Values are expressed in arbitrary units of relative 

GUS/LUC activity with standard deviation of three transfomations. Effector plasmids encoding 

different HA-tagged Aux/IAA proteins were co-transfected with the auxin-responsive DR5::GUS 

reporter gene into Arabidopsis cell suspension protoplasts, and cells were incubated for 4 hours 

with (IAA) or without (DMSO) 1 µM auxin. Samples marked with PID were additionally co-

transfected with 10 µg of 35S::PID-FLAG. (B) As in (A) but comparing the effects of the BDL KA and 

BDL DD mutant versions. Bars indicate means and standard deviation from three repetitions while 

different letters above bars represent statistically significantly different groups after One-Way 

ANOVA followed by Student’s T test (p<0.05). (C) Western blot of total extracts from protoplasts 

transfected with HA-tagged versions of BDL. Cells were treated for 1 hour with (+) or without (-) 1 

µM NAA before harvesting. 35S::HA-GFP (GFP) is used as a control and 35S::FLAG-GFP is 

present in all samples as a transfection efficiency reference. Samples co-transfected with 10 µg of 

35S::PID-FLAG are indicated. The top panel shows detection with anti-HA antibodies and the two 

lower panels with anti-FLAG antibodies. Numbers at the bottom indicate the HA/FLAG-GFP signal 

ratio relative to the second lane HA-GFP+. 
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BDL/IAA12 phosphorylation does not affect its sub-cellular localization or 

tissue-specific expression 

Is well established that Aux/IAA proteins are transcriptional co-repressors that 

act on auxin-responsive gene expression by dimerization with the ARF 

transcription factors in the nucleus (Guilfoyle et al., 1998; Tiwari et al., 2001; 

Tiwari et al., 2004) and one of the mechanisms by which phosphorylation could 

affect their activity is by regulating their sub-cellular localization (Parry et al., 

2006). First we tested the effect of the SS�KA substitution on the sub-cellular 

localization of YFP-BDL and YFP-bdl fusions in protoplasts. All four variants 

were nuclear localized, and as previously observed for a GFP-BDL fusion they 

all accumulated in specific nuclear structures (Figure 4A) (Hamann et al., 2002), 

which are believed to be sites of proteasomal degradation (Tao et al., 2005). 

These results suggest that phosphorylation of BDL/IAA12 does not play a role 

in regulating its sub-cellular localization.  

To confirm these results in planta, we generated transgenic lines with the 

BDL::3xGFP-BDL KA construct, comprising a fusion between the BDL KA 

genomic clone and a triple GFP reporter gene. Two BDL::3xGFP-BDL KA lines 

were selected and compared with the previously generated BDL::3xGFP-BDL 

line (Weijers et al., 2006). For both the BDL and the BDL KA lines we found 

expression in the central cylinder close to the meristem in the primary and 

lateral roots, where the protein localized to nucleus of the expressing cells 

(Figure 4B). Due to the weaker signal of lines BDL and BDL KA#4 we were not 

able to get a clear image of the nucleus with these plants. The GFP signal 

reflected the amount of protein detected by western blot analysis (Figure 4B 

and C). As for protoplasts, the same signal distribution pattern was observed in 

roots for both wild-type and mutant BDLKA line #3 (Figure 4B), confirming that 

the SS�KA substitution did not affect the tissue and sub-cellular localization of 

BDL.  
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Figure 4: Mutation of the BDL PRSS motif does not affect its sub-cellular localization or 

tissue-specific expression. (A) Confocal laser scanning microscope images (YFP fluorescence 

and transmitted light) of Arabidopsis protoplasts transfected with 35S::YFP-BDL, 35S:: YFP-BDL 

KA, 35S::YFP-bdl or 35S::YFP-bdl KA. Scale bars represent 10 µm. (B) GFP epifluorescence 

images of one week old primary roots of the BDL::3xGFP-BDL line (Weijers et al., 2006) and two 

independent BDL::3xGFP-BDL KA homozygous transgenic lines. The inset shows the nuclear 

localization of the GFP signal. Scale bars represent 40 µm (C) Western blot with anti-GFP 

antibodies of total protein extracts from 10-day-old seedlings of the BDL::3xGFP-BDL line (BDL) 

and two independent BDL::3xGFP-BDL KA lines (BDL KA #3 and #4). The arrow indicates the 

3XGFP-BDL band and the star a background band crossreacting with the anti-GFP antibodies used 

as a loading control.  

 

 

Phosphorylation controls both abundance and activity of the BDL/IAA12 

repressor 

Seeds of Arabidopsis wild type (Col), or of BDL::3xGFP-BDL or BDL::3xGFP-

BDL KA homozygous T3 lines were germinated on vertical MA plates to which 

either nothing or 10
-8

 or 10
-7

 M IAA was added (Figure 5A), and the root length 

of 13 days-old seedlings was measured. Seedlings of the BDL::3xGFP-BDL line 

developed longer roots only on the control plates,  indicating that the additional 

GFP-BDL proteins reduce the limiting effect of endogenous auxin on root 

elongation, presumably by repressing auxin-responsive gene expression. 

Interestingly, the roots of the BDL::3xGFP-BDL KA seedlings were longer in all 

treatments, and this increase in root length clearly correlated with the amount of 

the 3xGFP-BDL KA protein (Figure 5A). The expression level of BDL KA line #4 

was comparable to that of BDL line and the reduced sensitivity of  line #4 to the 
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10
-8

 M auxin treatment suggests that the KA mutation enhances the activity of 

the BDL protein resulting in roots less sensitive to auxin treatment.  

In order to further assess the importance of phosphorylation of the PRSS motif 

on the repressor activity of the BDL protein we also introduced the SS�KA 

substitution in the stabilized bdl-1 mutant protein (Hamann et al., 2002), which 

shows no or only residual interaction with the auxin receptor TIR1 due to a P � 

S substitution in domain II (Dharmasiri et al., 2005b). We used a BDL::3XGFP-

bdl line known to mimic the original bodenlos phenotype as a control (Weijers et 

al., 2006), and used the corresponding construct to generate the BDL::3xGFP-

bdl KA variant, which was subsequently transformed to Arabidopsis wild type. 

Transgenic lines homozygous for a single locus BDL::3xGFP-bdl KA T-DNA 

insertion did not show the rootless phenotype characteristic for the expression 

of the bdl protein, and seedlings and plants showed normal development 

(Figure 5B). The expression of the proteins was confirmed via observation of 

the GFP signal which was restricted to the central cylinder of the root vascular 

tissue (Figure 5B). As observed in the protoplast transfections both the bdl and 

bdl KA proteins are localized in the nuclei of the cells (Figure 4A and 5B), but 

curiously the tissue-specific expression in the root tip differed. Expression of the 

3xGFP-bdl KA variant was restricted to the central cylinder, whereas the 

3xGFP-bdl protein showed strong expression in the root tip including the 

columella and root quiescent center cells (Figure 5B). When the protein levels 

in total extracts from these seedlings were analyzed (Figure 5C), 3XGFPbdl KA 

was expressed much less abundantly in all three lines than 3xGFPbdl. In 

contrast, based on semi-quantative RT-PCR analysis the 3XGFPbdl KA mRNA 

levels were much higher in all three independent lines than  the level of 

3XGFPbdl mRNA in the corresponding line (Figure 5C), indicating that the 

reduced protein level is not due to lower transcription levels, but is caused by a 

reduced stability of the 3xGFP-bdl KA protein. Our data indicate that 

phosphorylation is essential for the regulation of the activity of BDL, controlling 

both its stability and repressor activity. 
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Figure 5: The PRSS motif controls the stability and activity of the BDL/IAA12 repressor. 

(A) Average primary root length of 13 day-old seedlings of WT Columbia (WT), 3xGFP-BDL (WT 

BDL), 3xGFP-BDLKA lines #3 and #4 grown on MA medium (0) containing 10
-8
 and 10

-7
 M of IAA. 

Bars represent means and standard deviations from three repetitions. Different letters represent 

statistically significantly different groups after One-Way ANOVA followed by Student’s T test 

(p<0.05). (B) One week old transgenic BDL::3xGFP-bdl and BDL::3xGFP-bdl KA homozygous 

plants grown on MA medium. The lower panel shows GFP epifluorescence images of one week old 

primary roots of BDL::3xGFP-bdl and three independent BDL::3xGFP-bdl KA homozygous lines. 

Scale bars represent 0.5 cm on top panels and 60 µm on bottom (C) Western blot with anti-GFP 

antibodies of total protein extracts from 5-day-old seedlings of the 35S::3xGFP-bdl lines and three 

independent lines (#1, #2 and #3) for 35S::3xGFP-bdl KA. The middle panel shows part of the 

SYPRO-Ruby stained blot as a loading control. The lower panel shows ethidium bromide-stained 

agarose gels from the RT-PCR on RNA extracted from the same plant samples as used for western 

analysis, detecting the 3xGFP-bdl and ROC mRNAs. Numbers indicate relative density of 

protein/RNA signals between samples relative to the bdl lane. (D) Model for the role of 

phosphorylation in BDL stability and activity. Under high auxin concentrations, non-phosphorylated 

BDL/bdl is actively degraded by SCF
TIR1

 and might have higher repressor activity due to stronger 

interaction with TPL. Upon phosphorylation by PID, BDL/bdl would have lower affinity for SCF
TIR1
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becoming more stable but less active due to weaker interaction with TPL. Tissue-specific 

kinases/phosphatases would be responsible for maintenance of BDL/bdl relative active levels. 

 
 

DISCUSSION 

 

Protein phosphorylation is one of the most common post-translational 

modifications regulating protein activity. Phosphorylation cascades involving 

multiple protein kinases are central to the classical signaling pathways, and 

many downstream targets are transcription factors through which the signaling 

pathway controls gene expression. Interestingly, a classical signaling cascade 

has not yet been identified for the plant hormone auxin (Zago et al., 2008). 

Instead, the auxin receptors TIR1/AFB are F-box proteins in SCF E3 ubitquitin 

ligase complexes, and binding of auxin promotes recruitment of Aux/IAA 

transcriptional repressors by the TIR1/AFBs, which leads to activation of gene 

transcription through the ubiquitination and subsequent degradation of the 

repressors by the proteasome (Kepinski and Leyser, 2005; Dharmasiri et al., 

2005a; Dharmasiri et al., 2005b; Dos Santos Maraschin et al., 2009).  

Here we present evidence that phosphorylation controls the activity of the 

transcriptional repressor BODENLOS (BDL/IAA12), and that, surprisingly, this 

phosphorylation is dependent on PID, a serine-threonine kinase known to 

regulate trafficking of PIN auxin efflux carriers (Friml et al., 2004; Michniewicz et 

al., 2007). In in vitro reactions we found that PID was able to phosphorylate a 

PRSS motif located between conserved domain I and II in BDL/IAA12. This 

motif is also present in the closely related IAA13, but not in other Aux/IAA 

proteins. BDL/IAA12 and IAA13 have been described as functional paralogs 

with similar activities and expression patterns (Weijers et al., 2005), which fits 

well with the concept that they share similar regulatory mechanisms.  

Phosphorylation of Aux/IAA proteins has been reported before, and in this case 

evidence was provided that phosphorylation was dependent on phytochrome 

activity (Colon-Carmona et al., 2000). Interestingly, in PsIAA4 phosphorylation 

was also mapped in the domain I and II containing N-terminal part, and 

although the phytochrome and PID pathway do not phosphorylate exactly the 
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same site (in view of the absence of the PRSS motif in PsIAA4), the 

modification might lead to similar changes in Aux/IAA activity. In the previous 

paper, however, no function was assigned to phytochrome dependent 

phosphorylation of Aux/IAA proteins.  

 

PRSS phosphorylation generates a stabilized, less active pool of 

BDL/IAA12 

Substitution of the two serines in the BDL PRSS motif to KA, the sequence 

most commonly found among different Aux/IAA proteins, abolished in vitro 

phosphorylation by PID, indicating that this is the site of phosphate attachment. 

Although we can not completely rule out that the PRSS motif is essential for the 

recognition by the kinase, the absence of a tight interaction between BDL and 

PID supports the hypothesis that BDL is phosphorylated at the PRSS motif. 

We found that the PRSS to PRKA substitution does not affect the sub-cellular 

localization pattern of YFP-BDL or YFP-bdl in protoplasts, or the cell type-

specific localization of 3xGFP-BDL or 3xGFP-bdl in planta, indicating that 

phosphorylation does not play a role in the nuclear trafficking of the protein. 

Instead, the lack of the phosphorylation site slightly reduced the stability of BDL 

in protoplasts upon auxin treatment, and this is reflected in a mild reduction of 

transcriptional repression activity using the DR5::GUS reporter construct. The 

close proximity of the phosphorylation site to the degron in the conserved 

domain II indicates that it might regulate TIR1 recognition based on the 

Aux/IAA-auxin-TIR1 interaction structure (Tan et al., 2007). This hypothesis is 

supported by the effect of mimicking phosphorylation by replacement of the two 

serines by aspartic acid residues, which renders the protein more stable. The 

function of many of the Aux/IAA genes has been characterized via gain-of-

function mutations that cause specific substitutions in the conserved GWPPV 

motif of domain II, resulting in reduced binding to TIR1, and thus leading to 

stabilized mutant Aux/IAA proteins (Tian et al., 2002; Dharmasiri et al., 2005b; 

Uehara et al., 2008). Interestingly, semi-dominant alleles of SHY2/IAA3, 

AXR3/IAA17 and CRANE/IAA18 genes result from the substitution of the 

glycine in this motif by the phospho-mimic glutamate (Tian and Reed, 1999; 
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Uehara et al., 2008; Ploense et al., 2009), supporting our hypothesis that 

phosphorylation close to the GWPPV motif leads to reduced TIR1 binding and 

thus to enhanced stability of Aux/IAA proteins.  

In contrast, in planta the BDL KA protein behaved as a mildly stronger 

repressor of the auxin response. BDL::3xGFP-BDL KA plants have significantly 

longer roots than  BDL::3xGFP-BDL plants, which again have longer roots than 

wild type plants. More importantly, BDL::3xGFP-BDL KA roots show a reduced 

response to auxin treatment, correlating with the expression level of the 3xGFP-

BDL KA protein, and indicating that BDL KA is a stronger repressor than the 

wild type BDL protein. We introduced the KA substitution in the gain-of-function 

bdl mutant protein, and observed an interesting effect. When the BDL::3xGFP-

bdl construct is introduced into wild type plants, the semi-dominant bdl mutant 

phenotypes are reproduced (Weijers et al., 2006). However, plants transformed 

with the BDL::3xGFP-bdl KA construct developed normal roots, despite the fact 

that the 3xGFP-bdl KA mRNA was expressed at high levels. Analysis of the 

protein levels showed that the stability of the 3xGFP-BDL KA protein was much 

reduced compared to the 3xGFP-bdl protein, indicating that phosphorylation at 

the PRSS motif is necessary to sustain protein stability conferred by the P to S 

substitution in bdl. 

Taken together our data lead to the model that phosphorylation of BDL/IAA12 

keeps this repressor in a stabilized but less active form, and that in its 

unphosphorylated state BDL/IAA12 is most active as repressor, but also more 

easily recruited for degradation by SCF
TIR1/AFB

 E3 ligases (Figure 4D). In 

Arabidopsis, a similar mechanism has been described for the bZIP transcription 

factor HY5. CKII-dependent phosphorylation in the COP1-interacting domain of 

HY5 reduces binding to COP1. Unphosphorylated HY5 is more active and less 

stable, allowing fast activation of the light responses by a dynamic balance 

between phosphorylation and proteasomal degradation (Hardtke et al., 2000). 

In this way, phosphorylation provides an additional layer of regulation that 

dampens the effect of sinusoid levels of BDL repressor caused by its alternating 

auxin-induced degradation and de novo synthesis. This regulation seems 

specific for BDL/IAA12 and IAA13, as only these Aux/IAA proteins have the 



A phosphorylation site for the PINOID kinase is important for BDL/IAA12 stability and activity 

 119

PRSS motif. The observation that the bdl KA mutant did not show reduced 

repressive activity in the DR5:GUS assays in protoplasts indicates that the 

overexpression of bdl KA might overcome the regulatory step involving 

phosphorylation or that protoplasts might have rate-limiting expression of 

accessory proteins that recognize the overexpressed bdlKA protein, as 

described for TIR1 when BDL was overexpressed in protoplasts (Dos Santos 

Maraschin et al., 2009). 

The observed enhanced repressor activity of BDL KA might be explained by the 

fact that phosphorylation of the PRSS motif possibly interferes with the binding 

of TOPLESS (TPL) to BDL domain I. TPL is a transcriptional co-repressor 

involved in the repression of auxin response genes through its physical 

interaction with the EAR motif present in conserved domain I of Aux/IAA 

proteins. BDL was shown to function as a bridge between TPL and MP/ARF5 to 

repress ARF function (Szemenyei et al., 2008). The loss of function tpl-1 mutant 

is able to rescue the bdl-1 rootless phenotype indicating that the interaction with 

TPL is important for a strong repressive action by BDL.  

 

Is BDL a direct phosphorylation target of PID? 

The experimental evidence that BDL is a direct phosphorylation target of PID is 

based on the synergistic effect of the pid and bdl mutations on embryo 

development, on the in vitro phosphorylation assays and on the observation 

that PID overexpression overcomes the repressive effect of bdl on 

parthenocarpic fruit development in the fwf bdl mutant background (Adam 

Vivian-Smith, unpublished observations). 

In protoplasts, however, co-transfection with 35S::PID does not seem to affect 

BDL stability or activity, suggesting that phosphorylation might not occur in 

protoplasts, or that PID indirectly promotes the activity of another kinase to 

phosphorylate BDL, and that this kinase is rate-limiting in protoplasts. In fact, 

the spatio-temporal expression patterns of BDL and PID in planta only partially 

overlap, and PID is mainly plasma membrane associated and BDL nuclear. We 

have observed that PID can become nuclear upon binding to its interacting 

scaffold protein BT1 (Chapter 5 and Robert et al., in prep). Another option might 
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be that one of the other AGC3 kinases is involved in the phosphorylation. 

WAG1 and AGC3-4 are both membrane-associated and nuclear localized, and 

indeed AGC3-4 seems to localize to specific nuclear structures (Galvan and 

Offringa, unpublished).  

PID is able to phosphorylate in vitro distinct and unrelated targets such as PINs 

(Michniewicz et al., 2007), Aux/IAAs and COP9 subunit CSN7 (This thesis 

Chapter 5). PID seems to play a central role in tuning the downstream effects of 

polar auxin transport on elevated auxin levels. PID, like BDL, is encoded by an 

auxin-responsive gene and the control of Aux/IAA levels could involve, 

inactivation via PID phosphorylation to fine tune the pool of active Aux/IAAs in 

the cell. The limited overlap of PID and BDL expression patterns in adult plants 

indicates that, if such a process occurs, it is probably restrained to specific 

developmental stages such as root meristem initiation and embryo patterning 

where both genes are active. First identified as a key regulator of polar auxin 

transport and trafficking of PIN proteins, the new targets identified for the PID 

kinase give new biochemical insights into a complex developmental regulatory 

network. 
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Summary 

The membrane-associated serine/threonine kinase PINOID (PID) has a crucial 

role in establishing polar distribution of the PIN auxin efflux carriers. PID directly 

phosphorylates PINs to regulate their polarity. In a screen for interacting 

partners of PID we identified the CSN subunit CSN8/COP9 as an interacting 

partner of PID, and found that the linked subunit CSN7/COP15 is 

phosphorylated by PID in vitro. The COP9 signalosome (CSN) is a protein 

complex found in eukaryotic cells that regulates many cellular processes linked 

to targeted protein degradation. In Arabidopsis, cop mutants display constitutive 

photomorphogenesis and expression of light-responsive genes in the dark. The 

interaction network of COP9 is broad and complex, influencing almost every 

aspect of plant development. PID-dependent phosphorylation of CSN7 appears 

not to be essential for CSN functions in planta, while the interaction of PID with 

CSN8 seems to regulate PID ubiquitination. In protoplasts CSN8 sequesters 

PID to the cytoplasm and nucleus and enhances PID ubiquitination. In addition 

from control of its own turn over, another possible role for CSN-association of 

PID could be to regulate the interaction between its phosphorylation targets 

BODENLOS/IAA12, PIN proteins and their corresponding ubiquitin E3 ligases. 

The identification of PID as CSN-associated kinase reveals an unexpected new 

aspect of PID signaling that links the action of this kinase to ubiquitination 

control. 
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INTRODUCTION 

 

The COP9 signalosome (CSN) was initially identified through a series of 

Arabidopsis thaliana mutants that show a light-grown seedling phenotype when 

germinated in the dark and early seedling lethality (Wei and Deng, 1992; Wei et 

al., 1994; Kwok et al., 1996). Cloning of the CONSTITUTIVE 

PHOTOMORPHOGENIC 9 (COP9) gene in Arabidopsis was followed by the 

biochemical purification of a COP9-containing multiprotein complex from 

cauliflower, a species closely related to Arabidopsis (Wei et al., 1994; 

Chamovitz et al., 1996). The purified COP9 complex appeared to consist of 

eight subunits, and constitutive photomorphogenic/detiolated/fusca (cop/det/fus) 

mutants were found to carry mutations in genes encoding these CSN subunits 

(Staub et al., 1996; Serino et al., 1999; Karniol et al., 1999; Peng et al., 2001a; 

Serino et al., 2003). Common to all of these Arabidopsis mutants is the fact that 

loss of one subunit results in the de-stabilization of the CSN complex (Kwok et 

al., 1998; Serino et al., 1999; Peng et al., 2001a; Peng et al., 2001b; Wang et 

al., 2002; Lykke-Andersen et al., 2003; Yan et al., 2003; Gusmaroli et al., 2007). 

Mutants in CSN subunit-encoding genes exhibit signal-independent expression 

of light-induced genes (Wei and Deng, 1999). Therefore the CSN was 

hypothesized to be a repressor of photomorphogenesis (Osterlund et al., 1999). 

Further research in various organisms has linked CSN function to ubiquitin-

dependent protein degradation of for example the HY5 transcription factor that 

promotes transcription of light-induced genes (Osterlund et al., 2000), and the 

Aux/IAA proteins that repress auxin-responsive gene expression 

(Schwechheimer et al., 2001). The CSN regulates the activity of COP1 ring 

finger-like and CULLIN-ring E3 ubiquitin ligases. It controls the nuclear 

localization of COP1 in the dark (Chamovitz et al., 1996; Wang et al., 2009) and 

mediates the cyclic disassembly of CULLIN ring E3 ligases (CRLs) by 

deconjugation of RUB1/NEDD8 from the CULLIN subunit (Lyapina et al., 2001; 

Cope et al., 2002; Dohmann et al., 2005). The CSN interacts with CRLs 

(Lyapina et al., 2001; Schwechheimer et al., 2001; Schwechheimer et al., 2002) 
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and protects them from autocatalytic degradation (Cope and Deshaies, 2006; 

Stuttmann et al., 2009). 

The CSN is evolutionary conserved in all eukaryotes and associates with many 

different proteins besides CRLs. Human CSN was found to co-purify with 

serine/threonine kinase activities (Seeger et al., 1998) that regulate the 

ubiquitination and degradation of well known CRL targets, such as p53 and c-

Jun (Bech-Otschir et al., 2001; Uhle et al., 2003). The CSN-associated kinases 

responsible for these activities were identified as inositol 1,3,4- trisphosphate 

5/6-kinase (5,6-kinase), casein kinase 2 (CK2), and protein kinase D (PKD) 

(Wilson et al., 2001; Sun et al., 2002; Uhle et al., 2003). In mammalian cells, the 

5/6-kinase associates with CSN1 and CSN5 (Bech-Otschir et al., 2001), 

whereas CK2 and PKD bind CSN3, while CK2 also binds CSN7 (Uhle et al., 

2003). In addition to its role in regulating kinases and/or kinase substrates, the 

CSN itself has been reported to be phosphorylated. Two dimensional gel 

electrophoresis of purified human CSN, followed by mass spectrometry, 

showed that especially subunits CSN2 and CSN7 are found in multiple forms 

with different pI’s, suggesting different degrees of phosphorylation (Henke et al., 

1999). CK2 and PKD were found to phosphorylate CSN7 and CK2 was also 

found  to phosphorylate CSN2 (Uhle et al., 2003). Arabidopsis 

CSN7/FUS5/COP15 contains several putative phosphorylation sites and is 

phosphorylated in vitro by plant extracts (Karniol et al., 1999). The CSN-

associated kinase activity and the post-translational phosphorylation of CSN 

subunits support the idea that CSN is a central component in signal 

transduction.  

Genetic and molecular approaches have uncovered the serine/threonine kinase 

PINOID (PID) as a key component in the control of polar auxin transport (PAT) 

(Benjamins et al., 2001; Lee and Cho, 2006). Cellular levels of PID determine 

the apical-basal polarity of the PIN family of auxin efflux carriers via direct 

phosphorylation (Friml et al., 2004; Michniewicz et al., 2007). Recently, we 

found that PID is also able to phosphorylate the SCF
TIR1

 target, BDL/IAA12, 

thereby inhibiting its degradation by the proteasome (Chapter 4). In this chapter 

we reveal a new link between PID and protein ubiquitination. A screen for PID-
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interacting proteins identified subunit 8 of the CSN, (CSN8) as PID binding 

protein, and in vitro phosphorylation assays showed that PID is able to 

phosphorylate CSN7, indicating that PID might regulate CSN activity. We show 

that PID-dependent phosphorylation of CSN7 has no significant role in plant 

development, and provide evidence that CSN association might control the 

recently observed ubiquitination of PID itself (Chapter 3). An additional role of 

the CSN association of PID might be to bring the kinase in proximity of its 

phosphorylation targets PIN2 and BDL to inhibit their ubiquitination-dependent 

degradation (Abas et al., 2006) (Chapter 2). Our results add a new branch to 

the increasingly complex network of interactions in the PID signaling pathway 

that regulates many different aspects of auxin-dependent plant development. 

 

 

MATERIAL AND METHODS 

 

Yeast two hybrid interaction, DNA cloning and constructs 

The Matchmaker yeast two-hybrid system (Clontech) was used to screen two 

Arabidopsis thaliana cDNA libraries fused to the GAL4-activation domain 

(pACT2) with a PID-GAL4-DNA-binding domain (pAS2-1) fusion, as described 

previously (Benjamins et al., 2003). . This led to the isolation of a single pACT2-

CSN8/COP9 clone containing the complete CSN8 (AT4g14110) open reading 

frame. Interaction in the Saccharomyces cerevisiae strain PJ69-4A (James et 

al., 1996) was performed in using the same system with pACT2-CSN8 directly 

tested at 20
o
C with bait plasmids pAS-PID or pAS-PBP2. pAS2-PBP2 was 

obtained by cloning the PBP2 cDNA as PstI/SalI-blunted fragment from 

pSDM6014 into pAS2 digested with PstI/XmaI-blunted with Klenow DNA 

polymerase. 

The CSN7 (AT1g02090) cDNA was amplified by PCR using primers 5’- 

ACGCAAGTCGACAAGATGGATATCGAGCAGAAGCAAGC-3’ and 5’- 

GATAGATCTAACAGAGGATCTTATACAAGTTG-3’, and subsequently digested 

with BglII to be ligated into the pBluescript II SK+ plasmid cut with EcoRV/BglII. 

From this plasmid pBS-CSN7 a BamHI/SalI fragment was ligated into pET16B 
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(Novagen) digested with XhoI/BamHI, resulting in pHis-CSN7. The pHis-CSN8 

construct was created by cloning a SalI fragment from pACT-CSN8 into 

pET16H cut with XhoI/SmaI. The pHis-PID, pGST-PID (Benjamins et al., 2003) 

and pGST-PIN2HL (Michniewicz et al., 2007) constructs have been described 

previously. The mutations in the CSN7 cDNA were introduced into pHis-CSN7 

with the Quickchange Mutagenesis Kit (Stratagene) using primers csn7ST-ATF 

5’-GCTCGTGAAGCGAGCTTCTAGGTGCAAATCCGAGGC-3’ and csn7ST-

ATR 5’- GCCTCGGATTTGCACCTAGAAGCTCGCTTCACGAGC-3’ for the 

ST>AT mutation, csn7ST-SAF 5’-

GCTCGTGAAGCGAGCTAGGACTTGCAAATCCGAGGC-3’   csn7ST-SAR 5’-

GCCTCGGATTTGCAAGTCCTAGCTCGCTTCACGAGC-3’ for the ST>SA 

mutation, csn7ST-DDF 5’-

GCTCGTGAAGCGAGCTGATGATTGCAAATCCGAGGC-3’ csn7 ST-DD R 5’-

GCCTCGGATTTGCAATCATCAGCTCGCTTCACGAGC-3’ for the SA>DD 

mutation. 

A PCR fragment containing a complete genomic sequence of CSN7 

(AT1g02090) including 2 Kb upstream of the ATG was amplified from 

Arabidopsis ecotype Columbia total DNA using primers attB1CSN7promoterF 

5’- 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAATTATACATGAAAGTTA

GCCC-3’ and CSN7attB2R 5’- 

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTTGTTACAGGATGCCTCCT

C-3’ and used in a BP reaction with pDONR207 to create pDONR::gCSN7. This 

entry clone eliminates the stop codon in Exon IX allowing C-terminal fusions. 

The same mutations described above were introduced into this entry clone and 

the resulting plasmids were used in a LR reaction with pGreen0229 PL gateway 

mRFP1 (Carlos Galvan-Ampudia, unpublished) to obtain the T-DNA construct 

containing the CSN7::CSN7-mRFP fusion. This construct pCSN7-mRFP was 

used for mutagenesis as described above to generate pCSN7-mRFP AT, 

pCSN7-mRFP SA and pCSN7-mRFP DD. For expression in Arabidopsis 

protoplasts, EcoRI fragments from these plasmids containing the CSN7-mRFP 

fusion without the CSN7 promoter were cloned into pART7 (Gleave, 1992) in 
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the sense orientation. The cDNA of CSN8 was amplified from pHis-CSN8 with 

primers attB1 CSN8F 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGGATCTTTCGCCTGTT-3’ 

and attB2 CSN8R 5’-

GGGGACCACTTTGTACAAGAAAGCTGGGTCATGTTCAAGGTGGAACAC-3’. 

The COP1 (AT2g32950) cDNA was amplified by RT-PCR from RNA isolated 

from 7 day-old wild type Columbia seedlings using primers attB1 COP1F 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATGGAAGAGATTTCGACG-

3’  and attB2 COP1R 5’-

GGGGACCACTTTGTACAAGAAAGCTGGGTCCGCAGCGAGTACCAGAAC-3’. 

Each attB PCR fragment was used in a BP reaction with pDONR207 to create 

entry clones. These entry clones were used in LR reactions with pART7-YFP-

HA (Carlos Galvan-Ampudia, unpublished) to generate p35S::CSN8-YFP-HA 

and  p35S::COP1-YFP-HA. For construction of the p35S::5xHis-Ub construct, 

the cDNA of human ubiquitin was PCR amplified from His6-Ub (Stad et al., 

2001) using primers 5’HisUb 5’-GGAATTCATGCATCATCATCATCAT-3’ and 

3’Ub 5’-CCCTTACCCACCTCTGAGACGGAGGACC-3’  and cloned as a blunt 

fragment into pART7 cut with SmaI. Constructs p35S::PID-FLAG (Michniewicz 

et al., 2007), p35S::FLAG-GFP, p35S::HA-GFP, p35S::FLAG-GFP (Dos Santos 

Maraschin et al., 2009), p35S::BT1-YFP-HA (Robert et al., 2008) and  

p35S::PID-CFP  (C.Galvan-Ampudia, unpublised) were also constructed in 

pART7. 

 

 

In vitro pull down experiments 

GST-tagged PID or the GST tag alone were used in in vitro pull down assays 

with histidine (His)-tagged COP9/CSN8. E. coli strain BL21 containing one of 

the constructs was grown in 50 ml LC cultures supplemented with antibiotics at 

37ºC to OD600 0.8. The cultures were then induced for 4 hours with 1 mM IPTG 

at 30ºC, after which cells were harvested by centrifugation (10 min at 2.000 g in 

a tabletop centrifuge) and frozen overnight at -20ºC. Precipitated cells were re-

suspended in 2 ml Extraction Buffer (EB: 1x PBS, 2 mM EDTA, 2 mM DTT, 
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supplemented with 0.1 mM of the protease inhibitors PMSF 

(Phenylmethanesulfonyl Fluoride), Leupeptin and Aprotinin, all obtained from 

Sigma) for the GST-tagged proteins or in 2 ml Binding Buffer (BB: 50 mM Tris-

HCl pH 6.8, 100 mM NaCl, 10 mM CaCl2, supplemented with 0.1 mM PMSF, 

0.1 mM Leupeptin and 0.1 mM Aprotinin 0.1 mM) for the His-tagged proteins 

and sonicated for 2 min on ice. From this point on, all steps were performed at 

4ºC. Eppendorf tubes containing the sonicated cells were centrifuged at full 

speed (20.000 g) for 20 min, and the supernatants were transferred to fresh 2 

ml tubes. Supernatants containing H-proteins were left on ice, while 100 µl pre-

equilibrated Glutathione Sepharose resin (pre-equilibration performed with three 

washes of 10 resin volumes of 1x PBS followed by three washes of 10 resin 

volumes of 1x BB at 500 g for 5 min) was added to the GST fusion protein 

containing supernatants. Resin suspensions were incubated with gentle 

agitation for 1 hour, subsequently centrifuged at 500 g for 3 min, and the 

precipitated resin was washed 3 times with 20 resin volumes EB. In between 

the washes, the resin was centrifuged for 5 min at 500 g. Next, the H-protein 

containing supernatants (approximately 2 ml per protein) were added to GST-

fusion-containing resins, and the mixtures were incubated with gentle agitation 

for 1 hr. After incubation, the mixtures were centrifuged at 500 g for 3 min, the 

supernatants were discarded and the resins subsequently washed 3 times with 

20 resin volumes EB. Elution was performed by addition of 50 µL 2X Laemmli 

protein loading buffer to the resin samples, followed by denaturation by 5 min 

incubation at 95ºC. Proteins were subsequently separated on a 12% 

polyacrylamide gel prior to transfer to a Immobilon
TM

-P PVDF (Sigma) 

membrane. Western blots were hybridized with a horse radish peroxidase 

(HRP)-conjugated anti-pentahistidine antibodies (Qiagen), and detection 

followed the protocol described for the Phototope-HRP Western Blot Detection 

Kit (New England Biolabs). 

 

In vitro phosphorylation assays 

Cultures of E. coli strain BL21 containing one of the constructs were grown at 

37ºC to OD600 0.8 in 50 ml LC supplemented with antibiotics. The cultures were 
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then induced for 4 hr with 1 mM IPTG at 30ºC, after which cells were harvested 

by centrifugation 10 min at 4.000 g and frozen at -20ºC. Precipitated cells were 

re-suspended in 2 ml Extraction Buffer (EB: 1x PBS, 2 mM EDTA, 2 mM DTT, 

supplemented with 0.1 mM of the protease inhibitors PMSF, Leupeptin and 

Aprotinin) for the GST-tagged PID and WAG2 or in 2 ml Lysis Buffer (LB: 50 

mM Tris-HCl pH 6.8, 100 mM NaCl, 10 mM CaCl2, supplemented with 0.1 mM 

of the protease inhibitors PMSF, Leupeptin and Aprotinin) for the His-tagged 

CSN7, CSN7 AA, CSN7 AT and CSN7 SA proteins . 

From this point on, all steps were performed at 4ºC. To isolate the His-tagged 

proteins cells were sonicated for 2 min and centrifuged at 20.000 g for 20 min, 

the pellets were discarded, and supernatants from all aliquots of the same 

construct were transferred to a 15 ml tube containing 100 µl of pre-equilibrated 

Ni-NTA resin (pre-equilibration performed with three washes of 10 resin 

volumes of Lysis Buffer at 500 g for 5 min). Supernatant and resin were 

incubated with gentle agitation for 1 hr. After incubation, the mixture was 

centrifuged at 500 g for 3 min, the supernatant was discarded and the resin 

subsequently washed: 3 times with 20 resin volumes of Lysis Buffer, once with 

20 resin volumes of Wash Buffer 1 (25 mM Tris.Cl pH 8.0; 500 mM NaCl; 40 

mM Imidazole; 0.05% Tween-20) and once with 20 resin volumes of Wash 

Buffer 2 (25 mM Tris-HCl pH 8.0; 600 mM NaCl; 80 mM Imidazole). In between 

the washes, the resin was centrifuged for 5 min at 500 g. After the washing 

steps, 20 resin volumes of Elution Buffer (25 mM Tris.HCl pH 8.0; 500 mM 

NaCl; 500 mM Imidazole) was added to the resin and incubated for 15 min with 

gentle agitation. The resin was centrifuged for 3 min at 500 g, and the 

supernatant containing the desired protein was diluted a 1000-fold in Tris Buffer 

(25 mM Tris.HCl pH7.5; 1 mM DTT) and concentrated to a workable volume 

(usually 50 µl) using Vivaspin microconcentrators (10 kDa cut off, maximum 

capacity 600 µl, manufacturer: Vivascience). Glycerol was added as 

preservative to a final concentration of 10% and samples were stored at -80ºC. 

For the GST-tagged proteins, after sonication for 2 min, 100 µl of 20% Triton X-

100 was added and the mixture was incubated for 5 min on ice, followed by 

centrifugation at 20,000 g for 20 min at 4°C. Supernatants were added to 400 µl 
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of pre-equilibrated 50% Glutathione Sepharose 4B beads (Amersham-

Pharmacia) and incubated for 1.5 hrs. Beads were washed three times with 2 

ml of Extraction Buffer and purified proteins were eluted in Elution Buffer (50 

mM Tris-HCl pH 8.0, 10 mM reduced glutathione).  

For the in vitro phosphorylation assays with plant extracts, one week-old 

seedlings were frozen in liquid nitrogen, except for pINTAM>>PID which was 

treated for 8 hrs in liquid MA with 0.1% DMSO (-) or 2 µM tamoxifen (+) before 

harvesting. For total protein extracts approximately 10 seedlings were ground in 

liquid nitrogen, 50 µL of cold extraction buffer (25 mM Tris-HCl pH 7.5, 1 mM 

DTT, 1X Roche Complete Protease Inhibitor Cocktail, 10% glycerol) was added 

and extracts were centrifuged for 10 min at 20.000 g at 4
o
C. The soluble 

fraction was transferred to a new tube and the protein concentration determined 

by the Bradford method.  

In vitro kinase assays were performed in a final volume of 20 µl with 1X kinase 

buffer (25 mM Tris-HCl pH 7.5, 5 mM MgCl2, 2 mM CaCl2 and 1 mM DTT), 2 µg 

of purified GST-tagged kinase, 2 µg purified His-tagged CSN7 target protein, 2 

µg GST-PIN2 HL, 100 µM ATP and 1 µCi [γ-
32

P] ATP (3000 Ci/mmol) (GE 

Amersham). For the reactions using the seedling extracts 2 µg of  total protein 

extract was used as kinase source and GST-PIN2 HL was omitted from the mix. 

Reactions were incubated at 30°C for 30 min and stopped by adding 5 µl of 5X 

SDS loading buffer (0.31 M Tris-HCl pH 6.8, 10% SDS, 50% glycerol, 7.5 M β-

mercaptoethenol and 0.125% bromophenol blue) and boiled for 5 min. Samples 

were separated over 12.5% SDS-acrylamide gels, which were washed 

subsequently 3 times for 30 min with kinase gel wash buffer (5% Trichloroacetic 

Acid (TCA) and 1% Na2H2P4O7), coomassie stained, destained, dried and 

exposed to X-ray films (Fuji Super RX) for 24 to 48 hours at -80
o
C in a cassette 

with intensifier screens. 

For the peptide assays, 1 µg of purified PID was incubated with 4 nmol of 9
mer

 

biotinylated peptides (Pepscan) in a phosphorylation reaction as described 

above. Reaction processing, spotting and washing of the SAM
2
 Biotin Capture 

Membrane (Promega) were performed as described in the corresponding 

protocol. Following washing, the membranes were wrapped in plastic film and 
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exposed to X-ray films for 24 to 48 hrs at -80
o
C using intensifier screens. The 

phosphorylation intensities of each peptide were determined by densitometry 

analysis of the autoradiographs using ImageQuant software (Molecular 

Dynamics). 

 

Plant lines, transformation and growth 

Arabidopsis genotypes used for the in vitro phosphorylation assays were wild 

type Col-0, pid-14 (SALK_049736) and pid-14/wag1/wag2 loss-of-function 

mutants (Carlos Galvan-Ampudia, unpublished), and the 35S::PID-21 

(Benjamins et al., 2001) and the tamoxifen-inducible pINTAM>>PID (Friml et 

al., 2004) overexpression lines . Flowering Arabidopsis (Col-0) plants were 

transformed by the floral dip method (Clough and Bent, 1998) using 

Agrobacterium tumefaciens strain AGL1 (Lazo et al., 1991) for delivery of the 

pCSN7::CSN7-mRFP T-DNA constructs. Primary transformants were selected 

on medium supplemented with 30 mg/L phosphinothricin (PPT), 50 mg/L 

nystatin and 100 mg/L timentin to inhibit Agrobacterium growth. For further 

analysis, single locus insertion lines were selected by germination on 20 mg/L 

PPT and checked for transgene expression by epifluorescence microscopy to 

detect the mRFP signal. 

To determine the functionality of the transgenes, the pollen from selected T2 

plants were used in crosses with emasculated heterozygous cop15-1 

(TAIR/NASC #CS3833) plants. F1 seeds were selected on 20 mg/L PPT. 

Resistant plants were PCR genotyped by digestion of the 2125 bp fragment 

amplified with primers CSN7 fus5-1F 5’-AGGCCTTGGCCCAGAAACTACG-3’ 

and cop15-1 genomicR 5’-CACTGACCATTTGCTCTCTCTTGC-3’ with DdeI. 

The cop15-1/fus5-1 mutation in exon II of the FUS5 gene creates an early stop 

codon and an extra DdeI restriction site. The reverse primer cop15-1 genomicR 

anneals in the 3’UTR of the genomic sequence so it does not hybridize with the 

transgene CSN7-mRFP. F2 seeds were sterilized and germinated on MA 

medium in the dark to score for cop/fusca/det seedling phenotypes. For 

analysis of RUB-modified CUL1 levels rabbit anti-AtCUL1 antibodies (kindly 
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donated by Claus Schwechheimer, Technische Universität München) were 

used. 

 

Protoplast isolation and transfection 

Protoplasts were isolated from Arabidopsis Col-0 cell suspension cultures and 

plasmid DNA was introduced by PEG-mediated transfection as described 

(Schirawski et al., 2000; Dos Santos Maraschin et al., 2009). Following 

transfection, the protoplasts were incubated for at least 16 hrs before 

treatments.  

 

Microscopy 

For imaging of transfected protoplasts a Leica DM IRBE confocal laser 

scanning microscope was used with a 63X water objective, digital zoom and 

51% laser intensity. The fluorescence was visualized with an Argon laser for 

excitation at 514 nm (YFP) and 457 nm (CFP) with 522-532 nm and 471-481 

nm band pass emission filters, respectively. For the mRFP red fluorescence we 

used the 568 nm (excitation) line of the krypton laser with an of 570-610 nm 

band pass emission filter. Image processing was performed with ImageJ 

(http://rsb.info.nih.gov/ij/). The CSN::CSN7-mRFP lines were analysed using a 

Leica stereomicroscope MZ16FA equipped with a dsRED filter set and a DFC 

420C camera. Images were manipulated and assembled in Microsoft 

Powerpoint 2003. 

 

Purification of ubiquitinated proteins via Ni-affinity chromatography 

After isolation, 10
6
 protoplasts were transfected with 20 µg p35S::PID-FLAG 

and  20 µg of the p35S::HisUb plasmid. Where stated, 10 µg of p35S::CSN8-

YFP-HA, p35S::COP1-YFP-HA or, p35S::BT1-YFP-HA were co-transfected. All 

transfections also contained 5 µg p35S::HA-GFP as a transfection control and 

an empty pART7 plasmid for DNA equalization. Sixteen hours after transfection, 

cells were treated with 50 µM MG132 for 4h and harvested by centrifugation 

and frozen in liquid nitrogen. Pellets containing harvested cells were 

resuspended in 100 µL cold Extraction Buffer (TBS, 1% Triton X-100, 1X Roche 
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Complete Protease Inhibitor Cocktail, 10 mM NEM (N-Ethylmaleimide), 

vortexed and centrifuged for 10 min at 20.000 g at 4
o
C. Ten µL were mixed with 

an equal volume of 2X Laemmli Buffer to be further analyzed on gel (10% 

input), and the remaining volume was mixed with 910 µL of Buffer A (6 M 

guanidinium-HCl /0.1 M Na2HPO4/NaH2PO4, pH 8.0/10 mM imidazole) and 

used for Ni-affinity chromatography as described (Campanero and Flemington, 

1997). PAGE-separated proteins were blotted onto PVDF membranes, blocked 

with nonfat dry milk and incubated with the HRP-conjugated antibodies anti-HA 

High Affinity 3F10 (Roche) and anti-FLAG M2 (Sigma). Detection of the HRP-

conjugated antibody signal was performed with the LumiGLO Detection Kit (Cell 

Signalling). Signal intensity was measured on scanned X-ray films using the 

Genetools 3.07 (Synoptics Ltd.) software. 

 

 

RESULTS 

 

PINOID interacts with CSN8/COP9 and phosphorylates CSN7/COP15 in 

vitro 

One of the PID-interacting proteins identified using the yeast two-hybrid system 

(Benjamins, 2004) was subunit 8 of the CSN (CSN8/COP9). This interaction 

was confirmed by re-transformation of the respective bait and prey vectors into 

the yeast strain PJ69-4A (Figure 1A) and by in vitro protein pull-down assays 

(Figure 1B). 

CSN-associated kinases have up till now only been identified in animal cells, 

where for example CK2 and PKD bind CSN3 and phosphorylate CSN2 and 

CSN7 (Uhle et al., 2003). Based on this information, we hypothesized that PID 

might phosphorylate CSN8/COP9 or another subunit of the CSN complex. Our 

in vitro phosphorylation assays did not show any evidence that PID 

phosphorylates CSN8/COP9 (Figure 1C). Since it has been shown that 

CSN8/COP9 interacts with CSN7 (Bech-Otschir et al., 2002; Serino et al., 2003; 

Uhle et al., 2003), and that CSN7 was originally identified as a phospho-protein 

in Arabidopsis (Karniol et al., 1999), we tested whether CSN7 could be 
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phosphorylated by PID in vitro. Indeed, CSN7 was efficiently phosphorylated by 

PID and in our in vitro assays CSN7 phosphorylation occurred independently of 

CSN8/COP9 (Figure 1C). As observed before PID does not require a tight 

interaction with its phospho-targets, (Chapter 4, (Michniewicz et al., 2007)). We 

can not exclude however, that the excess of PID and CSN7 used in these 

experiments overruled the requirement for CSN8/COP9-mediated PID 

anchoring. 

The NetPhos program identified eight potential CSN7 phosphorylation sites 

(Figure 1D), and these residues were tested using synthetic biotinylated nine 

amino acids peptides in in vitro phosphorylation reactions with PID (Figure 1E). 

These assays showed that peptides 1 and 2, containing the amino acid 

sequence core KRASTCKS starting at position 16 in the CSN7 protein, were 

most efficiently phosphorylated by PID (Figure 1E). More detailed analysis of 

the KRASTCKS sequence in the ScanProsite database indicated that it has 

characteristics of phosphorylation substrates of cyclic AMP dependent Protein 

Kinase (PKA: R/K-R/K-X-S/T) and of Protein Kinase C (PKC: S/T-X-R/K). Pep-

Chip experiments showed that PID efficiently phosphorylates PKA and PKC 

substrates (Galvan and Offringa, unpublished data), and therefore we 

considered serine 19 or threonine 20 in CSN7 as putative PID phosphorylation 

targets. 
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Figure 1. PID interacts with CSN8/COP9 and phosphorylates CSN7/COP15. (A) Yeast two-

hybrid assay with PID and PBP2 fused to the GAL4 binding domain (BD; pAS2.1 vector), and 

CSN8/COP9 fused to the GAL4 activation domain (AD) or the AD alone (pACT2 vector) in non-

selective medium or in medium lacking either histidine or adenine. (B) In vitro pull-down of His-

tagged CSN8/COP9 with GST-tagged PID (lane 1) and or with GST (lane 2) followed  by 

immunodetection with anti-His antibodies (top panel). The coomassie-stained gel is shown in the 

bottom panel. (C) Autoradiograph (right panel) and coomassie-stained gel (left panel) of in vitro 

phosphorylation assay using MBP (all lanes), His-CSN8 (lanes 1, 2, 5, 6, 7 and 10) and His-CSN7 

(lanes 3, 4, 5, 8, 9 and 10) as substrates and PID (lanes 1, 3, 5, 6, 8 and 10) as protein kinase. (D) 

Amino acid sequence of CSN7, with all the putative phosphorylation sites identified by NetPhos as 

central residues within nine amino acid peptides indicated in bold. The peptides tested in the in vitro 

phosphorylation assay (E) are underlined and the putative PID phosphorylation sites are boxed in 

(D). BDL-derived peptide RSAESSSHQ (7) was used as a negative control (see chapter 4).  
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PID and WAG2 phosphorylate CSN7 in vitro based on sequence 

recognition  

Based on the peptide phosphorylation results, we generated three mutant 

versions of the pHis-CSN7 construct so that the ST aminoacid codons at 

positions 19 and 20 in the His-tagged protein were substituted by respectively 

AT, SA or AA. The three mutant CSN7 variants could not be phosphorylated by 

PID or the closely related AGC3 kinase WAG2 (Figure 2A) in vitro. WAG2 was 

shown to recognize PID phospho targets, and to be more active in vitro (Figure 

2A,(Zegzouti et al., 2006); Galvan-Ampudia, C., Huang, F. and Offringa, R.; 

unpublished), and this result made us confident that there are no additional 

ACG-3 specific phosphorylation sites in CSN7. Unfortunately, these results did 

not allow us to unequivocally conclude whether the serine 19 or the threonine 

20 is phosphorylated by PID, but based on the target sequences identified in 

the PIN auxin efflux carriers (Zago, 2006) and in the BDL protein (Chapter 4) it 

is most likely that the serine 19 is the phosphorylation target and that the 

threonine 20 is essential for proper substrate recognition by PID. 

In order to establish the occurrence of PID-dependent phosphorylation in 

planta, we incubated purified His-CSN7 and the mutant variants in in vitro 

phosphorylation reactions with total protein extracts from Arabidopsis wild type 

seedlings. As shown in figure 2B, both wild type and the mutant His-CSN7 

variants were equally phosphorylated by total protein extracts, indicating that 

the ST site has a minor influence on the overall phosphorylation status of CSN7 

in planta, and that other phosphorylation sites are present in its primary 

sequence. In order to determine the contribution of PID and the WAG kinases 

to the phosphorylation of CSN7 in planta, we incubated His-CSN7 with total 

protein extracts from pid or pidwag1wag2 loss-of-function mutants or from PID 

overexpression lines (Figure 2C). All extracts were able to phosphorylate the 

full length His-CSN7 at wild type levels, indicating that there is no direct 

correlation between PID/WAG expression levels and the capacity of total 

protein extracts to phosphorylate CSN7. These results suggest that the 

contribution of the PID and WAG kinases to the overall phosphorylation status 



Chapter 5 

 142 

of CSN7 is small, and that other phosphorylation sites are present in CSN7 that 

are recognized by other kinases. 

 
Figure 2: The PID and WAG kinases phosphorylate CSN7 in vitro, but do not contribute to 

the overall CSN7 phosphorylating activity in total protein extracts from Arabidopsis. (A) 

Autoradiograph (upper two panels) and coomassie-stained gel (PIN2 band, lower panel) of in vitro 

phosphorylation assays containing E. coli purified GST-PIN2HL (positive control, all lanes), and His-

CSN7-WT, -AA, -AT or -SA incubated with GST-PID or with GST-WAG2. (B) Autoradiograph (upper 

panel) and coomassie-stained gel (lower panel) of an in vitro phosphorylation assay in which His-

CSN7-WT, -AA, AT or –SA were incubated with 2 µg of total protein extract from Arabidopsis 

seedlings. (C) Autoradiograph (upper panel) and coomassie-stained gel (lower panel) of an in vitro 

phosphorylation assay in which 2 µg WT His-CSN7 was incubated with 2 µg of total protein extract 

of Arabidopsis wild type seedlings (WT), or seedlings from the pid-14 loss-of function mutant, the 

35S::PID line #21(Benjamins et al., 2001) , the tamoxifen-inducible PID line (Friml et al., 2004) 

treated for 8h with DMSO (PINTAM>PID-), or with 2 µM tamoxifen (PINTAM>PID +), or the 

pid/wag1/wag2 triple loss-of-function mutant (Galvan-Ampudia,C. unpublished). 

 

 

PINOID does not control the CSN de-rubylation activity  

Subunit 7 is an essential component of the CSN. Arabidopsis csn7 loss-of-

function mutants fail to assemble a functional CSN resulting in de-etiolated 

seedling phenotypes and seedling lethality (Dessau et al., 2008). One of the 

earliest discovered biochemical activities of the CSN was the control of SCF E3 

ubiquitin ligases via de-rubylation of CUL1 (Lyapina et al., 2001; Cope et al., 

2002). RUB1 is an ubiquitin-like protein known to be covalently attached to 
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proteins of the CULLIN family. CSN mutants accumulate RUB1-conjugated 

CULLINs, a characteristic that can be used as a biochemical marker for CSN 

activity. To test if PID-dependent phosphorylation controls CSN activity, we 

used an Arabidopsis CUL1-specific antiserum to detected CUL1 modification in 

total protein extracts from different Arabidopsis mutant backgrounds (Figure 3). 

As expected, the csn7/cop15-1 loss-of-function mutant only showed the RUB1-

conjugated form of CUL1 due to the lack of COP9 activity. Interestingly, 

rubylated CUL1 did not accumulate to higher levels in this background 

compared to wild type, suggesting that CUL1-RUB1 is turned over in the 

absence of the CSN (He et al., 2005; Wu et al., 2005; Cope and Deshaies, 

2006; Gusmaroli et al., 2007). On the other hand, pid, 35S:PID and inducible 

pINTAM>PID showed a wild type CUL1 : CUL1-RUB1 ratio, demonstrating that 

PID-dependent phosphorylation of CSN7 does not control CSN de-rubylation 

activity.  

  

Figure 3: PINOID does not control CSN de-rubylation activity. Twenty µg of total protein 

extracts from one week old seedlings were analyzed on a western blot probed with anti-AtCUL1 

antibodies. Extracts were from wild type Columbia (WT Col) and Landsberg erecta (WT Ler), cop15-

1 (in Ler background), and in the Columbia background pid-14,   pINTAM>PID treated for 24h with 

DMSO (-) or with 400 nM tamoxifen (+) to induce PID expression (Friml et al., 2004), and the strong  

PID overexpression line 35S::PID-21 (Benjamins et al., 2001). The star indicates the size of the 

CUL1 free form and the arrow indicates RUB1-modified CUL1. The dot indicates a cross-reacting 

band that is used here as loading control. 
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PID-dependent phosphorylation of CSN7 is not required for CSN wild type 

function   

Following the observation that PID is not involved in regulating CSN activity, we 

tested whether the CSN7 mutant versions lacking the PID phosphorylation site 

were still functional in planta. First, these CSN7 versions were translationally 

fused to mRFP and expressed in protoplasts under control of the 35S promoter. 

Besides CSN7-AT and -SA, also a mutant version was tested encoding CSN7 

with ST substituted for DD to mimic phosphorylation at this position. All CSN7-

mRFP variants showed identical subcellular localization patterns with strong 

nuclear accumulation and a weaker cytoplasmic signal (Figure 4). This is in 

accordance with previous reports on CSN7 and other CSN subunits  (Tao et al., 

2005; Wang et al., 2009). Also, co-expression of PID did not change the 

subcellular localization of CSN7 (Figure 4B), even when we induced nuclear 

localization of PID by co-expression of the PID interacting BTB-TAZ scaffold 

protein BT1 (Robert et al., 2008). These results indicate that PID-dependent 

phosphorylation of CSN7 at Ser19/Thr20 does not influence its cellular 

distribution and/or nuclear accumulation.  

Next, we generated transgenic Arabidopsis plants carrying the wild type or the 

AT, SA or DD version of the genomic translational fusion pCSN7::CSN7-mRFP. 

Homozygous T2 plants with similar mRFP-fluorescence levels were crossed 

with cop15-1 heterozygous plants and after selfing of the F1 plants the F2 

plants were assayed for the complementation of the cop/fus phenotype. Among 

the progeny of the heterozygous COP15/cop15-1 mutant plants not the 

expected 25%, but rather 8% of the seedlings showed the cop mutant 

phenotypes. This lower frequency of mutant seedlings has been observed 

before for csn mutants (Dessau et al., 2008), and can be explained by 

significant embryo lethality among the homozygous progeny. Table 1 shows the 

segregation frequencies of crossings performed with the different transgenic 

lines expressing the CSN7 variants. The result indicate that all variants of 

CSN7-mRFP were able to complement the csn7/cop15-1 loss-of-function 

phenotype at equal levels to the wild type version. For all constructs individuals 

homozygous for cop15-1 were recovered that displayed wild type phenotypes. 
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Together with our previous observations this indicates that phosphorylation of 

Ser19/Thr20 in CSN7 does not affect the functionality of the protein in planta. 

 

 

Table 1: PID-dependent phosphorylation of CSN7 does not have an 

obvious role in plant development 

 

 

The expression pattern of the mRFP fusions based on fluorescence was similar 

for all constructs, with a high expression in meristematic and vascular tissues. 

The CSN7-mRFP signal was predominantly nuclear in all tissues, in agreement 

with the protoplast signal (Figure 5C, D). These results lead us to conclude that 

PID-dependent CSN7 phosphorylation does not affect its expression pattern, or 

its subcellular localization. 

 

CSN8 sequesters PID to the cytoplasm and the nucleus  

Our efforts to establish the function of CSN7 phosphorylation by PID indicated 

that the identified site is not crucial for its functionality. In fact, no function has 

been assigned to the phosphorylation of CSN2 and CSN7 by other kinases 

(Karniol et al., 1999; Uhle et al., 2003). It is therefore more likely that the 

association of PID with the CSN through its interaction with CSN8 is more 

relevant than the phosphorylation of CSN7. In a first assay to confirm this 

interaction in plant cells, we co-expressed PID-CFP with CSN8-YFP and CSN7-

mRFP in Arabidopsis protoplasts. Indeed, CSN8 was able to sequester PID  
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Figure 4: PID-dependent phosphorylation does not affect CSN7 subcellular localization or 

expression. 

(A) Confocal laser scanning microscopy images of representative Arabidopsis protoplasts 

transformed with 35S::CSN7-mRFP WT, AT, SA and DD. Bar represents 20 µm, cells in A and B 

are in the same scale. (B) Confocal laser scanning microscopy images of representative 

Arabidopsis protoplasts transformed with 35S:CSN7-mRFP alone (left column) or co-transfected 

with 35S::PID-CFP (middle column) or 35S::PID-CFP and 35S:BT1-YFP (right column). (C) 

Epifluorescence microscopy of 7-day old etiolated seedlings showing the expression pattern of the 

complementing construct pCSN7::CSN7-mRFP in the cop15-1 mutant background. (D) Comparison 

of expression patterns among the wild type and the ST to SA, AT or DD versions of the 

pCSN7::CSN7-mRFP  construct. Etiolated homozygous plants of the T3 generation were imaged at 

7 dag. The scale bar represents 0.2 cm in C and 0.5 cm in D. 

 

from the plasma membrane to the cytoplasm and nucleus (Figure 5). Co-

transfected CSN7 showed the same localization as in Figure 4 but curiously, 

when co-transfected, both CSN8 and CSN7 seemed to have stronger nuclear 

accumulation in the dark, indicating that the CSN subunits could have a light-
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sensitive subcellular distribution. These results provide the first evidence for the 

interaction between PID and CSN8 in vivo, and indicate that CSN8 plays an 

active role in recruiting PID to become associated with the CSN in the 

cytoplasm and the nucleus. 

 

 

Figure 5: CSN8 sequesters PID from the plasma membrane to the cytoplasm and the 

nucleus. Confocal laser scanning microscopy images of representative Arabidopsis protoplasts 

transformed with 35S::PID-CFP alone (left column) or co-transfected with 35S::CSN8-YFP (middle 

column) or 35S::CSN8-YFP and 35S:CSN7-mRFP (right column). Sixteen hours following 

transfection, cells were kept in continuous dark (DARK) or transferred to light 4 hours before 

imaging (LIGHT). The box shows protoplasts transfected with the control construct 35S::GFP and 

incubated under identical conditions. Scale bar represents 20 µm, all images are in the same scale. 

 

CSN association enhances PID ubiquitination in the dark 

The COP9 signalosome interacts with many elements of the 

ubiquitin/proteasome system. From previous studies we already had some 

indications that PID could be an ubiquitination target in Arabidopsis (Chapter 3). 

The nuclear localization and/or CSN association of PID could be an essential 

step for its ubiquitination. To test this we co-expressed PID with His-tagged 

ubiquitin and the nuclear proteins COP1, BT1 or CSN8 in protoplasts that were 

incubated in light or dark. PID ubiquitination was observed under all conditions, 

and whereas light had no clear effect when no other protein was co-expressed, 

4 hours treatment with the 26S proteasome inhibitor MG132 significantly 
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enhanced the ubiquitinated pool of PID (Figure 6). Co-expression of CSN8, but 

not BT1, led to enhanced ubiquitination signals (Figure 6), especially in the 

dark, the condition that enhances nuclear localization of CSN8. The signal of 

CSN8-enhanced PID ubiqutination was similar to that of MG132 treatment in 

cells kept in the dark but not co-transfected with CNS8. Co-expression of COP1 

also enhanced PID ubiquitination under dark conditions. In the dark the 

enhanced CSN-mediated nuclear localisation of COP1 (Chamovitz et al., 1996) 

possibly enhances nuclear localization of the CSN (Wang et al., 2009) and the 

associated PID kinase. MG132 treatment did not have a clear influence on the 

steady-state PID levels, indicating that turnover of this kinase in protoplasts is 

slow. This can be explained by the fact that even in the presence of BT1 or 

CSN8, the majority of the PID proteins remain cytoplasmic or plasma 

membrane associated, and therefore may not be ubiquitinated, since this 

process is likely to occur in the nucleus (Figure 5). Our results indicate that PID 

is associated with the COP9 signalosome via CSN8, and suggest that its 

abundance is regulated by ubiquitination and proteasomal degradation in the 

nucleus. 

 

DISCUSSION 

 

Recent advances in CSN research have attributed a biochemical activity to the 

CSN and have linked this complex to numerous biological processes involving 

E3 ubiquitin ligases. Additionally, substantial progress has been made in 

defining the specific role of the CSN in various aspects of cellular and 

physiological processes, using tools such as conditional knockdowns and 

subunit-specific knockouts in different model organisms. As a potent protease 

that can act on all rubylated cullins, cellular CSN activity must be under tight 

control. CSN can selectively de-rubylate specific SCFs through specific protein 

interactions. Besides this enzymatic role, the CSN is also emerging as a master 

docking station that controls the action of specific kinases, their phospho-

substrates, E3 ubiquitin ligases and the proteasome by coordinated 

interactions. 
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Figure 6: CSN association enhances PID ubiquitination in the dark. Western blot analysis of Ni-

NTA purified samples (upper panel) or total extracts (INPUT and lower panels) of Arabidopsis 

protoplasts transfected with 35S::PID-FLAG and 35S:HA-GFP. His-Ub indicates co-transfection with 

the 35S:5xHis-Ub construct that allows the purification of ubiquitinated proteins via Ni-NTA affinity 

purification. Co-transfected 35S:BT1-YFPHA, 35S::COP1-YFPHA and 35S::CSN8-YFPHA are 

indicated at the top and expression levels in the total extracts are shown in the bottom panels. 

Sixteen hours after transfection, the cells were treated with 50 µM MG132 (+) or DMSO (-) for 4 

hours  in the dark (black horizontal bars) or 4 hours in the light (white bars). Numbers in bold 

indicate the most relevant signals. On the top panel mono-ubiquitinated PID is indicated by a white 

arrowhead, black arrowheads indicate poly-ubiquitinated forms of PID while the lower band is PID-

FLAG which has a background affinity for the Ni-NTA beads as seen in the first lane not co-

transfected with His-Ub, this band was used for correcting the intensity of the size-shifted Ub-

signals between samples. Numbers below the upper panel indicate normalized Ub-signal relative to 

the sample in the fourth lane (PID, light  - MG132). Underlined values indicate the most relevant 

differences. 

 

Several kinases have been described to associate with CSN subunits in human 

and animal cells, controlling the ubiquitination and subsequent degradation of 
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E3 ubiquitin ligase substrates (Seeger et al., 1998; Bech-Otschir et al., 2001; 

Uhle et al., 2003) In this chapter we describe an unexpected new role for 

PINOID as the first CSN-associated kinase in plants. PID interacts with CSN8, 

and like other CSN-associated kinases, is able to phosphorylate CSN subunit 7 

in vitro.   

CSN7 has been described as a phosphorylated protein in Arabidopsis (Karniol 

et al., 1999), and we show here that PID dependent phosphorylation requires 

the Ser19/Thr20 motif in vitro. However, the contribution of these residues to 

the in vitro phosphorylation of CSN7 using Arabidopsis total protein extracts is 

negligible, and neither loss-of-function nor overexpression of PID affected the 

phosphorylation capacity of the extracts, indicating that PID does not provide a 

significant contribution to the overall in vitro kinase activity in total extracts 

towards CSN7. More importantly, we could not assign any in vivo function to the 

phosphorylation of the identified site, as the mutant CSN7 versions lacking the 

PID-specific phospho-residues were still able to fully complement the csn7 loss-

of-function allele cop15-1. Previous reports on CSN subunit phosphorylation in 

animal cells did not map the phosphorylated residues, and did not report on a 

physiological function for this modification (Henke et al., 1999; Uhle et al., 

2003). We therefore suspect that either this phosphorylation does not occur in 

vivo, or that this process has a more subtle effect than a complete loss of 

function.  

Instead we identified a regulatory role for the CSN on PID activity. PID is a 

membrane-associated kinase (Galvan-Ampudia and Offringa, 2007) that 

controls apical-basal polar targeting of PIN proteins thereby regulating polar 

auxin transport (Friml et al., 2004). All PID binding proteins described until now 

appear to control its activity (Benjamins et al., 2003) or subcellular localization 

(Robert et al., in preparation; this chapter). Here we show that CSN8 in 

Arabidopsis protoplasts sequesters PID from the plasma membrane and 

enhances PID nuclear localization. Interestingly, we also observed that PID is 

ubiquitinated, and that this ubiquitination is enhanced by co-expression of 

CSN8  which enhances/induces nuclear localisation of PID. In animal cells, 

several proteins that are targets for ubiquitination and proteasomal degradation 
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are known to interact with CSN subunits (Schwechheimer, 2004; Wei et al., 

2008). With our observation we provide the first evidence that PID levels are 

controlled by proteasomal degradation, and that the CSN seems to play an 

important role in regulating PID stability by recruiting this kinase to the nucleus 

for ubiquitination and subsequent proteasomal degradation.  

Another role for PID as CSN-associated kinase may lie in the finding that in 

animal cells such kinases regulate the ubiquitination and degradation of key 

regulators, such as the central mammalian transcription factors, p53 and c-Jun. 

While CSN-dependent phosphorylation appears to stabilize c-Jun, it has an 

opposite effect on the tumor suppressor p53 resulting in its degradation. Similar 

to c-Jun in mammalian cells (Seeger et al., 1998; Naumann et al., 1999; Uhle et 

al., 2003), PID-dependent phosphorylation was found to prevent BDL 

ubiquitination and proteasomal degradation (Chapter 4). Moreover, the ubiquitin 

system has also been connected to the regulation of PIN2 protein cycling and 

turn over and, whereas light stimulates PIN2 localization at the plasma 

membrane, both the 26S proteasome and COP9 were found to be directly 

involved in PIN2 vacuolar targeting for its degradation in the dark (Abas et al., 

2006; Laxmi et al., 2008) . Interestingly, PID seems to stabilize the plasma 

membrane localization of PIN proteins (Huang, F. and Offringa R. unpublished 

observations) and one hypothesis could be that the effects observed of 

proteasomal inhibition and lack of a functional CSN would be explained  by the 

presence of more active PID phosphorylating and stabilizing PINs on the 

plasma membrane. Alternatively, when associated with the CSN PID may 

prevent PIN2 ubiquitination by phosphorylation of the PIN2-HL.  

The observation that the ubiquitin system controls different elements of auxin 

responses places PID as a central integrator of auxin transport and perception 

by acting both on the polarity of auxin transport and the downstream effects of 

auxin action. Association of PID with the CSN might be part of an interaction 

network of kinases and phosphorylation targets that tune specific auxin 

responses involving proteasomal degradation. 
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Auxin biology is among the oldest fields of experimental plant research, and 

therefore auxin is one of the most extensively studied plant hormones. The 

plant hormone auxin (indole-3-acetic acid or IAA) regulates plant development 

by inducing rapid cellular responses and changes in gene expression. Its 

regulatory effects on cell division, growth and differentiation are dependent on 

its transport-driven asymmetric distribution. At the cellular level auxin 

concentrations are translated into rapid cellular responses and changes in gene 

expression. Recently, several molecular components involved in auxin-

responsive gene expression have been identified. This involves the 

proteasomal degradation of Aux/IAA transcriptional repressors, thereby allowing 

auxin response factors (ARFs) to activate the transcription of auxin-responsive 

genes. Most Aux/IAA proteins are short-lived and degradation of Aux/IAA 

proteins is essential for auxin signaling. Their half-lives and abundance are 

dramatically reduced by auxin. Auxin enhances binding of the conserved 

domain II of Aux/IAA proteins to the receptor TIR1, which is an F-box protein 

that is part of the E3 ubiquitin ligase complex SCF
TIR1

. Binding of Aux/IAA 

proteins to SCF
TIR1

 leads to degradation via the 26S proteasome  

Auxin is transported from cell to cell in a polar manner by the asymmetrically 

distributed PIN auxin efflux carriers. This polar auxin transport (PAT) generates 

dynamic auxin maxima and gradients. The protein serine/threonine kinase 

PINOID (PID) is a signaling component in the control of PAT, as it determines 

the apico-basal polarity of several members of the PIN family of auxin efflux 

carriers. The PID kinase has been shown to directly phosphorylate the 

hydrophilic loop of PIN proteins, and to act antagonistically with the PP2A 

protein phosphatases on the phosphorylation status of PIN proteins. The 

current model defines that PID regulates polar auxin transport by controlling 

PIN localization, and thereby determines the direction of auxin flow. PIN 

proteins are the only functionally characterized PID phosphorylation targets 

identified to date. In a search for additional targets of PID, yeast-two-hybrid 

screens identified four interacting partners: the calcium binding proteins TCH3 

and PBP1/PBP1H, the BTB/POZ domain protein BT1/PBP2, and subunit 8 of 
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the COP9 signalosome (CSN8/COP9). None of the PBPs appeared to be 

phosphorylated by PID, and instead they were found to regulate the activity of 

this kinase.  Moreover, the binding of PID to CSN8 suggested a role for this 

kinase in regulating protein ubiquitination. The COP9 signalosome (CSN) is a 

protein complex found in eukaryotic cells that regulates many cellular processes 

linked to targeted protein degradation. The CSN interacts with, and is essential 

for the activity of E3 ubiquitin ligases. In Arabidopsis, cop mutants display 

constitutive photomorphogenesis and expression of light-responsive genes in 

the dark. The interaction network of the CSN is broad and complex, influencing 

almost every aspect of plant development, among which also auxin response 

and transport.   

The research described in this thesis was directed at unraveling the role of 

protein ubiquitination in auxin response and transport. As described above, it 

was well established that the binding of auxin to TIR1 enhances the affinity of 

this F-box protein for Aux/IAA proteins, and thereby leads to enhanced turn 

over of these repressor proteins by the 26S proteasome. However, evidence for 

SCF
TIR1

-mediated poly-ubiquitination of Aux/IAA proteins was lacking. In 

Chapter 2 an Arabidopsis cell suspension-based protoplast system was used 

to find evidence for SCF
TIR1

-mediated ubiquitination of the Aux/IAA proteins 

SHY2/IAA3 and BDL/IAA12. Each of these proteins showed a distinct 

abundance and repressor activity when expressed in this cell system. 

Moreover, the amount of endogenous TIR1 protein appeared to be rate-limiting 

for a proper auxin response measured by the co-transfected DR5::GUS reporter 

construct. Co-transfection with 35S::TIR1 led to auxin-dependent degradation, 

and excess of 35S::TIR1 even led to degradation of Aux/IAAs in the absence of 

auxin treatment. Expression of the mutant tir1-1 protein or the related F-box 

protein COI1, which is involved in jasmonate signaling, had no effect on 

Aux/IAA degradation. The results show that SHY2/IAA3 and BDL/IAA12 are 

poly-ubiquitinated and degraded in response to increased auxin or TIR1 levels. 

In conclusion, these data provide experimental support for the model that 

SCF
TIR1

-dependent poly-ubiquitination of Aux/IAA proteins marks these proteins 

for degradation by the 26S proteasome, leading to activation of auxin-
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responsive gene expression. It is likely that the differences observed between 

the two AUX/IAA proteins studied might be linked to differential affinity of these 

proteins for the TIR1 receptor. For the BDL protein it is hypothesized that 

affinity might be regulated by phosphorylation (Chapter 4). 

The results in Chapter 2 are in line with the paradigm that targeted protein 

degradation occurs through the specific recognition by the proteasome of 

proteins that have been marked with ubiquitin chains. In Chapter 3, evidence is 

provided that this paradigm does not hold for all plant proteins. The Arabidopsis 

calcium binding protein PINOID BINDING PROTEIN 1 (PBP1) was originally 

identified as an interactor of the PINOID (PID) kinase, which was shown to 

control PID activity in vitro and its subcellular localization in vivo. Using an 

Arabidopsis cell suspension protoplast system it was found that PBP1 is a 

highly unstable, poly-ubiquitinated protein that can be stabilized by inhibition of 

proteasomal degradation. Co-expression of PID did not affect PBP1 poly-

ubiquitination. Surprisingly, substitution of all the lysines (K) in PBP1 for 

arginines (R) blocked poly-ubiquitination, but did not affect its proteasomal 

degradation. The mutant (K�R) protein retained all tested wild type functions, 

including its interaction with PID and its subcellular localization. Translational 

fusions of the lysine-less PBP1 with YELLOW FLUORESCENT PROTEIN 

(YFP) were ubiquitinated, which indicates that the PBP1 sequence contains a 

cis-acting motif that is recognized as an ubiquitination signal but not as a 

degron, since the YFP fusions were not unstable. PBP1 is the first example of a 

plant protein that is degraded by the proteasome in an ubiquitination-

independent pathway. Although the functions of PBP1 ubiquitination remain to 

be elucidated, our results show that its proteasomal degradation is not 

dependent on ubiquitination. 

Chapter 4 describes the identification of the labile auxin response repressor 

BODENLOS (BDL/IAA12) as in vitro phosphorylation target of PID. The 

observation that PID-mediated phosphorylation possibly occurs in the PRSS 

motif close to the SCF
TIR1

-interacting domain II of BDL/IAA12 suggests that this 

event plays a role in the stability of this repressor protein. Blockage of the 

identified phosphorylation site has minor negative effects on the repressor 
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activity of the BDL protein in protoplasts and in planta, but plants carrying a 

phosphorylation-insensitive version of the gain-of-function bdl protein fail to 

reproduce the bodenlos phenotype. Additionally, the phosphorylation-

insensitive bdl protein is much less stable and has a more restricted tissue 

distribution in the root tip. This indicates that the control of BDL via 

phosphorylation might be an important mechanism regulating Arabidopsis root 

development. Although the mechanisms and roles of PID-mediated regulation 

of BDL require further elucidation, our data suggest that the PID protein kinase 

regulates both auxin transport and auxin-responsive gene expression. 

Chapter 5 describes a further study on the interaction of PID with the CSN 

subunit CSN8/COP9. In vitro phosphorylation assays showed that not CSN8, 

but the linked subunit CSN7/COP15 is phosphorylated by PID in vitro. PID-

dependent phosphorylation of CSN7 appeared not to be essential for CSN 

functions in planta, at least not under the growth conditions tested. In 

protoplasts CSN8 sequesters PID to the cytoplasm and nucleus and enhances 

the PID ubiquitination that was already described in Chapter 3. The association 

of PID with the CSN may be related to the control of PID turn over, however 

another possibility could be that PID regulates the interaction between its 

phosphorylation targets BODENLOS/IAA12 and PIN proteins and their 

corresponding E3 ubiquitin ligases. The identification of PID as CSN-associated 

kinase reveals an unexpected new aspect of PID signaling that links the action 

of this kinase to control of ubiquitination. 

In conclusion, our results show that poly-ubiquitination of proteins plays a 

central role in the action of the plant hormone auxin, and that the PID protein 

kinase provides an unexpected link in the communication  between auxin 

transport and auxin response. 
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De studie naar het werkingsmechanisme van het plantengroeihormoon auxine 

heeft een relatief lange geschiedenis, en mede daardoor is auxine één van de 

best bestudeerde plantenhormonen. Auxine, ofwel indol-3-azijnzuur, reguleert 

de groei en ontwikkeling van planten via transportgegenereerde dynamische 

concentratiemaxima en –gradiënten. De auxineconcentraties worden vertaald in 

snelle cellulaire reponsen en veranderingen in genexpressie, processen die op 

hun beurt weer celdeling, -strekking en –differentiatie controleren. Recentelijk 

zijn een aantal moleculaire componenten betrokken bij de signaaltransductie 

van auxine in kaart gebracht. Auxine-responsieve genexpressie wordt 

geïnitieerd door de afbraak van Aux/IAA repressoreiwitten, zodat Auxine 

Respons Factoren (ARFs) de transcriptie van auxine-responsieve genen 

kunnen activeren. De meeste Aux/IAA eiwitten zijn instabiel, en hun levensduur 

wordt dramatisch gereduceerd in de aanwezigheid van auxine. Auxine 

bevordert namelijk de binding van het geconserveerde domein II van Aux/IAA 

eiwitten aan de auxinereceptor TIR1, een F-box eiwit dat onderdeel uitmaakt 

van het E3 ubiquitine ligase complex SCF
TIR1

. Binding van de Aux/IAA eiwitten 

aan SCF
TIR1

 leidt tot hun afbraak door het 26S proteasoom. 

Auxine wordt gerichte van cel naar cel getransporteerd door de asymmetrisch 

op het celmembraan gelokaliseerde PIN auxine transporters, en dit resulteert in 

auxine-maxima en -gradiënten. Het proteïne serine/threonine kinase PINOID 

controleert de richting van het polair auxine transport (PAT) door de apico-

basale subcellulaire lokalisatie van PIN familieleden te bepalen. Recentelijk is 

aangetoond dat PID de centrale hydrofiele lus van PIN eiwitten fosforyleert, en 

dat het antagonistisch met de PP2A fosfatases de fosforylatiestatus van PIN 

eiwitten bepaalt. Tot nu toe zijn PIN eiwitten de enige gevalideerde 

fosforylatietargets van het PID kinase. In een eerdere zoektocht naar nieuwe 

fosforylatiestargets voor PID via een twee-hybride screen in gist zijn een viertal 

PID bindende eiwitten (PBPs) geïdentificeerd: de calcium-bindende eiwitten 

TCH3 en PBP1, het BTB/POZ domein eiwit BT1/PBP2 en subunit 8 van het 

COP9 signalosoom (CSN8/COP9). Geen van de PBPs bleek door PID 

gefosforyleerd te worden, echter zij bleken de activiteit van het kinase te 
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reguleren. De binding van PID met CSN8 suggereerde daarnaast een rol van 

het kinase in de regulering van eiwitubiquitinering. Het CSN eiwitcomplex 

reguleert namelijk processen in eukaryote cellen die gepaard gaan met gerichte 

afbraak van eiwitten. Het CSN interacteert met, en is essentieel voor de 

activiteit van E3 ubiquitineligases. Het CSN is initieel ontdekt via Arabidopsis 

cop mutanten die constitutieve fotomorfogenese en expressie van licht-

gereguleerde genen in het donker vertonen. Het netwerk van interacties van het 

CSN is echter breed en complex, en het CSN speelt een rol in bijna elk aspect 

van plantenontwikkeling, waaronder ook auxine respons en transport. 

Het in dit proefschrift beschreven onderzoek richtte zich op de ontrafeling van 

de rol van eiwitubiquitinering in auxine respons en transport. Zoals hierboven 

beschreven verhoogt binding van auxine aan TIR1 de affiniteit van dit F-box 

eiwit voor Aux/IAA eiwitten, wat leidt tot hun versnelde afbraak door het 26S 

proteasoom. Bewijs voor de veronderstelde ubiquitinering van Aux/IAA eiwitten 

door het SCF
TIR1

 E3 ubiquitineligase ontbrak echter nog. In Hoofdstuk 2 is 

gebruik gemaakt van uit Arabidopsis celsuspensies geïsoleerde protoplasten 

om bewijs te vinden voor SCF
TIR1

-gemedieerde ubiquitinering van de Aux/IAA 

eiwitten SHORT HYPOCOTYL 2 (SHY2/IAA3) en BODENLOS (BDL/IAA12). 

Deze twee eiwitten vertoonde een verschillende abundantie en 

repressoractiviteit wanneer ze in dit celsysteem tot expressie werden gebracht. 

De hoeveelheid endogeen TIR1 eiwit bleek limiterend voor een juiste auxine 

respons, zoals gemeten met het gecotransfecteerde DR5::GUS 

reporterconstruct. Cotransfectie met 35S::TIR1 leidde tot auxine-afhankelijke 

afbraak van Aux/IAA eiwitten, en een overmaat van het 35S::TIR1 construct 

zelfs tot Aux/IAA afbraak zonder auxine behandeling. Expressie van het 

mutante tir1-1 eiwit of het gerelateerde F-box eiwit COI1, dat betrokken is bij 

jasmonzuursignaaltransductie, had geen effect op de Aux/IAA afbraak. De 

resultaten laten zien dat SHY2/IAA3 en BDL/IAA12 gepoly-ubiquitineerd en 

afgebroken worden in respons op verhoogde auxine en TIR1 niveaus. Deze 

resultaten leveren experimenteel bewijs voor het model dat SCF
TIR1

-

afhankelijke poly-ubiquitinering van Aux/IAA eiwitten deze eiwitten markeert 

voor afbraak door het 26S proteasoom, leidend tot auxine-responsieve 
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genexpressie. Het is waarschijnlijk dat de geobserveerde verschillen tussen de 

twee geteste Aux/IAAs te herleiden zijn tot hun differentiële affiniteit voor de 

TIR1 receptor. Resultaten beschreven in Hoofdstuk 4 van dit proefschrift 

suggereren dat de affiniteit van BDL voor TIR1 wordt gereguleerd door 

fosforylering. 

De resultaten in Hoofdstuk 2 passen in het algemeen aanvaarde model dat 

gerichte eiwitafbraak gepaard gaat met specifieke herkenning door het 

proteasoom van met poly-ubiquitineketens gelabelde eiwitten. In Hoofdstuk 3 

wordt echter aangetoond dat dit model niet voor alle planteneiwitten opgaat. In 

de zoektocht naar ubiquitinering van Aux/IAA eiwiten werd het Arabidopsis 

calcium-bindend eiwit PBP1, eerder geïdentificeerd als PID bindend eiwit, als 

controle in de protoplasttransfecties meegenomen. Daarbij bleek PBP1 een 

zeer instabiel gepoly-ubiquitineerd eiwit te zijn, dat in aanwezigheid van de 

proteasoominhibitor MG132 gestabiliseerd werd. Co-expressie van PID 

beïnvloedde de poly-ubiquitinering van PBP1 niet, echter dit experiment liet 

verassend genoeg zien dat PID zelf geubiquitineerd werd. Substitutie van alle 

lysines (K) in PBP1 voor arginines (R) voorkwam wel de ubiquitinering, maar 

beïnvloedde niet de proteasomale afbraak van PBP1. Het mutante (K�R) eiwit 

behield alle geteste wildtype functies, waaronder de interactie met PID, en de 

subcellulaire lokalisatie. Translationele fusies van zowel het wildtype als het 

lysinevrije PBP1 met het GEEL FLUORESCERENDE EIWIT (YFP) werden 

geubiquitineerd, wat aangeeft dat de PBP1 sequentie een in cis werkend 

ubiquitineringsignaal bevat. Het feit dat de YFP fusies relatief stabiel waren 

suggereert echter dat PBP1 geen degradatiesignaal (degron) bevat. PBP1 is 

het eerste voorbeeld van een planteneiwit dat onafhankelijk van poly-

ubiquitinering door het 26S proteasoom afgebroken wordt. Hoewel de functie 

van PBP1 ubiquitinering nog onduidelijk is, laten onze resultaten zien dat niet 

alleen in dieren, maar ook in planten gerichte eiwitafbraak door het proteasoom 

niet noodzakelijkerwijs afhankelijk is van het labelen van targeteiwitten met 

poly-ubiquitineketens. 

Hoofdstuk 4 beschrijft de identificatie van de labiele auxine respons repressor 

BDL/IAA12 als in vitro fosforylatietarget van PID. De observatie dat fosforylatie 
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door PID optreedt in het PRSS motief dat zich dicht bij het SCF
TIR1

-

interacterende domein II bevindt, suggereert dat fosforylering mogelijk de 

stabiliteit van BDL/IAA12 beïnvloedt. Het verwijderen van de 

fosforyleringsplaats door serine (S) naar alanine (A) substituties had een gering 

effect op de repressoractiviteit van het BDL eiwit in protoplasten of in planta. 

Echter, planten die een fosforyleringsongevoelige versie van het dominante bdl 

eiwit tot expressie brachten vertoonden niet de typische bodenlos fenotypes. 

Het fosforyleringsongevoelige bdl (S�A) eiwit is veel instabieler en laat een 

sterk beperkte expressie in de wortelpunt zien. Dit suggereert dat de controle 

op BDL via fosforylering een belangrijk mechanisme is om Arabidopsis 

wortelontwikkeling te reguleren. Hoewel het mechanisme en de rol van BDL 

fosforylering door PID verdere analyse behoeven, suggereren onze resultaten 

dat het PID proteïne kinase zowel auxine transport als auxine-responsieve 

genexpressie reguleert. 

Hoofdstuk 5 beschrijft het verdere onderzoek naar de interactie van PID met 

CSN8/COP9. In vitro fosforyleringsassays lieten zien dat niet CSN8 maar het 

daaraan gebonden CSN7 door PID kon worden gefosforyleerd. Onder de 

geteste groeiomstandigheden leek deze fosforylering niet essentieel voor de in 

planta functie van CSN7. Co-expressie van PID en CSN8 in protoplasten leidde 

tot een cytoplasmatische en nucleaire lokalisatie van PID, en versterkte de 

reeds in Hoofdstuk 3 beschreven ubiquitinering van PID. De associatie van PID 

met het CSN kan gerelateerd zijn aan gerichte afbraak van dit kinase, echter 

een andere rol zou gelegen kunnen zijn in het reguleren van de interactie van 

de fosforylatietargets BDL en de PIN eiwitten met hun corresponderende E3 

ubiquitineligases. De ontdekking van PID als een mogelijk CSN-geassocieerd 

kinase laat een onverwacht nieuw aspect zien van PID signaaltransductie, en 

verbindt de actie van dit proteïne kinase met de regulatie van 

eiwitubiquitinering.  

Concluderend laten onze resultaten zien dat poly-ubiquitinering van eiwitten 

een centraal mechanisme is in de werking van het plantenhormoon auxine, en 

dat het PID proteïne kinase een onverwachte schakel is in de communicatie 

tussen auxine transport en auxine respons. 
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