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Wetting and drying transitions in mean-field theory: Describing
the surface parameters for the theory of Nakanishi and Fisher
in terms of a microscopic model
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The theory of Nakanishi and Fisher �Phys. Rev. Lett. 49, 1565 �1982�� describes the wetting
behavior of a liquid and vapor phase in contact with a substrate in terms of the surface chemical
potential h1 and the surface enhancement parameter g. Using density functional theory, we derive
molecular expressions for h1 and g and compare with earlier expressions derived from Landau
lattice mean-field theory. The molecular expressions are applied to compare with results from
density functional theory for a square-gradient fluid in a square-well fluid-substrate potential and
with molecular dynamics simulations. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3184613�

I. INTRODUCTION

When two bulk liquid phases or a liquid in coexistence
with its vapor are brought into contact with a substrate �solid
wall� two situations can arise: either one of the two phases
completely wets the substrate, that is one layer of liquid will
cover the entire substrate �complete wet state�, or one of the
two phases will partially wet the substrate and form droplets
on it �partial wet state�. Changing a thermodynamic variable
such as temperature may induce a transition between the two
situations. This wetting transition was independently investi-
gated by Cahn1 and by Ebner and Saam.2 Since then there
has been a lot of experimental and theoretical work done on
the nature and aspects of wetting transitions.3–13 Among all
these theories, the Nakanishi–Fisher model6 has played a
pivotal role in shaping our understanding of the wetting
phase diagram.

In the Nakanishi–Fisher model, the free energy � de-
scribes the free energy of a fluid �liquid and or vapor� phase
in contact with a solid wall. The solid wall is assumed to be
present as a so-called spectator phase �the solid is unaffected
by the fluid’s thermodynamic state� and leads to the exclu-
sion of the fluid in the region z�0, where z is the direction
perpendicular to the wall. The free energy is a functional of
the fluid’s density ��z�:

����
A

= �
0

�

dz�m����z��2 + ����� − h1��0� +
g

2
��0�2, �1�

where A=�dxdy is the surface area. The first term approxi-
mates the fluid’s free energy by a simple square-gradient
expression with coefficient m and bulk free energy density
����. For explicit calculations, we consider for ���� the
Carnahan–Starling form:14

���� = �hs��� − a�2

= kBT� ln��� + kBT�
�4� − 3�2�

�1 − ��2 − �� − a�2, �2�

where �	�� /6��d3 with d being the molecular diameter, a
is the usual van der Waals parameter to account for the at-
tractive interactions between molecules, � is the chemical
potential, T is the absolute temperature, and kB is Boltz-
mann’s constant.

The last two terms in Eq. �1� account for the interaction
of the fluid with the wall in terms of two phenomenological
parameters, h1 and g, which are termed the surface chemical
potential and surface enhancement parameter, respectively.
In terms of these two parameters, Fisher and Nakanishi lo-
cated the crossover between first and second order transitions
and reported prewetting transitions for a fluid off
coexistence.6 The assumption implicitly made is that the
fluid-wall interaction is short ranged so that these terms only
depend on the fluid’s density in the direct vicinity of the
wall, ��0�	��z=0+�. For a fluid interacting with the sub-
strate through long-ranged London dispersion forces,
Vwall�z�	1 /z3, this assumption may very well be questioned.

To determine the surface tension, one minimizes the free
energy in Eq. �1� leading to the following Euler–Lagrange
equation for ��z�:15

2m���z� = ����� , �3�

with the boundary condition:

2m���0� = − h1 + g��0� . �4�

The surface tension is then calculated by inserting ��z� into
the free energy and subtracting the pressure contribution
from the bulk at z→�, p=−���b�, where �b is the bulk fluid
density:a�Electronic mail: j.kuipers@chem.leidenuniv.nl.
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 = �
0

�

dz�m����z��2 + ���� + p� − h1��0� +
g

2
��0�2. �5�

Our goal in this article is to understand the molecular origin
of the two parameters h1 and g in terms of the full shape of
the interaction potential of the interaction between the fluid
and the wall. For instance, setting the model parameters to
zero in the Nakanishi–Fisher model �h1=0 and g=0� results
in constant density profiles at the value of the bulk density
which is not expected if a fluid is brought in contact with a
hard wall. To appreciate this point, we first investigate in
Secs. II and III two routes to derive the Nakanishi–Fisher
free energy expression: the Landau mean-field lattice model
and density functional theory, providing us with a molecular
interpretation of the model parameters h1 and g. In Sec. IV
the molecular expressions for h1 and g are used to compare
with results from a simple square-gradient model of a fluid
interacting with the substrate through an attractive square-
well potential. We end with a discussion of results.

II. LANDAU MEAN-FIELD LATTICE MODEL

The majority of studies regarding interfacial behavior
have their roots in Landau mean-field theory. It is typically
derived from a continuum limit of spin models with short-
ranged molecular interactions and thus provides an interpre-
tation of the microscopic parameters entering the theory.16 In
this section, to set the stage for the derivation using density
functional theory in Sec. III, we briefly discuss the usual
derivation of the microscopic expressions for h1 and g in
terms of the lattice interaction parameters.6–8,17

In Landau theory one assumes a semi-infinite set of dis-
crete lattice sites, arranged in equally spaced layers labeled
by an index n=1,2 ,3 , . . .. Each lattice site is occupied by a
single molecule or remains vacant. The free energy for a
molecule in the bulk is given by

d3����
kBTV

	 ���� = � ln��� + �1 − ��ln�1 − �� − �̃� − ��2,

�6�

where � is the interaction parameter between neighboring
molecules and where �	Nd3 /V is the volume fraction of
molecules, with d the lattice spacing �set equal to the mo-
lecular diameter�, N the number of molecules, and V the
system’s volume.

For a fluid interacting with a solid wall, the volume frac-
tion depends on the layer index, �=�n, with the interaction
between neighboring molecules given by

Uint 	 − ��n�
�n−1 + �1 − 2
��n + 
�n+1� , �7�

where 1 /
 is the total number of nearest neighbors; for a
cubic lattice 1 /
=6. This expression is valid only when n
�2. In the first layer �n=1� the number of neighbors is re-
duced by the wall since the wall excludes all molecules for
n�0. Furthermore, one often allows for the interaction be-
tween two molecules that both lie in the first layer to be
enhanced by a factor �1+D�. For n=1, one thus has

Uint 	 − ��1��1 − 2
��1 + D��1 + 
�2� . �8�

The total free energy for the lattice system is then

d2���n�
AkBT

= 

n=2

�

����n� − 
��n��n−1 − 2�n + �n+1��

+ ���1� − 
��1��− 2 +
�1 − 2
�



D
�1

+ �2� − �s�1, �9�

where the final term is added to account for the interaction of
the molecules in the first layer with the wall with strength �s.

The Euler–Lagrange equation that minimizes Eq. �9�
reads

����n� = �
2
���n−1 − 2�n + �n+1� , when n � 2,

2
���− 2 +
�1 − 2
�



D
�1 + �2� + �s,

when n = 1.
�
�10�

Now, it is convenient to introduce an apparent value for �0

so that one can extend the Euler–Lagrange equation in Eq.
�10� to include the case n=1.7,17 It directly follows that one
should define �0 as

�0 	
�1 − 2
�



D�1 +

�s

2
�
. �11�

The surface tension 
 is derived by inserting into � the
profile �n that follows from the Euler–Lagrange equation
and subtracting of the bulk contribution. One then has, using
Eq. �11�:


̃ 	
d2


kBT
= 


n=1

�

����n� + p̃ − 
��n���n−1 − 2�n + �n+1���

−
�s

2
�1, �12�

where p̃ is the �reduced� bulk pressure. This can also be
written as


̃ = 

n=1

�

�
���n+1 − �n�2 + ���n� + p̃� − �s�1

+ 
��1 −
�1 − 2
�



D
�1

2. �13�

Next, we approximate the lattice model by taking the con-
tinuum limit. This means that we replace �n→��x�, where
x	z /d=x0+n. In the continuum limit, we then have that

�n+1 − �n � ���x�, �n−1 − 2�n + �n+1 � ���x� . �14�

Furthermore, we shall define �1→��0�, which implies that
x=n−1, but one might consider a more judiciously chosen
location of the solid wall. However, since it is not our goal to
accurately approximate the lattice model, we shall not pursue
this line.
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In the continuum limit, the Euler–Lagrange equation in
Eq. �10� becomes

����� = 2
����x� . �15�

With �0=�1− ��1−�0����0�−���0�, the boundary con-
dition in Eq. �11� is given by

���0� = �1 −
�1 − 2
�



D
��0� −

�s

2
�
. �16�

Finally, the expression for the surface tension in Eq. �13�
becomes


̃ = �
0

�

dx�
�����x��2 + ���� + p̃� − �s��0�

+ 
��1 −
�1 − 2
�



D
��0�2. �17�

This expression for the surface tension is identical to the
Nakanishi–Fisher expression in Eq. �5� when the following
identifications are made:

m

d5kBT
= 
� ,

h1

dkBT
= �s, �18�

g

d4kBT
= − 2�1 − 2
��D + 2
� .

One finds that h1 is directly related to �s which is to be
expected. The identification for g is somewhat more subtle. It
is the sum of two terms, one term due to the enhanced inter-
action between molecules near the wall as described by D,
and one term that is present even in the absence of any en-
hancement.

III. DENSITY FUNCTIONAL THEORY

In this section, we consider density functional theory
with the full, nonlocal integral term to describe the pair in-
teractions between molecules and show how it can be cast
into the form of the Nakanishi–Fisher expression. The start-
ing expression for the free energy functional reads18

���� =� dr���hs��� + ��r��Vext�r���

+
1

2
� dr�1� dr�2U�r���r�1���r�2� , �19�

where �hs��� is given by the expression in Eq. �2� and U�r�
is the attractive part of the interaction potential between
molecules at a distance r	�r�2−r�1�. The external potential
Vext�r��=Vext�z� models the interaction of the fluid with the
solid wall. We shall assume that it is infinitely hard when z
�0, and given by some short-ranged �usually attractive� in-
teraction Vext�z�=Vwall�z� for z�0. As a result of the infinite
repulsion, we have that ��z�=0 when z�0, and we can limit
the integrations in Eq. �19� to the region z�0:

����
A

= �
0

�

dz��hs��� + ��z�Vwall�z��

+
1

2
�

0

�

dz1�
z2�0

dr�2U�r���z1���z2� . �20�

Next, we consider the gradient expansion for ��z2�:

��z2� = ��z1� + z12���z1� +
z12

2

2
���z1� + ¯ . �21�

The gradient expansion does not take into account that
��z2�=0 when z2�0. To accommodate for this, it turns out to
be convenient to extend the integration over z2 in Eq. �20�
and subtract the difference:

����
A

= �
0

�

dz��hs��� + ��z�Vwall�z��

+
1

2
�

0

�

dz1� dr�12U�r���z1����z1� + ¯�

−
1

2
�

0

�

dz1�
z2�0

dr�2U�r���z1����z1� + ¯� . �22�

The final term in this expression, as well as the term contain-
ing Vwall�z�, only contributes near the wall. In the spirit of
the Nakanishi–Fisher model, we may therefore approximate
��z����0� in both these terms. With this approximation, to-
gether with the gradient expansion, one thus has

����
A

= �
0

�

dz�m����z��2 + �hs��� − a��z�2�

+ ��0��
0

�

dzVwall�z� −
��0�2

2
�

0

�

dz1�
z2�0

dr�2U�r� ,

�23�

where we have defined

a 	 −
1

2
� dr�12U�r� and m 	 −

1

12
� dr�12r

2U�r� .

�24�

The integration over r�12 is restricted to the region r�d. This
is not explicitly indicated; instead, we adhere to the conven-
tion that U�r�=0 when r�d.

Comparing Eq. �23� to the Nakanishi–Fisher free energy
in Eq. �1�, we are finally left with the following expressions
for the surface interaction parameters h1 and g:

h1 = − �
0

�

dzVwall�z� ,

�25�

g = − �
0

�

dz1�
z2�0

dr�2U�r� = −
1

4
� dr�12rU�r� .

The structure of these expressions is similar to the results
from the Landau model. The parameter h1 is directly related
to �the integral of� the wall-fluid interaction potential. For
attractive interactions, h1 is positive and wetting transitions
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are expected to occur with increasing h1. The expression for
g is given directly in terms of the interaction potential be-
tween fluid molecules. In this case, there is no enhancement
factor—the interaction between molecules is not different at
the surface then in the bulk region—and the only contribu-
tion to g comes from the “missing” fluid-fluid interaction
next to the hard wall. Since U�r��0 �it is the attractive part
of the interaction between fluid molecules�, one has that g
�0 thus opposing wetting.

The absence of an enhancement factor is the conse-
quence of the assumption of pairwise additivity of the inter-
action between molecules. In general, one might include
three- or many-body effects occurring near the hard wall and
consider a more general form for the interaction potential
between molecules:

U�r�1,r�2� = U�r� + �U�r�1,r�2� . �26�

The term �U�r�1 ,r�2�, which accounts for the deviation from
pairwise additivity, then leads to the existence of an addi-
tional contribution in the expression for g, which may be
either positive or negative. It is this term that is represented
by the enhancement factor D in the Landau mean-field lattice
model.

In square-gradient theory, it is assumed that the fluid-
fluid interactions as described by U�r� are generally short-
ranged. One may therefore assume that the attractive inter-
action does not extend significantly beyond the diameter d.

In that case, Eqs. �24� and �25� lead to the following expres-
sions for the parameters m and g in terms of the van der
Waals parameter a:

m =
ad2

6
and g =

ad

2
. �27�

With these values for m and g, one may construct the wetting
phase diagram as predicted by the Nakanishi–Fisher model.
In Fig. 1, the solid lines are the loci of wetting �h1,W� and
drying �h1,D� transitions as a function of temperature. The
wetting and drying transitions turn from first to second order
transitions at so-called tricritical points, indicated by the
open circles, on approach to the liquid-vapor critical point
�solid circle�. In Table I we have listed numerical values for
the locations of the critical point and the tricritical points in
the wetting phase diagram for the various theories discussed
here.

The advantage of the Nakanishi–Fisher model is that it is
relatively simple to locate wetting and drying transitions and
determine whether they are of first or second order. Espe-
cially the determination of the nature �order� of the transition
is notoriously difficult in experiments, simulations and more
sophisticated density functional theory calculations.19–21 It is
therefore useful to investigate the results of the Nakanishi–
Fisher model to establish a first order approximation, while
recognizing that more sophisticated density functional theory
calculations should give more accurate results.

Furthermore, the Nakanishi–Fisher model has the advan-
tage that analytical expressions for h1 and g at the wetting
and drying transitions may be obtained assuming proximity
to the critical point, replacing the Carnahan–Starling form
for ���� by a �4-form:

���� =
m

����2�2 �� − �v�2�� − ���2. �28�

Minimizing the free energy in Eq. �1� using this form for
���� leads to the well-known tanh-profile for the liquid-
vapor interface:

��z� = �c −
��

2
tanh� z

2�
� , �29�

where � is the bulk correlation length, �c= 1
2 ���+�v� and

��=��−�v. Inserting this expression for the interfacial den-
sity profile into Eq. �5�, one obtains for the surface tension of
the liquid-vapor interface:

0.12 0.13 0.14 0.15 0.16 0.17 0.18
T

0

1

2

3

h1
W

PW

D

*

FIG. 1. Wetting phase diagram for the Nakanishi–Fisher model in terms of
the surface chemical potential h1 �in units of kBTd� as a function of the
reduced temperature T�=kBTd3 /a �m=ad2 /6, g=ad /2�. The symbols W,
PW, and D mark the wetting, partial wetting, and drying region, respec-
tively. The upper solid line is the locus of wetting transitions whereas the
lower solid line is the locus of drying transitions. Open circles on these solid
lines mark the locations of the tricritical points where the wetting/drying
transition changes from first to second order in the direction of the liquid-
vapor critical point �solid circle�. The dashed lines are approximate results
for the wetting and drying transitions based on the �4-form of the free
energy in Eq. �28�.

TABLE I. Listed are numerical values for the locations of the critical and tricritical points obtained in the
various models �NF is the Nakanishi–Fisher model and SQW is the square-gradient fluid interacting with the
substrate through a square-well potential�. The location is given by the reduced temperature T�=kBTd3 /a and
the surface interaction parameter � �in units of kBT� or h1 �in units of kBTd�.

Critical point Tricritical wetting Tricritical drying

T� �, h1 T� �, h1 T� �, h1

NF 0.180 155 0.691 490 0.139 639 2.190 712 0.160 824 0.255 710
NF ��4� 0.180 155 0.691 490 0.149 415 1.860 343 0.149 415 0.173 383
SQW 0.180 155 0.893 475 0.1478 2.4613 0.1248 0.0190
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�v =
m����2

3�
. �30�

The surface tensions for the solid-liquid and solid-vapor in-
terfaces are obtained by minimizing Eq. �1� taking into ac-
count the boundary condition at the substrate, Eq. �4�, and
inserting the corresponding density profiles into Eq. �5�. Us-
ing Young’s equation, 
sv=
s�+
�v cos���, one is then able
to determine whether the surface is �partially� wet or dry
upon changing h1 and g. For a second order wetting or dry-
ing transition, one explicitly has

g =
2m

�
=

6
�v

����2 ,

h1,W = g�� =
6
�v��

����2 , �31�

h1,D = g�v =
6
�v�v

����2 .

The loci of the wetting and drying transitions determined
using the �4-form for ���� are drawn in Fig. 1 as the dashed
lines. The correspondence near the critical point is good as to
be expected. The corresponding tricritical points for both the
wetting and drying transitions are located at a reduced tem-
perature of T�=kBTd3 /a=0.149415, which is in between the
tricritical point temperatures obtained using the full
Carnahan-Starling form for ���� �see Table I�.

In Sec. IV, we compare the wetting phase diagram in
Fig. 1 to the wetting phase diagram obtained for a square-
gradient fluid interacting with the substrate through an attrac-
tive square-well potential.

IV. SQUARE-GRADIENT FLUID IN A SQUARE-WELL
POTENTIAL

In this section our goal is to show how the results of the
Nakanishi–Fisher model can be used together with Eq. �25�
to predict the wetting phase diagram of more complicated
density functional theories. As an example, we determine the
wetting phase diagram for a square-gradient fluid interacting
with the substrate through an attractive square-well potential.

Within the square-gradient approximation, the free en-
ergy of a fluid in the presence of an external potential takes
on the form

����
A

= �
−�

�

dz�m����z��2 + ���� + ��z�Vext�z�� , �32�

where we recall that ����=�hs���−a�2 �Eq. �2��. For the
external potential, we take the following square-well form

Vext�z� = � V0 when z � 0,

− � when 0 � z � d ,

0 when z � d ,
� �33�

where the limit V0→� is considered. One may show that in
this limit one has3,4,22

��z = 0+� = 0. �34�

With the observation that ��z�=0 in the whole region z�0,
the density profile that minimizes the free energy in Eq. �32�
is obtained from solving the following differential equations
�with ��0�=0 as boundary condition�:

m���z�2 = ����� + p − ���z� + ��d when 0 � z � d ,

���� + p when z � d ,
�

�35�

where we have defined �d	��d�.
Solutions for the density profile are obtained numerically

using the fourth order Runge–Kutta method.23 Two different
types of solutions are found: density profiles that are mono-
tonically increasing and density profiles that exhibit a maxi-
mum. In Fig. 2 a typical example of two such solutions is
shown.

The surface tension is obtained by inserting the density
profile into the expression for the free energy in Eq. �32�.
When the profile monotonically increases, the surface ten-
sion is given by


 = − �d�d + 2m1/2�
0

�d

d������ + p − �� + ��d�1/2

+ 2m1/2�
�d

�b

d������ + p�1/2, �36�

with �b denoting the bulk fluid density far from the substrate
which can be either �� to give 
sl or �v to give 
sv. When the
profile exhibits a maximum, say at z=zmax, the surface ten-
sion is given by


 = − �d�d + 2m1/2�
0

�max

d������ + p − �� + ��d�1/2

+ 2m1/2�
�d

�max

d������ + p − �� + ��d�1/2

+ 2m1/2�
�b

�d

d������ + p�1/2, �37�

with �max=��z=zmax�.
With the surface tensions thus determined, using

Young’s equation for the contact angle, we are again able to

0 1 2 3 4 5z
0

0.1

0.2

0.3

0.4

0.5
ρ(z)

FIG. 2. Solid-liquid �upper� and solid-vapor �lower� density profiles ��z� �in
units of 1 /d3� as a function of z �in units of d� for the square-gradient fluid
interacting with the substrate via a square-well potential at a temperature
T�=kBTd3 /a=0.17 and depth of the attractive well � /kBT=1.2. The horizon-
tal dashed lines mark the values of the bulk liquid and vapor densities.
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determine the wetting phase diagram which is shown in Fig.
3. The solid lines are the loci of wetting and drying transi-
tions as a function of temperature, with the tricritical points
indicated by the open circles �see Table I for numerical val-
ues�.

To compare these results with the Nakanishi–Fisher
model, we use the fact that the interaction is short ranged,
giving m=ad2 /6 and g=ad /2 �Eq. �27��, and that h1=�d for
the square-well potential �Eq. �25��. The wetting and drying
transition lines obtained from the theory of Nakanishi and
Fisher are shown in Fig. 3 as the dotted lines, with the cor-
responding tricritical points indicated by open squares. Rea-
sonable agreement between the two models is obtained; the
wetting transition line obtained in the square-well model is
somewhat above the Nakanishi–Fisher wetting line, whereas
the location of the drying transition line seems to be in better
agreement. The locations of the wetting transition tricritical
points are comparable but the �temperature� location of the
drying tricritical points differ significantly, indicating that its
location is very sensitive to the details of the model.

When the transition is of second order �close to the criti-
cal point�, the location of the wetting ��=�W� or drying tran-
sition ��=�D� is determined by the following integral condi-
tion:

m1/2�
0

�b

d������ + p − �� + ��b�−1/2 = d , �38�

where �b is either �� or �v to determine �W or �D, respec-
tively. This equation can be used to, numerically, determine
the shape of the wetting phase very accurately. In an expan-
sion in t	1−T /Tc, with Tc the critical point temperature,
one obtains

�c

kBT
	

�W + �D

2kBT
� 0.893 475 + 1.7328t + ¯ ,

�39�
��

kBT
	

�W − �D

kBT
� 4.8793t1/2 + ¯ .

In Fig. 4, the contact angle of the square-gradient fluid inter-
acting with the substrate through a square-well potential is
shown for a number of different isotherms.

It can be inferred from Fig. 4 that cos��� jumps discon-
tinuously from �1 to 1 at the critical point, located at �
�0.893475 �see Table I�. Close to the critical point, i.e.,
when both ��−�c���c and ����c, the functional depen-
dence of the contact angle as a function of the well depth
between the limits �D����W can be determined analyti-
cally, yielding

cos��� = 3�� − �c

��
� − 4�� − �c

��
�3

. �40�

The same scaling form for the functional behavior of the
contact angle close to the critical point is to be expected for
other mean-field models. This was explicitly verified for the
Nakanishi–Fisher model replacing � by h1 as the parameter
describing the strength of the interaction of the fluid with the
substrate.

A. Simulation results by van Swol and Henderson

Although it is not the goal in this article to come to a
numerically accurate description of simulation results for
wetting and drying, it is perhaps interesting to compare with
molecular dynamics �MD� simulations carried out by van
Swol and Henderson, already some 15 years ago.11 In these
simulations the wetting phase behavior and interfacial struc-
ture of a square-well fluid adsorbed at a square-well wall was
investigated. The simulations are performed along a single
isotherm at liquid-vapor coexistence, which the authors re-
port to be at T /Tc=0.738. To compare with the liquid-vapor
coexistence using the Carnahan–Starling expression for the
bulk free energy, different criteria can be used to fix the
location in the liquid-vapor phase diagram. Here we have
chosen to fix the liquid-vapor bulk density difference �� to
the value obtained in the simulations. This gives T /Tc

=0.745 �T�=0.134� and for the bulk densities �vd3=0.027
and ��d3=0.642, which are comparable to the densities ob-
tained in the simulations, �vd3=0.033 and ��d3=0.648.

The MD simulation results by van Swol and Henderson
for the contact angle as a function of the square-well depth �
are plotted in Fig. 5 as the open circles. The data clearly
suggest that the wetting transition is of first order, although it
is indicated by the authors that the simulations near the wet-

0 1 2 3 4ε
-1

0

1

cos(θ)

FIG. 4. Cosine of the contact angle for the square-gradient fluid interacting
with the substrate via a square-well potential versus the square-well depth �
�in units of kBT� for various wetting isotherms: T�=kBTd3 /a=0.18, 0.179,
0.177, 0.175, 0.17, 0.165, 0.16, 0.15, 0.14, 0.13, 0.11, from �top� left to
right.
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FIG. 3. Wetting phase diagram for the square-gradient fluid interacting with
the substrate via a square-well potential in terms of the square-well depth �
�in units of kBT� as a function of the reduced temperature T�=kBTd3 /a. As in
Fig. 1, the symbols W, PW, and D mark the wetting, partial wetting, and
drying regions, respectively; the solid lines are the loci of the wetting and
drying transitions, and the open circles mark the locations of the tricritical
points. The dotted lines are the Nakanishi and Fisher model results of Fig. 1,
with h1=�d, with the corresponding tricritical points indicated by the open
squares.
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ting transition are somewhat less reliable due to the unac-
ceptably long simulation runs.11 The determination of the
order of the drying transition is �notoriously� difficult and it
was concluded that it is either second order or very weakly
first order.

To compare with the Nakanishi–Fisher model, we first
use Eqs. �24� and �25� for the square-well interaction poten-
tial between fluid molecules to determine that m
= �211 /760�ad2 and g= �195 /304�ad. Furthermore, we use
Eq. �25� for the square-well interaction potential between the
fluid and the substrate to determine that h1=�d /2. The re-
sulting behavior of the contact angle versus � is shown as the
solid in line in Fig. 5. Both the wetting and drying transition
is of first order, in line with the simulation results. A striking
difference between the simulation results and the Nakanishi–
Fisher model is the location of the drying transition. For the
Nakanishi–Fisher model, but also for the square-gradient
model with the square-well fluid-substrate interaction and
more sophisticated density functional theories,11 the drying
transition occurs at a value of h1, or equivalently �, that is
close to zero at moderate temperatures not too close to the
critical point. In the simulations, however, the substrate re-
mains dry not until a large �threshold� value for the attractive
surface interaction parameter �h1 or �� is reached.

V. DISCUSSION

As long as the interaction potential between a liquid and
a substrate is short ranged—an assumption which may not be
appropriate in the case of long-ranged London dispersion
forces—the theory of Nakanishi and Fisher provides an ex-
cellent starting point in describing wetting behavior. We have
used density functional theory to derive microscopic expres-
sions for the surface parameters h1 and g that are present in
the Nakanishi and Fisher model. One finds that the parameter
h1 captures the interaction of the substrate with the liquid:
increasing the strength of the attractive interaction �larger
values of h1� promotes wetting. The enhancement parameter
g is generally determined by the sum of two contributions:
�1� due to the fact that the interaction potential between fluid
molecules might be enhanced near the substrate as compared
to the bulk; �2� due to the lack of fluid molecules for z�0.
Even when the fluid-fluid interaction potential is translation-
ally invariant, as it is in the density functional theory consid-
ered here, one therefore has a nonzero, positive value for g

so that the term enhancement parameter is somewhat mis-
leading.

As an example, we have determined the wetting phase
diagram for a square-gradient fluid interacting via a short-
ranged square-well potential in terms of the square-well
depth and temperature. Loci of wetting and drying transitions
are obtained on which tricritical points are located where the
order of the transition changes from first to second order �see
Table I�. Using the microscopic expressions for the surface
parameters h1 and g, the phase diagram is compared to the
phase diagram from the theory of Nakanishi and Fisher. One
finds that the shape of the phase diagrams are comparable
�see Fig. 3� but that the location of the drying tricritical point
depends sensitively on the details of the model considered.

The square-gradient model is in many ways too simplis-
tic to describe wetting phenomena in a quantitative way, es-
pecially away from the critical point.24,25 It is unfit to de-
scribe the phenomenon of surface layering26 that is present in
integral theories27 and which also has been observed in
Monte Carlo simulations.28 Furthermore, the square-gradient
model always leads to a zero density at a hard wall, which is
inconsistent with the wall theorem.22,29 However, the square-
gradient model does have the advantage of being simple
enough to be able to unambiguously determine the order of
the wetting and drying transitions—something that may be
difficult to achieve in more sophisticated density functional
theories—thus allowing for a direct test of our microscopic
expressions for h1 and g by making the comparison with the
theory of Nakanishi and Fisher.
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