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Summary 

The signaling molecule auxin is a central regulator of plant development, which instructs 

tissue and organ patterning, and couples environmental stimuli to developmental 

responses. Here, we discuss the function of PINOID (PID) and the phototropins, 

members of the plant specific AGCVIII protein kinases, and their role in triggering and 

regulating development by controlling PIN-FORMED (PIN) auxin transporter-generated 

auxin gradients and maxima. We propose that the AGCVIII kinase gene family evolved 

from an ancestral phototropin gene, and that the co-evolution of PID-like and PIN gene 

families marks the transition of plants from water to land. We hypothesize that the PID-

like kinases function in parallel to, or downstream of, the phototropins to orient plant 

development by establishing the direction of polar auxin transport. 
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Plant development directed by the hormone auxin 

The development of flowering plants is dualistic: on one hand, it follows strict programs 

producing uniform flowers and embryos; on the other hand, it can be flexible, particularly 

during vegetative development. In view of the predominantly sessile nature of plants, this 

flexible development is crucial to enable adaptation to changes in the environment. The 

plant hormone auxin is well recognized as a central regulator of both flexible growth 

responses, like tropisms, and strict developmental programs, such as organ formation and 

patterning [1-5]. A characteristic of this signaling molecule is that it is actively 

transported in a directional manner, e.g. from young developing aerial organs to the root 

system. This polar auxin transport (PAT) generates auxin maxima and gradients that are 

instrumental in directing growth and in positioning the formation of new organs. The 

chemiosmotic hypothesis proposed in the 1970s for auxin transport predicted that 

asymmetrically-distributed auxin efflux carriers are the drivers of PAT. Two types of 

proteins have now been acknowledged as auxin efflux carriers. Firstly, the PIN family of 

transporters was identified through the Arabidopsis pin-formed and ethylene-insensitive 

root 1 mutants that phenocopied wild-type plants grown on PAT inhibitors. These 

mutants led to the cloning of respectively PIN1 and PIN2, and the subsequent 

identification of 6 other PIN genes in the Arabidopsis genome. The PIN1-type proteins 

PIN1, 2, 3, 4 and 7 show different, tissue- and cell-type specific asymmetric subcellular 

localization at the plasma membrane, and play crucial roles in phyllotaxis, tropic growth 

and embryo patterning [6]. PIN5, 6 and 8 were found to localize to the endoplasmatic 

reticulum, where they may be involved in regulating auxin homeostasis in the cytosol. 

The PIN1-type auxin-efflux carriers have been characterized as central rate-limiting 

components that determine the direction of auxin transport through their asymmetric 

subcellular localization [6-10]. In addition, several multi-drug-resistant/P-glycoprotein 

(MDR/PGP)-type ATP-binding cassette (ABC) proteins were shown to act as auxin 

efflux carriers [11]. In contrast to PIN proteins, MDR/PGP proteins in most cases do not 

show a pronounced asymmetric subcellular localization, and it is as yet unclear whether 

they are part of the PIN-dependent or another parallel auxin transport pathway [6;11]. 
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What determines and regulates the polar subcellular localization of the PIN 

membrane proteins and thereby the direction of polar auxin transport? By using the 

vesicle trafficking inhibitor brefeldin A (BFA) in combination with different cytoskeleton 

inhibitors, Geldner and coworkers showed that PIN1-loaded vesicles cycle via the actin 

cytoskeleton between plasma membrane and endosomal compartments [12]. Treatment 

with BFA blocks the exocytosis step, resulting in the accumulation of PIN proteins in 

BFA compartments. Analogous to animal vesicle trafficking, an ADP ribosylation factor 

- GTP exchange factor (ARF-GEF) named GNOM was identified as the BFA sensitive 

component in the recycling of PIN1 vesicles to the plasma membrane [13]. PIN1 is 

randomly distributed at the plasma membrane in cells of gnom mutant embryos [14], 

suggesting that the initiation of recycling by the GNOM ARF-GEF is required to 

maintain, rather than to determine PIN polarity. 

The only component in the polar targeting of PIN proteins that has so far been 

identified is the PINOID (PID) protein kinase [15]. The PID gene was identified through 

Arabidopsis pid loss-of-function mutants that phenocopy the pin1 mutant. The phenotype 

of the pid mutant already suggested a role for PID as a regulator of PAT [16;17]. More 

recently, it was shown that PID is necessary for proper apical localization of PIN1 

proteins in epidermal cells of the inflorescence meristem, which is required to generate 

auxin maxima in the meristem that are initiation points for lateral organ formation. In pid 

loss-of-function mutants, PIN1 localizes at the basal membrane, which deprives the 

meristem of auxin, and prevents the initiation and positioning of new lateral organs, thus 

resulting in the pin-shaped inflorescences that are characteristic for the pid mutant [15]. 

The action of PID does not seem to be restricted to the polar targeting of PIN1, as 

overexpression of PID results in a basal-to-apical (bottom-to-top) switch of PIN1 as well 

as PIN2 and PIN4 in root meristem cells. The fact that different PIN proteins are 

apicalized in response to PID and that PID expression is upregulated by auxin, suggests 

that PID is involved in feedback control of PAT [15;16;18-20]. 

 A previous comparison of the PID protein kinase with known kinases indicated 

that it classifies to the plant-specific AGCVIII protein serine-threonine kinases [16;21]. 

AGC kinases are named after protein kinase A (PKA), cyclic GMP-dependent protein 

kinase (PKG) and protein kinase C (PKC), three classes of animal protein kinases that are 
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involved in receptor-mediated growth factor signal transduction. We have performed a 

detailed bioinformatics analysis of the Arabidopsis AGCVIII kinase family, which 

besides PID, also comprises the well-known phototropins [22], and have studied their 

evolutionary origin and function in plant development. We hypothesize that AGCVIII 

kinases evolved from an ancestral phototropin, and that the acquisition of PID and the 

PIN transporters in plant evolution marks the transition of plants from water to land. 

Below we summarize the data that support our hypothesis. 

 

The plant-specific characteristics of the AGCVIII kinases 

The Arabidopsis genome encodes 37 AGC kinases, of which 23 classify to the AGCVIII 

group (Figure 1). Flowering plants do not have the typical animal PKA, PKC and PKG 

kinases. The AGCVIII kinases might therefore represent plant orthologs of these animal 

kinases. 

 One characteristic of members of the AGCVIII subfamily is the substitution of the 

conserved DFG motif in subdomain VII of the catalytic domain for DFD (Figure 2a). The 

DFD triplet is not plant-specific and defines a class of AGC protein kinases that can be 

found in all eukaryotes. Another characteristic is the presence of an amino acid insertion 

between the conserved subdomains VII and VIII of the catalytic domain (VIIVIII 

insertion), which ranges from 36 to 90 residues in the Arabidopsis family members 

(Figure 2a and b). The insertion in combination with the DFD triplet is specific for the 

plant AGC group of protein kinases. Recent data suggest a role for the VIIVIII insertion 

in the subcellular localization of these protein kinases [23]. 

 

Phylogeny of the Arabidopsis AGCVIII kinases 

To determine the evolutionary relationships between the members of the Arabidopsis 

AGCVIII subfamily, the sequences corresponding to the catalytic domain were used to 

construct an AGCVIII-specific phylogenetic tree (Figure 2b). A previous phylogenetic 

analysis using the full-length amino acid sequences of the plant AGC kinases indicated 

that they classified into two groups [24]. However, in our analysis, we found that 

AGCVIII kinases classify into four distinct groups that we named AGC1AGC4 (Figure 

2). 
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Figure 1. Phylogenetic tree of the Arabidopsis protein serinethreonine kinases. To visualize the position 

of PID and its relatives within the Arabidopsis kinome, 109 protein kinase sequences were selected from 

the TAIR database (http://www.Arabidopsis.org/), representing almost all of the known protein kinase 

subfamilies. A phylogenetic tree was constructed based on the amino acid sequences corresponding to the 

protein kinase catalytic domains: in red the AGC subfamily, in orange the CaMK subfamily, in green the 

CMGC subfamily and in blue the “Others” subfamily.  

 

The largest group (AGC1) is formed by 13 putative protein kinases and comprises 

orthologues of the first protein kinases to be identified in plants, for example, Phaseolus 

vulgaris protein kinase 1 (PvPK1) [25]. 

The AGC4 group is formed by the phototropins PHOT1 and PHOT2, which are 

characterized by an N-terminal photoreceptor domain with two chromophore-binding 

LOV domains and a C-terminal protein kinase domain [26]. PID, AGC3-4, WAG1 and 

WAG2 (“wag” after the phenotype of the corresponding mutants, which have an 

enhanced sinusoidal growth of the root, also known as root waving [27]) form the third 
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group (AGC3). The kinases within these three subgroups share conserved residues within 

the VIIVIII insertion, including a conserved AEP triplet that is located close to 

subdomain VIII (Figure 2a). Interestingly, this AEP triplet is not found in the four 

remaining kinases that form the AGC2 group, which demonstrates that they are more 

distantly related to phototropins than was previously thought [24] (Figure 2). 

The genes encoding AGCVIII members are not clustered or do not show a clear 

organization in the Arabidopsis genome [23] (Figure 2b). Five of the genes do not contain 

an intron, whereas the other 18 genes contain one or more introns. Interestingly, one 

intron is found in members of all four groups at a conserved position in the region 

encoding kinase subdomain VIa (Figure 2b), indicating that the AGCVIII genes originate 

from a single ancestral kinase. AtPHOT1 and AtPHOT2 carry multiple introns at identical 

positions, corroborating their relatedness. 

In conclusion, our analysis of the Arabidopsis AGCVIII kinases shows that they 

classify into four groups, and indicates that the encoding gene family originated from a 

single ancestral kinase gene through multiple independent duplication steps. Interestingly, 

each group seems to perform a different function in plants, with AGC1 kinases having a 

role in cell organization [28], AGC2 kinases in stress responses [29;30], AGC3 kinases in 

the regulation of PAT [16;31] and AGC4 kinases in chloroplast avoidance and 

phototropism [32;33]. The last two subgroups have clear links with PAT and will 

therefore be discussed in more detail. 

 

Phototropins - remnants of the ancestral plant AGCVIII kinase 

Phototropins, which constitute the AGC4 group, were discovered through a screen for 

Arabidopsis mutants that lack directive growth of the hypocotyl of dark-grown seedlings 

towards a blue light source [33]. This screen identified several non-phototropic mutants, 

one of which is mutated in the gene encoding the blue light receptor PHOT1 [22;33]. The 

Arabidopsis genome also encodes a homologue of PHOT1 known as PHOT2 [22]. 

PHOT1 is the major player in the phototropic growth of seedling hypocotyls and roots at 

low fluence rate conditions (low intensity light), while PHOT2 functions in triggering the 

auxin-mediated phototropic response under high fluence rate conditions (high intensity  
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Figure 2. The Arabidopsis AGCVIII protein kinase family.  

(a) Schematic representation of the catalytic kinase domain of the Arabidopsis AGCVIII protein kinases. 

The eleven conserved subdomains of the catalytic kinase domain are represented as blue boxes labeled with 

Roman numbers. The (length of the) amino acid insertion between sub-domains VII and VIII (red), the 

typical DFD (Asp-Phe-Asp) signature in sub-domain VII (green), the conserved basic pocket (purple), and 

the AEP (Ala-Glu-Pro) triplet close to sub-domain VIII (blue) are indicated.  
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Figure 2 (continued) 

(b) Phylogenetic tree of the 23 Arabidopsis AGCVIII protein kinases based on an alignment of their 

catalytic kinase domains subdivides the Arabidopsis AGCVIII kinases into four distinct groups. A 

comparison of the total protein size, the length of the VII-VIII insertion and the intron positions within the 

region coding for the catalytic domain is indicated. The positions of the highly conserved intron (red 

arrowheads) and the more variable introns (orange and yellow arrowheads) are indicated. 

 

light). Moreover, the PHOTs have been found to function redundantly in blue-light-

induced chloroplast movement and stomatal opening [26]. Phototropins are the only 

members of the AGCVIII family so far identified in unicellular green algae. Therefore, 

they might represent the first descendants of the ancestral AGCVIII protein kinase. The 

PHOT gene of the green alga Chlamydomonas can partially restore phototropism, 

chloroplast positioning and stomatal opening in response to blue light when expressed in 

the Arabidopsis phot1 phot2 double mutant [34], indicating that phototropin function and 

signaling is conserved in plants and algae. A comparison of catalytic kinase domains of 

31 selected phototropin-related proteins from 14 representative plant species revealed two 

major groups (Figure 3): (i) the PHOT1-like proteins that are characterized by the 

conserved CLTSCKPQ signature in the VIIVIII insertion and (ii) the PHOT2-like 

proteins. Interestingly, genes encoding PHOT2-like photoreceptors are found in all plant 

groups, whereas the PHOT1-like genes are restricted to seed plants (Table 1, Figure 3). 

Taking all these observations into consideration, we speculate that optimization of light 

perception mediated by PHOT2-like proteins, e.g. the high fluence rate light avoidance of 

chloroplasts, is one of the ancient traits in plant evolution. A more detailed analysis and 

functional characterization of phototropins throughout the plant kingdom should provide 

further evidence for our hypothesis. 

 

AGC3 kinases direct auxin transport 

The PID-containing subgroup (AGC3) is composed of four genes in both Arabidopsis 

and the monocot Oryza sativa, and our analysis identified homologous genes in numerous 

plant species from the moss Physcomitrella patens to the monocot Zea mays, but not in 

unicellular algae (Table 1). Apart from PID, two other AGC3 members in Arabidopsis  
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Figure 3. Phototropin phylogeny. PHOT2-like genes can be found throughout the plant kingdom, 

indicating that they represent remnants of an ancestral gene, whereas PHOT1-like genes occur only later in 

plant evolution, in spermatophyta. Alignment of the amino acid sequences of the protein kinase catalytic 

domain of phototropins of representative plant species identifies two major groups: PHOT2-like genes 

(dark blue) and PHOT1-like genes (light blue). Abbreviations: Ac: Adiantum capillus-veneris (maidenhair); 

As: Avena sativa (oat); At: Arabidopsis thaliana (Mouse-ear cress); Cr: Chlamydomonas reinhardtii (a 

green alga); Mc: Mesembryanthemum crystallinum (iceplant); Ms: Mougeotia scalaris (a green alga); Os: 

Oryza sativa (rice); Ot: Ostreococcus tauri (a green alga); Pp: Physcomitrella patens (a moss); Ps: Pisum 

sativum (pea); Pv: Phaseolus vulgaris (common bean); So: Spinacia oleracea (spinach); Vf: Vicia faba 

(fava bean); Zm: Zea mays (maize). 

 

have been characterized in more detail: WAG1 and WAG2. Homologues of WAG1 were 

initially discovered in Cucumis sativus and Pisum sativum as auxin-induced and light-

repressed genes [35-38]. Also the Arabidopsis WAG1 and WAG2 transcript levels were 

found to be negatively regulated by light [31;38], and it is therefore likely that one or 

both of the WAG genes are auxin-responsive, similar to the Cucumis sativus homologue 

CsPK3 or the PID gene in Arabidopsis [16;35]. Loss-of-function mutations in WAG1 or  

 
Cr PHOT2

Ot PHOT2

998

Ms NEOC3

Ms NEOC1

Ms NEOC2

1000

1000

Ms PHOT2-1

Ms PHOT2-2

992

Pp PHOT2-1

Pp PHOT2-2

998

Pp PHOT2-3

Pp PHOT2-4

1000

873

Ac PHOT2-1

Ac PHOT2-2

Os PHOT2

So PHOT2

At PHOT2

Pv PHOT2

643

474

993

739

551

As PHOT1.1

As PHOT1.2

1000

Zm PHOT1

Os PHOT1-1

Os PHOT1

Os PHOT1-2

Os PHOT1a

991

996

912

317

1000

At PHOT1

Mc PHOT1

Pv PHOT1-1

Vf PHOT1-1

937

Pv PHOT1-2

Ps PHOT1

Vf PHOT1-2

1000

991

785

390

915

1000

703

924

816

987

987

PHOT2  
algae and 
early plants

PHOT2  
higher plants

PHOT1  Monocots

PHOT1 dicots

Cr PHOT2

Ot PHOT2

998

Ms NEOC3

Ms NEOC1

Ms NEOC2

1000

1000

Ms PHOT2-1

Ms PHOT2-2

992

Pp PHOT2-1

Pp PHOT2-2

998

Pp PHOT2-3

Pp PHOT2-4

1000

873

Ac PHOT2-1

Ac PHOT2-2

Os PHOT2

So PHOT2

At PHOT2

Pv PHOT2

643

474

993

739

551

As PHOT1.1

As PHOT1.2

1000

Zm PHOT1

Os PHOT1-1

Os PHOT1

Os PHOT1-2

Os PHOT1a

991

996

912

317

1000

At PHOT1

Mc PHOT1

Pv PHOT1-1

Vf PHOT1-1

937

Pv PHOT1-2

Ps PHOT1

Vf PHOT1-2

1000

991

785

390

915

1000

703

924

816

987

987

Cr PHOT2

Ot PHOT2

998

Ms NEOC3

Ms NEOC1

Ms NEOC2

1000

1000

Ms PHOT2-1

Ms PHOT2-2

992

Pp PHOT2-1

Pp PHOT2-2

998

Pp PHOT2-3

Pp PHOT2-4

1000

873

Ac PHOT2-1

Ac PHOT2-2

Os PHOT2

So PHOT2

At PHOT2

Pv PHOT2

643

474

993

739

551

As PHOT1.1

As PHOT1.2

1000

Zm PHOT1

Os PHOT1-1

Os PHOT1

Os PHOT1-2

Os PHOT1a

991

996

912

317

1000

At PHOT1

Mc PHOT1

Pv PHOT1-1

Vf PHOT1-1

937

Pv PHOT1-2

Ps PHOT1

Vf PHOT1-2

1000

991

785

390

915

1000

703

924

816

987

987

PHOT2  
algae and 
early plants

PHOT2  
higher plants

PHOT1  Monocots

PHOT1 dicots



CHAPTER1 
 

20 
 

Table 1. Overview of the occurrence of the AGCVIII kinases and the PIN auxin efflux carriers in different 
representatives of the plant kingdom 
 
    AGC4c    

Family  Genus PINc PHOT2 PHOT1 AGC3c AGC1 c AGC2c 

Chlorophyta  (Green Algae) 

Ostreococcusa - + - - - - 

Chlamydomonasb - + - - - - 

Mougeotiab - + - - - - 

Embryophyta            

   Bryophytes (Mosses) Physcomitrellab + + - + + ? 

   Pteridophytes (Ferns) Adiantumb + + - + ? ? 

   Spermatophyta (Seed plants)        

          Gymnosperms Pinusb + + + + + + 

          Monocots Oryzaa + + + + + + 

   Zeab + + + + + + 

          Dicots Medicagoa + + + + + + 

                         Arabidopsisa + + + + + + 
 

a complete genome sequence is available. b analysis is based on EST databases. c + present, - absent, ? 
Predicted to be present but not found in databases. 
 

WAG2 result in weak root waving phenotypes, and double mutants show a constitutive 

root waving phenotype, and root curling is more resistant to the PAT inhibitor 1-

naphthylphthalamic acid (NPA). As root waving is clearly linked to PAT [27], and the 

PAT-inhibitor resistant root curling phenotype is characteristic for mutants in PAT [39], 

it is likely that the WAG kinases, similar to PID, are involved in the regulation of auxin 

transport [27;31].  

To confirm this possible functional relatedness, we analyzed the subcellular 

localization of WAG1, WAG2 and PID in Arabidopsis thaliana protoplasts (Figure 4a-c), 

and found that all three kinases localize predominantly to the plasma membrane; 

however, WAGs can also be found in the nucleus. Our observations are partially in 

contrast to those of Zegzouti and co-workers, who concluded that the WAG kinases are 

localized in the nucleus [23]. As their conclusion was based on the expression of fusions 

with the green fluorescent protein (GFP) in yeast cells, our own observations on 

functional YFP fusions expressed in Arabidopsis protoplasts are more likely to reflect the 

subcellular localization of the WAG kinases in planta. 

The plasma membrane localization, together with the phenotypes observed on the 

loss-of function mutants and the similarity in amino acid sequence between PID and the  
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Figure 4. PID, WAG1 and WAG2 are plasma membrane-associated kinases. (a-c) C-terminal fusions of 

PID, WAG1 and WAG 2 with yellow fluorescent protein (YFP) localize to the plasma membrane (arrow 

head) in Arabidopsis protoplasts. (d and e) Confocal sections of two independent transgenic lines 

overexpressing PID:GFP (35S::PID:GFP). (d) Root tip showing non-polar membrane localization of PID in 

the columella cells (arrow) and apico-basal localization in the epidermal cell layer (inset, arrow head). (e) 

Detail of the root epidermis, in the distal elongation zone (between the root tip and the elongation zone), 

showing apical membrane localization of PID. (f) The 35S::PID:GFP seedlings show agravitropic growth 

and the primary root meristem collapses, demonstrating that the fusion protein is functional. 

 

WAG kinases, suggest that these kinases act in the same or in a parallel pathway to 

regulate the PAT machinery. 

 

Fine tuning PID-dependent polar localization of PIN proteins 

The PID protein kinase is the first, and for now only, identified determinant of the polar 

targeting of PIN proteins [15]. PID kinase activity is regulated by three factors: (i) by 

phosphorylation of the catalytic activation loop by 3-phosphoinositide-dependent kinase 

1 (PDK1), which enhances PID kinase activity [23;40]; (ii) by phosphorylated 

phosphatidylinositols (PIP2) and phosphatidic acid (PA), phospholipids that bind PID 

most strongly and most likely enable its association with the plasmamembrane [23]; and 

(iii) by Ca2+ binding proteins that bind to PID in a calcium-dependent manner, and 

regulate its kinase activity [41]. At the plasmamembrane, PID partially co-localizes with  
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 Figure 5. The phototropins and the AGC3 kinases recapitulate plant evolution. Phylogenic tree of the plant 

kingdom, depicting the presence of genes involve in auxin biosynthesis, or genes encoding phototropins, 

AGC3 (PINOID-like) kinases, MDR/PGP transporters and PIN proteins. Auxin and auxin-biosynthesis 

genes have been identified in a range of green plants, from unicellular algae to angiosperms, as have genes 

encoding PHOT2-like proteins and MDR/PGP transporter proteins. By contrast, genes encoding the AGC3 

kinases and PIN auxin efflux carriers occur only later in evolution in land plants. Therefore, the PHOT2-

like proteins probably represent the most ancient AGCVIII protein kinases from which the other AGCVIII 

kinases evolved. A duplication of the ancestral PHOT2 gene gave rise to the low-fluence phototropin-

encoding PHOT1 gene, which is found only in spermatophytes 

 

PIN proteins [19;39]. Overexpression of a functional PID:GFP fusion in Arabidopsis 

indicates that the subcellular localization of PID in the root meristem is cell-type specific 

(Figure 4d-f). In columella cells, PID shows random non-polar localization (Figure 4d), 

similar to PIN3 [42], whereas in the epidermal cell layer, PID shows apico-basal polarity 

(Figure 4d inset and e) that partially overlaps with PIN2 [15;39]. Recently evidence was 

found for direct phosphorylation of PIN proteins by PID [39]. How exactly this 

phosphorylation affects the polar subcellular localization of PIN proteins is still 

unknown. It is likely, however, that PID-dependent polar targeting of PINs is tightly 

regulated by a combined action of PDK1, phospholipids and calcium binding proteins. 
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The evolution of auxin-dependent plant development: AGC kinases tell the tale 

From an evolutionary perspective, the phototropins and AGC3 kinases seem to 

recapitulate plant evolution (Figure 5). It is unsurprising that PHOT2-like genes represent 

the most ancient AGCVIII protein kinases, because the optimization of photosynthesis in 

response to light intensities in the first eukaryotic photosynthetic cells was a crucial trait 

in plant evolution. The essential function of PHOT2-like genes has been well conserved 

and our analysis indicates that PHOT2-like genes are found in representative species 

throughout the plant kingdom (Figure 5). In contrast, PHOT1-like genes are only found in 

spermatophytes, indicating that PHOT1-mediated tropic growth in response to low 

fluence rate light evolved later as an important determinant of proper development of 

soil-born germinating seedlings (Figure 5). 

As for auxin-dependent processes, a tryptophan-dependent biosynthesis pathway 

has been found in green and brown algae (Chlorophytes and Charophytes) [43]. In 

contrast, no genes encoding PID, PID-like kinases or PIN auxin efflux carriers have been 

identified in the green algal genomes of Chlamydomonas or Ostreococcus (Table 1) and, 

although auxin transport seems to regulate directional growth and patterning in the brown 

algae [43], there is no clear evidence for PIN-dependent auxin efflux in these early plant 

forms [43]. In fact, auxin transport in Charophytes might well be mediated by the 

MDR/PGP type of transporters, that are found through the entire plant kingdom (Figure 

5), and like PIN proteins, exhibit auxin efflux activity and sensitivity to PAT inhibitors 

[6;11;43]. 

Genes encoding homologs of the AGC3 kinases and PIN auxin efflux carriers 

have been identified in the moss Physcomitrella [44] (www.cosmoss.com), and in many 

other land plants (Figure 5, Table 1). This together with the demonstrated functional 

relationship between PID and PINs [15] suggest that these two gene families co-evolved, 

and that AGC3 kinase-regulated PIN-dependent PAT might have played an important 

role in the adaptation of plants during the transition from water to land (Figure 5, Table 

1). In conclusion, there is a strong correlation between the known functions of the AGC3 

and AGC4 kinases in plant development, and their distribution throughout the plant 

kingdom, which suggests that new AGC kinases might have been acquired during most 

critical steps in plant evolution. 



CHAPTER1 
 

24 
 

Concluding Remarks and future perspectives  

Although there is much information about how differential auxin distribution couples 

environmental stimuli to developmental responses, such as directional growth, it is still 

unclear how the different components in the PAT pathway work coordinately to orient 

this auxin-directed plant development. Two subgroups of the AGCVIII protein kinases 

are directly involved in this process. On one hand, light-activated phototropins induce 

rapid Ca2+ release into the cytosol and initiate differential auxin transport leading to auxin 

accumulation in the cell layers at the dark side of the hypocotyl [42]. On the other hand, 

PID, and possibly other AGC3 kinases, direct PAT by determining the correct polar 

localization of PIN proteins during embryo development and organ formation in the shoot 

apical meristem. 

Although none of the AGC3 kinases has been directly connected to phototropic 

growth, the observation that the activity of PID is regulated by interacting calcium-

binding proteins [41] suggests that these kinases might be downstream components of the 

phototropin signal-transduction pathway. Whether the other AGC3 kinases, like PID, 

direct PAT through direct phosphorylation of PIN proteins, whether one or more AGC3 

kinases affect the subcellular PIN localization during phototropism, and whether there is 

a link between PHOT-induced calcium release and regulation on the activity of AGC3 

kinases through calcium binding proteins are key questions to be addressed by future 

research. 

In conclusion, based on the data presented here, we propose that those AGCVIII 

kinases that play an essential role in plant development, recapitulate plant evolution. 

Phototropins represent the most ancient AGCVIII kinase forms that regulate highly 

conserved processes in plants like optimization of light perception and AGC3 kinases co-

evolved with PIN auxin transporters in multicellular plants during their colonization of 

land, and act together, possibly downstream of the phototropins, to orient plant 

development by establishing the directionality of auxin transport. 
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Outline of this thesis 

The role of PID as determinant of PIN polarity has been well established, and it has been 

shown now that PID acts via direct phosphorylation of the central hydrophyllic loop in 

PIN proteins [39]. In order to phosphorylate PIN proteins PID has to be active and to 

localize close to its phospho targets at the plasmamembrane. Previous studies have shown 

that PID subcellular localization is dependent on the tissue in which it is expressed 

[19;39]. Likely candidates to regulate the activity and localization of this kinase are the 

PID interacting proteins PDK1 and the calcium binding proteins PID BINDING 

PROTEIN1 (PBP1) and TOUCH3 (TCH3) [40-41]. The aim of the research described in 

this thesis was 1) to further elucidate the role of TCH3, PBP1 and PDK1 as upstream 

regulators of PID, and 2) to investigate whether other plant AGC kinases are also 

involved in regulating PIN polarity.  

Previous studies have shown that PID interacts in a calcium-dependent manner 

with TCH3 and PBP1, thereby providing the first molecular link between calcium and 

polar auxin transport [41]. Chapter 2 shows the inhibitory effect of TCH3 on PID kinase 

activity and provides evidence for auxin-dependent sequestration of PID from the plasma 

membrane to the cytosol. The results suggest that TCH3 is part of a negative feedback 

loop that regulates PID activity. Chapter 3 describes the functional characterization of 

PBP1 in Arabidopsis. The presented analysis is consistent with the previous hypothesis of 

PBP1 as an enhancer of PID kinase activity. 

The third known PID interactor, PDK1, phosphorylates the catalytic activation 

loop of PID, enhancing its kinase activity [40]. Chapter 4 describes the effect of this 

protein on PID subcellular localization. In Arabidopsis thaliana protoplasts, PDK1 was 

found to induce translocation of PID from the plasma membrane to endomembrane 

compartments and microtubules (MT). Replacing the PDK1 phosphorylation targets in 

PID by alanine made PID non-repsonsive to PDK1, suggesting that the PDK1-dependent 

phosphorylation status of PID determines its subcellular localization. Based on these 

results we propose a model for the role of PDK1 and phospholipids in modulating PID-

dependent polar targeting of PIN proteins. 

The two closely related AGC3 kinases, named WAG1 and WAG2, share 

similarity with PID not only at the sequence level but also in their regulation and action. 
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Not much is known yet of the fourth AGC3 kinase. Chapter 5 describes the 

characterization of AGC3 kinases and their roles during different stages of plant 

development. The defects observed in the loss and gain-of-function mutants correlate 

with mislocalization of PIN proteins. Like PID, WAGs phosphorylate PIN proteins and 

induce basal–to-apical shifts in PIN localization in root cells. However, complementation 

experiments show that WAG2 and AGC3-4 act differently and are likely to function in 

parallel pathways during inflorescence development. Here we propose a model in which 

PID, WAG1 and WAG2 act together and in parallel to establish apical and lateral PIN 

polarity to form a plant compass dictating directionality of the polar auxin transport. 
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Summary 

Calcium is a broadly used second messenger in signaling pathways. For the specificity of 

its response, not only the spatio-temporal pattern, but also calcium “receptors” are 

essential. Earlier studies suggest that the signaling and polar transport of the plant 

hormone auxin are processes modulated by calcium. PIN efflux carrier-driven auxin 

transport generates maxima and minima that are essential for plant development. The 

Arabidopsis PINOID (PID) protein serine/threonine kinase has been identified as a 

determinant in the polar subcellular targeting of PIN proteins, and thereby of the direction 

of transport. The finding that PID shows a calcium-dependent interaction with the 

calmodulin-related protein TOUCH3 (TCH3) provided the first molecular link between 

calcium and auxin transport. Here we show that TCH3 inhibits PID kinase activity by 

interacting with its catalytic domain, and we provide genetic evidence for the in vivo 

significance of this interaction. Furthermore, we show auxin-dependent sequestration of 

PID from the plasma membrane to the cytosol in protoplasts upon co-expression of 

TCH3. In root epidermal cells, where PID and TCH3 are co-expressed, auxin induces 

rapid and transient dissociation of PID from the plasma membrane away from its 

phospho-targets, the PIN proteins. This response requires the action of calmodulins and 

calcium channel. These results suggest that TCH3 is part of a feedback loop that 

modulates PIN polar targeting by rapid inhibition of PID activity in response to stimuli, 

such as auxin, that induce cytosolic calcium peaks. 
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Introduction 

Calcium plays an important role as an intracellular second messenger in a variety of 

signaling pathways. In plants, rapid changes in the cytosolic calcium concentration are 

required for the transduction of both abiotic signals and biotic stimuli [1]. In order to give 

an appropriate response, cells need to distinguish the calcium signals produced by these 

different stimuli. Spatial and temporal patterns of calcium responses, and also the 

presence of calcium “receptors” or sensors in the cell, are needed to give specificity to the 

signal [2;3]. The receptor proteins are able to monitor the changes in the calcium 

concentration by binding calcium through specific domains called EF hands [4]. The 

conformational changes induced by binding of calcium to these proteins either induces 

their activation, or enhances their interaction with other proteins that are in turn activated 

or repressed [2;3;5]. Two main types of sensors are known: the calmodulins (CaMs) and 

the calcium-dependent protein kinases (CDPKs). CaMs are small proteins with typically 

four EF-hands without an effector domain. The transmission of the signal occurs through 

the interaction with a target enzyme to influence its activity [1;6]. The CDPKs combine a 

calmodulin-like domain with a kinase domain. Binding of calcium directly activates the 

protein kinase [7].  

The phytohormone auxin regulates plant development by controlling basic 

cellular processes such as cell division, -differentiation and -elongation [8-10]. Several 

studies suggest that the auxin signaling pathway involves rapid changes in the cytosolic 

calcium concentration. For example, in wheat protoplasts [11], maize coleoptile cells 

[12;13], and parsley cells [12] an increase of the cytosolic calcium concentration was 

detected within minutes after auxin application using calcium fluorescent dyes or ion-

sensitive microelectrodes. The observation of an auxin-induced calcium pulse was not 

limited to protoplasts, but was also observed in intact plant tissues such as maize and pea 

roots [12].  

Ever since the first observations of Darwin on the growth response of Canary 

grass coleoptiles to unidirectional light [14], it is well-established now that auxin is 

transported from cell to cell in a polar fashion from its sites of synthesis to its sites of 

action [15]. This polar auxin transport (PAT) generates auxin maxima and minima that 

mediate tropic growth responses, and are instructive for embryogenesis, meristem 
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maintenance and organ positioning [16-19,58]. The mechanism of auxin transport have 

been widely studied, and PIN transmembrane proteins have been identified as auxin 

efflux carriers that direct this polar intercellular transport through their asymmetric 

subcellular localization [20-22]. The plant-specific AGC protein serine/threonine kinase 

PINOID (PID) was identified as a regulator of auxin transport, and is a determinant in the 

polar targeting of PIN proteins. PID directs their localization at the apical (shoot facing) 

cell membrane, by phosphorylation of the PIN central hydrophilic loop [23-25]. 

Calcium has also been implied as an important signal in the regulation of PAT in 

sunflower hypocotyls [26], in gravistimulated roots [27] and in the phototropism 

signaling pathway. The light signal inducing phototropic growth is perceived by the 

PHOT1 blue receptor kinase. This induces a rapid increase in the cytoplasmic calcium 

concentration [28;29] and triggers PIN-dependent auxin accumulation at the shaded side, 

resulting in auxin-dependent changes in gene transcription, and leading to shoot bending 

toward the light source [30;31]. The function of the rapid calcium response in phototropic 

growth and the downstream components of the signaling pathway have not yet been 

characterized. 

Our previous finding that PID interacts in a calcium-dependent manner with the 

calcium-binding proteins PINOID BINDING PROTEIN1 (PBP1) and TOUCH3 (TCH3) 

provided the first molecular evidence for calcium as a signal transducer in the regulation 

of auxin transport [32]. TCH3 is a CaM-like protein containing 6 EF-hands, and its 

corresponding gene was initially identified as a touch-responsive gene [33;34]. Here we 

present a detailed study of the in vivo interaction between PID and TCH3. Using loss- 

and gain-of-function mutant lines, we confirm in vitro observations that TCH3 is a 

negative regulator of the PINOID kinase activity. This regulation occurs directly by 

inhibition of the kinase activity, as shown in phosphorylation assays, and by sequestration 

of PID from the plasma membrane where its phospho-targets are located [25]. 

Interestingly, auxin treatment also results in rapid transient re-localization of the 

membrane-associated kinase to the cytosol. We speculate that this occurs through its 

interaction with TCH3, which is enhanced by the auxin-induced increase in cytosolic 

calcium. 
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Results 

 

TCH3 reduces the kinase activity by binding to the catalytic domain of PID 

Previously, the calmodulin-like protein TCH3 was identified as a PID-binding protein in 

a yeast two-hybrid screen. Using in vitro pull-down assays it was shown that the kinase-

CaM interaction is calcium-dependent [32]. In order to map the TCH3 interaction site in 

PID, we incubated GST-tagged isolates of full-length PID, the N-terminal domain (aa 2-

103), the catalytic domain (aa 75-398) or C-terminal domain (aa 339-438) with crude E. 

coli extracts containing Histidine (His)-tagged TCH3 (Figure 1a). Protein complexes 

were pulled down with glutathione beads and separated on gel. Western blot analysis 

using anti-His antibodies showed that TCH3 interacts with full-length PID or with its 

catalytic domain (Figure 1b, lanes 2 and 4) but not with the N- or C-terminal domains 

(Figure 1b, lanes 3 and 5) nor with GST alone (Figure 1b, lane 1). Binding to the catalytic 

domain suggested that TCH3 might affect PID kinase activity. Indeed, previous studies 

showed that TCH3 reduces the in vitro phosphorylation activity of PID using traditional 

kinase assay with Myelin Basic Protein (MBP) as a substrate [32]. To confirm these 

results with a wider array of substrates, we incubated a commercial phospho-peptide chip 

with radiolabelled ATP and PID alone or in the presence of PBP1, a PID positive 

regulator [32], or of both PBP1 and TCH3. For a quantitative comparison of the 

differences in PID activity, we focused on the phosphorylation intensity of four peptides, 

one of which represented a phospho-target in MBP. PID efficiently phosphorylated all 

four peptides (Figures 2a and 2d), and in presence of PBP1 the phosphorylation intensity 

was significantly increased (Figures 2b and 2d), which corroborated the role of PBP1 as 

positive regulator of PID [32]. When TCH3 was added to the last mix, the 

phosphorylation intensity was reduced to even below the level of PID alone (Figures 2c 

and 2d). These data corroborate our previous data that TCH3 is a negative regulator of 

PID kinase activity in vitro, and indicate that TCH3 binding to PID is able to overrule this 

positive effect of PBP1. 
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Figure 1. TCH3 interacts with the catalytic domain of PID. 

(a) A schematic representation of the proteins used in the in vitro pull-down assay. Full-length PID (498 aa) 

and its deletion mutants: the N-terminal portion (PID-NT, aa 2-103), the catalytic domain (PID-CaD, aa 75-

398) and the C-terminal portion (PID-CT, aa 339-438), are shown. The light grey boxes represent the PID 

catalytic domain (aa 74-394), comprising 11 conserved sub-domains and the amino acid insertion between 

sub-domain VII and VIII (aa 226-281). The star indicates the DFG to DFD mutation characteristic for the 

plant-specific AGCVIII protein kinases. The numbers indicated on the right correspond to the lane numbers 

of the Western blot and Coomassie stained gel in (b). TCH3 (324 aa) is depicted with the six EF-hand 

domains (aa 12-38, 50-74, 101-127, 139-163, 191-217, 228-253) as dark grey boxes. The lines A and B 

represent the perfect tandem repeat comprising EF-hand pairs 1-2 and 3-4.  

(b) Western blot analysis (top) with anti-His antibodies detects His-tagged TCH3 after pull-down with 

GST-tagged PID (lane 2) or GST-tagged PID catalytic domain (GST:CaD, lane 4), but not after pull-down 

with GST-tagged PID N-terminal (GST:NT, lane 3) or C-terminal (GST:CT, lane 5) domains or with GST 

alone (lane 1). Coomassie stained gel (bottom) showing the input of proteins used in the pull-down assay. 
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Figure 2. TCH3 reduces PID kinase activity in vitro. 

(a-c) Kinase assay using a chip where PID alone (a), PID and the positive regulator PBP1 (b), or PID, PBP1 

and TCH3 (c) were incubated with radiolabelled ATP.  

(d) Quantification of the phosphorylation density of the four peptides shown in (a-c) confirms that TCH3 

represses PID kinase activity in vitro. 

 

TCH3 overexpression lines and tch3 loss-of-function mutants do not show 

phenotypes 

To further analyze the possible function of TCH3 as a regulator of the PID pathway in 

planta, we obtained the mutant alleles tch3-2 and tch3-1 from the SALK collection with a 

T-DNA inserted at respectively positions -134 and -120 relative to the ATG of TCH3. 

Northern blot analysis indicated that tch3-2 was a null allele, whereas in tch3-1 the 

expression was enhanced (Figure 3a). Another SALK line with a T-DNA insertion at 

position -71, named tch3-3, was found to be a complete knock-out both on Northern and 

Western blots (J. Braam, pers. com.). Both tch3-2 and tch3-3 (J. Braam, pers. com.) 
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alleles did not show any obvious phenotypes, suggesting that TCH3 is functionally 

redundant with the most related calmodulin-like proteins CaML9 and CML10 [35]. 

In order to generate gain-of-function alleles, TCH3 full-length cDNA was 

overexpressed in Arabidopsis Columbia under the strong 35S promoter. Despite high 

expression levels in four independent single locus insertion lines (Figure 3b), no obvious 

phenotypes were observed in the 35Spro::TCH3 plants. Our analysis focused on auxin-

related phenotypes (gravitropic growth, sensitivity to IAA and NPA and lateral root 

development) and we may have therefore missed phenotypes related to the touch 

response pathway. 

 

TCH3 overexpression reduces PID gain-of-function root meristem collapse 

The above data suggest that TCH3 provides feedback regulation on the PID kinase 

activity in response to auxin or other signals that induce rapid changes in the cytosolic 

calcium concentration. As both loss-of-function and gain-of-function lines did not 

provide further information, we crossed the TCH3 overexpression line 35Spro::TCH3-4 

with the overexpression line 35Spro::PID-21. Overexpression of PID in the root causes 

the collapse of the main root meristem, which is triggered by the lack of an auxin 

maximum due to the basal-to-apical PIN polarity switch [23;24]. This phenotype was 

observed in only 5 % of the seedlings at 3 days after germination (dag), but occurred in 

up to 97 % of the seedlings at 6 dag (Figure 3c). Overexpression of TCH3 significantly 

reduced the root meristem collapse (Figure 3c) from 75 % to 31 % at 4 dag (Student’s t-

test, p < 0.05), and from 97 % to 81 % at 6 dag (Student’s t-test, p = 0.06). The levels of 

PID and TCH3 expression were slightly lower in 5 days old 35Spro::PID-

21/35Spro::TCH3-4 seedlings than in 35Spro::PID-21 and 35Spro::TCH3-4 seedlings 

(Figure 3d), but not enough to explain the difference in timing of the root meristem 

collapse phenotype between 35Spro::PID-21 and 35Spro::PID-21/35Spro::TCH3-4. 

These observations corroborate the proposed role of TCH3 as negative regulator of PID 

kinase activity [32]. 
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Figure 3: TCH3 is a negative regulator of PID in vivo. 

(a) Northern blot showing TCH3 expression in tch3-2 (SALK_090554) and tch3-1 (SALK_056345), 

having a T-DNA insertion at respectively position -134 and -120 relative to the ATG of the TCH3 gene: 

tch3-2 shows no detectable mRNA expression, whereas the expression in tch3-1 is enhanced. An Ethidium 

bromide stained RNA gel is shown to compare loading.  

(b) Northern blot showing the level of TCH3 overexpression in five days old seedlings of four independent 

transgenic lines carrying the 35Spro::TCH3 construct. The blot was first hybridized with the TCH3 cDNA 

(top), and subsequently stripped and hybridized with the ROC cDNA to show the loading (bottom).  
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Figure 3. (continued) 

 (c) The percentage of the main root meristem collapse in the 35Spro::PID-21 and in 35Spro::PID-

21/35Spro::TCH3-4 lines. When TCH3 is overexpressed the root meristem collapse is significantly delayed 

(Student’s t-test, p < 0.05).  

 (d) Northern blot analysis showing the expression level of TCH3 (top), PID (middle) and αTubulin 

(bottom) in seedlings of the lines used in (c). The same blot was successively hybridized with the PID, 

TCH3 and αTubulin cDNA. Intensities were quantified using Image Quant and normalized to the 

corresponding αTubulin sample to compensate for loading differences. The sample with TCH3 or PID 

overexpression alone was put at 100%.  

(e-i) Observed seedling phenotypes, ranging from di- (e) and tri-cotyledon seedlings (f) as seen in the pid-

14 allele, to tetra- (g), mono- (h) and no-cotyledon seedlings (i) as seen in the pid-14/tch3-2, and pid-

14/35Spro::TCH3 lines.  

(j) The percentage of the penetrance of the aberrant number of cotyledons was analyzed in seedling 

population of pid-14+, pid-14+/ tch3-2, pid-14+/35Spro::TCH3-1, pid-14+/35Spro::TCH3-3, pid-

14+/35Spro::TCH3-4. 

 

pid loss-of-function mutant is sensitized to changes in TCH3 expression 

One of the characteristic defects of pid loss-of-function mutants is embryos and seedlings 

with three cotyledons. The penetrance of this phenotype varies between 10 and 50 % 

depending on the strength of the mutant allele [23;36;37]. In the pid-14 allele, 46 % of 

the homozygous seedlings have three cotyledons (Figures 3f and 3j) and less than 1 % 

develops a single cotyledon (Figures 3h and 3j). To investigate the influence of TCH3 on 

the pid embryo phenotype, the tch3-2 allele and the 35Spro::TCH3-1, -3 and -4 

overexpression lines were crossed with pid-14, and progeny homozygous for the tch3-2 

loss-of-function or the 35Spro::TCH3 gain-of-function locus and segregating for the pid-

14 allele were scored for cotyledon defects. The percentages were calculated relative to 

the expected number of pid-14 homozygous individuals. The tch3-2 loss-of-function 

allele did not show aberrant cotyledon phenotypes and in the three TCH3 overexpressing 

lines only a few seedlings with one cotyledon were observed (up to 2 % for 

35Spro::TCH3-3, Figure 3j). In all the double mutant lines, the overall penetrance of 

aberrant cotyledon phenotypes was reduced (17 % to 31 % for the double mutants versus 

46 % for pid-14, Figure 3j), whereas a significantly higher number of seedlings showed 

stronger cotyledon defects, such as four cotyledons (< 1 % for pid-14/35Spro::TCH3-4, 

Figure 3g), one cotyledon (ranging from 2 % for pid-14/tch3-2 and pid-
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14/35Spro::TCH3-4, up to 10 % for pid-14/35Spro::TCH3-1, Figure 3h) or even no 

cotyledons (3 % for pid-14/35Spro::TCH3-1, Figure 3i). Although there is a clear effect 

of both TCH3 overexpression and loss-of-function on the severity of the pid loss-of-

function seedling phenotypes, the data do not indicate a clear negative regulatory function 

for TCH3, as observed in the in vitro phosphorylation assays or for the PID 

overexpression-induced root meristem collapse phenotype. No correlation between the 

level of TCH3 overexpression and the increase in number of mono-, no- and 

tetracotyledon seedlings is found. Possibly, during embryo development, a critical 

balance between the cellular PID activity and TCH3 levels is required for proper 

cotyledon positioning, and both TCH3 overexpression and loss-of-function can disturb 

this balance, as indicated by the significant number of seedlings with defects in cotyledon 

positioning. The pid loss-of-function mutant background is sensitized to changes in 

TCH3 expression, which substantiates the functional relationship between the PID kinase 

and TCH3. 

 

TCH3 mediates auxin-dependent sequestration of PID from the plasma membrane 

The subcellular localization of TCH3 was tested by transfecting Arabidopsis protoplasts 

with a 35Spro::TCH3:YFP construct. The TCH3:YFP fusion protein was found to be 

cytoplasmic (Figure 4a), overlapping with soluble CFP (Figures 4b and 4c). In contrast to 

soluble CFP (Figure 4b), however, TCH3:YFP was excluded from the nucleus (Figures 

4b and 4c), and its localization also differed significantly from that of PID, which is 

membrane-associated both in protoplasts (Figure 4e), and in planta (Figure 6e) [25;38]. 

When 35Spro::PID:CFP and 35Spro::TCH3:YFP were co-transfected in auxin-

starved Arabidopsis protoplasts, PID:CFP and TCH3:YFP did not co-localize and 

remained at their respective subcellular location, the plasma membrane and the cytoplasm 

(Figures 4f-h). Interestingly, when cells were cultured in normal auxin-containing 

medium, PID subcellular localization became cytoplasmic in presence of TCH3 (Figures 

4i-k), suggesting that the auxin-dependent interaction with TCH3 sequesters PID from 

the plasma membrane. The fact that auxin treatment of auxin-starved protoplasts did not 

lead to PID sequestration when TCH3 was co-transfected (results not shown), suggests 
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Figure 4. TCH3 and PID co-localization is auxin-dependent. 

(a-d) 35Spro::TCH3:YFP was co-transfected with 35Spro::CFP in Arabidopsis protoplasts. Comparison of 

the YPF image (a) with the CFP image (b) or the merged image (c) indicates that TCH3 is cytoplasmic and 

excluded from the nucleus. (d) A transmitted light image of the protoplast in (a-c).  

(e) Arabidopsis cell suspension protoplast transfected with 35Spro::PID:CFP shows a plasma membrane 

localization.  

(f-k) Auxin-starved (f-h) or auxin-cultured (i-k) Arabidopsis protoplasts co-transfected with 

35pro::PID:CFP and 35Spro::TCH3:YFP. Shown are the CFP channel (f, i), the YFP channel (g, j) or the 

merged image (h, k). PID is membrane localized in auxin-starved protoplasts but co-localizes with TCH3 in 

the cytoplasm when cells are cultured in presence of auxin.  

 

that protoplasts are desensitized to auxin, and that the sequestration observed in auxin 

grown protoplasts is probably the result of PID and TCH3 overexpression and 

constitutively elevated calcium levels. 

To confirm the in vivo interaction between the two proteins, we checked for the 

presence of Förster (Fluorescence) Resonance Energy Transfer (FRET) between the CFP 

and YFP moieties of the co-expressed fusion proteins using confocal lambda scanning 

[39]. No bleed-through occurred in protoplasts co-expressing CFP and YFP, meaning that 

YFP was not excited by CFP excitation wavelength (457 nm) and vice versa (data not 

shown). However, excitation with 457 nm leads to a significant CFP-derived signal at the 

YFP emission wavelength (527 nm). FRET in the test sample is therefore signified by a  
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Figure 5. TCH3 interacts with PID in vivo. 

(a) Graph showing the fluorescence intensities at 475 nm (CFP emission peak) and 527 nm (YFP emission 

peak) during lambda scanning using an excitation wavelength of 457 nm (donor, CFP) in Arabidopsis 

protoplasts expressing a translational fusion between YFP and CFP (triangle, plain line, positive control), 

or co-expressing PID:CFP and TCH3:YFP (square, plain line), CFP and TCH3:YFP (square, dotted line, 

negative control) or CFP and YFP (triangle, dotted line, negative control). The observed quenched 

intensities at the CFP emission peak and enhanced intensities at the YFP emission peak of the PID:CFP-

TCH3:YFP sample are indicative for FRET, and corroborate the in vivo interaction between TCH3 and 

PID.  

(b) Table indicating the slope of the curves shown in (a) and the P-values of Student’s t-tests, in which the 

475 nm (CFP) and the 527 nm (YFP) emission intensities of CFP and TCH3:YFP, and YFP:CFP were 

compared with those of YFP and CFP expressing protoplasts; and of PID:CFP and TCH3:YFP compared 

with those of TCH3:YFP and 35Spro::CFP. 

 

quenched signal at the CFP emission wavelength (475 nm) and higher signal at the YFP 

emission wavelength (527 nm), as compared to control transfections with non-interacting 

versions of CFP and YFP (35Spro::CFP co-transfected either with 35Spro::TCH3:YFP 

or with 35Spro::YFP). Indeed, a significant FRET signal could be detected in protoplasts 

that co-expressed TCH3:YFP and PID:CFP. The lambda scanning profile matched that of 

protoplasts expressing the YFP:CFP fusion protein for which FRET is expected (Figures 

5a and 5b). These data corroborate our earlier hypothesis that TCH3 sequesters PID from 

the plasma membrane to the cytoplasm by interaction with the protein kinase. 
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Auxin-induced calcium-dependent sequestration of PID in root epidermal cells 

Previous studies [23;33;40] already indicated that expression patterns of PID and TCH3 

overlap, and thus should allow a functional in vivo interaction between the two proteins. 

As shown by a TCH3pro::TCH3:GUS translational fusion, TCH3 is expressed in 

epidermis cells of the elongation zone of the root tip (Figure 6a), in the vasculature of the 

root at the root-hypocotyl junction (Figure 6b), in the vasculature and guard cells in 

leaves and cotyledons (Figure 6c), and at the shoot apical meristem (Figure 6c). As the 

expression of TCH3 is auxin responsive, it preferentially accumulates in cells that are part 

of auxin response maxima, e.g., in the shoot apical meristem and root columella, in 

vascular tissues in roots, leaves and sepals and in the anthers and stigmas of flowers 

[33;40]. Upon IAA treatment, TCH3 expression is strongly induced in the root, where it 

is extended to the vasculature and the epidermis of the complete root (Figure 6d). PID is 

also auxin responsive and is co-expressed with TCH3 in the epidermis cells in the 

elongation zone of the root tip, in the shoot apical meristem and in flowers [23], 

suggesting a functional interaction between the two proteins in these tissues.  

To investigate the biological relevance of the auxin-dependent, TCH3-mediated 

sequestration of PID observed in protoplasts, we used the PIDpro::PID:VENUS line [25] 

to study the dynamics of the subcellular localization of PID in wild type Arabidopsis and 

35Spro::TCH3 overexpression epidermis root cells. In both backgrounds, PID localized 

at the membrane (Figures 6e and 6m) [25;38], suggesting that overexpression of TCH3 

alone is not sufficient to trigger the change in PID subcellular localization in planta. 

Upon auxin treatment, however, PID was rapidly released in the cytoplasm within 

5 minutes of treatment (Figure 6f), and plasma membrane localization was restored 10 

minutes after auxin addition (Figures 6g-j). Pre-treatment of seedlings with tetracain (Tc), 

a calmodulin inhibitor, or lanthanum (La), a calcium channel blocker, did not influence 

the PID localization by itself (Figures 6k and 6s), but did inhibit IAA-induced 

dissociation of PID from the plasma membrane (Figures 6l and 6t). PID localization was 

not influenced by TCH3 overexpression. These data suggest that this dissociation is 

dependent on an increase in the cytoplasmic calcium concentration involving plasma 

membrane calcium channels, and that this calcium signal is translated by one or more  
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Figure 6. TCH3 and auxin cause PID to dissociate from the plasma membrane. 

(a-d) Histochemical staining of TCH3pro::TCH3:GUS seedlings [33] showing that TCH3 is expressed in 

epidermis cells of the elongation zone of the root tip (a), in vascular tissues at the root-hypocotyl junction 

(b), in the shoot apical meristem and in vascular tissues and stomata (inset) of the cotyledon (c). TCH3 

expression in roots is enhanced when grown on 0.1µM IAA (d).  

(e) PID is membrane localized in PIDpro::PID:VENUS epidermal cells of seedling root tips.  

(f-j) PID transiently dissociates from the plasma membrane 5 min after IAA treatment (f), but rapidly 

returns to the plasma membrane (10 min (g), 20min (h), 30 min (i) and 1 h (j) treatment).  

(k-l, s-t) Pre-treatment with tetracain (30 min incubation, k-l), a CaM inhibitor, or Lanthanum (30 min 

incubation, s-t), a calcium channel inhibitor, does not influence PID localization (k, s) but blocks the auxin-

induced dissociation of PID from the plasma membrane (5 min treatment with IAA and inhibitors, l, t).  

(m-r) In seedling root tips of the PIDpro::PID:VENUS/35Spro::TCH3-2 line PID shows normal plasma 

membrane localization (m) and IAA-induced transient dissociation from the plasma membrane (5min (n), 

10min (o), 20 min (p), 30 min (q), 1h (r)). 

 

CaMs. In view of our results in protoplasts, it is likely that the CaM-like protein TCH3 is 

involved in this process. 

Together the results described here suggest that TCH3 acts as a calcium receptor 

in the PID signaling pathway that translates rapid peaks in cytosolic calcium into subtle 

changes in PIN polarity, by influencing the activity and by sequestering the kinase from 

the plasma membrane to the cytoplasm. 
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Discussion 

Calcium is a common second messenger in signaling pathways, and has been found as 

one of the early signals in auxin responses. Experiments on plant cells showed that the 

cytosolic calcium concentration is increased within few minutes after auxin application 

[11-13]. Furthermore, PAT is suppressed by application of the calcium chelator EDTA, 

and restored after application of a calcium solution [26], indicating that calcium is also an 

important second messenger in the regulation of auxin transport. 

PIN proteins are components of the cellular auxin efflux machinery. Their 

subcellular localization determines the direction of the auxin transport [22;41]. The 

protein serine/threonine kinase PINOID regulates PAT by establishing the proper apico-

basal polarity of the PIN auxin efflux carriers [24]. The finding that two calcium binding 

proteins PBP1 and TCH3 interact with PID to regulate its kinase activity in vitro, 

provided a first molecular link between calcium and the regulation of PAT [32]. Here we 

investigated the in vivo role of TCH3 in the PID signaling pathway. First, we identified 

that TCH3 binds the catalytic domain of the PID kinase, and used in vitro kinase assays 

and genetic analysis to confirm the previous observations that TCH3 is a regulator of PID 

kinase activity [32]. Next, we showed the co-localization and the interaction between 

TCH3 and PID in Arabidopsis protoplasts. Finally, we could demonstrate that TCH3 is 

involved in PID subcellular localization dynamics, clarifying the molecular link between 

calcium signaling and auxin transport. 

 

TCH3 competes with plasma membrane components for binding the catalytic 

domain of PID 

Previously, we used in vitro pull down assays to show that TCH3 interacts with PID in a 

calcium-dependent manner [32]. Here, a similar assay was used in combination with PID 

deletion constructs to show that TCH3 interacts with the PID catalytic domain. Moreover, 

co-expression of TCH3 and PID in Arabidopsis protoplasts and subsequent FRET 

measurements demonstrated the in vivo interaction between the two proteins, and showed 

that TCH3 sequesters the normally plasma membrane-associated PID kinase to the 

cytoplasm. This suggests that interaction of TCH3 with the catalytic domain of PID 

provokes the release of the kinase from the plasma membrane. The cytoplasmic PID 
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sequestration is auxin-dependent, as auxin-starved protoplasts do not show internalization 

of PID. Most likely, auxin treatment of protoplasts results in elevated levels of cytosolic 

calcium, which in turn enhances the affinity of the TCH3 CaM-like protein for PID. 

Recent data by Zegzouti and co-workers indicated that PID binds to phosphorylated 

inositides and phosphatidic acid, and that the amino acid insertion in the PID catalytic 

domain (insertion domain) is the key determinant in membrane association of the kinase 

[42]. We therefore hypothesize that PID co-localizes at the plasma membrane with its 

phosphorylation targets, the PIN auxin efflux carriers [25], through direct binding of 

membrane components to the insertion domain. An increase in cytosolic calcium, e.g. 

induced by auxin, facilitates binding of TCH3 to the catalytic domain of PID, thereby 

preventing the kinase-lipid interaction and resulting in sequestration of the kinase away 

from its phospho-targets to the cytoplasm (Figure 7). Based on this model, it would be 

interesting to test whether TCH3 and phosphoinositides are competing for the interaction 

with the PID catalytic domain.  

PKC, one of the animal orthologs of the plant specific AGCVIII kinases to which 

PID belongs [43] directly binds calcium through a C2 domain. Calcium binding to this 

domain promotes a change in PKC subcellular localization from the cytosol to the plasma 

membrane and enhances the affinity of the C2 domain for phosphorylated inositides [44]. 

This plasma membrane translocation activates the PKC kinase. PID is also thought to be 

active at the plasma membrane. However in this case the (auxin-induced) increase in 

cytosolic calcium levels results in the opposite effect and removes the kinase from the 

plasma membrane. PID does not have the typical calcium binding domains, and instead 

the kinase has evolved to interact in a calcium-dependent manner with calcium receptors, 

such as TCH3. Changes in subcellular localization are a commonly used cellular 

mechanism to regulate protein activity by sequestering proteins away from their targets. 

To our knowledge, the calcium- and CaM-dependent release of the PID kinase is a new 

form of regulating the activity of a kinase that steers the polar subcellular targeting of 

transporter proteins. 
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Figure 7. Model for auxin-induced sequestration of PID from the plasma membrane to the cytoplasm.  

High auxin levels increase the cytoplasmic calcium concentration, by activating plasma membrane-

localized calcium channels. Enhanced binding of calcium to the CaM-like TCH3 enhances its affinity for 

PID, whereby TCH3 is able to compete for PID binding to plasma membrane components. This leads to 

sequestration of PID from the plasma membrane to the cytoplasm, away from its phosphorylation targets, 

the PIN proteins. At the same TCH3 binding to the PID catalytic domain inhibits kinase activity. 

 

TCH3 is part of feedback loop of auxin on the direction of its own transport? 

The proposed model in Figure 7 implies that a calcium release negatively and transiently 

regulates PID activity through its TCH3-induced dissociation from the plasma membrane, 

away from its phospho-targets, the PIN proteins. This TCH3-dependent inactivation of 

PID may be part of a regulatory loop that allows fast and possibly subtle alterations in 

PIN polarity in response to signals that lead to rapid changes in cytosolic calcium levels, 

such as auxin [11-13], unidirectional light or gravity [27;45-47]. Auxin is known to 

regulate its own transport, firstly by inhibiting PIN endocytosis [48], and secondly by 

regulating the subcellular PIN localization in Arabidopsis roots [49], probably in order to 

canalize and increase the auxin flow in response to increased cellular auxin 

concentrations. Sauer and co-workers concluded that PID is not required for auxin-

dependent PIN lateralization in root cells, because they still observed PIN lateralization in 

auxin-treated 35Spro::PID seedlings [49]. 
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Auxin-induced PIN lateralization involves TIR1-dependent induction of auxin 

responsive gene expression, and does not occur as rapid as the auxin-induced dissociation 

of PID from the membrane that we report here. Our results suggest that elevated cellular 

auxin levels may transiently alter PID kinase activity by subcellular localization changes 

and inhibition of its kinase activity via TCH3 interaction. This may set the stage for the 

auxin-dependent PIN lateralization, or may only lead to a subtle modulation of PIN polar 

targeting. The fact that none of TCH3 loss- and gain-of-function mutants display obvious 

phenotypes, and that we have not been able to detect changes in PIN polar targeting in 

roots of 35Spro::TCH3 and tch3 mutant lines (M. Sauer, unpublished results) nor in pid 

knock-out roots (Chapter 5), may be explained by calcium dependency of the PID-TCH3 

interaction (35Spro::TCH3) and by functional redundancy with other CaMs (tch3) or 

with the PID-related AGC3 kinases (pid). 

 

Material and methods 

 

Molecular cloning and constructs 

Molecular cloning was performed following standard procedures [50]. Bacteria were 

grown on LC medium containing 100 µg/ml carbenicillin (Cb, all high copy plasmids), 

50 µg/ml kanamycin (Km, pGreen) or 250 µg/ml spectinomycin (Spc, pART27) for E. 

coli strains DH5α or Rosetta (Novagen) or 20 µg/ml rifampicin (Rif) and 50 µg/ml Km, 

or 250 µg/ml Spc for Agrobacterium strain LBA1115. The constructs pSDM6008 

(pET16H:TCH3), pSDM6004 (pGEX:PID) and pSDM6005 (pBluescript SK-PID) were 

described previously [32]. Primers used in this study are listed in Table 1. To obtain a 

plasmid encoding the GST tagged first 100 amino acids of PID, the SalI-SacI (blunted) 

fragment from pSDM6005 was cloned into the XhoI and HindIII (blunted) sites of pGEX-

KG [51]. Fragments encoding the PID catalytic domain (aa 75-398) and the C-terminal 

part of PID (aa 339-438) were obtained by PCR amplification using the primer pairs PID 

PK CaD F - PID PK CaD R and PID PK CT F - PID PK CT R, respectively and cloned 

into pGEX-KG using XhoI-HindIII (blunted) and EcoRI-HindIII (blunted), respectively. 

To overexpress TCH3 in Arabidopsis thaliana, its complete coding region was cloned 

from pSDM6008 as a BamHI fragment into pART7 and the expression cassette was 
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inserted as a NotI fragment into the pART27 binary vector. To construct 

35Spro::TCH3:YFP, 35Spro::PID:YFP and 35Spro::PID:CFP, the coding regions were 

amplified by PCR from pSDM6008 and pSDM6004 with respectively primers TCH3 attB 

F1 and TCH3 attB R1, and PID attB F1 and PID attB R1 and the resulting PCR 

fragments were recombined into pDONOR207 (BP reaction) and subsequently into 

pART7-derived destination vectors (LR reaction), containing either the CFP (PID) or the 

YFP (TCH3 and PID) coding region in frame with the Gateway cassette (Invitrogen). The 

35Spro::PID:YFP expression cassette was inserted as a NotI fragment into the 

pGreenII0179 binary vector. 

 
Table 1. Primer list 
 

PID PK CaD F 5’TTC-XhoI-TTTCGCCTCAT3’ 

PID PK CaD R 5’GCGCTCAGTTTAGACCTTTGA3’ 

PID PK CT F 5’TAATGACG-EcoRI-TCCGTAACAT3’ 

PID PK CT R 5’AAGCTCGTTCAAAAGTAATCGAAC3’ 

TCH3 attB F1 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCGGATAAGCTCACT3’ 

TCH3 attB R1 5’GGGGACCACTTTGTACAAGAAAGCTGGGTAAGATAACAGCGCTTCGAACA3’ 

PID attB F1 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAGCATGTTACGAGAATCAGACGGT3’ 

PID attB R1 5’GGGGACCACTTTGTACAAGAAAGCTGGGTCAAAGTAATCGAACGCCGCTGG3’ 

PID exon1 F1 5’TCTCTTCCGCCAGGTAAAAA3’ 

PID exon2 R1 5’CGCAAGACTCGTTGGAAAAG3’ 

TCH3pr F1 5’AAATGTCCACTCACCCATCC3’ 

TCH3pr R1 5’GGGAATTCTGAAGATCAGCTTTTGTCG3’ 

LBaI 5’TGGTTCACGTAGTGGGCCATCG3’ 

AtROC5 F 5’CGGGAAGGATCGTGATGGA3’ 

AtROC5 R 5’CCAACCTTCTCGATGGCCT3’ 

αTUB F 5’CGGAATTCATGAGAGAGATCCTTCATATC3’ 

αTUB R 5’CCCTCGAGTTAAGTCTCGTACTCCTCTTC3’ 

 

The attB recombination sites are underlined. 
 

In vitro pull-down 

E. coli strain Rosetta (Novagen) was transformed with pSDM6008, pSDM6004, pGEX-

PIDaa2-103, pGEX-PIDaa75-398 and pGEX-PIDaa339-438. Single colonies were 

picked and grown overnight (o/n) at 37oC in 5 ml liquid LC medium containing Cb, 15 

µg/ml Km and 34 µg/ml Chloramphenicol (Cam). The o/n culture was diluted 1/20 in 100 

ml of fresh LC medium containing Cb and Cam and grown at 37oC until an OD600 of 0.8. 

The cultures were induced with 1 mM IPTG for 4 h and bacteria were harvested by 

centrifugation and frozen. For GST-tagged PID, frozen bacterial pellets were resuspended 
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in 5 ml Extraction Buffer (EB: 20 mM Tris pH 7.5, 500 mM NaCl, 5 mM EDTA, 1 mM 

EGTA, 1 mM DTT, 0.2 % Triton X-100, 0.05 % Tween-20) supplemented with 0.1 mM 

Phenylmethanesulfonylfluoride (PMSF), 0.5 µg/ml Leupeptin and 5 µg/ml Trypsin 

Inhibitor and incubated on ice for 5 min. After sonication for 2 min, the mixtures were 

centrifuged at 10000 g for 15 min at 4oC. Supernatants were added to 500 µl of pre-

equilibrated 50 % Glutathione sepharose 4B beads (Amersham-Pharmacia) and incubated 

for 1 h at 4oC. Beads were washed once with 10 ml EB, and twice with 10 ml Washing 

Buffer 1 (10 mM Tris pH 7.5, 150 mM NaCl, 5 mM EDTA, 1 mM EGTA, 1 mM DTT). 

Proteins were eluted by incubating beads at room temperature with 2 ml Elution Buffer 1 

(50 mM Tris pH 8.0, 10 mM reduced glutathione). Eluates were passed through 

MicroSpin chromatography columns (BioRad) and concentrated using Vivaspin 6 device 

10000 MWCO (Sartorius). For His-tagged TCH3, bacteria pellets were resuspended in 

Binding Buffer (BB: 20 mM Tris pH 7.5, 500 mM NaCl, 5 mM MgCl2, 2 mM CaCl2, 1 

mM DTT, 0.2 % Triton X-100, 0.05 % Tween-20) supplemented with 0.1 mM PMSF, 0.5 

µg/ml Leupeptin and 5 µg/ml Trypsin Inhibitor, incubated for 5 min on ice prior to lysis 

of cells by 2 min sonication. For in vitro pull down assays, 2 µg of purified GST-tagged 

protein was immobilized on Glutathione High Capacity Coated Plates (Sigma). After 

three washes with BB, 200 µl of total protein extract containing His-tagged TCH3 was 

added to each well and incubated for 1 h at 4oC, washed once with BB and twice with 

Washing Buffer 2 (10 mM Tris pH 7.5, 150 mM NaCl, 5 mM MgCl2, 2 mM CaCl2, 1 

mM DTT). Protein complexes were eluted with 25 µl of 2x Laemmli sample buffer and 

boiled. Eluate samples were analyzed by SDS-PAGE (12 % gel). Proteins were blotted on 

a PDVF membrane (Millipore, USA) and detected using penta-his antibodies (Qiagen) 

according to the manufacturer’s instructions. 

 

Phosphorylation assays 

His-tagged proteins were purified by immobilized-metal affinity chromatography. 

Bacterial pellets were resuspended in 2 ml of Lysis Buffer (LB: 25 mM Tris pH 8.0, 500 

mM NaCl, 20 mM imidazole, 0.05 % Tween-20, 10 % glycerol) and incubated 5 min on 

ice. After sonication for 2 min, 100 µl of 20 % Triton X-100 was added and the mixture 

was incubated 5 min on ice, followed by centrifugation at 10000 g for 15 min at 4oC. The 
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soluble fraction was added with 400 µl of pre-equilibrated 50 % NTA-agarose matrix 

(Qiagen) and mixed gently for 1.5 h at 4oC. Beads were washed three times with 2 ml of 

LB, 2 ml of Washing Buffer 3 (25 mM Tris pH 7.5, 500 mM NaCl, 40 mM imidazole, 

0.01 % Tween-20, 10 % glycerol), and 2 ml of Wash Buffer 4 (25 mM Tris pH 7.0, 500 

mM NaCl, 80 mM imidazole and 10 % glycerol). Elution was performed by incubating 

the beads on 600 µl Elution Buffer 2 (25 mM Tris pH 7.0, 300 mM NaCl, 300 mM 

imidazole, 10 % glycerol) for 30 min at 4oC. Samples were analyzed by SDS-PAGE and 

quantified.  

The Pepchip Kinase Slide A (Pepscan) was used for in vitro phosphorylation 

assays for PID in the presence of TCH3. Thirty ng of His:PID, His:TCH3 and His:PBP1 

(Chapter 3, this thesis) were mixed with Kinase Mastermix (50 mM HEPES pH 7.4, 20 

mM MgCl2, 20 % v/v glycerol, 0.01 mg/ml BSA, 0.01 % v/v Brij-35, 2 mM CaCl2), 10 

µM ATP and 300 µCi/ml γ-33P-ATP (specific activity ~ 3000 Ci/mmol, Amersham). Fifty 

µl of the reaction mix was incubated with the Pepchip Kinase Slide A for 4 h at 30oC in a 

humid chamber. Slides were washed twice with 2 M NaCl, twice with water and dried for 

30 min. Slides were exposed to X-ray film FUJI Super RX for 12 and 24 h.  

 

Arabidopsis lines, plant growth, transformation and protoplast transfections 

The 35Spro::PID-21, TCH3pro::TCH3:GUS and PIDpro::PID:VENUS lines were 

described previously [23;25;33]. Loss-of-function alleles pid-14 (SALK_049736), tch3-1 

(SALK_056345) and tch3-2 (SALK_090554) were obtained from NASC [52]. 

Arabidopsis seeds were surfaced-sterilized by incubation for 15 min in 50 % 

commercial bleach solution and rinsed four times with sterile water. Seeds were 

vernalized for 2 to 4 days and germinated at 21oC, 16 h photoperiod and 3000 lux on 

solid MA medium [53] supplemented with antibiotics when required. Two- to three-week 

old plants were transferred to soil and grown in growth room at 21oC, 16 h photoperiod, 

70 % relative humidity and 10000 lux.  

To screen for the presence of the different T-DNA insertions, the T-DNA-specific 

LBaI primer was combined in a PCR reaction with the gene-specific PCR primers PID 

exon1 F1 or PID exon2 R1 for pid-14 and TCH3pr F1 or TCH3pr R1 for tch3-1 and tch3-
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2. Sequencing of the junction fragment and Northern blot analysis were used to confirm 

the insertion position and full knock-out of the loss-of-function alleles. 

Arabidopsis thaliana ecotype Columbia wild type (for 35Spro::TCH3) or the 

35Spro::TCH3-2 line (for 35Spro::PID:YFP) were transformed by a floral dip method as 

described [54] using Agrobacterium LBA1115 strain. The T1 transformants were selected 

on medium supplemented with 50 µg/ml Km for 35Spro::TCH3 or 20 µg/ml hygromycin 

(Hm) for 35Spro::PID and with 100 µg/ml timentin to inhibit the Agrobacterium growth. 

For further analysis, single locus insertion lines were selected by germination on 25 

µg/ml Km or 10 µg/ml Hm. 

Protoplasts were obtained from Arabidopsis thaliana Columbia cell suspension 

cultures that were propagated as described [55]. Protoplast isolation and PEG-mediated 

transfections with 10 µg plasmid DNA were performed as initially indicated [56] and 

adapted by Schirawski and coworkers [55]. To obtain auxin-starved protoplasts, auxin 

(NAA) was removed from the media during protoplast isolation. Following transfection, 

the protoplasts were incubated for at least 16 h prior to observation.  

 

Histochemical staining and microscopy 

For the Histochemical detection of GUS expression, seedlings were fixed in 90 % acetone 

for 1 h at -20oC, subsequently washed three times in 10 mM EDTA, 100 mM sodium 

phosphate (pH 7.0), 2 mM K3Fe(CN)6 and stained for 2 h in 10 mM EDTA, 100 mM 

sodium phosphate (pH 7.0), 1 mM K3Fe(CN)6, 1 mM K4Fe(CN)6 containing 1 mg/ml 5-

bromo-4-chloro-3-indolyl-β-D-glucuronic acid, cyclohexylammonium salt (Duchefa). 

Seedlings were post-fixed in ethanol-acetate (3:1), cleared in 70 % ethanol and stored in 

100 mM sodium phosphate (pH 7.0). GUS expression patterns in cleared Arabidopsis 

seedlings were analyzed using a Zeiss Axioplan II microscope with DIC optics. Images 

were recorded by a ZEISS camera. Arabidopsis lines expressing YFP-fusion proteins 

were analyzed with a ZEISS Axioplan microscope equipped with a confocal laser 

scanning unit (MRC1024ES, BioRad, Hercules, CA), using a 40x oil objective. The YFP 

fluorescence was monitored with a 522-532 nm band pass emission filter (488 nm 

excitation). All images were recorded using a 3CCD Sony DKC5000 digital camera. For 

the protoplast experiments, a Leica DM IRBE confocal laser scanning microscope was 
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used with a 63x water objective, digital zoom and 51 % laser intensity. The fluorescence 

was visualized with an Argon laser for excitation at 514 nm (YFP) and 457 nm (CFP), 

with 522-532 nm (for the YFP) and 471-481 nm (for the CFP) emission filters. A 

transmitted light picture was taken for a reference. The images were processed by ImageJ 

(http://rsb.info.nih.gov/ij/) and assembled in Adobe Photoshop 7.0. 

 

Fluorescence Resonance Energy Transfer (FRET) 

Protoplasts were prepared and their fluorescence monitored using a Leica confocal 

microscope as described above. Lambda scanning was done by excitation at 457 nm 

(donor, CFP) and by measuring emission at 5 nm intervals from 460 to 585 nm using a 

RSP465 filter. Of every interval an image was obtained and the intensity of three fixed 

areas (regions of interest, ROIs) was quantified using the Leica confocal laser scanning 

software. The intensity of these three ROIs was averaged and normalized. Per sample 

lambda scanning was performed on three protoplasts and the obtained normalised 

intensity of all three protoplasts was averaged and used to calculate the standard 

deviation. The Student’s t-test was used to test for significant differences in wavelength 

specific intensities between the test sample and the negative control. Significantly 

quenched donor emission wavelength intensity, combined with significantly increased 

acceptor emission wavelength intensity was considered indicative for protein-protein 

interaction-dependent FRET. Similar results were obtained for three independent 

transfections. 

 

RNA extraction and Northern Blots 

Total RNA was purified using the RNeasy Plant Mini kit (Qiagen). Subsequent RNA blot 

analysis was performed as described [57] using 10 µg of total RNA per sample. The 

following modifications were made: pre-hybridizations and hybridizations were 

conducted at 65oC using 10 % Dextran sulfate, 1 % SDS, 1 M NaCl, 50 µg/ml of single 

strand Herring sperm DNA as hybridization mix. The hybridized blots were washed for 

20 min at 65oC in 2x SSPE 0.5 % SDS, and for 20 min at 42oC in respectively 0.2x SSPE 

0.5 % SDS, 0.1x SSPE 0.5 % SDS and 0.1x SSPE. Blots were exposed to X-ray film 

FUJI Super RX. The probe for TCH3 was isolated from pSDM6008 as a BamHI 



CHAPTER 2 

56 
 

fragment. The probes for AtROC5, for αTubulin and PID were PCR amplified from Col 

genomic DNA and column purified (Qiagen). Probes were radioactively labeled using a 

Prime-a-gene kit (Promega). 

 

Biological assays 

For the root collapse assay, about 200 seedlings per line were grown in triplicate on 

vertical plates on MA medium, while the development of the seedling root was monitored 

and scored each day during 8 days for the collapse of the primary root meristem. For the 

phenotypic analysis of pid-14+/35Spro::TCH3-1, pid-14+/35Spro::TCH3-3, pid-

14+/35Spro::TCH3-4 and pid-14/tch3-2 lines, about 300 seeds were plated in triplicate 

on MA medium and germinated for one week. The number of dicotyledon seedlings and 

of seedlings with specific cotyledon defects was counted and the penetrance of the 

specific phenotypes was calculated based on a 1:3 segregation ratio for pid homozygous 

seedlings. For GUS analysis, seeds of TCH3pro::TCH3:GUS were grown for 4 days on 

MA medium, supplemented with 5 µM IAA when indicated. For the subcellular 

localization of PID in Arabidopsis roots, vertically grown 3 day-old PIDpro:PID:VENUS 

seedlings were treated with 5 µM IAA (in MA medium) with 30 min pre-treatment with a 

calmodulin inhibitor (0.5 mM Tetracain, Sigma) or calcium channel blocker (1.25 mM 

Lanthanum, Sigma) when indicated. Analysis of the subcellular localization was done 

using the BioRad confocal microscope as described above. 

 

Accession Numbers 

The Arabidopsis Genome Initiative locus identifiers for the genes mentioned in this 

chapter are as follows: PBP1 (At5g54490), PID (At2g34650), TCH3 (At2g41100), ROC 

(At4g38740), αTubulin (At5g44340). 
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Summary 

The plant hormone auxin directs plant patterning and tropic growth responses through its 

unidirectional transport, which creates auxin maxima and minima that regulate basic 

cellular processes such as cell division, differentiation and elongation. The direction of 

this intercellular auxin transport is determined by the asymmetric localization of PIN 

auxin transporters, whose subcellular targeting is dependent on their phosphorylation by 

the plant specific PINOID (PID) protein serine/threonine kinase. Here we investigated the 

function of two small EF-hand proteins, PINOID BINDING PROTEIN1 (PBP1) and its 

close homolog PBP1H, which interact with PID in a calcium-enhanced manner. We show 

that PBP1 not only stimulates PID kinase activity, but also changes PID substrate 

preference in vitro. Genetic experiments with different loss- and gain-of-function lines 

indicate that PBP1 and PBP1H act redundantly to enhance PID activity during embryo 

development and that they suppress root growth, possibly through their stimulatory effect 

on PID. PBP1 overexpression partially inhibits the auxin-induced calcium-dependent 

sequestration of PID from the plasma membrane, indicating that apart from enhancing the 

activity of the PID kinase, PBP1 also stabilizes localization of PID at the plasma 

membrane, close to its phosphorylation targets, the PIN proteins. We propose that PBP1 

and PBP1H fine-tune PID signaling, in a cell-type and tissue specific manner, thereby 

modulating the direction of PAT in response to changes in cytosolic calcium. 
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Introduction 

Auxin plays important roles as signaling molecule in many cellular and developmental 

processes in plants. Intercellular polar auxin transport (PAT) generates auxin maxima and 

minima that are essential for tropic growth responses, embryogenesis, organ positioning 

and meristem maintenance. Auxin transport is mediated by three type of transport 

proteins [1;2], of which the PIN auxin efflux carriers are the rate limiting factors in auxin 

efflux that determine the direction of PAT through their asymmetric subcellular 

localization [3;4]. The plant specific protein serine/threonine kinase PINOID (PID) 

regulates PAT by controlling PIN localization, and thereby determining the direction of 

PAT [5;6]. Recent data indicate that PID is a plasma membrane-associated kinase that 

acts antagonistic to trimeric PP2A phosphatases, through direct phosphorylation of PINs 

[7;8]. 

Calcium is a common second messenger in signaling pathways. Early studies on 

sunflowers stem segments have shown that PAT is abolished in the presence of calcium 

chelators and restored by application of calcium, which suggests an important role for 

calcium in the regulation of PAT [9]. The first molecular evidence for a link between 

calcium and PAT was provided by the identification of the calcium-binding proteins 

PINOID BINDING PROTEIN1 (PBP1) and TOUCH3 (TCH3) as interacting proteins of 

PID [10]. The binding of PBP1 and TCH3 to PID, which is calcium-enhanced for PBP1 

and completely dependent on calcium for TCH3, was found to respectively up-regulate 

and repress PID kinase activity in vitro [10]. In contrast to TCH3, which has six calcium-

binding pockets, or EF-hands, PBP1 has a single one. PBP1 has also been named KRP2 

(for KIC-related protein2), as it is part of a small protein family that includes the close 

PBP1 homolog PBP1H/KRP1 and KIC (KCBP-interacting Calcium binding protein) 

[11]. KIC is involved in the regulation of trichome development by a calcium-dependent 

interaction with the kinesin-like calmodulin-binding protein KCBP [11]. KCBP is a 

microtubule (MT) motor protein that determines trichome morphology by regulating 

branching and polar growth [12]. Calcium-dependent KIC-KCBP interaction inhibits 

binding of KCBP with the MT, thereby affecting trichome development [11]. 

Interestingly, this pathway also implicates KIPK, a KCBP-interacting protein kinase that 

belongs to the same AGCVIII kinase family as PID [13;14]. Here we present a functional 
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and genetic analysis of the PID-PBP1 interaction to elucidate the regulatory role of PBP1. 

In vitro experiments show that PID contains two major PBP1-binding sites and that PBP1 

not only enhances PID kinase activity but also changes its substrate recognition signature. 

Furthermore, using Arabidopsis thaliana protoplasts we tested the effect of PBP1 on PID 

membrane localization. In order to elucidate the regulatory role of PBP1 in planta we 

characterized combinations of loss- and gain-of-function mutant lines of PBP1, PBP1H 

and PID. Our results indicate that PBP1 and PBP1H act redundantly to enhance PID 

kinase activity during embryo development, and that they partly suppress root growth, 

possibly through their stimulatory effect on PID. PBP1 overexpression partially inhibits 

auxin-induced calcium-dependent sequestration of PID from the plasma membrane, 

suggesting that apart from enhancing the activity of the PID kinase, PBP1 also influences 

PID subcellular localization. These data confirm previous in vitro data, indicating a role 

for PBP1 and PBP1H as positive regulators of PID kinase activity [10], and extend the 

function of these small EF-hand proteins to that of regulators of the specificity and 

subcellular localization the PID protein kinase. 

 
Results 

 
PBP1 interacts with PID in a calcium enhanced manner 

Previously, PBP1/KRP2 was identified as an interactor of PINOID. Surprisingly, the 

same yeast two-hybrid screen did not identify the closest homolog of PBP1, 

PBP1H/KRP1 [10], which shares 78% mRNA sequence identity and 80% amino acid 

sequence identity (Figure 1a). In order to test the possible interaction between PBP1H 

and PID we performed in vitro pull-down experiments using bacteria expressed proteins. 

The results indicate that PBP1H also interacts with PID (Figure 1b), suggesting that 

PBP1 and PBP1H act redundantly in planta.  

In order to map the PBP1 interaction sites in PID, we searched the amino acid sequence 

of this kinase for putative calmodulin (CaM) binding sites. A first search using the 

Eukaryotic Linear Motif (ELM) server [15] predicted a single IQ motif on PID (amino 

acids 255-273) within the insertion on the protein kinase catalytic domain (Figure 1c). IQ 

motifs occur in a wide range of calmodulin target proteins, which in some proteins 

mediate Ca2+-dependent interactions, however, this motif can also interact in a Ca2+-
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independent manner [16;17]. A second search in the CaM target database [18] predicted 

three putative sites, one of which (amino acids 251-272) overlaps with the IQ motif 

previously predicted by the ELM server. The other two predicted sites (amino acids 59-

78, and 376-393) are similar to a modified version of the IQ motif (Figure 1c) [17]. To 

confirm whether the predicted CaM binding sites are responsible for the interaction 

between PID and PBP1 we generated three deletions mutants of PID and performed in 

vitro pull-down assays for PBP1 (Figure 1c and d). Our results are consistent with the 

presence of two major PBP1 binding sites on PID (Figure 1d). PBP1 binds preferentially 

to the NT part of PID where Ca2+ considerably enhances the interaction (Figure 1d and 

e). The IQ motif within the protein kinase catalytic domain shows less affinity and 

calcium- independent binding, while the CT part seems to have no or only weak affinity 

for PBP1 (Figure 1d and e). In conclusion, our results suggest that PBP1 preferentially 

binds two sites of PID, an N-terminal one mediating a Ca2+-enhanced interaction, and the 

central IQ motif that interacts with PBP1 in a Ca2+-independent manner. 

 

PBP1 enhances PID kinase activity 

Previously we have shown that PBP1 enhances the autophosphorylation of PID in vitro 

[10], however, its effect on PID transphosphorylation remains unknown. Moreover, the 

recent discovery of PIN proteins as direct phosphorylation targets of PID [8] prompted us 

to investigate the effect of PBP1 on the PID-dependent transphosphorylation of the PIN2 

central hydrophilic loop (PIN2HL). In vitro phosphorylation assays using E. coli 

produced proteins showed that PBP1 acts as a positive regulator of PID (Figure 2a). In 

contrast to PBP1, which increased PID activity by a 2-fold, PBP1H only had a very mild 

(1.2-fold) effect on PID dependent PIN2HL phosphorylation (Figure 2a). To investigate 

whether PBP1 also stimulated PID activity on other phospho-substrates, we used the 

Pepchip Kinomics Array (Pepscan) that contains 976 different peptides of known 

eukaryotic phosphorylated proteins spotted in triplicate on a glass slide [19;20]. The array 

was incubated with PID , or with PID and PBP1, both in the presence of calcium (Figure 

2b). Each slide was scanned using the Biomolex reader and analysed using the Biosplit 

software (Biomolex AS). A comparison of the two arrays led to the identification of 39 
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Figure 1. PBP1 and PBP1H interact with PID in a calcium enhanced manner. 

(a) Alignment of the PBP1 and PBP1H proteins. The EF-hand domain is underlined. 

(b) In vitro pull-down of His-PBP1 or His-PBP1H with GST-tagged PID from E. coli total protein extracts 

before (0 hr), or 2 and 4 hrs after induction of His-PBP1 or His-PBP1H expression by IPTG addition. The 

upper panel shows the Coomassie stained SDS-PAGE gel, the Western blot probed with anti-Penta His 

antibody is shown in the lower panel. GST: GST control; PID: GST-PID; MWM: molecular weight 

marker;. 

(c) Schematic representation of PID domains and the deletion mutants used for the pull downs assays in (d). 

The eleven conserved sub-domains of the protein kinase catalytic domain are represented by gray boxes 

and marked with Roman numbers. The insertion between sub-domain VII and VIII is represented as a light 

gray box. The predicted calmodulin binding sites are represented as white and black boxes for the IQ motif 

and its modified versions, respectively. 
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Figure 1 (continued) 

 (d) Mapping of the PBP1 binding sites in PID. The upper panel shows the Coomassie-stained SDS-PAGE 

gel, the Western blot with anti-Penta His antibody is shown in the lower panel. GST: GST control; PID: 

GST-PID2-438; NT: GST-PID2-103; CaD: GST-PID75-398; CT: GST-PID339-438. 

 (e) Densitometry analysis of the Western blot in (d). Exposed X-ray films and the corresponding 

Coomassie stained gels were scanned using a calibrated densitometer GS-800 (BioRad) and density 

measurements were performed using Gel Doc V4 software (BioRad). Western blot intensities were adjusted 

to the loading accordingly. 

 

peptides that were significantly phosphorylated over background levels. In the presence 

of PBP1, PID dependent phosphorylation of the peptides was increased between 1.2- and 

11.8-fold (Figure 2b, right panel), suggesting that PBP1 does not only act as a positive 

regulator, but also changes the substrate preference of PID. To obtain a better 

understanding of the effect of PBP1 on the substrate selectivity of PID we used the 

averaged phosphorylation intensities of the 40 substrates to generate a weighted 

phosphofingerprint by taking into account the frequency of each amino acid on positions 

-5 to +5 with respect to the phosphorylated residue and the efficiency of phosphorylation 

for each individual peptide (Figure 2c). Our results indicate that at least in these in vitro 

assays PID has a strong preference for lysine residues at position -4 from the 

phosphotarget (serine at position 0), for basic amino acids (Arg and Lys) at positions -5, -

3, -2, 2 and 3 (Figure 2c, left panel), and no clear preference for positions -1 and 1. 

Interestingly, in the presence of PBP1 there is a clear shift towards the hydrophobic 

amino acids isoleucine and valine at positions -1 and 1, respectively, suggesting that 

PBP1 has an effect on PID substrate preference. 

 

PBP1 loss- and gain-of-function mutants are affected in root length 

As a first approach to analyze the function of PBP1 as a regulator of the PID kinase 

activity in planta, we isolated a pbp1 knock-out mutant, and generated lines 

overexpressing the PBP1 cDNA under control of the 35S promoter. The pbp1-1 allele 

(line GT6553 in Landsberg erecta (Ler) background) has a transposon inserted at 91bp 

after the ATG. RT-PCR analysis did not detect PBP1 transcript in pbp1-1 mutant 

seedlings, indicating that it is a complete loss-of-function allele (Figure 3a). 
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Figure 2. PBP1 enhances PID activity and changes its substrate preference. 

(a) In vitro phosphorylation of the PIN2 central hydrophilic loop (PIN2HL) by PID. Autoradiogram (upper 

left panel) and Coomassie stained gel (lower left panel) showing PBP1 enhanced phosphorylation (lane 1: 

PID with PIN2HL, lane 2: PID and PBP1 with PIN2HL; lane 3: PID and PBP1H incubated with PIN2HL). 

The right panel represents the quantification of PID-dependent 
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Figure 2 (continued) 

PIN2HL phosphorylation in the presence of PBP1 or PBP1H. The numbers above the bars indicate the fold 

increase compared to PID alone. 

(b) Pepchip kinomics array incubated with PID (left upper panel) or PID in the presence of PBP1 (left 

lower panel) and comparison of the phosphorylation intensity of 39 peptides between the two arrays 

showing the differential positive effect of PBP1 on PID protein kinase activity (right panel).  

 (c) Phosphofingerprint of PID (left panel) or PID in the presence of PBP1 (right panel). The matrix 

representation (upper) shows the weighted frequency for each amino acid at the 11 positions of the 

peptides. Frequencies above 0.5 are depicted as dark gray boxes with white font, frequencies between 0.3-

0.5 are shown as gray boxes and 0.1-0.3 as light gray boxes. The number of peptides used for each matrix is 

shown at the bottom (PID n=40 and PID+PBP1 n=29). In the fingerprint plot (lower) the size of the amino 

acids corresponds to the weighted frequency for each position. Only amino acids with a frequency above 

0.1 are depicted. Positively charged amino acids are coloured in blue, hydrophobic in black, less 

hydrophobic in green and Asn or Gln in pink. 

 

Detailed phenotypic analysis revealed that the primary roots of pbp1-1 were longer than 

wild type roots (120% of the Ler root length, Student’s t-test, p < 0.02, Figure 3c). 

Moreover, pbp1-1 did not show any other phenotype, and since the expression of PBP1H 

was apparently not altered in pbp1-1 (Figure 3a), this suggests that, except for a specific 

role for PBP1 in root growth, PBP1 and PBP1H act redundantly. From the multiple 

overexpression lines that were generated, two single locus lines were selected for further 

studies: one with a strong (35Spro::PBP1-29) and one with a medium (35Spro::PBP1-

53) PBP1 overexpression level (Figure 3b). The only observed phenotype in these lines 

was a slight but significant reduction of the root length. The root lenght of 

35Spro::PBP1-29 and 35Spro::PBP1-53 seedlings was respectively 90% and 86% of that 

of wild-type seedlings(Student’s t-test, p < 0.02, Figure 3c). The reduction in root length 

was still significant when seedlings of the 35Spro::PBP1 lines were germinated on 

medium containing 0.1 µM indole-3-acetic acid (IAA) or the auxin transport inhibitor 

naphthylphtalamic acid (NPA) (data not shown), suggesting that PBP1 overexpression 

does not change the sensitivity to these compounds. 
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Figure 3. PBP1 controls root growth. 

(a) RT-PCR on Col cDNA, pbp1-1 cDNA and Col genomic DNA of one-week old seedlings indicates that 

pbp1-1 is a null allele for PBP1, and that PBP1H expression is not affected by pbp1 loss-of-function. 

(b) Northern blot analysis showing the level of PBP1 overexpression in seedlings of the PBP1 

overexpression lines 35Spro::PBP1-29 and -53, as compared to Col wild type. The ethidium bromide 

stained RNA gel is shown as loading control. 

(c) Root length of eight day-old seedlings of 35Spro::PBP1-29 and -53, pbp1-1 and Ler, indicated as a 

percentage of that of Col wild type. The mean of three experiments is shown, * significantly different from 

Col, # significantly different from Ler (Student’s t-test, p < 0.02)  

 

PBP1 and PBP1H influence PID subcellular localization in vivo. 

To confirm the interaction between PID and PBP1 or PBP1H, we transfected Arabidopsis 

thaliana derived cell suspension protoplasts with 35Spro::PID:CFP, 35Spro::PBP1:YFP 

or 35Spro::PBP1H:YFP. Consistent with previous reports, PID showed a plasma 

membrane localization (Figure 4a) [7;8;13;21]. In contrast, PBP1 and PBP1H localized in 

the cytoplasm (Figure 4b and c). When we co-transfected 35Spro::PID:CFP with 

35Spro::PBP1:YFP or 35Spro::PBP1H:YFP, however, we observed that PID was 

sequestered from the plasma membrane to the cytoplasm (Figure 4d and e). To confirm 

that the observed internalization of PID is caused by a direct interaction between PID and 

PBP1 or PBP1H we measured fluorescence resonance energy transfer (FRET) by lambda 
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scanning [22]. Protoplasts co-transfected with 35Spro::CFP and 35Spro::YFP or 

transfected with 35Spro::YFP:CFP, were used respectively as negative and positive 

control (Figure 4f and g). Protoplasts co-expressing PID:CFP and either PBP1:YFP or 

PBP1H:YFP were characterized by a quenching of the CFP signal (475nm, donor) and 

increased signal on YFP channel (527nm, acceptor) (Figure 4g), something that was also 

observed in protoplasts expressing the CFP:YFP fusion. Moreover, normalized emission 

intensities between the interacting and non interacting samples were significantly 

different (Student’s t-test p < 0.05) (Figure 4g), suggesting that the sequestration of PID 

by PBP1 or PBP1H is caused by a direct interaction. To further analyze the effect of the 

PBP1-dependent regulation of PID in plants, we analyzed whether PBP1 overexpression 

had any effect on PID expression and localization using the PIDpro::PID:VENUS line 

[8]. We focused our attention on epidermal cells in the distal elongation zone, as PID is 

expressed in this region [8], and we observed previously in these cells that auxin 

treatment induced rapid and transient sequestration of PID from the plasma membrane to 

the cytoplasm (Figure 4l and Chapter 2, this thesis). Moreover, PBP1 overexpression 

resulted in a significant reduction in root length, suggesting that it acts in root epidermis 

cells. The auxin-dependent release of PID from the plasma membrane relies on an 

increase of the cytoplasmic calcium concentration through plasma membrane calcium 

channels, and on calmodulin-like activity, as it can be inhibited by pre-incubation with 

the plasma membrane calcium channel inhibitor Tetracain (Figure 4n), or with the 

calmodulin inhibitor Lanthanum (Figure 4o). PBP1 overexpression did not result in a 

clear alteration of PID localization (Figure 4i), but it did partially inhibit the auxin-

dependent transient sequestration of PID (Figure 4m). These results are contrasting with 

the protoplast data, where co-expression of PBP1 does lead to cytosolic localization of 

PID, and suggest that in planta PBP1 is not involved in the sequestration of PID, but that 

it stabilizes the membrane association of PID. 
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Figure 4. PBP1 interacts with PID in protoplasts, and its overexpression stabilizes the plasma membrane 

association of PID in root epidermis cells. 

(a) Representative protoplast showing plasma membrane localization of PID 

(b, c) Cytoplasmic subcellular localization of PBP1:YFP (b) and PBP1H:YFP (c) in protoplast. 

(d, e) Protoplast co-transfected with PID and either PBP1 (d) or PBP1H (e). Both channels are shown 

independently (CFP in red and YFP in green) and its corresponding merged image. 

(f, g) Fluorescence resonance energy transfer (FRET) profiles of control protoplasts (co-expressing CFP 

and YFP, PBP1:YFP or PBP1H:YFP) and of protoplasts co-expressing PID and PBP1 or PBP1H (f). 

(h-o) Confocal sections showing the subcellular localization of PID:VENUS in epidermal cells of the 

elongation zone of seedling root tips of the lines PIDpro::PID:VENUS (h, j-l, n, o) and 

PIDpro::PID:VENUS/35Spro::PBP1-29 (i, m). PID is membrane localized in control medium (h, i), but is 

transiently sequestered to  
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Figure 4 (continued) 

the cytoplasm after 5 min treatment with 5 µM IAA (l), but less when PBP1 is overexpressed (m). A 30  

min pre-treatment with 0.5 mM Tetracain (j, n) or 1.25 mM Lanthanum (k, o) did not affect PID 

localization, but blocked the auxin-induced transient sequestration to the cytosol (n, o). Scale bars represent 

10 µm. 

 

PBP1 and PBP1H act redundantly as positive regulators of PID activity 

Since the loss-of-function allele pbp1-1 did not give phenotypes other than the increased 

root length, and PBP1H was also shown to bind PID (Figure 1 and 3), we suspected that 

the two proteins were functionally redundant, and tried to identify pbp1h loss-of-function 

alleles. Unfortunately, in the two available T-DNA insertion lines (SALK_013868 and 

SALK_048098) with T-DNAs at positions -673 and -582 relative to the PBP1H ATG, 

respectively, PBP1H expression was found to be at wild-type levels (data not shown). 

Therefore, we attempted to knock-down both PBP1 and PBP1H expression through RNA 

interference (RNAi), by overexpressing a hairpin RNA spanning the complete PBP1H 

coding region (hpPBP1H). Several lines were obtained containing a single locus insertion 

of the hpPBP1H construct, two of which (hpPBP1H-13 and hpPBP1H-16) were studied 

in more detail. Expression analysis showed that PBP1H expression in both lines was 

significantly reduced (Figure 5a). The residual fragment amplified in both lines was also 

observed in the minus reverse transcriptase control, indicating that it was derived from 

contaminating DNA. In the hpPBP1H-13 sample, a larger additional band was detected. 

Since Northern blot analysis indicated that line hpPBP1H-13 shows the highest 

expression of the hpPBP1H RNA (data not shown), it is likely that this fragment 

represents the full length hairpin RNA amplified with the forward PCR primer. As 

anticipated based on the homology between the PBP1 and PBP1H coding regions, PBP1 

expression was also suppressed in hpPBP1H-13 and was even undetectable in hpPBP1H-

16 (Figure 5a). Overall, like for pbp1-1 loss-of-function seedlings, the primary roots of 

hpPBP1H-13 and hpPBP1H-16 seedlings were were longer compared to the wild type 

control (109% and 128%, respectively, Student’s t-test, p < 0.06, Figure 5b). 

Interestingly, the increase in root length correlated with the PBP1 knock-down level. 

Because of lack of further phenotypes we tested the effect of modified PBP1 and PBP1H 
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expression on pid loss-of-function and PID overexpression phenotypes. Neither PBP1 

overexpression nor pbp1 or pbp1h loss-of-function affected the strong seedling 

phenotypes caused by PID overexpression (results not shown). In contrast, PBP1 

overexpression slightly reduced the severity of the tricotyledon phenotype of the 

intermediately strong pid-14 loss-of-function allele (47% for pid-14 (n = 1469) 41% for 

pid-14/35Spro::PBP1-29 (n=1116 ,Student’s t-test, p > 0.05) and 31% for pid-

14/35Spro::PBP1-53 (n = 1889, Student’s t-test, p < 0.05), Figure 5c) [5;23;24], although 

this reduction did not correlate with the level of PBP1 overexpression. 

In the pid-14+/pbp1-1 double mutant the penetrance of cotyledon defects did not 

significantly differ from that in pid-14+/ (43%, n = 1040, Student’s t-test, p > 0.05). 

However, seedlings with one cotyledon (5%, Figure 5h), four cotyledons (2%, Figures 5f 

and 5i) or even no cotyledons (4%, Figure 5g) were observed. We considered this a 

significant shift, as most of these phenotypes are never observed for the pid-14 allele. 

Progeny of pid-14+/hpPBP1H double mutant plants contained a significantly higher 

number of seedlings with cotyledon defects (even up to 75% for pid-14+/hpPBP1H-13) 

compared to pid-14+ and pid-14+/pbp1-1 (Figures 5j and 5k-n). In both pid-

14+/hpPBP1H-13 and pid-14+/hpPBP1H-16 the number of monocotyledon seedlings 

was increased (8% and 6%, respectively), whereas a significant number of seedlings 

without cotyledon could be observed in pid-14+/hpPBP1H-13 (15%). Furthermore, 

several seedlings without hypocotyl (Figure 5l) or without hypocotyl and root (Figure 

5m) were observed in pid-14+/hpPBP1H-16 (> 3%, Figure 5j). In progeny of the pid-

14+/pbp1-1/hpPBP1H-16 triple mutant lines the severity of the embryo/seedling 

phenotypes was even more enhanced, with 14% and 18% of the seedlings showing 

respectively one or no cotyledon (Figure 5k), and 8% of the seedlings lacking hypocotyl 

or hypocotyl and root (Figure 5l and 5m). Furthermore, seedlings without cotyledon had 

defects in the formation of the first leaves, which were fused at the blade (Figure 5o) or at 

the petiole (Figure 5p), indicating that PID, PBP1, PBP1H are involved in broader 

aspects of plant patterning than only cotyledon initiation and positioning. These data 

suggest that PBP1 and PBP1H act redundantly in the PID pathway and have a positive 

effect on the kinase function. The observed defects in embryo patterning and phyllotaxis 
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in pid-14/pbp1-1/hpPBP1H-16 confirm the proposed role of PID in regulation of organ 

boundaries [25]. 

 

Figure 5. PBP1 and PBP1H act redundantly on root growth, embryo patterning and phyllotaxis. 

(a) RT-PCR reactions showing that both PBP1 (middle) and PBP1H (top) expression are reduced in 

hpPBP1H-13 whereas PBP1 expression is absent in hpPBP1H-16. Controls are Col genomic DNA 

(gDNA), Col RNA in which the reverse transcriptase was omitted during the RT reaction (Col -RT), Col 

cDNA and water.  

(b) The percentage of main root growth in Ler wild type, pbp1-1, hpPBP1H-13 and hpPBP1H-16 

seedlings, normalized to Col wild type seedlings. The mean of three experiments is shown. Stars (*) and 

hash signs (#) indicate significant differences compared to Col and Ler, respectively (Student’s t-test, p < 

0.06).  

(c) The percentage of cotyledon phenotypes in progeny of pid-14+ (n = 1469), pid-14+/pbp1-1 (n = 1040), 

pid-14/pbp1-1 (n = 291), pid-14+/35Spro::PBP1-29 (n = 1116), pid-14+/35Spro::PBP1-53 (n = 1889),  
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Figure 5 (continued) 

pbp1-1 (n = 984), 35Spro::PBP1-29 (n = 595), 35Spro::PBP1-53 (n = 828). pid-14+ and pid-14 indicate  

lines segregating or homozygous for the pid-14 allele. Stars (*) indicated that the values are significantly 

different compared to pid-14 (Student’s t-test, p < 0.05).  

(d-e) A segregating pid-14+ population typically consist of 53% dicotyledonous seedlings (d) and 47% 

tricotyledonous seedlings (e). 

(f-i) Seedlings with an aberrant number of cotyledons were observed in pid-1/ pbp1-1: four cotyledon (f, i), 

no cotyledon (g) and one cotyledon (h) seedlings. 

 (j) The percentage of seedling phenotypes in pid-14+, pid-14+/hpPBP1H-13, pid-14+/hpPBP1H-16, pid-

14+/pbp1-1/hpPBP1H-16, hpPBP1H-13 and hpPBP1H-16./pid-14+ and pid-14 indicate lines segregating 

or homozygous for the pid-14 allele, respectively. Stars (*) indicate significant differences compared to 

pid-14 (Student’s t-test, p < 0.06). 

(k-n) Seedlings without cotyledon (k), without hypocotyl (l), without hypocotyl and root (m) and with 

fused cotyledons (n) as observed among progeny of the lines pid-14/hpPBP1H-13, pid-14/hpPBP1H-16 

and pid-14/pbp1-1/hpPBP1H-16 (l). 

(o-p) Seedlings without cotyledons in pid-14/pbp1-1/hpPBP1H-16 show defects in the phyllotaxis of the 

first leaves, with either fused leaves (m) or fused petioles (n). 

 

Discussion 

Previous experiments have indicated that calcium is an important second messenger in 

auxin action. One of the earliest cellular responses to auxin is a rapid increase in cytosolic 

calcium [26-28], and calcium has been reported to play a crucial role in PAT [9]. Our 

finding that PID interacts in a calcium-dependent manner with the calmodulin-like 

protein TCH3 and the small calcium-binding protein PBP1, provided the first molecular 

evidence for the role of calcium as regulator of PAT [10]. In this chapter, we further 

investigated the role of PBP1 in plant development in relation to its interaction with PID. 

 

Small calcium binding proteins stabilize plasma membrane localization of PINOID 

PBP1 belongs to a small family of three single EF-hand calcium-binding proteins in 

Arabidopsis. Whereas the family member KIC has been shown to play a role in the 

regulation of trichome branching and polar growth by inhibiting the interaction between 

the kinesin-like calmodulin-binding protein (KCBP) to microtubuli [11;12], PBP1 and it 

close homolog PBP1H did not inhibit binding of KCBP to microtubule, suggesting that 

these two proteins have a different function [11]. Here we show that both PBP1 and 
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PBP1H bind to two different calmodulin binding sites in PID, for one of which the 

binding is enhanced in the presence of calcium. The second site, the IQ motif in the 

insertion of the protein kinase catalytic domain, shows a calcium independent interaction 

with PBP1 and PBP1H. As TCH3 was also found to bind the catalytic domain of PID 

(Chapter 2), it is tempting to speculate that PBP1/PBP1H and TCH3 compete for binding 

to the IQ site, and that at low cytosolic calcium levels this leads to PBP1/PBP1H-

mediated activation of PID. In Chapter 2 we showed that TCH3-dependent inhibition can 

override the PBP1-dependent activation of PID in vitro, suggesting that at high calcium 

levels, TCH3 is able to outcompete PBP1/PBP1H for binding to the IQ site, and thereby 

to inhibit of PID activity.  

In chapter 2, we also showed auxin-induced and calcium-dependent sequestration 

of PID in epidermis cells of the root elongation zone. Here we present in planta data that 

this occurs independent of PBP1, and that in fact PBP1 overexpression even enhances the 

membrane-association of PID. These results corroborate our model that TCH3 is 

involved in PID sequestration, and indicate that PBP1 and PBP1H not only positively 

regulate PID action by enhancing its kinase activity, but also by retaining the kinase at 

the plasma membrane, in proximity of its phosphorylation targets, the PIN proteins. 

Curiously, our initial observations in protoplasts suggested that PBP1, like TCH3 is in 

volved in sequestering PID from the plasma membrane to the cytosol, which is in contrast 

to our observations in root epidermis cells. It is likely however, that the observed effects 

in protoplasts are due to abnormally high levels of the PBP1:YFP fusion proteins. 

Normally PBP1 is a very unstable protein, but we have observed that the PBP1:YFP 

fusion is much more stable (F. Maraschin, J. Memelink and R. Offringa, unpublished 

data). The abundant PBP1:YFP protein seems to prohibit binding of the PID catalytic 

domain to plasma membrane components, whereas the labile PBP1 protein, which is 

present at a critical amount in the overexpression line, does have a stimulatory role on 

plasma membrane association of PID. 

 

Small calcium binding proteins modulate PINOID substrate preference 

Previously we have shown that PBP1 enhances the autophosphorylation activity of PID 

in vitro, however, its effect on the transphosphorylation activity was not investigated 
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[10]. Using the PIN2 hydrophilic loop as natural PID substrate, we could show now that 

PBP1 and PBP1H both enhance PID activity, and that PBP1 is most efficient as positive 

regulator of PID. Moreover, by using the Pepchip Kinomics array (Pepscan) we were able 

to demonstrate that PBP1 not only enhances PID protein kinase activity, but that it also 

moderates the substrate preference of PID. Possibly, PBP1 optimizes PID activity to 

recognize the phospho-substrates in the central hydrophilic loop of PIN proteins [8]. 

Several phospho-substrates have now been identified for PID, among which three serines 

in the hydrophilic loop of PIN proteins (M.K. Zago 2006, Thesis; Huang et al., 

submitted). It is worthwhile to mention that the PID substrate fingerprints derived from 

the Kinomics array have not been instrumental in identifying these phospho-targets in 

PIN proteins. The current fingerprints indicate that it is important to have positively 

charged residues both left and right of the phosphorylated residue, more resembling a 

PKC substrate consensus sequence, whereas the PID substrates that have been identified 

resemble more the PKA substrate concensus sequence. It is important to consider, that the 

phospho-peptides on the Kinomics array used for this experiment were predominantly 

based on animal kinase substrates, and that the PID fingerprint may be different on a 

phospho-peptide array with a less biased or even a plant-based content. 

 

PBP1 and PBP1H are regulators of root growth and embryo patterning 

Morphometric analysis of loss- and gain-of function mutants in PBP1 and PBP1H 

indicated that these genes act partially redundant in repressing root growth, and although 

we could not find clear evidence for a change in sensitivity of the mutant lines to auxin, 

PAT inhibitors or PID overexpression, it is likely that PBP1 and PBP1H mediate their 

effect on root growth through their role as positive regulators of PID activity. Like PID 

overexpression, PBP1 enhanced PID activity may lead to increased basipetal auxin 

transport to the root elongation zone [5-7], which in turn inhibits root growth and thus 

explains the shorter root in PBP1 overexpression lines. Consequently, the longer root in 

pbp1(h) loss-of-function lines may be the result of reduced basipetal PAT in the root tip 

as a result of reduced PID kinase activity. This positive regulatory function of PBP1(H) 

in the PID pathway is similarly observed during embryogenesis by the enhanced 

penetrance and/or severity of embryo/seedling phenotypes in pid-14/pbp1-1, pid-
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14/hpPBP1H, pid-14/pbp1-1/hpPBP1H-16 mutant lines as compared to pid-14. Upon 

germination, seedlings have a bilateral symmetry marked by the presence of two 

cotyledons separated by the shoot-root axis. This symmetric structure can be traced back 

to the embryogenesis, when the initiation of cotyledon primordia in the globular embryo 

marks the transition to the heart stage. Proper auxin distribution, based on the PAT 

activity, is primordial for the embryo patterning at crucial transition steps [30-32]. The 

auxin efflux carriers PIN1, PIN4 and PIN7 are involved in controlling the auxin gradients 

during embryogenesis [30]. At heart stage, the establishment of the cotyledons 

boundaries is based on the presence of an auxin maximum at the cotyledon tips. 

Treatment of embryos with exogenous auxin or PAT inhibitors gives rise to seedlings 

with abnormally positioned or fused cotyledons [25;30]. And mutations in PIN1 and PID 

generate seedlings with an abnormal number of cotyledons. The pin1 pid double mutant 

seedlings have no cotyledons and fused leaves with an aberrant phyllotaxis. Both 

proteins, by controlling auxin distribution, are responsible for the establishment of a 

bilateral symmetry and the cotyledon outgrowth during embryogenesis [25]. We have 

observed that in the pid-14 mutant background the absence of the PID positive regulators 

PBP1 and PBP1H perturbed embryogenesis even more, giving rise to seedlings with no 

to four cotyledons, whereas only tricotyledon seedlings were observed in pid-14. Such 

phenotypes have been described for strong alleles of pid or in the combination of pid with 

the enhancer of pid mutation, [23;33]. In fact, in Chapter 4 of this thesis we provide 

evidence that the related AGC3 kinase genes WAG1 and WAG2 act redundantly with PID 

in determining PIN polarity establishment, and that double and triple pid/wag1/wag2 

loss-of-function mutants show similar defects in cotyledon development. Together these 

results suggest that PBP1 and PBP1H are common positive regulators of these three 

AGC3 kinases during embryogenesis and seedling development. 

In pid-14/hpPBP1H-16 and pid-14/pbp1-1/hpPBP1H-16, also seedlings with strong 

patterning defects such as absence of hypocotyl or both hypocotyl and root were observed 

at low frequencies. Similar phenotypes have been reported for mutants impaired in auxin 

transport and signaling during embryogenesis like pin1/pin3/pin4/pin7 quadruple mutant, 

gnom, monopteros and bodenlos [30]. In these mutants, miss-specification of the 

embryonic hypophysis leads to an absence of the root pole. This reveals the importance 
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of auxin transport and signaling for proper embryo patterning and the establishment of 

the shoot-root axis. It is therefore likely that PID is not only involved in cotyledon 

positioning, but also in the establishment/maintenance of the shoot-root axis by 

regulating the highly dynamic and regulated auxin transport during embryo development. 

 
Material and methods 
 

Molecular cloning and constructs 

Molecular cloning was performed following standard procedures [34]. PCR primers used 

in this study are listed in Table 1. Bacteria were grown on LC medium containing 100 

µg/ml carbenicillin (Cb) for E. coli strains DH5α or Rosetta (Novagen), 50 µg/ml 

kanamycin (Km) or 250 µg/ml spectinomycin for respectively binary vectors 

pCAMBIA1300 and pART27 in E. coli DH5α or Agrobacterium tumefaciens strain 

LBA1115. For the latter strain, 20 µg/ml rifampicin was included in the LC medium. The 

constructs pSDM6004 (pGEX-PID), pSDM6005 (pBSK-PID), pSDM6007 

(pET16H:PBP1) and pGEX-PIN2HL were described previously [10;35]. For the His-

tagged PID vector, the full length DNA was obtained as SalI and XmnI fragment from 

pSDM6005 and cloned into the XhoI and BamHI (blunted) sites of pET-16H. To obtain a 

plasmid encoding the GST tagged first 100 amino acids of PID, the SalI-SacI (blunted) 

fragment from pSDM6005 was cloned into the XhoI and HindIII (blunted) sites of pGEX-

KG [36]. The PID catalytic domain (aa 75-398) and PID C-terminal (aa 339-438) were 

PCR amplified using the primer pairs PID PK CaD F - PID PK CaD R and PID PK CT F 

- PID PK CT R, respectively, and cloned into pGEX-KG as respectively XhoI-HindIII 

(blunted) and EcoRI-HindIII (blunted) fragments.The coding region of PBP1H was PCR 

amplified from Arabidopsis thaliana Col-0 genomic DNA using primer set At4g27280 

PBP1H F and At4g27280 PBP1H R, and the PCR product was ligated into pET16H as 

SmaI and BamH1 fragment. pART7-PID:CFP, pART7-PBP1:YFP, pART7-PBP1H:YFP, 

and pART7-YFP:CFP fusions were constructed using the Gateway Technology 

(Invitrogen). Genes of interest were amplified by PCR with primers containing attB 

recombination sites (see table 1) from pSDM6005, pET-16H PBP1, pET-16H PBP1H and 

pART7 YFP destination vectors, respectively. BP reactions were performed in 

pDONR207 according to manufacturer’s protocol (Invitrogen). Recombinant plasmids 
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were isolated and sequenced. LR reactions were performed in pART7 destination 

plasmids containing the YFP or CFP fluorescent markers in frame with the gateway 

recombinant cassette (Galvan-Ampudia, unpublished). The construct pSDM6015 (pBS-

SK-PBP1) was previously described [10]. For the 35Spro::PBP1 construct, the PBP1 

cDNA was excised as a SalI-SpeI fragment from pSDM6015 and cloned into 

pCambia1300int-35Snos, giving rise to pSDM6085. To obtain the PBP1H RNAi 

construct hpPBP1H, a PBP1H fragment was PCR amplified from pET-PBP1H using the 

primers PBP1H RNAi F and PBP1H RNAi R, and ligated as anti-sense EcoRI-KpnI 

fragment into the pHANNIBAL vector [37]. The sense fragment was excised as a ClaI-

BamHI fragment from pET-PBP1H and cloned into the corresponding restriction sites in 

pHANNIBAL. The resulting hpPBP1H expression cassette (pSDM6043) was transferred 

as a NotI fragment to the pART27 binary vector (pSDM6302). 

 
Table 1: Primer list 

PID PK CaD F 5’TTCCTCGAGTTTCGCCTCAT3’ 

PID PK CaD R 5’GCGCTCAGTTTAGACCTTTGA3’ 

PID PK CT F 5’TAATGACGGAATTCTCCGTAACAT3’ 

PID PK CT R 5’AAGCTCGTTCAAAAGTAATCGAAC3’ 

At4g27280 PBP1H F 5’TAATGGCGTCACCAAAGTCA3’ 

At4g27280 PBP1H R 5’GGAAGGGATCCCAAATCTCT3’ 

At2g46600 KIC F 5’TACTCGAGATGGAACCAACCGAGAAATCTATGTTAC3’ 

At2g46600 KIC R 5’ATGGTACCTCAAGGCATAGAAGAGAG3’ 

PBP1 attB F1 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCATCTCCTAAATCCTCA3’ 

PBP1 attB R1 5’GGGGACCACTTTGTACAAGAAAGCTGGGTAATGCCGGTAAAACTCTTC3’ 

PBP1H attB F1 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCGTCACCAAAGTCAC3’ 

PBP1H attB R1 5’GGGGACCACTTTGTACAAGAAAGCTGGGTAATGCCGGCGCGTGAAGCC3’ 

KIC attB F1 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAACCAACCGAGAAA3’ 

KIC attB R1 5’GGGGACCACTTTGTACAAGAAAGCTGGGTAAGGCATAGAAGAGAGATT3’ 

PID attB F1 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAGCATGTTACGAGAATCAGACGGT3’ 

PID attB R1 5’GGGGACCACTTTGTACAAGAAAGCTGGGTCAAAGTAATCGAACGCCGCTGG3’ 

PBP1H RNAi F 5’TCGAATTCATGGCGTCACCAAAGTCACC3’ 

PBP1H RNAi R 5’CAAATCTCTCCAGTGGGTACCATGC3’ 

PID screening F 5’TCTCTTCCGCCAGGTAAAAA3’ 

PID reverse 5’CGCAAGACTCGTTGGAAAAG3’ 

PBP1 F 5’TACCCTTACGTGAGCTTCCAA3’, 

PBP1-R 5’TCACCTCCGTCACAACACAC3’ 

PBP1H-F 5’CATGCAATTAGAGAACGGGCA3’ 

PBP1H-R 5’AGGAACATCCATGGAAGCCA3’ 

LBaI 5’TGGTTCACGTAGTGGGCCATCG3’ 

Ds3-2 5’ CGATTACCGTATTTATCCCGTTC 3’ 

PBP1_RT 5’CCTCAACAAGACCAAACCAAG3’ 

PBP1H RT F 5’ATGGCGTCACCAAAGTCACC3’ 

PBP1H RT R 5’TGTTCAACACATCTGATCAAAGA3’ 
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PID RT-F 5’AGGCACGTGACAACGTCTC3’ 

AtROC F 5’CGGGAAGGATCGTGATGGA3’ 

AtROC R 5’CCAACCTTCTCGATGGCCT3’ 

Alpha TUB F 5’CGGAATTCATGAGAGAGATCCTTCATATC3’ 

Alpha TUB R 5’CCCTCGAGTTAAGTCTCGTACTCCTCTTC3’ 

attB recombination sites are underlined 
 

Protein purification and in vitro pull-down assays 

E. coli strain Rosetta (Novagen) was transformed with the constructs encoding His-

tagged PID, PBP1, PBP1H, KIC and GST-tagged PID, PID NT2-103, PID CaD75-398 and 

PID CT339-438. Single colonies were grown overnight at 37°C in liquid LC medium 

containing Carbenicillin (100 µg/ml) and Chloramphenicol (34 µg/ml), 5 ml preculture 

was diluted in 100 ml of fresh LC medium containing the same antibiotics and grown at 

30°C until OD600 was 0.8. Following induction by 1 mM IPTG, the culture was grown at 

30°C for 3 hr. Cultures were pellet by centrifugation at 4000 x g for 20 min at 4°C and 

stored at -20°C. For His-tagged proteins, bacterial pellets were resuspended in 2 ml of 

Lysis Buffer (25 mM Tris-HCl pH 8.0, 500 mM NaCl, 20 mM imidazole, 0,05% Tween 

20 and 10% glycerol) and incubated 20 min on ice. After sonication for 2 min, 100 µl of 

20% Triton X-100 was added and the mixture was incubated 5 min on ice, followed by 

centrifugation at 15,000 x g for 20 min at 4°C. Soluble fraction was added with 400 µl of 

pre-equilibrated 50% NTA-agarose matrix (QIAGEN) and mixed gently for 1.5 hr at 4°C. 

Beads were washed three times with 2 ml of Lysis Buffer, then with Wash Buffer 1 (25 

mM Tris-HCl pH 7.5, 500 mM NaCl, 40 mM imidazole, 0,01% Tween 20 and 10% 

glycerol), and subsequently with Wash Buffer 2 (25 mM Tris-HCl pH7.0, 500 mM NaCl, 

80 mM imidazole and 10% glycerol). Elution was performed by incubating the beads for 

3 hr at 4°C in 600 µl Elution Buffer (25 mM Tris-HCl pH 7.0, 300 mM NaCl, 300 mM 

imidazole and 10% glycerol). For the GST-tagged proteins, frozen bacterial pellets were 

incubated for 10 min on ice, resuspended in 2 ml Extraction Buffer (150 mM NaCl, 2 

mM KCl, 2 mM KH2PO4, 10 mM Na2HPO4, 2 mM EDTA, 2 mM EGTA, 10 mM DTT 

and 10% v/v B-PER (Pearce) and incubated on ice for 10 min. After sonication for 2 min, 

100 µl of 20% Triton X-100 was added and the mixture was incubated for 5 min on ice, 

followed by centrifugation at 20,000 x g for 20 min at 4°C. Supernatants were added to 
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400 µl of pre-equilibrated 50% Glutathione Sepharose 4B beads (Amersham-Pharmacia) 

and incubated for 1.5 hr. Beads were washed three times with 2 ml Extraction Buffer.  

For in vitro pull-down assays, His-tagged bacterial pellets were resuspended in 2 ml of 

Binding Buffer (50 mM Tris-HCl pH 6.8, 100 mM NaCl, 10 mM CaCl2 and 0.1% 

Tween-20), incubated for 20 min on ice, followed by sonication for 2 min. Then 100 µl 

of 20% Triton X-100 was added and the mixture was incubated for 5 min on ice, 

followed by centrifugation at 20,000 x g for 20 min at 4°C. Supernatant was added (0.4 

ml) to 50 µl of pre-equilibrated 50% Glutathione Sepharose 4B beads (Amersham-

Pharmacia biotech) bound with GST-tagged proteins. After incubation for 1.5 hr, beads 

were washed three times with 2 ml of Binding Buffer. Beads were resuspended in 25 µl 

2X SDS loading buffer (0.125 M Tris-HCl pH 6.8, 4% SDS, 20% glycerol, 3 M β-

mercaptoethenol and 0.05% bromophenol blue) and boiled. Samples were analyzed by 

SDS-PAGE. Proteins were blotted on a PDVF membrane (Millipore, USA) and 

immunodetected using penta-His antibodies (QIAGEN) according as the manufacturer’s 

instructions. 

 

In vitro protein kinase assays. 

His- or GST-tagged proteins were purified as described above. In vitro kinase assays 

were performed in a final volume of 15 µl with 1X kinase buffer (25 mM Tris-HCl pH 

7.5, 5 mM MgCl2, 2 mM CaCl2 and 1 mM DTT), 2 µg purified GST-tagged kinase, 2 µg 

purified His-tagged PBP1 or PBP1H, 2 µg GST-PIN2 HL, 100 µM ATP and 1 µCi [γ-
32P] ATP (3000 Ci/mM) (GE Amersham). Reactions were incubated at 30°C for 30 min 

and stopped by adding 4 µl of 5X SDS loading buffer (0.3125 M Tris-HCl pH 6.8, 10% 

SDS, 50% glycerol, 7.5 M β-mercaptoethenol and 0.125% bromophenol blue) and boiled 

for 5 min. Samples were separated by SDS-PAGE. After electrophoresis, gels were 

washed 3 times with 5% TCA 1% Na2H2P4O7, Coomassie stained, dried and exposed to a 

PhosphoImager screen (Molecular Dynamics). 

 

PepChip Kinomics array 

Pepchip Kinomics arrays (Pepscan) were.incubated with 50 µl of the reaction mix for 4 

hr at 30°C in a humid chamber. Slides were washed once with TBS (10 mM Tris pH 7.5, 
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NaCl 150 mM), once with 1 M urea and 2 M NaCl in TBS, two times with 2 M NaCl, 

two times with dH20 and dried for 30 min. The reaction mix consisted of the Kinase 

Mastermix (25 mM Tris pH 7.4, 5 mM MgCl2, 1 mM DTT, 10% v/v glycerol, 0.02 

mg/ml BSA, 0.005% v/v Brij-35), 100 µM ATP and 300 µCi/ml [γ-33P] ATP (3000 

Ci/mM) (GE Amersham), supplemented with 1 mM CaCl2 final concentration. to which 

either 5 µg of purified GST-PID or 5 µg of purified GST-PID and His-PBP1 was added. 

Slides were scanned using the Biomolex reader and analysed using the Biosplit software 

(Biomolex AS). For each peptide the results of the three identical sectors present on one 

slide were averaged and the standard deviation (SD) was calculated. Inconsistencies 

between sectors was filtered out by using SD% ≤ 50 from the mean as a criterium. All 

values below the sum of the average value for all peptides on the array and the average 

SD were considered as background levels. 

 

Protoplast transfection 

Protoplasts were isolated from Arabidopsis thaliana Col-0 cell suspension cultures and 

10 µg plasmid DNA was introduced by PEG-mediated transfection as described 

originally by Axelos and co-workers [38] and adapted by Schirawski and co-workers 

[39]. Following transfection, the protoplasts were incubated for at least 16h. Images were 

obtained by confocal microscopy.  

 

Confocal microscopy 

For the protoplast experiments, a Leica DM IRBE confocal laser scanning microscope 

was used with a 63X water objective, digital zoom and 51% laser intensity. The 

fluorescence was visualized with an Argon laser for excitation at 514 nm (YFP) and 457 

nm (CFP) with 522-532 nm and 471-481 nm emission filters, respectively. Arabidopsis 

PIDpro::PID:VENUS roots were observed using a 40X oil objective with a ZEISS 

Axioplan microscope equipped with a confocal laser scanning unit (MRC1024ES, 

BioRad, Hercules, CA). The YFP fluorescence was monitored with a 522-532 nm band 

pass emission filter (488 nm excitation). All images were recorded using a 3CCD Sony 

DKC5000 digital camera. The images were processed by ImageJ 

(http://rsb.info.nih.gov/ij/) and assembled in Adobe Photoshop 7.0. 
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Fluorescence Resonance Energy Transfer (FRET) 

Protoplasts were prepared and the fluorescence monitored using the Leica confocal 

microscope as described above. Lambda scanning was done at 457 nm excitation and 

emission was measured at intervals of 5 nm at the spectrum from 460 to 585 nm using a 

RSP465 filter. An image was obtained of every interval and the intensity of three fixed 

areas (ROIs) was quantified using Leica confocal laser scanning software. The intensity 

of these three ROIs was averaged and normalized. Of each sample three protoplasts were 

measured and the obtained normalised intensity of all three protoplasts was averaged and 

the standard deviation was calculated. Student’s t-test was used to test for a significant 

reduction in intensity at 475 nm (CFP emission) and a significant enhancement in 

intensity at 527 nm (YFP emission) in the FRET sample as compared to a negative 

control (e.g. protoplasts co-expressing CFP and YFP). 

 

Arabidopsis lines, plant growth and transformation 

The 35Spro::PID-21 and the PIDpro::PID:VENUS lines were described previously [5;8]. 

The pid-14 (SALK_049736), pbp1-1 (Ds transposon line GT6553) and pbp1h-1 and -2 

alleles (SALK_013868 and SALK_048098) were obtained from NASC for the SALK 

lines and from the Cold Spring Harbor Laboratory for the transposon insertion line 

[40;41]. For the detection of the insertions, we used gene-specific primers and the 

insertion-specific primers LBaI and Ds3-2 for respectively the SALK lines and the 

transposon line. The flanking region of each insertion was sequenced to confirm the 

insertion position, and RT-PCR analysis was performed to determine if the insertion 

resulted in a complete loss-of-function allele. 

Arabidopsis seeds were surfaced-sterilized by incubation for 15 min in 50% commercial 

bleach solution and rinsed four times with sterile water. Seeds were vernalized for 2 to 4 

days at 4°C and germinated (21°C, 16 h-photoperiod and 42 µmol/m2/s) on solid MA 

medium supplemented with antibiotics when required [42]. Two- to three-week old plants 

were transferred to soil and grown at 21°C and 70% relative humidity with a 16 hr 

photoperiod (140 µmol/m2/s). 



PINOID signaling regulated by small calcium-binding proteins 

89 
 

Arabidopsis thaliana ecotype Columbia (Col) was transformed by the floral dip method 

as described [43]. Primary transformants were selected on medium supplemented with 20 

µg/ml hygromycin (Hm) for pSDM6085 or 70 µg/ml Km for pSDM6302 and 100 µg/ml 

timentin to inhibit the Agrobacterium growth. For further analysis, single locus insertion 

lines were selected by germination on 10 µg/ml hygromycin or 25 µg/ml kanamycin and 

checked for transgene expression by Northern blot or RT-PCR analysis.  

 

Northern blot and RT-PCR analysis 

Total RNA was purified using the RNeasy Plant (Qiagen) and Invisorb Spin Plant RNA 

(Invitek) Mini kits. Subsequent RNA blot analysis was performed as described [44] using 

10 µg of total RNA per sample. The following modifications were made: pre-

hybridizations and hybridizations were conducted at 65°C using 10% Dextran sulfate, 1% 

SDS, 1 M NaCl, 50 µg/ml of single strand Herring sperm DNA as hybridization mix. The 

hybridized blots were washed for 20 min at 65°C in 2X SSPE 0.5% SDS, and for 20 min 

at 42°C in respectively 0.2X SSPE 0.5% SDS, 0.1X SSPE 0.5% SDS and 0.1X SSPE. 

Blots were exposed to X-ray film FUJI Super RX. Probes were PCR amplified and 

column purified (Qiagen): with PBP1-F and -R for PBP1 from pSDM6007; PBP1H-F and 

-R for PBP1H from pET-16H PBP1H, RT-F and exon2-R for PID from pSDM6004, 

AtROC-F and -R for AtROC, alpha TUB-F and -R for αTubulin from Col-0 genomic 

DNA. Probes were radioactively labelled using α-32P-ATP (Amersham) and the Prime-a-

gene kit (Promega). 

RT-PCRs were performed as described in [45] using 10 µg of total RNA from one-week 

old seedlings for the RT reaction. The PCR reactions were performed with one tenth of 

the RT volume with the same gene specific primers used for the probe amplification in 

the Northern blot analysis. An RT reaction from Col seedlings RNA in which the reverse-

transcriptase was omitted served as a negative control. 

 

Biological assays 

For the root meristem collapse assay, about 100 seedlings per line were grown in 

triplicate on vertical plates containing solid MA medium. The development of the 

seedling root was monitored and scored each day during eight days for the collapse of the 



CHAPTER 3 

90 
 

primary root meristem. For the phenotypic analysis of the crosses with pid-14, about 300 

seeds (100 seeds for pid-14/pbp1-1 and controls) were plated in triplicate, germinated and 

grown for one week on solid MA medium. The number of dicotyledon seedlings and of 

seedlings with cotyledon defects was counted and the penetrance of the phenotypes was 

calculated based on a 1:3 segregation ratio for homozygous pid seedlings. For root length 

measurements, at least 50 seedlings for each genotype were grown in triplicate on vertical 

plate for eight days and roots were scanned. Root lengths were measured using ImageJ. 

To observe the auxin-induced changes in the subcellular localization of PID in 

Arabidopsis roots, vertically grown three day-old PIDpro::PID:VENUS and 

PIDpro::PID:VENUS/35Spro::PBP1-29 seedlings were treated with 5 µM IAA (in MA 

medium) following 30 min pre-treatment with a calmodulin inhibitor (0.5 mM Tetracain, 

Sigma) or a calcium channel blocker (1.25 mM Lanthanum, Sigma) when indicated. 

 
 
 
Accession Numbers 

The Arabidopsis Genome Initiative locus identifiers for the genes mentioned in this 

chapter are as follows: PBP1/KRP2 (At5g54490), PBP1H/KRP1 (At4g27280), KIC 

(At2g46600), PID (At2g34650), TCH3 (At2g41100), KCBP (At5g65930), KIPK 

(At3g52890), ROC (At4g38740), αTubulin (At5g44340), PIN2 (At5g57090). 
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Summary 

The PINOID protein kinase (PID) is the only identified determinant of apical polar 

targeting of PIN proteins. Previous reports have shown that PID not only co-localizes at 

the plasma membrane (PM), but that it also phosphorylates PIN proteins. How exactly 

this phosphorylation affects the polar subcellular localization of PIN proteins and which 

factors determine localization and activity of PID is still unknown. Until now, only a few 

PID interacting proteins have been described. Among them, 3-phosphoinositide-

dependent kinase 1 (PDK1) was shown to phosphorylate the activation loop of PID and 

to enhance its kinase activity in vitro. To further elucidate the effect of PDK1 on PID, we 

have used Arabidopsis thaliana cell suspension derived protoplasts. We show that PDK1 

induces a switch in PID subcellular localization from the plasma membrane to 

endomembrane compartments and microtubules (MT). We demonstrate that the 

phosphorylation status of PID determines its subcellular localization. By specifically 

removing the phosphorylation targets sites of PDK1, PID was unable to be recruited to 

MT. In accordance, by mimicking PDK1-phosphorylation PID localized to the MT in the 

absence of PDK1. Moreover, osmotic shock treatment, which is known to induce PDK1 

activitiy, resulted in relocation of PID to MT-like structures in Arabidopsis thaliana root 

epidermal cells. We propose a model of the molecular mechanism of PID-dependent 

polar targeting as a combined action of PDK1 and phospholipids. 
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Introduction 

As sessile organisms, plants have developed mechanisms to constantly monitor their 

surroundings in order to be able to adapt to changes in their environment. Following the 

initial observations by Darwin more than a century ago, it is well established now that 

abiotic environmental signals such as light and gravity modulate plant growth and 

architecture by causing changes in the distribution of the signalling molecule auxin 

(indole-3-acetic acid) [1]. However, the involvement of auxin distribution in directing 

growth responses to abiotic stresses, such as high salinity or osmotic stress is only just 

emerging [2].  

The distribution of auxin is determined by its polar cell-to-cell transport that is controlled 

by three types of plasma membrane (PM) proteins, the AUX1/LAX auxin influx carriers, 

the P glycoprotein (PGP) type ABC transporters, and the PIN auxin efflux carriers 

[3].The PIN proteins are considered the primary drivers of transport that determine the 

direction of auxin flow through their asymmetric subcellular distribution [4]. In 

Arabidopsis, the PIN family is composed of 8 genes which are expressed at different 

stages of plant development to regulate auxin-mediated processes such as embryogenesis 

[5], root meristem maintenance and growth [6;7], phyllotaxis [8], formation of new 

organs [9], and tropic growth [10;11]. The PIN members can be classified in two groups: 

i) five PIN1–type PINs that have a large central hydrophilic loop (PINHL) and direct 

polar auxin transport (PAT) through their asymmetric localisation at the PM, and ii) three 

PIN5-type PINs that have a smaller or no central hydrophilic loop, localize to the ER and 

seem to be involved in controling subcellular auxin levels [12]. 

The PIN1-type PINs cycle via actin-mediated vesicle transport between PM and 

endosomal compartments, and this cyclic vesicle transport is essential for polarity 

establishment [13;14]. Although the exact mechanism of PIN polarity establishment is 

still elusive, the first identified component in this pathway is the plant AGC protein 

ser/thr kinase PINOID (PID). PID instructs apical (shoot meristem facing) PIN polarity, 

and acts antagonistically with protein phosphatase 2A (PP2A) in determining the 

phosphorylation status of the PINHL [15;16].  

As a PIN polarity determinant, PID is an excellent target for the regulation of the 

direction of transport by external stimuli through upstream regulators, such as 3-
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phosphoinositide-dependent kinase 1 (PDK1). PDK1-dependent phosphorylation is a 

conserved eukaryotic mechanism for the regulation of many signal transduction pathways 

downstream of AGC protein kinases. PDK1 was shown to phosphorylate PID on two 

well-conserved residues of the activation loop (Ser 288 and Ser 290), resulting in 

enhanced kinase activity towards a generic substrate in vitro [17]. PDK1 is a conserved 

gene among eukaryotes that regulates and activates other kinases by phosphorylation 

[18;19]. In Arabidopsis, two PDK1 genes are present, (PDK1-1 and PDK1-2), which both 

encode proteins with an N-terminal protein ser/thr kinase domain and a plekstrin 

homology (PH) domain at the C-terminus [20]. The PH domain binds many 

phospholipids, but only phosphatidic acid (PA) and phosphatidylinositol-(4,5)-

bisphosphate (PIP2) have been shown to stimulate PDK1 kinase activity [20;21]. As in 

mammals and yeast, plant PDK1 activates and phosphorylates the activation loop of 

different AGC protein kinases (named after protein kinase A (PKA), cyclic GMP-

dependent protein kinase (PKG) and protein kinase C (PKC)) [17;21-24]. 

Here we investigated the effect of PDK1-dependent phosphorylation of PID at the 

cellular level, and show that PDK1 causes a change in the subcellular localization of PID 

from PM to endomembrane structures and microtubules (MT) in Arabidopsis cell 

suspension derived protoplasts. PDK1-mediated phosphorylation of PID was required for 

this relocalization. Furthermore, ostmotic stress treatment, which is known to induce the 

PDK1 pathway [23], leads to recruitment of PID to MT-like structures in Arabidopsis 

root epidermis cells. Our results indicate that stress responses initiate a lipid signaling 

cascade that leads to PDK1-dependent activation and relocalisation of PID, and reveal 

PDK1 as a direct molecular link between stress responses and auxin- mediated plant 

development and growth. 

 

Results 

 

PDK1 regulates PID subcellular localization 

To investigate the effect of PDK1-dependent PID phosphorylation at the cellular level, 

we expressed translational fusions of these proteins to respectively cyan and yellow  



CHAPTER 4 

100 
 

Figure 1. Subcellular localization of PDK1 and PID in protoplasts. 

 (a-d) Arabidopsis cell suspension derived protoplast transfected with 35Spro::PDK1:CFP (a and b) or 

35Spro::PID:YFP (c and d). Confocal image (a and c) and transmitted light image (b and d). 

(e-o) Representative pictures of protoplast co-transfected with 35Spro::PDK1:CFP and 35Spro::PID:YFP. 

(e-h) PID (e, YFP channel, green) is recruited into endomembrane compartments when co-expressed with 

PDK1 (f, CFP channel, red). The merged image (g) shows that PID is recruited into different 

endomembrane-like compartments than PDK1. Transmitted light image (h). 

(i-l) PDK1 recruits PID to cytoskeleton like structures. Confocal projection of a protoplast where PID 

localize in filaments (k, YFP channel, green) and PDK1 localizes in the cytosol (l, CFP channel, blue). 

Merged image (i) with red signal representing autofluorescence of dead cells. Transmitted light image (j). 

(m-o) PDK1 and PID co-localize in filaments-like structures. Confocal projections of protoplasts co-

expressing PDK1:CFP (n, red) and PID:YFP (o, green). Merged projection (m) where the yellow signal is 

indicative for co-localization of the two proteins. Transmitted light image (n). 
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fluorescent protein (CFP and YFP) in Arabidopsis thaliana cell suspension protoplasts. 

As previously reported, PID:YFP was localized at the PM of these cells (Figure 1c and d) 

[25]. Protoplasts expressing only PDK1:CFP showed labelling of endomembrane-like 

structures throughout the cytoplasm (Figure 1a and b). Co- expression of PDK1:CFP and 

PID:YFP strikingly led to PID relocalization from the PM to endomembrane-like 

structures (Figure 1e-h). In a subpopulation of protoplasts, PID was found in filamentous 

cytoskeleton-like structures, while PDK1 subcellular localization was unchanged (Figure 

1i-l). Co-localization of PID:YFP and PDK1:CFP at the cytoskeleton-like structures was 

observed occasionally (Figure 1m-o). Thus, PDK1 induces recruitment of PID from the 

PM into endomembrane- and cytoskeleton-like structures in Arabidopsis protoplasts. 

 

PDK1 recruits PID to microtubules 

Previous studies in cowpea mesophyll protoplasts made use of the microtubule plus-end 

binding protein Cytoplasmic Linker Protein170 (CLIP170) as a MT marker [26]. 

Protoplasts transfected with CLIP1701-1240 showed similar MT localization (Figure 2). 

Co-transfection with PID:CFP, PDK1:mRFP and YFP:CLIP1701-1240 corroborated that 

PID is recruited to the MT network, as we found clear co-localization of PID and 

CLIP1701-1240 (Figure 2). Interestingly, PID was localized not only in cortical MT (Figure 

2a-e) but also in transcytoplasmic MT (Figure 2f-j). Moreover, PDK1 was found to 

remain in endomembrane like structures (Figure 2c and h). No co-localization of the three 

proteins was observed, probably because of the low efficiency of transfection of all 

constructs. Furthermore, our results show that PID MT localization is dependent on the 

presence of PDK1 as we could not find co-localization between CLIP1701-1240 and PID 

when no PDK1 was transfected (Figure 2k-l). Our findings suggest that PDK1 acts as a 

switch to regulate PID subcellular translocation from the PM to the MT network. 

 

PDK1-dependent phosphorylation regulates PID subcellular translocation 

Previously, the PID kinase was shown to be activated by PDK1 phosphorylation at one or 

two serines (S288 and S290) in the activation loop of PID (Figure 3A) [17]..In order to 

test whether this phosphorylation by PDK1 is important for the subcellular translocation 

of PID, we mutated the 35Spro::PID:CFP construct so that in the encoded protein both 



CHAPTER 4 

102 
 

Figure 2. PDK1-dependent microtubule localization of PID in protoplasts. 

(a-j) Representative protoplast co-expressing PID:CFP (a and f, green), YFP:CLIP1701-1240 (b and g, red) 

and PDK1:mRFP1 (c-e, blue). Confocal projection (a-e) and single middle confocal image (f-j) of a 

protoplast labelled with the cortical or transcytoplasmic microtubules, respectively. Merged projection of 

two (d and i, green and red) or three (e, green, red and blue) channels as indicated. 

(k-o) Protoplast co-expressing PID:CFP and YFP:CLIP1701-1240. Confocal section of the protoplast 

showing plasma membrane and cytoplasma localization of PID:CFP (k, red). Confocal projection of the 

same protoplast showing PID:CFP (l, red) and YFP:CLIP1701-1240 microtubule (m, green) localisation. The 

merged image (n) shows that PID does not localize to the microtubules. Transmitted light image (o). 

 

serines were substituted by alanine (PIDSA:CFP) or by glutamic acid (PIDSE:CFP) to 

prevent or mimic phosphorylation by PDK1, respectively. The wild type and mutant 

PID:CFP constructs were transfected either alone or together with PDK1:YFP. 

Remarkably, in these experiments PID:CFP either localized at the plasma membrane, at 

endomembranes or at MT (Figure 3d), and mixed localisation patterns were not observed. 

This allowed to quantify the data by categorizing the localisation for at least 40 individual 
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Figure 3. Subcellular localization of PID is dependent on its PDK1-dependent phosphorylation state. 

(a) Schematic representation of PID domain organization. The eleven conserved subdomains of the 

serine/threonine protein kinase domain (75-396 aa) are depicted with purple boxes. The insertion in the 

activation loop typical for the plant specific AGCVIII kinases is shown in red. The conserved Asp-Phe-Asp 

(DFD) and Ala-Glu-Pro (AEP) motif in the activation loop are depicted in green and blue, respectively. 

The positions of the putative PDK1 phosphorylation sites in the activation loop of PID are indicated (S288, 

S290 and T294). 

(b) Endomembrane internalization of the loss-of-phosphorylation PIDS288, S290A:CFP (PIDSA) version. 

(c) PDK1-independent microtubule localization of the phosphomimic PIDS288, S290E:CFP (PIDSE) version. 

(d) Quantitative analysis of PDK1-dependent PID translocation. Transfected protoplast were counted and 

categorized according to the subcellular localization of PID:CFP: protoplast with membrane localization 

(upper left panel), endomembrane localization (upper middle panel) or microtubule localization (upper 

right panel). Percentage of the transfected protoplast with the indicated constructs (lower panel). Number of 

protoplasts scored: PID (n=83), PID+PDK1 (n=142), PIDSA (n=173), PIDSA+PDK1 (n=97) and PIDSE 

(n=40).
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 protoplasts (Figure 3d). PID:CFP expressed alone only showed plasma membrane 

localisation, and co-transfection with PDK1:YFP resulted in endomembrane and MT 

localisation in 43 % and 39 % of the protoplasts, respectively (Figure 3d). In a similar 

way, the phosphomimick PIDSE:CFP version localized to both microtubules and 

endomembranes (33% and 35%, respectively), even when no PDK1 was co-transfected 

(Figure 3c), suggesting that the PID phosphorylation status itself affects subcellular 

translocation. Interestingly, when the non-phosphorylatable PIDSA:CFP fusion protein 

was expressed alone, we only observed internalization to endomembrane-like structures 

(31% of the expressing protoplasts, Figure 3b and d) and this percentage was enhanced 

up to 61% when PDK1 was cotransfected (Figure 3d). These results show that 

phosphorylation of PID by PDK1 acts as a trigger not only to activate but also to 

translocate PID to different subcellular compartments. Phosphorylation of S288 and S290 

seems to be essential for MT localisation of PID, but is not required for the PDK1- 

induced PID localisation at endomembrane structures. 

 

Osmotic shock triggers PID translocation in Arabidopsis roots 

Our observations suggest that PDK1 might play an important role in the regulation of 

PID action through regulation of its subcellular location. However, in other expression 

systems, PID has mostly been found to localize to the PM, raising the question whether 

our observations are an artifact of the protoplast system. Therefore, we closely 

investigated PID subcellular location in a plant line expressing a PID:VENUS fusion 

under control of its endogenous promoter (PIDpro::PID:VENUS). Previous analysis of 

this line has shown that PID is expressed in epidermis cells of the root meristem, and that 

in these cells, under control conditions PID:VENUS mainly localized at the PM, but that 

some cytoplasmic signal can be observed [16]. (Figure 4a, upper and lower panel) 

[16;27]. Since PDK1 is known to be activated by PA and PIP2, we decided to study PID 

subcellular localization in response to a stress condition that induces de novo synthesis of 

these lipids [20;28;29]. In particular, osmotic shock has been shown to greatly induce the 

production of both PA and PIP2 in Arabidopsis [30;31]. When plants were transferred to 

medium containing 350mM NaCl to induce an osmotic shock, cells lost turgor and 

plasmolyzed (Figure 4b and c). Interestingly, under these conditions PID:VENUS was 
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Figure 4. PID localization dynamics during osmotic shock in roots.  

(a-d) Confocal projections showing the subcellular localization of PIDpro::PID:VENUS in the epidermal 

cell layer at the transition zone. Confocal projection (upper panels) and respective transmitted light sections 

(lower panels).  

(a) PID:VENUS localizes in the PM in MS control conditions. 

(b) Immediately after 5 min of osmotic shock (350 mM NaCl in MS) cells plasmolyse (lower panel) and 

PID:VENUS is recruited to filament-like structures (arrowheads) and endomembrane compartments 

(arrows). (c) Confocal projections after 20 min of osmotic shock. Filament-like structures (arrowheads) and 

endomembrane compartments (arrows) are indicated. 

(d) After 120 min epidermal cells recover their turgor and PID:VENUS start to appear at the apical PM 

(stars). 

 

completely released from the PM and was recruited to endomembrane structures (Figure 

4b and c, arrows) and filamentous structures that resemble the cytoskeleton (Figure 4b 

and c, arrow heads), similar to our observations in protoplasts (Figure 1e-o). 

Approximately two to three hours of after the start of the treatment, the root cells recover 

turgor, and PID:VENUS was slowly recruited back to the apical side of the PM (Figure 

4d, stars). Importantly, root growth was re-initiated after this time (data not shown), 

indicating that the osmotic shock was not lethal to the roots. Thus, PID translocation to 

PID::PID:YFP

a b c d
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internal cellular structures is not limited to the protoplast system, but also occurs in 

Arabidopsis roots. Moreover, these results point towards a possible biological relevance 

for the PDK1-dependent regulation of PID, in which osmotic stress might activate PDK1, 

possibly via synthesis of lipid second messengers, which in turn recruit PID into 

endomembrane compartments and MT in order to re-establish cell polarity and redirect 

root growth. 

 

Discussion 

The capability of plants to adapt to their changing environment by modulating their 

growth has fascinated scientists for decades. The phenomenon implies that growth and 

certain developmental programmes are subjected to the regulation of different signal 

transduction pathways that constantly monitor biotic and abiotic stimuli. On the one 

hand, polar auxin transport regulates plant growth and development by generating 

maxima and minima at different parts of the plant body. This cell-to-cell transport 

requires a coordinated establishment of polarity within the neighbouring cells necessary 

for the maintenance of directionality of auxin flow. On the other hand, it is well known 

that biotic and abiotic stimuli direct plant growth, of which the best known examples are 

light (phototropism, shade avoidance) and gravity (gravitropism) (reviewed in [1;32-36]). 

The combination of multiple signal transduction pathways triggered by environmental 

stimuli cause local changes in auxin distribution necessary for the reorientation or 

reprogramming of developmental and growth processes. How do these complex signal 

transduction cascades interconnect? And how do different combinations of stimuli affect 

auxin distribution through the modulation of polar auxin transport? It is likely that stress 

responses act upstream of essential components of auxin-mediated growth, such as PID. 

Here we investigated the effect of an upstream regulator of PID, PDK1, which 

phosphorylates and regulates PID kinase activity. Our results show that PDK1 regulates 

PID subcellular localization through differential phosphorylation. We propose a model 

for the PDK1-dependent regulation of PID, in which phospholipid signalling and protein 

phosphorylation plays a central role in regulating activity and place of action of PID. 
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New insights into PDK1-dependent regulation of AGC kinases 

Regulation of protein kinases by phosphorylation is a common and evolutionary 

conserved mechanism in many organisms. In eukaryotes, PDK1 signalling plays a central 

role in the regulation of diverse metabolic processes, apoptosis, cell division, protein 

synthesis, and stress responses [19;29]. PDK1 is upstream of many AGC kinases, and 

regulates their activity by phosphorylation of a conserved ser/thr at the activation loop, 

also known as the T-loop [19;29]. In plants, the AGCVIII subfamily represents orthologs 

of the animal PKA/PKC/PKB, and despite the difference in regulatory accessory 

domains, the way of regulation by PDK1 activation is similar [17;21;24;29]. In fact, the 

majority of the Arabidopsis AGVIII kinases are activated by PDK1 phosphorylation 

[17;21;24]. Based on what was known from PDK1 phosphorylation of the activation loop 

in animal kinases and in vitro data, PDK1 phosphorylation likely occurs at S288 and/or 

S290. Replacement of these residues by the phosphomimic glutamic acid resulted in 

enhanced PID autophosphorylation [17;51]. In addition, T294 has been implicated as 

putative PDK1 phosphorylation sites in PID, however replacement of this threonine by 

glutamic acid abolished autophosphorylation, suggesting that this threonine might also be 

the site of auto-phosphorylation [51]. Of the three putative PDK1 targets (S288, S290 and 

T294, Figure 3) only S290 and T294 are present in all plant AGC kinases, including the 

AGCVI subfamily represented by the p70 ribosomal S6 kinase (S6K), AGCVII which are 

homologues of the nuclear Dbf2-related kinase (NDR), and the AGC Other subfamily 

that comprises the incomplete root hair elongation kinases (IRE) [29]. Interestingly, only 

S6 and AGCVIII kinases, for which PDK1-dependent activation has been demonstrated, 

contain a third putative phosphorylation site (S288) [17;23;24;29]. Whether all three sites 

are phosphorylated by PDK1 and required for PID activation and translocation needs 

further investigation. For now our data indicate clearly that PDK1 phosphorylation of 

S288 and/or S290 is crucial for MT localisation, and not for endomembrane-localisation 

of PID. However, the fact that PID localisation in protoplasts can be clearly catagorized 

into three distinct classes, and that PIDSE:CFP still shows PM localisation in 30% of the 

protoplasts suggests that PID phosphorylation by PDK1 is not the only determinant, and 

that PID localisation is also dependent on other cell-type specific components. 
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Figure 5. Proposed model for PDK1-dependent regulation of PID. Osmotic stress treatment induced 

activation of PLD leads to the formation of phosphatidic acid, which in turn leads to the recruitment and 

activation of PDK1 at the plasma membrane. Here, PDK1 phosphorylates PID, which is then recruited to 

endomembrane compartments or microtubules (MT), depending on the phosphorylation status. Possibly a 

protein complex composed of scaffold proteins and microtubule motors are involved in localization of PID 

at the MT (dashed lines).  

 

Moreover, the enhanced endomembrane localisation of PIDSA:CFP in the presence of 

PDK1 suggests that this process is triggered by phosphorylation of one of more other 

residues (possibly T294) by PDK1. Our data provide an important extension of the 

existing paradigm that PDK1 phosphorylation only leads to activation of the plant 

AGCVIII kinases [17;21;24].  

 

 The PDK1-dependent recruitment of PID into endomembrane compartments and 

microtubules (Figure 1 and 2), suggests that upon activation by phosphorylation, PID is 

re-directed in subcellular locations where phosphorylation is required. Possibly, PID 

phosphorylates PIN proteins at the endomembrane compartments to target them for 

apical endocytic sorting (Figure 5). Whether the observed PID-labelled endomembrane 

compartments correspond with PIN loaded vesicles still needs to be determined. 

Furthermore, PID might also regulate the machinery that sort and transport PIN loaded 
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cargos through the microtubule network. Although there is controversial data on the 

involvement of microtubules in the transport of PIN endocytic cargos, there is evidence 

that point towards MTs being necessary for intracellular trafficking of PIN proteins and 

the establishment of cell polarity [37;38]. 

Several of the plant AGCVIII kinases are membrane localized [25;27;39], and at 

least for PID it has been shown that it binds phospholipids. Possibly, phosphorylation of 

the activation loop might change the affinity towards these phospholipids, and thus allow 

PID to be released from the membrane, or to be recruited to endosomal membrane 

compartments. Another possibility is that phosphorylation changes the binding affinity 

for other regulatory protein necessary for the relocation of PID (Figure 5). This implies 

that the MT localization of PID might be regulated by a protein complex. Interestingly 

PID interacts with a plant specific scaffold protein BT1 (BTB AND TAZ DOMAIN), 

which belongs to the BT protein family. Other members of this includes NPH3-like 

proteins (NON-PHOTOTROPIC HYPOCOTYL3) implicated in the regulation of 

phototropism and polar auxin transport and organogenesis [40-44]. Moreover, BT1 

interacts with a kinesin related protein establishing a possible link of PINOID signalling 

and MT network (Figure 5) [45]. Further research is necessary to answer these 

hypotheses. In conclusion, PDK1 plays a central role in regulating PID action, where 

phosphorylation acts as a trigger to activate and translocate PID to different subcellular 

compartments. 

 

Lipid signalling and polar auxin transport 

Our results in Arabidopsis roots provide a model for the study of cell polarity and a 

possible biological relevance for the PDK1-dependent regulation of PID (Figure 4). 

Osmotic stress induces the activation different signalling pathways that rely in the 

production of secondary messengers that activate and control the action of different 

proteins [46]. In particular, the production of PA controlled by phospholipase D (PLD) 

[30], could be necessary for the activation and recruitment of PDK1 at the PM (Figure 5) 

[20;28]. Interestingly, recently PLDζ2 has been implicated in the regulation of cycling of 

PIN2. A pldζ2 loss-of -function mutant was found to be more resistant to the vesicle 

trafficking inhibitor brefeldin A (BFA), suggesting that PLDζ2 is required for 
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endocytosis of PIN proteins. On the other hand, PLD-regulated PA levels might have an 

effect in the activity or subcellular localization of key components of PAT, such as PID 

or RCN1, both which bind PA [24;47]. Surprisingly, PID:VENUS seems to be recruited 

primarily to the apical side of the PM at the epidermal cell layer (Figure 4d, stars), 

suggesting that after the loss of polarity due the plasmolysis there is a still unknown 

signal that predetermines PID subcellular localization. In conclusion, our results show 

that PDK1-dependent regulation plays a central role in regulating activity and place of 

action of PID. 

 

Material and methods 
 

Molecular cloning and constructs 

Molecular cloning was performed following standard procedures [48]. PCR primers used 

in this study are listed in Table 1. Bacteria were grown on LC medium containing 100 

µg/ml carbenicillin (Cb) for E. coli strains DH5α or DB3.1. The construct pSK 

YFP:CLIP170 were described previously [26]. pAS PDK1 was kindly provided by Dr. 

Lazlo Bögre. pART7-PID:CFP, pART7-PID:YFP, pART7-PDK1:CFP, pART7-

PDK1:mRFP, and pART7-YFP:CLIP1701-1240 fusions were constructed using the 

Gateway Technology (Invitrogen). Destination vectors used in this study were 

constructed by introducing the Gateway recombination cassette (Invitrogen) frame with 

YFP, CFP or mRFP1 between the CaMV 35S promoter and the CaMV 35S terminator of 

the pART7 vector. Genes of interest were amplified by PCR with primers containing attB 

recombination sites (see table 1) from Arabidopsis thaliana ecotype Columbia (Col-0) 

cDNA from siliques using primer set PID attB1 F - PID attB2 R for PID, from pAS 

PDK1 using the primer set PDK1 attB1F - PDK1 attB2 R for PDK1, and from pSK 

YFP:CLIP170 using the primer set YFP attB1 F - CLIP170 1-1240 attB2 R for the N 

terminal region of CLIP170 (1-1240 aminoacids). BP reactions were performed in 

pDONR207 according to manufacturer’s protocol (Invitrogen). Recombinant plasmids 

were isolated and sequenced. LR reactions were performed in the pART7-derived 

destination plasmids described above. Specific base pair substitutions were introduced 

using the QuikChange XL Site-directed Mutagenesis kit (Stratagene). Reactions were 
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performed using pDONR PID as a template and the primer sets PID SS288,290AA F - 

PID SS288,290AA R and PID SS288,290EE F - PID SS288,290EE R, respectively, 

according to manufacturer’s protocol. 

 
Table 1: Primer list 

PID attB1 F 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAGCATGTTACGAGAATCAGACGGT3’ 

PID attB2 R 5’GGGGACCACTTTGTACAAGAAAGCTGGGTCAAAGTAATCGAACGCCGCTGG3’ 

PDK1 attB1 F 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTTGGCAATGGAGAAAGAA3’ 

PDK1 attB2 R 5’GGGGACCACTTTGTACAAGAAAGCTGGGTAGCGGTTCTGAAGAGTCTCGAT3’ 

YFP attB1 F 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGTGAGCAAGGGCGAGGAG3’ 

CLIP170 1-1240 attB2 R 5’GGGGACCACTTTGTACAAGAAAGCTGGGTACTTGAGCTCGAGCTTCACCTTATCA3’ 

PID SS288,290AA F 5’GGTTACTGCCCGGGCTGGTGCGTTCGTTGGTACGC3’ 

PID SS288,290AA R 5’GCGTACCAACGAACGCACCAGCCCGGGCAGTAACC3’ 

PID SS288,290EE F 5’GGTTACTGCCCGGGAAGGTGAGTTCGTTGGTACGC3’ 

PID SS288,290EE R 5’GCGTACCAACGAACTCACCTTCCCGGGCAGTAACC3’ 

attB recombination sites are underlined 

 

Protoplast transfection 

Protoplasts were isolated from Arabidopsis thaliana Col-0 cell suspension cultures and 

10 µg plasmid DNA was introduced by PEG-mediated transfection as described 

originally by Axelos and co-workers [49] and adapted by Schirawski and co-workers 

[50]. Following transfection, the protoplasts were incubated for at least 16h. Images were 

obtained by confocal microscopy.  

 

Arabidopsis growth and biological assays 

The PIDpro::PID:VENUS line was described previously [16]. Arabidopsis seeds were 

surfaced-sterilized by incubation for 10 min in 50% commercial bleach solution and 

rinsed five times with sterile water. Seeds were vernalized for 3 days at 4°C and 

germinated (21°C, 16 h-photoperiod and 42 µmol/m2/s) on solid Murashige and Skoog 

(MS) medium. Vertically grown five day-old PIDpro::PID:VENUS seedlings were 

treated with 350 mM NaCl in liquid MS medium and visualized under the confocal 

microscope. 
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Confocal microscopy 

For the protoplast experiments, a Leica DM IRBE confocal laser scanning microscope 

was used with a 63X water objective, digital zoom and 51% laser intensity. The 

fluorescence was visualized with an Argon-Kripton lasers for excitation at 457 nm (CFP), 

514 nm (YFP) and 568 nm (mRFP) with 475-495 nm, 520-545 nm and 600-640 nm 

emission filters, respectively. Arabidopsis PIDpro::PID:VENUS roots were observed 

using a 40X oil objective with a Nikon Eclipse confocal microscope. The YFP 

fluorescence was monitored with a 522-532 nm band pass emission filter (514 nm 

excitation). The images were processed by ImageJ (http://rsb.info.nih.gov/ij/) and 

assembled in MS PowerPoint. 

 

Accession Numbers 

The Arabidopsis Genome Initiative locus identifiers for the genes mentioned in this 

chapter are as follows: PID (At2g34650), PDK1 (At5g04510). 
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Summary 

The PINOID (PID) protein serine/threonine kinase has been identified as a key 

component in the regulation of plant development. It directs polar transport of the plant 

hormone auxin by instructing apical polar targeting of PIN auxin efflux carriers through 

phosphorylation of the large central PIN hydrophylic loop. Nontheless, pid loss of 

function only triggers a clear apical-to-basal polarity shift of PIN1 in the epidermis of the 

inflorescences meristem, leading to needle shaped inflorescences that are still capable of 

organ formation. Also the three cotyledon phenotype that is typical for pid mutants is 

only partially penetrant, even in the strong alleles, suggesting that other redundantly 

acting kinases may compensate for the loss of PID function. PID belongs to the plant 

specific family of AGCVIII kinases, where is groups into the AGC3 clade with three 

other kinases, named WAG1, WAG2 and AGC3-4. Here we investigated the possible 

role of these other AGC3 kinases in determining PIN polarity. We show that all AGC3 

kinases are membrane-associated proteins that phosphorylate the hydrophilic loop of PIN 

proteins. Double loss-of-function pid/wag mutants show stronger pleitropic defects 

during embryo and inflorescence development than the pid mutant, whereas the triple 

loss-of-function pid/wag1/wag2 mutant develops embryos without cotyledons, 

agravitropic roots, hypoctoyls with reduced phototropic response, and strong defects in 

leaf morphology and a single pin-like inflorescence. Moreover, overexpression of WAG1 

and WAG2, like that of PID, induces agravitropic growth of young seedlings and collapse 

of the primary root meristem. The developmental defects of the loss- and gain-of-

function mutants correlate with defects in apical PIN polarity, indicating that WAG1 and 

WAG2 function redundantly with PID in instructing apical targeting of PIN proteins. A 

promoter-swap complementation experiment shows, however, that the AGC3 protein 

kinases are not completely functionally redundant, and that depending on the tissue they 

act together or in parallel to orient plant development by instructing PIN polarity. 
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Introduction 

Plants growth and development is directed and regulated by many different signaling 

molecules, and of all these compounds, auxin - or indole-3-acetic acid (IAA) is known to 

play the most central role. It directs cell division, -growth and –differentiation through 

polar auxin transport (PAT) generated auxin maxima and minima [1-7]. PAT is mediated 

in part through the action of the PIN-FORMED (PIN) transmembrane auxin efflux 

transporters, that determine the direction of transport through their asymmetric 

subcellular localisation [7-10] Wisniewska. In Arabidopsis, the PIN gene family is 

composed of eight members that act both independently and coordinately to regulate a 

plethora of developmental programs. PIN1 is necessary during embryo patterning and 

development, and the initiation and development of lateral organs [1;2;5;11]. PIN2 is 

expressed in the root at the epidermis and cortex cell layers and controls root growth and 

gravitropism [12;13]. PIN3 is involved in the regulation of gravi- and phototropism [14], 

while PIN4 and PIN7 are essential for embryo patterning [15;16]. The differential, 

partially overlapping expression patterns of the PIN gene family members and their 

subcellular polar localization are essential to generate the dynamic auxin maxima and 

minima that are necessary for plant tissue patterning and growth [7]. 

The subcellular distribution of PIN efflux carriers is dependent on their primary 

amino acid sequence and on the presence of cellular components that direct their (polar) 

targeting to the plasma membrane [10]. Previoulsy, we have identified the PINOID (PID) 

protein serine/threonine kinase as a regulator or PAT [17], and more recently we have 

shown that PID is a membrane-associated kinase that directs targeting of PIN proteins to 

the apical (shoot facing) side of the plasma membrane by phosphorylating these PIN 

proteins in their large central hydrophylic loop (HL) [18;19].  

The phenotypes of the pid loss-of-function mutants correlate with the tissues 

where PID is expressed, and where PIN proteins show apical localisation [17;18]. 

However, pin-like inflorescences of the pid mutant are not completely defective in organ 

initiation, even though PIN1 shows basal localisation. Moreover, even in strong pid 

alleles the three cotyledon phenotype is not fully penetrant, and roots are only weakly 

agravitropic, correlating with the fact that no clear changes in PIN polarity can be 

detected in these tissues [18;20;21]. In view of the key role for PID in PIN polar 
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targeting, these observations strongly suggests that there are other protein kinases that act 

redundantly with PID in establishing PIN polarity. 

PID belongs to the plant-specific family of ACGVIII kinases, where it groups 

together with three other kinases in the AGC3 subfamily (see Chapter 1). WAG1 and 

WAG2 have been initially found through transcripts induced by auxin application and 

repressed upon exposure to light in etiolated seedlings [22;23]. Moreover, WAG1 is 

expressed very weakly in petioles of the first true leaves, and abundantly in root tips and 

lateral root primordia [23]. WAG2 is more abundantly expressed in the same tissues as 

WAG1 [23]. Arabidopsis loss-of-function single mutants result in weak root waving 

phenotype, but double mutants show a constitutive root waving in vertically grown 

seedlings, and root curling is more resistant to the PAT inhibitor 1-naphthylphthalamic 

acid (NPA), indicating that WAG protein kinases act redundantly in the regulation of root 

waving [23]. Root growth is a highly complex mechanism which is the result of the 

interaction between gravitropism, thigmotropism and circumnutation [24-26]. 

Interestingly, wag mutants respond normally to gravity stimulation, indicating that they 

are involved in root growth, possibly through the regulation of PAT [23;27]. Recently, 

Cheng and coworkers have reported that all four AGC3 kinases are expressed in 

Arabidopsis embryos, and that accordingly pid/wag1/wag2/agc3-4 quadruple loss-of-

function mutants show failure in cotyledon initiation and development during 

embryogenesis [28]. 

In this chapter we addressed the question whether the other three AGC3 kinases 

are involved in PIN polar targeting, and whether they act redundantly or differently to 

PID. We show that all four AGC3 kinases are plasma membrane associated proteins and 

are able to phosphorylate the hydrophilic loop of PIN proteins. Furthermore, we show 

that multiple combinations of double and triple loss-of-function mutants have strong and 

different pleiotropic defects in plant development. Most important, such developmental 

defects correlate with changes in PIN polarity in different stages of development. Gene 

complementation experiments show that AGC3 kinases have partial overlapping 

functions during plant development, however we also present evidence that WAG2 and 

AGC3-4 act in parallel pathways PID and WAG1. Consistently, we show that WAGs 

control the early events of phototropism, probably through the regulation of PAT. Our 
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results provide compelling data that AGC3 kinases are partially redundant in regulating 

PIN polarity through direct phosphorylation and that are essential in the regulation of 

PAT through plant development and growth. 

 

Results 

 

AGC3 kinases are membrane associated and phosphorylate PIN proteins in vitro 

PID is a membrane-associated protein kinase that shows an overlapping subcellular 

localization with its PIN phosphorylation targets [19]. To obtain a first indication whether 

the other three AGC3 kinases would be involved in regulating PIN polarity, we tested 

their subcellular localization, and checked whether they were able to phosphorylate the 

PINHL in vitro.  

Transformation of Arabidopsis protoplasts with 35Spro::kinase:CFP constructs 

showed that all four AGC3 kinases are membrane-associated (Figure 1 a-d). In addition, 

WAG1, WAG2 and AGC3-4 also localized to the nucleus, where AGC3-4:CFP showed a 

very specific (spotty) localisation. (Figure 1 b-d). Furthermore, in in vitro 

phosphorylation assays using bacterial expressed proteins all four AGC3 kinases were 

able to phosphorylate the PIN2HL. Interestingly, WAG2 showed a higher 

autophosphorylation and PIN2HL phosphorylation activity compared to the other three 

kinases (Figure 1e). These results make it more likely that all four AGC3 kinases are 

involved in regulating PIN polarity through direct phosphorylation of the PINHL. 

However, recent analysis of the D6PK clade of the AGC1 subfamily of kinases (AGC1-

1/PK64, AGC1-2, PK5 and PK7) has shown that these kinases are also membrane 

localized and that they phosphorylate the PIN1HL in vitro and in vivo. Although analysis 

of loss- and gain-of-function mutant lines provided evidence for a role of these kinases in 

regulating PAT, no indications were obtained that these kinases direct PIN polar targeting 

[29]. We therefore set out to analyse loss- and gain-of function lines, and since we were 

not able to obtain a homozygous loss-of-function line or an overexpression line for 

AGC3-4, this analysis focused on the WAG1 and WAG2 kinases. 
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Figure 1 AGC3 kinases are membrane-associated and phosphorylate the PIN2HL in vitro. 

(a-d) Cells suspension derived protoplast expressing translational fusions of the AGC kinases with CFP. 

(e) In vitro phosphorylation of the PIN2HL by the AGC3 kinases. Autoradiogram (upper panel) and 

coomassie stained gel (lower panel). 

 

PID and WAG protein kinases act redundantly throughout plant development 

As shown previously by Santner and Watson [23], single or double wag1 and wag2 T-

DNA insertion mutants (SALK) showed no effect on embryo development (Figure 1e), 

whereas 47% of the seedlings homozygous for the pid-14 allele that was used in our 

studies developed three cotyledons, consistent with previous observations for other strong 

pid alleles (Figure 2a and e)[18;30-32]. In the pid-14/wag1 or pid-14/wag2 double mutant 

background, the penetrance of cotyledon defects remained about 50%, but a significant 

number of seedlings developed only one cotyledon or even lacked cotyledons (Figure 2b-

e). Interestingly, pid-14/wag2 had a stronger effect on embryo development with 

respectively 14% and 23% mono- and no-cotyledon seedlings, versus respectively 1% 

and 4% for pid-14/wag1 (Figure 2b and e). Among progeny of a pid-14+/wag1/wag2 

plants all of the genotyped pid-14/wag1/wag2 triple mutant seedlings completely lacked 

cotyledons (Figure 2c-e), whereas the pid-14+/wag1/wag2 or wag1/wag2 seedlings 

developed two cotyledons (data not shown). The complete lack of cotyledons is a 

phenotypic characteristic of pid/pin1 double loss-of-function mutants [32]. Our results 

indicate that the PID and WAG genes act redundantly, and that their action is essential for 

proper initiation and development of cotyledons during embryogenesis. 

The overlapping expression patterns of the PID and WAG genes in the root tip 

[17;19;23] suggest that the three genes might also act redundantly in regulating root 

growth and development. We established transgenic lines expressing WAG genes fused to  
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Figure 2 PID and WAG protein kinases act redundantly, and are essential for cotyledon development, 

gravitropic root growth, and leaf and inflorescence development. 

(a-d) Cotyledon phenotypes. (a) a di- and tricotyledon seedling in a pid-14/+ segregating population. (b) 

monocot wag2/pid-14 seedling, (c) wag1/wag2/pid-14 seedling without cotyledons, (d) scanning 

electromicroscopy detail of the apex of a no-cot seedling. (e) Frequency of cotyledon defects observed in 

different mutant combinations. (f-m) Root phenotypes of indicated single, double and triple mutants.  

(n-r) Adult plant phenotypes of the indicated double and triple mutants. 
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the YFP reporter in the wag1/wag2 mutant background. Selected lines homozygous for a 

single WAG1pro::WAG1:YFP or WAG2pro::WAG2:YFP locus showed a waving pattern 

comparable to that of respectively the wag2 or the wag1 single mutant, showing that our 

constructs are complementing and that the fusion proteins are functional (Supplemental 

figure 1a-c). Despite the observed rescue, we could not visualize the expression of the 

WAG:YFP fusion proteins using confocal microscopy, suggesting that the proteins are  

subjected to a rapid turnover. Both genes were expressed in the root tip according to 

previous reported promoter GUS lines (Supplemental figure 1d-g)[23]. When grown on 

45° inclined 1.5% agar plates pid-14 seedlings displayed wild type root growth (Figure 2f 

and g), whereas wag1 or wag2 seedling roots were slightly more wavy (Figure 2h and i), 

pid-14/wag1 or pid-14/wag2 double mutant roots showed a similar waving phenotype as 

roots of the corresponding single wag mutant, and wag1/wag2 double mutant roots 

showed an enhanced waving (Figure 2j-l). Interestingly, pid-14/wag1/wag2 triple mutant 

seedlings roots were shorter and were partially agravitropic (Figure 2m), indicating that 

the PID and WAG genes also act redundantly in root growth and are essential for 

gravitropism. Moreover, we observed that the short roots of the pid-14/wag1/wag2 triple 

mutant seedlings did not develop lateral roots. Analysis of pid-14/wag2 double mutant 

seedlings showed, however, that the lack of lateral roots was a secondary effect of the 

absence of cotyledons, as monocot pid-14/wag2 seedlings did show lateral root 

development, and the nocot seedlings did make lateral roots when the first leaves 

appeared. This observation is consistent with previous observations showing that early 

[33]. 

Single wag1 or wag2 or double mutant plants did not show clear defects in 

vegetative and inflorescence development [23]. In contrast, pid-14/wag1 and pid-

14/wag2 double mutants showed inflorescence phenotypes that are also observed for 

strong pin1 alleles or pin1pid double mutants [3], such as fasciated pin-like structures, 

leaf curling, and loss of apical dominance (Figure 2n-p). Moreover, pid-14/wag1/wag2 

triple mutant plants formed a reduced number of rosette leaves, which were curled and 

occasionally fused or cup shaped, and eventually developed few short pin-like 

inflorescences (Figure 2q and r). Interestingly, a single copy of wild type PID is 

sufficient to restore inflorescence development, indicating that PID function is dominant,  
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but the enhanced phenotypes in the double and triple mutants show that the WAG kinases 

act partially redundant during inflorescence development. 

 

PID and WAG-dependent PIN localization 

To investigate whether the observed phenotypes in the triple mutant were the result of 

changes in subcellular localization of PIN proteins, we performed whole mount 

immunolocalization on progeny of a pid-14+/wag1/wag2 plant. Immunolocalisation of 

PIN1 in embryos showed that the apical PIN1 localization observed in the epidermis of 

cotyledon primordia of wild type embryos (Figure 3a and b) was lost in the apical dome 

of triple mutant embryos (Figure 3c and d). Furthermore, immunodetection of PIN1 and 

PIN2 in 5 days old seedling roots showed that single or double mutants of pid-14, wag1 

and wag2 did not affect PIN1 or PIN2 subcellular localization (Figure 3e-h, 

Supplemental figure 1h-i). However, the partially agravitropic pid-14/wag1/wag2 triple 

mutants showed a loss of PIN2 membrane localization in lateral root cap cells, and a 

switch in subcellular localization to the basal (root tip facing) side of epidermis cells 

close to the meristem (Figure 3i). A single copy of the PID gene is sufficient to 

reestablish PIN2 apical localization and to restore gravitropic root growth (Figure 3j). 

Interestingly, epidermis cells more distal to the meristem still showed apical (shoot tip 

facing) localization (Figure 3i), suggesting that PIN2 polar targeting in these cells is 

controlled by a PID/WAG-independent pathway. Our data indicate that the WAG kinases 

act redundantly with PID to regulate PIN polarity during embryogenesis, root 

gravitropism and aerial organ development. 

 

WAG1 and AGC3-4 but not WAG2 partially complement pid developmental defects 

The above conclusion implies that all four kinases direct apical PIN polar targeting in 

different tissues in the plant, however, polar PIN localization can be apical, lateral or 

basal, and many cell types show apico-lateral, baso-lateral, or even apolar localization 

[1;2;14;18;34]. A crucial question thus is whether phosphorylation by these four kinases 

labels PINs for the same or for different recycling routes? To address this question we 

placed the kinase:YFP fusion genes under control of the PID promoter and transformed 

pid-14+/wag1/wag2 plants with the resulting constructs. Primary transformants (T1)  
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Figure 3 PID and the WAG kinases are required for proper apical localization of PIN proteins during 

embryo development and gravitropic root growth. 

(a-b) Whole mount immunolocalisation of PIN1 in wag1/wag2 (a, b) or wag1/wag2/pid-14 (c,d) embryos. 

(e-j) Whole mount immunolocalisation of PIN2 in roots of 5 days old seedlings of the indicated single, 

double and triple mutants. The PIN polarity is indicated by white arrows. RC: lateral root cap; E: 

epidermis; C: cortex. 

 

genotyped homozygous for the pid-14 mutation were grown and scored for 

complementation of the triple mutant inflorescence phenotypes (Table 1). Respectively 

64% and 61% of the PIDpro::PID:YFP and PIDpro::WAG1:YFP containing triple 

mutant T1 plants developed normal inflorescences (Table 1, Figure 4a,b), indicating that 

PID and WAG1 do act in a similar way on PIN polarity. The complementation by 

PIDpro::WAG1:YFP was weak, since for most of the complementing lines T2 plants 

showed pid phenotypes (Figure 4c-e), whereas this was not the case for the 

complementation by PIDpro::PID:YFP. In contrast, none of the PIDpro::WAG2:YFP 

and PIDpro::AGC3-4:YFP containing triple mutant plants were fertile and all showed 

pin-like inflorescences (Table 1, Figure 4f and g), indicating that WAG2 and AGC3-4 

cannot functionally replace PID. The inflorescences, however, were significantly longer 

than those of the pid-14/wag1/wag2 triple mutant, suggesting that PIDpro::WAG2:YFP 

and PIDpro::AGC3-4:YFP do alleviate some aspects of the triple mutant phenotype 

(Figure 4f,g). In addition, PIDpro::AGC3-4:YFP transgenic lines occasionally showed 
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fasciation at the inflorescence apex, suggesting that there is differentiation between 

WAG2 and AGC3-4 function. To corroborate that the pin-like structures on the lines 

were caused by mislocalization of PIN1 on the L1 layer of the shoot apical meristem 

(SAM), we have crossed all lines with pid+/wag1/wag2/PIN1pro::PIN1:GFP and looked 

at the F1 generation. Triple loss-of-function of PID and WAGs complemented with 

PIDpro::WAG2:YFP showed apolar localization of PIN1:GFP in the L1 layer (Figure 4i). 

Interestingly, PIDpro::WAG1:YFP which showed partial complementation of the 

inflorescence could restored apical localization of PIN1:GFP in certain cells (Figure 4h), 

suggesting that PID and WAG1 might have similar functions in organ initiation and 

inflorescence development. 

 

Table 1. Testing AGC3 kinase complementation of the pid-14/wag1/wag2 mutant by promoter swap 

analysis  

Construct wag1/wag2/pid-14 
Hmr 

Inflorescence 

WT pid 
PIDpro::PID:YFP 17 64% 36% 

PIDpro::WAG1:YFP 18 61% 39% 

PIDpro::WAG2:YFP 30 0% 100% 

PIDpro::AGC3-4:YFP 15 0% 100% 

 

Column 3 indicates the percentages of the hygromycin resistant primary transformants with the 

wag1/wag2/pid-14 genotype (Column 2) that show either wild type of pid inflorescence development. 

 

Next, we investigated whether AGC kinases can restore the initiation of 

cotyledons during embyogenesis in the pid-14/wag1/wag2 mutant background. 

Transgenic lines expressing PIDpro::PID:YFP restored the initiation of cotyledons. 

However, 24% of the seedlings showed three cotyledons (Supplemental table 1). 

Transformants lines containing PIDpro::WAG1:YFP and PIDpro::AGC3-4:YFP showed 

a partial restoration reflected in the decrease number of seedlings lacking cotyledons, 

from 21% to respectively 7% and 15% (Supplemental table 1). Moreover 

PIDpro::WAG2:YFP showed no complementation as the percentage of seedlings lacking 

cotyledons where similar to the observed in the pid-14/wag1/wag2 mutant. Our results  
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 Figure 4 Promoter swap analysis of the AGC3 kinases showing that PID and WAG1 but not WAG2 or 

AGC3-4 can complement the pid-14/wag1/wag2 inflorescence phenotypes. 

(a-g) Adult phenotype of wag1/wag2/pid-14 T2 plants transgenic for PIDpro::PID:YFP 

(a),PIDpro::WAG1:YFP (b-e), PIDpro::WAG2:YFP (f), PIDpro::AGC3-4:YFP (g).  

 (h-i) Subcellular localization of PIN1:GFP in infloresence apex of wag1/wag2/pid-14 plants transgenic for 

PIDpro::WAG1:YFP (h), PIDpro::WAG2:YFP (i) The polarity of PIN1:GFP is indicated by white arrows. 

(j-q) Root morphology of wild type (j), wag1/wag2/pid-14 (k), or wag1/wag2/pid-14 containing 

PIDpro::PID:YFP (l), PIDpro::WAG1:YFP (n), PIDpro::WAG2:YFP (o), and whole mount  

PIDpro::PID-16 PIDpro::WAG1-20.1 PIDpro::WAG1-20.2

PIDpro::WAG2-35 PIDpro::AGC3-4-1

a b c d

f g
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Figure 4 (continued) 

immunolocalisation of PIN2 in 5 days old seedling roots of wag1/wag2/pid-14 containing 

PIDpro::PID:YFP (m), PIDpro::WAG1:YFP (p), PIDpro::WAG2:YFP (q). PIN2 polarity is indicated by 

white arrows. 

 

indicate that WAG1 and AGC3-4 but not WAG2 partially complement pinoid function 

during embryogenesis. 

Because of the overlapping expression patters of WAGs and PID kinases in the 

root tip and the observed reduced gravitropism in the pid-14/wag1/wag2 (Figure 3 and 

Supplemental figure 1) mutant we test if WAG expression could restore root growth. 

Transgenic lines containing PIDpro::PID:YFP in the pid-14/wag1/wag2 mutant 

background, showed WT root growth following the gravity axis in vertical plates (Figure 

.4j-l). Restoration of gravitropic growth correlated with the restoration of PIN2 apical 

localization in the epidermal cell layer close to the meristem (Figure 4m). Interestingly, 

PIDpro::WAG1:YFP or PIDpro::WAG2:YFP transgenic lines showed a reduced 

gravitropic growth and mislocalization of PIN2 in epidemis cells of the root meristem, 

similar to what is observed in the pid-14/wag1/wag2 mutant background (Figure 3j, 

Figure 4n-q). Our data indicate that the WAGs can not replace PID when expressed 

undercontrol of the PID promoter.  

 

WAG2 mediated localization of PIN proteins 

The partial complementation observed indicates that WAG2 and AGC3-4 might have 

different effect on the polarity of PIN proteins than PID and WAG1. To test this 

possibility, we established transgenic lines expressing PID:mRFP1, WAG1:YFP and 

WAG2:YFP under control of the strong Cauliflower Mosaic Virus 35S promoter. PID 

overexpression mainly has effect on young seedling development, causing agravitropic 

growth and eventually collapse of the main root meristem, as a result of a general basal-

to-apical shift in PIN polarity that the drains organizing auxin maximum [17]. 

Interestingly overexpression of WAG1:YFP and WAG2:YFP resulted in the same 

phenotypic characteristics as overexpression of PID or PID:mRFP1 (Figure 5d-i), and 

correlating with an basal-to-apical shift in PIN2 and PIN1 localization in respectively the 

lower cortex cells (Figure 5e) or the central cylinder (Supplemental figure 2). The results  
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Figure 5 Overexpression of PID, WAG1 and WAG2 in young seedlings shows that the three AGC3 

kinases act redundantly in apical PIN polar targeting.   

(a, d, g) Morphology of 5 days old 35Spro::PID:mRFP (a), 35Spro::WAG1:YFP (d), and 

35Spro::WAG2:YFP (g). (b, e, h). Whole mount immunolocalisation of PIN2 in 3 days old 

35Spro::PID:mRFP (b), 35Spro::WAG1:YFP (e), and 35Spro::WAG2:YFP (h) seedlings. (c, f, i) 

Quantification of the gravitropic response of 3 days old 35Spro::PID:mRFP (c), 35Spro::WAG1:YFP (f), 

and 35Spro::WAG2:YFP (i) seedlings roots grown on vertical plates, by categorizing the angle of the root 

with the gravity axis in intervals of 30°, from which percentages were calculated. The number at the center 

represents the number of roots measured. 

 

indicate that in roots PID, WAG1 and WAG2 act in the similar manner on PIN polar 

targeting, resulting in asymmetric recruitment of PIN proteins to the apical plasma 

membrane. 
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AGC3 kinase mediated PIN localization is required for phototropic growth 

The capacity of plants to direct their growth towards a unidirectional light source, or 

phototropism, allows them to position their leaves for optimal light perception., Until 

now, few component involved in the phototropic growth have been identified. The blue 

light photoreceptor PHOTOTOPIN1 initiates a complex signal transduction cascade at 

the light side of the hypocotyl that leads to differential PIN3-dependent lateral transport 

of auxin lateral, resulting in the establishment of an auxin maximum in the epidermis at 

the dark side of the hypocotyl [14;35]. Since PID and WAGs are able to phosphorylate 

PINHL(Figure 1e), we tested loss and gain-of function mutants for defects in phototropic 

response. Dark-germinated seedlings were exposed for 4 hours to a unidirectional low-

intensity light source, and hypocotyl bending was quantified by measuring the angle of 

the hypocotyl tip with the seedlings axis (Supplemental figure 3). Whereas pid-14 or 

wag2 loss of function mutants responded like wild type seedlings, wag1 and 

 

Table 2. Phototropic response of AGC3 kinase loss- and gain-of-function mutants 

Line Av °  SD  n  

Col-0  68  20  81  
wag2  63  22  43  
wag1*  54  22  62  
wag1/wag2*  53  13  53  
pin3*  26  18  60  
35Spro::PID 21*  8  12  23  
phot1*  3  6  23  
* Significant difference from Col-0 ANOVA (0.05) 

 

wag1/wag2 double mutant showed a slight but significant reduction in phototropic 

response compare to the wild type (Col-0) seedlings (Table 2 and Supplemental figure 3). 

The delay in phototropic response in these mutants was not as strong as that in pin3 

(Table 2 and Supplemental figure 3), suggesting that WAG1 might be important in the 

primary response, probably by regulating PIN3 dependent lateral transport. Furthermore, 

35Spro::PID 21 was unable to respond to directional light to the same extent as phot1 

(Table 2 and Supplemental figure 3), suggesting that PID overexpression overrules 

PHOT1-induced differential changes in PIN3 polarity in the hypocotyl.  
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Discussion 
 

Polar auxin transport (PAT) is an active and directed process that is tightly regulated 

throughout plant development. Despite the extensive efforts in the characterization of the 

regulatory network of PAT, the molecular and cellular mechanism of PIN-mediated auxin 

transport is still poorly understood [36]. Nevertheless, an essential role for 

phosphorylation has recently been established in the regulation of the subcellular polar 

localization of PIN proteins [19;36]. PID and the protein phosphatase 2A (PP2A) are 

until now the only known determinants of the establishment of PIN polarity and 

directionality of auxin gradients [19]. Here we present evidence that AGC3 kinases are 

key components in the regulation of PIN polarity through direct phosphorylation, and 

their function is essential for plant development and growth. 

 

AGC3 kinases dependent phosphorylation control PIN subcellular localization 

A central question in plant developmental biology is how cells are capable to establish 

PIN polarity required for the generation of auxin gradients and maxima that control plant 

development. Currently, it is known that PIN polarity depends on its primary structure 

and on cell specific sorting machineries capable to identify and read these intrinsic PIN 

signals [10]. The discovery of PID as key regulator in establishing apical sub cellular 

localization of PIN proteins through direct phosphorylation has provided a plausible 

molecular mechanism of the signals that determine PIN polarity [18;19]. The apical-to-

basal switch of PIN1 in the epidermal cell layer of the shoot apical meristem in loss-of-

function pid mutants, the observed opposite effect with PID overexpression in the root, 

and the direct phosphorylation of the hydrophilic loop provide evidence for a direct effect 

of PID in the regulation of PIN proteins. However, PIN2 remains apical in the root 

epidermis in pid mutants, suggesting that other components might be involved. Our 

results show that WAG1, WAG2 and PID protein kinases act redundantly in the 

regulation of PIN2 apical polarity. The observed apical-to-basal switch of PIN2 

localization on the root epidermis in pid-14/wag1/wag2 mutant plants together with the in 

vitro phosphorylation supports this hypothesis. Whether all three kinases phosphorylate 

the same residues on the PIN hydrophilic loop still needs to be determined. Moreover, 
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overexpression of WAG1 and WAG2 in the root leads to apicalization of PIN1 in the stele, 

causing root collapse as has been described previously for PID [18]. Interestingly, in 

WAG2 overexpression lines PIN2 subcellular localization in the cortex cell layer is rather 

apolar than apical, suggesting that PID and WAG1 phosphorylation signals act differently 

than WAG2 on the establishment of PIN polarity in this cell type.  

 

Redundant and differential action of AGC3 kinases in programmed and adaptive 

plant development 

Here we investigated the possible role of the three PID-like AGC3 protein kinases 

(WAG1, WAG2 and AGC3-4) as regulators of polar auxin transport. Like PID, the three 

kinases are plasma membrane-associated and can phosphorylate the PINHL in vitro. 

Moreover, detailed analysis of loss- and gain-of-function mutant lines showed that 

WAG1 and WAG2 act redundantly with PID in instructing apical polar targeting of PIN 

proteins. However, promoter swap complementation experiments where the four AGC3 

kinases were placed in the PID expression domain in the pid-14/wag1/wag2 triple mutant 

background suggested that WAG2 and AGC3-4 may also act in parallel pathways and 

thus have different effect on PIN polarity in these tissues. 

The differential action by WAG1 and WAG2 can also be observed in the pid-

14/wag double and triple mutant phenotypes. For example, the effect of the pid-14/wag1 

double mutation on cotyledon development is mild compared to the pid-14/wag2 double, 

where seedlings without cotyledons were observed, a phenotype that is fully penetrant for 

the pid-14/wag1/wag2 triple mutant. Another example for a possible differential action of 

PID and WAG2 has been identified during fruit development, where a shift in PIN3 

polarity from apical to apolar coincides with repression of PID and induction of WAG2 

by the INDEHISCENCE (IND) transcription factor, resulting in an auxin minimum that 

specifies the dehiscence zone [6]. All these results raise the question how a differential 

action of similar kinases can be brought about. Recent data suggest that all four AGC3 

kinases phosphorylate the same residues in the PIN hydrophilic loop (Huang et al., in 

prep), which is in line with the redundant rather than the differential action of the kinases. 

The differential action of the kinases is therefore more likely to depend on cell-type of 

tissue-specific factors, such as binding proteins, or on the differential stability or activity 
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of the kinases. For one thing, WAG2 was found to be much more active in in vitro 

phosphorylation reactions than the other AGC3 kinases, and might thus induce a higher 

overall phosphorylation of PIN proteins. Since phosphorylation of PIN proteins is 

supposed to be reversible [19] and dynamic polarity switches are thought to be important 

for proper phyllotactic patterning [37], this higher phosphorylation activity might thus 

preclude dephosphorylation and thus lead to defective inflorescence development, as 

observed in the promoter swap experiments. 

One of the kinases for which the functional analysis needs to be finalized is 

AGC3-4. Data by Cheng and coworkers suggest that the pid/wag1/wag2/agc3-4 

quadruple loss-of-function mutant shows the same phenotype as the pid/wag1/wag2 triple 

mutant [28]. However, our preliminary analysis of an agc3-4 mutant allele, with a T-

DNA insertion in the first exon, suggests that homozygous mutant progeny can not be 

obtained, possibly due to problems during gametophyte development. This suggests that 

AGC3-4 is involved in different developmental processes as the other AGC3 kinases, and 

may explain it lack of complementation in the promoter swap experiment. Future 

research should reveal the exact role of this kinase. 

Based on the phenotypes of the pid loss-of-function mutant in the embryo and 

inflorescence, the PID kinase has initially been considered as regulator of programmed 

plant development. However, the strong wavy root phenotype of the wag1/wag2 double 

mutant [23] and the recent observation that pid mutant roots are affected in gravitropic 

growth indicate a role for the AGC3 kinases in adaptive plant development. This role is 

further corroborated by the reduced phototropic response of the wag1 single and 

wag1/wag2 double mutants, and the agravitopic roots of the pid-14/wag1/wag2 triple 

mutant. It is likely that environmental signals act on these kinases through their upstream 

regulators, such as the calcium binding proteins TCH3 (Chapter 2) and PBP1 (Chapter 3), 

and the phosphoinositide depedent kinase (PDK1, Chapter 4). 

In conclusion, our findings indicate that the AGC3 kinases act both redundantly 

and differentially in programmed plant development as well as in developmental 

plasticity in response to environmental stimuli, and that they orient plant development by 

instructing the subcellular distribution of the PIN auxin efflux carriers. 
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Materials and Methods 

 

Molecular cloning and constructs 

Molecular cloning was performed following standard procedures [38]. Primers used for 

cloning are listed in Table 1. Bacteria were grown on LC medium supplemented with 100 

µg/ml carbenicillin (Cb) or 10 µg/ml gentamicin for E. coli strain DH5α containing 

pDONR207, pART7 or pGEX-based plasmids, or 50 µg/ml kanamycin (Km) for in E. coli 

strain DH5α or Agrobacterium tumefaciens strain AGL1 containing pGreenII-based 

binary vectors [39]. For AGL1 20 µg/ml rifampicin was included in the LC medium. The 

construct pGEX-PIN2HL construct was described previously [19;34]. For pART7-based 

destination vectors the recombination cassette was inserted in frame with the YFP, CFP 

or mRFP1 coding region between the CaMV 35S promoter and, the CaMV 35S 

terminator. For the pGEX-based destination vector, the recombination cassette was 

inserted in frame with the GST coding region. For the pGreenII-based destination vector, 

the recombination cassette in frame with the YFP coding region and the CaMV 35S 

terminator was excised from the pART7-based destination vector and cloned into 

pGreenII0179. The coding regions of PID and AGC3-4 were amplified from Arabidopsis 

thaliana ecotype Columbia (Col-0) cDNA from siliques using respectively primer sets 

attB1 PIN3HL - attB2 PIN3HL, attB1 PIN7HL - attB2 PIN7HL, PID attB F - PID -Stop 

attB R, and AT2 attB F - AT2 -Stop attB R. The genomic clones for WAG1 and WAG2 

comprising respectively 3205bp and 3402bp upstream from the ATG, were amplified 

from Arabidopsis thaliana Col-0 genomic DNA using respectively primer sets attB1 

WAG1pWAG1 3 F - WAG1 –Stop attB R, and attB1 WAG2p 2 F - WAG2 –Stop attB R. 

Coding regions for WAG genes were PCR amplified from Arabidopsis thaliana Col-0 

genomic DNA using respectively primer sets WAG1 attB F - WAG1 –Stop attB R, and 

WAG2 attB F - WAG2 –Stop attB R. Expression vectors pGEX-PID, pGEX-WAG1, 

pGEX-WAG2, pGEX-AGC3-4, pART7-PID:CFP, pART7-PID:mRFP, pART7-

WAG1:YFP, pART7-WAG1:CFP, pART7-WAG2:YFP, pART7-WAG2:CFP and pART7-

AGC3-4:CFP were constructed using the Gateway Technology (Invitrogen). BP reactions 

were performed in pDONR207 according to manufacturer’s instructions (Invitrogen). LR 

reactions were performed in either the pGEX-based destination vector for N terminal 
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fusions with the Glutathione-S-transferase (GST), or the pART7-based destination 

plasmids (Galvan-Ampudia and Robert, unpublished). Overexpression cassettes 

containing the genes of interest where digested with Not I and cloned into pGreenII 

binary vectors for Agrobacterium-mediated transformation of Arabidopsis thaliana. 

Binary vectors pGreenII0179 WAG1pro::WAG1:YFP and pGreenII0179 

WAG2pro::WAG2:YFP were cloned using the pGreenII0179YFP destination vector 

(Galvan-Ampudia, unpublished). The promoter region of PID (3065bp upstream of the 

start codon) was amplified from Arabidopsis thaliana Col-0 genomic DNA using the 

primer set PID prom XhoI F - PID prom XhoI R and cloned into the pGEM-T Easy 

vector (Promega). From this plasmid the PID promoter fragment was excised as a Xho I 

fragment and cloned into the pGreenII0179YFP destination vector (Galvan-Ampudia, 

unpublished). Expression vectors pGreenII0179 PIDpro::PID:YFP, pGreenII0179 

PIDpro::WAG1:YFP, pGreenII0179 PIDpro::WAG2:YFP and pGreenII0179 

PIDpro::AGC3-4:YFP were constructed using the Gateway technology (Invitrogen). 

 

Table 1: Primer list 
PID attB F 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAGCATGTTACGAGAATCAGACGGT3’ 

PID –Stop attB R 5’GGGGACCACTTTGTACAAGAAAGCTGGGTCAAAGTAATCGAACGCCGCTGG3’ 

AT2 attB F 5’ GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAGCATGGCTAATTCTAGTATCTTT 3’ 

AT2 -Stop attB R 5’ GGGGACCACTTTGTACAAGAAAGCTGGGTCAAAATAATCAAAATAATTAGA 3’ 

attB1 WAG1pWAG1 3 F 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTATATGATGTCGTAAGTGTTATT3’ 

WAG1 attB F 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAGCATGGAAGACGACGGTTATTAC3’ 

WAG1 –Stop attB R 5’GGGGACCACTTTGTACAAGAAAGCTGGGTCTAGCTTTTTACCCACATAATG3’ 

attB1 WAG2p 2 F 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGGATGTGTTTGTGTCCCTTTGT3’ 

WAG2 attB F 5’GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAGCATGGAACAAGAAGATTTCTAT3’ 

WAG2 –Stop attB R 5’GGGGACCACTTTGTACAAGAAAGCTGGGTCAACGCGTTTGCGACTCGCGTA3’ 

PID prom XhoI F 5’TACTCGAGCCGAACCAATTCTAGCAATA3’ 

PID prom XhoI R 5’ATCTCGAGCGCCGGGAAAATCGAAGTTAAATCAAGA3’ 

PIDex1 F1 5’TCTCTTCCGCCAGGTAAAAA3’ 

PIDex2 R1 5’CGCAAGACTCGTTGGAAAAG3’ 

N502056 F 5’TCTCGCACGCTCAAGCCTAAC3’ 

N502056 R 5’CACCAATCTACACCGCTTCCG3’ 

N570240 F 5’TCTTCTACGACGAAGCGACGG3’ 

N570240 R 5’CTATCAAGTCTCCAATGTCTTCTTT3’ 

N588841 F 5’GCCGATTTTTACAAGGATCAGGT3’ 

N588841 R 5’CCCCATGAAGGAAAGGGAAGA3’ 

attB recombination sites are underlined 
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Protein purification 

The E. coli Rosetta strain (Novagen) was transformed with the constructs encoding GST-

tagged PID, WAG1, WAG2, AGC3-4 and PIN2HL Single colonies were grown 

overnight at 37°C in liquid LC medium containing carbenicillin (100 µg/ml) and 

chloramphenicol (34 µg/ml). Cultures were diluted 1/20 in 100 ml of fresh LC medium 

containing the same antibiotics and grown at 37°C until OD600 was 0.8, then after 

addition of IPTG at 1 mM final concentration, cultures were grown at 30°C for 4 hr. 

Bacteria were pelleted by centrifugation at 4000 x g for 20 min at 4°C and stored at -

20°C.  

For the purification of GST-tagged proteins, frozen bacterial pellets were 

resuspended in of Extraction Buffer (150 mM NaCl, 2 mM KCl, 2 mM KH2PO4, 10 mM 

Na2HPO4, 2 mM EDTA, 2 mM EGTA, 10 mM DTT) and incubated on ice for 10 min. 

After sonication for 2 min, Triton X-100 was added to a final concentration of 1 % and 

the mixture was incubated for 5 min on ice, followed by centrifugation at 15,000 x g for 

20 min at 4°C. Supernatants were added to 400 µl of pre-equilibrated 50% Glutathione 

Sepharose 4B beads (GE Amersham) and incubated for 1 hr. Beads were washed three 

times with Extraction Buffer. Purified proteins were recovered with Elution buffer (10 

mM reduced glutathione, 50 mM Tris-HCl pH 8.0) and analyzed by SDS-PAGE, blotted 

on a PDVF membrane (Millipore, USA) and immunodetected using anti-GST (Molecular 

Probes) according to the manufacturer’s instructions. 

 

In vitro phosphorylation assays 

GST-tagged proteins were purified as described above. In vitro phosphorylation assays 

were performed in a final volume of 20 µl with 1X kinase buffer (25 mM Tris-HCl pH 

7.5, 5 mM MgCl2, 2 mM CaCl2 and 1 mM DTT), 1 µg of purified GST-tagged kinase, 2 

µg GST-PIN2HL, 100 µM ATP and 1 µCi [γ-32P] ATP (3000 Ci/mM) (GE Amersham). 

Reactions were incubated at 30°C for 30 min and stopped by adding 5 µl of 5X SDS 

loading buffer (0.3125 M Tris-HCl pH 6.8, 10% SDS, 50% glycerol, 7.5 M β-

mercaptoethenol and 0.125% bromophenol blue) and boiled for 5 min. Samples were 

separated by SDS-PAGE. After electrophoresis gels were washed 3 times with 5% of 
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TCA and 1% Na2H2P4O7, Coomassie stained, dried and exposed to a phospho-imager 

screen (Molecular Dynamics). 

 

Protoplast transfection 

Protoplasts were isolated from Arabidopsis thaliana Col-0 cell suspension culture and 10 

µg plasmid DNA was introduced by PEG-mediated transfection as described originally 

by Axelos and co-workers [40] and adapted by Schirawski and co-workers [41]. 

Following transfection, the protoplasts were incubated for at least 16h. Images were 

obtained by laser scanning confocal microscopy. 

 

Confocal microscopy 

For the protoplasts experiments, a Leica DM IRBE confocal laser scanning microscope 

was used with a 63X water objective, digital zoom and 51% laser intensity. The 

fluorescence was visualized with an Argon laser for excitation at 514 nm (YFP) and 457 

nm (CFP) with 525-545 nm and 465-495 nm emission filters, respectively. Whole mount 

immunolocalisations of PIN1 and PIN2 were done as previously described [2;19;42] 

using anti-PIN1 and anti-PIN2 antibodies that were kindly provided by Jiri Friml and 

Christian Luschnig, respectively. 

Arabidopsis thaliana roots and shoot apical meristems were observed using a 40X oil 

objective with a ZEISS Axioplan microscope equipped with a confocal laser scanning 

unit (MRC1024ES, BioRad, Hercules, CA). Fluorescence was monitored with a 522-532 

nm band pass emission filter (488 nm excitation). All images were recorded using a 

3CCD Sony DKC5000 digital camera. The images were processed by ImageJ 

(http://rsb.info.nih.gov/ij/). 

 

Arabidopsis lines, plant growth and transformation 

The pid-14 (SALK_049736), wag1 (SALK_ 002056), wag2 (SALK_ 070240), and phot1 

(SALK_088841) were obtained from NASC [43]. The pid-14 mutant contains a T-DNA 

inserted in the intron and shows developmental defects similar to those reported for 

strong pid alleles [30]. The wag1 and wag2 mutants contain a T-DNA inserted in the 

coding region and have been previously characterized as null mutants [23]. For the 
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detection of the T-DNA, gene-specific primers and insertion-specific primer LB1a were 

used (PIDex1 F1 - PIDex2 R1 for pid-14, N502056 F - N502056 R for wag1, N570240 F 

- N570240 R for wag2, and N588841 F - N588841 R for phot1). The pin3.3 loss-of-

function mutant was kindly provided by Jiri Friml [14]. Arabidopsis seeds were surfaced-

sterilized by incubation for 10 min in a 50% commercial bleach solution and rinsed five 

times with sterile water. Seeds were vernalized for 5 days in dark at 4°C and germinated 

(21°C, 16 h-photoperiod and 42 µmol/m2/s) on solid MA medium supplemented with 

antibiotics when required [44]. Two- to three-weeks old plants were transferred to soil 

and grown at 21°C and 70% relative humidity with a 16 hr photoperiod (140 µmol/m2/s). 

Arabidopsis thaliana Col-0 was transformed by the floral dip method as described [45]. 

Primary transformants were selected on medium supplemented with 20 µg/ml 

hygromycin (Hm) for pGreenII0179 constructs or 30 µg/ml phosphinothricin (PPT) for 

pGreenII0229 and 100 µg/ml timentin to inhibit the Agrobacterium growth. For further 

analysis, single locus insertion lines were selected by germination on 20 µg/ml Hm or 30 

µg/ml PPT.  

 

Biological assays 

For the phenotypic analysis of the crosses, about 400 seeds were plated in triplicate, 

germinated and grown for one week on solid MA medium. The number of cotyledon 

defects was counted and the penetrance of the phenotypes was calculated based on a 1:3 

segregation ratio for homozygous pid-14 seedlings.  

Phototropic assays where performed by germinating seedlings in dark for 5 days on 60° 

inclined petri dishes, followed by exposing them for four hours to unilateral light (4.94 

µmol/m2/s). Hypocotyl bending was determined from digital images, using the Sony 

DKC 5000 3CCD camera, as the angle of the tip relative to the main axis of the seedling. 

Processing of the data was done using the Custom Software Application ImageJ 

(freeware available from the NIH at http://rsb.info.nih.gov/ij/). Statistical differences 

were calculated using ANOVA. 
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Accession Numbers 

The Arabidopsis Genome Initiative locus identifiers for the genes mentioned in this 

chapter are as follows: PID (At2g34650), WAG1 (At1g53700), WAG2 (At3g14370), 

AGC3-4 (At2g26700), PHOT1 (At3g45780), PIN2 (At5g57090). 
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Supplemental figure 1 WAGs expression pattern. 

(a-c) The short and wavy root phenotype of the wag1/wag2 double mutant (a) is complemented by either 

the WAG1pro::WAG1:YFP (b) or the WAG2pro::WAG2:YFP (c) transgene. 

(d-g) Expression pattern of WAG1pro (d and f) or WAG2pro (e and g) driving the GUS reporter gene in 7 

days old seedlings root tip (d and e) and late heart stage embyos (f and g). 

(h-i) Whole mount immunolocalisation of PIN2 in roots of wag1 and wag2 single mutants. 

a b c

wag1/wag2 WAG1pro::WAG1:YFP WAG2pro::WAG2:YFP

wag1 wag2

d e

f g h i

WAG1pro::GUS WAG2pro::GUS

WAG1pro::GUS WAG2pro::GUS
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Supplemental Figure 2 Apical PIN1 localization in primary roots of seedlings overexpressing AGC3 

kinases. (a-c) Whole mount immunolabeling of PIN1 in three days old seedling roots overexpressing 

PID:mRFP (a), WAG1:YFP (b) or WAG2:YFP (c). 

 

Supplemental Figure 3 Phototropic response of AGC3 kinase loss- and gain-of-function mutants. 

Representative picture of indicated mutants in phototropic assays. Dark grown seedlings were geminated 5 

days in dark and exposed to 4 hrs of directional light.  

 

Supplemental table 1. Percentage of embryo defects in T2 transformant lines. 

 

 Number of cotyledons  
Genotype 0 1 2 3 n 
wag1/wag2/pid14± 21  79  121 
wag1/wag2/pid14/PIDpro::PID:VENUS :YFP -16   76 24 92 
wag1/wag2/pid14/PIDpro::WAG1:YFP-20 7 4 64 25 75 
wag1/wag2/pid14±/PIDpro::WAG2:YFP-47 26 1 73  82 
wag1/wag2/pid14±/PIDpro::AGC3-4:YFP-9 15  84 1 82 

a b c

35Spro::PID:mRFP 35Spro::WAG2:YFP35Spro::WAG1:YFP

Col-0 phot135Spro::PIDwag2 wag1 pin3wag1/wag2
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Plant development follows strict programs producing uniform body plans and organs, 

however, it can be flexible during vegetative growth. In view of the predominantly sessile 

nature of plants, this flexible development is crucial to enable adaptation to changes in 

the environment. Plants have developed mechanisms to constantly monitor their 

surroundings in order to be able sense changes in their environment. The initial 

observations of Darwin on the growth responses of canary grass coleoptiles have set the 

basis in plant developmental biology on the understanding of how environmental signals, 

such as light and gravity, modulate plant growth and architecture by causing changes in 

the distribution of the plant hormone auxin (indole-3-acetic acid). Now it is well-

established that auxin is transported from cell-to-cell in a polar fashion from its sites of 

synthesis to its sites of action. This polar auxin transport (PAT) generates auxin gradients 

and maxima that mediate tropic growth responses, embryo development, meristem 

maintenance and organ positioning. 

The distribution of auxin within the tissues is controlled by three types of plasma 

membrane (PM) proteins, the AUX1/LAX auxin influx carriers, the P glycoprotein (PGP) 

type of ABC transporters, and the PIN auxin efflux carriers. The PIN proteins are 

considered to be the primary drivers of transport that determine the direction of auxin 

flow through their asymmetric subcellular distribution. The PIN proteins cycle via actin-

mediated vesicle transport between PM and endosomal compartments, and this cyclic 

vesicle transport is essential for polarity establishment. Although the exact mechanism of 

PIN polarity establishment is still elusive, the first identified component in this pathway 

is the plant AGC protein serine/threonine kinase PINOID (PID). PID instructs apical 

(shoot meristem facing) PIN polarity, and acts antagonistically with protein phosphatase 

2A (PP2A) in determining the phosphorylation status of the PIN proteins.  

PID belongs to the plant-specific AGCVIII group of protein kinases (named after 

protein kinase A (PKA), cyclic GMP-dependent protein kinase (PKG) and protein kinase 

C (PKC)), which have unique structural features. In Chapter 1 is present an extensive 

bioinformatic analysis of these protein kinases and propose a classification for these 

subfamily. Only for the blue light receptors phototropins (PHOTs, AGC4) and the PID-

related kinases (AGC3) a role in auxin-mediated plant development has been well-

established. On one hand, light-activated phototropins induce rapid Ca2+ release into the 
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cytosol and initiate differential auxin transport leading to auxin accumulation in the cell 

layers at the dark side of the hypocotyl. On the other hand, PID, and possibly other 

AGC3 kinases, direct PAT by determining the correct polar localization of PIN proteins 

during embryo development and organ formation in the shoot apical meristem. 

Although none of the AGC3 kinases has been directly connected to phototropic 

growth, the observation that the activity of PID is regulated by interacting calcium-

binding proteins, named TOUCH3 (TCH3)(Chapter 2) and PINOID BINDING 

PROTEIN1 (PBP1)(Chapter3), suggests that these kinases might be downstream 

components of the phototropin signal-transduction pathway. Based on our analysis, we 

propose that those AGCVIII kinases that play an essential role in plant development, 

recapitulate plant evolution. Phototropins represent the most ancient AGCVIII kinase 

forms that regulate highly conserved processes in plants like optimization of light 

perception and AGC3 kinases co-evolved with PIN auxin transporters in multicellular 

plants during their colonization of land, and act together, possibly downstream of the 

phototropins, to orient plant development by establishing the directionality of auxin 

transport. 

Chapter 2 presents a detailed study of the in vivo interaction between PID and 

TCH3. Using loss- and gain-of-function mutant lines, we confirm in vitro observations 

that TCH3 is a negative regulator of the PINOID kinase activity. This regulation occurs 

directly by inhibition of the kinase activity, as shown in phosphorylation assays, and by 

sequestration of PID from the plasma membrane. Interestingly, auxin treatment also 

results in rapid transient re-localization of the membrane-associated kinase to the cytosol.  

Chapter 3 describes the functional and genetic analysis of the PID-PBP1 

interaction to elucidate the regulatory role of PBP1, also named KRP2 (for KIC-related 

protein2), as it is part of a small protein family that includes the close PBP1 homolog 

PBP1H/KRP1 and KIC (KCBP-interacting Calcium binding protein). In vitro 

experiments show that PID contains two major PBP1-binding sites and that PBP1 not 

only enhances PID kinase activity but also changes its substrate recognition signature. 

Using Arabidopsis thaliana protoplasts we tested the effect of PBP1 on PID membrane 

localization. Our results show that PBP1 sequestrate PID from the PM into the cytosol. 

Moreover, we characterized combinations of Arabidopsis loss- and gain-of-function 
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mutant lines of PBP1, PBP1H and PID. Our results indicate that PBP1 and PBP1H act 

redundantly to enhance PID kinase activity during embryo development, and that they 

partly suppress root growth, possibly through their stimulatory effect on PID. PBP1 

overexpression partially inhibits auxin-induced calcium-dependent sequestration of PID 

from the plasma membrane, suggesting that apart from enhancing the activity of the PID 

kinase, PBP1 also influence PID subcellular localization. These data confirm previous in 

vitro data, indicating a role for PBP1 and PBP1H as positive regulators of PID kinase 

activity, and extend the function of these small EF-hand proteins to that of regulators of 

subcellular PID localisation. 

As a PIN polarity determinant, PID is an excellent target for the regulation of the 

direction of transport by external stimuli through upstream regulators, such as 3-

phosphoinositide-dependent kinase 1 (PDK1). PDK1-dependent phosphorylation is a 

conserved eukaryotic mechanism for the regulation of many signal transduction pathways 

downstream of AGC protein kinases. PDK1 phosphorylates PID on two well-conserved 

residues of the activation loop (Ser 288 and Ser 290) resulting in enhanced kinase activity 

towards a generic substrate in vitro. PDK1 is a conserved gene among eukaryotes that 

regulates and activates other kinases by phosphorylation. As in mammals and yeast, plant 

PDK1 activates and phosphorylates the activation loop of different AGC protein kinases. 

In Chapter 4 we describe the effect of PDK1-dependent phosphorylation of PID at the 

cellular level, and show that PDK1 causes a change in the subcellular localization of PID 

from PM to endomembrane structures and microtubules (MT) in Arabidopsis cell 

suspension derived protoplasts. Furthermore, the PDK1 phosphorylation sites in PID 

were shown to be required for this relocalization. Finally, we provide evidence in planta, 

showing that in osmotic stressed Arabidopsis roots, PID is recruited to similar structures 

as in protoplasts. We present a model in which stress responses initiate a lipid signaling 

cascade and PDK1-dependent activation of PID, one of the major regulators of polar 

auxin transport, proposing a direct molecular link between stress responses and auxin- 

mediated plant development and growth. 

AGC3 protein kinases have being implicated to the regulation of polar auxin 

transport. In Arabidopsis loss-of-function single mutants of WAG1 and WAG2, the closes 

homologues of PID, result in weak root waving phenotype, but double mutants show a 
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constitutive root waving. Root growth is a highly complex mechanism which is the result 

of the interaction between gravitropism, thigmotropism and circumnutation. Interestingly, 

wag mutants respond normally to gravity stimulation, indicating that they are involved in 

root growth, possibly through the regulation of PAT. In Chapter 4 is described the 

functional characterization of AGC3 kinases as regulators of PAT. We show that all four 

AGC3 kinases are plasma membrane associated proteins and are able to phosphorylate 

the hydrophilic loop of PIN proteins. Furthermore, multiple combinations of double and 

triple loss-of-function mutants have strong and different pleiotropic defects in plant 

development. Most important, such developmental defects correlate with changes in PIN 

polarity in different stages of development. Gene complementation experiments show 

that AGC3 kinases have partial overlapping functions during plant development. 

Moreover, we present evidence showing that WAG2 sort PIN proteins at different 

location than WAG1 and PID. Consistently, we show that WAGs control the early events 

of phototropism, probably through the regulation of PAT. Our results provide compelling 

data that AGC3 kinases are partially redundant in regulating PIN polarity through direct 

phosphorylation and that are essential in the regulation of PAT through plant 

development and growth. 
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De ontwikkeling van planten verloopt enerzijds strikt geprogrammeerd, en dit zorgt er 

onder andere voor dat jonge nakomelingen hetzelfde basale lichaamsplan en bloemen een 

uniform patroon hebben. Anderzids, met name gedurende de vegetatieve groei is de 

ontwikkeling van een plant meer flexibel. Deze flexibiliteit stelt planten in staat zich snel 

aan veranderingen in hun omgeving aan te passen, wat zeer belangrijk is voor hun 

sessiele levenswijze. Het plantenhormoon auxine (3-indolazijnzuur) speelt een centrale 

rol bij zowel de geprogrammeerde als de flexibele ontwikkeling van planten, waarbij 

ontwikkelingsprocessen gestuurd worden door maxima en minima van dit hormoon 

gegenereerd door polair cel naar cel transport. De richting van dit polaire auxine transport 

(PAT) wordt bepaald door asymmetrisch op het plasmamembraan geplaatste 

membraaneiwitten, de PIN familie van efflux carriers en de P-glycoproteïne (PGP) type 

ABC transporters. Voor de PIN carriers is een sterke correlatie gevonden tussen hun 

polaire lokalisatie op het plasmamembraan en de richting van PAT. Daarbij leidt 

fosforylering van deze PIN eiwitten in hun grote centrale hydrofiele loop door het 

PINOID (PID) proteïne kinase tot targeting van deze eiwitten naar het apicale (naar de 

scheut apex gerichte) deel van het plasmamembraan, terwijl defosforylering door PP2A-

type proteïnefosfatases leidt tot ophoping van PIN efflux carriers op het basale (naar de 

wortelpunt gerichte) deel van het plasmamembraan. 

Met de in dit proefschrift beschreven onderzoek is de regulatie van PIN polariteit 

door PID verder onderzocht. PID behoort tot de plant-specifieke klasse van AGCVIII 

proteïne kinases, vernoemd naar analoge kinases (proteïne kinase A, G en C) die onder 

andere betrokken zijn bij groeihormoonsignaaltransductie in dieren. Hoofdstuk 1 

beschrijft een gedetailleerde in silico analyse van de AGCVIII kinase familie. Van de 23 

familieleden in Arabidiopsis is alleen voor de fototropines (AGC4: PHOT1 en PHOT2) 

en voor PID en een tweetal PID-gerelateerde kinases (AGC3: PID, WAG1, WAG2) tot 

nu toe een rol in auxine-afhankelijke ontwikkeling van planten beschreven. Fototropines 

zijn blauwlichtreceptoren die een signaaltransductieketen activeren die uiteindelijk leidt 

tot accumulatie van auxine aan de donkere zijde van de stengel, waardoor de scheut naar 

het licht groeit (fototropie). Voor PID is de functie bekend, en mede gezien hun associatie 

met het plasmamembraan lijkt het zeer waarschijnlijk dat ook de drie andere AGC3 

kinases de polaire lokalisatie van PIN eiwitten bepalen. Analyse van beschikbare 
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plantengenoomsequenties laat zien dat phototropines de oorspronkelijke AGCVIII 

kinases waren in eencellige algen, en dat de AGC3 subfamilie pas later is ontstaan 

tegelijkertijd met de PIN auxine efflux carriers in multicellulaire planten gedurende de 

kolonisatie van het land. Activering van fototropines leidt tot verhoging van het 

cytosolisch calcium. Het feit dat de AGC3 kinases binden met, en gereguleerd worden 

door de calciumbindende eiwitten TOUCH3 (TCH3) en PINOID BINDING PROTEIN 1 

(PBP1) maakt het aantrekkelijk om te speculeren dat deze kinases betrokken zijn bij het 

veranderen van PIN polariteit na activering van de fototropines door blauw licht. 

Hoofdstuk 2 beschrijft een detailanalyse van de in vivo interactie tussen PID en 

TCH3. De analyses bevestigen de eerdere conclusie dat TCH3 een negatieve regulator is 

van het PID kinase, en laten zien dat de regulatie niet alleen verloopt via directe inhibitie 

van kinase activiteit, maar ook via sequestratie van het kinase weg van de PIN 

phosphorylseringstargets op het plasmamembraan. Interessant genoeg leidt incubatie van 

PID:VENUS wortels met auxine ook tot sequestratie van PID van het plasmamembraan, 

en het feit dat dit voorkomen kan worden met calcium transport inhibitor of een 

calmoduline inhibitor, suggereert dat TCH3 bij deze sequestratie betrokken is. 

Hoofdstuk 3 beschrijft een vergelijkbare analyse voor de interactie tussen PID en 

PBP1. In vitro experimenten laten zien dat PID twee bindingsplaatsen voor PBP1 bezit, 

en dat PBP1 binding niet alleen de activiteit van PID verhoogt, maar ook de specificiteit 

van het kinase verandert. De nauw verwante homoloog van PBP1 in Arabidopsis, 

PBP1H, bindt ook aan PID en genetische analyses laten zien dat beide eiwitten redundant 

werken als positieve regulatoren van PID gedurende embryogenese en wortelgroei. In 

tegenstelling tot TCH3 lijkt PBP1 juist de associatie van PID met het plasmamembraan te 

stabiliseren. Naast hun directe positieve effect op de PID kinase activiteit, lijken de EF-

hand eiwitten PBP1 en PBP1H dus te zorgen voor een optimale specificiteit en lokalisatie 

van PID ten opzichte van de PIN targets. 

Naast TCH3 en PBP1 was het 3-fosfoinositide-afhankelijke kinase 1 (PDK1) 

eerder geïdentificeerd als regulator van PID. PDK1 is geconserveerd in eukaryoten als 

positieve regulator van AGC kinase signaaltransductie. Ook in Arabidopsis blijkt PDK1 

een aantal AGCVIII kinases te activeren waaronder PID. PID is zelfactiverend, maar 

fosforylering door PDK1 op twee geconserveerde serine residuen (Ser 288 en Ser 290) in 
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de activeringsloop van het kinase resulteerde in verhoogde kinase activiteit in vitro. In 

hoofdstuk 4 is het effect is van the fosforylering van PID door PDK1 op cellulair niveau 

onderzocht. In Arabidopsis protoplasten leidt PDK1-afhankelijke fosforylering van PID 

tot relokalisatie van het kinase van het plasmamembraan naar endomembraanstructuren 

en microtubuli. Het feit dat in de epidermis van Arabidopsis wortels PID wordt 

gerekruteerd naar vergelijkbare structuren na het toedienen van osmotische stress, een 

signaal dat geacht wordt PDK1 te activeren en dat leidt tot kortere wortels, suggereert dat 

deze signaaltransductieroute een functie heeft in de modulering van PAT en dus van 

groei onder invloed van stress factoren. 

Tot slot beschrijft hoofdstuk 5 het onderzoek naar de rol van de drie andere 

AGC3 kinases in Arabidopsis als regulatoren van PAT. Het onderzoek laat zien dat alle 

vier de kinases geassocieerd zijn met het plasma-membraan, en dat ze in staat zijn de 

hydrofiele loop van PIN2 te fosforyleren. Dubbel en triple combinaties tussen pid, wag1 

en wag2 verlies-van-functie mutanten laten zien dat de kinases redundant werken, en dat 

ontwikkelingsdefecten correleren met veranderingen in PIN polariteit in verschillende 

stadia van ontwikkeling. WAG1 blijkt daarbij een sturende rol te spelen bij fototrope 

groei, wat klopt met onze eerdere hypothese dat de AGC3 kinases mogelijk door 

fototropines worden aangestuurd. Een complementatieexperiment waarbij de vier AGC3 

kinases in het PID domein in de pid wag1 wag2 verlies-van-functie mutant tot expressie 

zijn gebracht toont echter aan dat WAG2 en AGC3-4 in de scheut anders werken dan PID 

en WAG1, omdat de eerste twee kinases geen complementatie van de triple mutant 

geven. Of WAG2 en AGC3-4 in de scheut apex inderdaad een ander effect hebben op de 

PIN polariteit, of dat de kinases in deze weefsels instabiel zijn of co-regulatoren missen 

zal nader onderzoek moeten uitwijzen. 

Het onderzoek in dit proefschrift laat zien dat niet alleen PID, maar ook de andere 

drie AGC3 kinases betrokken zijn bij de regulering van PAT door fosforylering van PIN 

auxine efflux carriers, en dat de kinases niet alleen betrokken zijn bij geprogrammeerde 

ontwikkeling, maar dat zij mede door hun bindende eiwitten en regulatoren belangrijke 

schakels zijn in de modulatie van plantenontwikkeling door omgevingssignalen. 
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