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Chapter 1 

Introduction 

Combining sciences is a challenge. Scientists from different fields often do 

not speak the same language and certainly do not always agree on 

methodology and proof finding. However, when taking the risk, the 

combined efforts can also lead to new and surprising results for both 

sciences: the results can be more than the sum of parts. 

 In this thesis, computer science and life sciences join hands. More 

specifically, computational models are created to investigate the biological 

clock, which is present in all living organisms. The biological clock is a 

large network containing thousands of neurons that may challenge the 

computational techniques. These techniques were used, and elaborated 

where needed, to investigate research goals that were previously difficult to 

target in the biological clock field. 

1.1 The biological clock 

The rotation of the earth around its axis subjects every organism to a daily 

24 h cycle. Apart from this daily rhythm, every organism is under the 

influence of seasons, due to the rotation of the earth around the sun. The 

daily and seasonal fluctuations cause cycles in illumination, temperature and 

humidity (Hofman, 2004). Evolutionary advantages can be obtained if the 

organism can anticipate to these daily and seasonal changes.  
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 The ability to anticipate the daily light-dark cycle can be a life-saving 

property. Certain one-cellular algae, the Gonyaulax polyedra, need to 

photosynthesize during the day and rise to the surface shortly before sunrise. 

Before sunset they migrate to great depths to take advantage of high nutrient 

concentrations and a short wavelength light spectrum present at deeper sea 

levels (Roenneberg and Mittag, 1996). Small nocturnal rodents save their 

lives when they anticipate sunrise. These rodents are active during the night 

and need to return to their burrows before the day starts and the predators 

become active. 

 Anticipation to seasonal changes can also be of vital importance. Most 

animals get their offspring in periods of the year that are most advantageous 

for survival (Lincoln et al., 2003;Dawson et al., 2001). For mammals, the 

most advantageous time for survival is when the temperatures are optimal 

for a prolonged period of time and when there is an abundance of food, 

enabling the offspring to be strong enough for the colder seasons when less 

food is available. Other annual rhythms in mammals exist in pelage moult, 

food intake, body weight and hibernation (Lincoln et al., 2003). Seasonal 

rhythms are also apparent in other organisms. For instance, in plants, 

flowering, stem and leaf elongation and other mechanisms are well known 

for their seasonality (Carre, 2001). 

 It is well conceived that the daily and seasonal rotations of the earth are 

deeply rooted and essential for living organisms. Despite the fact that 

humans can escape these rhythms, also in humans many seasonal and daily 

rhythms can be observed if carefully studied. The influence of seasonality 

becomes apparent in seasonal affective disorder, or winter depression. Daily 

rhythms in humans can be observed in blood pressure levels, several 

hormonal levels, body temperature, arousal level and REM sleep propensity 

(Wehr, 2001;Meijer, 2008). The anticipation of humans to daily rhythms can 

be observed in the rising of blood pressure and body temperature at the end 

of the night, during sleep and before awakening (Meijer, 2008). 

 In many organisms, the so-called biological clock takes care of both daily 

and seasonal rhythms. The location of this clock differs between organisms. 

In plants for example, this clock is believed to be located somewhere in the 

leafs (Carre, 2001), in snails it is located in the eyes (Jacklet, 1969; Block 
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and Wallace, 1982), and in mammals it is located in specialized 

hypothalamic nuclei residing just above the optic chiasm on either side of 

the third ventricle (Moore and Eichler, 1972;Stephan and Zucker, 1972). 

 This central pacemaker plays a critical role in controlling rhythmic 

functions. It serves as a master clock that is able to synchronize to the 

environmental cycle (Daan, 1981; Morin and Allen, 2006) and synchronizes 

or even imposes its rhythm to downstream peripheral oscillators in the body 

of the organism (Vansteensel et al., 2008). For mammals, examples of 

peripheral oscillators working under the influence of the master clock are the 

lung and liver (Yamazaki et al., 2000). 

 Rhythmic environmental cues that influence the pacemaker are called 

Zeitgebers (German for “time providers”). Examples of Zeitgebers are the 

cycle of light and dark, temperature and social cues (Lowrey and Takahashi, 

2004). The light-dark cycle is the most predictable Zeitgeber, because the 

light-dark cycle is a precise indicator of the daily cycle and it accurately 

reflects the seasons. The length of a day, also called photoperiod, is a robust 

indicator of time of year (Johnston, 2005). It is much more robust than other 

Zeitgebers, such as temperature, that can have large fluctuations between 

days. For this reason, the light-dark cycle became the functional Zeitgeber in 

evolution and Zeitgeber Time (ZT) is thus defined relative to the light-dark 

cycle. ZT 12 is defined as lights off, which means that ZT 0 coincides with 

lights on when entrained to a light-dark cycle with 12 hours of light and 12 

hours of darkness (LD 12:12) (Lowrey and Takahashi, 2004).    

 In the absence of environmental Zeitgebers the clock maintains a 

circadian rhythm of about 24 h (circa dies = about one day). In an 

experimental setting, organisms can be isolated from any environmental cues 

and be maintained in constant conditions, such as constant darkness (DD) or 

constant light (LL) conditions. In these constant conditions, the endogenous 

rhythm, or “free-running period” of the circadian clock can be measured 

(Lowrey and Takahashi, 2004). 

 The endogenous rhythm is generated within individual neurons of the 

clock on the basis of a molecular feedback loop. The genetic machinery of 

the master clock is surprisingly similar in different organisms (Devlin and 

Kay, 2001). The basic principle of the molecular mechanisms of the 
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biological clock in humans largely resembles the one found in algae, fruit 

flies and in mice and rats, and most of the genes involved are in fact 

conserved. 

 The endogenous rhythm produced by neurons of the clock is about 24 h, 

but not exactly 24 h (Herzog et al., 2004). As the endogenous rhythm often 

differs from the 24 h light-dark cycle, another timescale is used to specify 

the ‘subjective’ time of the organism. The endogenous rhythm is given in 

circadian time (CT) and is divided into 24 circadian hours. CT 12 is taken as 

the start of the subjective night, so the onset of behavioural activity for 

nocturnal (night-active) organisms and the start of the sleeping period for 

diurnal (day-active) organisms (Lowrey and Takahashi, 2004). The circadian 

hours differ slightly from the external hours. The circadian time represents 

the state of the organism in its endogenous cycle. This state is also called its 

phase. 

 In order to anticipate to the 24 h rhythm, the clock mechanism needs to 

adjust its rhythm to exactly 24 h on a daily basis. In other words, the 

endogenous rhythm needs to be entrained, or synchronized, to the daily 

environmental light-dark cycle. Organisms that have an endogenous cycle 

that is less than 24 h must delay their phase to keep synchronized to the daily 

light-dark cycle, while organisms having an endogenous cycle of more than 

24 h must phase advance (Lowrey and Takahashi, 2004). By applying light 

pulses to organisms that are kept in constant darkness, the phase 

responsiveness of the clock can be investigated as a function of the time of 

the light application. For example by fitting a straight line through the 

activity onsets of a behavioural recording of an animal, the behaviour of the 

animal can be analyzed and its phase can be determined. The phases of the 

animal before and after a light pulse are compared. If an animal starts its 

activity earlier than the day before, its phase has advanced. A delay has 

occurred if the animal’s activity starts later. Light pulses given at the 

beginning of the subjective night produce phase delays, while light pulses 

during the end of the subjective night produce phase advances. The 

corresponding function which summarizes phase responses to light pulses 

given at different circadian times is known as the phase response curve 

(PRC) of the organism (DeCoursey, 1960;Daan and Pittendrigh, 1976).  
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 The endogenous circadian rhythm is generated within individual cells. An 

intracellular genetic feedback loop is responsible for this endogenous 

rhythm.  In order to generate a consistent output for the clock as a whole, 

these cellular clocks need to be synchronized (Herzog et al., 2004). This 

synchronization is established by different intercellular communication 

mechanisms that exist between neurons. The communication can be 

humoral, via synaptic connections, or electrical (for an overview, see Michel 

and Colwell, 2001). Through these different means of communication the 

neurons are connected creating a network. Certain properties of the clock are 

encoded at this network level, and not on the cellular level (Vansteensel et 

al., 2008). While the endogenous rhythms are clearly a property of the 

intracellular feedback loops of single cells, properties such as entrainment, 

resetting, or day length encoding are encoded on the network level. This 

implicates that different levels of organization are responsible for different 

properties of the circadian pacemaker.  

 The topic of this thesis is the organization of the intercellular 

communication networks of the circadian clock. A lot of scientific research 

focuses on uncovering the cellular mechanisms of clock cells. However, less 

research is aimed to understand the functionality that is emerging from the 

network level, even though these network properties have many implications 

for people’s health. Shift work and jet lag are becoming important topics in 

today’s society, and seasonal diseases are better understood. All these topics 

should be explained at the network level. In this thesis I aim to contribute to 

understanding the network properties of the biological clockwork. 

 For these studies, computer science methods and techniques have been 

used and applied to simulate the network properties of the circadian clock. 

Before describing the aims of this thesis and which studies have been 

conducted to achieve these aims, the reason for the use of simulation models 

will be explained. 

1.2 Modelling and simulation 

Empirical experiments are often cumbersome and take a lot of time. One 

experiment is never enough; dozens are needed for statistical purposes. 

Every experiment takes time, time for preparation, time to perform 
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measurements, time to analyze and so on. Before enough data from 

experiments is available for validation, a lot of time has passed. Apart from 

being time consuming, some experiments are very difficult to perform, or 

even impossible under controlled conditions (Guala, 2002).  

 Simulations can help overcome some of the problems that arise with 

experiments. They are mostly much faster than the empirical experiments 

and they can be designed to gain insight in mechanisms that are difficult to 

measure (Guala, 2002). For example, in animal research of the biological 

clock, animals first need to be entrained to a certain light-dark regime, which 

may take weeks. In a computer simulation, the model can be trained to any 

light-dark regime instantly. Furthermore, experiments are vulnerable to 

uncontrollable external factors that can disturb the recordings and make the 

results worthless. External factors can also disturb computer simulations, 

like power failure, but simulations can be restarted in a certain state if it was 

stored, and the simulation does not need start again from the beginning. 

However, simulations alone can never validate results, because the 

simulations are derived from a model. Empirical experiments must be 

performed to validate the model predictions (Orynski and Pawlowski, 2004). 

But simulations can be very useful to decide which experiments are 

worthwhile and which do not look promising, and simulations can help 

design smaller (sub-) experiments for experiments that are impossible to do 

all in one go (Guala, 2002). Consider the animals that die too early, the data 

coming from the simulations can direct the research in such a way that sub-

experiments can be designed where the animals do not die and empirical 

experiments can be performed. In this way, treatments for diseases or 

illnesses can be found. 

1.2.1 Mental models 

Nowadays, new research topics are often found in the laboratory. In the early 

days, discoveries came in a more romantic fashion. Sir Isaac Newton was 

sitting in the garden when an apple fell from a tree. He wondered why the 

apple always descended perpendicularly to the ground, and following this 

idea he came up with the idea of gravity. From this idea, he developed 

experiments and found the theory of gravity (Westfall, 1993). 
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 Science is not that romantic anymore, but the process for theory-building 

is comparable. In the laboratory, some peculiar findings are done, oftentimes 

in experiments dealing with completely different topics. Some scientists start 

wondering about a peculiar result, and try to find an explanation for it. In 

doing so, they build a hypothesis, or model, inside their head. Based on this 

model they design new experiments to find out more about the new 

phenomenon they observed. The results from the experiments are either 

positive, which strengthens the model, or negative, which will lead to a 

modification of the model. This process of constantly updating the model 

continues. 

 The models that gradually evolve in one’s head are called mental or 

conceptual models (Sterman, 1991;Beersma, 2005). These models globally 

describe the possible mechanisms that might drive the new observation. 

Conceptual models are very flexible. They can easily be adapted when new 

information becomes available, and they are not restricted to data that can be 

expressed in (reproducible) quantities (Sterman, 1991). This is also the first 

drawback of a mental model: it is difficult to reproduce, because the 

assumptions on which they are based are not explicitly stated and the results 

have not been quantified. The implicit assumptions can easily be 

misinterpreted, often causing mental models to be badly understood by 

others. Furthermore, ambiguities and contradictions can easily slip into these 

models (Sterman, 1991). To resolve the disadvantages, mental, models are 

formalized by transforming them into formal mathematical models 

(Beersma, 2005). 

1.2.2 Formal models 

Formal mathematical models, explicitly describe the conceptual model using 

mathematical equations. No misinterpretation of the model can occur 

because there is only one way to interpret a mathematical equation. In other 

words, mathematical models show the logical consequences of the 

assumptions that underlie the model (Sterman, 1991). 

 A disadvantage of the mathematical models is that they can not interpret 

relationships and factors that are difficult to quantify (Sterman, 1991). 

Another pitfall of mathematical models is that they can become very 
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complex if more information becomes available. Each time more knowledge 

is discovered about the observed phenomenon, the model is updated and 

sometimes extended. This may result in a model that is almost as complex as 

the real system, and results from the model can become as puzzling as 

results from the real system. Due to the complexity, the models can become 

black boxes, they are difficult to interpret and hard to understand (Sterman, 

1991). People may loose trust in such a model, if they can not understand 

how the model arrives at its results, and the results can not be verified. 

 If mathematical models become complex, and exact solutions can not be 

derived anymore, they are often simulated using computational techniques. 

Numerical analysis is used to estimate the answer within acceptable error 

bounds. These models will be referred to as ‘computational models’ in this 

thesis. 

1.2.3 Models 

To gain a better understanding of the advantages and disadvantages of 

models, I will now describe what I mean when I talk about a model. In 

models abstract notions derived from empirical data are formalized into a 

theory that is more generally applicable. This general notion represents the 

real system. This representation does not intend to be the real system, it is a 

simplification of reality (Beersma, 2005). As such, modelling does not give 

one correct answer, and for complex problems, many models can provide 

correct, although not necessarily similar, solutions (Shiflet and Shiflet, 

2006). 

 Models can either be static or dynamic. A static model, or optimization 

model, can only represent a system at rest. They are prescriptive. They 

prescribe the best possible solution that the model can offer (Sterman, 1991). 

Dynamic models are simulation models. The latin verb simulare means to 

imitate or mimic. A simulation model thus mimics the real system in order to 

study its behaviour under different circumstances (Sterman, 1991). In a 

simulation model the time-evolution of the real system is considered by 

being in a different state at different times (Guala, 2002;Shiflet and Shiflet, 

2006). Each state corresponds to a specific combination of values for the 

different variables in the model (Guala, 2002). This makes a simulation 
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model descriptive. It does not calculate the best possible solution, but it 

clarifies what would happen in a certain situation. They are ‘what if’ tools, 

and can predict how the real system might behave under certain 

circumstances and promote understanding of underlying mechanisms 

(Sterman, 1991).  

 Simulation models often use numerical methods, because the models 

under consideration are mostly complex systems. The numerical simulation 

models can be used to reconstruct and understand empirical data and to 

predict how the processes in the real system might behave that are difficult 

to investigate in other ways or that are very time consuming. The 

computational model makes it possible to make specific and sometimes 

nonintuitive predictions (Beersma, 2005). 

1.2.4 Usability of models and simulations 

Models are simplified versions of the real system and do not completely 

represent reality. The usefulness of a model does not depend on its ability to 

correctly describe reality. It depends on the extent to which it promotes 

understanding mechanisms in the real system and how well it is able to 

predict the outcome of new empirical experiments (Beersma, 2005). 

 In order to achieve this, a model should not be too comprehensive. A 

model needs to focus on a particular problem or question to solve (Sterman, 

1991). It must focus on specific functional issues of the real system in order 

to deal with the question. There is not one recipe of how to do this (Beersma, 

2005). Models must be as simple as possible in order to promote 

understanding in the best possible way. However, if too little detail is 

included in the model, the model might be useless because relevant pieces of 

information are left out of the model. Too much detail makes the model 

overly complicated and may cause the model to become just as difficult to 

understand as the real system. Thus, a modeller must find a trade-off in the 

level of detail to include in the model. One does not want the model to be as 

complicated as the real system, because what would be the point of the 

model? But one also does not want to miss relevant mechanisms of the real 

system. The model should be as simple as possible provided that is it 

sufficient for the question posed. 
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 One of the real benefits of modelling and numerical simulation is its 

ability to accomplish a time and space compression between the 

interrelationships within a system. This brings into view the results of 

interactions that would normally escape us because they are not closely 

related in time and space. Modelling and simulation can provide a way of 

understanding dynamic complexity. Numerical simulation models are used 

in all kinds of areas. Weather prediction, aircraft aerodynamics, and airport 

scheduling are just a few examples where numerical simulation models are 

indispensable. With computing power still increasing every year, the 

computer can perform its calculation on numerical models ever faster and 

more efficiently.  

1.3 More than the sum of parts 

Numerical simulations are mostly used in combination with empirical 

research. And empirical sciences can take great advantage from 

computational simulations. The data from the empirical experiments together 

with the computational simulations proved to bring advantages over using 

only one of those methods separately. 

 The simulation studies described in this thesis provided better insight into 

the possible working mechanisms of the intercellular communication of the 

clock. The studies were performed in close association with empirically 

derived experimental data obtained from the mammalian clock of rats and 

mice. This section introduces the research and results that have been 

acquired. 

 First, seasonal changes in day length were examined. A summer day has 

a longer light period than a winter day. The length of a day is perceived by 

the biological clock. In chapter 3, computer simulations, which are supported 

by empirical data, are described. The phase relations between neurons, 

which are influenced by interneuronal communication, are compared to a 

change in the activity duration of single cells. The phase relation between 

neurons, resulting from neuronal interactions, appears to be more effective to 

reflect changes in day length than adjustments at the single cell level. 

 Jet lag was investigated in chapter 4. Jet lag is caused after sudden 

changes of the light-dark cycle, for example due to transatlantic flight. The 
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rhythms of several organs of the body are not immediately adjusted to the 

new light-dark regime. It appears that a sudden shift of the light-dark 

schedule leads to a desynchronization of neurons within the central clock. 

 In different times of the year, the phase shifting responses to light pulses, 

that are also responsible for jet lag, are found to differ. In long days, the 

phase shifts induced by light pulses are small while in short days, light 

pulses of the same intensity and duration induce much larger shifts. 

Empirical research has been conducted in concert with simulation studies to 

understand the mechanisms underlying these differences that occur due to a 

change of the day length. In chapter 5 we provide evidence that the 

difference in the phase relations between neurons in long and short days is 

responsible for the differences in the capacity to phase shift. 

 In chapter 6 a mathematical model is presented that gives one explanation 

of how the phase shifting mechanism of the biological clock might work. 

The model is fitted to empirical data and tested for different experimental 

protocols using numerical simulations of the ordinary differential equations. 

Chapter 7 concludes this thesis with a summary and interpretation of the 

obtained results. 

 This thesis starts with a review of the master mammalian clock, in 

chapter 2. The molecular mechanisms responsible for generating an 

endogenous circadian rhythm at the cellular level are described, as well as 

the means of communication between clock neurons. The regional and 

functional organization of the clock in mammals will also be discussed. 

Different means to measure the rhythm of the mammalian master clock are 

presented, followed by a description of a number of properties of the clock, 

including seasonality, jet lag, and arrhythmicity. In the final section of 

chapter 2, an overview will be presented of different models that have been 

constructed for the biological clock.  
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Chapter 2 

Mechanisms of the mammalian clock 

The master circadian clock in mammals is located in the suprachiasmatic 

nuclei (SCN) of the anterior hypothalamus. The SCN consist of two 

bilaterally paired nuclei situated on opposite sides of the third ventricle, just 

above the optic chiasm (figure 2.1) (Klein et al., 1991).  

 The SCN were initially identified as the mammalian circadian clock in 

lesion studies. When the SCN was lesioned from the brain, a loss of 

rhythmicity in behaviour was observed (Moore and Eichler, 1972;Stephan 

and Zucker, 1972). Transplantation studies strengthened this hypothesis. 

When SCN tissue was transplanted in animals without an SCN circadian 

rhythms returned, also when the transplanted tissue was from a completely 

different animal strain (Ralph et al., 1990). In addition, electrical activity 

studies showed that the SCN has circadian rhythms, also when kept in 

constant darkness (Groos and Hendriks, 1982). When techniques became 

more refined, circadian rhythmicity profiles in electrical activity of single 

SCN neurons could also be obtained (Welsh et al., 1995;Liu et al., 

1997;Herzog et al., 1998;Honma et al., 1998). This indicated that SCN 

neurons have an endogenous circadian rhythm.  
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Figure 2.1 Brain of a rat containing both suprachiasmatic nuclei on opposite sides of the third ventricle, 

just above the optic chiasm. 

 

2.1 Intracellular feedback loops 

Underlying the endogenous rhythms of the SCN neurons are transcriptional 

translational feedback loops. The main genes that are involved in these 

regulatory loops are Clock, Bmal1, the three period genes (Per1, Per2, and 

Per3) and the two cryptochrome genes (Cry1 and Cry2) (see figure 2.2).  

 A rhythmic expression of Bmal1 enables the formation of CLOCK and 

BMAL1 protein complex. This complex, while in the cell nucleus, activates 

the transcription of the period and cryptochrome genes into mRNA. 

Liposomes then translate the mRNA into the PER and CRY proteins. These 

proteins form heterodimers (complexes with each other), enabling 

localization into the cell nucleus, where complexes containing CRY1 and 

CRY2 protein then inhibit the activity of the CLOCK- BMAL1 complex, 
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and with it their own expression. This is a negative feedback loop (Reppert 

and Weaver, 2002;Lowrey and Takahashi, 2004). 

 The CLOCK-BMAL1 complex also activates transcription of Rev-Erbα. 

The resulting REV-ERBα protein then represses the transcription of Bmal1. 

When the complexes containing PER2 have entered the nucleus, PER2 may 

be involved in the activation of Bmal1 expression. This is a positive 

feedback loop. Note that both loops are interlocked, because of the CLOCK-

BMAL1 protein complex (Reppert and Weaver, 2002;Lowrey and 

Takahashi, 2004). 

 
 

Cytoplasm

 
Nucleus

Bmal1 

Clock 

CLOCK /  
BMAL1

Per1-3 

Cry1-2 
Rev-Erbα 

PER1-2 / 
CRY1-2

PER1-2 

CRY1-2 

+ +

-

-

+

REV_ERBα 

 
Figure 2.2 Simplified model for the molecular transcriptional / translational feedback loop underlying 

endogenous rhythms in SCN clock cells. Important clock genes are Bmal1, Clock, Per1-3, Cry1-2 and 

Rev-Erbα, where Clock is the only gene that is not rhythmically expressed. The genes are depicted in the 

figure as blue squares. These clock genes are expressed in the nucleus and transformed to proteins in the 

cytoplasm (BMAL1, CLOCK, PER1-3, CRY1-2 and REV-ERBα). There they form complexes that can 

re-enter the nucleus to perform its excitatory or inhibitory task (BMAL1/CLOCK, PER/CRY, the 

complex for REV_ERBα is unknown at this time). The protein and protein complexes are orange circles. 

BMAL1/CLOCK stimulates expression of Per, Cry and Rev-Erbα, complexes containing CRY inhibit the 

activity of the BMAL1/CLOCK complex, and the complex containing REV-ERBα represses the 

expression of Bmal1 (all denoted by black arrows where a + sign means stimulating and a – sign 

inhibitory influence). Complexes containing PER2 may be involved in activation of Bmal1 expression 

(black dashed arrow). 
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 While the Clock transcription remains constant, the Bmal1 expression is 

rhythmic. The transcription of Bmal1 peaks in the middle of the circadian 

night. Per1 expression is at its peak at the beginning of the subjective day, 

while Per2 expression peaks at the end of the subjective day, just like Cry1 

and Cry2. Per1 and Per2 are believed to be the most important genes 

involved in phase adjustment to entrain to the light dark cycle (Lowrey and 

Takahashi, 2004). 

2.2 How to measure the rhythm of the clock 

The rhythms of the SCN can be measured in behaviour, in multiunit output, 

in single unit output or in gene expression profiles, using a wide range of 

approaches. Each method has its own advantages and disadvantages. For 

example, some methods are better suited for long-term measurements, some 

methods are especially suited for measurements at a very small timescale, 

and other methods are suited to do very precise measurements (Aton and 

Herzog, 2005). 

 Behavioural rhythms can be measured using running wheels or by 

measuring drinking activity. The rhythm of the clock can be determined by 

measuring clock controlled hormone levels in blood samples. Technological 

advances have allowed also to measure directly from the SCN. This last 

method is a powerful method because of the direct way of measuring the 

SCN activity. 

 Electrical activity in the SCN can be measured, both in vivo, where an 

electrode is implanted in the central nervous system of an animal, as well as 

in vitro, in brain slices, where the SCN is recorded in relative isolation. 

Electrodes are used to record the spikes. A computer program counts the 

number of action potentials that exceed a noise-threshold, either for one 

neuron using patch clamp techniques, or for neuronal populations using 

extracellular recordings which do not damage the neurons that are measured. 

 Numerous bioluminescence and fluorescence markers are nowadays 

available to measure in one neuron the expression of genes, protein products, 

or intracellular messengers, such as calcium concentrations. Animal models 

have been created that have a mutation to react to a specific marker, and 

when concentrations of a particular gene or substance is high, the marker is 

 16



Chapter 2  Mechanisms of the mammalian clock 

also abundantly present in the SCN and this concentration can be visualized 

with the aid of a camera. Sometimes, the mRNA levels are measured using 

these methods and in other occasions protein levels are used. 

 One can also measure the rhythms of cultured SCN neurons. In this case, 

neuronal populations of SCN cells are transferred to dishes. In these cell 

cultures it is easier to measure electrical activity and gene expression in the 

single cells as the individual cells can be better visualized. Cultures are also 

the preparation of choice when electrophysiological recordings are 

performed with microelectrode arrays. Note that these cells are not in a 

‘physiological’ environment, which means that the natural network of cells 

has been disturbed. 

2.3 Networks of oscillating neurons 

The electrical activity patterns and gene expression profiles of single SCN 

neurons that are connected in a network have been compared to those 

measured in isolated or dispersed SCN neurons. The average period length 

was similar between the neurons with and without a network. However, the 

variance of the periods was much wider in the isolated neurons, compared to 

the connected neurons in a network (Herzog et al., 2004). It has become 

apparent that the interaction between SCN neurons improves the precision of 

the circadian rhythm. In order for the complete SCN to produce a consistent 

rhythmic output, the rhythms of the individual neurons must be 

synchronized, and some communication between the neurons is necessary to 

realize synchronization (Herzog et al., 1998;Honma et al., 1998;Herzog et 

al., 2004;Aton and Herzog, 2005). 

 To examine the synchronization between neurons it is important to 

realize that the SCN is not one homogeneous population of neurons, and that 

not all neurons are identical (figure 2.3). The SCN consist of two nuclei, one 

to the left of the third ventricle and the other to the right of the third 

ventricle. Each nucleus contains about 8,000 – 10,000 neurons. The neurons 

in both nuclei are organized in different functional subregions and serve 

different functions in the regulation of the circadian clock (Antle and Silver, 

2005;Aton and Herzog, 2005). This means that there is a heterogeneous 

population of neurons present in the SCN. 
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 A common distinction that is made for functional subregions of the SCN 

is between the dorsal SCN (also called shell) and the ventral SCN (or 

historically named core). In the rat, a clear distinction between these regions 

exists anatomically (van den Pol, 1991), whereas in the mouse SCN this 

anatomical distinction is less clear. However, in the mouse, the functionality 

of ventral and dorsal neurons still exists (Vansteensel et al., 2008). 

 The ventral SCN receives most of the light input fibers and mainly 

contains neurons that produce vasoactive intestinal polypeptide (VIP) or 

gastrin-releasing peptide (GRP). The dorsal SCN receives input from non-

visual cortical and subcortical regions and light information via the ventral 

SCN. The dorsal SCN mainly consists of neurons producing arginine 

vasopressin (AVP) (Moore et al., 2002). Other studies also show that there 

must be a connection from dorsal to the ventral SCN (Albus et al, 2005). 

Figure 2.4 shows the location of the AVP, VIP and GRP in the dorsal and 

ventral SCN. 

2.4 Properties of the clock: seasonality 

A number of attributes of the circadian clock are thought to be produced at 

the network level, and do not originate at the molecular level. Seasonality is 

one example of a network driven property of the clock. Seasonal changes 

have a considerable influence in the lives of many organisms. Reproduction 

in different organisms is driven by seasonality (plants: Carre, 2001; birds: 

Dawson et al., 2001; fungi: Roenneberg and Merrow, 2001; mollusks: 

Wayne, 2001; mammals: Messager et al., 2000). Other mechanisms that are 

also under influence of the seasons are stem and leaf elongation in plants 

(Carre, 2001), molt and song behaviour in birds (Dawson et al., 2001), and 

pelage, appetite and body weight in mammals (Messager et al., 2000). 

 The most predictable indicator for the different seasons is the change in 

day length. In summer, the days are longer and the nights shorter, while in 

winter, vice versa, the days are shorter and the nights longer. In mammals, 

an impressive amount of research has been carried out on photoperiodism. 

Changes in photoperiod are observed in locomotor behaviour, melatonin 

levels in the pineal gland, gene expression profiles and electrical activity 

rhythms in the SCN (Goldman, 2001;Johnston, 2005;Meijer et al., 2007). 
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Figure 2.3 Heterogeneous SCN in hamster. The left depicts the different phenotypic subregions in the 

hamster SCN. In the dorsomedial part of the SCN, vasopressin (VP)-expressing cells (pink) can be found. 

In the ventral part of the SCN, vasoactive intestinal polypeptide (VIP)-containing cells (light blue) are 

present. Immediately dorsal to the VIP cells lie calbindin (CalB)-expressing cells (red). The phenotype of 

the ‘cap’ cells (green) has not yet been identified, but lie dorsal to the CalB cells, while the gastrin-

releasing peptide (GRP)-expressing cells (dark blue) overlap with the CalB and the ‘cap’ regions. In the 

right SCN regions are shown that depend on the expression of the Period genes. Per gene expression can 

either be rhythmic (pale orange region), light-induced (gray region) or follow GRP administration (green 

region). The blue region contains cells expressing Per in antiphase to the rhythmic Per gene expression. 

However, these cells are only found in mice and rats, not in hamsters. (Reprinted from TRENDS in 

Neuroscience, Vol. 28 No. 3, Antle and Silver, Orchestrating time: arrangements of the brain clock, 145-

151, Copyright 2005, with permisson from Elsevier.) 
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Figure 2.4 Drawings of successive rostral to caudal levels (A-E) depicting the distribution of peptide 

phenotype of SCN neurons.  Arganine vasopressin (AVP) is mainly produced in the dorsal part of the 

SCN, while ventral neurons mainly produce vasoactive intestinal polypeptide (VIP) and gastrin-releasing 

peptide (GRP) (With kind permission from Springer Science+Business Media: Cell and Tissue Research, 

Suprachiasmatic nucleus organization, Vol. 309, 2002, 89-98, Moore, R.Y., Speh, J.C., Leak, R.K., part 

of figure 2). 

 

 The behaviour of rats and mice and hamsters can be observed by 

recording running wheel activity. Rats, mice and hamsters are active during 

the night, and their behavioural periods are in the night. It has been shown 

that short photoperiods leads to longer activity profiles while long day 

lengths lead to compressed periods of activity (Refinetti, 2002;Weinert et al., 

2005). Also in Syrian and Siberian hamsters, the wheel running activity 

period increased in short day lengths (Elliott and Tamarkin, 1994;Nuesslein-

Hildesheim et al., 2000). The total amount of behavioural activity does not 

increase in short photoperiods but the activity is spread out over a longer 

time interval (Refinetti, 2002).  

 The rhythms of pineal N-acetyltransferase activity, which is responsible 

for the nighttime synthesis of melatonin in the pineal gland, are also affected 

by day length. The melatonin level is high during the night en low during the 

day. Therefore, in mice (Weinert et al., 2005) and in Syrian hamsters (Elliott 

and Tamarkin, 1994) the phase and duration of the pineal melatonin peak is 

strongly correlated to the phase and duration of locomotor activity. 

Locomotor activity as well as the rhythms of pineal N-acetyltransferase 
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activity are both controlled by the SCN (Klein and Moore, 1979). This 

indicates that the SCN is directly under the influence of photoperiod 

(Sumova et al., 2000). 

 The output of the SCN, measured as locomotor activity or melatonin 

levels, thus shows a clear distinction between long and short day lengths. 

The genes that are thought to be involved in the transcriptional-translational 

feedback loops that compose the molecular clockwork are also affected by 

photoperiod. Per1 mRNA level rise occurs in the morning. In long 

photoperiods, the duration of the high level of Per1 mRNA is extended, 

while the amplitude is lower than under short photoperiods (Messager et al., 

1999;Messager et al., 2000;Steinlechner et al., 2002;Sumova et al., 

2003;Tournier et al., 2003). The amplitude of the expression of Per2 is 

higher on short days than on long days, similar to Per1 expression, but the 

duration of the peaks under both photoperiods does not substantially differ 

(Steinlechner et al., 2002;Tournier et al., 2003). Similar results were found 

for the level of PER1 and PER2 protein (Nuesslein-Hildesheim et al., 2000). 

Per3 mRNA levels do not differ in amplitude but in duration between short 

and long photoperiods. In short photoperiods the peak duration is not as long 

as in long photoperiods (Tournier et al., 2003). Cry1 mRNA rises at dawn. In 

a long photoperiod its phase was advanced compared to a short photoperiod. 

However, the duration of the Cry1 mRNA level did not change. Thus, the 

phase of the Cry1 mRNA rhythm only advanced in a long photoperiod 

without influencing the duration of the waveform. The amplitude in a short 

photoperiod did appear to be larger, similar to Per1 and Per2 mRNA 

(Sumova et al., 2003;Tournier et al., 2003). The duration and amplitude of 

the nightly peak of Cry2 expression decreases during short photoperiods 

(Tournier et al., 2003). The Bmal1 mRNA level is high during the dark 

period. In short photoperiods, the decrease in the morning shifts phase, the 

duration expands, and the amplitude decreases. This is opposite to what is 

observed in the daytime-active mPer1 rhythm (Sumova et al., 2003;Tournier 

et al., 2003). The expression of Clock is constantly high in long 

photoperiods, while in short photoperiods, a rhythmic pattern emerges 

(Sumova et al., 2003;Tournier et al., 2003). It is apparent that the clock 

genes all respond differently to changes in day length. 
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 At the network level photoperiodic differences can be observed in the 

electrical activity pattern. The electrical activity level is high during the day 

and low during the night. In vitro and in vivo electrophysiological recordings 

show long activity during long photoperiods and short activity peaks in short 

photoperiods. In Syrian hamsters, the electrical activity peak, measured in 

vitro, is twice as broad as in short photoperiods. However, the duration of 

the electrical activity in ‘normal’ photoperiod (12:12) is not longer than in 

short days. It appears that the critical photoperiod of hamsters (which is 12.5 

h) brings about a sudden transition towards longer electrical activity peaks 

(Mrugala et al., 2000). In vivo and in vitro recordings in mice show short 

electrical activity patterns in short photoperiod and long patterns in long 

photoperiod (VanderLeest et al., 2007). In rats the electrical activity pattern 

measured in vitro increases in width in long photoperiods. Furthermore, the 

amplitude of the peak decreases and is phase advanced. In short 

photoperiods the electrical activity pattern was narrower, with increased 

amplitude and delayed phase with regard to a 12 h photoperiod (Schaap et 

al., 2003). In rats and mice, as opposed to hamsters, no sign of a sudden 

transition towards a longer electrical activity peak could be identified. 

 In subpopulation and single cell analysis of electrical recordings it was 

shown that the distribution of small subpopulations of neurons in long 

photoperiods were more dispersed over the 24 h cycle than in short 

photoperiods (VanderLeest et al., 2007). This serves as an indication for a 

tighter coupling in the network in short day lengths and a looser coupling 

between the neurons of the SCN in long photoperiods. 

 In summary, photoperiod has a profound effect on the duration, the 

amplitude and the phase of many parts of the circannual and circadian 

system. To account for photoperiod, different models have been proposed. In 

the model proposed by Aschoff (1960) the parametric effects of light were 

emphasized. This means that the duration and intensity of light was taken to 

be important and resulted in a phase response curve (Aschoff, 1960;Wever, 

1972). Nowadays this model is often referred to as the external coincidence 

model (Tauber and Kyriacou, 2001;Dawson et al., 2001). An alternative 

model was suggested by Pittendrigh and Daan (Pittendrigh and Daan, 

1976b). In this model non-parametric effects of light were assumed to 
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determine photoperiodic encoding. The transitions from dark to light during 

dawn and from light to dark during dusk were considered to be the most 

important clues. This model is also referred to as the E-M model (evening-

morning model) or the internal coincidence model (Pittendrigh and Daan, 

1976b;Daan and Berde, 1978;Tauber and Kyriacou, 2001;Dawson et al., 

2001;Elliott and Tamarkin, 1994;Sumova et al., 1995;Vuillez et al., 

1996;Schwartz et al., 2001;Steinlechner et al., 2002;Weinert et al., 2005). 

Daan et al. (2001) tried to relate this model to available and new molecular 

findings. It was proposed that the Per1 mRNA levels reflected the timing of 

the M oscillator, while the Per2 mRNA levels determined the E oscillator 

(Daan et al., 2001). However, with the findings of photoperiodic effects on 

different clock genes, this model is no longer accepted (Sumova et al., 

2003;Tournier et al., 2003). 

2.5 Properties of the clock: jet lag 

Another example of an alleged network driven property of the SCN is the 

phenomenon of jet lag, which is associated with sudden shifts in the phase of 

the light period. The circadian clock in mammals has an endogenous rhythm 

of approximately 24 hours. For humans this is somewhat longer, while for 

rats and mice this rhythm is a bit shorter. In normal circumstances, the daily 

light-dark cycle adjusts the clock every day to its 24 hour cycle by the 

induction of small phase shifts. Mammals experience no problems when 

such small corrections happen at a daily basis. However, when sudden larger 

shifts in phase take place, for instance as a consequence of a transatlantic 

flight, jet lag problems like fragmented sleep, premature awakening, 

excessive sleepiness and a decrement in performance can occur (Waterhouse 

et al., 2007;Reddy et al., 2002). Jet lag phenomena take place because the 

different circadian rhythms in the body are not (yet) synchronized to the new 

time zone (Waterhouse et al., 2007;Takahashi et al., 2002). The same 

phenomena can also occur with rotational shift work or sleep disturbance 

(Reddy et al., 2002). 

 The severity of jet lag increases with the number of time zones crossed 

and flights to the east cause more problems than westward flights 

(Waterhouse et al., 2007). Eastward travelers experience a shorter total sleep 
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time, are more active in their sleep and this sleeping phase is shifted towards 

earlier hours. Westward travelers experience a sleep phase shift towards later 

hours, but experience less sleeping problems (Takahashi et al., 2002).  

 The SCN is directly influenced by the daily light dark cycle, and is 

therefore directly affected by a sudden change in this regime. The SCN is 

supposed to re-entrain all peripheral oscillators to the new time regime 

(Yamazaki et al., 2000). Peripheral oscillators are for example rhythms in 

body temperature, pineal melatonin levels, plasma hormone concentrations, 

and organs, like skeletal muscle, liver and lung (Waterhouse et al., 

2007;Yamazaki et al., 2000). These rhythms should not immediately be 

perturbed by external factors so that the system is able to retain a stable 

phase in a noisy environment. However, this protection against unrequired 

phase shifts also causes the problems associated with jet lag (Waterhouse et 

al., 2007). 

 In a laboratory, jet lag situations can be simulated by advancing the light 

phase (mimicking eastward flights) or delaying the light phase (simulating 

westward flights). Using these schemes, effects of phase delays and 

advances on different mechanisms, such as gene expression and electrical 

activity, in the SCN have been assessed.  

 After a phase delay of 6 hours, which is comparable to a flight from 

Amsterdam to New York, behavioral rhythms entrain very rapidly to the 

new regime. The transition takes less than two days. After a phase advance 

however, comparable to the return flight mentioned, the behavioral rhythm 

takes at least six days before it is completely shifted to the new phase, which 

emphasizes the difference between westward and eastward flight (Yamazaki 

et al., 2000;Reddy et al., 2002). When using a different protocol, similar 

differences were found between a delay and an advance of the light-dark 

cycle (Albus et al., 2005;Vansteensel et al., 2003;van Oosterhout et al., 

2008). What becomes clear is that a behavioral phase shift due to an advance 

of the light-dark cycle is more difficult than due to a delay of the light-dark 

cycle. 

 Different genes have been assessed after a phase advance or delay of the 

light cycle. The expression of Per1 showed a rapid phase shift immediately 

after a delay or an advance (Reddy et al., 2002;Nagano et al., 
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2003;Yamazaki et al., 2000;Vansteensel et al., 2003). In different regions of 

the SCN, the response appeared to be different. In the ventral part of the 

SCN the shifts were rapid, while in the dorsal part the shift took much 

longer, and an advance was more difficult than a delay (Nagano et al., 2003). 

Per2 expression showed the same characteristics as Per1 (Reddy et al., 

2002;Nagano et al., 2003).  For delays, Cry1 gene expression also showed 

the same characteristics, but for phase advances it took longer before Cry1 

was fully re-entrained (Reddy et al., 2002). 

 At the network level, in vitro electrical activity measurements showed 

two concurrent peaks following a delay of the light-dark cycle of 6 hours. 

The electrical activity in the ventral SCN appeared to be shifted immediately 

to the new phase, while in the dorsal SCN, the shift was completed only after 

6 days (Albus et al., 2005). In vitro electrical activity measurements after 6 

hour advances of the light-dark cycle showed an immediate shift of about 3 

hours. When the slice was prepared 6 days after the shift, the phase of the 

SCN was back at the old light-dark regime (so no phase shift did take place 

in the end). In vivo electrical activity showed no phase shift at all, indicating 

that the dorsal SCN does not shift and prevents the ventral SCN from 

shifting (Vansteensel et al., 2003). For mice, similar results are observed 

after phase advances of the light-dark cycle. The in vitro recordings show 

immediate phase shifts on the first day, while the shift obtained in in vivo 

recordings is only very small (van Oosterhout et al., 2008). 

 In conclusion, it is clear that regional differences in functionality of the 

SCN lead to a desynchronization of (groups of) neurons after a sudden large 

shift of the light-dark cycle, leading to jet lag. 

2.6 Properties of the clock: arrhythmicity 

Jet lag phenomena are caused by different oscillatory mechanisms of the 

body that run out of phase with each other. We have seen which profound 

problems this can cause and that only after the SCN and the peripheral 

oscillators are resynchronized with each other, these jet lag problems 

disappear. 

 Another well known example that disrupts behavioral and physiological 

rhythmicity is the exposure to constant light (LL). Hamsters show peculiar 
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behavior when put into a regime where the light is constantly on and no dark 

period is given to these night-active animals. A number of animals in such a 

constant light (LL) regime begin to show a so-called ‘split’ rhythm, which is 

a rhythm of 6 hours of activity and 6 hours of inactivity. So two 12-hour 

rhythms in one circadian day (Pittendrigh and Daan, 1976b;Zlomanczuk et 

al., 1991;Mason, 1991;de la Iglesia et al., 2000;de la Iglesia et al., 2003;Ohta 

et al., 2005). Animals may also become arrhythmic in their behavior, 

meaning that the animal is active and inactive irregularly throughout the 24 h 

day and no circadian rhythm can be observed (Pittendrigh and Daan, 

1976b;Mason, 1991;Ohta et al., 2005).  

 Pittendrigh and Daan (1976b) developed a model for splitting that 

comprises two mutually coupled oscillators, an evening (E) and a morning 

(M) oscillator. If splitting occurs, both oscillators become 180 degrees out of 

phase with each other (Daan and Berde, 1978). When research progressed, 

splitting was shown to result from the two suprachiasmatic nuclei getting 

180 degrees out of phase (de la Iglesia et al., 2000;Herzog and Schwartz, 

2002;Ohta et al., 2005). However, the left and right SCN were found not to 

be the evening and morning component which were envisioned by 

Pittendrigh and Daan (Herzog and Schwartz, 2002). 

 A split rhythm was also found when rats were put in an extremely short 

light-dark regime of 22 hours (de la Iglesia et al., 2004). This is called forced 

desynchronization. The gene expression in the ventral part of the SCN 

corresponded to the 22 hour light-dark schedule, while the gene expression 

in the dorsal SCN was free-running with a rhythm longer than 24 hours (de 

la Iglesia et al., 2004). Also in this example, two parts of the SCN are 

desynchronized in phase. 

 When animals are exposed to high intensity light, they will become 

arrhythmic in their behavior as well as in their electrical activity 

(Zlomanczuk et al., 1991). Arrhythmicity in the SCN was found not to be 

present at the cell-level. The Per1 expression in the neurons was still 

rhythmic, but the electrical activity patterns of the single neurons were 

desynchronized and scattered over the 24 h day (Ohta et al., 2005). Total 

asynchrony between the SCN neurons do not necessarily stop rhythmicity in 
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peripheral oscillators, but can lead to decoupling of the peripheral oscillators 

with the SCN (Granados-Fuentes et al., 2004).  

 Aschoff (1960) found that the endogenous rhythms of mammals in 

constant light conditions varied under different light intensities. In LL, with 

increasing light intensity, light-active animals increase their spontaneous 

frequency, which means that the endogenous rhythm becomes shorter, while 

dark-active animals decrease their endogenous frequency. Aschoff explained 

this ‘rule’ by introducing a parametric model of light intensity. As the light 

intensity becomes higher, the clock runs faster (for day-active animals).  

 It appears that this is partly true for cells. The light responsive cells in the 

SCN have a threshold value to respond to light, below which they do not, or 

only negligibly, respond to the light input. Above this threshold value, the 

reaction of the cell increases or decreases monotonically with light intensity 

(Meijer et al., 1986). The threshold values are reached during dusk and dawn 

transitions (Meijer et al., 1986). However, the beginning of a light exposure 

period contributes more to an overall change in discharge activity than later 

portions of the light period (Meijer et al., 1992). This indicates that light 

pulses have a more profound effect on phase changes in the SCN than light 

intensity. 

2.7 Intercellular communication: coupling between 

neurons  

In the previous discussion on photoperiod it was shown that differences in 

the encoding for day length in the SCN may be explained by a change in the 

phase distribution between the neuronal activity patterns. For long days, the 

neurons are more widely dispersed in their timing of activation than in short 

days. 

 Jet lag and constant light both lead to desynchrony between populations 

of neurons in the SCN. Constant light conditions can lead to asynchrony or 

to a desynchronization between the left and right SCN. Jet lag causes a 

temporal desynchronization between the dorsal and ventral SCN, but the 

dorsal and ventral SCN resynchronize after a few days. The question arises 

which mechanisms in the SCN may explain these phenomena. 
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 For proper functioning of the SCN, synchronization and phase 

differences between neurons and subpopulations of neurons are important 

mechanisms. Without synchronization stable rhythms will not occur, and 

phase differences provide plasticity to the biological clock. Synchronization 

can only occur when neurons or neuronal subpopulations can interact. 

Neurons and subpopulations of neurons must be able to communicate to 

each other about their phases. There is little known about how the phase 

distribution information contributes to a functioning circadian clock. Also 

the underlying mechanisms of synchronization are unresolved. How do the 

neurons transmit phase information to each other? Are the same mechanisms 

involved in day length encoding, in constant light, and in jet lag? 

 It is known that the main Zeitgeber for the SCN is the daily light-dark 

cycle. The photic information is a direct input to the SCN from the retinal 

hypothalamic tract (RHT). The retinal ganglion cells of the RHT appear to 

utilize the neuropeptide pituitary adenylyl cyclase-activating peptide 

(PACAP) and glutamate to communicate with the SCN (Hofman, 2004). The 

ventral SCN holds most of the neurons that receive retinal input from these 

cells. These SCN neurons express γ-amino butyric acid (GABA) and, often, 

vasoactive intestinal polypeptide (VIP) and the peptide histidine isoleucine 

(PHI) (Colwell et al., 2003;Harmar et al., 2002). GABA and VIP are the 

most likely candidates that can synchronize neurons or neuronal 

subpopulations. 

2.7.1 GABA 

GABA is produced by most of the neurons present in the SCN (Moore, et al, 

2002). Jet lag studies show that GABA plays an important role in the 

synchronization between ventral and dorsal SCN (Albus et al., 2005). Albus 

et al. show that, in the rat, after a phase delay, GABAA is used to 

synchronize the dorsal and ventral SCN. In control slices, bimodal peaks in 

electrical activity are observed in both the ventral and the dorsal part of the 

SCN, which appear to be caused by one endogenous peak and one peak that 

was imposed by the other part of the SCN. Using the GABAA receptor 

blocker bicuculline the imposed peak in both regions disappears, leaving 

only the endogenous peak. This indicates that GABAA communicates the 
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phase of the endogenous ventral peak to the dorsal SCN, and vice versa, the 

endogenous dorsal peak to the ventral SCN. 

 Furthermore Albus et al. (2005) show that GABAA works differently in 

the dorsal and ventral SCN. In the ventral SCN endogenous GABA has 

inhibitory effects, while in the dorsal SCN it elicits excitatory responses 

(Albus et al., 2005). This dual role of GABA was reported before in earlier 

studies (Wagner et al., 1997;Wagner et al., 2001;De Jeu and Pennartz, 2002) 

but also contested in other studies (Gribkoff et al., 1999;Gribkoff et al., 

2003). In all these studies however, it was not clear where in the SCN the 

measurements were performed. The finding that GABA acts differently in 

dorsal en ventral SCN might be a solution to this debate. 

 For single cell recordings, Liu and Reppert (Liu and Reppert, 2000) 

reported an inhibition of neuronal firing when GABA was added to the 

culture media. The inhibition occurred at all phases of the circadian period. 

However, the GABA application also elicited phase shifts (Liu and Reppert, 

2000). The direction and magnitude of these phase shifts was depending on 

the circadian phase of treatment. Liu and Reppert (Liu and Reppert, 2000) 

found that only GABA acting through A-type receptors can induce phase 

shifts. The inhibition was mediated both through the GABAA and GABAB 

receptor. Liu and Reppert (2000) also succeeded to synchronize two clock 

cells in the same culture with opposite phase angles by applying daily 

GABA pulses. 

 Recently, Choi et al. (2008) found that GABA-expressing neurons can 

switch from GABA-mediated inhibition to GABA-mediated excitation, due 

to the expression of Na+-K+-2Cl- Cotransporter isoform1 (NKCC1). NKCC1 

is expressing itself more in the dorsal SCN, and predominantly during the 

night. This indicates that GABA-mediated excitation will mainly be present 

during the night in the dorsal SCN. 

 In conclusion, there is strong evidence that GABA plays an important 

role in the synchronization between the dorsal and ventral SCN. GABA thus 

might play a role in the interregional communication of phase information 

between populations of neurons. 
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2.7.2 VIP 

There are many clues that VIP may play a role in intercellular 

synchronization, rather than in interregional synchronization. VIP plays two 

roles in the SCN. Firstly, it sustains circadian rhythms of single cells. 

Secondly, it synchronizes single cells to one another (Welsh, 2007). 

 VIP signals through VPAC2 receptors, as does PACAP (Harmar et al., 

2002). It has been shown that both VPAC2 receptor deficient mice (vipr2-/-) 

(Harmar et al., 2002) as well as VIP deficient mice (vip-/-) (Colwell et al., 

2003) show weakened locomotor activity rhythms. 

 Harmar et al. (2002) showed that VPAC2 receptor deficient mice show 

only weak locomotor activity rhythms and that these mice do not actually 

entrain to a light-dark regime; they only show masking. This became 

apparent by the immediate shift of the locomotor activity rhythm in vipr2-/- 

mice after a phase advance or delay, whereas wild-type mice needed several 

days to adjust to the new regime. Also dark pulses during the day caused an 

increment of activity in the VPAC2 receptor deficient mice, while wild-type 

mice barely reacted to these pulses (Harmar et al., 2002). Finally, Harmar et 

al also showed that expression of clock genes (mPer1, mPer2, mCry1, 

mBmal1) was dramatically reduced in VPAC2 deficient mice as compared 

to wild-types. 

 It is concluded that the VPAC2 receptor is essential for the expression of 

robust circadian rhythms of behaviour and that the predominant factor 

determining the pattern of wheel-running activity in vipr2-/- mice is masking 

by light. The behavioural phenotype of vipr2-/- mice is associated with a 

lack of coordinated clock gene expression in the SCN (Harmar et al., 2002). 

This suggests that the VPAC2 receptor is critical for the generation and/or 

maintenance of rhythmic activity in the SCN (Harmar et al., 2002). 

 Colwell et al. (2003) developed VIP/PHI deficient mice. These mice 

show similar characteristics as the VPAC2 deficient mice from Harmar et al. 

(2002): weak rhythmicity, masking effects to a light-dark cycle and no 

entrainment to the light-dark regime. The vip-/- mice also show an expanded 

duration of their activity period (Colwell et al., 2003). Furthermore, when 

treated with a skeleton photoperiod with two 1-hour light pulses per 24-hour 
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cycle, the vip-/- mice exhibited a split rhythm of two activity periods instead 

of one (Colwell et al., 2003). 

 It appears that loss of the VPAC2 receptor is slightly more severe than 

loss of VIP/PHI. This indicates that many of the symptoms caused by a 

deficient VPAC2 receptor are due to a loss of VIP/PHI. However, other 

ligands, such as PACAP, also act on the VPAC2 receptor. In VIP/PHI 

deficient mice, PACAP can still work on the VPAC2 receptor, which may 

cause the less severe deficiencies in VIP/PHI deficient mice (Welsh, 

2007;Colwell et al., 2003). 

 VIP/PHI deficient mice show masking effects to a light-dark regime, and 

when released in constant darkness the actual period to which they are 

entrained appears to have an extremely positive phase angle, as they start 

being active ~8 hours before lights off in the prior light-dark schedule 

(Colwell et al., 2003). This phenomenon is also found in the VPAC2 

deficient mice and is a strong indication that VIP is required to synchronize 

the SCN to the external light-dark schedule (Colwell et al., 2003). Colwell et 

al. (2003) conclude that the function of VIP and the VPAC2 receptor can be 

explained in two, possibly complementary ways. First, VIP and the VPAC2 

receptor may be required for the basic molecular oscillation in certain cells. 

Another possible explanation is that VIP and the VPAC2 receptor are 

directly involved in the communication between cell populations in the SCN 

(Colwell et al., 2003). 

 Aton et al. (2005) examined just these two possible functions of VIP by 

examining behavioral recordings and firing rates of individual neurons from 

vip-/-, vipr2-/- and wild-type mice. Harmar et al. (2002) and Colwell et al. 

(2003) used different breeds of mice for their knock-outs. Aton et al. (2005) 

therefore repeated their experiments in mice with the same genetic 

background. Compared to wild-type mice, the free-running rhythms of both 

vip-/- and the vipr2-/- mice were equally low and about the same percentage 

of mice expressed multiple periods. This confirmed that the rhythms in vip-/- 

and vipr2-/- mice both expressed weak circadian rhythms which are less 

synchronized than wild-type mice, but no differences were found between 

both knock-out mice (Aton et al., 2005). 
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 Furthermore, in wild-type mice, about 70 % of the SCN neurons show 

circadian rhythmicity, while for both mutant types this was reduced to only 

30 %. It appeared that a large proportion of neurons lost rhythmicity in the 

mutant mice (Aton et al., 2005). The single cell rhythms observed in the VIP 

and VPAC2 deficient mice are decreased in amplitude. This also indicates 

that intercellular signalling in the SCN, which regulates cycle-to-cycle 

stability of the circadian period, is decreased. Aton et al. (2005) measured 

that in high-density dispersals the period distribution between the SCN 

neurons is higher than in wild-type mice, which indicates a loss of 

synchrony. When a VPAC2-specific agonist was applied on a daily basis to 

vip-/- mice, the number of rhythmic neurons was restored to the level of 

wild-type mice (Aton et al., 2005), which further indicates that the VPAC2 

receptor suffices for maintaining rhythmicity and synchrony between SCN 

neurons. Thus, Aton et al. (2005) conclude that VIP signalling through the 

VPAC2 receptor is promoting circadian rhythmicity in a subset of SCN 

neurons and it maintains synchrony between intrinsically rhythmic neurons. 

 In cell cultures, neurons can not synchronize their rhythms as well as in 

brain slice preparations in which the SCN network is preserved (Brown et 

al., 2007;Welsh, 2007). Maywood et al. (2006) show strong evidence for a 

role of VPAC2 receptors in SCN synchrony (Welsh, 2007). Maywood et al. 

(2006) used bioluminescence profiles to assess Per1 gene expression in the 

SCN and found that, compared to wild-type mice, the circadian rhythm in 

vipr2-/- slices was low in amplitude and also unstable, for it damped rapidly. 

These weak rhythms in gene expression may provide an explanation for the 

weak behavioural rhythms of these mutant mice (Maywood et al., 2006). 

 In wild-type brain slices, most Per1-expressing cells were circadian and 

their activity patterns were synchronized to a 4-5 hour interval. In vipr2-/- 

slices fewer rhythmic cells could be detected and the ones that were 

rhythmic were desynchronized (Maywood et al., 2006). Thus, vipr2-/- mice 

have a weakened rhythm in Per1 expression and the cells were 

desynchronized in their activity. These results confirm the results found by 

Harmar et al. (2002). 

 By depolarizing with K+ or treatment with GRP, vipr2-/- mice can 

temporally get higher luminescence levels indicating that more cells become 
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rhythmic in Per1 gene expression and also synchronize more closely. When 

the treatment is stopped, the effect diminishes, because of the absence of 

VIPergic signals (Maywood et al., 2006). Thus, VIP appears to be essential 

for maintaining intrinsic synchrony of molecular rhythms in the intact SCN. 

 Brown et al. (2007) measured extracellular multiunit electrical activity 

patterns from SCN slices. The vip-/- mice showed a very weak electrical 

activity rhythm with variable periodicity and many peaks that were mutually 

out of phase. In accordance to other studies, the single cell electrical activity 

recordings showed that less cells in the vip-/- mice were rhythmic compared 

to wild-type (Brown et al., 2007). Furthermore, the vip-/- neurons showed 

decreased amplitude, the period was more irregular and the neurons were not 

clustered in phase for their peak times (Brown et al., 2007). This means that 

neurons in vip-/- mice are less capable of synchronizing their activity 

patterns to environmental light-dark schedules and to each other. 

 For adult mice, Brown et al. (2007) showed that the vipr2-/- mice show 

more severe disruptions in circadian rhythmicity than the vip-/- mice. This 

provides additional evidence that the VPAC2 receptor potentially carries out 

actions that do not involve VIP, as stated before by Colwell et al. (2003). 

PACAP may be a possible candidate to act on the VPAC2 receptor. 

Although SCN neurons do not produce PACAP, in adult brain slices RHT 

terminals that can produce PACAP are present in the SCN. These can be a 

source to activate VPAC2 receptors (Brown et al., 2007). Aton et al. (2005) 

used young mice in which the RHT terminals are not yet present in the SCN. 

This might explain why they did not find differences between vip-/- and 

vipr2-/- mice. 

 To conclude, VIP is important in coordinating the rhythmicity in the 

SCN, both by synchronizing intrinsically rhythmic neurons, as well as 

promoting circadian rhythmicity in other neurons. 

2.7.3 Gap junctions 

Besides chemical coupling mechanisms, electrical coupling mechanisms, or 

gap junctions, are often observed as mechanisms of communication between 

neurons in other parts of the brain. Long et al. (2005) showed that in the 

SCN about 26 % of the neurons are electrically coupled. They stimulated 
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one of a pair of neurons and measured electrical activity in both neurons. 

Compared to other brain areas, the percentage of electrically coupled 

neurons in the SCN is relatively low. Long et al. (2005) propose that 

electrical coupling in the SCN only occurs between neurons in specific 

subpopulations, in order to strengthen the output of these subpopulations. If 

this is the case, then electrical synapses in the SCN may form distinct 

networks of coupled neurons. 

 Long et al. (2005) show that gap junction protein connexin 36 (Cx36) 

seems to be the primary (if not exclusive) constituent of the electrical 

synapses in the SCN, because all electrical coupling was absent in Cx36-

knockout mice but not in wild-type. The locomotor activity patterns of 

Cx36-knockout mice showed deficits in circadian behavior, especially in 

constant dark conditions, as well as a delayed onset of activity in the first 

DD cycle and a sustained reduction in circadian amplitude, indicating that 

light is entraining and amplifying the relatively weak circadian rhythms 

(Long et al., 2005). Therefore, electrical synapses, in the form of gap 

junctions, may play a role in the SCN for intercellular communication in 

order to maintain circadian rhythmicity. 

 Unlike chemical coupling, electrical coupling is bidirectional and 

symmetrical. It was observed in both dorsal and ventral SCN and the 

coupling strength appeared to be higher during the light phase of the light-

dark cycle (Long et al., 2005). This means that the electrical coupling itself 

may be changing throughout the daily light-dark cycle (Colwell, 2005). This 

may indicate that gap-junctions actively regulate the communication 

between neurons depending on the time of the day (Colwell, 2005). 

2.7.4 Coupling in the SCN 

Summarizing the discussion, GABA seems to have an important share in the 

interregional communication of phases between the dorsal and ventral SCN. 

VIP and gap junctions might be working between neurons in a region, each 

in their own way. VIP might synchronize single cells within the dorsal and 

ventral region. GABA might synchronize populations of neurons to each 

other, such as the dorsal and ventral SCN. Gap junctions may strengthen 

certain groups of neurons in their coordinated output, which may vary in 
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strength throughout the daily cycle. Because of the low percentage of gap 

junctions in the SCN, the gap junctions may work for very specific groups of 

neurons. 

2.8 Computer models and computer simulations of 

the clock 

Over the years, computer models were constructed for the biological clock 

and computer simulations were performed to gain more information about 

the clock. The following section provides an overview of the circadian clock 

models that have emerged over time. 

 Around 1960, the Cold Spring Harbor Symposium on Quantitative 

Biology on Biological Clocks was held. At that time, not much was known 

about the circadian system. The location of the clock in mammals was not 

identified. Therefore one could only study behavioural data and temperature 

data. The studies revealed that there had to be an endogenous oscillatory 

mechanism in organisms, and that this mechanism could be perturbed by the 

influence of a light-dark schedule. 

 During the aforementioned symposium, there was general agreement on 

the endogenous nature of circadian rhythms (all except for the Brown lab 

agreed on this at that time). This endogenous clock was often represented as 

a single oscillator (Klotter, 1960a;Klotter, 1960b;Kalmus and Wigglesworth, 

1960). These single oscillator models were fit to the behavioural 

experimental data available at that time. Limit cycle oscillators were used by 

Kalmus and Wiggelsworth to describe the pacemaker (its ‘phase portrait’), 

where the system was in a ‘phase’ (referred to as θ) specified by two 

variables x and y, which vary over time. The dynamic system of the clock is 

since then often described by limit cycle oscillators. An introduction into 

these limit cycle oscillators seems therefore appropriate. 

2.8.1 Interlude: Limit cycle oscillators 

A system is called dynamic if it transfers from one state to another over time. 

Each state of the system can be described in terms of N variables, the so-

called state variables. The number of variables involved in defining a state is 

the number of dimensions of the dynamic system (Pikovsky et al., 2001). If 
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the values of the state variables repeat themselves periodically, the system 

shows oscillatory behavior. 

 In order to gain a better understanding of the mathematical principles 

involved in oscillatory systems, a two-dimensional model system for the 

relation between the populations of a prey and a predator will be discussed. 

The two state variables in this system are the populations of both species. In 

an idealized situation, if the population of the prey is growing, then the 

population of the predator will follow. At a certain time, the numbers of 

predators become so high that the population of prey starts to decline. This, 

in its turn, causes the predator population to decrease. An example is 

presented in the figure 2.5 A. If we plot both populations in one graph on the 

two axes, we get a picture that resembles the one in figure 2.5 B. 

 Note that in figure 2.5 B the two state variables involved in the system 

are used for the axes. The curves in this state-variable-plot are closed, 

meaning that the system returns to a previous state every time after a period 

T. The closed curve is called a trajectory. This closed trajectory is called a 

limit cycle (Pavlidis, 1978b). 

The equations belonging to the predator-prey system are (see Goel et al., 

1971) 

)( yx
dt

dx         (1) 

),( xy
dt

dy         (2) 

where 

 y is the number of some predator (for example, wolves);  

 x is the number of its prey (for example, rabbits);  

 t represents the time; 

 dy/dt and dx/dt represents the growth of the two populations against 

time; 

 β and δ are parameters representing the interaction of the two 

species; and  

 α and γ are parameters representing the separate evolution of the two 

species.  
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Figure 2.5 Predator – prey models. The left figure shows the population size over time. In the right figure 

the population sizes are plotted against each other. 

 

Or written in a more general way 

  xyxf
dt

dx
),(        (3) 

.),( yyxg
dt

dy
       (4) 

 

The state of the system at a certain moment is defined by the values of the 

different state variables. In a limit cycle oscillator, the states of the system 

will return after its period T. It will always return to that state. We can also 

define the state of such a system to its phase, which is the angle on the cycle 

with respect to some initial phase (which is defined as 0). If the phase is at 

timepoint T, or 360°, the system is back at its original phase. Thus, at some 

timepoint t0, the system is in a certain phase of the cycle, and after one 

period T, so at timepoint t0+T it returns to the same phase (Winfree, 2000).  

 The different state variables are coordinates in the phase space (see figure 

2.6 B), and its plot is called a phase portrait and the point on the limit cycle 

constructed by the values of the state variables is called a phase point 

(Pikovsky et al., 2001). 

 The phase as described in limit cycle models of the biological clock can 

be understood as subjective circadian time (CT) of the clock (Pavlidis, 

1978b). Note that this phase is not one of the state variables involved in the 

limit cycle characteristics of the clock. What the state variables are that 
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describe the limit cycle behavior of the clock is not known (Kawato et al., 

1982). 

 A special property of the limit cycle is that the original rhythm is restored 

when it is perturbed, just like the endogenous rhythm of the clock. Small 

deviations from the limit cycle trajectory tend to return to the curve after 

some time (Pikovsky et al., 2001). 

 One example of a limit cycle oscillator is the Van der Pol oscillator. Van 

der Pol equations describe an oscillator that has nonlinear damping, and can 

be used to describe the oscillations of the biological clock in a mathematical 

manner (Wever, 1972;Kronauer et al., 1982;Kronauer, 1990). Within certain 

parameter boundaries, the oscillator will become attracted to, or entrained to, 

the limit cycle, which ensures stable oscillations (Kalmus and Wigglesworth, 

1960). 

 
Figure 2.6 Limit cycle oscillators and their phase portrait. The two oscillating state variables x and y are 

oscillating in time (A and C). When the variables are plotted against each other in the phase space, the 

phase portrait of these two states is shown in B, where x is plotted on the x-axes, and y on the y-axes. This 

is a periodic function. When starting one period at the arrow, first point 1 is encountered, then point 2, 

and finally point 3. 
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2.8.2 Two-oscillator models 

Before and during the Cold Spring Harbor Symposium, the endogenous 

circadian clock was represented as one single oscillator. However, certain 

behavioural results could not fully be explained by one oscillator. 

 In 1958 a two-oscillator model was proposed that could explain transient 

behaviour in phase resetting of the Drosophila. The so-called A oscillator is 

a pacemaking, self-sustaining, temperature-compensated system, which is 

the ultimate clock and is sensitive to light. This oscillator is supposed to shift 

immediately after light input. The second oscillator (called B) is coupled to 

and driven by the first oscillator (A) and is supposed to be light-insensitive 

but temperature-sensitive. Oscillator B drives the behavioural pattern. 

Resetting light input directly drives the A oscillator. The B oscillator takes 

several cycles to be re-entrained by the A oscillator, explaining the transients 

in behaviour (Pittendrigh et al., 1958;Pittendrigh and Bruce, 

1959;Pittendrigh, 1960). 

 In 1976, in their famous series of articles, Pittendrigh and Daan (1976b) 

suggested another two-oscillator model in order to explain the phenomenon 

of splitting. Splitting involves a 24-h behavioural rhythm which consists of 

two periods of rest and of activity. The phenomenon of splitting was mainly 

found in hamsters. In this model the clock consists of a morning (M) and 

evening (E) oscillator. Daan and Berde (1978) described a mathematical 

system based on the E and M oscillator. They used two limit cycle 

oscillators, one for the morning component and one for the evening 

component. Each oscillator had its own endogenous period, but both 

oscillators were able to influence the other by resetting each others phase by 

a small amount on the basis of a phase resetting curve.  

 According to Kawato and Suzuki continuous resetting between oscillators 

is more plausible than resetting according to a phase resetting curve (Kawato 

and Suzuki, 1980). For this reason they used two identical limit cycle 

oscillators that are coupled continuously. If one oscillator is in rest, it does 

not affect the other oscillator and the coupling is symmetrical (Kawato and 

Suzuki, 1980). Splitting can be explained by the two steady states in which 

the oscillators can be synchronized: either they are in-phase, having a phase 

angle of 0°, or they are in opposite phase, which means that their phase is 

 39



Network properties of the mammalian circadian clock 

180° separated (Kawato and Suzuki, 1980). This two-oscillator model could 

also describe transient phase resetting (Kawato, 1981). 

 Next to the two-oscillator models of Pittendrigh, Aschoff and Wever also 

studied two-oscillator systems that represented the clock. From the first 

extensive bunker experiments with human subjects (Aschoff and Wever, 

1962;Aschoff, 1965a), Aschoff and Wever found that the rhythms in core 

body temperature and the sleep-wake cycles could diverge completely, a 

state they named ‘internal desynchrony’ (Aschoff, 1965a;Wever, 

1985;Wever, 1989). 

 Wever modeled the ‘clock’ as a series of differential equations based on 

the Van der Pol equations (Wever, 1972). For all general clock properties, 

including entrainment in different light conditions according to Aschoff’s 

rule, this model is sufficient (Aschoff, 1960;Wever, 1962;Wever, 1972). 

However, for special properties, like internal desynchrony, a second 

oscillator that is controlled by the first oscillator needs to be added to the 

model (Wever, 1989;Wever, 1962). 

 Kronauer designed a model in 1982 that was based on sleep research on 

humans (Kronauer et al., 1982). Humans also seemed to have two oscillatory 

processes: the sleep-wake process and a temperature oscillator. Kronauer 

modeled these by two Van der Pol oscillators. Also in this system of 

differential equations the coupling is continuous, as in the model of Kawato 

and Suzuki (Kawato and Suzuki, 1980) and unlike the model of Wever. In 

Wever’s model, the second oscillator was controlled by the first oscillator 

but did not feed back to the first oscillator (Wever, 1962;Wever, 1989). By 

decomposing the sleep-wake process oscillator into two oscillators, one for a 

wake cycle, which determines the onset of sleep, and one oscillator for the 

sleep cycle, determining the onset of awakening, Kawato et al (1982) created 

a three oscillator model to describe the problem of internal desynchrony. 

 Note that a two-oscillator model can be described by one limit cycle 

oscillator. However, the dimensionality of the oscillator would then increase 

and the mathematics would become difficult to understand, and would not 

contribute to the understanding of the circadian clock mechanism (Kawato, 

1981). Using two oscillators provides a better understanding of the 

mechanisms that may govern the clock. 
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 The two-oscillator models could thus explain splitting, transient 

behaviour, after-effects and Aschoff’s rule. In the 1980s the sleep 

homeostasis 2-process model was introduced. By that time there was general 

consensus that the suprachiasmatic nuclei contained the mammalian 

circadian clock. When the electrical activity of the SCN could be measured 

(Groos and Hendriks, 1982) the research focused on the activity rhythms of 

the SCN itself, instead of the driven rhythms such as the behavioural or 

temperature rhythms. 

 With the process S model for the sleep-wake cycle in place and the 

available data of the SCN, Kronauer updated his earlier model in 1990. He 

created a model based on two Van der Pol oscillators and added the forcing 

effects of light to this model (Kronauer, 1990). This was fit to 

experimentally obtained temperature data from human subjects.  

 The model was as follows 
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where 

 x and y are the state variables of the oscillator, 

 τ denotes the endogenous period of the oscillator, 

 ε is the stiffness of the oscillator, 

 B is the brightness; which is the influence of light on the oscillator, 

 I is the light intensity in lux, 

 m the modulation index weighting the magnitude of the feedback of 

the oscillator, 

 C a constant. 

 

 This model was able to predict experimentally obtained data (Klerman et 

al., 1996), however it did not adhere to experimental data obtained in bright 

or dim light conditions and after brief light stimuli. Therefore the Kronauer 

model was refined (see figure 2.7). The light input was updated to contain a 
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new pre-process, called L, which processes the light intensity I and produces 

a drive B̂ that serves as the light input into the circadian system, which is 

called process P. Process P contains a stimulus modulator (S.M.) and the 

circadian oscillator (~). The stimulus modulator (S.M) does not receive direct 

light input, but receives the drive B̂ . Depending on the phase of the 

oscillator, the stimulus modulator (S.M.) produces a modulated drive B, 

which can adjust the phase and amplitude of the oscillator (~). The process 

that modulates the light input in the previous model was only depending on 

the state variable x. In the new model this process is replaced by the stimulus 

modulator (S.M.) and this process is now dependent on both state variables x 

and y (Kronauer et al., 1999;Jewett et al., 1999).  

 Interesting new viewpoints were provided by Achermann and Kunz 

(Achermann and Kunz, 1999;Kunz and Achermann, 2003). Where Kronauer 

and his team used the Van der Pol oscillator in their model as a single 

oscillatory unit describing the SCN as a whole, Achermann and Kunz use 

this same oscillator model to describe only one oscillatory neuron in the 

SCN. They used the model of Kronauer (Kronauer, 1990) and added a 

coupling term to each oscillatory unit, so that the oscillators can 

‘communicate’ about their phase and amplitude with other oscillators in their 

neighborhood, through the use of local coupling with either 4, 8 or 20 

surrounding cells. They placed 10,000 of these oscillators in a regular grid of 

100 by 100 units. The global output of the SCN as a whole is given as the 

arithmetic average of the values of all oscillators (Achermann and Kunz, 

1999). This was an attempt to create a model on the basis of a network of 

oscillators. However, the coupling mechanisms between the units were not 

very realistic, because they were based on the mathematical notion of 

neighborhood coupling.  
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Figure 2.7 Updated model for circadian rhythms and light influence. The light input enters the clock 

through a pre-process, called L, which processes the light intensity I and produces a drive B̂ that serves 

as the light input into the circadian system, which is called process P. Process P contains a stimulus 

modulator (S.M.) and the circadian oscillator (~). The stimulus modulator (S.M) does not receive direct 

light input, but receives the drive B̂ . Depending on the phase of the oscillator, the stimulus modulator 

(S.M.) produces a modulated drive B, which can adjust the phase and amplitude of the oscillator (~). 

(Reprinted from Journal of Biological Rhythms 14, Jewett et al, 1999). 

2.8.3 Molecular models 

It has become clear that the circadian system is a heterogeneous system 

containing endogenously oscillating pacemaker cells. This insight affected 

the construction of the models. Some models were developed to describe 

primarily the interaction between the neurons to describe the SCN network 

output. The second line of research focused on modeling the endogenous 

pacemaker cell, and the generation of circadian rhythms itself. 

 The Goldbeter group developed an impressive number of molecular 

models for circadian pacemaker cells of different species (Goldbeter, 

1995;Leloup and Goldbeter, 1998;Leloup et al., 1999;Leloup and Goldbeter, 

2000;Leloup and Goldbeter, 2001;Leloup and Goldbeter, 2003;Leloup and 

Goldbeter, 2004). The models described the circadian expression of genes 

and their protein products. These models were based on the model first 

proposed by Goodwin, where a protein that represses the transcription of its 

own gene is able to produce sustained oscillations in the levels of protein and 

mRNA (Goodwin, 1965;Griffith, 1968). Drescher was the first to use this 

model in the field of circadian rhythms to determine PRCs with respect to 

transient perturbations (Drescher et al., 1982). 

 The first model from the Goldbeter group described the rhythmic 

expression of Per in the Drosophila clock (Goldbeter, 1995). The period of 

 43



Network properties of the mammalian circadian clock 

the rhythm arises because of the cascade of phosphorylation states the 

protein goes through, in which each step introduces a time delay. 

 The following kinetic equations describe this model (see figure 2.8) 
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The total quantity of PER protein is given by 

Nt PPPPP  210 ,     (13) 

where 

 M is the concentration of per mRNA 

 P0 is the concentration of unphosphorilated PER protein 

 P1 is the concentration of monophosphorilated PER protein 

 P2 is the concentration of biphosphorilated (or fully phosphorilated) 

PER protein 

 PN is the concentration of PER protein in the nucleus 

 Pt is the total quantity of PER protein 

 vs is the maximum rate of accumulation of Per mRNA in the cytosol 

 vm is the maximum rate of cytosolic Per mRNA degradation 

 vd is the maximum rate of degradation of biphosphorylated PER 

protein 

 V1-4 denote the maximum rate of kinase and phosphotase in the 

reversible phosphorylation of P0 into P1 and P1 into P2.  
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 ks is the first-order rate constant for the synthesis of the PER protein 

(P0) from Per mRNA. 

 k1 is the first-order rate constant for the transport of fully 

phosphorylated PER protein (P2) into the nucleus (PN) 

 k2 is the first-order rate constant for the transport of nuclear PER 

protein (PN) into the cytosol (P2) 

 Km, Kd, and K1-4 are Michaelis constants 

 KI is the threshold constant for repression of per transcription by 

nuclear PER protein concentrations (PN) 

 This model shows a rhythm in total PER protein (Pt) and in Per mRNA 

level (M). These two levels are treated as state variables for the limit cycle 

oscillator. 
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Figure 2.8 Molecular model for Per expression in the Drosophila clock. per mRNA (M) is synthsized in 

the nucleus and transfers to the cytosol, where it accumulates at a maximum rate vs. In the cytosol, the per 

mRNA is degraded with maximum rate vm and synthesized into PER protein with a maximum rate ks. 

PER protein can be present in different phosphorylation states, P0, P1, and the fully phosphorylated form 

P2. The maximum rate of phosphorylation and dephosphorylation between the phosphorylation states is 

characterized by the parameters Vi. P2 is degraded at a maximum rate vd and transported into the nucleus 

according to rate constant k1. The transport of the nuclear, fully phosphorilated form of PER (PN) into the 

cytosol is characterised by constant k2. The nuclear PER (PN) negatively feeds back on per transcription. 

(Reprinted from Figure 1 in Goldbeter, A., 1995. A model for circadian oscillations in the Drosophila 

period protein (PER). Proc. R. Soc. Lond. B 261, page 320, with kind permission of Royal Society 

Publishing) 
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 In 1998, the Tim gene cycle was added to the model (Leloup and 

Goldbeter, 1998). Two interlocked loops can account for more complex 

behaviour as is observed from the circadian system, such as rhythm splitting 

and arrhythmicity. The equations that are used to describe this model are 

similar to the ones that describe the simpler version of this model, with only 

Per. The model is depicted in figure 2.9. 

 
Figure 2.9 Addition of the Tim gene cycle describing the clock of Drosophila to the model described in 

figure 2.8 (Reprinted from Journal of Biological Rhythms 13, Leloup and Goldbeter, 1998). 

 

 Different modifications of the model were made, and the model was also 

designed for the Neurospora circadian clock (Leloup et al., 1999;Leloup and 

Goldbeter, 2000;Leloup and Goldbeter, 2001). When the clock genes for the 

mammalian clock were identified, the model was transferred to a 

mammalian circadian clock model, involving the Per, Cry, Bmal1, Clock, 

and Rev-Erbα genes (Leloup and Goldbeter, 2003;Leloup and Goldbeter, 

2004). A similar molecular model for the mammalian clock was created by 

Forger and Peskin. In their model more effort was made to precisely mimic 
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the molecular components that play a role in the clock cell (Forger and 

Peskin, 2003;Forger and Peskin, 2004;Gallego et al., 2006). 

2.8.4 Network models 

In 1967, Winfree speculated on the clock being a network of coupled 

oscillators (Winfree, 1967). Interestingly, Daan and Berde also speculate on 

the nature of both oscillators, and suggested that each may consist of a 

multitude of tightly coupled oscillators (Daan and Berde, 1978). 

 Winfree was probably the first who proposed that certain clock properties 

were network properties instead of the properties of a single oscillator 

(Winfree, 1967). In order to investigate the rhythmical interaction of 

populations of periodic processes, he introduced the “generalized relaxation 

oscillator”. This is a limit cycle oscillator which has weak coupling. The 

phase (φ) is always close to the phase of an entraining periodic stimulus (θ). 

The maximal difference from θ is ψ. Besides the influence of the Zeitgeber 

(θ), the oscillators themselves also influence each other’s phase. The two 

state variables for the limit cycle oscillators are the Influence Function X(φ), 

which represents “all effects by which an oscillator makes its presence and 

phase known to others”, and the Sensitivity Function Z(φ), which represents 

the “sensitivity to stimuli of some sort S with which we will perturb it”. 

Using these two state variables, Winfree was able to simulate a population of 

oscillators, that had similar, but not necessarily the same, periods. These 

oscillators were attracting each other and became synchronized with a stable 

period as though it was one oscillator. With this intuition, Winfree was the 

first to suggest that the circadian clock consisted of a multitude of differently 

phased oscillators, that were synchronized in order to produce a unified 

output signal (Winfree, 1967). 

 A number of other studies followed this line of thought, where ‘simple’ 

oscillators were placed in a network and coupling was studied using the 

theoretical mathematical mechanisms of coupled oscillators (Pavlidis, 

1971;Pavlidis, 1978a). The theory of coupled oscillators was discovered by 

the famous Dutch scientist Christiaan Huygens when looking at two 

pendulum clocks swinging in perfect synchrony, and is discussed in relation 

to circadian clocks by Strogatz and coworkers (Strogatz and Stewart, 
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1993;Mirollo and Strogatz, 1990;Strogatz, 2003). The study of coupled 

oscillators showed that a stable rhythm could arise from a population of less 

reliable oscillators (Enright, 1980a;Enright, 1980b). 

 The network models discussed use artificial oscillators that represent the 

neurons in the SCN. Furthermore, they use theoretical connection and 

synchronization schemes between the single units. The network models that 

follow gain realism. First, more realistic molecular models are introduced to 

represent the neurons in the network models. Second, the network topology 

of the SCN is taken into account in the coupling mechanisms of the SCN. 

 Bernard et al. (2007) have modeled SCN neurons in a similar fashion as 

the Goldbeter group. However, in their study, a coupling term was added to 

the equations of the oscillators, where the coupling was based on the 

concentration of one of the phosphorylation phases of the PER/CRY protein 

complex. The coupling between the oscillators was tested using three types 

of coupling: random coupling, nearest neighbor coupling and a coupling 

scheme based on the ventral-dorsal and left-right distinction of the SCN. 

Their main finding was that oscillators of which the rhythms would normally 

damp out, could remain rhythmic when they were coupled to other damped 

oscillators. The coupling between damped oscillators actually sustained the 

rhythmicity of the network (Bernard et al., 2007). 

 The work of Achermann and Kunz can also be seen as representatives of 

the models that add more realistic molecular models to the network models 

(Achermann and Kunz, 1999;Kunz and Achermann, 2003). However, the 

coupling schemes are still derived from mathematical constructs, and not so 

much from realistic coupling between SCN neurons. The models from 

Bernard et al and Achermann and Kunz use theoretical coupling patterns to 

describe the interaction between the single cells instead of more realistic 

coupling mechanisms between the neurons. Other models turned their focus 

on more realistic coupling schemes between the single cells. 

 Antle et al. (Antle et al., 2003;Antle et al., 2007) model the SCN as 

consisting of two regions, the ventral region and the dorsal region. The “gate 

cells”, situated in the ventral region of the SCN, synchronize the oscillator 

cells, which are situated in the dorsal SCN. An oscillator cell is modeled by 
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a polar parameterization of the Van der Pol equation, suggested by Forger 

and Kronauer (2002)  

 ])cos(1[)cos( 222  rr
dt

dr
     (14) 

 ],)cos(1[ 32 
r

dt

d
      (15) 

where  

 the polar coordinate form uses an angle, θ, and a radius, r, to map a 

point’s location relative to the origin 

 ω is the frequency of the oscillator 

 ε is the “stiffness” coefficient that determines how closely the 

oscillator mimics a cosine curve. 

 The gate cells in the ventral SCN reset an oscillator by pushing its phase 

closer to the average phase of the ensemble in a linear fashion. The resetting 

function has two parameters. The slope of the resetting function represents 

the strength of the resetting. A slope of 0 would bring every oscillator back 

to the gate point every time the gate fired; a slope of 1 would have no effect. 

The second parameter is the point of intersection with null resetting function, 

which determines what phases are advanced and what phases are delayed 

when the gate is triggered. Note that the oscillators themselves are not 

coupled in this model. Antle, et al. conclude that this model shows that gate 

cells, which are under the influence of light, can be important for creating 

synchronization between the oscillating cells in the SCN and different 

strengths of the gate cells can explain a decreased synchronization (Antle et 

al., 2003).  

 Gomes Cardoso, et al. defined a model that takes into account the 

biological realism in the coupling and especially in different SCN regions 

(Gomes Cardoso et al., 2009). The ventral region is an input region which 

sends output to the dorsal region, similar to the model of Antle, et al. (2003). 

The dorsal region is defined as a three-dimensional grid, which resembles 

the model of Achermann and Kunz (1999). In the dorsal region the neurons 

are connected to each other, in contrast to the Antle model, because in that 

model the dorsal neurons were not coupled to each other. The dorsal neurons 
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are able to modify each others frequencies because of this coupling (Gomes 

Cardoso et al., 2009). 

 Beersma et.al. (2008) extends the coupled oscillator studies by adding to 

the coupling mechanisms of the oscillators more realistic SCN neuronal 

properties, without trying to model precisely the cell itself. A cell can be 

actively firing or be silent. The exact mode of operation can be influenced by 

the light dark cycle and by other pacemaker cells. All cells are influencing 

all other cells. Using a simplified version of a single cell representation 

instead of a realistically feasible neuronal model, the authors are able to 

obtain SCN properties that arise purely from the network level (Beersma et 

al., 2008). 

 Many other models have been created in the field of circadian rhythms. 

This selection provides a sufficient overview of the different lines of 

research in modeling the biological clock. A number of modeling techniques 

have been discussed and different approaches have been mentioned. One can 

model one single neuron, or one can model the whole SCN. One can focus 

on realistic models of the neuron, or one can focus on coupling between 

neurons. Depending on the research question one approach is preferred over 

another. 

2.9 Conclusions 

The circadian clock is endogenously rhythmic which can be explained by a 

molecular feedback loop within neurons of the SCN. These endogenously 

rhythmic neurons are synchronized to each other to produce a rhythmic 

output pattern. Synchronization of the neurons can be explained by different 

coupling mechanisms between the neurons. The clock can be entrained to 

the environmental light-dark cycle and responds to seasonal differences in 

day length. Different functional regions can be distinguished in the SCN, 

which have a specific function in the entrainment of the clock. Within and 

between these regions, neurons may show different coupling mechanisms. 

To investigate the organization of the SCN and the coupling mechanisms 

between neuronal subpopulations, computer models and simulations can be 

employed to guide experiments and gain insight in possible working 

mechanisms. 
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 Models are always based on reality. They are designed to provide 

answers to questions related to everyday life. However, it is not always 

necessary to create a model that captures as many aspects of reality as 

possible. Sometimes, a ‘simple’ model that connects to only one small 

property of reality is as good as any larger model that tries to explain many 

aspects of real life. An important criterion for the use of a model is that the 

model should be sufficient to address the research question at hand. 

Depending on the research question the complexity of the model and the 

simulations should be determined. The purpose of the simulations should be 

thoroughly considered. What is it that the simulation should do? Is it to show 

how a system works? Or should the simulation provide answers to certain 

specific questions? 

 One should always remember that simulations alone can not provide 

irrevocable evidence for the subject under investigation. However, if the 

boundaries are defined well, it is possible to find answers to a specific 

question. With the answers that are found, new questions arise. At least some 

of these questions need experimental testing. When a question is defined too 

strictly, it is not possible to answer questions that lie outside the model. If 

other questions need answers, such as the underlying mechanisms of certain 

phenomena, new models are required that are designed with close regard of 

the boundaries needed for that specific question. 

 If these constraints to modeling and simulation are taken into 

consideration, the results coming from simulations can provide interesting 

insights and can be very valuable to guide experiments and research. In the 

next chapters of this thesis, simple models are used to simulate attributes of 

the circadian timing system where the network organization of the SCN and 

the coupling between subpopulations of neurons is involved. 
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Chapter 3 

Simulation of day length encoding 

3.1 Introduction 

To anticipate 24 h rhythms in the environment, organisms have innate 

circadian systems, or clocks, that have a genetic basis for rhythm generation 

(Takahashi et al., 2001;Reppert and Weaver, 2002). For the proper 

functioning of these circadian systems, they have to be synchronized, or 

entrained, to the daily external cycle. The most important synchronizing 

stimulus in the environment is light, rather than the change of temperature or 

other environmental stimuli (Meijer and Rietveld, 1989;Morin and Allen, 

2006). 

 Seasonal changes in the environment are caused by the earths’ rotation 

around the sun, resulting in changes in day length in the course of the year. 

Changes in day length are perceived by animals, and are used to determine 

the time of the year. Adaptations to the changing seasons can be observed in 

many different organisms, and are commonly referred to as 

‘photoperiodicity’. In mammals, information on day length is transmitted to 

and processed by the SCN. As a result, the SCN plays a crucial role in 

controlling both daily and seasonal rhythms (Mrugala et al., 2000;Sumova et 

al., 1995;Sumova et al., 2003). The rhythm generating capacity of SCN 

neurons is explained by a molecular feedback loop, in which protein 
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products inhibit the expression of specific clock genes (Kume et al., 

1999;Reppert and Weaver, 2002;Hastings and Herzog, 2004). Rhythms in 

clock gene expression or in their protein products can be recorded within the 

SCN (Abe et al., 2002;Reddy et al., 2002;Hastings et al., 2003;Hastings and 

Herzog, 2004;Hamada et al., 2004;Nakamura et al., 2005;Nagano et al., 

2003;Maywood et al., 2006). The rhythms show sinusoidal patterns, and for 

most (but not all) clock genes, expression is high during the day and low 

during the night.  

 Likewise, circadian rhythms can be recorded in electrical impulse 

frequency in the SCN (Gilette et al., 1993;Groos and Hendriks, 1982). The 

electrical impulse frequency of neuronal populations of the SCN is high 

during the day and low during the night. The electrical impulses are thought 

to be a major output of the SCN (Schwartz et al., 1987) and carry 

information on the time of day to other parts of the brain, including the 

pineal gland. Under long or short photoperiods, the waveform changes that 

are generated by the SCN show remarkable changes. In long days, gene 

expression profiles show long durations of elevated activity, and electrical 

activity patterns are broad, while in short days, the expression profiles and 

electrical activity patterns show narrow activity peaks (Mrugala et al., 

2000;Schaap et al., 2003;Sumova et al., 1995;Sumova et al., 2003). 

Recordings of single cell electrical activity and of Per1 gene expression 

profiles have shown that neurons show phase differences (Brown et al., 

2005b;Schaap et al., 2003;Yamaguchi et al., 2003;Quintero et al., 2003). 

Moreover, it has been shown that individual neurons of the SCN exhibit 

electrical activity patterns that are remarkably short as compared to the 

population waveform pattern. 

 We show that a broadening or narrowing of the multiunit pattern can be 

based on changes in phase differences between neurons, as well as on 

changes in the circadian pattern of individual neurons. However, these 

mechanisms give rise to differences in the maximal discharge level of the 

multiunit pattern, leading to testable predictions to distinguish between the 

two mechanisms. If single units broaden their activity pattern in long days, 

the maximum frequency of the multiunit activity should increase, while an 
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increase in phase difference between the single unit activity rhythms should 

lead to a decrement in maximum frequency.  

 It has been proposed that in short days, phase differences between 

neurons decrease, while in long days they increase. Recordings of mouse 

SCN neurons under short and long day length have confirmed these 

predictions. Long term recordings of the electrical activity patterns of single 

SCN cells have shown an increment in phase distribution among oscillating 

neurons in long days and a decrease in phase distribution in short days 

(VanderLeest et al., 2007). While the precise phase distribution between the 

neurons is significantly different between long and short days, the available 

data do not allow quantifying the distribution.  

 The simulations also show that coding for day length by an evening and 

morning oscillator is not self-evident and will only work under a limited set 

of conditions in which the distribution within each component and temporal 

distance between the components is taken into account. 

 In the present study, we combine the results from rat and mouse SCN 

recordings with simulation experiments, and investigate the influence of 

different phase distributions between the neurons on the population activity 

patterns of the rat and mouse SCN.  

While our simulations were based on single cell and multiunit electrical 

activity patterns, they are also relevant for understanding the relation 

between single cell and population molecular expression profiles. 

3.2 Methods 

The simulations were aimed to evaluate the contribution of single clock 

neurons to the overall electrical output of the mammalian circadian 

pacemaker. Simulation software was implemented in Matlab, a high-level 

technical computing language and interactive environment (Matlab, 2007). 

The simulations involved the calculation of the multiunit activity pattern 

from single unit activity patterns. The multiunit activity pattern was 

simulated by distributing single unit activity patterns over the circadian cycle 

and then adding up the equally weighted activity of all single units. The 

intrinsic parameters of the simulation were the shape and width of the 

activity pattern of the single unit, the type of the distribution, the phase 

 55



Network properties of the mammalian circadian clock 

difference of the single unit patterns over the cycle and the number of single 

units that constitute the multiunit pattern. We investigated the effects of 

parameter changes on the width of the multiunit activity pattern at the half 

maximum amplitude (c.f. Schaap et al., 2003). The amplitude of the 

simulated multiunit patterns was normalized to enable qualitative 

predictions, except for figures 3.7, 3.8 and 3.9, where quantitative changes in 

population pattern were examined. The results were compared with multiunit 

patterns recorded under three different photoperiods; short day length (LD 

8:16), normal day length (LD 12:12) and long day length (LD 16:8). The 

single unit pattern as well as the distribution could independently be 

narrowed or broadened. The results could be graphically presented with or 

without photoperiod indication, single units, and an indicator of the width of 

the pattern.  

 We used different waveforms for the single unit activity patterns, or used 

measured single unit patterns (rat: Schaap et al., 2003; mouse: VanderLeest 

et al., 2007). The single unit activity patterns were established by calculating 

the mean single unit activity pattern from the different recorded units. These 

units had been recorded in acutely prepared slices with stationary electrodes. 

For this purpose, the peaks of all normalized single unit activity patterns 

were aligned. The effects of different single unit activity patterns and of 

different distributions between these neurons on the multiunit activity pattern 

were evaluated. 

 We used four different distributions in our simulations: a linear, normal, 

bimodal and trimodal distribution. The linear distribution was used in 

Schaap et al. (2003) and spreads the single unit activity patterns linearly over 

the light period with the peak of the first unit at light onset and the peak of 

the last unit at light offset (figure 3.1 D). In the normal or Gaussian 

distribution the single unit activity patterns were normally distributed over a 

certain time window within the circadian cycle, where the Gaussian 

distribution was characterized by )2*/(
22 2/)(  xe  (figure 3.1 E). The 

distribution used in our simulation is not a proper Gaussian distribution, but 

its tails are cut off as we deal with a repetitive signal with a period of 24 

hours. The σ could be changed from low values (narrow distribution) to high 

values (broad distribution). A bimodal distribution was used to simulate 
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Figure 3.1 Single unit activity patterns and distributions. (A) A narrow single unit activity pattern, (B) a 

measured single unit activity pattern, and C a broad single unit activity pattern. The measured pattern is 

the average from 9 recorded single unit activity patterns. Patterns (A) and (C) are derived from the 

measured pattern (B) by modifying it to half or to twice its width. The maximum frequency of each 

pattern is normalized and is set to ZT 6. (D) – (F) Different distributions of peak times of single units. (D) 

A linear distribution in a normal photoperiod (LD 12:12). (E) A normal distribution over a 24-hour 

period. (F) A bimodal distribution with means at ZT 2 and ZT 10. 

 

evening and morning oscillators (figure 3.1 F). This distribution has two 

components, and each of them was given either a Gaussian or a linear 

distribution. The first component was set around light onset and the second 

component around light offset. The distance between the components, 

measured in hours, as well as the distribution within the components could 

be manipulated. The trimodal distribution obtained an additional component 

at midday. 

 To account for changes in multiunit activity patterns that occur through 

seasonal changes, simulations were performed to investigate waveform 

changes in three different photoperiods. We investigated the effects of 

changing the phase relation between the single units in the linear, normal or 

bimodal distribution on the width of the multiunit pattern. In addition, we 

investigated the outcome of changes in single unit activity patterns. A 

change in waveform of single unit activity patterns was achieved by 
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narrowing the width by half or broadening it twofold (figure 3.1 A-C). In 

addition, the effects of a range of widths of single unit activity patterns on 

the multiunit pattern were investigated. 

 Multiunit activity patterns were quantified by their peak width. The peak 

width, or the duration of electrical activity, was defined as the time 

difference between the half-maximum amplitude of the rising and declining 

phase of the rhythm (figure 3.2). Mice and rats are nocturnal and therefore 

active during the night. The SCN electrical activity patterns of rodents show 

high activity during the day and low activity during the night. Thus, the half-

maximum amplitude of the rising phase of the rhythm coincides with activity 

offset, and the half maximum of the declining phase with activity onset.  

 

 
Figure 3.2 SCN electrical activity in nocturnal rodents. Rats and mice are active during the night, when 

the electrical activity of the SCN is low, and rest during the day, when the electrical activity of the SCN is 

high. The peak width, or duration of electrical activity, was defined as the difference between the half-

maximum amplitude of the rising and the declining phase. For short days, the resting phase becomes 

smaller and the activity phase becomes longer, while for long days, the resting phase increases and the 

activity interval decreases. In the figure, the darker background denotes nighttime, while the white 

background denotes daytime. 
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3.3 Results 

3.3.1 From single cell to multiunit pattern 

Single unit activity patterns that have been measured in the rat and mouse 

are relatively narrow as compared to the population activity pattern. In rats, 

kept in 12 h light-12 h dark schedules, the mean width of a single unit 

activity pattern is 4.4 ± 0.6 h (see figure 2 A in Schaap et al., 2003). In mice, 

the mean duration of single unit activity was 3.48 ± 0.29 hr (n = 26) kept in 

short days (LD 8:16) and 3.85 ± 0.40 hr (n = 26) kept in long days (LD 16:8) 

(VanderLeest et al., 2007). It has been shown that neurons show differences 

in phase (Brown et al., 2005b;Schaap et al., 2003), and that their summed 

activity pattern accounts for the ensemble behavior of the population. 

 We simulated multiunit patterns from measured single unit patterns that 

either were or were not distributed over the circadian cycle. When the single 

units are not distributed and are all active at the same time, the obtained 

multiunit pattern is narrow (figure 3.3 A).  

 When, on the other hand, single units are distributed in phase, a broader 

multiunit activity pattern is obtained (figure 3.3 B). This broader pattern 

resembles the multiunit activity pattern that is measured with stationary 

electrodes in rat slices (figure 3.3 C) (Brown et al., 2005b;Schaap et al., 

2003;Gilette et al., 1993;Prosser, 1998;Yannielli et al., 2004;Groos and 

Hendriks, 1982). To investigate the influence of the number of recorded 

neurons on the multiunit activity pattern, we varied the number of neurons in 

the simulation. At first, an arbitrary number of 10 single unit activity 

patterns were distributed over the day (figure 3.4 A). This results in a 

multiunit activity pattern with a width of 13.12 h, which is similar to data 

from slice recordings, although there are more fluctuations in the signal. An 

increase in the number of units renders a smoother multiunit activity pattern 

that becomes slightly more narrow (figure 3.4 A-C). 

 Different distributions of single unit activity patterns can all lead to 

multiunit activity patterns that resemble recorded patterns. A Gaussian 

distribution (σ = 180) results in a multiunit activity pattern with a width of 

12.21 h (figure 3.4 D). A bimodal distribution, with the mid of the first 

component at ZT3 and the mid of the second component at ZT9 (each with σ 
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= 135), renders a peak width of 12.05 h (figure 3.4 E). Finally, a trimodal 

distribution with the mid of the 3 components at ZT2, ZT6, and ZT10 (each 

with σ = 135) renders a peak width of 12.38 h (figure 3.4 F). We conclude 

that for all distributions, solutions exist that lead to a realistic multiunit 

pattern. 

 
Figure 3.3 Multiunit activity pattern recording and simulation based on the single unit activity patterns as 

used in figure 3.1 B. (A) Single unit patterns with their peaks in electrical activity at the same time (ZT 6). 

An added multiunit pattern of an arbitrary number of 10 neurons is shown. The single unit patterns are 

indicated at the bottom. The resulting multiunit pattern is narrow as compared to the recorded pattern of 

(C).  (B) Single unit patterns distributed over the light period. The added multiunit pattern of an arbitrary 

number of 10 neurons that are linearly distributed over the light period is shown, with the single units 

indicated at the bottom. The resulting multiunit pattern broadens and resembles the recorded activity 

pattern. (C) Example of a multiunit pattern in the rat SCN slice recorded with a stationary electrode. 

Slices were acutely prepared from rats kept in LD 12:12. The simulated multiunit pattern can be 

compared to the measured patterns with respect to the width, which is measured at the half maximum 

level of the pattern. 
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Figure 3.4 Multiunit activity pattern simulation for different numbers of single units and for several 

distributions. In (A)-(C) single units are linearly distributed over the light period. In (A) the summed 

activity of 10 single units is simulated, in (B) 20 units are simulated and in (C) 100 units. The data 

indicate that an increment in the number of neurons affects the variability in the multiunit pattern, but not 

the waveform. In (D)-(F) the single units are distributed using different distributions. (D) shows 20 single 

units that are distributed using a normal (Gaussian) distribution over 24 hours. The dashed line shows the 

Gaussian distribution according to which the single units are distributed. In (E) the single units have a 

bimodal distribution with the mid of the first component at ZT 3 and the mid of the second component at 

ZT 9. The dashed lines show the Gaussian distribution of the two components. (F) shows a trimodal 

distribution with the mid of the three components at ZT 2, 6 and 10. The data show that the multiunit 

waveform can be obtained by three temporal clusters of neurons. The data indicate that the multiunit 

waveform does not necessarily reflect the underlying distribution of single units. 

 

 It appeared difficult to predict the underlying distribution of single units 

on the basis of the recorded multiunit activity pattern (figures 3.4 and 3.5). A 

bimodal distribution of single units can result in a bimodal multiunit pattern, 

if the peaks are at ZT3 and ZT9 (figure 3.5 A) and if the distribution within 

each component is rather narrow. It can also result in a unimodal multiunit 
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Figure 3.5 Multiunit waveforms do not reflect the underlying distribution of single units. On the left hand 

side the distribution is shown of the subpopulations, on the right hand side the multiunit pattern resulting 

from this distribution is shown. (A) Two multiunit activity patterns of different subpopulations of neurons 

that are far apart in time result in a bimodal multiunit activity pattern. (B) Two multiunit activity patterns 

that are closer to each other result in a multiunit activity pattern with one peak.  (C) Three multiunit 

activity patterns of different subpopulations may result in a multiunit activity pattern with two peaks. The 

data indicate that the multiunit activity pattern does not necessarily reflect the underlying distribution of 

subpopulations or single units. 

 

pattern if the peaks are closer together (i.e., at ZT4 and ZT8; figure 3.5 B) or 

if the distribution within each component is broader. A bimodal multiunit 

pattern can also be obtained by an underlying distribution of 3 

subpopulations (figure 3.5 C). 

 Multiunit activity patterns are not only determined by the distribution of 

neurons but also by the circadian pattern of individual cells. Simulated 

discharge patterns show that the shape of single unit activity patterns affects 

not only the multiunit activity pattern, but also the peak time of the multiunit 

pattern. If the single unit activity pattern is characterized by a steep activity 

onset, and a slow activity offset, the multiunit activity pattern shows the 
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Figure 3.6 Single unit activity pattern shape can affect the shape of the normalized multiunit activity 

pattern. Three different artificial single unit activity shapes (A), (C), (E)) are used to obtain different 

multiunit activity patterns (B), (D), (F). To obtain the multiunit activity pattern, 30 single unit activity 

patterns were distributed according to a linear distribution in a 12h:12h light-dark schedule. The multiunit 

activity patterns on the right result from the corresponding single unit waveform on the left. 

 

opposite waveform and displays a slower onset and a faster offset (figure 3.6 

A and B). A symmetrical single unit pattern leads to symmetrical population 

patterns (figure 3.6 C and D).When, vice versa, a single unit pattern has a 

slow onset and a fast offset, the resulting multiunit pattern has a steep onset 

and a shallow offset (figure 3.6 E and F). 

3.3.2 Mechanisms for photoperiodic encoding 

It is well known that a multiunit pattern is narrow in a short photoperiod and 

broadens when the photoperiod increases (Jagota et al., 2000;Schaap et al., 

2003). We explored changes in the width of the single unit activity pattern 

and their effect on the broadness of the multiunit activity pattern. For this 

purpose, artificial single unit patterns were narrowed (by 50%) or broadened 

(doubled) while their phase distribution was kept constant. The width of the 

multiunit activity pattern was not changed significantly by this manipulation 
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Figure 3.7 The influence of single unit activity width on the width of the multiunit activity pattern. One 

narrow artificial single unit activity pattern (A) and one broad pattern (C) are used to obtain multiunit 

activity patterns by distributing the single unit patterns according to identical linear distributions over 12 

h. The upper right panel (B) shows the normalized multiunit activity pattern resulting from the 

distribution of 30 single unit patterns as shown in (A). The lower right panel (D) shows the normalized 

multiunit activity pattern resulting from distributing 30 single unit activity patterns as shown in (C). 

 

(figure 3.7). For a linear distribution, broadening the single unit activity 

pattern, counterintuitively, even leads to a narrower peak. For narrow single 

units, a peak width of 12.42 h was obtained, while for broad single unit 

patterns, the multiunit peak width was 11.98 h. 

 When the phase distribution between neurons was changed, the width of 

the multiunit pattern altered significantly. For narrow distributions, a mean 

population peak width of 8.88 h was found, while for broad distributions, a 

peak width of 15.62 h was obtained (figure 3.8). A change in single unit 

activity pattern, in combination with a change in phase distribution, appeared 

to result in substantial effects on the population waveform as well. For 

narrow single unit activity patterns, in combination with narrow distributions 

of the neurons, we observed that the multiunit peak width was strongly 

compressed to 8.25 h, while the combination of a broad single unit pattern 

with a broad distribution resulted in a broader multiunit peak of 11.98 h 

(figure 3.9). 
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Figure 3.8 The influence of the phase distribution of single unit patterns on the width of the multiunit 

activity pattern. One narrow linear phase distribution (8 h) (A) and one broad linear phase distribution (16 

h) (C) are used to obtain multiunit activity patterns. The single unit patterns in (A) and (C) are identical. 

The upper panel (B) shows the multiunit activity pattern resulting from the distribution of 30 single unit 

patterns shown in (A). The lower panel (D) shows the multiunit activity pattern resulting from the 

distribution of 30 single unit patterns shown in (C). 

 

 Experimentally measured data show that the mean width of a multiunit 

pattern in a short photoperiod (LD 8:16) is 11.07 h, and in a long 

photoperiod (LD 16:8), it is 14.62 h in rats (from Schaap et al., 2003). The 

difference between a long and short photoperiod is somewhat more than 3.5 

h (figure 3.10 A). Next to the simulations that were done with artificial 

single unit activity patterns, we examined the effects of changes in the width 

of the measured single unit pattern from rats on the width of the multiunit 

pattern. The single unit activity width ranged from near 0 up to 12 h (figure 

3.10 B). The results show that, counterintuitively, changes in single unit 

activity patterns can not code for changes in multiunit pattern (measured at 

halfmaximum amplitude) when single units are linearly distributed in phase. 
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Figure 3.9 The influence of the combination of phase distribution of single unit patterns together with 

single unit width on the width of the multiunit activity pattern. A narrow linear phase distribution, 

distributing 30 narrow artificial single unit activity patterns over 8 hours (A) is used to obtain a multiunit 

activity pattern (B). This corresponds to a short day length. A broad linear phase distribution which 

distributes 30 broad single unit activity patterns over 16 hours (C) results in the multiunit activity pattern 

of (D). This corresponds to a long day length 

 

Instead, the linear distribution resulted in a decrease in multiunit pattern 

width when the single units became broader. For instance, a single unit 

pattern with a width of 0.5 h resulted in a multiunit width of 12.65 h, while a 

single unit with a width of 10.5 h resulted in a multiunit width of 12.25 h for 

a given linear distribution. The Gaussian distribution showed a slight 

increase in multiunit width when the single unit pattern was broadened. The 

predominant increase in multiunit width occurred when a single unit width 

of about 2 h (multiunit pattern width of 9.65 h) was lengthened to a single 

unit width of about 6 h (multiunit pattern width of 11.08 h). This change in 

single unit waveform resulted in an increase in multiunit width of less than 

1.5 h.  
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Figure 3.10 Photoperiod encoding using single unit pattern width or phase distribution. (A) Experimental 

data from the rat SCN slice (± SEM) shows that in a short photoperiod, the width of the multiunit pattern 

is narrower than in a long photoperiod (Schaap et al., 2003). (B) summarizes the effect of a change in 

width of the single unit activity pattern on the width of the simulated multiunit pattern. On the x-axis the 

width of the single units at halfmax is shown. The linear distribution shows that a narrow single unit 

pattern results in almost the same simulated multiunit pattern width as a broad single unit pattern. The 

normal distribution shows that a narrow pattern results in a somewhat smaller multiunit width than a 

broad pattern. (C) summarizes the effect of a change in phase relation of single unit patterns on multiunit 

activity width for linear distributions. The x-axis indicates the range of the single units: in LD 12:12, the 

peaks of the single units are distributed over the 12 hour light phase, in LD 16:8, the units are distributed 

over 16 hours of light (see figure 3.5 C). (D) shows the effect of changes in a normal (Gaussian) 

distribution on multiunit activity width using different values for σ. It is concluded that changes in phase 

relation can cause large changes in multiunit width, while changes in single unit activity patterns have 

only minor effects. 

 

 A range of changes in phase relationship between single unit patterns that 

are linearly distributed over the photoperiod resulted in considerable 

differences in the width of the multiunit pattern (figure 3.10 C). For instance, 

when distributed over 8 h, the multiunit pattern width was 8.85 h, and when 
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distributed over 16 h, the multiunit pattern width was 15.49 h. This 

difference was about 6.5 h. For a Gaussian distribution, the σ indicates the 

width of the distribution. When a range of σ’s was used to alter the phase 

relationship between single units for the Gaussian distribution, significant 

differences in the width of the multiunit pattern were obtained (figure 3.10 

D). For instance, when σ = 105, the multiunit width was 9.95 h., while σ = 

270 resulted in a multiunit width of 13.22 h. The difference between these 

two values is approximately 3.2 h. 

 Figure 3.11 shows measured single unit activity patterns in mice for short 

days and for long days. There were no significant differences between the 

average peak width of the mean neuronal discharge patterns under long and 

short days (figure 3.11 A and B). However, the patterns were broader during 

daytime than during the night, both for short and for long day length (figure 

3.11 C–F; see also VanderLeest et al., 2007). 

 
Figure 3.11 Six average single unit patterns from mice measured in short and long days (taken from 

VanderLeest et al., 2007). The normalized average single unit activity patterns of mice are shown, for 

short and for long day lengths. The width of the single unit patterns averaged over 24 hour for short days 

is 3.24h (A) and for long days 3.47h (B). The widths of the average single unit patterns that were 

measured exclusively during daytime were, for short days 4.01 h (C) and for long days 3.44 h (D). The 

widths of the average single unit patterns measured during the night were 2.80 h (E) and 3.14 h (F) for 

short and long days respectively. 
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 We used these measured patterns to simulate encoding for day length in 

the mouse SCN. When the same linear distribution was applied to the single 

unit discharge patterns, measured under short and long days, the resulting 

multiunit activity pattern was not significantly different (figure 3.12 A and 

B). When the distribution was altered, on the other hand, significant changes 

in multiunit patterns were observed. A more narrow distribution was 

required to mimic narrow multiunit activity patterns, such as those recorded 

under short days, while a broadening of the distribution was required to 

mimic long day length patterns (figure 3.12 C and D). 

 

 

 
Figure 3.12 The influence of averaged single unit activity patterns of mice for short and long day length 

on the multiunit activity pattern. (A) Multiunit activity pattern with a width of 12.39 h is obtained by 

distributing 30 average single unit patterns for a short day length (see figure 3.11 A) according to a linear 

distribution over 12h. (B) A multiunit activity pattern of comparable width (12.35h) is obtained by 

distributing 30 average single unit activity patterns for a long day length (see figure 3.11 B) according to 

the same linear distribution as used in (A). These simulations did not result in multiunit patterns that carry 

day length information. (C) A narrow distribution of 30 average single unit patterns for a short day length 

(see figure 3.11 A) distributed over 8h results in a narrow multiunit activity pattern (8.45h). (D) A broad 

linear distribution of 30 average single unit activity patterns for a long day length (see figure 3.11 B) 

distributed over 16 h results in a broad multiunit activity pattern (16.02 h). All multiunit patterns are 

normalized. 
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3.3.3 Photoperiodic encoding by 2 populations 

Bimodal distributions were characterized by the temporal distance between 

the two components and by the distribution of neurons within each of the 

components. We analyzed changes in distance between the two components 

(figure 3.13 A-D) and found that these lead to changes in multiunit patterns 

(figure 3.13 E-H). 

 The pattern broadens if the components move away from each other, but 

when moved even further, the multiunit pattern shows two peaks. For narrow 

single unit distributions within a component, the system codes for 

photoperiod in the way expected: if the components are more separated, the 

multiunit activity pattern becomes broader (figure 3.14). This is true both for 

narrow normal distributions with σ values of 90, 120, and 150, which are 

relatively low (figure 3.14 A), as well as for narrow linear distributions of 8 

and 10 h (figure 3.14 B). For broad distributions within a component (i.e., 

normal distributions with σ values of 180 and 210 or linear distributions of 

14 and 16 h), the system codes for day length opposite to the expectation: if 

the components are more separated, the multiunit activity pattern becomes 

narrower. To verify this, simulations were performed using the width of the 

population pattern at a fixed level of 8 Hz and at halfmaximum amplitude. 

The results demonstrated that the summed waveform becomes narrower 

irrespective of the method used for determining the width (figure 3.15). If 

the components are separated 6 h, the width of the multiunit activity pattern 

is approximately 12 h, independent of the single unit distribution that is used 

for each component. 
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Figure 3.13 (A)-(D) Distribution of the two components in the circadian cycle. Two clusters in the 

bimodal distribution placed at different distances from each other. In (A), the two components are four 

hours apart, in (B), they are 6 hours apart, in (C) the components are 8 hours apart and in (D) the two 

components are 10 hours apart. The numbers indicate the mean peak time for each component. The 

vertical lines indicate peak times of single units. The dashed lines indicate the distribution of single units 

within each cluster. The σ used for all the bimodal distributions is 90. (E)-(H) Multiunit activity patterns 

based on bimodal distributions used in (A)-(D). In (E), the two components are four hours apart, in (F), 

they are 6 hours apart, in (G) the components are 8 hours apart and in (H) the two components are 10 

hours apart. We can see in (H) that if the clusters are too far apart, double peaks arise in the multiunit 

activity pattern. We conclude that a bimodal distribution can account for changes in multiunit patterns as 

observed under different photoperiods. 
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Figure 3.14 Effects of distance between components on multiunit width. On the x-axis the temporal 

distance between both components is plotted, on the y-axis the width of the multiunit activity pattern is 

plotted in hours. (A) Multiunit activity pattern width using a normal distribution within the components. 

The different σ values that are used represent the width of the Gaussian distribution that is used. A narrow 

Gaussian distribution has a small σ, while a broad distribution has a large σ. (B) Multiunit activity pattern 

width using a linear distribution for the single units within each component. The different lines represent 

different widths of these distributions. It can be observed that if the distance between both components is 

6 hours, the width of the multiunit activity pattern is always approximately 12 hours. This is irrespective 

of the distribution that is used. For narrow distributions, the model codes for photoperiod in the way 

expected: if the components are more separated, the multiunit activity pattern becomes broader. This is 

the case in the normal distribution as well as in the linear distribution. For broad distributions, the model 

counter intuitively codes for photoperiod exactly opposite to the narrow distributions: if the components 

are more separated, the multiunit activity pattern becomes narrower. 
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Figure 3.15 Distribution of the two components in the circadian cycle and their effect on the population 

width. (A)-(D) Two clusters in the bimodal distribution are placed at different distances from each other. 

In (A), the two components are on top of each other, in (B), (C) and (D), the components are 3, 6 and 9 

hours apart respectively. The vertical lines in (A)-(D) indicate peak times of single units. The dashed lines 

indicate the distribution of single units within each cluster. The σ used for all the bimodal distributions is 

210 which is a broad distribution. (E)-(H) Multiunit activity patterns based on bimodal distributions used 

in (A)-(D), measured at a constant height of 8 Hz. (I)-(L) Multiunit activity patterns based on bimodal 

distributions used in (A)-(D), measured at half maximum height. It is obvious that the summed waveform 

is narrower, at half maximum width, and also at a particular activity level, when the two components are 

further apart 
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3.4 Discussion 

3.4.1 Population patterns caused by distribution of 

neurons 

In this study, we have simulated multiunit signals taken from distributed and 

nondistributed single units. The outcomes of the simulations were compared 

with obtained experimental multiunit patterns. These recorded patterns were 

very precise and enabled us to evaluate them carefully for the presence of 

multiple components and the width of the multiunit pattern. The data show 

that realistic multiunit patterns can only be obtained when single units are 

distributed over the circadian cycle, in agreement with Schaap et al. (Schaap 

et al., 2003), who applied a linear distribution. In this study, the single units 

were distributed according to a linear, a Gaussian, a bimodal, and a trimodal 

distribution. We show that the outcome of all these simulations can render 

multiunit patterns that resemble the experimentally recorded patterns. In 

other words, we show that solutions are possible for all distributions. 

 In the current simulations, we use a simplified model containing identical 

single unit activity patterns. In reality, this may not be the case. The SCN is 

a heterogeneous structure, with respect to, among others, cell type, receptor 

density, neurotransmitter content, and afferent and efferent pathways (Morin 

and Allen, 2006). A major differentiation appears to exist between the 

vasoactive intestinal polypeptide (VIP)-containing cells in the ventral SCN, 

which receive retinal afferents and the vasopressin-containing cells in the 

dorsal SCN (Moore and Silver, 1998;van den Pol, 1980). It may well be that 

heterogeneity relates to differences in single unit activity patterns or that 

within particular regions of the SCN, units show different circadian profiles. 

This can not be incorporated in the present simulations but is an interesting 

possibility for future simulations, if experimental data will point in this 

direction. Despite the present uncertainty about the differences in single unit 

activity patterns within the SCN, it has become clear that all recorded single 

unit activity patterns are considerably narrower than the multiunit pattern 

and show differences in phase (Schaap et al., 2003;Brown et al., 2005b). 

These narrow single unit patterns, as well as the phase differences among the 

neurons, were the major and sole assumption for the present simulations. 
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 Note that single unit activity patterns from isolated neurons may deviate 

from patterns in a network, not only with respect to their cycle-to-cycle 

precision (Herzog et al., 2004;Honma et al., 1998) but also with respect to 

the broadness of their activity patterns. The present simulations were not 

designed to provide insight in coupling mechanisms (i.e., phase response 

relations) between neurons (see Kunz and Achermann, 2003) but aimed to 

provide insight in the relation between the behavior of individual neurons 

and the measured population activity. The starting point in these simulations 

is the recorded activity pattern of a neuron in a network that had presumably 

been shaped by the interactions with other neurons. 

 The simulations indicate that the phase distribution of single unit activity 

patterns can not be derived from the multiunit activity pattern. For instance, 

a bimodal distribution of single units may show up as a bimodal multiunit 

pattern if the components are temporally far enough apart but may show up 

as a unimodal distribution when closer in phase. We also showed that a 

trimodal distribution can result in bimodal multiunit patterns. This shows 

that single unit recordings are required to establish how the SCN multiunit 

patterns are determined by the individual oscillatory cells, their individual 

patterns, and their phase relation. 

 In the rat, Schaap et al. (2003) showed a mean single unit activity pattern 

that is a-symmetrical, with a steep rising phase and a slower declining phase. 

This pattern results at the population level in a pattern that is gradually 

increasing and rapidly decreasing. This summed activity pattern may 

contrast the primary expectation, but is in fact consistent with multiunit 

activity patterns that have been described for the rat (Meijer et al., 

1997;Schaap et al., 2003). 

 While the present simulations were based on electrical activity 

recordings, the simulations also have relevance for other population 

measurements such as gene expression profiles, transmitter concentrations, 

and so on. It will be important to establish whether molecular expression 

profiles of individual neurons resemble the population pattern or show short 

periods of enhanced expression within the 24 h cycle, with peaks at different 

phases of the circadian cycle. The observation that neurons show out of 

phase oscillations in Per1 (Quintero et al., 2003;Yamaguchi et al., 2003) may 
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indicate that phase differences also exist at the molecular level and may play 

a significant role in adjustments of molecular cycles to different 

environmental conditions. 

 When the number of neurons is increased in the simulations, the width of 

the multiunit pattern remains relatively stable. However, when more neurons 

are incorporated, the multiunit pattern becomes smoother and more precise. 

Mathematical modeling of multiunit activity in neuronal networks has shown 

that an increment in the number of neurons results in increased precision 

(i.e., decrease in day-to-day variability) at the multiunit level (Enright, 

1980b). Noteworthy, increased precision in the latter model results from a 

stochastic process in which the ensemble pattern of imprecise neurons 

renders accuracy at the network level. 

 Herzog et al. (2004) and Honma et al. (1998) confirm that single neurons 

have imprecise periods but also state that precision is enhanced when 

neurons synchronize in a network, such as in a slice. Quintero et al. (2003) 

found in slices that a variation in period exists between neurons but are 

uncertain about differences in period within a neuron. Yamaguchi et al. 

(2003) suggest that intrinsic network properties could give rise to fixed 

phase relations between neurons. However, intrinsic network properties may 

also result in variable phase relations (i.e., when coupling is weaker or when 

afferent pathways are stimulated). The variations in period, either between or 

within neurons, may underlie the observed phase differences between SCN 

neurons (Schaap et al., 2003;Brown et al., 2005b). In our simulations, single 

units were given a fixed period, and as a result, they peak at a fixed phase of 

the circadian cycle. However, the outcome of the simulations would be 

similar if an earlier neuron on day 1 becomes a later neuron on day 2 while 

another neuron behaves vice versa, as long as the overall phase distribution 

between neurons is preserved. 

3.4.2 Photoperiodic encoding 

The observed phase differences between individual discharge patterns 

prompted us to investigate the role of phase differences in photoperiodic 

encoding processes within the SCN. A priori, one may expect that the 

waveform changes of the SCN under long and short photoperiod reflect a 
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change in individual discharge patterns. As an alternative, one may propose 

that population waveform changes are caused by differences in phase 

distribution between oscillating neurons, while individual patterns do not 

change. We investigated these most extreme alternatives in a series of 

simulation studies. 

 Changes in the broadness of single unit discharge patterns were realized 

by decreasing the peak width to 50% of its initial value, or by doubling the 

width of the peak. The results indicated that these substantial changes in 

individual discharge patterns have little effect on the half-maximum 

electrical activity level. For linear distributions of neurons, this manipulation 

resulted, in fact, in a counterproductive effect on the population waveform, 

and the half-maximum discharge pattern narrowed as a consequence of the 

broadening of the individual discharge pattern. Although the linear 

distribution is unlikely in a biological process, it could represent a multitude 

of components within the SCN that are evenly distributed over the subjective 

day. For normal distributions, this manipulation resulted in a minor 

increment in peak width. This counterintuitive result is explained, in part, by 

the increment in activity during the trough of the electrical activity pattern. 

This issue raises the question how the output signal of the SCN is actually 

read by downstream brain areas that receive the information. In other words, 

are downstream areas sensitive to changes in electrical activity pattern, and 

is the half maximum an indicator of the functional output signal, or 

alternatively, are these areas sensitive to the absolute discharge rate that is 

produced by the SCN. While changes in the electrical activity pattern were 

not effective in changing the broadness of the population signal at half-

maximum discharge levels, they did increase the broadness of the peak at a 

fixed discharge rate. It will be of great importance to investigate, in vivo, by 

simultaneous SCN and behavioral recordings, how SCN electrical activity 

relates to behavioral activity levels. 

 While single unit activity waveform changes were not effective to change 

the broadness of the electrical activity pattern at half-maximum levels, 

changes in phase relation were most effective. Widening the phase relation 

in a linear phase distribution resulted in an increase in population peak width 

at half-maximum discharge levels (i.e. from 12.35 h to 15.62 h), while a 

 77



Network properties of the mammalian circadian clock 

decrease in phase relation resulted in a decrease in peak width (to 8.88 h). 

When absolute discharge levels were investigated, this manipulation was 

equally effective and broadness of the peaks under short, normal and long 

photoperiod were 8.9 h, 12.4 h and 16.5 h respectively. 

 Thus far, all conclusions were based on normalized discharge patterns, in 

which the maximum frequency was equaled to 1. When we analyze the 

discharge levels quantitatively and study changes in discharge levels that 

follow from different parameter settings, we observe that for phase changes 

between the single units, the maximal frequency of the multiunit pattern 

decreases somewhat in a long day length and increases in a short day. For 

instance, in figure 8, the multiunit activity for long day lengths decreases to 

about 55% of the activity for short day lengths. These effects should be 

measurable and are, in fact, consistent with multiunit recordings in the rat by 

Schaap et al. (Schaap et al., 2003). 

 Changes in width of the single unit activity pattern lead to major changes 

in total SCN activity (figure 3.7 A and B). These changes in impulse 

frequency are not apparent from recordings in rats and hamsters (Mrugala et 

al., 2000;Schaap et al., 2003). However, as the number of counted neurons 

also depends on spike trigger settings and electrode characteristics, this 

conclusion needs further confirmation.  

 Although our simulations indicate that changes in phase distribution are 

an effective way to code for photoperiod, they do not exclude the possibility 

that coding for photoperiod involves a combination of the two processes, i.e. 

a change in individual waveform patterns, and a change in phase distribution 

among the neurons. Simulation studies show that a combination of these 

manipulations, also result in waveform changes at the population level. A 

decrement in phase relation, together with a decrement in single unit peak 

width results in a narrow population electrical activity peak. An increment in 

phase relation together with an increment in single unit peak width causes an 

increased peak width, and a considerable decrease in the amplitude of the 

rhythm, due to a substantial rise in the trough. As the compression and 

decompression of the population discharge pattern was already observed by 

a change in phase distribution alone, we conclude that the change in single 

unit activity width is of minor importance for the system to code for 
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photoperiod, but that large changes in single unit activity patterns may also 

occur. While changes in broadness of individual discharge patterns play a 

minor role for the waveform of the population signal, changes in phase 

distribution appear to be essential in coding for day length. 

 The present results are important for the design of future experiments. 

When photoperiodic encoding results from adaptations in single unit 

activity, relatively large changes in single unit activity patterns are predicted. 

These should be easy to record, and the number of neurons or animals that 

should be recorded from need not be large. Moreover, multiunit activity 

patterns should not only broaden in long day lengths, but the maximum 

frequency should also increase. If alterations in phase distributions are the 

mechanism for photoperiodic encoding, the frequency of the multiunit 

activity peak in long days should decrease. In addition, single units should 

reveal a larger distribution in phase. It is difficult to predict how many 

recordings will be required to confirm the latter point. 

 Experimental recordings of single SCN neurons of the mouse have been 

performed after the animals were entrained to long (LD 16:8) and short (LD 

8:16) light dark cycles. This procedure resulted in changes in multiunit 

waveform patterns in slices containing the SCN, and in vivo recordings 

showed that these photoperiod-induced changes remained consistent for at 

least 4 days after release in constant darkness (VanderLeest et al., 2007). 

Single unit activity recordings revealed little difference between the duration 

of electrical activity patterns of single neurons under long and short days 

(3.47 h and 3.24 h respectively). While we can not exclude that an increase 

in the number of recorded neurons would reveal differences in individual 

waveform changes, we stress that small changes are not sufficient to result in 

the substantial population discharge patterns that are recorded in rats, 

hamsters and mice (recording studies: Mrugala et al., 2000;VanderLeest et 

al., 2007;Schaap et al., 2003). We can also not exclude that specific subsets 

of neurons exist within the SCN that do follow the photoperiod, and that we 

have missed in our recordings. Finally, we can not exclude that other 

parameters, such as gene expression profiles, do change with photoperiod. 

For instance, some genes may reflect the electrical activity pattern of the 

SCN as a whole, and may therefore follow the population discharge pattern. 
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While all these uncertainties exist, the recording studies in mice revealed 

unequivocally that electrical activity patterns in mouse from long and short 

days show clear differences in phase relation. In long days, a wide 

distribution of phases was observed, with many neurons that peaked also in 

the ‘silent’ phase of the cycle (i.e. the subjective night), while in short days 

the neurons showed a much tighter synchrony in terms of their phase 

differences. The small phase differences in short days result not only in 

narrow population activity patterns, but also in an increment in circadian 

amplitude. Vice versa, an increase in phase difference results not only in a 

broadening of the multiunit activity pattern. These effects of long and short 

day on circadian amplitude have been described for different clock genes, 

and for rat electrical activity rhythms (Schaap et al., 2003;Sumova et al., 

1995;Sumova et al., 2003). 

 The simulations of the present study show how the measured single unit 

activity patterns may contribute to the population signal under short and long 

day lengths. In these simulations, we incorporated the finding that in long 

day length, the distribution is significantly larger (VanderLeest et al., 2007). 

We applied a linear distribution and a normal distribution to the measured 

neuronal discharge patterns, and investigated the outcome for the population 

discharge pattern. We choose for these distributions as insufficient single 

units have been recorded to characterize and quantify the distribution of 

neurons within the SCN (n = 26 under both photoperiods), and we believe 

that a multitude of these numbers would be required to describe this 

distribution. In fact, our finding may still be consistent with unimodal 

(Yamaguchi et al., 2003), bimodal (Jagota et al., 2000;Pittendrigh and Daan, 

1976b) or trimodal (Quintero et al., 2003;Meijer et al., 1997) distributions, 

and for all of these distributions there is evidence in the literature. 

 The pineal gland is considered to play an important role in photoperiodic 

time measurement. The circadian oscillator in the SCN is connected to the 

pineal gland via a multisynaptic neural pathway (Moore, 1996). The 

hormone melatonin is secreted by the pineal and its synthesis is stimulated 

by the SCN (Goldman, 2001). The melatonin production is low during the 

day and high during the night. This inverse relation between the length of the 

day and the duration of melatonin secretion is found in many mammals and 
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during nighttime, the melatonin production can be suppressed by light 

(Nelson and Takahashi, 1991). The duration of the melatonin production 

serves as a  photoperiodic message, as the length of the day is encoded in the 

melatonin signal and decoded in the target tissues of the hormone. The signal 

is compressed during long summer days and decompressed during short 

winter days. Our present simulations were based on recordings in C57 mice. 

These mice have no melatonin which raises the question whether C57 mice 

are a good model to study photoperiodicity. In experiments where the pineal 

gland is removed, a loss of melatonin leads to the inability of the 

reproductive system and body fat regulatory systems to discriminate between 

long and short days. However, entrainment of circadian rhythms to cycles of 

light and darkness proceeds in the absence of melatonin (Goldman, 2001). 

We observed that C57 mice responded to the photoperiod with a change in 

their behavioral activity pattern, as well as with a change in their SCN 

electrical activity rhythms. We believe therefore that photoperiodic changes 

in behavioral activity are independent from melatonin, but are correlated 

with the waveform of the SCN. 

3.4.3 Bimodal distributions 

The two-component structure of the SCN pacemaker, also called E (evening) 

and M (morning) oscillators, plays a significant role in a vast amount of 

literature in the field of circadian rhythms (Pittendrigh and Daan, 

1976b;Daan and Berde, 1978;Daan et al., 2001;Hastings, 2001;Illnerova and 

Vanecek, 1982;Sumova et al., 1995). For this reason, we also explored 

bimodal distributions in our simulations. In terms of our current work, the 

two-oscillator model is a specific version of a model in which phase 

distribution determines day length encoding. We found that bimodal 

distributions can encode for day length, but that this is not trivial. Instead, 

and to our surprise, two components can code for day length only when 

certain conditions are met. The first is evidently that the two components 

should move within the right boundaries. While small movements yield no 

effect on multiunit waveform, the pattern becomes bimodal when the 

components are moved too far apart.  
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 The system will only function properly if not only the distance between 

the components is taken into consideration, but also the distribution within a 

component. The latter restriction has not been acknowledged before. Only if 

both components have relatively small distributions of single units can the 

resulting multiunit pattern encode for day length. If the distributions of 

single units are broad for both components, moving the peaks of the two 

components apart results, against the expectation, in a narrower multiunit 

pattern. Additional simulations showed that the summed waveform is more 

narrow, not only at half maximum width, but also at a particular activity 

level (data not shown). In a bimodal distribution, neurons within each 

component are commonly distributed according to a Gaussian distribution. 

We also used a linear distribution of neurons within each component and 

show that this leads to the same results. We conclude that two components 

can code for day length when specific conditions are met. Hence, the two-

oscillator model is a possible but not self-evident option for day length 

encoding. Note that the temporal distribution within the SCN may or may 

not be related to a spatial distribution. There may be two areas with out-of-

phase neurons, depending on the environmental condition (anterior-

posterior: Hazlerigg et al., 2005; dorsal-ventral: Albus et al., 2005;de la 

Iglesia et al., 2004). Bimodality in phase may theoretically also arise in a 

more diffuse way in which earlier and later neurons are intermingled in the 

SCN.   

 In conclusion, it has been observed that single unit activity patterns 

deviate from the population pattern of the SCN (Schaap et al., 2003;Brown 

et al., 2005b). This implies that that single units do not mirror image the 

population activity pattern. To understand the relation between single and 

multiunit data, simulations are conspicuously suited. A simulation model in 

which it is possible to simulate a multitude of possible configurations can 

help in understanding the multi oscillator structure of the SCN. 

 



 

 

Chapter 4 

Phase resetting caused by rapid shifts of small 

population of ventral SCN neurons 

4.1 Introduction 

Jet lag is often experienced as a disruption of day to day rhythms. The 

symptoms associated with jet lag are fatigue, reduced alertness and 

concentration, fragmented sleep, premature awakening, excessive sleepiness, 

and a decrement in performance (Waterhouse et al., 2007;Sharma, 2007). 

The symptoms can be caused by shift work, sleep disturbance or by acute 

time zone transitions caused by transatlantic flight (Reddy et al., 2002). Jet 

lag is attributed to slow adaptation of the circadian pacemaker, as well as to 

an unequal speed in the resetting of bodily functions (Takahashi et al., 2002). 

 In mammals, the suprachiasmatic nuclei (SCN) of the anterior 

hypothalamus drive daily rhythms. By means of a transcriptional and 

translational negative feedback loop, individual neurons of the SCN have 

endogenous circadian rhythms (Reppert and Weaver, 2001;Welsh et al., 

1995). The individual neurons of the SCN synchronize in certain, not fully 

identified ways to produce a precise circadian rhythm at the tissue level 

(Enright, 1980a;Aton and Herzog, 2005;Colwell, 2005). The SCN receive 

information from the environmental light-dark cycle via specialized 

photoreceptors and pathways (Moore and Lenn, 1972;Morin and Allen, 
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2006). Under influence of light, the SCN synchronizes to the 24 hour 

environmental cycle (Quintero et al., 2003;Yamaguchi et al., 2003;Schaap et 

al., 2003;Brown et al., 2005a;Rohling et al., 2006b;VanderLeest et al., 

2007).  

 Following a shift of the light-dark cycle, the circadian system requires 

several days to readjust to the new cycle. It is well known that adjustment of 

the circadian clock takes longer for eastbound flights, causing advances of 

the light-dark cycle, than for westbound flights, which cause delays. 

 Previous real-time electrical-activity measurements in SCN slices 

following a 6 hour delay of the light-dark cycle revealed bimodal patterns, 

with one shifted and one unshifted component (Albus et al., 2005). It 

appeared that the ventral part of the SCN corresponded with the rapidly 

shifting component while the dorsal region corresponded with the unshifted 

component (Albus et al., 2005). The aim of the present study is to provide a 

quantitative analysis of the observed bimodal electrical activity pattern. 

 We performed electrical activity recordings in SCN slices following a 

shift of the light-dark cycle and confirmed the presence of bimodal electrical 

activity patterns. Analysis of the bimodal activity records shows that the 

unshifted component is relatively broad and the shifted component narrower. 

Computer studies, including curve fitting analysis, show that the number of 

action potentials that contribute to the shifted component is a small fraction 

of those that contribute to the unshifted component. Subpopulation analysis 

confirms these findings, and shows strong synchronization in peak phase in 

the shifted component but not in the unshifted component. We propose that 

phase shifts are brought about by an initial rapid shift of a relatively small 

subpopulation of neurons within the SCN. 

4.2 Methods 

4.2.1 In vitro electrophysiology 

All experiments were performed under the approval of the Animal 

Experiments Ethical Committee of the Leiden University Medical Center. 

Male wildtype Wistar rats (Harlan, Horst, The Netherlands) were 

individually housed in cages that were equipped with a running wheel and 
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entrained to a 12:12 light-dark cycle. Food and water were available ad 

libitum. When the animals were properly entrained, the light-dark schedule 

was delayed by 6 hours by delaying the time of lights-off (Albus et al., 

2005). After subsequent exposure to one complete shifted light-dark cycle, 

the animals were killed by decapitation at the time of lights off. Brains were 

rapidly dissected from the skull and coronal hypothalamic slices (~400 μm 

thickness) containing the SCN were prepared and transferred to a laminar 

flow chamber within 6 min after decapitation. Slices were perfused with 

oxygenated artificial cerebrospinal fluid (ACSF) and kept at a temperature of 

35C. The slice was kept submerged and was stabilized with an insulated 

tungsten fork. We used one slice per animal.  

 The slices settled in the recording chamber for ~ 1 h before electrode 

placement. Recording electrodes were placed in the ventral and dorsal SCN 

in order to obtain multiunit discharge activity patterns from both SCN 

regions simultaneously.  Action potentials were recorded with 90% platinum 

10% iridium 75 µm electrodes, amplified 10k times and bandpass filtered 

(300 Hz low, 3 kHz high). The action potentials crossing a preset threshold 

well above noise (~5 µV) were counted electronically in 10s bins by a 

computer running custom made software. Time of occurrence and 

amplitudes of action potentials were digitized and recorded by a data 

acquisition system (Power1401, Spike2 software, CED, Cambridge, UK) 

and stored for offline analysis. 

4.2.2 Analysis of in vitro electrophysiology 

Multiunit activity data that showed two peaks on day 1 after the delay were 

used for analysis. The recordings were smoothed using a penalized least 

squares algorithm (Eilers, 2003). The data from dorsal and ventral SCN were 

pooled. The widths for both peaks of the bimodal pattern were determined at 

the height of the trough between both peaks. A straight line was drawn from 

the trough between the two peaks to the opposing slope of the peak to 

determine the width of the peak. To allow for comparison between different 

experiments, we also calculated the relative peak width. The difference in 

absolute and relative peak widths was tested for statistical significance with 

independent t tests (p < 0.001). 
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4.2.3 Subpopulation studies 

Activity of neuronal subpopulations in the SCN was analyzed using 

MATLAB (Matlab, 2007). Subpopulations in the multiunit recordings were 

constructed on the basis of spike amplitude, and correlated with distance to 

electrode tip. The amplitude data were divided into 50 equally sized bins 

reaching from a low spike threshold level, representing a large number of 

neurons, to the highest threshold including only a few units (Schaap et al., 

2003). Population and subpopulation activity were smoothed and the peak 

times of the different subpopulations were determined relative to the time of 

the trough between the shifted and the unshifted component in the multiunit 

activity recording. All experiments were aligned to the time of the troughs. 

4.2.4 Peak fitting 

To determine the relative contribution in electrical activity for each 

component, the area under the curve was determined for each component 

using manual curve fitting and automatic curve fitting procedures (Igor: 

http://www.wavemetrics.com and Origin: http://www.originlab.com). We 

fitted one peak for each component in the electrical activity multiunit 

pattern. In the manual curve fitting method we manually determined the 

peak for each component in the multiunit activity pattern. We defined a start 

time and an end time of the peak. Then we counted the number of action 

potentials in the region from the start time until the end time of the peak. The 

number of action potentials found for each peak represents the area for each 

component (see also figure 4.3). For each component the component peak 

area was taken as a relative measure of the total area for both components. 

This relative number for each component was taken as a measure for the 

relative amount of action potentials contributing to the component. 

 For automatic peak fitting, mathematical techniques were used to 

determine the relative contribution of the area under both components. Using 

the multi-peak fitting algorithm in Igor (http://www.wavemetrics.com) the 

peaks were fitted automatically. The results were confirmed with the multi-

peak fitting algorithm of Origin (http://www.originlab.com). 

 For each bimodal activity pattern, area approximation was performed by 

fitting two or more Gaussian functions to the smoothed signal. Usually, these 
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Gaussian functions are added to a baseline. In figure 4.3 B for example, the 

two Gaussian functions which describe the smoothed signal must be added 

to a baseline. In figure 4.3 B, the baseline is set at a constant level f(x) = 135. 

If no baseline function was used in the fitting procedure, the fitting algorithm 

often added an extra Gaussian function which served as a baseline. Three 

types of baseline functions were used. The first baseline function was a 

constant level (f(x) = a), the second a linear function (f(x) = a + bx) and the 

third baseline function was a cubic function (f(x) = a + bx + cx2 + dx3). No 

quadratic function was used because the results were very similar to either 

the linear or the cubic function. In addition to fitting the complete curve, we 

also fitted a part of the smoothed signal that only contained both 

components. The resulting Gaussian functions that best described the two 

peaks of the components were selected, using the lowest chi-square test 

statistic and the lowest Akaike Information Criterion (AIC) value. The area 

for the selected peaks was subsequently determined and then regarded 

relative to the total area for both components. These relative values were 

taken as an indication for the relative number of action potentials 

contributing to each component.  

 The Gaussian function describing the component peaks was characterized 

as follows  
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where A represents the area under one Gaussian, w characterizes the width of 

the Gaussian function, and xc represents the time of the peak of the Gaussian 

function. 

4.2.5 Simulation studies 

Simulations were done in the Matlab programming environment (Matlab, 

2007) using the model that was described in chapter 3, section 3.2. Two 

components were simulated at the average ZT times of the unshifted and 

shifted component (ZT 9 and ZT 13, ZT before the shift). The multiunit 

activity pattern was derived from the activity patterns of the two 

components. Each component was composed as an ensemble of neurons, by 

distributing a number of single unit activity patterns according to the 
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following Gaussian distribution . The single unit pattern was 

obtained by taking the average electrical activity of recorded single unit 

patterns, as described in (VanderLeest et al., 2007;Rohling et al., 2006a). 

The number of neurons and the width of the distribution could be adjusted 

for each component separately. Sigma (σ) of a distribution is a measure for 

the width of a Gaussian distribution, a high sigma reflecting a broad 

distribution and a small sigma indicating a narrow distribution. 

22 2/)(  xe

4.3 Results 

Albus et al. (2005) witnessed two components in the multiunit activity 

pattern after a 6 h delay of the light-dark cycle. One component was situated 

in the ventrolateral region of the SCN, while the other resided in the 

dorsomedial region. The two components could be identified by two separate 

peaks of electrical activity in multiunit recordings. On day 1 after the delay, 

the two peaks were already clearly distinguishable. Additional electro-

physiological experiments have been carried out to obtain a sufficient 

amount of data for the quantitative analysis of the observed bimodal pattern. 

 The experiments for day one after the delay used in Albus et al. (2005) 

were pooled with the new experiments. From all experiments, 13 showed 

two components in the recording. Looking at these examples there was a 

clear tendency that the peak of the shifted component was more narrow than 

the peak of the unshifted component (figure 4.1). First, we confirmed the 

difference in the shift of the two components, as found in Albus et al. (2005) 

(figure 4.2 B). Then, the width of the peaks at the level of the trough 

between both peaks was measured (figure 4.2 A). The width of the shifted 

component was significantly narrower than the width of the unshifted 

component (p < 0.001; figure 4.2 C), and this was also true when the relative 

widths were compared (p < 0.001). 

 

 88



Chapter 4 Phase resetting caused by rapid shifts of small population 

400

300

200

100

0

A
ct

iv
ity

 (
H

z)

18 0 6 12 18

ZT (h)

R205 Ch A

250

200

150

100

50

0

A
ct

iv
ity

 (
H

z)

18 0 6 12 18

ZT (h)

R216 Ch A

400

300

200

100

0

A
ct

iv
ity

 (
H

z)

18 0 6 12 18

ZT (h)

R221 Ch A

250

200

150

100

50

0

A
ct

iv
ity

 (
H

z)

18 0 6 12 18

ZT (h)

R180 Ch B

 
Figure 4.1 Four examples of recordings showing two components. Multiunit electrical activity recordings 

clearly showing two peaks in electrical activity. The shifted light-dark schedule is depicted with gray 

indicating the night. The left peak in each recording is unshifted component, while the right peak is the 

shifted component. 

 

 Next, we manually fitted the smoothed patterns to determine the area 

under the curves for both components and calculated the relative 

contribution of each (figure 4.3 A). The results were a rough estimate of the 

area for each curve and showed that the area of the unshifted component was 

about 70% and the area of the shifted component about 30% (figure 4.3 C). 

 In the manual fits, the shape of the curve was not considered, which puts 

a bias on the smaller shifted component. To avoid this bias, we fitted two or 

more Gaussian functions to the smoothed pattern using the automatic fitting 

procedures. The best fit was used and the Gaussian curves for both 

components were analyzed (figure 4.3 B). The areas for both components 

were again determined relative to each other. The first component was 

almost 80%, while the area of the second component was 20% (figure 4.3 

D). 
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Figure 4.2 Width and time of peak for both components. (A) Raw multiunit activity recording following 

a shift of the light-dark cycle. After smoothing of the data, the trough between both components was 

determined as well as the peak times. Subsequently, the width of the unshifted and the shifted component 

was determined by drawing a horizontal line from the trough to the opposing slope of the component’s 

peak. (B) The peak time for the shifted component occurred at ZT 3.0 ± 2.0 h, while the unshifted 

component peaked at ZT 6.8 ± 2.0 h. The ZT refers to the shifted Zeitgeber time. The difference in peak 

times was statiscally significant (p < 0.01). (C) The width of the peak of the unshifted component was 6.1 

± 1.6 h, while the shifted component had a peak width of 2.3 ± 1.3 h. This was also significantly different 

(p < 0.01). 
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Figure 4.3 Relative number of action potentials contributing to each component. The area under the curve 

for each component was taken as an indication for the amount of action potentials contributing to each 

component. (A) The total area under each of the components was used to determine the relative number 

of action potentials contributing to each component. (B) Mathematically fitting Gaussian functions to the 

smoothed multiunit activity pattern also gave an indication of the area under each component peak. (C) 

The area under the unshifted component as determined in (A) was about 70% of the total area, while the 

area under the shifted component was 30%. (D) For mathematical fitting, about 80% of the relative area 

under both components was covered by the unshifted component and 20% was covered by the shifted 

component. 
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 Finally, we used a subpopulation analysis to determine the number of 

subpopulations in the unshifted and shifted component. Subpopulation 

analysis shows the time of the peak of subpopulations in the recording. The 

peak times of these subpopulations were determined relative to the time of 

the trough between both components. The subpopulation analysis shows that 

more subpopulations were present before the trough than after the trough 

(figure 4.4). Before the trough, a total number of 37 subpopulations were 

observed and after the trough 12 subpopulations were observed. The 

distribution of the subpopulations found before the trough is significantly 

broader than after the trough (p < 0.05). 

 From these results it seems that only a relatively small group of neurons 

shifts immediately after a 6-hour phase delay. The group of shifted neurons 

also appears to have a narrower phase distribution as compared to the 

unshifted group. To obtain more insight in the mechanism that can explain 

this phenomenon, simulations were performed.  

 In the simulations, the multiunit pattern shows a bimodal pattern if the 

width of the shifted component was considerably smaller than the width of 

the unshifted component (or vice versa). Also, in the case of the two 

components that are separated only by 4 hours, the number of neurons 

contributing to the shifted components had to be less than the number 

contributing to the unshifted component (or vice versa). When these 

prerequisites were met, a bimodal multiunit activity pattern was obtained 

(figure 4.5 A and B). When the distribution of the shifted component is 

narrowed, the number of neurons contributing to the shifted component can 

be varied slightly, although they should not be more than 30% of the total 

amount of neurons. This small variability in the amount of neurons in the 

shifted component produces different shapes of bimodal peaks (figure 4.5 C 

and D), that can also be found in the experimental data (figure 4.1). If the 

number of neurons contributing to the shifted component is about 20% of the 

total amount of neurons a bimodal shape in the multiunit activity pattern is 

found where the height of the peak of the shifted component is similar to that 

of the unshifted component (figure 4.5 D). However, if the percentage is 

higher, the height of the shifted peak immediately increases substantially as 

opposed to the unshifted one (figure 4.5 C). 
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Figure 4.4 Subpopulation analysis of the shifted electrical activity profile. (A and B) The multiunit 

activity pattern (right axis) and subpopulations (left axis) for the same recording. The peak times of the 

subpopulations were determined by smoothing the electrical activity pattern. The dots denote the times of 

the peaks of the subpopulations. The subpopulation analysis was performed for all bimodal recordings 

and for all experiments the peak times were aligned to the trough (C). The number of subpopulations 

found in the unshifted component was higher than that in the shifted component (80 % versus 20 % 

respectively). Furthermore, the subpopulations of the unshifted component show a much broader 

distribution than the subpopulations of the shifted component. 
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Figure 4.5 Simulations of electrical activity patterns with two components. Each graph shows the 

resulting multiunit pattern of two components that are placed at ZT 9 and ZT 13. Each component 

contains a number of neurons and these neurons are distributed according to a Gaussian distribution that 

has a certain width (indicated by σ: a lower value leads to a narrow distribution). (A) Both populations 

have an equal number of neurons and the same distribution. This leads to a single peak in the multiunit 

activity pattern. (B) The number of neurons in the second component is decreased, still resulting in a 

unimodal multiunit pattern. (C and D) The distribution of the shifted component is narrower. This leads to 

a bimodal multiunit pattern. If the number of neurons in the unshifted component is 80% and in the 

shifted component 20%, the obtained multiunit activity pattern resembles recorded bimodal multiunit 

activity patterns. (C). If the number of neurons is increased only by a small amount, we see that the 

second peak rapidly becomes higher (D). We have also seen this in one of the recordings (figure 4.1 C). 

 

 While we can not be certain of other mechanisms that might be involved 

in the shift of the light-dark cycle for different parts of the SCN, we have 

shown that the unshifted component is broader than the shifted component. 

The unshifted component also contributes more to the total activity of the 

multiunit pattern than the shifted component, and the number of 

subpopulations is higher in the unshifted component. The subpopulations in 

the shifted component are more clustered in phase. 
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4.4 Discussion 

New experiments were performed to explore the mechanisms involved in the 

dissociation of neuronal subpopulations in the SCN after a phase delay of 6 

hours. At day one after the shift, two components could be identified in the 

electrical activity pattern. First, we analyzed these bimodal patterns by 

measuring the width of both components and observed that the width of the 

unshifted component was substantially broader than the width of the shifted 

component. The width of the unshifted component was almost three times as 

broad as the width of the shifted component. 

 Then, we calculated the relative contributions of each component to the 

ensemble pattern by the use of curve fitting methods and a subpopulation 

analysis. We found that only a small percentage (20-30 %) of the total 

number of action potentials shifted immediately after the delay of 6 hours, 

while the larger part of the action potentials contributed to the unshifted 

component. The data suggest that only a small number of the total 

population of neurons shifted immediately following the delay.  

 Using simulations, we investigated how the activity patterns for two 

subpopulations can lead to bimodal ensemble patterns. In simulation studies, 

discussed in chapter 3 (sections 3.3.3 and 3.4.3), it was found that the width 

of the distributions for each component had to be narrow and the 

components had to be sufficiently separated in time to render a bimodal 

pattern. In the present study, our simulations show that also the relative 

number of neurons is of importance. Our simulations show that bimodal 

patterns in multiunit activity only arise when two conditions are met. First, 

the width of the distribution of the shifted component is maximally 25 % of 

the distribution width of the unshifted component. Second, the number of 

neurons contributing to the shifted component is maximally 25 % of the 

amount contributing to the unshifted component. If these conditions are not 

met, the multiunit activity pattern shows only one peak. 

 Some of our recordings showed one peak in electrical activity. This does 

not necessarily reflect a unimodal distribution of the contributing neurons. 

As shown in figures 4.5 A and B, bimodal distributions can result in 

unimodal multiunit activity patterns. For the unimodal recordings, the 

distribution of the shifted component may have been broad or the 
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components were not separated enough in time (see chapter 3, sections 3.3.3 

and 3.4.3). Either case results in a unimodal multiunit activity pattern. 

 In a previous paper, Albus et al (2005) found that the two concurrent 

peaks in the in vitro electrical activity measurements could be located in the 

ventral and dorsal SCN. The ventral SCN is shifted immediately to the new 

phase, while in the dorsal SCN the shift is completed only after 6 days. We 

expect that the small group of rapidly shifting neurons is located in the 

ventral SCN. 

 In the current study we restricted ourselves to phase delays. Phase 

advances of the circadian system are known to be more complex, and require 

more time, than phase delays. In vitro electrical activity measurements in the 

rat SCN, following 6 hour phase advances showed an immediate shift of 

about 3 hours, but after 6 days the phase was at the old regime again (no 

phase shift persisted: Vansteensel et al., 2003). In vivo electrical activity 

showed no phase shift after a phase advance, indicating that perhaps the 

dorsal SCN does not shift and keeps the ventral SCN from shifting too 

(Vansteensel et al., 2003). When dorsal and ventral SCN in vitro after an 

advance where measured, there was indeed a difference in the phase shift: 

the ventral SCN shifted more quickly than the dorsal (Albus et al., 2005). 

This indicates that also for advances the dorsal and ventral region of the 

SCN shift at a different pace, causing dissociation within the SCN. 

 In molecular studies, different clock genes have been assessed following 

a phase delay or advance of the light-dark cycle. The expression of Per1 

showed a rapid phase shift immediately after a delay or an advance (Reddy 

et al., 2002;Nagano et al., 2003;Yamazaki et al., 2000;Vansteensel et al., 

2003). However, in different regions of the SCN, the response was different. 

In the ventral part of the SCN the shifts were immediate, while in the dorsal 

part the shift took longer (Nagano et al., 2003). Even within the ventral and 

dorsal regions, differences in phase shifting capacity of Per1 were found, 

where lateral cells shifted more rapidly than medial cells (Nakamura et al., 

2005). Furthermore, an advance was more difficult than a delay (Nagano et 

al., 2003;Nakamura et al., 2005). Per2 expression showed the same 

characteristics as Per1 (Reddy et al., 2002;Nagano et al., 2003). This 
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indicates that also in gene expression a dissociation exists between the 

ventral and the dorsal SCN. 

 Apart from regional differences there are differences in the adaptation 

rate of certain clock genes. During phase delays, the Cry1 gene expression 

was synchronized to the expression of Per1 and Per2 (Reddy et al., 2002). 

Following phase advances the Cry1 gene expression rhythm became out of 

phase with the expression of Per1 and Per2 genes (Reddy et al., 2002). 

CRY1 protein levels followed the Cry1 gene expression profiles for phase 

delays (Nagano et al., 2003). This might indicate a special role for Cry1 in 

the phase resetting properties of the SCN, which differs between delays and 

advances. 

 In conclusion, we propose that phase shifts are brought about by an initial 

rapid shift of a relatively small subpopulation of neurons within the SCN. 

This group resides most probably in the ventral part of the SCN. Coupling 

between the shifted and the unshifted population of SCN neurons is 

asymmetrical, as the shifted neurons exert a strong phase shifting effect on 

the unshifted neurons. This causes a complete shift of the SCN which is 

realized after several cycles. 
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Chapter 5 

Phase shifting of circadian pacemaker determined 

by SCN neuronal network organization 

5.1 Introduction 

The daily revolution of the earth causes 24 hour cycles in the environmental 

conditions, while the annual cycle of the earth moving around the sun brings 

about seasonal changes. In mammals, a major pacemaker for circadian 

rhythms is located in the suprachiasmatic nuclei (SCN) of the anterior 

hypothalamus (Ralph et al., 1990). The SCN are synchronized to the 

environmental light-dark cycle via the retina. Light information reaches the 

SCN directly via the retino-hypothalamic tract, which innervates the SCN 

with glutamate and pituitary adenylate cyclase activating peptide containing 

fibers (Morin and Allen, 2006). Synchronization to the environmental light-

dark cycle is based on a time-dependent responsiveness of the SCN to light, 

which is most easily demonstrated in “perturbation experiments” in which 

animals are kept in constant darkness and subjected to discrete pulses of 

light. Light pulses presented during the early night induce phase delays of 

the rhythm, while at the end of the night, they induce advances. The 

characteristic phase dependent light responsiveness is a prerequisite for 

animals to entrain to the environmental cycle, and is a common property of 

many organisms (Pittendrigh et al., 1984). 
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 The maximum advancing and delaying capacity depends strongly on the 

photoperiod to which animals are exposed. This finding has received 

surprisingly little attention, given the robustness of the photoperiodic 

modulation and potential functional significance. For instance, in rodents, 

the phase shifting effects of a 15 min light pulse on behavioral activity 

rhythms are about 2-3 fold larger in short winter days than they are in long 

summer days (Pittendrigh et al., 1984). One possibility is that increased light 

exposure in long days desensitizes the system to light at the level of the 

retina (Refinetti, 2002). Recently, it has become known that the organization 

of the SCN shows plasticity under influence of changes in day length 

(Schaap et al., 2003;Johnston et al., 2005;Rohling et al., 2006b;Inagaki et al., 

2007;VanderLeest et al., 2007;Naito et al., 2008). The variation in light 

response over the seasons could therefore also result from different response 

properties brought about by plasticity within the SCN itself. Behavioral and 

electrophysiological experiments were performed and evidence was found 

that the phase shifting magnitude is determined by the SCN, rather than by 

the light input pathway (VanderLeest et al., 2009). The large phase shifts 

observed in high amplitude rhythms in short days versus the small shifts in 

long days lead them to propose that synchronization among individual 

oscillator components enhance the phase resetting capacity. This chapter is a 

more detailed description of the simulations that supported the study 

showing that the phase resetting capacity of the SCN is altered by the degree 

of synchronization between the different pacemaker neurons. 

5.2 Methods 

5.2.1 Ethics statement 

All experiments were performed in accordance to animal welfare law and 

with the approval of the Animal Experiments Ethical Committee of the 

Leiden University Medical Center. 

5.2.2 Behavioral experiments 

Mice (C57BL6) were kept under long (16 h light, 8 h dark) and short (8 h 

light, 16 h dark) photoperiods for at least 30 days in clear plastic cages 
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equipped with a running wheel. The animal compartments are light tight and 

illuminated by a single white fluorescent “true light” bulb with a diffuse 

glass plate in front. The light intensity at the bottom of the cage was ~180 

lux. Running wheel activity was recorded with Actimetrics software and the 

onset of activity was determined and defined as circadian time 12 (CT 12). 

After at least 30 days in the light regime, the animals were released into 

constant darkness (DD). On day 4 in DD, the animals received a 30 min 

white light pulse (180 lux) at a specific CT. We have previously shown that 

after 4 days in constant darkness, photoperiodic effects on behavioral 

activity and on SCN waveform are still fully present (VanderLeest et al., 

2007). For each animal in the compartment, the average onset of activity was 

calculated and the CT of the light pulse was determined. Running wheel 

activity was recorded for another 14 days after the light pulse. The phase 

shifts were calculated by comparing activity onset in DD before and after the 

light pulse. The circadian times at which the light pulses were given were 

binned in 3 h intervals.  

5.2.3 In vitro experiments 

Animals were housed under long and short photoperiods, as described 

before, for at least 30 days. Prior to the in vitro experiment, the animals were 

transferred to a dark compartment for 3 days. Onset of wheel running 

activity was determined over these 3 days and decapitation and subsequent 

dissection of the brain was performed at the end of the resting period of the 

animal (CT 12). Slices of 400 µm were prepared with a chopper and were 

transferred to a laminar flow chamber that was perfused with warmed (35°C) 

ACSF within 6 min after decapitation (Schaap et al., 2003). The pH was 

controlled by a bicarbonate buffer in the ACSF and was maintained by 

gassing the solution and blowing warmed humidified O2 (95%) and CO2 

(5%) over the slice. The slice was kept submerged and was stabilized with 

an insulated tungsten fork.  

 The slices settled in the recording chamber for ~1 h before electrode 

placement. Action potentials were recorded with 90% platinum 10% iridium 

75 µm electrodes, amplified 10k times and bandpass filtered (300 Hz low, 3 

kHz high). The action potentials crossing a preset threshold well above noise 
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(~5 µV) were counted electronically in 10 s bins by a computer running 

custom made software. Time of occurrence and amplitudes of action 

potentials were digitized by a CED 1401 and stored for off-line analysis. To 

induce a phase shift, the recording chamber was perfused with ACSF 

containing 10 or 25 µM N-methyl-D-aspartate (NMDA) for 30 min. The 

timing of the NMDA application was in accordance with the light pulse 

presentation in the behavioral experiments: The slices were prepared on day 

3 in DD and on the fourth night in DD the NMDA pulse was applied at CT 

15. The estimation of CT 15 was done one the basis of the activity onsets of 

the animals in DD, on the days preceding the preparation of the slice. 

5.2.4 Data analysis 

Electrophysiological data was analyzed in MATLAB using custom made 

software as described earlier (VanderLeest et al., 2007). The time of 

maximum activity was used as marker for the phase of the SCN and was 

determined on the first peak in multiunit activity, both for control and 

experimental slices. Multiunit recordings of at least 24 h, that expressed a 

clear peak in multiunit activity, were moderately smoothed using a least 

squares algorithm (Eilers, 2003) and peak time, half maximum values and 

amplitude were determined in these smoothed recordings. 

 For a more detailed analysis of rhythm amplitude, we used the stored 

times of the occurrence and amplitudes of the action potentials. This analysis 

allows for an off-line selection of the size of the population of neurons that 

contributes to the electrical activity rhythm, through a selection of voltage 

thresholds (see also Schaap et al., 2003 and VanderLeest et al., 2007). In this 

way, we could describe the circadian activity pattern of larger or smaller 

subpopulations of SCN neurons. This analysis was performed in slices from 

long and short day animals, and allowed to compare rhythm amplitudes in 

both groups with an equal number of action potentials that contributed to the 

recording over the same time interval (c.f. figure 5.4). The thresholds were 

determined so that each trigger level includes 105 more spikes than the 

previous level. For all experiments the deviation from the aimed number of 

action potentials selected for was < 5%. 
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 Statistical analyses were performed in Origin 7 (OriginLab Corporation) 

and Excel (Microsoft). All values are stated as average ± standard error of 

the mean (s.e.m.). Whenever the calculated value is the result of a difference 

between groups, such as in the calculation of in vitro phase shifts, variances 

were considered unequal, rendering a conservative test. P-values were 

calculated with a two sided t test and were considered to be significant when 

p < 0.05.  

5.2.5 Simulations 

Simulations of a phase response curve (PRC) for short day length and long 

day length were performed in MATLAB by distributing 100 normalized 

artificial single unit phase response curves over the day. Two types of single 

unit PRCs were used (figure 5.1). The first PRC consisted of a 12 h dead-

zone (where no phase responses can be induced) and a 12 h sinusoidal 

responsive part, in accordance with the type 1 light pulse PRC (Johnson, 

1999). The other single unit PRC was in accordance with a type 0 light pulse 

PRC, consisting of a 12 h deadzone followed by an exponential function 

with an asymptote at CT18, and a maximum shift of 12 h (Johnson, 1999). 

The distributions that were used for long and short day lengths were taken 

directly from experimentally described subpopulation distributions in long 

and short photoperiods (see figure 5.6 A and VanderLeest et al., 2007). The 

peak times of these subpopulations were used to fit a distribution curve. This 

curve was used to distribute 100 single unit PRCs over the circadian day. In 

addition, simulations were performed using single unit PRCs without a 

deadzone (see figure 5.7 B) (c.f. Ukai et al., 2007).  

 We have measured the area under the curve, which is the surface of the 

delay and advance part of the PRC. The surface is an indication for the phase 

shifting capacity of the circadian system. The equation for this calculation is 

the first integral of a curve over a certain interval:  or 
b

a

dxxf )(   xy  

for discrete functions, where the absolute value of y is multiplied by the 

width on the x-axis. 
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Figure 5.1 Single unit phase response curves. Type 1 and type 0 normalized artificial single unit phase 

response curves (PRCs) were used in the simulations. The type 1 PRC consists of a 12 h dead-zone 

(where no phase responses can be induced) and a 12 h sinusoidal responsive part (Johnson, 1999). The 

type 0 single unit PRC consisted of a 12 h dead-zone followed by an exponential function with an 

asymptote at CT18, and a maximum shift of 12 h. 

 

5.3 Results and discussion 

Behavioral experiments established phase shifting effects of light under long 

and short photoperiods (light:dark 8h:16h and 16h:8h). The phase shifting 

effects were determined by light pulses given at different phases of the 

circadian cycle (figure 5.2). Maximum delays were observed for pulses 

given 3 hours after activity onset in both animals from short days (shift: -

2.68 ± 0.19 h, n = 6) and animals from long days (shift: -0.62 ± 0.28 h, n = 

5). The magnitude of the delays was significantly larger for animals in short 

days than for animals in long days (p < 0.001). Light pulses towards the end 

of the night produced small phase advances which were not significantly 

different between the groups (short day advance: 0.61 ± 0.26 h, n = 8; long 

day advance 0.50 ± 0.11 h, n = 9; p > 0.6) (VanderLeest et al., 2009).  

 Experimental results show that the difference in shift between long and 

short day animals is not attributable to a difference in photic sensitivity of 

the circadian system (VanderLeest et al., 2009). VanderLeest et al. (2009) 

also tested whether the phase shifting capacity of the circadian system under 

long and short photoperiods is determined by the SCN itself, rather than by 

sensitization or desensitization of retinal input. The SCN was tested in vitro 

using NMDA pulses (figure 5.3 and 5.4). The NMDA receptor is of crucial 

importance in mediating phase shifting by light and application of the 
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glutamate receptor agonist NMDA to brain slices in vitro generates phase 

shifts of the circadian rhythm resembling photic phase responses (Colwell et 

al., 1991;Ding et al., 1994;Shibata et al., 1994). The absence of a difference 

in the magnitude of the NMDA response underscores that the phase shifting 

capacity is determined by the SCN itself and shows that the same increase in 

neuronal activity of the SCN results in a different phase shifting response 

(VanderLeest et al., 2009). 

 

 
Figure 5.2 Phase shifts of wheel running behavior in mice induced by 30 minutes light pulses. Examples 

of wheel running actograms from animals kept in short (A) and long photoperiods (B). The top bar 

indicates the light-dark schedule before transfer to continuous darkness (DD, indicated with an arrow), 

days are plotted underneath one another. A light pulse was given on day four in DD (L, indicated with an 

arrow), 3 hours after activity onset (indicated by  in the actogram). Activity onset was defined as 

circadian time 12. Phase response plots to 30 minute light pulses in short (C) and long (D) photoperiod. 

Phase responses are plotted as a function of the time of the light pulse. Individual phase shifts are 

indicated by a plus symbol. The results were grouped in 3 h bins centered at CT 0, 3, 6, 9, 12, 15, 18 and 

21. The average phase responses of the light pulses are indicated by squares and connected with a solid 

line. The time of maximal delay is at CT 15 for both long and short photoperiods and is significantly 

different between both day lengths (p < 0.001). The large magnitude of the delays observed in short days 

is consistent with other studies (Pittendrigh et al., 1984;Refinetti, 2002). 
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Figure 5.3 Phase shifts of multiunit electrical activity rhythms in brain slices from mice kept on a short 

and long photoperiod. Examples of extracellular multiunit recordings from the SCN in mice kept on a 

short photoperiod (A, C) and on a long photoperiod (B, D). Action potentials were counted in 10 s bins, 

and are plotted as a function of circadian time. NMDA pulses were given 3 hours after the activity onset, 

at CT 15, both in slices from short (C) and long (D) day animals. These pulses induced a delay in the peak 

time of the rhythm in slices obtained from short day animals. Peak times are indicated by a vertical line. 

(E) Delays obtained at CT 15 from short day animals were significantly larger than delays obtained from 

long day animals. The magnitude of the delay after an NMDA pulse at CT 15 was significantly different 

between day lengths (p < 0.01). (F) The magnitude of the behavioral delay was not different from the 

delay observed in vitro, for both day lengths (Short day in vitro vs. behavior p > 0.3, Long day in vitro vs. 

behavior, p > 0.4).  
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Figure 5.4 Acute NMDA responses in multiunit electrical activity. (A, B) NMDA (10 µM) induced an 

increase in firing rate as recorded by extracellular multiunit electrodes. The magnitude of the NMDA 

response is similar in slices from long and short day animals and in both photoperiods, a plateau was 

reached during the application. (C) The magnitude of the acute response to NMDA, measured as the 

relative increase in discharge rate, was not different between day lengths (p > 0.3). 

 

 The question arises what mechanism in the SCN underlies the 

photoperiodic modulation of phase shifts. Recently it has become clear that 

photoperiodic encoding by the SCN (Mrugala et al., 2000;Sumova et al., 

2003) is accomplished through a reconfiguration of cellular activity patterns 

(Schaap et al., 2003;Hazlerigg et al., 2005;Inagaki et al., 2007;VanderLeest 

et al., 2007;Naito et al., 2008). In long days, the activity patterns of single 

SCN neurons are spread in phase, rendering a broad population activity 

pattern, while in short days, the neurons oscillate highly in phase, which 

yields a composite waveform with a narrow peak (Schaap et al., 

2003;VanderLeest et al., 2007). Molecular studies have shown regional 

differences in gene expression patterns that increase in long days and 

decrease in short days (Hazlerigg et al., 2005;Inagaki et al., 2007;Naito et 

al., 2008). 
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Figure 5.5 Amplitude of the electrical activity peak in short and long days. (A) Maximal firing frequency 

recorded in slices from animals maintained in short and long days (p < 0.05). (B) Amplitudes of the 

rhythm, defined as the difference between maximal and minimum firing level in long and short day 

groups were significantly different (p < 0.01). (C) Subpopulation analysis, in which each line represents 

an increase of a total number of 105 action potentials recorded under the curve. Action potentials were 

counted in 60 sec bins. (D) Amplitude of electrical activity rhythms, for different numbers of action 

potentials included in the recording. The amplitude of the electrical activity in the short day group is 

larger than the amplitude in the long day group, for recordings with an equal number of action potentials. 

For 50×105 action potentials (indicated by arrows), examples of electrical activity patterns are indicated in 

E and F. The difference in amplitude between long and short days becomes larger with an increasing 

number of action potentials under the curve. (E, F) Examples of a recording in short and long days, with 

an equal amount of action potentials contributing to the electrical activity pattern.  

 

 Theoretically, it follows from such a working mechanism, that the 

amplitude of the rhythm in short days is larger than the amplitude in long 

days. That is, when neurons overlap in phase in short days, the maximum 

activity of each neuron will be at similar phases, leading to a high frequency 

in multiunit activity due to the summed activity of overlapping units during 

the peak, while during the trough, non-overlapping units lead to low activity 

(Rohling et al., 2006b). VanderLeest et al. (2009) measured the frequency of 

the multiunit activity of SCN neurons in long and short day slices and found 

that indeed, the maximum discharge levels are higher in short day animals 

(figure 5.5). A general assumption in the field of circadian rhythm research 

is that high amplitude rhythms are more difficult to shift than low amplitude 

rhythms (Pittendrigh et al., 1991), which stands in contrast to our present 

findings. To critically test the observed amplitude differences, VanderLeest 

et al. (2009) analyzed the amplitude under long and short days in more 

detail, by an off-line analysis of subpopulation activity. This allowed them to 

compare subpopulation activity rhythms, with an equal number of action 

potentials contributing to the circadian waveform. The results showed that in 

short days, the amplitude of the rhythm was larger than in long days for any 

given number of spikes in the recording (figure 5.5).  
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Figure 5.6 Short and long photoperiod PRCs obtained from simulations. (A) The distributions for short 

and long day subpopulations were taken from (VanderLeest et al., 2007). Each vertical line represents the 

peak time of a subpopulation of neurons. (B) A fitted curve through the long and short day length 

distribution was used to distribute 100 single unit PRCs. The y-axis represents differently phased single 

unit PRCs, distributed according to the fitted curve. The blue part of each line represents the delay part of 

the single unit PRC, the red part represents the advance part of the single unit PRC. The left side shows 

the distribution for short days and the right side shows the distribution for long days. (C) The resulting 

simulated PRCs for short and long days using type 1 single unit PRCs (left) or type 0 single unit PRCs 

(right). The long day PRCs show a lower amplitude than the short day PRCs (see also figure 5.7). (D) The 

area under the curve of the PRC decreases exponentially when the phase distribution of the neurons 

increases. The area is given relative to the area under the curve when all single unit PRCs coincide, which 

leads to a maximum amplitude of the PRC of the ensemble, and a maximal working area. On the x-axis, 

the observed distributions for the short and long day lengths are indicated. The left side shows the results 

for type 1 single unit PRCs, the right side for type 0 single unit PRCs. The results indicate that the area 

under the curve for short days is about two times larger than for long days, consistent with experimental 

results (see also figure 5.8).  

 

 
 
Figure 5.7 Simulating short and long day PRCs. Single unit PRCs without a dead zone (Ukai et al., 2007) 

were used for the simulations. (A) Distribution of 100 single unit PRCs, with the delay part in blue and 

the advance part in red. The left side shows the distribution for short days and the right side shows the 

distribution for long days. (B) The resulting long and short day PRCs show large shifts for short days and 

smaller shifts for long days. The right side shows the single unit PRC that was used in these simulations.  

 

 111



Network properties of the mammalian circadian clock 

 These findings contradict a long standing dogma in the field of circadian 

rhythms that the magnitude of a phase shift is inversely related to the 

amplitude of the rhythm, i.e. that it is more difficult to shift high amplitude 

rhythms than low amplitude rhythms. This dogma is based on the theory of 

limit cycle oscillators, where a perturbation of similar strength changes the 

phase of an oscillator with low amplitude more than one with higher 

amplitude, because the perturbation represents a larger fraction of the radius 

of the circle (Aschoff and Pohl, 1978;Winfree, 2000). The question is how to 

explain our current findings.  

 Both molecular and electrophysiological studies have provided evidence 

that photoperiodically induced waveform changes observed at the population 

level (Sumova et al., 2003;Mrugala et al., 2000) are caused by a 

reconfiguration of single cell activity patterns (Schaap et al., 2003;Hazlerigg 

et al., 2005;Inagaki et al., 2007;VanderLeest et al., 2007;Naito et al., 2008). 

In short day length single units oscillate highly in phase while in long days 

they are more spread out over the circadian cycle. Because in short days the 

phase distribution among neurons is narrow, light information will reach 

SCN neurons at a similar phase of their cycle. When the distribution is 

broad, however, light information reaches neurons at different phases of 

their cycle. We performed simulations both with type 1 and with type 0 

PRCs in the distributions. When distributing 100 type 1 PRCs, the 

magnitude for the long day length PRC is 52.5% of the magnitude for the 

short day length PRC; for type 0 PRCs, this ratio is 43% (figure 5.8). The 

simulations revealed that irrespective of the type of single unit PRC, a broad 

distribution of cellular oscillations, corresponding to long days, results in a 

low amplitude PRC of the ensemble, and a narrow distribution, 

corresponding to short days, results in a high amplitude PRC of the ensemble 

(figure 5.6 and 5.7). These results were independent of the number of single 

unit PRCs that were used in the simulations, although small deviations 

occurred for low numbers (n < 40). The simulated differences in the 

magnitude of the shifts resembled the experimentally obtained data (figure 

5.8). 
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Figure 5.8 Magnitude of the light induced phase shift. (A) Experimentally obtained subpopulation 

distributions (VanderLeest et al., 2007) were used to distribute 100 type 1 single unit PRCs. The results 

revealed high amplitude phase shifts for short days and low amplitude shifts for long days. Short day 

shifts were normalized to 100%, long day shifts were plotted relative to this value. (B) The same 

procedure was followed for type 0 single unit phase response curves. (C) For comparison, the 

experimentally obtained phase shifts in running wheel activity are depicted with the shift in short days 

normalized to 100% (p < 0.001). 

 

 We have also measured the area under the curve for long and short day 

length PRCs for both the simulations and the experimentally obtained data 

(figure 5.9). The area under the simulated long day PRC curve is about 50% 

of the area under the short day PRC. This was true for both types of single 

unit PRCs that were used to construct the ensemble PRC. For type 1 single 

unit PRCs, the area under the curve of the simulated long day PRC was 

55.9% of the area under the curve of the short day PRC. For type 0 single 

unit PRCs, the area under the curve of the simulated long day PRC was 53% 

of the short day PRC. The results from these simulations were independent 

of the number of single unit PRCs and in accordance with the experimentally 

obtained data (figure 5.9). 
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Figure 5.9 Area under the phase response curve. (A) Quantitative analysis of the PRC based on type 1 

single unit PRCs by a measurement of the area under the curve. For short days, the area was normalized 

to 100% and for long days, the area was plotted as a fraction of this value. (B) The same procedure was 

repeated for type 0 single unit PRCs. (C) The relative area under the curve from experimentally obtained 

behavioral PRCs. The area under the PRC in long day length is 45% of the normalized area in short day 

length. 

 

 In summary, our findings indicate that the phase shifting capacity of the 

SCN expressed in long and short day length is retained in the SCN in vitro, 

offering an attractive model for future investigation. Our data also show that 

the inverse relation between the phase shifting capacity and the amplitude of 

the rhythm may not hold for neuronal networks in which neurons oscillate 

with different phases. We have shown that such networks respond in fact 

opposite, and show a maximum phase shifting capacity when the rhythm 

amplitude is large, and a smaller response when the amplitude is low. The 

data provide a clear example that neuronal networks are governed by 

different rules than single cell oscillators. To predict the phase response 

characteristics of the SCN network, we have taken into account the phase 

distribution among the single cell oscillators. We realize that a more accurate 

prediction of the properties of the network can be obtained when the 

interactions between the single cell oscillators are incorporated (Johnson, 

1999;Indic et al., 2007;Beersma et al., 2008). In the past few years a number 

of synchronizing agents have been proposed such as VIP, GABA, and gap 

junctions (Colwell et al., 2003;Aton et al., 2005;Welsh, 2007;Albus et al., 

2005;Long et al., 2005;Colwell, 2005), and it would be interesting to 

determine their role in photoperiodically induced changes in the phase 
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resetting properties of the SCN. Our findings may be relevant not only for 

the photoperiodic modulation of the phase shifting capacity of the circadian 

system, but may have broader implications and be relevant also to 

observations of reduced light responsiveness and reduced circadian rhythm 

amplitude in the elderly. 
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Chapter 6 

Asymmetrically coupled two oscillator model of 

circadian clock in the SCN 

6.1 Introduction 

The biological clock acts as a physiological pacemaker, generating an 

endogenous rhythm that is circadian, i.e. these endogenous rhythms have an 

approximate length of 24 hours. To anticipate the daily light-dark (LD) cycle 

correctly, the pacemaker must be entrained to the environmental LD cycle. 

The period of the endogenous rhythm of the circadian pacemaker is usually 

denoted by τ and can be measured when all environmental conditions are 

kept constant. When the organism is placed in complete darkness (DD), such 

that no periodic LD cycle is present, the organism shows a behavioral free-

running rhythm: it shows a rhythmic behavioral cycle with a period length of 

τ hours (notwithstanding small daily perturbations). Entrained to an 

environmental LD cycle with a period of T hours, the period of the 

pacemaker is changed by an amount of τ - T hours. While the length of the 

light and dark duration contributing to each day depend on the season, the 

daily environmental LD cycle on earth is characterized by T = 24 hours. 

 An animal's behavioral cycle is usually divided into a period of activity 

and a period of inactivity, coinciding with subjective day and subjective 

night. This holds in a LD schedule as well as under free-running conditions. 
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The endogenous cycle, with a period of τ hours, is often expressed in 

circadian time (CT). The free-running period is defined to be 24 circadian 

hours, such that each circadian hour amounts to τ/T physical hours, 

consequently in the environmental LD cycle, a circadian hour equals τ/24 

physical hours. The start of the subjective night is defined at circadian time 

12 by convention (Pittendrigh and Daan, 1976a). The LD cycle to which the 

pacemaker is entrained is called a Zeitgeber (german for “time provider”) 

(Aschoff, 1965b), and the 24 hours of its environmental cycle define the so-

called Zeitgeber time (ZT). 

 Entrainment to the environmental LD cycle is causally linked to light 

input coming from the retina through a specialized photic entrainment 

pathway, the retino-hypothalamic tract (RHT) (Nelson and Takahashi, 

1991;Meijer, 2001). At different times of the subjective cycle, the organism's 

susceptibility to this light input differs. Light pulses given during subjective 

day cause little or no phase shift, while light pulses of the same intensity and 

duration given during subjective night cause large phase shifts (Daan and 

Pittendrigh, 1976). If the magnitude of the phase shifts is determined for 

different circadian timepoints, distributed over the circadian day, a so-called 

phase response curve (PRC) can be constructed (see figure 6.1) (Daan and 

Pittendrigh, 1976;Pittendrigh, 1981b;Nelson and Takahashi, 1991). 

 

 
Figure 6.1 Mathematical approximation of a typical phase response curve (PRC). This PRC will be used 

in the mathematical analysis described in this chapter. 
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Figure 6.2 Mechanism for two-pulse phase shift experiment. (A) shows the phase of the internal clock of 

the organism (CT) with respect to the external time (ZT), where the internal period of the organism in this 

example is 24 h. (B) shows the PRC of the organism, given in CT. The first light pulse is given at ZT 15. 

The second pulse is given at ZT 21. The solid lines represent the case when the organism is unaffected by 

the first light pulse. The dotted lines represent the case when the organism instantaneously shifted its 

internal phase (CT) after the first pulse. To know if the organism instantaneously shifted its phase or not, 

one only needs to check what happens after the second light pulse. If the organism did not shift 

instantaneously, the effect of the second pulse would be an advance of the internal phase of the organism 

by 6 hours, as can be read from the solid PRC in (B). If the animal did instantaneously shift, the organism 

would delay its phase by 6 hours. 

 

 Some studies have reported that the oscillator resets essentially 

instantaneously after been given a light pulse (Pittendrigh, 1981a;Meijer and 

de Vries, 1995;Watanabe et al., 2001;Best et al., 1999). Pittendrigh was the 

first to show this instantaneous shifting of the pacemaker with a series of 

two-pulse phase shift experiments in Drosophila (Pittendrigh, 1981a). A 

phase delay (or advance) inducing pulse is followed by a second ('tester') 
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pulse every hour after the first pulse, for a full 24 hours. The delay (or 

advance) reconstructed from the behavior after the tester pulse agrees with 

the shift that would be the result if the shift of the first pulse has already 

been taken into account. Thus the effective PRC that governs the phase shift 

of the pacemaker with respect to the tester pulse is considered to be the PRC 

of the shifted pacemaker resulting from the first pulse, rather than the PRC 

of the unshifted pacemaker. Other studies found similar results for 

Neurospora (Crosthwaite et al., 1995), for mice (Sharma and 

Chandrashekaran, 2000), and for Syrian hamsters (Elliott and Pittendrigh, 

1996;Best et al., 1999;Watanabe et al., 2001). 

 Behavioral recordings however show that the shift is not immediate. If a 

single light pulse is given somewhere during the subjective night of the 

organism, it takes some cycles before the behavior of the organism shifts its 

phase completely. These cycles are called transient cycles. They only last a 

few cycles. For phase advances, transient cycles typically last longer than for 

phase delays (Waterhouse et al., 2007). This phenomenon is associated with 

jet lag. 

 
 

Figure 6.3 Protocol for a 6 hour phase delay of the light dark cycle. At the day of the phase shift, the light 

period is extended by six hours. On the day following the shift the light period starts six hours later than 

in the previous light dark cycle. Such a six hour phase delay results in a shift of -6 hours. In the protocol 

used by Albus et al. (2005), the following days were in constant darkness. In the protocols used by Reddy 

et al. (2002) and Yamazaki et al. (2000), the new light dark regime was continued. 
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 The seemingly incompatible findings of an instantaneously shifting SCN 

on the one hand and the existence of transient cycles on the other hand led 

Pittendrigh to believe that such transients reflect the motion of a second 

slave oscillator that gradually relaxes to a steady-state phase relationship 

with respect to the primary (reset) pacemaker (Pittendrigh, 1981a). 

Watanabe and colleagues have also speculated on a secondary downstream 

oscillatory system, either inside or outside the SCN (Watanabe et al., 2001). 

Inside the SCN two regions can be distinguished, the ventral region, where 

the environmental light information enters the SCN, and a dorsal part, which 

contains the majority of output fibers from the SCN to other body parts. 

 Albus and co-workers showed that after a 6 hour delay of the LD cycle 

(see figure 6.3) the ventral and the dorsal part of the SCN shift at a different 

pace (Albus et al., 2005). The ventral part shifts immediately to a newly 

imposed light dark cycle, while the dorsal SCN requires about 6 days to 

regain a steady state phase relationship with the new light dark cycle. In 

table 6.1 the quantitative results from this experimental study are shown. In 

this study, we have built a mathematical model for this mechanism of 

dissociating regions of the SCN (figure 6.4). 

 The model described in this chapter is based on the two oscillatory 

regions in the SCN, the ventral and the dorsal regions. Other models 

describe the SCN either by one limit cycle oscillator (Wever, 1965;Wever, 

1972;Kronauer et al., 1982;Kronauer, 1990) or by a large group of 

identically coupled limit cycle oscillators (Winfree, 1967;Pavlidis, 

1971;Pavlidis, 1978a;Achermann and Kunz, 1999;Bernard et al., 2007).  

 

Day Δφ component 1 (h) Δφ component 2 (h) 

1 -6.2 ± 0.6 -1.8 ± 0.6 

3 -7.9 ± 0.8 -2.8 ± 0.8 

6 -6.0 ± 0.7 

 

Table 6.1 Average phase shifts and standard error of the means of the ventral and dorsal component of 

the SCN at day 1, day 3 and day 6 after a phase delay of 6 hours of the light dark cycle (taken from Albus 

et al., 2005). 
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Figure 6.4 Model for the SCN, distinguishing a dorsal and a ventral part in the SCN with mutual 

interactions. φL = phase of external light-dark cycle, φV = phase of ventral SCN, φD = phase of dorsal 

SCN, ΔO = influence of SCN on behavior, ΔLV
+ = influence of light on (ventral) SCN, ΔVD

+ = excitatory 

influence of ventral SCN on dorsal SCN, ΔVD
- = inhibitory influence of ventral SCN on dorsal SCN, ΔDV

- 

= influence of dorsal SCN on ventral SCN (based on Albus et al., 2005). 

 

These models regard the SCN as a homogeneous structure. However, the 

SCN is not homogeneous. Different regions are described that seem to have 

different functional significance (ventral-dorsal: Albus et al., 2005;Nagano 

et al., 2003;de la Iglesia et al., 2004;Yan and Silver, 2004;Yan and Silver, 

2002;Nakamura et al., 2005; rostral-caudal: Hazlerigg et al., 2005; anterior-

posterior: Inagaki et al., 2007) and different types of neurons underlie 

heterogeneity in function. A model that focuses on regional differences is the 

'Gates and Oscillators' model of Antle et al. (2003). In this model, a non-

oscillating entity, the 'gate', imposes external influences on the oscillating 

unit, which comprises of numerous individual non-coupled limit cycle 

oscillators. The 'gate' drives the phase of all oscillators towards a mean 

phase. Other models that take heterogeneity into consideration are described 

by Gomes Cardoso et al. (2009) and Vasalou et al. (2009). 

 For our model a precise mathematical formulation is given in terms of a 

system of two asymmetrically coupled ordinary differential equations 
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(ODE). This mathematical model is fit to the experimental results from the 

phase delay experiments described in Albus et al. (2005), and the results of 

the mathematical modeling studies are compared to the experimental results. 

After the model was fit to the experimental results described in Albus et al. 

(2005), this parameterized model was used with the protocols as described in 

Reddy et al. (2002) and Yamazaki et al. (2000), and the results from the 

model were compared to the experimental results of those studies. We show 

that this model of two interacting oscillators can qualitatively describe the 

dynamics of a phase shift. 

6.2 Mathematical model 

The model we consider is depicted in figure 6.4. Light information mainly 

enters the SCN in the ventral region. The ventral SCN induces an excitatory 

phase shifting effect on the dorsal SCN, as well as a, much smaller, 

inhibitory effect (Albus et al., 2005). A small inhibitory phase shifting effect 

goes from the dorsal to the ventral SCN region. 

 The dynamical variables are the phases for the ventral and the dorsal 

region of the SCN, in the model represented by φ1 and φ2 , respectively. 

These phases represent the activity of the neural network in the 

corresponding SCN region. Under constant environmental conditions this 

activity follows a fixed periodical pattern with an intrinsic period τ, 

measured in 24 hours of CT, and the two phases are therefore measured in 

CT as well. In electrical activity measurements, the maximum activity of the 

sinusoidal function is reached at CT 6 (Schaap et al., 2003;VanderLeest et 

al., 2007). 

 The day-night rhythm is included in the model as an additional dynamical 

variable φ0, with an angular speed of 1. The angular speed contrasts with that 

of φ1 and φ2, where the difference between CT and ZT results in a slightly 

deviating angular speed of ξ1 and ξ2, which are relative to the intrinsic 

periods τ1 and τ2 for both regions. The LD cycle is described by a 12 hour 

light period and a 12 hour dark period. To simplify the model, we also 

assume that the ventral and dorsal regions have similar activity patterns: a 12 

hour active phase and a 12 hour inactive phase. 
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 The influence functions are based on phase shifts to light, which are 

described by PRCs. A light PRC was used for the influence of light to the 

ventral SCN. A phase resetting function between ventral and dorsal SCN has 

not been measured experimentally. For this reason we used PRCs with the 

same shape as light PRCs for the phase resetting between ventral and dorsal 

SCN. The normal PRCs for light pulses were used for the positive effects, 

while PRCs for dark pulses where used for the negative connections. The 

dark pulse PRC shows phase resetting from CT 0-12 and has a deadzone 

from CT 12-24, opposite to the light pulse PRC.  

 We assume that the PRCs describe the instantaneous effect of a light 

pulse on the internal clock. In principle, the PRCs contain all the necessary 

information to model the system under study, without knowing the actual 

underlying mechanisms. We consider a continuous ODE model with 

coupling via empirically measured PRCs. The actual PRCs are themselves 

modeled by simple analytical curves (figure 6.1). 

 The light-induced PRCs have a deadzone during the subjective day, while 

the dark-pulse PRCs have a deadzone during the subjective night. In the 

deadzone, no shifts in phase are imposed. Together with the fact that the 

PRCs can only cause phase shifts in the target area if the stimulating region 

is in its active phase, a phase response curve can be created for the different 

regions (figure 6.5 C). Figure 6.5 shows the PRCs and responses (right-hand 

terms) of the system for fixed phase differences, where the ventral region is 

shifted by 3 hours and the dorsal by 4 hours with respect to the LD cycle. 

Figure 6.5 A shows the activity patterns of light, the ventral and the dorsal 

SCN. In figure 6.5 B, the PRCs are shown for the targeted regions that are 

under the influence of the activity periods directly above them in figure 6.5 

A. The responses in figure 6.5 C are of the targeted areas, so left is the 

response of the ventral SCN to light, in the middle the response of the dorsal 

SCN to the both the excitatory and the inhibitory influences from the ventral 

SCN, and on the right the response is shown of the ventral SCN to the dorsal 

SCN. 
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Figure 6.5 PRCs and response functions for fixed phase differences. The ventral SCN has a phase 

difference of 3 h with respect to physical time (ZT), and the dorsal SCN has a phase difference of 4 h. (A) 

shows the periods of activity of light, the ventral SCN and the dorsal SCN, respectively and they act as 

stimulating regions. (B) shows the PRCs of the targeted regions. On the left the PRC is shown of the 

ventral SCN when stimulated by light input. The middle two figures show the PRCs of the dorsal SCN for 

the positive and the negative reaction to the influence of the ventral SCN. On the right the ventral SCN 

under (negative) influence of the dorsal SCN is shown. The negative PRCs have been scaled by a factor 

of 1/2 to illustrate that these are usually much smaller than the others. (C) shows the actual phase 

response of the targeted area under influence of the activity rhythm of the stimulating regions. On the left 

the response of the ventral SCN to light is shown. The middle figure shows the dorsal response to the 

ventral stimulation and the right figure shows the ventral response to the dorsal input. 
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 The model is described by the following set of ODEs 

Light: 10 
dt

d
 (1) 

Ventral Oscillator: )()()()( 12123101011
1 


 PkPk

dt

d
 (2) 

DorsalOscillator: ),()()()( 21214212122
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ba PkPk

dt

d
  (3) 

where Δij is the PRC of the j-th oscillator with regard to the i-th stimulus, 

P(φi) is the activity of this stimulus, ki > 0 are the coupling strengths and ξi = 

τi/24 is the relative period of the endogenous oscillators, with respect to ZT. 

The PRCs and activities are explicitly given by 
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where all phases are to be interpreted modulo 24 (hours), and the response 

functions 

 

 Δ01(φ1) = -sin(2χφ1) ּ (1 – P(φ1))     (7) 

 Δ21(φ1) = -sin(2χφ1) ּ P(φ1)      (8) 

 Δ12a(φ2) = -sin(2χφ2) ּ (1 – P(φ2))     (9) 

 Δ12b(φ2) = -sin(2χφ2) ּ P(φ2),      (10) 

 

where χ = 2π/24. Furthermore we will assume that the inhibitory influences 

are much smaller than the excitatory influences: k4 ≈ k3   k2 ≈ k1. 

 A phase difference for the oscillators is determined on the basis of the 

deviation in external time (ZT) for the internal phase of the oscillator at CT 6 

(figure 6.6). If the animal’s behavior is synchronized with physical time, 

then φ2 ≈ φ1 ≈ φ0, and φ2 = 6 (maximal activity) occurs at φ0 = 6 (noon). The 

phase difference is then 0. In entrained conditions, the difference remains 0 

(figure 6.6 A). If the oscillator is free-running, having a τ which is not 24 h, 

the phase of the oscillator starts to deviate from the 24 h cycle. The ZT at 

which the oscillator arrives at its intrinsic maximum activity level, which is 

at CT 6, is becoming earlier for τ < 24 h (figure 6.6 B) or later for τ > 24 h. 
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Figure 6.6 C shows that this deviation becomes larger every day. Note that 

the figure runs downwards. Day 1 is at the top of the figure while the last 

day is at the bottom of the figure. This resembles the way behavioral activity 

is usually plotted. 

 After a shift of the LD cycle, the oscillators will start having a phase 

difference. The model will cause the oscillators to shift their phase towards 

the new LD cycle. The phase shift of the oscillator is determined by the 

difference in its phase (at CT 6) in real hours (on the ZT timescale) before 

and after the shift of the oscillator. 

6.3 Fitting the model 

We used the experimental data of Albus et al. (2005) to fit the model, 

minimizing a global error criterion. The model fitting consists of a number 

of steps. In the first step, random parameter values are chosen uniformly 

from intervals described in Muskulus and Rohling (2009). If the 

parameterized model satisfies the conditions for free-running and 

entrainment to a LD cycle, a simplex algorithm (Nelder and Mead, 1965) is 

invoked to optimize the parameter values with respect to a global error 

criterion. The error criterion is based on the following constraints: 

1. stable free-running period for a τ = 23.8 h, which is an 

approximation of the average endogenous period for a rat; 

2. stable entrainment to an external period of T = 24 h; 

3. experimentally obtained data after a phase delay of 6 h, as described 

in Albus et al. (2005) (see table 6.1). 

In step 3 the model is integrated six days under the phase shift protocol 

described in Albus et al. (2005), starting at day 0. The peaks of the ventral 

and dorsal phases, i.e., the times ZT when the internal phases CT exhibit a 

value of 6 hrs, were recorded for each of the three days for which 

experimental data points were obtained: one, three, and six days after the 

shift of the LD cycle. The root-mean-square error of the deviation of these 

values and the values obtained in step 1 and 2 from the target values 

determines the value minimized by the simplex algorithm. More detailed 

information on weighting of the values is described by Muskulus and 

Rohling (2009). 
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Figure 6.6 Numerical solution of model equations. (A) In entrained conditions the phase of the oscillator 

(in CT) is stable at ZT 6 of the Zeitgeber, for every successive cycle. In the remainder of the 24h, the 

phase may diverge from the Zeitgeber phase, but the internal phase CT 6 always coincides with ZT 6. (B) 

In free-running conditions, the internal phase of the oscillator diverges from the initial phase at ZT 6. 

Every cycle, the internal phase CT 6 is at an earlier Zeitgeber (ZT) phase, which means that this oscillator 

has a free-running period that is somewhat shorter than 24 h. (C) The phase diversion as described in (B) 

is plotted as a diversion from the stable 24 h entrained state (the dotted line). The timeline is running 

downwards, so day one is at the top of the figure and the last day at the bottom. 
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 The ten sets of parameters that had the lowest error functions were 

selected (see Muskulus and Rohling, 2009) and used in the simulations 

described below. The following parameters sets were used for the different 

simulations (table 6.2): 

Para-
meters 
 

Delay experiments 
of Albus et al, 
2005 

Delay experiments 
of Reddy et al., 2002 
and Yamazaki et al. 
1999 

Advance 
experiments of 
Reddy et al., 2002 

k1 1.3139 1.1357 1.8927 
k2 0.7966 1.0396 1.0734 
k3 0.2289 0.3048 0.2276 
k4 0.0096 0.1514 0.0087 
ξ1 1.0186 1.0309 1.0189 
ξ2 0.9948 1.0032 0.9940 
 

Table 6.2 Parameter sets used in the different simulations. These parameters are taken from the ten sets of 

parameters having the lowest error functions (see Muskulus and Rohling, 2009). 

 

6.4 Results of the numerical simulations 

We used the experimental data of Albus et al. (2005) to validate the model. 

As seen from this data (table 6.1), the ventral oscillator in the model adapts 

quickly to the change in daylight regime, whereas the dorsal oscillator needs 

more days. In figure 6.7 the shift in phase for the ventral and dorsal part of 

the SCN-model is shown together with the experimental results.  

 The simulation data for the ventral SCN shows a fast shift, which 

resembles the fast shift seen in the experimental data. The experimental data 

shows some kind of ‘overshoot’ at day 3 after the shift, for it has shifted 7.9 

h while the light dark cycle shifted only 6 hours. The shift of the ventral 

SCN at day 6 after the shift was again 6 hours, equal to the shift of the 

external cycle. In the simulation data an ‘overshoot’ is visible, but it is not as 

big as seen in the experimental data. Also at day 6 after the shift, the 

simulation data is still shifted more than 6 hours. When the simulation is 

continued in DD, according to the protocol, it becomes clear that at day 10 

after the shift of the light dark cycle the system starts to show free-running 

behavior (figure 6.8). At day 14 after the shift of the light-dark cycle the  
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Figure 6.7 Phase shift after a phase delay of the Zeitgeber of 6 h given at day 0. The simulation data is 

shown from one day before the phase shift until seven days after the shift. The experimental data from 

table 1 is plotted as a reference for both the ventral and dorsal SCN. 

 

ventral SCN in the simulation arrives at a 6-hour shift. From this day 

onwards it continues its free-run. 

 In the simulations, the dorsal SCN shifts more gradual than the ventral 

SCN, in accordance with the experimental data. The simulation data for the 

dorsal SCN has a greater shift in the first days compared to the experimental 

data, but 6 days after the shift of the light dark cycle the shift in hours was 

comparable to the experimental data. When the simulation was continued in 

DD for more than 6 days, it appeared that the dorsal SCN continued for a 
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few days with an overshoot similar to the ventral SCN, but less pronounced. 

Probably due to the influence of the ventral SCN in the simulations, which 

shifted more than 6 hours, the dorsal SCN in the simulations was also pulled 

to shift more than 6 hours. Around day 13 after the shift of the light dark 

cycle, the dorsal SCN in the simulations only shows free-running behavior 

(data not shown, but is similar to figure 6.8). 

 Summarizing the results, the dorsal oscillator adapts more slowly to the 

new regime than in the experimental data, and although the ventral oscillator 

shows an overshoot that was also found in the experimental data, the model 

is generally less pronounced than the experiment. Nevertheless, the model 

captures the adaptation to the new LD regime in a qualitatively correct way. 

 

 

 
Figure 6.8 Long-term phase shift behavior of the ventral SCN after a delay of 6 hours according to the 

protocol defined in Albus et al. (2005). Note that the timescale is running downwards, where the first day 

is at the top of the figure and the last day at the bottom. At day 0, the phase of the LD cycle was delayed 

by 6 h. The days before the shift (denoted by negative numbers) the SCN was in entrained conditions and 

no deviation in phase was present. After the phase shift, the ventral SCN shifted quickly to the new light-

dark regime. At day 2 after the delay, the conditions were changed to constant darkness. From day 10 

after the shift, the ventral SCN starts to show free-running behavior. The period is somewhat less than 24 

hour, causing the ventral SCN to advance its phase every day. 
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 Consequently the model has been subjected to phase shifting protocols 

from other authors (Reddy et al., 2002;Yamazaki et al., 2000). In these 

protocols the new LD cycle continues, which means that the system is not 

expected to go into a free-run. The results are shown in figure 6.9. 

 The experimental data from Reddy et al. (2002) reflects a phase shift in 

behavioral activity of mice, while the experimental data from Yamazaki et 

al. (2000) shows a phase shift in Per1 expression in SCN cultures. While 

both dorsal and ventral SCN together determine the output of the SCN, our 

simulation data indicates that the dorsal SCN better corresponds to the 

behavioral data. At day 1, 6 and 7 after the shift of the LD cycle, the results 

of the dorsal SCN from the model are within the range of the standard 

deviation of the experimental data of Reddy et al. (2002), while at days 2-5 

after the shift, the simulated dorsal SCN shifted a little less pronounced. The 

model captures the data of Reddy et al. (2002) in a qualitatively correct way. 

In the study of Yamazaki et al. (2000) only days 1 and 6 after the shift of the 

LD cycle were measured. For both days, the result of the dorsal SCN from 

the model is within the range of the standard deviation for that experiment. 

We can conclude that our model, which was fitted to data from a different 

phase shifting protocol, is able to simulate experimental data from other 

phase delay studies. 

 
Figure 6.9 Phase shift after a phase delay of the Zeitgeber of 6 h given at day 0. The simulation data is 

shown from one day before the phase shift until seven days after the shift, following the phase shifting 

protocol used by Reddy et al. (2002);Yamazaki et al. (2000). The behavioral data from Reddy et al. 

(2002) and Yamazaki et al. (2000) are plotted as a reference. 
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 In the simulations from the protocol of Albus et al. (2005), where the 

animals were put in constant darkness after one day in the new light dark 

regime, both oscillators started to show free-running behavior after 10-13 

days, which means that by that time the effects of the phase shifts were 

complete. In the protocols as used in Reddy et al. (2002) and Yamazaki et al. 

(2000), where the animals remained in the shifted light dark regime for a 

longer period, no free-running is observed, but stable entrainment to the new 

light dark regime is established after 4-6 days, which adheres nicely to the 

experimental results (data not shown). 

 Additionally, the model is tested with experimental data obtained after 6 

hour advance shift of the LD cycle. Figure 6.10 shows that after a phase 

advance, following the protocol used by Reddy et al. (2002), the simulated 

dorsal SCN shifts more slowly compared to delay data, which reflects the 

commonly known fact that phase advances are more difficult than phase 

delays. Although the experimental data in Reddy et al. (2002) shifts faster 

than advance of the simulated dorsal SCN, the error of the model is not big. 

Note that the model is tuned for the Albus delay protocol data (Albus et al., 

2005), which may indicate that the model is applicable in a broader context 

than only for phase delays. 

 

 
Figure 6.10 Phase shift after a phase advance of the LD cycle of 6 h given at day 0. The simulation data 

is shown from one day before the phase shift until seven days after the shift, following the phase shifting 

protocol used by Reddy et al. (2002). The behavioral data from Reddy et al. (2002) are plotted as a 

reference.  
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6.5 Discussion 

The model described in this chapter is based on two regions in the SCN, the 

ventral and the dorsal region. It is the first model that considers both regions 

to be oscillators. The two oscillating regions interact with each other using 

non-uniform coupling mechanisms, and are self-organizing according to 

their coupling strengths under the influence of an external light dark regime. 

The model was able to qualitatively simulate different phase shifting studies. 

 The model was able to simulate the phase shifting results described in 

Albus et al. (2005); Reddy et al. (2002);Yamazaki et al. (2000). The 

parameters in the model were fit to the results from Albus et al. (2005), 

which appeared to be demanding for this model. It is difficult to find 

parameter values that accurately copy the experimentally obtained phase 

shift values. This could indicate that the current model is too simple to 

describe the system and needs more parameters to obtain a more precise 

match with the experimental data. It could also indicate that the 

simplifications in the current model are responsible for the deviations. A 

simplification that can cause the results of the model to deviate from the 

experimental results is that the activity rhythms for the light dark cycle, but 

also for the activity of the ventral and dorsal SCN, are modeled as on-off 

functions. In reality the rhythms in the SCN show slowly rising and falling 

slopes, creating a more sinusoidal activity function. 

 The model presumes instantaneous shifting, without any delay. Although 

it is known that the phase shifting effects of light are instantaneous in the 

SCN (Pittendrigh, 1981a;Meijer and de Vries, 1995;Watanabe et al., 

2001;Best et al., 1999), it is not known if these phase shifting effects reflect 

the behavior of the complete SCN or only of a part of the SCN (Vansteensel 

et al., 2008). It is considered likely that only the light-sensitive part of the 

SCN shifts immediately (Vansteensel et al., 2008). This light-sensitive part 

may correspond to a subset of ventral SCN neurons. In two-pulse studies, 

only this light-sensitive part may shift immediately after the first pulse, and 

may shift again according to the shifted PRC following the second pulse. In 

Neurospora the shift was complete within 0.75 h (Crosthwaite et al., 1995), 

in Drosophila within 3 h (Pittendrigh, 1981a), in hamsters and mice within 2 

h (Best et al., 1999). Future research is needed to determine if the phase 
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shifting for the different regions to light and to each other is indeed 

instantaneous or not. 

 Similar to describing the phase shifting effects of light on the SCN, we 

can describe phase shifting effects between regions in the SCN by a PRC. As 

opposed to a light-pulse PRC, a PRC for the coupling between regions in the 

SCN has not been determined experimentally. In the model described in this 

chapter, the coupling between the ventral and dorsal regions of the SCN is 

characterized by excitatory and inhibitory influences. The excitatory 

influences coincide with stabilizing effects to reach an equilibrium state and 

the inhibitory influences coincide with destabilizing effects. Different types 

of cells may be responsible for the excitatory and inhibitory effects between 

the ventral and dorsal SCN. As cells may have a sensitive period in which 

they are able to shift their phase (Beersma et al., 2008) the different cell 

types responsible for excitatory and inhibitory influences may be sensitive to 

phase shifts at different times. In the current model, the cells responsible for 

excitatory influences are sensitive to a shift in phase during the night, while 

the sensitive period for the cells responsible for inhibitory influences is 

during daytime. The PRCs that describe the phase shifting effects for the 

excitatory and inhibitory influences between the ventral and dorsal SCN are 

both characterized by a 12 h sinusoidal function together with a null-

response in the deadzone. These PRCs may deviate from the real PRCs that 

describe phase shifting effects between the ventral and dorsal SCN, but these 

differences may only be of a quantitative nature, because every PRC is 

characterized by a delaying part and an advancing part, which are limited to 

a sensitive period. These various simplifications of the model may therefore 

not result in qualitatively different models. However, it may influence the 

phase shifting pace of the ventral and dorsal regions in the SCN. Future 

research on the coupling mechanisms between the ventral and dorsal regions 

is needed to resolve the mechanisms that underlie the exchange of phase 

information between these regions. This will improve the model and 

provides a better understanding of the functional significance of the ventral 

and dorsal region of the SCN. 

 Our model shows that an exact mathematical model comprising of two 

interacting, non-uniformly coupled oscillators, representing SCN regions, 
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can qualitatively describe experimentally obtained data for phase shifting 

attributes of the SCN. The model describes the phase shifts of the ventral 

and dorsal region of the SCN in response to each other and to the LD cycle. 

The results indicate that in the SCN different functional regions may exist 

each consisting of groups of cooperating neurons. These regions are 

interacting with each other, in the sense that they exchange phase 

information. The present results emphasize that phase shifting properties of 

the SCN emerge primarily at the network level by the communication 

between the ventral and dorsal region.  

 



 

 

Chapter 7 

Summary, conclusions and future work 

In this thesis, computational models were created to investigate the 

biological clock in mammals, and more specifically the organization of the 

suprachiasmatic nuclei (SCN) and the coupling mechanisms between 

subpopulations of the SCN. 

 In mammals a circadian clock is located in the SCN. The animal can 

anticipate daily and seasonal rhythms in the environment because it is 

governed by an endogenous clock. At the molecular level, a transcriptional 

and translational feedback loop in SCN pacemaker cells generates an 

endogenous rhythm that is approximately 24 hours. To adjust to the 

environmental conditions, the clock must be able to synchronize, or entrain, 

to the daily light-dark cycle. To produce a concerted rhythmic output pattern, 

the clock cells within the SCN need to synchronize to each other as well as 

to the daily light-dark cycle. Coupling between the neurons is the 

mechanism to realize synchronization between the different cells. 

 Chapter 2 of this thesis provides an overview of different coupling 

mechanisms that are present in the SCN. The communication of phases 

between regions in the SCN may rely on different neurotransmitters, such as 

VIP or GABA. GABA can synchronize populations of neurons to each other, 

such as the dorsal and ventral region of the SCN. Within a region, VIP and 

gap junctions may be especially important coupling mechanisms. Thus, VIP 
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may synchronize cells within the dorsal or ventral region, while GABA may 

act as a synchronizer between these regions. Gap junctions may strengthen 

very specific groups of neurons in their coordinated output. No doubt the 

real situation will be more complex than this presentation. The exact nature 

of these coupling mechanisms is presently a major focus of many research 

lines in the field of circadian rhythm research, as it has become increasingly 

clear that coupling of clock neurons contributes strongly to the function of 

the SCN pacemaker to control daily and seasonal rhythms. 

 Different modeling studies of the circadian timing system and the SCN in 

particular have already been performed. An overview of the main directions 

of modeling studies of the biological clock is presented in chapter 2. In the 

first models, the clock was modeled as a single entity using a limit cycle 

oscillator. One limit cycle oscillator appeared to be unable to describe all the 

dynamic properties of the clock, which gave rise to two-oscillator models. In 

these models, the two oscillators were coupled and in the interaction 

between the oscillators some dynamic properties of the clock could be 

explained. As scientific knowledge in clock research progressed, it became 

increasingly clear that the circadian system is a heterogeneous system 

containing endogenously oscillating pacemaker cells. These findings 

resulted in two types of models. Some models focused on the modeling of 

the endogenous pacemaker cell and the generation of circadian rhythms 

itself. These models were based on molecular findings, such as the 

transcriptional/translational molecular feedback loop. Other models directed 

their research towards the network properties of the SCN. These models 

focused on the heterogeneous nature of the SCN and often presumed simple 

oscillatory units. The network properties of the SCN appear to be just as 

important for the control of circadian rhythms as the endogenous generation 

of rhythms by pacemaker cells.  

 When the molecular models and the network models are combined, the 

resulting models may become complex which makes the models hard to 

understand. At present, both type of models separately seem more to 

function satisfactorily to answer specific questions. This thesis demonstrates 

that simple models at the neuronal network level can provide interesting 

scientific results, and that models do not need to become very complicated to 
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produce scientifically interesting insights. The use of simple models is 

justified, if the model is able to provide a satisfying answer to the research 

question posed. The research question should be well defined in terms of the 

results intended and the boundaries for which the results are valid. The 

model should provide an answer that is sufficient, but that is also 

understandable. The modeling studies are especially useful if they lead to 

counterintuitive results. 

 An example of a useful simulation model is described in chapter 3. The 

model was based on previous experimental results from our laboratory, 

where it was found that very small populations of neurons could not produce 

an electrical activity pattern that resembled the multiunit electrical activity 

pattern, in width as well as in smoothness of the pattern. In support of this it 

was found that electrical activity patterns for single units, which may be 

regarded as the smallest possible population of neurons, have peaks that are 

narrower than the multiunit peak. The times of maximal single unit peak 

activities varies strongly and are distributed over the light-dark cycle. 

Finally, it was also shown that, by distributing single unit patterns over the 

day, and computing the total sum of the activity patterns, a feasible multiunit 

activity pattern could be obtained. This pattern could be altered by changing 

the width of the distribution of neurons, in this way simulating long and 

short day length. 

 The model described above can be summarized as follows. Single unit 

patterns have short electrical activity patterns. By themselves, single unit 

patterns can not account for a pattern as broad as recorded multiunit activity 

patterns in rats and mice. However, when the single unit patterns are active 

at different times of the day, the summed activity pattern of all single unit 

patterns resembles the recorded multiunit patterns. The question then is: how 

are the single units divided over the circadian cycle, or, in other words, what 

distribution can be used to distribute the single units in such a way that the 

added activity of all single units creates a realistic multiunit pattern? 

 In chapter 3, this research question was used to create a simulation model 

in which single unit activity patterns were distributed over the circadian 

cycle and accumulated to produce a multiunit activity pattern. Different 

single unit patterns were used and each pattern could be narrowed or 
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broadened. Four different distributions were tested: linear, Gaussian, 

bimodal and trimodal. The distributions could also be narrowed or 

broadened. 

 Using this simple simulation model, questions could be answered about 

how the different distributions and the changes in single unit activity patterns 

can alter the multiunit activity pattern. The results show that in order to 

obtain a realistic multiunit pattern, the single units had to be distributed in 

phase. It appeared also that all distributions tested can lead to a realistic 

multiunit pattern. 

 On the basis of the simulations it was predicted that changes in the width 

of the distribution of the single cells is necessary to account for 

photoperiodic encoding, even though changes in single unit activity may 

play an additional role. It was shown that changes in single unit patterns 

alone are not large enough to account for the multiunit pattern changes that 

are recorded in long and short day lengths. In contrast, minor changes in 

phase distribution between the neurons, are capable of encoding for day 

length. 

 On the basis of these findings some testable predictions are presented: if 

the mechanism for photoperiod encoding depends on changes in single unit 

patterns, the single unit activity patterns should show relatively large 

changes in the duration of electrical activity and the maximum frequency of 

the multiunit patterns should increase in long day lengths, if the distribution 

of the single units was kept constant. If photoperiod is encoded in the SCN 

by changing the distribution of neurons over the 24 h day, the frequency of 

the multiunit activity peak should decrease in long day lengths and single 

units should show a broader distribution. With this finding a way was found 

to distinguish between the two alternative models by simply measuring the 

multiunit electrical activity peak. Importantly, it was not necessary to 

measure the single units. 

 Experimental studies using extracellular electrophysiological recordings 

in-vitro showed that the shapes and widths of the single unit patterns in long 

and short days do not significantly differ. In chapter 3 these recorded single 

unit patterns are employed to show that changing the phase distribution 

between neurons can result in changes in multiunit pattern. 
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 This simulation study is just one example of a simple model which 

provides interesting scientific results. These results could be obtained by a 

sharp focus on one specific mechanism of the SCN and by asking very 

specific questions about this mechanism. The model included only those 

mechanisms of the real system that were of importance for these specific 

questions. Within these well defined boundaries, the simple model could 

present some unsuspected and testable results. 

 In chapter 4 a study has been conducted to investigate the regional 

organization of the SCN. After a delay of 6 hours in the environmental light-

dark cycle, a dissociation between the ventral and the dorsal region of the 

SCN was observed. At day one after the shift of the light-dark cycle, the 

ventral SCN immediately shifted to the new light-dark regime, while the 

dorsal SCN completed the shift of its phase only after 6 days. In the 

electrical activity patterns measured on the first day after the shift of the 

light-dark cycle two peaks could be identified. The electrical activity 

recordings were analyzed using different techniques, such as curve fitting 

and a subpopulation analysis. To investigate the properties of two 

subpopulations of neurons that are separated in time, a simple model was 

created. The simulations showed that only when the size of one of the 

populations was small and the distribution in that population narrow, a 

bimodal pattern could arise in the ensemble pattern. It appeared from the 

study that only a small number of the total population of neurons shifts 

immediately after a delay in the light-dark cycle. It is proposed that phase 

shifts are brought about by an initial rapid shift of this relatively small 

subpopulation of neurons within the SCN. This group is expected to be 

located in the ventral part of the SCN, given the fast shifts of the ventral 

SCN. Coupling between the shifted and the unshifted population of SCN 

neurons is asymmetrical, as the shifted neurons exert a strong phase shifting 

effect on the unshifted neurons. This causes a complete shift of the SCN 

which is realized after several cycles. 

 In future studies it should be realized that the different regions of the 

SCN, such as the ventral and dorsal region, may also be heterogeneous. The 

simulation studies that were performed indicated the existence of a small 

subpopulation of neurons which eventually brings about a shift in the 

 141



Network properties of the mammalian circadian clock 

complete SCN. Experimental research can direct its search towards finding 

this distinct group of cells, and elucidate the coupling mechanisms which are 

important within this group and with other functionally distinct groups of 

neurons.  

 Chapter 5 describes a simple model that has been build to differentiate 

between responses to phase shifts in long and short day lengths. In the field 

of circadian rhythms, it is generally assumed that high amplitude rhythms 

are more difficult to shift in phase than low amplitude rhythms. This 

assumption originates from the theory on limit cycle oscillators, which is 

often used to model either the clock as a whole or individual pacemaker 

cells. Limit cycle oscillators that have high amplitudes are more difficult to 

shift in phase than limit cycle oscillators with low amplitudes. Experimental 

data, shown in chapter 5, showed the contradicting results that short day 

electrical activity patterns which have a high amplitude, shift more than long 

day patterns, with a lower amplitude. Using simple simulation studies, where 

phase response curves (PRCs) were distributed according to long and short 

day distributions, the experimental findings were confirmed. The results of 

the simulations indicate that if neurons are more synchronized in phase, the 

PRCs, or light-sensitive periods, are more compressed and overlap, resulting 

in a higher number of neurons that shift at the same time in the same 

direction in response to a light pulse, compared to desynchronized neurons 

in long days. The highly synchronized state during short days results 

consequently in a PRC with a higher amplitude, i.e. the shift in phase is 

larger, for short days compared to long days. As the limit cycle theory may 

be valid for individual neurons within the network, the network as an 

ensemble shows different response characteristics as a function of rhythm 

amplitude. The data presented in chapter 5 provides thereby a clear example 

that neuronal networks are governed by different rules than single cell 

oscillators and also shows the underlying explanation for this difference. 

 Chapter 6 provides a model to investigate the coupling mechanisms of 

two regions in the SCN after a shift of the light-dark cycle. The model is 

based on the ventral and the dorsal regions of the SCN, which are both 

considered endogenous oscillators in our simulations. The two oscillating 

regions interact with each other using non-uniform coupling mechanisms. 
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The ventral region of the SCN is influenced by the external light-dark cycle 

according to a PRC. The coupling between the ventral and dorsal regions of 

the SCN is described by PRCs as well. This coupling exists of excitatory, but 

also inhibitory influences. The ventral and dorsal regions are self-organizing 

according to their coupling strengths under the influence of an external light-

dark regime. The model was able to qualitatively simulate results from 

different experimental phase shifting studies. The results indicate that in the 

SCN different oscillatory regions may exist each consisting of groups of 

cooperating neurons with their own phase resetting characteristics. The 

different oscillatory regions are interacting with each other, and transmit 

phase information. Chapter 6 emphasizes that phase shifting properties of the 

SCN emerge primarily at the network level. 

 In our approach we used simple models to elucidate the working 

mechanisms of the clock network. These simple models provided evidence 

that different levels of organization are responsible for different properties of 

the clock. While the endogenous rhythms are clearly a property of single 

cells, properties such as entrainment, resetting, or day length encoding arise 

at the neuronal network level. 

 A first step has been taken to better understand the neuronal network 

properties of the SCN. This thesis shows that a simple model can provoke 

questions that can guide future experimental research. For example, an 

interesting question is about which mechanisms underly the propagation of 

the instantaneous effects of light on the SCN to different regions in the SCN. 

Future research should be directed at determining the phase response curves 

to light for the different regions of the SCN, and for the interaction between 

the regions. 

 While we have distinguished between a dorsal and a ventral SCN, 

particular subregions may be present that are essential for phase resetting. 

Future research should target the functional meaning of different subregions 

in the SCN and consider also a division of the ventral and dorsal regions in 

different functional subregions.  

 Furthermore, the present studies did not consider direct single cell 

interactions. Phase distributions between neurons could explain a number of 

properties of the clock, but for now it is unknown how the cells are able to 
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organize themselves in these phase distributions. Also the communication 

mechanisms between cells in different regions or subregions have not been 

considered. The next step is to gain more knowledge about the coupling 

mechanisms between the neurons in the SCN in different functional groups 

within the SCN. 

 While the communication between neurons is immediate, after a shift of 

the light dark cycle the ventral region of the SCN shifts immediately to the 

new phase, but the dorsal region does not. This may be caused by the way 

the network is organized. However, other factors may play a role as well. A 

neuron may have a sensitive period for shifting its phase, which determines 

its PRC. The neuron also receives signals from other cells that produce a 

driving force for shifting its phase. The interplay between the sensitive 

period and the driving force is able to shift the phase of the neuron. This 

driving force constitutes different inputs from different cells and may differ 

between cell types. The driving force may differ throughout the circadian 

cycle and could contain an excitatory and an inhibitory period. The actual 

coupling signals from cell to cell should be the subject of future studies in 

order to identify this driving force. 

 Finally, we only used small and simple models to investigate questions 

about the network properties of the biological clock. For certain questions 

regarding different types of neurons cooperating in different regions in a 

large network of about 10,000 cells, corresponding with the real size of one 

SCN, simple models may not be sufficient. Larger models may be applicable 

to investigate these larger networks, as long as caution is taken to make the 

model unnecessarily complicated. These larger models are challenging for 

computer science studies and may demand the use of larger computers or 

larger networks of computers, such as grid-networks. 

 It is a challenge to combine different scientific disciplines. This thesis 

shows an example that the coordinated efforts of computer science and life 

sciences enrich each other and leads to scientific progress. The results that 

have been acquired could not have been found with separated efforts, 

showing that the results are more than the sum of parts. 
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Nederlandse samenvatting 

Netwerkeigenschappen van de circadiane klok van 

zoogdieren 

Het combineren van verschillende wetenschappen is een uitdaging. 

Wetenschappers uit verschillende disciplines spreken vaak niet dezelfde taal 

en zijn het zeker niet altijd eens over de methodologie en de bewijsvoering. 

Als men echter het risico durft te nemen dan kunnen de gecombineerde 

inspanningen ook leiden tot nieuwe en verrassende resultaten voor de 

betrokken wetenschappelijke disciplines: de resultaten kunnen meer zijn dan 

de som der delen. 

 In dit proefschrift verenigen de computerwetenschappen en de 

levenswetenschappen hun krachten. Meer specifiek wordt in dit proefschrift 

besproken hoe computationele modellen kunnen bijdragen aan het 

onderzoek naar de biologische klok, die aanwezig is in alle levende 

organismen.  

 De rotatie van de aarde rond zijn as onderwerpt ieder organisme aan een 

dagelijkse cyclus van 24 uur. Daarnaast zorgt de rotatie van de aarde om de 

zon ervoor dat ieder organisme beïnvloed wordt door de seizoenen. Als een 

organisme kan anticiperen op deze dagelijkse veranderingen en deze 

seizoensveranderingen levert dit een evolutionair voordeel op. Muizen zijn 

bijvoorbeeld ’s nachts actief, terwijl hun natuurlijke vijanden vooral tijdens 
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de dag actief zijn. Om niet ten prooi te vallen aan de roofdieren moeten de 

muizen dus al voor de zon opgaat terug zijn in hun hol. Met andere woorden, 

ze moeten kunnen anticiperen op de tijd van zonsopgang. Ook in de 

seizoenen zien we dit anticiperende gedrag terug in het reproductieproces. 

De meeste dieren krijgen hun nageslacht in de periode van het jaar dat de 

kans dat het jong het overleeft het grootst is. 

 In alle organismen worden de dagelijkse ritmes en de seizoensritmes 

verzorgd door de zogenaamde biologische klok. De locatie van deze klok 

verschilt per organisme. In zoogdieren is deze klok gelokaliseerd in de 

Suprachiasmatische Nuclei (SCN). Deze centrale pacemaker speelt een 

kritische rol in de regulering van ritmische functies. Het dient als  de centrale 

klok die in staat is zich aan te passen aan de omgevingscycli en die dit ritme 

oplegt aan andere lichaamsfuncties. 

 Omdat de licht-donker cyclus zowel de dagelijkse ritmes alsook de 

seizoensritmes het meest adequaat weergeeft, wordt deze meest betrouwbare 

omgevingsfactor door de SCN gebruikt. De lengte van de dag, ook wel 

fotoperiode genoemd, is een uiterst precieze indicatie voor de tijd van het 

jaar. In de zomer zijn de dagen immers langer dan in de winter. De klok 

reageert op lichtinvloeden en past zich aan de licht-donker cyclus aan. 

 In een experimentele omgeving kan men mensen of dieren in constante 

condities houden, zoals in constant donker of constant licht. In deze 

omstandigheden kan het ritme van de klok zelf, het zogenaamde endogene 

ritme, worden gemeten. Dit ritme heeft een periode van ongeveer 24 uur. Dit 

endogene ritme wordt gegenereerd in de individuele neuronen zelf op basis 

van een moleculaire terugkoppeling. Het basisprincipe van deze 

terugkoppeling is verrassend genoeg vergelijkbaar in verschillende 

organismen. De moleculaire mechanismen in de mensen lijken sterk op die 

in muizen, maar ook op die in fruitvliegjes en algen. 

 Het tijdstip van het organisme in zijn eigen, endogene cyclus wordt de 

fase genoemd van het organisme. Het organisme moet zijn eigen ritme 

aanpassen, of synchroniseren, aan het ritme van de externe licht-donker 

cyclus die precies 24 uur is. Organismen met een endogene cyclus die iets 

minder is dan 24 uur, moeten hun fase iedere dag iets naar achteren 

verschuiven. Organismen met een endogeen ritme van iets meer dan 24 uur, 
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zoals de mens, moeten hun fase iets naar voren verschuiven. De mate van 

verschuiving voor een organisme over de gehele endogene cyclus kan 

worden bepaald in een functie, de zogenaamde fase-respons-curve (PRC). 

Deze PRC geeft aan hoeveel de fase van een organisme voor- of 

achteruitschuift op een bepaald moment in de endogene cyclus, ofwel in een 

bepaalde fase van het organisme. 

 Om een eenduidig signaal door te geven van de individuele klokcellen 

aan de andere lichaamsfuncties die afhankelijk zijn van deze centrale klok 

moeten de individuele ritmes van de verschillende cellen worden 

gesynchroniseerd. Dit gebeurt door middel van intercellulaire 

communicatiemechanismen tussen de neuronen. Door deze 

communicatiemechanismen, ook wel koppelingsmechanismen genoemd, zijn 

de neuronen van de klok met elkaar verbonden en vormen ze een netwerk. 

Bepaalde eigenschappen van de klok ontstaan als gevolg van deze koppeling 

tussen de neuronen en vinden niet plaats in cellen zelf. 

 In dit proefschrift zijn computationele modellen ontworpen om 

onderzoek te doen naar de biologische klok in zoogdieren, en meer specifiek 

onderzoek naar de organisatie van de suprachiasmatische nuclei (SCN) en de 

communicatiemechanismen tussen cellen en subpopulaties van cellen in de 

SCN. 

 Hoofdstuk 2 van dit proefschrift geeft een overzicht van de verschillende 

koppelingsmechanismen die aanwezig zijn in de SCN. Er wordt beschreven 

dat de SCN onderverdeeld kan worden in verschillende gebieden, zoals een 

zogenaamd dorsaal en ventraal gebied. De koppelingsmechanismen tussen 

de SCN neuronen verschillen onder meer van elkaar doordat het ene 

mechanisme bijvoorbeeld beter geschikt is voor de communicatie tussen 

neuronen binnen een van de gebieden, bijvoorbeeld binnen het ventrale of 

dorsale gebied, terwijl andere koppelingsmechanismen de communicatie 

verzorgen tussen neuronen van het ene naar het andere gebied en 

omgekeerd. Het precieze karakter van deze koppelingsmechanismen is 

tegenwoordig een belangrijke focus van veel onderzoekslijnen in het 

onderzoeksveld naar circadiane ritmiek, omdat het steeds duidelijker wordt 

dat de koppeling van klok neuronen sterk bijdraagt aan de functie van de 

SCN pacemaker om dagelijkse ritmes en seizoensritmes te reguleren. 
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 Er zijn al verschillende modelleer studies voor het circadiane systeem 

uitgevoerd, in het bijzonder voor de SCN. Een overzicht van de belangrijkste 

onderzoeksrichtingen van deze modelleerstudies over de biologische klok 

zijn gepresenteerd in hoofdstuk 2. In de eerste modellen werd de klok 

gemodelleerd als één enkele entiteit. Deze modellen bleken echter niet in 

staat te zijn om alle dynamische eigenschappen van de klok te beschrijven. 

Tegenwoordig zijn de modellen te verdelen in twee groepen. Sommige 

modellen richten hun aandacht op de endogene pacemaker cel en het 

genereren van circadiane ritmes zelf. Deze modellen zijn gebaseerd op 

moleculaire intracellulaire mechanismen die ervoor zorgen dat een 

individueel neuron van de SCN ritmisch is. Andere modellen richten hun 

onderzoek op de netwerk eigenschappen van de SCN. Deze modellen 

concentreren zich op de heterogene aard van de SCN en gaan vaak uit van 

simpele oscillerende eenheden. Dit proefschrift laat zien dat simpele 

modellen op het niveau van het neurale netwerk interessante 

wetenschappelijke resultaten kunnen opleveren, en dat modellen niet 

onnodig ingewikkeld hoeven te worden om deze inzichten te produceren. 

 Een voorbeeld van een bruikbaar simulatiemodel is beschreven in 

hoofdstuk 3, waarin werd onderzocht hoe de veranderingen in daglengte 

door de SCN kunnen worden gecodeerd. Enerzijds werd onderzocht hoe 

verandering van de activiteitspatronen van individuele neuronen kan leiden 

tot het coderen van de verschillen in daglengte over de seizoenen door de 

SCN. Dit werd vergeleken met hoe het netwerk van neuronen dit tot stand 

kan brengen. Door de fase van de verschillende neuronen anders te verdelen 

in korte en lange dagen bleek dat een zogenaamde kleinere faseverdeling, 

waarbij de neuronen verdeeld zijn over een beperkte tijdsduur van een paar 

uur, een korter patroon oplevert. Dit kortere patroon komt overeen met een 

gemeten patroon behorend bij een korte dag. Door een grote faseverdeling te 

nemen, waarbij de neuronen werden verdeeld over meerdere uren, bleek dat 

de duur van een lange dag kon worden gecodeerd. Het aanpassen van de 

faserelatie tussen neuronen bleek veel effectiever voor het coderen van de 

seizoenen dan het veranderen van de activiteit van individuele neuronen. Dit 

betekent dat de codering van de seizoenen door de SCN voornamelijk een 
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eigenschap is van het netwerk van de SCN en hooguit in beperkte mate een 

eigenschap van de individuele cel. 

 In hoofdstuk 4 is een studie beschreven waarin een onderzoek is gedaan 

naar de regionale organisatie van de SCN. Na een verschuiving van 6 uur 

van de licht-donker cyclus van de omgeving, wat overeenkomt met een 

vlucht van Amsterdam naar New York, werd een dissociatie tussen het 

ventrale en het dorsale gebied van de SCN waargenomen. Het ventrale deel 

van de SCN verschoof meteen in fase naar de nieuwe licht-donker cyclus, 

terwijl het dorsale deel pas na zes dagen was aangepast. Uit analyses van de 

gemeten data bleek dat slechts een klein aantal neuronen uit de totale 

populatie onmiddellijk verschuift na een achteruitschuiving van het licht-

donker regime. De faseverschuivingen lijken dus op gang te worden 

gebracht door een initiële snelle verschuiving van een relatief kleine groep 

van neuronen in de SCN. Het is de verwachting dat deze groep gelokaliseerd 

kan worden in de ventrale SCN, omdat de ventrale SCN een snelle 

verschuiving laat zien. Omdat de groep neuronen die snel verschuift slechts 

een deel lijkt te zijn van de gehele ventrale SCN moet er in 

vervolgonderzoek rekenschap worden gegeven van het feit dat de ventrale 

SCN ook zelf heterogeen van aard is. De simulatie studies die zijn 

uitgevoerd laten het bestaan zien van een kleine deelgroep van neuronen die 

uiteindelijk de faseverschuiving in de gehele SCN tot stand brengt. 

Experimenteel onderzoek kan zich richten op het vinden van deze bijzondere 

groep cellen, en de koppelingsmechanismen verhelderen die belangrijk zijn 

binnen deze groep en tussen deze groep en andere functioneel verschillende 

groepen neuronen. 

 In de verschillende seizoenen blijken de faseverschuivingen, die door 

licht veroorzaakt worden, te verschillen in grootte. In de zomer, als de dagen 

lang zijn, blijkt de faseverschuivingen klein te zijn, terwijl in de winter de 

verschuivingen groot zijn. In hoofdstuk 5 wordt aangetoond dat het verschil 

in de faserelatie tussen neuronen in lange en korte dag de oorzaak kan zijn 

voor dit verschil in faseverschuiving. De resultaten van de simulaties in 

hoofdstuk 5 geven aan dat als neuronen meer gesynchroniseerd zijn in fase, 

er een hoger aantal neuronen op hetzelfde tijdstip in dezelfde richting 

verschuiven in respons op een lichtpuls de lichtsensitieve periodes 
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overlappen. In een lange dag zijn de neuronen minder gesynchroniseerd in 

fase, wat resulteert in een kleinere faseverschuiving. Dit betekent dat ritmen 

met een hoge amplitude (als gevolg van synchronisatie tussen neuronen) 

meer verschuiven dan ritmen met een lage amplitude. Voor individuele 

neuronen geldt het omgekeerde: oscillatoren met een hoge amplitude zijn 

moeilijker te verschuiven in fase dan oscillatoren met een lage amplitude. De 

data die gepresenteerd worden in hoofdstuk 5 leveren daarmee een 

voorbeeld van het feit dat voor neurale netwerken andere regels gelden dan 

voor individuele oscillatoren en geven tegelijk de onderliggende verklaring 

voor dit verschil. 

 In hoofdstuk 6 wordt een model gepresenteerd waarmee de 

koppelingsmechanismen tussen twee gebieden in de SCN wordt onderzocht 

na een verschuiving van de licht-donker cyclus. Het model is gebaseerd op 

de ventrale en dorsale gebieden van de SCN, die beiden worden beschouwd 

als endogene oscillatoren in deze simulaties. Het model was in staat om 

resultaten van verschillende experimentele studies naar faseverschuivingen 

kwalitatief te simuleren. De resultaten geven aan dat in de SCN 

verschillende oscillerende gebieden kunnen bestaan die ieder bestaan uit 

groepen samenwerkende neuronen met hun eigen faseverschuivende 

karakteristieken. De verschillende oscillerende gebieden communiceren met 

elkaar en delen op deze manier informatie over hun fase. In hoofdstuk 6 

wordt benadrukt dat faseverschuivingen voornamelijk een eigenschap zijn 

van het netwerk van klokneuronen. 

 In dit proefschrift zijn er simpele modellen gebruikt om de werking van 

het netwerk van de klok te verhelderen. Deze simpele modellen leveren 

bewijs dat verschillende niveaus van organisatie verantwoordelijk zijn voor 

verschillende eigenschappen van de klok. Terwijl de endogene ritmes een 

eigenschap zijn van de neuronen zelf, ontstaan eigenschappen zoals de 

aanpassing aan de licht-donker cyclus, het verwerken van een 

faseverschuiving van de licht-donker cyclus, of het coderen voor daglengte 

op het niveau van het neuronale netwerk. 

 Het is een uitdaging om verschillende wetenschappelijke disciplines met 

elkaar te combineren. De hechte samenwerking tussen de 

levenswetenschappen en de computerwetenschappen in dit onderzoek 
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zorgden ervoor dat het proces waarin het onderzoek werd gedaan heel 

dynamisch werd. Hierbij werden de data van de empirische 

levenswetenschappen samengebracht met de computersimulaties. 

Afhankelijk van de resultaten van de simulaties werden de experimenten 

aangepast om te kunnen zoeken naar specifieke fenomenen die uit de 

simulatieresultaten naar voren kwamen, terwijl de experimenten op hun 

beurt weer resultaten opleverden waarmee de modellen konden worden 

verbeterd. Dit proefschrift laat daarmee zien dat de gecoördineerde 

inspanningen van computerwetenschappen en levenswetenschappen een 

verrijking zijn voor beide disciplines en leiden tot wetenschappelijke 

voortgang.  
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Glossary 

ACSF artificial cerebrospinal fluid 

AIC Akaike information criterion 

AVP arginine vasopressin 

Bmal1 Bmal1 gene 

BMAL1 BMAL1 protein 

CalB Calbindin – calcium binding proteins 

Clock Clock gene 

CLOCK Clock protein 

Cry1 Cryptochrome1 gene 

Cry2 Cryptochrome2 gene 

CRY1 Cryptochrome1 protein 

CRY2 Cryptochrome2 protein 

CT circadian time 

Cx36 connexin 36 – gap junction protein 

E-M model evening-morning model as defined by Pittendrigh and Daan 

(1976) 

GABA γ-amino butyric acid 

GRP gastrin-releasing peptide 

LD light-dark 

LL constant light 

DD constant darkness 

mBmal1 messenger RNA of Bmal1 

mCry1 messenger RNA of Cry1 
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mPer1 messenger RNA of Per1 

mPer2 messenger RNA of Per2 

mRNA messenger RNA (Ribonucleic acid) 

MUA multi unit activity 

NKCC1 Na+-K+-2Cl- Cotransporter isoform1 

NMDA N-methyl-D-aspartic acid 

ODE ordinary differential equation 

PACAP pituitary adenylyl cyclase-activating peptide 

Per1  Period1 gene 

Per2  Period2 gene 

Per3  Period3 gene 

PER1 Period1 protein 

PER2 Period2 protein 

PER3 Period3 protein 

PHI peptide histidine isoeucine 

PRC phase response curve 

Rev-Erbα Rev-Erbα gene 

REV-ERBα Rev-Erbα protein 

RHT retino-hypothalamic tract  

RNA ribonucleic acid 

SCN  suprachiasmatic nuclei (location of the biological clock in 

mammals) 

SUA single unit activtiy 

Tim Timeless gene of Drosophila clock 

TIM Timeless protein of Drosophila clock 

VIP vasoactive intestinal polypeptide 

vip-/- VIP deficient mouse 

vipr-/- VPAC2 receptor deficient mouse 

VPAC2 receptor for VIP and PACAP 

ZT Zeitgeber time 
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