
Metrics and Visualisation

for

Crime Analysis and Genomics

Jeroen F. J. Laros

This research is part of the DALE (Data Assistance for Law Enforcement)
project as financed in the ToKeN program from the Netherlands Organization
for Scientific Research (NWO) under grant number 634.000.430.

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming Research and Algorithmics).

Cover: Stereogram of Figure 4.2.

ISBN: 978-90-9024936-0

Metrics and Visualisation

for
Crime Analysis and Genomics

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties
te verdedigen op maandag 21 december 2009

klokke 15.00 uur

door

Jeroen Franciscus Jacobus Laros
geboren te Den Helder

in 1977

Promotiecommissie

Promotor: prof. dr. J.N. Kok
Co-promotor: dr. W.A. Kosters
Overige leden: prof. dr. Th. Bäck

prof. dr. J.T. den Dunnen (Leids Universitair Medisch Centrum)
dr. H.J. Hoogeboom
prof. dr. X. Liu (Brunel University)
dr. P.E.M. Taschner (Leids Universitair Medisch Centrum)

Contents

1 Introduction 1

1.1 Data Mining . 1
1.2 DNA . 2
1.3 Metrics . 3
1.4 Overview . 3
1.5 List of publications . 7

I The Push and Pull Model
with applications to criminal career analysis 9

2 Randomised Non-Linear Dimension Reduction 11

2.1 Introduction . 11
2.2 The surface . 12
2.3 Metric algorithms . 12

2.3.1 Forces . 14
2.4 Axes . 18
2.5 The non-metric variant . 20
2.6 Simulated annealing . 22
2.7 Comparison with other methods 22
2.8 Conclusions and further research 23

3 Visualisation on a Closed Surface 25

3.1 Introduction . 25
3.2 Background . 26
3.3 Algorithm . 27
3.4 Experiments . 30
3.5 Conclusions and further research 33

4 Error Visualisation in the Particle Model 35

4.1 Introduction . 35
4.2 Constructing the error map . 36

4.2.1 Minimum correction . 38
4.3 Experiments . 38

i

ii CONTENTS

4.4 Conclusions and further research 41

5 Temporal Extrapolation Using the Particle Model 43

5.1 Introduction . 43

5.2 Parameters . 45

5.3 Extrapolation method . 46

5.4 Experiments . 48

5.5 Conclusions and further research 48

II Metrics 51

6 Metrics for Mining Multisets 53

6.1 Introduction . 53

6.2 Background . 54

6.3 The metric . 55

6.4 Applications . 59

6.5 Conclusions and further research 62

7 Alignment of Multiset Sequences 63

7.1 Introduction . 63

7.2 Background . 64

7.3 Alignment adaptation . 66

7.4 Experiments . 69

7.4.1 Criminal careers . 69

7.4.2 Access logs . 72

7.5 Conclusions and further research 73

III DNA 77

8 Selection of DNA Markers 79

8.1 Introduction . 79

8.2 Combinatorial background . 81

8.3 Proximity search and distance selection 81

8.4 Applications . 86

8.4.1 Primer pair selection . 86

8.4.2 DNA marker selection . 87

8.4.3 Other applications . 87

8.5 Experiments . 88

8.5.1 Finding markers: Determining unique substrings 89

8.5.2 Filtering out simple repeats 90

8.5.3 GC content and temperature 92

8.6 Conclusions and further research 92

CONTENTS iii

9 Substring Differences in Genomes 95

9.1 Introduction . 95
9.2 Determining rare factors . 96

9.2.1 Conversion . 96
9.2.2 Sliding window . 97
9.2.3 Counting . 97

9.3 Elementary statistics and visualisations 98
9.4 Distances and weights . 100
9.5 Experiments and results . 102

9.5.1 Raw data . 102
9.5.2 Visualisation of the raw data 103
9.5.3 Comparison of many species 105

9.6 A multiset distance measure . 107
9.7 Conclusions and further research 109

10 Visualising Genomes in 3D using Rauzy Projections 111

10.1 Introduction . 111
10.2 Background . 111
10.3 Application to DNA . 113
10.4 A number of DNA sequence visualisations 114

10.4.1 Projections in three dimensions 114
10.4.2 Projections in two dimensions 116

10.5 Related work . 118
10.6 Conclusions and further research 118

Bibliography 121

Nederlandse Samenvatting 127

Curriculum Vitae 129

Chapter 1

Introduction

This introduction is structured as follows. The first three sections describe the
main topics of the thesis. In the fourth section we give an overview.

1.1 Data Mining

Informally speaking, Data Mining [67] is the process of extracting previously
unknown and interesting patterns from data. In general this is accomplished
using different techniques, each shedding light on different angles of the data.
Due to the explosion of data and the development of processing power, Data
Mining has become more and more important in data analysis. It can be viewed
as a subdomain of Artificial Intelligence (AI [61]), with a large statistical com-
ponent [4, 28].

Amongst the patterns that can be found by the usage of Data Mining tech-
niques, we can identify Associations. Examples of this can be found in mar-
ket basket analysis. One of the (trivial) examples would be that tobacco and
cigarette paper are often sold together. A more intricate example is that certain
types of tobacco (light, medium, heavy) are correlated with different types of
cigarette paper. This so-called Association Mining is an important branch of
Data Mining. Other patterns that are frequently sought are Sequential patterns.
Sequential patterns are patterns in sets of (time)sequences. These patterns can
be used to identify trends and to anticipate behaviour of individuals. Associa-
tions and Sequential patterns will play a major role in this thesis.

Once patterns have been identified, we often need a visualisation of them
to make the discovered information insightful. This visualisation can be in the
form of graphs, charts and pictures or even interactive simulations.

Data Mining is commonly used in application domains such as marketing and
fraud detection, but recently the focus also shifts towards other (more delicate)
application domains, like pharmaceutics and law enforcement.

In this thesis we focus on the application domains law enforcement and se-
quence analysis. In law enforcement, we have all the prerequisites needed for

1

2 CHAPTER 1. INTRODUCTION

Data Mining: a plethora of data, lots of categories, temporal aspects and more.
There is, however, a reluctance when it comes to using the outcome of an anal-
ysis. When used with care, Data Mining can be a valuable tool in law enforce-
ment. It is not unthinkable, for example, that results obtained by Data Mining
techniques can be used when a criminal is arrested. Based on patterns, this
particular criminal could have a higher risk of carrying a weapon, or an syringe,
for example. In law enforcement, this kind of information is called tactical data.

After the Data Mining step, statistics is usually employed to see how sig-
nificant the found patterns are. In most cases, this can be done with standard
statistics. When dealing with temporal sequences though, and lots of missing or
uncertain data, this becomes exceedingly harder.

1.2 DNA

Deoxyribonucleic acid, abbreviated as DNA [26, 65], is a macromolecule that
contains the genetic information of living organisms. It consists of four letters
{A, C, G, T} or nucleotides. These four letters form very large strings.

In the last few decades, new DNA sequencing techniques have been devel-
oped to read these strings efficiently. These techniques typically output one or
more long strings in plain text format. By analysis of these strings, differences
between species and even individuals can be detected. Even without knowing
what the differences are, we can make phylogenetic trees based upon substrings
of a genome.

Eventually, certain aspects of an individual (parts of the phenotype) can be
extracted from the DNA. It is not unthinkable that in the near future, forensic
experts can determine hair and eye colour based upon DNA fragments found
at a crime scene (this is already possible to some extent). At present, it is al-
ready possible to determine from which population group a (potentially highly
damaged) fragment of DNA comes from based upon Single Nucleotide Poly-
morphisms [55, 73] or SNPs. These are locations in a genome where one letter
may vary from person to person. If the distribution of each of these positions is
known for all population groups, and if enough fragments containing SNPs can
be found in a DNA sample, determining the origin of such a sample has become
a matter of statistics.

Small unique substrings within a genome are also used for numerous pur-
poses. They can be used as markers [23] for genes for example; if the marker
is present, then the gene is present. An other practical application is for the
isolation of certain parts of DNA. We find two unique substrings on both sides
of the part that has to be isolated and by using a technique called Polymerase
Chain Reaction [17] or PCR we can duplicate the isolated part.

In the later chapters we mainly focus on unique substrings and their use,
such as the construction of phylogenetic trees, and a way to select DNA makers.

1.3. METRICS 3

1.3 Metrics

In both the Data Mining part as well as the DNA part of this thesis, we shall use
a new metric, designed for multisets. This metric is a highly configurable one.
It requires a function that can be chosen by a domain expert. This function
should reflect the difference between the number of occurrences of the same
object within two multisets. For example, the difference between a person who
steals zero bikes and someone who steals one bike is arguably larger than the
difference between a person who steals 100 bikes and someone who steals 101
bikes. This difference must be given by the domain expert.

Although this metric was originally designed for criminal activities, using
a different function makes it applicable in many other domains. We show that
in the later chapters, where we use all substrings in two genomes (of different
species). Here the same argument applies as described above.

1.4 Overview

The thesis is structured in three parts. In the first part of this thesis we focus
on the application of Data Mining in the area of law enforcement, in particular
the application of particle systems in this area. In the second part we shall
investigate the metrics as mentioned in the previous section. The third part
deals with DNA. In particular we shall show how the metrics can be applied in
both the law enforcement field as well as in genomic research. We pay special
attention to the visualisation of the results. Next, we discuss the contents of
each chapter.

In Chapter 2, we give an extended overview of the Particle model and its
capabilities. It is explained how the internals work. Several output surfaces and
their merits are discussed (one of them is described in detail in Chapter 3). The
Particle model iterates over all pairs of points and pushes two points apart if
they are too close and pulls them together if they are too far away. This model
allows for several distance functions; both metric and non-metric functions are
discussed.

We also give an in depth description of the push and pull forces that can be
used and their expected influence on the output. Furthermore, the meaning of
the axes in the output figure (such as the one in Figure 1.1) has always been
poorly understood. We try to make this more insightful. Finally, we compare
this technique with several other dimension reduction methods.

Chapter 3 introduces a visualisation algorithm that, given a set of points
in high-dimensional space, will produce an image projected on a 2-dimensional
torus. The algorithm is a push and pull oriented technique which uses a sigmoid-
like function to correct the pairwise distances.

We describe how to make use of the torus property and show that using
a torus is a generalization of employing the standard closed unit square. Ex-
periments (of which a sample is shown in Figure 1.2) show the merits of the
method.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Projection of criminal careers using the Particle model; every point
represents a single career

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 1.2: Visualising criminal careers on a torus; also a different metric is used

Chapter 4 focuses on a new method of the analysis of the errors introduced
by multidimensional scaling techniques.

The error of an item in the output of these methods is associated with
a charge, which is then interpolated to define a field, as seen in Figure 1.3.
We give a general method on how to define this field, give several fine tuning

1.4. OVERVIEW 5

Figure 1.3: Errors visualised by interpreting them as a charge

techniques to highlight different aspects of the error and provide some examples
to illustrate the usability of this technique.

In Chapter 5, we give an application of the usage of the edit distance between
criminal careers to find criminals with a similar history. Also, an attempt is
discussed to use these neighbouring careers to make a prediction about the
future activities of criminals.

In Chapter 6, a new class of distance measures (metrics) designed for multi-
sets is proposed. These distance measures are parametrised by a function f
which, given a few simple restrictions, will always produce a valid metric. This
flexibility allows these measures to be tailored for many domain-specific appli-
cations. We apply the metrics in bio-informatics (genomics), criminal behaviour
clustering and text mining. The metric we propose also is a generalization of
some known measures, e.g., the Jaccard distance and the Canberra distance.
We discuss several options, and compare the behaviour of different instances.

The concept of multiset sequences is common in a number of different ap-
plication domains. In Chapter 7 we introduce a new metric for the similarity
between these sequences. Various types of alignment are used to find the short-
est distance between two sequences. This distance is based on the well-defined
distance measure for multisets from Chapter 6. Employing this, a pairwise dis-
tance can be defined for two sequences. Apart from the pairwise distances, the
occurrence of holes (for timestamped sequences) can also be used in determin-
ing similarity; several options are explored. Applications of this metric to the
analysis of criminal careers and access logs are reviewed.

Chapter 8 focuses on finding short (dis)similar substrings in a long string over

6 CHAPTER 1. INTRODUCTION

a fixed finite alphabet, in this case a genome. This computationally intensive
task has many biological applications. We first describe an algorithm to detect
substrings that have edit distance to a fixed substring at most equal to a given e.

a

a b

a b a

b b

a b a

a a ab

Figure 1.4: Trie of unique strings of length 5 originating from the string
“abaababaabaaba”

We then propose an algorithm that finds the set of all substrings that have
edit distance larger than e to all others by using a trie, as seen in Figure 1.4.
Several applications are given, where attention is paid to practical biological
issues such as hairpins and GC percentage. An experiment shows the potential
of the methods.

In Chapter 9, we introduce a new way of determining the difference between
full genomes, based upon the occurrence of small substrings in both genomes.

Figure 1.5: Phylogenetic tree based upon rare substrings

Basically we count the number of occurrences of all substrings of a certain
length and use that to determine to what extent two genomes are alike. Based
on these numbers several difference measures can be defined, e.g., a Euclidean

1.5. LIST OF PUBLICATIONS 7

distance in the vector space that has the same dimension as the number of
possible substrings of a certain length, a multiset distance, or other measures.
Each of these measures can be applied for phylogenetic tree generation, as shown
in Figure 1.5. We also pay attention to some other visualisations and several
statistics.

In Chapter 10 we propose a novel visualisation method for DNA and other
long sequences over a small alphabet, which is based on the construction of
the family of Rauzy fractals for infinite words. We use this technique to find
repeating structures of widely varying length in the input string as well as
the identification of coding segments. An example output of this visualisation
technique is shown in Figure 1.6.

-9000
-8000

-7000
-6000

-5000
-4000

-3000
-2000

-1000
 0

 1000

-2000
-1000

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

-1000
 0

 1000
 2000
 3000
 4000
 5000 AC

GT

0

5000

1000015000
20000

25000
30000

3500040000450005000055000600006500070000750008000085000

9000095000
100000

105000
110000115000 120000125000

130000

135000 140000145000150000
155000

Figure 1.6: The first 160,000 nucleotides of the human Y-chromosome

Other properties of the input can also come to light using this technique.

1.5 List of publications

Next we give an overview of publications on which this thesis is based.

Chapter 3: Visualisation on a Closed Surface

This chapter is based on a paper published in the proceedings of the 19th
Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2007) [42].

Chapter 6: Metrics for Mining Multisets

This chapter is based on a paper published in the proceedings of the Twenty-
seventh SGAI International Conference on Innovative Techniques and Appli-
cations of Artificial Intelligence (AI-2007) [40]. A two page overview is also
published in the proceedings of the 20th Belgium-Netherlands Conference on
Artificial Intelligence (BNAIC 2008) [41].

Chapter 8: Selection of DNA Markers

8 CHAPTER 1. INTRODUCTION

This chapter is based on a paper published in the IEEE journal Transactions
on Systems, Man, and Cybernetics, Part C [32].

Chapter 9: Substring Differences in Genomes

This chapter is based on a paper of which a one page overview is published in
the proceedings of the Benelux Bioinformatics Conference (BBC 2008).

Chapter 10: Visualising Genomes in 3D using Rauzy Projections

This chapter is based on a paper which is presented in the 1st International
ISoLA Workshop on Modeling, Analyzing, Discovering Complex Biological Struc-
tures, which was held on 4–5 June of 2009 in Potsdam, Germany.

The following publications on related subjects were co-authored during the PhD
thesis:

Tri-allelic SNP markers enable analysis of mixed and degraded DNA

samples

This paper is published in the Elsevier journal Forensic Science International:
Genetics [73].

Onto Clustering of Criminal Careers

This paper is published in the proceedings of the Workshop on Practical Data
Mining: Applications, Experiences and Challenges (ECML/PKDD-2006) [10].

Data Mining Approaches to Criminal Career Analysis

This paper is published in the proceedings of the Sixth IEEE International Con-
ference on Data Mining (ICDM 2006) [9].

Temporal extrapolation within a static clustering

This paper is published in Foundations of Intelligent Systems, proceedings of
ISMIS 2008 [14]. A two page overview is also published in the proceedings
of the 20th Belgium-Netherlands Conference on Artificial Intelligence (BNAIC
2008) [15].

An Early Warning System for the Prediction of Criminal Careers

This paper is published in the proceedings of the 7th Mexican International
Conference on Artificial Intelligence (MICAI 2008) [68].

Enhancing the Automated Analysis of Criminal Careers

This paper is published in the proceedings of SIAM Workshop on Link Analysis,
Counterterrorism, and Security 2008 (LACTS2008) [13].

Part I

The Push and Pull Model

with applications to

criminal career analysis

9

Chapter 2

Randomised Non-Linear

Dimension Reduction

The field of dimension reduction has provided a set of algorithms that can be
used for the visualisation of high dimensional data. In this set, some well-known
instances have been studied and used to a great extent, while others have not.
In this chapter, we discuss the properties of the push and pull [43] model, also
known as the particle or spring model. We first analyse the basic properties of
the algorithm and discuss many variants and applications. A number of natural
extensions and induced models are given as well.

2.1 Introduction

The general algorithm for 2-dimensional visualisation tries to solve the following
problem: We have a pairwise distance matrix as input and as output we desire
a 2-dimensional picture that represents the distances in the input matrix as
good as possible. In general the data in the input matrix is derived from a high
dimensional input space and can not be embedded perfectly in a 2-dimensional
space.

The algorithm operates by placing points (or particles) randomly on a sur-
face, the number of points corresponding with the number of rows (and columns)
of the input matrix. Now the algorithm iterates in some way over (all) pairs of
points, somewhat adjusting the position of the points in question according to
the distances defined in the input matrix.

The algorithm can be terminated when the points no longer move, or when
sufficiently many iterations have been done. The termination criteria are speci-
fied by the user.

11

12 CHAPTER 2. NON-LINEAR DIMENSION REDUCTION

2.2 The surface

Since this model is searching for an optimal arrangement of particles on a given
surface, we can ask ourselves if we can use different surfaces to improve the
dimension reduction. Normally we use a unit square to visualise the input data,
but other choices are also available. We can look at closed or even semi-closed
surfaces, for example, surfaces that have two or more (simply) identified bound-
aries. Also infinite surfaces are a possibility [8].

We could for example identify two of the sides of a unit square to obtain a
(topological) cylinder. The push and pull algorithm will work exactly the same
on an object like this, the only thing that needs to be adjusted is the distance
function; on a cylinder there is a maximum distance in one direction. Notice
that we only make a topological 2-dimensional cylinder. There is no curvature
of the space at all.

Identifying more sides of the unit square will result in a fully closed surface
like a globe, torus, Klein bottle or real projective plane. Again, the distance
function must be adjusted for each of these surfaces (since our picture will still
be a square) but the idea stays the same. Of these closed surfaces, a torus is
perhaps the most natural choice to make. Again, notice that we use a topological
2-dimensional torus, again there is no curvature as would be the case with a 3-
dimensional torus.

Using a closed surface has the advantage that an embedding of non-flat
data is sometimes possible. We have more freedom to place our points since we
can implicitly move in a third dimension. For example, we can perfectly embed
points taken from the surface of a cylinder on a 2-dimensional torus, but not on
the unit square. Conversely, we can embed the unit square on a 2-dimensional
torus. Therefore a closed surface is a better choice than a normal unit square,
although it must be noted that the end-user might find it confusing in the
beginning.

2.3 Metric algorithms

Perhaps the best way to describe this model it to view the points as particles
that have two types of forces working on them, an attracting and a repulsing
one. These particles are bound to a surface with (normally) two dimensions.
This loose description leaves a lot of freedom. We can use different types of
forces. For example, the forces do not even have to be symmetrical. An other
choice can be the surface, that does not have to be a unit square, but can also
be a closed surface (see Chapter 3) like a torus.

Now we shall give the metric variant of the push and pull algorithm. It is
split into two parts: a part that adjusts the positions of the particles and a
part that iterates over a sequence of tuples of points and calls the adjustment
function in each iteration.

In Figure 2.1 we see how the adjustment of the points works. Assume that p̃
and q̃ are too far away from each other. The algorithm below describes how two

2.3. METRIC ALGORITHMS 13

q̃

−v

v

p̃

Figure 2.1: Metric correction

vectors v and −v are calculated, over which the points are translated toward
each other.

PushPull Metric (p, q) ::
var correction;
var v;
correction = α · f (drealised(p̃, q̃), inflation · ddesired(p, q));
v = correction · (q̃ − p̃);
p̃← p̃− v;
q̃ ← q̃ + v;

Adjust p̃ and q̃.

In the algorithm above, p and q are input points. By p̃ we denote the coordi-
nates of a point p in the target surface; we refer to p̃ as the realisation of p. The
function ddesired(p, q) is the distance between p and q as given in the input ma-
trix, or perhaps by some other means. The function f returns a value between
−1.0 and 1.0; if the realised distance is larger than the desired distance, the
function will in general return a negative value, indicating that the points must
be pulled together. The choices for this function are discussed in Section 2.3.1.

The value drealised(p̃, q̃) is the distance between points p̃ and q̃ in the target
surface. Usually, the Euclidean distance is employed for this. The global param-
eter α is the learning rate, which may decrease over time, or may be altered
by the user. This parameter is discussed in Section 2.6. The global parameter
inflation is used to utilize the entire output space. It is often set to 1.0 and is
discussed in detail in Section 2.3. Note that if p̃ = q̃, we can not determine a di-

14 CHAPTER 2. NON-LINEAR DIMENSION REDUCTION

rection for the vector v, only the magnitude. To overcome this shortcoming, we
can perhaps introduce a small distortion in the position of p̃ or q̃. Fortunately,
in practice the algorithm has more than two input points, and other points will
disturb the positions of p̃ and q̃, so in practice we can ignore this shortcoming.

MetricMainLoop () ::
while NotDone do

choose some sequence u = (u1, u2, . . . , un)
of tuples of points ;

for i← 1 to n do

PushPull Metric(ui);

Iterate over tuples of points.

The main loop iterates over some sequence of tuples of n points. In general
we iterate over all combinations of tuples exactly one time in each iteration.
The order of these tuples is preferred to be random.

2.3.1 Forces

In this section we shall focus on functions that have input values between 0 and
1
2 and have output values between −1 and 1 on this interval. The maximum
value of 1

2 is chosen because it is the maximum distance between two points on
a torus. Functions for the normal bounded unit square will have input values
between 0 and 1.

f1(x, y)

y
x

f1(x, y)

1
0.5

0
−0.5
−1

0.5
0.4

0.3
0.2

0.1
0

0.4
0.3

0.2
0.1

0

1

0.5

0

−0.5

−1

Figure 2.2: Correction function f1(x, y)

The forces used for the alteration of the particles are usually symmetrical

2.3. METRIC ALGORITHMS 15

and can be described by a correction function that yields a positive value when
two particles need to be placed closer together, and a negative value when they
need to be pushed apart. There are many choices for such a function, a linear
one being the most widely used, but other, mostly sigmoid like functions, can
perform better since these functions are “aggressive” when a particle is not in
the right position.

In Figure 2.2 we see such a function. The precise definition of this function
is:

f1(x, y) =

{
cos(π logt(2x(t− 1) + 1)) if y 6= 1

4

cos(π2x) if y = 1
4

where t = (1 − 1/(2y))2, 0 ≤ x ≤ 1
2 , 0 < y < 1

2 . So this function will be a
deformed cosine for any fixed y, and will be 0 if x equals y. Furthermore, it is
1 whenever x equals 0 and −1 if x equals 1

2 .
Note that f1(

1
4 +x, 1

4 +y) = −f1(
1
4 −x, 1

4 −y). This property is indeed quite
desirable, since ... We will refer to it as the symmetry property.

x

f 1
(x

,0
.1

)

0.50.40.30.20.10

1

0.5

0

−0.5

−1

Figure 2.3: Correction function f1(x, 0.1)

In the situation from Figure 2.3, the desired distance between two particles
is 0.1. If the realised distance is larger than this, the function gets negative very
quickly. On the other hand, the function will assume a positive value significantly
larger than 0 when the realised distance is only slightly smaller than the desired
distance.

For practical purposes, we can use any function that resembles the one given
above, such as

16 CHAPTER 2. NON-LINEAR DIMENSION REDUCTION

f2(x, y) = cos(π(2x)tan(πy))

In order to get the symmetry property, one is lead to:

f3(x, y) =

{
cos(π(2x)4y) if 0 ≤ y ≤ 1

4

− cos(π(1− 2x)4(
1

2
−y)) if 1

4 ≤ y ≤ 1
2

In practice, this will be the kind of functions we will be using.
Another choice of function could be a function with a plateau, one that is

zero on and near the desired distance.

f4(x, y)

y
x

f4(x, y)

1
0.5

0
−0.5
−1

0.5
0.4

0.3
0.2

0.1
0

0.4
0.3

0.2
0.1

0

1

0.5

0

−0.5

−1

Figure 2.4: Correction function f4(x, y) with a plateau

In Figure 2.4 we see such a function, of which the exact definition is:

f4(x, y) =

{
cos25(π logt(2x(t− 1) + 1)) if y 6= 1

4

cos25(π2x) if y = 1
4

where t = (1 − 1/(2y))2, 0 ≤ x ≤ 1
2 , 0 < y < 1

2 . Again, the symmetry property
holds and in this particular case, if x roughly equals y, the function will not
return a very large correction.

Also, reports have been made of even more complicated functions [12], each
giving different results and emphasising different aspects of the data, or differ-
ent aims, varying from creating a global picture to the desire to speed up the
algorithm.

In Figure 2.5 we see an instance of a hybrid function, as used in a previous
study [12]:

f5(x, y) =

{
cos3(π logt(2x(t− 1) + 1)) if y 6= 1

4

cos3(π2x) if y = 1
4

2.3. METRIC ALGORITHMS 17

f5(x, y)

y
x

f5(x, y)

1
0.5

0
−0.5
−1

0.5
0.4

0.3
0.2

0.1
0

0.4
0.3

0.2
0.1

0

1

0.5

0

−0.5

−1

Figure 2.5: Hybrid correction function f5(x, y)

where t = (1− 1/(2y))2, 0 ≤ x ≤ 1
2 , 0 < y < 1

2 . Although in the original paper
a slightly different function is used, the shape is similar.

In general there is no clear way to determine which function to use. A func-
tion with a plateau will give a more global picture, since the exact distances are
less important than the global placement and a sigmoid like function leads to
fast convergence. It largely depends on the desired end result which function is
preferred.

As mentioned before, we can also use a non-symmetrical function to describe
the forces working on the particles, giving rise to a whole different set of images.
Such a function would be a combination of a push force and a pull force, where
the two are not each others inverse. We could for example use a logarithmic
function for pushing and a linear function for pulling.

A useful example would be on a torus where we use a push function that
is positive (but declining) everywhere and no pull function. At first glance this
would seem not to work at all, but since we are working on a torus, we still get
a valid dimension reduction, because the push force wraps around the torus (it
is positive everywhere). So two points that are supposed to be far from each
other will be pushed harder than points that are supposed to be near to each
other. This results in a model where the points that are the farthest from each
other have a dominance over other points and will force them into the correct
position.

Using this model has the disadvantage that it is slow in comparison to the
model with both forces. One big advantage, though, is that there is no need
for an inflation parameter, the inflation is done automatically. For this reason,
the push-only variant on a closed surface is an interesting model that should be
investigated further.

The model allows for the online adding and removing of points [14], since

18 CHAPTER 2. NON-LINEAR DIMENSION REDUCTION

the algorithm can be resumed at any point. In general adding or removing one
point will not result in big global differences, only local ones, so on resuming
the algorithm one will quickly find a new optimum.

A consequence of this observation is that the properties of the points can be
altered online to make a simulation of flowing particles, or that a single item
can be traced.

A drawback of this model is that the algorithm can get stuck in a local
optimum. This is almost always the case with randomised algorithms that do
local optimisations. In practical situations, however, this seems to happen rarely.

Another drawback is that the result of two runs of the algorithm will pro-
duce different pictures. In most cases, this is the result of a rotation or mirroring,
which can be countered by adding three reference points to the data that the
algorithm will not alter. If the difference is the result of the fact that the algo-
rithm has found a different local optimum however, using reference points will
not be of any use.

The main advantage of the algorithm is that it is fast and very flexible. If,
for example, no (global) optimum can be found, the parameters can be changed
online to better suit the data. We can also change these parameters to get out
of a local optimum or to improve the embedding by multiplying the distances
by a factor to make use of a closed surface.

An other point that is worth stressing is that we only need pairwise distances
to generate the dimension reduction. The original coordinates need not to be
known.

Furthermore, this form of dimension reduction is non-linear, as we shall see
in the next section.

2.4 Axes

Many questions arise about the meaning of the axes when using this technique.
The meaning is hard to understand: in general we can only say that it is a
non-linear combination of the (maybe even unknown) input dimensions, which
are already “warped” by the metric used to derive the distance matrix.

To illustrate the non-linearity of the algorithm we can take some points
uniformly distributed on a sphere and try to embed them onto a 2-dimensional
surface. A linear dimension reduction technique will produce a picture where two
halves of the sphere will be projected upon each other. The push-pull technique
however will generate a different picture.

In many cases there can be a correlation between one of the input dimensions
and a direction in the resulting picture. For example, in the following picture
we see the clustering of criminal “careers”, where time is an implicit dimension
in our input data. The data stems from the Dutch national police and because
of the sensitive nature can not be disclosed. The input of the push and pull
algorithm is a distance matrix, obtained by calculating the edit distance between
two criminal careers. The careers themselves are defined as a string of multisets,

2.4. AXES 19

Figure 2.6: Criminal careers

?

where each multiset corresponds to the nature and frequency of crimes in one
year.

With a metric for multisets (see Chapter 6) we can calculate a pairwise
distance between two multisets and with the standard alignment algorithms [54,
66] we calculate the pairwise distance between the criminal careers.

In the resulting picture (seen in Figure 2.6) there is a correlation between
time and the direction of the arrow. At the base of the arrow there is a cluster of
short careers and as we proceed to the head of the arrow the length of the careers
increase. Note that the same direction may correspond to a whole different
combination of input dimensions at an other position in the picture.

So in general we can say that a direction has a meaning in the pictures, but
that this meaning is not uniform in the whole picture. Only locally we can say
something about the directions, globally this structure can be complex.

20 CHAPTER 2. NON-LINEAR DIMENSION REDUCTION

In Principal Component Analysis (PCA) [35,57], on the axes we always have
a linear combination of the dimensions of the input space. For Principal Curves
and Surfaces (PCS) [18, 29] and Self Organising Maps (SOM) [39] the data is
projected onto a lower dimensional manifold, which does not need to be linear.
It does, however, need to be continuous (smooth). In the push-pull algorithm
this is not the case in general.

Both SOMs and PCA/PCS need the input points to operate. The push-
pull algorithm only requires the pairwise distances, like most Multi Dimensional
Scaling (MDS) [16] techniques. Unlike SOMs and PCA/PCS no parametrisation
of the manifold is given as part of the output.

2.5 The non-metric variant

Since the metric used for the calculation of pairwise distances is a parameter in
the dimension reduction, we can also use the topological ordering of distances
to derive a projection onto a low-dimensional surface. The idea behind this is
to make an embedding in such a way that the relative order of distances is
preserved, but in general not the distances themselves. This means that the
objective is a picture where the distance between two points is smaller than the
distance between two other points if and only if this is also true in the input
data.

Next we discuss the non-metric variant of the algorithms that do the dimen-
sion reduction. This variant is also split into two parts; one part is responsible
for the adjustment of two tuples of particles, and the other part iterates over a
sequence of tuples of tuples and calls the adjustment function in each iteration.

−v

q̃

p̃

r̃

s̃

−w

w

v

Figure 2.7: Non-metric correction

In Figure 2.7 we see how the adjustment of the points works. Assume that

2.5. THE NON-METRIC VARIANT 21

p̃ and q̃ are too close to each other with respect to r̃ and s̃. The algorithm
below describes how four vectors v, −v, w and −w are calculated, over which
the points are translated respectively.

PushPull NonMetric ((p, q), (r, s)) ::
var correction ← 0.0;
var v, w;
if drealised(p̃, q̃) < drealised(r̃, s̃) and ddesired(p̃, q̃) > ddesired(r̃, s̃) then

correction ← α · ǫ;
if drealised(p̃, q̃) > drealised(r̃, s̃) and ddesired(p̃, q̃) < ddesired(r̃, s̃) then

correction ← −α · ǫ;
v ← correction · (q̃ − p̃);
w← −correction · (s̃− r̃);
p̃← p̃− v;
q̃ ← q̃ + v;
r̃ ← r̃ − w;
s̃← s̃ + w;

Adjust (p̃, q̃) and (r̃, s̃).

The non-metric variant of the algorithm adjusts four points each iteration
by a small amount α ǫ, if the realised distance of one tuple is smaller than the
other one, but the desired distance is larger, the points in the first tuple are
pushed apart and the ones in the second tuple are pulled togeter. This variant
is covered in Section 2.5.

NonMetricMainLoop () ::
while NotDone do

choose some sequence u = (u1, u2, . . . , un)
of tuples of tuples of points ;

for i← 1 to n do

PushPull NonMetric(ui);

Iterate over tuples of tuples of points.

The main loop iterates over some sequence of tuples of tuples of points. In
general we iterate over all combinations of two tuples exactly one time in each
iteration. The order of these tuples is preferred to be random.

The correction function f used to alter the realisation of the points is highly
configurable. If f is very small for all input values, the algorithm will reach a
stable state if one exists with high probability. The only provision is that the
total amount of distances is preserved. The reason that this will lead to a good
embedding in general is because distances can be divided infinitely many times
(in principle), so a valid ordering will nearly always be found if f is small enough

22 CHAPTER 2. NON-LINEAR DIMENSION REDUCTION

for all input values.

This, however, is not very practical when the objective is a fast algorithm. To
increase the effectiveness of f , several methods can be used like letting f depend
on the number of input points, or on the amount of iterations (see Section 2.6).
Another interesting method would be to let f depend upon the relative amount
of points that already have a good position; this idea is discussed further in
Section 2.6.

Since only relative distances have meaning in a non-metric dimension reduc-
tion, the size of a picture is irrelevant for correctness. However, for insight we
want to have it as large as the space permits. If we use a closed or semi-closed
surface, this is even more preferable, because then the properties of that partic-
ular space can be exploited. In the first case, we can do the dimension reduction
and afterwards inflate the picture (zoom in) to make use of the entire space.
In the second case however, we need to have a kind of entropy law to make
the points want to float away from each other. We can not simply use a zoom
function, since some points will be put closer together because of the nature of
the torus; it has a maximum distance.

Apart from an inflation function, we want the diversity of distances to be
as large as possible. Since the dimension reduction is non-metric there is some
freedom in general. There are several ways to utilize this freedom in order to
make the picture more insightful. First we can use the freedom to make the
diversity of distances as large as possible without compromising the topological
order. This will in general emphasize the difference in distances between two
pairs of pairs of points. Another way to utilise this freedom is to make the dis-
tances resemble the real distances without compromising the topological order.
This will result in a dimension reduction that is non-metric, but tries to be “as
metric as possible”.

2.6 Simulated annealing

In both the metric and non-metric variant, simulated annealing [61] can be
used to speed up the algorithm and to force convergence. The general idea of
simulated annealing is to use large alterations at the beginning of the algorithm
and small ones near the end. In this particular case, the strength of the correction
function can be subject to such a technique.

2.7 Comparison with other methods

In this sections we compare with PCA, PCS, SOM and MDS.

Principal component analysis (PCA) is a linear technique that requires
the input points. As output a (hyper) plane is given with the projected points
on it. This is a deterministic algorithm, and thus always produces the same
image when given identical input data. The fact that it is linear results in a

2.8. CONCLUSIONS AND FURTHER RESEARCH 23

linear combination of the input dimensions on the axes of the output picture.
This might not give the best result though.

Principal Curves and Surfaces (PCS) is a non-linear technique that
requires the input points. As part of the output, a parametrised manifold is
given, onto which the points are projected. Although this dimension reduction
technique is non-linear, the manifold is continuous (or smooth), which needs not
be the case in the push-pull algorithm. PCS is, like PCA, also a deterministic
technique.

In a Self Organising Map (SOM), a field of vectors is initialised randomly
and then trained with input examples. The vector that looks most like the
example, is altered in such a way that it looks even more like the example and
further more, its neighbours are also altered, but to a lesser extent.

This results in a non-linear output manifold, similar to one used in PCS. The
technique itself is non-deterministic though. Because of the non-determinism,
the non-linear output manifold and the training component where mostly local
changes are made, there is a strong relation with the push and pull model.

Push-pull has much resemblance with Classical MDS. First of all, they
both are non-linear, only require the pairwise distances and minimise a stress
function. A difference is that the stress function in Classical MDS is explicitly
defined, where the stress function in Push-pull is not. The correction function
can in a way be seen as part of the stress function and summation over the
correction of all pairs of input points would result in a stress function. Like MDS,
emphasis can be given to small distances (through the correction function). An
other difference is that the correction is not a global, but a local one (hence
the correction function as opposite to the stress function). MDS uses gradient
descent to alter the position of the projected points, whereas push-pull makes
local changes. The non-metric variant of MDS has a strong resemblance to non-
metric push-pull for the same reasons.

Stochastic Neighbour Embedding [30] is a probabilistic dimension re-
duction technique where neighbourhood identities are preserved. The neigh-
bours of each object in high-dimensional space are defined using probability
techniques. A noticeable difference with other techniques is that not necessar-
ily every high-dimensional object is associated with a single one in the low-
dimensional space.

2.8 Conclusions and further research

In this chapter we have given an overview of the push and pull model. We
have shown the flexibility of the model and we have given guidelines on how to
interpret and use the parameters of this model.

Further studies is required for the push-only variant on a closed surface. The
advantages are clear: the input values are automatically scaled in such a way
that the output space is optimally used.

Chapter 3

Visualisation on a

Closed Surface

In this chapter, we discuss a visualisation algorithm that, given a set of points
in high-dimensional space, will produce an image projected on a 2-dimensional
torus. The algorithm is a push and pull oriented technique which uses a sigmoid-
like function to correct the pairwise distances. We describe how to make use of
the torus property and show that using a torus is a generalization of employing
the standard closed unit square. Experiments show the merits of the method.

3.1 Introduction

In many situations one wants to cluster and/or visualise data [67]. In this chapter
we will describe a method to visualise a perhaps large set of data points on a 2-
dimensional surface. This surface is basically the unit square U in R

2, with sides
identified in such a way that it topologically is a torus: left and right boundary
are identified, and so are top and bottom boundary, see Figure 3.1 below. The
resulting surface has no boundaries. As distance between two points a and b in
U we just take the minimum of the ordinary Euclidean distance between a and
any point from {b + (k, ℓ) | k, ℓ ∈ {−1, 0, 1}}. This surface will be referred to as
“the” torus. Note that the distance is not the one that arises when a torus is
embedded in R

3 in the usual way (as a doughnut). In our case a visualisation as
a unit square is more appropriate, remembering that left-hand and right-hand
side are near to one another (and also top side and bottom side).

We start with a finite set of n data points {p1, p2, . . . , pn}. We use a given
metric d to compute the distance dij = d(pi, pj) between pi and pj (i, j ∈
{1, 2, . . . , n}), which yields a symmetric matrix D = (dij)

n
i,j=1. This matrix

D will be the basis for our further actions. Its entries will be referred to as
the desired distances. Our goal is to obtain points {p′1, p′2, . . . , p′n} (the so-called
current points) in U , in such a way that the distance between p′i and p′j in U (the
current distance) resembles dij , the desired distance between pi and pj , as much

25

26 CHAPTER 3. VISUALISATION ON A CLOSED SURFACE

-

6
-

6

(0, 0)

(0, 1)

(1, 0)

(1, 1)

U

Figure 3.1: Unit square with sides identified: the torus.

as possible for i, j ∈ {1, 2, . . . , n}. The difference between the current distances
and the desired distance is therefore minimised. Together, the current points
constitute the current configuration. Once this configuration is established, it
can be used for all sorts of clustering purposes.

Our algorithm repeatedly takes two current points, and pushes them to-
gether or pulls them apart with a correction factor, depending on the relation
between desired and current distance. We use an inflation factor and a correc-
tion multiplier to improve the current configuration. Note that the distances in
U do not change when one rotates, mirrors or translates all points. Since our
method makes use of random elements, visualisations might be the same under
rotation, mirroring or translation, but it is also possible that they are actually
different.

There are many methods that perform a dimension reduction. We mention
Multi Dimensional Scaling (MDS, see [5,28]) and Principal Component Analysis
(PCA, see [28]) as two well-known statistical methods. Other methods include
several types of (competitive) neural networks, such as Kohonen’s Self Organiz-
ing Maps (SOMs, see [28]) and vector quantization (again, see [28]). A compar-
ison of all these methods is beyond the scope of this chapter (e.g., see [22]), we
just mention two issues. First, our method is intuitive, very fast and requires no
complicated mathematical operations, such as matrix inversion. Second, the use
of the torus appears to be both natural and easy to describe; it also performs
better than the previously used closed unit square (with boundary, cf. [43]), but
still has all its merits. Notice that when using a 0.5× 0.5 sub-square of U , one
has this situation as a special case.

In Section 3.2 we sketch the background, and mention some alternative
topologies. The method is described in Section 3.3. Section 3.4 has experiments,
and we conclude in Section 3.5.

3.2 Background

In this section we mention some issues concerning our method. We will also
point out a few difficulties that might arise, and some other possibilities.

As specified above, the surface we use is not the standard 2-dimensional
unit square in the Euclidean space R

2, but a 2-dimensional torus. The main
advantage of using such a manifold is that there are more degrees of freedom in

3.3. ALGORITHM 27

such a space.
A disadvantage of using a torus is that it is impossible to contract every

circle to a point, and thus there are configurations possible where clusters are
wrapped around the torus and thus might get stuck in a “local minimum”. A
solution to this is to use a sphere (where each circle can be contracted to a
point), but the projection of a globe onto a flat 2-dimensional space gives a
distorted image (just like the map of the earth, the polar regions usually appear
much larger than they actually are).

Another way to prevent the potential wrapping around the torus is to use
a non-random initialization. If all points are initialized in one (small) area, the
process will most likely not result in a configuration where wrapping is an issue.
This can even be forced by placing a maximum distance (determined by the
circumference of the torus) on the correction part of the algorithm.

There are more possibilities for such surfaces, like the non-orientable Klein
bottle (obtained when identifying the dotted arrows from Figure 3.1 in opposite
direction) or the real projective plane, but from all these, the metric on a torus
(as specified above) is most like the standard Euclidean one, so it is natural to
choose this object.

3.3 Algorithm

The algorithm we use is a push and pull oriented one, where the correction
factor depends on the difference between the desired distance ddesired and the
current distance dcurrent. This current distance, or rather its square, between
two points a = (x1, y1) and b = (x2, y2) from U can be efficiently computed by:

dcurrent ((x1, y1), (x2, y2)) ::
var x3 ← x2;
var y3 ← y2;
if x1 − x2 > 0.5 then x3 ← x3 + 1.0;
if x1 − x2 < −0.5 then x3 ← x3 − 1.0;
if y1 − y2 > 0.5 then y3 ← y3 + 1.0;
if y1 − y2 < −0.5 then y3 ← y3 − 1.0;
return (x1 − x3)

2 + (y1 − y3)
2 ;

Quadratic distance between points in U

The point b′ = (x3, y3) is the (or more precisely, a) point from {b+(k, ℓ) | k, ℓ ∈
{−1, 0, 1}} that realizes the shortest distance to a. This point will also be used
later on. The maximal quadratic distance between any two points from U equals
0.5. (We will omit the word “quadratic” in the sequel.)

Instead of a linear or a constant function (of the current distance) to calculate
the amount of correction, we can and will use a sigmoid-like function, or rather
a family of functions. This function must adhere to some simple constraints,

28 CHAPTER 3. VISUALISATION ON A CLOSED SURFACE

enumerated below. So we want a function f = fddesired
which is defined on

[0, 0.5], where 0.5 is the maximum distance between two points (on the torus).
We must have, with 0 < ddesired < 0.5 fixed:

• f(0) = ρ

• f(0.5) = −ρ

• f(ddesired) = 0

Here ρ ∈ (0, 1] is the so-called correction multiplier. So when the current dis-
tance is as desired, f has value 0 — and so has the correction. The resulting
correction factor corrfac equals f(dcurrent). If ddesired = 0, we make it slightly
larger; similarly, if ddesired = 0.5, we make it slightly smaller.

We will use

fddesired
(x) =

{
ρ cos (π logt(2x(t− 1) + 1)) if ddesired 6= 0.25
ρ cos (π2x) if ddesired = 0.25

where t = (1−1/(2ddesired))2; this function satisfies all the constraints. Figure 3.2
depicts f0.1 and f0.25, with ρ = 1.

The reason we choose a function like this, is because the correction of a point
will be large when the error of that point is large. Only when the error is close
to zero, the correction will be small. Other functions, like sigmoids will have the
same behaviour.

-1

-0.5

 0

 0.5

 1

 0 0.1 0.2 0.3 0.4 0.5
-1

-0.5

 0

 0.5

 1

 0 0.1 0.2 0.3 0.4 0.5

Figure 3.2: fddesired
with ddesired = 0.1 and ddesired = 0.25, ρ = 1.

Now suppose we want to “push and pull” two given points a = (x1, y1) and
b = (x2, y2) in U ; we first compute b′ = (x3, y3) as in the distance calculation of
dcurrent above. Then the coordinates x1 and y1 of a are updated through

x1 ← x1 + corrfac · |ddesired − dcurrent| · (x1 − x3) / 2 (3.1)

y1 ← y1 + corrfac · |ddesired − dcurrent| · (y1 − y3) / 2

A positive corrfac corresponds with pushing apart, a negative one with pulling
together. In a similar way, the coordinates x3 and y3 of b are updated in parallel.

3.3. ALGORITHM 29

If a coordinate becomes smaller than 0, we add 1, and if it becomes larger than
1, we subtract 1. Together we will refer to this as Equation (3.1).

The basic structure of the algorithm is as follows:

initialize all current points in a small region of U
while not Ready do

update all pairs (in arbitrary order) with Equation (3.1)

The push and pull algorithm

The algorithm terminates when the standard deviation and the mean error
(
∑

|pairs| |ddesired − dcurrent|/|pairs|) no longer change.
We now introduce the inflation factor σ, and secondly comment on the cor-

rection multiplier ρ.
The inflation factor σ > 0 can be used in the following way: Equation (3.1)

is changed to

x1 ← x1 + corrfac · |σ · ddesired − dcurrent| · (x1 − x3) / 2. (3.2)

This can be useful in several ways. If, for example, all distances are between 0
and 0.2, one might argue that it is useful to multiply these distances by 2.5 to get
a better spreading. This argument is especially valid if the resulting clustering
cannot be realized in the plane, but can be embedded on a torus. Inflation with
the right factor can make the overall error drop to zero in this case, while using
the original distances will always result in a non-zero overall error.

Even if all distances are between 0 and 0.5, inflation or deflation can still be
beneficial. For example, the input data can be such that inflation or deflation
will result in the correct clustering of a large part of the input, while not using
an inflation factor will result in a much higher overall error. An example of such
input data would be a torus that is scaled between 0 and 0.2, with a few points
outside this region. Normal clustering would result in a flat image where the
points outside the torus region would have correct distances to the torus region,
but with the correct inflation factor, the torus will be mapped on the entire
space, and the few points outside the region will be misclustered. This results
in a clustering where the overall error is small.

In practice we often take σ = 1.
The correction multiplier ρ is a parameter which controls the aggressiveness

of the correction function. Initially this factor is set to 1, but for data that can
not be embedded in the plane, lowering this factor can be beneficial.

If, for example, most of the distances are near the maximum, the correction
function will push them so far apart, that they are pushed towards other points
at he other side of the torus. This can result in the rapid fluctuation between
two or more stable states. These states are probably not the global minimum
for the clustering error, and therefore not the end result we desire. Increasing
the correction multiplier will counter this effect.

30 CHAPTER 3. VISUALISATION ON A CLOSED SURFACE

3.4 Experiments

In this section we describe several experiments, both on synthetic and real data.
The experiments are of an exploratory nature. We try to give a good impression
of the merits of the algorithm.

We start with a synthetic dataset. In the left-hand picture of Figure 3.3 we
see the original data points (on a “flat” 2D plane), from which a distance matrix
is derived to serve as test data for the visualisation algorithm. In this picture
we see seven spheres of which three are unique: the topmost two and the one in
the center. The other four spheres are copies of one another. The total number
of points is 700 and all distances are between 0.0 and 0.5.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 3.3: Original data (left) and visualisation (right).

After only a few iterations of our algorithm, the right-hand picture of Fig-
ure 3.3 appears. Notice how it resembles the input data, except for a mirroring
and a rotation. All distances are preserved almost perfectly. Remember that
only the pairwise distances were used by the algorithm. The mean error in this
picture is 0.00004 and the standard deviation is 0.00003. As a final remark, “flat
data” will always cluster within a sub-square of size 0.5× 0.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 3.4: Visualisation of flat data with an invalid inflation factor.

In Figure 3.4 we see the same test data, except that the distances have been

3.4. EXPERIMENTS 31

multiplied by a factor 1.5 in the left-hand picture, and by 2.6 in the right-hand
one. This results in a non-correct embedding, since the maximum distance in
this space is 0.5. The effects can be seen in Figure 3.4, in particular in the
right-hand picture. In both pictures a translation has been applied in order to
center most points. Though the full 1.0×1.0 square has been used, most current
points reside in the smaller 0.5×0.5 square, as is clearly visible in the right-hand
picture.

The top-left sphere is forced closer to the bottom-left one than is possible.
This results in the flattening of the spheres at the outermost edges. This effect
can be explained by considering the overall error (which is minimized). By a
local deformation, the overall error is kept small. The effect can also be seen
(to a lesser extent) in the middle-left sphere. Notice that the effect is absent in
the top-central sphere because of the void at the bottom-center of the picture
(there is nothing to collide with at the other side of the torus).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 3.5: Visualisation of criminals, non flat case. Left: with categories; right:
without categories.

In Figure 3.5, left, we see a visualisation of real data. We have taken a
database of 1,000 criminal records supplied to us by the Dutch national police,
and divided the crimes into three categories (light, middle, heavy): each record
has three integers, describing the number of crimes in the respective categories.
The distance measure we use is one defined on multisets and is described in
Chapter 6. It basically averages the absolute differences between the numbers
of crimes.

The resulting matrix cannot be embedded in the plane, but it almost could,
since the mean error is relatively small 0.00494 and so is the standard deviation
0.00529. We refer to this type of situation as a “non flat case”. An indication
that the data is almost flat, is that the clustering stays within the 0.5 × 0.5
sub-square, and inflation increases the error. There are four main clusters in
this picture, where:

• The leftmost one consists of criminals that have committed relatively light
crimes. They all fall into the categories light and middle.

• The top one consists of all-rounders, they have all committed crimes in all

32 CHAPTER 3. VISUALISATION ON A CLOSED SURFACE

categories.

• The rightmost one consists of criminals that have only committed light
and heavy crimes, nothing in between.

• The bottom one consists of criminals that have only committed light
crimes, all of them fall into the category light.

Then there is a very small cluster in the top-right corner of the picture, this is
a cluster of people who have only committed heavy crimes. This is apparently
non-standard behaviour for a criminal. There are a few other isolated points in
this picture, they all are people with a strange criminal record.

In Figure 3.5, right, we see the clustering of 100 criminals based upon the
same distance measure as in Figure 3.5, but now we do not categorize the crimes;
here the records have 80 attributes. The result is a scattered image (largely due
to the lack of similarity), occupying a large part of the unit square, and only
a few local clusters. We make use of inflation factor σ = 2 and correction
multiplier ρ = 1/16 here, to produce the picture with a mean error of 0.02636
and a standard deviation of 0.01786. All visualisations are obtained within a
few seconds.

Finally, we show an example from chemistry. The dataset we use, the so-
called 4069.no aro dataset, contains 4,069 molecules (graphs); from this we
extracted a lattice containing the 2,149 most frequent subgraphs. These are
grouped into 298 structural related patterns occurring in the same molecules
using methods presented in [25], resulting in a 298 by 298 distance matrix; the
distance between graphs is based on the number of co-occurrences.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 3.6: Two visualisation of a dataset with molecules.

Figure 3.6 shows two visualisations. The left-hand picture has mean 0.03488
and standard deviation 0.03117, with parameters ρ = 0.048 and σ = 1.1; the
right-hand picture has mean 0.05029 and standard deviation 0.03200, with pa-
rameters ρ = 0.031 and σ = 0.5. The latter picture is what we would have
gotten when we had used a bounded unit square. The first picture gives a bet-
ter embedding, with a lower error. The groups that pop up can be used by a
biologist to investigate biological activity.

3.5. CONCLUSIONS AND FURTHER RESEARCH 33

3.5 Conclusions and further research

We conclude that our algorithm is able of giving adequate visualisations on the
torus. Starting from a set of data points and their pairwise distances, it quickly
provides an embedding on this surface. The algorithm is fast, flexible and easy
to use, for instance for clustering purposes.

The method was originally developed for the analysis of criminal records
(see Section 3.4), and performs quite well in this case, but it also appears to be
applicable in other fields.

For further research, we would like to examine other topologies, such as a
sphere. Yet another possibility is to somehow fix current points, once they have
reached a good position with respect to many other points. And finally, the
online addition of new points.

Chapter 4

Error Visualisation in the

Particle Model

In this chapter, we introduce a new method of analysing the errors introduced
by multidimensional scaling techniques. We associate an error of an item in
the output of these methods with a charge, and then interpolate this charge to
define a field.

We give a general method on how to do this interpolation and we provide
several methods and fine tuning techniques to calculate the charge of the items.

4.1 Introduction

The push and pull model [43], also known as the particle or spring model [19]
is a way of accomplishing a dimension reduction. However, as is the case in
each dimension reduction algorithm, an error is introduced in the output in
almost all cases. This error can be uniformly distributed throughout the whole
picture (this would perhaps be preferable), or it can be accumulated in one or
more parts of the picture. In the latter case, parts of the constructed dimension
reduction can be useless and thus visualisation of the error would gain insight
in the quality of the picture.

If an error map could be constructed for a dimension reduction, a potential
user could use this map to assess the quality of the original picture and decide
which parts are usable or not. By making a continuous map of the error, var-
ious standard techniques, like looking at the gradient, can be used for further
analysis.

Error visualisation is important for dimension reduction techniques, because
(apart from some trivial cases) we know that the produced image is only a
projection of the original data in some way, an approximation so to speak.
Because of this, the resulting image has errors and these errors might or might
not be uniformly distributed throughout the image. In the first case, there is no
further analysis to be done, in the latter case however, it can very well be that

35

36 CHAPTER 4. ERROR VISUALISATION IN THE PARTICLE MODEL

a part of the outcome of a dimension reduction is completely unusable, while an
other part is still of value. To find out which parts of such an image are valuable
we need to gain insight into the error distribution throughout the image.

Populair methods to visualise the error usually give each item in the output
picture a colour, or a grey value, denoting its error, but with many points this
can give a rather chaotic picture which is hardly usable.

A general way of constructing an error map is given in Section 4.2. Further-
more, two natural implementations are given, along with a general threshold
function to filter out small deviations in the error maps. An artificial example
dataset and various experiments on it are given in Section 4.3. We conclude in
Section 4.4, we speculate upon the application of our method in other dimension
reduction techniques and give suggestions for further research.

4.2 Constructing the error map

In the push and pull model, the distances between any two particles p and q
from a given set is given by an input matrix. We call these distances the desired
distances, denoted by ddesired(p, q). The actual distances in the picture we call
the realised distances, denoted by drealised(p, q). Clearly, the goal of the push
and pull model is to minimise the difference between ddesired and drealised for all
pairs of points.

The output of the push and pull technique is a statical model of particles,
where in general there is a difference between the desired and realised distances.
The difference between these distances contributes to the error of a particle,
in some way. There are several choices of functions to calculate the total error
connected with a particle. This will be discussed in the next two subsections.

Once the total error connected with a particle is calculated, we can make
a plot of the error propagating through space. We let the error decay as the
distance to the particle grows. The error of a particle can be seen as analogous
to a charge, an error charge so to speak. We let this error propagate through the
space, analogous to the way an electrical charge propagates. We use a variant of
the well-known law of Coulomb to calculate the field strength at any distance
from the particle. When there are multiple particles, we use the sum of the field
strength values to calculate the strength of the error field at any point in the
space.

The scalar form of Coulomb’s law, which describes the magnitude of the
electrostatic force F on two charged particles q1 and q2, is defined as:

F = ke
q1q2

r2

where r is the distance between the particles and ke is Coulomb’s constant.
Of course, we are not bound to the law of Coulomb to indicate the decline

of the field strength. The space that is the result of the dimension reduction
technique needs not to be flat, so using a different function to calculate the
error field is quite acceptable. Furthermore, we have no particular reason to

4.2. CONSTRUCTING THE ERROR MAP 37

use Coulomb’s law, except for the analogue with nature and therefore mans
familiarity with it.

In a model with n particles {p1, p2, . . . , pn}, we use the following formula to
calculate the field strength at position (x, y) in the error map:

field(x, y) =
1

n

n∑

i=1

error(pi)

(1 + d((x, y), pos(pi)))γ

Where γ is the speed at which the field drops off. Choosing γ = 1 will result
in a linear drop off, γ = 2 will result in a drop off similar to the one in the
law of Coulomb. In this paper, we shall use γ = 0.5. The function d calculates
the Euclidean distance between the point (x, y) and the location of the particle
pi, which is given by the pos(pi). The function error is a generalised function
returning an error value. In the following subsections we discuss a number of
possibilities for this function and their consequences for the error map.

A first and natural choice for the error function follows from the assumption
that each particle has an equal amount of influence over each other particle.
Thus we use the average of all pairwise errors to calculate the total error of a
particle. We refer to this average als the global error.

So in a model consisting of n particles, the global error of a particle q ∈
{p1, p2, . . . , pn} is calculated with the following formula:

errorglobal(q) =
1

n

n∑

i=1

|ddesired(pi, q)− drealised(pi, q)|

After applying this function to each particle in the model, we can make the
error map with the field function, as described above.

If one wants to gain more insight in the (possibly dense) clusters that can
arise, a natural approach is to use a decline function for the error itself. This
cancels the errors of remote particles (and possible overshadowing effects of
those remote particles) and focuses on the particles in the area. To calculate
this error, we use a weighed average of all pairwise errors, where the weight is
a (declining) function of the distance between the particles. We refer to this
weighted average as the local error.

Again, we have a model consisting of n particles. To calculate the local error
of a particle q ∈ {p1, p2, . . . , pn}, we use the following formula:

error local(q) =
1

n

n∑

i=1

|ddesired(pi, q)− drealised(pi, q)|
(1 + drealised(pi, q))δ

Here δ is the speed at which the error of a particle loses its influence over other
particles (comparable to the function of γ in the field function). In this chapter
we use δ = 0.5.

The local error field for each point in the error map can be calculated with
the field function again.

38 CHAPTER 4. ERROR VISUALISATION IN THE PARTICLE MODEL

4.2.1 Minimum correction

A technique that can be applied before we calculate either the local or the global
error field is to define a threshold for the error and subtracting this threshold
from the particles that have a higher error. Using such a threshold will filter out
small errors that might not be of interest.

A natural choice for the threshold is the minimum error that occurs. We
shall call this the minimum correction for the remainder of this chapter. To do
the minimum correction, we first calculate the minimum of the total errors of
all particles

errmin = min(error(p1), error(p2), . . . , error(pn))

and then subtract errmin from the error of each particle:

error ′(pi) = error(pi)− errmin (1 ≤ i ≤ n)

For pictures with a high number of particles, of which the errors have a
broad distribution, one can choose a higher threshold to see which points are
responsible for most of the error.

4.3 Experiments

To give a good impression of the effect of the different choices that can be made,
we have constructed a small, artificial dataset.

0 1
2

1
2

1
2

√
2 3

20
9
10

1
2 0 1

2

√
2 1

2
3
20

9
10

1
2

1
2

√
2 0 1

2
3
20

9
10

1
2

√
2 1

2
1
2 0 3

20
9
10

3
20

3
20

3
20

3
20 0 9

10
9
10

9
10

9
10

9
10

9
10 0

Table 4.1: Sample input

In Table 4.1, we see the pairwise distances of six defining points from an object
that resembles the one shown in Figure 4.1 (leaving out one point). The points
a, b, c and d form a square, point f has a large distance to the corner points,
making it the top of a pyramid. Point e is only defined as being very close to
the corners of this square. So close in fact, that the triangle inequality does not
hold because of this point e. If we take out e, the remaining points would have
been embeddable in R

3 though, as can be seen in Figure 4.1.

4.3. EXPERIMENTS 39

Figure 4.2: Global error map

a

b

c

de

f

Figure 4.3: Global error map with
minimum correction

a b

c d

f

Figure 4.1: Approximate sample input (apart from one point)

As mentioned before, apart from point e, the object is a pyramid; the submatrix
consisting of the first four rows and columns give the distances of the square
ground plane and the last row and column give the distances to the top. The total
figure can certainly not be embedded in a 2-dimensional plane (even a pyramid
would be a problem), so we must introduce a number of approximations to make
an embedding possible.

In Figure 4.2, we see the global error map of a dimension reduction done on
the data in Table 4.1, where, as mentioned before, we use γ = 0.5. The shape is
what we would expect. The ground plane of the pyramid, consisting of points
a, b, c and d are the four points in the centre of the image, now in the form of

40 CHAPTER 4. ERROR VISUALISATION IN THE PARTICLE MODEL

a trapezoid. Point e is in the centre of this trapezoid and point f can be found
in the upper left of the picture.

From this map, it is clear that the two points a and b, located on the broad
side of the trapezoid have the largest error.

If we apply the minimum correction on the global error map, we get a picture
as seen in Figure 4.3. Point e has vanished from this map and it is even more
clear which points have the largest error.

Figure 4.4: Local error map Figure 4.5: Local error map with
minimum correction

In Figure 4.4 we see the local error map of the dimension reduction done on
the data given in Table 4.1, where, as mentioned before, we use γ = 0.5 and
δ = 0.5. When compared to Figure 4.2, we see that the top of the pyramid, point
f , is relatively less prominent in the local error map. The difference between the
points in the ground plane, points a, b, c and d and the other points, e and f ,
however, has gotten larger. This can be explained by the disturbing influence
of point e, that apparently is responsible for most of the errors of the points in
the ground plane.

If we apply the minimum correction on the local error map, we get a picture
as seen in Figure 4.5. Again, point e has vanished and this time point f is almost
invisible as well. The only points that are still clearly visible are the ones that
have a significant error because of a local disturbance.

Because the error map is a “continuous” map, we can apply some standard
computer graphics techniques on it for further analysis. We can for example
compute the derivative of the error map,

4.4. CONCLUSIONS AND FURTHER RESEARCH 41

Figure 4.6: Gradient of the global error map

In Figure 4.6 we see such a derivative. We made this image by taking the max-
imum gradient in a 5× 5 square, iterated over all points in the original image.

What we can see from this picture is the “stability” of the error field. In the
dark areas, the error does not change very much, so they can be called stable.
The white areas are the ones that have large fluctuations in the error. For more
complicated input data, this can be of use to assess the quality of the error map.

4.4 Conclusions and further research

In this chapter, we have shown that the construction of an error map can be
useful for the analysis of the quality of (parts of) the output of a dimension
reduction technique. We have given several natural approaches to construct
different kinds of error maps, each emphasising different aspects of the error
under consideration.

The method described in this chapter can be applied to other dimension re-
duction techniques as well. For example, it can be applied for Principle Compo-
nent Analysis [35,57], Principle Curves [29] and Multidimensional Scaling [5,16]
and their (metric) variants without alteration. The non-metric variants of Mul-
tidimensional Scaling require a radically different error function, because these
techniques don’t use a metric distance in their visualisation.

On the other hand, Self Organising Maps [39] have their own way of con-
structing an error map: by calculating a gradient from the original map.

Apart from the examples we have given, other kinds of visualisations are
possible. We can, for example, use different values for γ to alter the speed at
which the error field drops off. This can be useful if we want to analyse the
visualisation of a large number of input points. In that case we could increase
the drop off speed to analyse the errors of particles that are very close together.

42 CHAPTER 4. ERROR VISUALISATION IN THE PARTICLE MODEL

Automatically determining the value of γ would be an interesting follow up for
this research.

We can also use different decline functions. This might be preferable if we
have some expert knowledge of the input data for example.

Chapter 5

Temporal Extrapolation

Using the Particle Model

In the field of criminal investigations people on the task force usually have a
gut feeling about trends in criminal careers. For example, it is reasonable to
assume that a drug addict that has been doing petty theft and some other
minor criminal offences, combined with drug abuse, will keep doing to do this
in the future. On the other hand, someone of whom we see an incline in the
severity of the crimes, has a high probability of committing even worse crimes
in the future.

In this chapter we will focus on a way to find similar careers and perhaps to
automatically make a prediction of a future path of a criminal career by looking
at the trends in the neighbouring criminal careers.

5.1 Introduction

Under the assumption that criminals that have a similar history, will have a
similar future (at least in the near future), we propose an analysis based upon
a large database (obtained from the Dutch national police, which for privacy
reasons can not be disclosed) which consists of information on approximately
one million criminals and their criminal history. We use a dimension reduction
technique for noise reduction and to simplify the calculations. We use metrics
designed especially for criminal careers as a basis for this dimension reduction.

In earlier work [14] temporal extrapolation was successfully attempted within
a static clustering. In this work, criminals were classified by progressively adding
their career to the static clustering. In this way, the first year resulted in a
position in the clustering, the first two years were an other point and so on. The
next point is determined by a 2-dimensional parametric extrapolation.

A disadvantage of this technique is that it relies on the linearity of the
dimension reduction technique. If the produced image is done with a non-linear
technique, the result may be less usable, depending on the input data.

43

44 CHAPTER 5. TEMPORAL EXTRAPOLATION

1 3 42

2 34
1

1

2

3 4

1

2

4

Year 1

Year 1, 2, 3

Year 1, 2

Year 1, 2, 3, 4

3
?

x

x

x

Figure 5.1: Flowing model

To accommodate for the shortcomings of the previous extrapolation algo-
rithm, we use the idea of progressively adding a career to all points, instead of
one. By doing this, we create a dynamical model that changes through time as
the careers of the data points progress. By keeping track of the neighbourhood
of the target point, we can extrapolate the end position of the target without
making any assumptions about the space at all.

In Figure 5.1 we see an example. In the upper plane, only the first year of
each career is considered, in the second plane the first two and so on. In each
plane we see the tracked point (an open circle) denoted by x, and a couple of
points that are or have been in the neighbourhood of x, they are denoted by 1,
2, 3 and 4.

We decide upon a neighbourhood in some way and keep track of the careers
in this neighbourhood throughout the years. In the last step, we either use the
neighbouring careers as such and return them for further analysis, or we can
look at the subsequent crimes in all of these careers and by employing a weighing
scheme, do a prediction for future crimes.

The extrapolation can be done in two ways: We can either do a new dimen-
sion reduction for each added year, or we can alter the input matrix to add

5.2. PARAMETERS 45

a new year. If we would only do one extrapolation per target point, and if a
non-deterministic dimension reduction technique is used, the latter choice might
be the best one, because if the dimension reduction technique gets stuck in a
local optimum, the on-line adding of new data would use this optimum as a
starting point. Running multiple extrapolations though, is better in both cases
and obsoletes the on-line option.

We use a particle- or push and pull model (see Chapter 2) for the dimension
reduction step, because it is fast and has flexibilities that other techniques lack,
such as the choice of an output space (see Chapter 6. We use a torus as output
space in this chapter because we are only interested in the (local) neighbour-
hoods of each point, which the torus preserves. Furthermore, the fact that the
torus is a closed surface gives more freedom for a valid visualisation.

5.2 Parameters

There are a number parameters in this approach. We shall discuss the parame-
ters of each step in detail.

Generating the distance matrices First of all, we make a number of
distance matrices (one for each year as the career progresses). As a distance
measure we use the edit distance between two multiset sequences (see Chapter 7,
each of these multisets represents the activities of one person in one year. This
step itself already has a large amount of parameters. We can either use local or
global alignment, we can use expanded or non-expanded careers and we have to
decide on a gap penalty and a edit penalty. These parameters are discussed in
more detail in Chapter 7. All of these parameters should be decided upon by a
domain expert.

Dimension reduction When the distance matrices have been generated,
we do a dimension reduction step. We mainly do this for noise reduction, but
it also has the nice side effect that it makes the rest of the calculations less
demanding. After this dimension reduction step, we need to decide upon the
size of the neighbourhood and how to determine it. One could for example use
a fixed radius with the tracked point as a centre, or we could use k nearest
neighbours.

Since we use a model that can produce non-linear mappings onto the output
space, we can not make the neighbourhood too large, we can not make it too
small either, because it might be empty then. These two observations make the
choice for the radius a difficult one, and even dependent on the input data, or
sometimes even on the tracked point.

The k nearest neighbours approach solves most of these problems, but the
non-linearity issue is still bothersome. Also, we obviously need to assign a sen-
sible value for k.

We propose a hybrid solution for the non-linearity issue. We choose k nearest
neighbours, but we also record their distance to the tracked point. This way
we can use this distance as a weighing function in the extrapolation by using
1/distance as a weight for example.

Weighing of the neighbouring careers Finally, we need to come up with

46 CHAPTER 5. TEMPORAL EXTRAPOLATION

a a
b
c

ab

c a
a

b
a c c

Career1

Career2

Figure 5.2: Two careers

weights that accentuate the difference between neighbouring points in the first
year, neighbouring points in the first two years and so on. We do this because
we assume that similarity in the last year is more significant than similarity in
the first year.

Prediction As an extra step, we can use the neighbouring careers as a
predictor for the future actions of the person corresponding to the tracked point.
Again, there are multiple choices to consider. We can for example only use the
data from the next year as a predictor, we could use multiple years, or we can
take the remaining career of each neighbouring career to make a prediction.
In the latter case, we propose a weighing scheme that assigns high weights for
crimes in the near future and low weights for those in the distant future.

5.3 Extrapolation method

To do the extrapolation, we first need to calculate the distance matrices for
the progressing careers. Suppose we have n objects and we want to do the
extrapolation over m years, We first have to make the matrix for the first year,
then the one for the first two, and so on. This pre-calculation step results in m
symmetric matrices of n× n distances. We denote the matrix which consists of
the distances for the first year only by M1, the one for the first two years be M2

and so on.
In Figure 5.2, we see two careers. To generate M1, we take a look at the

first field of each career, to generate M2, we take a look at the first two fields.
The distance measure we use for this comparison is the edit distance of multiset
sequences (see Chapter 7).

We start the extrapolation by making a dimension reduction of the points
corresponding to the distances in M1 and pinpointing the career c we want to
follow. We choose a radius, which defines the neighbourhood of the career and
then we list all the points in this neighbourhood. We call this set N1 = N1(c).

Then we either alter the distance matrix M1 by replacing the values with
the ones in M2 and not reinitialising the visualisation for the reasons mentioned
above (to avoid getting into a different local or global optimum), or we make
a new visualisation. Either way, the points in the visualisation will adjust to

5.3. EXTRAPOLATION METHOD 47

N1 N2 N3

Figure 5.3: Neighbourhood sets for m = 4

the new data (M2) and if the visualisation reaches a stable state again, we can
extract the new neighbourhood set N2 = N2(c) in the same way as we did above.
We repeat this process until we have all m− 1 neighbourhood sets.

In Figure 5.3 we see a number of neighbourhood sets. The elements of the
careers that are considered are marked with a cross. So in N1 only the first
element of each career is considered. In N2 the first two elements are considered
and so on. Each m-th element is marked with a square to denote the element
that is used for the extrapolation.

After this step, we can have a look at element m in each career in the
neighbourhood sets. It is reasonable to use a weighing scheme (where Ni has
weight wi), which assigns a large weight to careers in Nm−1 and a small one to
the ones in N1, to emphasise the temporal aspect of the extracted data.

The weight for each neighbouring career x is calculated as follows:

w(x) =
m−1∑

i=1

∑

i:x∈Ni

wi

We can now apply this calculated weight to the m-th element of career x and by
doing this for all neighbouring careers, we get a multiset of weighed activities.
The weight can be used as an indicator of chance. The outline of the algorithm
is as follows:

Predict (c) ::
for i = 1 to m− 1 do

compute Mi

do a dimension reduction for Mi

determine Ni = Ni(c)
for x ∈ ∪m−1

i=1 Ni do

compute w(x)
compute prediction using w(x)

Prediction for a career c based upon neighbouring careers

48 CHAPTER 5. TEMPORAL EXTRAPOLATION

5.4 Experiments

In our experiments, we took a random selection of 112,326 criminals from our
input dataset (consisting of the criminal activities of Dutch offenders) and ap-
plied a filter to select those people that had a career of at least four years. This
resulted in a new database consisting of 1,617 criminal careers.

The crimes (elements of the multisets) were categorised in 8 categories, which
the Dutch National Police themselves use and therefore seem reasonable. These
categories have not been weighed in our experiments, although some categories
are representative for minor offences, while others are representative for severe
crimes. We have chosen not to weigh crimes, because we want to find a prediction
in more detailed behaviour, while predicting the nature of future crimes would
require this weighing scheme.

For the construction of the distance matrices, we used local alignment as a
scheme to calculate the edit distance. The gap penalty was set to the maximum
edit penalty, which was 1.0. Note that because we search for the edit distance
between strings of the same length (in every step, we only consider the first n
years of a career that is longer than n), there is no difference between local and
global alignment.

In the dimension reduction step, we used a fixed number of neighbours k = 10
and used the hybrid weighing function to compensate for “neighbours” that are
far away. We made a dimension reduction for three years and recorded all the
neighbouring careers for each step. Each dimension reduction was repeated four
times to compensate for the possibility of local optima.

Year 1 1–2 1–3
Value 1 4 16

Table 5.1: Weights used for extrapolation

The weights for careers found in each step is given in Table 5.1. These weights
were in turn divided by the distance from the tracked point, as explained in
Section 5.2. In this set up, we predict the future crime with 63% accuracy, vs.
the 11.1% we would get if a random result would have been returned.

5.5 Conclusions and further research

Because the dimension reduction technique was not used for the normal 2-D vi-
sualisation, but as a noise filter only, we can use a dimension reduction technique
that reduces the input space to a higher dimensional space than the standard
2-D. In this way, the embedding of the calculated distances will probably be a
lot better, but in general we shall need a larger radius to find a sufficient amount
of neighbours in order to do the extrapolation. In other words, the accuracy will

5.5. CONCLUSIONS AND FURTHER RESEARCH 49

improve (up to a certain point, we still need the noise reduction of course), but
at a cost. The computational complexity of the problem will increase severely.

Part II

Metrics

51

Chapter 6

Metrics for

Mining Multisets

In this chapter, we propose a new class of distance measures (metrics) designed
for multisets, both of which are a recurrent theme in many data mining appli-
cations. One particular instance of this class originated from the necessity for a
clustering of criminal behaviours.

These distance measures are parametrised by a function f which, given a
few simple restrictions, will always produce a valid metric. This flexibility allows
these measures to be tailored for many domain-specific applications.

In this chapter, the metrics are applied in bio-informatics (genomics), crimi-
nal behaviour clustering and text mining. The metric we propose also is a gener-
alization of some known measures, e.g., the Jaccard distance and the Canberra
distance. We discuss several options, and compare the behaviour of different
instances.

6.1 Introduction

In many fields data mining is applied to find information in large amounts of
data. A few example areas are bio-informatics, crime analysis and of course
computer science itself. In data mining, multisets (also referred to as bags) are
a recurring theme. Finding distance measures or metrics (for multisets) is one
aspect of data mining [67]. When a suitable measure is found, many types of
analysis, such as clustering, can be performed on specific documents, DNA and
other instances of multisets.

The reasons for finding distance measures are very diverse. In crime analy-
sis [9] for example, it is possible to determine the distance between two criminals
based on their behaviour (their crime record). In bio-informatics comparing two
species with only the information of their DNA (or short fragments of it) can be
done. This is especially useful in forensic applications where DNA strands are
frequently damaged, so the fragments that are extracted from samples cannot

53

54 CHAPTER 6. METRICS FOR MINING MULTISETS

be given a place on the genome. Even without the information of the place-
ment of the DNA fragments found, it is possible to differentiate between species
and even individuals by using techniques described in this chapter. We finally
mention market basket analysis, where distances between multisets are basic for
further analysis. As a motivating example, the distance between two customers
can or cannot take into account the numbers of purchases of individual prod-
ucts (thus providing either multisets or sets), and it is also possible to stress the
difference between 1 and 2 sales on the one hand and, e.g., 41 and 42 sales on
the other hand.

In Section 6.3 we give a new class of distance measures that are suitable
for comparing multisets. The class has a parameter f (a function) that has a
couple of simple properties which, if met, will always produce a valid metric. To
the best of our knowledge, the class is new, and generalizes several of the more
well-known distance measures mentioned in Section 6.2 and Section 6.3.

For different domains, different problems arise and different distance mea-
sures will be needed. For many of them, a tailor made function f can be provided
and if the given restrictions apply to f , no further effort has to be made with
respect to the validity of the metric. We mention several examples in the appli-
cations in Section 6.4. Different choices of f may lead to different visualisations.
Furthermore, choosing such a function f is rather straightforward and intuitively
easier to do than constructing a metric directly.

6.2 Background

Finite multisets from a universe with n elements can be viewed as points in n-
dimensional space. For example, the multiset {a, b, a, a, b, a} can be abbreviated
to {a4, b2} (since the order of elements is irrelevant) and by leaving out the
element names, we get the vector (4, 2) in 2-dimensional space. Several known
distance measures can be applied. We mention the most important ones. In
Section 6.3 we will show the relation with our metric. In all cases, we consider
multisets X, Y over {1, 2, . . . , n}, and let xi ∈ R≥0 (resp. yi) be the number of
times that i (i = 1, 2, . . . , n) occurs in X (resp. Y).

• Minkowski distance of order p [67]

d(X, Y) =

(
n∑

i=1

|xi − yi|p
)1/p

For p = 1, we get the Manhattan distance; for p = 2, we get the well-known
Euclidean distance; if we let p =∞, we get the Chebyshev distance or L∞

metric.

• Canberra distance

d(X, Y) =

n∑

i=1

|xi − yi|
xi + yi

6.3. THE METRIC 55

When both xi and yi are zero, the fraction is defined as zero. Often the
distance is divided by the number of indices i for which at least one of xi

or yi is non zero.

• Jaccard distance for sets [34]

d(X, Y) =
n∑

i=1

|xi − yi| /
(
n−

n∑

i=1

(1− xi)(1− yi)
)

• Bray-Curtis (Sorensen) distance (often used in botany, ecology and envi-
ronmental science) [6]

d(X, Y) =
n∑

i=1

|xi − yi| /
n∑

i=1

(xi + yi)

• Mahalanobis distance (generalized form of the Euclidean distance) [48]
This is an example of a metric that requires a more complicated scheme:
the covariance matrix of the data must be computed, which is quite time-
consuming. We will not further discuss this type of metric here.

6.3 The metric

In this section we will define our new class of metrics. As a parameter we have
a function f that must meet several properties.

Let f be a function f : R≥0 ×R≥0 → R≥0 with finite supremum M and the
following properties:

f(x, y) = f(y, x) for all x, y ∈ R≥0 (6.1)

f(x, x) = 0 for all x ∈ R≥0 (6.2)

f(x, 0) ≥ M/2 for all x ∈ R>0 (6.3)

f(x, y) ≤ f(x, z) + f(z, y) for all x, y, z ∈ R≥0 (6.4)

For a multiset X, let S(X) denote its underlying set. For multisets X, Y with
S(X), S(Y) ⊆ {1, 2, . . . , n} we define df (∅, ∅) = 0 and

df (X, Y) =

∑n
i=1 f(xi, yi)

|S(X) ∪ S(Y)|

if both X and Y are non-empty. Again, xi ∈ R≥0 (resp. yi) is the number of
times that i (i = 1, 2, . . . , n) occurs in X (resp. Y ; usually xi and yi are integers);
|S(X) ∪ S(Y)| is the number of elements in X ∪ Y , seen as set. Note that
0 ≤ df (X, Y) ≤ M , df (X, Y) = df (Y, X) and df (X, Y) = 0 ⇒ S(X) = S(Y).
If f also satisfies

f(x, y) = 0⇒ x = y for all x, y ∈ R≥0 (6.5)

56 CHAPTER 6. METRICS FOR MINING MULTISETS

we have df (X, Y) = 0 ⇒ X = Y . It is clear that properties (1), (2) and (4)
must hold in order to ensure that we have a metric; indeed, just consider the
case where n = 1.

The function f specifies the difference between the number of occurrences of
a particular element in two multisets. Constructing such a function is natural
and can easily be done by domain experts. Also note that the function f is
defined for all positive real numbers; this property is only used when weights
are involved (see Section 6.3), and it also makes the proof below more general.

We now show that df satisfies the triangle inequality, and therefore is a
metric.

Theorem 1. For all X, Y, Z with S(X), S(Y), S(Z) ⊆ {1, 2, . . . , n} we have:

df (X, Y) ≤ df (X, Z) + df (Z, Y)

Proof. We may assume that not both X and Y are ∅. If df (X, Z)+df (Z, Y) ≥M
we are done, since df (X, Y) ≤M . So we may assume that df (X, Z)+df (Z, Y) <
M . Now

df (X, Y) =

∑n
i=1 f(xi, yi)

|S(X) ∪ S(Y)| =

∑
i∈S(X)∪S(Y) f(xi, yi)

|S(X) ∪ S(Y)|

≤
∑

i∈S(X)∪S(Y) f(xi, zi) +
∑

i∈S(X)∪S(Y) f(zi, yi)

|S(X) ∪ S(Y)|

=

∑
i∈S(X)∪T f(xi, zi) +

∑
i∈S(Y)∪T f(zi, yi)

|S(X) ∪ S(Y)|
where the set T is defined by T = S(Z) ∩ (S(X) ∪ S(Y)). We have

∑

i∈S(X)∪T

f(xi, zi) =
∑

i∈S(X)∪S(Z)

f(xi, zi) −
∑

i∈S(Z)\T

f(0, zi)

≤
∑

i∈S(X)∪S(Z)

f(xi, zi)−
tM

2

with t = |S(Z) \ T |. We conclude

df (X, Y) ≤
∑

i∈S(X)∪S(Z) f(xi, zi) +
∑

i∈S(Y)∪S(Z) f(zi, yi)− tM

|S(X) ∪ S(Y)|

=
df (X, Z)|S(X) ∪ S(Z)| + df (Z, Y)|S(Y) ∪ S(Z)| − tM

|S(X) ∪ S(Y)|

Now−tM ≤ −t(df (X, Z)+df (Z, Y)) (because of the assumption that df (X, Z)+
df (Z, Y) < M). So, noting that |S(X) ∪ S(Z)| = t + |S(X) ∪ T | (and similarly
for |S(Y) ∪ S(Z)|) we get

df (X, Y) ≤ df (X, Z)|S(X) ∪ T | + df (Z, Y)|S(Y) ∪ T |
|S(X) ∪ S(Y)|

≤ df (X, Z) + df (Z, Y)

6.3. THE METRIC 57

since |S(X) ∪ T | ≤ |S(X) ∪ S(Y)| (and similarly for |S(Y) ∪ T |). �

Before studying several properties of the metric, we first notice that its
behaviour deviates from that of standard distance measures. As an example, if
we have two given points, and we move one of these in a “new” dimension, the
distance changes considerably whereas in the Euclidean case it does not.

Interesting properties of this measure are:

• If X and Y are “normal” sets, i.e., xi, yi ∈ {0, 1} (i = 1, 2, . . . , n), we note
that

df (X, Y) = f(1, 0)
|X \ Y |+ |Y \X|

|X ∪ Y | = f(1, 0)

(
1− |X ∩ Y |
|X ∪ Y |

)

• df (∅, (1, . . . , 1︸ ︷︷ ︸
n

)) = nf(1, 0)/n = f(1, 0).

Here we use the notation (x1, x2, . . . , xn) for the multiset X, where again xi

denotes the number of times the element i occurs in X (cf. the example in
Section 6.2).

A variant of this measure can be defined as follows:

d̃f (X, Y) =

∑n
i=1 f(xi, yi)

|S(X) ∪ S(Y)|+ 1

By using this measure, we can drop the separate definition of d̃f (∅, ∅). Another
advantage of this measure is that d(∅, {x}) = d(∅, {x, y}) = . . . = 1

2f(1, 0),

while d̃(∅, {x}) = 1
2f(1, 0), d̃(∅, {x, y}) = 2

3f(1, 0) and so on. All conditions
for a distance measure hold, since this function is still symmetric, the distance
between identical multisets is zero, and the triangle inequality holds. To show
the latter property, we can use a proof that is analogous to the one above,
except for the last step, in which we replace |S(X) ∪ T |/|S(X) ∪ S(Y)| ≤ 1 by
|S(X) ∪ T |/(|S(X) ∪ S(Y)|+ 1) ≤ 1. Another way of proving it is by adding a
new element ∗ that is present once in each multiset. This reduces the problem
to the property shown above: d̃f (X, Y) = df (X ∪ {∗}, Y ∪ {∗}).

The application of weights for certain elements can be done by multiplying
the number of elements to which the weight must by applied by the weight. These
weights need not be integers, which is the reason why f is defined on real num-
bers in Section 6.3. As an example, suppose we have the multiset X = (1, 2, 1)
and we want to apply the weight 10 to the first element. The resulting multiset
X ′ is defined by X ′ = (10, 2, 1). We shall return to this issue in Section 6.4.

In order to obtain more reasonable and intuitive measures, the following
restriction can be posed upon f :

f(x, y) ≤ f(x′, y′) if x′ ≤ x ≤ y ≤ y′ (6.6)

It then follows that limk→∞ f(k, 0) = M . In this case it is easy to show that
the condition that f(x, 0) ≥ M/2 is mandatory for the triangle inequality to

58 CHAPTER 6. METRICS FOR MINING MULTISETS

hold. Indeed, let X = (k, 0, . . . , 0), Y = (0, . . . , 0) and Z = (0, ℓ, . . . , ℓ). With
|S(X)| = 1, |S(Y)| = 0 and |S(Z)| = n− 1, we have

df (X, Y) = f(k, 0)→M when k →∞

df (X, Z) =
f(k, 0) + (n− 1)f(ℓ, 0)

n
→ M + (n− 1)f(ℓ, 0)

n
when k →∞

df (Z, Y) =
(n− 1)f(ℓ, 0)

n− 1
= f(ℓ, 0)

Now df (X, Y) ≤ df (X, Z) + df (Z, Y) implies f(k, 0) ≤ 2f(ℓ, 0) (let n → ∞).
With f(ℓ, 0) < M/2 for some ℓ > 0 this is not true, so the triangle inequality
does not hold.

A natural way to generate a suitable f is the following. Start with a function
g : R≥0 → R≥0, and put f(x, y) = |g(x)− g(y)|. Clearly, properties (1), (2) and
(4) hold for f . We may take g(0) = 0. If in addition g is an increasing function
with limx→∞ g(x) = M and g(x) ≥M/2 for x ∈ R>0, f also satisfies properties
(3) and (6.6). If g is injective, e.g., if g is strictly increasing, (5) holds too.

Typical examples include:

• g(x) = 1 for x with 0 < x ≤ 1 and g(x) = M = 2 for x with x ≥ 1

• g(x) = 1/2 for x with 0 < x < L and g(x) = M = 1 for x with x ≥ L;
here L is a (large) constant

• g(x) = 1/2 for x with 0 < x ≤ 1 and g(x) = x/(x + 1) for x with x > 1
(M = 1), see Section 6.4; note that if we only use integer arguments, we
just need the “x/(x + 1) part”

• g(x) = 1/2 for x with 0 < x ≤ 1 and g(x) = (2x − 1)/2x for x with x > 1
(M = 1)

We conclude with a more intuitive explanation of the metric. Consider two
vases filled with marbles of different colours. We first take a look at the marbles
of the first colour. If both vases contain many marbles of this colour, the dif-
ference should be small, but the difference between one marble and no marbles
should be large. The exact difference can be tuned by altering the function f ,
which specifies the distance between groups with a different number of marbles
of the same colour.

When looking at all colours, we repeat the procedure above and divide by
the amount of colours we have encountered. This differs from division by the
total number of marbles, or by (some variation of) the total number of possible
colours. This latter option, for instance chosen in case of the Euclidean distance,
does not keep track of the “sizes” of the multisets under consideration. Choosing
the total number of marbles as denominator — as the Bray-Curtis distance
does — has the disadvantage that adding one marble of a fresh colour is hardly
noticed, while our metric is much more sensible to this. Our metric emphasizes
the number of different colours.

6.4. APPLICATIONS 59

Relation with other distance measures

Many well-known distance measures are special cases of the one we de-
scribe here. For example the Jaccard distance can be constructed by any f
with f(1, 0) = 1, where the multisets must be “normal” sets, so A = S(A) and
B = S(B). As noted before, this results in the following formula for sets:

d(X, Y) =
|X\Y |+ |Y \X|
|X ∪ Y |

To produce the Canberra distance (with the extended denominator) we use
the following f :

f(x, y) =
|x− y|
x + y

for (x, y) 6= (0, 0)

and f(0, 0) = 0. Note that this f cannot be constructed by a function g in the
way explained above.

6.4 Applications

In this section we use the following function for f :

f0(x, y) =
|x− y|

(x + 1)(y + 1)

This function satisfies properties (1)–(6) mentioned in the previous section; it
is a result of using g(x) = x/(x + 1). This function has the interesting property
that if both x and y are large, the resulting value is small. For example, the
(pairwise) distance between 0 and 1 is larger than the distance between 8 and
9, which is intuitive in many applications concerning multisets.

The visualisation algorithm we use in this section is a randomized push-
and-pull oriented algorithm [43], comparable to a competitive neural network.
It gives a projection of the original points in a 2-dimensional space. The reason
we use this algorithm is because it is fast and able to give a clustering for many
data points, where normal dimension reduction algorithms perhaps would fail.
For the purpose of this chapter, there is no need to go into detail concerning this
algorithm. We only state here that the Euclidean distances between points in
the 2-dimensional space approximate the original distances as good as possible.

Plagiarism: When comparing two documents while ignoring the context
and the semantics, we can make a multiset of words in the documents. To
accommodate for the difference in lengths of two documents, we can increase
the weight for each word in the smallest document by the relative size of the
documents. In this way, identical copies of the same text will be detected.

In this chapter we will not further elaborate on this; we only mention the
flexibility of the measures, which allows for many user-defined alterations.

Genomics: We will give an example of an instance of our distance measure
in the genomics domain. We do not claim this particular instance is the best
for clustering species, but from the illustrative example it can be seen that this
instance does work.

60 CHAPTER 6. METRICS FOR MINING MULTISETS

A genome of some biological species can be considered as a long string over
a small finite alphabet, usually {A, C, G, T}; it can be converted into a multiset
by using a sliding window of length n to count the occurrence of each substring
(or factor) of length n. Of course the number of occurrences will depend on n:
the larger n is, the lower the number of occurrences will be on average.

Figure 6.1: Visualisation for ten species; left: all ten; right: the four mammals
By determining the number of occurrences of each factor in two genomes, we

obtain two multisets that can be compared to each other. If we use our distance
measure with the function mentioned above, the occurrences of unique or almost
unique substrings will account for most of the difference between the genomes.
Factors that occur many times in both genomes are accounted for accordingly.

In this way we compare two species mostly on the number of differences
between rare substrings in their DNA. In Figure 6.1 a clustering based on this
distance is shown; DNA [69] of ten species (SARS, Yeast, Bee, C. Elegans,
Drosophila Melanogaster, Chicken, Cow, Dog, Chimp and Human) is used; the
right part of the figure zooms in on the four mammals, which are very close
together in the left part of the figure (the labels are practically on top of each
other). The sizes of the genomes vary from 3.69 · 104 for SARS to 3.60 · 109 for
Cow. As in the case of Plagiarism, we here also compensate for the difference
in sizes.

Apart from this type of clustering, other visualisations are possible too: the
metric can also be used to generate a phylogenetic tree, for example.

Criminal records

For comparing criminal records [9], the above function is very well suited.
When we make a multiset from criminal records, we get for example a multiset
where the first element represents bicycle theft, the second one represents violent
crimes, and so on. The difference between no crime and one or more crimes in
each category accounts for a large difference, while having two large numbers

6.4. APPLICATIONS 61

in each category accounts for almost no difference at all. This is rather useful,
since two people who steal bikes on a regular basis, can be seen as much alike.

Of course there are some differences between the categories which one might
want to accentuate. For example, a murder is considered a much more severe
offence than a bicycle theft. One way to accommodate for this difference is to
use a vector of weights W = (w1, w2, . . . , wn) with wi ∈ R≥0 and to make the
following adjustments to the distance measure:

dW
f (X, Y) =

∑n
i=1 f(wixi, wiyi)

|S(X) ∪ S(Y)|
It is easy to prove that this adjustment does not change the fact that the distance
formula is still a good metric.

Now, by choosing the vector of weights carefully (this must be done by an
expert in criminology) we can assign relative weights for crimes. In our example,
we can set the weight for bicycle theft to 1 and the weight for murder to a large
integer to accentuate the severity of the crime.

As a test case, we made the following synthetic dataset with fictional crimes
A, B, C and D of increasing severity, and criminals ranging from 1 to 10. For
each criminal the number of crimes in each category is given. For instance, 1 is
innocent, 2 is an incidental small criminal, 6 is a one-time offender of a serious
crime, and 10 is a severe all-round criminal.

1 2 3 4 5 6 7 8 9 10
A 0 2 10 0 0 0 0 2 0 2
B 0 0 0 2 0 0 2 4 0 2
C 0 0 0 0 1 0 2 0 3 2
D 0 0 0 0 0 1 1 0 5 2

Table 6.1: Ten criminals, four crimes

In the top-left picture of Figure 6.2 we see a clustering of these ten crimi-
nals with the standard f0. In the picture right next to it, we applied weights
1, 10, 100, 1000, respectively, to the crimes, to specify the weight of the crime.
We now see that criminals 7 and 10 are very close together, but at the same
time, criminals 2 and 3 also stay close. “Criminal” 1 is surprisingly rather close
to the two criminals who have committed relatively light crimes. The reason
that criminals 5 and 6 are close together is because they are one-time offenders,
and have a large distance to the rest of the group.

In the bottom-left picture, we see a clustering with f chosen in such a way
that we get the Jaccard distance, so we treat the criminals as sets. Notice that
criminals 2 and 3 now have distance zero to each other (the labels are on top of
each other in this picture). The bottom-right clustering uses a totally different
f : f1(x, y) = 3

2 − f0(x, y) for (x, y) 6= (0, 0) and f1(0, 0) = 0. Note that, e.g.,
f1(0, 1) = 1 > 3

4 = f1(0, 3), so property (6.6) does not hold for f1. Now criminals
with disjoint behaviour are grouped, leading to a “dissimilarity” clustering.

62 CHAPTER 6. METRICS FOR MINING MULTISETS

Figure 6.2: Four different clusterings for ten criminals

6.5 Conclusions and further research

In this chapter we have proposed a new flexible distance measure, that is suitable
in many fields of interest. It can be fine tuned to a large extent.

We can use this measure as a basis for further analysis, like the analysis of
criminal careers. In that case, we suggest that the distance measure is used as
a basis for alignment to make the best match between two careers. By doing
this, and by comparing sub-careers, we might be able to extrapolate criminal
behaviour based upon the criminal record through time. We also want to apply
the measure to a real, large database. Finally, we would like to examine the
relation with more statistically oriented measures.

Chapter 7

Alignment of

Multiset Sequences

The concept of multiset sequences is common in a number of different applica-
tion domains. This chapter introduces a new metric for the similarity between
these sequences. Various types of alignments are used to find the shortest dis-
tance between two sequences. This distance is based on a well-defined distance
measure for multisets.

Employing this, a pairwise distance can be defined for two sequences. Apart
from the pairwise distances, the occurrence of holes (for timestamped sequences)
can also be used in determining similarity; several options are explored. Appli-
cations of this metric to the analysis of criminal careers and access logs are
reviewed.

7.1 Introduction

Data mining techniques are often employed to extract information from large
quantities of data [67]. One of the recurring concepts in data mining is that
of multisets (also known as bags). A multiset is a set over a finite alphabet
where elements may be present more than one time. For example, a vase filled
with coloured marbles is a multiset, there can be more than one marble of
a particular colour in the vase. Another common theme is data with a strict
ordering in some sense, i.e., a temporal aspect. Such information is usually in
the form of timestamps.

In bio-informatics [26, 65], and especially the field of genomics, the concept
of alignment is well-known. Various types of alignments are used to match spe-
cific strings of DNA to each other. They are usually employed to measure how
different the target string is from the other strings in the experiment. The more
different it is, the more interesting it might be. If two strings of DNA are close to
each other in this sense, there is a reasonable chance that these strings will stick
to each other (or hybridise as the biologists call it), thus ruining the experiment.

63

64 CHAPTER 7. ALIGNMENT OF MULTISET SEQUENCES

Strings that have a very high edit distance to all other strings (within a specific
genome) are therefore a research area with many applications, the construction
of primers [17, 37] and micro arrays [58] being two of them.

A good example dealing with ordered multiset sequences is the analysis of
criminal careers, a concept used in the law enforcement area [50, 51].

We can represent a criminal career (the criminal activities a person exhibits
throughout his or her life) as a sequence of multisets. Each element (of a multi-
set) representing a crime. Since someone can commit multiple crimes and also
repeat a crime within a certain timeframe, the adoption of the multiset paradigm
is natural. In the analysis of criminal careers, the temporal aspect of the elements
in a career (the crime is committed on a certain date) is also an important
characteristic. Combining the properties of this distribution with the frequency
of the crimes can provide valuable insight into the behaviour of criminals. By
calculating distances between careers, one can make predictions about the threat
someone poses at the time of arrest, or an analyst could make predictions about
the future development of a starting delinquent.

Another research area concerned with the analysis of time sequences is
knowledge discovery from (web) access logs, e.g., the activity at a certain time
is related to the parts of the world where it is day or night. Also, crawlers and
spiders tend to cause a more or less cyclic pattern.

Our method aims to calculate the distance between two sequences of multi-
sets in order to provide an insight in similarities between, e.g., careers or web
browsing behaviour. We explore different kinds of alignment and methods of rep-
resentation of the multiset sequences in order to obtain different visualisations
and clusterings, each one accentuating a different aspect of the sequences under
consideration. We use the visualisation just as a means to show the fertility of
the alignment method.

Apart from the direct applicability in the above mentioned analysis, this
new metric can be used as a stepping stone for the enhancement of existing
techniques, a good example being temporal extrapolation [14], that depends
upon valid metrics.

The overview of the rest of this chapter is as follows. In Section 7.2 we
provide information about the concept of alignment and explain the different
types of alignment used within our approach. In Section 7.3 we explain how we
adapt current alignment methodologies to work with multisets and how they
deal with missing data. In Section 7.4 we describe the datasets on which we
can apply our techniques and we mention the details of the application of the
techniques on the datasets. We conclude in Section 7.5.

7.2 Background

Research of the alignment of strings has been prominent for a number of years,
resulting in the development of a wide variety of algorithms. Most of them
are calculating the difference between two sequences, which can be done by
calculating the so-called edit distance [45]. This is defined by the minimum

7.2. BACKGROUND 65

number of edits needed to transform one string into an other. Most often, an
edit is defined as either an insertion, a deletion or the rewriting of a symbol.
Each of these three operations leads to a certain penalty that can be different
and may even depend on the symbols in the sequence itself. The sum of these
penalties is then an upper bound for the edit distance. If the penalty is minimal
(usually this is also a minimum number of edits), we speak of the edit distance.

The goal of alignment is to minimize this distance for two sequences, in
practice arranging the sequences in such a way that the similarities between the
two sequences are “placed” below each other in a visualisation. Such a placement
is called a layout. In a layout gaps (usually denoted by -’s) represent insertions
or deletions. By definition, (and with slight abuse of language) an alignment is
one of the optimal layouts possible. The problem of constructing an alignment
starts with the calculation of the edit distance, yielding a number of different
solutions. One of them, selected arbitrarily, is then traced back to generate an
alignment. Depending on the purpose of the algorithm, there are several types
of alignment available.

A global alignment [54] is a form of alignment that has a high preference
for matching entire sequences to each other. This makes a global alignment
most useful when aligning two sequences that have roughly the same size. It
can also be used when there is a good reason within the application domain to
assume that short sequences are different from long sequences. By using global
alignment, the distance between such sequences will be large by default.

A local alignment [66] puts less penalty on gaps at the beginning or end.
Therefore it is most suitable to align small strings to large ones. The small
string will be matched to the most compatible substring of the large one.

We will not discuss the inner workings of these (well-known) algorithms
here. Both global and local alignments are efficiently calculated by employing
dynamic programming techniques in quadratic time (O(mn)) and usually in
linear space (O(min(m, n))) [31], where m and n are the lengths of the sequences.

Related work can be found in the alignment of event sequences [49] and
musical sequence comparison [36], where raw events, rather than bags of events,
are considered as elementary units. An other difference with these techniques is
that we operate within a discrete domain, whereas other techniques operate on
continuous spatio-temporal data, where raw events can be identified, and the
need for the use of multisets is absent.

Example 1. In this example we have two sequences U = AABABBBAA and V =
AAAABBAA of consecutive symbols (or atomic actions) from the alphabet {A, B}.
All penalties equal 1. First an alignment is constructed for the strings U and
V ; one of the possible alignments is depicted below:

012345678

U = AABABBBAA

|| ||| ||

V = AAAABB-AA

This alignment (an optimal layout) has two errors, one at position 2 and one at
position 6. Other alignments with two errors are also possible. �

66 CHAPTER 7. ALIGNMENT OF MULTISET SEQUENCES

In the case of alignment, the edit distance is the distance measure for two
sequences of symbols. The first requirement of such a distance measure is stating
the difference between the symbols (a distance for the elements, from which the
edit distance follows). A distance matrix like the one below is typical:

A B -

A 0 x y
B x 0 z
- y z –

Here x, y, z ∈ R≥0 are domain specific constants. So in an alignment where A

has to be matched to B, we get a penalty x, and when B is matched to a gap,
then the penalty is z. Since the matching of two gaps never occurs, this value
is omitted from the distance matrix.

Normally a distance matrix like the one from the example will suffice for an
alignment. In genomics there are various distance matrices to give a distance
between two nucleotides, based upon different experimental data.

When dealing with crimes, where for example A is a bicycle theft and B is
robbery, a domain expert should specify y by giving the absolute severity of A
and z by giving the absolute severity of B. The maximum or average sentence
for each crime might be a reasonable value (in days of captivity for example).
The value of x can then be set to the difference in severity between crimes A

and B.

In the case of access logs, we can assign different distances to elements ac-
cording to their source. For example, if a certain network is known for its many
bots, we can increase or decrease the distance to other elements depending on
what we want to investigate. We can also do this for countries if we want to
accentuate (or under-emphasize) hits from a certain area. This can potentially
be realised by using a GIS database.

The main bottleneck in this method for multiset strings is that using a pre-
defined distance matrix is not feasible because the number of multisets is too
large or even infinite. Since each symbol may be used arbitrarily often, there are
infinitely many multisets. For example, a criminal can steal several (potentially
very many) bikes in one year.

In this chapter we present a solution to this problem and suggest some
(domain specific) distance measures.

7.3 Alignment adaptation

For the alignment of general structures, we need at least two things: a valid
distance measure for the elements (in our case multisets) of the structure and a
way to deal with so-called “holes”.We first discuss the pairwise comparison and
then the conversion into sequences of multisets.

7.3. ALIGNMENT ADAPTATION 67

Pairwise comparison

In order to do alignment on structures that are not bare sequences a distance
matrix with pre-calculated values might not be sufficient any more. In our case,
we want to know the distance between multisets. To do this, we use the following
approach (see Chapter 6) which generalises well-known distance measures like
the Jaccard [34] and the Canberra distance.

Let f be a function f : R≥0 ×R≥0 → R≥0 with finite supremum M and the
following properties:

f(x, y) = f(y, x) for all x, y ∈ R≥0

f(x, x) = 0 for all x ∈ R≥0

f(x, 0) ≥ M/2 for all x ∈ R>0

f(x, y) ≤ f(x, z) + f(z, y) for all x, y, z ∈ R≥0

For a multiset X, let S(X) denote its underlying set. For multisets X, Y over
the set {1, 2, . . . , n} we define (if X 6= ∅ or Y 6= ∅)

df (X, Y) =

∑n
i=1 f(xi, yi)

|S(X) ∪ S(Y)|

and df (∅, ∅) = 0. Here xi, resp. yi, denote the integer number of elements in
category i for multiset X, resp. Y .

As function f we will use the following function (x, y ∈ R≥0, both ≥ 1, or
x = 0 or y = 0):

f(x, y) =
|x− y|

(x + 1)(y + 1)

(Other values with x < 1 or y < 1 are not needed.) In Chapter 6 it was shown
that this df is a decent distance measure; note that the supremum M equals
1. The reason that we use this particular function is because the difference
between two different small numbers (like 0 and 1) is large in comparison to the
difference between two distinct large numbers. For our purposes, this is natural,
because the fact that someone has committed a crime is more important than
the number of crimes that were committed in that category. Indeed, the fact
that someone has stolen a bike, is more important than the number of bikes
that were stolen.

In the case of access logs, the same reasoning can be used. It is important to
see the difference between 0 and 1 hits from a certain area, but the difference
between 100 and 101 hits is not very important.

We could also have chosen a function like

f(x, y) =
|x− y|

x + y + 1

or any other function that has the required properties. Such a choice must
in general be made by a domain expert. We want to emphasise that for the
alignment of other multiset sequences, a totally different function might be
needed. It all depends on the underlying data represented by the multisets.

68 CHAPTER 7. ALIGNMENT OF MULTISET SEQUENCES

Sequences: From actions to multisets

In this subsection we describe how an action sequence is converted into a
sequence of multisets, paying special attention to the introduction of so-called
holes (empty multisets).
Example 2. In this example we again have two sequences U = BAAA and
V = BAA of consecutive symbols (actions) from the alphabet {A, B}. Again, all
penalties equal 1. This time, however, each action has a distinct timestamp
associated with it: t(U0) = 0, t(U1) = 1, t(U2) = 2, t(U3) = 3, t(V0) = 0,
t(V1) = 1 and t(V2) = 2.

A possible alignment is:

0123

U = BAAA

| ||

V = B-AA

The edit distance of this alignment is 1, but the timestamps of the symbols in
positions 3 and 4 do not match. When we look at an other alignment like

0123

U = BAAA

|||

V = BAA-

we see that the edit distance itself does not change, but since the timestamps
do match in this case, we can say this alignment is better than the first one. �

In general, let U = U0U1 . . . Un be an ordered sequence of n+1 timestamped
atomic actions. The timestamps are denoted by t(Ui), where 0 ≤ i < n; so
t(U0) ≤ t(U1) ≤ . . . ≤ t(Un). Let ∆ti = t(Ui+1) − t(Ui) be the time difference
between two consecutive actions (0 ≤ i < n − 1). The first step is to combine
actions with (exactly) the same timestamp into multisets. The timestamp of
such a multiset is naturally defined as that of one of its elements. So we get an
ordered sequence of timestamped multisets.

Now we can still further combine consecutive multisets. This can for instance
be done if their timestamps are sufficiently close, or if there is some natural urge
to combine them, e.g., into years. In the latter case the new timestamp would
be the year, in the former the average could be chosen. However, in any case
we assume that the timestamps of all sequences under consideration are from a
finite set, e.g., years ranging from 1988 to 2008.

We slightly abuse the notation from the first paragraph, and still use ∆ti
as the distance between consecutive multisets from a given sequence. Clearly,
in many situations these ∆ti’s are not evenly distributed. Sometimes they are,
and constitute the same linear range for all sequences under consideration. If
this is not the case, there are two natural options. The first is to introduce
holes (empty multisets) to fill in the “missing” multisets. These holes arise in
particular when data is missing or absent, either on purpose or by accident.

7.4. EXPERIMENTS 69

If holes at the start or the end of a sequence are created, they can or cannot
be omitted — with care. The adding of empty multisets is called expansion,
and the resulting sequence is called expanded. The second option is just to omit
these holes, leading to shorter sequences of different lengths. These sequence are
referred to as non-expanded.

As in Example 1, we have to provide a distance value if a multiset (e.g.,
a hole in the case of expanded sequences) is aligned to a gap (-). Consider,
for example, aligning the multiset sequences {1, 2}, ∅, {3, 3} and {1, 2}, {3}. In
order to find an optimal layout, we compute the distance between ∅ and -, and
that between {3, 3} and -. We have chosen for a fixed large value, i.e., 1. Note,
however, that more intricate possibilities do exist.

7.4 Experiments

We shall now describe two datasets on which we shall apply the techniques de-
scribed in Section 7.3. The datasets are (unfortunately) not publicly available.
However, our focus is on showing the possibilities of our methods and not on effi-
ciency issues. These datasets should be viewed as examples of general databases
which contain time stamped bags of atoms.

First we provide a brief explanation of the terms used in this section. There
are two types of alignment we use, being global and local alignment as explained
in Section 7.2.

Furthermore there are several options to scale the distances between 0 and
1. We implemented two, namely an absolute one, which uses a constant (usually
the length of the largest sequence in the database) for scaling. Another option
is to use relative scaling, where we use the length of the largest sequence in the
pairwise alignment to scale the distances.

Finally we implemented two ways to deal with the absence of data. As ex-
plained in Section 7.3, we can have expanded and non-expanded sequences.

7.4.1 Criminal careers

The first database consists of approximately one million (anonymised) criminals
and their crimes grouped per year. In this particular case, we only know the
number of crimes in certain categories per criminal per year. The number of
categories is nine.

Example 3. In Table 7.1 we see a table of two criminals and the crimes they
committed over the years.

1999 2000 2001 2002 2003
A {1, 2} {3} {1, 1, 3} {2, 3} {3}
B {3, 3} ∅ {3, 4} {3, 3} {3, 4}

Table 7.1: Two criminal careers.

70 CHAPTER 7. ALIGNMENT OF MULTISET SEQUENCES

Per criminal, each year can be viewed as a multiset of crimes (1, 2, 3 and
4 are crimes in this example) and the entire criminal career is a sequence of
multisets. The second criminal has a hole for the year 2000. �

In order to do analysis on the behaviour of these criminals, we use the
previously defined distance measure for sequences of multisets. With this, we can
identify trends in criminal behaviour and try to extrapolate future behaviour.

As mentioned before, we try different combinations of alignment, scaling
and treatment of holes. To illustrate the difference between expanded and non-
expanded sequences, we first give an example.

Example 4. Suppose we have a criminal that has committed the following
crimes:

year 1998 1999 2002 2003 2004
crimes {1, 2} {3, 3} {2} {1, 2} {2, 3}

Table 7.2: Example criminal.

We can now use the non-expanded sequence ({1, 2}, {3, 3}, {2}, {1, 2}, {2, 3}).
The years 2000 and 2001 in which the perpetrator was inactive, are simply
ignored. The only thing that is preserved is the order in which the multisets of
crimes are committed.

We can also use the expanded sequence ({1, 2}, {3, 3}, ∅, ∅, {2}, {1, 2}, {2, 3})
for our alignment. The years where there was no activity are explicitly denoted
as empty multisets. This way both the order and the time aspect are preserved.
�

Depending on the type of analysis, one of these choices is to be preferred.
In the case of criminal careers, a hole in the activities may be the result of
a sentence (jail). Depending on various assumptions we may or may not want
to include the holes in our analysis. In this section we shall see the difference
between both choices. Furthermore, no weighing has been applied (meaning that
each type of crime is considered equal in severity).

The pictures below are obtained by a dimension reduction algorithm com-
parable to Multi Dimensional Scaling [5]. This technique iterates over all pairs
of data points and adjusts the position of these points on a 2-dimensional plane
according to the desired distance between them. It is a kind of competitive neu-
ral network which is halted when the position of the points no longer change.
The output of this algorithm is an embedding of the points in a 2-dimensional
torus (see Chapter 3). The usage of a torus improves the embedding for data
that is non-flat (i.e., can not be embedded in a normal 2-dimensional plane).
So one should be aware that the boundaries of the pictures are identified and
that the maximum distance in each of these pictures is actually half of the di-
agonal. We remark that we just use this technique to give an impression of the
results obtained by the usage of our metric. The distances are of importance,

7.4. EXPERIMENTS 71

Figure 7.1: Database of criminal
careers. Global alignment, absolute
scaling, non-expanded careers.

α

β

Figure 7.2: Database of criminal
careers. Global alignment, relative
scaling, non-expanded careers.

γ

δ

not the dimension reduction technique itself. Using other dimension reduction
techniques will provide similar results.

Figure 7.3: Database of criminal
careers. Local alignment, absolute
scaling, non-expanded careers.

Figure 7.4: Database of criminal ca-
reers. Local alignment, relative scal-
ing, non-expanded careers.

In Figures 7.1–7.4 we see a visualisation of 5,000 criminals; all pictures were
made with non-expanded careers. In Figure 7.1 we used a global alignment and
an absolute scaling factor. In Figure 7.2 we used a global alignment with a
relative scaling. Figure 7.3 is made with local alignment and an absolute scaling
factor and Figure 7.4 is made with local alignment and a relative scaling.

72 CHAPTER 7. ALIGNMENT OF MULTISET SEQUENCES

In the first two of these pictures, there is an emphasis on the length of the
careers, which in this case means the amount of years in which a criminal has
been active (since all non-active years are ignored). In Figure 7.1 for example,
we see a large cluster indicated with the letter α, these are all short careers. As
we move from α to β the length of the careers increases.

In Figure 7.2 the clusters indicated with γ and δ contain only long careers.
The other clusters have careers of roughly the same size and their elements have
been clustered according to the similarity in career.

In the other two pictures, we see something different emerging: the long
careers are no longer put into the same cluster, but more emphasis is given to
similarity in criminal activity. For example, the central cluster in Figure 7.3
consists mainly of criminals who have committed non-violent crimes involving
large sums of money.

Figure 7.5: Database of criminal careers. Local alignment, relative scaling, ex-
panded careers.

When we use expanded careers as in Figure 7.5, we see a far more scattered
image than in the previous ones. The reason for this is that the number of di-
mensions increases, combined with the fact that the gap penalty is constant. We
see that a series of holes in a career will result in a rather big distance, whereas
this is not the case with non-expanded careers. On an individual basis, this
technique can be useful because it is able to detect an overlap in imprisonment,
the clusters, however, will be very small (perhaps indicating criminals who work
closely together).

7.4.2 Access logs

As a second dataset we used the access log of a web server. For confidentiality
reasons we can not disclose the actual dataset. We looked at the class-A network
(i.e., the first number of the IP address) from which a hit in this log originated.

7.5. CONCLUSIONS AND FURTHER RESEARCH 73

Within a timeframe of sufficient length, these hits will result in a multiset since
more than one hit can originate from a specific network. Note that events with
different timestamps will be combined into multisets, and that usually holes
do not occur — except for periods when the web server was inaccessible, for
example.

A sequence of these multisets can be defined in multiple ways. First of all,
it is natural to choose a timeframe of constant length. For the choice of the
consecutive timeframe however, there are many possibilities. One can choose to
have an overlap in the timeframes; this will result in sequences having an overlap
by design. Especially for the analysis of access logs, this is a good choice, since
when visualising the data, the consecutive sequences will be placed next to each
other, giving a very natural view.

Of course one can vary the overlap; this will result in visualising different
aspects of the data. A large overlap will result in highly rigid strains of sequences,
which only a great similarity with other sequences can break. Decreasing the
overlap will result in more loose chains, and more emphasis is given to similarity
between sequences based upon their content instead of the chronological order.

In our experiment, we were interested in the class-A network from which a
hit in the log originated. We grouped all hits within 10 minutes together into a
multiset and made a sequence of multisets of length 10. The subsequent sequence
starts 10 minutes after the first one, therefore having an overlap of at least 80%
(only the first and last multiset can differ from its predecessor).

For this experiment we took the first twelve hours of the log and another
part of twelve hours, exactly one week later. Since all sequences in this test set
are of the same length, there is no difference between local and global alignment,
there is also no difference between absolute and relative scaling and finally, there
is no difference between expanded and non-expanded careers, since in the log
there are hardly any time windows of 10 minutes where no activity occurs.

In Figure 7.6 we see that a lot of consecutive sequences (denoted by num-
bers in this picture) are very close to each other and are neatly arranged in
ordered threads. The sequences denoted by the numbers 26 to 31 and 101 to
108 are prominent examples. This behaviour occurs throughout the picture, but
is perhaps not clearly visible because of the overlapping numbers.

In Figure 7.7 we see exactly the same visualisation, but we have replaced the
numbers with +s for a clearer view. Again, we see the ordered threads, but now
we see that some of these threads align next to each other and sometimes even
intersect. This indicates a similar behaviour in these consecutive sequences.

We also expected a correlation between sequences one week apart, but except
for the pair (8, 86) (in the top cluster of Figure 7.7), no evidence of this could
be found.

7.5 Conclusions and further research

We have introduced a new metric that is a natural way of defining a distance
between sequences of multisets. We have used the example of criminal careers

74 CHAPTER 7. ALIGNMENT OF MULTISET SEQUENCES

154153152151
150149148

147

146

145144143142141140139138137136135134133132131130

129128127126125124123122121120119118117116115114

113112111110109

108107106
105

104
103

102
101100

99

98
97
96959493929190898887

8685848382818079787776

75
74
73
72
717069

68

67666564636261605958

57
565554535251
50
4948474645

44
4342

414039383736353433

32

31
30
29282726

25242322212019

181716151413
1211

10

9
8

76
5 4 3210

Figure 7.6: Access log, two periods of 12 hours, 1 week apart.

to illustrate this point and to emphasise the flexibility of this new metric. As a
second example, we used access logs to show that our metric can be applied in
a different domain. We used a visualisation technique to show the merits and
possibilities of the method, highlighting several user-controlled features.

In practice, we often do not have real valued timestamps. Transactions are
usually grouped together in days, months or even years. This can simplify align-
ment, since absence of data can be viewed as an empty transaction (one with
no elements in it). Alignment of this type of sequences is straightforward.

A useful extension on alignment is the use of variable gap length (also
see [47]). In many practical cases, the fact that there is a gap in the align-
ment is more important than the length of the gap. As long as the gap penalty
increases with the length of the gap, and as long as the function governing the
gap penalty is concave, the triangle inequality of the edit distance holds. Unfor-
tunately, the efficiency of the alignment algorithm deteriorates. Because there is
more data dependency, the time complexity will be O(n3) and the space com-
plexity will increase to O(n2). Even when working with discrete timestamps,
one could consider less penalty for consecutive empty transactions.

We also would like to investigate the usage of weights for the crimes. At

7.5. CONCLUSIONS AND FURTHER RESEARCH 75

Figure 7.7: Same as Figure 7.6, with numbers replaced with +’s.

present, we have not done so because there is no clear weighing scheme for the
categories available yet.

Part III

DNA

77

Chapter 8

Selection of DNA Markers

Given a genome, i.e., a long string over a fixed finite alphabet, the problem is to
find short (dis)similar substrings. This computationally intensive task has many
biological applications. We first describe an algorithm to detect substrings that
have edit distance to a fixed substring at most equal to a given e. We then
propose an algorithm that finds the set of all substrings that have edit distance
larger than e to all others. Several applications are given, where attention is paid
to practical biological issues such as hairpins and GC percentage. An experiment
shows the potential of the methods.

8.1 Introduction

The genomes of several species have been available on the internet for a couple of
years now. Because of the availability in an electronic format, computers can be
used to do experiments that would normally take months or even years. Data
mining research incorporates the exploration of raw data, identifying genes,
designing primers, searching for differences between individuals or differences
between species. Common in many of these techniques is the use of unique
strings. Finding these strings is a challenging task and the main topic of this
chapter.

There are a number of techniques that benefit from the existence of unique
strings, segments of DNA that occur only once in the genome under considera-
tion. Finding primers, i.e., markers for specific positions of the genome, is one
of them. Primers can be used to identify genes that are associated with dis-
eases, but also the identification or classification of blood samples can be done
with primers. Furthermore unique strings can be used in phylogenetic research
to make an ancestral tree of species or populations. Microarrays are also popu-
lated with a large number of unique or nearly unique strings. All these problems
benefit from the possibility of generating large amounts of dissimilar substrings
of the genome.

Some work on marker selection has been done in the past, e.g., a pragmatic

79

80 CHAPTER 8. SELECTION OF DNA MARKERS

approach for a relative small number of markers can be found in [70]. In [20]
we see an approach that uses an alternative of the distance-based measure: the
similarity-measure in neural networks for the analysis of DNA and amino-acids
sequences; [56] is an overview of the application of Evolutionary Algorithms in
bioinformatics tasks like gene sequence analysis, gene mapping, DNA fragment
assembly and so on; [46] presents new techniques for recognizing promoters
(E. Coli) given an unlabelled DNA sequence based on feature extraction and a
neural network for classification; [58] is a practical application that computes
primer pairs for genome scale amplification, and also does extraction of coding
sequences and primer pair optimization; [27] is a primer design program that
uses fuzzy logic to calculate primer qualities, and also uses suffix trees to enhance
the spacial complexity; [37] looks at the multi criteria decision process of primer
design and reports that trade-off between deviations from ideal values of all
of the criteria can result in a considerable speedup. A practical application for
retrieving and assembling gene sequences can be found in [71], where afterwards
primer pairs are designed for amplification. For more information about the
related subject of multiple alignment see [72], where dot-matrices are viewed as
projections of unknown n-dimensional points and alignment for n sequences is
done by image reconstruction in an n-dimensional space with noise.

However, our major concern is not the design of individual primers, but
rather the creation of large sets of primers with special properties. In partic-
ular, these primers should be as dissimilar as possible. For example, in PCR
experiments, a lot of primers can be put together to do several experiments
at once. Because the amount of primers is very large in comparison with the
target DNA, chances are that the primers react with each other instead of with
the DNA. To prevent this, it is necessary to generate a set of primers that will
not react with each other. This is done by selecting only those primers that are
highly dissimilar from all other ones. This is a computationally challenging task,
because in principle all strings must be compared to each other.

In Section 8.2 we address the combinatorial background. The major algo-
rithms are described in Section 8.3. The Proximity Search algorithm finds all
occurrences of a string s in a given set of strings, allowing at most e errors. The
Distance Selection algorithm produces the strings that are at distance larger
than e to all other strings in the set. For both algorithms a trie is used for effi-
ciently storing the given set. As distance the so-called edit distance is employed,
with some possible variations. In Section 8.4 we mention practical applications
and their implications, e.g., the hairpin problem that arises from the occur-
rence of self-similar strings. An extensive experiment is reported in Section 8.5.
To make our task more biologically relevant we have put some additional con-
straints on the markers. Apart from being unique, the markers have to adhere
to minimum and maximum thresholds of GC content and bonding energy. An-
other constraint is on the combinatorial nature of the string itself: it should not
contain a repeating sequence. Our basic approach does not provide us with the
tools to deal with all these additional restrictions. In this section the method is
augmented to handle these biological requirements. We conclude in Section 8.6.

8.2. COMBINATORIAL BACKGROUND 81

8.2 Combinatorial background

In this section we sketch the combinatorial background to illustrate the memory
requirements. We have about 3·109 nucleotides in the human genome, so we also
have about 3 · 109 factors of a given length ℓ (for small ℓ). These huge numbers
pose a severe restriction on the necessary data structures.

We determine unique substrings by counting the occurrence of all strings
of a given length ℓ. The reason we chose for counting is because using a trie
would result in enormous memory usage. If for example we make a trie to
count the occurrences of length ℓ, we need 4ℓ nodes in the lowest level. The
number of internal nodes will be:

∑ℓ−1
i=0 4i = 1

3(4ℓ − 1), which makes the total
amount of nodes 1

3(4ℓ+1 − 1). The number of branches will be four times as
large, i.e., 4

3(4ℓ+1−1). In the case of ℓ = 18, we need a huge amount of memory
only to hold the trie. Assume that we represent each node by means of four
pointers. In this case each node consists of four 32-bits (= 4 bytes) pointers,
which makes the total amount of used memory 4 · 1

3(418+1 − 1) ≈ 3 · 1011 bytes
(341 Gigabytes). However, since we can only address 4 Gigabytes of memory
with a 32-bits integer, we have to use 64-bits pointers, which makes the amount
of memory 683 Gigabytes. Furthermore, we need some sort of counter at the
leaves of the trie (the nodes at the lowest level). This will increase the amount
of memory by at least another 418 bytes (another 64 Gigabytes).

Let us see how much memory it would take if we store all substrings of length
18 in the complete human genome in a trie. The worst case is when all strings
are unique (which is possible, since the number of combinations (418) exceeds
the number of substrings (3 · 109). Let us assume that up to depth 15 the trie
is complete and below this it has 3 · 109 nodes per level. Because the number of
nodes in the last couple of levels exceed 232 we have to use 64-bits pointers. Up
to level 15 there are

∑ℓ+1
i=0 4i = 1

3(4l+1−1) ≈ 3·109 nodes, all having four 64-bits
pointers. This results in a memory usage of approximately 106 · 109 bytes. The
levels 16 and 17 both have 3 · 109 nodes with one pointer, resulting in 48 · 109

bytes. The leaves only need to have a counter. This sums up to a total memory
usage of approximately 157 · 109 bytes, which is about 146 Gigabytes. This is
why we chose to use direct indexing into an array (which in this case only uses
64 Gigabytes of memory). Details are given in Section 8.5.1. In the next section,
however, we can still successfully apply tries, because in that case we already
have selected a relatively small subset of the set of all substrings.

8.3 Proximity search and distance selection

In this section we describe two algorithms that find (dis)similar substrings of a
given string. We consider the genome, for example that of a human, as a string
over a finite alphabet Σ. Usually Σ = {a, c, g, t}, but the alphabet may also
include other symbols when parts of the genome are unknown or marked. For
this genome we want to extract a set of substrings of length ℓ that are highly
dissimilar to each other. To make this precise we require that the selected strings

82 CHAPTER 8. SELECTION OF DNA MARKERS

have edit distance (or Levenshtein distance [45]) larger than e to all others. The
values of ℓ and e (1 ≤ e ≤ ℓ) are specified beforehand.

The edit distance between two strings is defined as the minimum number of
simple operations that is needed to transform one string into the other; a simple
operation is either a deletion, an insertion or a substitution of a single character.
If only substitutions are allowed we obtain the Hamming distance. Determining
the edit distance between two strings is an intensive operation (with quadratic
complexity), and if we want to calculate the edit distance between all strings,
we need quite a lot of calculation, of order O(ℓ2m2), where m is the amount of
strings.

By inserting the candidate strings in a trie T , we can calculate the edit
distance to all the other strings in a more efficient way. So we now assume that
the trie T contains a set of substrings of a given string; this set should not be
too large. Our basic algorithm, referred to as Proximity Search, tries to find a
string s in a trie with root T , allowing at most e errors, and proceeds as follows:

Proximity (T, e, s) ::
if MarkedAsEndpoint (T) and s = λ then

Visit (T);
else

for σ in Σ do

if Exists (T.σ) then

if Head (s) = σ then

Proximity (T.σ, e,Tail (s));
else if e > 0 then

Proximity (T.σ, e− 1,Tail (s));
if e > 0 then

Proximity (T.σ, e− 1, s); % insertion

Proximity (T, e− 1,Tail (s)); % deletion

Proximity Search.

The function Exists (T) returns true if and only if the node (pointer) T exists.
The function MarkedAsEndpoint (T) returns true if and only if the root of T is
special, i.e., marked as the end of a word. The function Visit (T) visits the root
node, and does the necessary bookkeeping, e.g., outputs the path and/or marks
the last node. The functions Head (s) and Tail (s) return the head and the tail
of the string s, respectively. Finally, T.σ is the pointer that leads to the child
that corresponds with σ; and λ denotes the empty string.

Essentially we traverse the trie in a normal depth first way, except for the
fact that we allow a number of errors. If we have read a character from the trie,
we compare it with the first character of the string to be matched, if it matches,
we do nothing, if it doesn’t match, we decrease the amount of allowed errors.
If the amount of allowed errors is less than zero, we exit the function. If we
encounter the end of a word in the trie (referred to as an “endpoint”), and there

8.3. PROXIMITY SEARCH AND DISTANCE SELECTION 83

are no characters left in the string, we have found a match. The end of a word
is marked with a flag in the node. This node does not need to be a leaf, so we
are able to compare words of different length. A similar approach can be found
in [2].

The kind of trie is of no importance; we can either use a binary trie or a
trie that has a maximum branching factor of that of the size of the alphabet
(although it is of course advisable to use a branching factor that is a divisor of
the size of the alphabet in the case that the branching factor is smaller). In our
illustration, we use the latter.

We describe the algorithm through two examples, where the second one also
allows for insertions and deletions. In both examples we assume that all nodes
are marked as endpoints. In the first example we do not use the last three lines
of our algorithm (responsible for insertions and deletions); effectively, we “visit”
all strings at at most a given Hamming distance from the original one. In the
examples we take Σ = {a, b}, and we always fill the trie with all combinations
in Σ∗ of the appropriate length.

Example 1 (Proximity Search, parallel alignment): In Fig. 8.1 we see a trie
with all combinations of 3 letters over the alphabet {a, b}; all nodes in the trie
are marked as endpoints. The word abb is highlighted as a path in the trie. If we
want to find all strings of length 3 at Hamming distance 1 from the word abb we
use our recursive algorithm. The black dots denote the strings that are found,
that is, all strings with at most one mismatch. Notice that in this example no
insertions or deletions are allowed.

So the outcome of our algorithm consists of aab, aba, abb and bbb. Because
of the nature of our algorithm a lot of branches are not traversed, for example
the subtrie under the path ba is skipped.

a b a b

a b a b a b a b

a b

Figure 8.1: All words in {a, b}∗ at at most Hamming distance 1 from abb

The complexity of this algorithm, where we do not allow for insertions and
deletions, is (ℓk)e+1 where ℓ is the length of the string we are searching for, k is
the size of the alphabet and e is the number of errors allowed. We assume that
the trie is full. If this is not the case, the complexity is lower than this, and k
must be replaced by some appropriate average.

Example 2 (Proximity Search, parallel alignment with insertions and dele-

84 CHAPTER 8. SELECTION OF DNA MARKERS

tions): In Fig. 8.2 we see all strings that are at most at edit distance 1 from
the word abb, where in this case we do allow insertions or deletions. Again, all
nodes in the trie are marked as endpoints.

a b

a b

a b

a b

a b a b a b

a b

a b a b

a b a b a b a b

a b

Figure 8.2: All words in {a, b}∗ at at most edit distance 1 from abb

In this case the complexity of the algorithm is (3ℓk)e+1 The extra 3 is the
result of the three times we enter the recursion per node. Henceforth, we shall
refer to this algorithm as Proximity Search.

However, we want to know which strings are highly dissimilar. To do that
we extend our algorithm in the following way. Again, let T be a trie containing
a set of substrings of a given string, where the endpoints are marked as such.
Initially, all these nodes are marked as “good”. Let L = L(T) be the set of all
endpoints in the trie. First we do a Proximity Search for each string s ∈ L.
If it finds more than one string, mark all these strings (including s itself) as
“bad”. If we are about to start a search for a string that is marked as “bad”,
skip it. The reason we can skip this search is because the distance between two
strings is symmetric, and therefore we shall encounter all strings that would
be marked as “bad” at a later stage in this part of the algorithm. This is an
optimization which makes the algorithm run faster as it progresses. When this
part of the algorithm is finished, we traverse the trie one more time and extract
all strings that are not marked as “bad”. The result is a set of strings that have
a distance to each other string that exceeds a preset distance e. We shall refer
to this algorithm as Distance Selection: it marks all strings in T as “bad” that
have distance ≤ e to some other string in T (except for itself):

8.3. PROXIMITY SEARCH AND DISTANCE SELECTION 85

DistanceSelection (T, L, e) ::
for s in L do

if not IsBad (s, T) then

R := empty trie;
Proximity (T, e, s);
if ManyEndPoints (R) then

MarkAsBad (T, R);

Proximity Search.

The function IsBad (s, T) returns true if and only if the node at the end of
the path s is marked as “bad”. The function ManyEndPoints (T) returns true
if and only if the trie T contains more than one node that is marked as an
endpoint. The function MarkAsBad (T, R) marks all strings that occur in R as
well as in T as “bad” in trie T . In this case, we let Visit (T) (from the function
Proximity) add a string (with last node marked as endpoint) to an initially
empty trie R of solutions it has encountered.

Example 3 (Distance Selection): Suppose the genome of a certain species is
built up out of the letters from the alphabet {a, b}, for example abaababaabaaba.
We consider all substrings of length ℓ = 5. There are only four unique substrings
in this genome, the other two (abaab and baaba) both occur three times. The
four unique strings are put into a trie as shown in Fig. 8.3, where the leaves are
the only endpoints. The first child is always an a and the second one is always
a b. After the application of the sequential Distance Selection algorithm (with

a

a b

a b a

b b

a b a

a a ab

Figure 8.3: Trie of unique strings

distance e = 1) only one string is left: the string ababa.

The Distance Selection algorithm can be improved by propagating the “bad”
label to the parent if all children are marked as “bad”. If we find a string in a
subtrie that is marked as “bad”, we do not have to search the rest of the subtrie
because all strings are already marked. This optimization can improve the speed

86 CHAPTER 8. SELECTION OF DNA MARKERS

of the Distance Selection algorithm a lot, especially if e is large.
To make this algorithm practical for DNA marker selection, we have to

perform some adjustments. Most of them are necessary to make the initial trie
as small as possible. If we don’t do that, the trie will most likely become too
large to handle, cf. Section 8.2. This has also been done in Example 3. However,
this means that the selected strings are far away from each other, but not
necessarily far away from all other substrings of the original genome. We shall
give the different steps in the next section.

For the purposes sketched in Example 1 and Example 2 we can also use a
directed acyclic graph (DAG) for memory efficiency, but in our examples we
use a trie. This is in the first place because the examples are more clear and
secondly because for the Distance Selection algorithm a DAG can not be used.
This is because in a DAG more than one path can lead to a node that is marked
as the end of a word. Marking such a node as “bad” could disqualify more than
one word in the trie and could lead to undesirable results.

8.4 Applications

We indicate some biological applications for the algorithms proposed in the
previous section.

8.4.1 Primer pair selection

Primers are used in techniques like the Polymerase Chain Reaction (PCR) [17]
and Multiplex Ligation-Dependent Probe Amplification (MLPA) [64].

For primer selection, we use the following scheme (not necessarily in this
order):

1. Determine all unique strings of length ℓ.

2. Filter for simple repeats.

3. Filter on GC-count.

4. Filter on bonding energy.

5. Put the remaining strings in a trie and use the Distance Selection algo-
rithm to select the best strings.

The resulting strings are guaranteed to be highly dissimilar to all other strings
in the resulting set. In general it is not true that they are highly dissimilar to all
strings in the original set. Because these strings are used for primers, the main
concern is that the primers do not stick together in real life experiments. The
fact that they may bind to other parts of the genome is of less concern. The
reason for that is because primers are used in pairs, and the chance of a primer
pair having the same problems, is neglectable.

8.4. APPLICATIONS 87

8.4.2 DNA marker selection

For DNA markers in general the story is somewhat different. In contrast with
primers, general DNA markers are not used in pairs. Therefore the emphasis
must be more on bonding to the DNA in the genome. Thus the edit distance
between the markers becomes as important as the edit distance between the
markers and all other substrings in the genome. Therefore we use a slightly
adapted technique to select them; essentially it is the same as the one we used
to select primers, except in the last step, where we use the Distance Selection
algorithm in a different way.

We again extract all strings of length ℓ from the genome and test them to
the trie with the Distance Selection algorithm (instead of the strings that are
in the subset (and in the trie)).

8.4.3 Other applications

With a couple of alterations, we can use the same techniques to check primers
for the formation of hairpins or primer-dimers. A hairpin in this context means
that a primer is its own reverse complement, or at least up to a certain degree.
The reverse complement is obtained by reversing the string and replacing every
nucleotide with its complement (A↔T, C↔G). If a primer’s head is the reverse
complement of its tail, chances are that the primer folds and binds to itself.
This is what we call a hairpin. A primer-dimer is a similar structure, where
two primers stick together. There are two sorts of primer-dimers: the ones that
stick with the heads to each other, and the ones that stick with the tails. Both
hairpins and primer-dimers are undesirable structures that should be removed
from a set of primers.

Although many programs can check things like this, we use the structure of
the trie again to check every combination at once. Another advantage is that we
can allow for one or more errors in the formation of hairpins or primer-dimers.

For the normal formation of primer-dimers, we first make the reverse com-
plement of the primer we are checking. The reason for this is that using the
reverse complement does not have any impact on the trie. Otherwise we would
have to use the normal reverse and check if a matches to t instead of itself.
With this approach, we don’t have to worry about hairpins any more, because
the algorithm above has already filtered them out. Take for example the primer
in Fig. 8.4; this is a primer that has formed a hairpin.

vwxyz
vwxyz

Figure 8.4: A primer in hairpin configuration

But in the algorithm, we have also tested the primer to itself in the config-
uration shown in Fig. 8.5, so there is no need to do it again.

88 CHAPTER 8. SELECTION OF DNA MARKERS

vwxyz
vwxyz

zyxwv
zyxwv

Figure 8.5: Two identical primers that could form a hairpin

8.5 Experiments

As an illustration of the methods described in this chapter, the pairwise align-
ment of many primers using a trie, we have done an experiment on a part of the
human genome. The reason we only took a part is that in this case the numbers
are somewhat easier to interpret.

In this experiment, we select pairs of primers as they are commonly used
in pairs in real life experiments like PCR. Rather than just selecting a set of
markers that are only tested for their uniqueness, we have chosen to implement
also some restrictions that have a biochemical motivation. Of course, restricting
the number of markers before computing their edit distance will reduce the
computational effort for that last step.

The computer on which we ran our experiment is a Pentium IV based ma-
chine at 1,8 GHz with 256 Megabytes of internal memory. The operating system
is SUSE Linux 9.2 with a 2.6.8 kernel.

We summarize the results of this experiment below. The last step of the
experiment was performed using the algorithmic technique sketched before. In
the remainder of the section we explain some additional details of our experi-
ment, involving the selection of unique primers and filtering the primers based
on combinatorial and biochemical properties.

The results are as follows:

Finding markers We took the human chromosome 1 from [69] (version June
26, 2006) which consists of 247,249,719 basepairs. In the first step of our analysis
we extracted all unique strings of length 16. There were 123,685,514 of them
(out of a grand total of 247,249,703). We need exactly 2 Gigabytes of memory
to count all occurrences of length 16 and we ran our experiment on a computer
with 256 Megabytes of memory. To be on the safe side, we chose the amount
of memory available for our program to be 128 Megabytes, so we had to make
16 passes over our input data. The program was run as root to ensure memory
locking. This process took 12 minutes and 49 seconds.

Filtering repeats Simple repeats are strings of low complexity, and in some
sense not of much interest to biologists. We denote a repeat in the following
way. By (x . . . x︸ ︷︷ ︸

s

)r we denote a repetition of r copies of a string of length s. So

for instance, (xxx)2 means a string of length 6 consisting of two equal halves of
length 3, like abbabb; note that the character x may represent different charac-

8.5. EXPERIMENTS 89

ters. In this notation, we filtered out all of the following simple repeats: (x)5,
(xx)5, (xxx)4, (xxxx)3, (xxxxxxx)2, (xxxxx)3, (xxxxxxxx)2 and (xxxxxx)3.
This resulted in a set with 115,695,993 elements. This program was also run as
root to ensure memory locking and took 2 minutes and 34 seconds.

GC content and temperature After that, we selected primer pairs based on
a GC count between 20% and 80 %, and a melting temperature between 60 ℃ and
63℃. The internal spacing of the primers was between 480 and 520 basepairs
and the spacing between the primer pairs had a minimum of 9,800 basepairs.
This resulted in 41,565 primers. This process took 28 seconds.

Edit distance After the Distance Selection (with respect to the formation of
primer-dimers and normal alignment) with minimum edit distance 2, there were
35,781 primers left. This process took took 8 minutes and 47 seconds. If we set
the edit distance to 3 only 7,530 primers remained.

This experiment shows that Distance Selection can make an enormous dif-
ference with respect to primer selection.

8.5.1 Finding markers: Determining unique substrings

We have chosen to count occurrences of length 16 strings, in a rather direct
way, making multiple passes over the input data. At each pass we count the
occurrences of a “block” of possible length 16 segments and write the result to
disk afterwards. This algorithm is designed to use linear disk access as much as
possible. All random access is done in memory only.

First, we convert the DNA data from ASCII to binary. This has three ad-
vantages. As the data is compressed by a factor of 4 (using only 2 bits per
nucleotide), we need to use only one-fourth of the original memory. As a di-
rect consequence, we can read data at 4 times the speed, for each pass. Finally,
calculation with base-4 numbers is trivial compared to string operations with
respect to the amount of calculation. The number of passes is directly related
to the amount of data that fits in the memory.

Assigning the right two bit code to each letter, we can even take advantage
of binary operators like the not operator, if we choose a and t as each others
complement in the encoding (as they are in nature), as well as c and g. Hence
we take the order a, c, g, t (which happens to be the alphabetical one), and
code these nucleotides as 00, 01, 10, and 11 in binary.

Since we are interested in strings of length 16 we keep track of the last 16
nucleotides. When we read a new nucleotide, the string is shifted to the right
by two bits, and the new two bits are shifted in (at the least significant end).
This is a very inexpensive method to keep track of the last read string.

Of course there are some additional complications in preprocessing the data.
The first one is that the data (as available via [69]) does not consist of only four
letters. It has an alphabet of 10 letters. These are the normal letters, {a, c, g, t},
the normal letters written in capital, {A, C, G, T}, and the letters {n, N}. The

90 CHAPTER 8. SELECTION OF DNA MARKERS

capitals denote repeating segments or sequences of “low complexity” in the
DNA (pieces of DNA that have a repetition with a period of 12 or less), which
are biologically less interesting regions. The letters n and N denote the absence
of data. We have decided to look for markers in the lower case segments of
{a, c, g, t} only.

However, we cannot simply erase the other letters. For example, suppose we
convert the string ATATATttNttaatNnn to ttttaat, then we will have found a
string which is not part of the original DNA. One way of circumventing this
problem is to remove all capitals and the letter n, and by keeping track of when
in the output file we need to re-calculate the current number. We put these
offsets in a separate table. In this way we avoid having to use additional escape
sequences in the binary code of the DNA, making the code shorter and faster
to read.

In our example we get two tables, one containing the binary equivalent of
tttta and one containing the offsets 6, 2, 1, 5 and 3. To decode these tables, we
take the offsets table and first write 6 n’s, then we decode 2 nucleotides, then
we write 1 n and 5 more nucleotides. Finally we write 3 more n’s, which results
in nnnnnnttnttaatnnn, the same string we had before, except all the capitals
have been converted to n’s.

Our input data stores only a single strand of the DNA, but in practice
one considers both strands. Each time we find the occurrence of a string, we
also have to take into account the reverse complement of the string, as this
is also present in the DNA. Rather than counting both strings however, we
have chosen to take one of the two as a representative of the pair, incrementing
only the counter of the smallest string (lexicographically ordered). Comparing
strings can be done with the standard < operator, another advantage of the
binary recoding. Of course, we keep track of the reverse complement on the fly,
shifting and adding new bits (but in the other direction). Again this is a rather
inexpensive operation.

In an additional experiment we have selected unique primers not only for the
first chromosome, but also for the full genome. As an illustration, in Fig. 8.6 we
see the number of occurrences of unique strings of length 12 for each consecutive
series of 100,000 basepairs on the full human genome. The vertical dotted lines
denote the chromosome boundaries; these are ordered as follows: 1 to 22, then
X, Y, and finally the mitochondrial DNA. This mitochondrial DNA is so small
that it does not show up in these graphs. The histogram shows the “hotspots”
where many markers are found. The white bands (at offsets 1,300 and 15,900
for example) are due to unknown or unstable DNA. It is missing in our input
(a large series of n’s).

8.5.2 Filtering out simple repeats

Strings containing short repetitive substrings are not of much interest to biolo-
gists, and that is why we filter out such “simple repeats”.

This implies that we have to perform a certain pattern matching on the
markers found. Since the markers all have a fixed length we do not have to

8.5. EXPERIMENTS 91

 0

 10

 20

 30

 40

 50

 60

 70

 0 5000 10000 15000 20000 25000 30000 35000

nu
m

be
r

of
 o

cc
ur

re
nc

es

offset

Figure 8.6: Occurrence of unique strings in the human genome

search for repetitions of unbounded length. Instead we can determine the un-
wanted substrings beforehand and search for them in the markers. We have
stored the simple repeats in a trie, using the technique of Aho-Corasick [1],
which is basically Knuth-Morris-Pratt [38] pattern matching, but applied to a
set of patterns rather than a single pattern. This makes it possible to scan for
all forbidden repeats in parallel.

reject

a

b

a

b

a

b

a
a

b
b

b

a

b

a

b

a

b

a

Figure 8.7: Wired repetition trie

After computing all simple repeats they are stored in a trie. As an illustra-
tion, Fig. 8.7 shows a trie to filter out the repetitions (x)3 and (xx)2 over the
two letter alphabet {a, b}, i.e., aaa, bbb, abab and baba. Note that aaaa and
bbbb are already excluded. Whenever we reach the node at the right, we have

92 CHAPTER 8. SELECTION OF DNA MARKERS

found a simple repetition and we can disqualify that part of the input. This trie
is “wired” by dashed edges that are added in a preprocessing phase, asserting
that we always keep track of the longest prefix of one of the unwanted strings
while scanning the marker. As usual with the Aho-Corasick method, we have
to take special care when one of the unwanted repeats is a substring of another
one, like aa and baabaa for the repeats (x)2 and (xxx)2.

8.5.3 GC content and temperature

The practical use of primers in experiments is governed by bounds on the GC

content of the primer and its melting temperature, and tools like Primer3 [60]
allow the user to specify bounds. Keeping track of the GC-percentage is an easy
task if we keep track of the symbols that are shifted in and out of the current
substring of length 16, while reading the data. So when the least significant
nucleotide of the reverse complement is c or g, we decrease the GC-count (it is
shifted out in the next step). Then we shift in the new nucleotide, and if the least
significant nucleotide on the original strand is c or g, we increase the GC-count.
We actually use both the string itself and its reverse complement, because it is
faster to extract the least significant bits.

A formula to calculate the melting temperature of a piece of DNA is given
in [7]. We chose to implement this in an algorithm acting like the one calculating
the GC-percentage.

The formula for the temperature is mainly based on the successive pairs
occurring in the fragment, each of the pairs contributing to the bonding energy of
the primer. We keep track of the two last nucleotides on the reverse complement
(the first ones to be shifted out), and the next ones shifted in, and we can update
the melting temperature by a simple table lookup. Internally we use integers to
represent the temperature, to avoid rounding errors.

8.6 Conclusions and further research

We conclude that we can select primers and DNA markers that have a high
chance of performing well in real laboratory experiments and microarrays.

As can be seen from our experiment in Section 8.5, most primers are dis-
qualified because of the GC content and bonding energy, so intuitively one might
think that this should be the first step in our analysis. This might be a good
solution if the GC content and bonding energy are known in advance, which is
often not the case in practice. With the current solution we can still tinker with
the options, and that is the reason that the focus is primarily on unique strings.

Instead of working with tries we would like to experiment with Compact
Directed Acyclic Word Graphs (CDAWG) [33]; this datastructure behaves like
a trie (for our purposes), but is more compact. Furthermore the online algorithm
stated in [33] is very attractive for these kinds of problems.

At present, the output of the Distance Selection algorithm is not used iter-
atively. We could for example still use the other primer in a primer pair if one

8.6. CONCLUSIONS AND FURTHER RESEARCH 93

primer is discarded. Since all these ideas are still very new, lots of experiments
should be done.

Chapter 9

Substring Differences in

Genomes

In this chapter, we introduce a new way of determining the difference between
full genomes of different species, based upon the occurrence of small substrings
in both genomes. Basically we count the number of occurrences of all substrings
of a certain length and use that to determine to what extent two genomes
are alike. Based on these numbers several difference measures can be defined,
e.g., a Euclidean distance in the vector space that has the same dimension as
the number of possible substrings of a certain length, a multiset distance, or
other measures. Each of these measures can be applied for phylogenetic tree
generation. We also pay attention to some visualisations and several statistics.

9.1 Introduction

Determining how one species relates to the other can be done in many ways. One
of the many techniques is to look at the DNA. At this moment, many genomes
can be downloaded from the internet [69], although not all genomes are complete
yet. Also the genomes of many individuals of a given species become publicly
available. In this chapter, we do not look for genes or markers in the genome,
or any other annotation whatsoever, but just at the occurrence of substrings.
Therefore the techniques described here can be used for a number of other
problems, ranging from chromosome resemblance to the detection of plagiarism
or document similarities for search engines.

In Section 9.2, we will describe a way to compare two long strings by counting
rare substrings. This seemingly simple approach is highly non-trivial because
the number of substrings is enormous. We have tried a number of ways to do
the computation efficiently, like caching, using trees and hash tables, but all
these methods need far too much memory. Note that if the substrings are small,
these methods are just fine and solve the problem in linear time, but we deal
with rather large substrings (length 14 and above). The only way to count

95

96 CHAPTER 9. SUBSTRING DIFFERENCES IN GENOMES

large substrings was to use an exponential (in memory) approach, but with the
adaptation that when the amount of available memory is not enough, we make
multiple passes over the data; in each pass we search for all substrings with a
pre-set prefix.

The count of all substrings is reintegrated in the genome data, so we know
the exact position. Unfortunately, the DNA at a certain position in the genome
of one species does not have to correspond to the DNA at the same position of
the genome of another species. This annotated genome can be used in a large
variety of applications. One of them, (using the co-occurrence of substrings as
a metric) we shall discuss in this chapter.

We will introduce some elementary statistics and visualisations in Section 9.3,
a distance measure for the comparison of two species in Section 9.4 and based
on this the generation of phylogenetic trees in Section 9.5. In Section 9.6 we
introduce a distance measure for multisets which we apply to our data. We
conclude in Section 9.7.

9.2 Determining rare factors

The discovery of (almost) unique substrings of a given length n in a genome is
not as trivial as it might seem. We use the following strategy:

• Convert the entire genome to a binary sequence, using a suitable encoding
scheme.

• Use a sliding window to get all subsequences of length n.

• Count these subsequences and remember in which part of the genome each
of the subsequences were found, by remembering the starting points.

9.2.1 Conversion

In Table 9.1 we give one of the possible binary encodings for nucleotides. How-
ever, these values were not chosen at random. Note that the complementary
letters are also complementary in the binary encoding, i.e., A and T are com-
plementary, and so are 00 and 11. There is an advantage in such a scheme,
because the calculation of the complement of such a string is a very simple and
fast operation. We shall see further on why this is important.

nucleotide A C G T
encoding 00 01 10 11

Table 9.1: Binary encoding of the nucleotides

Generally speaking, using a binary encoding scheme is beneficial because
some operations can be done in parallel (the complement of sixteen nucleotides
can be calculated with one operation on a 32-bit machine) and a binary encoding
uses only one fourth of the memory it would usually take.

9.2. DETERMINING RARE FACTORS 97

9.2.2 Sliding window

After we have converted the DNA to binary data, we use a sliding window to
get all subsequences of a certain length. If we are searching for substrings of
length n, we make an array of size 4n. Each time we move the window we get
another position in the array, and we simply increase the value of that array
element. An advantage of this sliding window is that we only have to read one
value to generate the next index. We simply shift the old index to the left and
concatenate the newly read value to the end of the sequence.

The size of the array is the main difficulty in this approach. To give an
indication: for n = 16, we have to make an array with 416 entries, and if each
entry consists of one byte, the array will be 4 Gigabytes large. The size of the
input files have no influence on this array.

To make sure that all random access is done in memory, we use a memory
locked part of the main memory. In practice, this will probably be smaller than
the amount of required memory. Therefore, we make multiple passes over our
input where in each pass a prefix is fixed. For example, if we require 4 Gibabytes
of memory and we can only lock 2 Gigabytes, we make two passes over the input.
In the first pass the fist bit is fixed and has the value 0. This means that in the
first pass all substrings are counted that start with an A or C. This implies that
the amount of physical memory used must always be a power of 2.

For substrings of length 18 and below, this is probably the most efficient
data structure to work with, this is because the genome of most species is so
large that most (if not all) combinations occur. For the human genome we know
that about 95% of the substrings of length 18 are unique. If we put this data in a
space-efficient data structure like a trie, we need about 650 Gigabytes (twice as
much as one might expect, but this is because we need to use 64 bits pointers).
If we use a PATRICIA tree [52], we still need about 100 Gigabytes (we base this
assumption on the fact that the branching factor of the tree is very high).

The reason that we chose to use strings with a length between 12 and 18, is
because using larger strings than 18 are not needed (most of the substrings of
this length are unique) and below 12 there are too few unique substrings.

9.2.3 Counting

Since DNA is double stranded, we can not simply count all substrings, because
the reverse complement of a string is essentially the same as the original string.
Therefore we look at the other index as well. One of these two indexes has the
smallest numerical value, and this one will be used as representative of the pair.
Keeping track of the reverse complement is just as easy as keeping track of the
original string. The difference is that we shift the old index to the right and
insert the inverted newly read value to the beginning of the sequence. If we now
encounter either of those sequences, we increase the value of the sequence with
the lowest binary representation. This way both the sequence and its reverse
complement are mapped to the same position in the counting table.

This results in a table where every possible subsequence is counted, however

98 CHAPTER 9. SUBSTRING DIFFERENCES IN GENOMES

due to physical limitations (the size of the table in memory and the size of the
annotated genomes that will be written to disk afterwards), we chose to count up
to three, so if there is a three in this table, it means the corresponding substring
is present three or more times. To be precise, each nibble in the counting table
is used as an entry. This reduces the amount of memory for the table by a factor
of two, but it complicates writing and reading in the table slightly; for an even
substring length (ending in A or G) we do an And with the value 0× 0F and in
the other case we do a Shift Right of 4 bits.

When counting the substrings in two species, we use the first half of the
value of each element in the counting table for species A and the second half
for species B (leaving only two bits for each species). This is quite convenient
since we can look up the number of occurrences of a certain substring in both
species at once.

9.3 Elementary statistics and visualisations

Now we can calculate a number of elementary statistics and do some visualisa-
tions. For example, we can give the number of unique strings of a given length
and even the position of these strings. As a first example, in Table 9.2 the
number of unique substrings of a certain length is shown. Note that each unique
string of length n automatically accounts for (m−n)+1 unique strings of length
m, if m > n (a string of length n is a substring of (m− n) + 1 strings of length
m).

size 11 12 13 14 15 16
Human 210 47,668 1,335,256 15,412,176 85,793,791 346,600,204
Chimp 300 62,149 1,509,471 16,636,054 87,029,038 346,319,725

Table 9.2: Number of unique substrings in Human and Chimpanzee

Of course, this does not account for all unique strings of high length as can be
seen in Table 9.2. The values grow far more rapid than the ones dictated by the
formula above. Statistically, given a random string, the larger the length of the
substring, the higher the chance is that a given substring is unique. This is the
reason we find far more unique strings of higher length.

In Figure 9.1 we see the occurrence of unique strings in a Human. We vi-
sualise the number of unique strings of length 12, for each consecutive series of
100,000 base pairs. The vertical dotted lines denote the chromosome boundaries;
these are ordered as follows: 1 to 22, then X, Y, and finally the mitochondrial
DNA. This mitochondrial DNA is so small that it does not show up in these
graphs. The white bands located at offset 1300 and 15900, for example, are due
to unsampled or highly unstable DNA, and in either case it is missing from our
input.

In Figure 9.2 we only plot the occurrences above 15. In Figure 9.3 we have
plotted the number of occurrences of strings that are unique in the human

9.3. ELEMENTARY STATISTICS AND VISUALISATIONS 99

 0

 10

 20

 30

 40

 50

 60

 70

 0 5000 10000 15000 20000 25000 30000 35000

Figure 9.1: Occurrence of unique strings in Human

 20

 30

 40

 50

 60

 70

 0 5000 10000 15000 20000 25000 30000 35000

Figure 9.2: Occurrence of unique strings (length above 15) in Human

genome and not present in the genome of a chimp. Figure 9.4 shows unique
strings for a chimp. The chromosomes are ordered 1 to 22, then Un, X, Y,
and finally the mitochondrial DNA. This can for example be used to select
markers to put on a microarray [63] to make a distinction between two (or more)
species. In Figure 9.3 and 9.5, we see where these markers can be found. Another
application is the selection of primers [23], commonly used in techniques like
Multiplex Ligation-dependent Probe Amplification (MLPA) [64] and Polymerase
Chain Reaction, or PCR [17]. We see the regions where the number of primers
are abundant in Figure 9.2 for the human and in Figure 9.4 for the chimp.

100 CHAPTER 9. SUBSTRING DIFFERENCES IN GENOMES

 20

 30

 40

 50

 60

 70

 0 5000 10000 15000 20000 25000 30000 35000

Figure 9.3: Occurrence of unique strings present in Human and not in Chimp

 20

 30

 40

 50

 60

 70

 0 5000 10000 15000 20000 25000 30000 35000

Figure 9.4: Occurrence of unique strings in Chimp

9.4 Distances and weights

After the substrings of length n have been counted, we make a matrix where two
species are represented by counting the number of strings that occur a times in
species A and b times in species B for 0 ≤ a, b ≤ 3. This is a method that loses
a lot of information, but we have a very small matrix left to work with and as
we shall see further on, the information in this matrix is still sufficient to make
a difference between species. The 4×4 matrix M , referred to as the counting

9.4. DISTANCES AND WEIGHTS 101

 20

 30

 40

 50

 60

 70

 0 5000 10000 15000 20000 25000 30000 35000

Figure 9.5: Occurrence of unique strings present in Chimp and not in Human

matrix, contains the following data:

M = M(A, B) = (mi,j) =

m0,0 m0,1 m0,2 m0,3

m1,0 m1,1 m1,2 m1,3

m2,0 m2,1 m2,2 m2,3

m3,0 m3,1 m3,2 m3,3

Where mi,j denotes how many substrings are present i times in species A and j
times in species B. As mentioned before, we only count up to three, so, e.g., the
element m1,3 is the amount of substrings that are present once in species A and
three or more times in species B. All elements that contribute to the difference
are underlined to indicate the relevant elements of the matrix.

We want to use the following distance formula:

dist(S, T) =
|S\T |+ |T\S|
|S ∪ T | , (9.1)

where S and T are sets. We divide the symmetrical difference of set S and T by
the maximum value of the numerator. If both S and T are the empty set, we
let dist(S, T) = 0. The reason we choose for this particular distance measure is
because it takes the sizes of the sets into account (also see [24]). To adjust this
formula to work with our matrix, we have to rewrite it as follows (for species A
and B):

dist(A, B) =

∑3
i=1(m0,i + mi,0)

4ℓ −m0,0
, (9.2)

where M = M(A, B) is the counting matrix of the pair (A, B) and 4ℓ −m0,0 is
the total number of substrings that occur in at least one of A and B.

One of the shortcomings of this distance is that only the absolute differ-
ences are used, i.e., only the substrings present in one of the species. Another

102 CHAPTER 9. SUBSTRING DIFFERENCES IN GENOMES

shortcoming is that all differences are weighted equally, although it is perhaps
reasonable to assume that a substring that is present once has less significance
than one that is present more than three times.

To compensate for these shortcomings, we use a weighting matrix W :

W = (wi,j) =

0 α3 α4 α5

α3 0 α0 α2

α4 α0 0 α1

α5 α2 α1 0

The values of α0, . . . , α5 are weights applied to the matrix M . They are ordered
in ascending order of significance, e.g., we assume that the value of m2,1 is less
significant than m3,2, and therefore we should set α0 to a lower value than α1.
We base this assumption on the fact that if a substring is present zero times in
species A and two times in species B, this is a more significant difference than
once in species A and two times in species B for example. We now define

distW (A, B) =

∑
i,j wi,jmi,j

max(α0, . . . , α5)(4ℓ −m0,0)
, (9.3)

where W is the weighting matrix and M is the counting matrix. We calculate
the weighted sum of the relevant matrix elements and divide by the maximum
possible difference. Note that this is a generalization of Equation 9.2, if we
choose α0 = α1 = α2 = 0 and α3 = α4 = α5 = 1, then we get Equation 9.2
again.

9.5 Experiments and results

We have done two types of experiments. The first one is the comparison of a
pair of species, the second one is extracting a distance from the first experiments
and to combine a number of species in a distance matrix.

9.5.1 Raw data

For the following results, we have chosen to look at sequences of length n = 14.
Table 9.3 is the raw comparison matrix of a human genome and that of a

chimp. Notice that the number at position (0, 0) is huge and non-informative.
The other numbers on the main diagonal are also relatively large. This might
mean that there are lots of similarities between the two species. The number at
(3, 3) is also very large, but that is because it is actually the sum of all points
(x, y) with x, y ≥ 3. Actually, all points (3, x) and (x, 3) with x ∈ N are less
informative than the other numbers in this matrix, because we can not be sure
if the 3 “is actually” a 3.

We will compare these figures with the difference between a cow and yeast. In
Table 9.4, we see a quite different picture. The matrix is even less symmetrical.
We see two reasons. Firstly a cow and yeast are quite different species, and

9.5. EXPERIMENTS AND RESULTS 103

Human
0 1 2 ≥ 3

0 150,783,349 4,486,933 1,216,093 498,090
1 3,212,656 7,352,318 3,737,739 2,333,341

Chimp 2 602,927 2,621,970 4,011,169 4,907,515
≥ 3 145,530 950,955 2,697,230 78,877,641

Table 9.3: Differences between Human and Chimp

secondly the genome of yeast is a lot shorter than that of a cow. Therefore a
given random string is more likely to be present in a cow, so the matrix is what
we would expect it to be.

Yeast
0 1 2 ≥ 3

0 153,248,529 544,363 21,518 5,229
1 15,023,538 548,614 25,707 5,624

Cow 2 11,361,444 489,848 26,124 5,459
≥ 3 78,706,409 7,293,480 876,010 253,560

Table 9.4: Differences between Yeast and Cow

9.5.2 Visualisation of the raw data

For the following results, we have chosen to look at sequences of length n = 16.
In Figure 9.6 we have plotted an interpolation of the values in the matrix M

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0
 0.5

 1
 1.5

 2
 2.5

 3

-5e+08
 0

 5e+08
 1e+09

 1.5e+09
 2e+09

 2.5e+09
 3e+09

 3.5e+09

ChimpHuman

Figure 9.6: Human-Chimp raw data

104 CHAPTER 9. SUBSTRING DIFFERENCES IN GENOMES

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0
 0.5

 1
 1.5

 2
 2.5

 3

-5e+08
 0

 5e+08
 1e+09

 1.5e+09
 2e+09

 2.5e+09
 3e+09

 3.5e+09

CowHuman

Figure 9.7: Human-Cow raw data

of the human genome and that of the chimp. Notice that although the matrix
contains lots of information, the graph is almost symmetric, this is also the case
for the almost identical Figure 9.7. This is because the similarities between the
two species are much larger than the differences. Another disturbing factor is
the point at (0, 0): this is where all substrings that are not present in either
species are. If the length of the substrings becomes too large (like here), this
peak will be enormous. This is why we chose to leave out similarities in the next
two pictures. In Figure 9.8 the difference between the human genome and that

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0
 0.5

 1
 1.5

 2
 2.5

 3

-2e+07
 0

 2e+07
 4e+07
 6e+07
 8e+07
 1e+08

 1.2e+08
 1.4e+08

ChimpHuman

Figure 9.8: Human-Chimp raw data, main diagonal removed

of a chimp is plotted. The main diagonal has been removed from the data to
emphasize the differences (the values at these positions are interpolated). The
same technique is used in Figure 9.9, where the difference between human and
cow is plotted.

9.5. EXPERIMENTS AND RESULTS 105

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

CowHuman

Figure 9.9: Human-Cow raw data, main diagonal removed

9.5.3 Comparison of many species

We have taken the genomes of the species shown in Table 9.5 from [69].

species abbreviation genome length
Bee B 5.13 · 108

C elegans Ce 1.02 · 108

Chicken Ci 1.13 · 109

Chimp C 3.15 · 109

Cow Co 3.60 · 109

Dog D 2.58 · 109

Drosophila melanogaster Dm 1.35 · 108

Human H 3.15 · 109

SARS S 3.69 · 104

Yeast Y 1.24 · 107

Table 9.5: Species

In Table 9.6 we give the distance matrix, where we took αi = 1 for all i.
Notice that since the metric is symmetric, we do not have to show the upper
half of the matrix, because we can just mirror it in the main diagonal. Also
note that although we have not done any weighting, some things are already
remarkable, for instance: SARS is at distance 0.999 to all of the other species
(as expected) and the lowest distance (0.446) is the one between a human and
a chimp.

In Table 9.7 we took α0 = 1, α1 = 2, α2 = 4, α3 = 10, α4 = 20 and α5 = 1.
These values are taken quite arbitrary. The reason we chose for this particular
set of values, is because if we assume that the two genomes are normal random
strings, this would be a nice weighting scheme.

106 CHAPTER 9. SUBSTRING DIFFERENCES IN GENOMES

Y S H Dm D Co C Ci Ce B
Y .000
S .999 .000
H .997 .999 .000
Dm .990 .999 .979 .000
D .997 .999 .740 .977 .000
Co .997 .999 .744 .977 .750 .000
C .997 .999 .442 .977 .748 .752 .000
Ci .995 .999 .834 .968 .833 .833 .830 .000
Ce .988 .999 .984 .959 .982 .983 .982 .973 .000
B .991 .999 .971 .957 .969 .969 .969 .959 .953 .000

Table 9.6: Distance matrix for αi = 1 for i = 0, 1, 2, 3, 4, 5

Y S H Dm D Co C Ci Ce B
Y .000
S .507 .000
H .442 .443 .000
Dm .517 .525 .431 .000
D .463 .464 .293 .450 .000
Co .456 .457 .294 .443 .301 .000
C .459 .461 .142 .447 .300 .301 .000
Ci .514 .518 .340 .491 .349 .348 .346 .000
Ce .513 .524 .435 .494 .454 .447 .450 .495 .000
B .519 .526 .433 .494 .451 .445 .448 .488 .491 .000

Table 9.7: Distance matrix with weight (large α3 and α4, see text)

From these distance matrices we can make a phylogenetic tree [11]. We chose
to make two visualisations, one rooted tree in which the distances are not pre-
served and one unrooted tree where distances are preserved as much as possible.
Of course, since this is only a projection of the actual data, more trees can be
drawn apart from these ones. In Figure 9.10 and 9.11 we see a rooted tree in
which distances are not preserved. This is only to give the reader a global view
of the distances between the given species. In Figure 9.12 and 9.13 we see an
unrooted tree with partially preserved distances. The path from yeast to SARS
for example is shorter than the path from yeast to cow. We see a difference in
the warm-blooded animals when we compare these trees, the triple Dog, Cow,
Chicken seem to be affected by our choice of weights. These differences can be
observed in both the rooted and the unrooted trees.

Figure 9.10, 9.11, 9.12 and 9.13 are constructed by means of the Fitch-
Margoliash [21] algorithm. They are visualisations of the matrices in Table 9.6
and 9.7.

9.6. A MULTISET DISTANCE MEASURE 107

Figure 9.10: Phylogenetic tree of Table 9.6

Figure 9.11: Phylogenetic tree of Table 9.7

9.6 A multiset distance measure

In this section we use a distance measure designed for multisets (see Chapter 6).
This metric is parametrised by a function f that, given a few restrictions, will
give a valid metric. (We shall adhere to these restrictions.)

The distance measure is defined as follows:

df (X, Y) =

∑n
i=1 f(xi, yi)

|S(X) ∪ S(Y)| .

The numerator is the sum of values of a function f , that indicates the difference
between the number of elements in one category. In this case, the difference in
occurrences of a particular piece of DNA. The denominator is the number of

108 CHAPTER 9. SUBSTRING DIFFERENCES IN GENOMES

Figure 9.12: Unrooted phylogenetic tree of Table 9.6

Figure 9.13: Unrooted phylogenetic tree of Table 9.7

categories, in this case, the number of strands of DNA present in either of the
samples.

The function we use is:

f(x, y) =
|x− y|

(x + 1)(y + 1)
.

The reason for using this function is quite intuitive. If a particular strand
of DNA is present once in one of the samples, and not in the other sample,
the function will return distance 1/2. But when this strand is present in one

9.7. CONCLUSIONS AND FURTHER RESEARCH 109

sample once and twice in the other, the distance will be 1/6. In other words,
the fact that two samples share a piece of DNA or not, is more important than
the number of occurrences, though the latter is included.

Y S H Dm D Co C Ci Ce B
Y .000
S .505 .000
H .618 .623 .000
Dm .511 .519 .582 .000
D .610 .615 .315 .574 .000
Co .613 .618 .320 .577 .323 .000
C .611 .616 .150 .574 .320 .325 .000
Ci .581 .587 .389 .542 .388 .390 .386 .000
Ce .516 .528 .590 .490 .582 .584 .582 .549 .000
B .532 .542 .571 .493 .563 .565 .562 .531 .491 .000

Table 9.8: Distance matrix as calculated with the multiset metric

Figure 9.14: Phylogenetic tree of Table 9.8

Using the metric described above, we obtain the distance matrix shown in
Table 9.8. The rooted and unrooted phylogenetic trees are shown in Figure 9.14
and 9.15.

9.7 Conclusions and further research

We have shown that determining (rare) substrings in a genome is possible up to
a certain length. With the result we can make an annotated genome from which
we can extract lots of data. The cumulative count of strings that occur n times

110 CHAPTER 9. SUBSTRING DIFFERENCES IN GENOMES

Figure 9.15: Unrooted phylogenetic tree of Table 9.8

in species A and m times in species B, where n, m are at most 4, still contains
enough data to make a phylogenetic tree.

The techniques described in this chapter could also be used to discover Single
Nucleotide Polymorphisms or SNP’s [55] by using two individuals of the same
species as input.

For further research we could make a distance measure based on (some of)
the unique strings themselves, not the amount of them. This way we could make
a very accurate distinction between species or individuals.

Chapter 10

Visualising Genomes in 3D

using Rauzy Projections

We propose a novel visualisation method for DNA and other long sequences over
a small alphabet, which is based on the construction of the family of Rauzy
fractals for infinite words. We use this technique to find repeating structures
of widely varying length in the input string as well as the identification of
coding segments. Other properties of the input can also come to light using
this technique.

10.1 Introduction

Projections of high dimensional structures onto a low dimensional surfaces (e.g.
2D, 3D) are commonly used to make structures in the data insightful.

Recognising patterns in long sequences is difficult for humans. The longer the
sequence, the harder it gets. Furthermore, if the alphabet used for this sequence
is small, the task gets even harder. If there are (small) deviations allowed in the
patterns to be recognised, it will be nearly impossible without the aid of some
sort.

In this chapter, we introduce a visualisation technique for DNA sequences
using a projection onto a surface to investigate patterns in the DNA.

In Section 10.2 we explain the underlying idea of making fractals out of infi-
nite words, which we adapt for our purposes in Sections 10.3. In Section 10.4 we
show the visualisation results. Finally, related work is discussed in Section 10.5
and we conclude in Section 10.6.

10.2 Background

In this section, we describe the approach of Rauzy [59] to construct a fractal
from an infinite word.

111

112 CHAPTER 10. VISUALISATION USING RAUZY PROJECTIONS

Figure 10.1: Standard Rauzy fractal Figure 10.2: A “Rauzy” fractal us-
ing a different substitution

Given a finite alphabet Σ, we denote the set of all finite strings over this
alphabet as Σ∗. In this section we take Σ = {0, 1, 2}.

Rauzy investigated the so-called tribonacci substitution:

σ :

0 → 01
1 → 02
2 → 0

This substitution induces a homomorphism, again denoted by σ, from Σ∗ to Σ∗.
It is uniquely extended to Σ∗ by requiring σ(u ·v) = σ(u) ·σ(v) for all u, v ∈ Σ∗,
where · denotes concatenation of strings.

Since 0 is a prefix of σ(0), the following holds: σn(0) is a prefix of σn+1(0)(n =
1, 2, . . .). Also |σn(0)| ≥ n → ∞ when n → ∞. Therefore (σn(0))n∈N defines a
unique infinite word that has σn(0) as finite prefix for each n ∈ N. This word
is invariant under the substitution (where we simultaneously substitute each
letter). We call this word an accumulation point or fixed point of this substitu-
tion. For the given substitution σ, we get the word 010201001020101020100 . . .
as fixed point.

Rauzy used this infinite word to make a plot in 3-dimensional space, starting
in (0, 0, 0) and doing one step in the x-direction whenever a 0 occurs, a step in
the y-direction when a 1 occurs and a step in the z-direction when a 2 occurs.
All steps are of equal length. This results in a so-called broken halfline which
“approximates” a halfline ℓ starting in the origin. The existence of this halfline
is discussed in [59].

Now we can take the plane through the origin which is perpendicular to the
line ℓ and project the broken halfline onto this plane. This results in the Rauzy
fractal, depicted in Figure 10.1. The colour of the projected points depends on
whether the next step from the original point on the broken halfline is in the
x-, y-, or z-direction.

10.3. APPLICATION TO DNA 113

When a different substitution is used, fractals can be made in the same
manner. We see such a fractal in Figure 10.2. The substitution in applied here
is:

σ :

0 → 01
1 → 2
2 → 0

10.3 Application to DNA

We can apply a similar technique on a DNA sequence. First we have to make a
plot in 4-dimensional space by associating each nucleotide (A, C, G and T) with
one of the spacial dimensions and analogous to the construction described above
building a broken halfline, but now in four dimensions.

Then we can make a 2- or 3-dimensional projection by either choosing a
plane or a hyperplane through the origin and by projecting the broken halfline
upon that (hyper)plane.

One big difference with the Rauzy approach in three dimensions is that the
choice of the line ℓ which approximates the broken halfline is not pre-determined.
A DNA string does not have the nice mathematical properties that the tri-
bonacci fixed point possesses, so there is no clear preference for ℓ. One choice
could be the line going through the begin- and endpoint of the broken halfline.
This is possible since a DNA string is finite. However, this will result in differ-
ent choices for ℓ for different DNA strings. This might not be the best choice.
Therefore, we shall look (only) at a solution that uses a fixed ℓ for every input.

If ℓ is chosen well, we expect to find the following in the projected image:

• A non-predictable walk for information rich parts of the DNA.

• A true random walk for random parts.

• Lines (or approximate lines) for repeating parts of the DNA.

• Large copies of substrings in the DNA, that can be easily visualised.

The term non-predictable walk should be taken loosely, because we know that
coding DNA (and therefore information rich DNA) has a higher GC-content than
other parts of the DNA. Therefore, the walk will tend to go into the GC-direction,
and second, DNA is clearly not random.

Since we have so much freedom in the choice of ℓ, we can also look at the
projection in the following way: In principle, we can choose four vectors in the
plane and use these four vectors to make the projection. Associate the first
vector with the nucleotide A, the second one with C, and so on. Now, to make an
insightful projection, we want the four vectors to have the following properties:

• The vectors should be of comparable length.

114 CHAPTER 10. VISUALISATION USING RAUZY PROJECTIONS

• The four vectors should add up to 0.

• Every subset of three vectors should be independent.

By adhering to these properties, we arrive in the same point if we consecutively
plot a combination of all four letters, this would thus indicate a perfect repeat
of those four letters, or a repeat of all four letters in any order.

When using an interactive program like gnuplot to visualise the data, the
angle between the vectors can easily be adjusted (especially when making 2-
D projections) by stretching the image. We must however, make sure that the
vectors are not chosen parallel to the axes, otherwise the stretching will only
result in the alteration of the length of the vectors. This property of interactive
programs, along with the ability to zoom in, makes the exploration of dense
areas in our visualisation possible.

We made an interactive web application available via [44]. This demonstra-
tion has access to the first 1,000,000 base pairs of the Human chromosome 1 and
can visualise any substring. For performance reasons, we added a step size to
make the rendering of large substrings possible. The data is located on the web-
server and it is kept small for practical purposes. Making more data available
will have no effect on the visualisation application.

10.4 A number of DNA sequence visualisations

In this section, we shall make several projections, on both two and tree dimen-
sional hyperplanes. In each case, we choose a set of vectors for the nucleotides
A, C, G and T. We denote these vectors by vA, vC, vG and vT respectively.

10.4.1 Projections in three dimensions

For three dimensions, there is, apart from symmetry, a natural choice of the
projection line ℓ and therefore the resulting vectors. This set is the one that
defines a tetrahedron (centred at the origin), as shown in Table 10.1. In other
words, the convex hull of the set of endpoints of these vectors forms a tetrahe-
dron. All vectors in this set have the same length, the four of them sum up to
0 and each three-element subset is independent. Furthermore, the vectors are
uniformly distributed, i.e., the angle between each pair of vectors is equal.

1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

Table 10.1: Vertices of a tetrahedron

We associate the first row with vA, the second row with vC and so on. In the
remainder of this section, we shall use these vectors for our projections.

10.4. A NUMBER OF DNA SEQUENCE VISUALISATIONS 115

-9000-8000-7000-6000-5000-4000-3000-2000-1000 0 1000-2000
-1000

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

-1000

 0

 1000

 2000

 3000

 4000

 5000

AC

GT

0
5000

10000
150002000025000300003500040000450005000055000600006500070000750008000085000

90000
95000100000105000110000115000120000125000

130000

135000140000145000150000
155000

Figure 10.3: The first 160,000
nucleotides of the human Y-
chromosome

-9000
-8000

-7000
-6000

-5000
-4000

-3000
-2000

-1000
 0

 1000

-2000
-1000

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

-1000
 0

 1000
 2000
 3000
 4000
 5000 AC

GT

0

5000

1000015000
20000

25000
30000

3500040000450005000055000600006500070000750008000085000

9000095000
100000

105000
110000115000 120000125000

130000

135000 140000145000150000
155000

Figure 10.4: The first 160,000
nucleotides of the human Y-
chromosome

As input for our three dimensional projection, we use the first 160,000 nu-
cleotides of the human Y-chromosome [69] (build 18). This results in the picture
shown in Figure 10.3. For clarity, we include the four vectors and the associated
nucleotides in the visualisation.

In Figure 10.4, we see the exact same data and projection, but shown from
a different angle.

This figure is a better representation of the data, more structures can be seen
directly from this angle. We shall discuss the findings in detail in Section 10.4.2.

 0
 2000

 4000
 6000

 8000
 10000

 12000
 14000

 16000

-1500

-1000

-500

 0

 500

-1000
 0

 1000
 2000
 3000
 4000
 5000 A

C
G

T

40000 45000

50000

55000
60000 65000

70000

75000

80000
85000 90000

95000

Figure 10.5: Offset 40,000–100,000 of the human chromosome 1

In Figure 10.5, we see a part of the first human chromosome, again, we shall
discuss the findings in detail in Section 10.4.2.

116 CHAPTER 10. VISUALISATION USING RAUZY PROJECTIONS

10.4.2 Projections in two dimensions

Since, in two dimensions, there is no way to choose four vectors of equal length,
of which all subsets are independent, we must choose the vectors in such a way
that the lengths differ, to satisfy the independency constraint. Therefore we can
choose e.g., the following vectors for A, C, G and T respectively: (5, 7), (−7, 6),
(8,−4) and (−6,−9). By choosing these vectors, we have the property that every
pair is independent, and the lengths are comparable. For practical purposes, we
have chosen integer coordinates.

As input we use the first 160,000 nucleotides of the human Y-chromosome [69]
(build 18). This results in the following projection:

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

-10000 0 10000 20000 30000 40000 50000

0

5000

10000

15000
20000

25000

30000

3500040000450005000055000600006500070000750008000085000

90000

95000
100000

105000

110000

115000
120000

125000

130000

135000

140000 145000

150000

155000

Figure 10.6: The first 160,000 nucleotides of the human Y-chromosome

The numbers in this plot denote the offset in the DNA, the plot starts in
(0, 0). We immediately see that two of the three assumptions from Section 10.3
can be verified for this input data. There are lines, which denote (approxi-
mate) repeats. For example, the line that starts somewhere near (−3000, 4500)
and ends in (−7500, 9000) contains a large number of approximate copies of
the string CCCCGCTCCTCCCCTCGGGACCACCCCAGA. In the region near (23000, 9000),
marked by the offset 115000, we see a part where the walk seems random. More-
over, we can see an extremely large substring from (−2500, 3000) to (5500, 8500)
(approximately offset 5000 to 25000) that repeats itself from (11000, 6000) to
(18500, 11500) (approximately offset 93000 to 107000).

10.4. A NUMBER OF DNA SEQUENCE VISUALISATIONS 117

-14000

-12000

-10000

-8000

-6000

-4000

-2000

 0

 2000

-18000 -16000 -14000 -12000 -10000 -8000 -6000 -4000 -2000 0 2000

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

90000

95000

Figure 10.7: Offset 40,000–100,000 of the human chromosome 1

In Figure 10.7 we see a part of the human chromosome 1. No large repeats are
noticeable in this part of the genome, but we can clearly see some short repeating
sequences. The string TTC for example, is repeated a number of times from
position (−2600,−2200) to (−3200,−2700). Another obvious short repeat AAG,
can be seen from position (−11200,−2200) to (−9700,−1200), approximately.

-5000

 0

 5000

 10000

 15000

 20000

 25000

-18000 -16000 -14000 -12000 -10000 -8000 -6000 -4000 -2000 0 2000

0

5000

10000

15000

Figure 10.8: The complete mitochondrial DNA

In Figure 10.8, we see the DNA of mitochondria found in the human species.

118 CHAPTER 10. VISUALISATION USING RAUZY PROJECTIONS

The most noticeable is the drift in the C-direction. Further analysis show that
this is due to the relatively low content of G-nucleotides in the mitochondrial
DNA (13% versus 25–31% for the other nucleotides).

10.5 Related work

In the DNA-rainbow [3] project, plots of DNA were made by assigning a colour
to a nucleotide; green for Adenine, red for Thymine, white for Guanine and
blue for Cytosine. Undetermined positions were given a grey colour. Then the
nucleotides were plotted to a standard bitmap with a width of 770 pixels. The
resulting pictures, viewable with any picture viewer and/or editor, give a colour-
ful impression of the DNA. Most of the pictures appear random, but in some
parts, repeating parts of the genome can be seen in the form of diagonal lines. A
nice property of this approach is that GC-rich areas (which are associated with
encoding DNA), can be spotted right away.

An obvious shortcoming of this approach is the fixed width of the picture.
Short repeating sequences which have a total length of under 770, will not stand
out. Very long repeating sequences will not stand out either, since it will look like
a random block that is repeated. However, for the detection of short repeating
sequences (that are repeated for a large number of times), this approach seems
very well suited.

In [62], several visualisation methods are investigated. One of them is es-
sentially the same as in the previously described project, but here the width
of the columns can be changed to detect (small) repeats of different length.
Other visualisation methods include information hiding by using less colours,
and usage of expert knowledge to emphasise some subsequences, like start and
stop codons. Furthermore, a translation to amino acids can also be made with
this technique. According to the authors, their proposed method is useful for
sequences up to a length of 2,000 base pairs.

In [53], several visualisation techniques are reviewed: the “random walk” vi-
sualisation, as well as a fractal visualisation and a visualisation based on entropy-
like parameters which are calculated within a sliding window. The “random
walk” resembles the visualisation discussed in this chapter, with the exception
that the directions that are associated with the nucleotides are fixed and the
technique is limited to two dimensions.

10.6 Conclusions and further research

We have shown that all our hypothesis were confirmed; the simple repeats indeed
show up as lines in our visualisation. What we did not expect were the large
repeats (the thick lines mentioned in Section 10.4), although it is a rather nice
result. Furthermore, we detected a large approximate repeat on the first part of
the Y-chromosome. This repeat is already known by genetic experts, but it is

10.6. CONCLUSIONS AND FURTHER RESEARCH 119

nice to have detected it with no excessive calculation, like the alignment of two
large sequences, provides hope for further exploration of DNA in this way.

As recommendations for further research, we suggest using colours as an
extra coding scheme. By doing this, we can see the direction of a line in our
visualisation. For example, it is hard to distinguish between simple repeats AAG
and CTT because they are almost each others inverse. The lines resulting from
these repeats will have approximately the same slope (see Figure 10.7 for an ex-
ample of this), although their contents is different. The only ways to distinguish
them at this point is to measure the exact slope, or by looking at the offsets and
thereby finding the orientation of the line. By using a colour coding scheme, the
colour of the line will represent the orientation directly.

An other interesting extension would be to make the line ℓ along which we
project the 4-D structure onto a surface a parameter that can be changed in
real time. A potential user could try to find a projection, better suited for his
or her purposes.

Bibliography

[1] A. Aho and M. Corasick. Efficient string matching: An aid to bibliographic
search. Communications of the ACM, 18:333–340, 1975.

[2] A.N. Arslan. Efficient approximate dictionary look-up for long words over
small alphabets. Lecture Notes in Computer Science, 3887:118–129, 2006.
LATIN, Theoretical Informatics: 7th Latin American Symposium.

[3] K. Bierkandt and J. Bierkandt. DNA rainbow. 2009. Website available via
http://www.dna-rainbow.org/contact.html, Retrieved April 3, 2009.

[4] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[5] I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory and
Applications. Springer, 1997.

[6] J.R. Bray and J.T. Curtis. An ordination of the upland forest communities
of southern Wisconsin. Ecol. Monogr., 27:325–349, 1957.

[7] K.J. Breslauer, R. Frank, H. Blöcker, and L.A. Marky. Predicting DNA du-
plex stability from the base sequence. Proc. Natl. Acad. Sci. USA, 83:3746–
3750, 1986.

[8] J. Broekens, T.K. Cocx, and W.A. Kosters. Object-centered interactive
multi-dimensional scaling: Ask the expert. In Proceedings of the 18th
Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2006),
pages 59–66, 2006.

[9] J.S. de Bruin, T.K. Cocx, W.A. Kosters, J.F.J. Laros, and J.N. Kok. Data
mining approaches to criminal career analysis. In Proceedings of the Sixth
IEEE International Conference on Data Mining (ICDM 2006), pages 171–
177. IEEE, 2006.

[10] J.S. de Bruin, T.K. Cocx, W.A. Kosters, J.F.J. Laros, and J.N. Kok. Onto
clustering of criminal careers. In Proceedings of the Workshop on Practical
Data Mining: Applications, Experiences and Challenges (ECML/PKDD-
2006), pages 90–93. IEEE, 2006.

[11] P.Y. Chan, T.W. Lam, and S.M. Yiu. A more accurate and efficient whole
genome phylogeny. Asia-Pacific Bioinformatics, pages 337–351, 2006.

121

122 BIBLIOGRAPHY

[12] T.K. Cocx and W.A. Kosters. A distance measure for determining simi-
larity between criminal investigations. In Advances in Data Mining, Pro-
ceedings of the Industrial Conference on Data Mining 2006 (ICDM2006),
volume 4065 of LNAI, pages 511–525. Springer, 2006.

[13] T.K. Cocx, W.A. Kosters, and J.F.J. Laros. Enhancing the automated
analysis of criminal careers. In SIAM Workshop on Link Analysis, Coun-
terterrorism, and Security 2008 (LACTS2008). SIAM Press, 2008.

[14] T.K. Cocx, W.A. Kosters, and J.F.J. Laros. Temporal extrapolation within
a static clustering. In Foundations of Intelligent Systems, Proceedings of
ISMIS 2008, volume 4994 of LNAI, pages 189–195. Springer, 2008.

[15] T.K. Cocx, W.A. Kosters, and J.F.J. Laros. Temporal extrapolation within
a static clustering. In Proceedings of the 20th Belgium-Netherlands Con-
ference on Artificial Intelligence (BNAIC 2008), pages 295–296, 2008.

[16] M.L. Davison. Multidimensional Scaling. John Wiley and Sons, New York,
1983.

[17] C.W. Dieffenbach and G.S. Dveksler. PCR Primer: A Laboratory Manual.
CSHL Press, Cold Spring Harbor, USA, 1995.

[18] T. Duchamp and W. Stuetzle. Geometric properties of principal curves in
the plane. Lecture Notes in Statistics, 109:135–152, 1996.

[19] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–
160, 1984.

[20] I. Fischer. Similarity-based neural networks for applications in computa-
tional molecular biology. Lecture Notes in Computer Science, 2810:208–218,
2003.

[21] W.M. Fitch and E. Margoliash. Construction of phylogenetic trees. Science,
155:279–284, 1967.

[22] I.K. Fodor. A survey of dimension reduction techniques. technical report.
Lawrence Livermore National Laboratory, 2002.
http://www.llnl.gov/tid/lof/documents/pdf/240921.pdf.

[23] G. Gibson and S. Muse. A Primer of Genome Science. Boyle Biochemistry
and Molecular Biology Education, 2nd edition, 2005.

[24] G. Glazko, A. Gordon, and A. Mushegian. The choice of optimal distance
measure in genome-wide datasets. Bioinformatics, 21:iii3–iii11, 2005.

[25] E.H. de Graaf, J.N. Kok, and W.A. Kosters. Clustering improves the ex-
ploration of graph mining results. In C. Boukis, A. Pnevmatikakis, and
L. Polymenakos, editors, Proceedings of the 4th IFIP International Con-
ference on Artificial Intelligence Applications and Innovations (AIAI07),
pages 13–20. Springer, 2007.

BIBLIOGRAPHY 123

[26] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge Uni-
versity Press, 1997.

[27] S. Haas, M. Vingron, A. Poustka, and S. Wiemann. Primer design for large
scale sequencing. Nucleic Acids Research, 26(12):3006–3012, 1998.

[28] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer, 2001.

[29] T.J. Hastie and W. Stuetzle. Principal curves. J. Amer. Statist. Assoc.,
84:502–516, 1989.

[30] G. Hinton and S.T. Roweis. Stochastic neighbor embedding. Advances in
Neural Information Processing Systems, 15:833–840, 2003.

[31] D.S. Hirschberg. Algorithms for the longest common subsequence problem.
Journal of the ACM, 24(4):664–675, 1977.

[32] H.J. Hoogeboom, W.A. Kosters, and J.F.J. Laros. Selection of DNA mark-
ers. IEEE Transactions on Systems, Man, and Cybernetics Part C, 38:26–
32, 2008.

[33] S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri,
and Pavesi G. On-line construction of compact directed acyclic word
graphs. Discrete Applied Mathematics, 146(2):156–179, 2005.

[34] P. Jaccard. Lois de distribution florale dans la zone alpine. Bull. Soc. Vaud.
Sci. Nat., 38:69–130, 1902.

[35] I.T. Jolliffe. Principal Component Analysis. Springer, 2nd edition, 2002.

[36] T. Kadota, M. Hirao, A. Ishino, M. Takeda, A. Shinohara, and F Matsuo.
Musical sequence comparison for melodic and rhythmic similarities. In
Proceedings of the Eighth International Symposium on String Processing
and Information Retrieval, pages 111–122. IEEE, 2001.

[37] T. Kämpke, M. Kieninger, and M. Mecklenburg. Efficient primer design
algorithms. Bioinformatics, 17(3):214–225, 2001.

[38] D. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings. SIAM
J. Computing, 6:323–350, 1977.

[39] T. Kohonen. Self-Organizating Maps. New York: Springer-Verlag, 1997.

[40] W.A. Kosters and J.F.J. Laros. Metrics for mining multisets. In Research
and Development in Intelligent Systems XXIV, Proceedings of AI-2007,
pages 293–303. Springer, 2007.

[41] W.A. Kosters and J.F.J. Laros. Metrics for mining multisets. In Proceed-
ings of the 20th Belgium-Netherlands Conference on Artificial Intelligence
(BNAIC 2008), pages 329–330, 2007.

124 BIBLIOGRAPHY

[42] W.A. Kosters and J.F.J. Laros. Visualisation on a closed surface. In Pro-
ceedings of the 19th Belgium-Netherlands Conference on Artificial Intelli-
gence (BNAIC 2007), pages 189–195, 2007.

[43] W.A. Kosters and M.C. van Wezel. Competitive neural networks for cus-
tomer choice models, in e-commerce and intelligent methods. Studies in
Fuzziness and Soft Computing, 105:41–60, 2002.

[44] J. F. J. Laros. Visualising DNA with Rauzy projections, 2009. Web ap-
plication available via http://www.liacs.nl/home/jlaros/dnavis/ [retrieved
April 3, 2009].

[45] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Doklady Akademii Nauk SSSR, 163(4):845–848, 1965. En-
glish translation in Soviet Physics Doklady 10(8):707–710, 1966.

[46] Q. Ma, J.T.L. Wang, D. Shasha, and C.H. Wu. DNA sequence classification
via an expectation maximization algorithm and neural networks: A case
study. IEEE Transactions on Systems, Man, and Cybernetics Part C —
Applications and Reviews, 31(4):468–475, 2001.

[47] M.S. Madhusudhan, M.A. Marti-Renom, R. Sanchez, and A. Sali. Variable
gap penalty for protein sequence-structure alignment. Protein Engineering
Design and Selection, 19(3):129–133, 2006.

[48] P.C. Mahalanobis. On the generalised distance in statistics. Proceedings of
the National Institute of Science of India, 12:49–55, 1936.

[49] H. Mannila and P. Ronkainen. Similarity of event sequences. In Proceedings
of the International Symposium on Temporal Representation and Reason-
ing, pages 136–139. IEEE Computer Society, 1997.

[50] C. McCue. Data Mining and Predictive Analysis: Intelligence Gathering
and Crime Analysis. Butterworth-Heinemann, 1st edition, 2007.

[51] J. Mena. Investigative Data Mining for Security and Criminal Detection.
Butterworth-Heinemann, 1st edition, 2003.

[52] D.R. Morrison. PATRICIA — Practical algorithm to retrieve information
coded in alphanumeric. Journal of the ACM, 15(4):514–534, 1968.

[53] A. Mylläri, T. Salakoski, and A. Pasechnik. On the visualization of the
DNA sequence and its nucleotide content. SIGSAM Bull., 39(4):131–135,
2005.

[54] S.B. Needleman and C.D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Mol.
Biol., 48:443–453, 1970.

[55] A. Oliphant, D.L. Barker, J.R. Stuelpnagel, and M.S. Chee. SNPs: Discov-
ery of markers for disease. BioTechniques, 32:S56–S61, 2002.

BIBLIOGRAPHY 125

[56] S.K. Pal, S. Bandyopadhyay, and S.S. Ray. Evolutionary computation in
bioinformatics: A review. IEEE Transactions on Systems, Man, and Cy-
bernetics Part C — Applications and Reviews, 36(5):601–615, 2006.

[57] K. Pearson. On lines and planes of closest fit to systems of points in space.
Phil. Mag., 2(6):559–572, 1901.

[58] G. Raddatz, M. Dehio, T.F. Meyer, and C. Dehio. Primearray: Genome-
scale primer design for DNA-microarray construction. Bioinformatics,
17(1):98–99, 2001.

[59] G. Rauzy. Nombres algébriques et substitutions. Bull. Soc. Math. France,
110:147–178, 1982.

[60] S. Rozen and H.J. Skaletsky. Primer3, 1998.
http://www-genome.wi.mit.edu/genome software/other/primer3.html.

[61] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2nd edition, 2002.

[62] P. Rutherford, C. Churcher, and J. McCallum. An interactive visualisation
for investigating DNA sequence information. In APVis ’04: Proceedings
of the 2004 Australasian Symposium on Information Visualisation, pages
101–107. Australian Computer Society, Inc., 2004.

[63] M. Schena, D. Shalon, R.W. Davis, and P.O. Brown. Quantitative moni-
toring of gene expression patterns with a complementary DNA microarray.
Science, 270(5235):467–470, 1995.

[64] J.P. Schouten, C.J. McElgunn, R. Waaijer, D. Zwijnenburg, F. Diepvens,
and G. Pals. Relative quantification of 40 nucleic acid sequences by multi-
plex ligation-dependent probe amplification. Nucleic Acid Research, 30(12,
e57):1–13, 2002.

[65] J. Setubal and J. Meidanis. Introduction to Computational Molecular Bi-
ology. Thomson Learning, 1997.

[66] T. Smith and M. Waterman. Identification of common molecular subse-
quences. J. Mol. Biol., 147:195–197, 1981.

[67] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison-Wesley, 2005.

[68] Cocx T.K., W.A. Kosters, and J.F.J. Laros. An early warning system for
the prediction of criminal careers. In MICAI 2008: Advances in Artificial
Intelligence, volume 5317 of LNAI, pages 77–89. Springer, 2008.

[69] UCSC Genome Bioinformatics. http://genome.ucsc.edu/, version April 21,
2006 [retrieved April 3, 2009].

126 BIBLIOGRAPHY

[70] P.M. Vallone and J.M. Butler. Autodimer: A screening tool for primer-
dimer and hairpin structures. BioTechniques, 37:226–231, 2004.

[71] C. Varotto, E. Richly, F. Salamini, and D. Leister. GST-PRIME: A genome-
wide primer design software for the generation of gene sequence tags. Nu-
cleic Acids Research, 29(21):4373–4377, 2001.

[72] M. Vingron and P.A. Pevzner. Multiple sequence comparison and consis-
tency on multipartite graphs. Adv. Appl. Math., 16:1–22, 1995.

[73] A.A. Westen, A. S. Matai, J.F.J. Laros, H.C. Meiland, M. Jasper, W.J.F.
de Leeuw, P. de Knijff, and T. Sijen. Tri-allelic SNP markers enable anal-
ysis of mixed and degraded DNA samples. Forensic Science International:
Genetics, 3(4):233–241, 2009.

Nederlandse Samenvatting

Deze samenvatting is als volgt opgebouwd. In de eerste drie delen beschrijven
we de hoofdlijnen van dit proefschrift, in het laatste deel geven we een overzicht
van de verschillende hoofdstukken.

Data Mining

Data Mining is informeel gesproken het extraheren van voorheen onbekende en
vooral interessante patronen uit data. In het algemeen wordt dit gerealiseerd
door het gebruik van een scala aan technieken, waarbij elk van deze technieken
een ander licht werpt op de data. Omdat we te maken hebben met een ware
data-explosie, is er meer vraag naar dit soort methoden. De ontwikkeling van
snellere hardware stelt ons ook in staat deze technieken toe te passen.

DNA

Desoxyribonuclëınezuur (DNA) is een groot molecuul dat genetische informatie
bevat. Het bestaat uit vier letters (A, C, G, T) of nucleotiden. Deze nucleotiden
vormen grote lineaire structuren die chromosomen heten.

De laatste decennia zijn methodes ontwikkeld die deze woorden efficiënt
kunnen verwerken; deze vallen onder de naam sequencing. Deze technieken lezen
het DNA en geven lange woorden als uitvoer. Door deze te analyseren is het
mogelijk om verschillen tussen soorten en zelfs individuen te vinden. Ook is het
mogelijk om, zonder de specifieke verschillen te kennen, een evolutionaire boom
te maken op basis van korte deelwoorden.

Metrieken

In dit proefschrift wordt een nieuwe afstandsmaat of metriek gebruikt. Deze
afstandsmaat, ontworpen voor multisets, is in grote mate configureerbaar. Er is
een speciale functie nodig, die in het algemeen door een expert op een bepaald
domein wordt gekozen. Deze functie moet het verschil tussen twee voorkomens
van een element binnen een multiset uitdrukken. Ter illustratie, het verschil

127

128 NEDERLANDSE SAMENVATTING

tussen een persoon die geen fietsen steelt en iemand die er één heeft gestolen
is verdedigbaar groter dan het verschil tussen iemand die 100 fietsen steelt en
iemand die er 101 steelt. Dit verschil moet worden uitgedrukt in een functie.

Deze afstandsmaat was eigenlijk ontworpen voor de analyse van criminele
activiteiten, maar bleek door het vervangen van de expert-functie ook goed
toepasbaar in andere domeinen. Dit komt in de latere hoofdstukken terug.

Overzicht

Dit proefschrift is opgebouwd uit drie delen. In het eerste deel richten we ons op
de toepassing van Data Mining in de wetshandhaving, met name de toepassing
van het deeltjesmodel in dit gebied. Het deeltjesmodel is een dimentiereductie-
techniek, waarbij elk object in de invoer geassocieerd wordt met een punt in een
ruimte. De punten worden in eerste instantie willekeurig in de ruimte gezet en,
afhankelijk van de onderlinge afstand (gedefinieerd op de objecten waarmee ze
geassocieerd zijn) naar elkaar toe verplaatst of van elkaar af geduwd, al naar
gelang ze te ver van elkaar af staan, of te dicht bij elkaar staan.

In het tweede deel nemen we de metrieken die in het eerste deel worden
genoemd onder de loep. Het derde deel is gericht op DNA. We laten met name
zien dat de gebruikte metrieken ook van toepassing zijn op het gebied van de
moleculaire genetica.

In Hoofdstuk 2 geven we een uitgebreid overzicht over het deeltjesmodel
en zijn toepassingen. In Hoofdstuk 3 bekijken we een specifieke variant van het
deeltjesmodel, namelijk degene waarin we een torus als uitvoeroppervlak gebrui-
ken. In Hoofdstuk 4 introduceren we een nieuwe manier om fouten die gemaakt
worden in dimensiereductietechnieken op te sporen en in kaart te brengen. In
Hoofdstuk 5 gebruiken we de Levenshtein-afstand tussen twee carrières van cri-
minelen om een overeenkomst in de geschiedenis van deze carrières te vinden.
Ook gebruiken we gelijkende carrières om voorspellingen te doen.

In Hoofdstuk 6 gaan we in op de afstandsmaat voor multisets. De restricties
op de expertfunctie, die een parameter is voor deze afstandsmaat, worden be-
sproken. Hoofdstuk 7 houdt zich bezig met de uitbreiding van de afstandsmaat
voor multisets tot die van een afstandsmaat voor sequenties van multisets.

In Hoofdstuk 8 gaan we in op het probleem waarbij we korte, unieke deel-
woorden willen vinden in grote woorden. Hoofdstuk 9 behandelt een nieuwe
manier om de afstand tussen twee genomen te geven. Hoofdstuk 10 gaat in op
een nieuwe manier om DNA te visualiseren, waarbij gebruik wordt gemaakt van
Rauzy-projecties.

Curriculum Vitae

Jeroen Laros is geboren in Den Helder, Noord-Holland, op 27 juli 1977. Van 1989
tot 1997 doorliep hij achtereenvolgens MAVO, HAVO en VWO op de scholen-
gemeenschap Oscar Romero te Hoorn en het Bornego College te Heerenveen.
Van 1997 tot 2005 studeerde hij Informatica aan de Universiteit Leiden, waar
hij al vanaf zijn eerste jaar betrokken was bij het systeembeheer, eerst bij de
helpdesk, en daarna als systeembeheerder. Vanaf 2005 was hij verbonden aan
het Leiden Institute of Advanced Computer Science als promovendus, waar hij
zijn promotieonderzoek uitvoerde binnen het NWO-project DALE. Eveneens
gaf hij in die jaren verschillende werkgroepen. Sinds het voorjaar van 2009 is hij
werkzaam als postdoc bij het Leids Universitair Medisch Centrum (LUMC).

129

Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional Proof
System for Multithreaded Java -
Theory and Tool Support- . Faculty
of Mathematics and Natural Sciences,
UL. 2005-01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty of
Biomedical Engineering, TU/e. 2005-
02

C.N. Chong. Experiments in Rights
Control - Expression and Enforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty
of Mathematics and Computing Sci-
ences, RUG. 2005-04

H.M.A. van Beek. Specification
and Analysis of Internet Applications.
Faculty of Mathematics and Com-
puter Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System
Architecting - A Systematic Approach
to Developing Future-Proof System
Architectures. Faculty of Mathemat-
ics and Computing Sciences, TU/e.
2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Net-

work Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures
for Equality Logic with Uninterpreted
Functions. Faculty of Mathematics
and Computer Science, TU/e. 2005-
10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Envi-
ronments. Faculty of Biomedical En-
gineering, TU/e. 2005-11

J. Eggermont. Data Mining using
Genetic Programming: Classification
and Symbolic Regression. Faculty of
Mathematics and Natural Sciences,
UL. 2005-12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science, UU.
2005-13

G.F. Frehse. Compositional Verifi-
cation of Hybrid Systems using Sim-
ulation Relations. Faculty of Science,
Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for
the Structure of pi-Calculus Processes
with Replication. Faculty of Math-
ematics and Natural Sciences, UL.
2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,

Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing
and Rewriting. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science, UvA. 2005-19

M.Valero Espada. Modal Abstrac-
tion and Replication of Processes with
Data. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2005-20

A. Dijkstra. Stepping through
Haskell. Faculty of Science, UU. 2005-
21

Y.W. Law. Key management and
link-layer security of wireless sensor
networks: energy-efficient attack and
defense. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty
of Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-02

P.R.A. Verbaan. The Computa-
tional Complexity of Evolving Sys-
tems. Faculty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffel-

ers. Formal Specification and Anal-
ysis of Hybrid Systems. Faculty of
Mathematics and Computer Science
and Faculty of Mechanical Engineer-
ing, TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty of
Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking
Timed Automata - Techniques and
Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences, VUA.
2006-07

C.-B. Breunesse. On JML: topics
in tool-assisted verification of JML
programs. Faculty of Science, Math-
ematics and Computer Science, RU.
2006-08

B. Markvoort. Towards Hybrid
Molecular Simulations. Faculty of
Biomedical Engineering, TU/e. 2006-
09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data
Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeter-
ministic and Probabilistic Choices.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-12

B. Badban. Verification techniques
for Extensions of Equality Logic. Fac-
ulty of Sciences, Division of Mathe-
matics and Computer Science, VUA.
2006-13

A.J. Mooij. Constructive formal
methods and protocol standardization.
Faculty of Mathematics and Com-
puter Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques
for Hybrid Systems. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In
Service Discovery. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising
Interface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Seman-
tics and Verification of Security Pro-
tocols. Faculty of Mathematics and
Computer Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile
Channels for Exogenous Coordina-
tion of Distributed Systems: Seman-
tics, Implementation and Composi-
tion. Faculty of Mathematics and
Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time re-
configurable Network-on-Chip for
streaming DSP applications. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous
Distributed Systems. Faculty of Math-
ematics and Computing Sciences,
RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Algebra.
Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UvA.
2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-08

R. Brinkman. Searching in en-
crypted data. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-09

A. van Weelden. Putting types to
good use. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Pro-
cesses. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing
Systems. Faculty of Mechanical Engi-
neering, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,

Division of Mathematics and Com-
puter Science, VUA. 2007-13

C.F.J. Lange. Assessing and Im-
proving the Quality of Modeling: A
Series of Empirical Studies about the
UML. Faculty of Mathematics and
Computer Science, TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration and
Delivery. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution
of Software Architectures. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-17

D. Jarnikov. QoS framework for
Video Streaming in Home Networks.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2007-19

W. Pieters. La Volonté Machinale:
Understanding the Electronic Vot-
ing Controversy. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Id-
iomatic Crosscutting Concerns in
Embedded Systems. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in
Source Code. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of
High-tech Multi-disciplinary Systems.
Faculty of Mechanical Engineering,
TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Parsing,
and Assimilation of Language Con-
glomerates. Faculty of Science, UU.
2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal Ver-
ification of Optimistic Fair Exchange
Protocols. Faculty of Sciences, Divi-
sion of Mathematics and Computer
Science, VUA. 2008-07

I.S.M. de Jong. Integration and
Test Strategies for Complex Manufac-
turing Machines. Faculty of Mechan-
ical Engineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-09

L.G.W.A. Cleophas. Tree Algo-
rithms: Two Taxonomies and a
Toolkit. Faculty of Mathematics and
Computer Science, TU/e. 2008-10

I.S. Zapreev. Model Checking
Markov Chains: Techniques and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-11

M. Farshi. A Theoretical and Ex-
perimental Study of Geometric Net-
works. Faculty of Mathematics and
Computer Science, TU/e. 2008-12

G. Gulesir. Evolvable Behav-
ior Specifications Using Context-
Sensitive Wildcards. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2008-13

F.D. Garcia. Formal and Com-
putational Cryptography: Protocols,
Hashes and Commitments. Faculty of
Science, Mathematics and Computer
Science, RU. 2008-14

P. E. A. Dürr. Resource-based Ver-
ification for Robust Composition of
Aspects. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2008-15

E.M. Bortnik. Formal Methods in
Support of SMC Design. Faculty of
Mechanical Engineering, TU/e. 2008-
16

R.H. Mak. Design and Perfor-
mance Analysis of Data-Independent
Stream Processing Systems. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applica-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Meth-
ods and Constraint Solving. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Ex-
perimental Aspects of Pattern Eval-
uation. Faculty of Mathematics and
Natural Sciences, UL. 2008-22

R. Brijder. Models of Natural Com-
putation: Gene Assembly and Mem-
brane Systems. Faculty of Mathemat-
ics and Natural Sciences, UL. 2008-23

A. Koprowski. Termination of
Rewriting and Its Certification. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2008-24

U. Khadim. Process Algebras for
Hybrid Systems: Comparison and De-
velopment. Faculty of Mathematics
and Computer Science, TU/e. 2008-
25

J. Markovski. Real and Stochastic
Time in Process Algebras for Perfor-
mance Evaluation. Faculty of Mathe-
matics and Computer Science, TU/e.
2008-26

H. Kastenberg. Graph-Based Soft-
ware Specification and Verification.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-28

R.S. Marin-Perianu. Wireless Sen-
sor Networks in Motion: Clustering
Algorithms for Service Discovery and
Provisioning. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2008-29

M.H.G. Verhoef. Modeling and
Validating Distributed Embedded
Real-Time Control Systems. Faculty

of Science, Mathematics and Com-
puter Science, RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Require-
ments Evolution. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-
Tolerant Software Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-05

M.J. van Weerdenburg. Effi-
cient Rewriting Techniques. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2009-06

H.H. Hansen. Coalgebraic Mod-
elling: Applications in Automata The-
ory and Modal Logic. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. To-
wards Getting Generic Programming
Ready for Prime Time. Faculty of Sci-
ence, UU. 2009-9

K.R. Olmos Joffré. Strategies for
Context Sensitive Program Transfor-
mation. Faculty of Science, UU. 2009-
10

J.A.G.M. van den Berg. Reason-
ing about Java programs in PVS us-
ing JML. Faculty of Science, Math-
ematics and Computer Science, RU.
2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating
Dynamic Analysis Techniques for
Program Comprehension. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection
Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digi-
tal Exchange. Faculty of Mathematics
and Computer Science, TU/e. 2009-
15

M.R. Czenko. TuLiP - Reshaping
Trust Management. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2009-16

T. Chen. Clocks, Dice and Processes.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2009-17

C. Kaliszyk. Correctness and Avail-
ability: Building Computer Algebra on
top of Proof Assistants and making
Proof Assistants available over the
Web. Faculty of Science, Mathematics
and Computer Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness
& Completeness: Formalizing Logic
and Analysis in Type Theory. Faculty

of Science, Mathematics and Com-
puter Science, RU. 2009-19

B. Ploeger. Improved Verification
Methods for Concurrent Systems.
Faculty of Mathematics and Com-
puter Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis and
Analysis of Probabilistic Models. Fac-
ulty of Electrical Engineering, Math-
ematics & Computer Science, UT.
2009-21

R. Li. Mixed-Integer Evolution
Strategies for Parameter Optimiza-
tion and Their Applications to Medi-
cal Image Analysis. Faculty of Math-
ematics and Natural Sciences, UL.
2009-22

J.H.P. Kwisthout. The Compu-

tational Complexity of Probabilistic
Networks. Faculty of Science, UU.
2009-23

T.K. Cocx. Algorithmic Tools for
Data-Oriented Law Enforcement.
Faculty of Mathematics and Natu-
ral Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers.
Faculty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access
Control for Dynamic Collaborative
Environments. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2009-26

J.F.J. Laros. Metrics and Visuali-
sation for Crime Analysis and Ge-
nomics. Faculty of Mathematics and
Natural Sciences, UL. 2009-27

