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Electrical current fluctuations in a single-channel quantum point contact can produce photons �at frequency
� close to the applied voltage V�e /�� which inherit the sub-Poissonian statistics of the electrons. We extend
the existing zero-temperature theory of the photostatistics to nonzero temperature T. The Fano factor F �the
ratio of the variance and the average photocount� is �1 for T�Tc �antibunched photons� and �1 for T�Tc

�bunched photons�. The crossover temperature Tc����� /kB is set by the bandwidth �� of the detector, even
if ����eV. This implies that narrow-band detection of photon antibunching is hindered by thermal fluctua-
tions even in the low-temperature regime where thermal electron noise is negligible relative to shot noise.
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I. INTRODUCTION

It is a celebrated result of Glauber that classical fluctua-
tions of the electrical current I�t� produce photons with Pois-
son statistics.1 The variance Var n of the number n of pho-
tons detected in a time tdet is then equal to the mean �n�. The
photons produced by a classical current thus behave as inde-
pendent classical particles. Quantum fluctuations of the cur-
rent �with I�t� and I�t�� noncommuting operators� change the
photostatistics. The bosonic nature of the photons would
naturally lead to photon bunching, with Var n� �n�. Photon
antibunching, with Var� �n�, is also possible, if the photons
can somehow inherit the sub-Poissonian statistics of the
electrons.2 One then speaks of nonclassical light.3

While nonclassical light emitted by a quantum mechani-
cal current has not yet been observed, the theory is well
developed4–6 and there is an active experimental search.7,8

Nonclassical light emitted by a quantum conductor such as a
quantum point contact9 would occur in a continuous range of
GHz frequencies, in contrast to the discrete frequencies pro-
duced by electronic transitions in quantum dots or quantum
wells.10,11 Various methods of measuring the photostatistics
have been developed, such as detection by means of photo-
assisted tunneling,12–14 or by means of the Hanbury-Brown-
Twiss effect.8,15

The theoretical prediction5 is that photons emitted by a
single-channel quantum point contact should have a Fano
factor F=Var n / �n� smaller than unity at zero temperature,
for frequencies � close to the applied voltage V�e /�. More
specifically,

F = 1 − 2
3 �	0���
�1 − 
� , �1.1�

for photodetection with efficiency 	0 in the frequency inter-
val �eV /�−�� ,eV /��. The transmission probability 

through the quantum point contact is assumed to be energy
independent on the scale of eV. Equation �1.1� is derived in
the limit of weak coupling �	0���1� of electrons to pho-
tons, so that the deviations from Poisson statistics remain
small. It is also assumed that the photons can be detected
individually, see Ref. 6 for an alternative detection scheme.

It is the purpose of the present paper to extend the theory
of Ref. 5 to nonzero temperatures, in order to identify the
conditions on the temperature needed to observe the photon
antibunching. Clearly, photon bunching should take over
when the electrical shot noise drops below the thermal noise,
which happens when kBT becomes larger than eV. While
kBT�eV is the condition for photon antibunching in the case
of wide-band detection, a more stringent condition kBT
���� holds for narrow-band detection.

More precisely, we obtain a crossover temperature Tc
���� /4kB at which F=1 for ���eV. In this low-
temperature regime shot noise still dominates over thermal
noise, yet the photon antibunching is lost. One qualitative
way to understand this is, is to compare the coherence time
tcoh�1 /�� of the detected radiation with the coherence time
tT�� /kBT of thermally excited electron-hole pairs. For tcoh
� tT the detected photons result from many uncorrelated
electron-hole recombination events, and the one-to-one rela-
tionship between electron and photon statistics is lost.

In the next section, we give the nonzero temperature gen-
eralization of the theory of Ref. 5, and then in Sec. III, we
specialize to the shot-noise regime kBT�eV. General results
in both the shot noise and thermal noise regimes are pre-
sented in Sec. IV. Technical details are summarized in Ap-
pendixes A and B.

II. GENERATING FUNCTION AT NONZERO
TEMPERATURE

We seek the non-zero-temperature generalization of the
formula5

F��� =��
m=1

N

Det�1 + Tm	eZeZ†
− 1
�� , �2.1�

for the factorial-moment generating function F��� of the pho-
tocount. We first introduce the notation and then present the
required generalization.

The photons are produced by time-dependent current fluc-
tuations in a quantum point contact, characterized by trans-
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mission eigenvalues T1 ,T2 , . . .TN, with N the number of
propagating electronic modes �counting both orbital and spin
degrees of freedom�. The current flows between two reser-
voirs, with Fermi functions

fL��� = �1 + exp	�� − eV − EF�/kBT
�−1, �2.2�

fR��� = �1 + exp	�� − EF�/kBT
�−1. �2.3�

The current fluctuations can be due to thermal noise �at tem-
perature T� or due to shot noise �at a voltage V applied over
the point contact�. We take the transmission eigenvalues Tm
as energy independent in the range max�eV ,kBT� near the
Fermi energy EF.

The photons are detected during a time tdet in a narrow
frequency interval �� around frequency , as determined by
the detection efficiency 	���. Antibunching of the photons
requires that  is tuned to the applied voltage, �eV /�. �In
the following we set � and e equal to unity.�

The average �¯ � in Eq. �2.1� indicates a Gaussian inte-
gration over the complex numbers zp,

� ¯ � = �
p

	p

�
� d2zpe−	pzp2 . . . . �2.4�

The matrix Z has elements Zpp�=�1/2zp−p�	p−p�, depending
only on the difference of the indices p and p�. This differ-
ence represents the discretized frequency �p−p�= �p− p��
�2� / tdet of a photon emitted by an electronic transition
from energy �p to �p� and detected with efficiency 	p−p�
= �2� / tdet�	��p−p��. Since 	����0 for ��0, the matrix Z is
a lower-triangular matrix. The discretization of frequency
and energy is eliminated at the end of the calculation, by
taking the limit tdet→�.

The expansion

F��� = �
k=0

�
�k

k!
�nk� f �2.5�

of F��� in powers of � gives the factorial moments �nk� f
= �n�n−1��n−2�¯ �n−k+1�� of the number of detected pho-
tons. Antibunching means that the variance of the photocount
Var n= �n2�− �n�2 is smaller than the average, or equivalently
that the Fano factor F=Var n / �n��1.

As outlined in Appendix A, at nonzero temperature we
have instead of Eq. �2.1� the generating function

F��� =��
m=1

N

Det� 1 + TmfL�eZeZ†
− 1� �Tm�1 − Tm�fL�e−Z†

− eZ�
�Tm�1 − Tm�fR�e−Z − eZ†

� 1 + TmfR�e−Ze−Z†
− 1�

�� . �2.6�

The Fermi function fL��� in the left electronic reservoir is
contained in the diagonal matrix fL, with elements �fL�pp�
=�pp�fL��p�, �p= p�2� / tdet. Similarly, the Fermi function
fR��� in the right reservoir is contained in the diagonal ma-
trix fR.

Following the steps in Appendix A, the expression �2.6�
can be reduced to the more compact form

F��� =��
m=1

N

Det�1 + Tm	 f̄ReZ†
fL − fRe−Zf̄L
M�� ,

�2.7�

with the definitions f̄ L=1− fL, f̄R=1− fR, M=eZ−e−Z†
. The

zero-temperature limit 	Eq. �2.1�
 follows from Eq. �2.7� by
setting fL=1, fR=0 in the energy interval EF���EF+V.
�There are no current fluctuations outside of this energy in-
terval for T=0.�

III. SHOT NOISE REGIME

The result 	Eq. �2.7�
 holds for any temperature, provided
that the energy dependence of the transmission eigenvalues
may be neglected. In particular, it describes both thermal
noise and shot noise. A simpler formula is obtained in the
shot noise regime kBT�V. Thermal noise can then be ne-

glected and only the finite temperature effects on the shot
noise are retained. We assume ����V, so even if kBT
�V, the relative magnitude of �� and kBT is still arbitrary.

A. Generating function

The first simplification in this regime is that we may set

fRe−Zf̄L→0, since fR��� f̄ L����→0 for ����. Equation �2.7�
reduces to

F��� =��
m=1

N

Det�e−Z†
+ TmfLM f̄R�� , �3.1�

where we have multiplied by Det e−Z†
=1.

The second simplification is that we can ignore energies
separated by pV with p�2, because V is the largest energy
scale in the problem. Since Zp and Z†p connect energies sepa-
rated by p� pV, we may set Zp ,Z†p→0 for p�2. From
Eq. �3.1� we arrive at

F��� =��
m=1

N

Det�1 − Z† + TmfL�Z + Z†� f̄R�� . �3.2�

Following the steps in Appendix B, the determinant may be
rewritten in the more convenient form �bilinear in Z ,Z†�,
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F��� =��
m=1

N

Det�1 + Tm�1 − Tm�fLZf̄RZ†�� . �3.3�

B. Moment expansion

The generating function �3.3� is of the form F���
=�mDet�1+Xm� with Xm of order �. An expansion in powers
of � can be obtained by starting from the identity

�m
Det�1 + Xm� = exp	�m

Tr ln�1 + Xm�
 , �3.4�

and expanding in turn, the logarithm and the exponential. Up
to second order in � we have the expansion

F��� = 1 + ��m
Tr Xm� −

1

2��m
Tr Xm

2 � +
1

2���m
Tr Xm�2�

+ O��3� , �3.5�

from which we can extract the first two factorial moments,

F��� = 1 + ��n� +
1

2
�2��n2� − �n�� + O��3� . �3.6�

We perform the Gaussian averages and obtain the average
photocount �n� and the variance Var n= �n2�− �n�2 in the shot
noise regime,

�n� =
tdet

2�
S1� d�	���� d�fL�� + �� f̄R��� , �3.7�

Var n = �n� +
tdet

2�
S1

2� d��	���� d�fL�� + �� f̄R����2

−
tdet

2�
S2� d�� fL���� d�	��� f̄R�� − ���2

−
tdet

2�
S2� d�� f̄R���� d�	���fL�� + ���2

. �3.8�

We have defined

Sp = �
m

	Tm�1 − Tm�
p. �3.9�

Since the two reservoirs are at the same temperature, we

can write fL���= f��−V−EF� and f̄R= f�EF−�� in terms of a
single Fermi function

f��� = �1 + e�/kBT�−1. �3.10�

We abbreviate ��� ,��=	���f���f��−�−V� and can then
write Eqs. �3.7� and �3.8� in the compact form

�n� =
tdet

2�
S1� d�� d����,�� , �3.11�

Var n = �n� +
tdet

2�
� d�� d����,��

��S1
2� d������,�� − 2S2� d�����,���� .

�3.12�

The difference Var n− �n� contains a positive term �S1
2 and a

negative term �S2. The sign of this difference determines
whether there is bunching or antibunching of the detected
photons.

C. Crossover from antibunching to bunching

To investigate the crossover from antibunching to bunch-
ing with increasing temperature, we take a block-shaped re-
sponse function

	��� = �	0 if V − �� � � � V

0 otherwise.
� , �3.13�

In the low-temperature regime kBT��� the function
��� ,�� then has a block shape as well and we recover the
results

�n� =
tdet��

2�
	0��

1

2
S1, �3.14�

Var n − �n� =
tdet��

2�
�	0���21

3
�S1

2 − 2S2� �3.15�

of Ref. 5. These correspond to a Fano factor

F = 1 + 2
3	0���S1 − 2S2/S1� . �3.16�

For a single-channel conductor S2=S1
2, so there is antibunch-

ing �F�1� at low temperatures.
At high temperatures kBT���, but still in the shot-noise

regime kBT�V, we may substitute ��� ,��→
−	���kBTdf��� /d� into Eqs. �3.11� and �3.12�, which gives

�n� =
tdet��

2�
	0kBTS1, �3.17�

Var n − �n� =
tdet��

2�
�	0kBT�2S1

2. �3.18�

The Fano factor

F = 1 + 	0kBTS1 �3.19�

is now �1—hence, there is photon bunching.
The crossover temperature Tc, at which F=1, can be cal-

culated numerically from Eqs. �3.11� and �3.12�. In the
single-channel case, when S2=S1

2, we find

kBTc � 0.25�� . �3.20�

The crossover is shown graphically in Fig. 1.
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IV. BEYOND THE SHOT-NOISE REGIME

In the previous section we assumed kBT�V �shot noise
regime�. For arbitrary relative magnitude of kBT and V, the
general formula �2.7� can be used. With the help of Eq. �3.4�,
this general expression of the form Det�1+X� was expanded
to second order in powers of �. In this case however, since
X=O����, terms up to order X4 had to be retained. The first
two moments of n are obtained as integrals over energy and
frequency, similar to Eqs. �3.11� and �3.12� but containing
many more terms in the integrands. The results shown in
Figs. 2 and 3 are for the case N=1, T1=
 of a single channel,
and for the box-shaped response function �3.13�.

As expected, all curves converge to the shot-noise results
when kBT�V �shown dashed�. At higher temperatures, the
Fano factor lies above the shot noise limit due to the appear-
ance of thermal noise. The temperature Tc at which anti-
bunching crosses over into bunching, so when F=1, follows
the shot-noise limit 	Eq. �3.20�
 for narrow-band detection

����V�. With increasing bandwidth, Tc drops below the
shot noise limit, in particular for small transmission probabil-
ity 
. For 
=0.5 the shot-noise limit remains accurate even
for bandwidths �� as large as V /2.

V. CONCLUSION

In conclusion, we have investigated the effects of a non-
zero temperature on the degree of antibunching of photons
produced by current fluctuations in a quantum point contact.
Antibunching crosses over into bunching as a result of ther-
mal noise in the point contact, but this is not the dominant
effect in the case of narrow-band detection. In that case, the
finite coherence time of electron-hole pairs governs the tran-
sition from photon antibunching to photon bunching, which
occurs at a temperature kBTc��� even if kBTc�V �so even
if thermal noise is negligible relative to shot noise�.

The optimal conditions for the observation of antibunched
photons are reached for a bandwidth ���V /2 and a trans-
mission probability 
�1 /2 through a �spin-resolved� single-
channel quantum point contact. In that case kBTc�V /8 has
the largest value at any given applied voltage. The currently
available8 detection range �4 GHz���8 GHz⇒��
=4 GHz=V /2�, should make it possible to detect antibunch-
ing at temperatures below 1 GHz�50 mK.

ACKNOWLEDGMENTS

We thank D. C. Glattli for a discussion which motivated
this work and for correspondence on the experimental pa-
rameters. Our research was supported by the Dutch Science
Foundation NWO/FOM and by the EU Network NanoCTM.

APPENDIX A: DERIVATION OF THE GENERATING
FUNCTION AT NONZERO TEMPERATURE

We briefly describe how the analysis of Ref. 5 can be
generalized to nonzero temperatures, in order to arrive at Eq.
�2.6�. Referring to the equations in that paper, the first equa-
tion which changes is Eq. �5� of Ref. 5, which now reads

FIG. 1. Crossover with increasing temperature from antibunch-
ing �Fano factor F�1� to bunching �F�1� of the photons pro-
duced by a single-channel quantum point contact in the shot noise
regime �kBT�V�. The solid curve is calculated from Eqs.
�3.11�–�3.13�. The dashed line is the asymptote 	Eq. �3.19�
. The
crossover temperature Tc from Eq. �3.20� is indicated.

FIG. 2. Same as Fig. 1, but now without making the restriction
to the shot noise regime �so without assuming kBT�V�. The two
solid curves are calculated from Eq. �2.7� for two values of �� /kBT
�both for the single-channel case with transmission probability 

=0.5�. Both curves converge to the shot noise result at low tempera-
tures �shown dashed�.

FIG. 3. �Color online� Dependence of the crossover temperature
Tc �at which F=1� on the bandwidth ��. The points are calculated
from Eq. �2.7� for three values of the single-channel transmission
probability 
. For ���V all points converge to the shot noise limit
	Eq. �3.20�
 �dashed line�.
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F��� = �e−a†DZaeb†DZbeb†DZ†be−a†DZ†a� . �A1�

The four factors correspond to the four current operators that
need to be taken into account: Iin

† , Iout
† , Iout, and Iin.

The operator a† creates an incoming electron, while b†

creates an outgoing electron. The matrix D projects on the
right lead, where the current is evaluated. �Since D com-
mutes with Z, we can write DZ instead of DZD.� One can
relate b=Sa, with S the unitary scattering matrix, so one can
write the entire generating function in terms of the operators
a. The expectation value �¯ � is both an expectation value
over the fermion operators a, as well as the average over the
Gaussian variables Z ,Z†.

Following the steps of Ref. 5, we calculate the expecta-
tion value of the fermion operators by means of the identity

��
n

ea†Ana� = Det�1 + AB� , �A2�

A = ��
n

eAn� − 1, Bij = �aj
†ai� . �A3�

We have Bij =�ij f i, with f i the Fermi occupation number in
channel i. The matrix A is given by A=eXeYeY†

eX†
−1, with

X=−DZ and Y =S†DZS. Notice that Xp=D�−Z�p and Yp

=S†DZpS.

We now make the assumption of an energy independent
scattering matrix, so S ,S† commute with Z ,Z†. The determi-
nant is invariant under a change of basis, and by working in
the eigenchannel basis we can reduce S to a 2�2 matrix Sm
for each eigenchannel,

Sm = ��1 − Tm
�Tm

�Tm − �1 − Tm
� , �A4�

with Tm, m=1,2 , . . .N the transmission eigenvalue. The ma-
trix structure of f , D, and Z in this basis is

f = � fL 0

0 fR
�, D = �0 0

0 1
�, Z = �Z 0

0 Z
� . �A5�

Substitution of Eqs. �A2�–�A5� into Eq. �A1� leads after
some algebraic manipulations to the result 	Eq. �2.6�
.

The determinant in Eq. �2.6� can be reduced by means of
the folding identity

Det�M11 M12

M21 M22
� = Det M11 Det�M22 − M21M11

−1M12� ,

�A6�

leading to

F��� =��
m=1

N

Det	1 + TmfL�eZeZ†
− 1�
Det�1 + TmfR�e−Ze−Z†

− 1�

− Tm�1 − Tm�fR�e−Z − eZ†
�	1 + TmfL�eZeZ†

− 1�
−1fL�e−Z†
− eZ��� . �A7�

We continue the reduction of the determinant, using first the identity

	1 + TmfL�eZeZ†
− 1�
−1fL�e−Z†

− eZ� = − fL�eZeZ†
− 1�	1 + TmfL�eZeZ†

− 1�
−1e−Z†
, �A8�

then multiplying the determinant by Det eZ†
=1, and finally combining the product of three determinants into a single deter-

minant. In this way we eliminate the matrix inversion, arriving at

F��� =��
m=1

N

Det�	1 + TmfR�e−Ze−Z†
− 1�
eZ†

	1 + TmfL�eZeZ†
− 1�
 + Tm�1 − Tm�fR�e−Z − eZ†

�fL�eZeZ†
− 1���

=��
m=1

N

Det�1 + Tm	�1 − fR�eZ†
fL − fRe−Z�1 − fL�
�eZ − e−Z†

��� . �A9�

This is Eq. �2.7� in the main text.

APPENDIX B: DERIVATION OF THE GENERATING
FUNCTION IN THE SHOT NOISE REGIME

Starting from the expression �3.2� for the generating func-
tion in the shot noise regime kBT�V, we give the steps
required to arrive at the bilinear form �3.3�. We group terms

with Z and with Z† in the matrices Am=TmfLZf̄R and Bm

=TmfLZ† f̄R−Z†, so that Eq. �3.2� can be written as

F��� =��
m=1

N

Det�1 + Am + Bm�� . �B1�

Because energies separated by Vp with p�2 can be dis-
carded, we may set Am

2 →0, Bm
2 →0. For any pair of matrices

A ,B which square to zero, one has the identity

NONZERO TEMPERATURE EFFECTS ON ANTIBUNCHED… PHYSICAL REVIEW B 81, 115331 �2010�

115331-5



Det�1 + A + B� = Det�1 − AB� . �B2�

This leads to

F��� =��
m=1

N

Det�1 + TmZf̄RZ†fL − Tm
2 Zf̄RfLZ† f̄RfL�� . �B3�

Eq. �3.3� follows by noting that Zf̄RfL→Zf̄R for kBT
��V, since the Fermi function fL in this term is evaluated
at energies near EF, where it can be replaced by unity. Simi-

larly Z† f̄RfL→Z†fL, since f̄R is evaluated at energies near
EF+V where it can be replaced by unity.
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