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Flat-lens focusing of electrons on the surface of a topological insulator
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We propose the implementation of an electronic Veselago lens on the conducting surface of a three-
dimensional topological insulator (such as Bi,Tes). The negative refraction needed for such a flat lens results
from the sign change in the curvature of the Fermi surface, changing from a circular to a snowflakelike shape
across a sufficiently large electrostatic potential step. No interband transition (as in graphene) is needed. For
this reason, and because the topological insulator provides protection against backscattering, the potential step
is able to focus a broad range of incident angles. We calculate the quantum interference pattern produced by a
point source, generalizing the analogous optical calculation to include the effect of a noncircular Fermi surface

(having a nonzero conic constant).
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I. INTRODUCTION

Ballistic electron optics relies on the analogy between the
Schrodinger equation for electrons and the Helmholtz equa-
tion for classical waves to construct devices that can image
the flow of electrons in high-mobility semiconductors.!™* A
variation in electrostatic potential is analogous to a variation
in dielectric constant so that a curved gate electrode can have
the refractive power of a lens—as has been demonstrated
in the two-dimensional electron gas of a GaAs
heterostructure.>® The focal length of this electrostatic lens
depends on its curvature, diverging for a flat electrode.

Focusing of light by a flat lens is possible in media with a
negative index of refraction. This so-called Veselago lens’®
has a focal length proportional to the distance between lens
and source, rather than fixed by the lens itself. It is also not
limited by the single optical axis of a curved lens and can
have a much wider aperture. Photonic crystals can provide
the negative refraction needed for a flat lens,” as demon-
strated experimentally.'®-!!

The electronic analog of a Veselago lens was proposed in
the context of graphene'? based on the negative refraction of
an electron crossing from the conduction band into the va-
lence band. Such interband crossing requires a p-n junction,
which is highly resistive if the interface extends over more
than an electron wavelength.'>'* It would be desirable to
have a method for producing a flat lens entirely within the
conduction band, in order to avoid a resistive interface. It is
the purpose of this work to propose such a method, in the
context of topological insulators.

Topological insulators have a conducting surface with a
Dirac cone of massless, helical low-energy excitations, remi-
niscent of graphene.'>!¢ Indeed, scanning tunneling micros-
copy has shown that backscattering of the surface electrons
is inhibited, as expected from conservation of helicity.!”-!®
While the large band-gap topological insulator Bi,Se; has a
nearly circular Dirac cone, in the smaller band-gap material
Bi,Te; the cone is warped in an hexagonal snowflakelike
shape.!®23 The hexagonal warping of the Fermi surface en-
hances the quantum interference (Friedel) oscillations in the
density of states near an impurity or potential step,?*-%’
which for a circular Fermi surface would be suppressed by
conservation of helicity.”
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The electron focusing considered here is an altogether dif-
ferent, semiclassical consequence of the hexagonal warping.
The flat lens is formed by a potential step on the surface of
the topological insulator, sufficiently high to change the cur-
vature of the Fermi surface from convex to concave. The
sign change in the curvature leads to negative refraction and
focusing, qualitatively similar to the optical Veselago lens—
but quantitatively different because of the nonuniformity of
the curvature (quantified by a nonzero conic constant).

In the following two sections, we derive the negative re-
fraction and the line of focal points (caustics), as well as the
diffraction pattern produced by a point source. We calculate
the curvature and conic constant for the specific case of
Bi,Te;. We conclude in Sec. IV by comparing with the flat
lens formed by a p-n junction in graphene'? and by discuss-
ing possible experimental realizations in topological insula-
tors.

II. NEGATIVE REFRACTION AT A POTENTIAL STEP
A. Negative refraction

Consider an electron propagating approximately along the
x axis (the optical axis) and impinging at x=0 onto an elec-
trostatic potential step SU produced by a gate electrode (see
Fig. 1). For simplicity, we assume that the optical axis is
parallel to an axis of crystallographic symmetry, such that the
equienergy contours are *k, symmetric. (For the more gen-
eral case, see Appendix.) At constant Fermi energy, the ki-
netic energy changes from E; in the incident (left) region to
E,=E;+ U in the transmitted (right) region. The equienergy
contour at the left is given locally by 5ki,x:—%cikzv, for a
two-dimensional wave vector k;=(k;o+&k;,.k;,) approxi-
mately along the optical axis, and similarly 6k,’x=—%c,k,2’y at
the right. The coefficients c; and ¢, are the curvatures of the
Fermi surface for normal incidence, at the two sides of the
potential step.

The velocity v=A"'dE/dk is normal to the equienergy
contours so that the velocities v; and v, in the left and right
regions make, respectively, an angle 6,=ck;, and 6,=ck,,
with the x axis. Conservation of transverse momentum
(k;y=k, ) leads to the linearized Snell’s law,

©2010 The American Physical Society
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FIG. 1. Negative refraction at a potential step (height SU) where
the curvature of the equienergy contours (thin curves) changes sign
from ¢;>0 to ¢,<0. An electron (thick arrow) with kinetic energy
E; is incident at angle 6; and transmitted at angle 6,. Because the
curvature changes sign, the electron is negatively refracted with
6,<0 for 6;,>0.

0l:(CI/Ci)0i’ for 01‘, 0,< 1. (21)
The inverse curvature plays the role of the refractive index in
optics. Negative refraction (meaning 6;6,<0) takes place

when ¢; and ¢, have opposite signs, as illustrated in Fig. 1.

B. Noncircular Snell’s law

As we will see in the next section, to calculate the image
of a point source we will need to include the first nonlinear
correction to Eq. (2.1). In optics, where one has a circular
equienergy contour, Snell’s law ¢; sin 6,=c, sin 6; implies the
series expansion,

6,=n,6;+ny6 + O(8) (2.2)
with n;=c,/c; and n3=én1(n%—1). More generally, we can
write

1
n, =clc;, n3:gn1(n%—l)+A, (2.3)

where A quantifies the deviation from the optical Snell’s
law.?

The parameter A vanishes for a circular Fermi surface as
in graphene'?3%3! but is nonzero for the warped Fermi sur-
faces of topological insulators. In order to relate A to the
Fermi surface, we parametrize the equienergy contour using
polar coordinates by k=«(¢)(cos ¢,sin ¢), where ¢ is the
angle between the wave vector k and the x axis and k=|k|. A
subscript i or ¢ distinguishes the parameters at the two sides
of the potential step.

The noncircular Snell’s law is expressed by the three
equations,

Kk(py)sin ¢, = k,(p;)sin ¢, (2.4)

_ ki(p)tan ¢ — k()
k() + ki (p,)tan &

tan 6, (2.5)
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_ K,(¢,)tan b - Kz,(d)z)
Kt(¢t) + K,’(qb,)tan d’t,

where k' =dk/d¢. The first equation expresses the continuity
of the y component of the wave vector at the interface x=0
while the second and third equations relate the angles 6 and
¢ of velocity and wave vector (using the fact that v is per-
pendicular to the equienergy contour). The circular Snell’s
law «, sin 6,=k; sin 6, is recovered for k' =0, when 6= ¢.

Near ¢=0, the equienergy contour can be parametrized in
terms of the curvature ¢ and conic constant /C,

kf, =—(2/¢) Sk, — (1 + K0)(5k,)?

tan 6, (2.6)

(2.7)

with 6k, =k,— «(0). The noncircular Snell’s law then expands
to Egs. (2.2) and (2.3) with

€t (2 2
= 2—;3 K= Ky). (2.8)
1
C. Application to Bi,Te;

We apply these general considerations to the topological
insulator Bi,Te;. On the [111] surface and close to the center
of the Brillouin zone (the I' point) the Hamiltonian can be
approximated by?®

H = fhwk(oy cos ¢— o, sin ¢+ NKo. cos 3¢). (2.9)
The dispersion relation in the conduction band (E>0) is
E(k) = k2 + (N cos 3¢)> = ho k2 + N (k) - 3k, k2)°.
(2.10)

The o;’s are Pauli matrices acting on the electron spin and ¢
denotes the angle of the wave vector k with respect to the
I'K direction in the Brillouin zone (oriented along the x
axis). The parameters v~4X 10> m/s and A\=1 nm were
estimated by fitting to data from angularly resolved
spectroscopy.?’?? (Additional terms quadratic in momentum
can be included in the fit but these do not qualitatively
change the dispersion.)

The curvature ¢(E) of the equienergy contour in the I'K
direction is given by

1 - 65"
%+ 3%

c(E)=\ (2.11)

with »2= ¢~ ¢ defined in terms of

1 /4
£ = W( gﬁ“v“ +ON'E! = 3)\2E2). (2.12)
v

The quantity %/\=«(0) equals |k| at ¢=0.

The energy dependence of the curvature is plotted
in Fig. 2. As discovered by Fu,2® the curvature changes
sign when %ﬁ:l/ 6, which corresponds to an energy
E,=63*Thv/A~02 eV and a wave vector k,=zx./\
~0.6 nm~!. At the same point the conic constant

35*(35 — 605* + 725
(1-65*3

K(E)= (2.13)

diverges and thereby changes sign, cf. Fig. 3.
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EXhv 3

FIG. 2. Curvature c¢(E) of the equienergy contour in the 'K
direction, calculated from Eq. (2.11). The shape changes from con-
vex to concave at energy E.. The maximally negative curvature is
c~==1.3\ for E~2Av/\, where the equienergy contour has the
snowflakelike shape shown in the inset.

III. CAUSTICS FROM A POINT SOURCE
A. Focusing of classical trajectories

Because of the negative refraction, diverging trajectories
become converging at the potential step and then cross at a
focal point (see Fig. 4). If a point source is placed at
(=a,0), a distance a from the interface at x=0, then the tra-
jectory for an electron incident at an angle 6; and transmitted
at an angle 6, is parametrized by

(a +x)tan 6;, for x <0,
y(x;6) =

(3.1)
atan 6;+x tan 6,, for x> 0.

On the optical axis y,6;,6,—0 we obtain the focal point

(ap,0) with

an—a/nlz—ﬁa, (3.2)

¢

proportional to the ratio of the two curvatures. As in the
optical Veselago lens,>>33 the focal point is displaced from
the optical axis as we increase the angle of incidence, so that
the point (ay,0) is the cusp on a curve of focal points. This
caustic curve (called an astroid®®) is visible in Fig. 4 as the
envelope of the refracted trajectories.

EX v 3

FIG. 3. Plot of the conic constant K (solid line) as well as the
combination ¢’ /C/\3 [appearing in the noncircular Snell’s law, Eq.
(2.8)] (dashed line), both as a function of the energy E. The diver-
gence of K is at the energy E. where the curvature vanishes.
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FIG. 4. Classical trajectories refracted at a potential step at
x=0 with the cusp caustic indicated.

The caustic curve near (ay,0) is obtained from Eq. (3.1)
and the nonlinear Snell’s law, Eq. (2.2), by demanding that
Jy/ 36;=0. We find

a(yla)® = (xlap— 1) (3.3)

with the opening rate of the cusp governed by the parameter

a= %?7[1 —(ce;)? = 2(cilc)A]. (3.4)
For A=0, so for a circular Fermi surface, this agrees with
Refs. 12 and 33. Depending on the sign of «, the cusp points
away from the potential step (for a>0) or toward the poten-
tial step (for @ <0). For @=0 higher than third-order terms in
the expansion, Eq. (2.2), have to be included in order to
obtain the caustic curve.

B. Quantum interference near the focal point

The diffraction pattern near a cusp caustic has a universal
functional form (Pearcey integral),>3° but the parameters
governing that function are modified for noncircular equien-
ergy contours. We calculate the wave function W at a point
r=(x,y) near the cusp by summing over partial waves ‘l’yo
from points ry=(0,y,) along the potential step [excited by a
point source at ryuee=(-a,0)]. In the far-field
approximation,’ for a and a large compared to the wave
length, the partial waves have the simple form

Uy, .
vo={ " )A, P
Yo Yo ’
v,

>0

(3.5)

(I)y0=ki'(rO_rsource)"'kt'(r_rO)‘ (3.6)
The amplitude Ay0 and spinor components Uy s Uy, vary
slowly as y, is varied on the scale of the wavelength, so we
fix their values at A, u,, v, and retain only the y, depen-
dence of the phase <by0.

In the optical case, the wave vectors k; and k, at the two
sides of the interface point in the direction of the velocity
and hence are parallel to the rays ry—ry . and r—r,. For a
noncircular Fermi surface this is no longer true and we have
to take into account the difference between the angles ¢;, ¢,
and @;=arctan(y,/a) and 6,=arctan[(y—y,)/x] which the
wave vectors and the rays make with the x axis. The relation
between ¢ and 6 is expressed by Egs. (2.5) and (2.6), in
terms of the radial parameter x(¢)=|k| of the equienergy
contour.
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z/ap

FIG. 5. Grayscale plot of the current density j(r) as a function of
position r=(x,y) near the focal point (az,0) for a source located at
(-a,0), calculated from Egs. (3.7) and (3.8) for a=1 and
a/c;=100. Lighter shades of gray indicate higher current densities.
The cusp caustic starting at the focal point is decorated by oscilla-
tions on the scale of the wavelength.

We expand CID},O in a power series in y,. Near the cusp
caustic, Eq. (3.3), y/a=0(yy/a)® while x/ap—1=0(yy/ ap)?>.
To fourth order in y, we find

2 4

xX—a a

o, = k(0)a + k,(0)x — Yo _ ( F2)y0 Yo i
O Ciar 2c,ap 27c,ara

(3.7)

with @ given by Eq. (3.4). One readily checks that the sta-
tionary phase equations &q)yo/ &yO:Ozo"zd)yO/&yé give the
caustic curve, Eq. (3.3). (These equations correspond to the
geometric optics limit ¢,— 0 of vanishing wavelength.)

The current density j(r) follows upon integration over y,,

ee]
f dyoe®v
—00

with j, a constant proportional to the product of the injection
rate at the source and the transmission probability 7 through
the potential step. By rescaling the integration variable
yo— ay,, we see that the current density, Eq. (3.8), as a func-
tion of x/ay and y/a depends only on the two parameters «
and a/c;. Figure 5 is a plot of this current density, showing
the characteristic interference pattern of a cusp caustic.

2

Jr) =jo (3.8)

C. Focusing by a flat lens

The flat lens in Fig. 6 is formed by the potential profile
U(x)=6U for 0<x<L, U(x)=0 otherwise. We denote the

source

FIG. 6. Flat lens with two potential steps (upward at x=0 and
downward at x=L) and two cusp caustics (at x=a; and x=ag).
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Fermi-surface curvatures (of opposite sign) inside the lens
(0<x<L) by Cjens and outside (x<0,x>L) by ¢,. Negative
refraction at the two potential steps at x=0 and x=L focuses
a source at x=—a on the optical axis (y=0) first onto the
point a;=—(cy/ cjens)a inside the lens and then onto the point

ap= 1= cndco)L—a (3.9)
outside the lens (provided it is sufficiently thick,
|ClensL| > |COa|)-

The classical trajectories are now parametrized by
(a + x)tan 6;, for x <0,
y(x;6;) = atan 6; + x tan 6,, for 0<x<L,
(a+x-L)tan 6;+ L tan 6,,  for x> L.
(3.10)

The relation between 6, and 6; is still given by Eq. (2.2) with

1
1| = Clens/ Co» n3=gn1(n%—1)+A. (3.11)
The cusp caustic near (ap,0) has the form
B(yla)* = (xlap—1)3, (3.12)

as in Eq. (3.3) but with a different parameter

27Ld%¢ s
B= §_3ﬂ[l — (Clens/0)* = 2(co/Clens) A]. (3.13)

aF CO

Notice that @ and B have the opposite sign (because of the
factor ciep/co<0) so that the cusps inside and outside the
lens point in opposite directions (as visible in Fig. 6).

The flat-lens diffraction pattern near the caustic is given
by the same Pearcey integral, Egs. (3.7) and (3.8), as for a
single interface but with different coefficients,

oo 2 4
xX—a
f dv exp{— Wo ( Yo N Byg }

Codp ZCOa%- 27coarpa’

2

Jr)=jo

—o0

(3.14)

Thus, the interference pattern that can be observed near ap
looks similar to Fig. 5.

IV. DISCUSSION
A. Intraband versus interband negative refraction

The Veselago lens at a p-n junction in graphene'? uses
interband scattering to achieve negative refraction. In con-
trast, the mechanism considered here is infraband, operating
entirely within the conduction band. The p-n junction has
one special feature which our setup lacks, which is the pos-
sibility to use electron-hole symmetry to collapse the caustic
curve onto a single focal point (when ¢,=—c;). In our setup
the Fermi surfaces at the two sides of the potential step are
not related by any symmetry relation, so in general the two
Fermi-surface curvatures ¢, and ¢; will be different in mag-
nitude.
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The main advantage of an intraband over an interband
mechanism for negative refraction is that the transmission
probability 7 can be much higher. Typically, the width d of
the potential step will be large compared to the Fermi wave-
length Np=2m/kp. Intraband transmission is then realized
with unit probability, up to exponentially small backscatter-
ing corrections: T=1-0O(e7*r?). Interband transmission, in
contrast, has T=exp(—kgd sin® 6,), so it is exponentially sup-
pressed for angles further than \J’m from normal
incidence.'*

B. Experimental realization

Realization of the intraband flat lens proposed here, re-
quires firstly a topological insulator with sufficiently long
mean-free paths to ensure ballistic motion of the electrons
from source to focus. Sufficiently pure single crystals should
make this possible.

Secondly, and more specifically, the curvature of the
Fermi surface should be tunable from positive to negative
values by a gate voltage. From spectroscopic data’? for Sn-
doped Bi,Te; we would estimate that a potential step
6U=-0.1 eV would produce a positive curvature inside a
narrow strip and a negative curvature outside (as in Fig. 6).
The strip itself would also allow for bulk conduction because
in Bi,Te; a positively curved Dirac cone of surface states
overlaps with bulk states. Since the regions outside the lens
have only surface conduction, we do not expect the bulk
states inside the lens to spoil the focusing.

We deduce characteristic parameter values for this con-
crete example from Ref. 28. Outside the narrow strip, the
Fermi energy (with E;=0.28 €V) is negatively curved. From
Eq. (2.12) (using the aforementioned experimental values
v=5%10°> m/s and A=1 nm), we obtain the dimensionless
wave number k;=0.92 which in turn determines the curva-
ture cp=—1.1 nm and the conic constant Ky=-1.8 in the
ungated region. Inside the narrow strip, we assume (for con-
creteness) a potential step SU=-0.13 eV which results in an
electrochemical potential  Ej,=0.15 eV (Kjeps=0.60).
Inserting this value in Egs. (2.11) and (2.13), we obtain
Clens=0.28 nm and K,,=850. The position of the cusp and
the parameters of the caustic now follow easily using the
result of Sec. III C, as a function of the particular values of a
and L in the experimental setup. Specifically, we find
ap=13 L-a for L>3.9a, A==7.2, and B=48Ld>/a;.

A point source can be created, for example, using the
“needle-anvil” technique developed for point-contact
spectroscopy,®® or alternatively using a scanning tunneling
microscope (STM). For the spatially resolved detection of
the current density distribution an STM tip is most conve-
nient. Such a setup would provide a sensitive probe of the
nonspherical Fermi surface of a topological insulator, in a
similar way as has recently been proposed for metals.”
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APPENDIX: SHEARED CAUSTIC CURVE FOR TILTED
POTENTIAL STEP

In the main text we have assumed for simplicity that the
potential step is perpendicular to the I'K direction in Fig. 2.
Then only odd powers of 6; appear in the expansion, Eq.
(2.2). If the potential step is tilted relative to this crystallo-
graphic axis, then the cusp caustic persists but in a distorted
form, as we now derive.

Including also even powers of 6; in Eq. (2.2) one would

have the expansion,
0,:n6+ni€,-+né€l-2+n§6?+(9( 7). (A1)

By rotating the coordinate axis, we can set n,=0. The ex-
pressions simplify if we expand in powers of tan 6,,

tan 6, =m, tan 6; +m, tan> 6, + m tan’> 6, + O(tan* 6,).
(A2)

From Eq. (3.1), demanding dy/d6,=0, we obtain the implicit
caustic equation

x
< ) =a(m, +2m, tan 6;+ 3m; tan® 6,)~!
y

-1
X ) A3
((m2 +2m; tan 6;)tan’ 01-) (A3)
The cusp of the caustic is given by the condition dx/d6;=0. It
is at tan #;y=—m,/3ms. In order to remain in the region of
validity of the expansion, Eq. (Al), we assume that
|m,| < |mj5| so that the tilt remains small. Then the cusp is

y() '

We now expand Eq. (A3) near tan 6,=tan 6, to third or-
der in d=tan 6;,—tan 6,

(A4)

X —Xg 4 3m, &
=amsm) 1 g (A5)
Y=Yo —momy 6 +20

Eliminating ¢ yields the caustic curve

Ay —yo+ elx - xo)]z =(x- Xo)3 (A6)

with coefficients y=27am;/ 4m‘11 and e=mm,/3m5. Equation
(A6) has the general form of a sheared cusp caustic from
catastrophe theory.*’
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