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Abstract

We present a quantitative analysis of the steady state electronic transport in a resistive

switching device. The device is composed of a thin film of Ag2S (solid electrolyte) contacted

by a Pt nano-contact acting as ion-blocking electrode, and a large area Ag reference electrode.

When applying a bias voltage both ionic and electronic transport occurs, and depending on

the polarity it causes an accumulation of ions around the nano-contact. At small applied

voltages (pre-switching) we observed this as a strongly nonlinear current-voltage curve, which

have been modeled using the Hebb-Wagner treatment for polarization of a mixed conductor.

This model correctly describes the transport of the electrons within the polarized solid elec-

trolyte in the steady state up until the resistance switching, covering the entire range of

non-stoichiometries, and including the supersaturation range just before the deposition of el-

emental silver. In this way, it is a step towards a quantitative understanding of the processes

that lead to resistance switching.

Keywords: resistive switching, chalcogenides, ion transport, modeling.

1 Introduction

Resistance switching based memories, show the potential to be integrated into future micro-

electronic components. Such devices, consisting of oxide materials or solid electrolytes, present

novel properties that allow for scalability down to the nano and even atomic scale, and very low

power consumption. [1, 2, 3]

With this increased interest in memory resistive devices, there is a necessity to understand

the physical mechanisms driving the resistance switching process. Various models have been pro-

posed to explain the switching mechanism, many of these models in agreement with the conductive

filament formation, and annihilation, inside the insulator material.[1, 4, 5] Nevertheless, a deep un-

derstanding of the microscopic mechanism responsible for filament formation is still lacking.
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In this paper we demonstrate the use of the Hebb-Wagner formalism [6, 7] for the analysis

of the steady state I-V characteristics of memory resistors based upon mixed ion and electron

conductors. We apply this formalism to fit our experimental I-V characteristics, and describe the

ionic and electronic transport within the electrolyte before the full resistance switching is observed.

The mixed conductor used for the present study is Ag2S. However, this description could also

be valid for other mixed electronic and ionic conductors, e.g. Cu2S and AgGeSe. In general,

one has to take into account that the formation of a space charge layer occurs for many solid

electrolytes. In the case of Ag2S, effects due to depletion or space charge at the Pt contact are

negligible. The device we consider consists of a Ag2S thin film contacted by a Ag thin film at

the bottom (which helps to achieve a reference state with constant silver concentration at that

contact), and a nano-scale Pt contact on the top realized by means of a conductive AFM tip.

Our measurements and simulations at low bias voltages (steady state) confirm the predictions

of the theory: the increase in the electronic current at forward bias (negative polarity at the Pt

contact) is due to the initial accumulation of Ag+-ions towards the nano-scale contact. This causes

a Ag concentration gradient, i.e. local deviations from the ideal stoichiometry in the region close to

the nano-contact. We note that this occurs before reduction of the Ag+-ions and therefore before

any switching is observed.

The Hebb-Wagner concepts have originally been formulated for bulk materials, and until to-

day, to our knowledge, have not been applied to nano-scale contacts or thin film devices. We

demonstrate that the theory still holds for nano-scale devices. By confirming this, we can achieve

a better understanding of the conditions of ionic and electronic transport in mixed conductors and

solid electrolytes which lead to conductance switching.
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2 Results

The electrical measurements were performed with the use of a conductive atomic force micro-

scope (C-AFM) (Veeco Multimode AFM/SPM system). In the setup, the Ag layer is the bottom

contact to the Ag2S layer and the top contact is a Pt-coated AFM tip. See the diagram in Figure 1.

V

A

0

Pt-coated
AFM tip

Figure 1: Schematic diagram of the electrode configuration for the measurements with the Con-
ductive Atomic Force Microscope (CAFM)

Platinum is a chemically inert metal, and as an electrode in the system it blocks the ionic

current. By using a nano-scale Pt electrode and a reference (Ag) electrode at the bottom with a

large surface area, the changes in electrical conductivity will be concentrated at the vicinity of the

nano-contact.

The current-voltage characteristics of the samples were obtained by continuously ramping the

voltage linearly from 0 to Vmax down to −Vmax and back to 0, at a frequency of 0.25 Hz. Voltages

are given throughout with respect to the potential of the Pt tip (taken as 0V). For the steady

state analysis, the value of Vmax was kept below the potential at which we observed hysteresis in

the I-V characteristics,[8] meaning that no significant changes are induced in the solid electrolyte

by decomposition of the Ag2S.[9] All the experiments were performed at ambient conditions.

The current-voltage characteristics show an exponential behavior that is fully reversible on the

time scale of the experiment. The curve is asymmetric, with an increase in the current at the pos-

itive bias. We refer to this as the ’pre-switching’ steady state behavior and, in the Ag/Ag2+δS/Pt
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junctions, it is observed for voltages below about 75mV (left panel Figure 2). When increasing

the bias voltage beyond 75 mV, the I-V curves present hysteresis, which evolves into full bipolar

switching for still larger voltages (right panel Figure 2). In the full bipolar switching case, the

ON and OFF states of the device are clearly observed, with a resistance ratio (ROFF/RON) of

approximately 105.

0
5

10
15
20
25
30
35

I (
nA

)

V (mV)

 75 mV
 60 mV
 50mV

-80 -40 0 40 80
-1.0

-0.5

0.0

0.5

1.0

I (
m

A
)

V (mV)

 150 mV

0-75-150 15075

Figure 2: Steady State (left panel) and full bipolar switching (right panel) current-voltage charac-
teristics of the Ag/Ag2+δS/Pt(nano-contact) system

For the purpose of this paper, we focus on the exponential, or steady-state, I-V curves (left panel

of Figure 2). The shape of the curve is reminiscent of curves measured for metal-semiconductor

junctions, and it is known that Ag2+δS is a n-type semiconductor.[10] However, the obtained curves

have the inverse curvature as compared to that expected for a Pt/n-type semiconductor junction

(i.e. Schottky contact). In the case of solid electrolyte semiconductors, this must be attributed to

a combination of ionic and electronic conduction in the electrolyte. The main observation is the

fact that the shape of the IV-curves depends strongly on the type of electrode use: material, size

and symmetry of the electrodes.[11]

In our experiment, with the use of a nano-scale contact and a much larger bottom contact, we

have introduced an asymmetry in the potential distribution across the mixed conductor. When

a potential difference is applied to the system Ag/Ag2+δS/Pt, where Pt is the nano-contact, the

strength of the electric field is concentrated in the vicinity of the nano-contact. If the potential is
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small, such as to avoid decomposition of Ag2+δS, a steady state composition gradient is induced

in the Ag2+δS film, as a result of the mobility of Ag+-ions.[7]

For a mixed electronic and ionic conductor such as Ag2+δS, the electronic conductivity is a

function of the deviations from the stoichiometric composition (δ). When the negative polarity is

at the Pt tip (nano-contact), the Ag+-ions move towards the tip, acting as n-type donors. The

local enhancement of the Ag ion concentration results in an increase of the electronic conductivity

in the small region close to the tip. We will elaborate on this below.

2.1 Theory

A model for the current-voltage behavior of mixed ionic conductors under steady state conditions

goes back to Hebb and Wagner.[6, 7]

Silver sulfide is a mixed conductor as both silver ions and electrons are mobile. Applying a

voltage V to a silver sulfide sample between two electrodes, sets up a difference of the Fermi levels,

ε
′′
F and ε

′
F, between both contacts.

If we can neglect the interface resistances, the applied electrical potential difference V imposes

a difference of the local electrochemical potentials of electrons in the ionic conductor between the

two electrode interfaces on the mixed conductor

− e V = ε
′′

F − ε
′

F = µ̃
′′

e − µ̃
′

e (1)

where −e is the electron charge. The values at the boundaries are denoted as, prime for the

Ag bottom contact and double prime for the Pt nanocontact.

According to Eq.(1), applying a voltage generates a gradient of the electrochemical potential

µ̃e within the mixed conducting silver compound and, thus, an electronic current density je given
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by

→
j e=

σe
e

→
∇ µ̃e (2)

with σe as the conductivity of electrons.

A gradient of the electrochemical potential of electrons is accompanied by a gradient of the

electrochemical potential of silver ions, and vice versa. The corresponding silver ion current density

is given by a complementary expression to Eq.(2) according to

→
j Ag+= −

σAg+

e

→
∇ µ̃Ag+ (3)

with σAg+ as the conductivity of silver ions.

Furthermore, the currents of electrons and silver ions will be coupled by the equilibrium of

electrons and ions according to

Ag 
 Ag+ + e− (4)

The assumption of local thermodynamic equilibrium between silver ions and electrons is valid,

if the electrochemical potential gradient in Eq.(2) is not too high.[12] This approach is well accepted

for mixed conducting silver chalcogenides.[13] Then, the condition of thermodynamic equilibrium

holds for Eq.(4) at all positions in the sample. With µAg denoting the chemical potential of neutral

silver, it follows

µAg = µ̃Ag+ + µ̃e (5)

According to the local equilibrium condition (5), the boundary condition Eq.(1), imposed by

the voltage applied between the ion blocking Pt nano-contact and the silver back contact leads

also to the following alternative expression for the applied voltage
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− e V =
(
µ

′′

Ag − µ
′

Ag

)
−
(
µ̃

′′

Ag+ − µ̃
′

Ag+

)
(6)

Let us consider two simple limiting cases which lead to simplified equations for the voltage. The

first concerns a sample with a homogeneous composition initially. At t = 0, just after a sudden

jump of the voltage from V = 0 to V > 0, the chemical potential of neutral silver has a constant

value throughout the whole sample. Under this condition, the difference of the chemical potentials

of silver in Eq.(6) vanishes and accordingly, the remaining difference of the electrochemical poten-

tials of silver ions in Eq.(6) will be identical to the difference of the electrochemical potentials of

electrons in magnitude but opposite in sign.

t = 0 : −e V = µ
′′

e − µ
′

e = −
(
µ̃

′′

Ag+ − µ̃
′

Ag+

)
(7)

For increasing times t > 0, the initial silver ion current builds up a concentration gradient in the

sample. This leads to an increasing value of the chemical potential difference
(
µ

′′
Ag − µ

′
Ag

)
and a

decreasing electrochemical potential difference of silver ions which finally reaches zero. Accordingly,

the electrochemical potential difference of silver ions, and hence the ionic current, will vanish for

long enough times t >> 0 giving

t� 0 : −e V = µ
′′

e − µ
′

e = µ
′′

Ag − µ
′

Ag (8)

The metallic silver bottom electrode fixes the chemical potential at the interface Ag/Ag2S at

µ◦Ag. Because of this, the chemical potential of silver (and accordingly the non-stoichiometry δ) at

the ion-blocking electrode, is the only variable in the system which is linearly dependent on the

applied voltage. Therefore, under steady state conditions, Eq.(8) simplifies to

− e V = µ◦Ag − µ
′

Ag (9)

Note in this case that for V = 0, the chemical potential of silver at the ion-blocking contact is

equivalent to that of metallic silver. Therefore, if no supersaturation occurs, any positive voltage

should lead to the formation of metallic silver deposits. However, this is not observed for positive
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voltages up to 75 mV meaning that around the ion-blocking contact, a supersaturated composition

occurs with δ > δ◦ where δ◦ corresponds to the non-stoichiometry in thermodynamic equilibrium

with silver metal.

Hence, in the steady state, the gradient of the electrochemical potential of silver ions and the

ionic current density vanish. Then, the gradient of the electrochemical potential of electrons is

equivalent to the gradient of the chemical potential of silver, and the total electric current density

jtotal is carried by the electrons only. This is summarized in the following,

t� 0 : ∇µAg+ = 0, jAg+ = 0 (10)

∇µe = ∇µAg, jtotal = je (11)

Therefore, in the steady state, the electronic current can be expressed by the gradient of the

chemical potential of neutral silver according to

t� 0 : je = jtotal =
σe
e
∇µAg (12)

The typical time to reach the steady state as assumed for Eqs.(9) to (12) is estimated as τ =

L2
diff/2 DAg, with τ denoting the relaxation time for building up a steady-state silver concentration

gradient in the sample, Ldiff the diffusion length through the sample (for a linear geometry the

distance between the two electrodes), and DAg the chemical diffusion coefficient of silver that is

given by [14]

DAg =
σeσAg+

σe + σAg+
· 1

e2
· dµAg

dcAg

(13)

with cAg denoting the local concentration of Ag atoms in Ag2+δS.

All quantities on the right side of Eq. (13) are available from the literature.[15] The chemical

diffusion coefficient in the low temperature phase of Ag2+δS is very high, at 80◦C the value is of
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the order of 10−2 cm2/s. At ambient conditions, it is still around 10−5 cm2/s. Therefore, decay of

concentration gradients in Ag2+δS occurs much faster than in many other mixed conducting solids.

The reason is that the thermodynamic factor
dµAg

dcAg
in Eq.(13) has an extremely large value due to

the small range of non-stoichiometry.[15]

It has to be remarked that the relations discussed above are only valid as long as no deposition

of metallic silver occurs. If silver metal is formed near and at the ion-blocking contact, the ion-

blocking boundary condition is no more valid and a continuous silver ion current will flow. The

total current then is a sum of electronic and ionic currents and will not reach a steady state. At a

nano-contact, it will usually increase, because the formation of metallic silver will virtually increase

the contact area of the nano-contact. Finally, one expects a short-circuiting of the electrodes by

the grown silver filaments.

When the steady-state conditions with no silver deposition are fulfilled, Eq.(12) can be ap-

plied and a well defined, unambiguous relation exists between the electronic conductivity and the

chemical potential of silver. Following a concept by C. Wagner,[6] one can calculate the electronic

conductivity from the slope of the steady state I-V curve. First, the chemical potential and the

space variable are separated according to

e
→
j total (

→
r ) · d →r= σe dµAg (14)

The relation is given for a general case where the current density may vary along the coordinates

→
r . Integrating Eq.(14), with integration limits set by the boundary conditions at the two electrode

contacts, we have

e

∫ r
′

r′′

→
j total (

→
r ) · d →r=

∫ µ
′
Ag

µ0Ag

σe dµAg (15)

The left-hand side of Eq.(15) depends on the geometry of the contacts. We will simplify the

integrals by assuming the chemical potential drops only along one coordinate, say r. The integral
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becomes simple for a sharp point contact (radius a) and a hemispherical reference electrode at

r
′′ →∞. In this case we have,

e

∫ r
′

r′′
jtotal(r) dr = − e

2πa
I (16)

More generally we obtain an expression with the total electrical current I and a constant K

that depends on the distribution of the current density through the sample:

e

∫ r
′

r′′

→
j total (

→
r ) · d →r= − e

K
I (17)

with K = A/L for a specimen in the shape of a pellet with area A and thickness L, K = 2πa for

a hemispherical contact of radius a, and K = 4a for a disk shaped contact to a semi-infinite sample.

With this result for the left hand side of Eq.(15), following C. Wagner [12] one can differentiate

both sides with respect to the upper integration boundary µ
′
Ag. This yields

− e

K
· dI

dµ
′
Ag

=
d

dµ
′
Ag

(∫ µ
′
Ag

µ0Ag

σe dµAg

)
= σe

(
µ

′

Ag

)
(18)

From Eq.(9) we have µ
′
Ag = µ0

Ag + e V , accordingly dµ
′
Ag = e dV and

(
dI

dV

)
steady state

= −Kσe(µ
′

Ag) (19)

Now that we have eliminated the unknown chemical potential we can integrate again over the

electrical potential to obtain the final current-voltage relation in the steady state

I(V ) = −
∫ 0

V

K · σe(V )dV (20)

In our case, we are working in the range of stoichiometry δ > 0, i.e. the n-type range. Under

this assumption the electronic conductivity is given by σe = σ0e
(eV/kT ).[16] The voltage dependence

arises from the relation between the local Ag+-ion concentration (doping) and the local electrical

potential.
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Thus, we obtain

I(V ) = Kσ0
kBT

e

(
e(eV/kBT ) − 1

)
(21)

where kB is Boltzmann’s constant and K is a constant representing the geometrical factor

mentioned in Eq.(17). In the limit near zero bias, i.e. eV << kT, Eq.(21) reduces to I = Kσ0V .

As indicated in Eq.(9), the relation above applies only in the cases when one of the electrodes

maintains a constant chemical potential for Ag, and all changes occur at the small electrode. In

other experiments,[8] by using two Pt electrodes with the same asymmetry in the geometry, we

observed a slight deviation from the theory due to additional chemical potential changes at the

Pt bottom contact. From a thermodynamic point of view, in principle I-V relations could also be

calculated, if one knows the initial non-stoichiometry δ of the sample. But as they depend on the

initial δ, it is not easy to achieve well defined experimental conditions.

In order to approach the limit of the semi-infinite sample (no changes at the bottom electrode)

we need to make use of a very small contact. This allow us also to test the theory for nanometer

size limit.

3 Discussion

Figure 3 shows two sets of data for a 200nm thick Ag2S film on top of a Ag bottom reference

electrode (black lines). The curve at the left is taken with a Pt coated AFM tip at very small load

in order to minimize the contact size. Systematic measurements of tip load with contact size were

performed for calibration (See Supporting Information). The curve at the right is taken with a Pt

wire contact for a larger macroscopic contact.
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Using σ0 = 7.8 x 10−2 Ω−1m−1 [15] and T = 298 K, we can compare the experimental data

of the steady state I-V curves with Eq.(21). The result of the fitting is shown in figure 3 (red lines).
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Figure 3: Steady state current-voltage characteristics of the Ag/Ag2+δS/Pt system, measured with
a Pt-coated AFM tip (left panel) and a Pt wire (right panel). Fit with Eq.(21) are shown as the
red curves.

The geometry of the electrodes and sample enters through the constant K in Eq.(21), which

is the only adjustable parameter. Assuming that the end of the AFM tip has approximately

hemispherical shape, K = 2πa , we obtain an estimate for the tip contact radius, a,

a = K/(2π) = 12nm

which agrees well with the AFM tip radius observed by electron microscopy of approximately

20 nm. Using finite element simulations, we have modeled the sample and electrodes geometry

(Figure 4). The resulting total current as a function of the applied voltage (same as used for the

measured IV’s) results in a IV curve reproducing those obtained from the experiment and fitting.

For comparison to the measurements with the AFM tip, we have also used a macroscopic Pt

wire of 0.1 mm diameter as the top contact. The steady state IV-curve as well as the corresponding

fitting with Eq.(21) is shown in the right side of Figure 3. The quality of the fit is much less good

than in the case of the nano-contact. This, is because the assumption of a semi-infinite sample is

not longer valid. In our case, fitting with Eq.(21) led to a calculated effective contact radius of 17
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µm. However, assuming a perfect contact, the total current must be much higher than observed

in Figure 3. In our experiment, the Pt wire will not be a perfect contact, but rather the total area

in contact with the Ag2S surface is reduced to only few contact points distributed in an effective

radial area of ≈ 17 µm.

For visualization of the top electrode size effect, we have simulated the voltage drop and local

conductivity across the thickness of the Ag2S sample. The model geometry is the same as used

for the measurements: a Ag large bottom electrode, a 200nm thickness Ag2S layer and a 20nm

radius Pt top electrode with a nearly planar geometry. For the simulation we used axial symmetry

around the nano-contact.

Figure 4 (top panel) shows the solution of the finite element simulation at a voltage of 52 mV

(voltage polarity as defined for the experiment). The figure clearly shows that the conductivity

changes are concentrated in the region close to the top electrode. Also, we observed that the con-

ductivity increases when the negative polarity is at the top electrode, indicating a local increase

of Ag+-ion concentration (n-type donors). In the opposite polarity, the conductivity will decrease,

due to the local depletion of Ag+-ions, leading to a lower conductivity. The color bars at the right

side of the simulation indicate the conductivity values (σe).

The bottom panel of Figure 4 is a plot of the variation in stoichiometry obtained from the simu-

lation results (in this case at a voltage of 75 mV). It is plotted as a function of the vertical distance

(d) from the center of the nanocontact to the Ag substrate. The deviation from stoichiometry is

given by,[15, 17]

δ = n− p = 2K
1/2
i sinh

(
e(V0 − V (d))

kT

)
(22)

where n and p are the electron and hole concentration and K
1/2
i = n = p at the stoichiometric

composition. In the calculation we have taken K
1/2
i = 2 x 1020 m−3 and V0 = 105 mV as reported

by Bonnecaze et al.[15] The equation above accounts for both p an n-type Ag2+δS.
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Figure 4: Top panel: Finite element simulation of potential (contour plot) and conductivity (surface
plot) at V = 52mV, across the 200 nm thick Ag2+δS. Contact radius is 20nm, with a nearly planar
geometry. Bottom panel: Plot of the non-stoichiometry δ as a function of the vertical distance
from the center of the nano-contact to the Ag substrate (d). The values of δ indicate a strong
increase in Ag+-ion concentration at the region neighboring the nano-contact reaching the values
of high supersaturation of Ag in Ag2+δS.
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The range of homogeneity of the low temperature phase α-Ag2S is extremely narrow, with |δ◦|

in the order of 10−6.[18, 17] For δ > 0, Ag2S exist with excess Ag (n-type regime), and for δ < 0,

there is deficit of Ag (p-type regime). We define δ◦ as the non-stoichiometry limit in thermody-

namic equilibrium with Ag (at the n-type regime). In our experiment this is the case where the

Ag2S is in contact with the Ag substrate.

In Figure 4 we observe that δ = δ◦ at the boundary Ag/Ag2S (d = 200nm) as expected, and

δ > δ◦ over the whole range of the curve. This would mean that Ag should precipitate from the

Ag2S already over the full range. However, a certain level of supersaturation is needed before Ag

starts precipitating. When a certain supersaturation level is reached, precipitation of metallic Ag

will begin. In our geometry we will therefore observe precipitation of metallic Ag to start in the

region near the nano-contact (Pt tip). This precipitation process is, in a later stage, responsible

for the nucleation and further formation of Ag filaments. The formation of these filaments, which

can grow to make a metallic contact between the Ag and Pt electrode, is the proposed mechanism

that leads to full bipolar conductance switching.

The nucleation process is related to an overpotential threshold, below which nucleation is ba-

sically zero and above which nucleation will increase exponentially.[2, 19] It is also remarkable that

the nucleation of silver metal occurs within the silver sulfide phase and does not start from an

adsorbed silver layer on the blocking electrode. This makes the resistance switching unsensitive to

the nature of the blocking electrode.

The precipitation of metallic silver during our measurements from an oversaturated state can

be understood from the IV curves, explaining hysteresis and full conductance switching. We ob-

served metal deposition and switching to high conduction at a bias voltage beyond 75 mV, a value

in agreement with earlier results.[20] As indicated above, the experimental data verify that there is

a nucleation barrier for the formation of the metallic silver, that can be related with e.g. lattice
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deformation and surface free energy. However, further studies are needed to clarify the background

for the observed threshold voltage for deposition of Ag and the complete description for the system

beyond the critical supersaturation.

4 Conclusion

We present above a quantitative analysis of the steady state ionic and electronic transport in a

solid electrolyte device that leads to resistance switching. The model presented here describes

the electronic transport within the solid electrolyte in the steady state, covering the range of

non-stoichiometries due to additional Ag in Ag2S, up to the supersaturation range just before

the deposition of elemental silver. The model is then a base for a complete description of solid

electrolyte conductance switches, and it can be extended to other semiconductor materials with

mobile donors or acceptors.

5 Experimental Section

The Ag2S devices are fabricated as follows: first a layer of Ag (100nm thickness and 10 x 10

mm2 surface area) is sputtered onto a Si(100) substrate covered with a native oxide layer. On

top of the Ag layer, the Ag2S layer (200nm thickness and 5 x 5 mm2 surface area) is grown by

sputtering of Ag in a Ar/H2S plasma, with the use of a shadow mask. For the preparation of sto-

ichiometric Ag2S by RF-sputtering, the most important parameter is the partial pressure of H2S

in the sputtering atmosphere. To estimate the partial pressure of H2S in the sputtering chamber,

we measure the total pressure (Ptotal = PH2S + PAr) with a Compact Capacitance Gauge (CMR

264, Pfeiffer Vacuum). First the Ar partial pressure is set to establish the sputtering discharge

(pre-sputtering), and before deposition on the substrate, H2S is introduced in the chamber. To

achieve a stoichiometric composition, the partial pressure of H2S used is ≈ 6 x 10−4 mbar.
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Composition of the samples is analyzed by X-Ray Diffraction (XRD) and Energy Dispersive

X-Ray analysis (EDX). The surface morphology of the as-prepared samples is also checked by

Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Figure 5 shows an

AFM image of the sample surface. We observe a rough surface with grain sizes of approximately

20 to 40 nm diameter.
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Figure 5: AFM topography image of the Ag2S surface. The right color code shows the scale bar
for the height in the image.
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Figure 6: Contact radius calculated from a set of experimental I-V curves using Eq.(21), at different
load AFM tip forces. Measurements start when tip is just in contact with the surface of the Ag2S
(smallest contact radius) followed by an increase of the tip-sample interaction.
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