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Abstract 
 
This paper sets forth a general methodology for conducting bibliometric analyses at the micro level. It 
combines several indicators grouped into three factors or dimensions which characterize different 
aspects of scientific performance. Different profiles or “classes” of scientists are described according 
to their research performance in each dimension. A series of results based on the findings from the 
application of this methodology to the study of CSIC scientists in Spain in three thematic areas are 
presented. Special emphasis is made on the identification and description of top scientists from 
structural and bibliometric perspectives. The effects of age on the productivity and impact of the 
different classes of scientists are analyzed. The classificatory approach proposed herein may prove a 
useful tool in support of research assessment at the individual level and for exploring potential 
determinants of research success. 

Introduction 
 
Bibliometric indicators are increasingly used for research policy purposes since they 
have proved useful to monitor the development of scientific and technological 
activities. These indicators, drawn from scientific publications, can be applied at 
different levels of analysis, which range from countries (“macro level”), regions, 
centers or areas (“meso level”) to research teams or individual researchers (“micro 
level”) 1. This paper focuses on micro-level analysis, and more specifically on the 
individual level, since studies targeted on this unit of analysis can contribute 
significantly to improve our understanding of the research process and support 
research assessment decisions on staff recruitment, the promotion of scientists 
and/or the granting of scientific awards. 
 
With regard to the study of the scientific process, bibliometric indicators at the micro 
level constitute a very useful tool for the analysis of different issues, such as 

                                                 
1 For the definition of micro-level we follow Vinkler (1988) who considers as micro-level the study of “persons” or 
“research teams” (see also Costas & Bordons, 2005; Sandström & Sandström, 2009). 
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publication and collaborative habits of scientists by disciplines or the study of the 
determinants of successful research (Martin, 1978; Prpic, 1996; Dietz and Bozeman, 
2005). The influence of personal factors, such as sex or age, on research 
performance (Dennis, 1956; Cole, 1979; Levin and Stephan, 1989, 1991; Bonaccorsi 
and Daraio, 2003; González-Bambrila and Veloso, 2007) and the effects of 
collaboration on productivity and impact of research (see for example, Lee and 
Bozeman, 2005) are some of the topics which have attracted special attention within 
the scientific community.  
 
However, the utility of bibliometric indicators in research assessment processes has 
been probably the key factor in the current trend of rising interest and demand for 
bibliometric studies at the micro level. Since this type of indicators are supposed to 
increase objectivity in peer decisions, they are increasingly demanded by policy 
makers, research managers and scientists themselves to support research 
assessment processes. Unfortunately, a described side effect of this increasing 
demand is the risk of abuse and uncritical use of bibliometric indicators, which in the 
long term may prompt changes in the behavior of individual scientists (Weingart, 
2005). In this regard, the introduction of inappropriate research assessment 
methodologies and especially the misuse of bibliometric indicators may result in 
undesired modifications of the behavior of scientists, such as changes in their 
selection of research topics (selecting more secure topics and lower-risk fields, 
favoring disciplinary approaches instead of interdisciplinary ones, etc.), giving 
preference to quantity over quality and encouraging inappropriate publication 
strategies (massive publication, hyper-authorship (Cronin, 2001), honorary 
authorship (Kempers, 2002), “salami slicing” (Abraham, 2000; Bornmann and Hans-
Dieter, 2007), etc.). To avoid this inappropriate and uncritical use, and to prevent 
negative consequences for science and scientists alike, the most common and 
rational suggestion is not only to combine different indicators in order to obtain more 
comprehensive pictures of the scientific performance of researchers (Martin, 1996; 
van Leeuwen et al., 2003), but also to combine bibliometric indicators with peer 
review in what has been dubbed “informed peer review” (Nederhof & van Raan, 
1987; Aksnes & Taxt, 2004). 
 
In addition to the former caveats, the development of bibliometric analyses at the 
micro level requires special caution due to the lower validity of statistical analysis 
applied to small units. Moreover, special diligence and precision is required for the 
collection and cleaning-up of data, the calculation of indicators, and the final 
interpretation of results (Costas & Bordons, 2005). Challenges we are confronted 
with in the collection and management of data worth noting include the lack of 
normalization of author and institutional names (Borgman & Siegfried, 1992; 
Fernández et al., 1993; Ruiz-Pérez et al., 2002); problems in the identification of 
scientists due to common names (Wooding et al., 2006) or scientist mobility 
(Cañibano et al., 2008); and inaccuracy of data gathered by databases (Araujo Ruiz 
et al., 2005).  
 
Due to the above-mentioned problems, obtaining precise and reliable measures of 
the research performance of individual scientists is a difficult and delicate task. In 
particular, the construction of rankings of scientists has raised strong debates within 
the scientific community (Macri & Sinha, 2006), since small losses of information may 
have an important influence on the results, differences in relative positions are 
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frequently not significant and the value of rankings based on a single criterion is very 
limited. This statement also holds for the case of new single indicators introduced for 
the assessment of individual researchers (see for example Hirsch, 2005; Egghe, 
2006) the proper use and value of which is still under scientific debate (Vinkler, 2007; 
Meyer, 2009) although analyses based solely on these indicators start to proliferate 
elsewhere. 
 
We must acknowledge that, to date, there are no clear methodologies or suggestions 
on how to use bibliometric indicators at the micro level, nor clear conclusions on what 
bibliometric indicators should be used to adequately support the evaluation of 
scientists and research teams (van Raan, 2005). Accordingly, there is an important 
need to develop methodologies and instruments in support of individual research 
assessment, avoiding as much as possible the limitations mentioned above and 
providing useful and manageable information for research managers in order to duly 
inform their decision processes. 
 
In this paper, a general methodology for informing the analysis of research 
performance of individual scientists is laid out, highlighting its main advantages and 
properties by means of its application to the study of a set of scientists working at the 
Spanish CSIC. Our approach relies on a classificatory scheme, which provides a 
quick and straightforward view of the position of scientists in the context of their area 
of activity with regard to their research performance, avoiding rankings and uni-
dimensional measures. In a previous paper (Costas and Bordons, 2007a) a 
preliminary classificatory scheme for the analysis at the micro level was introduced. 
Such methodology is hereby enhanced through the introduction of new indicators 
and the simplification of the dimensions finally included. The methodology proposed 
hereunder is intended to contribute to the assessment of the research performance 
of scientists (evaluative purposes), but also to the study of different aspects of their 
behavior (descriptive purposes). We believe that the combination of bibliometric 
indicators and personal data of researchers (i.e., age, tenure, professional status, 
years of experience, etc.) can provide a rich picture of the performance of scientists 
from a micro-level perspective. 

Objectives 
 
The main purpose of this paper is to present a general methodology for obtaining 
relevant bibliometric indicators for studying and supporting the assessment of the 
research performance of individual scientists. Our aim is to develop a classificatory 
scheme which will enable us (1) to characterize and describe different profiles or 
classes of scientists, with special emphasis on the identification of “Top researchers” 
as a specific class; and (2) to explore different aspects of the research process and 
whether they might differ among scientists according to their class.  
 
Against this backdrop, the following are some of the questions addressed in this 
paper: Who are Top scientists from a bibliometric point of view? Is there a good 
match between the bibliometric classification of scientists presented herein and the 
one based on the professional categories? What are the effects of age on 
productivity and impact of scientists and to what extent do these effects change from 
one class of scientists to another?  
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This article is organized as follows. Firstly, the methodology section includes a 
detailed description of the main bibliometric indicators used, as well as the 
presentation of the classificatory scheme developed for grouping scientists in classes 
according to their research performance in three different dimensions. Secondly, the 
main results of the application of the methodology are put forward: primary features 
of the research performance of Top, Medium and Low scientists are described; the 
matching between professional categories and scientific classes is discussed and the 
main characteristics of top researchers in terms of age, professional category, and 
stays abroad are pointed out. The effects of age on productivity and impact are 
analyzed as well as the influence of the scientific class. Finally, the results are 
commented on in relation to previous literature on the topic. 
 

Methodology 
 
The Spanish National Research Council (CSIC) is organized in eight scientific areas2. 
This study focuses on the three areas with the higher number of scientists, i.e. 
Biology & Biomedicine (388 scientists; 36%), Materials Science (327; 31%) and 
Natural Resources (349; 33%), which altogether (a total of 1,064 researchers) 
account for 45% of CSIC scientists. The CSIC area of Biology & Biomedicine 
includes research on the molecular basis of cancer and the immune response, 
neurobiology, genetics of development, structural biology, virology and 
biotechnology. Main research lines in the CSIC Materials Science area refer to new 
materials with particular properties or for specific functions (i.e., health-related) 
including design, modeling and simulation of materials. Finally, Natural Resources 
comprises three main lines of activity: biology of organisms and terrestrial systems, 
sciences of the earth and atmosphere and marine sciences and aquaculture (for 
further information on these CSIC's areas, see Gómez et al., 2003 and Costas et al., 
2009).  
 
The study of the scientific activity of full time researchers with a permanent position in 
the institution in 2005 in the three mentioned areas is addressed below. To get 
tenure at the CSIC scientists need to be doctorate holders and succeed in a selection 
process in which their merits and previous research experience are assessed. 
Permanent scientists at the CSIC belong to one of three professional categories (see 
below), and they can be promoted from one category to the one above according to 
their merits and performance. These three categories are the following: 
 
- Tenured Scientists —the basic category—, usually newcomers to the organization 

start in this category. A total of 558 researchers of our population are tenured 
scientists (52%);  

- Research Scientists —the middle category—, this is the intermediate professional 
scientific category at the CSIC. A total of 268 scientists of our study are research 
scientists (25%) ; and  

- Research Professors —the upper category—, this is the highest category that can 
be achieved at the CSIC, which is obtained by researchers with large experience 
and/or scientific merits. It is equivalent to the “Professorship” rank at University. A 
total of 237 researchers belong to this category in our study (22%). 

                                                 
2 Agriculture; Biology & Biomedicine; Chemistry; Food, Science & Technology; Materials Science; Natural 
Resources; Physics; and Social Sciences & Humanities.  
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For each individual researcher, all his/her publications were collected to build his/her 
bibliometric profile. Thus, a thorough methodology for obtaining all publications of 
scientists, calculating their bibliometric profiles and classifying them as compared to 
their peers in the same research area at the organization was developed. The main 
procedural stages of this methodology are presented below. 
 

1. Data downloading and document allocation to scientists 
 
Documents published by the studied scientists during the 1994-2004 period were 
downloaded from the Web of Science and gathered in a relational database 
(Fernández et al., 1993). All types of publications covered by the Web of Science 
were retrieved. An eleven-year period was retained considering that it would be long 
enough for obtaining reliable results and providing meaningful conclusions. 
 
To be sure that all scientists were active during the whole period and make inter-
scientist comparisons possible, their total production throughout the entire eleven-
year period was collected. It included for each scientist: (a) documents developed at 
the CSIC; (b) documents with a Spanish address different from CSIC's for those 
scientists who have joined the institution at any given year during the period of 
reference, since in these cases their previous output during the period was also 
considered; (c) documents with a foreign address, which were the result of a 
research stay abroad. 
 
A wide range of different name variations of researchers were included in the search 
strategy following the methodology suggested by Costas and Bordons (2006). The 
accuracy of our methodology in the identification and assignment of papers to 
researchers was checked in a sample of 405 scientists whose curricula vitae were 
available on the Internet. On average, 98% of the publications of researchers were 
detected and correctly assigned to their authors. 
 

2. Individual bibliometric profiles 
 
For each individual researcher, a bibliometric profile comprising several indicators 
was produced. Some of said indicators are based on the CWTS3 standard 
methodology (van Raan, 2004). 
 
(a) Total number of publications (P) during the period 1994-2004. This indicator is 
slightly different from the CWTS standard indicator, since we are considering all 
‘document types’ and not only articles, letters, notes and reviews, in order to have the 
complete production of scientists on our records and explore their publication 
strategy. Full counting has been used for the calculation of this indicator when multi-
authored papers are considered. 
 
(b) Total number of citations (C) received by publications (P) during the period 1994-
2004. Note that the citation window is variable and shorter for the most recent 
publications (e.g. for publications from 1994, citations from 1994 to 2004 are 
considered; while for publications from 2004, only citations in 2004 are taken into 
                                                 
3 CWTS-Center for Science and Technology Studies (Centrum voor Wetenschaps-en Technologie 
Studies). 
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account). On the other hand, it should be noted that ‘author self-citations’ (the self-
citations that an author gives to his/her own publications) have been excluded while 
‘co-author self-citations’ (self-citations given by the co-authors of the researcher 
under analysis) were not removed4.  
 
(c) Citations per Publication (CPP). This is the citation-per-document rate for each 
researcher. This indicator is again slightly different from the original CPP by CWTS 
as it is based on C, as defined before (excluding only author-self-citations, while the 
same CWTS indicator excludes all self-citations –both author and co-author self-
citations), divided by P. 
 
(d) Percentage of Highly-Cited Papers (%HCP). Highly-Cited Papers (HCP) are those 
publications cited above the 80-percentile in their respective CSIC research areas. 
As research areas we have selected each of the three CSIC areas where individual 
researchers are assigned at the organization (Biology & Biomedicine, Materials 
Science and Natural Resources). In other words, HCP are those papers among the 
20% most cited within each of the three CSIC areas. 
 
(e) h-index. A scientist's h-index is the highest number of papers that he/she has 
published which have each amassed at least the same number of citations (Hirsch, 
2005). For the calculation of this indicator, the number of publications considered 
was P (as defined above) while citations were defined as in C (see above). 
 
(f) Median Impact Factor of publications (IF med). Considering all the papers 
published by each researcher, the median value of the publication journal Impact 
Factor (as defined by Garfield 1955, 2003) distribution is calculated. The median has 
been preferred to the mean due to the reported ‘skewness’ of this indicator (Seglen, 
1997; Solari and Magri, 2000). The Impact Factor is obtained through the Journal 
Citation Reports (JCR) as published by Thomson Reuters.  
 
(g) Normalized Journal Position (NJP). This is a measure of the average position of 
the publication journals in their scientific categories (Thomson subject categories) 
according to their impact factor (Bordons and Barrigón, 1992). Unlike the IF med, it 
allows for inter-field comparisons as it is a field-normalized indicator. 
 
(h) CPP/FCSm. This indicator measures the impact of a research unit (in this case, 
individual researchers), compared to the world citation average in the subfields in 
which the unit is active (van Raan, 2004). The rate of citations per publication (CPP) 
(self-citations removed) is compared with the Field Citation Score mean (FCSm) that 
is the field-based worldwide average impact used as reference. Here again we use 
the definition of fields based on the classification of scientific journals into categories 
developed by Thomson Reuters. Although this classification is not perfect, it provides 
a clear and ‘fixed’ consistent field definition suitable for automated procedures within 
any given data-system.  
 
(i) JCSm/FCSm. This indicator measures the impact of the publication journals within 
their scientific fields. The journal-based worldwide average impact (Journal Citation 

                                                 
4 For a broader explanation on the differences between author and co-author self-citations, see Costas 
et al. (2010). 
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Score mean –JCSm-) for an individual researcher is compared to the average 
citation score of the subfields (FCSm). 
 
Note that for the last two indicators, only articles, letters, notes and reviews 
(excluding book reviews) are considered, and only external citations (citations that 
are not produced by the authors of the source document) were taken into account.  
 

3. Indicator reduction 
 
In accordance with the section above, a bibliometric profile composed of nine 
variables was built for every researcher. With the aim of reducing the number of 
variables and simplifying the analysis, related variables were grouped into a smaller 
number of homogeneous factors by means of factor analysis. Factor analysis is a 
statistical method to reduce the dimensionality of the data, in order to discover the 
underlying structure of data and interpret dependencies among sets of variables. It 
has been frequently used in the scientific literature of our field to study the 
relationships and dependencies among bibliometric indicators (Costas and Bordons, 
2007b, 2008; Bornmann et al., 2009) as well as for the construction of composite 
indicators (Franceschet, 2009). In this study, the nine indicators described were 
standardized through the square root and grouped in three factors or dimensions, 
which account for 87% of the total variance (Table 1). The following dimensions were 
obtained:  
 
� The first dimension deals with the “Observed Impact”. It comprises the percentage 

of Highly Cited Papers (%HCP), the internationally normalized impact 
(CPP/FCSm) and the Citations per Publication (CPP) and it accounts for 29% of 
total variance.  

� The second dimension may be labeled as “Journal Quality dimension” and 
includes the Median Impact Factor (IF med), the Normalised Journal Position 
(NJP) and the JCSm/FCSm, accounting for 29% of the variance. Researchers try 
to publish their documents in the best journals within their research fields (van 
Raan, 2001) and the extent of their achievements in this respect is thus analyzed. 
In this regard, this dimension deals with the success of researchers in selecting 
high-impact journals and positioning their manuscripts in them.  

� Finally, the “Production dimension” accounts for 28% of the total variance. It 
groups the total number of publications (P), the total number of citations (C) and 
the h-index. This dimension shows the highest size-dependent nature (the size-
dependence of the h-index has been previously described by van Raan, 2006; 
Costas and Bordons, 2007b; and Vinkler, 2007). 

 
 
 
 
 
 
 
 
 
 
 



 8 

 
 
 

Table 1. Factor Analysis. Rotated component matrix 

Component 
Indicators 

1 2 3 

%HCP .876 .223 -.002 

CPP/FCSm .831 .251 .278 

CPP .770 .510 .167 

IF med .293 .871 .057 

NJP .156 .866 .243 

JCSm/FCSm .389 .765 .136 

P -.096 -.009 .975 

h-index .276 .283 .878 

C .502 .304 .775 

 
 
It should be noted that this analysis has been conducted in the three research areas 
under study, and the same results were obtained in all cases as regards the 
reduction of indicators and the final three dimensions, thereby confirming the sound 
consistency of the methodology being developed. 

 

4. Indicator standardization 
 

Three different composite indicators were built which correspond to each of the 
factors previously described. The main advantage drawn from the use of these 
indicators is that we keep most of the information provided by the nine initial 
variables, but in a more structured way. The fact that the variables are now organized 
in three factors and each of them represents a specific conceptual dimension of 
scientific performance is particularly noteworthy.  
 
Since the different variables presented above have different scales, standardization 
was necessary in order to have them all framed within the same range of values. 
Every value of each indicator was divided by the maximum value in that indicator. As 
a result, all standardized indicators are ranged between 0 and 1. Finally, the following 
composite indicators were built for each scientist: 
 

- Production dimension= P-ST + C-ST + h-index-ST 
- Observed Impact dimension= %HCP-ST + CPP-ST + CPP/FCSm-ST 
- Journal Quality dimension= IF med-ST + NJP-ST + JCSm/FCSm-ST 
(“-ST” stands for standardized indicators) 

 
In the development of the composite indicators, the same weight was given to the 
different variables involved since we decided to allocate the same level of importance 
to each of them. Other weighting options (see Franceschet, 2009) could be explored 
in the future after analyzing the results of the present approach and depending on the 
objectives pursued. 
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5. Classification of researchers 
 
As a result of the  process described in the section above, the research performance 
of every scientist was characterized through three composite indicators. Obtaining a 
final score as a properly-weighted combination of the three indicators and ranking 
scientists accordingly was feasible. However, we consider that a single number can 
hardly reflect the complexity and multidimensionality of the research performance of 
scientists (van Leeuwen et al., 2003). Moreover, the fact that very often there are no 
significant differences among the scores obtained by authors located in close 
positions has been criticized in rankings, thus advising us to refrain from using them 
(van Raan, 2005; Butler, 2007). To cope with these problems, this study proposes 
the introduction of a classificatory scheme categorizing researchers according to their 
performance in the three dimensions mentioned above. Research performance of a 
given scientist was compared with that of his/her colleagues in his/her corresponding 
(CSIC) research area and classified accordingly.  
 
Percentiles 25 and 75 were calculated for each of the three composite indicators 
(other studies have also used quartiles and percentiles for the analysis and use of 
bibliometric indicators: Lewison et al., 1999; Buela-Casal, 2007; Nicolini and Nozza, 
2008). Researchers were classified into 3 zones according to the following criteria:  
 

• Zone 1: values lower or equal to P25. Final score=1;  
• Zone 2: values higher than P25 and lower or equal to P75. Final 

score=2; 
• Zone 3: values higher than P75. Final score=3 

 
Therefore, a general classification in three zones was considered convenient for the 
purposes of distinguishing between “high”, “medium” and “low” performers. We could 
have established 3 classes of equal size (33% of scientists in each class), but we 
decided to expand the medium zone (50%) and set percentiles 25 and 75 as its lower 
and upper boundaries, with the aim of setting a more strict threshold for qualifying as 
“high” or “low” performers. It would have also been possible to create more than 3 
classes, but from our perspective that would have substantially increased the 
complexity of the analysis. 
 
Under this methodological approach, every scientist was characterized through a 
three-value vector which describes his/her position in each dimension (see Table 2). 

Table 2. Three-vector scheme for the classification of scientists 

Scientists Production 
Dimension 

Observed Impact 
Dimension 

Journal Quality 
Dimension 

Researcher A 3 3 3 
Researcher B 2 3 3 
Researcher C 2 2 2 
Researcher D 2 1 2 
Researcher E 1 1 2 
Researcher F 1 1 1 

… … … … 
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Researchers may obtain “pure” vectors, with the same score in the three dimensions 
(for example, Researchers A, C and F in Table 2), or “mixed” vectors (combining 
3/2/1, see Researchers B, D and E) in their final classification.  
 
A substantial number of different classes emerge from the previous classification as 
a result of the different potential combinations of three values and three dimensions. 
In order to simplify bibliometric analysis, the resulting classes were grouped in two 
different levels of aggregation: Classification 1 (three classes) and Classification 2 
(eight classes) (Table 3). 
 

Table 3. General classificatory schemes of scientists 

Classification 2 Classification 1 
Classif. 1 Classif. 2 

Criteriaa No. Scientists % No. 
Scientists % 

TOP1 All 3 scores 73 6.86 TOP CLASS 
(TOP) TOP2 Two 3/one 2 133 12.50 

206 19.36 

MC1 Two 2/one 3 170 15.98 

MC2 All 2 scores 217 20.39 
MEDIUM CLASS 

(MC) 
MC3 Two 3 or 2/one 1 209 19.64 

596 56.02 

LC1 One 2 or 3/two 1 127 11.94 

LC2 All 1 scores 90 8.46 
LOW CLASS 

 (LC) 
LC3 Any blankb 45 4.23 

262 24.62 

Total number of scientists 1,064    
Notes:  
a “All 3 scores” described for TOP1 scientists means that they get a “3” score in each of the three dimensions. “Two 3/one 2” 
described for TOP2 scientists means that they get a “3” score in two dimensions and a “2” score in the remaining one. The 
criteria for the rest of the classes can be read likewise. 
b “Any blank” stands for scientists with no data in any of the three factors. 

 
As can be inferred from Table 3, “Classification 1” provides a broad grouping of 
scientists into 3 main classes: Top Class (TOP) , Medium Class (MC), and Low Class 
(LC) (Columns 1 and 4 in Table 3).  
 
On the other hand, “Classification 2” is made up of 8 classes: two classes within the 
former Top Class (Top 1 and Top 2); three classes within the former Medium Class 
(MC1, MC2, MC3) and three classes within the former Low Class (LC1, LC2 and 
LC3) (Columns 2 and 3 in table 3 –shaded columns-). This is a more detailed 
classification designed to offer a deeper insight of the behavior of scientists in their 
areas and is meant to be a helpful and informative tool for descriptive and evaluative 
processes (especially for research managers). In this study, this second classification 
(“Classification 2”) has not been used for the subsequent analysis, although it will be 
considered for future studies in order to conduct more detailed surveys on the 
performance of individual researchers. 
 
The distribution of scientists by classes enables us to locate a given author's position 
in relation to his/her colleagues in the area and allows inter-area comparisons of 
scientists according to their relative positions in their areas.  
 

6. Scientific class-based analysis of research performance  
 

Once scientists were distributed by scientific classes, the average behavior of 
scientists within each class was described through the nine bibliometric indicators 
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used (basic descriptive statistics); the matching between scientific classes and 
professional categories was explored (contingency tables); and the main features of 
top researchers as regards age, stays abroad and number of years at the CSIC were 
analyzed (test for non-parametric variables). Statistical analysis was carried out using 
SPSS software (version 17.0). 
 
As regards the study of age, it is important to note that it is cross-sectional. This 
means that we do not analyze changes in the performance of specific individuals as 
they get older (longitudinal analysis), but focus on the behavior of scientists in 
different age brackets. 
 

Results 
 

General description of areas 
 
The three areas analyzed comprise a total aggregate of 24,982 publications: 9,660 in 
Materials Science, 9,318 in Biology & Biomedicine and 6,102 in Natural Resources; 
receiving 80,546, 189,699 and 56,940 citations respectively. Table 4 shows a general 
description of the three areas from the individual perspective by means of the 
indicators defined above. 

Table 4. Research performance of scientists by research areas 

Scientific 
Area P C h-index %HCP CPP CPP/FCSm IF med NJP JCSm/FCSm 

24.17±19.69 242.21±282.32 8.03±4.55 22.59±15.11 7.31±5.11 0.89±0.54 1.273±0.541 0.64±0.14  0.99±0.36 
Natural 

Resources 
(N=349) 21 163 8 19.84 6.63 0.83 1.18 0.67 0.98 

30.64±23.33 627.4±610.89 11.82±5.73 24.97±15.21 19.03±16.66 1.17±0.89 4.645±2.223 0.8±0.1 1.39±0.55 
Biology & 

Biomedicine 
(N=388) 25 466.5 11 21.37 14.21 0.97 4.12 0.82 1.34 

47.83±38.68 427.44±508.4 9.96±5.16 20.22±11.51 6.3±5.13 1.02±0.81 1.576±0.756 0.72±0.11  1.2±0.39 
Materials 
Science 
(N=327) 40 261 9 18.68 4.89 0.84 1.44 0.74 1.21 

33.8±29.64 441.66±518.14 10.03±5.43 22.69±14.19 11.36±12.43 1.04±0.78 2.626±2.136 0.72±0.13 1.21±0.47 Total 
(N=1064) 

27 270 9 20 7.86 0.87 1.81 0.75 1.15 
Note: “N” stands for number of scientists. 96% of scientists in Materials Science and Natural Resources and 99% of scientists in 
Biology & Biomedicine had at least 1 publication in the period under analysis. 
Data expressed as Mean±SD 

Median 

 
Researchers in Materials Science show the highest average number of papers, while 
Biology & Biomedicine researchers obtain the highest impact values, including both 
citation and impact-factor-based indicators (C, h-index, %HCP, CPP, CPP/FCSm and 
also Median Impact Factor, NJP and JCSm/FCSm). Finally, Natural Resources 
researchers obtain the lowest scores in all indicators. 

 
Research performance by Scientific Class 
 
Research performance of scientists by scientific class is described for each area in 
Table 5 (see a data breakdown by areas attached as Appendix 1). As shown below, 
productivity and impact-based indicators tend to increase with scientific class. Top 
researchers are those scientists with the highest scores in each and every indicator 
included in the analysis. Therefore, they present a high and well-balanced research 
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performance (Table 5). This pattern was observed in each of the three areas under 
analysis. 
 
We are aware that these differences among top, medium and low scientists were 
somehow expected since the indicators described in Table 5 were also used for the 
delimitation of classes. However, it is important to highlight that differences between 
classes are statistically significant for all indicators and in the three areas under 
analysis (p<0.05). 
 

Table 5. Research performance of scientists by scientific class (All areas combined) 

Class P C h-index %HCP CPP CPP/FCSm IF med NJP JCSm/FCSm 
47.72±36.27 944±713.31 15.1±5.1 37.82±11.98 22.62±2 0.01 1.92±1.06 3.776±2.702 0.81±0.07 1.65±0.49 Top 

(N=206) 37.5 716.5 14 36.36 14.56 1.56 2.711 0.81 1.57 
36.95±28.01 406.1±385.53 10.29±4.4 19.42±10.62 10.37±7.79 0.97±0.47 2.589±1.968 0.74±0.1 1.21±0.36 Medium 

(N=596) 30 283 10 17.39 7.71 0.88 1.678 0.75 1.15 
15.68±15.83 93±134.22 4.79±2.88 10.24±12.26 4.04±3. 34 0.45±0.30 1.635±1.285 0.6±0.17 0.8±0.34 Low 

(N=262) 12 60.5 4 6.98 3.11 0.40 1.042 0.63 0.78 
33.8±29.64 441.66±518.14 10.03±5.43 22.69±14.19 11.36±12.43 1.04±0.78 2.626±2.136 0.72±0.13 1.21±0.47 Total 

(N=1064) 27 270 9 20 7.86 0.87 1.81 0.75 1.15 
Note: “N” stands for number of scientists. 
Data expressed as Mean±SD 

Median 

 
Scientific Class vs. Professional Category 
 
Can we anticipate a fine match between scientific class and professional category? 
In other words, to what extent have Top scientists been rewarded with promotion to 
the highest professional category? The relationship between the classification of 
scientists and their current professional category at the CSIC is shown in Table 6.  
 

Table 6. Scientists by professional category and scientific class (all areas combined) 

Professional Category Scientific 
Class Tenured 

Scientists 
Research 
Scientists 

Research 
Professors 

Total 

Top Class 96 
(17.2%) 

52 
(19.3%) 

58 
(24.5%) 

206 
(19.4%) 

Medium 
Class 

297 
(53.2%) 

151 
(56.1%) 

148 
(62.4%) 

596 
(56.0%) 

Low Class 165 
(29.6%) 

66 
(24.5%) 

31 
(13.1%) 

262 
(24.6%) 

Total 558 
(100%) 

269 
(100%) 

237 
(100%) 

1064 
(100%) 

Chi2=25.43; p<0.001 

 
According to Table 6, the hypothesis of independence between scientific class and 
professional category should be rejected (p<0.05). In other words, the professional 
category is related to the scientific class of researchers. Although there is not a 
perfect match between scientific class and professional category, the percentage of 
Top researchers raises in tune with their professional category: 25% of Research 
Professors are Top class vs. only 17% of Tenured Scientists; moreover, only 13% of 
Research Professors are Low class vs. 30% of Tenured Scientists. 
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We are aware that other facets of research performance different from the one 
related to scientific publications are usually considered in support of promotion 
decisions. In fact, we do not know to what extent promotion can be explained by 
means of bibliometric indicators. To answer this question, we have analyzed which of 
the different bibliometric indicators used for the classification of researchers are the 
best predictors of the professional category of scientists. Discriminant analysis using 
the stepwise method was conducted by areas, entering those variables that minimize 
Wilks’ Lambda values.   
 
The importance of size-dependent indicators is clear in two consecutive analyses 
with different number of variables. Firstly, we considered the nine bibliometric 
variables used for the classification and the number of publications (P) emerged as 
the one that contributes the most to the discrimination between professional 
categories. Around 50% of the scientists were correctly classified under this first 
approach based only in the number of publications (“bibliometric-based analysis”) 
(Table 7). Since this percentage of scientists correctly classified is not very high, a 
second analysis was undertaken5.  
 
In the second analysis (see the “extended analysis” included in Table 7), the number 
of years at the CSIC of each scientist was included in the study in addition to the nine 
bibliometric variables, and in this case 2-3 variables entered in the model depending 
on the area (2 variables in Biology & Biomedicine and Natural Resources and 3 
variables in Materials Science). Seniority at the CSIC is the variable that contributes 
most to the discrimination between professional categories, since it is the first 
variable entered (step 1), followed by size-dependent bibliometric indicators such as 
the number of publications in two areas and by the h-index in the third area (step 2). 
The NJP, which is a measure of journal prestige, is also introduced in Materials 
Science (step 3). The percentage of scientists correctly classified in the “extended 
analysis“ rose up to 60-70%. Detailed results from this second analysis are shown in 
Tables 8 and 9.  
 

Table 7. Discriminant analysis. Variables entered 

Scientific area  Indicators Wilks-
Lambda Exact F Sig. 

Bibliometric-based analysis 
     Biology & Biomedicine Step 1 P 0.794 49.050 0.000 
     Materials Science Step 1 P 0.836 30.029 0.000 
     Natural Resources Step 1 P 0.909 16.048 0.000 
Extended analysis 

Step 1 Years at CSIC 0.787 51.097 0.000      Biology & Biomedicine 
Step 2 h-index 0.566 62.006 0.000 
Step 1 Years at CSIC 0.729 56.983 0.000 
Step 2 P 0.554 52.559 0.000      Materials Science 
Step 3 NJP 0.533 37.646 0.000 
Step 1 Years at CSIC 0.884 21.177 0.000      Natural Resources 
Step 2 P 0.729 27.439 0.000 

 
 
 
 
 
 
                                                 
5 Detailed results of the bibliometric-based analysis are not shown due to its barely moderate predictive value. 
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Table 8. Discriminant analysis. Classification function coefficients (Extended analysis) 
Professional Category 

Scientific area  Tenured 
Scientist 

Research 
Scientist 

Research 
Professor 

h index 19.31 21.23 23.67 

Years at CSIC 10.42 12.10 13.48 Biology & Biomedicine 

(Constant) -35.20 -44.01 -54.39 

P 9.24 10.45 11.62 

NJP 206.96 214.70 218.32 

Years at CSIC 16.65 18.87 20.18 
Materials Science 

(Constant) -92.27 -106.61 -117.16 

P 8.75 9.65 10.70 

Years at CSIC 7.34 8.49 9.18 Natural Resources 

(Constant) -22.29 -27.92 -33.38 
Fisher's linear discriminant functions 

 
Looking at the coefficients of the discriminant functions we can see a clear ascending 
pattern from Tenured Scientist to Research Professor in all variables (Table 8). 
Interestingly, scientists in the lowest and highest categories (Tenured Scientist and 
Research Professor) are more likely to be correctly classified than those in the middle 
category (Research Scientist) (Table 9). 
 

Table 9. Discriminant analysis. Classification results (Extended analysis) 
Predicted group membership 

Scientific area Professional Category Tenured 
Scientist 

Research 
Scientist 

Research 
Professor  

 
Total 

Tenured Scientist (185) 67.6 27.0 5.4 100.0 
Research Scientist (105) 20.0 48.6 31.4 100.0 Biology & Biomedicine 

Research Professor (95) 4.2 22.1 73.7 100.0 

Tenured Scientist (155) 74.2 20.0 5.8 100.0 
Research Scientist (79) 13.9 63.3 22.8 100.0 Materials Science 

Research Professor (81) 6.2 21.0 72.8 100.0 

Tenured Scientist (199) 68.3 21.6 10.1 100.0 
Research Scientist (80) 22.5 33.8 43.8 100.0 Natural Resources 

Research Professor (58) 12.1 19.0 69.0 100.0 

 
The fact that the number of years at the institution shows the highest predictive value 
suggests that promotion tends to reward long professional careers, although not all 
scientists with a long career attain the highest category, since having a high number 
of publications is a crucial factor6. It is worth noting that impact is also taken into 
account: the absolute number of citations received (in terms of the h-index) is the 
most relevant factor in Biology & Biomedicine, while publishing in high-impact factor 
journals seems to be more influential in Materials Science. 
 
To summarize, it seems that the value of the bibliometric indicators used for 
predicting the professional category of researchers is only moderate, and it increases 
when additional factors, such as the number of years at the institution, are 
considered. Scientists with an outstanding performance from a bibliometric 
perspective (Top scientists) are more likely to pertain to the higher professional 

                                                 
6 It is important to mention that serving a particular amount of time before promotion is not explicitly 
required for the promotion of researchers (they can be promoted at any time of their careers), although 
our results suggest that it positively influences promotion if supported by scientific output. 
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categories, but it seems that some factors, other than quantity and impact of 
publications strongly influence promotion. Therefore, once the fact that Top scientists 
are not concentrated on the highest category has been ascertained, we wonder what 
the main characteristics of this set of outperforming scientists are. 
 
Who are Top researchers? 
 
a) Top researchers are the youngest 

 
The distribution of researchers by age and scientific class in the three areas (Figure 
1a) enables us to conclude that Top scientists are younger than the other two 
scientific classes. By professional category, we can see that Research Professors 
are the oldest in the three areas (Figure 1b). 
 

1a      1b 

 
         1c 

 
Figure 1. Age distribution of researchers by scientific class (1a), professional category (1b) 

and both combined (1c). 

 
Significant statistical differences in the age of scientists by scientific classes and 
professional categories were observed (p<0.05) (Figures 1a and 1b). As we can see, 
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Top researchers are aged 45 or thereabouts, Medium class researchers between 45 
and 50, and Low class researchers around 55. On the other hand, the average age 
of Research Professors is 55 compared to an average age of 50 and 45 for Research 
Scientists and Tenured Scientists respectively.  
 
It is interesting to observe that Top scientists are the youngest within each 
Professional Category (Figure 1c). This explains why the average age of Top 
scientists (Figure 1a) is lower than that of the remaining scientific classes, in spite of 
the greater proportion of Research Professors –who tend to be older- in the Top 
class. It can be stated that although Research Professors show the highest average 
age, professors who are Top scientists are the youngest within their category.  
 
b) Top researchers show a lower number of years in their professional category 
 
Top-class researchers have the shortest experience at the institution and also the 
shortest tenure period in the same professional category. In other words, Top 
researchers have joined the institution or have been promoted more recently than 
other researchers (Figure 2). 
 

 

Figure 2. Experience at the CSIC (left) and years in the same professional category (right) by 
scientific class 

 
c) Top researchers have been abroad 
 
Top researchers also present a higher number of documents published by foreign 
centers (with no address in Spain) than scientists in the other classes (Figure 3). This 
may be in connection with the younger age of these scientists, since postdoctoral 
research stays in international centers of prestige is considered at present an 
essential stage of a scientist's training (Jonkers and Tijssen, 2008) and an important 
mechanism of socialization in the international scientific community (Cruz-Castro and 
Sanz-Menéndez, 2010). In fact, our data show that scientists under 46 present the 
highest rates of documents from foreign centers (Figure 4). These stays may 
contribute to increase the collaboration, productivity and impact of researchers and 
may well partially explain the higher performance of young scientists. 
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Figure 3. Average individual percentage of publications abroad by scientific class 

 
 

 
Figure 4. Percentage of documents abroad by age of researchers (all areas combined) 

 
The abovementioned features of Top scientists may be put in connection with the 
fact that the process for entering the CSIC has become increasingly competitive over 
the years. Due to the scarce number of vacancies offered by the institution in recent 
years (see left chart in Figure 5), only scientists with very outstanding curricula vitae 
are recruited. In this sense, a connection may also be made with the current 
ascending trend of the age of access to a permanent position at the CSIC (see chart 
on the right of Figure 5), since a longer scientific career is frequently linked to more 
solid curricula vitae. The current older age of new recruits has also been observed at 
the Italian CNR (Bonaccorsi and Daraio, 2003). Some of the aspects assessed for 
getting a tenured position at the CSIC worth mentioning include scientific productivity, 
publications in prestigious journals, relevance of the research measured through 
citation-based indicators and peer judgments, stays in foreign research centers and 
international collaboration.  
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Figure 5. Evolution of the number of new positions (left) and the age of tenure (right) at the 

CSIC 
 
Effects of age on productivity and impact 
 
Our results indicate that age can be an influential factor on the research performance 
of scientists. This has been extensively investigated, and a number of studies have 
pointed out that research productivity declines with age (see for example, Falagas et 
al., 2008), an aspect that has also been observed in many other human activities 
(Skirbekk, 2003). Within the framework of Science Policy, identifying the age at which 
scientists produce their best research and the extent of the decline in their production 
and/or impact as they grow older are matters of great concern. For the purposes 
hereof, we focus on whether the age factor affects scientists differently according to 
their scientific class.  
 
An analysis of the scientific production of researchers by age has been conducted 
and the mean number of documents and CPP (with a 3-year citation window) by 
researcher was calculated for different age brackets (Figure 6).  
 

 
Figure 6. Number of Publications (left) and CPP values (right) by age of researchers       

(1994-2004) 
 
The distribution of the number of publications per researcher by age (see left chart in 
Figure 6) corresponds to an inverted U-shape curve in Biology & Biomedicine and 
Materials Science, just as Gingras et al. (2008) also found in the case of Canadian 
researchers. A descending pattern in production by age in Natural Resources is also 
apparent. Materials Science and Biology & Biomedicine researchers attain their 
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highest productivity in the 50-54 age bracket, while in Natural Resources the peak is 
reached for researchers under the 40-44 age bracket.  
 
On the other hand, the trend of the CPP rate by age is decreasing in all three 
scientific areas, being such decline especially steep for Biology & Biomedicine 
researchers (see right chart in Figure 6). In all areas researchers under 45 present 
the highest values of citation per publication.  
 
What is the age-related pattern of productivity and citation rate for scientists in 
the different Scientific Classes?  
 
The graphical representation of the average values of the number of publications and 
citations per publication variables is shown in Figure 7. Interestingly, Top-class 
researchers present an upward trend in the number of documents by age in all areas, 
although a downturn is revealed for older scientists (presenting an inverted U-shape 
curve). A similar trend, albeit with lower production is observed for Medium class 
researchers. As for Low class researchers, a decreasing trend in production with age 
is observed in all three areas (see left charts in Figure 7). 
 
With regard to the average impact of documents (CPP 3-year citation window) a 
decreasing pattern is observed in the three scientific areas and for the three scientific 
classes, but the pattern is more evident for Top scientists due to the extremely high 
values obtained by the youngest researchers in this class (see right charts in Figure 
7). 
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 7b           7c 

 

 7d          7e 

 

Figure 7. Number of Publications and CPP values by age of researchers and scientific class 
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Discussion and Conclusions 
 
The use of bibliometric indicators at the macro and meso levels is widely extended 
and generally accepted at present, whilst micro-level studies (teams or individuals) 
have always been surrounded by controversy and debate, especially due to a series 
of limitations identified for the indicators at this level of analysis (Costas and Bordons, 
2005; Sandström and Sandström, 2009). This notwithstanding, bibliometric indicators 
at the micro and particularly at the individual level have a special interest for policy 
makers and research managers. On the one hand, they are a helpful support tool for 
the assessment of the research performance of scientists (evaluative purposes) and, 
on the other hand, they are useful for the study of the scientific behavior of 
researchers (descriptive purposes) since they allow us to detect different working 
strategies (Nederhof, 2008), identify research teams or invisible colleges (Bordons et 
al., 1995) and explore the determinants of research success (Licea de Arenas et al., 
1999; Hornbostel et al., 2009).  
 
Since all indicators present drawbacks, relying on a single indicator for the research 
assessment of scientists must be avoided (Martin and Irvine, 1983) even in the case 
of very new indicators, such as the h-index or g-index (Costas and Bordons, 2008; 
Vinkler, 2007). The combined use of several indicators is strongly recommended 
(van Leeuwen et al., 2003), but, to date, there are no practical suggestions of specific 
methodologies dealing with the use of bibliometric indicators at the micro level. This 
paper's purpose is to shed some light on this matter.  
 
The methodology developed in this study for the classification of scientists according 
to their bibliometric profile has three main advantages: completeness in the collection 
of data, multidimensionality in the analysis and simplicity of usage and interpretation. 
In addition, it can hardly be manipulated by scientists and encourages them to 
improve their publication habits. This methodology allows for the conduct of studies 
for descriptive and evaluative purposes. It can be applied at the individual level, but 
also for the study of research teams, which can be particularly relevant due to the 
increasing role of teams in research development in many disciplines, thus becoming 
a focal issue for further future development. 
 
The methodology is based on the assumption that researchers need to be compared 
with their more similar colleagues. Within each area, scientists can be compared with 
their closer peers (‘like with like’ comparisons), and classified according to their 
performance. The distribution of scientists by classes enables us to locate a given 
author's position in relation to his/her colleagues in the area. Moreover, the individual 
vectors provide relevant information for sound comparisons of researchers (a 
scientist with a 3-3-3 profile is a "better" performer -bibliometrically speaking- than a 
scientist with a 2-2-2 profile), as well as for informing scientists on which are the 
dimensions where their performance is weaker and could be improved. As a result, 
comparisons among researches from different scientific areas are possible since we 
can compare the relative position of scientists in their areas. The classificatory 
scheme provides a quick and straightforward view of the position of individuals in the 
context of their area of activity, which could be useful for research managers, policy 
makers and scientists themselves.  
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This paper focuses on the study of researchers working at the Spanish CSIC, but we 
believe that this methodology can also be applied in other academic or governmental 
settings as well as in other countries. In fact, the CSIC is one of the most 
internationally-oriented actors within the Spanish research system (Gómez et al., 
2003; García & Sanz-Menéndez, 2005) and some of the results hereof have also 
been described for other countries and organizations (Turner & Mairese, 2002; 
Bonaccorsi & Daraio, 2003; Gingras et al., 2008; Jensen et al., 2009).  Whatever the 
case, the organizational and research policy context to which the analyzed 
individuals are subject should be taken into account for the appropriate 
understanding of the results of any given study. The development of future studies 
focused on researchers from other organizations, fields and/or countries will 
contribute to obtain more comprehensive pictures of the research performance 
process and a better understanding of scientific performance at the individual level. 
 
- Assessing research performance 
 
The methodology set forth in this paper offers a classification of scientists based on a 
balanced analysis of their research performance, outstripping other approaches 
based on single indicators (e.g., the h-index) that only measure the most size-
dependent (absolute) aspects of the research production (i.e., the total number of 
documents and the total number of citations) and ignore relative indicators. Our 
approach enables us to characterize different classes of scientists according to their 
global performance, instead of providing linear rankings of scientists based either on 
a single indicator (which only provides a partial view of their research performance) 
or on indicators aggregated into a composite score (whose construction is frequently 
a bone of contention). The methodology outlined in this paper prioritizes classes over 
rankings, considering that differences among the relative positions of scientists in 
rankings are frequently not statistically significant. We uphold the view that the 
distribution of scientists by classes can be useful for Science Policy purposes but 
also for researchers themselves who may identify weaknesses and strengths in their 
performance and introduce changes in their publication strategy if necessary. 
 
Professional promotion in many institutions, as in the case of the CSIC, is based on 
peer assessment. A number of shortcomings have been repeatedly pointed out in the 
literature in connection with this system (King, 1987), such as the subjectivity 
inherent to expert judgment or the fact that potential conflicts of interest among 
researchers may influence their final decisions. This notwithstanding, the value and 
usefulness of expert judgments in assessing the relevance, originality and merit of 
scientific achievements within their area of expertise is widely accepted, provided 
that the influence of extra-scientific factors is minimized. Moreover, a good correlation 
between peer review and bibliometrics has been reported in different studies 
(Anderson et al., 1978; Rinia et al.,1998; van Raan, 1996). From this point of view, 
the barely moderate matching between our classification on scientific classes and 
professional categories is somewhat intriguing since one might expect to find a “Top” 
profile for those ranked highest. However, different factors may contribute to explain 
our finding. First of all, young scientists —and Top scientists tend to be young— may 
be particularly aware of the importance of good publications to build a solid scientific 
career and win a tenure award. Secondly, bibliometric indicators are based on 
scientific publications, which only measure one facet of research performance, whilst 
other facets in which senior scientists might be more involved than their juniors, such 
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as PhD training, research management, innovation or consultancy, are also taken 
into account in promotion decisions. Our results suggest that promotion tends to 
reward long scientific track records. Thus, among those scientists with a remarkable 
bibliometric research profile the older ones are more likely to appear in the upper 
professional category.  
 
With regard to bibliometric indicators, our study shows that the number of Web of 
Science publications is the one that best discriminates among professional 
categories, although impact-based indicators also play a relevant role. Other studies 
have reported that absolute indicators (the h-index, the total number of documents 
and the total number of citations) are the best predictors for the professional 
promotion of researchers (i.e., Bornmann et al., 2008; Jensen et al., 2009). Our 
classificatory scheme goes beyond the number of publications and other absolute 
indicators. To be classified as a Top scientist, an outstanding performance is 
required not only in the number of publications, but also in the quality of publication 
journals, as well as in the influence of the research measured by means of relative 
impact indicators. Our results show that this type of performance is mainly 
accomplished by young scientists who have joined the CSIC after a stay of several 
years in a foreign research centre.  
 
In summary, the present methodology enables us to characterize different classes of 
scientists in a given community, identifying outstanding individuals (Top scientists) 
from a bibliometric perspective. This approach can inform and support peer decisions 
regarding different types of rewards among its members. Since bibliometrics provides 
a partial measurement of the research performance of scientists, its relative weight 
amidst other measurements dealing with other dimensions of the scientific activity 
needs to be established in each case by the specific panels or institutional actors 
involved.  
 
- Exploring the research process 
 
The usefulness of this methodology to delve into the study of the research process is 
analyzed in this paper by addressing the characterization of Top scientists. 
 
The study reveals that outstanding scientists from a bibliometric point of view (Top 
scientists) tend to be younger than the rest. May it be inferred therefrom that young 
scientists are active in specific subfields or topics (i.e. hot topics) in which access to a 
“top” profile is easier? Certain influence of the selection of research topics must no 
be ruled out, but the fact that a lower age of top scientists was observed in all three 
CSIC research areas led us to think that there are other major underlying factors at 
play.  
 
The increasingly competitive process for the award of tenures at the CSIC, partly due 
to the scarce number of vacancies offered in recent years, might probably contribute 
to explain the “top-tier” research profile of some young scientists, also described by 
Rey Rocha et al. (2006). Moreover, CSIC's strategic plans stress the importance of 
recruiting the “best” researchers with the aim of fostering excellence and 
consolidating the position of the institution at international level (CSIC, 2006). In brief, 
over the last few years, new recruits have been required more competitive curricula 
vitae including, as a general rule, high productivity, high visibility of research, and 
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research stays abroad (Sanz-Menéndez, 2003). At present, experience abroad is 
considered a key factor in the professional career of researchers, since scientific 
mobility has a beneficial impact on the training and productivity of researchers (De 
Filippo et al., 2007; Zubieta, 2009). Based on this assumption, different programs of 
mobility such as Joint Action Program (Acciones Integradas) (Granadino et al., 2005) 
or the Ramon y Cajal programme (Cañibano et al., 2008) have been implemented in 
Spain to help researchers gain international experience, establish valuable contacts 
and participate in specific-domain international networks. 
 
Another interesting result is that the experience of Top researchers at the CSIC is 
shorter than that of Medium or Low class researchers. Moreover, Top researchers 
present the shortest time of tenure in the same professional category, which means 
that they have only very recently joined the institution or that they have been 
promoted in recent years. This result raises the question of the strong relationship 
between high performance —from a bibliometric perspective— and recognition. It 
suggests that recent recognition such as a tenure award or a promotion has a 
positive effect over the research performance of scientists, something that has also 
been pointed out by other authors (Allison and Long, 1990; Tien and Blackburn, 
1996; Carayol and Matt, 2004). This is also in line with the idea that tenure and 
promotion reward scientists with new demands and opportunities in what Sugimoto et 
al. (2008) defined as the “surge of the academic life cycle” meaning that the products 
created during the pre-tenure/promotion period reward the individual scientists with 
academic dividends in the form of citations, awards, students, and general visibility 
within their discipline.  

 
Overall, productivity shows an inverted U-shape distribution with age in two areas, 
while it decreases with age in Natural Resources. In all three areas, the lowest 
productivity corresponds to the oldest scientists. In terms of impact, a declining 
pattern by age is observed in the three areas under analysis. Several arguments 
have been raised in prior studies to explain the lower productivity of older scientists: 
 
- As researchers grow older they are involved in an increasing range of different 

tasks (administration, teaching, research assessment, project management, 
funding, supervision of PhD students, etc.), implying a reduction of the time they 
can devote to conduct research and thus decreasing productivity. Along the same 
line, we can also postulate that researchers may change their communicative 
habits as they get older and are more established, increasing their involvement in 
document types not covered by the Web of Science database, such as books, 
book chapters, reports, etc.  

 
- The lack of incentives may contribute to the lower performance of some scientists 

as they grow older (Turner and Mairesse, 2002); in fact, Cole (1979) suggested 
that the relationship between age and scientific performance is more influenced 
by the reward system than by a real loss of productivity with age. Those 
researchers who are not rewarded for their research may lose motivation for 
maintaining high productivity. Cronin and Meho (2007) suggest that the creativity 
of researchers does not decrease with age, but it is expressed in different ways, 
at different times, and with different intensities and it has been argued that the 
creation of incentive policies for researchers at different professional stages can 
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contribute to keep their production rate up during their whole professional life 
(González-Bambrila and Veloso, 2007).  

 
- Older researchers may be more reluctant to steer their research into new 

scientific problems and their skills may become obsolete. As a result, the 
relevance and impact of their research may dwindle (“obsolescence effect”) (Kyvik 
and Olsen, 2008). 

 
- The importance of “generation effects” has been pointed out by different authors 

(Kyvik and Olsen, 2008), who note that changes in the cultural, social and 
technical environment of individuals as they grow older may contribute to the 
decline in their productivity. 

 
Interestingly, Kyvik and Olsen (2008) have suggested that the increasing involvement 
in administration and management identified for older scientists does not necessarily 
justify their lower productivity. On the contrary, it may lead to further their conditions 
of access to resources and increased activity (Kyvik and Olsen, 2008). This train of 
thought is consistent with our data, since productivity of Top and Medium scientists 
increases with age until the 50-54 age bracket (in Materials Science) or the 55-59 
one (in Biology & Biomedicine and Natural Resources). Team work and collaboration 
may become key factors in taking advantage of this improvement of their means of 
access to resources, since it allows scientists to cope with new projects and research 
activities.  
 
What is the contribution of the scientific class-based approach to the study of the 
effects of age on productivity and impact? Interestingly, our study shows that the 
productivity of Top and Medium scientists increases or remains stable with age and 
only decreases for older scientists. On the contrary, productivity of Low class 
researchers tends to decrease with age. Lack of resources and/or motivation could 
be some explanatory factors for the declining trend in performance observed for Low 
scientists. In relation to Top and Medium scientists, some age-related problems 
which threaten productivity could be overcome if research is tackled as a collective 
enterprise. Collaboration between scientists from different ages could reduce the 
obsolescence and generation effects described above. Further analysis of 
collaboration practices at the individual level in our three areas of analysis would be 
needed for an in-depth study of these aspects.  
 
As for impact, the mean impact of documents declines with age for all scientists and 
especially for Top class researchers, although the latter show the highest values for 
any given age-bracket. Several hypotheses can contribute to explain the marked 
downturn in the impact of Top scientists. First, Top researchers can benefit at the 
early stage of their careers from the publications produced abroad during their 
postdoctoral stays, since a high impact of international co-authored documents has 
been described in various studies (Glänzel and Schubert, 2001). Another explanation 
can be the bias towards quantitative indicators in the promotion process. Scientists 
may have the perception or feeling that they need to improve their output instead of 
their impact to increase their possibilities of being promoted. Finally, the difficulty in 
maintaining high values of relative impact with increasing rates of production has 
been put forward by different authors (“dilution effect”) (van Raan, 2008; Costas et 
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al., 2009). Fostering quality over quantity is still an objective to be pursued and 
rewarded. 
 
To conclude, we consider bibliometric studies at the micro level a very useful tool for 
the study of the research process and its main determinants, as well as for 
supporting research assessment procedures. The classification of scientists provided 
herein may be a source of valid information for these purposes and support the 
implementation of research policies aimed at the different types of researchers.  
 
Future research will focus on furthering knowledge on the main determinants of the 
research performance of individual scientists. Moreover, due attention shall be paid 
to the analysis of the advantages and limitations of the use of “Classification 2” for 
the study of individual scientific performance. 
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Appendix 1. Research performance of scientists by Scientific Class and Area 
 

Class P C h-index %HCP CPP CPP/FCSm IF med NJP JCSm/FCSm 
Natural Resources 

39.35±25.07 580.89±421.64 13.39±4.42 35.84±11.41 13 .18±6.09 1.44±0.50 1.836±0.616 0.77±0.06 1.34±0.32 Top  
(N=66) 35 511.5 13 33.33 11.6 1.28 1.727 0.77 1.3 

26.12±15.95 210.71±144.91 8.12±2.88 18.26±11.89 7.04±3.16 0.91±0.44 1.257±0.375 0.66±0.09 1.01±0.27 Medium 
(N=191) 24 174 8 16.47 6.48 0.83 1.18 0.67 0.99 

9.24±10.12 38±42.01 3.14±2.02 17.83±24.43 3.12±3.13  0.41±0.30 0.787±0.31 0.49±0.15 0.66±0.28 Low 
(N=92) 6 21 3 7.18 2.63 0.37 0.756 0.5 0.67 

24.17±19.69 242.21±282.32 8.03±4.55 22.59±15.11 7.31±5.11 0.89±0.54 1.273±0.541 0.64±0.14 0.99±0.36 Total 
(N=349) 21 163 8 19.84 6.63 0.83 1.181 0.67 0.98 
Biology & Biomedicine 

31.24±19.77 1224.34±823.77 15.81±5.57 43±13.95 41.43±23.81 2.32±1.16 74±2.194 0.87±0.04 2.03±0.53 Top 
(N=70) 25 993.5 14 42.71 35.8 2.08 6.95 0.88 1.93 

35.14±24.59 620.44±464.82 12.59±5.04 21.58±11.21 16 .93±8.55 1.09±0.52 4.541±1.848 0.82±0.06 1.4±0.39 Medium 
(N=231) 29 482 12 19.35 14.8 0.99 4.136 0.82 1.36 

18.2±17.56 154.69±195.58 6.38±3.26 9.37±4.92 6.31±3 .46 0.45±0.30 2.88±1.224 0.69±0.13 0.86±0.32 Low 
(N=87) 15 115 6 8.01 5.85 0.38 2.76 0.7 0.82 

30.64±23.33 627.4±610.89 11.82±5.73 24.97±15.21 19.03±16.66 1.17±0.89 4.645±2.223 0.8±0.1 1.39±0.55 Total 
(N=388) 25 466.5 11 21.37 14.21 0.97 4.116 0.82 1.34 
Materials Science 

72.1±44.5 1006.01±675.18 16±4.86 34.52±8.18 12.72±6 .68 1.96±1.16 2.377±0.598 0.8±0.05 1.57±0.29 Top  
(N=70) 56.5 764.5 15 33.33 10.33 1.49 2.421 0.81 1.56 

51.26±35.72 336.01±304.08 9.6±3.31 17.82±7.59 5.32± 2.29 0.87±0.37 1.461±0.551 0.73±0.07 1.18±0.29 Medium 
(N=174) 43 277 9 16.77 4.8 0.80 1.407 0.73 1.18 

20.17±16.93 81.11±66.09 4.66±2.01 7.55±4.67 2.37±1. 33 0.48±0.29 1.037±0.711 0.63±0.16 0.88±0.37 Low 
(N=83) 17 74 5 6.67 2.3 0.44 0.881 0.63 0.82 

47.83±38.68 427.44±508.4 9.96±5.16 20.22±11.51 6.3± 5.13 1.02±0.82 1.576±0.756 0.72±0.11 1.2±0.39 Total 
(N=327) 40 261 9 18.68 4.89 0.84 1.444 0.74 1.21 

Note: “N” stands for number of scientists. 
Data expressed as Mean±SD 

Median 
 
 
 
 
 


